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1. Introduction

Intelligent imaging and analysis have been studied in various research fields, including medical
imaging, biomedical applications, computer vision, visual inspection and robot systems. Recently,
artificial intelligence (AI) technologies with deep learning, machine learning and image processing have
been applied to many difficult tasks, including challenging issues in image generation, reconstruction,
de-noising, segmentation, and defect detection.

This Special Issue handles various applications of intelligent imaging technologies, covering
medical imaging, visual detection, segmentation, medical diagnosis, image retrieval, image
reconstruction and texture mapping. It shows the trend and the latest developments of intelligent
imaging and analysis techniques. Theories of image processing, learning schemes and state-of-art
artificial intelligence techniques for imaging and analysis are introduced.

2. Intelligent Imaging and Analysis

This section provides overall summaries of the papers included in this Special Issue for quick
guidance for readers. The first half introduces non-medical or general applications, and the second
half focuses on medical applications of the intelligent imaging and analysis techniques.

As an application of image analysis, face sketch synthesis has been tested by Wan and Lee [1],
using the joint training method on face photos and sketches. Thus, more detailed information can
be recorded in the synthesized sketches. Autonomous underwater vehicles (AUVs) have been a
challenging subject requiring the underwater location accuracy. The work suggested by Wang et al. [2]
shows the PL-SLAM (point and line simultaneous localization and mapping) to improve the accuracy
of localization in the underwater environment. To measure volumetric tooth wear, a set of sequence
images over sprocket teeth in a scraper conveyer can be collected. A focused morphology restoration
algorithm has been applied to the image set by Ding et al. [3]. The method uses image filtering with a
normal distribution operator to improve the accuracy of an evaluation function. Statistical body shape
models can be used to estimate 3D human pose. However, self-intersection often occurs on images
with a pattern of poses, especially between body parts. Wu et al. [4] introduced a self-intersection
penalty term for statistical body shape models for 3D pose estimation, thus improving the accuracy of
the pose estimation.

Many imaging techniques have been recently developed with CNN (convolutional neural
network). A new approach with a depth module has been applied to human parsing by Jiang and
Chi [5]. The method integrates a depth estimation module and a segmentation module as a variation of
CNN (convolutional neural network) for image analysis, thus improving the performance for human
parsing. Another CNN approach was used for scene parsing in the road scene context by Li et al. [6].
They provided a fast 3D semantic mapping system with monocular vision by combining localization,
mapping and scene parsing. The semantic segmentation runs on selected key frames and their depth
information, reducing the computational cost and also improving the accuracy of semantic mapping.
The CNN model was also applied to geological structure image classification. As Zhang et al. [7]
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showed, transfer learning based on a deep learning model is effective to extract features of geological
structure data. Oil spill detection on the ocean surface has been a hot issue, and a refined technique is
required to detect dark spots on SAR (synthetic aperture radar) images. A deep convolution neural
network, called Segnet has been tested for this application by Guo et al. [8]. It has the basic framework
of encoder and decoder for image semantic segmentation. It improves accuracy performance to extract
an oil spill location and area.

Three-dimensional image modeling reconstructs the 3D model of an object with multiple 2D
images as well as maintaining its texture. Lai et al. [9] proposed a texture mapping method to use mesh
partitioning, mesh parameterization and packing, texture transferring, and texture correction and
optimization. It forms a high-resolution texture map of a 3D model for application in e-commerce. Image
super-resolution technique is one of the most promising CNN based image processing techniques,
which can be applied to various kinds of images. Chen et al. [10] propose a dual-channel CNN
super-resolution network to extract the detailed texture information (deep channel) and the overall
outline of the original image (shallow channel). Image quality assessment is an important process to
maintain good quality of images for various types of imaging system. Jang et al. [11] proposed a new
method of automatically assessing image quality when several enhancement techniques are applied,
by using feature sets derived from high dynamic range images.

Detection-specific AI techniques such as the region-based CNN (R-CNN) can be used for various
industrial purposes with specific configuration of a vision system. Wang et al. [12] proposed a novel
one-camera–five-mirror system for cavitation bubble cluster study and have used a faster R-CNN
method to detect bubbles in their system. The concept of residual network has widely been adopted
in various deep learning architectures. Guo et al. [13] proposed an efficient deep residual network
approach by using sparse feedbacks, which improves the convergence speed and the training stability
in their image restoration applications.

Image segmentation has been tackled with a novel active contour model by Sun et al. [14]. It uses
an improved SPF (signed pressure function) and a LIF (local image fitting) model. A weight function
of the grayscale mean values around the contour curve was introduced to segment blurred images
and weak gradient images, and another metric function was used to check local image information
to segment intensity-inhomogeneous images. Image segmentation plays a role of monitoring the
weld pool surface affecting the weld quality. The reflected laser lines used for arc welding contain the
weld pool surface information, and Wang et al. [15] proposed that various image processing methods
are combined for image segmentation approach, applied to the reflected laser lines. An effective
image search is demanding work in the field of content-based image retrieval. A novel approach to
encode the relative spatial information for histogram-based representation of the visual worlds has
been introduced by Zafar et al. [16]. It computes the geometric relationship in the visual worlds and
enhances the performance of image retrieval.

Surface defect detection is a challenging problem in industrial product manufacturing.
Vision-based defect detection of steel sheets focuses on finding the salient characteristics of the
defects. Zhou et al. [17] processed the defect segmentation with a double low-rank and sparse
decomposition model to obtain high-quality defect images. Another style of surface defect detection
can be found in the railway surface. A novel visual inspection approach based on UAV (unmanned
aerial vehicle) images has been tested by Wu et al. [18]. It characterizes the defective sub-regions and
defect-free background sub-regions, and highlights the critical defect regions in the image analysis.
Their approach has two key techniques for UAV-based rail images: image enhancement and surface
defect segmentation.

The inspection of a PCB (printed circuit board) is a kind of surface defect detection problem
with visual image in manufacturing. Yuk et al. [19] extracted robust features in the visual image with
various types of defect patterns such as scratches and improper etching, applying a random forest
method. They also used probabilistic kernel density estimation to improve the detection performance.
Visual inspection technology in the manufacturing process in the iron and steel industry has been

2



Appl. Sci. 2019, 9, 4804

investigated by Sun et al. [20]. Coverage of cameras or light source information can differentiate the
hardware selection of visual inspection. The inspection or detection algorithm depends on filtering,
statistics and learning methods. Basic theories and foundations of image processing highly contribute
to the visual inspection technologies, according to this review paper.

The following part introduces medical applications of intelligent imaging and analysis techniques
on various types of image datasets including magnetic resonance images (MRI), computed tomography
(CT), optical scan data, photographic images and digital videos.

Segmentation of medical images is one of the most important tasks for many medical image
analyses. However, the boundaries of the object segmentation have not been well addressed so
far. Kim et al. [21] proposed a method to overcome the poor performance issues encountered on
the boundaries of objects. Their boundary-specific U-net improved the segmentation performance
on the boundaries of the intervertebral discs in MR spine images. Human lumbar spine diagnosis
can be assisted by accurate segmentation of the vertebral bodies. Kim et al. [22] also proposed a
semi-automatic segmentation technique for vertebral bodies in MR images which can reduce the user’s
role while achieving good segmentation accuracy.

A data balancing problem is an important issue to address for some deep learning applications,
especially when there are not enough datasets for training. It is often noticed that non-balanced datasets
lead to a biased estimation model. Zhang et al. [23] proposed a pre-training strategy to address this
problem encountered in the liver segmentation from computed tomography (CT) scans. Zheng et al.
proposed an intelligent evaluation system for strabismus diagnosis with a sequence of digital video
analyses [24]. Each image in the recorded video is analyzed to localize important features, which are
combined to evaluate the strabismus. Updating and automatic training can be an important step for
the practical application and subsequence maintenance of an AI-based system. Sugimori [25] discussed
the overall accuracy of additional learning and automatic training system for CT classification task.

Intelligent design and manufacturing can help medical procedures. Kim et al. [26] proposed a
computer-aided design and manufacturing technology for patient-specific optimization of the Nuss
procedure for minimally invasive surgery of pectus excavatum. This can be an example of how the
intelligent imaging and analysis techniques can change the shape of the medical procedures in the
future. Automatic alignment of images and volumes in medical imaging data is an important step for
further subsequent analysis. Rehman and Lee [27] proposed an efficient automatic midsagittal plane
extraction in brain MRI images. This method can be useful for image registration, asymmetric analysis
and tilt correction encountered in the analysis of brain images.

Registration between volume data and surface data is also an important application in several
medical procedures. Jung et al. [28] proposed an effective registration technique for dental tomographic
volume data and scan surface data by using a dynamic segmentation technique. Another registration
task can be found as a point cloud registration for 3D datasets. Liu et al. [29] presented a 3D point cloud
registration algorithm based on a greedy projection triangulation method to address the 3D problem.

3. Future Intelligent Imaging and Analysis

Various technological advancements of intelligent imaging and analysis have been introduced
in this Special Issue. With the advent of the deep learning and related machine learning techniques,
many of the conventional imaging and analysis techniques are being improved or substituted by the
intelligent learning-based methods. It is expected that robust and reliable intelligent techniques will
soon be deployed for many practical applications in industries, sciences, medicine and arts.
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Abstract: Strabismus is a common vision disease that brings about unpleasant influence on vision, as
well as life quality. A timely diagnosis is crucial for the proper treatment of strabismus. In contrast
to manual evaluation, well-designed automatic evaluation can significantly improve the objectivity,
reliability, and efficiency of strabismus diagnosis. In this study, we have proposed an innovative
intelligent evaluation system of strabismus in digital videos, based on the cover test. In particular,
the video is recorded using an infrared camera, while the subject performs automated cover tests.
The video is then fed into the proposed algorithm that consists of six stages: (1) eye region extraction,
(2) iris boundary detection, (3) key frame detection, (4) pupil localization, (5) deviation calculation,
and (6) evaluation of strabismus. A database containing cover test data of both strabismic subjects
and normal subjects was established for experiments. Experimental results demonstrate that the
deviation of strabismus can be well-evaluated by our proposed method. The accuracy was over 91%,
in the horizontal direction, with an error of 8 diopters; and it was over 86% in the vertical direction,
with an error of 4 diopters.

Keywords: intelligent evaluation; automated cover tests; deviation of strabismus; pupil localization

1. Introduction

Strabismus is the misalignment of the eyes, that is, one or both eyes may turn inward, outward,
upward, or downward. It is a common ophthalmic disease with an estimated prevalence of 4%, in
adulthood [1], 65% of which develops in childhood [2]. Strabismus could have serious consequences
on vision, especially for children [3,4]. When the eyes are misaligned, the eyes look in different
directions, leading to the perception of two images of the same object, a condition called diplopia.
If strabismus is left untreated in childhood, the brain eventually suppresses or ignores the image of
the weaker eye, resulting in amblyopia or permanent vision loss. Longstanding eye misalignment
might also impair the development of depth perception or the ability to see in 3D. In addition, patients
with paralytic strabismus might turn their face or head to overcome the discomfort and preserve
the binocular vision for the paralyzed extraocular muscle, which might lead to a skeletal deformity
in children, such as scoliosis. More importantly, it has been shown that people with strabismus
show higher levels of anxiety and depression [5,6] and report a low self-image, self-esteem, and
self-confidence [7,8], which brings adverse impact on a person’s life, including education, employment,
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and social communication [9–14]. Thus, timely quantitative evaluation of strabismus is essential,
in order to get a suitable treatment for strabismus. More specifically, accurate measurement of the
deviation in strabismus is crucial in planning surgery and other treatments.

Currently, several tests need to be performed, usually, to diagnose strabismus in a clinical
context [15]. For example, the corneal light reflex is conducted by directly observing the displacement
of the reflected image of light from the center of the pupil. Maddox rod is a technique that utilizes
filters and distorting lenses for quantifying eye turns. Another way to detect and measure an eye turn
is to conduct a cover test, which is the most commonly used technique. All these methods require
conduction and interpretation by the clinician or ophthalmologist, which is subjective to some extent.
Taking the cover test as an example, the cover procedures and assessments are conducted manually, in
the existing clinical systems, and well-trained specialists are needed for the test. Therefore, this limits
the effect of strabismus assessment in two aspects [16,17]. With respect to cover procedure, the cover
is given manually, so the covering time and speed of occluder movement depend on the experience
of the examiners and can change from time to time. These variations of the cover may influence
the assessment results. With respect to assessment, the response of subject is evaluated subjectively,
which leads to more uncertainties and limitations in the final assessment. First, the direction of eye
movement, the decision of whether or not moving and the responding speed for recovery, rely on
the observation and determination of the examiners. The variances of assessment results, among
examiners, cannot be avoided. Second, the strabismus angle has to be measured with the aid of a
prism, in a separate step and by trial-and-error. This strings out the diagnosis process. Being aware
of these clinical disadvantages, researchers are trying to find novel ways to improve the process of
strabismus assessment.

With the development of computer technology, image acquisition technology, etc., researchers
have made some efforts to utilize new technologies and resources to aid ophthalmology diagnostics.
Here, we give a brief review on the tools and methodologies that support the detection and diagnosis
of strabismus. These methods can be summarized into two categories, namely the image-based or
video-based method, and the eye-tracking based method.

The image-based or video-based method uses image processing techniques to achieve success in
diagnosing strabismus [18–22]. Helveston [18] proposed a store-and-forward telemedicine consultation
technique that uses a digital camera and a computer to obtain patient images and then transmits them
by email, so the diagnosis and treatment plan could be determined by the experts, according to the
images. This was an early attempt to apply new resources to aid the diagnosis of strabismus. Yang [19]
presented a computerized method of measuring binocular alignment, using a selective wavelength
filter and an infrared camera. Automated image analysis showed an excellent agreement with the
traditional PCT (prism and alternate cover test). However, the subjects who had an extreme proportion
that fell out of the normal variation range, could not be examined using this system, because of its
software limitations. Then in [20], they implemented an automatic strabismus examination system that
used an infrared camera and liquid crystal shutter glasses to simulate a cover test and a digital video
camera, to detect the deviation of eyes. Almedia et al. [21] proposed a four-stage methodology for
automatic detection of strabismus in digital images, through the Hirschberg test: (1) finding the region
of the eyes; (2) determining the precise location of eyes; (3) locating the limbus and the brightness;
and (4) identifying strabismus. Finally, it achieved a 94% accuracy in classifying individuals with or
without strabismus. However, the Hirschberg test was less precise compared to other methods like the
cover test. Then in [22], Almeida presented a computational methodology to automatically diagnose
strabismus through digital videos featuring a cover test, using only a workstation computer to process
these videos. This method was recognized to diagnose strabismus with an accuracy value of 87%.
However, the effectiveness of the method was considered only for the horizontal strabismus and it
could not distinguish between the manifest strabismus and the latent strabismus.

The eye-tracking technique was also applied for strabismus examination [23–27]. Quick and
Boothe [23] presented a photographic method, based on corneal light reflection for the measurement
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of binocular misalignment, which allowed for the measurement of eye alignment errors to fixation
targets presented at any distance, throughout the subject’s field of gaze. Model and Eizenman [24]
built up a remote two-camera gaze-estimation system for the AHT (Automated Hirschberg Test) to
measure binocular misalignment. However, the accuracy of the AHT procedure has to be verified with
a larger sample of subjects, as it was studied on only five healthy infants. In [25], Pulido proposed a
new method prototype to study the eye movement where gaze data were collected using the Tobii
eye tracker, to conduct ophthalmic examination, including strabismus, by calculating the angles of
deviation. However, the thesis focused on the development of the new method to provide repeatability,
objectivity, comprehension, relevance, and independence and lacked an evaluation of patients. In [26],
Chen et al. developed an eye-tracking-aided digital system for strabismus diagnosis. The subject’s
eye alignment condition was effectively investigated by intuitively analyzing gaze deviations, but
only a strabismic person and a normal person were asked to participate in the experiments. Later,
in [27], Chen et al developed a more effective eye-tracking system to acquire gaze data for strabismus
recognition. Particularly, they proposed a gaze deviation image to characterize eye-tracking data
and then leveraged the Convolutional Neural Networks to generate features from gaze deviation
image, which finally led to an effective strabismus recognition. However, the performance of the
proposed method could be further evaluated with more gaze data, especially data with different
strabismus types.

In this study, we have proposed an intelligent evaluation system for strabismus. Intelligent
evaluation of strabismus, which could also be termed an automatic strabismus assessment, assesses
strabismus without ophthalmologists. We developed a set of intelligent evaluation systems in digital
videos based on a cover test, in which an automatic stimulus module, controlled by chips, was used to
generate the cover action of the occluder; the synchronous tracking module was used to monitor and
record the movement of eyes; and the algorithm module was used to analyze the data and generate
the measurement results of strabismus.

The rest of paper is organized as follows. A brief introduction of the system is given in Section 2.
The methodology exploited for strabismus evaluation is described in detail in Section 3. Then, in
Section 4, the results achieved by our methodology are presented, and in Section 5, some conclusions
are drawn and a prospect of future work is discussed.

2. System Introduction

In our work, we have developed a set of intelligent evaluation systems of strabismus, in which
the subject needs to sit on the chair with his chin on the chin rest and fixate on the target. The cover
tests are automatically performed and finally a diagnosis report is generated, after a short while.
The system, as shown in Figure 1, can be divided into three parts, i.e., the automated stimulus module
for realizing the cover test, the video acquisition module for motion capture, and the algorithm module
for detection and measurement of strabismus. More details of the system have been presented in our
previous work [28].
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Figure 1. The proposed intelligent evaluation system of strabismus.

2.1. Hardware Design

The automated stimulus module is based on a stepper motor connected to the controller, a control
circuit, which makes the clinical cover test automated. The stepper motor used in the proposed system
is iHSV57-30-10-36, produced by JUST MOTION CONTROL (Shenzhen, China). The occluder is
hand-made cardboard, 65 mm wide, 300 mm high, and 5 mm thick. The subject’s sight is completely
blocked when the occluder occludes the eye so that our method can properly simulate the clinical
cover test. XC7Z020, a Field Programmable Gate Array (FPGA), is the core of the control circuit.
The communication between the upper computer and the FPGA is via a Universal Serial Bus (USB).
The motor rotates at a particular speed in a particular direction, clockwise or counterclockwise, to
drive the left and right movement of the occluder on the slider, once the servo system receives the
control signals from the FPGA.

As for the motion-capture module, the whole process of the test is acquired by the high-speed
camera RER-USBFHD05MT with a 1280 × 720 resolution at 60 fps. A near-infrared led array with
a spectrum of 850 nm and a near-infrared lens were selected to compensate for the infrared light
illumination and separately reduce the noise from the visible light. AMCap is used to perform the
control of the camera, such as the configuration of the frame rate and resolution, exposure time, the
start and end of a recording, and so on.

Being ready to execute the strabismus evaluation, the subject is told to sit in front of the workbench
with chin on the chin rest and fixate on the given target. The target is a cartoon character displayed
on a MATLAB GUI on Monitor 2, for the purpose of attracting attention, especially for children.
The experimenter sends a code “0h07” (the specific code for automatic cover test) to the system, and
the stimulus module reacts to begin the process of the cover test. Meanwhile, the video acquisition
application AMCap automatically starts recording. When the cover test ends, AMCap stops recording
and saves the video in a predefined directory. Then the video is fed into the proposed intelligent
algorithm performing the strabismus evaluation. Finally, a report is generated automatically which
contains the presence, type, and degree of strabismus.

2.2. Data Collection

In the cover test, the examiner covers one of the subject’s eyes and uncovers it, repeatedly, to see
whether the non-occluded eye moves or not. If the movement of the uncovered eye can be observed,
the subject is thought to have strabismus. The cover test can be divided into three subtypes—the
unilateral cover test, the alternating cover test, and the prism alternate cover test. The unilateral
cover test is used principally to reveal the presence of a strabismic deviation. If the occlusion time is
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extended, it is also called the cover-uncover test [29]. The alternating cover test is used to quantify the
deviation [30]. The prism alternate cover test is known as the gold standard test to obtain the angle of
ocular misalignment [31]. In our proposed system, we sequentially performed the unilateral cover
test, the alternate cover test, and the cover-uncover test, for each subject, to check the reliability of
the assessment.

The protocol of the cover tests is as follows. Once the operator sends out the code “0h07”, the
automatic stimulus module waits for 6 s to let the application “AMCap” react, and then the occlusion
operation begins. The occluder is initially held in front of the left eye. The first is the unilateral cover
test for the left eye—the occluder moves away from the left eye, waiting for 1 s, then moves back to
cover the left eye for 1 s. This process is repeated for three times. The unilateral cover test for the right
eye is the same as that of the left eye. When this procedure ends, the occluder is at the position of
occluding the right eye. Then the alternate cover test begins. The occluder moves to the left to cover
the left eye for 1 s and then moves to the right to cover the right eye. This is considered as one round,
and it needs to be repeated for three rounds. Finally, the cover-uncover test is performed for both eyes.
The only difference from the above unilateral cover test is that the time of the occluder’s occluding
eyes is increased to 2 s. Eventually, the occluder returns to the initial position.

We cooperated with the Hong Kong Association of Squint and Double Vision Sufferers to collect
strabismic data. In total 15 members of the association consented to participate in our experiments.
In addition to the 15 adult subjects, 4 children were invited to join our study. The adults and children,
including both male and female, were within the age ranges of 25 to 63 years and 7 to 10 years,
respectively. The camera was configured to capture a resolution of 1280 × 720 pixels at a frame rate of
60 fps. The distance between the target and eyes was 33 cm. If wearing corrective lenses, the subject
was requested to perform the tests twice, once wearing it and once without it. After ethics approval
and informed consent, the 19 subjects followed the data acquisition procedure introduced above, to
participate in the experiments. Finally, 24 samples were collected, five of which were with glasses.

3. Methodology

To assess the strabismus, it is necessary to determine the extent of unconscious movement of eyes
when applying the cover test. To meet the requirement, a method consisting of six stages is proposed,
as shown in Figure 2. (1) The video data are first processed to extract the eye regions, to get ready
for the following procedures. (2) The iris measure and template is detected to obtain its size for the
further calculations and segment region for the template matching. (3) The key frame is detected to
locate the position at which the stimuli occur. (4) The pupil localization is performed to identify the
coordinates of the pupil location. (5) Having detected the key frame and pupil, the deviation of eye
movements can be calculated. (6) This is followed by the strabismus detection stage that can obtain
the prism diopter of misalignment and classify the type of strabismus. Details of these stages of the
method are described below.

 

Figure 2. The workflow of the proposed method for the assessment of strabismus.
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3.1. Eye Region Extraction

At this stage, a fixed sub-image containing the eye regions, while excluding regions of no interest
(like nose and hair), is extracted to reduce the search space for the subsequent steps. In our system,
the positions of the subject and the camera remain the same so that the data captured by the system
show a high degree of consistency, that is, half of the face from the tip of the nose to the hair occupies
the middle area of the image. This information, known as a priori, together with the anthropometric
relations, can be used to quickly identify the rough eye regions. The boundary of the eye regions can
be defined as

px = 0.2 × W, py = 0.4 × H, w = 0.6 × W, h = 0.3 × H, (1)

where W and H are the width and height of the image, w and h are the width and height of the eye
regions, and

(
px, py

)
defines the top-left position of the eye regions, respectively, as shown in Figure 3.

 
Figure 3. The rough localization of eye regions of the image in our database. Half of the face occupies
the middle of the image in our database. The eye region is highlighted by the red window, which is
slightly smaller than the actual eye region, in order to obtain a clearer display. The right and left eye
region can be obtained by dividing the eye region into two parts.

Thus, the eye regions are extracted, and the right and left eye can be distinguished by dividing
the area into two parts, of which the area with smaller x coordinate corresponds to the right eye and
vice versa, by comparing the x coordinates of the left upper corner of both eye regions.

3.2. Iris Measure and Template Detection

During this stage, the measure and template of the iris are detected. To achieve this, it is necessary
to locate the iris boundary, particularly, the boundary of iris and sclera. The flowchart of this stage is
shown in Figure 4. (1) First, the eye image is converted from RGB to grayscale. (2) Then the Haar-like
feature is applied to the grayscale image to detect the exact eye region with the objective of further
narrowing the area of interest. This feature extraction depends on the local feature of the eye, that
is, the eye socket appears much darker in grayscale than the area of skin below it. The width of the
rectangle window is set to be approximately the horizontal length of the eye, while the height of the
window is variable within a certain range. The maximum response of this step corresponds to the
eye and the skin area below it. (3) The Gaussian filter is applied to the result of (2), with the goal
of smoothing and reducing noise. (4) Then, the canny method is applied as an edge-highlighting
technique. (5) The circular Hough transform is employed to locate the iris boundary, due to its
circular character. In performing this step, only the vertical gradients (4) are taken for locating the
iris boundary [32]. This is based on the consideration that the eyelid edge map will corrupt the
circular iris boundary edge map, because the upper and lower iris regions are usually occluded by the
eyelids and the eyelashes. The eyelids are usually horizontally aligned. Therefore, the technique of
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excluding the horizontal edge map reduces the influence of the eyelids and makes the circle localization
more accurate and efficient. (6) Subsequently, we segment a region with dimensions of 1.2× radius,
horizontally, and 1.5× radius, vertically, on both sides from the iris center in the original gray image.
The radius and iris center used in this step are the radius and center coordinates of the iris region
detected in the last step. These values were chosen so that a complete iris region could be segmented
without any damage. This region will be used as a template for the next stage.

 
Figure 4. The flowchart of iris boundary detection. The result of the exact eye region detection is
marked by the red window on the original grayscale image. The red circle represents the iris boundary.

The above operations are applied on the right and left eye regions, respectively, in a ten-frame
interval, and ten pairs of iris radius values are extracted. The interval should be chosen to meet two
conditions. First, the radius should be accurately determined in the interval. Second, the interval
should not influence the next stage because the segmented region will be used for template matching.
By the end of the interval, the iris radius value with the largest frequency is determined as the final iris
radius. Thus, we have the right iris and left iris, with the radius of Rr and Rl, respectively.

3.3. Key Frame Detection

At this stage, the key frame detection is performed with the template matching technique on
the eye region. The cover test is essentially a stimulus-response test. What we are interested in is
whether the eye movements occur when a stimulus occurs. In the system, an entire process of tests is
recorded in the video, which contains nearly 3000 frames at a length of about 50 s. We examined all
frames between two stimuli. The stimuli we focused on are the unilateral cover test for the left and
right eye, the alternating cover test for left and right eye, and the cover-uncover test for the left and
right eye. In total, 18 stimuli are obtained with 6 types of stimuli for 3 rounds. The useful information
accounts for about two-fifth of the video. Therefore, it is more efficient for the algorithm to discard
these redundant information. The key frame detection is for the purpose of finding the frame where
the stimulus occurs.

The right iris region segmented in Section 3.2 is used as a template, and the template matching is
applied to the eye regions. The thresholds TH1, TH2 are set for the right eye region and the left region,
respectively, and TH2 is smaller than TH1, as the right iris region is used as a template. The iris region
is detected if the matching result is bigger than the threshold. In the nearby region of the iris, there
may be many matching points which present the same iris. The repeated point can be removed by
using the distance constraint. Therefore, the number of the matching template is consistent with the
actual number of irises. The frame number, the number of iris detected in the right eye region, the
number of the iris detected in the left region are saved in memory. Then we search the memory to find
the position of the stimulus. Taking the unilateral cover test for the left eye as an example, the number
of iris detected is [1 1], separately, before the left eye is covered and then [1 0], after covering the left
eye. Therefore, we can use the state change from [1 1] to [1 0] to determine the corresponding frame of
the stimuli. The correspondence between state changes and stimulus is shown in Table 1. Thus, the
frame number of the eighteen stimulus can be obtained.
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Table 1. State changes and stimulus.

State Change Stimuli

[1 1] → [1 0] Covering the left eye in unilateral cover test
[1 1] → [0 1] Covering the right eye in unilateral cover test
[0 1] → [1 0] Uncovering the right eye in alternate cover test
[1 0] → [0 1] Uncovering the left eye in alternate cover test
[1 0] → [1 1] Uncovering the left eye in cover-uncover test
[0 1] → [1 1] Uncovering the right eye in cover-uncover test

3.4. Pupil Localization

The pupil localization process is used to locate the pupil, which is the dark region of the eye
controlling the light entrance. The flowchart of this stage is shown in Figure 5. (1) First, the eye image
is converted into grayscale. (2) The Haar-like rectangle feature, same as that in Section 3.2, is applied
to narrow the eye region. (3) Then another Haar-like feature, the center-surround feature with the
variable inner radius of r and outer radius of 3r, is applied to the detected exact eye region of step 2.
This feature makes use of the pupil being darker than the surrounding area. Therefore, the region
corresponding to the maximum response of the Haar feature is a superior estimate of the iris region.
The center coordinates and radius of the Haar feature is obtained and a region can be segmented with
a dimension of 1.2× radius, horizontally and vertically, on both sides from the center of the detected
region, to make sure the whole pupil is in the segment. Then we perform the following techniques.
(4) Gaussian filtering is used to reduce noise and smooth the image while preserving the edges. (5) The
morphology opening operation is applied to eliminate small objects, separate small objects at slender
locations, and restore others. (6) The edges are detected through the Canny filter, and the contour
point is obtained.

 

Figure 5. The flowchart of pupil localization. Steps 1 and 2 are omitted here since these two steps are
the same as Steps 1 and 2 of Section 3.2, and Step 2 represents the detected exact eye region of Step 2.
In (3) The segmented pupil region is marked by the red window on the detected exact region. In (4),
(5), and (6), the presented images are enlarged and bilinearly interpolated for a good display. In (7), an
ellipse is fit to the contour of the pupil and the red ellipse and the cross separately marks the result of
fitting and the center of the pupil.

Given a set of candidate contour points of the pupil, the next step of the algorithm is to find the
best fitting ellipse. (7) We applied the Random Sample Consensus (RANSAC) paradigm for ellipse
fitting [33]. RANSAC is an effective technique for model fitting in the presence of a large but unknown
percentage of outliers, in a measurement sample. In our application, inliers are all of those contour
points that correspond to the pupil contour and outliers are contour points that correspond to other
contours, like the upper and the lower eyelid. After the necessary number of iterations, an ellipse is
fit to the largest consensus set, and its center is considered to be the center of the pupil. The frame
number and pupil center coordinates are stored in memory.

3.5. Deviation Calculation

In order to analyze the eye movement, the deviation of the eyes during the stimulus process
needs to be calculated. During a stimulus process, the position of the eye remains motionless before
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the stimulus occurs; after stimuli, the eye responds. The response can be divided into two scenarios.
For the simpler case, the eyeball remains still. For the more complex case, the eyeball starts to move
after a short while and then stops moving and keeps still until the next stimuli. Based on the statistics
in the database, the eyes complete the movement within 17 frames and the duration of the movement
is about 3 frames.

The schematic of deviation calculation is shown in Figure 6. The pupil position data within the
region from the 6 frames before the detected key frame, to 60 frames after the key frames, are selected
as a data matrix. Each row of the matrix corresponds to the frame number, the x, y coordinate of the
pupil center. Next, an iterative process is applied to filter out the singular values of pupil detection.
The current line of the matrix is subtracted from the previous line of the matrix, and the frame number
of the previous line, the difference between the frame numbers Δf, and the difference between the
coordinates Δx, Δy are retained. If Δx > Δf.v, where v is the statistical maximum of the offset of pupil
position of two adjacent frames, then this frame is considered to be wrong and the corresponding row
in the original matrix is deleted. This process iterates until no rows are deleted or the number of loops
exceeds 10. Finally, we use the average of the coordinates of the first five rows of the reserved matrix
as the starting position and the average of the last five rows as the ending position, thus, obtaining the
deviation of each stimulus, as expressed by the equations:

Dev(x)
p =

∣∣∣xe − xs

∣∣∣;
Dev(y)

p =
∣∣ye − ys

∣∣, (2)

where xe and ye are the ending positions of the eye in a stimulus, the xs and ys are the starting positions

of the eye, and Dev(x)
p , Dev(y)

p are the horizontal and vertical deviations in pixels, respectively.

 

 
Figure 6. The schematic of deviation calculation. (1) The input data consist of the interval from
6 frames before the key frame to 60 frames after the key frame. The frame pointed to by the red arrow
represents the key frame detected, and the symbol “×” “

√
” below the image indicates the abnormality

or normality of the pupil detection. (2) With the false frame filtering completed, the abnormal frames
are deleted while the normal frames are reserved. The average of the pupil locations of the first five
frames is calculated as the starting position, while the average of the pupil locations of the last five
frames is the ending position. (3) The deviations in pixels are calculated. For an intuitive show, the
starting position represented by the green dot and the ending position represented by the red dot are
matched into one eye image, indicating the size of the image. “dx”, “dy” represent the deviation in
horizontal and vertical directions, respectively.
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3.6. Strabismus Detection

Obtained deviation of each stimulus, the deviation value in pixel Devp can be converted into
prism diopters DevΔ, which is calculated out using the equation:

DevΔ =

(
DEmm

DEp

)
· dpMM · Devp, (3)

where DEmm is the value of the mean diameter of iris boundary of adult patients and DEmm =

11 mm [34], DEp is the diameter value of the iris boundary detected in pixels, dpMM is a constant in
millimeter conversion for prismatic diopters (Δ/mm) and dpMM = 15Δ [35]. Finally, we have the
deviation DevΔ expressed in diopter.

The subject’s deviation values are calculated separately for different cover tests. The subject’s
deviation value for each test is the average of the deviations calculated for both eyes. These values are
used to detect the presence or absence of strabismus.

The types of the strabismus can first be classified as manifest strabismus or latent strabismus.
According to the direction of deviation, it can be further divided into—horizontal eso-tropia (phoria),
exo-tropia (phoria), vertical hyper-tropia (phoria), or hypo-tropia (phoria). The flowchart of the
judgment of strabismus type is shown in Figure 7. If the eyes move in the unilateral cover test, the
subject will be considered to have manifest strabismus and the corresponding type can be determined
too, so it is unnecessary to consider the alternate cover test and the cover-uncover test and assessment
ends. Nevertheless, if the eye movement does not occur in the unilateral test stage, there is still
the possibility of latent strabismus, in spite of the exclusion of the manifest squint. We proceed to
explore the eye movement in the alternating cover test and cover-uncover test. If the eye movement is
observed, the subject is determined with heterophoria and then the specific type of strabismus is given
on the basis of the direction of eye movement. If not, the subject is diagnosed as normal.

Figure 7. The flowchart of the judgment of strabismus types.

4. Experimental Results

In this section, the validation results of the intelligent strabismus evaluation method are presented,
including the results of iris measure, key frame detection, pupil localization, and the measurement of
the deviation of strabismus. In order to verify the effectiveness of the proposed automated methods, the
ground truths of deviations in prism diopters were provided by manually observing and calculating
the deviations of eyes for all samples. The measures of the automated methods have been compared
with the ground truths.
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4.1. Results of Iris Measure

With the eye regions extracted, an accuracy of 100% was achieved in detecting the iris measure.
The range of values that defines the minimum and maximum radius size for Hough transform was
empirically identified to be between 28 and 45 pixels, for our database. Due to our strategy for choosing
the radius with the largest frequency in the interval, the radius of the iris could be accurately obtained
even if there were individual differences or errors. An example of the iris measure in 10 consecutive
frames is shown in Figure 8. As can be seen from the figure, in an interval of 10 frames, there were
8 frames detected with a radius of “33” and 2 frames detected with a radius of “34”, so the radius of
the iris was determined to be 33.

Figure 8. An example of the iris measure in 10 consecutive frames. The iris boundary located by
the methodology is marked by the red circle. The radius of the iris was determined to be 33 pixels,
according to this strategy.

4.2. Results of Key Frame Detection

In order to measure the accuracy of the key frame detection, the key frames of all samples observed
and labeled, manually, were regarded as the ground truths. The distance D(f) of the key detected frame
fp and the manual ground truths fg, was calculated using the equation:

D(f) =
∣∣fp − fg

∣∣ (4)

The accuracy of the key frame detection could be measured by calculating the percentage of the
key frames for which the distance D(f) was within a threshold in the frames. The accuracy of the key
frame detection for each cover test was given, as shown in Table 2.

Table 2. The accuracy of the key frame detection for cover tests.

Unilateral Cover Test Alternating Cover Test Cover-Uncover Test

D(f) ≤ 2 93.1% 62.5% 85.4%
D(f) ≤ 4 97.9% 88.2% 89.6%
D(f) ≤ 6 97.9% 97.2% 91.0%

Taking the unilateral cover test as an example, the detection accuracy was 93.1%, 97.9%, and
97.9%, at a distance of within 2, 4, and 6 frames, separately. As we can see, the detection rate in the
alternating cover test was lower than that in others within the 2 and 4 frames intervals. This could be
attributed to the phantom effects which might occur with the rapid motion of the occluder. It might
interfere with the detection in the related frames, as the residual color of the trace left by the occluder
merges with the color of the eyes. The movement of the occluder between two eyes brings more
perturbation than that on one side. The detection rate appears good results for each cover test when
the interval is set within 6 frames. As the deviation calculation method (Section 3.5) relaxes the reliance
on key frame detection, our method could get a promising result.
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4.3. Results of Pupil Localization

The accuracy of the proposed pupil detection algorithm was tested on static eye images on the
dataset we built. The dataset consists of 5795 eye images with a resolution of 300 × 150 pixels for
samples without wearing corrective lenses and 400 × 200 pixels for samples wearing lenses. All images
were from our video database. The pupil location was manually labeled as the ground truth data
for analysis.

In order to appreciate the accuracy of the pupil detection algorithm, the Euclidean distance D(E)
p

between the detected and the manually labeled pupil coordinates, as well as the distance D(x)
p and

D(y)
p on both axes of the coordinate system was calculated for the entire dataset. The detection rate

measured in individual directions had a certain reference value, as the mobility of eyes has two degrees
of freedom. The accuracy of the pupil localization could be measured by calculating the percentage
of the eye pupil images for which the pixel error was lower than a threshold in pixels. We compared
our pupil detection method with the classical Starburst [33] algorithm and circular Hough transform
(CHT) [36]. The performance of pupil localization with different algorithms is illustrated in Table 3.
The accuracy rates of the following statistical indicators were used: “D(E)

p < 5” and “D(E)
p < 10”

corresponded to the detection rate, at 5 and 10 pixels, in Euclidean distance; “D(x)
p < 4” or “D(y)

p < 2”
represented the percentage of the eye pupil images for which the pixel error was lower than 4 pixels in
horizontal direction or 2 pixels in vertical direction.

Table 3. Performance of pupil localization with different algorithms on our dataset.

Method D(E)
p < 5 D(E)

p < 10 D(x)
p < 4 D

(y)
p < 2

Starburst [33] 27.0% 44.2% 39.9% 27.8%
CHT [36] 84.6% 85.0% 84.6% 83.4%

Ours 86.6% 94.3% 90.6% 80.7%

As we can see, the performance of the Starburst algorithm was much poorer, which was due
to the detection of the pupil contour points, using the iterative feature-based technique. In this step,
the candidate feature points that belonged to the contour points were determined along the rays that
extended radially away from the starting point, until a threshold ∅ = 20 was exceeded. For our
database, there were many disturbing contour points detected, especially the limbus. This could
cause the final stage to find the best-fitting ellipse for a subset of candidate feature points by using the
RANSAC method to misfit the limbus. The performance of the CHT was acceptable, but it was highly
dependent on the estimate of the range of the radius of the pupil. There might have been overlaps
between the radius of the pupil and the limbus for different samples, which made the algorithm invalid
for some samples. While our method shows a good detection result overall.

Actually, the overall detection rate was an average result. Poor detection in some samples had
lowered the overall performance. Listed below, are some cases in locating the pupil, as shown in
Figure 9. Some correct detection results are shown in Figure 9a, which shows that our algorithm could
get a good detect effect in most cases, even if there was interference from glasses. Some typical examples
of errors are described in Figure 9b. The errors could be attributed to the following factors—(1) a large
part of the pupil was covered by the eyelids so that the exposed pupil contour, together with a part of
eyelid contour, were fitted to an ellipse when the model was fitted, as shown in set 1 of Figure 9b; (2)
the pupil was extremely small, so the model fitting was prone to be similar to the result discussed in
factor 1, as shown in set 2 of Figure 9b; (3) the difference within the iris region was not so apparent that
the canny filter could not get a good edge of the pupil, thus, leading to poor results, as shown in set 3
of Figure 9b; (4) the failure detection caused by the phantom effects when the fast-moving occluder
was close to the eyeball, as shown in set 4 of Figure 9b.
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Figure 9. The pupil detection cases: (a) Some examples of correctly-detected images; (b) some typical errors.

4.4. Results of the Deviation Measurement

For analyzing the accuracy of the deviation calculated by the proposed method, the deviation
of each stimulus was calculated as ground truth, by manually determining the starting position and
ending position of each excitation for all samples, and labeling the pupil position of the corresponding
frames, and then calculating the strabismus degrees in prism diopters. The deviations of the automated
method were compared with the ground truths. The accuracy of the deviation measurement was
measured by calculating the percentage of deviations for which the error of the deviation detected and
manual ground truths was lower than a threshold.

The accuracy rate using different indicators are shown in Tables 4 and 5. For example, “error < 2”
represents the percentage of the deviation calculation for which the error in prism diopters was lower
than the threshold 2 in certain axes, and so on. The indicators for vertical direction was set to be more
compact as the structure of the eye itself causes it to have a smaller range of motion in the vertical
direction than that in the horizontal direction. The calculation accuracy was acceptable when the error
was set to be 8Δ in the horizontal direction or 4Δ in the vertical direction. This conclusion could also
be seen from Figure 10, which shows the correlation of deviation between the ground truth and the
predicted results. Each point represents the average of three stimuli. It can be seen that most of the
points were within the 8Δ or 4Δ error, and it could be considered an error as the points were outside
the range. The results demonstrated a high consistency between the proposed method and the manual
measurement of deviation, and that the proposed methods were effective for automated evaluations
of strabismus.

Table 4. The accuracy rate of deviation calculation in prism diopters (Δ) for different cover test stages
in the horizontal direction.

(Δ) Error < 4 Error < 8 Error < 12

Unilateral 81.3% 95.8% 97.2%
Alternate 85.4% 93.8% 97.9%
Uncover 74.3% 91.7% 96.5%

Table 5. The accuracy rate of deviation calculation in prism diopters (Δ) for different cover test stages
in the vertical direction.

(Δ) Error < 2 Error < 4 Error < 6

Unilateral 70.1% 88.2% 94.4%
Alternate 71.5% 93.8% 96.5%
Uncover 68.8% 86.1% 88.2%

18



Appl. Sci. 2019, 9, 731

Figure 10. The correlation of the deviation between the ground truth and predicted results. The first
row shows the horizontal axis for different cover tests, and the second row shows the vertical direction.

5. Conclusions and Future Work

In this paper, we proposed and validated an intelligent measurement method for strabismus
deviation in digital videos, based on the cover test. The algorithms were applied to video recordings
by near-infrared cameras, while the subject performed the cover test for a diagnosis of strabismus.
In particular, we focused on the automated algorithms for the identification of the extent to which
the eyes involuntarily move when a stimulus occurs. We validated the proposed method using the
manual ground truth of deviations in prism diopters, from our database. Experimental results suggest
that our automated system can perform a high accuracy of evaluation of strabismus deviation.

Although the proposed intelligent evaluation system for strabismus could achieve a satisfying
accuracy, there are still some aspects to be further improved in our future work. First, for the acquisition
of data, there are obvious changes in the video brightness, due to the cover of the occluder. For example,
almost half of the light was blocked when one eye was covered completely. This might bring a
perturbation for the algorithm, especially for the pupil detection. Therefore, our system needed to be
further upgraded to reduce this interference. Second, the subjects were required to remain motionless
while the cover test is performed. In fact, a slight movement of the head that is not detectable to
humans will cause a certain deviation in the detection of eye position, thus, reducing the accuracy of
the final evaluation. To develop a fine eye localization, eliminating slight movements would improve
the result. Additionally, our system can also be used for an automatic diagnosis of strabismus, in
the future.
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Abstract: Autonomous underwater vehicles (AUVs) are widely used, but it is a tough challenge to
guarantee the underwater location accuracy of AUVs. In this paper, a novel method is proposed to
improve the accuracy of vision-based localization systems in feature-poor underwater environments.
The traditional stereo visual simultaneous localization and mapping (SLAM) algorithm, which relies
on the detection of tracking features, is used to estimate the position of the camera and establish a
map of the environment. However, it is hard to find enough reliable point features in underwater
environments and thus the performance of the algorithm is reduced. A stereo point and line SLAM
(PL-SLAM) algorithm for localization, which utilizes point and line information simultaneously, was
investigated in this study to resolve the problem. Experiments with an AR-marker (Augmented
Reality-marker) were carried out to validate the accuracy and effect of the investigated algorithm.

Keywords: underwater visual localization method; line segment features; PL-SLAM

1. Introduction

Underwater research has been evolving rapidly during the last few decades and autonomous
underwater vehicles (AUVs), as an important part of underwater research, are widely used in harsh
underwater environments instead of human exploration. However, it is a tough challenge to guarantee
the underwater location accuracy of AUVs. Currently, many methods are used to position AUVs, such
as inertial measurement units (IMUs), Doppler velocity logs (DVLs), pressure sensors, sonar and visual
sensors. For example, Fallon et al. used a side-scan sonar and a forward-look sonar as perception
sensors in an AUV for mine countermeasures and localization [1]. The graph was initialized by pose
nodes from a GPS, and a nonlinear least square optimization was performed for the dead-reckoning
(DVL and IMU) sensor and sonar images. However, sonars are susceptible to interference from the
water surface and other sources of sound reflection in shallow water areas. To localize the AUV, inertial
units (from an accelerometer or gyroscope), DVLs and pressure sensors are fused by Kalman filter [2].
However, this approach is prone to generating drift without a periodical correction based on a loop
closing detection mechanism.

AUVs needs to have good positioning accuracy in shallow water areas, and this paper introduces
a periodic correction based on a closed-loop detection mechanism to further improve positioning
accuracy. Therefore, the visual simultaneous localization and mapping (SLAM) localization method
was chosen in this study. In shallow water areas, visual sensors are better than sonar because they
cannot be affected by reflection. The SLAM [3] technique has proved to be one of the most popular and
available methods to perform precise localization in unknown environments. When the AUV reaches
a position that it has been to before, SLAM provides a loop detection mechanism that eliminates
cumulative errors and drift.

Appl. Sci. 2019, 9, 1428; doi:10.3390/app9071428 www.mdpi.com/journal/applsci22
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Although the quality of the picture will be seriously affected by the scattering and attenuation
of underwater light and poor illumination conditions, cameras have larger spatial and temporal
resolutions compared to acoustic sensors, which makes cameras more suitable for certain applications,
such as surveying, object identification and intervention [4]. Hong and Kim proposed a
computationally efficient approach that could be applied in visual simultaneous localization and
mapping for the autonomous inspection of underwater structures using monocular vision [5]. Jung et al.
proposed a vision-based simultaneous localization and mapping of AUVs in which underwater
artificial landmarks were used to help the visual sensing of forward- and downward-looking
cameras [6]. Kim and Eustice performed a visual SLAM using monocular video images and utilized
a special saliency method using local and global saliency for feature detection in hull inspection [7].
Carrasco et al. proposed the stereo graph-SLAM algorithm for the localization and navigation of
underwater vehicles, which optimized the vehicle trajectory and processed the features from the
graph [8]. Negre et al. proposed a novel technique to detect loop closings visually in underwater
environments to increase the accuracy of vision-based localization systems [9].

All of the above-mentioned visual SLAM methods are based on point feature localization.
However, the above methods would cause instability of the system because of the low-texture in
many underwater environments, which contain a small number of point features. However, there
are rich planar elements in the linear shapes in many low-texture environments, from which line
segment features can be extracted. Based on the oriented FAST (Features From Accelerated Segment
Test) and rotated brief SLAM (ORB-SLAM) [10] framework, point and line SLAM PL-SLAM [11] can
simultaneously utilize point and line information. As suggested in [12], lines are parameterized by
their endpoints, the precise locations of which are estimated by following a two-step optimization
process in the image plane. In this representation, lines were integrated within the SLAM machinery
as if they were points and were hence able to be processed by reusing the ORB-SLAM [10] architecture.

The line segment detector (LSD) method [13] was applied to extract line segments, as it has
high precision and repeatability. For stereo matching and frame-to-frame tracking, line segments are
augmented with a binary descriptor provided by the line band descriptor (LBD) method [14], which is
useful to find correspondences among lines based on their local appearance. The characteristics of
LBD were used in the closed-loop detection mechanism outlined below.

In this paper, a visual-based underwater location approach is presented. In Section 2, the PL-SLAM
method is presented for real-time underwater localization, including estimation of the real-time
position of the AUV, closed loop detection and a closed-loop optimization algorithm based on point-line
features. Section 3 is the experimental section, in which the errors of positioning for linear and
arbitrary trajectory motions are evaluated. Section 4 summarizes the experimental results and analyzes
the problems.

2. Methodology

In the underwater stereo visual localization algorithm, both ORB [10] feature points and LSD [13]
line features were selected in this study. The system is composed of three main modules, including
tracking, local mapping and loop closing. In the tracking thread, the camera’s position is estimated
and the timing of when to add new key-frames is decided. In the local mapping thread, the new
key-frame information is added into the map and it is optimized using bundle adjustment (BA). In the
loop closing thread, loops are checked and corrected constantly.

2.1. Line Segment Feature Algorithm

Point features are mainly corner points in the image. At present, there are a lot of widely used
point feature detection and extraction algorithms such as scale invariant feature transform (SIFT),
speeded up robust features (SURF) and oriented FAST and rotated brief (ORB). Compared to other
algorithms, ORB has a high extraction speed and good real-time performance while maintaining the
invariance of feature sub-rotation and scale. Since it is likely that sufficient point features of the splicing
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registration algorithm cannot be effectively extracted in underwater environments, the robustness
of the algorithm decline. In contrast, line features are mainly the edges of objects in the image. The
depth information in the line segment feature changes less and thus the line segment feature is easier
to extract underwater. Thus, the robustness of the algorithm is improved.

Line segment detection is an important and frequently used application in computer vision. In the
traditional method, the Canny edge detector is used to extract the edge information and then the line
segments consisting of edge points exceeding the set threshold are extracted by Hough transform.
Finally, the length thresholds are used to select these line segments. There are serious defects in
extracting straight lines by Hough transformation, and error detection will occur at a high edge density.
In addition, this method has high time complexity and cannot be used as the line segment extraction
algorithm for underwater real-time positioning.

As shown in Figure 1, LSD is an extraction algorithm that extracts sub-pixel precision line
segments in linear time. It uses heuristic search and inverse verification methods to achieve sub-pixel
precision in linear time without setting any parameters. It defines a line segment as the image region,
called the line-support region, which is a straight region the points of which have roughly the same
image gradient angle. Finally, the judgement as to whether the line-support region is a line segment is
conducted by counting the number of aligned points.

Figure 1. Feature map of underwater extraction lines.

2.2. Motion Estimation

After extracting the ORB point features and LSD line segment features, feature matching between
continuous frames is carried out by the traditional violent matching method. After the correspondences
between two stereo frames are established, the key points and line segments of the first frame is
projected to the next frame. In order to estimate the movements, robust Gauss–Newton minimization
is used to reduce the error of the line and key-point projections [11].

The difference between the transformed coordinates of the 3D point in the first frame image
and in the second frame image is denoted as the re-projection error of the point. It can be solved
by Equation (1):

Δpi(ξ) = p̂i(ξ)− p′i (1)

where p′i is the coordinates of the three dimensional points on the second frame, and pi is the
coordinates of the three dimensional points on the first frame. The traditional violent matching
method indicates the information that features pi in frame n and that corresponds to feature p′i in frame
n + 1. p̂i(ξ) is the coordinates of the point projected onto the second frame from the first frame image
after the transformation of ξ. ξ is the motion transformation matrix between two frames, including
rotation and displacement. i is the sequence number of the points feature. The first frame and the
second frame are consecutive in time.
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The sum of the distances between the two transformed corresponding endpoints of the two frame
images is the re-projection error of the line segment (see Figure 2). It can be solved by Equation (2):

Δlj(ξ) =
[
l′Tj ·

[
p̂j[ξ] q̂j[ξ]

]]T
(2)

where l′j is the corresponding line segment feature on the second frame image, and l′j = p′j × q′j. p′j and
q′j are the coordinates of two endpoints of a line segment feature transformed on the second frame
image. p̂j(ξ) and q̂j(ξ) are the coordinates of two endpoints of a line segment feature transformed from
the first frame image to the second frame image. l′Tj · p̂j(ξ) is the distance from p̂j(ξ) to l′Tj . l′Tj ·q̂j(ξ) is

the distance from q̂j(ξ) to l′Tj . j is the sequence number of the line segment feature.

Figure 2. The re-projection error of the line segments.

For the point-line-feature pairs on the two frames, the pose transformation of two frames can be
obtained by minimizing the sum of the re-projection errors. It can be solved by Equation (3):

ξ∗ = argmin

{Np

∑
i

Δpi{ξ}T
−1

∑
Δpi

Δpi{ξ}+
Nl

∑
j

Δli{ξ}T
−1

∑
Δli

Δli{ξ}
}

(3)

where ∑−1
Δpi

Δpi(ξ) is the inverse of the covariance matrix of the point re-projection error. ∑−1
Δli

Δli(ξ) is
the inverse of the covariance matrix of the re-projection error of a line.

Although the motion transformation matrix ξ can be obtained according to Equations (1)–(3),
it still has some errors because of the mistaken matching of point features and line segment features.
Thus we called it an “estimate”. These errors are eliminated in the closed-loop optimization in the
following section.

2.3. Closed Loop Detection and Closed-Loop Optimization Algorithm Based on Point-Line Features

Closed loop detection is mainly used to judge whether the AUV is in the area that has been
visited before on the basis of the current observation data [9]. If it is in such an area, a complete graph
structure is constructed and redundant constraints are added.

The main purpose of the closed loop test is to eliminate the cumulative error caused by inter-frame
registration and the basic idea is to compare the current frame with all the key frames in the system. If
they are similar, a closed loop is generated. The methods for judging similarity are presented below.

In contrast to the previous closed loop algorithm, or feature dictionary, the characteristic dictionary
tree used in this paper is generated by the off-line training of point-line features. The basic training
method consists of three steps, as follows.

• For the collected environmental image data, the features of point and line segments are extracted,
including the corresponding 256 bits ORB and LBD [14] feature description vectors. The two
characteristic description vectors can be used to establish the later feature dictionary (see Figure 3).
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• A simple K-means clustering method is used to obtain each leaf node at the bottom of the tree
structure. Then the nodes of each layer are obtained in turn. Thus the training process of the
feature tree can be completed.

• When the new data is collected, the point-line features are extracted first, and the corresponding
number of words in the dictionary are obtained using these features. Thus each picture can
be described by the vectors, which are composed of the number of words in the characteristic
dictionary tree. The vectors are called bags of words vectors (BOWV).

Figure 3. Dictionary tree based on point-line features.

For each word vector in each image, it is important to calculate the distance between two vectors
as it is necessary to be able to determine the similarity between the two images. The shorter the
distance, the more similar the two images are. A shorter distance also indicates that the AUV may
reach the previous positions.

The specific approach is as follows. For the two vectors and definitions, the evaluation scores
based on the L1 norm s(v1, v2) can be defined as follows:

s(v1, v2) = 1 − 1
2

∣∣∣∣ v1

|v1| −
v2

|v2|
∣∣∣∣ (4)

where v1 is the eigenvector of the current frame, and v2 is the eigenvector of the dictionary and the
previous frame.

The higher the evaluation score, the greater the similarity between the two images and the greater
the possibility of a closed loop. When the above score exceeds the set value, the algorithm enters the
closed-loop optimization state.

After estimating all consecutive loop closures in the trajectory, both sides of the loop closure are
fused and the error distributed along the loop is corrected. Usually, the pose graph optimization (PGO)
method is required in this process. The main purpose of pose graph optimization is to optimize the
previous pose of a robot using the redundant constraints. The redundant constraints are obtained
by closed-loop detection. When the robot walks to a position where it has walked before, the pose
matrix changes due to the accumulation of errors. At this time, the redundant constraint is to reduce
the error of the pose matrix. The process can be explained as follows: u =

(
u1 u2 · · · ut

)
,

which represents the state quantity of the pose matrix of the robot at t moment. Where ui =
i

∏
k=0

ξ(k−1,k)

and ξ(k−1,k) is the pose transition matrix between frames k − 1 and k, ξij and Ωij are the observed
transformation matrix and information matrix (representing the weight of noise) from the state of i time
to the state of j time. ξ̂ij is a real transformation matrix. The error function is shown in Equation (5).

eij
(
ui, uj

)
= ξij − ξ̂ij (5)
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The sum of the overall error functions is:

F(u) = ∑
(i,j)∈c

eT
ijΩijeij︸ ︷︷ ︸

Fij

(6)

The goal of optimization is to find the u that minimizes F(u):

û = arg min
u

F(u) (7)

Then a first-order Taylor expansion on the error function is performed:

Fij(u + Δu) = eij(u + Δu)TΩijeij(u + Δu) ≈ (
eij + JijΔu

)TΩij
(
eij + JijΔu

)
= eT

ijΩijeij︸ ︷︷ ︸
cij

+ 2eT
ijΩij Jij︸ ︷︷ ︸

bT
ij

Δu + ΔuT JT
ij Ωij Jij︸ ︷︷ ︸

HT
ij

Δu

= cij + 2bT
ij Δu + ΔuT HT

ij Δu

(8)

Then let c = ∑ cij, b = ∑ bij, H = ∑ Hij, so we can obtain Formula (9):

F(u + Δu) = ∑
(i,j)∈c

Fij(u + Δu) ≈ ∑
(i,j)∈c

[
cij + 2bT

ij Δu + ΔuT HijΔu
]
= c + 2bTΔu + ΔuT HΔu (9)

In order to find the minimum of Equation (9), we can use the following formula:

∂F
∂(Δu)

= 2b + 2HΔu (10)

Thus,
HΔu = −b (11)

Through the above formula, the increment Δu of each iteration is calculated using the L-M iterative
algorithm. This kind of problem can be optimized through the g2o (General Graph Optimization)
library [15], which can greatly simplify the operation.

3. Results

In this section, three experiments were performed, including walking along the wall of a pool,
walking along a linear route, and walking along an irregular route. The robustness of the algorithm
is verified and the accuracy is evaluated. Finally, a description of the experimental environment and
AUV is provided.

3.1. Experiment in an Artificial Pool

An AUV was controlled to walk along the wall of a pool to build an underwater three-dimensional
map composed of spatial points and lines (as shown in Figure 4). The AUV performed well with
the PL-SLAM method. However, the other visual SLAM algorithms were prone to collapse. The
phenomenon of system collapse due to the lack of features was greatly reduced, and the actual frame
rate remained at around 20 fps. In order to display the trajectory of the AUV in real time, the pose
information was translated into the path topic of the ROS (Robot Operating System). In Figure 5, the
color axis represents the AUV’s pose, and the yellow line represents the real time trajectory.
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Figure 4. Stereo PL-SLAM performed in an artificial pool. (a) The green line represents the line features
in the global map. The green quadrilateral box represents the current camera. The grey rough line
represents the trajectory; (b) The red and black points represent the current local map points and global
map points.

Figure 5. Trajectory of the AUV launched by RVIZ (a 3D visualizer for the Robot Operating System
(ROS) framework) released by ROS kinetic.

3.2. Comparison of Pose Measurement Experiments with AR-Markers

In order to further verify the accuracy of the underwater algorithm, the algorithm was compared
with an AR-marker, because there is no cumulative error and drift in the attitude information measured
by an AR-marker. An AR-marker with a length of 150 mm was arranged in the experimental scene, so
that the AR-marker always appeared in the field of vision of the AUV. For convenient measurement,
the ARToolKitPlus [16] library was used to measure the attitude of the AR-marker. ARToolKitPlus is a
software library for calculating camera position and orientation relative to physical markers in real
time (see Figure 6)
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Figure 6. Comparison of pose measurement experiments with the AR-marker. (a) The red square
locking AR-marker indicated that the recognition of the AR-marker was successful, which allows us to
obtain the transformation matrix between the camera coordinate system and the AR-marker coordinate
system. (b) Using the AR-marker recognition program and PL-SLAM simultaneously.

The AUV was set to walk along a linear route. The process of the experiment is shown in Figure 7.
The AR-marker recognition program and PL-SLAM were used simultaneously. The straightness of the
AUV’s walking trajectory as found using the PL-SLAM was analyzed and the accuracy of the pose
measurement using PL-SLAM was compared with the AR-marker. The results of the experiment are
shown in Figure 8. The deviation in the y,z-direction was within 5 cm. Because the AUV was not
able to be strictly aligned to the center of the y,z-plane, the deviation was within the acceptable range.
As shown in Figure 9, the motion trajectories of the two were approximately close, and the final error
was less than 3 cm in the x-direction.

Figure 7. The linear motion experiment.

Figure 8. Results of the linear motion experiments. The experimental diagram is shown in Figure 7. The
red curve and the yellow curve indicate that the Z-direction and Y-direction pose changes measured by
PL-SLAM were small. The blue curve indicates that the change of the X-direction pose measured by
PL-SLAM was proportional to time.
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Figure 9. Result of the linear motion experiments in the X-direction, using the AR-marker recognition
program and PL-SLAM simultaneously. The experimental diagram is shown in Figure 7.

As shown in Figure 10, in order to analyze the cumulative error generated by the algorithm,
the fixed AR-marker was arranged to appear in view of the camera at the beginning and end of the
experiment, as described in Section 3.1. Thus, the accurate termination attitude of the AUV was
obtained. After the algorithm finished running, the AUV’s termination attitude with cumulative error
was also able to be obtained. These two termination attitudes were compared and the error rates are
shown in Table 1.

Figure 10. Camera vision in the experiment described in Section 3.1. (a) Camera vision at the beginning;
(b) Camera vision at the end.

Table 1. Error comparison of termination attitude.

Attitude_z (m) Attitude_y (m) Attitude_x (m) Attitude_Error

AR-marker −0.4523 0.1434 −1.056
2.98%PL-SLAM −0.3651 0.2180 −1.151

Error 0.0872 0.0746 −0.095

According to Table 1, the attitude error was
√

Error_x2 + Error_y2 + Error_z2 = 0.14897 m. The
AUV walked 4.98 m during the experiment described in Section 3.1. Thus, the relative error was 2.98%.

The AUV was then controlled to walk along an irregular route. The irregular route is shown
in Figure 11. The accuracy of the pose measurement by PL-SLAM was then compared with the
AR-marker. The results of the experiment are shown in Figure 12.
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Figure 11. Comparison of the pose measurement experiments with the AR-marker.

Figure 12. Analysis and contrast diagram of the experimental results. The blue scatter points Pb
(Xb, Yb, Zb) represent the PL-SLAM positions. The red scatter points Pr (Xr, Yr, Zr) represent the
AR-marker positions.

3.3. Experiment Setup

Nvidia Jetson TX2 was chosen as the platform, with an Ubuntu 16.04 system and ROS kinetic.
The embedded development board was located in the sealing bin of the AUV. The ZED stereo camera
(forward-looking) was located in the head of the AUV. The two parts were connected through the USB
(Universal Serial Bus) 3.0 interface (see Figure 13a). The length of the AUV was approximately 730
mm and the diameter of the cabin was approximately 220 mm. Because of the limited experimental
conditions, the experiment was only carried out in an artificial pool with a diameter of 4 m and a depth
of 1.5 m. Scenes were placed in the pool to simulate the natural environment of the shallow water area
(see Figure 13b). In the experiment, the speed of the AUV was set to 0.6 m/s.

Figure 13. The developed shark AUV. (a) The appearance of the AUV; (b) Experiment in an
artificial pool.
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Due to the large distortion of the underwater scene, the stereo camera should have been calibrated
first. However, camera calibration based on rigorous underwater camera calibration models is
time-consuming and cannot achieve real-time performance. Thus, the traditional pinhole model
in air was selected to calibrate the AUV. The calibration experiment shows that the refraction effect was
considered to be absorbed by the focal length and radial distortion, and the conclusion was that when
the camera is in an underwater environment, the focal length is approximately 1.33 times of that in air.

4. Discussion

The experimental results showed that the algorithm was highly robust in underwater low-texture
environments due to the inclusion of line segments. At the same time, the algorithm achieved a
high accuracy of location effectively, which means that it can be implemented in the navigation and
path planning of AUVs in the future. The current positioning accuracy was 2.98%. The experimental
environment simulated a shallow water area well, and also verified that the visual positioning method
can be applied in shallow water areas. However, there were some problems with the experiment.
The added line features undoubtedly increased the complexity of the algorithm, which is more
time-consuming than ORB-SLAM. Secondly, it was difficult to calibrate the underwater cameras,
especially using the stereo underwater calibration model, however this fact is beyond the scope of
our discussion. Due to the fact that high distortion cannot be neglected in underwater environments,
the matching of line features occasionally failed. However, the ORB-SLAM algorithm also often fails
due to the small number of point features in an underwater environment. The PL-SLAM algorithm
combined with the point line feature method had a high success rate. Finally, the accuracy of the pose
measured by the AR-marker is not very high and therefore can only be used as a reference.

5. Conclusions

Future work will focus on the following two points: eliminating point features and line features
near the edges of the image in a high underwater distortion environment in order to reduce mismatch
caused by distortion, and considering matching two stereo cameras, one looking forward and the other
looking down, and improving the real-time performance of the algorithm.
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Abstract: Volumetric tooth wear measurement is important to assess the life of scraper conveyor
sprocket. A shape from focus-based method is used to measure scraper conveyor sprocket tooth
wear. This method reduces the complexity of the process and improves the accuracy and efficiency of
existing methods. A prototype set of sequence images taken by the camera facing the sprocket teeth is
collected by controlling the fabricated track movement. In this method, a normal distribution operator
image filtering is employed to improve the accuracy of an evaluation function value calculation.
In order to detect noisy pixels, a normal operator is used, which involves with using a median
filter to retain as much of the original image information as possible. In addition, an adaptive
evaluation window selection method is proposed to address the difficulty associated with identifying
an appropriate evaluation window to calculate the focused evaluation value. The shape and size
of the evaluation window are autonomously determined using the correlation value of the grey
scale co-occurrence matrix generated from the measured pixels’ neighbourhood pixels. A reverse
engineering technique is used to quantitatively verify the shape volume recovery accuracy of different
evaluation windows. The test results demonstrate that the proposed method can effectively measure
sprocket teeth wear volume with an accuracy up to 97.23%.

Keywords: shape from focus; wear measurement; sprocket teeth; normal distribution operator image
filtering; adaptive evaluation window; reverse engineering

1. Introduction

A scraper conveyor is the primary production and transportation equipment in a fully mechanized
mining face [1]. In modern coal mining, the conveyor transports coal and provides hydraulic support
and a walking track for the shearer. Therefore, its reliability directly affects the safety and production
efficiency of modern coal mines. Sprockets are the core components of the chain drive system, which
is the most important subsystem in the scraper conveyor [2]. Sprocket’s performance is directly related
to the transport performance and service life of the scraper conveyor [3]. Sprockets contact chains
directly; consequently, friction causes wear and excessive wear is the main form of sprocket failure
and the main cause of scraper conveyor failure [4]. The sprocket conveyor chain may jump when it
engages with the excessively worn sprocket; worn sprocket teeth may break, which affects the safe and
efficient production of the coal mine, therefore, sprocket teeth wear analysis is required. Conventional
wear measurement methods for scraper conveyor sprocket teeth include a weighing method, water
volume measurement method, ANSYS analysis method [5] and wear monitoring [6]. Wang et al. [7]
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discussed the wear condition of a driving sprocket and the influence of wear on the sliding distance
by taking the sliding speed and sliding distance of the meshing process as the index. Wang et al. [8]
also analyzed the relationship between the deformation of a ring chain and driving sprocket wear by
combining numerical analysis with experiments. However, these methods are not only tedious and
time-consuming, they are also not sufficiently accurate or efficient.

The research of computer vision in industry field has attracted more and more attention of many
researchers. Alverdi et al. [9] proposed a new way of using images to model the kerf profile in
abrasive water jet milling. Qian et al. [10] presented an algorithm to compute the axis and generatrix
focus on complex surfaces or irregular surfaces. A new monitoring technique for burr detection
was proposed for the optimization of drill geometry and process parameters [11]. In addition, as a
relatively simple and practical 3D reconstruction technology, shape from focus (SFF) has been applied
to tool wear measurements [12,13], LCD/TFT (Liquid Crystal Display/Thin-Film Technology) display
manufacturing [14] and grinding wheel surface morphology [15], etc.

To realize 3D surface topography restoration, in 1988, Darrell et al. [16] proposed using a Laplace
operator-Gauss fitting method to search the clear frame of pixels in the sequence partial focus image
according to image focusing information. In the 1990s, Nayar et al. [17,18] proposed an SFF-based
method and obtained the height information of the corresponding surface of the window image by
searching the image position corresponding to the maximum value of the focus evaluation function in
the evaluation window. However, SFF suffers from some technical defects in pro-processing images
and choosing evaluation function window size, thus developing methods to improve SFF accuracy
has been the focus of ongoing research.

Many studies have proposed image pre-processing methods. For example, for wavelet transform,
Karthikeyan et al. [19] introduced an effective denoising method for grey images using joint bilateral
filtering. Khan et al. [20] introduced a new impulse noise detection algorithm that is based on
Noise Ratio Estimation and a combination of K-means clustering and Non-Local Means based filter.
An adaptive type-2 fuzzy filter is used to remove salt-and-pepper noise from images [21]. To improve
the processing performance of image texture-free regions, Fan et al. [22] presented a shape focusing
method combined with a 3D adjustable filter that considered edge response and image blurring.
Liu et al. [23] proposed a graph Laplacian regularizer to preserve the inherent piecewise smoothness
of depth, and this method demonstrated effective filtering. An iterative algorithm that combines
stationary wavelet transform, bilateral filtering, Bayesian estimation and anisotropic diffusion filtering
was used to reduce speckle noise in SAR images [24]. Khan et al. [25] designed a meshfree algorithm
(Kansa technique) that uses a DTV method and a radial basis function approximation method to solve
DTV-based model numerically to eliminate multiplicative noise in measurements. However, although
the above methods can remove image noise to some extent, they change the grey-level information of
non-noise areas of the image and affect the accuracy of 3D morphology restoration.

Mahmood et al. [26] analyzed the influence of different evaluation window sizes and noise types
on the focusing evaluation function and concluded that, for different resolutions, the best evaluation
window size for the same evaluation function was no single. Lee et al. [27,28] studied the focusing
evaluation function window size. To determine the focusing evaluation function value, different
standard window sizes were used to analyze the evaluation results of the size and shape of the
focusing evaluation function window. Muhammad et al. [29] conducted 3D morphology restoration
experiments on images collected using imaging equipment with different parameters and formulated
the selection of the evaluation window. However, most of the above studies are based on the optimal
size selection of a fixed square evaluation window without simultaneously optimizing both the shape
and size of the window.

This paper presents an SFF-based method to measure scraper conveyor sprocket teeth wear
efficiently. A specially designed device was used to collect a set of sprocket tooth wear sequence
images. Normal distribution operator filtering, adaptive window evaluation and a Laplacian focusing
evaluation function are applied to the obtained images. We obtain an initial depth map of the entire
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tooth wear surface. Then, a 3D shape recovery map is constructed to calculate the wear volume.
This method improves measurement accuracy, can be operated remotely, and can be used to predict
the life of the sprocket. More importantly, it is an efficient, fast and safe measurement method that
provides data and technical support for coal mine production safety.

2. Measurement Scheme of Sprocket Teeth Wear of Scraper Conveyor

The scraper conveyor sprocket tooth wear measurement system based on SFF primarily comprises
hardware and software. The hardware includes industrial cameras and control tracks, and the software
includes 3D topography recovery and calculation of wear volume. The measurement process is
summarised as follows. First, the sequence images of the tooth are collected using the hardware device.
Then, the images are transmitted to the computer. Finally, the wear volume and geometric position of
the sprocket teeth are obtained via 3D topography recovery and wear volume calculation.

2.1. Structure and Wear of Sprocket Teeth of Scraper Conveyor

A scraper conveyor sprocket [30] comprises a hub and sprocket teeth. The shape of the teeth is a
geometric polygon, and each sprocket generally has five or seven teeth. The structure of the sprocket
is shown in Figure 1.

Figure 1. Structure diagram of scraper conveyor sprocket.

The working principle of the sprocket is to rotate the drive shaft to drive the hub to rotate, and
the sprocket teeth engage with the circle chain. The different wear degrees of sprocket teeth are shown
in Figure 2.
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Figure 2. Scraper conveyor sprocket teeth structure shape: (a) Before wear; (b) After wear;
(c) After failure.

Figure 3a,b show the hardware device’s design, where 1: box; 2: circular track; 3: tooth radial
motion module; 4: circular track slider; 5: circular slider driving module; 6: circular slider auxiliary
track; 7: light receiver; 8: linear light; 9: ring light; 10: industrial lens; 11: industrial camera;
12: longitudinal motion module; 13: slider connection plate; 14: box connection plate.

Figure 3. Hardware structure of wear measurement device based on SFF: (a) Front view; (b) Top view;
(c) 3D model; (d) Installation position of sequence image acquisition device
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The hardware device that measures sprocket wear includes position control, motion, centering,
sequence image acquisition and other modules. The position control module primarily comprises a
PLC unit and a driver unit, where the PLC unit includes different sub-units, such as longitudinal motion
control, circumferential motion control, sprocket teeth radial motion control, camera control, linear
light switch control, light receiver monitoring and ring light control. The motion module comprises a
longitudinal motion unit, a circumferential motion unit and a radial sprocket teeth movement unit.
The longitudinal movement unit includes a circular arc guide, a slider, a slider auxiliary guide rail and
a slider drive module, and the centering module comprises a linear light unit and a light receiver unit.
The sequence image acquisition module comprises a Charge Coupled Device CCD camera unit, a lens
unit and an auxiliary light unit, and the other modules include support units and connection units.
The structure of the sprocket wear measurement device is shown in Figure 3.

2.2. Wear Measurement Process Flow Chart

Figure 4 illustrates wear measurement process, which is addressed as follows.

Figure 4. Technical route of sequence images acquisition.

Firstly, the longitudinal motion unit is driven to move in the longitudinal direction by the
longitudinal motion control unit and stops when the moving distance reaches the set distance of the
longitudinal distance unit. As a result, the camera unit is aligned with the longitudinal row of teeth.
Secondly, the two linear light switches are turned on using linear light control unit, and the circular
slider driving module is driven to move with the help of the circumferential control unit. When the
light receiver unit simultaneously receives the signals from the two lights reflected back through the
tooth surface, the circular slider driving module stops moving, which means that the camera unit is
aligned with one of the teeth in the circumferential direction. Thirdly, the radial motion unit is driven
to the designated focal length position by the sprocket tooth radial control unit, and the step distance
is set to one N of the sprocket tooth height. The camera is driven by the camera control unit. Each step
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forward, the camera takes a picture, which cycles N times. The radial motion unit stops moving and
returns to the original position, and then sequence image acquisition is completed.

The technical flow chart of the focused morphology restoration algorithm is shown in Figure 5.
First of all, the collected sequence images are read into the computer, and the field of view and

resolution and cropping of all N-frame sequence images are transformed according to the proportional
relationship of the target region of the N-frame sequence image. Normal distribution operator image
filtering is used to filter the sequence images to obtain the same resolution. The pre-processed
sequence images have N frames of the field of view. Therefore, N-frame pre-processed sequence
image of the same resolution and field of view are obtained. Then, the clear pixel points of each
pre-processed sequence image are extracted in order to construct a full-focus image. Then, the proposed
adaptive method is used to select the focus evaluation window of any pixel in the full-focus image.
The focus factor of each pixel in the pre-processed sequence image is calculated and the sequence
image number corresponding to the maximum focus factor of all pixels in the full-focus image is
obtained. The sequence image number is taken as the depth value of the corresponding pixels to
form the initial depth map of the full-focus image. Next, a full-focus image is obtained with the help
of image binarization, inversion, filling and contour recognition, and the object contour is extracted.
The extracted object contour is applied to the initial depth map and the region outside the object
contour is hollowed out to obtain a three-dimensional shape recovery map of the object. Lastly, the
wear volume is calculated. The pixel equivalent and actual depth value of each pixel in the complete
3D topography is calculated, the tooth volume is determined using the limit method and the volume
difference and wear volume between the recovered tooth model and the actual tooth model are
calculated using the difference method.

Figure 5. Flow chart of the focused morphology restoration algorithm.
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3. Improved SFF

3.1. Principle of SFF

SFF is a method to recover a 3D topography from 2D sequence images [31]. SFF collects a
series of partially-focused sequence images and obtains the depth information of each pixel based on
focus information. Figure 6 shows a schematic diagram of an ideal optical system imaging principle.
The object distance u, focal length f and distance v satisfy the relationship 1/ f = 1/u + 1/v in an
ideal optical imaging system. For a fixed-focus lens, the object point P forms a clear image point Pf
on the focus plane through the optical system when the image sensor coincides with the focus plane.
The object point P forms a blur circle of radius R on the image sensor when the image sensor does
not coincide with the focus plane. Moreover, a greater distance between the image sensor and focus
plane is results in greater R and the image points become more blurred. SFF must collect K-frame
partial focus images Ik (k = 1, 2, . . . , K) of the measured surface along the optical axis, and these images
contain the depth information of the entire measured surface.

Figure 6. Schematic diagram of ideal optical system imaging principle.

To increase the robustness of the focus measure, the neighbourhood window U(x, y) of the
pixel (x, y) is usually selected, rather than the pixel as the calculation object, and its size is w × w,
this variable is expressed as follows.

U(x, y)k = {(ξ, η)||ξ − x| ≤ w ∧ |η − y| ≤ w} (1)

where (ξ, η) represents the pixels in the neighbourhood U(x, y), and k is the image sequence number.
Focused images have more high-frequency components than blurred images. Therefore,

the focusing degree is usually characterized by the sharpness of the pixel points and quantified
using the focus measure in SFF.

When an evaluation function is selected, the evaluation function value sequence Ik(i, j) of pixel (i, j)
can be obtained.

Fk(x, y) = ∑
(ξ,η)∈(x,y)k

Fk(ξ, η) (2)

Since the clearest pixel can provide depth information of the corresponding surface element of
the pixel, the depth of each pixel corresponding to the surface element can be obtained by obtaining
each pixel in the image corresponding to the maximum focus volume. In this manner, the initial depth
map of the measured surface is obtained. The formula is as follows:

D(x, y) = argkmax[Fk(x, y)] (3)

Then, an approximation technique method is applied to refine the initial depth map.
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3.2. Normal Distribution Operator Image Filtering

The influence of many factors like the image capturing hardware, surface texture and light
inevitably introduces noise during data acquisition and transmission. Image noise greatly affects the
accuracy of the value of the focus measure; it is necessary to use filtering techniques to eliminate them.
During image acquisition, two main types of noise are produced: Gaussian noise and salt-and-pepper
noise. Salt-and-pepper noise has a greater impact on the accuracy of the value of the focus measure [32].
The most prominent feature of salt-and-pepper noise is that the grey value of the noise pixels is different
from those of its neighbourhood pixels. Therefore, the median filter is the best filtering method for
this type of application. Median filtering is the most common filtering method; however, median
filtering will change the grey value of all pixels in the image. To maintain the grey value of non-noise
pixels in the image, the normal distribution operator is used to detect noise points. Then, median
filtering is employed for the noise pixels, thereby retaining more of the original information contained
in the image.

3.2.1. Principle of Normal Distribution

The normal distribution operator is a filtering algorithm based on normal distribution, which is
defined as the probability distribution of random variable X obeying position parameter μ and scale
parameter σ. The probability density formula is given as follows:

f (x) =
1√
2πσ

exp

(
− (x − μ)2

2σ2

)
(4)

This random variable is referred to as a normal random variable, and the distribution it obeys is
called a normal distribution, expressed as X ∼ N

(
μ, σ2).

Figure 7 plots the normal distribution. According to the principle that salt-and-pepper noise is
distant from the mean value, in the normal distribution with a mean of 5 and variance of 2, there are
nine pixels in the 3 × 3 evaluation window, of which seven normal points are concentrated near the
mean while the other noise points are distant from the mean. Use the median filter to replace the two
abnormal points under the help of (μ − Kσ, μ + Kσ).

Figure 7. Schematic diagram of normal distribution.
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3.2.2. Noise Point Detection

In the 3 × 3 filter evaluation window, the grey value of pixel centre point (x, y) is f (x, y),and the
pixel points in the centre pixel and its neighbourhood are represented as f 11, f 12, f 13, f 21, f 22, f 23, f 31,
f 32 and f 33, as shown in Figure 8.

Figure 8. 3 × 3 filter evaluation window.

According to the normal distribution principle and the Figure 8, the maximum and minimum
of the nine points in the 3 × 3 filter evaluation window are removed. The mean and variance of the
remaining seven points are taken as μ and σ, which are expressed as follows.

F1 = max ( f11 + f12 + f13 + f21 + f22 + f23 + f31 + f32 + f33) (5)

F2 = min ( f11 + f12 + f13 + f21 + f22 + f23 + f31 + f32 + f33) (6)

μ = ( f11 + f12 + f13 + f21 + f22 + f23 + f31 + f32 + f33 − F1 − F2) (7)

σ2 =

(
( f11 − μ)2 + ( f12 − μ)2 + ( f13 − μ)2 + ( f21 − μ)2 + ( f22 − μ)2 + ( f23 − μ)2

+( f31 − μ)2 + ( f32 − μ)2 + ( f33 − μ)2 − (F1 − μ)2 − (F2 − μ)2

)
/7 (8)

From the above formula, the average of the seven points is calculated as the mean and variance as
the variance of the normal distribution, where K is the threshold. The centre pixel is a non-noise point
when the absolute value of the difference between the centre pixel and the mean is in the Kσ range
and do not change its grey value. By taking the centre pixel as a non-noise point, the absolute value of
the difference between the centre pixel and the mean is not in the Kσ range. After median filtering,
the original grey value is replaced with Med. The grey value obtained after filtering is F(x, y), and the
formula is given as follows.

F(x, y) =

{
f (x, y) | f (x, y)− μ| < Kσ

Med | f (x, y)− μ| ≥ Kσ
(9)

An experiment proved that the filtering effect was best when threshold K was set to 2.2.

3.2.3. Algorithm Verification and Evaluation Analyzes

To verify the feasibility of the operator filtering, three images of a vegetable, a ball and a human,
respectively, were selected as test objects. (These images, shown in Figure 9, were chosen from a book
named Detailed Explanation of Image Processing Example in MATLAB.) Salt-and-pepper noise with a
density of 0.01 was added to the images, and we performed median filtering and normal distribution
operator filtering on the noise images (threshold value K: 2.2).
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Figure 9. Test objects: (a) Vegetable; (b) Ball; (c) Human.

To evaluate the quality of median filtering and normal distribution operator filtering quantitatively,
we selected correlation and the peak signal-to-noise ratio (PSNR) as quantitative assessment criteria.
Correlation was used to evaluate the similarity between the reference and real data, where a greater
correlation value indicates that the reference data are more consistent with the real data. PSNR
was used to measure image quality after filtering, where a greater PSNR value indicates less image
distortion. The formulas for correlation and PSNR are given follows.

Cor =

M
∑

i=1

N
∑

j=1

{[
I′(x, y)− I′(x, y)

]
×
[

I(x, y)− I(x, y)
]}

√√√√ M
∑

i=1

N
∑

j=1

[
I′(x, y)− I′(x, y)

]2 × M
∑

i=1

N
∑

j=1

[
I(x, y)− I(x, y)

]2
(10)

PSNR = 10 × log
(

2552

MSE

)
(11)

MSE =
1

M × N

M

∑
i=1

N

∑
j=1

[
I′(x, y)− I(x, y)

]
(12)

In Equations (10)–(12), M represents the width of the image, N denotes the height of the image,
I’(x, y) stands for the actual grey value of the pixel point (x, y), and I′(i, j) represents the estimated
average grey value for all pixels in the image. While I(x, y) denotes the grey value of the pixels (x, y)
after filtering, and I(i, j) stands for the estimated average grey value for all pixels after filtering in the
image, MSE represents the mean square error.

Figure 10 shows the noise and filter processing results with a density of 0.01. Here, the first, second
and third columns show images with density of 0.01, images processed using median filtering and
images processed using normal distribution operator filtering, respectively. As shown in Figure 10a,
the images contain large number of errors. Note that these errors are reduced significantly by filtering
the noise image. In addition, the median filtered images (Figure 10b) are more blurred than the original
image and the filtering effect is poor. However, images obtained via normal operator filter processing
are closer in appearance to the corresponding original images.
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(a)                      (b)                        (c) 

Figure 10. Noise images (density: 0.01) and filtered images: (a) Noise Image with density of 0.01;
(b) Image processed by median filtering; (c) Image processed by normal distribution operator filtering

Table 1 shows the correlation and root mean squared error (RMSE) data for three sequence images
processed by adding noise and by applying median filtering and normal distribution operator filtering.
As can be seen, the correlation and RMSE values obtained by the two filtering methods are greater
than those obtained with the noisy image sequence. Furthermore, the increase to these values is more
obvious with normal distribution operator filtering. Both filtering methods improve the accuracy of
image filtering; however, the results demonstrate that normal distribution operator filtering is better.

Table 1. Correlation and RMSE values of filtering effects of different filtering methods.

Test
Object

Vegetable Ball Human

Type
Noise
Image

Median
Filter

Normal
Distribution

Operator
Filtering

Noise
Image

Median
Filter

Normal
Distribution

Operator
Filtering

Noise
Image

Median
Filter

Normal
Distribution

Operator
Filtering

Correlation 0.9669 0.9977 0.9997 0.9440 0.9854 0.9956 0.9223 0.9842 0.9970
RMSE 58.9862 84.9033 104.6258 60.6358 74.1619 86.1075 46.8312 62.4062 79.2773

3.3. Proposed Adaptive Window Selection Method

3.3.1. Grey-Level Co-Occurrence Matrix and Its Correlation Features

The grey-level co-occurrence matrix [33] is a matrix function of the distance and angle between
pixels. This measure reflects the comprehensive information on the direction, interval, amplitude and
speed of the image through the correlation between a certain distance of the image and the two-pixel
grey of a certain direction.
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The galactic co-occurrence matrix [34–36] is defined as the probability from grey-level i to a
fixed position d = (Dx, Dy) to the grey-level j. The grey-level co-occurrence matrix is denoted by
Pd(i, j)(i, j = 0, 1, 2, . . . , L − 1), where i and j represent the grey scale values of two pixels, respectively,
and L denotes the grey level of the image. The spatial relationship d between two pixels is shown in
Figure 11, where θ is the direction of generation of the grey-level co-occurrence matrix.

Figure 11. Position relation of the pixel pair of a grey-level co-occurrence matrix.

When d is selected, the grey-level co-occurrence matrix Pd under a certain relation d is generated.

Pd =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Pd(0, 0) Pd(0, 1) ... Pd(0, j) ... Pd(0, L − 1)
Pd(1, 0) Pd(1, 1) ... Pd(1, j) ... Pd(1, L − 1)

... ... ... ... ... ...
Pd(i, 0) Pd(i, 1) ... Pd(i, j) ... Pd(i, L − 1)

... ... ... ... ... ...
Pd(L − 1, 0) Pd(L − 1, 1) ... Pd(L − 1, j) ... Pd(L − 1, L − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(13)

Usually, scalars can be used to describe the characteristics of the grey-level co-occurrence matrix.
The correlation features are used to measure the degree of similarity in the horizontal or vertical
direction of the grey level of the image, and the magnitude of the value reflects the approximate degree
of the local grey level correlation. The larger the correlation value is, the larger the correlation of the
local grey level as shown in Equation (14).

Cor =

L−1
∑

i=0

L−1
∑

j=0
(i, j)Pd(i, j)− μ1μ2

σ2
1 σ2

2
(14)

Here, μ1, μ2, σ1, and σ2 are respectively defined as follows:

μ1 =
L−1

∑
i=0

L−1

∑
j=0

iPd(i, j) (15)

μ2 =
L−1

∑
i=0

L−1

∑
j=0

jPd(i, j) (16)

σ2
1 =

L−1

∑
i=0

L−1

∑
j=0

(i − μ1)
2Pd(i, j) (17)

σ2
2 =

L−1

∑
i=0

L−1

∑
j=0

(j − μ2)
2Pd(i, j) (18)
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where i and j represent the grey values of two pixels, L is the grey level of the image, and d represents
the spatial position relationship of two pixels.

3.3.2. Calculation of the Shape and Size of the Evaluation Window

For any pixel (x, y) in the image, the horizontal left neighbourhood N h1 (x, y), the horizontal right
neighbourhood N h2 (x, y), the vertical neighbourhood N v1 (x, y) and the vertical lower neighbourhood
N v2 (x, y) are respectively in Equations (19)–(22).

Nh1
(x,y) = {xk1|xk1 = R(x + (k1 − (m + 1)), y), 1 ≤ k1 < m + 1} (19)

Nh2
(x,y) = {xk2|xk2 = R(x + (k2 − (m + 1)), y), 1 ≤ k2 < m + 1} (20)

Nv1
(x,y) = {xk3|xk3 = R(x + (k3 − (m + 1)), y), 1 ≤ k3 < m + 1} (21)

Nv2
(x,y) = {xk4|xk4 = R(x + (k4 − (m + 1)), y), 1 ≤ k4 < m + 1} (22)

For an overly large m, the neighbourhood of the pixel exceeds the range of the acceptable
evaluation window. Taking m = 3, the corresponding maximum evaluation window size is
7 × 7 pixels. In the horizontal direction, a grey-level co-occurrence matrix Pd1(k1) with a distance
D1 = (m + 1)− k1 from the centre pixel point (x, y) and an angle of 180◦ is generated with the pixel
horizontal left neighbourhood N h1 (x, y), and the correlation eigenvalue Cor(k1) corresponding to the
grey-level co-occurrence matrix is obtained. A grey-level co-occurrence matrix Pd2(k2) with a distance
D2 = k2 − (m + 1) from the centre pixel point (x, y) and an angle of 0◦ is generated with the pixel
horizontal right neighbourhood N h2 (x, y), and the correlation eigenvalue Cor(k2) corresponding to the
grey-level co-occurrence matrix is obtained. Similarly, a grey-level co-occurrence matrix Pd3(k3) with a
distance from the centre pixel point (x, y) and an angle of 270◦ is generated with the pixel vertical upper
neighbourhood N v1 (x, y), and the correlation eigenvalue Cor(k3) corresponding to the grey-level
co-occurrence matrix is obtained. A grey-level co-occurrence matrix Pd4(k4) with a distance from the
centre pixel point (x, y) and an angle of 90◦ is generated with the pixel vertical lower neighbourhood N
v2 (x, y), and the correlation eigenvalue Cor(k4) corresponding to the grey-level co-occurrence matrix
is obtained.

To find the maximum correlation pixels of the four neighbourhoods of the centre pixels (x, y),
the pixels corresponding to the maximum correlation eigenvalues of the grey-level co-occurrence
matrix in each direction are taken as the maximum relevant pixel, and the maximum correlation
distances D1, D2, D3 and D4 of the centre pixel in the four squares’ directions are calculated by
Equations (23)–(26).

D1 = (m + 1)− argmax(Cor(k1)) (23)

D2 = argmax(Cor(k2))− (m + 1) (24)

D3 = (m + 1)− argmax(Cor(k3)) (25)

D4 = argmax(Cor(k4))− (m + 1) (26)

The maximum correlation distances D1, D2, D3 and D4 of the centre pixels in four directions
can be used to determine the shape of the rectangular evaluation window of the pixel, and the width
Lx = D1 + D2 + 1 and height Ly = D3 + D4 + 1 of the neighbourhood window are obtained. A diagram
of the neighbourhood window is shown in Figure 12.

46



Appl. Sci. 2019, 9, 1084

Figure 12. Schematic of the evaluation window.

3.4. Main Procedures of the Improved SFF Algorithm

According to the above stated method, the process of the improved SFF algorithm is shown in
Figure 13. The improved SFF algorithm has three main steps, consisting of the original sequence image
de-noising, the initial depth map calculation, and the initial depth map refining. First, the image
sequence Ik is detected by using the normal distribution operator, and a new grey value is assigned to
a pixel determined as noise by using the median filtering method. Otherwise, the original pixel grey
level is kept unchanged, and the preprocessed image sequence I’

k is obtained (the threshold value K
is 2.2.) Then, the Laplacian operator is used to extract the clear pixels in the preprocessed sequence
image I’

k of each frame to construct an all-focus image If. The adaptive evaluation window selection
method is used to determine the evaluation window W(i, j) of each pixel (i, j) in the fully focused
image; then, it calculates the focus measure value of each pixel of the image sequence I’

k, and find the
image number corresponding to the maximum focus measure value of each pixel (i, j) to obtain the
initial depth map. Lastly, using the depth valued of all pixels, the 3D topography is reconstructed via
interpolation. The pixel equivalent is calculated according to the width and height of the pixel and the
tooth size of the 3D topography. The limit method is employed to obtain the 3D volume of the worn
sprocket teeth and is combined with difference method to obtain the tooth wear volume.
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Figure 13. Process of the improved SFF algorithm.

3.5. Test Results and Analysis

To verify the effectiveness of the algorithm, three synthetic objects, i.e., spherical surface, a complex
surface and a simple surface, were used as test virtual objects, as shown in Figure 14. In addition,
an analogue camera imaging mathematical model was used to create differently focused image
sequences of 100 frames, corresponding to the three virtual models, which are 360 × 360 [37].

Figure 14. Test virtual objects: (a) Spherical surface; (b) Complex surface; (c) Simple surface.

Salt-and-pepper noise with a density of 0.01 was added to the images of the 10th, 20th, 30th,
40th, 50th, 60th, 70th, 80th, 90th, and 100th frames of the spherical, complex, and simple surface
models. The three focus measures FSML, FTEN [38], and FGLV [39] were selected as the test measures.
Windows with a size of 3 × 3, 5 × 5, 7 × 7, and the adaptive evaluation window proposed in this
paper were used to conduct a 3D morphological recovery test for the image sequences generated using
the three models.

Figures 15–17 show the initial depth maps of the three models when FSML, FTEN, and FGLV were
chosen as the focus evaluation functions, and different evaluation windows were applied. Columns
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one to four in the figure are the three models of the 3D morphologies that were recovered and generated
by using 3 × 3, 5 × 5, and 7 × 7 windows and the adaptive evaluation window proposed in this
paper. Figures show that when the evaluation window is 3 × 3, the 3D surface topography of all
three recovered models appears to have more error values. In comparing the recovery results of
the three models, when the surface of the recovery object is smooth and we appropriately increase
the evaluation window, the three types of evaluation functions can obtain accurate 3D topographic
images. As the surface geometry tends to be complex, increasing the evaluation window does not
obviously reduce the error effect. As can be seen from the recovery results of the spherical surfaces in
figures, the error of the adaptive evaluation window is obviously less than that of the other evaluation
windows, which indicates that the adaptive evaluation window in this algorithm is also effective for
noisy image sequences.

Figure 15. Initial depth map of the three models reconstructed using different evaluation windows
of FSML.

Figure 16. Initial depth map of the three models reconstructed using different evaluation windows
of FTEN.

49



Appl. Sci. 2019, 9, 1084

Figure 17. Initial depth map of the three models reconstructed using different evaluation windows
of FGLV.

The test compares the actual morphology with the morphology obtained through the test using
qualitative observation. Then, the recovery is quantitatively evaluated using the assessment criteria,
RMSE and correlation [40]. RMSE and correlation are used to evaluate the error and similarity between
the reference data and the real data, respectively. The smaller the RMSE value, the smaller the error
between the reference data and the real data. The greater the correlation value, the more consistent the
reference data is with the real data. The calculation methods of RMSE and correlation are addressed in
Equations (27) and (28).

RMSE =

√√√√ 1
M × N

M

∑
i=1

N

∑
j=1

[D′(i, j)− D(i, j)]2 (27)

Cor =

M
∑

i=1

N
∑

j=1

[
D′(i, j)− D′(i, j)

]
×
[

D(i, j)− D(i, j)
]

√
M
∑

i=1

N
∑

j=1

[
D′(i, j)− D′(i, j)

]2 × M
∑

i=1

N
∑

j=1

[
D(i, j)− D(i, j)

]2
(28)

In Equations (27) and (28), M represents the number of rows of the image, N denotes the columns
of the image, D′ (i, j) stands for the actual depth of the pixel point (i, j), and D′(i, j)represents the
average depth value for all pixels in the image. While D (i, j) stands for the estimated depth of the
pixel point (i, j), and D(i, j) represents the estimated average depth value for all pixels in the image.

It can be seen from the 3D morphology diagram of the three models reconstructed by the three
evaluation functions in the Figures 15–17, Tables 2–4 show the RMSE and correlation data of the
models’ morphological recovery results of the spherical surface, complex surface and simple surface
when FSML, FTEN, and FGLV are chosen as evaluation functions.
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Table 2. Evaluation result of the recovery effect of the three models reconstructed using different
evaluation windows of FSML.

Size

Cor RMSE

Spherical
Surface

Complex
Surface

Simple
Surface

Spherical
Surface

Complex
Surface

Simple
Surface

3 × 3 0.9823 0.9897 0.9972 0.0129 0.0323 0.0167
5 × 5 0.9899 0.9927 0.9978 0.0100 0.0302 0.0157
7 × 7 0.9942 0.9930 0.9979 0.0074 0.0286 0.0149

Adaptive window 0.9985 0.9936 0.9981 0.0036 0.0256 0.0121

Table 3. Evaluation result of the recovery effect of the three models reconstructed using different
evaluation windows of FTEN.

Size

Cor RMSE

Spherical
Surface

Complex
Surface

Simple
Surface

Spherical
Surface

Complex
Surface

Simple
Surface

3 × 3 0.9983 0.9947 0.9985 0.0075 0.0315 0.0165
5 × 5 0.9989 0.9954 0.9987 0.0058 0.0296 0.0156
7 × 7 0.9990 0.9954 0.9988 0.0045 0.0280 0.0148

Adaptive window 0.9994 0.9981 0.9991 0.0023 0.0209 0.0131

Table 4. Evaluation result of the recovery effect of the three models reconstructed using different
evaluation windows of FGLV.

Size

Cor RMSE

Spherical
Surface

Complex
Surface

Simple
Surface

Spherical
Surface

Complex
Surface

Simple
Surface

3 × 3 0.9940 0.9934 0.9803 0.0095 0.0337 0.0198
5 × 5 0.9990 0.9972 0.9859 0.0073 0.0312 0.0171
7 × 7 0.9990 0.9976 0.9933 0.0059 0.0295 0.0158

Adaptive window 0.9992 0.9981 0.9966 0.0028 0.0280 0.0128

According to the RMSE data in the table, when the evaluation window is 3 × 3, the RMSE values
restored by the three evaluation functions are the largest, and the larger the evaluation window,
the smaller the RMSE value. For example, in the surface morphology recovery using the FSML

evaluation function, the RMSE values of the conical surface, simple surface and complex surface
obtained by the adaptive window are 0.0036, 0.0256 and 0.0121, in contrast of 3 × 3, 5 × 5, 7 × 7,
window, the RMSE value of the adaptive window is minimal. This finding shows that, when the
evaluation window is smaller, there are more error values in the recovery results. Furthermore, as the
evaluation window increases, the error values gradually decrease, and the effect of the adaptive
window is better when the image tends to be smooth. When the evaluation window is 3 × 3,
the correlation values restored by the three evaluation functions are significantly smaller than those of
other evaluation windows. In addition, the correlation value of the adaptive evaluation window in this
algorithm is larger compared to a fixed-size evaluation window. This phenomenon is more obvious
when surface geometry is spherical. For instance, in the surface topography recovery of spherical
surfaces using the FSML evaluation function, the Cor values of 3 × 3, 5 × 5, 7 × 7 and adaptive
windows are 0.9823, 0.9899, 0.9942 and 0.9985 respectively. The Cor value of adaptive windows is at
least 0.4% higher. This finding shows that the 3D topographic map reconstructed with the adaptive
evaluation window of this algorithm is closer to the original surface. The more complex the surface
topography, the greater the advantage of an adaptive evaluation window.

On the basis of the qualitative observation and comparison and the quantitative data analysis,
when we restore the 3D image sequence with noise, compared to a fixed-size evaluation window,
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regardless of the evaluation function we choose, the error value of the recovery result, the coincidence
degree of the 3D image or the original surface morphology, employing the adaptive evaluation window
provides good results. Therefore, this algorithm is also feasible for the restoration of the 3D topography
of noisy images.

4. Application Example

The above is a test of three virtual models, which shows that the algorithm is effective for virtual
models. In addition, to verify the effectiveness of this algorithm in the physical 3D surface morphology
restoration of actual solids, a scraper conveyor sprocket tooth is selected as recovery objects, and image
acquisition device designed in this paper is used to sequentially collect 100 frames of 1980 × 1114
object images. Figure 18 is an actual entity of sprocket teeth and the 3D model of the sprocket teeth.

Figure 18. Test object and 3D model: (a) an actual entity of sprocket teeth; (b) 3D model of the
sprocket teeth.

Firstly, image cropping and filtering are performed on the collected 100 frame sequential image.
Then, different evaluation windows, evaluation function and peak positioning technology are used
to acquire the initial depth map of sprocket tooth. Finally, the background area is removed by image
segmentation technology, and the 3D recovery map of sprocket tooth is obtained. Figure 19a,b are
the partial original images and pre-processed images of 100 frame sequential images respectively.
Figure 19c,d are the initial depth map and the 3D recovery map of sprocket teeth respectively.

To compare the recovery accuracy of adaptive window with other fixed-size windows,
the morphology recovery test is carried out. FSML focus measures is selected in this test, and 3 × 3,
5 × 5, and 7 × 7 windows and the adaptive evaluation window proposed in this paper are used to
reconstruct the 3D image of the sprocket tooth. The recovery effect is qualitatively evaluated based on
observations, and the actual appearance and the shape obtained are compared in the test. Figure 19
shows the initial depth map of the sprocket tooth. The row from left to right are restored by FSML focus
evaluation operator using the evaluation windows of size 3 × 3, 5 × 5 and 7 × 7 and the adaptive
window, respectively.
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Figure 19. Image processing of the test: (a) the partial original images; (b) the partial pre-processed
images; (c) the initial depth map; (d) the 3D recovery map.

We can observe form Figure 20, when the evaluation window is 3 × 3, on the surface of the
part, there are many error values in the 3D morphologies restored using FSML evaluation functions.
With the increase in the evaluation window, the overall image tends to be smooth, the error value is
gradually reduced, and the surface morphology is closer to the surface of the original part. When we
select the adaptive evaluation window, the surface profile of the part is the clearest and the surface
is smooth. In particular, the pits on the surface of the part are retained, and compared with the
other four evaluation windows, the recovery effect is the best. In summary, the evaluation window
size has a great influence on the result of the appearance recovery when the 3D surface morphology
of the sprocket tooth is restored. An undersized evaluation window is not conducive to recovery
results. Compared to the traditional fixed-size evaluation window, the adaptive evaluation window
can effectively reduce the error value and preserve the surface texture details.

Figure 20. 3D topographic recovery map reconstructed by FSML focus evaluation operator using
different evaluation windows.

To further quantitatively verify the accuracy of the adaptive evaluation window, the degree of
similarity between the reconstructed 3D model and the original model was deeply analyzed, and a
further experiment was carried out. First, MATLAB (The MathWorks Inc., Natick, MA, ver.2015b)
software was used to extract the 3D surface point data in Figure 20, and the extracted point data was
saved in the txt folder; then, the IMAGEWARE software was used to read the point data under the txt
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folder to form a point cloud image, and reverse engineering was applied to restore the point cloud to a
curved surface. Finally, the surface was formed to a 3D model in the SolidWorks software, as shown in
Figure 21; from left to right, the reconstructed 3D entities of the 3 × 3, 5 × 5, 7 × 7 windows and the
adaptive evaluation window were obtained by the FSML focus evaluation operator.

Figure 21. 3D entities using different evaluation windows reconstructed by FSML focus
evaluation operator.

The reconstructed 3D entity coincides with the centre of gravity of the original 3D model
established in Figure 18 and performs a Boolean operation to obtain a public part reconstructed
from the original 3D entity, as shown in Figure 22, from left to right; the public part of the 3 × 3,
5 × 5, 7 × 7. windows and the adaptive evaluation window are obtained from the FSML focus
evaluation operator.

Figure 22. FSML focusing evaluation operator adopts different evaluation windows and original 3D
entities of public part.

It can be seen from the above figure that, when the evaluation window is 3 × 3, the surface of
the common part has the largest number of pits and the largest error value, and with the increase of
evaluation window, the surface of public entities tends to be smooth, while the adaptive evaluation
window has the best smoothness and the lowest error value.

The larger the volume of the public part, the greater the accuracy of recovery; therefore, the
accuracy of recovery β can be expressed by the following formula:

β = (1 − (Vi − V0i) + (V0 − V0i)

V0
)× 100% (29)

i takes values from 1–4, SolidWorks software measures the volume of original model
(V0 = 32511.83 mm3), Vi represents the volume of 3D entities reconstructed by different evaluation
windows by FSML focusing evaluation operator, and V0i represents the volume of the 3D entities
reconstructed by different evaluation windows and common entities of original models by the FSML

focusing evaluation operator and calculates the volume evaluation results of metal entity reconstructed
by FSML in different evaluation windows, as shown in Table 5.
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Table 5. Volume evaluation results of metal cones reconstructed by FSML at different evaluation
windows/mm3.

Evaluation Window 3 × 3 5 × 5 7 × 7 Adaptive Window

Vi 32,021.26 32,037.06 32,089.74 32,056.08
V0i 31,468.01 31,488.91 31,550.28 31,833.45
β 95.09% 95.17% 95.38% 97.23%

It can be seen from Table 5 that the evaluation window is 5 × 5, 7 × 7 and the adaptive evaluation
window obtains an image volume, which is basically the same as the volume of the common part.
With the increase of the evaluation window, the volume of the overlapping part increases, the volume
of the common part of the adaptive evaluation window reaches the maximum, i.e., 31833.45mm3, and
the recovery accuracy of the adaptive evaluation window reaches 97.23%.

According to the 3D shape restoration test results of the scraper conveyor sprocket tooth, the focus
value obtained using the adaptive evaluation window is more accurate than the traditional fixed-size
square evaluation window when we qualitatively and quantitatively analyze the test results, and it is
also feasible to combine the normal distribution operator filtering method in this algorithm.

5. Conclusions

An SFF-based method was proposed in order to effectively measure the wear volume of sprocket
teeth in a scraper conveyor; the following conclusions were drawn:

1. A hardware device for volumetric tooth wear measurement was designed and assembled to
collect sequential images of sprocket teeth, which provides a way for images acquisition of
measuring the wear volume of sprocket teeth in a scraper conveyor.

2. A normal distribution operator image filtering method was presented, which only filters the noise
points in the image without changing the grey value of the non-noise point pixels. Therefore,
compared with the traditional filtering method, more original information of the image is retained
to a large extent.

3. An adaptive evaluation window selection method was proposed. A focused morphology
restoration algorithm based on the normal distribution operator-region pixel reconstruction
was formed, which not only effectively eliminates the error of restoration accuracy caused by
noise interference, but also satisfies the requirement of peak location. Therefore, both the accuracy
and effectiveness of morphology restoration has been improved.

4. Compared to other focused 3D restoration methods, the proposed methods can effectively
measure the wear volume of sprocket teeth with a recovery accuracy of up to 97.23%.

5. In order to further improve the accuracy of this method and expand the scope of application,
we will consider the advantages of structured light [41] for further research.
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Abstract: Statistical body shape models are widely used in 3D pose estimation due to their
low-dimensional parameters representation. However, it is difficult to avoid self-intersection
between body parts accurately. Motivated by this fact, we proposed a novel self-intersection
penalty term for statistical body shape models applied in 3D pose estimation. To avoid the trouble
of computing self-intersection for complex surfaces like the body meshes, the gradient of our
proposed self-intersection penalty term is manually derived from the perspective of geometry. First,
the self-intersection penalty term is defined as the volume of the self-intersection region. To calculate
the partial derivatives with respect to the coordinates of the vertices, we employed detection rays to
divide vertices of statistical body shape models into different groups depending on whether the vertex
is in the region of self-intersection. Second, the partial derivatives could be easily derived by the
normal vectors of neighboring triangles of the vertices. Finally, this penalty term could be applied in
gradient-based optimization algorithms to remove the self-intersection of triangular meshes without
using any approximation. Qualitative and quantitative evaluations were conducted to demonstrate
the effectiveness and generality of our proposed method compared with previous approaches.
The experimental results show that our proposed penalty term can avoid self-intersection to exclude
unreasonable predictions and improves the accuracy of 3D pose estimation indirectly. Further more,
the proposed method could be employed universally in triangular mesh based 3D reconstruction.

Keywords: statistical body shape model; self-intersection penalty term; 3D pose estimation

1. Introduction

Estimating a 3D human pose from a single 2D image, and more generally, reconstructing the 3D
model from 2D images is one of the fundamental and challenging problems in 3D computer vision
due to the inherent ambiguity in inferring 3D from 2D. Choosing the appropriate 3D representation
is vital for 3D reconstruction. There are many types of 3D representations for 3D modeling. Voxels,
point clouds and polygon meshes are commonly used 3D formats for 3D representation. Voxels can
be fed directly to convolutional neural networks (CNNs), therefore a lot of works applied voxels for
classification [1,2] and 3D reconstruction [3–5]. However voxels are poor in memory efficiency. To avoid
this drawback of voxel representation, Fan et al. [6] proposed a method to generate point clouds
from 2D images. But since there are no connections between points in the point cloud representation,
the generated point cloud is often not close to a surface. Polygon mesh is promising due to its high
memory efficiency when compared to voxels and point clouds [7]. Polygon mesh is also convenient to
visualize since it is compatible with most existing rendering engines.
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There are many works using polygon meshes, especially triangular meshes, to represent 3D pose
estimation results. Anguelov et al. [8] proposed the first statistical body shape model called SCAPE,
represented as a triangular mesh. Loper et al. [9] proposed another statistical body shape model
with higher accuracy called SMPL which is also represented as a triangular mesh. Guan et al. [10,11]
employed SCAPE to estimate 3D poses based on manually marked 2D joints. Bogo et al. [12] employed
the SMPL human model and minimized the error between the projected human model joints and
2D joints detected by DeepCut [13] to estimate the 3D pose of the human body automatically,
this method is iterative optimization-based which results in high accuracy but is time consuming.
Pavlakos et al. [14] used a variant of Hourglass [15] to predict 2D joints and 2D masks simultaneously,
then the 2D joints and 2D masks were used to regress pose parameters and shape parameters of
SMPL separately in a direct prediction way. This approach is much faster than method proposed
in [12], however self-intersection occurs on images with pattern of poses that never appeared in the
training set.

Other work utilized triangle meshes to represent 3D reconstruction results of objects. Kar et al. [16]
trained a mesh deformable model to reconstruct 3D shapes limited to the popular categories.
Kato et al. [7] deformed a predefined mesh to approximate the 3D object by minimizing the silhouette
error. Wang et al. [17] proposed an end-to-end deep learning architecture which represents a triangular
mesh in a graph-based convolutional neural network to estimate the 3D shape of objects from a
single image.

However, one of the main disadvantages of representing 3D shapes as triangular meshes is
that self-intersection is difficult to prevent. Some examples of 3D pose estimation results with
self-intersection are shown in Figure 1. It is impossible for objects in the real world to have surfaces
with self-intersection. Therefore previous work paid great attention to avoiding the self-intersection of
triangular meshes. Since it is difficult to derive a differentiable expression of the intersection volume
directly, approximation is often taken to simplify the derivation. Although approximation provides
great convenience to deriving a differentiable penalty term, self-intersection can not be removed strictly
since approximation can not describe the original surface accurately.

Figure 1. Examples of model-based 3D pose estimation results with self-intersection between
body parts.

To overcome the weakness of previous methods of preventing self-intersection, this paper
proposed a novel self-intersection penalty term (SPT) which is able to avoid self-intersection strictly.
Unlike previous approaches, our proposed self-intersection penalty term is defined as the volume of
intersection regions which is expensive to compute however, we managed to work around this problem.
Notably, no approximation was taken in this paper to derive a differentiable expression. Besides, it is
not worthwhile to derive a differentiable expression of intersection volume since calculating the exact
volume is not our intention. Moreover, the partial derivatives can be easily derived even without the
expression of intersection volume. Inspired by [18], we developed an algorithm to detect vertices of
self-intersection regions quickly by only going through triangles in the mesh once. This process is
similar to rasterization in computer graphic with linear time complexity. A linked list is applied to store
depth values and orientations of triangles intersected with the same detection ray. Then vertices in
self-intersection region can be easily detected by going through the linked list. The partial derivatives
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of the self-intersection term with respect to the coordinate of each vertex are easy to derive from
the perspective of geometry. The partial derivatives with respect to vertices not in the region of
self-intersection is obviously zero, while the partial derivatives with respect to vertices in the region of
self-intersection could be obtained from the normal vectors of neighbouring triangles. The value of the
penalty term is assigned as the ratio of number of vertices in self-intersection to number of vertices
not in self-intersection. In this way the value of penalty term is easy to compute and indicates the
degree of self-intersection in some degree. The experimental results show that the proposed penalty
term avoids self-intersection strictly and works effectively. The main contributions of this paper are
summarized as follows:

• We proposed a novel self-intersection penalty term which does not require deriving a differentiable
expression and generally applies to triangular mesh-based representations.

• We performed 3D pose estimation from 2D joints and compared our method with other
state-of-the-art approaches qualitatively and quantitatively to demonstrate the practical value
and the superiority of our method.

• To the best of our knowledge, this is the first time the conception of self-intersection in relation to
disconnected meshes in the field of 3D reconstruction has been generalized.

The content of this paper consists of five sections. In Section 2 an overview of related work
is provided. In Section 3, the details of the proposed self-intersection penalty term are presented.
In Section 4, the results of experiments and analysis of the proposed self-intersection penalty term are
given. The conclusions are presented in Section 5.

2. Related Work

The work presented in this section is closely related to our work and involves avoiding
self-intersection with triangular mesh.

In computer graphics, it is common to use proxy geometries to prevent self-intersection [19,20].
In computer vision, recent works followed this approach to prevent self-intersection of 3D
reconstruction results represented as triangular meshes. Sminchisescu et al. [21] defined an implicit
surface as a approximation of body shape to avoid self-intersection. Pons et al. [22] applied a set of
spheres to approximate the interior volume of body mesh, and used the radius of each sphere to define
a penalty term of self-intersection. These approaches are not accurate since the shape of human body
can not be described exactly by spheres. To improve the accuracy of this approach, Bogo et al. [12]
trained a regressor to generate capsules with minimum error to the body surface, then the authors
further defined the penalty term as a 3D isotropic Gaussian derived from the capsule radius. It is
worth mentioning that these approaches mentioned above do not strictly avoid self-intersection as
approximations were applied to derive a differentiable penalty term. In [17] the authors employed a
Laplacian term to prevent the vertices from moving too freely, this penalty term avoids self-intersection
to some degree. However this method still does not strictly avoid self-intersection since the Laplacian
term acts just like a surface smoothness term preventing the 3D mesh from deforming too much.

Our work differs from previous works by identifying that a differentiable self-intersection penalty
term is not necessary and the gradients can be calculated manually. We demonstrated appealing results
in 3D pose estimation based on a statistical body shape model.

3. Self-intersection Penalty Term

In this section, the details of our proposed self-intersection penalty term are discussed.
We employed the SMPL human body shape model [9] to evaluate our method. Essential notations are
provided here. SMPL model defines a function M(β, θ; Φ), where θ are the pose parameters, β are the
shape parameters and Φ are fixed parameters of the model. The output of this function is a triangular
mesh P ∈ RN×3 with N = 6890 vertices Pi ∈ R3(i = 1, . . . , N). The shape parameters β represents the
coefficients of linear combination of a low number of principal body shapes learned from a dataset
containing body scans [23].
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3.1. Definition and Description

Our method generally applies to meshes satisfying the conditions described below:

• The mesh is a two-dimensional manifold.
• The mesh describes an orientable surface.
• The mesh is a closed surface.

Since the two-dimensional manifolds do not have to be connected, we can say a mesh with several
disconnected parts also satisfies the conditions above. We demonstrated that our proposed method
also works with a disconnected mesh in Section 4.

To remove the self-intersection, the triangle mesh should be iteratively deformed by moving each
vertex in a specific direction. The moving directions of vertices are obtained by computing the partial
derivatives of the self-intersection penalty term which is defined as the volume of the self-intersection
region in this paper. This penalty term is denoted as ESPT(V), where V is the coordinates of all the
vertices. An ideal self-intersection penalty term should satisfy the following conditions:

• When there is no self-intersection, both the penalty term and the gradient of the penalty term
should be zero.

• When there is self-intersection, the value of penalty term indicates the degree of intersection.
• When there is self-intersection, the gradient of penalty term offers meaningful direction

for optimization.

Leaving the strategy of computing the value of penalty term aside, the method of computing
gradient is discussed first.

The first step of computing the partial derivatives is separating the vertices into two sets:
(1) vertices in the self-intersection region and (2) vertices not in the self-intersection region.
We implemented this separation by emitting a beam of detection rays, the density of rays is manually
set according to the number of triangles in the mesh. An appropriate setting of density of rays
guarantees the accuracy of classification and low memory consumption. There are two typical ways
of intersection shown in Figure 2. According to the type of self-intersection, the set of vertices in
self-intersection could be further separated into two sets. Overall, the vertices are divided into three
sets: (a) vertices in the self-intersection region due to interpenetration of the outer surface, denoted as
Vout; (b) vertices in the self-intersection region due to interpenetration of the inner surface, denoted as
Vin and (c) vertices not in the self-intersection region, denoted as V0; Based on the classification result,
the partial derivative of the penalty term with respect to coordinate of a vertex can be obtained
according to the normal vector and which set the vertex is belonging to.

(a)

(b)

Figure 2. Two typical way of self-intersection: (a) Self-intersection due to interpenetration of the outer
surface. (b) Self-intersection due to interpenetration of the inner surface.
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It is worth pointing out that self-intersection described in Figure 2b rarely occurs for statistical
body shape model. To maintain the generality of our method, both of these two type of self-intersection
are considered in the following discussion.

3.2. Detection and Classification of Vertices

To compute the partial derivatives of our proposed self-intersection penalty term, it is necessary
to divide the vertices into three sets: V0, Vin and Vout. A camera screen with pixels arranged in a square
with H rows and W columns is set in front of the 3D mesh such that the orthogonal projection of the
3D mesh falls totally inside the screen. It is worth noting that the camera mentioned here is used
only to emit detection rays, not for rendering and visualization. Detection rays are emitted from the
center of each pixel to detect self-intersection, as is shown in Figure 3. The detail of the detection
and classification is presented in Algorithm 1. To make our algorithm more intuitive, a schematic
representation is given in Figure 4.

Figure 3. Schematic representation of our approaches to detect self-intersection (the image of triangular
mesh is rendered by Blender).

c=0

c=0

c=0

c=1 c=2 c=1 c=0

c=1 c=0 c=1 c=0

c=1 c=0

Facing the camera and c=2 Facing away from the camera and c=1

Camera

Figure 4. An intuitive representation of our algorithm to detect self-intersection. The detection rays are
emitted from the camera, the dashed area represents the self-intersection region. The vertices in red
circle were detected to be in self-intersection according to the counter and orientation.
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Algorithm 1: Illustration of self-intersection detection and classification of vertices
Input: the height H and width W of the screen, V containing coordinates of all vertices, F

containing vertex indexes of all triangles.
Output: V0 containing vertices not in self-intersection, Vout containing vertices in

self-intersection of the outer surface, Vin containing vertices in self-intersection of the
inner surface.

1 initialize V0, Vout and Vin as empty sets
2 initialize the linked list of each pixel as empty list
3 for each triangle in F do
4 project the triangle onto the screen by orthogonal projection
5 for each pixel in the screen do
6 if this pixel located inside the triangle then
7 insert this triangle into the linked list of this pixel in the order of smallest to largest

in terms of depth

8 for each pixel in the screen do
9 if the linked list of this pixel is empty then

10 continue

11 initialize counter ← 0
12 for each triangle in the linked list do
13 if this triangle is facing the camera then
14 count ← counter + 1

15 else
16 count ← counter − 1

17 if this triangle is facing the camera then
18 if counter = 1 then
19 append the three vertices of this triangle to V0

20 else if counter = 2 then
21 append the three vertices of this triangle to Vout

22 else if counter = 0 then
23 append the three vertices of this triangle to Vin

24 else
25 if counter = 0 then
26 append the three vertices of this triangle to V0

27 else if counter = 1 then
28 append the three vertices of this triangle to Vout

29 else if counter = −1 then
30 append the three vertices of this triangle to Vin

31 return V0,Vout and Vin

3.3. Gradients Calculation

The self-intersection penalty term ESPT(V) is defined as:

ESPT(V) = Vintersect (1)

where V denotes the set of coordinates of all vertices, Vintersection is the volume of the self-intersection
region. For the sake of further discussion, a vertex pt(t = 1, . . . , N) is randomly chosen from the
triangular mesh with N vertices. Coordinates of all vertices are frozen, except for pt. The coordinate of
pt is denoted as (xt, yt, zt).
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Under the preceding assumptions, the penalty term ESPT(V) can be regarded as a function of
xt,yt and zt.

ESPT(V) = f (xt, yt, zt) (2)

To compute ∂ESPT(V)
∂xt

, ∂ESPT(V)
∂yt

and ∂ESPT(V)
∂zt

, pt is displaced from (xt, yt, zt) to (xt + Δx, yt + Δy,
zt + Δz). Then the change in ESTP(V) due to the displacement could be represented as:

ΔESPT(V) = f (xt + Δx, yt + Δy, zt + Δz)− f (xt, yt, zt) (3)

Further computation is hard to continue without imposing constraints on pt. First, for the simplest
case, pt is assumed to belong to V0, that is to say pt ∈ V0. Since tiny displacement of pt brings no effect
to the volume of self-intersection, it is obvious that:

ΔESPT(V) = Δ f = 0, pt ∈ V0 (4)

The gradient of ESPT(V) could be represented as:⎛⎜⎜⎝
∂ESPT(V)

∂xt
∂ESPT(V)

∂yt
∂ESPT(V)

∂zt

⎞⎟⎟⎠ =

⎛⎜⎜⎝
limΔx→0

Δ f
Δx

limΔy→0
Δ f
Δy

limΔz→0
Δ f
Δz

⎞⎟⎟⎠ =

⎛⎜⎝ 0
0
0

⎞⎟⎠ , pt ∈ V0 (5)

For the second case pj ∈ Vout, more assumptions need to be made for a detailed discussion.
We assume that there are n neighboring triangles sharing pt as a common vertex. One of the
neighboring triangles is denoted as Tl(l = 1, . . . , n), the area of Tl is represented as Sl and the unit
normal vector of Tl is denoted as nl . An intuitive representation of this situation is shown in Figure 5.

pt

Figure 5. A tiny displacement on the vertex pt. The change in the volume of self-intersection is equal
to the sum of volume of several neighboring tetrahedrons.

The change in the volume of self-intersection due to tiny displacement of vertex pt can be
represented as:

Δ f = ΔVintersection =
1
3

n

∑
l=1

Slnl(Δxi + Δyj + Δzk), pt ∈ Vout (6)

where i,j and k are unit vectors in the same directions as the positive directions of x, y and z axes.
The gradient can be obtained as:⎛⎜⎜⎝

∂ESPT(V)
∂xt

∂ESPT(V)
∂yt

∂ESPT(V)
∂zt

⎞⎟⎟⎠ =

⎛⎜⎜⎝
limΔx→0

Δ f
Δx

limΔy→0
Δ f
Δy

limΔz→0
Δ f
Δz

⎞⎟⎟⎠ =

⎛⎜⎝
1
3 ∑n

l=1 Slnli
1
3 ∑n

l=1 Slnl j
1
3 ∑n

l=1 Slnlk

⎞⎟⎠ , pt ∈ Vout (7)
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The equation above can be simplified as:⎛⎜⎜⎝
∂ESPT(V)

∂xt
∂ESPT(V)

∂yt
∂ESPT(V)

∂zt

⎞⎟⎟⎠ =
1
3

n

∑
l=1

Slnl , pt ∈ Vout (8)

For the last case pt ∈ Vin, the derivation process of partial derivative is similar to the process
described in the second case, and the results are same in magnitude but opposite in sign. The gradient
in this case can be obtained as:

∇ESPT(V) = −1
3

n

∑
l=1

Slnl , pt ∈ Vin (9)

In summary, the gradient of self-intersection penalty term with respect to the coordinate of vertex
pt can be represented as:

∇ESPT(V) =

⎧⎪⎪⎨⎪⎪⎩
�0 pt ∈ V0
1
3 ∑n

l=1 Slnl pt ∈ Vout

− 1
3 ∑n

l=1 Slnl pt ∈ Vin

(10)

Employing the equation above for a gradient-based optimization algorithm to remove
self-intersection works well in most cases. But when there are great differences between the areas of
triangles, the process of optimization tends to be unstable. To solve this problem, a modified version
of the gradient formula is presented:

∇ESPT(V) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�0 pt ∈ V0

∑n
l=1 Slnl

‖∑n
l=1 Sl nl‖2

pt ∈ Vout

− ∑n
l=1 Sl nl

‖∑n
l=1 Slnl‖2

pt ∈ Vin

(11)

For the value of ESPT(V), it is difficult and unnecessary to calculate the exact volume of the
intersection region by coordinates of vertices. Instead, ESPT(V) is assigned with the ratio of the
number of vertices in self-intersection to the number of vertices not in self-intersection. This ratio
is easy to calculate and significant for indicating the degree of self-intersection. The expression of
ESPT(V) is presented as:

ESPT(V) =
|Vout|+ |Vin|

|Vout|+ |Vin|+ |V0|
=

|Vout|+ |Vin|
N

(12)

where | · | denotes the number of elements in a set.
So far, the forward and backward processes of our proposed self-intersection penalty term have

been defined.

4. Experimental Results and Discussion

In this section, experiments were conducted to evaluated the effectiveness of our proposed
self-intersection penalty term (SPT). We employed a statistical body shape model SMPL [9] to show
the effectiveness of our method.
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4.1. Self-Intersection Removal on a Single SMPL Model

To evaluate the validity of our method, we set the pose parameters θ to generate triangular
meshes with self-intersection deliberately. Then we performed gradient descent algorithm to optimize
the pose parameters θ to remove the self-intersection, the shape parameters β were the ground truth
values from dataset and were fixed during iterations. The learning rate of gradient descent was set to
1.0 × 10−4. The number of detection rays was set to 512 × 512.

The process of iteration is visualized in Figure 6. We can see that the gradient calculated via
proposed method works effectively in a gradient descent algorithm to minimize the value of SPT,
that is to say, minimize the number of vertices in self-intersection region.

Initial state Step 10 Step 20 Step 30 Step 40

SPT=0.201 SPT=0.086 SPT=0.041 SPT=0.033 SPT=0.029

Figure 6. Images rendered from the iterative process. First column: Images rendered from initial
meshes with self-intersection. Second through fourth columns: Images rendered from optimized
meshes every 10 iterations. The self-intersection penalty term (SPT) values in the bottom of each
column denote the average SPT of three SMPL models.

In order to show the necessity of gradient normalization which is presented in Equation (11),
an experiment with same conditions as the experiment described above, but without gradient
normalization, was conducted. The visualized result is shown in Figure 7. Since there are great
differences between the areas of triangles in the body meshes, gradients of vertices differ greatly in
magnitudes. This often leads to unstable iterations and unpredictable results and we demonstrated
that this problem can be solved by gradient normalization.

As can be seen from Figures 6 and 7, gradient normalization improves the stability of optimization.
Therefore it can be concluded that gradient normalization is significant for 3D pose estimation since
unstable iterations often lead to failure predictions.
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Initial state Step 10 Step 20 Step 30 Step 40

Figure 7. Images rendered from the iterative process without gradient normalization. First column:
images rendered from initial meshes with self-intersection. Second through fourth columns:
images rendered from optimized meshes every 10 steps.

4.2. Intersection and Self-Intersection Removal on Multiple SMPL Models

To demonstrate that our method applies to general closed surfaces, an experiment on mesh with
two disconnected surfaces was carried out. In the experiment, two SMPL mesh models were generated
and were regarded as one mesh, gradient descent was employed to remove the intersection between
the two SMPL models and the self-intersection of themselves. We visualized the result in Figure 8.

Initial state Step 10 Step 20 Step 30 Step 40

Figure 8. Images rendered from the iterative process with two SMPL models. First column:
Images rendered from initial meshes with self-intersection. Second through fourth columns:
Images rendered from optimized meshes every 10 steps.
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Figure 8 shows that our proposed self-intersection penalty term can remove both the intersection
between different body meshes and the self-intersection of each body mesh. This property of our
method is of great significance for multi-person 3D pose estimation.

4.3. 3D Pose Estimation from 2D Joints

We tested our proposed self-intersection penalty term (SPT) on UP-3D [24] whose sample images
were labeled with ground truth 2D joints. To estimate 3D pose from 2D joints, we defined an objective
function as:

E(θ) = EJ(θ, β, K, Jgt) + ESPT(M(β, θ; Φ)) (13)

where K are camera parameters and Jgt is the ground truth of 2D joints. EJ represents the error between
projected joints of the SMPL model and the ground truth 2D joints.

The shape parameters β are fixed during optimization. Since the objective function defined in
Equation (13) is differentiable, gradient descent can be directly applied to optimize the pose parameters
θ by minimizing the objective function. To demonstrate that SPT can improve the accuracy of 3D pose
estimation by excluding unreasonable predictions, we also performed the optimization of objective
function without SPT which can be represented as:

E′(θ) = EJ(θ, β, K, Jgt) (14)

Figure 9 visually compares the results of two different objective functions on a few images from
UP-3D dataset. It is obvious that minimizing the error between projected joints and the ground
truth 2D joints directly without self-intersection penalty term tends to result in body meshes with
self-intersection. The fitting results with SPT are more natural and more reasonable compared with the
results without SPT. This experiment demonstrated that it is effective to add our proposed SPT into the
objective function to avoid self-intersection of body meshes in optimization-based 3D pose estimation.

(a)

(b)

(c)

Figure 9. Visualized results of 3D pose estimation. Images in row (a) are the input images, images in
row (b) are fitting results without SPT, images in row (c) are fitting results with SPT.
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4.4. Comparison with State-of-the-Art

To compare our proposed method with other state-of-the-art methods, we conducted an
experiment on UP-3D dataset. Since our iterative optimization-based method often fails because
of local minima, we used a reduced test set of 139 images selected by Tan et al. [25] to limit the range
for the global rotation of body shape model.

We implemented two state-of-the-art methods for qualitative and quantitative comparisons.
In the baseline method, the objective function is defined as the reprojection error of 2D joints only.
These methods are described in more detail below:

• Reprojection error of 2D joints (RE) only

This method only minimizes the error between ground truth 2D joints and projected 2D joints to
estimate the 3D pose.

• RE + Laplacian regularization (LR)

Laplacian regularization is proposed by Wang et al. [17] to prevent the vertices from moving too
freely and potentially avoids mesh self-intersection in triangular mesh based 3D reconstruction.
We employed this method in 3D pose estimation and the objective function is defined as the sum
of reprojection error of 2D joints and the Laplacian regularization term.

• RE + Sphere approximation (SA)

Pons-Moll et al. [22] built a set of spheres as a coarse approximation to the body shape model
and derived a differentiable penalty term via calculating the intersection between spheres.
To implement this method, We designed a set of spheres to approximate the surface of human
body, as is shown in Figure 10. The objective function is defined as the sum of reprojection error
of 2D joints and the intersection between spheres.

• RE + SPT

This is our proposed method whose objective function is defined as the sum of the reprojection
error of 2D joints and the self-intersection penalty term proposed in this paper.

Figure 10. Spheres designed to approximate the human body are kept in the same pose with the body
shape model.

4.4.1. Qualitative Comparison

We implemented two state-of-the-art methods and one baseline method for qualitative
comparison. Figure 11 presents a part of results from the reduced test set of UP-3D by our proposed
method and other methods. These results demonstrate that our proposed method can remove the
self-intersection of the statistical body shape model effectively and produces more reasonable results.

As is can seen from Figure 11, the results obtained by the baseline method without any
self-intersection penalty tends to intersects with itself. The Laplacian regularization can not strictly
avoid self-intersection and often leads to unnatural results. We can see that it is not suitable to employ
Laplacian regularization in statistical body shape model because of the fact that this laplacian term
brings negative effect to 3D pose estimation. The method of sphere approximation is very competitive
in removing the self-intersection of body mesh, however method requires designing a appropriate set
of spheres and we found that it is an excessive trivial procedure to set the radius and the coordinate of
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each sphere appropriately. In addition, since the body mesh can not be approximated accurately by
spheres, this method may lead to fail results by simply removing the intersection between spheres.

Compared with other approach, our proposed method can obtain more visually appealing results
from two points. One is that when there is no self-intersection, our proposed SPT will have no effect
on the body mesh, this means no side effects on 3D pose estimation. The other is that our proposed
approach can avoid the self-intersection of body mesh strictly without taking any approximation.

Input images RE only RE+LR RE+SA RE+SPT(ours)

Figure 11. 3D pose estimation results by four different methods. First column: Input images.
Second column: Results obtained by minimizing reprojection (RE) error of 2D joints only. Third column:
Results obtained by minimizing the sum of reprojection error and Laplacian regularization (LR).
Fourth column through fifth column: Results obtained by minimizing the sun of reprojection error and
the intersection between spheres. Sphere Approximation (SA). Sixth column: Results obtained by our
proposed approach.

4.4.2. Quantitative Comparison

To the best of our knowledge, there is no commonly used evaluation metric for methods
preventing self-intersection of triangular mesh. In order to compare our method with other
state-of-the-art approaches quantitatively, we adopt the per vertex errors as 3D pose estimation
metric and we used the percentage of vertices in region of self-intersection computed by our proposed
algorithm to evaluate the performance of our method and other state-of-the-art approaches. It should
be noted that it is inappropriate to evaluate these methods only by per vertex error or percentage of
vertices in self-intersection because an ideal approach of avoiding self-intersection should achieve
both minimum per vertex error and minimum percentage of vertices in self-intersection region.
Therefore these two evaluation metrics, per vertex error and percentage of vertices in self-intersection,
were adopted to conduct a quantitative comparison.

The quantitative results of the baseline method, the other state-of-the-art approaches and our
proposed method is shown in Table 1. The Laplacian regularization method achieved a lower
percentage of vertices in self-intersection but a higher per vertex error compared to the baseline
method, which demonstrates that the Laplacian regularization does work in avoiding self-intersection
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but the side effect leads to loss of precision in 3D pose estimation. The approach of approximating body
shape by a set of spheres outperforms the baseline method both in per vertex error and percentage of
vertices in self-intersection. It is undeniable that this method may perform better with more carefully
designed spheres, but it will be extremely tedious to implement this method. Our proposed approach
outperforms the baseline method and two state-of-the-art methods and avoids the tedious procedure
required for the sphere approximation.

Table 1. Results of baseline method, other state-of-the-art methods and our proposed approach on
reduced test set of UP-3D [24].

Methods Per Vertex Error (mm) Percentage of Vertices in Self-Intersection

RE only 257.54 15.22%
RE+LR [17] 452.72 7.64%
RE+SA [22] 186.98 0.87%

RE+SPT (ours) 140.31 0.23%

4.5. Analysis of Time Efficiency

In order to evaluate the time efficiency of our method, we carried out experiments with a different
number of detection rays and SMPL models. All experiments in this section were done on a laptop
with Intel(R) Core(TM) i5-3230M processer. The most time-consuming part of our technique is
self-intersection detection as is described in Algorithm 1. The highlight of our method is that the time
complexity is linear to the number of triangles. The number of detection rays has almost no effect on
the elapsed time as is shown in Table 2. As can be seen in the Table 2, the number of detection rays
was increased from 128 × 128 to 2048 × 2048 but the elapsed time remained approximately constant.

Table 2. Time consumed by an iteration with different number of detection rays. The number of SMPL
models is 1.

Number of Detection Rays Elapsed Time (ms)

128 × 128 53.84
256 × 256 54.96
512 × 512 56.76

1024 × 1024 58.32
2048 × 2048 59.28

In the next experiment, we fixed the number of detection rays and changed the number of SMPL
models to test the performance of our method with growing number of triangles. A single SMPL
model has about 13,000 triangles. As is shown in Table 3, the elapsed time grows about 30 ms for each
additional SMPL model added to the mesh. Result of this experiment demonstrated that the time
complexity of our proposed algorithm is linear to the number of triangles.

Table 3. Time consumed by an iteration with different number of SMPL models. The number of
detection rays is 512 × 512.

Number of SMPL Models Elapsed Time (ms)

1 56.76
2 89.80
3 119.25
4 149.58
5 186.76
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Our proposed method is obviously more computational compared with traditional methods,
but it is worthwhile to apply this method because of the accuracy and generality of our approach.
Moreover, the time efficiency of our method is totally acceptable according to the experimental results.

5. Conclusions

In this paper, we proposed a novel self-intersection penalty term for statistical body shape
models to remove the self-intersection of the mesh by gradient-based optimization. Unlike most
traditional approaches, our method does not require a hard-to-obtain differentiable penalty term,
but instead gradients are manually calculated. In the course of analysis, we have demonstrated
that it is not necessary to derive differentiable expressions of a penalty term and gradients can be
manually calculated from the perspective of geometry. Since no approximation is used in our method,
self-intersection can be strictly removed. The highlight of our work is that our method applies to
general meshes with different shapes and topology without the need to design a set of appropriate
proxy geometries. Despite the fact that our proposed self-intersection penalty term is more time
consuming than traditional approaches, the elapsed time of one iteration is totally acceptable according
to the experimental results. The applications of our method are not limited to the statistical body
shape models presented in this paper. Our proposed self-intersection penalty term can be incorporated
into other 3D reconstruction problems based on a triangular mesh, such as the mesh-based 3D
reconstruction described in [7,16,17].

Our proposed approach has its limitations. When there are some triangles happened to be parallel
to the detection rays, these triangles will not intersect with any detection rays no matter how dense the
detection rays are. That is to say, vertices of triangles parallel to the detection rays may be mistakenly
classified, and further the gradients with respect to these vertices will be incorrect. We assume that
each triangle and its vertices are located in the same region, this assumption does not apply to the
situation where the mesh is sparse and in this situation undesirable consequences may be caused.
Another limitation is that it is difficult to manually set the number of detection rays appropriately,
such that all vertices in self-intersection can be detected and classified correctly with minimum memory
consumption.

Future research directions of this work may include modifying the way detection rays are emitted
to avoid incorrect results when there are triangles parallel to the detection rays. It may also include
developing a strategy to set the number of detection rays appropriately and automatically. We are
also interested in reducing the time complexity of our proposed method to make this approach more
suitable for gradient-based optimization.
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Abstract: Although a state-of-the-art performance has been achieved in pixel-specific tasks, such
as saliency prediction and depth estimation, convolutional neural networks (CNNs) still perform
unsatisfactorily in human parsing where semantic information of detailed regions needs to be
perceived under the influences of variations in viewpoints, poses, and occlusions. In this paper,
we propose to improve the robustness of human parsing modules by introducing a depth-estimation
module. A novel scheme is proposed for the integration of a depth-estimation module and a
human-parsing module. The robustness of the overall model is improved with the automatically
obtained depth labels. As another major concern, the computational efficiency is also discussed.
Our proposed human parsing module with 24 layers can achieve a similar performance as the
baseline CNN model with over 100 layers. The number of parameters in the overall model is less
than that in the baseline model. Furthermore, we propose to reduce the computational burden by
replacing a conventional CNN layer with a stack of simplified sub-layers to further reduce the overall
number of trainable parameters. Experimental results show that the integration of two modules
contributes to the improvement of human parsing without additional human labeling. The proposed
model outperforms the benchmark solutions and the capacity of our model is better matched to the
complexity of the task.

Keywords: human parsing; depth-estimation; computational efficiency; capacity optimization

1. Introduction

Semantic segmentation and human parsing are critical tasks in visually describing humans
under various scenes. Deep Convolutional Neural Networks (CNNs) have brought significant
improvements to human parsing tasks [1–3] thanks to the availability of an increased amount of
training data. Existing works in this field include Path Aggregation (PA) [4], Large Kernel Matters
(LKM) [5], Mask RCNN (MRCNN) [6], holistic models for human parsing [7], and joint pose estimation
and part segmentation [8] with spatial pyramid pooling [9]. Moreover, human parsing aligns well
with other tasks such as group behavior analysis [10], person re-identification [11], e-commerce [12],
image editing [13], video surveillance [14], autonomous driving [3], and virtual reality [15].

However, the performance of existing human parsing methods is still far from robust due to the
heavy reliance on the limited training data. In real-world scenarios, one image is very likely to contain
multiple people with various human interactions, poses, and occlusion. However, very few of the
scenarios can be included in common datasets. For instance, the Pascal Person Part Dataset [7] contains
annotations of less than 10 classes and no more than 4,000 images for training and validation, which is
far from enough to train complex CNNs [16,17] with over 100 layers. What is worse, is that data
augmentation is challenging because labeling an image pixel-by-pixel takes 239.7 s on average [18].

To reduce the cost in labelling, image-level annotations and bounding boxes have been adopted
by weakly supervised methods to improve segmentation [19–21]. Additionally, scribbles and
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points have been introduced in [18,22] as auxiliary supervision. Unlike most weakly supervised
methods, depth information is utilized in this paper as guidance to help distinguish foregrounds from
backgrounds and use the limited capacity of a CNN model more on foreground areas. A module
for depth estimation was trained firstly, then the concatenation of the depth predictions and RGB
images composed the input to the segmentation module during both training and testing processes.
For simplicity, we used the Depth-Module (DM) and Segmentation-Module (SM) to represent the
two modules. The depth annotations from RGB image pairs with overlapping viewpoints could be
obtained automatically [23] with multi-view stereo (MVS). The two modules composed the Overall
Model (OM).

The advantage of integrating a Depth-Model with Segmentation-Module comes in two ways.
Firstly, the training data for depth estimation can cover the variations which seldomly appear in the
training data for human parsing. Robustness is improved in this way. Secondly, depth estimation
and segmentation are closely correlated. The former assigns continuous depth values to pixels while
the latter assigns discrete categorical labels to pixels. The predicted depth maps facilitate hierarchical
descriptions of images which are helpful for segmentation. The learning process is divided into two
stages: (1) To train the DM on the large-scale MegaDepth Dataset [24] collected from Internet photos.
(2) Both the training and testing of SM were based on the predictions from the DM and original RGB
images [2,7]. The strategy introduced in Section 3.3 was applied. As is shown in Figure 1, DM helped
to focus the SM’s limited capacity on the qualified regions and boost the performance of segmentation.
Each input image of the SM had four channels, RGB and the depth prediction from DM.

 
Figure 1. The proposed model for human parsing. The Overall Model (OM) is composed of a Depth
Module (DM) and a Segmentation Module (SM). The DM is based on the hourglass network proposed
in [25] and is trained on the MegaDepth Dataset proposed in [24]. The trained DM is used to pre-process
the training and test images. The training data includes the Pascal Person Part Dataset [7] and the LIP
Dataset [26]. The SM is composed of five stages of convolutional layers.

Existing works on optimizing the capacity of CNNs are divided into three categories. The first
type of work [27,28] explores the sparseness of feature representations within a CNN and keeps only
branches which are useful to tasks. The second type of work [29] makes use of the favorable properties
of a shallow network and improves the performance of the CNN based on novel training strategies.
The third type of work [30] maximizes the representational power of a CNN by maximizing the
number of inter-connections between the features in different levels. Although the existing methods
have improved computational efficiency, none of them has explored the relationship between depth
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and accuracy. This paper proposes a way to match the representational power and capacity of a CNN
to a task by adjusting the depth and width of the CNN and training the CNN with a novel scheme.
Both quantitative and qualitative experiments are conducted on the LIP Dataset [26] and the Pascal
Person Part Dataset [7] to show that the proposed model conducts human parsing in a more effective
and time-efficient manner.

In summary, the contributions of this paper are in three aspects: (1) A model for human parsing is
proposed with integrated DM and SM modules. Moreover, a novel scheme is proposed for training
the modules. The DM is trained on a large amount of automatically labeled images and provides
information which is complementary to the features in the SM. As a result, the OM outperforms the
SM only, especially at the boundaries. (2) A new algorithm is proposed to train the SM with 24 layers,
achieving a similar performance as the baseline model with over 100 layers trained on the currently
largest dataset for human parsing. (3) The influences of depth and width on capacity are studied.
Two methods are proposed to build a SM which is deeper with performance improvement but uses
less parameters. As a result, the performance-complexity ratio is improved and the capacity of the
CNN model is better utilized.

The rest of the paper is organized as follows. Section 2 introduces related work. Section 3 discusses
the details of our proposed model and the method for adjusting the CNN’s capacity. Section 4 shows
the details of implementation as well as experimental results. Concluding remarks are drawn in
Section 5.

2. Related Work

Human Parsing Approaches. Human parsing has become an active research topic in the last
few years [7,9,21,26,31–33]. The JPPNet [8] and the Nested Adversarial Network [34] represent the
current state-of-the-art methods. The improvements in the methods, such as those in Reference [8,23],
over traditional methods [9] are achieved by combining pose estimation with semantic part segmentation.
The estimated poses provide the shape prior, which is necessary for segmentation. Similarly, the authors
of Reference [35] proposed to integrate parsing with optical flow estimation. The authors of Reference [36]
incorporated a self-supervised joint loss to ensure the consistency between parsing and pose. However,
the guidance from poses cannot improve borders. As a result, it is still quite difficult to delineate the
boundaries. In our proposed method, it is shown that depth information can improve the classification
of pixels near boundaries. Other work, such as Reference [34], proposed to integrate three sub-nets
which perform semantic saliency prediction, instance-agnostic parsing, and instance-aware clustering,
respectively. The authors of Reference [37] proposed a framework integrating a human detector and a
category-level segmentation module. However, both methods involve multiple stages. The outputs from
earlier stages compose the only inputs to later stages and misleading outputs from the earlier stages
disable the later stages. In our proposed method, the input to the SM composes not only the output from
the DM, but also the original RGB images. The SM is less dependent on the DM and can function even
when the DM fails.

Weakly Supervised Methods. To tackle the lack in training data, three types of research works
have been conducted. The first type involves learning based on bounding boxes, scribbles, image
tags or mixing multiple types of annotations. The labels in the form of bounding boxes and scribbles
indicate the locations and sizes of objects. The BoxSup proposed in [20] and DeepCut proposed
in [38] trained the segmentation model based on iterating between bounding box generation and
training the CNN. The 3D U-Net proposed in Reference [39] performed volumetric segmentation
with a semi-automated setup or a fully-automated setup. The multi-task learning proposed in
Reference [40] adopted image-level and point-level supervision. Image-level supervision shows
whether certain objects are present in an image. Point-level supervision indicates the locations and
rough boundaries of objects. Bounding boxes and scribbles were mixed in Reference [21,41] to facilitate
better training. However, the methods cannot deal with images containing multiple people or those
with complex backgrounds.
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The second type of work focuses on predicting the weights of a model in a target task, such as
image classification using the weights from a source task, such as natural language descriptions or
few-shot examples [42–44]. Among vision tasks, the authors of Reference [45] proposed to transform
the weights in a detection model to those in a segmentation model. Similarly, the LSDA (Large
Scale Detection Through Adaptation) proposed in Reference [46] introduced a way to transform a
classification model to a detection model. The rationality lies in the fact that more training data are
available in source domains. However, the transformation of weights is based on a parameterized
function which is learned on the limited annotations from a target domain. The taskonomy proposed
in Reference [47] re-used the supervision among related tasks. It trains higher-order transfer functions
to map the feature representations from a source task to a target task. However, different types of
annotations need to be present on the same set of images. The requirements on annotations limits the
scale of training data. Different from the above-mentioned methods, our proposed human parsing
model utilizes depth information without learning a parameterized function. The DM can be trained
on large datasets with only depth annotations and provide robust predictions on images with multiple
people or those with complex backgrounds. The SM benefits from the complementary features
provided by the DM and the segmentation performance is improved.

Capacity Optimization. The definition of capacity is introduced in Reference [48]. The term
capacity tends to relate to volumes, quantities or memorization. It measures how complex a function
a neural network can model. Existing work on capacity optimization includes pruning feature
representations [49–51], exploring favorable properties of a shallow network [29], and maximizing
the expressive power of a fixed-size network [16,30]. The first type of work focuses on pruning
convolutional kernels to obtain the most compressed sets of feature representations required for a
task. However, most of the related methods improved the processing speed at the cost of accuracy.
The second type of method replaces the end-to-end training scheme by a sequentially training scheme.
Accuracy is improved without increasing depth. However, the depth of a CNN is not yet well matched
to a task. Our proposed training scheme outperforms the scheme in Reference [29], as will be shown in
Section 4.3. The third type of work [30] tried to improve the performance-complexity ratio, but the
added connections significantly reduced the efficiency in memory accessing. In our proposed scheme,
the depth of a CNN is better matched to the complexity of a human parsing task. Moreover, a deeper
but more efficient module is built to optimize the capacity of a CNN without dropping in accuracy.
Experimental results will demonstrate the superiority of our proposed methods.

3. Methodology

Our proposed model is shown in Figure 1. The complementary nature of the SM and DM
is explored. Besides color, the depth prediction provided by the DM facilitates an extra way to
understand images to improve segmentation. To be more specific, nearby regions belonging to
different instances are predicted to share the same label by the SM because of similar colors and
textures. However, the regions can be differentiated from each other by the DM because of the
difference in their depth values.

As is shown in Figure 2, the results of using the SM only for segmentation and those of integrating
the SM with the DM are compared. It is shown in the first row that the heads of different identities
cannot be distinguished because of the similarity in colors. However, the depth predictions help to
differentiate the instances. In the second row, foreground instances share the same color as backgrounds.
The depth predictions help to segment out foreground instances. Similarly, the lower arms in the
third row can hardly be distinguished from the background with color information only. Successful
segmentation results from depth predictions.

78



Appl. Sci. 2019, 9, 1330

 
(a) (b) (c) (d) 

Figure 2. The improvement on segmentation is brought by the DM: (a) RGB images which are the
input to both DM and SM; (b) The results of using the SM only for segmentation; (c) The predictions
from the DM; (d) The results of integrating the SM with the DM for segmentation.

3.1. Depth Module

Similar to other network models which output the same resolution as the inputs [37,52], the DM is
also trained end-to-end. It processes and passes information across multiple scales. The design of the
DM is based on the stacked hour-glass network proposed in Reference [25,53]. The symmetric structure
consists of convolutions, pooling layers which are followed by up-sampling layers and convolutions.
The detailed structure was discussed in Reference [54].

The loss function for training the network is the weighted sum of three terms. The first term
denotes the mean square error of predicted depth values.

DMSE =
1
n

n

∑
i=1

d2
i −

1
n2

(
n

∑
i=1

di

)2

(1)

where di denotes the difference between the prediction at the i-th pixel and the corresponding ground
truth depth value. n denotes the number of pixels. The training images are from the large-scale
MegaDepth dataset [24]. DMSE is invariant to the shifts on the mean values of images. The second
term takes into consideration the gradients on the difference map:

Dgrad =
1
n

n

∑
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∣∣∇ydi
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This term improves the performance on sharp discontinuities and makes depth predictions
smoother. The third term enforces the ordinal depth relations between foreground super-pixels and
background super-pixels:

Dord =
K

∑
k=1

log
(
1 + exp

(−abs
(
zik − zjk

)))
(3)

K pairs of points are sampled from the depth predictions and ground truth depth maps. ik denotes
the k-th point sampled from the largest foreground super-pixel while jk denotes the k-th point sampled
from the surrounding background super-pixels. zik denotes the depth at point ik and zjk the depth
at point jk. The weight of Dgrad in the loss function is set to 0.5 while the weight of Dord is set to 0.1.
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The existence of term Equation (3) enforces the predicted depth values of neighboring instances to be
different and ordered. The overall lost function is defined as

D = DMSE + 0.5Dgrad + 0.1Dord (4)

3.2. Segmentation Module

In this section, an SM with 24 layers is introduced, which is compared with the baseline model
Deeplab-V2 [9] on the segmentation task.

Figure 3 shows our proposed SM. The architecture is based on the backbone of VGG-16 [55].
The blocks in red denote residual blocks [16].

 
(a) Stages for feature extraction 

 
(b) ASPP (Atrous Spatial Pyramid Pooling) and feature fusion 

Figure 3. Architecture of an SM. Each block denotes one convolutional layer. ReLU nonlinearities are
used throughout, and max pooling occurs between adjacent groups of convolutional layers. The first
line within each block denotes the name of the layer, the second line shows the kernel size, and the
third line shows the number of output channels. (a) The five stages for extracting basic features.
(b) Task-specific stages. A mechanism known as ASPP [9] is adopted to enable 3 × 3 filters to have
different field-of-views. Four parallel filters with different field-of-views are adopted to extract the
features for pixel classification. The kernels in the layers from conv19 to conv22 are with size 3 × 3 but
differ in the distance between weights in the kernels. The heat-maps generated by the four parallel
convolutional layers are fused in Stage 7.
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3.3. Strategy of Combining DM with SM

Solely integrating the predictions from the DM with RGB images during training and testing the
SM only brings slight improvements. However, better strategies can be adopted to fully explore the
complementary nature of color and depth information to contribute more to performance improvement.
In this section, we propose a strategy to better utilize depth information. The strategy is divided into
two steps. An example is shown in Figure 4.

 
Figure 4. The procedure for combining DM with SM.

In the first step, the DM is trained and used to augment the training data and test data of the SM.
OM segments out foreground objects as one class. To reduce false negatives, dilation is conducted
on the masks produced by the OM. In the second step, the regions which are predicted by Step 1 as
foregrounds are kept unchanged, with remaining parts set to zero. The images produced by Step 2 are
then used for re-training and testing SM. Table 1 compares the performance of three cases: Only using
the SM, direct training and testing of the SM based on the predictions from the DM and applying the
strategy in this section to combine DM with the SM.

Table 1. Mean pixel IOU (mIOU) of human parsing on the PASCAL Person Part Dataset.

Method mIOU (%)

Attention [56] 56.39%
HAZN [57] 57.54%

LG-LSTM [58] 57.97%
Joint pose estimation and part segmentation (with Resnet-101 as backbone) [8] 64.39%

SM pre-trained on ImageNet [59] 61.57%
Our overall model (OM) pre-trained on ImageNet [59]. Directly concatenate DM’s predictions with RGB

images for training and test SM. 62.49%

Our overall model (OM) pre-trained on ImageNet [59]. Combine DM with SM based on the strategy
introduced in Section 3.3. 65.03%

3.4. Capacity Optimization of SM

Each input image is mapped by a CNN from the image space χ to the feature space F, a CNN learns
the low-dimensional structures of data and represents them using a parametric polyhedral manifold
which is then partitioned into pieces [60]. The more pieces there are, the higher the representation
capability of the CNN becomes. For a ReLU deep neural network, each neuron functions as a
hyperplane and partitions the input manifold into multiple polyhedra. As a result, the number of
pieces is decided by the number of ReLU operations. The bound of the encoding or representation
capability of a ReLU DNN is measured by Rectified Linear Complexity (RL Complexity) N(N). For a
neural network with k hidden layers of widths {wi}k

i=1, the upper bound of RL Complexity is given by

N(N) ≤ Πk+1
i=1 C(wi−1, wi). (5)
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Only when the RL complexity of a neural network is no less than that of the manifold can the
data be encoded by the neural network. It can be inferred from Equations (5) and (6) that the depth of
neural network contributes much more significantly to the capacity of a neural network than width.
As a result, we have made the CNN in Figure 3a deeper than the backbone [55]. The contribution to
performance improvement from additional depth will be shown in Sections 4.2 and 4.4.

Moreover, we have also developed a scheme for training the CNN in Figure 3a, as is shown in
Algorithm 1. The training is conducted layer by layer because it was discussed in Reference [29] that a
CNN with a fixed number of layers can perform better if it is built sequentially layer by layer instead
of trained end-to-end.

Algorithm 1: Scheme of training SM

Step 1
Train the backbone network [55] without layers conv3, conv6, conv10, conv14, conv18 until
convergence.

Step 2 Add layer conv18 which is initialized with Gaussian weight matrices.

Step 3
Use the pre-trained layers conv1-conv17 to extract the feature vectors from images and use the
feature vectors as the input to train conv18.

Step 4 Freeze the weights in all layers in Stage 6 and Stage 7 and train conv18 until convergence.
Step 5 Re-train SM until convergence with all layers un-frozen.
Step 6 Add layer conv14, conv10, conv6, conv3 and go through the same operations from Step 2 to Step 5.

Different from Reference [29] which only trained the added layer each time, for each added layer
in Algorithm 1, the network is trained for two times. In the first time the added layer only is trained
while in the second time, the overall network is trained. As will be shown in Section 4.3 the strategy
of our adding layers has an advantage over both adding all layers together at once and applying
the method in Reference [29]. Moreover, the involvement of the five additional layers has brought
significant improvements in accuracy over the backbone network, as will be shown in Section 4.2.

Different from traditional segmentation models, the feature representations at Stage 6 which
correspond to 4 point-of-views are concatenated and fused by the 1 × 1 convolutions at Stage 7,
as compared to the direct summation in Reference [8]. Feature fusion offers a much more flexible
scheme of combining the features from different point-of-views. The network can learn to add up the
features or combine the features in more complex ways.

Besides improving depth which leads to the increase in computational complexity, we also propose
to exchange width for depth to obtain further improvements in accuracy while reducing the number
of parameters. Two methods have been proposed to reduce the complexity of convolutional layers by
replacing one conventional convolutional layer with a stack of simplified layers. The overall complexity
of stacked simplified layers is less than that of one original convolutional layer. The mechanism is
shown in Figure 5. Figure 5b shows our first proposed way of exchanging width for depth. In one
conventional layer, Cin independent 3 × 3 convolutional kernels function on Cin channels to obtain one
output channel. In one simplified sub-layer, N (N � Cout) kernels function on each of the Cin input
channels and the intermediate representation has NCin output channels which are processed by 1 × 1
convolutions. M is the number of sub-layers which are stacked to replace one conventional layer. Even
if one sub-layer is less expressive than one conventional layer with the same Cin and Cout, the stack
of M sub-layers achieves a higher expressive power than one conventional layer without increasing
the overall number of parameters for proper choices of M and N. In Figure 5c, the second way of
exchanging width for depth is introduced. Each conventional layer is replaced by two sub-layers.
The difference lies in that Figure 5b uses 4 sub-layers to replace one conventional layer, while Figure 5c
uses two sub-layers.
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(a) 

 
(b) 

inC outC
outCoutC

 
(c) 

Figure 5. The proposed way of exchanging width for depth: (a) A conventional convolutional layer;
(b) simplify one conventional layer to sub-layers and concatenate M(M = 4) sub-layers to replace one
conventional layer. Each sub-layer is obtained by decomposing one conventional layer and increasing
the dependency between convolutional kernels; (c) simplify one conventional layer to sub-layers and
stack 2 sub-layers to replace one conventional layer.

The structures introduced in Figure 5b and c will be used to simplify conv17 and conv18 shown
in Figure 3. As will be shown in the experiments, accuracy is kept almost the same with the overall
computational complexity reduced. Deeplab-V2 [9] and joint pose estimation and part segmentation [8]
which is based on Resnet-101 [9] are also trained on the segmentation datasets for comparison.

The initialization of weights in Figure 5b was discussed in Reference [61] and the initializations of
weights in Figure 5c is based on minimizing the reconstruction error:

argmin
U,V

Cout

∑
i=1

∥∥∥∥∥Wi −
Cout/2

∑
j=1

UijVj

∥∥∥∥∥
2

(7)
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where W denotes the weights matrix in one layer shown in Figure 5a with size Cout × Cinkhkw, with
Wi denoting the i-th row of W. V denotes the weights in Sub-layer 1 with Vi being the i-th row of the
matrix. U denotes the weights in Sub-layer 2 with Uij being the (i, j)-th entry of the matrix.

3.5. Domain Randomization

To reduce the generalization error, it is necessary to bridge the gap between the source domain
(training data) and the target domain (test data). Some methods have been proposed to discuss the
problem [62]. However, these methods mainly focus on other tasks, such as object detection [62], in
which all types of simulated variability at training time are utilized, including positions, textures,
orientations, field-of-views, and lightening conditions. Too many variations may result in a low
convergence rate.

The LIP dataset includes the variations in poses and lightening conditions in the training set. As a
result, we are only concerned with the variations in backgrounds which contribute to the divergence
between domains. We propose to crop the predicted backgrounds from test images, which are then
used to fill the background regions in training images. In this way, an augmented training dataset
is produced to help the SM develop more generalizable representations. The detailed scheme is
introduced in Algorithm 2.

Algorithm 2: Scheme of domain randomization

Step 1 Train SM until convergence and use it to segment out the background regions of test images.

Step 2
For each training image, find the image from test set with the most similar aspect ratio. Resize the
test image to be with the same size as the training image.

Step 3
Crop the background regions from the test image and replace the background regions on the
training image with those from the test image.

Step 4 Re-train SM and return to Step 1. (Two iterations are adopted.)

Figure 6 shows two examples of domain randomization. The backgrounds in training images are
replaced by those in test images.

 
Figure 6. Two examples of domain randomization. In each row, the left image denotes the original
image, the middle and the right ones show two modified images with different backgrounds.

4. Results

4.1. Datasets and Implementation Details

The two modules in our proposed model were trained on two datasets. The DM was trained on
the MegaDepth Dataset [24] which involves 130K images from 200 different landmarks. The depth
information in images with over-lapping viewpoints is automatically obtained with SFM (Structure
from Motion) and MVS (Multi-View Stereo). The SM was trained on the images from the PASCAL
VOC 2010 Person Part Dataset for body part segmentation [2,63]. The Person Part Dataset includes
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annotations on 3,533 images where 1,716 images are used for training while the other 1,817 images are
for testing. The ground truth labels are in the form of segmentation masks. There are six annotated
semantic types, that is, head, torso, upper arm, lower arm, upper leg, lower leg, and background.
To evaluate on larger datasets and to demonstrate the improvement on capacity, the SM was also
trained on the LIP (Look into Person) Dataset [26] with 30,462 images for training, 10,000 images for
validation and 10,000 test images. There are 19 annotated semantic types, that is, face, upper clothes,
hair, right arm, pants, left arm, right shoe, left shoe, hat, coat, right leg, left leg, glove, socks, sunglasses,
dress, skirt, jumpsuits, scarf. The capacity of the SM was optimized using the two methods shown in
Figure 5.

4.2. Integration of the Two Modules

As is shown in Figure 1, the DM is used to preprocess an image and predict depth masks.
The predicted masks are concatenated with corresponding input RGB images to produce the input
of the SM during both training and testing. The experiments were conducted to show that the
combination of color and depth information during training and inference improves the performance
of human parsing. The metric for evaluating the performance of human parsing is mean Intersection
Over Union (mIOU) which is proposed in [7]. mIOU is computed by dividing the number of true
positive samples by the summation of true positive, false negative, and false positive samples:

mIOU =
1
N

N

∑
i=1

nii
ti + ∑j �=i nji

(8)

where nji is the number of pixels of class j which are predicted to class i, and tj = ∑i nji is the total
number of pixels belonging to class j. The metric takes into account both false positives and false
negatives. For the Pascal VOC 2010 Person Part Dataset, mIOU is computed for each of the seven
classes and averaged. For instance, the mIOU of head is obtained by regarding head as the foreground
and other six types as the backgrounds. Table 1 shows the results on the test set.

For the LIP Dataset, mIOU is computed in the same way and the experimental results are shown
in Table 2.

Table 2. Mean pixel IOU (mIOU) of human parsing on Look into Person (LIP) Dataset.

Method mIOU (%)

Deep Lab-V2 (VGG-16) [9] 41.56%
Deep Lab-V2 (Resnet-101) [9] 44.96%

SM (24 layers) pre-trained on ImageNet [59] 44.89%
Our overall model (OM) pre-trained on ImageNet [59]. The scheme introduced in Section 3.3 is applied. 46.73%

By comparing the last three rows in Table 1 and the last two rows in Table 2, it can be inferred that
the integration of the DM and the SM outperforms the SM on both large and small datasets. Table 1
shows that the contribution is mainly attributed to the scheme proposed in III-C, which fully explores
the complementary nature of the DM and the SM.

Moreover, it is discussed in Section 3.2 that the backbone of the SM is Deep Lab-V2 (VGG-16) [9]
with 18 layers. Figure 7 shows the changes in accuracy upon increasing the depth of SM from 18 to 24.
With the six added layers, the SM not only outperforms the backbone, but also performs as well as
the baseline model with over 100 layers which is shown in the second row in Table 2. Note that the
number of parameters in the OM is less than that in the baseline model [9]. More importantly, LIP is
the currently largest dataset for human parsing and the number of parameters in SM is much less
than that in the baseline model. The improvement demonstrates that by adjusting the depth of a CNN
model, its capacity is better matched to a task than Reference [8,9].
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Figure 7. The changes in accuracy upon increasing the depth of SM.

4.3. The Advantage of Layer-Wise Training

As is demonstrated by the second and third rows in Table 2, the SM can perform as well as a
model that is much more complex. The advantage results from the layer-wise training scheme which is
proposed in Section 3.4 and shown in Algorithm 1. To demonstrate the advantage of Algorithm 1 over
adding all the layers to the backbone at once, we compare the performance of the SMs trained with the
two schemes and show the results in Table 3. In the scheme where all the layers are added at once and
the SM was trained for one time, the number of iterations during training is 600,000. In the scheme
proposed in Algorithm 1, the SM was trained for 100,000 iterations upon the addition of each layer.
The overall time cost during training is the same. The performance is evaluated on the LIP Dataset.

Table 3. Mean pixel IOU (mIOU) of the Segmentation Module (SM) trained with different schemes.

Scheme mIOU (%)

Directly adding layers to SM and train at once 42.76%
Train using the layer-wise scheme in [29] 44.37%

Train SM with Algorithm 1 44.89%

It can be inferred from Table 3, that layer-wise training significantly outperforms direct training
all layers at once. Different from the layer-wise training in Reference [29], we firstly train each
added layer while keeping other layers fixed for 50,000 iterations and then re-training all layers for
another 50,000 iterations. Compared with training each added layer for 100,000 iterations, Algorithm 1
performs better, as is shown by the last two rows in Table 3.

4.4. The Exchange Between Width and Depth for Capacity Optimization

We have also tried to replace traditional convolutional layers with the stacking of simplified
convolutional layers shown in Figure 5b,c. The N in Figure 5b is chosen to be 3 and the number of
sub-layers M is selected to be 4. We have replaced conv18 in Figure 3 with the stacked simplified layers.
Upon replacing the layer, the SM is re-trained for 100,000 iterations. The changes in performance
and the drop in computational burden is shown in Table 4. The performance is evaluated on the
LIP dataset.

The initializations of the weights in the layers in Figure 5b,c are discussed in Section 3.4.
It can be inferred from Table 4 that the methods shown in Figure 5b,c reduce computational

burdens while maintaining or slightly improving performance.
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Table 4. The influence of exchanging width for depth on the SM. Performance is evaluated with mIOU.

Method mIOU (%)
Deduction on the Number of

Floating-Point Multiplications (%)

SM shown in Figure 3 46.73% -
SM with conv18 converted to the stack of layers shown in Figure 5b 46.85% 1.75%
SM with conv18 converted to the stack of layers shown in Figure 5c 46.79% 2.42%

SM with conv18 and conv17 converted to the stack of layers shown in Figure 5b 46.89% 3.51%
SM with conv18 and conv17 converted to the stack of layers shown in Figure 5c 46.54% 4.85%

4.5. Domain Randomization

We augmented the training data with domain randomization where the backgrounds in training
images were replaced by the counterparts in test images. In the implementation of Algorithm 2, we
cropped the backgrounds from two test images to replace the background of each training image. As a
result, the augmented dataset includes 60,924 images.

It can be inferred from Table 5 that iterative domain randomization improves the generalization
of the SM.

Table 5. The influence of domain randomization on the SM.

Method mIOU (%)

SM trained on the original images from the LIP Dataset 46.73%
SM trained on the augmented LIP Dataset 47.21%

4.6. Examples of Segmentation Results

Besides objective results, some results are shown in Figures 8 and 9 to show the advantages of
integrating the DM with the SM which can be judged subjectively. A comparison between the SM and
the OM is made on multiple cases, including samples with complex gestures in identities, images with
occlusions, and those suffering from darkness.

Figure 8. Cont.
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Figure 8. Performance comparison between the OM and the SM on the validation set. From the top
row to the bottom row are input images, predictions from the SM, predictions from the OM and the
ground truth labels.

 

Figure 9. Performance comparison between the OM and the SM on the test set. From the top row to
the bottom row are input images, predictions from the SM and predictions from the OM.

88



Appl. Sci. 2019, 9, 1330

5. Discussion

In this paper, depth information is combined with color using a novel strategy. The performance
of human parsing is significantly improved. Moreover, depth information is obtained by a module
which is trained on automatically acquired labels, thus saving human labor cost. Secondly, the SM
with 24 layers, which is trained using the scheme in Algorithm 1 achieves a similar performance as the
baseline model with over 100 layers on the currently largest dataset for human parsing. The number of
parameters in the OM is less than that in the baseline model. Thirdly, two methods have been proposed
to optimize the capacity of the SM by increasing depth while reducing parameters, achieving a more
efficient solution with a better performance. Both quantitative and subjective results have shown the
effectiveness of our proposed methods.
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Abstract: Fast 3D reconstruction with semantic information in road scenes is of great requirements
for autonomous navigation. It involves issues of geometry and appearance in the field of computer
vision. In this work, we propose a fast 3D semantic mapping system based on the monocular vision
by fusion of localization, mapping, and scene parsing. From visual sequences, it can estimate the
camera pose, calculate the depth, predict the semantic segmentation, and finally realize the 3D
semantic mapping. Our system consists of three modules: a parallel visual Simultaneous Localization
And Mapping (SLAM) and semantic segmentation module, an incrementally semantic transfer
from 2D image to 3D point cloud, and a global optimization based on Conditional Random Field
(CRF). It is a heuristic approach that improves the accuracy of the 3D semantic labeling in light of
the spatial consistency on each step of 3D reconstruction. In our framework, there is no need to
make semantic inference on each frame of sequence, since the 3D point cloud data with semantic
information is corresponding to sparse reference frames. It saves on the computational cost and
allows our mapping system to perform online. We evaluate the system on road scenes, e.g., KITTI,
and observe a significant speed-up in the inference stage by labeling on the 3D point cloud.

Keywords: 3D semantic mapping; incrementally probabilistic fusion; CRF regularization; road scenes

1. Introduction

Scene understanding plays a key background role in most vision-based mobile robots.
For example, autonomous navigation in indoor/outdoor scenes asks for a rapid and comprehensive
understanding of surroundings for obstacle avoidance and path planning [1–3]. Vehicle movement in
limited temporal and spatial contexts always requires knowledge of what there are around ego-vehicle
and where it is located. Robotic maps, such as Occupancy grid map and OctoMap, traditionally provide
geometric presentation of the environment. However, they lack the correlation in data between map
points and semantic knowledge; thus, they could not be directly utilized for scenes understanding.

Scene parsing/semantic segmentation is an important and promising step to address this issue.
It has been an active topic for a long time, and it benefits from the state-of-the-art Deep Convolutional
Neural Networks (DCNNs), which contributes to better performance of 2D pixel labeling than
traditional methods. Then, combined with the SLAM technology, an automobile could locate itself
and meanwhile recognize surrounding objects on a pixel-wise level. For instance, it could make
autonomous vehicle accomplish certain high-level tasks, such as “parking on the right free space” and
“stopping at the crosswalk”. This form of 3D semantic representation provides mobile robots with
functions of understanding, interaction, and navigation in various scenes.

Appl. Sci. 2019, 9, 631; doi:10.3390/app9040631 www.mdpi.com/journal/applsci93
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Most semantic segmentation methods focus on increasing the accuracy of the semantic
segmentation, and have seen major improvements [4,5]. However, they usually asks for high-power
computing resources, which is not suitable for embedded platforms. Several recent research try to
make a balance between the computing cost and the accuracy of object detection, classification, and 2D
pixel labeling [6,7]. They achieve better performance on the embedded and mobile platforms.

Visual SLAM is a promising technology, especially based on monocular vision, which is flexible,
inexpensive, and widely equipped on most recent vehicles. Although scaled sensors like stereo cameras
and RGB-Depth (RGB-D) cameras could provide reliable measurement in their specific ranges, they
lack the capability of seamless switch between various-scaled scenes. In addition, they normally need
large storage resources. Most man-made environments, e.g., road scenes, usually exhibit distinctive
spatial relations among varied classes of objects. Employing theses relations could enhance semantic
segmentation performance in the 3D semantic mapping [8]. In this paper, we exploit a monocular
SLAM method that provides cues of 3D spatial information and utilize state-of-the-art DCNN to build
a 3D scene understanding system towards road scenes. Moreover, a Bayesian 2D-3D transfer and
a map regularization process are utilized to generate a consistent reconstruction in the spatial and
semantic context.

In our monocular mapping system, the map is incrementally reconstructed with a sequence of
automatically selected keyframes and corresponding semantic information. There is no need to label
each frame in a sequence, which could save a considerable amount of computation cost. We refer
readers to Figure 1. Different from the frame skipping strategy proposed by Hermans et al. [9] and
McCormac et al. [10], our method could work well under fast motions. Since the 3D map should
have global consistent depth information, it should be regularized in term of spatial structures.
The regularization is aimed at removing distinctive outliers and it makes components more consistent
in the point cloud map, i.e., local points with same semantic label should be approached in 3D space.
Two datasets, Cityscapes [11] and KITTI [12], are used to evaluate our approach. This work is an
extension of our previous work [13]. We not only modify the 2D semantic segmentation module,
but also revise the offline regularization module with new potential constraint. More experiments and
theoretical details are involved in this work. The main contributions involve the improvement of 2D
semantic segmentation model, the associative hierarchical Conditional Random Field (CRF) with High
Order Potential towards the point cloud, the extended experiments and the quantitative evaluation of
the performance including accuracy and runtime.

from overall-eps-converted-to.jpg

Figure 1. Overview of our system: From monocular image sequence, keyframes are selected to obtain
the 2D semantic information, which then transfer to the 3D reconstruction, and then incrementally
build the 3D semantic map.
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This paper is presented as follows. In the Section 2, a review of the related work is given.
The problem formulation is presented in Section 3. The 3D semantic mapping is described in Section 4,
including the semantic segmentation, the monocular visual SLAM, the Bayesian incremental fusion,
and the global regularization. Section 5 includes the results of 2D semantic inference and 3D semantic
mapping. Finally, Section 6 concludes the paper and discusses possible extensions of our work.

2. Related Work

Our work is motivated by [10] which contributes an indoor 3D semantic SLAM from the
RGB-D input. It aims towards a dense 3D map based on ElasticFusion SLAM [14] with semantic
labeling. Pixel-wise semantic information is acquired from a Deconvolutional semantic segmentation
network [15] using the scaled RGB information and the depth as the input. Depth information is also
used to update surfel’s depth and normal information to construct 3D dense map during loop closure.
In addition, a previous work, SLAM++ [16], creates a map with semantically defined objects, but it is
limited to predefined database and hand-crafted template models. In this paper, we make use of an
incremental Bayesian fusion strategy with state-of-the-art visual SLAM and semantic segmentation.

Visual SLAM usually contains sparse, semi-dense, and dense types depending on the methods
of image alignment. Feature-based methods only exploit limited feature points—typically image
corners and blobs or line segments, such as classic MonoSLAM [17] and ORB-SLAM [18,19]. They are
not suitable for 3D semantic mapping due to rather sparse feature points. In order to better exploit
image information and avoid the cost on calculation of features, direct dense SLAM system, such as
the surfel-based dense slam, ElasticFusion [14], and Dense Visual SLAM [20], have been proposed
recently. Whereas, direct image alignment from these dense methods is well-established for monocular,
RGB-D and stereo sensors. Semi-dense methods like Large-Scale Direct-SLAM (LSD-SLAM) [21] and
Semi-direct Visual Odometry (SVO) [22] provide possibility to build a synchronized 3D semantic
mapping system.

Deep CNNs have proven to be effective in the field of image semantic segmentation.
Long et al. [23] firstly introduces an inverse convolution layer to realize an end-to-end training
and inference. Then, the encoder-decoder architectures with specified upsampling layers, such as max
unpooling and deconvolutional layer, are proposed to avoid the problem of separate step training
in the Fully Convolutional Network (FCN) and improve the accuracy [15,24]. Zhao et al. [4] exploit
the capability of global context information through embedding various scenery context feature in
a pyramid structure. The fusion of varied scaled feature has been a popular strategy in the recent
deep CNNs. The cutting-edge method, namely, DeepLab series [5,7], combines atrous convolutions
and atrous spatial pyramid pooling (ASPP) to achieve a state-of-the-art performance on semantic
segmentation. The early DeepLab models have a reasonable accuracy but require much computation
overhead. Recently proposed efficient convolution neural network, such as MobileNets [25,26]
boosts real-time performance of semantic segmentation without losing the accuracy too much. The
state-of-the-art DeepLab-v3+ [7] contains a simple effective decoder module to refine the segmentation
results especially along object boundaries. Furthermore, combining the encoder part of MobileNet-v2
in its structure, DeepLab-v3+ could achieve a better trade-off between precision and runtime.

In the topic of scene understanding and mapping, recent researchs employ 3D priors of objects
increasingly. Salas-Moreno et al. [16] project 3D mesh of objects to the RGB-D frame in a graphical
SLAM framework. Valentin et al. [27] propose a triangulated meshed representation of the scene
from multiple depth measurements and exploit the CRF to capture the consistency of 3D object
mesh. Kundu et al. [28] exploit the CRF for joint voxels to infer the semantic information and
occupancy. Sengupta and Sturgess [29] use stereo camera, estimated pose, and CRF to infer the
semantic octree presentation of the 3D scene. Vineet et al. [30] propose an incremental dense stereo
reconstruction and semantic fusion technique to handle dynamic objects in the large-scale outdoor
scenes. Kochanov et al. [31] employ scene flow measurements to incorporate temporal updates into the
mapping of dynamic environment. Landrieu et al. [32] introduce a regularization framework to obtain
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spatially smooth semantic labeling of 3D point clouds from a point-wise classification, considering
the uncertainty associated with each label. Gaussian Process (GP) is another popular method for map
inference. Jadidi et al. [33] exploit GP to learn the structural and semantic correlation between map
points. This technique also incorporates OcotoMap to handle sparse measurements and missing labels.
In order to improve the training and query time complexities of the GP-based semantic mapping,
Gan et al. [34] further introduce a Relevance Vector Machine (RVM) inference technique for efficient
map query at any resolution.

Our semi-dense approach is also inspired by dense 3D semantic mapping methods [8,9,35,36] in
both indoor and outdoor scenes. The major contributions from these work involve the 2D-3D transfer
and the map regularization. Especially, Hermans et al. [9] propose an efficient 3D CRF to regularize 3D
semantic mapping consistently considering influence between neighbors of 3D points (voxels). In this
work, we adopt a similar strategy to improve the performance of the 3D semantic reconstruction in the
road scenes. The key concepts are

• a 3D semantic mapping system based on monocular vision,
• integration of monocular SLAM [21] and scene parsing [7] into 3D semantic representation,
• exploiting the correlation between semantic information and geometrical information to enforce

spatial consistency,
• active sequence downsampling and sparse semantic segmentation so that to achieve a real-time

performance and reduce the storage.

Following the comparison in [30], we list the characteristics of our approach and some related
works in Table 1.

Table 1. Comparison with some related work: M = monocular camera, S/D = stereo/depth camera,
L = lidar, O = outdoor, I = incremental, SDT = sparse data structures, RT = real time.

Method M S/D L O I SDT RT

Hu et al. [37]
√ √ √ √ √

Sengupta et al. [35]
√ √

Hermans et al. [9]
√ √ √

Kundu et al. [28]
√ √ √

Vineet et al. [30]
√ √ √ √ √

Wolf et al. [8]
√ √

McCormac et al. [10]
√ √ √ √

Ours
√ √ √ √ √

3. Problem Formulation

3.1. Notation

The target is to estimate the 3D semantic map M comprising of a pose-graph of keyframes with
semantic map from a monocular camera. The 3D map M is reconstructed by the estimation of depth
and poses, where each 3D point P can be labeled as one of the solid semantic objects in the label space
L = {l1, l2, . . . , lk} like Road, Building, Tree, etc. We use X = {X1, X2, . . . , XM} to denote the set of
random variables corresponding to the 3D points Pi : i ∈ {1, . . . , M}, where each variable Xi ∈ X take
a value li from the predefined label space L.

Let Ii : Ωi → R3 symbolize an H × W RGB image of an input sequence at the frame indexed by i.
Keyframes are extracted from the sequence in light of camera’s pose T

j
i at the jth frame with respect

to the previous ith keyframe. We define the ith keyframe to be a tuple Ki = (Ii, Di, Vi, Si), where
Di : ΩDi → R is the full-resolution inverse depth map associated with image Ii, and Vi : ΩVi → R is
the variance associated with the inverse depth map. The inverse depth model is a better description
for visual depth estimation, which assumes normally distributed [38]. The inverse depth map and the
variance map are defined in the subset of pixels as ΩDi , ΩVi ⊂ Ωi, which means semi-dense, available
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for certain image regions of large intensity gradient. The symbol Si : ΩSi → R|L| represents the
full-resolution semantic map with the probability of each object class.

The keyframes are consecutively stacked in a pose-graph G = (V , E), where V = {K0, . . . ,Kn}
is the set of keyframes and E = {S

j
i ∈ Sim(3) : Ki,Kj ∈ V} is the set of constraint factors. Each

S
j
i = (T

j
i , sj

i) consists of a camera’s pose T
j
i = (R t

0 1) from the keyframe ith to the keyframe jth, and

scale factor sj
i > 0. In reference to world frame W, regarded as the pose of the first keyframe K0, the

pose of the keyframe ith is denoted as Ti
W . For a sequence of keyframes (n keyframes), we get the nth

keyframe’s pose Tn
W = ∏n

1 Tk
k−1.

3.2. Framework

Our target is to build a 3D semantic map with semi-dense and consistent label information online
while the image sequences are captured by a forward-moving monocular camera. Given an image
sequence, the inference of the 3D semantic map is regarded as:

M∗ = argmaxMP(M|G), (1)

which can be estimated by the maximum a-posterior (MAP). Compared to the model used in [28],
our measures are continually updated with new keyframes. Thus, we adopt an incremental fusion
strategy to estimate the 3D semantic map by incorporating new estimation of pose, depth, and semantic
information. Correspondingly, the approach is decoupled into three separately running processes as
shown in Figure 2.

Figure 2. Framework of our method: The input is the sequence of RGB frames I. There are three
separate processes, a keyframe selection process, a 2D semantic segmentation process, and a 3D
reconstruction with semantic optimization process. Keyframe, denoted as K, is conditionally extracted
from the sequence based on the distance between the poses T. The following frames refine the inverse
depth map D and the variance map V of each keyframe until new keyframe is extracted. The 2D
semantic segmentation module predicts the pixel-level class with scores S of the new arriving keyframe.
Finally, the keyframes are incrementally explored to reconstruct the 3D map with semantic labeling
and then it is regularized by a dense Conditional Random Field (CRF).

In the system, the monocular SLAM process maintains and tracks on a global map of the
environment, which contains a number of keyframes connected by pose-pose constraints with
associated probabilistic depth maps. It runs in real-time on a CPU. Represented as point clouds,
the map gives a semi-dense and highly accurate 3D reconstruction of the environment. Meanwhile,
the second process of the 2D semantic segmentation generates the pixel-level classification on the
extracted keyframes. A fast deep CNN model is explored to predict the semantic information on a
GPU. In addition, an incremental fusion process for the semantic label optimization is operated in
a parallel way. It builds a local optimal correspondence between semantic labeling and 3D points
in the point cloud. To obtain a globally optimal 3D semantic segmentation, we attempt to make use
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of information of neighboring 3D points, involving the distance, color similarity, and semantic label.
It optimizes the point cloud and semantic labels to generate a globally consistent 3D semantic map.

4. 3D Semantic Mapping

4.1. 2D Scene Parsing

We explore the DeepLab-v3+ deep neural network proposed by Chen et al. [7]. Two important
components in the DeepLab series are the atrous convolution and atrous spatial pyramid pooling
(ASPP), which enlarge the field of view of filters and explicitly combine the feature maps at multiple
scales. The improvement in the DeepLab-v3+ involves the encoder-decoder structure and the
augmentation of ASPP module with image-level feature. The former is able to capture sharper
object boundaries by regaining the spatial information, while the latter encodes multi-scale contextual
information to capture long range information. These contributions make DeepLab successfully handle
both large and small objects and achieve a better trade-off between precision and run-time.

For the semantic segmentation of road scenes, we exploit the Cityscapes dataset and the KITTI
dataset and adopt the predefined 19-class label space L = {l1, l2, . . . , l19}, which contains Road, Sidewalk,
Building, Wall, and so on. We use all semantic annotated images in the Cityscapes dataset for training
and fine-tune the model with the KITTI dataset. Note that there is not any depth information involved
in the training process. In the inference, we keep the original resolution of input image according to
different datasets.

4.2. Semi-Dense SLAM

We explore LSD-SLAM to track camera’s trajectory and build consistent, large-scale maps of the
environment. LSD-SLAM is a real-time, semi-dense 3D mapping method. It has several advantages:
firstly, it is a scale-aware image alignment algorithm to directly estimate the similarity transform
between two keyframes against different scale environments, such as office rooms (indoor) and urban
roads (outdoor). The second one is that it is a probabilistic approach to incorporate noise on the
estimated inverse depth maps into the tracking based on the propagation of uncertainty. Moreover,
it could easily integrate with various kinds of sensors like monocular, stereo and panoramic cameras
for various applications. Thus, it is able to make a reliable trajectory estimation and map reconstruction
even in challenging surroundings.

LSD-SLAM has three major components: tracking, depth estimation and map optimization.
Spatial regularization and outlier removal are incorporated in the depth estimation with small-baseline
stereo comparisons. In addition, a direct, scale-drift aware image alignment is carried on these existing
keyframes to detect scale-drift and loop closures. Due to the inherent correlation between the depth
and the tracking accuracy, depth residual is used to estimate the similarity transform sim(3) constraints
between keyframes. Consequently, a 3D point cloud map is built based on a set of keyframes with the
estimated inverse depth maps via minimizing the error of image alignment. The map is continuously
optimized in the background using a g2o pose-graph optimization. The approach runs at 25 Hz on
an Intel i7 CPU. More details like keyframe selection and depth estimation can be referred to the
work [21].

4.3. Incremental Fusion

There might be a large amount of inconsistent 2D semantic labels between consecutive frames,
due to the noise of sensors, the complexity of environments in the real world and the failure of scene
parsing model. Incremental fusion of semantic label from the stacked keyframes allows associating
probabilistic label in a Bayesian way, when combining with the inverse depth map propagation
between keyframes in the LSD-SLAM. We give the details about the incremental semantic fusion
as follows.
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The camera projection transformation function π(·) : R3 → R2 is defined as

p = π(P) = [α
x
z
+ cx, β

y
z
+ cy]

T , (2)

which maps a point P = [x, y, z]T in 3D space into a 2D point p = [x′, y′]T on the digital image plane
Ii in the camera coordinate system. Since this projection function is nonlinear, for the computation
efficiency, the transformation should be augmented into the homogeneous coordinate system, which is
defined as

ph =

⎡⎢⎣ x′h
y′h
z′h

⎤⎥⎦ =

⎡⎢⎣ α 0 cx 0
0 β cy 0
0 0 1 0

⎤⎥⎦
⎡⎢⎢⎢⎣

x
y
z
1

⎤⎥⎥⎥⎦ = K[I 0]Ph, (3)

where K is referred to as the camera matrix. Given a 3D point PW in the world reference system,
the mapping to image plane Ii in the homogeneous reference system is calculated as

ph = KTi
WPWh, (4)

where Ti
W is the pose of the camera in the world reference system. Then, we get Euclidean coordinates

p = [x′h/z′h, y′h/z′h]
T from the homogeneous coordinates. From this point on, any point p and P is

assumed to be in homogeneous coordinates and thus we drop the h index, unless stated otherwise.
Correspondingly, given the inverse depth estimation d̂ for a pixel p = [x′, y′]T in the image Ii of

the keyframe Ki, we also have an inverse projection function from 2D pixel point into the 3D point in
the current camera coordinate system as:

P = π−1(p, d̂) = [
x′/d̂ − cx/d̂

α
,

y′/d̂ − cy/d̂
β

,
1
d̂
]T , (5)

where d̂ = Di(p) ∼ N (μ, Vi(p)) corresponds to the inverse depth of the point p, which is normally
distributed. The inverse depth estimation of each existing keyframe is continuously refined using its
following frames until new keyframe is selected. In reference to Equations (4) and (5), we can derive
the normally distributed 3D points in the world reference system as follows:

P̂W = Ti
W

−1
π−1(p, Di(p), Vi(p)), (6)

where the homogeneous transformation matrix has the property: Ti
W

−1
= TW

i .
Once a new frame is chosen to become a keyframe Kj, its inverse depth map Dj is initialized

by projecting points from previous keyframe into it. The information of existing, close-by
keyframes is propagated to new keyframe for its initialization and semantic probabilistic refinement.
The corresponding point p̂ in the image Ij of new keyframe is located by

p̂ = KTi
WT

j
i P̂W ∈ Ij. (7)

Here, since the estimation of the inverse depth map is normally distributed, we have a
one-to-many transform between keyframes, which involves a couple of estimated 2D/3D points,
regarded as p ∈ Ii → P̂W → p̂ ⊂ Ij, as shown in Figure 3.
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Figure 3. The Gaussian translation from a pixel p in the image Ii of the keyframe Ki to estimated pixels
p̂ in the image Ij of the keyframe Kj.

The class label corresponding to a couple of 3D points P̂W in the world reference is denoted as
X : P̂W → l ∈ L. Note that the label Sky is removed from L for the 3D semantic mapping. Our target
is to obtain the independent probability distribution of each 3D point over the class labels P(X|Ki

0)

given a sequence of existing keyframes Ki
0 = {K0,K1, . . . ,Ki} in the pose-graph G.

We explore a recursive Bayesian fusion to refine the corresponding probability distribution of 3D
points with new keyframe’s update:

P(X|Ki
0) =

1
Zi

P(Ki|Ki−1
0 , X)P(X|Ki−1

0 ), (8)

with Zi = P(Ki|Ki−1
0 ). Applying the first-order Markov assumption to p(Ki|Ki−1

0 , X), then we have:

P(X|Ki
0) =

1
Zi

P(Ki|X)P(X|Ki−1
0 ) =

1
Zi

p(Ki)P(X|Ki)

P(X)
P(X|Ki−1

0 ). (9)

We assume that P(X) does not change over time and there is no need to calculate the normalization
factor P(Ki)/Zi explicitly.

According to the formulations above, the semantic probability distribution of all given keyframes
can be recursively updated as follows:

P(X|Ki
0) ∝ P(X|Ki)P(X|Ki−1

0 ), (10)

where a couple of 2D pixels matching between Ki
0 can be calculated with the Equations (4) and (5). The

semantic map in Ki
0 contributes to the accumulated probabilistic estimation of object class. For example,

given a pixel p in the image Ii of the keyframe Ki, its corresponding scores (probabilities) of object
classes are Si(p) = {P(Road|p) = p1, P(Sidewalk|p) = p2, P(Building|p) = p3, . . . , P(Bicycle|p) = p19}
with ∑ pi = 1. Then, at each fusion step, the predicted labels of 3D point P̂W is the label with maximum
probabilities as

N
max
k=1

Sj(p̂k)Si(p), (11)

where there are N possible projected 3D points and pixels p̂ in the image Ij of the keyframe Kj.
The incremental fusion can refine the semantic label of the points in the 3D space based on

the pose-graph of keyframes. It could handle the inconsistent 2D semantic labels, even though its
performance relies on the depth estimation. In addition, map geometry is another useful feature which
could improve the performance of the 3D semantic mapping further. The following section describes
how we use the dense CRF to regularize the 3D semantic map by exploring the map geometry, which
could propagate semantic information between spatial neighbors.

4.4. Map Regularization

The dense CRF is widely used in the 2D semantic segmentation to enhance the performance
of semantic segmentation. Some previous works [8,9,35] seek its application on the 3D map to
model contextual relations between various class labels in a fully connected graph. It is a heuristic
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approach that assumes the influence between neighbors should be proportional to their distance,
visual, and geometrical similarity [9].

The CRF model is defined as a graph composed of unary potentials as nodes and pairwise
potentials as edges, but the size of the model makes traditional inference algorithms impractical.
Thanks to Krahenbuhl and Koltun’s work [39], a highly efficient approximate inference algorithm
is proposed to handle this issue by defining the pairwise edge potentials as a linear combination of
Gaussian kernels. We apply the efficient inference of the dense CRF to maximize label agreement
between similar 3D points as follows.

Assume the 3D semantic map M containing M 3D points is defined as a random field. A CRF
(M, X) is characterized by a Gibbs distribution as follows:

P(X|M) =
1

Z(M)
exp(−E(X|M)), (12)

where E(X|M) is the Gibbs energy and Z(M) is the partition function. The maximum a posteriori
(MAP) labeling of the random field is

X∗ = argmaxl∈LP(X|M) = argminl∈LE(X|M), (13)

which is converted into minimizing the Gibbs energy by the mean-field approximation and message
passing scheme.

We employ the associative hierarchical CRF [35,40] which integrates the unary potential ψi, the
pairwise potential ψi,j, and the higher order potential ψc into the Gibbs energy at different levels of the
hierarchy (voxels and supervoxels) given by:

E(X|C; θ) = ∑
i

ψi(Xi|C) + ∑
i<j

ψi,j(Xi, Xj|C; θ) + ∑
c

ψc(Xc|c) (14)

by the indexes i, j ∈ {1, . . . , M} correspond to different 3D points Pi, Pj in the 3D map M.
Unary Potential: The unary potential ψi(·) is defined as the negative logarithm of the probabilistic

label for a given 3D point:
ψi(Xi|C) = − log(P(Xi → l|Kt

0)). (15)

This term means the cost of 3D point Pi taking an object label l ∈ L based on the incremental semantic
probabilistic fusion above. The output of the unary potential for each point is produced independently,
and thus, the MAP labeling produced by the unary potential alone is generally inconsistent.

Pairwise Potentials: The pairwise potential ψi,j(·) is modeled to be a log-linear combination of m
Gaussian edge potential kernels:

ψi,j(Xi, Xj|C; θ) = μ(Xi, Xj)∑
m

ω(m)k(m)(fi, fj; θ), (16)

where μ(·) is a label compatibility function corresponding to the Gaussian kernel functions k(m)(fi, fj).
f denotes the feature vector for the 3D point P including the position, the RGB appearance and the
surface normal vector of the reconstructed surface. Furthermore, μ(·) is defined as a Potts model
given by:

μ(l, l′) = [l �= l′] =
{

1 l �= l′

0 l = l′
. (17)

This term is defined to encourage the consistency over pairs of neighboring points for the local
smoothness of the 3D semantic map. We employ two Gaussian kernels for the pairwise potentials
following the previous work [9]. The first one is an appearance kernel as follows:
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k(1)(fi, fj; θ) = exp

(
− |Pi − Pj|2

2θ2
P,c

− |ci − cj|2
2θ2

c

)
, (18)

where c is the RGB color vector of the corresponding 3D points. This kernel is used to build long range
connections between 3D points with a similar appearance.

The second one, a spatial smoothness kernel, is defined to enforce a local, appearance-agnositc
smoothness among 3D points with similar normal vectors.

k(2)(fi, fj; θ) = exp

(
− |Pi − Pj|2

2θ2
P,n

− |ni − nj|2
2θ2

n

)
, (19)

where n are the respective surface normals. The surface normal are computed using the Triangulated
Meshing using Marching Tetrahedra (TMMT) proposed in [35]. Note that the original method is
towards producing a dense labeling with the stereo vision. Since the LSD-SLAM only generates
semi-dense 3D point clouds, we modify the TMMT to extract a triangulated mesh within limited
ranges of short distance between 3D points.

High Order Potential: The higher order term ψc(Xc|c) encourages the 3D points (voxels) in the
given segment to take the same label and penalizes partial inconsistency of supervoxels as described
in [40]. It is defined as

ψc(Xc|c) = minl∈L(γmax
c , γl

c + kl
cNl

c), (20)

where γl
c represents the cost if all voxels in the segment take the label l. Nl

c = ∑i∈c δ is the number
of inconsistent 3D points with the label l which is penalized with a factor kc, regarded as the
inconsistency cost.

All parameters θP,c, θc, θP,n, θn, θP,s, θs specify the range in which points with similar features affect
each other, respectively. They can be obtained using piece-wise learning.

5. Experiments and Results

We demonstrate the performance of our approach on the KITTI dataset [12], which contains
a variety of urban scene sequences involving lots of moving objects in various lighting conditions.
It consists of various datasets, such as the semantic dataset, the odometry dataset, and the detection
dataset. Thus, it is very challenging for the 3D reconstruction. The KITTI dataset contains a 2D
semantic segmentation data of 200 labeled training images and 200 test images (http://www.cvlibs.net/
datasets/kitti/eval_semseg.php?benchmark=semantics2015) . Its data format and metrics conform
with the Cityscapes dataset [11]. The Cityscapes dataset involves 19 classes within high quality
pixel-level annotations of 5000 images with a resolution of 2048 × 1024, including 2975 training
images, 500 validation images, and 1525 testing images. In our experiment, we train the model on the
Cityscapes and then tune it on the KITTI taking the volume size of dataset into account.

For the training of 2D semantic segmentation model, various encoder models in the DeepLab-v3+
are evaluate including ResNet [41], Xception [42], and MobileNet-v2 [26]. We find that the “poly”
stochastic gradient descent is better than the “step” one on these datasets. The TensorFlow library
is employed to do the training and inference on the workstation with 4 Nvidia Titan X GPU cards.
The hyper-parameters used in training are set corresponding to the datasets and models as shown in
Table 2.

We benchmark the performance of our semantic mapping system on the KITTI odometry
dataset (http://www.cvlibs.net/datasets/kitti/eval_odometry.php). There are 22 sequences with the
consecutive RGB frames, in which there are 11 sequences with the ground-truth poses for evaluation.
These scenes involves serious illumination change, moving objects like persons and vehicles, and some
turns as shown in Figure 4. These road-scene frames involves two resolutions 1242× 375 and 1226× 370.
Our system runs on an Intel Core i7-5960K CPU and a NVIDIA Titan X GPU for online process.

102



Appl. Sci. 2019, 9, 631

Table 2. Hyper-parameters used in the training step.

Dataset Encoder Learning Rate Learning Power Momentum Weight Decay Batch Steps

ResNet_50 0.003 0.9 0.9 0.0001 8 20,000
ResNet_101 0.003 0.9 0.9 0.0001 8 20,000
Xception_41 0.01 0.9 0.9 0.00004 8 10,000

Cityscapes Xception_65 0.01 0.9 0.9 0.00004 8 10,000
Xception_71 0.01 0.9 0.9 0.00004 8 10,000

MobileNet_v2 0.001 0.9 0.9 0.00004 64 10,000

ResNet_50 0.003 0.9 0.9 0.0001 8 20,000
ResNet_101 0.003 0.9 0.9 0.0001 8 20,000
Xception_41 0.01 0.9 0.9 0.00004 8 10,000

KITTI Xception_65 0.01 0.9 0.9 0.00004 8 10,000
Xception_71 0.01 0.9 0.9 0.00004 8 10,000

MobileNet_v2 0.001 0.9 0.9 0.00004 64 10,000

Since the KITTI sequences are mostly captured in 10 Hz, it is highly below the normal speed
requirements of LSD-SLAM about 60 Hz. In addition, the LSD-SLAM is hard to handle severe turning
when the platform moves. Due to the limit of the monocular LSD-SLAM, we choose certain sequences
to evaluate.

In the following sections, we show some qualitative results for our approach in Section 5.1 and the
quantitative results of our evaluation are presented in Section 5.2, in which we also make the runtime
analysis on our semantic mapping approach.

(a) IC (b) MO (c) T
Figure 4. Instances in the odometry_03 sequence. IC: Illumination Change, MO: Moving Objects,
T: Turns.

5.1. Qualitative Results

First, we present some qualitative results of the KITTI semantic dataset in Figure 5. Then, we use
the trained model to make prediction on the KITTI odometry dataset, and the results are exemplified
as shown in Figure 6.

Take the sequence odometry_03 as an example of our semantic mapping approach. The sequence
consists of 801 RGB frames on a urban road of about 560m. Figure 7 shows the semantic reconstruction
with a close-up view including large-scale annotations such as road, building, and even small-scale
objects like traffic signs. Note we discard some keyframes at the beginning, due to random initialization
of LSD-SLAM. A close-up view is exemplified to illustrate the offline CRF processing as shown in
Figure 8.
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(a) Raw Image (b) Prediction (c) Ground Truth (d) Error Map
Figure 5. Qualitative results of 2D semantic segmentation.

Figure 6. Instances of 2D semantic segmentation in the KITTI odometry set.

Figure 7. Qualitative results of 3D semantic mapping from the sequence KITTI odometry_03.
Our approach not only reconstructs and labels entire outdoor scenes that include roads, sidewalks, and
buildings, but also accurately recovers thin objects such as traffic signs and trees. The close-up views
show the details of the map.
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Figure 8. Comparison between the before CRF processing and the after CRF processing from different
views of the 3D semantic map on the KITTI odometry_03.

Another possible qualitative comparison on the KITTI odometry_05 as used in Kundu et al.’s
work [28] is illustrated in Figure 9. Whereas monocular LSD-SLAM is not resistant to strong rotation
in the sequence, we present the qualitative result based on the subset (500 frames) of this data.

Figure 9. A qualitative result of 3D semantic mapping on the KITTI odometry_05.

5.2. Quantitative Results

For the quantitative performance of our approach, we focus on the 2D semantic segmentation and
the runtime of the entire system, since the 3D reconstruction mainly depends on the SLAM module.

Semantic Segmentation: Table 3 shows the quantitative results of 2D semantic segmentation based
on different DeepLab-v3+ models on the KITTI datasets. We evaluate these models by the mean
intersection/union (mIOU) score, the model size, and the computational runtime. The mIOU score is
defined as

mIOU =
1
|L |

|L|
∑
i=1

TPi/(TPi + FPi + FNi) (21)

in terms of the True/False Positives/Negatives for a given class i. We do not resize the image to
evaluate the models here. Whereas, for the 3D semantic mapping process, we need to half resize the
input images in order to make a trade-off between accuracy and computational speed.
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Table 3. Quantitative results of various encoder parts of DeepLab-v3+ on the Cityscapes and the KITTI.
I: ImageNet, M: MS-COCO, C: Cityscapes.

Dataset Encoder Crop Size mIOU[0.5:0.25:1.75] Pb Size (MB) Runtime (ms) I M C

ResNet_50 769 63.9 107.8 -
√

ResNet_101 769 69.9 184.1 -
√

Xception_41 769 68.5 113.4 -
√

Cityscapes Xception_65 769 78.7 165.7 1800
√

Xception_71 769 80.2 167.9 2000
√ √

MobileNet_v2 513 70.7 8.8 400
√

MobileNet_v2 769 70.9 8.8 400
√

ResNet_50 769 51.4 107.8 120
√ √

ResNet_101 769 57.1 184.1 140
√ √

Xception_41 769 54.2 113.4 140
√ √

KITTI Xception_65 769 64.8 165.6 160
√ √

Xception_71 769 66.2 167.9 170
√ √ √

MobileNet_v2 513 57.7 8.8 80
√ √

MobileNet_v2 769 60.7 8.8 80
√ √

During the training process, these models are initialized with the checkpoints pre-trained from
various datasets including ImageNet [43] and MS-COCO [44]. In the training step on the Cityscapes
dataset, we directly use the ImageNet-pretrained checkpoints as the initialization. Note we employ the
MobileNet_v2 based model which has been pre-trained on MS-COCO dataset, and the Xception_71 based
model has been pre-trained on both ImageNet and MS-COCO datasets. These pre-trained models
can be accessed from the github (https://github.com/tensorflow/models/blob/master/research/
deeplab/g3doc/model_zoo.md).

Then we fine-tune the models on the KITTI dataset by using the pre-trained Cityscapes model.
The Xception_71 based model performs the best mIOU performance but a rather slow computational
speed. The MobileNet_v2 based model has a moderate mIOU, the smallest file size and the fastest
speed. Note the MobileNet_v2 based model does not employ ASPP and decoder modules for fast
computation. Considering the balance between computational speed and accuracy, we choose the
MobileNet_v2 based model to carry out the 2D semantic segmentation in our approach. Table 4 shows
the performance of the MobileNet_v2 based model on the VAL/TEST split of the KITTI dataset.

Table 4. Results of our selected model on the val/test of the KITTI datasets.
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VAL 95.7 73.9 87.1 38.1 44.2 42.7 48.6 60.3 89.1 52.3 90.1 70.1 36.5 89.1 44.6 62.2 37.4 36.1 67.7 60.3

TEST 96.1 73.7 86.2 37.9 41.4 40.1 50.3 58.3 90.2 66.8 91.3 72.4 40.3 91.8 33.7 46.4 37.1 46.0 62.4 60.9

We also make the test regarding to the effect of pre-training on the Cityscapes dataset. In Table 5,
the salience has been illustrated on training the Xception_65 and MobileNet_v2 models. The Cityscapes
pre-trained models could greatly improve the performance of 2D semantic segmentation on the
KITTI dataset.

Note that towards the 3D semantic mapping, since we use a novel monocular 3D mapping
different from the other related work, it is not easy to make quantitative comparison here. Kundu et al.’s
work [28] proposes a joint semantic segmentation and 3D reconstruction from monocular video, but it
is an offline approach with different 3D representation in the form of a 3D volumetric semantic and
occupancy map.
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Table 5. Performance of 2D semantic segmentation with/without the Cityscapes. Using the pre-trained
Cityscapes model, the accuracy of 2D semantic segmentation could be greatly improved on the KITTI
semantic data.

Encoder mIOU[0.5:0.25:1.75] WITH Cityscapes

ResNet_101 52.5
ResNet_101 57.1

√

Xception_65 56.0
Xception_65 64.8

√

MobileNet_v2 51.8
MobileNet_v2 60.7

√

Runtime and Storage: As shown in Table 6, the SLAM module in our system runs about 40 ms on
average to process each frame, extract the keyframes and update the map. The semantic segmentation
process requires about 100 ms to infer 2D semantic information parallel upon the keyframes, and the
incremental fusion process needs 50 ms on average. In the experiments, the SLAM process at least
selects a keyframe every 4 or 5 frames. It keeps enough timing for the 2D semantic segmentation and
the incremental fusion during the 3D semantic mapping. Thus, our approach could run in real-time.
Moreover, considering the speed of moving platform, in case of the speed of 60 km/h, the semantic
segmentation process on selected keyframes corresponds to a distance about 2 meters, which is not too
sparse for an urban scene.

Table 6. Timing results. The table lists the operation time for different components of our system.
Times of three core components are averaged over all sequences and the Conditional Random Field
(CRF) timings depends on the iterations and the point cloud sizes.

Component Average Consumed Time

Semantic segmentation �100 ms
SLAM �40 ms
Incremental fusion �50 ms

3D CRF 1 Iter. 800–2000 ms
3D CRF 2 Iter. 1200–2400 ms
3D CRF 3 Iter. 1500–3000 ms
3D CRF 4+ Iter. >2000 ms

Kundu et al. [28] �20 min/800 frames
Our ‘baseline’ �200 s/800 frames
Our �80 s/800 frames

The lower part of this table shows the ranges of the CRF timing with different configurations
due to the different size of point clouds when testing various sequences in the experiments. The CRF
update runs offline due to slow inference speed on the CPU. Thus, it is only applied once at the end
of the sequence. Optimized GPU implementation could be studied in future to realize the online
CRF update.

Taking the odometry_03 sequence as example, our approach acquires 114 keyframes with 28 million
3D points from the sequence of 801 frames, which utilizes only about 1/7 frames for mapping. Note
that smaller values of the parameters KFDistWeight and KFUsageWeight could give more constraints
between keyframes so that to achieve more accurate mapping. But it has a rather limited influence
on the number of keyframes, the number of 3D points, and the size of storage. Compared to the
system [28], it costs around 20 minutes on a standard desktop machine for 800 images long sequence
involving about 20 million 3D points. Our system is a fast monocular vision mapping, even though it
uses an offline CRF optimization.

107



Appl. Sci. 2019, 9, 631

Lastly, we test the system with semantic segmentation on all frames as the ‘baseline’ pipeline.
We find that for one thing it is hard to say the accuracy of 3D semantic mapping is improved. Because
for the LSD-SLAM, the current keyframe is refined with its following frames until new keyframe is
selected. The depth map of the current keyframe is more accurate than the depth measure on each
frame. If we use the ‘baseline’ pipeline, we need the depth information on each frame; even though
more semantic information is used in the incremental fusion, the noisy depth would lead to inaccurate
semantic map. Besides, since the visual SLAM process runs faster than the semantic segmentation at
present, the untreated frames would quickly exceed the buffer limit, leading to new frames blocked.
The entire system cannot run in real-time and it would not simultaneously generate the semantic map.

6. Conclusions

We have presented a fast monocular 3D semantic mapping system which runs on a CPU coupled
with a GPU. An incremental fusion method is introduced to combine 2D semantic segmentation and 3D
reconstruction online. We exploit a state-of-the-art deep CNN to accomplish scene parsing in the road
context. Direct monocular visual SLAM provides a quick 3D mapping based on selected keyframes
and corresponding depth estimation. Since the semantic segmentation only runs and propagates on
the keyframes, this reduces the computational cost and improves the accuracy of semantic mapping.
The offline regularization with a CRF model can enhance the mapping further.

Since the original LSD-SLAM is hard to handle in the case of sharp turns which are frequent in
ordinal driving, our system is not stable in such conditions. In addition, semi-dense 3D reconstruction
should be replaced by a dense model. In future work, we plan to introduce several state-of-the-art
SLAM methods to improve the initialization and resistance to serious movements. Research on how
labeling boosts 3D reconstruction of SLAM would be an interesting direction. The optimization of the
regularization module would be another effective effort on the wide-range mapping.
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Featured Application: This work aims to build a robust model with a comparison of machine

learning, convolutional neural network and transfer learning. The model can be combined with

an unmanned aerial vehicle (UAV) to act as a tool in geological surveys in the future.

Abstract: It is meaningful to study the geological structures exposed on the Earth’s surface, which
is paramount to engineering design and construction. In this research, we used 2206 images with
12 labels to identify geological structures based on the Inception-v3 model. Grayscale and color
images were adopted in the model. A convolutional neural network (CNN) model was also built in
this research. Meanwhile, K nearest neighbors (KNN), artificial neural network (ANN) and extreme
gradient boosting (XGBoost) were applied in geological structures classification based on features
extracted by the Open Source Computer Vision Library (OpenCV). Finally, the performances of
the five methods were compared and the results indicated that KNN, ANN, and XGBoost had a
poor performance, with the accuracy of less than 40.0%. CNN was overfitting. The model trained
using transfer learning had a significant effect on a small dataset of geological structure images; and
the top-1 and top-3 accuracy of the model reached 83.3% and 90.0%, respectively. This shows that
texture is the key feature in this research. Transfer learning based on a deep learning model can
extract features of small geological structure data effectively, and it is robust in geological structure
image classification.

Keywords: OpenCV; machine learning; transfer learning; Inception-v3; geological structure images;
convolutional neural networks

1. Introduction

The primary objective of a geological survey is to identify geological structures in the field
and, this is also important for project schedule management and safety guarantees. In construction,
engineers search for the exposure of geological structures to the Earth’s surface in field surveys, then
explore geological structures that partly extend below the Earth’s surface with boreholes, adits, etc.
Some geological structures should be given special attention because of their poor properties. Anticline
and ptygmatic folds weather easily; xenoliths, boudins, and dikes usually have low strength at the
contact surface because they contain rocks with different properties; ripple marks, mudcracks, and
concretion always indicate there is an ancient river course; faults and scratches mean broken structures
in engineering; basalt columns have a low strength because of the columnar joints; a gneissose
structure also has a low shear strength at the direction of schistosity. The geological structures have
a significant influence on project site selection, general layout and schedule management, which is
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also crucial to construction quality. The identification of geological structures can help engineers
make a better choice in construction. On the other hand, geological structures, such as faults [1] and
folds [2], are connected to hazards. Vasu and Lee [3] applied an extreme learning machine to build
the landslide susceptibility model with 13 selected features (including geological structure features).
The performance of prediction was better, with the accuracy of 89.45%. Dickson and Perry [4] explored
three machine learning methods, namely maximum entropy models, classification and regression trees
and boosted regression trees, to make identification of coastal cliff landslide control based on geological
structure parameters. The final result showed a high performance with 85% accuracy. The researches
proved geological structures were connected to geologic hazard prediction and prevention. However,
the machine learning methods are applied in structured data. For unstructured data, such as image,
audio, text, we need to extract the features of the unstructured data and input them to train machine
learning models. In the process of data type transformation, other algorithms are going to be selected.

3D visualization techniques and data interpolation are also used in geological structure detection.
Zhong et al. [5] made a 3D model of the complex geological structure based on borehole data.
Discrete fractures in rocks were also computed and estimated by 3D model construction [6,7]. Spatial
relationships of geological data were easy to understand in a 3D model. As a result, a 3D model
was built to explore geological conditions under the Earth’s surface. With limited geological data
because of cost controls, such as several boreholes, we were able to build the whole plane with spatial
interpolation methods. It is a significant and easy way to show the distribution of the discrete points.
However, it is mostly used for underground data analysis. The geological situation on the Earth’s
surface is often explored by geological engineers in the geological survey. It requires many computation
resources because of the rendering in the 3D visualization model. It is a time-consuming method with
low accuracy in some cases.

Image powered methods have become increasingly popular recently. These provide a novel
method in geological structure identification. Vasuki et al. [8] captured rock surface images with
unmanned aerial vehicles (UAVs) and detected rock features from the photos. According to the
features detected on UAVs images, 3D models were built to show folds, fractures, cover rocks and
other geological structures [9,10]. Furthermore, the automatic classification of geological images
was also studied. The geological image, as a kind of unstructured data, contains much information
including the object features. Młynarczuk et al. [11] applied four methods to make a classification of
microscopic rock images automatically. The result of the nearest neighbor (NN) analysis showed high
recognition level with 99.8%. Li et al. [12] also proposed a transfer learning method for sandstone
identification automatically based on microscopic images. Shu et al. [13] used an unsupervised machine
learning method to classify rock texture images. The experimental results indicated the outstanding
performance of self-taught learning. Geological structures identification has many similarities with
rock classification, which indicates what features we should extract from geological structures images.
The color and texture are both critical in rock images to both micro and regular images. In some cases,
the rock mineral was able to be classified just by color. While the geological structures data has unique
characters. The texture is addressed more by the geomorphometric analysis [14].

Deep learning is prominent in image processing. It was proposed by Hinton [15] and was further
developed recently [16]. Because of the positive performance, it was used to analyze unstructured data
in many areas, such as image classification [17] and semantic analysis [18]. In medicine, deep learning
is also popular [19,20]. However, Kim et al. [21] thought the input was massive in deep learning.
Deep learning was also applied in remote-sensing image scene classification [22] and terrain features
recognition [23]. It was able to extract features from unstructured data and make a classification with
high accuracy. The convolutional neural network (CNN) is an essential method in deep learning.
Scholars were able to build different CNN models by adding different kernels, pooling layers, and
fully connected layers. Palafox et al. [24] used different CNN architectures in detecting landforms
on Mars which proved convenient to extract features from images. Nogueira et al. [25] also used
convolutional neural networks to extract features of images then built a support vector machine (SVM)
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linear model based on the features. Xu et al. [26] also used transfer learning to predict geo-tagged
field photos based on convolutional neural networks. All the results showed good performance of the
convolutional neural network in extracting images features. While we should consider that the CNN
model depends on a large dataset to avoid overfitting.

In this research, we established a transfer learning model based on Inception-v3 for geological
structures with 12 labels. The test result showed a high accuracy of the model. Then we made a
comparison between the identification model and the other four models, namely K nearest neighbors
(KNN), artificial neural network (ANN), extreme gradient boosting (XGBoost) and CNN. The result
showed the transfer learning model had a high accuracy on a small dataset. The machine learning
method’s accuracy was poor because it is hard to extract accurate features of images from a pixel vector
or histogram. CNN was overfitting strongly. Transfer learning based on deep learning model was an
effective method for geological structure images classification. Moreover, Wu et al. [27] applied the
UAV and recognition model to detect rail surface defects. The retrained model in this research can also
be combined with a UAV, which can be an assistant tool in the geological survey in further study.

2. Data Collection

2.1. Data Information

In this research, we collected 2206 geological structures images with 12 labels, including anticline,
ripple marks, xenolith, scratch, ptygmatic folds, fault, concretion, mudcracks, gneissose, boudin, basalt
columns, and dike. The dataset was collected from the geological survey and the internet [28]. In data
collection, we tried to make each category cover images with different scales and sizes as many as
possible. The resolution of the image is not limited. All the images are going to be processed at the
same size before training. The numbers of images in each label are listed in Table 1. Figure 1 shows
samples of the data.

Table 1. Information of geological structures images dataset.

Geological Structure No. Geological Structure No. Geological Structure No.

Anticline 179 Ptygmatic folds 162 Gneissose structure 206
Ripple marks 221 Fault 127 Boudin 190

Xenolith 208 Concretion 181 Basalt columns 196
Scratch 164 Mudcracks 181 Dike 191

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 1. Cont.
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(g) (h) (i) 

   
(j) (k) (l) 

Figure 1. Samples of geological structure images: (a) Anticline; (b) Ripple marks; (c) Xenolith;
(d) Scratch; (e) Ptygmatic folds; (f) Fault; (g) Concretion; (h) Mudcracks; (i) Gneissose structure;
(j) Boudin; (k) Basalt columns; (l) Dike.

2.2. Data Preprocessing

It is necessary to make data preprocessing in images classification. Some feature pre-processing
methods [29,30] were adopted to improve the performance of the model. We applied two direct and
straightforward preprocessing methods to extract features in images as the input of KNN, ANN, and
XGBoost. The first method is to convert pixels in each image into a row vector directly; the second
method is to build the histogram of pixels based on their statistical characteristics, as shown in Figure 2.
In Figure 2b,d, x-axis means the range of pixels, which is [0, 225]; y-axis means the numbers of pixels
at each level. The color images have three channels, namely red, green, and blue; the grayscale images
just have one channel-grayscale. In Figure 2b, the red, green, and blue lines refer to the numbers of
the pixels at R, G, and B levels. In Figure 2d, The red line refers to the numbers of the pixels at the
grayscale level. In Figure 2a,c, the x- and y-axis measure the size of the photo.

The features extracted from color, and grayscale images were both set as the input in KNN, ANN,
and XGBoost, which was able to show the influence of image color. In CNN and transfer learning based
on Inception-v3, the convolutional neural network was applied to extract the features of the images.
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Figure 2. The histogram features extracted from color and grayscale geological structure image:
(a) Color image; (b) Color image histogram; (c) Grayscale image; (d) Grayscale image histogram.

The raw data is not enough for a training model using CNN and transfer learning. As a
consequence, some data augmentation methods, such as channel shift, shear, flip from left to right and
flip from top to bottom, were adopted to raw data, as shown in Figure 3. A channel shift means to
change the general color of the whole image; shear means to keep the horizontal axis (or vertical axis)
stable and translate the other axis at a ratio. The translation distance is proportional to the distance to
the horizontal axis.

  
(a) (b) 

  
(c) (d) 

Figure 3. Data augmentation: (a) Channel shift; (b) Shear; (c) Flip from left to right; (d) Flip from
top to bottom.
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3. Key Techniques and Methods

3.1. Machine Learning

KNN is a lazy algorithm with no parameters, and ANN is a kind of supervised learning method.
The two methods are used widely in prediction. XGBoost [31] is an improved gradient boosting
decision tree (GBDT) method. In GBDT, the weak learners are combined to be a strong learner, as in
the following equation:

f (t)i =
t

∑
k=1

fk(xi) = f (t−1)
i + ft(xi), (1)

where ft(xi) is the weak learner, namely a single decision tree; ft(xi) is the sum of the weak learners.
In each iteration, the new decision tree was added to the model. XGBoost improves the loss function,
and also regularizes objective function, as shown in the following equation:⎧⎨⎩ L =

n
∑

k=1
l(yi, yi) +

t
∑

k=1
Ω( fi)

Ω( f ) = γT + 1
2 λ‖ω‖2

, (2)

where l is the loss function, which is used to measure the difference between prediction ŷi and target
yi. Ω is used to control the complexity of the model. ω is the score of the leaves, λ is the parameter for
regularization, which is used to evaluate the node split.

3.2. Convolutional Neural Network (CNN)

CNN is a kind of feedforward neural network. The neurons in CNN can respond to the specific
region in an image to extract features, which makes it outstanding in processing large unstructured data.
A convolutional neural network includes convolutional layer, pooling layer, and fully connected layer.

There are three critical concepts in CNN, namely receptive field, parameter sharing, and pooling
layers. Altenberger and Lenz [32] explained them in detail. The receptive field is a square region. It is
a local subset of the neurons that the kernel connected to. The size of this square is the receptive field.
Neurons of the same kernel should get the same pattern of the image regardless of their positions.
As a result, the parameters should be shared by all the neurons of the same kernel. This concept is
called parameter sharing. Pooling layers are also connected to a square region of the previous layer.
However, polling layers are different from the convolutional layers. They are not determined by the
weights or bias in the learning process, and the result just depends on the input. The max pooling is
the common type in CNN. The maximum value that the neurons return is taken as the feature of the
image. The average pooling can be interpreted in a similar way. Pooling reduces the complexity and
dimensions of the feature map and improves the result to lead to less overfitting. At the same time,
the features can keep translation invariance after pooling, which means if there are some translations,
such as rotation, scale, distortion, in images, the pooling features are also effective.

As shown in Figure 4, the sizes of the image and convolutional layers are 5 × 5 and 3 × 3,
respectively. There are nine parameters in the convolutional layer, namely the weight matrix. The nine
parameters mean nine neurons. According to the sizes of image and kernel, the output is going to be
a 3 × 3 matrix, which is called the feature map. In the first step, the neurons were connected to the
receptive field on the image; then it slides to the next region by one stride in the second step, as shown
in Figure 4b. The computation was processed in each neuro as follows.

f (x) = act

(
n

∑
i,j

θ(n−i)(n−j)xij + b

)
, (3)

where f (x) was the output, act is the activation function, θ is the weight matrix, xij is the input, b is the
bias. The softmax activation function is selected in this research.
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Figure 4. The process of convolutional neural network computation: (a) Computation in the first step;
(b) Computation in the second step.

3.3. Transfer Learning

Even if there is an established model in a similar area, the model is going to be established
from scratch using a machine learning method. It costs much manpower and time to solve problems
individually in a similar domain. Considering the similarity between different tasks, we are able to
build the model based on the knowledge obtained using transfer learning method. The knowledge
obtained can be used again in a related domain with small change. If the gained knowledge can
work in most cases or the data is hard to collect in the new task, we can make the most of the gained
knowledge with transfer learning to build the new model. It benefits much in reducing dependency
on big data and establishing a new model using a transfer learning method.

Furthermore, it is necessary to have a high-performance computer and time to train big data.
However, it can reduce time cost and dependency on big data using transfer learning based on the
pre-trained model [26,33,34]. We can apply a pre-trained model, which contains parameters trained by
another big dataset, in training a new model in a similar domain. The kernels in the convolutional
neural network can extract features of images automatically and effectively.

In this research, we adopted Inception-v3 [35] as the pre-trained model. The dataset which is
used to train Inception-v3 contains 1.2 million images with more than 1000 labels. In the result of
recognition, the top-5 accuracy in Inception-v3 is 96.5%, which is better than humans, with an accuracy
of 94.9%. The convolutional layers and pooling layers in Inception-v3 can extract features from images
as 2048 dimensional vectors. We removed the softmax layer in Inception-v3 and retained the new
layer in our own domain. All the convolutional layers and pooling layers in Inception-v3 were used in
extracting features from images, a process shown in Figure 5.
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Figure 5. The process of retraining Inception-v3.
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4. Model Establishment

4.1. Parameters Set

In the process of Inception-v3 retraining, iteration was set as 20,000; learning rate was set 0.01.
In each iteration, 100 images were selected randomly to train the model, namely the training batch size
equals 100. Batch size is limited by computer performance; 10% of the data was set as the test dataset.
After 10 iterations, the model was evaluated. All the images were going to be used in the training
process. Training accuracy, validation accuracy, and cross-entropy were used to evaluate the model
in the training process. Training accuracy is gained by testing the trained dataset with the model;
validation accuracy is gained by testing the validation dataset with the model; cross-entropy shows the
model performance in identification. The smaller cross-entropy indicates a better performing model.
In each training step, the prediction value and target value were measured to update the weight matrix.
The geological structures images were cut as the same size before training. As a consequence, there
were no strict limitations on the size and resolution of the images. The color images and grayscale
images were both used in training, which was able to show the influence of color on the model.

In the training of CNN, we set two, three, and four convolutional layers and two fully connected
layers to establish the model. The convolutional layers were set as 5 × 5 and 3 × 3, respectively. There
were 64 neurons in each convolutional layer. While there were 128 neurons in fully connected layers.
The learning rate was set as 10−4. Batch size was set as 32. The data was split into training data and
validation data; 80% of the data was set as training data; 10% data was set as validation data and
test data.

In the model establishment of KNN, ANN, and XGBoost, we used OpenCV [36] to process the
raw data into two datasets, namely color images and grayscale images, with the size of 128 × 128.
The two datasets were used to build images features with origin pixels and pixels histogram. Then we
took the pixel vectors and histogram features as the input of KNN, ANN, and XGBoost. The python
package Scikit-learn [37] was used in the research to build the three models, and all the parameters of
the models were set as in Table 2.

Table 2. Parameters in K nearest neighbors (KNN), artificial neural network (ANN), and extreme
gradient boosting (XGBoost).

Method Parameters Value

KNN n_neighbors 1
p 2

XGBoost colsample_bytree 0.8
learning_rate 0.1
eval_metric mlogloss
max_depth 5

min_child_weight 1
nthread 4

seed 407
subsample 0.6
objective multi:softprob

ANN hidden_layer_sizes 50
max_iter 1000

alpha 10−4

solver sgd
tol 10−4

random_state 1
learning_rate_init 0.1
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4.2. Model Train and Test

Figure 6 showed the training process of the transfer learning. The model was evaluated by train
accuracy, validation accuracy, and cross-entropy. In Figure 6, train accuracy, and validation accuracy
both increased gradually. Then train accuracy converged to about 97.0% and validation accuracy
converged to about 90.0%. Cross-validation decreased gradually and converged to about 0.2. Finally,
the test accuracy based on grayscale and color images were 91.0% and 92.6%, respectively. The small
difference between the two models indicates that color had little influence on the model identification
for geological structures, which means textures are more important in identification.

 
(a) 

 
(b) 

Figure 6. Train accuracy, validation accuracy and cross-entropy variation in transfer learning process:
(a) Grayscale dataset; (b) Color dataset.

The patches from the same image are similar using data augmentation. At the same time, we
want to apply the model to identify geological structure images from the geological survey. So we
chose another 60 images which were from an engineering project to test the model accuracy. Top-1
and top-3 accuracy were used in model evaluation. Top-1 accuracy means the prediction with the
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highest probability matches the right label. Top-3 accuracy means any one of predictions with the three
highest probability matches the right label. In the model testing, the top-1 accuracy was 83.3% and the
top-3 accuracy was 90.0%. The test images in Figure 7 are the same as those in Figure 1. In Figure 7,
the result showed top-3 prediction probability. In the identification of faults, the top-1 and top-3 result
were wrong. The number of fault images should be increased. In the identification of boudin images,
the top-1 prediction was wrong. However, we found that the probability of boudin was 15.7%, which
ranked third. As a consequence, it is better to apply top-1 and top-3 accuracy to evaluate the result
comprehensively in predictions.
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Figure 7. Identification of geological structures images results.
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The training process of CNN was shown in Figure 8. Train accuracy, validation accuracy, and
cross-entropy were also used to evaluate the model. Figure 8a–c are the results of the CNN with
two, three and four convolutional layers on the color dataset; Figure 8d is the result of the CNN with
three convolutional layers on the grayscale dataset. The effects of the three-layer CNN was the best,
and the grayscale data was also trained by the CNN architecture, as shown in Figure 8d. The train
accuracy was almost 100.0%, while the validation accuracy was about 85.0%, which indicated the
model was overfitting.

(a) 

 
(b) 

Figure 8. Cont.
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(c) 

 
(d) 

Figure 8. Train accuracy, validation accuracy and cross-entropy variation in the convolutional neural
network (CNN) training process: (a) Two layers using color dataset; (b) Three layers using color dataset;
(c) Four layers using color dataset; (d) Three layers using grayscale dataset.

The results of the five methods were summarized in Table 3. The accuracies of KNN, ANN, and
XGBoost models were less than 40%, while the KNN and XGBoost also showed better performance in
color images with histogram features. The test accuracy of CNN model based on grayscale and color
images was 80.1% and 83.3%, but the model was overfitting; the test accuracy of the transfer learning
model based on Inception-v3 model reached 91.0% and 92.6%, which was the best in all the methods.
The result indicated the convolutional layers and pooling layers in Inception-v3 were able to extract
features from geological structures images effectively. As a consequence, the transfer learning method
was chosen to identify the geological structure image from engineering. The top-1 and top-3 accuracy
were 83.3% and 90.0%, respectively.
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Table 3. Comparison result between the five methods.

Grayscale Image Feature Color Image Feature

Pixel Histogram Pixel Histogram

KNN 20.4% 19.6% 20.4% 33.4%
ANN 9.1% 19.3% 9.4% 31.4%

XGBoost 25.2% 20.7% 33.4% 34.8%
Three-layer CNN 80.1% 83.3%
Transfer Learning 91.0% 92.6%

4.3. Discussion

In this research, we built a geological structure identification model based on Inception-v3. In a
comparison between KNN, ANN, XGBoost, and CNN, the convolutional layers and pooling layers
in Inception-v3 were effective in extracting features from images of the small dataset. Actually, the
small geological structures dataset we used in the research has its own characters. For example, the
boudins in Figure 9a–c are very different, even though they have the same label. On the other hand,
boudin and xenolith are with different labels; however, they are similar and easy to be mixed in
some cases, as shown in Figure 9c,d. In Figure 7, the identification result of boudin also proved that.
Meanwhile, the prediction shows the probability of xenolith is 29.4%, which is higher than that of
boudin. The result shows that the features of boudin and xenolith are similar in some cases.

  
(a) (b) 

  
(c) (d) 

Figure 9. (a–c) Boudin; (d) Xenolith.

We also built a CNN model to establish identification. Because the dataset was small, we designed
a simple net with two convolutional layers and two fully connected layers, while the model was still
overfitting. The single architecture of CNN did not work in any cases. In ConvNets, Palafox et al. [24]
also designed several CNN models with different architectures in different cases. The retrained model
based on Inception-v3 can extract image features effectively with the convolutional layers and pooling
layers. It is not necessary to redesign model architecture in the transfer learning model, and it worked
well on the small dataset in this research. It was hard to extract real image features based on pixel
vector and histogram in which translation invariance could not be kept. The background noise also
interfered the features extraction significantly. As a result, the inaccurate input led to a low accuracy
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in KNN, ANN, XGBoost. Actually, some feature pre-processing methods can be applied in model
training. The restricted Boltzmann machines (RBM) pre-processing method [29] and the mixture of
handcrafted and learned features [30] can improve the model performance. Model ensemble [38] is
also a robust method to enhance the feature extraction from images. Model ensemble and feature
engineering are going to be applied in the model establishment in the further study.

5. Conclusions

In this research, we built the geological structure identification model based on a small dataset
and the Inception-v3 model. The grayscale and color images datasets were both trained to construct
different models. The two models had an accuracy of 91.0% and 92.6%, respectively. At the same
time, we used 60 engineering images to test the model. The top-1 and top-3 accuracies were 83.3%
and 90.0%, which showed the kernels and pooling layers in the Inception-v3 model could extract
image features effectively. CNN models with different layers were built as well, while the model
was overfitting in training even just with two convolutional layers and two fully connected layers.
Three convolutional layers were adopted to establish the model in our study. The best parameters
in CNN are hard to reach because it depends on experience. We also used OpenCV to build pixel
feature based on origin pixel information and a pixel’s histogram. However, the images features
could not be extracted accurately in this way, which led to low accuracy in KNN, ANN, and XGBoost
models. More feature engineering methods should be considered in the future. The retrained models
based on Inception-v3 were trained using transfer learning method with color and grayscale datasets
and had a small difference in accuracy, which indicated that color had little influence on geological
structure identification.

There are also some weaknesses in the model trained by a small dataset. Test data is small and
overfitting still exists in the training process. Even though data augmentation was adopted, some
patterns and features were not learned by the model. In this research, we proved the feasibility of
transfer learning for geological structures classification. If the model is applied in practice in the future,
more data should be added.

Transfer learning based on the Inception-v3 model has strong adaptability for a small dataset.
In the future, we are going to extend our dataset and combine the model with a UAV, which can be
applied as a tool in geological surveys.
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Abstract: Damping Bragg scattering from the ocean surface is the basic underlying principle of
synthetic aperture radar (SAR) oil slick detection, and they produce dark spots on SAR images.
Dark spot detection is the first step in oil spill detection, which affects the accuracy of oil spill
detection. However, some natural phenomena (such as waves, ocean currents, and low wind belts,
as well as human factors) may change the backscatter intensity on the surface of the sea, resulting
in uneven intensity, high noise, and blurred boundaries of oil slicks or lookalikes. In this paper,
Segnet is used as a semantic segmentation model to detect dark spots in oil spill areas. The proposed
method is applied to a data set of 4200 from five original SAR images of an oil spill. The effectiveness
of the method is demonstrated through the comparison with fully convolutional networks (FCN),
an initiator of semantic segmentation models, and some other segmentation methods. It is here
observed that the proposed method can not only accurately identify the dark spots in SAR images,
but also show a higher robustness under high noise and fuzzy boundary conditions.

Keywords: image segmentation; deep learning; synthetic aperture radar (SAR); oil slicks; segnet

1. Introduction

Due to the influence of short gravity waves and capillary waves on the sea surface, Bragg scattering
of the sea surface is greatly weakened, causing the oil film to produce dark spots on synthetic aperture
radar (SAR) images [1]. Solberg et al. pointed out that SAR oil spill detection includes three steps:
(1) dark spot detection; (2) feature extraction; and (3) discrimination of oil slicks and lookalikes [2].
Among them, the accuracy of dark spot detection is bound to affect the extraction of oil spill location
and area. However, some natural phenomena (such as waves, ocean currents, and low wind belts,
as well as human factors) may change the backscatter intensity on the surface of the sea, thus leading
to an uneven intensity, high noise, or blurred boundaries of oil slicks or lookalikes, making the
automatic segmentation of the oil spill area sometimes very difficult. Therefore, a robust and accurate
segmentation method plays a crucial role in monitoring oil spills.

There are many studies on dark spot detection on SAR images of oil spill, among which the
most widely used method is based on pixel grayscale threshold segmentation, such as a manual
single threshold segmentation [3], an adaptive threshold segmentation method [4], and some double
threshold segmentation methods [5]. Those methods have simple principles and fast implementation
speeds, but they are easily affected by speckle noise and global gray unevenness, thus reducing the
accuracy of dark spot recognition. The active contour models (ACM) are another common image
segmentation method [6,7]. Compared with traditional segmentation methods, the smooth and closed
contours can be obtained by ACM. The most famous and widely used region-based ACM is the
borderless ACM proposed by Chan and Vese [7]. The Chan-Vese model performs well in processing
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images with weak edge and noise, but it cannot process images with uneven intensity and high
speckle noise.

With the popularization of neural networks and machine learning algorithms, some studies have
used these methods for dark spot detection. Topouzelis et al. proposed a fully connected feed forward
neural network to monitor the dark spots in an oil spill area, and obtained a very high detection
accuracy at that time [8]. Taravat et al. used a Weibull multiplication filter to suppress speckle noise,
enhance the contrast between target and background, and used a multi-layer perceptron (MLP) neural
network to segment the filtered SAR images [9]. Taravat et al. also proposed a new method to
distinguish dark spots from the combination of the Weibull multiplication model (WMM) and pulse
coupled neural networks (PCNN) [10]. Singha used artificial neural networks (ANN) to identify the
characteristics of oil slicks and lookalikes [11]. Although this method improved the segmentation
accuracy to some extent and suppressed the influence of speckle noise on dark spot extraction, it still
cannot obtain high segmentation accuracy and robustness. Jing et al. discussed the application of
fuzzy c-means (FCM) clustering in SAR oil spill segmentation, in which it is easy to generate fragments
in the segmentation process due to speckle noise images [12]. To suppress the influence of speckle
noise on SAR image segmentation of an oil spill, Teng et al. proposed a hierarchical clustering-based
SAR image segmentation algorithm, which effectively maintained the shape characteristics of oil slicks
in SAR images using the idea of multi-scale segmentation [13]. However, its ability to suppress speckle
noise was not good, and the segmentation of weak boundary region was also not ideal.

In recent years, deep learning methods have been successfully applied in extracting high
level feature representations of images, especially in semantic segmentation. Long et al. changed
the full connection layer of the traditional convolution neural networks (CNN) for pixel-based
classification [14]. Persello et al. used fully convolutional networks (FCN) to improve the detection
accuracy of informal residential areas in high-resolution satellite images [15]. Huang et al. successfully
applied the FCN model to weed identification in paddy fields [16]. However, FCN is not sensitive to
the details in the images, and its up-sampling results are often blurred. Badanlayan et al. proposed
a classic deep learning method (i.e., Segnet) for image semantic segmentation, which was used for
automatic driving or intelligent robots [17]. The model has obvious advantages over FCN in storage,
calculation time, and segmentation accuracy.

Inspired by the great success of Segnet in image semantic segmentation [17,18], we used Segnet
as a segmentation model to detect dark spots in oil spill areas. The proposed method is applied to
a data set of 4200 from five original SAR images of oil spill. Each scene image is cropped according
to four different window sizes, and samples containing oil slicks and seawater are selected from the
cropped pieces as data sets. Four hundred and twenty samples were selected from each oil slick scene,
with a total of 2100 sample data. To enhance the robustness of the training model, 21 samples in
each oil slick scene were added with 10 noise levels of multiplicative and additive noise, respectively,
totaling 2100 noisy images. The training set consisted of 1800 original samples and 1800 noisy samples,
totaling 3600. The testing set consisted of 600 samples, including 300 original samples and 300 sets
of noisy samples (20 noise level data corresponding to three samples randomly selected in each oil
slick scene). The effectiveness of the method is demonstrated through the comparison with FCN
and some classical segmentation methods (such as support vector machine (SVM), classification and
regression tree (CART), random forests (RF), and Otsu, etc.). The segmentation accuracy based on
Segnet can reach 93.92% under high noise and weak boundary conditions. It is here observed that
the proposed method can not only accurately identify the dark spots in SAR images, but also show
higher robustness.

The rest of this paper is organized as follows. Section 2 focuses on the preparation process of the
data set, which includes description, preprocessing, and sampling of five SAR oil slick scenes acquired
by C-band Radarsat-2. In Section 3, we describe the segmentation based on the Segnet model and the
parameter selection in the training process. The validity of the algorithm is verified through analysis
and compared with the experimental results of the semantic segmentation model FCN8s. In Section 4,
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we analyze the validity and stability of the model. The conclusions and outlooks are discussed in the
final section.

2. Study Area and Data Sets

2.1. Study Area and Pretreatment

Five SAR oil slick scenes acquired by Radarsat-2 (fine quad-polarized mode) are described in
Table 1, and some information on those data (e.g., wind direction, water temperature, etc.) is described
in detail in Guo’s studies [19]. Radarsat-2 images of the Mexico Bay area (No.1 and No.4) were acquired
on 8 May 2010 and 24 August 2011, respectively. The dark spots in Figure 1 were interpreted as crude
oil. North Sea of Europe area data sets (No.2 and No.3) were acquired from 6–9 June 2011. There are
three substances (i.e. crude oil, oil emulsion, and plant oil) in the two scenes, and the acquisition
interval of No.2 and No.3 was about 12 hours. The data No.5 was obtained in the South China Sea on
18 September 2009. The experimental data contain a small amount of crude oil and plant oil, which
were poured with 15-minute intervals.

Table 1. Information of the five quad-polarization SAR images of oil spill.

Scene ID No.1 No.2. No.3 No.4 No.5

Location of
Center 26◦49′N/92◦01′W 59◦59′N/2◦25′E 60◦09′N/2◦19′E 27◦54′N/90◦55′W 18◦06′N/109◦25′E

Wind Speed ~6.5 m/s 1.6–3.3 m/s 1.6–3.3 m/s ~15 m/s ~10 m/s

Types of Dark
Spot Crude oil Plant oil/oil

emulsion

Plant oil/oil
emulsion/crude

oil
Crude oil

Oil
emulsion/crude

oil

Sample size 420 420 420 420 420

Figure 1. Five oil spill RadarSat-2 scenes.

Quad-polarization SAR images are susceptible to noise. Pauli decomposition has the advantages
of anti-interference and a general high adaptability [20]. In general, the Pauli decomposition images
are clearer than original quad-polarization SAR images. The image preprocessing stages are as follows:

(1) The original quad-polarization SAR data are decomposed by Pauli.
(2) The obtained Pauli decomposition images are filtered by 3 × 3 Boxcar filtering.
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2.2. Sampling Process

The Vapnik-Chervonenkis (VC) dimension is usually used to predict the probability of testing
errors of models. Vapnik [21] proves that the probability of the upper bound of the testing error is
given by (1):
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is also called the model complexity penalty. When the testing

error is less than the training error plus the model complexity penalty, the probability is 1 − η.
The bigger the D, the bigger the model complexity penalty, and the bigger the N, the smaller the model
complexity penalty. Generally speaking, a deep learning model needs enough samples. Otherwise, the
generalization of the model would be limited, i.e., over-fitting.

The proposed method was applied to a data set of 4200 samples from five original SAR
images of oil spill. Here, the data set was processed by the following steps and was called the
OIL_SPILL_DATASET:

(1) In order to ensure that each sampling window includes oil slicks and seawater, the window size
cannot be too small or too large, and the window sizes were selected to be 500 × 500, 1000 × 1000,
1500 × 1500, and 2000 × 2000 for each scene of the quad-polar SAR image, respectively. Samples,
including oil slicks and seawater, were selected from those sub-images, 420 samples were selected
from each scene data, totaling 2100 samples. The boundary complexity and weak boundary were
the main factors affecting the segmentation accuracy. The boundary complexity and boundary
strength of 420 samples selected from each scene data are shown in detail in Table 2.

(2) To ensure the balance of the sample distribution, 105 samples (21 samples in each scene) in 2100
samples were added with multiplicative noise and additive noise, respectively, among which
multiplicative noise had 10 levels (peak signal-to-noise ratio (PSNR) was between 50 and 30) and
additive noise had 10 levels (PSNR was between 50 and 30). A total of 20 different levels of noise
were applied to each sample. In this way, the number of samples per scene was extended from
420 to 840, and the total number of samples was up to 4200.

(3) Due to the limitation of the graphics processing unit (GPU) capabilities, the samples with different
sizes obtained in Steps (1) and (2) were resized into 256 × 256.

(4) Segnet is a supervised pre-training process, and a label should be made for each sample.
In Figure 2b, the black area represents the background (seawater) and the red region represents
the target (oil slicks or lookalikes).

Figure 2. Label for each sample. (a) An input image; (b) the label of the image.

(5) 4200 samples were randomly divided into a testing set or a training set according to the ratio
of 1:6. To ensure the same distribution of data in the training set and the testing set, 15 samples
were selected from 105 samples added with noise, of which three were contained in each oil slick
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scene. 300 samples of each noise level corresponding to the 15 test samples were selected from
the remaining 2100 noisy samples. The testing set contained 600 samples and the training set
contained 3600 samples.

Table 2. Sample collection of No.1–No.5.

Boundary Complexity - Boundary Strength No.1 No.2 No.3 No.4 No.5

Low - Low - - - - 190
Low - Moderate - - - - 50

Low - High 320 50 420 - 30
Moderate - Low - - - - 130

Moderate - Moderate - 140 - - 20
Moderate - High 100 - - 60 -

High - Low - - - - -
High - Moderate - 230 - -

High - High - - - 360 -

3. Dark Spot Detection Using Segnet

3.1. Introduction to Segnet

Segnet is a deep convolution neural network with a sound performance of image semantic
segmentation [17]. The basic framework of Segnet is an encoder and a decoder. The most important
components of Segnet include a convolution layer, pooling layer, up-sampling layer, and softmax layer,
see Figure 3. The encoder consists of the convolution layer, batch normalization layer, and rectified
linear unit (ReLU), and its structure is similar to the visual geometry group (VGG)-16 network [22].
The convolution layer is the main component of the encoder, and each output pixel is only linked to
the local area of the next input layer, thus forming a local receptive field [23]. The decoder consists of
a transposed convolutional layer and an up-sampling layer, and its structure is symmetrical to that
of the encoder. The convolution layer corresponds to the transposed convolution layer and the max
pooling layer corresponds to the up-sampling layer [24]. At the end of the decoder, the category of
each pixel is output through a softmax layer.

Figure 3. The framework of Segnet.

The training process of Segnet can be summarized as follows:

(1) Each sample in the training set and its corresponding label are input into the Segnet in sequence.
(2) The cross loss entropy is used as the objective function of the training model, and its value is

calculated by weighted average for all pixels in each training sample [17].
(3) Through the back propagation algorithm, the weights are updated according to the

minimum error.
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The information in Steps (1) and Steps (2) is forward propagating, and the outputs are obtained
by convolution of inputs and weights. Step (3) is the backward propagation process. According to the
results of Step (2), the weights are passed to the previous layers through the backward propagation
algorithm, and the weights are updated.

3.2. Image Segmentation of Oil Spill Using Segnet

Segnet is an end-to-end training process. In this experiment, the training process of the Segnet was
based on 3600 training samples, of which 1800 were original images, 900 were additive noise images,
and 900 were multiplicative noise images. Due to limitations of the GPU capabilities, one sample at a
time was input during the training process. Here, the epoch was set at 30, and the fixed learning rate
was 0.01.

The structure and parameters of Segnet are shown in Figure 4. The application of Segnet excluding
the batch normalization layer is shown in Figure 5. The training performance diagram of Segnet is
shown in Figure 6. In our study, the weight initialization process of the encoder and decoder was
based on the research of He et al. [25]. When the learning rate is 0.0001, the training loss would be
relatively large. When the learning rate is 0.001, the training would be relatively stable soon, but it is
not as good as the training performance when the learning rate is 0.01.

Figure 4. The structure and parameters of Segnet.

Figure 5. The application of Segnet without the batch normalization layer.

Parts of of the test results of Segnet model based on the OIL_SPILL_DATASET are shown in
Figure 7. Where a, b, c, d, and e are representative samples of five boundary statuses, respectively, and a
brief description of the five boundary statuses is shown in Table 3. It can be seen from Figure 7 that
Status-a (medium boundary complexity) and Status-c (ideal boundary) achieved the best segmentation
results in the five boundary statuses, and Status-b (strong noise) and Status-d (complex boundary)

133



Appl. Sci. 2018, 8, 2670

were slightly inferior. For Status-e (weak boundary), the Segnet can still effectively segment dark spots
in general, although some backgrounds were incorrectly segmented into dark spots.

Figure 6. Training performance of Segnet based on different learning rates.

Figure 7. The segment effect of some test samples with different boundary status.

Table 3. Five boundary statuses of oil slicks.

Status ID a b c d e

Status of boundary Medium boundary
complexity, low noise Strong noise Ideal boundary High boundary

complexity
Weak boundary

strength

Number of samples 30 30 30 30 30

We used a trained model to test samples with a learning rate of 0.01. The segmentation results
did not achieve the expected results (seeing Figure 8). For the samples without noise or with low
multiplicative and additive noise in the testing set, the segmentation effect was good. However, almost
all pixels with high additive noise were predicted as the background. To reduce the computational
and storage pressure of GPU, we chose a Segnet’s batch size of 1 (i.e., inputting one sample at a time),
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and found that in this case, the Segnet can achieve a better segmentation effect without using the batch
normalization layer [26]. Finally, the learning rate was 0.01, and the batch normalization layer was
removed based on the basic structure of Segnet.

Figure 8. Comparison of segmentation results with different levels of additive noise.

3.3. Comparison of Segnet to FCN

Three end-to-end FCN models (i.e., FCN32s, FCN16s, and FCN8s) were proposed by
Long et al. [14], among which FCN8s (8-step sampling) was considered the best one. The FCN8s
encoder includes convolution layers with a 3 × 3 convolution kernel. The convolution layers changed
from the last three full connection layers are convolution kernels of 7 × 7, 1 × 1, 1 × 1, and the
convolution layers of layers 6–7 are all characteristic images 1× 1× 4096. The last de-convolution layer
can be considered as an up-sampling process, which can be used to obtain the segmentation image with
the same size as the original image. The up-sampling process of FCN8s is a jump architecture, which
performs up-sampling on the results of different pool layers of pool 3, pool 4, and pool 5, and then
optimizes the output according to these results. The size of the output picture was the same as that
of the input, and its number of channels was 2, which indicates that the output prediction picture
contained two categories (seawater and oil slicks). A schematic diagram of FCN8s’ model operation is
given in Figure 9.

Figure 9. The structure and parameters of FCN8s (8-step sampling).

In our study, the FCN8s’ structure did not include the batch normalization layer. We tested some
learning rates (0.01, 0.001, 0.0001) during FCN8s’ training and found that the required accuracy could
be obtained when the learning rate was 0.001, but the cost was a longer training period than Segnet.
The training parameters of FCN8s and Segnet are shown in Table 4. The training performance of
FCN8s is shown in Figure 10. When epoch reached 10, the training loss was close to 0.06 and tended to
be stable.

135



Appl. Sci. 2018, 8, 2670

Table 4. Training parameters of Segnet and FCN8s.

Methods Learning Rate Batch Size
Batch

Normalization
Volatile

GPU-Until
GPU Training

Memory
Model Size

Segnet 0.01 1 off 99% 1119 MB 114 MB
FCN8s 0.001 1 off 100% 5319 MB 537 MB

Figure 10. Training performance of FCN8s (Learning rate is 0.001).

The comparison between Segnet and FCN8s is shown in Figure 11, and the five samples (a–e)
represent the boundary statuses, respectively (see Table 3). The results show that FCN8s has a good
overall segmentation effect. However, the performance needs to be improved in oil spill images with
weak boundaries and high boundary complexity. The Sample-d and Sample-e are both high wind
speed regions in Figure 11. Due to the high wind speed, the oil slick boundary complexity in Sample-d
was high, and the segmentation results were not ideal.

Figure 11. Comparison of segmentation results of FCN8 and Segnet for five boundary statuses.
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The receiver operating characteristic (ROC) analysis was used to evaluate the proposed algorithm
with the pixel classification accuracy of FCN8s. Since our model input was a sample containing both
oil slicks and seawater, it was difficult to ensure that the pixel ratio of oil slicks and seawater was 1:1.
To ensure that the pixel ratio of oil slicks and seawater was as close as possible to 1:1, we re-selected the
training set and the testing set. According to the label of each sample in the training set, the number of
pixels of oil slicks and seawater in each sample was calculated, respectively, and finally, 2800 pieces of
data with the pixel-to-pixel ratio of oil slicks and seawater of 0.998:1 were selected. The testing set
selected 200 test data with a ratio of 0.989: 1 from 600 testing sets. The ratio of the training set to testing
set was still 6:1. The ROC curves for Segnet and FCN8s are shown in Figure 12, and we can see that
the ROC curves of Segnet and FCN8s are very close to the upper left corner, but there are still some
differences. Under the condition of a high false positive rate (FPR), both showed a higher true positive
rate (TPR). However, under the condition of low FPR, the TPR of FCN was lower than that of Segnet.
The results show that Segnet has achieved a moderate TPR in the whole range of FPR.

 

Figure 12. ROC curves of Segnet and FCN8s.

4. Analysis of Segmentation Experiments

4.1. Efficiency Analysis

We compared the performance of FCN8s and Segnet from the following four aspects:
Pixel-classification accuracy (PA), mean accuracy (MA), mean intersection over union (MIoU),
and frequency weighted intersection over union (FWIoU). The comparison of the four standard
values for FCN8s and Segnet with five boundary statuses (see Table 3) is shown in Figure 13. It can
be observed that the performance of Segnet and FCN8s for the first four boundary statuses was
almost the same, and the PA was above 95%. However, for Status-e (Weak boundary strength), Segnet
was superior to FCN8s in the segmentation effect, and the PA of Segnet reached 93.92%. FCN8s
performed slightly worse for weak boundary segmentation, achieving 87.53% of PA. Thus, that Segnet
can effectively detect dark spots (oil slicks or lookalikes) in SAR images.
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Figure 13. Comparison of the four evaluation parameters with five boundary statuses.

4.2. Stability Analysis

Due to the influence of the sea surface environment (such as waves, ocean currents, and low wind
belts) and the characteristics of SAR sensors, high noise and weak boundaries are commonly found
in SAR images of oil spill. Figure 14 shows an example of the segmentation effect of a test sample at
five additional noise levels. The first row is a SAR test sample with five different peak signal-to-noise
ratio (PSNR), and the second row is the label of each sample. The outputs of Segnet and FCN8s are
listed in the third and fourth rows, respectively. Figure 15 shows the segmentation effect of the same
test sample at five multiplicative noise levels.
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Figure 14. Comparison of Segnet and FCN8 with five levels of additive noise.

Figure 15. Comparison of Segnet and FCN8 with five levels of multiplicative noise.
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Correspondingly, the effectiveness of the proposed method is demonstrated through the analysis
of some experimental results. The same training set and test set were applied to FCN8s and some
classical image segmentation methods, such as SVM, CART [27], RF [28], and Otsu. The four
aforementioned evaluation parameters (PA, MA, MIoU, and FWIoU) at 10 additive noise levels
are shown in Figure 16, and a comparison at 10 multiplicative noise levels is shown in Figure 17, where
the X coordinate is PSNR. We can see the following trend:

(1) In addition to some fluctuations of MA of Segnet where PSNR is relatively large in Figure 16,
the other three parameters (PA, MIoU, and FWIoU) are basically on a horizontal line, which
proves that Segnet shows high robustness in terms of additive noise.

(2) When PSNR is generally less than 35 in Figure 16, all four indicators of FCN8s have a clear
downward trend, which indicates that FCN8S is not as stable as Segnet when the additive noise
is relatively high.

(3) In Figure 16, the four classical segmentation methods (SVM, CART, RF, and Otsu) are sensitive
to additive noise (especially when PSNR is generally less than 35), and the comparison of the
three indicators (MA, MIoU, and FWIoU) shows that they are not as good as Segnet and FCN8s.
Although these three methods (SVM, CART, and RF) seem to have a similar performance with
Segnet and FCN8s based on PA, this phenomenon should be related to PA’s defects. It is very
difficult to ensure that oil slicks and seawater have the same initial probability in the testing set.

(4) In Figure 17, Segnet and FCN8s show high stability and tolerance to multiplicative noise, although
the overall performance of FCN8s is not as good as that of Segnet. When PSNR is less than 35,
the PA of FCN8s is obviously decreased.

(5) The four classical segmentation methods (SVM, CART, RF, and Otsu) are much more sensitive
to multiplicative noise than Segnet and FCN8s, especially when the noise is high, and the
performance of those classification methods drops sharply. In addition, Otsu’s performance is
significantly worse than the other three methods.

Figure 16. Four image segmentation standard values under 10 additive noise levels.
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Figure 17. Four image segmentation standard values under 10 multiplicative noise levels.

Overall, by comparing the four parameters (PA, MA, MIoU, and FWIoU) of the additive and
multiplicative noise in Figures 16 and 17, the traditional machine algorithm performed poorly
in detecting dark spots compared with semantic segmentation algorithms. Table 5 shows the
comparison of segmentation accuracy (averages values of PA, MA, MIoU, and FWIoU) and running
time (GPU time) using the same test set (600 samples). Due to the complex structure of the deep
learning model, its running time was much longer than that of the classical machine learning model.

Table 5. Comparison of the six segmentation methods.

Methods Time (s) PA MA MIoU FWIoU

Segnet 1.639 × 104 0.939 0.895 0.801 0.914
FCN8s 1.703 × 104 0.884 0.805 0.783 0.823
SVM 1.353 × 102 0.854 0.693 0.568 0.795
Otsu 2.192 × 10−3 0.573 0.543 0.375 0.508
RF 1.183 0.867 0.735 0.612 0.814

CART 2.023 × 10−2 0.855 0.749 0.605 0.810

4.3. Overfitting Analysis

The initial probability of the data in the overfitting experiment was equal. For the first
experimental model, the training samples were from the first three SAR oil slick scenes (No.1–No.3).
The number of samples from each scene was 720, and the total number of training samples was 2160.
The training data of the second experimental model included 720 samples selected from the first SAR
oil slick scene (No.1) only. The two models were tested using the same test data, and those 120 test
samples here were selected from the SAR oil slick scenes (No.1). The training set of the first model
contained 1080 original samples and 1080 noise samples. Accordingly, the training set of the second
training model included 360 original samples and 360 noise samples, which have the same distribution
as that of the first model. The average values of each parameter based on the first and second models
are shown in Table 6, and the average values of the four parameters of the second model were higher
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than that of the first model. It can be seen that there is indeed an over-fitting phenomenon when the
sample space is insufficient.

Table 6. Evaluation of Segnet and FCN8s based on the four image segmentation standard values.

Training Set
Average PA Average MA Average MIoU Average FWIoU

Segnet FCN8s Segnet FCN8s Segnet FCN8s Segnet FCN8s

No.1–No.3 0.9845 0.9589 0.9437 0.8644 0.9174 0.8419 0.9724 0.9481
No.1 0.9858 0.9692 0.953 0.8952 0.9208 0.8637 0.9734 0.9547

4.4. K-Fold

K-fold cross validation (K-CV) can effectively avoid over-fitting and under-fitting [29]. The data
set is randomly divided into K groups to verify the validity of the training model. Each subset of
the data set is used as a testing set and the remaining K-1 groups are used as training sets. On the
basis of K-CV, we verified the performance of the model by using the mean and variance of PA. K = 3,
5, 7, and 9 are shown in Table 7. With the improvement of PA, the stability of the model would be
improved. When K increased to 7, the increase of PA and variance tended to be stable. Here, K was set
to 7 in consideration of statistical stability and calculation costs. Therefore, the ratio of the testing set
to training set was 1:6, the total data set had 4200 samples, the testing set had 600 samples, and the
training set contained 3600 samples.

Table 7. Mean and variance of pixel-classification accuracy (PA) based on K-CV.

K Average Variance

3 0.966617469 0.010223167
5 0.975305136 0.001727448
7 0.985242757 0.000513106
9 0.986190631 0.000499049

5. Conclusions and Outlooks

The current research used Segnet to extract dark spots in SAR images of an oil spill. To reduce the
computational and storage pressure of GPU, we chose a Segnet’s batch size of 1 (i.e., inputting one
sample at a time), and found that in this case, the Segnet achieved a better segmentation effect without
using the batch normalization layer. The proposed method effectively distinguished between oil slicks
and seawater based on the data set (OIL_SPILL_DATASET), and high accuracy segmentation results
were obtained for SAR images with high noise and weak boundaries.

The OIL_SPILL_DATASET was also applied to FCN8s and some other classical segmentation
methods. By comparing the four parameters (PA, MA, MIoU, and FWIoU) of different addition and
multiplication noise levels, the following trends were found:

• Segnet and FCN8s showed high stability and tolerance to addition and multiplicative noise,
although the overall performance of FCN8s was not as good as that of Segnet. In addition, Segnet
was obviously superior to FCN8s in weak boundary regions.

• Some classical segmentation methods (such as SVM, CART, RF, and Otsu) were much more
sensitive to addition and multiplicative noise than the deep learning models.

However, Segnet’s training process was supervised, and its training relies on a large number
of label images. The production of labels was not only time-consuming and laborious in the data
preparation stage, but also the training effect could be easily affected by human factors. In the future,
we hope to shift to a weak or unsupervised training process to improve the convenience of application.
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Abstract: We proposed a texture mapping technique that comprises mesh partitioning, mesh
parameterization and packing, texture transferring, and texture correction and optimization for
generating a high-quality texture map of a three-dimensional (3D) model for applications in
e-commerce presentations. The main problems in texture mapping are that the texture resolution
is generally worse than in the original images and considerable photo inconsistency exists at the
transition of different image sources. To improve the texture resolution, we employed an oriented
boundary box method for placing mesh islands on the parametric (UV) map. We also provided a
texture size that can keep the texture resolution of the 3D textured model similar to that of the object
images. To improve the photo inconsistency problem, we employed a method to detect and overcome
the missing color that might exist on a texture map. We also proposed a blending process to minimize
the transition error caused by different image sources. Thus, a high-quality 3D textured model can be
obtained by applying this series of processes for presentations in e-commerce.

Keywords: conformal mapping; mesh parameterization; mesh partitioning; pixel extraction;
texture mapping

1. Introduction

Two-dimensional (2D) images are commonly used for product presentations in e-commerce
because they can reveal the object’s texture and are easy to process. However, as 2D images can display
only limited views of an object, it may be possible to capture hundreds of 2D images and orient an
image at any viewing angle via a web viewer [1]. However, storing and displaying so many images
while maintaining high image quality would have huge memory requirements. In addition, the actual
three-dimensional (3D) shape and dimensions of an object cannot be obtained in this representation.
3D image-modeling technology is a technique for reconstructing the 3D model of an object by using
multiple 2D images while maintaining its texture on the model (called 3D textured model hereafter).
If its texture quality can be comparable to that of 2D images, this technology could be used to replace
2D images for product presentations, because a 3D textured model requires less memory and can freely
be oriented in 3D space.

Product presentation usually requires a dedicated photography device to catch high-quality object
images with known position and orientation in 3D space. The object images can be obtained using
a single-camera device that applies a digital single-lens reflex (DSLR) camera to capture an object
placed on a turntable, or a multi-camera device that applies several DSLR cameras mounted on an
arm to capture an object placed on a turntable from different angles. These devices can position the
camera precisely such that the camera information can be calibrated. The object on the turntable can
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also be oriented to capture object images in different views. These devices also provide a controlled
environment, for example, single background color and adjustable lighting, such that the object images
and the background color can easily be separated. As these devices are already used in the field of
product presentation, we use them as the image source of the 3D-image modeling technology.

3D image-modeling technology primarily involves the generation of two kinds of information,
the 3D model of an object and its texture map. The former employs triangular meshes to describe the
object’s surface geometry, and the latter describes its color information. There is a mapping between
the 3D model and the texture map such that when the model is displayed in 3D space, accurate object
texture can be displayed accordingly. Approaches to generating 3D models from multiple images can
be classified into two groups: shape-from-silhouette (SFS) and shape-from-photoconsistency (SFP).
The SFP approach has received extensive attention because it can simultaneously yield a 3D geometric
model of an object and its texture map. The main idea of this method is to generate photo-consistent
models that can reduce some measure of the discrepancy between different image projections of their
surface vertices [2–4]. The main advantage of the SFP approach is that it can generate fine surface
details by using photometric and geometric information. However, the reliability of the SFP approach
remains a problem because the texture quality can easily be affected by environmental factors such as
noise in the colors, inaccuracies in camera calibration, non-Lambertian surfaces, and homogeneous
object color.

However, the SFS approach is a common method used to estimate an object’s shape from images
of its silhouettes [5–7]. This method is essentially based on a visual hull concept in which the object’s
shape is constructed by the intersection of multiple sets of polygons from the silhouettes of multiple
2D images. With a sufficient number of images from different views, this method can yield an
approximate model to describe the outline shape of an object. However, this model is not yet suitable
for visualization due to the following two reasons. First, the SFS method can produce visual features
on the 3D model, such as sharp edges and artifacts, which do not exist on the real object surface; some
virtual features may be sufficient large to affect the outline shape. Second, concavities on the object
surface are often formed as convex shapes because these are invisible on image silhouettes. Therefore,
a quality improvement method must be implemented to remove virtual features while recovering
the smoothness of the model [8]. The removal of artifacts is particularly important because they are
difficult to detect and eliminate.

Texture mapping generally includes multiple techniques, such as mesh partitioning, mesh
parameterization, texture transferring, and correction and optimization, which are related to each other
and affect the texture quality. Research in mesh partitioning can be summarized using several different
approaches. Shamir [9] categorized several methods of mesh partitioning according to segmentation
type, partitioning technique, and segmentation criterion. Segmentation type refers to surface-type and
part-type. Surface-type mesh partitioning is commonly used in texture mapping [10–12] because it
can prevent large distortion in mesh parameterization. Mangan et al. [13,14] and Lavoué et al. [15]
proposed a constant curvature watershed method to separate a mesh model into several regions.
Other applications of surface-type partitioning include remeshing and simplification [16], mesh
morphing, and mesh collision detection [17]. Part-type mesh partitioning is commonly used for part
recognition on a mesh model composed of multiple parts. Mortara et al. [18,19] proposed a partitioning
method by applying the curvature information at the transition of different parts to decompose a mesh
model. Funkhouser et al. [20] proposed another method by establishing the database of some known
parts for the separation of a mesh model. Partitioning techniques include region growing, hierarchical
clustering, iterative clustering, and inferring from a skeleton, which can be implemented either alone
or together. Segmentation criterion approaches include dihedral angle or normal angle, geodesic
distance, and topological relationship, which can also be implemented either alone or together.

Mesh parameterization was classified in accordance with distortion minimization, boundary
condition, and numerical complexity [21,22]. Distortion minimization can be summarized based on
three types: angle, area, and distance. For angle minimization, an objective function is formulated
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to minimize the distortion of 2D meshes on the UV domain. Several methods can be employed for
angle minimization. Lévy et al. [11] proposed a least-squares approximation of the Cauchy-Riemann
equations to minimize both angle and area distortion on 2D meshes. Desbrun et al. [23] presented
an instinct parameterization to minimize angle distortion. These two methods allow free boundaries
and linear numerical complexity. Sheffer et al. [24] optimized the angles on the UV domain based on
angle-base flattening. This method sets constraints on the topology of triangular meshes to preserve
the correctness of 2D meshes. Sheffer et al. [25] proposed a hierarchical algorithm to improve the
optimization efficiency for the case of huge triangular meshes, and Zayer et al. [26] proposed a
method to solve the optimization problem for a set of linear equations that were derived based on the
angle-base flattening approach with a set of constraints specified. In addition, the barycentric mapping
is commonly used for mapping 3D meshes onto the UV domain in mesh processing. Tutte [27,28]
proposed an algorithm to embed a 3D mesh onto the UV domain by evaluating the barycentric
position in terms of its neighboring meshes. Eck et al. [29] proposed an algorithm to calculate
the multiresolution form of a mesh via a barycentric map. Floater [30] applied a “shape-preserve”
condition for the barycentric map to preserve the shape of 2D meshes on the UV domain. Floater [31]
and Floater et al. [32] further applied mean-value weights for the barycentric map to preserve the
shape of 2D meshes. For all above-mentioned barycentric mapping, the boundary is fixed and the
numerical complexity is linear, which is not suitable for texture editing. For texture mapping, a method
of free boundary is more appropriate as it can ensure that the boundary of each island of 2D meshes
is close to the real profile, making the texture editing easy. Some other approaches have focused on
minimizing the area distortion [33] and distance [34].

For texture map generation, the main idea is to deal with the texture transferring problem.
Niem et al. [35] proposed a texture transferring method by identifying the most appropriate image
source for a group of meshes. They also minimized the color inconsistency at the transition of
two different groups and synthesized the invisible meshes using the color of neighboring pixels.
Genç et al. [36] proposed a method to extract and render the texture dynamically. The extraction
was implemented by horizontally scanning the pixels and rendering every color onto the meshes.
Baumberg [37] proposed a blending method to handle the color difference between two different
images. The images were separated into high and low bands; the low band images were averaged
to minimize the color difference, whereas the high band images were kept to preserve the outline
profile. In addition, texture synthesizing is commonly used to improve the transition between different
textures. Efros et al. [38] proposed an image quilting method to quilt together different texture patterns.
They extended the boundary of each original pattern and calculated the minimum color difference
on the overlapping area to find the new boundary between two patterns. Wei et al. [39] proposed an
algorithm to synthesize the texture pattern based on deterministic searching and use tree-structured
vector quantization to improve the efficiency. These two approaches focus mainly on the transition
synthesis between two texture patterns.

2. Problem Statement

For product presentations in e-commerce, texture quality is the most crucial issue to investigate
because it directly affects the visualization effect. Ideally, the texture quality at any view in 3D space
should perfectly match that of the corresponding 2D image. Actual texture on the 3D model, however,
is usually worse than that of 2D images, mainly because individual texture on the 3D model comes
from different image sources. A 3D model reconstructed using multiple images of an object is only an
approximation of the object geometry. The camera model and calibration method used to estimate the
camera parameters might yield additional errors in the position and orientation of the object images.
These errors, combined with errors caused by the texture mapping process, might lead to discrepancy
between the texture of the 3D model and the real object. Any defect in the 3D texture could negatively
impact perceptions of the product being presented.

The following are typical problems involving the 3D texture:
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1. Reduced texture resolution: The texture resolution at any view in 3D space is worse than that of
the corresponding object image, primarily because of inappropriate scaling of the pixels between
the real image domain and the texture mapping image domain.

2. Missing color on some mesh regions: All 2D meshes on the texture domain should ideally
be color-filled, but some may be missed if they are beyond the boundary of the object image,
primarily because of insufficient accuracy of the 3D model, especially for those meshes near the
image silhouette.

3. Photo inconsistency at the transition of different image sources: Photo inconsistency usually
occurs along the boundary of different groups of meshes, with each group textured by different
image sources. This problem is the combined effect of insufficient accuracy of the 3D model and
the camera parameters.

Thus, we develop a texture mapping algorithm that focuses on detecting and removing
these problems.

The objective of this study is to develop a high-quality texture mapping algorithm that can be
combined with a 3D modeling algorithm to generate the 3D textured model of an object for use in
e-commerce product presentation. High-quality texture here indicates that the texture at any view
in 3D space should be as close as possible to that of the corresponding 2D image, which mainly
requires maintenance of the resolution on the texture and elimination of photo-inconsistent errors at
the transition of different image sources. A general texture mapping process comprising the following
three techniques is proposed: mesh partitioning, mesh parameterization and packing, and texture
transferring. Specific efforts are made at each step to initially eliminate problems that might affect
the texture of the 3D model. To further reduce the discrepancy of the texture owing to insufficient
inaccuracy of the 3D model and camera parameters, a correction and optimization algorithm is
presented. The entire texture mapping process is fully automatic and is intended to be used for all
kinds of objects.

The main contribution of the proposed texture mapping method is as follows. First, we enhance
the techniques of converting 3D meshes onto the UV domain so that the shape of most 2D meshes can
be preserved and the finest resolution can be obtained in texture transferring. Three main techniques in
converting 3D meshes onto the UV domain are mesh partitioning, mesh parameterization and packing.
In the proposed mesh partitioning algorithm, a novel chart growth method is proposed to partition
3D meshes iteratively so that each chart of 3D meshes can be as flat (disk type) as possible, which can
reduce the error of 2D meshes in mesh parameterization. In the proposed mesh parameterization
algorithm, a novel conformal mapping method is proposed to preserve the shape of 2D meshes as close
to that of 3D meshes as possible. In the proposed packing method, all regions of 2D meshes are tightly
packed in a rectangular area to acquire the finest resolution. Second, we propose an optimized texture
transferring algorithm for generating the texture map, emphasizing the elimination of erroneous
texture mapping owing to insufficient accuracy of the 3D model as well camera parameters, and the
improvement of the texture resolution as close to that of 2D object images as possible. The strategies
used in the proposed algorithm include: (1) increase overall texture size in pixels; (2) increase the
number of pixels occupied by each 2D mesh; (3) detect and fill in void meshes; and (4) perform texture
blending at the boundaries of mesh islands. The first two operations can improve the resolution
of the final texture map, whereas the last two operations can eliminate erroneous texture mapping.
Several realistic examples are presented to verify the feasibility of the proposed texture mapping
method. The results are also compared with those form commercial software.

3. Overview of the Proposed Method

The 3D textured model is created by covering a 3D model with a texture map that stores the color
information of the object. The main idea of direct texture mapping is to generate the texture of the 3D
model by directly using the object images. Figure 1 shows the overall flowchart of the proposed texture
mapping method. The input data are the 3D model of an object and multiple object images from
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different views (Figure 1a). The original 3D model was generated from silhouettes of the object images
using an SFS method. However, the surface quality of the original meshes was not satisfactory because
of artifacts and virtual features affecting the outline shape, as well as the surface smoothness. A mesh
optimization algorithm combining re-meshing, mesh smoothing, and mesh reduction was employed
to eliminate the effect of the above-mentioned phenomena and yield an optimized mesh model [8].
The model after mesh optimization served as the input of the proposed texture mapping algorithm.

Figure 1. Overall flowchart of the proposed texture mapping method: (a) input data, (b) mesh
partitioning, (c) mesh parameterization and packing, (d) texture transferring, (e) correction and
optimization, and (f) output object file.

In the proposed texture mapping algorithm, mesh partitioning is first implemented to subdivide
the 3D model into several charts (Figure 1b), each of which is later individually mapped onto the
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UV domain. Mesh partitioning is based on a chart growth method to assign a weight to each mesh
on the model, and grow each chart of meshes one by one from a set of initial seed meshes. The seed
meshes are optimized in an iteration process until all meshes have been clustered. This ensures
that all charts are flat and compact in the boundary for easy mapping in the mesh parameterization.
Mesh parameterization and packing is then implemented to map the meshes on each chart and to pack
all 2D meshes on the UV domain (Figure 1c). An angle-preserving algorithm is proposed to optimize
the mapping between the 3D and 2D domains, which can preserve the shape of most 2D meshes.
Furthermore, all 2D meshes are tightly packed in a rectangular area to acquire the finest resolution
when mapping the pixels from the image domain to the texture domain.

Next, texture transferring is implemented to extract pixels from the image domain, and place
them on the texture domain appropriately (Figure 1d). This procedure comprises three main steps:
grouping the 3D meshes, extracting pixels from the image domain, and placing pixels onto the texture
domain. We also propose a method to analyze the texture resolution. The proposed texture transferring
algorithm ensures that the texture resolution can be set to the equivalent of the 2D images. Finally,
we implement correction and optimization of the texture to eliminate erroneous color mapping that
might occur due to the insufficient accuracy of the 3D model and camera parameters and to improve
the photo consistency at the boundary of different image sources (Figure 1e). Several photo inconsistent
problems are detected and solved one by one. The output texture map is saved as a universal data
format (*.obj), which can be displayed with a website viewer (Figure 1f).

4. The Proposed Texture Mapping Method

4.1. Mesh Partitioning

The purpose of mesh partitioning is to partition 3D meshes into several charts, where a chart
denotes a group of meshes that are tightly connected to each other and form a boundary loop
only. When a chart is mostly flat and compact in boundaries, it is easy to preserve the shape in
mesh parameterization. By contrast, when a chart is bent too much or closed on both sides, that is,
two boundary loops, the shape distortion in the mesh parameterization increases, thereby reducing
the texture resolution in some regions. A conventional approach to dealing with this issue is to
map each mesh on the 3D model onto the UV domain independently, which can accurately preserve
the shape of all 2D meshes and pack them all tightly row by row [40]. However, this approach
might result in an un-editable texture map, because all 2D meshes are independently projected and
distributed irregularly.

The proposed mesh partitioning technique essentially assigns a cost to each mesh, which denotes
a mesh’s weight calculated by considering the flatness and distance of the mesh with respect to a chart.
An iterative procedure combining chart growth and seed mesh upgrades is implemented to expand
and modify charts as well as seed meshes in sequence. The chart growth is a process to cluster all
meshes into charts in accordance with each mesh’s cost. When a closed chart is detected as possibly
occurring, a new seed mesh is added to separate the chart into two. The seed mesh upgrading is a
process to upgrade the seed mesh of each chart that has been expanded. Whenever a chart is grown,
its seed mesh is recomputed by putting it near the center of the new chart.

Two costs are defined and used in chart growth and seed mesh upgrading. The cost used in chart
growth is defined as

Cost1
(

F, F′) = (1 − (NC·NF′))(|PF′ − PF|), (1)

where Cost1(F, F′) denotes the weight of a candidate mesh F′ neighboring a chart C, F is the
neighboring mesh of F′ that has been in C, NC is the normal vector of C evaluated by the average of all
normal vectors of the meshes in C, NF′ is the normal vector of the candidate mesh, and PF′ and PF are
the centroids of F′ and F, respectively. Equation (1) indicates that the cost Cost1(F, F′) considers both
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the flatness and distance of F′ with respect to the chart C. The cost used in seed mesh upgrading is
defined as

Cost2
(

F, F′) = ∣∣PF′ − PF
∣∣, (2)

which is used to determine the mesh F that is closest to the candidate mesh F′.
Figure 2 depicts the flowchart of the proposed mesh partitioning algorithm, which has three main

steps: initial seed meshes, chart growth, and seed mesh upgrading. In step 1, a set of seed meshes are
initially assigned on the input 3D meshes. A default value of 10 is typically used and the seed meshes
are randomly selected from the 3D meshes. Each seed mesh is initially assigned as a chart.

 
Figure 2. Flowchart of mesh partitioning.

In step 2, chart growth, all meshes neighboring the charts are found by using the topological data
of the mesh model. Equation (1) is then employed to evaluate a cost for each of these meshes. The costs
are sorted from minimum to maximum. The mesh with the minimum cost is selected to cluster with
its neighboring chart. Three criteria are then checked in sequence. First, is this chart (which has just
grown) a single boundary loop? If yes, go to the next criterion. If not, a new seed mesh is added.
The last mesh added to this chart is regarded as the new seed mesh. Second, are all meshes clustered
into charts? If yes, go to the next criterion. If not, go back to the beginning of this step. Third, are all
charts a single boundary loop? If yes, this step is finished. If not, go back to the beginning of this step.
Notably, after step 2, all meshes are clustered into charts.

In step 3, seed mesh upgrading, the seed mesh on each chart is recomputed. The upgraded seed
mesh is located near the center of the chart, which is achieved by a reverse searching process from the
boundary of the chart. Starting from a mesh on the boundary, Equation (2) is repeatedly employed to
find a loop of meshes around the boundary of the chart. The same search is repeated from outside to
inside to yield several layers of loops. The final mesh on the last loop is regarded as the upgraded seed
mesh. If all upgraded seed meshes are identical to the ones in the previous iteration, this indicates
that all charts obtained are converged, and the entire process is finished. Otherwise, we return to the
beginning of step 2 to regenerate all charts with the upgraded seed meshes. Table 1 lists the process
(CPU) time required vs. number of meshes for the case “Shoe 1”. It is noted that the number of meshes
used in this study is only 4500 as the model is to be used on a web viewer. Therefore, the computational
time in this case is sufficiently fast.
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Table 1. Time consuming for mesh partitioning.

Object
Number of

Meshes
No. of Initial

Seeds
No. of Final

Charts
Total Time (s)

Shoe 1

4500 * 10 10 0.246
10,000 10 30 1.812
20,000 10 66 7.075
30,000 10 111 18.431
40,000 10 148 31.603
50,000 10 202 44.574

* used in the case study herein.

4.2. Mesh Parameterization and Packing

After mesh partitioning, the 3D model can be separated into several disk-type mesh groups.
This series of mesh groups is flattened onto the 2D domain based on an angle-preserving and conformal
mesh parameterization. The main idea of this parameterization method is to make the difference
between angles in the 3D and 2D domains as small as possible. Several topological constraints are also
applied during the optimization of the angles to ensure the topological correctness on the 2D domain.
The proposed angle-based flattening method sets three kinds of mesh-topology constraints, namely,
triangle, vertex and wheel consistencies, as shown in Figure 3a–c. This series of topological constraints
can be formulated as the following objective function in a linear system:⎡⎢⎢⎢⎢⎢⎢⎢⎣

10101 · · · 0
...

10110
...

. . .
...

cot(ϕ)0cot(ω) 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
ε1

ε2

ε3
...

εn×3

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

180 − (α+ β+ γ)
...

360 − (θ1 + . . . θd)
...

(log(sin(ϕ))− log(sin(ω))) + . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where n is the number of meshes; εi is the error of the angle on the ith mesh; α, β, and γ are the angles
on each mesh; θd is the angle around the inner vertex; d is the number of angles around the inner vertex;
and ϕ and ω are the angles on two adjacent meshes, respectively, corresponding to the common edge.
Equation (3) is essentially Ax = b, where the errors εi, i = 1 . . . n × 3 can be minimized. The optimized
angles on the 2D domain can then be obtained by adding the errors and the original angles together.

The new vertices on the 2D domain must be calculated in accordance with the optimized
angles. Let three vertices of a triangle be e1, e2 and e3, and the corresponding angles be α1, α2,
and α3, respectively. The calculation of the new vertices on the 2D domain uses the following
least-squares approximation:

Qobj = min ∑
j

[(
ej

3 − ej
1

)
− sinα

j
2

sinα
j
3

R
α

j
1

(
ej

2 − ej
1

)]2

, (4)

where R is a rotation matrix with angle α1, and j is the jth iteration. Assume that the two vertices e1

and e2 of a triangle are known. Equation (4) employs the known vertices e1 and e2 to optimize the
unknown vertex e3, where Qobj is the objective function for the optimization. For all 2D meshes, if the
first two vertices on a mesh can be determined, the remaining vertices can be evaluated by using the
least-squares approximation [11], which is formulated as a set of linear equations. The topology of all
vertices on the UV domain can be maintained correctly.
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Figure 3. Three kinds of mesh-topology constraints in mesh parameterization: (a) triangle consistency,
(b) vertex consistency, and (c) wheel consistency.

The parameterized mesh islands are all independent. This series of mesh islands needs to be
packed together onto the UV map. The UV map is essentially a kind of image that records all 2D
meshes and is of the same image size as the texture map. The process of collecting all mesh-islands
and converting them into the UV map is called packing. The objective in packing is to let each mesh
island occupy as much space as possible, thereby maintaining the resolution of the texture as close to
that of the 2D images as possible. Therefore, we consider how to efficiently arrange the mesh islands
on the UV map. First, an oriented boundary box (OBB) method [41] is employed to construct a best-fit
boundary box for each mesh island, as shown in Figure 4a. Using the OBB method to arrange the
islands ensures that less space on the UV map is wasted compared to when using the axis aligned
bounding box (AABB) method shown in Figure 4b. Next, the mesh islands are arranged together
according to their OBB lengths on the UV map, as shown in Figure 4c.

Figure 4. Mesh-islands packing: (a) the oriented boundary box (OBB) method to determine the
boundary box, (b) the axis aligned bounding box (AABB) method to determine the boundary box,
and (c) packing of all mesh-islands.

4.3. Texture Transferring

Texture transferring is essentially a process which yields a texture map by filling in each pixel on
and inside the mesh islands on the UV map with a color extracted from the object images. The following

153



Appl. Sci. 2018, 8, 2228

sentences describe the basic idea of this algorithm (see Figure 5). For each 3D mesh, we allocate the
most appropriate object image (called front image hereafter) and extract a triangular range of pixels
and color information for this mesh. We can also find a triangular range of pixels on the UV map for the
same mesh. However, two pixel ranges might not be the same. Therefore, we perform a transformation
for pixel mapping between these two domains. The texture transferring algorithm has three main
steps: grouping the 3D meshes, extracting the pixels from object images, and placing the pixels onto
the UV map. A detailed description for each step is given below.

Figure 5. Texture transferring.

4.3.1. Grouping the 3D Meshes

The purpose of this step is to allocate each mesh to a front image and put all meshes that use the
same front image in a group. Each mesh can be projected onto several candidate images. The candidate
image that yields the largest projected area and hence the highest texture resolution is chosen as the
front image. Ideally, all object images could be regarded as the candidate images and selected by all
meshes. However, erroneous texture mapping might occur owing to insufficient inaccuracy of the
3D model, as well as camera parameters. A seam line is a photo-inconsistent phenomenon that often
occurs at the transition of two different image sources. As the number of candidate images increases,
so does the possibility of seam lines. Therefore, to reduce the occurrence of seam lines, we only select
some object images as the candidate images and perform mesh grouping.

The algorithm of grouping is as follows. A series of pieces of camera information corresponding
to the object images and the 3D meshes are the input. One of the important parameters is the looking
vector, which represents the camera viewing direction and is perpendicular to the image plane.
In addition, each of the meshes has its own surface normal. The grouping criterion is based on the
angle between the looking vector of an image and the surface normal of a mesh. The front image of a
mesh is defined as the image with the minimum angle among a set of candidate images. It can yield
the largest projected area when projecting the mesh onto the front image. All meshes that use the same
front image can thus be grouped.

Visibility should be considered when grouping meshes. The following two criteria are checked
to detect the visibility of a mesh. First, the angle between an image and a mesh must be less than
90◦. This criterion is employed to ensure that the image faces the front side of the mesh. Second,
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this mesh cannot be obstructed by other meshes that use the same front image. An obstruction
check in terms of the above two criteria could be developed by comparing each mesh with all other
meshes. However, it would require substantial computational time. A cell subdivision algorithm [42]
is employed to check the possibility of mesh obstruction, which can save the computational time
efficiently. The visibility check can prevent the occurrence of mesh obstruction for all meshes on the
same group. When the visibility problem occurs on an image, the front image can be selected from one
of its two neighboring images.

After these processes, the meshes are grouped. The existence of isolated meshes may result in
additional seam lines. An isolated mesh is a small mesh island, which has a front image different to
its surrounding meshes. As the boundary of the mesh island represents two different image sources,
seam lines easily occur around the boundary of the mesh island. Therefore, when a mesh island is
detected, its image source is changed to that of its surrounding meshes. Figure 6 depicts the grouping
result of an example using six candidate images.

 
Figure 6. The grouping result of a shoe example using six candidate images.

4.3.2. Extraction of Pixels from the Object Images

The purpose of this step is to extract pixels from the front image with respect to a 3D mesh.
A prospective projection is performed to project 3D meshes back to the image domain. As Figure 5
depicts, the triangle Δp1p2p3 denotes the projection of a 3D mesh Δv1v2v3 onto the image domain.
All pixels and color information on and inside this triangle represent the corresponding texture for the
3D mesh. The extraction of a pixel inside a triangle is explained below. The image is made up of pixels
in a grid plane containing horizontal and vertical lines, which gives each pixel a unique coordinate.
A scanline method is implemented to compute all pixels inside a triangle. The scanline shown in
Figure 7 intersects two triangle edges, which yields the two endpoints of the line segment inside the
triangle. All pixels on this line segment can then be evaluated in sequence. An endpoint of the line
segment can be evaluated by using the following equation:

δx = X2 − [
(Y2 − Y)·(X2 − X1)

(Y2 − Y1)
], (5)

where (X1, Y1) and (X2, Y2) denote two vertices of an edge on the triangle, Y is the vertical coordinate
value of the current scanline, and δx is the horizontal coordinate value of the endpoint on this edge.
Equation (5) is applied twice on the left and right edges, respectively, for each scanline.
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Figure 7. A scanline method to evaluate all pixels inside a triangle.

4.3.3. Placement of Pixels onto the UV Domain

The final step is the placement of pixels onto the UV map. The pixels with respect to each 2D
mesh are evaluated in the previous step. However, as each 2D mesh on the UV domain is different
from the projected mesh on the image domain, the pixels on these two-pixel domains do not have
a one to one correspondence. Therefore, a transformation algorithm must be employed to map the
pixels between these two domains. The proposed algorithm is explained below. The three vertices of a
mesh on the image domain are respectively mapped onto the corresponding three vertices on the UV
domain by using the following equation:

aX + bY + c = X′, (6)

dX + eY + f = Y′, (7)

where X and Y denote the coordinates of a vertex on the image domain, and X′ and Y′ denote the
coordinates of the corresponding vertex on the UV domain. The parameters a to f can be evaluated
as all three pairs of vertices on the image and UV domains are given. Once a to f corresponding to
a triangle are obtained, the colors of all pixels within this triangle can thus be interpolated by using
Equations (6) and (7). Therefore, all pixels of different triangles on the UV domain can be filled in with
correct colors, which yield the texture map for all 2D meshes.

4.4. Texture Correction and Optimization

The purpose of this study is to generate a high quality texture for a 3D mesh model. Thus,
the texture correction and optimization need to be investigated to ensure that the texture quality is
similar to that of original 2D images. There are four key issues to study: packing the meshes on the
UV domain efficiently, arranging the pixel resolution on the texture map, eliminating the influence
of geometric error on the 3D model, and blending the texture at the transition of different images.
For the first issue, the main idea has already been described in Section 4.2. The meshes can be packed
efficiently on the UV map by applying the OBB method to each mesh island, which can yield a smaller
boundary box for each mesh island packed on the UV map as compared with the AABB method.
In this way, the overall space required for the OBB method is more compact than that without applying
the OBB method. Hence, each 2D mesh can allocate more pixels on the UV map, which is especially
useful for small meshes with respect to preserving the texture resolution.

The next issue is arranging the overall resolution of the texture map. An object image only
partially covers the texture of an object. However, a texture map must cover the entire object texture.
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If the texture size of a texture map is the same as that of an object image, the image resolution of
the texture map is worse than that of the object image. The texture size of an object image used
is 5184 × 3456, whereas the original texture size for a texture map is 4096 × 4096. After a careful
comparison of several kinds of image resolution, the texture size of the texture map is expanded to
8192 × 8192, with a texture space four times larger than before. This kind of texture size ensures
that the pixel number within a mesh on the texture map is close to that of the same mesh projected
onto an object image. The original high-quality image information can therefore be kept on the final
texture map.

The texture information is extracted from an object image by projecting a 3D mesh onto the
corresponding image plane. Normally, a projected mesh is completely inside an image silhouette,
and the corresponding range of pixels can be extracted from the projection. However, due to the
insufficient accuracy of the 3D model, some of the meshes could be wrongly projected and are partially
or completely outside the image silhouette, such as the example in Figure 8a. When a projected
mesh is not completely inside the image silhouette, no matching texture can be obtained, and hence
the corresponding color is void. To deal with this kind of problem, it is necessary to detect each
occurrence of this kind of mesh, and change the front image for each of them. The detection is based
on the background removal of object images. First, the object image is converted into a binary image
by verifying the foreground and background information. An alpha channel, which records the
transparency of each pixel on an object image, is saved and associated with the object image after
background removal. This process can be used to verify the foreground and background information
of the object image. We convert the object image into black and white in accordance with the data
on the alpha channel, such as the example in Figure 8b, where the pixels in white and black denote
inside and outside the object, respectively. This additional image is used to check if a projected mesh is
outside the image silhouette during the texture transferring process. Since the transferring is scanned
pixel by pixel, the black color can be detected and the mesh that covers the black color can be marked
for further correction later. Figure 8c depicts the meshes covering pixels of black color, and are marked
to individually change their front images. For each of this kind of mesh, the new front image is
determined by choosing one of the two neighboring images of the original front image.

Figure 8. Detection and removal of meshes with missing color: (a) the projected mesh outside the image
silhouette, (b) the image converted into foreground (white) and background (black) in accordance with
the alpha channel, and (c) meshes detected outside the image silhouette.
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The final optimization is to blend the texture at the transition of different images. The texture is
extracted from different front images. However, the texture between different image sources may be
inconsistent in color. This difference will cause seam lines on the 3D textured model. The blending
between two texture sources can be performed to optimize the color consistency on the model.
The boundary meshes should be detected first. The blending is based on the pixel distance to the
boundary edge. The equation of color blending is

P′(i) = (Pm (i) × Df + Pn (i) × (Df − Dc))/(2 × Df − Dc), (8)

where P′(i) denotes the blending pixel color of the mesh, Pm (i) denotes the main pixel color of the
mesh, Pn (i) denotes the neighboring pixel color of the mesh, Df denotes the farthest pixel of the mesh,
and Dc denotes the current pixel of the mesh. Figure 9a depicts the blending of two pixel colors on
two neighboring meshes. A linear variation on the weight for blending is applied so that when the
distance of the pixel is close to the boundary edge, the weight is larger; whereas, when the distance of
the pixel is further from the boundary edge, the weight decreases linearly. That is, the original color
information on each mesh is kept if the pixel is far from the boundary edge. In this way, the seam lines
on the model can be eliminated to support the consistency of the 3D textured model. Figure 9b shows
one example to illustrate the effect of blending, where the left and right plots indicate the results before
and after blending, respectively.

Figure 9. Texture blending at the transition of different images: (a) the blending of two neighboring
meshes, and (b) a shoe example before and after blending.

5. Result and Discussion

The results of the texture map and 3D textured model for six examples are depicted in Figure 10a–f,
where the left and right images in each figure panel denote the 3D textured model and the texture map,
respectively. The entire texture mapping process is done automatically, with a 3D model and 16 object
images in different views as inputs, and the corresponding texture map as the output. The texture
size for all six examples is 8912 × 8912. The proposed process includes the following key procedures:
mesh partitioning, mesh parameterization and packing, texture transferring, and correction and
optimization of the texture. The initial number of seeds on mesh partitioning is set to 10, and the
final number of mesh islands generated for all six examples is 10–13. Each of the results in Figure 10
can be demonstrated as a high-quality 3D textured model by applying the texture correction and

158



Appl. Sci. 2018, 8, 2228

optimization during the texture generation process. The results with and without texture correction
and optimization are further discussed below.

Figure 10. Cont.
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Figure 10. The results of the texture map and 3D textured model for six examples: (a) shoe 1,
(b) microphone, (c) shoe 2, (d) cup, (e) shoe 3, and (f) statue.

The first optimization process is mesh island packing. When the AABB method is employed
(Figure 11a), the bounding box of each mesh island is larger, and the empty space inside each boundary
box is also larger. When all these boundary boxes are packed onto a UV map of fixed size, each mesh
island is over-compressed and loses the texture resolution that it should have. By contrast, when the
OBB method is employed (Figure 11b), each boundary box can best fit its mesh island so that the
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space that a mesh island occupies is more compact. In addition, the previous resolution of the texture
map was 4096 × 4096 pixels. To maintain the resolution 5184 × 3456 of the original image, the larger
resolution 8192 × 8192 has been applied to enhance the quality of the final texture. The texture
space is four times larger than before. Therefore, each mesh island can be allocated more pixel space
when all boundary boxes are packed on the same UV map. Figure 12 depicts the distribution of
the mesh number on each range of pixel numbers for the following four cases: 8192 × 8192/OBB,
8192 × 8192/AABB, 4096 × 4096/OBB, 4096 × 4096/AABB and commercial (3DSOM) software [43],
where 3DSOM is commercial software. When the number of meshes with fewer pixels is reduced,
the texture resolution is closer to that of the original images. It is evident that the texture resolution of
the case 8192 × 8192/OBB is the best among the five cases because it has the minimum number of
meshes with fewer pixels. In addition, the texture resolution of 3DSOM software is the worst as most
of meshes have pixels less than 2000. Therefore, the texture resolution of the proposed method is better
than that of 3DSOM software. Figure 13 depicts a local region of the texture for three cases, 3DSOM
software, 4096 × 4096/AABB and 8192 × 8192/OBB. The result clearly indicates that the sharpness of
the texture in Figure 13c is better than that in Figure 13a,b. The 3DSOM software blends the color with
a low-pass filtered image, which will result in a loss on the texture resolution. This result indicates that
the proposed method can yield a better texture resolution than 3DSOM software.

Figure 11. The results of mesh-island packing for two methods: (a) AABB method and (b) OBB method.
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Figure 12. The bar chart of mesh number vs. pixel number for five cases: 8192 × 8192/OBB,
8192 × 8192/AABB, 4096 × 4096/OBB, 4096 × 4096/AABB and 3DSOM software.
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Figure 13. The comparison of texture quality for three cases: (a) 3DSOM software, (b) 4096 ×
4096/AABB and (c) 8192 × 8192/OBB.

The next optimization process is the elimination of the texture defects caused by the geometric
error. The background color of the image might be wrongly extracted for some meshes near the image
silhouette, resulting in white spots on the 3D textured model. The incorrect extraction is caused by the
meshes that are located outside the image silhouette when they are projected onto the front image.
Thus, we wish to eliminate the influence of the error. Figure 14 depicts the comparison of 3DSOM
software, the previous result, and the proposed result where, for the previous result, no action was
taken to deal with this problem, and for the proposed result, the data on the alpha channel of each
object image was employed to detect this problem, and then its front image was replaced where
necessary. It is evident that white background spots appear both on the result of 3DSOM software and
previous result, they have been eliminated on the proposed result and the color is more consistent on
the boundary area. For the e-commerce presentation, the color correctness is increased and the entire
model viewing experience is improved.

The final optimization process is blending the texture information on the image transition area.
The texture information is extracted from different front images. The boundary between two image
sources might be inconsistent in color. The results before and after the implementation of the proposed
blending algorithm for a shoe and a cup are shown in Figure 15a,b, respectively. The texture quality on
the transition area has been improved. The quality of the entire 3D textured model can therefore be
improved for the purpose of e-commerce presentation.
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Figure 14. Implementation of the proposed algorithm to remove missing colors: (a) 3DSOM software
(b) before and (c) after.

Figure 15. Results before and after the implementation of the proposed blending algorithm: (a) shoe
and (b) cup.
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6. Conclusions

In this study, we proposed a texture mapping technique that incorporates mesh partitioning,
mesh parameterization and packing, texture transferring, and texture correction and optimization.
The proposed mesh partition minimizes the growing cost to find the optimized mesh group. The mesh
parameterization was based on an angle-based flattening to yield the optimized angles for 2D meshes,
and a least-squares approximation to obtain all vertices. The texture transferring was implemented by
projecting 3D meshes onto the image domain, and then extracting the pixels to map onto the UV map.
However, to maintain the original quality of the texture information, a correction and optimization
process was proposed. The OBB method was applied to allocate the UV map space more efficiently
in the packing stage. The resolution of the texture map was increased to sufficiently include the
original extracted pixels. Additional images were also employed to correct the error extraction of the
background color by applying the alpha channel onto the object image. Finally, a blending process
was proposed to minimize the transition error caused by different image sources. A high-quality 3D
textured model can be obtained by applying this series of processes for presentations in e-commerce.
However, the photo consistency of the 3D textured model is still not as good as that of 2D images.
The color information from different image sources for the same point may differ slightly. This error is
caused by the inaccuracy of 3D vertices and the calibration error; it can affect the projection accuracy
of the vertices onto different texture sources. To further improve the quality of the 3D textured model,
the photo inconsistency problem should be studied further.
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Abstract: For the image super-resolution method from a single channel, it is difficult to achieve
both fast convergence and high-quality texture restoration. By mitigating the weaknesses of existing
methods, the present paper proposes an image super-resolution algorithm based on dual-channel
convolutional neural networks (DCCNN). The novel structure of the network model was divided
into a deep channel and a shallow channel. The deep channel was used to extract the detailed
texture information from the original image, while the shallow channel was mainly used to recover
the overall outline of the original image. Firstly, the residual block was adjusted in the feature
extraction stage, and the nonlinear mapping ability of the network was enhanced. The feature
mapping dimension was reduced, and the effective features of the image were obtained. In the
up-sampling stage, the parameters of the deconvolutional kernel were adjusted, and high-frequency
signal loss was decreased. The high-resolution feature space could be rebuilt recursively using
long-term and short-term memory blocks during the reconstruction stage, further enhancing the
recovery of texture information. Secondly, the convolutional kernel was adjusted in the shallow
channel to reduce the parameters, ensuring that the overall outline of the image was restored and
that the network converged rapidly. Finally, the dual-channel loss function was jointly optimized to
enhance the feature-fitting ability in order to obtain the final high-resolution image output. Using the
improved algorithm, the network converged more rapidly, the image edge and texture reconstruction
effect were obviously improved, and the Peak Signal-to-Noise Ratio (PSNR) and structural similarity
were also superior to those of other solutions.

Keywords: super-resolution; dual-channel; residual block; convolutional kernel parameter; long-term
and short-term memory blocks

1. Introduction

Because images are affected by both the image processing system and the transmission environment
during the process of acquisition, the resolution of the original image is typically low; moreover, since
key information is missing from these original low-resolution images, they are generally not capable of
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meeting many actual user needs. Accordingly, the use of high-resolution images is required in some
areas and fields of research. In order to solve the problems caused by low image quality, Single Image
Super Resolution (SISR) technology is used to transform a single Low-Resolution (LR) image into a
High-Resolution (HR) image containing rich high-frequency information. There are wide applications
for this technology in the research fields of object detection, satellite image, medical image and face
recognition [1–4].

Traditional SISR methods have included interpolation methods based on the sample extraction
theory, such as Bicubic Interpolation [5] and Bilinear Interpolation [6]. The image reconstruction is
based on methods including the Iterative Back Projection (IBP) method [7], the Projection Onto method
(PO) [8], the Maximum A Posteriori method (MAP) [9], and so on. Based on learning methods such
as embedded neighborhood [10], the regression or mapping relationship between HR and LR blocks
has been understood by using the concept of geometric similarity. In sparse representation based on
the interrelated approach, Yang et al. [11] and Yang et al. [12] reconstructed HR image blocks and HR
images by strengthening the similarity between LR and HR image blocks and their corresponding real
dictionaries, so that the sparse representation of the LR block and the super-completed HR dictionary
can be used to reconstruct HR image blocks and then connect HR images. A complete high-resolution
image is obtained like a block [13–16].

In recent years, deep learning has achieved remarkable results in the research field of image super
resolution, benefiting from the powerful feature characterization [17] of deep learning, which is more
effective than traditional methods. Dong et al. [18] first proposed the application of the Super Resolution
using Convolutional Neural Networks (SRCNN) algorithm to super-resolution images. Compared
with traditional methods, the simple network structure obtains the ideal super-resolution; however,
there are limitations of the simple network structure. Firstly, it is dependent on the context information
of small image blocks. Secondly, the training convergence is too slow, and the time complexity is
high. Thirdly, the simple network only can be used for a single-scale super resolution (SR) procedure.
Dong et al. [19] proposed the Fast Super-Resolution Convolutional Neural Network (FSRCNN) by
reducing the speed training of the network parameters. FSRCNN used eight layers of network structure,
making it deeper than SRCNN; moreover, instead of Bicubic Interpolation, the anti-coiling layer was
used on the last layer of the network. Finally, FSRCNN has achieved success in the convergence and
super-resolution reconstruction field. Considering the slow convergence and shallow network of
SRCNN and FSRCNN networks, Wang et al. [20] proposed an image super-resolution algorithm (EEDS)
based on end-to-end and shallow convolutional neural networks that has achieved better performance
than others. However, because the deep network cannot fully extract the features of an LR image
in the feature extraction stage, the loss of useful information and long-term memory content during
the reconstruction process becomes serious when the feature of the up-sampling process is nonlinear
mapping, as this causes the effect of super resolution to be reduced by the deep network. However,
generally speaking, the shallow network master is the main problem. Moreover, when restoring
the main components of LR images, the fast convergence of the network can be limited if too many
parameters are used. Kim et al. [21] proposed a highly accurate single-image super-resolution method
named Very Deep Networks for Super Resolution (VDSR). By using a very deep convolutional network
of VGG-net [22] in image classification, the model employs cascaded small filters in a deep-network
structure, using 20 weight-layers to efficiently utilize the context information of the large image region.

Moreover, Kim et al. [23] proposed the Deep Recursive Convolutional Network (DRCN) for image
super resolution. The network uses a very deep recursive layer (as many as 16 recursions), as increasing
the recursion depth can improve the performance without the need to introduce additional parameters
to additional convolutions. In order to prevent the explosion and disappearance of the gradient,
as well as to reduce the difficulty of training, the recursive monitoring and skipping connection
methods are far more effective than previous methods. Recently, Ke et al. [24] proposed the Gradual
Up-Sampling Network (GUN) method, which is based on a deep convolutional neural network. This
method uses a gradual process to simplify the direct SR problem into a multi-step sampling task
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that employs very small magnification at each step. The Enhanced Deep Residual Networks for
Single-Image Super Resolution (EDSR) and the Multi-Scale Deep Super-Resolution (MDSR) network
were proposed by Lim et al. [25] among others. The model is optimized by removing unnecessary
modules from the residual network to significantly enhance the performance of the model. Moreover,
by extending the size of the model to further improve the performance, MDSR can reconstruct HR
images with different magnification factors using a network model. Tai et al. [26] proposed a very
deep Memory Network (MemNet) for image restoration, which introduces memory blocks consisting
of a recursive unit and a gate control unit that mine persistent memory through an adaptive learning
process. The representation and output from previous memory blocks are connected and sent to the
gate control unit. The gate control unit is adaptive to control memory [27,28] and controls how many
previous states should be retained and how many current states should be stored to achieve superior
performance in super-resolution tasks [29,30].

By exploring the above methods and combining them with MemNet [26] and Deep Residual
Network (ResNet) [31], Nair et al. [32] proposed an enhanced algorithm of image super-resolution
based on Dual-Channel Convolution Neural Network (DCCNN), related to SRCNN and EEDS to
solve the above problems. The shallow channel is mainly used to restore the overall outline of the
original image and to achieve fast convergence performance. By adjusting the parameters of the
three-layer network from the shallow channel, it can quickly converge while ensuring the restoration
of the main components from the image. By contrast, deep channels are used to extract detailed texture
information from LR images. Deep channels are divided into three steps: feature extraction and
mapping, up-sampling, and long-term and short-term memory block reconstruction. Because there are
fewer network layers in the extraction stage of the original model, the local sensing field of the image is
too small, and the full LR image feature extraction will lead to the final SR effect. In order to avoid loss
of important high-frequency content, the proposed model increases the residual layer on the original
basis by increasing the number of network layers in the process; it also reduces the LR feature mapping
dimension, such that the residual layer can learn edge and texture information of the image better than
the common stacked convolution, and the increased network depth avoids the network. It is difficult
to train the problem, meaning that the feature can be directly transmitted to the lower level so as to
optimize the gradient vanishing problem and make it easier for the network to enhance the training
performance. During the up-sampling phase, because the sampling operation is an important part
of the model, the goal is to increase the space span to the target of the HR size. In order to get good
results, a 1 × 1 filter is used to increase the number of dimensions to 64 after the mapping is complete.
In addition, deconvolution is used to achieve the sampling rather than manual designing. During
memory block reconstruction in the long-term and short-term period, because the reconstruction stage
directly determines the HR reconstruction effect of the deep channel, the long-term and short-term
memory blocks made up of the residual block are used after up-sampling to further reduce the loss
of high-frequency information, such that the reconstructed HR image texture information is more
abundant. Finally, the deep and shallow passages are jointly optimized to obtain the final HR image.
Experimental results show that the effect of network super resolution is better than that of bicubic
interpolation, A+ [11], SRCNN [18], and EEDS [20] super-resolution reconstruction algorithms.

2. Related Works

2.1. The SCRNN Model

In the learning-based super-resolution image algorithm, SRCNN applied a convolutional neural
network to the task of image super resolution for the first time. Compared with traditional methods,
the method can directly learn the mapping relationship between LR images and HR images.

As shown in Figure 1, the process of the proposed algorithm was divided into three stages.
The data are pre-processed, the training dataset of 91 images is taken to make up the image block of 14,
and the LR image block after the bicubic interpolation pre-processing procedure is used as the input
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for the network. The first layer uses 64 filters and the convolutional core of the size of 3 channels of
image block performs feature extraction and representation; at this time, the number of channels is
expanded from 3 to 64. The second layer uses 64 filters, and the convolution nucleus (of size 1 × 1)
conducts the nonlinear mapping to extract features; at this time, the number of channels is reduced
from 64 to 3. The third layer uses a convolution nuclear size of 5 × 5 to reconstruct the HR image block
at this time; the number of channels decreases from 64 to 3. Finally, the mean squared error (MSE)
corresponding to the original image and HR output image is constructed to optimize the model’s
parameters. In SRCNN, the experimental results show that the super-resolution effect is improved by
using a large scale of dataset for ImageNet.

 
Figure 1. The processing procedure of Super Resolution using Convolutional Neural Networks
(SRCNN) construction.

2.2. Image Super-Resolution Algorithm Based on Dual-Channel Convolutional Neural Networks

The image super-resolution algorithm is based on dual-channel convolutional neural networks,
such as EEDS [21], and is also a learning-based SISR algorithm. The EEDS algorithm works to improve
SRCNN and FSRCNN: its structure is deeper than those of SRCNN and FSRCNN, and the residual
block with jump layer, the residual network because of the existence of the fast connection. Data
transmission between the network is smoother, and the gradient is improved, resulting in the loss of
fitting and making it easier for the network to converge. The network structure of EEDS is divided
into two parts: the deep layer and the shallow layer. The deep network contains 13 layers, including a
feature extraction layer, an up-sampling layer, and q multi-scale reconstruction layer. The shallow
network contains three layers. The design idea comes from the three-layer model of SRCNN, in
which the anti-coiling layer replaces the original SRCNN nonlinear mapping layer. Finally, using a
deep network combined with the output of the shallow network, the final output of the HR image
is obtained.

In the training process, 91 training images are first scaled, rotated, and fragmented, and then
sampled according to the required ratio. The obtained LR image blocks are input into the double-layer
network. The MSE corresponds to the original image, the output HR image is constructed, and the
model parameters are optimized.

The shortcomings of the network are as follows: because the deep network cannot fully extract
the features of the LR image in the feature extraction stage, the nonlinear feature mapping of the
up-sampling process leads to the loss of useful information and of long-term memory content in
the reconstruction process, which causes the deep network to discount the effect of super-resolution.
The shallow network is mainly used to restore the main components of LR images. Too many
parameters will limit the fast convergence of the network.

3. Dual-Channel Convolutional Neural Networks

3.1. The Improved Ideas

Because the shallow network cannot adequately extract the features of the LR image, the effect
produced by super resolution is not ideal. Although the deep network is superior to the shallow
network in depth, the deepening architecture of the network will also cause the network to be difficult
to train, and the gradient disappearance/explosion will affect the stability of the network. Therefore,
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by combining with the two factors of width and depth of the network, the SRCNN and EEDS have
been improved.

The network structure of SRCNN and EEDS is that of a three-layer network, that of the DCCNN
is “deep and shallow”, using 13 tiers and 3 tiers, respectively, in a dual-channel network; the shallow
channel is used to restore the overall outline of the image, while the deep channel is used to restore
rich texture information. Therefore, the combination of these two channels can effectively improve the
efficiency of training, enhance the feature-fitting ability, and reduce the computational complexity of
the whole model. On the basis of the above factors, the present paper selects the parameters of the
shallow channel with a convolutional kernel while adjusting the depth of the deep channel network,
so that the shallow channel is mainly responsible for the convergence performance of the network
to reduce the time complexity of the model; moreover, the deep channel is mainly responsible for
more detailed texture recovery and for improving the restoration precision of the network. It is more
efficient to learn the texture information at a high level, and the feature of fitting the image is more
accurate, considering that the use of the residual block and the jump layer results in faster convergence
than a simple increase in the number of network layers and also reduces the gradient dispersion and
the loss of features.

Therefore, residual blocks and skip layers in deep channels are used in this paper. At the same
time, as the depth increases, it is more difficult for the model to achieve long-term dependence at
each stage; this leads to the reduction of dependence during the up-sampling component of the
reconstruction phase and the increased loss of the important, higher-frequency information in the
up-sampling stage. Accordingly, in this paper, three residual blocks are selected in the reconstruction
stage to grow the short-term memory blocks to the up-sampling feature. The space is rebuilt. Finally,
this paper proposes an image super-resolution algorithm based on DCCNN with a deep channel of
19 layers and a shallow channel of 3 layers.

3.2. The Network Structure of DCCNN

The image super-resolution algorithm based on DCCNN fully considers the nonlinear mapping
relationship between the low-resolution image and the super-resolution image, and the characteristics
of the dual-channel are equal to those of the proposed model. The corresponding weights for each
channel are not shared in DCCNN. The shallow channel is mainly used to restore the overall outline of
the image. The deep channel is used to extract detailed texture information of the LR image. In the
phase of feature extraction and mapping with the deep channel, the input layer of the proposed
network is the three-channel LR image, which is 48 × 48 size of units.

Figure 2 presents the dual-channel network constructed in this paper, which is divided into two
sub-channels: the deep channel and the shallow channel. Firstly, the number of channels is increased
to 64 through the convolutional kernel of 3 × 3 size, then entered into the residual block (see Figure 3).
It is composed of Conv, ReLU, and Conv, and the Conv residual block size is 3 × 3, while the step length
is one and the padding is two. After three residual blocks, the output has 16 48 × 48 characteristic
graphs. At this time, the semantic information in the feature map is richer than it was previously.
In the up-sampling phase, as the most important part of the network, the goal is to increase the spatial
span of the LR images to HR size. After the mapping, the dimension of 1 × 1 is compressed from 16
to 4. Instead of using the manual interpolation method, we used deconvolution (DeConv) to achieve
the up-sampling. The size of DeConv is 9 × 9. For two times, three times and four times, the different
scales of up-sampling by setting different steps. After deconvolution, the feature map is increased to
64. Finally, the dimension of the 1 × 1 filter is mapped from 64 to 4, the parameters of the 1 × 1 filter
are effectively reduced, and the calculation complexity is also reduced. In the stage of reconstructing
long-term and short-term memory, as the last stage of the network, the up-sampling phase is also the
most important part, as it determines the quality of the texture information recovery from the network.
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Channel 1: Deep Channel LR Image Channel 2: Shallow Channel
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Figure 2. The processing procedure of Dual-Channel Convolutional Neural Networks (DCCNN).

Considering that it is difficult for the model to achieve long-term dependence at each stage, we
used the multi-scale convolution to reconstruct the up-sampling feature space using long-term and
short-term memory blocks at the beginning of the reconstruction. The long-term and short-term
memory blocks, which are shown in Figure 4, consist of three residual blocks. The dimensions of the
feature map range from 64 to 32, which further reduces the dimensions and enhances the nonlinear
mapping ability. The size of Conv in the long-term and short-term memory block is 3 × 3, the step length
is one, the padding is two, and the output is 32 feature graphs. The 1 × 1 filter is then used to compress
the dimensions from 32 to 16, so that the high-dimensional feature is extracted and the computational
complexity is reduced. In order to effectively aggregate the local information of the 16 feature maps,
multi-scale convolution is used for reconstruction. The multi-scale coiling layer contains four filters of
different sizes, namely, 1 × 1, 3 × 3, 5 × 5 and 7 × 7. The four filters’ convolutions in the layer are parallel.
Each filter has 4 outputs in the feature graph, and then the 16 feature graphs are combined. Finally,
the 1 × 1 filter is used as the weighted combination of multi-scale texture features. At this time, the
dimension of the feature map is from 16 to 1. Correspondingly, the use of deconvolutional networks to
complete the up-sampling operation involves the use of a three-layer structure similar to that of SRCNN
in shallow channels. The specific process is as follows: the three-channel LR image input to 48 × 48 is

172



Appl. Sci. 2019, 9, 2316

input from the input layer to the network, and the number of channels is increased to four through the
3 × 3 filter. The space span of the LR image is increased to the HR size by means of deconvolution.
The size of DeConv convolutional kernel is the same as that of the 9 × 9 deep learning network, and the
feature map after the deconvolution is increased to 16. Finally, using the convolutional kernel of 3 × 3
size, the step size is one, the padding is two, and the output is a three-channel feature graph.

In order to avoid the problem of gradient disappearance, our proposed structure is deeper than
that of the improved network; moreover, the characteristics of both the feature graph and the feature
map of the lower layer are also different. Furthermore, in this paper, the ReLU [33] activation function
is used in all convolution operations to improve the PReLU [34] activation function. All convolutional
operations utilized in this paper can improve the high network’s nonlinear modeling ability. At this
point, the output feature graph of the shallow and deep network is optimized, the output of the two
networks is added, the effective component is retained, and the texture information of the feature map
is enriched. The feature graph is then input to a convolution layer of 1 × 1 size. Finally, the image
output of HR is obtained, with the result that the image quality has greatly improved.

3.3. Residual Blocks and Long-Term and Short-Term Memory Block

(1) Residual Blocks
The residual blocks’ network design is inspired by the 152-level ResNet network proposed by He

et al. [31]. The recognition performance on the ImageNet dataset was improved with the increase of
the number of network layers, and its performance on computer vision problems [22,23,26] from low
to high tasks is excellent.

The original residual block, which is shown in Figure 3a, is composed of a feed-forward
convolutional network and a jump around a number of layers. The stacked residuals form the final
residual networks. Compared with a smooth network, the residual network exhibits lower convergence
loss and a lack of overfitting due to the disappearance of the gradient, which makes the network easier
to optimize. The dimensions of the feature map progressively increase to ensure the ability to express
the output features.

  
(a) (b) 

Figure 3. The processing construction with improved residual blocks described in the paper. (a) Original
Residual Blocks; (b) Improved Residual Blocks in the Paper.

Since the original batch normalization layer (BN) [35] is used to normalize the characteristics of
the coiling output layer, this will affect the distribution of features learned by the convolution layer
and cause the loss of important information from the feature graph. Moreover, the batch positive layer
has the same number of parameters as the previous convolutional layer and thus consumes a lot of
memory. In their image deblurring task, Zeiler et al. [36] deleted the BN layer in the residual block,
with the result that the network performance was greatly improved. Therefore, in this paper, we used
the residual block to delete the batch regularization layer in order to reduce the color’s offset in the
output, while maintaining the training stability. Each residual block in the present paper contained
two 3 × 3 convolutional layers and the ReLU layer. The structure of the residual block in the present
paper is shown in Figure 3b.
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The residual block can be expressed by Equation (1):

Xl+1 = Xl + F(X) (1)

Here, Xl and Xl+1 represent the input and output vectors of residual blocks, respectively.
The function F(X) denotes residual mapping. The residual block in this paper contained only the
convolutional layer and the ReLU layer. The modified linear unit (ReLU) has unilateral suppression
and sparsity. In most cases, the ReLU gradient is a constant term, avoiding the problem of gradient
disappearance to a certain extent. The relevant mathematical expression can be expressed by
Equation (2):

f (x) = max(0, xi) (2)

Figure 4. The processing construction of long-term and short-term memory blocks.

In this paper, the activation function of the convolutional layer outside the residual block is the
Parametric Rectified Linear Unit (PReLU) [34]. The use of PReLU is mainly designed to avoid the “dead
angle” [37] caused by the zero gradient in the ReLU. It is increased by the correction of parameters to a
certain extent. It can have a regularizing effect and can also improve the generalization ability of the
model. The difference between the proposed model and ReLU is mainly reflected in the negative part,
and the mathematical expression is shown in Equation (3):

f (x) = max(0, xi) + aimin(xi, 0) (3)

Here, xi is the input signal of the ith layer, and ai is the coefficient of the negative part. In Equation
(3), the parameter ai is set to zero, but the negative part of PReLU can be learned. Finally, the output of
the activation function can be expressed by Equation (4):

fl(x) = f (Wl ∗ fl−1(x) + Bl) (4)

Here, fl is the final output feature graph and Bl is the offset of the lth layer.
(2) Long-Term and Short-Term Memory Block
It is difficult to achieve long-term dependence at each stage, resulting in lower dependence on the

up-sampling phase in the reconstruction phase and more loss of important high-frequency information
in the up-sampling phase. In this paper, three residual blocks (B1, B2, B3) were used to synthesize
the long-term and short-term memory block for the up-sampling feature space at the beginning of
reconstruction. The design of the long-term and short-term memory block was inspired by He et al. [31],
who proposed a very deep persistent MemNet. The construction of our long-term and short-term
memory blocks is presented in Figure 4.

In this paper, we used three residual blocks to learn recursively in the long-term and short-term
memory blocks. We used the eigenvector x of the up-sampling phase as input; the residual block Bi
can be expressed by Equation (5):

Bi = F(Bi−1, wi) + Bi−1 (5)

In Equation (5), i is set to one, two, and three. B1, B2, and B3, respectively represent the output of
the corresponding residual block. When i = 1, Bi−1 = x. F represents the residual mapping, and wi
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represents the weight vector of the residual block to learn. Since each residual block consists of two
volume layers and ReLU activation functions, Equation (5) can be further expressed as Equation (6):

F(Bi−1, wi) = w2
i ReLU

(
w1

i ReLU(Bi−1)
)

(6)

Here, ReLU represents the activation function, while w1 and w2 are the two weight vectors of the
volume layer, respectively. In the interest of simplicity, the bias is omitted in the above equations.

Finally, unlike the traditional leveling network, the present paper uses cascading methods to
combine the output features of the three residual blocks, which effectively avoids content loss from the
previous stage. The process of calculation is shown in Equation (7):

Bout = [B1, B2, B3] (7)

Here, Bout represents the final output and passes to the next layer.

3.4. Loss Function and Evaluation Standard

(1) Loss Function

By minimizing the loss cost between the super-resolution image and the real high-resolution
image, the network constantly adjusts the network parameters Θ = {wi, bi}. For a group of real
high-resolution images Xj and a group of super-resolution images, Fj(Y; Θ), is reconstructed by the
network. This paper uses MSE as the cost function:

L(Θ) =
1
n

n∑
i=1

‖Fj(Y; Θ) −Xj‖
2

(8)

where n represents the number of training samples. Because the weights of the dual-channel network
are not shared, they are converted to a dual-channel cost function problem:

LEDC = min[Ld(Θ) + Ls(Θ)] (9)

Here, Ld(Θ) and Ls(Θ) are the loss costs of the deep channel and shallow channel respectively.
The network uses the Adam optimization method and back-propagation algorithm [38] to minimize
MSE in order to adjust the network parameters, and the update process of the network weights is as in
Equation (10):

Δk+1 = 0.9× Δk − η× ∂L
∂Wl

k

, Wl
k+1 = Wl

k + Δk+1 (10)

Δk represents the updating value of the last weight, l represents the number of layers of the
network, and k represents the number of iterations from the network; η is the learning rate, Wl

k

represents the weight of the kth iteration in level l, ∂L
∂Wl

k
represents the corresponding weight of the

cost function and derivation of the derivative. The weights are randomly initialized according to a
Gaussian distribution with mean value of zero and variance of 0.001. The model can automatically
adjust the learning rate in the range of training, making the learning of the parameters more stable.

(2) Evaluation Standards

In this paper, the difference between the generated image quality and the quality of the original
high-resolution image is measured by means of two common evaluation indexes, namely the Peak
Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index (SSIM) [29,30].
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PSNR is used as an objective evaluation index of image quality, which is measured by calculating
the error between corresponding pixels. The PSNR’s unit is decibel (dB) [16]. The larger the value, the
smaller the image distortion. The calculating equation is Equation (11):

PSNR = 10 log10

⎛⎜⎜⎜⎜⎝ (2
n − 1)2

MSE

⎞⎟⎟⎟⎟⎠ (11)

Here, MSE is the direct Mean Squared Error of the original image and the super-resolution image,
(2n − 1)2 is the signal maximum square, and n is the number of bits per sampling value.

The SSIM measures image similarity in terms of three aspects: brightness, contrast ratio, and
structure. The range of SSIM is [0,1], and its value is closer to one. The distortion effect is smaller.
The calculation equations are as follows:

SSIM(X, Y) = l(X, Y) · c(X, Y) · s(X, Y) (12)

l(X, Y) =
2μXμY + C1

μ2
X + μ2

Y + C1
(13)

c(X, Y) =
2σXσY + C2

σ2
X + σ2

Y + C2
(14)

s(X, Y) =
2σXY + C3

σXσY + C3
(15)

X is the super-resolution image of the LR image obtained through network training, Y is the
original HR image. The variances of μX and μY are represented by X and Y, respectively, while
σX and σY represent the variances of the super-resolution image and of the original high-resolution
image, respectively, and σXY represents the covariance of the super-resolution image and the original
high-resolution image. C1, C2, C3 are constant terms. In order to avoid a zero in the denominator, the
usual practice is to take C1 = (K1 × L)2, C2 = (K2 × L)2, C3 = C2/2 and, generally, K1 = 0.01, K2 = 0.03,
L = 255.

4. Experimental Results and Analysis

4.1. Parameter Settings

The experiment used 91 pictures by Bevilacqua et al. [39] and one hundred 2K high-definition
images selected from the DIV2K dataset. In short, a total of 191 images were used as training datasets
to train the network model. Considering that dataset size directly affects network performance,
two methods of data expansion were adopted for the image, based on the original training dataset.
The image was amplified in two ways: (1) Scaling: each image was zoomed in proportion to 0.9, 0.8,
0.7, and 0.6; (2) Rotating: each image was rotated by 90 degrees, 180 degrees, and 270 degrees. Each
image was used 20 times, such that 3820 images were eventually available for the training process.
In this process, the sub-sampling size was 48 × 48, the initial learning rate of the network was set to
0.001, and the Adam optimization method was adopted to automatically adjust the learning rate so
that the network parameters could be learned smoothly. The number of images per batch was set to 64,
and the network was trained 1000 times. The testing dataset comprised the internationally common
datasets “Set5” [40,41] and “Set14” [42,43]. The GPU was NVIDIA GeForce 1080 Ti, the experimental
environment was Keras, and Python 3.5 and OpenCV 3.0 were applied to carry out the simulation
experiments. The results of the network training were compared with those of existing methods in
terms of three aspects: subjective visual effect, objective evaluation index, and efficiency comparison.
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4.2. Experimental Results and Comparative Analysis

In order to verify the effectiveness of the proposed image super-resolution algorithm based on
DCCNN, the present paper used a trained model to reconstruct the LR image at “2×”, “3×”, and
“4×” [44] the super resolution. The performance of the proposed DCCNN method was evaluated
on the Set5 dataset and Set14 dataset, and the results were compared with the results of the existing
bicubic interpolation, A+ [11], SRCNN [19], and EEDS [20] algorithms.

Because of the different experimental environments of each algorithm, the contrast images could
differ from the original ones. However, the overall trend of the comparison results would not be
affected. In order to ensure the rationality and objectivity of the experimental results, two representative
datasets were selected to test and contrast the images with rich texture details. The testing results are
presented in Figures 5–7, which compare the results of the bicubic interpolation, A+, SRCNN, and
EEDS methods for different reconstruction times of the butterfly image, zebra image, and comic image,
and select the whole panorama and more obvious parts of the wing texture of the butterfly, the head
markings of the zebra, and the cheek and shoulder of the comic. A subjective visual evaluation was
carried out.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 5. Super-resolution reconstruction results of the image “Butterfly” with “×4” scale factor.
(a) Bicubic [5]; (b) A+ [11]; (c) SRCNN [18]; (d) EEDS [20]; (e) The Proposed Method’s; (f) Original Image.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Super-resolution reconstruction results of the image “Zebra” with “×3” scale factor.
(a) Bicubic [5]; (b) A+ [11]; (c) SRCNN [18]; (d) EEDS [20]; (e) The Proposed Method; (f) Original Image.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Super-resolution reconstruction results of the image “Comic” with “×3” scale factor.
(a) Bicubic [5]; (b) A+ [11]; (c) SRCNN [18]; (d) EEDS [20]; (e) The Proposed Method; (f) Original Image.

Figure 5a–d present four super-resolution images of four contrast models from left to right.
Figure 5e is the result of reconfiguration. Figure 5f concentrates on the Set5 testing of the original HR
image. The butterfly wing edge of the image produced by the proposed method is sharper relative to
the other methods: both the edge and the image are more complete, and the texture is also clearer.

In Figures 6 and 7, from left to right, the reconfiguration of the four contrast models is also three
times that of the super-resolution effect diagram. Figure 6e presents the reconstruction result of the
proposed method, while Figure 6f is the original HR image of the Set14 testing dataset. It was found
that the reconstruction effect of the zebra image was more prominent, the reconstruction of the cheek
edge from the comic image was sharper, the edge preservation was better, and the details of the
shoulder texture were more abundant. The average PSNR and SSIM objective testing indexes under
various experimental conditions are presented in Table 1. The best experimental results in the table are
marked in bold.

Table 1. Average Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) at different
reconstruction scales on Set5 and Set14 datasets.

Dataset
Reconstruction

Multiple
Bicubic [5] A+ [11] SRCNN [18] EEDS [20]

Proposed
DCCNN

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Set5
×2 33.64/0.9296 36.55/0.9543 36.67/0.9541 37.30/0.9578 37.43/0.9603

×3 30.38/0.8681 32.57/0.9089 32.76/0.9091 33.46/0.9190 33.59/0.9204

×4 28.41/0.8106 30.29/0.8602 30.49/0.8627 31.15/0.8782 31.32/0.8842

Set14
×2 30.23/0.8687 32.29/0.9058 32.43/0.9062 32.82/0.9104 32.95/0.9115

×3 27.54/0.7743 29.14/0.8187 29.29/0.8208 29.61/0.8283 29.70/0.8307

×4 26.01/0.7028 27.31/0.7492 27.48/0.7502 27.81/0.7625 28.13/0.7696

As can be seen from the testing results presented in Table 2 below, the results of the proposed
algorithm were better than those of the improved algorithm in terms of average PSNR and SSIM,
thereby proving the effectiveness of the proposed algorithm.
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Table 2. Comparison of computational complexity with phases.

Method
Feature

Extraction/ms
Up-Sampling/ms Reconstruction/ms

Shallow
Channel/ms

EEDS 38,015 4112 154,834 7265
DCCNN 19,151 24,895 70,500 5231

4.3. Efficiency Comparison

To further illustrate the effectiveness of the proposed algorithm and evaluate the network
performance, the paper analyzed the time complexity [45,46] of the dual channels and compared them
in turn with those of the improved network. The specific parameters are shown in Table 2. In the
paper, the time complexity of the shallow network is O

(
f 2
1 n1
)
+ O
(
n1 f 2

2 n2
)
+ O
(
n2 f 2

3

)
, while the time

complexity of the deep channel is the same as that of the shallow layer. It can be seen from Table 2
that the amount of parameter computation per iteration was smaller than that of EEDS, meaning
that a single iteration training consumed less time. With the same number of iterations, the network
training of our proposed model was better than those of SRCNN and EEDS, while the computational
complexity of our model was also greatly reduced relative to others. In summary, the efficiency of our
proposed method is better than that of the EEDS algorithm.

5. Conclusions

This paper proposed the image super-resolution algorithm based on DCCNN. The deep channel
was used to extract the detailed texture information of an image and increase the local receptive
field of the image. The shallow channel was mainly used to restore the overall outline of the image.
Experimental results showed that the simplified model parameters could not only enhance the ability
of the network model to fit the model characteristics but also enable the network model to be trained at
a higher learning rate, improving the model’s convergence speed. At the same time, the long-term
and short-term memory blocks constructed by the residual blocks in the network performed better
than the single mapping output network using only the residual blocks. The quantity of image
recovery was better, and the performance improved, which proves the necessity of using long-term
and short-term memory blocks. Improvement could be observed in both subjective visual effect
and objective evaluation parameters, as well as in efficiency, which proves the practicability of the
proposed method.
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Abstract: Image adjustment methods are one of the most widely used post-processing techniques
for enhancing image quality and improving the visual preference of the human visual system
(HVS). However, the assessment of the adjusted images has been mainly dependent on subjective
evaluations. Also, most recently developed automatic assessment methods have mainly focused
on evaluating distorted images degraded by compression or noise. The effects of the colorfulness,
contrast, and sharpness adjustments on images have been overlooked. In this study, we propose
a fully automatic assessment method that evaluates colorfulness-adjusted, contrast-adjusted,
and sharpness-adjusted images while considering HVS preferences. The proposed method does
not require a reference image and automatically calculates quantitative scores, visual preference,
and quality assessment with respect to the level of colorfulness, contrast, and sharpness adjustment.
The proposed method evaluates adjusted images based on the features extracted from high dynamic
range images, which have higher colorfulness, contrast, and sharpness than that of low dynamic range
images. Through experimentation, we demonstrate that our proposed method achieves a higher
correlation with subjective evaluations than that of conventional assessment methods.

Keywords: image adjustment; colorfulness; contrast; sharpness; high dynamic range

1. Introduction

Recently, camera manufacturers and researchers have developed various post-processing methods
that enhance image quality. With the development of computer performance, image enhancement
techniques have been actively developed for the last 20 years. These image enhancement techniques
include denoising that reduces image noise [1,2], sharpening that creates a less blurry image [3],
filtering that changes image property [4,5], and histogram equalization that enhances the contrast of
the image [6]. Furthermore, various cutting-edge techniques such as super-resolution used to increase
image resolutions [7–9], artifact and distortion removal for images degraded by compression [10,11],
and methods to adjust the colorfulness, contrast, and sharpness of images have been developed to
improve the visual preference of human visual systems (HVS) [12–18].

These methods need parameter adjustments in order to obtain high-quality images. Since the
perception of image quality is influenced by HVS properties, these parameter values can be determined
through subjective viewer preferences. However, subjective evaluations are time-consuming and
expensive because many people are required for the evaluation of test images. Accordingly,
objective assessment methods that automatically evaluate no-reference images have been extensively
researched, which resulted in developments such as just-noticeable difference (JND)-based
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techniques [19,20]. Furthermore, natural scene statistic (NSS)-based methods have been developed to
improve the correlation with subjective evaluations considering HVS properties [21–25]. The natural
image-quality index (NIQE) [24] method uses the statistical difference between the fitted Gaussian
functions of the high-quality and low-quality images in spatial domains. NIQE does not require
a reference database of human-rated images. Additionally, this method considers a human visual
system using a statistics-based difference between a pre-trained high-quality image database.
However, the aim of these previous methods has been completed to evaluate images distorted by
compression or noise and they are not suitable for evaluating colorfulness-adjusted, contrast-adjusted,
and sharpness-adjusted images. Furthermore, they depend on the luminance of images without
considering color components.

Several efforts have been made to evaluate contrast-adjusted [26,27] and
sharpness-adjusted [27–29] images. Recently, a color quality enhancement evaluation (CQE)
method was developed [30], which considered color components. This method considers a color
component and is specialized in evaluating the adjusted image. In this method, the overall quality
scores of an image are obtained from a linear combination of several feature values that represent the
levels of quality for each adjustment. However, this method does not take HVS properties into account
and, therefore, its results correlate poorly with the results of subjective evaluations [31].

In this study, to improve the correlation of such no-reference methods with subjective
evaluations, we propose in this study a fully automatic method that evaluates colorfulness-adjusted,
contrast-adjusted, and sharpness-adjusted images by taking into account HVS preferences using a high
dynamic range (HDR) [32–34]—derived features. These HDR-derived features are extracted from HDR
images that have higher visual preferences for HVS than that for LDR images. Furthermore, since HDR
images have a wider dynamic range, they have more contrast, colorfulness, and sharpness components
than LDR images do [18]. To evaluate the performance of our proposed method, we compared its
correlation results (with subjective evaluation scores for the colorfulness-adjusted, contrast-adjusted,
and sharpness-adjusted images) with those of two conventional methods, a natural image quality
evaluator (NIQE) [24], and CQE [30]. Since our method uses HDR-derived features that consider
HVS properties, it achieved a higher correlation with the subjective evaluations than the conventional
methods did.

1.1. Correlation between the Evaluation Scores and the Adjustment Levels

The feature values for colorfulness, contrast, and sharpness used in the CQE method can
effectively represent the levels of each adjustment. As a result, the calculated quality scores obtained by
linearly combining these values may represent the overall levels of the image adjustments. However,
the subjective evaluation scores for these adjusted images may be different from the quality scores
calculated by CQE because HVS perceives images differently than the calculated features and quality
scores used in CQE do. As such, we conducted experiments to investigate the correlation between the
subjective and calculated scores and the level of image adjustments.

Eight levels of the colorfulness, contrast, and sharpness adjustments were applied to 24 images in
the TID2013 database [35], which resulted in 576 adjusted images. The color saturation method [36],
linear contrast adjustment [37], and unsharp masking method [3] were used for colorfulness, contrast,
and sharpness adjustments, respectively. Eight observers participated in subjective evaluations for
these adjusted images and rated the image qualities from 1 to 5 with 1 representing the worst quality
and 5 the best. Lastly, we calculated mean opinion scores [38] from these subjective scores.

Figure 1 shows the mean scores of the subjective scores and the calculated feature values used
in a previous assessment method, CQE [30], along with the levels of image adjustment. While the
calculated feature values keep increasing as the level of adjustment increases, the subjective scores
increase only until the level of adjustment of about four or five levels and then they decrease thereafter
until the eighth adjustment level. Figure 1 shows that the calculated feature values and the subjective
scores have different tendencies depending on the level of adjustment. Generally, the subjective
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scoring is considered the gold standard for image assessment methods because human perception is
the ultimate image receiver. This suggests that excessive adjustment of an image can have adverse
impact on the perception of HVS for the image. Therefore, in this study, we propose a new fully
automatic assessment method that can consider the relationships between the adjustment levels and
the visual preference of HVS. Our assessment algorithm utilizes the features of HDR images, which are
better matched with HVS preferences than LDR images. The following Section 2.2 demonstrates that
HDR images receive higher subjective evaluation scores than LDR images.

Figure 1. Subjective evaluation scores (x-) and calculated feature values (o-) for different adjustment
levels on (a) colorfulness adjustment, (b) contrast adjustment, and (c) sharpness adjustment. While the
calculated feature values keep increasing as the level of adjustment increases, the subjective scores
increase only until the level of adjustment of about four or five levels and then they decrease thereafter
until the eighth adjustment level.

1.2. Visual Preference Comparison between LDR and HDR Images

To determine whether the visual preference for HDR images is greater than for LDR images,
we subjectively evaluated the HDR and LDR images. A total of 190 LDR images and 27 tone-mapped
HDR images from the EMPA-HDR database [39] were subjectively evaluated by 10 researchers who
specialize in image processing for analysis, image adjustment, and artifact reduction in a dark room
display and the same display. The random order images were individually evaluated on a scale of
1 (minimum score) to 5 (maximum score). The subjective scores evaluated by 10 observers of each
images were averaged to yield mean opinion scores (MOSs) and the MOSs of all LDR and tone mapped
HDR images were also averaged to yield total MOSs of LDR and tone mapped HDR, respectively.
Figure 2 shows that the subjective scores for the HDR images are greater than those for the LDR
images. While the mean score of the LDR images is 2.44, the mean score of the HDR images is 4.39.
This indicates that the HDR images are visually preferred by HVS over the LDR images.

Our proposed assessment method, therefore, uses HDR-derived features extracted from HDR
images that are closer to the HVS properties in order to improve our method’s correlation with
subjective evaluations.
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Figure 2. Comparison of the subjective scores for LDR and HDR images. HDR images received
significantly higher scores than LDR images.

2. Materials and Methods

2.1. Proposed Assessment Method

Since the visual preference for HDR images is higher than for LDR images, a better quality score
can be obtained by using the calculations based on the difference between the HDR-derived features
and the test image features. The features used in our method are HDR-derived colorfulness, contrast,
and sharpness features. In addition, each colorfulness, contrast, and sharpness feature in our method
comprises global and local feature values. Since HVS evaluates images based on the hierarchical visual
perception mechanism [40], our proposed method uses both global and local features to consider these
HVS properties.

HDR images have different bit depth than LDR images and cannot be directly compared with
them. Therefore, the HDR images are first tone-mapped [41] such that the scale of the original HDR
images can be matched to those of the LDR test images. 500 HDR images were used to construct the
standard HDR-derived features.

2.1.1. Colorfulness

Colorfulness is an aspect of the visual perception, according to which the color of an object is
perceived to be more or less chromatic [30]. The colorfulness features can be obtained mainly from color
channels a and b of the CIELab space and they are orthogonal to the lightness channel. Two different
colorfulness features are used in our proposed method. The first colorfulness feature is calculated by
using Equation (1) [30].

Col1 = 0.02 × log

(
σ2

a

|μa|0.2

)
× log

(
σ2

b

|μb|0.2

)
(1)

where σ2
a and σ2

b are the variance of a and b channels in CIELab and μa and μb are the mean values of
the a and b domains, respectively. This feature value increases as the color adjustment level increases,
which is shown in Figure 3a.
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Figure 3. Comparison graph between the color adjustment level and calculated colorfulness features.
Colorfulness feature 1 and 2 represent the global and local aspects of the colorfulness of the
image, respectively.

Unlike CQE, our proposed method applies a low-pass filter to the RGB space before converting
it into the CIELab space. This is done so that the colorfulness features are not influenced by the
components of the structural features. The low-pass filter is effective in minimizing the influence of
the sharpness features of the images.

The second colorfulness feature in our assessment method is obtained by using Equation (2).

Col2 =
1

NM

N

∑
i=1

M

∑
j=1

√√√√ K

∑
k=−K

L

∑
l=−L

wk,l(Rk,l(i, j)− μ(i, j))2 (2)

where R =
√

a2 + b2 is the magnitude of the color components in the chromatic domain, wk,l is the
5 × 5 sized 2D circularly symmetric Gaussian weighting function, and N and M are the width and
height of an image, respectively. This feature also increases as the color adjustment level increases,
which is shown in Figure 3b.

The first feature in Equation (1) represents the global colorfulness obtained from the entire image
while the second feature in Equation (2) represents the local colorfulness obtained from small image
patches. Our proposed method uses these two colorfulness features to consider the global and local
aspects of the HVS color perception [40]. These feature values are compared with the HDR colorfulness
features that are established from HDR images by using the same Equations (1) and (2) in order to
determine the final quality scores that correlate well with the subjective evaluations.

2.1.2. Contrast

Contrast represents the difference in luminance that makes an object distinguishable from other
objects within the same field of view [30]. Similar to the colorfulness features, a low-pass filter is also
used to minimize the influence of the sharpness component of an image in our study. The first feature
is obtained by using Equation (3).

Con1 =
1

k1k2

k1

∑
l=1

k2

∑
k=1

(
log

(
Lmax,k,l + Lmin,k,l

Lmax,k,l − Lmin,k,l

))−0.5
(3)
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where Lmax and Lmin are the maximum and minimum luminance values of a 5 × 5-sized image patches,
respectively. This feature increases as the contrast adjustment level increases, which is shown in
Figure 4a. The second contrast feature is obtained by using Equation (4).

Con2 =
1

NM

N

∑
i=1

M

∑
j=1

√√√√ K

∑
k=−K

L

∑
l=−L

wk,l(Lk,l(i, j)− μ(i, j))2 (4)

where wk,l is a 15 × 15 2D circularly symmetric Gaussian weighting function. The second contrast
feature also increases as the contrast adjustment level increases, which is shown in Figure 4b.

Figure 4. Comparison graph between the contrast adjustment level and the calculated contrast features.
Contrast feature 2 and 1 represent the local and global aspects of the contrast of the image, respectively.

The first feature in Equation (3) represents the local contrast feature that is extracted from
small-sized image patches. In contrast, the second feature in Equation (4) represents a semi-global
contrast feature that is extracted from relatively large-sized image patches. As done with the
colorfulness assessment, our proposed method uses two contrast features to consider the HVS
properties. These feature values are also compared with the HDR contrast features for the final
quality score calculations.

2.1.3. Sharpness

Sharpness represents the aspects of fine details and edge components of an image and it is
distributed in the high-frequency band of a Fourier domain [30]. Sharpness features can be extracted
from high-pass filtered images, which is outlined in Equations (5) and (6).

Sha1 =
1

k1k2

k1

∑
l=1

k2

∑
k=1

log
(

Emax,k,l

Emin,k,l

)
(5)

The first sharpness feature in Equation (5) is calculated by using 5 × 5 sized image patches and
Emax and Emin are the maximum and minimum luminance values of the high-pass filtered image
patches, respectively. This feature increases as the sharpness adjustment level increases, which is
shown in Figure 5a.

Sha2 =
1

NM

N

∑
i=1

M

∑
j=1

√√√√ K

∑
k=−K

L

∑
l=−L

wk,l(Ek,l(i, j)− μ(i, j))2 (6)
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Figure 5. Comparison between the sharpness adjustment level of an image and the calculated sharpness
features. Sharpness feature 1 and feature 2 represent the local and global aspects of the colorfulness of
the image, respectively.

The second sharpness feature is obtained by using Equation (6). The standard deviation of the
high-pass filtered luminance values is used to calculate how widely distributed the high-frequency
components were in the images. wk,l is a relatively large-sized 15 × 15 2D circularly symmetric
Gaussian weighting function. This feature increases as the sharpness adjustment level increases,
which is shown in Figure 5b. Similar to the assessments of the colorfulness and contrast, our proposed
method uses both local (Equation (5)) and global (Equation (6)) sharpness features to consider the
HVS properties. These feature values are also compared with the HDR sharpness features for the final
quality score calculations.

2.1.4. HDR-Derived Features

A direct assessment using the previously mentioned features obtained from Equations (1)–(6)
may lead to erroneous evaluation results that do not correlate well with the subjective evaluations,
as previously demonstrated in Figure 1. To overcome this problem, our proposed assessment method
uses HDR-derived features as standards when evaluating the features of a test image. The HDR-derived
features are extracted by using the same equations (Equations (1)–(6)) applied to many HDR images.
Since the HDR images are visually preferred by HVS as shown in Figure 2, HDR-derived features can
be used as references, according to which the features of test images are evaluated to determine the final
quality scores. Our study demonstrates that this method correlates well with the subjective evaluations.

2.1.5. Assessment Metric Scheme

Figure 6 shows a diagram of our proposed method for determining the quality score of a test
image. Six features are extracted from a test image and then compared with the standard HDR-derived
features to calculate the quality score of a test image.
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Figure 6. Diagram of the proposed method, which comprises two processes. Above side process:
extracting the standard HDR-derived features. Below side process: extracting the features of the test
image. These two sets of features are compared with each other to produce the final quality score of
the test image.

First, the differences between each feature are calculated by using the following equation.

ΔX = |XHDR − XTEST | (7)

where XHDR is a standard HDR-derived single feature vector and the XTEST is a single feature vector
of the test image. Many colorfulness, contrast, and sharpness features from HDR images is obtained
and averaged to make a single feature vector. Lastly, the single feature vector is used to calculate the
quality score based on a weighted combination of the feature differences. In addition, multiple feature
vectors from a test image are also averaged to make a single feature vector since multiple feature
vectors are obtained from multiple local patches of a single test image. The final quality score, Q,
is obtained from a weighted combination of the following feature differences.

Q =
→
C
→
D = [C1 C2 C3 C4 C5 C6]× [ΔCol1 ΔCol2 ΔCon1 ΔCon2 ΔSha1 ΔSha2 ]T (8)

where
→
C is a set of weighting coefficients for each feature.

→
C was determined as [7, 9, 6.1, 8.5, 6.7, 0.54, 1]

through the training with 576 training image sets.

2.2. Experimental Setup

The total 576 training images were subjectively evaluated by 10 researchers who specialize in image
processing for analysis, image adjustment, and artifact reduction in the dark room display and in the
same display. The random order images were individually evaluated on a scale of 1 (minimum score) to
5 (maximum score).

A total of 114 adjusted images were assessed by our proposed method as well as by two
conventional methods, which were NIQE and CQE. The subjective evaluation was also performed
as the ground truth quality scores. Three intact images (traffic, cactus, and basketball) were selected
from the LIVE video database [42] and processed with different combinations of three levels of
colorfulness adjustment, three levels of contrast adjustment, and four levels of sharpness adjustment,
which resulted in 108 adjusted images using MATLAB (R2017a, The Mathworks, Natick, MA, USA)
software automatically. The examples of these test image sets are shown in Figure 7. The other six
images included the original three images plus enhanced ones by an HDR-toning toolbox in Photoshop
CS6. These 114 test images were not used in the training process.
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Figure 7. Examples of test images with various levels of colorfulness, contrast, and sharpness adjustments.

3. Evaluation Results

To evaluate the performance of our proposed method, we obtained correlations between
the quality scores of our proposed method and the subjective scores (visual preferences of HVS).
Ten observers participated in the subjective evaluation. For the purpose of comparison with other
methods, correlations between the scores of the conventional methods (NIQE and CQE) and the
subjective scores were also obtained. Spearman’s rank ordered a correlation coefficient (SROCC) and
Pearson’s linear correlation coefficient (PLCC), which were used to compare the performances. We used
the Spearman and Pearson coefficients methods for performance evaluation because these methods
have been widely used for correlation metrics between image quality assessment and subjective
scores [21–25].

The results of the correlations with the subjective scores are shown in Table 1. In all the cases,
our proposed method achieved higher correlations with the subjective scores than those of the NIQE
and CQE. These results demonstrate that our proposed method is more suitable for evaluating the
colorfulness-adjusted, contrast-adjusted, and sharpness-adjusted images than the other two conventional
methods. This is because the conventional methods were mainly developed for evaluating images distorted
by compression or noise corruption (NIQE) and did not consider HVS properties (CQE).

Table 1. Performance comparison between the conventional methods (NIQE, CQE) and the proposed
method. Two difference correlation metrics called SROCC and PLCC were calculated between the
scores measured by the automatic methods and by the subjective evaluation.

Basketball Cactus Traffic Average

NIQE
SROCC 0.6465 0.3233 0.1650 0.3283

PLCC 0.7144 0.3221 0.2373 0.4246

CQE
SROCC 0.6207 0.4241 0.5292 0.5247

PLCC 0.6225 0.4236 0.5205 0.5222

Proposed Method SROCC 0.8042 0.9121 0.9669 0.8944

PLCC 0.7626 0.9284 0.9538 0.8816

4. Discussion and Conclusions

We proposed a fully automatic no-reference quality assessment method for the enhanced images
whose colorfulness, contrast, and sharpness were adjusted. HDR-derived features were obtained from
HDR images with different scenes. Therefore, the proposed method without using the reference image
with the same scene can be a ‘no-reference’ method.

The proposed method does not require a reference image. It automatically calculates quantitative
scores, visual preference, and quality assessment with respect to the level of colorfulness, contrast,
and sharpness adjustment. This method considers colorfulness components. Additionally, this method
uses HDR-derived features, which have more human visual preference than LDR images. By evaluating
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the LDR based on the HDR, this method can extract how different the quality of the test images differs
from the HDR with a high visual preference and it offers visual preference scores, quantitatively.
It shows that the proposed method yielded better performance than other methods.

We investigated the performance of the proposed method depending on the size of image patches
in global and local settings and measured the corresponding performance, according to the correlation
values with subjective scores. In most cases involving our test image dataset, the highest correlation
results were achieved with the sizes of image patches used in our experiments.

Our proposed method currently used linear weighted coefficients trained by 576 HDR images.
However, other machine learning metrics such as the support vector machine can be used in the
training process. Because SVM-based quality evaluation methods have already been used in the
detection on artifacts caused by compression [21–25], it is possible to use the SVM method for our
proposed method. In addition, if there are additional features including the six features, neural network
methods can be used for the evaluation of adjusted images.

We made an effort to overcome the limitations of conventional methods such as NIQE and CQE
methods. NIQE performs well in evaluating the distorted images due to compression, blurring, or noise
corruption, but it is not focused on evaluating adjusted images. CQE can evaluate several adjustment
effects such as colorfulness and contrast adjustments but does not incorporate HVS properties in its
assessment process, which results in a mismatch with the subjective evaluations. These limitations
were effectively overcome in our proposed method, which incorporated HVS-favorable HDR-derived
features as standards in its evaluation process. HDR images have higher visual preferences for HVS
than LDR images and, therefore, the features derived from HDR images are more closely related
to the perception properties of HVS than those of LDR images. In addition to the incorporation of
the HDR-derived features, both global and local features are extracted and combined to produce
the final quality scores for an image assessment, which also considers the hierarchical visual
perception mechanism of HVS. Consequently, we found through our experimentation that our new
assessment method correlated well with subjective evaluations and outperformed two conventional
assessment methods.
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Abstract: In order to study the bubble morphology, a novel experimental and numerical approach
was implemented in this research focusing on the analysis of a transparent throttle valve made
by Polymethylmethacrylate (PMMA) material. A feature-based algorithm was written using the
MATLAB software, allowing the 2D detection and three-dimensional (3D) reconstruction of bubbles:
collapsing and clustered ones. The valve core, being an important part of the throttle valve, was
exposed to cavitation; hence, to distinguish it from the captured frames, the faster region-based
convolutional neural network (R-CNN) algorithm was used to detect its morphology. Additionally,
the main approach grouping the above listed techniques was implemented using an optimized virtual
stereo vision arrangement of one camera and five plane mirrors. The results obtained during this
study validated the robust algorithms and optimization applied.

Keywords: three-dimensional imaging; optimization arrangement; cavitation bubble;
water hydraulic valve

1. Introduction

Cavitation is an omnipresent phenomenon observed during flows in valves, pipes, pressure
vessels, and so on. Its occurrence favors considerable material losses in complex situations, which
requires costly replacements to be made thereby causing significant performance drawbacks to
industries. Studies on fluid dynamics about solving issues related to cavitation due to bubbles
collapse are being done by researchers from both universities and companies. To be more precise,
understanding bubble dynamics in valves requires in-depth investigations as the presence of void
fractions in optically dense multiphase flows have been hindering the observation of bubbles [1].

To the best of our knowledge, fewer studies about bubble morphology in throttle valves have
been done, albeit with both the invasive techniques (impedance probe and optical fiber probe) and
the non-invasive techniques (PIV, PTV, PT) being prevalent. The non-invasive approach has widely
been promoted through high speed photography in bubble measurement studies, inclusive of the
2D bubble columns [2–5], the channels [6–9], the flat plates [10], the hydrofoils [11,12], the mixing
tanks [13], the liquid-solid interface [14], the dynamically loaded journal bearings [15], the ultrasonic
devices [14,16–18], the axisymmetric geometry [10], the throttle orifice, and so on.

To start with, the first ever experiment on capturing the motion of Helium-filled bubbles in an
engine using a single camera and multiple mirrors, was done by Kent and Eaton [19] in 1982. Next,
Racca and Dawey [20] implemented a measuring method by using a single high speed cine camera
through a split field mirror to track small resin beads (tracers) and Belden et al. proposed a “3D
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synthetic aperture imaging (SA imaging)” by using nine (9) high speed photon cameras to capture the
bubbly flow induced by a turbulent circular plunging jet.

Similarly, to study the fluid flow, virtual stereo vision was implemented in this research to
observe and reconstruct the 3D bubbles formed in the area between the valve seat, the valve core
and the outlet port. Xue et al. [21] applied virtual binocular stereo vision in a glass-made water tank
to match and reconstruct the bubble trajectory motion through a “3D polar coordinate homonymy
correlation algorithm”, thereby determining the analogous relation of alike bubbles from two-half
images. Additional studies by Xue et al. [22–24] dealt with the bubble behaviour characteristics in the
gas-liquid two-phase flow, modality factors of bubbles, intrinsic and extrinsic parameters of the virtual
cameras, and the segmentation of multi-bubbles.

Likewise, by implementing robust algorithms to estimate the velocities and reconstruct the
trajectories of bubbles, broad investigations were made by Mitra et al. [25], Acuna et al. [26],
Racca et al. [20], Dencks et al. [16], Cheng et al. [27], Krimerman [28], and Bakshi et al. [29], respectively.

For a clearer approach of the stereo vision concept, significant contributions were brought
by the following researchers: Feng et al. [30] established a 3D mathematical model to measure
a 3D point through a combination of the single camera stereo vision sensor with planar mirror
imaging. Upon comparison with the binocular stereo vision, the output in terms of calibration,
measurement speed and errors resulted in being more accurate. Figueroa et al. [31] studied a
nearly non-dispersed 2D bubbly flow in a thin channel by means of a high speed camera- image
processing routine to validate bubble clusters trajectory and sealing arguments to estimate their
lifespan. Moreover, bubbly flows were continuously studied by Yucheng et al. [8,32], Chakraborty [33],
Lau et al. [3], and Tayler et al. [5] from the last decade. Prolonged observations in dense bubbly flows
containing overlapped ellipse-like bubbles through image analysis using algorithms were achieved by
de Langlard et al. [34], Honkanen et al. [35,36], and Zhang et al. [37], respectively.

On the other hand, Fujisawa et al. [38] examined erosion caused by bubble implosion and shock
waves formed by a cavitating jet. This was carried out using shadowgraph imaging, time-difference
analysis, and laser schlieren imaging techniques, thereby giving adequate results.

Similarly, studies about object detection in fluid flow were carried out by Kompella et al. [39]
who detected semi-transparent objects in single images, while Hata et al. [40] and Kai et al. [41],
emphasized the shape extraction and the dense reconstruction of transparent objects.

On the basis of virtual stereo motion, this paper illustrates a novel approach of using five reflectors
(single camera with two-symmetrical reflectors and one stand-alone reflector) in contrast to the
literature where single cameras with only two symmetrical reflector sets were used. In addition,
compared with using three high-speed cameras, the experimental images reflected from the plane
mirrors did not only cut the equipment costs, but also ensured the synchronization of the images
from the three directions (x, y, and z). A deep learning method developed by Ren et al. [42] was
applied to detect the valve core (opaque) during the bubbly fluid flow. Lastly, the original algorithms
written using MATLAB (R2016b, The MathWorks, Inc., Natick, MA, USA) software in this research
helped to determine the optimal design of the reflector sets set-up and perform the 3D reconstruction
of the bubbles.

The overall structure of the paper is as follows: the introduction is followed by Section 2 in which
the overall structure of the 3D imaging experiment system is explained. Next, Section 3 elaborates
on the optimized arrangement of the one-camera-five mirror module, while Section 4 illustrates the
development of the proposed algorithm used for bubble detection. Finally, Sections 5 and 6 elucidate
on the analysis of the results and the conclusion, respectively.

2. Overall Structure of the 3D Imaging Experiment System

Figure 1 shows the experimental setups of the hydraulic system, which consists of a water
hydraulic power transmission subsystem, an electric control subsystem and the water hydraulic valve.
The dimensions of the transparent valve used in this research were marked in right figure. In addition,

196



Appl. Sci. 2018, 8, 1783

the inlet and outlet ports were noted. The “electric control subsystem” consists of a frequency inverter
and a component switching panel. The frequency inverter (Schneider Altivar 610, Paris, France)
ensures suitable power for the hydraulic test bench through adequate control of the water pumps
working frequency (input pressure). Water pump used in the transmission system allows a constant
pressure water supply, which eliminates the shortcomings in terms of pressure fluctuations owing to
subsequent improvements in the AC frequency conversion technology.

Water hydraulic power 
transmission subsystem

Control Water

3-D model of the
transparent valve

Inlet

Outlet

Switch control 
panel

Inverter
(Schneider    )

Motor Pump

Gauges

21
1 

m
m

118 mm 118 mm

Electric control 
subsystem

RR

Figure 1. Overall structure of the experimental setups.

Figure 2 clearly demonstrates the optimal arrangement of the one-camera-five-mirror 3D imaging
module on the water hydraulics experiment platform. The arrangement allowed the capture
and storing of the experimental videos by the high-speed camera and the computer, respectively.
High-speed camera can capture thousands of photographs per second. However, because of the very
short time interval of two adjacent pictures, the Light Emitting Diode (LED) lamp was an essential
device to compensate for the lack of exposure.

5 plane 
mirrors

Optimal
arrangement

Camear

Figure 2. Experimental configuration for the 3D imaging of cavitation bubble.
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2.1. Measurement Principle of the 3D Imaging

Viewing cavitating bubbles in the fluid flow from one side might not give satisfying results in
terms of the size, the position, and the quantity of bubbles. Hence, to avoid partial invisibility while
recording, a 3D approach based on one-camera-five-mirror device was applied in this study.

The 3D virtual stereo vision measurement principle of the bubbles illustrated in Figure 3 explains
the arrangement of the reflector sets. To observe the cavitating area in a transparent throttle valve
through different view angles, a high-speed camera (Revealer 5KF10, Hefei, China) with a 60 mm
Nikkor lens (Tokyo, Japan): resolution and frame rate of 1280 × 860 pixels and 4000 fps, a lighting
equipment, and five reflectors (mirror glass) were used. The concept of virtual stereoscopic parallax
eased the capturing of the cavitation bubbles around the valve core. With the real camera imaged
into virtual cameras: two mirrors positioned symmetrically (L, R) and one mirror placed behind the
valve (B). The specular reflection along the inherent optical paths eased mirroring of the real camera.
Even with intersecting optical paths, the virtual image planes from the three sides (L, R and B) were
distinctively separated on the real camera. Moreover, with the inlet–outlet coupler and the hydraulic
hoses hindering the vision, the fourth virtual camera was omitted. As observed during the experiment,
this novel method successfully captured clearly both the growth and the collapse of the bubbles.

Inlet/Outlet

Fluid field

Valve core

Figure 3. Schematic diagram of the 3D imaging principle.

2.2. Transparent Throttle Valve

In previous studies, the refractive index of glass-made tanks (1.52) [13,21–24] was suitable for
analyzing bubbly flows. However, the advent of an easily machined transparent thermoplastic
called Polymethylmethacrylate (PMMA, Perspex, acrylic glass), eased the capturing of images by
high speed photography. Along with its refractive index (1.490) being relatively closer to the fluid
used (water (1.333)) and its ability to withstand higher pressures of 20 bar, PMMA was used to
manufacture the throttle valve’s body. Operating at 20 ◦C, no correction factor was required and high
light transmission was observed with no substantial image distortion. Having a modular structure,
analysis of the bubble features was eased throughout the area under study. To counteract with the
effects of high pressure, the chosen material for the valve core was brass while its connecting rod
and the valve core were made using stainless steel. In addition, to induce cavitating bubbles in the
fluid flow, a pressure difference of 0.2 MPa (the inlet pressure: 0.3 MPa; the outlet pressure: 0.1 MPa)
was applied in the valve port area. The bursting effect of the bubbles resulted in the flaking off the
materials, thus, eroding the inner area of the valve.
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3. Optimization Arrangement of the One-Camera-Five-Mirror Module

The 3D Bubble reconstruction algorithm developed in this paper was based on space rectangular
coordinate system. The spatial coordinates of the cavitation bubbles in the valve was provided by the
position information of the experiment images from the three directions of left (L), right (R), and back
(B). The bubble position coordinates on the horizontal axis from the L and B sides’ images were directly
used as the x-coordinate values of the bubbles in the spatial location and the R side’s image provided
the y-coordinate values. In case a virtual camera has an oblique angle with the corresponding observed
side of the valve, the transparent surface made by PMMA material will cause image refringence, then
the 3D bubble position in the x–y plane will be inaccurate with its actual space position. The larger the
oblique angle, the greater the error of the bubble in space position. To eliminate this problem, the light
center axes of the three virtual cameras were all defined to be perpendicular to the observed faces.

The resolution of the experiment videos was limited by the capability of the high-speed camera
and the distance from the observed field to the camera lens. The resolution capability of the camera
and the lens used in the experiment are fixed. The cavitation bubbles in the valve were quite small.
In order to ensure the resolution of the bubble images, the distance of the optical path were maintained
as short as possible. In addition, the distance of the optical path of the three virtual cameras was set to
be equal to ensure the consistent image resolution in the L, R and B three sides.

To optimize the arrangement of the high-speed camera and five plane mirrors to meet the
expectation above, the optimization model was built. As shown in Figure 4, the point P and Q are the
position of the virtual camera 3 (B) and 2 (R) in Figure 3. Due to the symmetrical relationship of the
virtual camera 1 (L) and 2 (R), the optimal design of the two mirrors of virtual camera 1 was omitted.
Thus, the optimization design variables in practice were the position parameters of the camera (point
H) and the three mirrors (marked as A, B and C).

3.1. Optimization Model

As shown in Figure 4, with regard to the nonlinear constrained optimization in this paper,
the optimization objective is defined as J(x) = b + c + d. The objective function is mathematically
defined by:

min J(x), (1)

Subject to: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
arctan kHC2 − arctan kHV0 >

1◦

180◦ π,

xA0 − xV0 > 3,

xC1 > 1,

where x = [a, b, c, d, θ1, θ2, θ3]
T .

3.2. Optimization Variables

The four length optimization variables are defined as follows: lOA = a > 0, lOB = b > 0,
lBC = c > 0, lCH = d > 0. The three angle optimization variables are defined as follows θ1 (mirror A),
θ2 (mirror B) and θ3 (mirror C). Hence, the optimal objective can be represented as lOP = lOQ = b+ c+ d
and the coordinates of the virtual cameras 2 and 3 are expressed as follows: Q( b+c+d√

2
,− b+c+d√

2
),

P( b+c+d√
2

, b+c+d√
2

). In addition, the coordinates of the plane mirrors A and B can be expressed as

A( a√
2

, a√
2
), B( b√

2
,− b√

2
).

All the coordinates in Figure 4 can be deviated and expressed by the optimization variables,
a, b, c, d, θ1, θ2, θ3, based on the optical and geometrical relationship among them. In addition,
the coordinate values are listed in Table 1.
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Figure 4. Establishment and parameter setting of the optimization model.
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Table 1. Coordinate values of the design points

Point x coordinate y coordinate

H xP + yP tan θ1 − yH tan θ1
2xP tan θ1 + yP(tan2 θ1 − 1) +

√
2a(1 − tan θ1)

1 + tan2 θ1

R xQ + yQ tan θ2 − yR tan θ2
2xQ tan θ2 + yQ(tan2 θ2 − 1)−√

2b(1 + tan θ2)

1 + tan2 θ2

C
yB−yR
xB−xR

xR − yR − xR+xH
2 tan θ3 +

yR+yH
2

yB−yR
xB−xR

− tan θ3

yB − yR
xB − xR

(xC − xR) + yR

V1 r cos(arccos
r√

x2
P + y2

P

+ 45◦) r sin(arccos
r√

x2
P + y2

P

+ 45◦)

A1

yP − yV1−yP
xV1−xP

xP − a√
2
(1 − tan θ1)

tan θ1 − yV1−yP
xV1−xP

xA1 tan θ1 +
a√
2
(1 − tan θ1)

A0 xH − xA1 − xH
yA1 − yH

yH 0

V0
lV√

2
0

V2 xV1 −yV1

B1

yQ−yV2
xQ−xV2

xQ − yQ − b√
2
(1 + tan θ2)

yQ−yV2
xQ−xV2

− tan θ2
xB1 tan θ2 − b√

2
(1 + tan θ2)

C1

yR+yH
2 − xR+xH

2 tan θ3 +
yR−yB1
xR−xB1

xR − yR

yR−yB1
xR−xB1

− tan θ3
tan θ3(xC1 −

xR + xH
2

) +
yR + yH

2

V3 r cos(arccos
r√

x2
P + y2

P

− 45◦) r sin(arccos
r√

x2
P + y2

P

− 45◦)

B2

b√
2
(1 + tan θ2)− yQ−yV3

xQ−xV3
xQ + yQ

tan θ2 − yQ−yV3
xQ−xV3

xB2 tan θ2 − b√
2
(1 + tan θ2)

C2

yR+yH
2 − xR+xH

2 tan θ3 +
yR−yB2
xR−xB2

xR − yR

yR−yB2
xR−xB2

− tan θ3
tan θ3(xC2 −

xR + xH
2

) +
yR + yH

2

The calculation of the following parameters was to define the constraint conditions to meet the
requirements of the one-camera-five-mirror 3D imaging module and ensure no interference between
the optical paths.

To prevent the optical image reflected by the mirror A from being interrupted by the valve, there
should be a certain interval between A0 and V0, as expressed in Equation (2):

xA0 − xV0 > 3. (2)

The left boundary of the optical path reflected by the mirror C is on the positive side of the y-axis,
in case of influencing the mirror belonging to the virtual camera 1, which is symmetrical with the
mirror C. Thus, the x-coordinate should meet the following constraint:

xC1 > 1. (3)
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The slope of the line HC2 and HV0 can be expressed as:

kHC2 =
yH − yC2

xH − xC2

,

kHV0 =
yH − yV0

xH − xV0

.

To prevent the optical path from the mirror A and C from interfering with each other, the slopes
angle of the line HC2 and HA1 should meet:

arctan kHC2 − arctan kHV0 >
1◦

180◦ π. (4)

3.3. Optimization Solution

The fmincon function provided by Matlab optimization toolbox was applied to solve the minimum
value of the multi-variable constrained nonlinear function in this paper. The variable initial values was
defined as

x0 = [184.79, 315.54, 216.71, 236.45, 151.03◦, 64.68◦, 41.25◦]T ,

which was a quite good arrangement scheme by manual adjustments in the CAD drawing. After the
calculation, the optimal solution is obtained as follows:

xopt =[aopt, bopt, copt, dopt, θ1opt, θ2opt, θ3opt]
T

=[179.85, 307.36, 197.60, 219.90, 150.75◦, 64.71◦, 41.25◦]T .

4. Algorithm Development

4.1. 2D Bubble Feature Detection

To extract the morphological data of the bubbles from the recorded experimental videos, we used
the MATLAB software. The valve port area where the cavitating bubbles appeared was thoroughly
analyzed by an image processing algorithm based on the frame differencing method. Obtaining
the bubble feature data of bubbles from the images requires the pre-processing and the process is
shown in Figure 5. The original images were converted to grayscale image using rgb2gray function in
MATLAB software. The difference between two frames within a defined internal would be calculated.
In addition, the result was converted to binary image (also called as BW image) using im2bw function
in MATLAB software. As a result, the 2D bubble feature data can be obtained for further calculation.

Original frames Convert to 
grayscale image

Calculate the difference 
between frames

Convert to BW imageDetected feature of 
image regions

Extract the 
feature data

Figure 5. Bubble feature extraction framework.

Figure 6 presents the process for detecting the 2D feature of cavitation bubbles. The semi-major
sizes of the cavitation bubble on the x, y, and z axes. The shape of the 2D bubble was defined as ellipse.
In addition, the long or short axes of the ellipse are determined by the width (w) and height (h) of the
detected area. Furthermore, the center of a bubble is estimated by the detected coordinate (xlt, ylt),
w and h: {

x = xlt + 0.5 × w,

y = ylt + 0.5 × h.
(5)
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Figure 6. Image processing of the 2D bubble feature detection algorithm.

The center coordinate can be used to reconstruct the 3D motion parameters of bubbles afterwards.
The 2D bubble features of the relative motion equalling the previous frame were extracted. Bubble
clusters were assumed to be larger bubbles while those in developing or under collapsing mode were
presumed smaller bubbles. The motion features in terms of the smallest pixel point were detected by
the 2D cavitation bubble detection algorithm; the smallest discernable bubble size was restricted by
the resolution of the video.

4.2. Feature Identification of the Opaque Object

The valve seat and core were manufactured by stainless steel materials. The brass material was
used to compose the valve rod. Ultimately, it was separately distinguished by its color difference feature
at the interface between the valve core and rod. A 3D coordinate system built by the mid-point of the
boundary line between the valve core and the its rod to define the coordinates origin of the 3D model.
The algorithm of the valve core identification was based on the Faster R-CNN method developed by
Ren et al. [42], which is a mainstream deep learning method in object detection. Figure 7 illustrates the
object detection model that is based on deep learning, requiring a large number of training samples.
The detection accuracy meets the adequate requirements after processing the training model and the
coordinates of the valve core contour were generated through the Faster R-CNN model. In addition,
getting the valve core’s diameter in pixel scale and its real size (rcore = 17 mm), it is easy to transform
the pixel value of the position of the bubbles into the actual size, whose unit is millimeters (mm).

Plenty of frame images 

Object contour 
coordinates

Manual feature 
selection 

Training date 
set

Preprocessing

Experiment original videos

Training samples 

Pending images

Model training 

Faster R-CNN 
model

······

L[x1,y1,x2,y2]
R[x1,y1,x2,y2]
B[x1,y1,x2,y2]

L R B

Object identification

Figure 7. Block diagram of Faster R-CNN model. (R-CNN: region-based convolutional neural network)

4.3. 3D Bubble Cluster Reconstruction

Reconstructing the 3D bubbles was simplified using the 3D Cartesian coordinates system.
The origin of the model was determined from the contact surface of the valve core and the valve rod.
From Figure 8b, the x and z axes in the left (L) side and back (B) side of the valve body represent the
horizontal and vertical directions, respectively. It is worth emphasizing that the type of the space
rectangular coordinate system is left-handed cartesian coordinate. And it is different with the x-y
coordinate for optimization calculation. Due to different conditions of the mirror reflection, the positive
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x-axis of the L-side and the B-side was analogous. Concerning the right (R) side of the valve body, the
y and z-axes were set in the corresponding horizontal and vertical directions. Additionally, the valve
port area in Figure 9 was divided into 15 parts so as to decrease the matching scope and the possible
associated errors. The left-handed Cartesian coordinates was used to express the spatial location of the
reconstructed bubble.

(a)

(b)

(c)

Figure 8. 2D Detection and 3D reconstruction results of the bubble cluster (unit: mm). (a) original
images; (b) 2D detection results; (c) 3D reconstuction results.

The requirement of the 3D bubble cluster reconstruction was to match the bubbles from the
different sides of the valve with the same bubbles in the 3D space. In addition, the bubbles y-axis
values on the L and B sides were obtained from the B-side. The lack of vision from the R-side resulted
the y-axis values of the bubbles belonging to the L2, L1B4, and B3 space to be fixed with a random
value. The following equations illustrate the mathematical model of the bubble matching process:

Dij = 1 + |Zi − Zj|, (6)
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where i and j are two bubbles on different sides. In addition, Zi and Zj are their coordinate values on
the z-axis. Zi and Zj can be get through the 2D bubble detection results of Equation (5). The Zi and Zj
are equal to the corresponding value of y in Equation (5). The index Dij is the difference of the z-axes
regarding the two matching 2D bubbles:

Hij =
hi
hj

+
hj

hi
, (7)

where Hij is termed as the height difference. In addition, hi, hj are the height of the i and j frames,
which can be also obtained according to the calculation results of the 2D bubble detection algorithm,
as shown in Figure 8b:

Mij = DijHij, (8)

where Mij is the marching index of the complete judgement of Dij and Hij. If Mij is less than the Mmax,
the bubbles i and j are considered a probable 3D bubble. Prior to the pairs with the minimum Mij being
designated as coordinating 3D bubbles, the bubbles from the three sides (L, R, and B) are matched.
To simulate the bubbles (small ones, clustered ones) using the reconstruction algorithm, ellipses were
used to extract their outer contours, as shown in Figure 8c.
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Figure 9. Space partition of the flow field.

5. Results and Analysis

The flow profiles of the bubbles were analyzed based on the calculated results of the 3D bubble
reconstruction algorithm. Figure 8c displays the size and distribution of the 3D bubbles recreated by
computing and processing a certain frame from the recorded video. Stereoscopic parallax explains the
following results: the bubble viewed in the mirror deviated from its actual appearance. Hence, the 3D
bubble image from the back (B) side appeared to opposite left and right when compared with the
mirror image of the B side in Figure 8a,b. As per the 3D reconstruction results, the bubble algorithm
gave satisfying results. Even if not all bubbles were reconstructed, the results of the 3D reconstruction
tallied with the original experimental images, thereby concluding with a vivid and solid reference for
recreating the bubble morphology.

Figure 10 illustrates the 3D reconstructed bubble flow profile of four adjacent frames from 0 ms to
0.87 ms. The time interval between two adjacent frames was the least time difference captured by the
high-speed camera, which was equal to 0.29 ms. Furthermore, the 3D bubble reconstruction algorithm
was stable enough to simulate and evaluate the bubble flow profile in each frame.
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t1=0 ms t2=0.29 ms t3=0.58 ms t4 =0.87 ms

Figure 10. 3D reconstruction results of bubble flow in a short time (unit: mm).

As an example, a short experimental video which consisted of 50 frames of images was used to
further analyze the characteristics of the reconstructed 3D cavitation bubble cluster. Its first four frames
were the same frames in Figure 10. It is worth noting that the time of 50 frames of experimental images
is only 14.5 ms, which exhibits the advantage of the high-camera camera. The number of 3D bubbles
fluctuating within 50 frames of experiment images was showed in Figure 11, which can present the
size of the bubbles and its number in each time interval The blue-color curve mainly floats between 40
to 70, which indicates that the generation and collapse of the cavitation bubbles can achieve a relative
balance in a short time. The average number of bubble is 57.78.

The cavitation volume percentage in each frame is stated as Equation (9):

Pv =

n
∑

i=1

4
3 πaibici

π(Rfluid − rcore)h
× 100%, (9)

where Rfluid is the radius of the fluid field in the valve and rcore is the radius of the valve core.
In addition, Rfluid and rcore are constants. ai, bi, ci are the three semi-major sizes of the cavitation
bubble on the x, y, and z-axes.

Figure 11. Change of the number of bubble and Pv over time.

The variation of the cavitation volume percentage Pv over time is shown in Figure 11. The change
of the Pv and the number of bubbles between the adjacent frames revealed that the growth and collapse
of the cavitation bubbles were recurrent and fast. While comparing the Pv curve with the number of
bubble curve in Figure 11, an obvious positive correlation between the number of bubbles and the
percentage of cavitation can be found. Moreover, the increase in the number of bubble and the Pv did
not exactly match; at times, while the cavitation volume percentage was decreasing, the number of
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bubbles did increase. Through the analysis of both results in Figure 11 and the original experiment
images, it was concluded that scattering of the bubble clusters into small bubbles increased the number
of bubbles in the cavitating space.

As shown in Figure 12, a short experimental video with 100 frames were analyzed. Various
perspectives of the bubble clouds were presented and from the 100th frame (at about 29 ms), 5635
cavitation bubbles were detected and reconstructed, respectively. Based on the scatter diagram, the
flow pattern of the 3D bubble cluster could be inferred. For example, the path and direction of the
bubble flow were analyzed in Figure 13 through the presence of an obvious bubble headstream on the
back side. The bubbles generated by this headstream were then separated into three paths (arrows)as
shown in Figure 13. In addition, a large number of bubbles were flown out of the observed area through
the outlet port, although there were certainly many that imploded and collapsed in the observed field.

Isometric view Left view Right view Back view

Figure 12. Space distribution of the cavitation bubble cluster of 100 frames (unit: mm).

Bubble headstream 

Outlet

Figure 13. Flow path of the bubble cluster from the back view (unit: mm).

Based on the calculated data of the bubbles’ space coordinates, the kernel densities of the bubbles
on the x–y plane are shown in Figure 14. Almost all of the cavitation bubbles in the 100 frames are
on the positive side of the y-axis. The high density around the point (0,100) validates the analysis of
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the bubble headstream. A maximum number of bubbles were detected by the algorithm that gave
satisfying results as they were easily defined and selected across all the concerned fluid domain,
as shown in Figure 8. The regions with the highest kernel densities in Figure 14 (output of the 100th
frame) are based on the space partitions R4B4, R4B3, R4B2, and R4B1, respectively. Likewise, partition
L1B4 represents the exit of the valve, which directly influences the flow in the partition L1R1 and R4B4,
respectively. The bubble cluster rapidly shifted on the right side of the valve core within 29 ms due to
the high velocity-low pressure zone (vortices) developed after the vena contracta formed soon after
the fluid leaves the valve seat (the valve core opening was set to 1 mm).

Figure 14. Kernel density of the cavitation bubbles on the x–y plane.

6. Conclusions

Throughout this study, the optimal arrangement of the one-camera-five-mirrors module, the
different algorithms applied in detecting the valve core and the bubbles morphology, and the
reconstruction of the 3D bubble clusters along with the calculation of the cavitation volume percentage
together provided favorable results. In addition, analysis of the recorded bubbly flow using the stable
and effective algorithms in the transparent throttle valve proved to be ideal. Lastly, calculating the
cavitation volume percentage broadened the concept of bubbles detection in the fluid flow, and it
could be applied successfully in other cases as well.
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Abstract: A deep neural network is difficult to train due to a large number of unknown parameters.
To increase trainable performance, we present a moderate depth residual network for the restoration
of motion blurring and noisy images. The proposed network has only 10 layers, and the sparse
feedbacks are added in the middle and the last layers, which are called FbResNet. FbResNet has fast
convergence speed and effective denoising performance. In addition, it can also reduce the artificial
Mosaic trace at the seam of patches, and visually pleasant output results can be produced from the
blurred images or noisy images. Experimental results show the effectiveness of our designed model
and method.

Keywords: image restoration; motion deburring; image denoising; sparse feedback

1. Introduction

In recent years, many hard problems in computer vision have been well solved, especially in the
fields of image classification, object detection [1], and identification [2]. By using the deep learning
method, the accuracy and robustness of these issues have been greatly improved.

Until now, many kinds of neural network structures have been proposed, such as five layers
LeNet [3], eight layers AlexNet [4], 19 layers VGG [5], 22 layers GoogleNet [6], 152 layers ResNet [7],
GAN [8], and so on. These networks are gradually deepened, and the training data set is also getting
much larger. Although the technology of deep learning is especially effective for issues of classification,
it still includes many problems that cannot be solved in image restoration. The main reason includes
two aspects: First, to collect a large number of training data about image degradation is not easy;
second, the degradation reason is various, and it is exceptionally difficult to enumerate all cases
of image degradation. Therefore, when using a deep neural network to improve these problems,
the training set is not usually enough to train a deep neural network model.

In this paper, we improve the network structure of ResNet [7] and propose a sparse feedback
residual network, which is called FbResNet. It includes 10 layers with sparse “shortcut connections”
(in this article we call the “shortcut connections” forward feedback). Figure 1 shows the structure of
FbResNet. It can be seen that FbResNet only includes two forward feedbacks, which are derived from
the input layer. One feedback is connected to the middle layer, while the other is connected to the
last layer. The two feedbacks can provide an effective constraint of the loss function and help to train
reasonable network parameters. Experimental results show FbResNet has a fast convergence speed
and effective denoising performance.

Appl. Sci. 2018, 8, 2417; doi:10.3390/app8122417 www.mdpi.com/journal/applsci211



Appl. Sci. 2018, 8, 2417

Figure 1. The architecture of proposed network FbResNet.

2. Related Works

Image restoration is a long-standing problem in low-level computer vision. In practice,
the obtained images are usually degraded (such as images with noise, blurred images [9], sampled
images [10], etc.). Image restoration is used to estimate the original image based on the degenerated
image. Since this is an under-constraint problem, the solution is not unique. In order to reduce the
solution space of the problem, the prior-based methods had been widely used, which had added the
prior information or constraints and could recover the original image from the degraded image [10,11].

However, most of the prior-based methods build the objective function by simplifying the
mechanism of the image degradation, and not considering the affection of noises or other factors.
Hence, they cannot perfectly restore clean images for severely degraded images. In addition,
the prior-based methods involve a complex optimization problem, and most of the prior-based
methods can hardly achieve high performance without sacrificing computational efficiency.
Furthermore, the prior-based models, in general, are nonconvex and involve several manually
chosen parameters [12]. Therefore, there are many limitations in restoring images just using
prior-based methods.

Deep convolution neural network (CNN) [13,14] has made a series of breakthroughs in many
applications of computer vision [15,16], such as image classification, recognition and target detection,
etc. The features of CNN are mainly exacted by increasing the depth of network model. Then,
the lower, middle, and the advanced extracted features will be gradually obtained. In general,
the advanced features will be used to connect with one or several fully connected layers. The reason
for this remarkable achievement in computer vision task is mainly because many rich characteristics of
different levels can be extracted by training the deep neural network.

Recent evidence reveals that the depth of neural network is very important. Many visual
tasks [17–19], especially the low-level vision problems, have greatly benefited from very deep network.
There are several references to perform the denoising problems using deep neural networks.

Reference [18] used a convolutional network as image denoising architecture and claimed that
CNNs could provide comparable, and in some cases, superior performance to wavelet and Markov
random field methods. Moreover, Reference [20] found that a convolutional network offered similar
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performance in the blind denoising setting, as compared to other techniques in the non-blind setting.
However, training the convolutional network architecture requires substantial computation and many
thousands of updates to converge.

Reference [21] combined sparse coding and deep networks pretrained with denoising
auto-encoder for the tasks of image denoising and blind inpainting and achieved comparable results
to K-SVD [22]. This method could automatically remove complex patterns, such as superimposed text
from an image, and improve the performance of unsupervised feature learning. However, the method
in Reference [21] also strongly relied on supervised training and could remove only the noise patterns
in the training data. In Reference [23], trainable nonlinear reaction diffusion had been proposed and
could be used for a variety of image restoration tasks by incorporating appropriate reaction force.
In [24], the multi-layer perceptron (MLP) had been used for image denoising.

The model in References [23,24] can achieve promising performance. Reference [24] claimed
that training MLP with many hidden layers could lead to problems, such as vanishing gradients and
over-fitting. Reference [24] also found back propagation will work well and concluded that deep
learning techniques are not necessary.

In a deep network structure, can all these extracted features be fully used? There may be
many useless layers or useless parameters, some high-level features that may be actually useless for
the low-level applications of image processing. Therefore, a moderate depth neural network has
been proposed in this paper, which is a 10-layer deep residual network with sparse feedback loops.
The detail of the proposed network will be introduced as following.

3. Deep Residual Network with Sparse Feedback Loops

In the design and application of neural network, the researchers are only required to focus on
the input and output, the number of hidden layers, and the initial parameters. As the network depth
gradually increases, the parameters of neural network are also difficult to tune. There are also no
relevant theories to be presented on how to tune these parameters. Moreover, the updating of neuron
parameters depends on the gradient; the more far away from the output layer, the more difficult
for updating of neuron parameters. It will be invariant, or will change dramatically, which is called
gradient disappearance or gradient explosion problem. Although the dropout strategy, or batch
normalization, was adopted to reduce explosion problems, it still often happened. The more layers of
neural network, the more obvious the gradient disappearance or explosion problem is.

This question reminds me of the amplifier cascade problem in electronics. When connecting the
circuit, the output signal is usually unstable. Single negative feedback or inter-stage negative feedback
will generally be added to stabilize the output signal. In the amplifier circuit, the negative feedback
is added to enhance the performance of the anti-noise and stability of the circuit, but the feedback
will also reduce the amplification factor of the circuit. Usually, sparse feedback with a longer span
is adopted to keep a tradeoff between the robustness and amplification factor. We believe that this
situation is very similar to the shortcut in residual neural network. We try to adjust the shortcut in
ResNet to a sparse longer connection. However, the idea of sparse longer feedback comes from the
concept of negative feedback in the circuit; hence it is represented by “feedback.”

However, the denoising results of ResNet are not better than that of the convolution neural
network without feedback. For example, denoising convolutional neural network (DnCNN) [25]
is good at removing Gaussian noise. Therefore, we combine the network structure of ResNet and
DnCNN, and propose the deep residual network with sparse feedback for image restoration, which is
called FbResNet. The proposed network structure is shown in Figure 1.

There are only two feedbacks in Figure 1; one is a short feedback; the other is a long feedback.
The short feedback is connected from layer 1 to layer 5. Because the output dimension of layer 1 and
layer 5 is equal, the outputs of layer 1 and layer 5 can be directly added. The dimension of the input
layer is the same as that of the last convolutional layer. Hence, the long feedback adds the input image
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to the output of the last convolutional layer, which can add a constraint to FbResNet to keep the most
similarity between the input noisy image and output clean image.

The mean squared error between the clean images and the degraded images can be defined as the
loss function to learn the trainable parameters Ξ of FbResNet as follows:

f (Ξ) =
1
N

N

∑
i=1

‖R(xi, Ξ)− yi‖2 (1)

where the input is a noisy image xi, and FbResNet aims to learn a mapping function R(xi) = yi, to
predict the clean image. {(xi, yi)} represents N degraded-clean training image (patch) pairs; R represents
the network structure, of which parameters Ξ require to be trained.

3.1. Network Structure

Inspired by the residual learning structure, we propose the deep residual network with sparse
feedback loops for image restoration, and the structure of FbResNet is shown in Figure 1. It consists of
ten layers. “Convolution” block is in the first layer. This layer has no “Batch Normal” and “ReLU,” in
other words, the information produced by this layer is the original information after filtering the input
image, then it is used to estimate the residual information by feeding back to the middle and the last
layer. Eight “Convolution + Batch Normalization + ReLU” blocks are in the middle layers. The number
behind each middle layer is the dilation factors, which is set to 1, 2, 3, 4, 4, 3, 2 and 1, respectively.
By using the increasing dilated factors, the first-half layers can learn the residual information using
an enlarged receptive field, and the latter half layers can refine the residual information using the
decreasing dilation factors. In order to ensure that the estimated residual information does not deviate
greatly, two forward feedbacks from the first layer have been added. The first is connected to the
middle of the dilation convolution. The second is connected to the last layer. The main task of FbResNet
is to estimate the residual information between the input degraded image and the output clean image.

3.2. Implementation

In order to reduce the size and parameters of the neural network, we cut the input training image
into small patches. But the restored image may exist annoying artifact boundary. There are two
methods to deal with this problem: Symmetrical padding and zero padding (same padding). To verify
the effectiveness of FbResNet in handling boundaries, we use the same padding strategy. Note the
dilated convolution with dilation factor 4 pads 4 zeros pixels in the boundaries of each feature map.
Batch normalization (BN) is adopted right after each convolution and before activation. We initialize
the weights as in Reference [26] and Adam is used as minimizing function with a mini-batch size of 38.
The learning rate starts from 0.1 and is divided by 10 when the error plateaus. We use a weight decay
of 0.001 and a momentum of 0.9. The dropout is not used in the training phase.

3.3. Comparison

In order to verify the effectiveness of the proposed FbResNet, the comparison with the other
network structures has been performed. In our opinion, very deep network architecture requires a
huge training set, but in many computer vision tasks, a large number of training samples is not easy to
be obtained. Nevertheless, small training samples can be easily constructed. Because our training set
is small, for comparison on the same network scale, we reduce the depth of the ResNet and set it to 10.
The reformed ResNet is shown in Figure 2. Figure 2 shows two kinds of network structures reformed
from ResNet and the network structure of DnCNN. The network structure of (a) is same as that of
ResNet except for the depth; besides of the first layer and the last layer, only 4 building blocks are used
in the reformed ResNet. In order to compare the performance at the same configuration with Figure 1,
Figure 2a is also improved to Figure 2b, which is called ResNet with dilated convolution. Figure 2c
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shows the structure of DnCNN. The meaning of the parameters on each layer in Figure 2 is similar to
that in Figure 1. The experiment setting of different models had been shown in Table 1.

   
(a) (b) (c) 

Figure 2. The architectures of the reformed ResNet and denoising convolutional neural network
(DnCNN). (a) ResNet; (b) ResNet with dilated convolution; and (c) DnCNN.

Table 1. Experiment setting of different models.

Structure ResNet
ResNet with Dilated

Convolution
DnCNN FbResNet

Input image blur image blur image blur image blur image
Number of layers 10 10 10 10
Padding strategy Same same symmetric same

Dilation convolution No yes yes yes
Output image clear image clear image residual image clear image

4. Experiments and Analysis

We evaluate our proposed model and method on two datasets. One is the human face database
Facial Recognition Technology (FERET) [27], which includes 1403 human faces with size 64 × 64.
The other is 660 images of size 180 × 180, which is a part of images presented in Reference [25],
which includes the images of animals, humans, various landscapes, etc.

4.1. Human Face Database

To train FbResNet for motion deblurring with unknown motion direction, we consider four
different motion directions: up, down, left, and right. The database used in this paper includes 1403
human faces. These faces are divided into two parts: 1044 images are used to train the parameters
of FbResNet, and the remaining 359 images are used to test the network. The size of the human face
image is 64 × 64. In this database, the technology of patch cutting is not adopted because the size of
the input image is already small.
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Figure 3 shows the restored images of human face. The first row shows the images with motion
blur; the second row shows the deblurred images of DnCNN; the third row shows the deblurred
images of ResNet; the forth row shows the deblurred images of ResNet with dilated convolution;
the fifth row shows the deblurred images of FbResNet; and the last row shows the clean images.
The restored results of FbResNet are clearer and more similar with the ground truth (clean images)
than those of the other models.

 
Figure 3. Restored images of human face. The first row shows the images with motion blur; the images
from the second row to the fifth row are restored images of DnCNN, ResNet, ResNet with dilated
convolution and FbResNet; the last row shows the clean images.

In addition, we find that the restored images using DnCNN and FbResNet are darker than the
other ones (the fifth column of Figure 3). The main reason is that there are a few feedbacks or no
feedback in these two network structures. Hence, the network structure with a few feedbacks can
maintain the average skin color of the restored face image and avoid overexposure, even if the input
image has a small exposure effect.

Figure 4 shows the enlarged image of a human face. From left to right, it is the restored image
of DnCNN, ResNet, ResNet with dilated convolution, FbResNet, and the ground truth, respectively.
It is easier to see the advantages of FbResNet, which has less deformation and higher resolution than
those of other models. Figure 5 shows the restored images with motion blur in different directions.
The first row shows the blur images and the second row shows the deblured images; the below words
describe the movement direction of the produced blur images. We find that the robust performance
of FbResNet for motion blur is generally good, but the more mixture of the movement direction, the
performance will gradually decline, and the deblurred robustness for various directions needs to be
further improved.

Figure 4. Enlarged restored images. From left to right, it is the restored images of DnCNN, ResNet,
ResNet with dilated convolution and FbResNet, and the last is the clean image.
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 right+left   up+down    up+right   down+left  up+down+right 

Figure 5. Restored images for input images with motion blur in different directions.

The left figure in Figure 6 shows the average peak signal-to-noise ratio (PSNR) improvement over
the other models with respect to different motion direction by FbResNet model. It can be seen that the
proposed FbResNet consistently outperforms the other models by a large margin. The right figure in
Figure 6 shows the convergence of the loss function. The convergence speed of FbResNet model is
faster than that of the other network models.

Figure 6. Peak signal-to-noise ratio (PSNR) and loss function for motion deblurring.

4.2. Image Denoising

To train FbResNet for image denoising with different noise level, 660 images of size 180 × 180
are used. The noise level 15, 35, 45 has been added in the image set. According to the method of
Reference [25], we crop each image into small patches, and each patch size is set to 60 × 60. Then, we
obtain 5940 training samples. These samples are divided into two parts, 80% of which is used to train
the parameters of FbResNet; the rest is used as the validation set.

In order to validate the effectiveness of FbResNet, 192 images have been used to test the
performance of the trained FbResNet and ResNet for image denoising. Figure 7 shows several
denoised images with noise level 35. The first column shows the noisy input images; the second is the
denoised images of ResNet model and the last column is the results of FbResNet model. Because each
test image has been cropped into many small patches, the output patches of the network must be
spliced in order to get a complete denoised image.

It can be seen that the images in second column of Figure 7 have obvious artificial stitching trace;
nevertheless, it is almost impossible to find the presence of artificial traces from the images in last
column. The main reason is that the sparse feedbacks have been added to FbResNet model and can
be used to smooth the artificial traces at the seam of patches. Figure 8 shows the enlarged denoised
images, and the images from left to right in the first row are input noisy image, restored image of
ResNet, restored image of ResNet with “dilation convolution ” + ” symmetric padding,” and restored
image of FbResNet. The images in second row, from left to right, are the enlarged images of the red
box corresponding to the position in the first row. The restored image of ResNet without symmetric
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padding has the distinct artificial stitching traces, and the stitching traces have been improved in that
of the ResNet with the symmetric padding. However, even if our algorithm is not added symmetric
padding, it can also achieve the same effect as that of ResNet with symmetric padding.

Figure 7. Several denoised image results with noise level 35. From left to right, the first column shows
the noisy images, the second column shows the restored image of ResNet, and the last column shows
the restored images of FbResNet.

The experiment results on these two datasets demonstrate the feasibility of training FbResNet,
which can produce visually pleasant output result for the motion deblurring or image denoising.

Figure 8. Enlarged denoised images. The images from left to right in the first row are input noisy
image, restored image of ResNet, restored image of ResNet with “dilation convolution” + “symmetric
padding,” and restored image of FbResNet; the images in second row, from left to right, are the enlarged
images of the red box corresponding to the position in the first row.
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5. Conclusions

In this paper, we have designed and trained a deep residual network with sparse feedback
loops for image restoration, especially for the restoration of motion deblurring and image denoising.
The addition of sparse feedback improves the convergence speed and the training stability of network
model. In addition, the proposed FbResNet is good at smoothing artificial stitching trace at the
seam of patches, and visually pleasant output results can be produced from the deblurred images or
denoised images.
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Abstract: Inhomogeneous images cannot be segmented quickly or accurately using local or global
image information. To solve this problem, an image segmentation method using a novel active
contour model that is based on an improved signed pressure force (SPF) function and a local image
fitting (LIF) model is proposed in this paper, which is based on local and global image information.
First, a weight function of the global grayscale means of the inside and outside of a contour curve is
presented by combining the internal gray mean value with the external gray mean value, based on
which a new SPF function is defined. The SPF function can segment blurred images and weak
gradient images. Then, the LIF model is introduced by using local image information to segment
intensity-inhomogeneous images. Subsequently, a weight function is established based on the local
and global image information, and then the weight function is used to adjust the weights between
the local information term and the global information term. Thus, a novel active contour model
is presented, and an improved SPF- and LIF-based image segmentation (SPFLIF-IS) algorithm is
developed based on that model. Experimental results show that the proposed method not only
exhibits high robustness to the initial contour and noise but also effectively segments multiobjective
images and images with intensity inhomogeneity and can analyze real images well.

Keywords: image segmentation; active contour model; level set; signed pressure force function

1. Introduction

Image segmentation is an important task in the field of image analysis and object detection and
aims to segment an image into distinctive subregions that are meaningful to analyze [1]. Segmentation
is the intermediate step between image processing and image analysis as well as the bridge from low-
to high-level research in computer vision. Inhomogeneity, noise, and low contrast in real images have
increased the difficulty of image segmentation [2].

Over the past few decades, many segmentation methods have been proposed. The active contour
model (ACM), which was proposed by Kass et al. [3], has been proven to be an efficient framework
for image segmentation. The fundamental idea of the ACM framework is to control a curve to
move toward its interior normal and then stop on the true boundary of an object based on an energy
minimization model [4]. The two main shortcomings of ACM algorithms are (1) sensitivity to the initial
position and (2) difficulties related to topological changes [5]. Generally, existing ACM methods can be
roughly divided into the following types, edge-based models [6–9] and region-based models [10–14].

The geodesic active contour (GAC) model [15] is the most typical of edge-based methods.
Owing to the edge-indicator function, the model can stop at high-contrast image gradients [16].
Edge-based models have distinct disadvantages. For example, these methods can effectively segment
an object with strong edges; however, they cannot detect the weak edges of an object. Moreover,
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the methods are sensitive to noise and do not easily obtain satisfactory segmentation results for blurred
images [2]. In addition, the contour should initially be set near the object; otherwise, it is difficult
to obtain correct segmentation results [17]. Region-based models make full use of image statistical
information, whereas edge-based models do not. Thus, region-based models have multiple advantages
over edge-based models. For example, because regional information is used, region-based models
are less sensitive to contour initialization and noise. Furthermore, these region-based models can
easily segment images with weak boundaries or even those without boundaries [18]. One of the most
typical region-based methods was proposed by Chan and Vese (C–V) [11], which is based on the
Mumford–Shah functional [19]. The C–V model is based on the assumption that image intensities are
homogeneous in each region. However, this assumption does not suit the intensity of inhomogeneous
images, which limits the method’s further applications [20,21].

Recently, hybrid methods have gained popularity among region-based methods. These methods
combine region (local or global) and edge information in their energy formulations [22].
Zhang et al. [23] proposed the selective binary and Gaussian filtering regularized level set (SBGFRLS)
model. This model combines the advantages of region-based and edge-based active contours and
introduces a region-based SPF function, which utilizes the image global intensity means from the
C–V method. This method adopts an approach similar to that of the GAC model. However,
the edge-indicator function is replaced with a region-based SPF function in the model. Moreover,
the traditional regularization function is usually replaced with a Gaussian smoothing function.
This traditional method uses only global image intensity information. Therefore, the method is unable
to analyze intensity-inhomogeneous images [21,22]. Li et al. [24] investigated a local binary fitting
(LBF) model, which is an efficient region-based level set method. The LBF model introduces a local
binary fitting energy with a kernel function and uses the intensity of the current pixel to approximate
the intensities of the neighboring pixels to obtain accurate segmentation performance; the model can
be used to address intensity-inhomogeneous images and has attracted extensive attention due to
its satisfactory segmentation performance [25]. However, this model involves high computational
complexity. In addition, the model is sensitive to the initialization location and parameters [5,26].
Wang et al. [27] defined an energy functional that combines the merits of the C–V model and the
LBF model [21]. Because the new model employs local and global intensity information, it can
avoid becoming trapped in a local minimum; however, the result remains partially dependent on the
initialization location [21]. Zhang et al. [28] exploited a local image region statistics-based improved
ACM method (LSACM) in the presence of intensity inhomogeneity. The LSACM is robust to noise
while suppressing intensity overlap to some extent. Yuan et al. [25] offered a model based on global and
local regions. The global term takes gradient amplitude into consideration, and the local term adopts
local image information by convolving the Gaussian kernel function [29]. This algorithm is sensitive to
the initialization location because of the use of gradient information. Similarly, Zhao et al. [30] adopted
local region statistical information and gradient information to construct an energy functional and
faced the same problem. Zhang et al. [31] introduced a local image fitting (LIF) energy functional
to extract local image information and proposed a Gaussian filtering method for a variational level
set to regularize the level set function, which can be interpreted as a constraint on the differences
between the original image and the fitting image [12,24]. Furthermore, the method used Gaussian
kernel filtering to regularize the level set function, and a reinitialization operation was avoided [32].
Unfortunately, the abovementioned methods are sensitive to initialization, and they are also unable to
analyze images with intensity inhomogeneity. Hence, these limitations obviously limit their practical
applications. Here, we focus on overcoming these drawbacks in this paper.

In this study, to segment the images quickly and accurately, a new image segmentation model is
proposed based on an improved SPF and LIF. This method defines a new SPF function, which uses
global image information, and the SPF function can segment blurred images and weak gradient images.
Then, the LIF model is introduced, which is based on local image information, and this model is used
to segment intensity-inhomogeneous images. Moreover, a weight function is established to adjust the
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weights between the SPF model and the LIF model. Thus, a novel ACM model is presented, and an
image segmentation algorithm is investigated. Experimental results demonstrate that our model
involves simpler computation, exhibits faster convergence, and can effectively segment multiobjective
images and intensity-inhomogeneous images. Furthermore, the proposed method is highly robust to
the initial contour and noise.

The remainder of this paper is structured as follows. Section 2 briefly reviews the GAC, C–V,
SBGFRLS, and LIF models. In Section 3, by combining the improved SPF function with the LIF model,
a novel ACM is presented, and using this model, an image segmentation algorithm is designed. Then,
the experimental results and analysis are discussed in Section 4. Section 5 presents the conclusions.

2. Related Work

2.1. The GAC Model

The GAC model uses image gradient information from the boundary of an object [33]. Suppose
that I: Ω⊂R2 is an image domain, I: Ω → R2 is an input image, and C(q) is a closed curve. Then,
the GAC model is formalized by minimizing the following energy functional as

EGAC =
∫ 1

0
g(|∇I(C(q))|)|C′(q)|dq, (1)

where g is a strictly decreasing function.
Usually, a satisfactory edge stopping function (ESF) should be defined, which is regular and

positive at object boundaries [21], e.g.,

g(|∇I|) = 1
1 + |∇Gσ ∗ I|2 , (2)

where Gσ denotes the Gaussian kernel function and Gσ*I describes the convolution operation of I
with Gσ.

Using the steepest descent method and the calculus of variations, we obtain the Euler–Lagrange
form of Equation (1), which is written as

Ct = g(|∇I|)k→N − (∇g · →N)
→
N, (3)

where k is the curvature of the contour and
→
N is the inward normal to the curve. A constant velocity

term α is typically added to increase the propagation speed [21]. Thus, Equation (3) can be rewritten as

Ct = g(|∇I|)(k + ϕ)
→
N − (∇g · →N)

→
N. (4)

The corresponding level set formulation is described as

∂ϕ

∂t
= g|∇ϕ|(div(

∇ϕ

|∇ϕ| ) + α) +∇g · ∇ϕ, (5)

where φ represents the level set function and α is the balloon force that controls the shrinkage or
expansion of the contour.

The GAC model utilizes the image gradient to construct an ESF, which can stop the contour
evolution on object boundaries. When images have weak boundaries or the initial contour is far from
the desired object boundary, the GAC model will fail to find the target [18,22].
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2.2. The C–V Model

The C–V model is proposed based on the assumption that the original image intensity is
homogeneous. The energy functional of the C–V model [34] is expressed as

ECV = λ1

∫
inside(c)

|I(x)− c1|
2
dx + λ2

∫
outside(c)

|I(x)− c2|
2
dx, (6)

where λ1 and λ2 are positive constants that regulate image driving force inside and outside the contour,
c1 represents the mean gray value of the target area and the background area in the evolution curve C,
and c2 represents the mean gray value of the target area and the background area outside the evolution
curve C.

By minimizing Equation (6), one has c1 and c2, which are described, respectively, as

c1 =

∫
I(x)H(ϕ(x))dx∫

H(ϕ(x))dx
, (7)

c2 =

∫
I(x)(1 − H(ϕ(x)))dx∫
(1 − H(ϕ(x)))dx

, (8)

where H(φ) is the Heaviside function.
In practice, the Heaviside function H(φ) and the Dirac delta function δ(φ) must be approximated

by smooth functions Hε(φ) and δε(φ) when ε→0, which are typically expressed as follows, respectively

Hε(x) =
1
2
[1 +

2
π

arctan(
x
ε
)], (9)

δε(x) =
1
π

· ε

ε2 + x2 , (10)

By incorporating the length and area energy terms into Equation (6) and further minimizing the
length and area of the level set curve, the corresponding partial differential equation is described as

∂ϕ

∂t
= δ(ϕ)

[
μ∇(

∇ϕ

|∇ϕ| )− v − λ1|I − c1|2 + λ2|I − c2|2
]

, (11)

where μ, ν, λ1, and λ2 denote the corresponding coefficients, all of which are positive constants; ∇ is
the gradient operator; μ controls the smoothness of the zero level set; ν increases the propagation
speed; and λ1 and λ2 control the image data driving force inside and outside the contour, respectively.

Because c1 and c2 are related to the global information inside and outside the curve, this model
can segment blurred images and images with weak gradients more effectively than the edge-based
model can, and it is insensitive to the initialization location [22,35]. However, when the internal and
external intensities of the curve are inhomogeneous, c1 and c2 cannot express the local information
precisely, which leads to the failure of image segmentation [2].

2.3. The SBGFRLS Model

The SBGFRLS model is proposed based on the traditional C–V model and the GAC model,
thereby seizing the advantages of both models [21]. In the SBGFRLS model, an SPF function is
used to substitute ESF in the GAC model, and thus the level set formulation of the SBGFRLS can be
expressed as

∂ϕ

∂t
= sp f (I(x)) · (div(

∇ϕ

|∇ϕ| ) + α)|∇ϕ|+∇sp f (I(x)) · ∇ϕ, (12)

where spf (I(x)) in Equation (12) is an SPF function, which can be given as
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sp f (I(x)) =
I(x)− c1+c2

2

max(|I(x)− c1+c2
2 |) , (13)

where c1 and c2 represent the gray mean values of regions outside and inside the contour, computed
using Equations (7) and (8), respectively.

The SBGFRLS model can reduce the cost of the expensive reinitialization of the traditional level
set method and is more efficient than traditional models. The model stops the contour evolution,
even with blurred edges, without any a priori training. However, the model assumes that the region
to be segmented is homogeneous. This assumption occasionally holds in general clinical cases.
When facing heterogeneous intensity distributions, the detection accuracy can fall significantly because
the fundamental assumption is violated [36,37]. Moreover, the SBGFRLS model can become trapped in
a local minimum without proper initialization, which leads to poor segmentation performance [38–40].

2.4. The LIF Model

The local fitted image (LFI) formulation [31] is defined based on local image information, based on
which the LIF model is investigated. This model can segment intensity-inhomogeneous images [41].
The LIF model is expressed as follows

ELIF(ϕ) =
1
2

∫
Ω
|I(x)− ILFI(x)|2dx, (14)

where ILFI is a local fitted image, and any x ∈ Ω.
It follows that ILFI can be calculated as

ILFI(x) = m1Hε(ϕ) + m2(1 − Hε(ϕ)), (15)

where m1 and m2 are expressed, respectively, as{
m1 = mean(I ∈ ({x ∈ Ω|ϕ(x) > 0} ∩ Wk(x)))
m2 = mean(I ∈ ({x ∈ Ω|ϕ(x) < 0} ∩ Wk(x)))

, (16)

φ is the zero level set of a Lipschitz function that represents the contour C; Hε(φ) is the regularized
Heaviside function, as defined in Equation (9); and Wk (x) is a rectangular window function.

In our experiment, Wk (x) is a truncated Gaussian window with a standard deviation of σ and size
(4k + 1) × (4k + 1), where k is the greatest integer that is smaller than σ. Similarly, the segmentation
results can be achieved if a constant window is chosen [31].

According to the calculus of variations and the gradient descent method, the following partial
differential equation can be obtained by minimizing ELIF:

∂ϕ

∂t
= (I − ILFI)(m1 − m2)δε(ϕ), (17)

where δε(φ) is the regularized Dirac delta function [32], which is calculated as indicated in Equation (10).
According to the complexity analysis and experimental results in [31,32,41,42], the LIF

model is more efficient than the LBF model. However, neither model can handle noisy and
intensity-inhomogeneous images well [41,42].

3. Proposed Method

3.1. Improved SPF Function

The main strategy of the ACM based on region information is to construct a driving force,
which is based on the information of the image region [43]. The region function modulates the sign
of the pressure forces using region information such that the contour shrinks when it is outside the
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object of interest and expands when it is inside the object. For this reason, these external forces are
sometimes called SPF [43]. Zhang et al. [22] proposed the SBGFRLS model, which utilizes the statistical
information inside and outside the contour to construct a region-based SPF function [37]. However,
an SPF function is simply based on image information. Thus, the corresponding model cannot segment
intensity-inhomogeneous images or images with weak boundaries [36,41].

In this study, the global information of image I is used to divide the image into two parts, inC and
outC, and the level set function is then introduced into the new SPF function.

Using global region information and combining c1 and c2, a global fitted image formulation is
defined as

f = Hε(ϕ). ∗ (I − c1) + (1 − Hε(ϕ)). ∗ (I − c2), (18)

where Hε(φ) defined in Equation (9) is the regularized Heaviside function and c1 and c2 are calculated
by Equations (7) and (8), respectively, and .∗ describes matrix multiplication.

By employing the above-defined global fitted image, a new SPF function is defined as

sp f (I(x)) =
I(x)− f (x)
max(| f (x)|) . (19)

According to the construction approach of the SPF function, a new partial differential equation is
defined as

∂ϕ

∂t
= sp f (I(x)) · α, (20)

where α is the balloon force that controls the shrinkage or the expansion of the contour. In this paper,
according to the concept of a balloon force established previously [44], a balloon force is reconstructed
to change the evolution rate of the level set function adaptively, which is defined as

αnew = c1 + c2. (21)

The new SPF is more efficient than the traditional ACM models because this function avoids
the expensive cost of the reinitialization step. Moreover, the SPF is less sensitive to the initialization
location. However, the SPF function is constructed with only global image information. Therefore,
it appears difficult to handle images with intensity inhomogeneity using this approach.

3.2. Active Contour Model Based on Improved SPF and LIF

Zhang et al. [31] constructed the LIF model, which can effectively process nonhomogeneous
images through local image information. Unfortunately, the model is sensitive to the initial curve and
noise [2]. To construct a model that can process nonhomogeneous images and reduce the dependence
on the location of the initial contour, this subsection combines the new SPF function with the existing
LIF model to form a new ACM based on local and global image information.

By combining the new SPF function with the LIF model, the new level set evolution equation is
defined as

∂ϕ

∂t
= λ(I − ILIF)(m1 − m2)δε(ϕ) + (1 − λ)sp f (I(x)) · α, (22)

where δε(φ), defined in Equation (10), is the regularized Dirac delta function and λ is a new
weight coefficient.

Here, λ is a weight function that can be employed to dynamically adjust the ratio between the
local and the global term in image segmentation. Namely, the image information term playing a crucial
role in segmenting an image can be selected.

Based on the local and global image information, the weight coefficient λ is defined as

λ =
A

max(|B|) , (23)
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where A is defined in Equation (21) and B is defined as

B = m1 + m2, (24)

where m1 and m2 are defined in Equation (16).
It is noted that the selection of the weight parameter λ is important in controlling the influence of

the local and the global terms. Li et al. [45] declared that the local term is critical to the initialization to
some extent; a global term is incorporated into the local framework, thereby forming a hybrid ACM.
Therefore, with the mutual assistance of the local force and the global force, the robustness to the
initialization can be improved, and the global force is dominant if the evolution curve is away from
the object. When the contour is placed near the object boundaries, the LIF model plays a dominant
role, and fine details can be detected accurately. In contrast, the new SPF model plays a key role when
the contour is located far from the object boundaries, and owing to the assistance of the SPF, a flexible
initialization is allowed. It follows that the automatic adjustment between the LIF and SPF models in
our ACM is very distinct. Furthermore, the objective of the dynamic adjustment is to determine an
optimal result for image segmentation.

In general, the new proposed SPFLIF-IS model not only solves the problem that the
intensity-inhomogeneous images cannot be accurately segmented by using the global image
information but also overcomes the primary shortcoming that the model based on the local image
information is sensitive to noise and the initial contour.

3.3. Algorithm Steps

The procedures of image segmentation are illustrated in Figure 1.

Figure 1. The graphical process of image segmentation.
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After the abovementioned image segmentation algorithm has been applied, an improved SPF and
LIF-based image segmentation (SPFLIF-IS) algorithm using ACM can be implemented and described
as Algorithm 1, which is summarized as follows.

Algorithm 1. SPFLIF-IS

Input: An original image
Output: The result of image segmentation

Step 1: Initialize the level set function φ, and set the coefficients Δt, n, and ε.
Step 2: Calculate the Heaviside function and the Dirac delta function using Equations (9)

and (10), respectively.
Step 3: For n = 1: iterNum // iterNum is the total number of iterations.
Step 4: Compute c1 and c2 by Equations (7) and (8), respectively, and obtain f according to Equation (18).
Step 5: Calculate spf (I(x)), according to Equation (19), and obtain the level set evolution equation by

Equation (20).
Step 6: Introduce the LIF model.
Step 7: Calculate the weight coefficient λ using Equation (23).
Step 8: Calculate the level set evolution equation using Equation (22).
Step 9: If the evolution of the curve is stable, then output the segmentation result. Else, return to Step 4.
Step 10: End for

It is well known that convolution operations are the most time-consuming with respect to the
time complexity of an algorithm. Therefore, it is necessary to explain the complexity of the convolution
operation. When an algorithm requires a convolution operation, the time cost is approximately
O(n2 × N) [46], where N is the image size and n is the Gaussian kernel. The values of N are greater
than n2.

Because the C–V model [34] must be reinitialized in every iteration, its time cost is very high,
and the computational complexity is O(N2) [31]. The LBF model [24] usually needs to perform four
convolution operations in each iteration, which greatly increases the computational time complexity.
This situation indicates that the time complexity is O(itr × 4 × n2 × N), where the parameter itr is the
number of iterations. In contrast, the SBGFRLS model [23] must perform three convolution operations,
two of which are derived by gradient calculation (horizontal and vertical), and the other involves
mask image and filter mask. Thus, the total computational complexity of the SBGFRLS model is
O(itr × 3 × n2 × N). The LIF model [31] performs two convolution operations in each iteration. Thus,
the total computational time required for the LIF model is O(itr × 2 × n2 × N). For the SPFLIF-IS
algorithm, the computational complexity is mainly concentrated in Step 6. In Algorithm 1, Step 6 is the
most time-consuming to calculate in the LIF model. The computational complexity of our proposed
method is O(itr × 2 × n2 × N), where n is the size of the Gaussian kernel function and N is the image
size. Since in most cases, N >> n2, the complexity of SPFLIF-IS is O(N) approximately, which is close
to that of the LIF model in [31]. It follows that our proposed method is much more computationally
efficient than the C–V model [31], the LBF model [24], and the SBGFRLS model [23]. Because the
SPFLIF-IS algorithm decreases the number of Gaussian convolution operations required, its time costs
and number of iteration operations are drastically reduced. Therefore, the computational complexity of
our SPFLIF-IS method is lower than that of the other related ACMs [6,8,11,12,15,17,20,23,24,31,34,43].

4. Experimental Results

4.1. Experiment Preparation

In this section, comprehensive segmentation results for all algorithms compared are presented
to validate the performance of our proposed method on various representative synthetic and real
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images with respect to different characteristics. Following the experimental techniques for image
segmentation designed by Ji et al. [42], these selected images are mostly corrupted with one or
more degenerative characteristics, including additive noise, low contrast, weak edges, and intensity
inhomogeneity. Unless otherwise specified, the same parameters are employed as follows, Δt = 1,
n = 5, ε = 1.5, and ϕ0(x, y) = 1 : (x, y) ∈ in(c) or φ0(x, y) = −1 : (x, y) ∈ out(c). The Gaussian
kernel plays an important role in practical applications; the kernel is a scale parameter controlling
region scalability from small neighborhoods to the entire image domain [31]. In general, the value of
the scale parameter should be appropriately selected from practical images. It is well known that an
excessively small value may cause undesirable results, whereas an excessively large value can lead to
high computational complexity [31,36]. Thus, the Gaussian kernel size controlling the regularization
of the level set function should be chosen according to practical cases [36]. Following the experimental
techniques designed in [31,36], the σ selected in our experiments is typically less than 10. All of models
compared in this paper are tested in MATLAB R2014a in a Windows 7 environment using a 3.20 GHz
Intel (R) Core i5-3470M processor with 4 GB RAM.

4.2. Segmentation Results of Images with Intensity Inhomogeneity

To demonstrate the satisfactory performance and effectiveness of the SPFLIF-IS model, a series of
experimental results are presented. We compare our model with the following five existing models:
(1) the C–V (The code is available at [47]) model [34], (2) the LBF (The code is available at [48])
model [24], (3) the LIF (The code is available at [47]) model [31], (4) the SBGFRLS (The code is available
at [47]) model [23], and (5) the LSACM model [28]. The five representative ACM algorithms are the
state-of-the-art level set methods published recently for image segmentation. The algorithms show
improvements over the classical ACM and are specially selected based on the level set method for
comparison experiments. The chosen parameters for these models can be found in [23,24,28,31,34].
The segmentation results obtained for images with intensity inhomogeneity using the six models are
illustrated in Figure 2, where the original images shown in Figure 2a can be found in [2].

Figure 2. The segmentation results of images with intensity inhomogeneity for the six models.
(a) Original image, (b) C–V model, (c) LBF model, (d) SBGFRLS model, (e) LIF model, (f) LSACM
model, and (g) SPFLIF-IS model.
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Figure 2b,d,f shows that the C–V model, the SBGFRLS model, and the LSACM model fail to
analyze the first image with intensity inhomogeneity. As shown in Figure 2d,f, the SBGFRLS model and
the LSACM cannot yield the ideal segmentation results for the second image. The object boundaries of
the third image are not identified by the LIF model, and the results are shown in Figure 2e. Figure 2e,f
shows that the true boundaries of the fourth image are not accurately extracted by the LIF model or
the LSACM model. The SPFLIF-IS model detects the true boundary, and the results are illustrated in
Figure 2g. Meanwhile, Figure 2c,g shows that the LBF model perform as well as the SPLIF-IS model.

Note that because the visual evaluations in Figure 2 are partial to subjective measures,
to strengthen the objective results of our experiments, the corresponding tables should be added
to defend the arguments for all the tested images in the following visual evaluations, in which
each failure is clearly labeled to avoid ambiguity. To more clearly illustrate this state, the following
symbols are adopted in the tables: F1: fail to detect boundaries, F2: nonideal boundaries detected,
F3: fail to detect internal boundaries, and T: true boundaries detected. Table 1 objectively describes
the segmentation results of Figure 2 in detail. It can be clearly concluded from Table 1 that the LBF
performs as well as the SPLIF-IS, the C–V exhibits slightly bad results, and the LSACM produces
the worst results. Therefore, the experimental results shown in Figure 2 and Table 1 indicate that the
SPFLIF-IS model can analyze the images with intensity inhomogeneity well.

Table 1. Description of the segmentation results in Figure 2.

Methods C–V LBF SBGFRLS LIF LSACM SPFLIF-IS

Segmentation
performance

F1 T F1 F2 F1 T
T T F1 T F1 T
T T T F1 T T
T T T F1 F1 T

4.3. Segmentation Results of Multiobjective Images

This portion of our experiment concerns the segmentation results obtained for multiobjective
images. The SPFLIF-IS method is consistently compared with the five abovementioned methods (C–V,
LBF, SBGFRLS, LIF, and LSACM). The original multiobjective images and the segmentation results
of the six models are shown in Figure 3, where the original images shown in Figure 3a are derived
from [42,49]. Although our model identifies most of the boundaries of the first image, the boundaries
are subtle different when compared with those detected by the LBF model. As shown in Figure 3d,f,
the SBGFRLS model and the LSACM model obviously fail to segment the first, second, and fourth
multiobjective images. The true boundaries of the third image cannot be extracted by the C–V model,
the LBF model, the SBGFRLS model, or the LIF model; the results are shown in Row 3 of Figure 3.
Table 2 describes the segmentation results shown in Figure 3. As shown in Table 2, the SPFLIF-IS yields
the best results, the C–V performs as well as the LBF, and the LIF exhibits the worst results. Figure 3
and Table 2 clearly show that our proposed SPFLIF-IS method can segment the fourth image, but the
other comparison methods cannot. The experimental results indicate that the SPFLIF-IS model can
efficiently segment the multiobjective images.

Table 2. Description of the segmentation results of Figure 3.

Methods C–V LBF SBGFRLS LIF LSACM SPFLIF-IS

Segmentation
performance

F2 T F3 F2 F1 F2
T F2 F3 F1 F1 T
F1 F1 F3 F1 T T
F1 F1 F1 F1 F1 T
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Figure 3. The segmentation results of the multiobjective images for the six models. (a) Original
image, (b) C–V model, (c) LBF model, (d) SBGFRLS model, (e) LIF model, (f) LSACM model,
and (g) SPFLIF-IS model.

4.4. Segmentation Results of Noisy Images

The following subsection describes the experimental segmentation results obtained for noisy
images. The SPFLIF-IS model is still compared with the C–V, LBF, SBGFRLS, LIF, and LSACM models.
Figure 4 illustrates the original images with different noise intensities and compares the results of the
six state-of-the-art segmentation methods, where the original images without noise in Figure 4a are
derived from [46]. In Figure 4, Row 1 shows the original images and the segmentation results. Row 2
to Row 5 show the added Gaussian noise with zero means and different variances (σ = 0.01, 0.02, 0.03,
0.05). Figure 4c,f shows that the LBF model and the LSACM model cannot analyze the five images.
Although the C–V model and the SBGFRLS model can segment the first and the second image, neither
model performs well when the noise intensity increases; the results are shown in Figure 4b,d. Figure 4e
shows that the LIF model could analyze the images without Gaussian noise well. With respect to
the segmentation of the images containing Gaussian noise, the LIF model exhibits poor performance.
As shown in Figure 4g, the object boundaries are accurately extracted by our proposed SPFLIF-IS
model. Table 3 describes the segmentation results of Figure 4. Table 3 shows that the SPFLIF-IS model
yields the best results, the C–V model performs as well as the SBGFRLS model, and the LBF model
performs as poorly as the LSACM model. The experimental results demonstrate that the SPFLIF-IS
model can effectively eliminate the interference of the noise and complete the segmentation of the
noisy images.

Table 3. Description of the segmentation results of Figure 4.

Methods C–V LBF SBGFRLS LIF LSACM SPFLIF-IS

Segmentation
performance

T F1 T T F1 T
F2 F1 F2 F1 F1 T
F1 F1 F1 F1 F1 T
F1 F1 F1 F1 F1 F2
F1 F1 F1 F1 F1 F2
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Figure 4. The segmentation results obtained for images with strong noise using the six models.
(a) Original image, (b) C–V model, (c) LBF model, (d) SBGFRLS model, (e) LIF model, (f) LSACM
model, and (g) SPFLIF-IS model.

4.5. Segmentation Results of Texture Image

This part of our experiment tests the segmentation performance of texture images. Figure 5a
shows the original texture image, which is derived from [4]. Moreover, the compared models are still
the C–V, LBF, SBGFRLS, LIF, and LSACM models. According to Figure 5c,e,f, the object boundaries of
the first image are not identified by the LBF, LIF, or LSACM model, respectively. Most of the boundaries
are obtained by the SBGFRLS model. However, the internal details are not recognized; the detailed
results are illustrated in Figure 5d. Figure 5e shows that the LIF model fails to segment the second
image. Although the C–V, LBF, SBGFRLS, and LSACM models recognize the true boundaries of the
second image, some boundaries lie in the middle of the image; the results are illustrated in Row 2 of
Figure 5. Table 4 describes the segmentation results of Figure 5. Table 4 shows that the SPFLIF-IS model
performs the best, the C–V model exhibits the second best performance, and the LIF model shows as
poor a performance as the LSACM model. The SPFLIF-IS model can eliminate the interference of the
image texture and analyze the texture image well.
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Figure 5. The segmentation results obtained for a texture image using the six models. (a) Original
image, (b) C–V model, (c) LBF model, (d) SBGFRLS model, (e) LIF model, (f) LSACM model,
and (g) SPFLIF-IS model.

Table 4. Description of the segmentation results of Figure 5.

Methods C–V LBF SBGFRLS LIF LSACM SPFLIF-IS

Segmentation
performance

T F1 F3 F1 F1 T
F3 F3 F3 F1 F1 T

4.6. Segmentation Results of Real Images

In this subsection, we continue testing our algorithms, this time using real images. The SPFLIF-IS
method is compared with the same five methods (C–V, LBF, SBGFRLS, LIF, and LSACM). The original
real images and the segmentation results of the six models are shown in Figure 6, where the first and
second images in Figure 6a can be found in the literature [27,31], and the third and fourth images shown
in Figure 6a are selected from Berkeley segmentation data set 500 (BSDS500) (The code is available
at [50]). The first image in the third and fourth columns shows that the LBF and SBGFRLS models fail to
segment the image; the results are shown in Figure 6c,d. The first image in the fifth and sixth columns
shows that most of the boundaries are obtained by the LIF and LSACM models. However, the internal
details are not recognized; the results are illustrated in Figure 6e,f. The LBF, LIF, and LSACM models
fail to segment the second and third images, as shown in Figure 6c,e,f. The object boundaries of
the fourth images are not accurately extracted by the C–V, LBF, SBGFRLS, LIF, and LSACM models,
as shown in the fourth rows of Figure 6. As shown in Figure 6g, the object boundaries are accurately
extracted by our proposed model. Table 5 objectively offers the segmentation results of Figure 6.
Table 5 indicates that the SPFLIF-IS achieves the best results; the C–V exhibits slightly better results
than those obtained by the LBF, SBGFRLS, LIF, and LSACM; and the LBF performs as poorly as the
LSACM. The segmentation results demonstrate that our SPFLIF-IS model can efficiently analyze real
images and yield great segmentation results.

Table 5. Description of the segmentation results of Figure 6.

Methods C–V LBF SBGFRLS LIF LSACM SPFLIF-IS

Segmentation
performance

T F1 F1 F3 F1 T
F2 F1 F2 F1 F1 T
T F1 F2 F1 F1 T
F1 F1 F2 F1 F1 T
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Figure 6. The segmentation results obtained for real images using the six models. (a) Original
image, (b) C–V model, (c) LBF model, (d) SBGFRLS model, (e) LIF model, (f) LSACM model,
and (g) SPFLIF-IS model.

4.7. Comparative Evaluation Results

In addition to using visual evaluation, the accuracy of the target region segmentation can be
assessed quantitatively and objectively using the DICE coefficient (DICE) [51,52] and the Jaccard
similarity index (JSI) [53]. Following the experimental techniques designed in [42,54], test images
are selected randomly from the BSDS500 database. Note that BSDS500 contains hundreds of natural
images whose ground-truth segmentation maps have been generated by multiple individuals [40,55].
To enhance the coherency of our work with the abovementioned algorithms, three comparative
experiments are performed on many real-world color images, which are selected from the Berkeley
segmentation data set 500 (BSDS500) and consist of a set of natural images.

The first part of this experiment involves evaluating the value of the DICE for twenty
representative real-world color images, which are chosen from the Berkeley segmentation data set
500 (BSDS500). The algorithms compared are the C–V model [34], the LBF model [24], and the LIF
model [31].

The DICE, also called the overlap index, is the most frequently used metric for validating image
segmentations. The DICE measures how well the segmentation results S match the ground truth G.
When the value of the DICE is close to 1, the segmentation results have high accuracy. The formula for
the DICE is given as

DICE(G, S) =
2|ΩG ∩ ΩS|
|ΩG|+ |ΩS| , (25)

where ΩS describes the segmented volume and ΩG denotes the ground truth [56,57]. The DICE values
of the segmentation results obtained by applying the four models to segment Berkeley color images
are listed in Table 6, where the Mean describes the average values of the DICE for all test image data.
Table 6 shows that the SPFLIF-IS method yields the best values for the DICE on the twenty image
data, and the corresponding Mean is also the largest. The results indicate that our SPFLIF-IS model
outperforms the C–V, LBF, and LIF models. In summary, these results demonstrate that our SPFLIF-IS
method is indeed efficient and outperforms these currently available approaches.
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Table 6. DICE values of the image segmentation results using the four models for Berkeley color images.

Image ID C–V LBF LIF SPFLIF-IS

3063 0.9779 0.9576 0.8962 0.9783
8068 0.978 0.9555 0.8673 0.9827
14092 0.9235 0.871 0.8058 0.9257
29030 0.9525 0.9432 0.8106 0.9743
41004 0.9763 0.9565 0.8769 0.9791
41006 0.9625 0.9305 0.8358 0.9643
46076 0.9763 0.9512 0.8392 0.9783
48017 0.9526 0.9066 0.855 0.9562
49024 0.9566 0.9627 0.8531 0.9792
51084 0.9253 0.9401 0.8464 0.9607
62096 0.9641 0.9387 0.8617 0.9734

101084 0.8942 0.8441 0.8103 0.978
124084 0.9578 0.9378 0.8865 0.9616
143090 0.9575 0.9517 0.8633 0.9692
147091 0.9693 0.9387 0.8254 0.9717
207056 0.9677 0.9305 0.8183 0.9826
296059 0.947 0.9276 0.8283 0.9742
299091 0.9708 0.9595 0.8448 0.9759
317080 0.9591 0.9288 0.8665 0.9634
388006 0.9676 0.9452 0.8738 0.9701

Mean 0.9568 0.9339 0.8483 0.9699

The next section of the experiment involves testing the value of the JSI coefficient for the twenty
representative real-world color images in Table 6. The algorithms compared are still the C–V model [34],
the LBF model [24], and the LIF model [31].

The JSI is the second statistical measure used for quantitative evaluation in this paper. The JSI is
calculated by

JSI(G, S) =
|ΩG ∩ ΩS|
|ΩG ∪ ΩS| . (26)

The accuracy of the segmentation results for the Berkeley color images is measured by the JSI
value, as shown in Figure 7. A JSI value close to 1 indicates favorable segmentation results. Figure 7
shows that the SPFLIF-IS method exhibits the best JSI values for the twenty image data. For image IDs
3063, 14092, 41006, and 147091, the JSI values of the C–V model are very close to those of the SPFLIF-IS
model. For image ID 227092, the JSI values yielded by the C–V and LBF models are close to those of
the SPFLIF-IS model. However, Figure 7 clearly illustrates that the SPFLIF-IS method yields greater JSI
values than those generated by the C–V, LBF, and LIF models.

In the final part of this experiment, to fully validate the advantages of our SPFLIF-IS method
in terms of the DICE and JSI, the five state-of-the-art methods ((1) the C–V model [34], (2) the LBF
model [24], (3) the LIF model [31], (4) the SBGFRLS model [23], and (5) the LSACM model [28]) are
applied to eight real color image data selected from the Berkeley segmentation data set 500 (BSDS500).
The experimental results are shown in Table 7, where the Mean describes the average values of the
DICE and JSI for all test image data.

The foregoing experimental analysis demonstrates that our proposed method is designed based
on an improved SPF function and the LIF method. The model combines the merits of global image
information and local image information and can segment noisy images and multiobjective images well.
By contrast, the C–V model and the SBGFRLS model are constructed with global image information
alone, based on the assumption that the region to be segmented is homogeneous. Unfortunately,
this assumption is not suitable for intensity-inhomogeneous images [2,31,35]. The LBF model and
LIF model use local information to segment intensity-inhomogeneous images and obtain desirable
segmentation results; thus, the models are sensitive to the initial position and image noise [2,36].
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The LSACM model is proposed based on the local statistical information of an image; therefore,
this model is robust to noise while suppressing intensity overlap to some extent. Nevertheless,
this model is assumed that the image gray is separable in a relatively small area, and the offset is
smooth in the entire image area. The model is easily trapped in a local minimum and involves high
computational complexity [58,59]. It follows from Table 7 that the values of the DICE and JSI of the
SPFLIF-IS method are the highest for the eight real image data, and the Mean is also the largest. Thus,
the experimental results obtained for synthetic and real images further demonstrate the superior
performance of our method. Therefore, our model is able to obtain better DICE and JSI values than
those yielded by the methods compared.

Figure 7. JSI values of the image segmentation results using the four models for Berkeley color images.

Table 7. DICE and JSI values of the results of image segmentation on fifteen Berkeley color images.

Image
ID

C–V LBF SBGFRLS LIF LSACM SPFLIF-IS

DICE JSI DICE JSI DICE JSI DICE JSI DICE JSI DICE JSI

3063 0.9779 0.9568 0.9576 0.9186 0.9728 0.9470 0.8962 0.8119 0.9774 0.9557 0.9783 0.9575
8068 0.9780 0.9570 0.9555 0.9149 0.9785 0.9579 0.8673 0.7657 0.9710 0.9436 0.9827 0.9660

29030 0.9525 0.9093 0.9432 0.8925 0.9709 0.9435 0.8106 0.6815 0.9626 0.9280 0.9743 0.9500
41004 0.9763 0.9537 0.9565 0.9166 0.9775 0.9560 0.8769 0.7808 0.9741 0.9494 0.9791 0.9590
46076 0.9763 0.9537 0.9512 0.9070 0.9753 0.9518 0.8392 0.7230 0.9692 0.9402 0.9783 0.9575
207056 0.9677 0.9375 0.9305 0.8700 0.9774 0.9558 0.8183 0.6924 0.9785 0.9579 0.9826 0.9659
296059 0.9470 0.8994 0.9276 0.8650 0.9684 0.9387 0.8283 0.7069 0.9741 0.9495 0.9742 0.9498
299091 0.9708 0.9433 0.9595 0.9221 0.9750 0.9512 0.8448 0.7313 0.9694 0.9406 0.9759 0.9530

Mean 0.9683 0.9388 0.9477 0.9008 0.9745 0.9502 0.8477 0.7367 0.9720 0.9456 0.9782 0.9573

4.8. Discussion

According to the experimental results and evaluations presented above, the validity and stability
of our proposed model are fully verified, and the contributions of the proposed model can be
summarized as follows.

(1) The new model is regularized by a Gaussian kernel, which avoids the expensive computation
associated with reinitialization. It follows that the model has low computational complexity.
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(2) Our proposed model makes the best use of global and local image information. The model
solves the problem of not accurately segmenting intensity-inhomogeneous images faced by the
traditional image segmentation model and overcomes the shortcoming that local image information is
sensitive to the initial contour and noise.

(3) Compared with the existing C–V, LBF, SBGFRLS, LIF, and LSACM models, the SPFLIF-IS
model exhibits high robustness to the initial contour and noise and quickly and accurately segments
inhomogeneous and multiobjective images.

5. Conclusions

In this paper, to segment intensity-inhomogeneous images quickly and accurately, an image
segmentation method using a novel ACM based on an improved SPF function and an LIF model is
proposed. The model combines the advantages of global and local information terms in segmenting
intensity-inhomogeneous images. Moreover, a weight function is established to adjust the weights
between the local information term and the global information term. Thus, a novel ACM model
is presented, and an image segmentation algorithm is thereby established. To demonstrate the
effectiveness of our proposed model, several experiments are designed in our study. The results
indicate that our model not only segments inhomogeneous and multiobjective images effectively
but also exhibits high robustness to the initial contour and noise. However, at present, it is difficult
to determine a suitable Gaussian kernel size for all the images, and considering the uncertainty of
real-world complex images, the proposed method will not be suitable in all the cases. As future work,
we plan to accommodate the Gaussian kernel size automatically, which can be used to control region
scalability from a small neighborhood to the entire image domain. This approach is considered to be
more accurate and efficient in segmenting complex images and reducing computational complexity.
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Abstract: There is a strong correlation between the geometry of the weld pool surface and the
degree of penetration in arc welding. To measure the geometry of the weld pool surface robustly,
many structured light laser line based monitoring systems have been proposed in recent years.
The geometry of the specular weld pool could be computed from the reflected laser lines based on
different principles. The prerequisite of accurate computation of the weld pool surface is to segment
the reflected laser lines robustly and efficiently. To find the most effective segmentation solutions
for the images captured with different welding parameters, different image processing algorithms
are combined to form eight approaches and these approaches are compared both qualitatively and
quantitatively in this paper. In particular, the gradient detection filter, the difference method and
the GLCM (grey level co-occurrence matrix) are used to remove the uneven background. The spline
fitting enhancement method is used to remove the fuzziness. The slope difference distribution-based
threshold selection method is used to segment the laser lines from the background. Both qualitative
and quantitative experiments are conducted to evaluate the accuracy and the efficiency of the
proposed approaches extensively.

Keywords: Image processing; segmentation; spline; grey level co-occurrence matrix; gradient
detection; threshold selection

1. Introduction

ARC welding is a widely used process for joining various metals. The electric current is transferred
from the electrode to the work piece through the arc plasma, which has been modeled to control the
weld quality in the past research [1,2]. However, the direct factor that affects the weld quality is
the geometry of the weld pool instead of arc plasma because the skilled welders achieve good weld
quality mainly based on the visual information of the weld pool. During arc welding, the incomplete
weld pool penetration will reduce the effective working cross-sectional area of the weld bead and
subsequently reduce the weld joint strength. It also causes stress concentrations in some cases, e.g.,
the fillet and T-joints. On the contrary, excessive weld pool penetration might cause melt-through.
The skilled welder needs to adjust the position and travelling speed of the weld torch based on the
information of the observed weld pool surface to achieve complete penetration. The shortage of skilled
welders and a need for welds of a consistently high quality fuels an increasing demand for automated
arc welding systems. It is believed that machine vision techniques will lead the development of the
next generation intelligent automated arc welding systems.

In recent years, great efforts have been put to develop the automated and high-precision welding
equipment to achieve high quality welded joints consistently. The important parts of this kind
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of automated welding equipment include the seam tracking system [3–6], the weld penetration
monitoring system [7–9] and the control system. Desirably, the seam tracking system or the monitoring
system and control system are in a closed loop. Thus, the tracking result or the monitoring result
could serve as feedback for the control system to ensure high quality of welding. In the past studies,
it has been shown that weld pool surface depression has a major effect on weld penetration [10–14].
The geometry of the weld pool surface will affect the convection in the pool. The primary welding
parameter, the welding current density is also affected by the geometry of the weld pool greatly.
In return, the plasma and the welding current affect the geometry of the weld pool. Both the arc plasma
and the molten weld pool are affected by the current density distribution. Therefore, it is fundamental
for the automated welding systems to take quantitative measurements of the weld pool surface.

In the past decades, a lot of research has been conducted to measure the shape of the arc welding
weld pool by structured light methods [9,15–23]. In Reference [15], the authors pioneered to measure
the deformation of the weld pool by inventing a novel sensing system. Their sensing system projects
a short duration pulsed laser light through a frosted glass with a grid onto the specular weld pool.
The reflected laser stripes are imaged in a CCD camera and the geometry of the reflected stripes contain
the weld pool surface information. This method might be the earliest method that made good use
of the reflective property of the weld pool surface and achieved state of the art accuracy at that time.
In Reference [16], the authors improved the structured light method for gas tungsten arc weld (GTAW)
pool shape measurement by reflecting the structured light onto an imaging plane instead of onto
the image plane of the camera directly. The imaging plane is placed at a properly selected distance.
Thus, the imaged laser patterns are clear enough while the effect of the arc plasma has attenuated
significantly, because the propagation of the laser light is much longer than that of the arc plasma.
Ever since then, this weld pool sensing technique has become the mainstream of weld pool imaging
technology [17–23]. In References [17,18], the authors tried to increase the accuracy of measuring
the 3D shape of the GTAW weld pool sensed by the same imaging system as [16]. In Reference [19],
the authors came up with an approach for segmentation of the reflected laser lines for pulsed gas metal
arc weld (GMAW-P). In References [9,20], the reflected laser lines from the GMAW-P weld pool were
segmented manually to measure the weld pool oscillation frequency. In Reference [21], two cameras
were used to measure the shape of the weld pool for GMAW-P and an unsupervised approach was
proposed to segment and cluster the reflected laser lines. In Reference [22], three cameras are used to
measure the specular shape from the projected laser rays and an unsupervised approach was proposed
to reconstruct the GTAW weld pool shape with closed form solutions. It achieved on line robust
measurement of GTAW weld pool shape with three calibrated cameras.

There is one major difference for the used laser pattern among these structured light
methods [9,15–23]. The laser dot pattern is used for the measurement of the GTAW weld pool
surface while the laser line pattern is used for the measurement of the GMAW weld pool surface.
Compared to the GTAW weld pool surface, the GMAW weld pool surface is much more dynamic
and fluctuating, because GMAW process transfers additional metallic and liquid droplets into the
weld pool, which increases the fluctuation and dynamics of the pool surface greatly. The position
and geometry of the local specular surface changes rapidly and greatly, which causes the reflected
rays to change their trajectories rapidly and greatly. If the laser dot pattern is used, the reflected laser
dots might interlace irregularly, which makes it impossible for the unsupervised clustering method to
identify these dots robustly. Therefore, the laser line patterns are used in measuring the weld pool
surface of the GMAW process [19–21]. Robust segmentation and clustering of the reflected laser lines
become the most important and challenging part in the whole monitoring system, because of the
uncertainty of the weld pool geometry. The quality of the captured image is significantly affected by
the welding parameters. Due to the lack of generality and robustness, the proposed image processing
methods might work for the images captured in some specifically designed welding experiments,
while might not work for the images captured in other experiments. For instance, the reflected laser
lines were filtered by the top-hat transform and then segmented by thresholding in Reference [19].
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It yields acceptable segmentation results in many cases. However, it fails completely when it is used to
segment the images captured in Reference [21] with different welding parameters. The reflected laser
lines were filtered by the fast Fourier transform (FFT) and then segmented by a manually specified
threshold in Reference [20]. It also fails completely in segmenting the images shown in Reference [21].
To segment the reflected laser lines more robustly, a difference method and an effective threshold
selection method are proposed in Reference [21]. The segmented laser lines were then clustered based
on their slopes. One big problem that could be seen from the experimental figures in References [19–21]
is that quite a few of the laser line parts are missing, because of the limitations of their proposed
image processing methods. One direct consequence of missing a significant part of the reflected laser
line is the inaccurate characterization of the weld pool shape, since the length of the reflected laser
is proportional to the size of the weld pool. Another drawback is that the segmented small part of
the laser line might be deleted as noise blobs or some large noise blobs might be recognized as part
of the reflected laser line during the unsupervised clustering. As a result, the laser line might be
clustered incorrectly.

In Reference [23], a new approach was proposed, and it achieved significantly better segmentation
accuracy compared to the past research [19–21]. It comprises several novel image processing algorithms:
A difference operation, a two-dimensional spline fitting enhancement operation, a gradient feature
detection filter and the slope difference distribution-based threshold selection. The major goal of [23] is
to cluster and characterize the laser lines under extremely harsh welding conditions. As a result, it omits
the image processing methods for the images captured under less harsh welding conditions with mild
welding parameters. In addition, quantitative results and comparisons to validate the effectiveness
of the proposed segmentation approach were also not given. Due to the page limit, the reasons why
the segmentation approach should contain these image processing algorithms were not explained
adequately. One goal of this paper is to complement the research work conducted in Reference [23]
and conduct a more thorough experiment to find the most effective solution both qualitatively and
quantitatively. Another goal is to come up with more efficient segmentation approaches for images
with relatively high quality that are captured under mild welding parameters.

In the past research, the visual inspection of the weld pool surface was mainly used to understand
the complex arc welding processes. The obtained data were used to validate and improve the accuracy
of the numerical models and to gain insight into the complex arc welding processes. Few are used for
in-process welding parameter adjustment and on-line feedback control, due to the lack of a robust
and efficient approach that is capable of extracting meaningful feedback information on-line from
most of the captured images. The proposed approaches in this paper are promising to accomplish this
challenging task in the future.

This paper is organized as follows. Section 2 describes the established monitoring system.
In Section 3, state of the art methods for laser line segmentation are evaluated and compared.
In Section 4, the combination approach proposed previously is explained theoretically. In Section 5,
we propose different segmentation approaches by combining different image processing algorithms.
In Section 6, the experimental results and discussions are given. Section 7 concludes the paper.

2. The Structured Light Monitoring System

Figure 1 shows the configuration of the popular weld pool monitoring system that has been
adopted in References [9,15–23]. The major parts of the system include two point grey cameras,
C1 and C2, and one Lasiris SNF with the wavelength at 635 nm. A linear glass polarizing filter with
the wavelength from 400 nm to 700 nm is mounted on camera C2 to remove the strong arc light.
The structured light laser line pattern is projected by the Lasiris SNF laser generator onto the weld
pool surface and reflected onto the diffusive imaging plane P1. The calibrated camera C2 views
the reflected laser lines from the back side of P1, which is made up of a piece of glass and a piece
of high-quality paper. To facilitate the computation, P1, the YZ plane and the image plane of the
calibrated camera C2 are set to be parallel to each other. During calibration, the laser lines are projected
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by the Lasiris SNF laser onto a horizontal diffusive plane and camera C1 is used to calculate the
length of the straight laser lines in the world coordinate system. Then the horizontal diffusive plane is
replaced by a horizontal mirror plane, which reflects the laser lines onto the vertical diffusive plane P1.
The calibrated camera C2 is used to calculate the length of the imaged straight laser lines in the world
coordinate system. Both camera C1 and camera C2 are not attached to the welding platform to avoid
the vibration generated during the welding process.

 
Figure 1. The configuration of the weld pool monitoring system.

3. State of the Art Methods for Laser Line Segmentation

3.1. Top-Hat Transform Based Method

In Reference [19], the uneven background caused by the arc light was removed by the top-hat
transform, which is formulated as [24]:

T( f ) = f − f ·e, (1)

where · denotes the opening operation, f denotes the image and e denotes the structuring element.
e is chosen as a disk with radius 15 in this research work. After the image was enhanced by the
top-hat transform, the image was segmented by the threshold selection method. The selected welding
parameters are as follows. The wire feed speed is 55 mm/s, the welding speed is 5 mm/s, the peak
current is 220 A and the base current is 50 A. As a result, the captured image is very clear for
segmentation. However, their segmentation result still misses significant parts for the laser lines.

3.2. FFT Filtering Based Method

In Reference [20], fast Fourier transform [25] was used to remove the uneven arc light caused
background and then the image was segmented by threshold selection. The selected welding
parameters are as follows. The welding speed is 0 mm/s, the peak current is 160 A and the base current
is 80 A. With these welding parameters, the change of the weld pool’s geometry is relatively slow
compared to that in Reference [19]. As a result, the captured images are relatively easier for automatic
image processing. Hence, the authors could segment the captured images by specifying the threshold
manually after FFT filtering.
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3.3. Difference Operation Based Method

In Reference [21], the difference method was proposed to reduce the unevenly distributed
background. The differenced image is obtained by the following operation.

fd(x, y) = f (x + Δd, y)− f (x, y), (2)

where Δd denotes the step size of the operation and it is determined by off line analysis of the average
width of the laser lines. The step size should be greater than or equal to the width of the laser line in
the captured images and it is selected as 10 in this research work. The laser lines are then segmented
from the differenced image by the threshold selection method.

3.4. Grey Level Co-Occurrence Matrix Based Method

Grey level co-occurrence matrix (GLCM) [26] computes the frequencies of different combinations
of pixel values or grey levels occurring in an image and then forms a matrix to represent these
frequencies. Therefore, it is usually used to segment textured images or objects with an unevenly
distributed background. The second order GLCM is usually used for segmentation and it is
formulated as:

P(i, j|d, θ) =
#{k, l ∈ D| f (k) = i, f (l) = j, ‖ k − l ‖= d, ∠(k − l) = θ}

#{m, n ∈ D|‖ m − n ‖= d,∠(m − n) = θ} , (3)

where d is the distance of pixel k and pixel l. θ is the angle of vector (k − l) with the horizontal line
or vertical line. The combination of d and θ represents the relative position of pixel k and pixel l,
which have gray-scale value i and j respectively.

During our implementation, we update all the intensity values in the moving window by
subtracting its minimal intensity value and then adding one. The quantization level of the GLCM
matrix becomes one and the maximal intensity value of the updated moving window. Following the
computation of the GLCM, the contrast measure is used to form the GLCM image. Then, the GLCM
image is segmented by a global threshold.

3.5. Combination Method

In Reference [23], a combination approach was used to segment the laser lines. The combined
image processing algorithms include a difference operation, a two-dimensional spline fitting
enhancement operation, a gradient feature detection filter and the slope difference distribution-based
threshold selection. In both [21,23], the laser lines are segmented by the slope difference
distribution-based threshold selection method that could be summarized as follows. Firstly,
the gray-scales of the original image is rearranged in the interval from 1 to 255 and its normalized
histogram distribution P(x) is computed. Secondly, the normalized histogram P(x) is smoothed by the
fast Fourier transform (FFT) [25] based low pass filter with the bandwidth W = 10. Thirdly, two slopes,
the right slope and the left slope, are computed for each point on the smoothed histogram distribution.
The slope difference distribution is computed as the differences between the right slopes and their
corresponding left slopes. In the slope difference distribution, the position where the valley with the
maximum absolute value occurs is selected as the threshold. The slope difference distribution-based
threshold selection method is critical in this application. For the comparison with state of the art image
segmentation methods, please refer to the related research work [21], where this threshold selection
method is compared with the state of the art method using the same type of images. The comparisons
with state of the art image segmentation methods showed that the slope difference distribution based
threshold selection method is significantly more accurate in segmenting some specific types of images,
including the laser line images.
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3.6. Performance Evaluation

Figure 2a shows a typical image captured by the structured light monitoring system with the
following welding parameters. The wire feed speed is 84.67 mm/s, the welding speed is 3.33 mm/s,
the peak current is 230 A and the base current is 70 A. As can be seen, these parameters are significantly
higher than those used in References [19,20]. With these parameters, the resultant weld pool surface
changes more rapidly and irregularly. Hence, the quality of the captured image in this study is
much reduced. The results by top hat method, FFT method, difference method, GLCM method and
combination method are shown in Figure 2b–f respectively. Compared to the segmentation result by
combination method, the segmentation results by other state of the art methods appear to be very
inaccurate. Although the difference method achieves the second best result, there is one big segmented
line on the top caused by the edge of the imaging plane. It costs additional effort for the subsequent
unsupervised clustering. In addition, there are noise blobs that are hard to be distinguished from the
laser line parts.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Evaluation of state of the art methods (a) one typical captured image; (b) segmentation
result by the top hat method; (c) segmentation result by the FFT method; (d) segmentation result
by the difference method; (e) segmentation result by the GLCM method; (f) segmentation result by
combination method.

4. Analysis of the Combination Approach

In Reference [23], a combination approach is proposed to segment the reflected laser lines as
accurate as possible. The flowchart of this segmentation approach comprises a difference operation,
a two-dimensional spline fitting enhancement operation, a gradient feature detection filter and the
slope difference distribution-based threshold selection. However, the reasons why the segmentation
approach should contain these image processing algorithms were not explained adequately in
Reference [23]. Quantitative results to validate the effectiveness of this segmentation approach were
also not given. Here, we will theoretically explain why the proposed two-dimensional spline fitting
enhancement method and the gradient feature detection filter work well in segmenting the laser lines.

The intensity distribution, Ia of the captured image caused by the arc light could be modeled
mathematically by the following equation [21]:

Ia(T) = τ

∣∣∣∣∣∣2hv3

c2 ×
→
N × cosβ × O

e
hv
γT − 1

∣∣∣∣∣∣× d
r3 =

Ca(T)
r3 , (4)
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where τ is the intensity mapping function of the CCD camera [27].
→
N is the surface normal at position

p. β is the angle between the surface normal and the incident light. O denotes the color value. r is the
distance between the arc light center and position p. d is the distance from the arc light center to the
diffusive imaging plane P1. v is the spectral frequency of arc light and h is the planck’s constant. c
is the speed of the light and γ is the boltzmann’s constant. T is the temperature of arc light source,
which is determined by the welding current that alternates with the frequency of 10 Hz. The frame
rate of the camera C2 is set to 300 frames per second during the experiment. Hence, 30 images are
captured with different sampled currents at one period of the current wave. The temperature T is
determined by the value of the current and thus it changes with the current from frame to frame in
the time domain. In the same frame, the temperature T is a constant. At each image point, both the
intensity mapping function τ and the angle α remain the same in all the captured image sequences.
Thus, Ca is a constant at each specific image point in one frame and it varies from frame to frame with
the value of T. From Equation (4), it becomes much obvious that the intensity distribution produced
by the arc light effect on the captured image is inversely proportional to the r3. Thus, the intensity
distribution caused by the arc light can be modeled as:

a(x, y) =
Ca(T)

[(x − x0)
2 + (y − y0)

2 + d2]
3/2 , (5)

where (x0, y0) denotes the center of arc light distribution and it may lie outside of the image. The arc
light is affected by the additional laser line and can be modeled as:

f (x, y) = l(x, y) + a(x, y), (6)

where l(x, y) denotes the intensity distribution of the laser line and it is formulated as:

l(x, y) =

{
wμ(x, y); (x, y) ∈ A
0; (x, y) /∈ A

, (7)

where A denotes the laser line area, w is a constant whose value is higher than the average value of the
arc light distribution, Ia. μ(x, y) is the membership function that represents the fuzziness of the laser
line and is formulated as:

μ(x, y) = Exp

(
− (L(x, y)− μL)

2

2σL2

)
, (8)

where L(x, y) denotes the ideal intensity distribution of the laser line. μL is its mean and σL is its
variance respectively.

Combining Equations (5)–(8), we get the model of the intensity distribution for the image with
reflected laser lines.

f (x, y) =

⎧⎪⎨⎪⎩
wμ(x, y) + Ca(T)

[(x−x0)
2+(y−y0)

2+d2]
3/2 ; (x, y) ∈ A

Ca(T)

[(x−x0)
2+(y−y0)

2+d2]
3/2 ; (x, y) /∈ A

. (9)

From the above model, we see that the fuzziness caused by μ(x, y) should be reduced effectively to
obtain high segmentation accuracy. However, the moving average filter can only reduce the Gaussian
noise instead of removing the fuzziness. Thus, a new enhancement method is required.

After the image fuzziness has been added in the derived image model (Equation (9)), we need to
theoretically find the reasons that why the fuzziness causes parts of the segmented laser lines missing.
To this end, the mathematical explanation of how the gradient detection filter works for segmenting
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the objects from the uneven background is described at first. According to Equation (9), the gradient
value at the position (x, y) that is caused by the arc light background can be formulated as:

ga = Ca(T)[
( N−1

2 +x−x0)
2
+( N−1

2 +y−y0)
2
+d2

]3/2 − Ca(T)[
(x−x0− N−1

2 )
2
+(y−y0− N−1

2 )
2
+d2

] 3
2

. (10)

The gradient values caused by the laser line can be formulated as:

gl =

⎧⎪⎨⎪⎩
wμ(x, y) + ga; i f top part o f Kg /∈ A
−wμ(x, y) + ga i f bottompart o f Kg /∈ A
ga; i f whole part o f Kg ∈ A

. (11)

For the designed filter Kg(N, θ) in this research work, the following conditions need to be met.

wμ(x, y) � ga. (12)

Since ga is the gradient of a small part of the background with a range of N, its value is much
reduced compared to the variation of the total background. Thus, the condition of Equation (12) can
be easily satisfied if μ is a constant to make the laser line gradient distinguished from the background
variation. However, μ is the membership function and its value is random between 0 and 1. It is
impossible to make Equation (12) true for every point. Hence, if the local fuzzy membership μ(x, y)
could be fitted as a global function for the whole image to remove the randomness, Equation (12) could
be easily satisfied. A two-dimensional spline function is an ideal global function to the image and thus
it is used. The fitting process is implemented by minimizing the following energy function to get an
enhanced image, s(x, y) from the original image f (x, y).

E =
1
2

�
(s(x, y)− f (x, y))2dxdy +

1
2

� ∣∣∣∣d2s(x, y)
dxdy

∣∣∣∣2dxdy. (13)

5. The Proposed Approaches

Although the same weld pool monitoring system has been adopted in References [9,15–23],
the monitoring algorithms have been proposed differently and divergently. In addition, most proposed
monitoring approaches only work for the specifically designed welding scenario. As described in
Section 3, either the proposed monitoring approach in Reference [19] or the proposed monitoring
approach in Reference [20] could not work for the weld pool scenario in Reference [23]. On the
contrary, the proposed monitoring approach in Reference [23] works better for the weld pool scenario
in both [19,20] than their proposed monitoring approaches. The reason lies in that the quality of
the captured laser line images in References [19,20] is much higher than that of the captured images
in Reference [23]. When the quality of the captured image is reduced greatly, the requirement for
the monitoring algorithms increases significantly. The proposed monitoring approach is the most
robust one for the structured laser line based weld pool monitoring systems shown in Figure 1 up
to date. However, it might be redundant for monitoring of simple weld pool scenarios as described
in References [19,20]. In Reference [19], GTAW process is used. The wire feed speed is 55 mm/s,
the welding speed is 5 mm/s, the peak current is 220A and the base current is 50 A. In Reference [20],
GMAW-P process is used. The welding speed is 0 mm/s, the peak current is 160 A and the base current
is 80 A. In Reference [23], GMAW-P process is used. The wire feed speed is 84.67 mm/s, the welding
speed is 3.33 mm/s, the peak current is 230A and the base current is 70 A. As a result, the produced
weld pools in References [19,20] are much more stable than that produced in Reference [23]. Thus,
the quality of the captured images in References [19,20] is much better than that of the images captured
in Reference [23]. On the other hand, the processing time is also important for on line monitoring.
Therefore, the combination approach proposed in Reference [23] is not always optimum when both
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accuracy and efficiency are considered. The monitoring approach should be designed as fast as possible
after the accuracy has been met.

In this paper, we combine the previously proposed image processing algorithms in different
groups and form different segmentation approaches. We then evaluate their segmentation accuracy
and segmentation efficiency quantitatively. Besides the five image processing algorithms proposed
recently, we also add the traditional GLCM as an additional component. We name the segmentation by
combining the difference method and threshold selection as approach 1, the segmentation by combining
GLCM and threshold selection as approach 2, the segmentation by combining GLCM, the difference
method and threshold selection as approach 3, the segmentation by combining the gradient detection
filter and threshold selection as approach 4, the segmentation by combining the gradient detection
filter, the difference method and threshold selection as approach 5, the segmentation by combining
the gradient detection filter, spline fitting and threshold selection as approach 6, the segmentation
by combining GLCM, spline fitting, the difference method and threshold selection as approach 7,
the segmentation by combining the gradient detection filter, spline fitting, the difference method and
threshold selection as approach 8.

As can be seen, there are five basic image processing methods that consist of (1), the difference
method; (2), the GLCM; (3) the spline fitting; (4) the gradient detection filter; and (5), the threshold
selection method. The difference method, the GLCM and the spline fitting have been explained by
Equations (2), (3) and (13) respectively.

The gradient feature detection filter is formulated as:

Kg = R(VH, θ), (14)

where
V = [−k; v1; v2; . . . ; vN−1; k], (15)

H = [h0, h1, . . . , hN−1, hN ], (16)

hi = wh(i); i = 0, . . . , N, (17)

vi = wv(i); i = 1, . . . , N − 1, (18)

where N equals the width of the laser line and determines the size of the kernel. k is a constant. wh and
wv are two weighting functions. As can be seen, the product VH is a N by N matrix. R(VH, θ) is
to rotate the matrix VH by θ degrees in the counterclockwise direction around its center point. θ is
orthogonal to the line direction and is chosen as 90◦ in this research.

The threshold selection method is implemented as follows. The histogram distribution of the
image is computed, normalized and filtered by a low pass Discrete Fourier Transform (DFT) filter with
the bandwidth 10. A line model is fitted with N adjacent points at each side of the sampled point.
The slopes of the fitted lines at point i, a1(i) and a2(i), are then obtained. The slope difference, s(i),
at point i is computed as:

s(i) = a2(i)− a1(i); i = 16, . . . , 240, (19)

The continuous function of the above discrete function, s(i) is the slope difference distribution,
s(x). To find the candidate threshold points, the derivative of s(x) is set to zero.

ds(x)
dx

= 0, (20)

Solving the above equation, the valleys Vi; i = 1, . . . , Nv of the slope difference distribution
are obtained. The position where the valley Vi yields the maximum absolute value is chosen as the
optimum threshold in this specific application.
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6. Results and Discussion

6.1. Experimental Results

To rank the accuracy and the efficiency the proposed approaches with different algorithm
combinations, we show the qualitative results in Figures 3–12 for visual comparison. As can be
seen, the performances of the proposed approaches vary depending on the quality of the captured
images. For some images (e.g., Figures 11 and 12), most approaches work well. Considering the
computation time, approach 8 is not always the optimum solution in monitoring different welding
processes with different welding parameters.

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 3. Performance comparison of the eight methods with image 1; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 4. Performance comparison of the eight methods with image 2; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 5. Performance comparison of the eight methods with image 3; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.

 
(a) (b) (c) (d) (e) 

 
(f) (g) (h) (i) (j) 

Figure 6. Performance comparison of the eight methods with image 4; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.

 
(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 7. Performance comparison of the eight methods with image 5; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.
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(a) (b) (c) (d) (e) 

 
(f) (g) (h) (i) (j) 

Figure 8. Performance comparison of the eight methods with image 6; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.

 
(a) (b) (c) (d) (e) 

 
(f) (g) (h) (i) (j) 

Figure 9. Performance comparison of the eight methods with image 7; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.

 
(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 10. Performance comparison of the eight methods with image 8; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.
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(a) (b) (c) (d) (e) 

 
(f) (g) (h) (i) (j) 

Figure 11. Performance comparison of the eight methods with image 9; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.

 
(a) (b) (c) (d) (e) 

 
(f) (g) (h) (i) (j) 

Figure 12. Performance comparison of the eight methods with image 10; (a) original image; (b) filtered
image; (c) approach 1; (d) approach 2; (e) approach 3; (f) approach 4; (g) approach 5; (h) approach 6; (i) approach
7; (j) approach 8.

We use 30 images to compare the accuracy of these eight approaches quantitatively and the
comparison is shown in Table 1. As can be seen, approach 8 achieves the best segmentation accuracy.
Since the computation time is also critical for on line monitoring, we compare the average computation
times of processing the images by these eight approaches programmed with VC++ and Matrox image
processing library on the computer with Intel i7-3770 3.4 GHz dualcore CPU. The comparison is shown
in Table 2. As can be seen, approach 1 using the difference operation proposed in Reference [21] is fastest
while its segmentation accuracy is not acceptable for some images, e.g., Figure 8. The second fastest is
approach 4 using the gradient detection filter proposed in this paper and its segmentation accuracy is
better than approach 1. The third fastest is approach 5, which combines the gradient dection filter and
the difference operation and it achieves adequate segmentation accuracy for subsequent unsupervised
processing. On the other hand, approach 5 has achieved the second-best segmentation accuracy.
Hence, approach 5 is the optimum method for on line processing when the requirement for processing
time is strict. In summary, approach 8 is the best choice to segment the reflected laser lines with the
highest accuracy for the developed GMAW weld pool monitoring system in Reference [23] while
approach 1 or approach 5 is the best choice for the monitoring systems developed in References [19,20].
approach 1 might be the best choice to segment the reflected laser lines in good quality images. From the
quantitative results, we could conclude that the recently proposed image processing algorithms are the
most effective steps to form effective segmentation approaches. These image processing algorithms
are all proposed based on the analysis of the modeling of the image intensity distribution.
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Table 1. Comparison of computation accuracy for eight methods.

Approaches F-Measure

Approach 1 0.5380
Approach 2 0.2074
Approach 3 0.2276
Approach 4 0.5011
Approach 5 0.8546
Approach 6 0.4743
Approach 7 0.4469
Approach 8 0.9176

Table 2. Comparison of computation time for eight methods.

Approaches Computation Time

Approach 7 0.05 s
Approach 3 0.045 s
Approach 2 0.042 s
Approach 8 0.031 s
Approach 6 0.028 s
Approach 5 0.0145 s
Approach 4 0.0138 s
Approach 1 0.01 s

6.2. Discussion

The major contributions of the work include:

(1) We combine the recently proposed image processing algorithms and the traditional GLCM to
propose different approaches to segment the reflected laser lines. Their performances including
accuracy and processing time are evaluated and compared thoroughly in this paper, which is
critical in implementing the on-line weld pool monitoring system;

(2) The image processing algorithms proposed previously are explained theoretically in this paper,
which serves as a complementation to the previous research [23];

(3) More efficient segmentation approaches for images captured under mild welding parameters
with relatively high quality are proposed in this paper.

Image segmentation is fundamental and challenging in many machine vision applications.
The most effective methods are usually obtained from the formulated mathematical model and address
the characteristics of the captured image sequences well. As a result, the best solution usually needs
to combine different image processing algorithms and forms a heuristic approach to achieve the best
accuracy and required efficiency. As a typical example of visual intelligent sensing, the research
conducted in this work might benefit other researches that need to automatically and robustly extract
visual information from the image sequences in different industrial applications.

7. Conclusions

For the image segmentation of the reflected laser lines during on line monitoring of weld pool
surface, both accuracy and the efficiency are important. In this paper, we propose eight approaches to
segment the reflected laser lines by combining different image processing algorithms. We evaluate
their accuracy and efficiency extensively with both qualitative and quantitative results. Experimental
results ranked the accuracy and the efficiency of the proposed approaches objectively. The quantitative
results showed that the recently proposed image processing methods, including the difference method,
the threshold selection method, the gradient detection method and the spline fitting method, are the
most effective steps to form the effective segmentation approaches. The quality of the captured image
is mainly determined by the welding process. During monitoring weld pool with violent changes, e.g.,
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GMAW weld pool, all these recently proposed image processing methods should be combined as an
approach to achieve the required accuracy. During monitoring gently changing weld pool, e.g., GTAW
weld pool, only the difference method, the gradient detection method and the threshold selection
method are required to form approach 5 that could meet the required accuracy while achieving
higher efficiency.
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Abstract: The requirement for effective image search, which motivates the use of Content-Based
Image Retrieval (CBIR) and the search of similar multimedia contents on the basis of user query,
remains an open research problem for computer vision applications. The application domains for
Bag of Visual Words (BoVW) based image representations are object recognition, image classification
and content-based image analysis. Interest point detectors are quantized in the feature space and
the final histogram or image signature do not retain any detail about co-occurrences of features in
the 2D image space. This spatial information is crucial, as it adversely affects the performance of an
image classification-based model. The most notable contribution in this context is Spatial Pyramid
Matching (SPM), which captures the absolute spatial distribution of visual words. However, SPM
is sensitive to image transformations such as rotation, flipping and translation. When images are
not well-aligned, SPM may lose its discriminative power. This paper introduces a novel approach to
encoding the relative spatial information for histogram-based representation of the BoVW model.
This is established by computing the global geometric relationship between pairs of identical visual
words with respect to the centroid of an image. The proposed research is evaluated by using five
different datasets. Comprehensive experiments demonstrate the robustness of the proposed image
representation as compared to the state-of-the-art methods in terms of precision and recall values.

Keywords: image analysis; image retrieval; spatial information; image classification; computer vision

1. Introduction

In recent years, with the rapid development of imaging technology, searching or retrieving a relevant
image from an image archive has been considered an open research problem for computer vision based
applications [1–4]. Higher retrieval accuracy, low memory usage and reduction of semantic gap are
examples of common problems related to multimedia analysis and image retrieval [3,5]. The common
applications of multimedia and image retrieval are found in the fields of video surveillance, remote
sensing, art collection, crime detection, medical image processing and image retrieval in real-time
applications [6]. Most of the retrieval systems, both for multimedia and images, rely on the matching
of textual data with the desired query [6]. Due to the existing semantic gaps, the performance of
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these systems suffers [7]. The appearance of a similar view in images belonging to different image
categories, results in the closeness of the feature vector values, and degrades the performance of image
retrieval [6]. The main focus of the research in Content-Based Image Retrieval (CBIR) is to retrieve
images that are in a semantic relationship with a query image [8]. CBIR provides a framework that
compares the visual feature vector of a query image to the images places in the dataset [9].

The Bag of Visual Words (BoVW), also known as Bag of Features (BoF) [10], is commonly used
for video and image retrieval [11]. The local features or interest point detectors are extracted from
a group of training images. To achieve a compact representation, the feature space is quantized to
construct a code-book that is also known as visual vocabulary or visual dictionary. The final feature
vector, which consists of histograms of visual words, is orderless with respect to the sequence of
co-occurrences in the 2D image space. The performance of the BoVW model suffers as the extraction
of spatial information is beneficial in image classification and retrieval-based problems [6,12].

Various approaches have been proposed to enhance the performance of image retrieval, such as
soft assignments, computation of larger codebooks and visual word fusion [8]. All of these techniques
do not contain any information about the visual word’s locations in the final histogram-based
representation [13]. There are two common techniques that can compute the spatial information
from the image. These are based on (1) the construction of histograms from different sub-regions of
image, and (2) visual word co-occurrence [13–15]. The first approach is to split the image into different
cells for the histogram’s computation; it is reported to be robust for content-based image matching
applications [16]. Spatial Pyramid Matching (SPM) [16] is considered as a notable contribution for the
computation of spatial information for BoVW-based image representation. In SPM, an image is divided
into different sizes of rectangular regions for the creation of level-0, level-1 and level-2 histograms
of visual words. However, SPM is sensitive to image transformations (i.e., rotation, flipping and
translation) and loses its discriminative power, resulting in the misclassification of two similar scene
images [17,18].

The second approach to the computation of spatial layout is based on relationships among visual
words [19–21]. This paper proposes a novel approach to extracting the image spatial layout based on
global relative spatial orientation of visual words. This is achieved by computing the angle between
identical visual word pairs with respect to the centroid in the image. Figure 1 provides an illustration
to better understand the proposed approach. The image in Figure 1 is rotated at varying angles. It can
be seen that the same angle is computed between visual words irrespective of the image orientation.

Figure 1. Angle between identical visual word pairs with respect to the centroid. Here (a) represents
the original image, (b) the image rotated by 120◦, and (c) the image rotated by 180◦.

The main contributions of this research are the following: (1) the addition of the discriminating
relative global spatial information to the histogram of BoVW model and (2) reduction of the semantic
gap. An efficient image retrieval system must be capable to retrieve images that meet user preferences
and their specific requirements. The reduction of the semantic gap specifies that the related categories
are given higher similarity scores than unrelated categories. The proposed representation is capable of
handling geometric transformations, i.e., rotation, flipping and translation. Extensive experiments on
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five standard benchmarks demonstrate the robustness of the proposed approach and a remarkable
gain in the precision and recall values over the state-of-the-art methods.

The structure of the paper is as follows. Section 2 contains the literature review and related
work; Section 3 is about the BoVW model and proposed research; and Section 4 deals with the
experimental parameters and image benchmarks, while also presenting a comparison with the existing
state-of-the-art techniques. Section 5 provides a discussion, while Section 6 concludes the proposed
research with future directions.

2. Related Work

According to the literature [6], SIMPLicity, Blobworld and Query by Image Content (QBIC) are
examples of computer vision applications that rely on the extraction of visual features such as color,
texture and shape. Image Rover and WebSeek are examples of image search systems that rely on a
query-based or keyword-based image search [6]. The main objective of any CBIR system is to search
for relevant images that are similar to the query image [22]. Overlapping objects, differences in the
spatial layout of the image, changes in illumination and semantic gaps make CBIR challenging for the
research community [8]. Wang et al. [23] propose the Spatial Weighing BOF (SWBOF) model to extract
the spatial information by using three approaches, i.e., local variance, local entropy and adjacent block
distance. This model is based on the concept of the different parts of an image object contributing to
image categorization in varying ways. The authors demonstrate significant improvement over the
traditional methods. Ali et al. [9] extract the visual information by dividing an image into triangular
regions to capture the compositional attributes of an image. The division of the image into triangular
cells is reported as an efficient method for histogram-based representation. Zeng et al. [24] propose
spatiogram-based image representation that consists of a color histogram that is quantized by using
Gaussian Mixture Models (GMMs). The quantized values of GMMs are used as an input for the
learning of the Expectation-Maximization (EM). The retrieval is performed on the basis of the closeness
of the feature vector values of two spatiograms which are obtained by using the Jensen–Shannon
Divergence (JSD) [24]. Yu et al. [25] investigate the impact of the integration of different mid-level
features to enhance the performance of image retrieval. They investigate the impact of the integration
of SIFT descriptors with LBP and HOG descriptors respectively, in order to address the problem of the
semantic gap. Weighed k−means clustering is used for quantization, and best performance is reported
with SIFT-LBP integration.

To reduce the semantic gap between the low-level features and the high-level image concepts,
Ali et al. [8] propose image retrieval based on the visual words integration of Scale Invariant Feature
Transform (SIFT) and Speeded−Up Robust Features (SURF). Their approach acquires the strength
of both features, i.e., invariance to scale and rotation of SIFT and robustness to illumination of SURF.
In another recent work, Ali et al. [26] propose a late fusion of binary and local descriptors i.e., FREAK
and SIFT to enhance the performance of image retrieval. Filliat et al. [27] present an incremental and
interactive localization and map-learning system based on BoW. Hu et al. [28] propose a real-time
assistive localization approach that extracts compact and effective omnidirectional image features
which are then used to search a remote image feature-based database of a scene, in order to help
indoor navigation.

In another recent work, Li et al. [29] propose a hybrid framework of local (BoW) and global image
features for efficient image retrieval. According to Li et al. [29], a multi-fusion based on two lines of
image representation can enhance the performance of image retrieval. The authors [29] extract the
texture information by using Intensity-Based Local Difference Patterns (ILDP) and by selecting the
HSV color space. This scheme is selected to capture the spatial relationship patterns that exist in the
images. The global color information is extracted by using the H and S components. The final feature
vector is constituted by combining the H, S feature space and ILDP histograms. The experimental
result validates that the fusion of color and texture information enhances the performance of image
retrieval [29]. According to Liu et al. [30], the ranking and incompatibility of the image feature
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descriptor is not considered much in the domain of image retrieval. The authors address the problem
of incompatibility by using gestalt psychology theory and manifold learning. A combination of
gradient direction and color is used to imitate human visual uniformity. The selection of a proposed
feature scheme [30] enhances the image retrieval performance. According to Wu et al. [31], ranking and
feature representation are two important factors that can enhance the performance of image retrieval
and they are considered separately in image retrieval models. The authors propose a texton uniform
descriptor and apply an intrinsic manifold structure through visualizing the distribution of image
representations on the two-dimensional manifold. This process provides a foundation for subsequent
manifold-based ranking and preserves intrinsic neighborhood structure. The authors apply a Modified
Manifold Ranking (MMR) to enhance and propagate adjacent similarity between the images [31].
According to Varish et al. [32], a hierarchical approach to CBIR based on a fusion of color and texture
can enhance the performance of image retrieval. The color feature vectors are computed on the basis
of quantized HSV color space, and texture values are computed to achieve rotation invariance on the
basis of Value (V) component of HSV space. The sub-band of various Dual Tree Complex Wavelet
Transform (DT-CWT) is applied to compute the principal texture direction.

Zou et al. [33] propose an effective feature selection approach based on Deep Belief Networks (DBN)
to boost the performance of image retrieval. The approach works by selecting more reconstructible
discriminative features using an iterative algorithm to obtain the optimized reconstruction weights.
Xia et al. [34] perform a systematic investigation to evaluate factors that may affect the retrieval
performance of the system. They focus the analysis on the visual feature aspect to create powerful deep
feature representations. According to Wan et al. [7], a pre-trained deep convolution neural network
outperforms the existing feature extraction techniques at the cost of high training computations for
large-scale image retrieval. It is important to mention that the approaches based on deep networks
may not be an optimal selection as they require large-scale training data with a lot of computations to
train a classification-based model [21,35].

3. Proposed Methodology

The basic notations for the BoVW model are discussed in this section. This is then followed by a
discussion of the proposed Relative Global Spatial Image Representation (RGSIR) and the details of
its implementation.

3.1. BoVW Model

The Bag-of-Words (BoW) methodology was first proposed in textual retrieval systems [11] and
was further applied in the form of BoVW representation for image analysis. In BoVW, the final image
representation is a histogram of visual words. It is termed a bag, as it counts how many times a word
occurs in a document. A histogram does not have any order and does not retain any information
regarding the location of visual words in the 2D image space [9,16]. The similarity of two images is
determined by histogram intersection. In the case of dissimilar images, the result of the intersection
is small.

As a first step in BoVW, the local features are extracted from the image Im, and the image is
represented as a set of image descriptors, such as Im = {d1, d2, d3, ...., dI}, where di denotes the local
image features and I represents total image descriptors. The feature extraction can be done by applying
some local descriptors such as SIFT descriptors [36]. The key points can be acquired automatically by
using interest point detectors or by applying dense sampling [16].

Consequently, there are numerous local descriptors created for each image for a given dataset.
The extracted descriptors are vector quantized by applying k-means [11] clustering technique to
construct the visual vocabulary, as in

v = {w1, w2, w3, ...., wK} (1)
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where K shows the specified number of clusters or visual words and v denotes the constructed
visual vocabulary.

The assignment of each descriptor to the nearest visual word is done by computing the minimum
distance as follows:

w(dj) = argmin
w∈v

Dist(w, dj) (2)

here, w(dj) represents the visual word mapped to jth descriptor and Dist(w,dj) depicts the distance
between the descriptor dj and visual word w.

The histogram representation of an image is based on the visual vocabulary. The number
of histogram bins equates the number of visual words in the code book or dictionary (i.e., K).
Each histogram bin bini represents a visual word wi in v and signifies the number of descriptors
mapped to a particular visual word as shown in (3)

bini = card(Di) where Di = {dj, j ∈ 1, ...., n | w(dj) = wi} (3)

Di is the set of descriptors mapped to a particular visual word wi in an image, and the cardinality of
this set is given by Card(Di). The final histogram representation for the image is created by repeating
the process for each word in the image. The histograms hence created do not retain the spatial context
of the interest points.

3.2. The Proposed Relative Global Spatial Image Representation (RGSIR)

In the BoVW model the final image representation is created by mapping identical image patches
to the same visual word. In [20], Khan et al. capture the spatial information by modeling the
global relationship between identical visual word pairs (PIWs). Their approach exhibits invariance
to translation and scaling but is sensitive to rotation [20,37], since the relative relationship between
PIWs is computed with respect to the x-axis. Anwar et al. [37] propose an approach to acquire rotation
invariance by computing angles between Triplets of Identical Visual Words (TIWs). Although the
approach of [37] acquires rotation invariance, it significantly increases computation complexity due to
the increase in the number of possible triplet combinations. For instance, if the number of identical
visual words is 30, the number of distinct pair combinations is 435 and the number of possible distinct
triplet combinations is 4060.

This paper proposes a novel approach to acquiring spatial information for transformation
invariance by computing the global geometric relationship between pairs of identical visual words.
This is accomplished by extracting the spatial distribution of these pairs with respect to a centroid in
an image as shown in Figure 2.

Figure 2. Angle between identical visual word pairs with respect to the centroid.

Hence we define the set of all pairs (PW) of identical visual words related to a visual word wi as:

PWi = {(a, b)|(da, db) ∈ D2
i , da �= db} (4)
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where a(x1, y1) and b(x2, y2) are the spatial locations of the descriptors da and db, respectively. Since the
ith histogram bin signifies the descriptor di, its value determines the total occurrences of the word wi.
The cardinality of the set PWi is bi C2. The centroid c = (x, y) of an image Im of size R × C is calculated
as

x =
1

| Im |
|Im|
∑
i=1

xi, y =
1

| Im |
|Im|
∑
i=1

yi (5)

where Im = {(xi, yi) | 1 ≤ xi ≤ R, 1 ≤ yi ≤ C} and | Im | is the number of elements in Im. Let rab be
the Euclidean distance between a and b, then

rab =
√
(x1 − x2)2 + (y1 − y2)2 (6)

Similarly, the Euclidean distances of a and b from c are calculated as

rca =
√
(x1 − x)2 + (y1 − y)2

rcb =
√
(x2 − x)2 + (y2 − y)2

Using the Law of cosines, we have

θ = arccos
(
(rca)2 + (rcb)

2 − (rab)
2

2(rca)(rcb)

)
(7)

where θ = � acb.
The θ angles obtained are then concatenated to create the histogram representation with bins

equally distributed between 0–180◦. The optimal number of bins used for histogram representation is
determined empirically. The RGSIRi represents the spatial distribution for a particular visual word
wi. The RGSIRi obtained from all the visual words in an image are concatenated to create the global
image representation. A bin replacement technique is used to transform the BoVW representation to
RGSIR. This is achieved by replacing each bin of the BoVW histogram with the associated RGSIRi
related to a particular wi. To add the spatial information while keeping the frequency information
intact, the sum of all bins of RGSIRi is normalized to the size of the bin bini of the BoVW histogram
that is being replaced. The image representation for RGSIR is hence formulated as:

RGSIR = (α1RGSIR1, α2RGSIR2, ....., αKRGSIRK) (8)

where αi, the coefficient of normalization, is given by αi =
bini

||RGSIRi || . If the size of the visual vocabulary
is K and the number of histogram bins is H, then the dimensions of RGSIR are K × H.

3.3. Implementation Details

The histogram representations for all of the datasets are created by following the same sequence
of steps as shown in Figure 3. As a preprocessing step, the images are converted to gray-scale mode by
using the available standard resolution, and the dense SIFT features are extracted on six multi-scales,
i.e., {2,4,6,8,10,12} for the computation of codebook [38]. The step size of 5 is applied to compute
the Dense SIFT features [38]. Dense features are selected, as the dense regular grid has shown to
possess better discriminative power [16]. To save computation time for clustering, 40% of the features
(per image) are selected by applying a random selection on a training set to compute the codebook.
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Figure 3. Block diagram of the proposed work.

To quantize the descriptors, k-means clustering is applied to generate visual vocabulary. Since
the size of the codebook is one of the major factors that affects the performance of image retrieval,
the proposed approach is evaluated by using different sizes of codebook to sort out the best retrieval
performance. The visual vocabulary is constructed from the training set and the evaluation is done
using the test set. The experiments are repeated in 10 trials to remove the ambiguity created by the
random initialization of cluster centers by k-means. For each trial, the training and test images are
stochastically selected and the average retrieval performance is reported in terms of precision and
recall values, which are considered as standard image retrieval measures [8,39].

The calculation of RGSIR involves computing subsets of pairs from sets of identical visual words.
To accelerate computation, a threshold value is set and a random selection is applied to limit the number
of identical words used for creating the pair combinations. We use a nine-bin RGSIR representation for
the results presented in Section 4. Figure 4 gives the empirical justification for the number of bins on
two different image benchmarks used in our experiments. Support Vector Machine (SVM), a supervised
learning technique, is used for classification. The SVM Hellinger Kernel is applied to the normalized
RGSIR histograms. The optimal value for the regularization parameter is determined by applying
10-fold cross validation on the training dataset. As we have used a classification-based framework
for image retrieval, the class of the image is predicted by using the classifier labels; similarity among
the images of the same class is determined on the basis of distance in decision values [8]. The results
obtained from the evaluation metrics are normalized and average values are reported in tables in
graphs. MATLAB is used to simulate the research by using Corei7, a 7th generation processor with
16 GB RAM.
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Figure 4. The influence of the number of bins on the performance of RGSIR.

4. Datasets and Performance Evaluation

This section provides a description of the datasets, measures used for evaluation, and the details
of the experiments conducted for the validation of the proposed research.

4.1. Dataset Description

To assess the effectiveness of the proposed research for image retrieval, experiments are conducted
on the benchmark datasets used extensively in the literature. The first dataset used in our experiments
is the Corel-1K [40] image dataset. The Wang’s image dataset is comprised of a total of 1000 Corel
images from diverse contents such as beach, flowers, horses, mountains, food, etc. The images are
grouped into 10 categories with image sizes of 256 × 384 or 384 × 256 pixels. The second dataset is
the Corel-1.5K image benchmark comprised of 15 classes with 100 images per category [40]. Figure 5
shows sample images from Corel-1K and Corel-1.5K, respectively.

Figure 5. Randomly selected images from each class of Corel-1K and Corel-1.5K image datasets [40].

The third dataset used to validate the efficacy of the proposed RGSIR is the Corel-2K image
benchmark. Corel-2K is a subset of Corel image dataset and is comprised of 2000 images classified into
20 semantic categories. Example images from this dataset are shown in Figure 6.
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Figure 6. Class representatives from the Corel 2000 image dataset [40].

The forth dataset is the Oliva and Torralba (OT) dataset [41], which includes 2688 images classified
into 8 semantic categories. This dataset exhibits high inter and intra-class variability, as the river and
forest scenes are all considered as forest. Moreover, there is no specific sky category, since all the
images contain the sky object. The average image size is 250 × 250 pixels and the images are collected
from different sources (i.e., commercial databases, digital cameras, websites). This is a challenging
dataset as the images are sampled from different perspectives, varying rotation angles, different spatial
patterns and different seasons. Figure 7 shows the photo gallery of images for the OT image dataset.

Figure 7. Class representatives from the OT image dataset [41].

The last dataset used is our experiments is the RSSCN image dataset [33], released in 2015,
comprised of images collected from Google Earth. It consists of 2800 images categorized into 7 typical
scene categories. There are 400 images per class, and each image has a size of 400 × 400 pixels. It is a
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challenging dataset, as the images in each class are sampled at 4 different scales, with 100 images per
scale under varied imaging angles. Consistent with related work [33], the dataset is stochastically split
into two equal image subsets for training and testing, respectively. Example images from this dataset
are shown in Figure 8.

Figure 8. Class representatives from the RSSCN image dataset [33].

4.2. Evaluation Measures

Let the database I1, ..., In, ..., IN be a set of images represented by the spatial attributes. To retrieve
an image identical to the query image Q, each image from the database In is compared with Q,
using the appropriate distance function (Q, In). The database images are then sorted based on the
distances such that (d(Q, Ini ) ≤ (d(Q, Ini+1) holds for each pair images Ini and Ini+1 of distances in the
sequence In1 , ..., Ini , ..., InN .

4.2.1. Precision

The performance of the proposed method is measured in terms of precision P and recall R,
which are the standard measures used to evaluate CBIR. Precision measures the specificity of the
image retrieval, and it gives the number of relevant instances retrieved in response to a query image.
The Precision (P) is defined as

P =
Number o f relevant images retrieved

Total number o f images retrieved
(9)

4.2.2. Recall

The Recall is the fraction of the relevant instances retrieved to the total number of instances of
that class in the dataset. It measures the sensitivity of the image and is given by

R =
Number o f relevant images retrieved

Total number o f relevant images
(10)

4.2.3. Mean Average Precision (MAP)

Based on P and R values, we also report results in terms of precision vs recall curve (P-R curve)
and the mean average precision (MAP). The P-R curve represents the tradeoff between precision and
recall for a given retrieval approach. It reflects more information about retrieval performance that is
determined by the area under the curve. If the retrieval system has better performance, the curve is as
far from the origin of coordinates as possible. The area between the curve and the X-Y axes should be
larger, which is usually measured and is approximate to MAP [42]. In other words, the most common
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way to summarize the P-R curve in one value is P-R. P-R is the mean of the average precision (AP)
scores of all queries and is computed as follows:

MAP =
1
|T| ∑

QεT
AP(Q) (11)

where T is the set of test images or queries Q. An advantage of MAP is that it contains both precision
and recall aspects and is sensitive to the entire ranking [43].

4.3. Performance on Corel-1K Image Dataset

The Corel-1K image benchmark is extensively used to evaluate CBIR research. To ensure fair
comparison experiments, the dataset is stochastically partitioned into training and test subsets with a
ratio of 0.5:0.5. The image retrieval performance of the proposed image representation is compared
with the existing state-of-the-art CBIR approaches. In order to obtain a sustainable performance,
the mean average precision of RGSIR is evaluated by using visual vocabulary of different sizes
[50, 100, 200, 400, 600, 800]. The best image retrieval performance for Corel-1K is obtained for a
vocabulary of size 600, as can be seen in Figure 9.
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Figure 9. Average Precision as a function of vocabulary size.

The class-wise comparison obtained from the proposed research in terms of precision and recall is
presented in Tables 1 and 2. It can be seen that the proposed approach outperforms the state-of-the-art
image retrieval approaches. The proposed RGSIR provides 17.7% higher precision compared to
Yu et al. [25]. Our proposed representation outperforms SWBOF [23] by {13.7%, 2.74%} in terms
of average precision and recall values for the top 20 retrieval. RGSIR yields {8.23%, 1.65%} higher
performance compared to [8] in terms of average retrieval precision and recall values.

Table 1. Comparison of precision when using Corel-1K image dataset.

Class Name/ Method RGSIR Li et al. [29]
Level-1
RBF-NN [9]

Visual Words
Integration
SIFT-SURF [8]

SWBOF [23] SIFT-LBP [25]

African People 72.80 76.55 73.06 60.08 64.00 57.00
Beach 69.40 63.70 69.98 60.39 54.00 58.00
Building 66.20 69.05 76.76 69.66 53.00 43.00
Bus 97.16 87.70 92.24 93.65 94.00 93.00
Dinosaur 100.00 99.40 99.35 99.88 98.00 98.00
Elephant 80.80 91.05 81.38 70.76 78.00 58.00
Flower 94.60 91.70 83.40 88.37 71.00 83.00
Horse 90.80 95.40 82.81 82.77 93.00 68.00
Mountain 76.20 83.40 78.60 61.08 42.00 46.00
Food 86.00 65.80 82.71 65.09 50.00 53.00
Mean 83.40 82.36 82.03 75.17 69.70 65.70
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Table 2. Comparison of recall when using Corel-1K image dataset.

Class Name/ Method RGSIR Li et al. [29]
Level-1
RBF-NN [9]

Visual Words
Integration
SIFT-SURF [8]

SWBOF [23] SIFT-LBP [25]

African People 14.56 15.31 14.61 12.02 12.80 11.4
Beach 13.88 12.74 14.00 12.08 10.80 11.6
Building 13.24 13.81 15.35 13.93 10.30 8.6
Bus 19.43 17.54 18.45 18.73 18.80 18.6
Dinosaur 20.00 19.88 19.87 19.98 19.60 19.6
Elephant 16.16 18.21 16.28 14.15 15.60 11.6
Flower 18.92 18.34 16.68 17.67 14.20 16.6
Horse 18.16 19.08 16.56 16.55 18.60 13.6
Mountain 15.24 16.68 15.72 12.22 8.40 9.2
Food 17.20 13.16 16.54 13.02 10.00 10.6
Mean 16.68 16.48 16.41 15.03 13.94 13.14

The proposed RGSIR results in {1.04%, 0.2%} higher precision and recall values compared to the
work of Li et al. [29]. Experimental results validate the robustness of the proposed approach against
the state-of-the-art retrieval methods.

The comparative analysis of the proposed research with the existing state-of-the-art verifies the
effectiveness of RGSIR for image retrieval. The average precision depends on the total number of
relevant images retrieved, and hence is directly proportional to the number of relevant images retrieved
in response to a given query image. It is evident from the Figure that the proposed approach attains
the highest number of relevant images against a given query image as compared to the state-of-the-art
approaches. Similarly, the average recall is directly proportional to the number of relevant images
retrieved to the total number of relevant images of that class present in the dataset. The proposed
approach outperforms the state-of-the-art methods by attaining the highest precision and recall values.

The P-R curve obtained for the Corel-1K image benchmark is shown in Figure 10. The P-R curve
demonstrates the ability of the retrieval system to retrieve relevant images from the image database
in an appropriate similarity sequence. The area under the curve illustrates how effectively different
methods perform in the same retrieval scenario. The results indicate that the proposed spatial features
enhance the retrieval performance as compared to the state-of-the-art image retrieval approaches.
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Figure 10. P-R curve obtained using Corel-1K image benchmark.

The image retrieval results for the semantic classes of Corel-1K image dataset are shown in
Figures 11 and 12 (which reflects the reduction of the semantic gap). The image shown in the first row
is the query image and the remaining 20 images are images retrieved by applying a similarity measure
that is based on image classification score values. Here a classification label is used to determine the
class of the image, while the similarity with-in the same class is calculated on the basis of similarity
among classification scores of images of the same class from the test dataset.
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Figure 11 shows that, for a given query image, all images of the related semantic category
are retrieved. In Figure 12 it can be seen that in a search based on a flower query image, an image
from a different semantic category containing flowers is also displayed in the 3rd row in addition to
images from the flower image category. The experimental results demonstrate that the proposed
approach achieves much higher performance compared to the state-of-the-art complementary
approaches [9,23,25].

Figure 11. Result of image retrieval for the semantic class “Dinosaurs”.

Figure 12. Result of image retrieval for the semantic class “Flowers”.

4.4. Performance on Corel-1.5K Image Dataset

To further assess the effectiveness of the proposed method, experiments are conducted on Corel-1.5
image benchmark. The image retrieval performance of Corel-1.5 dataset is analyzed using the visual
vocabulary of different sizes. The optimal performance is obtained for a vocabulary size of 400. Table 3
provides a comparison of the mean average precision for the top 20 retrievals with the state-of-the-art
image retrieval approaches [8,24,26].

It is evident from the table that the proposed RGSIR provides better retrieval performance
compared to the state-of-the-art approaches with higher retrieval precision values than those of the
existing research. Experimental results demonstrate that the proposed approach provides {18.9%,
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3.78%} better performance compared to the method without soft assignment, i.e., SQ + Spatiogram [24]
and {8.75%, 2.77%}, than the probabilistic GMM + mSpatiogram [24] in terms of precision and
recall, respectively.

Table 3. Comparison of Average Retrieval Precision and Recall when using Corel-1.5K image dataset.

Performance
and Name of
Method

RGSIR Ali et al. [26]
Visual words
Integration
SIFT-SURF [8]

GMM +
mSpatiogram [24]

SQ +
Spatiogram [24]

Precision 82.85 72.60 74.95 74.10 63.95
Recall 16.57 14.52 14.99 13.80 12.79

The proposed approach based on relative spatial feature extraction achieves 7.9% higher retrieval
precision compared to the image retrieval based on visual words integration of SIFT and SURF [8].
Our proposed approach provides {10.25%, 2.05%} better precision and recall results compared to
the late fusion based approach [26]. The experimental results demonstrate that our proposed
approach significantly improves the retrieval performance compared to the state-of-the-art image
retrieval techniques.

4.5. Performance on Corel-2K image Dataset

The optimal performance for the Corel-2K image dataset is obtained for a vocabulary size of 600.
Table 4 provides a comparison of Corel-2K with the state-of-the-art image retrieval approaches. It is
evident that the proposed approach yields the highest retrieval accuracy. The proposed approach
provides 13.68% highest mean retrieval precision compared to the second best method. Figure 13
illustrates the average precision and recall values for the top 20 image retrievals. The experimental
results validate the efficacy of the proposed approach for content-based image retrieval.
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Figure 13. Average Precision and Recall of the proposed RGSIR for the top 20 retrievals using Corel-2K
image becnchmark.

Table 4. Comparison of the mean average precision using Corel-2K image benchmark.

Performance/
Method

RGSIR
Visual Words
Integration
SIFT-SURF [8]

MissSVM [44] MI-SVM [45]

MAP 79.09 65.41 65.20 54.60
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The image retrieval results for the semantic classes of Corel-2K image dataset are shown in
Figures 14 and 15 (which reflect the reduction of the semantic gap). The image displayed in the first
row is the query image and the remaining images are the results of the top 20 retrievals selected on the
basis of the image classification score displayed at the top of each image.

Figure 14. Result of image retrieval for the semantic class “Lizards”.

Figure 15. Result of image retrieval for the semantic class “Antique Furniture”.

4.6. Image Retrieval Performance While Using Oliva and Torralba (OT-Scene) Dataset

To demonstrate the effectiveness of the proposed research, experiments are performed on the
challenging OT image dataset. The best performance for the proposed research is obtained for a vocabulary
size of 600. As the proposed approach has been designed on a classification-based framework, Figure 16
provides a class-wise comparison of the classification accuracy of the proposed approach with the recent
state-of-the-art classification approaches [46,47]. Shrivastava et al. [46] propose a fusion of color, texture
and edge descriptors to enhance the performance of image classification and report an accuracy of 86.4%.
Our proposed approach outperforms SPM by 3.85% [48] and yields 1.06% higher accuracy compared
to [46]. Zang et al. [47] use the Object Bank (OB) approach to construct powerful image descriptors and
boost the performance of OB-based scene image classification. The best mean classification accuracy for
the proposed RGSIR is 87.46%, while the accuracy reported by Zang et al. [47] is 86.5%. The proposed
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approach provides 0.96% higher accuracy compared to their work. It is observed that the performance of
the proposed approach is low for the natural coast and the open country category due to high variability
in these classes. The proposed approach based on spatial features provides better performance compared
to the state-of-the-art retrieval approaches.
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Figure 16. Class-wise comparison between of the proposed research with the state-of-the-art methods
for OT scene image dataset.

The comparison of the proposed research with existing research [8] in terms of precision is
presented in Table 5. The proposed approach provides 13.17% higher accuracy compared to the second
best method in comparison. The experimental results validate the efficacy of the proposed approach
for content based image retrieval.

Table 5. Comparison of the mean average precision using OT-Scene image benchmark.

Performance/
Method

RGSIR
Visual Words
Integration
SIFT-SURF [8]

Log Gabor + OC-LBP
Technique [49]

Late Fusion (SIFT
+ FREAK) [26]

Feature Extraction with
Morphological Operators

MAP 82.92 69.75 63.74 63.14 60.70

4.7. Performance on the RSSCN Image Dataset

To evaluate the effectiveness of proposed approach for scene classification, experiments are
conducted on the challenging high resolution remote sensing scene image dataset. The training test
ratio of 0.5:0.5 is used for the RSSCN image dataset as is followed in the literature [33]. The training
set comprises 1400 stochastically selected images and the remaining images are used to assess the
retrieval performance. The optimal retrieval performance is obtained for a visual vocabulary size of
200. As we have used a classification based framework for image retrieval, it is important to note here
that the classification accuracy for the proposed RGSIR is 81.44% and the accuracy reported by the
dataset creator is 77%. Our proposed representation provides 4.44% higher accuracy compared to the
deep learning technique, i.e., the DBN adopted by the Zou et al. [33].

Table 6 provides a comparison of the retrieval performance of RSSCN with the state-of-the-art
image retrieval approaches. We have computed MAP for the top 100 retrievals using the proposed
RGSIR. Xia et al. [34] perform an extensive analysis to develop a powerful feature representation
to enhance image retrieval. They consider different CNN representative models, i.e., CaffeNet [50],
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VGG-M [51], VGG-VD19 [52] and GoogLeNet [53], in combination with different feature extraction
approaches. As our proposed approach is based on mid-level features, we have selected BoW based
aggregation methods for comparison. Mid-level features are more resilient to various transformations
such as rotation, scale and illumination [34]. The proposed approach provides 16.63% higher accuracy
compared to VGG-M (IFK). The proposed RGSIR outperforms the GoogLeNet (BoW), VGG-VD19
(BoW) and CaffeNet (BoW) by 18.56%, 19.2% and 20.88 %, respectively.

Table 6. Comparison of the mean average precision when using RSSCN image benchmark.

Performance/
Method

RGSIR CaffeNet
(BoW) [34]

VGG-VD19
(BoW) [34]

GoogLeNet
(BoW) [34]

VGG-M
(IFK) [34]

MAP 72.42 51.54 53.22 53.86 55.79

It is important to note here that we have selected the RSSCN image dataset as the images are
captured at varying angles and exhibit significant rotation differences. Hence the robustness of the
proposed approach to rotation in-variance is also illustrated to some extent. The top 20 retrieval results
against the “Forest" and “River & Lake" semantic categories of the RSSCN image dataset are shown in
Figures 17 and 18.

Figure 17. Results of image retrieval for the semantic class “Forest”.

Figure 18. Results of image retrieval for the semantic class “River & Lake”.
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5. Discussion

In this paper, we have proposed an image retrieval approach based on relative geometric
spatial relationships between visual words. Extensive experiments on challenging image benchmarks
demonstrate that the proposed approach outperforms the concurrent and the state-of-the-art image
retrieval approaches based on feature fusion and spatial feature extraction techniques [8,23,24].

5.1. Factors Affecting the Performance of the System

One of the factors affecting the retrieval performance is the size of the visual vocabulary. We have
conducted experiments with visual vocabulary of different sizes to determine the optimal performance
of the proposed representation as discussed in the preceding sections. Another factor affecting the
performance of the system is the ratio of the training images used to train the classifier. Figure 19
provides a comparison of different training test ratios i.e., 70:30, 60:40, 50:50 for the Corel-1K image
dataset. It can be seen that the performance of the system increases at higher training test ratios.
However, to be consistent with related approaches [8], 50:50 is used to report the precision and recall
retrieval results for the experimental comparisons presented in Section 4.
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Figure 19. Average precision of the proposed RGSIR on visual vocabulary of different sizes using
different training test ratios.

5.2. Invariance to Basic Transformations

Spatial Pyramid Matching (SPM) [16] is the most notable contribution to incorporate spatial
context into the BoVW model. SPM captures the absolute spatial distribution of visual words. However,
SPM is sensitive to image transformations such as rotation, flipping and translation. For images that
are not well-aligned, SPM may lose its discriminative power. An object may rotate by any angle on
the image plane (rotation), it may be flipped horizontally or vertically (flipping), or the object may
appear anywhere in an image (translation). The proposed approach is capable of addressing various
transformations, by encoding the global relative spatial orientation of visual words. This is achieved
by computing the angle between identical visual word pairs with respect to the centroid in image.
Figure 20 provides an illustration to better understand our approach.
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Figure 20. SPM (a,b,c) vs.the proposed approach (d,e,f). Here (a,d) represent the original images,
(b,e) the images rotated by 90◦, and (c,f) vertically flipped images.

The upper region of Figure 20a–c represents the idea of histograms constructed with SPM [16],
while the lower region demonstrates the proposed approach Figure 20d–f. In the figures, we can see
Figure 20a,d the original image, Figure 20b,e the image rotated by 90◦ and Figure 20c,f the vertically
flipped image. The performance of SPM [16] degrades in this case, as the objects occupy different
regions in the original and transformed images. In Figure 20a the identical visual words are located in
the 3rd and 4th regions, in Figure 20b they are found in the 2nd and 4th regions, while in Figure 20c
they are in the 1st and 2nd regions, respectively. Hence the three histogram representations will be
different for the same image. In the case of the proposed RGSIR, the same histogram representation
will be generated for the original and for the transformed images, as the angle between identical visual
words with respect to the centroid remains the same.

Figure 21 presents a graphical comparison of the average precision for the top 20 retrievals with
the concurrent state-of-the-art approaches. Chathurani et al. [54] propose a Rotation Invariant Bag of
Visual Words (RIBoW) approach to encode the spatial information using circular image decomposition
in combination with a simple shifting operation using global image descriptors. They report improved
performance to existing BoVW approaches. Although SPM [16] encodes the spatial information,
it is sensitive to rotation, translation and scale variance of an image. The circular decomposition
approach [54] partitions the image into sub-images, and features which are then extracted from each
sub-image are used for feature representation. The proposed RGSIR provides 10.4% higher retrieval
precision compared to the second best method.

Experimental results demonstrate the superiority of the proposed approach to the concurrent
state-of-the-art approaches. It is important to note here that some approaches incorporate the spatial
context prior to the visual vocabulary construction step, while others do so after it [9]. The proposed
approach adds this information after the visual vocabulary construction step. In future, we intend to
enhance the discriminative power of the proposed approach by extracting rotation-invariant features
at the feature extraction step, prior to the construction of the visual vocabulary.
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Figure 21. Average precision comparison of the proposed RGSIR with the state-of-the-art approaches
for the Corel-1K image benchmark.

6. Conclusions and Future Directions

The final feature vector for the BoVW model contains no information regarding the distribution
of visual words in the 2D image space. Due to this reason, the performance of a computer vision
application suffers, as spatial information of visual words in the histogram-based feature vector
enhances the performance of image retrieval. This paper presents a novel approach to image
representation to incorporate the spatial information to the inverted index of the BoVW model.
The spatial information is added by calculating the global relative spatial orientation of visual words
in a transformation-invariant manner. This is established by computing the geometric relationship
between pairs of identical visual words with respect to the centroid of an image. The experimental
results and quantitative comparisons demonstrate that our proposed representation significantly
improves the retrieval performance in terms of precision and recall values. The proposed approach
outperforms other concurrent methods and provides competitive performance as compared with the
state-of-the-art approaches.

Furthermore, the proposed approach is not confined to the retrieval task but can be applied to
other image analysis tasks, such as object detection. This is because we incorporate the invariant
spatial layout information into the BoVW image representation, thereby ensuring seamless application
of follow-up techniques.

In future, we would like to enhance the discriminative power of the proposed approach by
extracting rotation invariant low-level features at descriptor level. We intend to create a unified
representation, tolerant to all kinds of layout variances. As the proposed method has shown excellent
results on five image benchmarks, in future we aim to apply a pre-trained deep convolution neural
network for the computation of histogram of visual words for learning of classifier to a large scale
image dataset. Combining our image representation with a complementary absolute feature extraction
method and enriching it with other cues such as color and shape is another possible direction for
future research.
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Featured Application: The proposed DLRSD-based segmentation method can be applied for

other industrial products, such as glass, fabric, LCD and AMOLED.

Abstract: Surface defect segmentation supports real-time surface defect detection system of steel sheet
by reducing redundant information and highlighting the critical defect regions for high-level image
understanding. Existing defect segmentation methods usually lack adaptiveness to different shape,
size and scale of the defect object. Based on the observation that the defective area can be regarded as
the salient part of image, a saliency detection model using double low-rank and sparse decomposition
(DLRSD) is proposed for surface defect segmentation. The proposed method adopts a low-rank
assumption which characterizes the defective sub-regions and defect-free background sub-regions
respectively. In addition, DLRSD model uses sparse constrains for background sub-regions so as to
improve the robustness to noise and uneven illumination simultaneously. Then the Laplacian
regularization among spatially adjacent sub-regions is incorporated into the DLRSD model in
order to uniformly highlight the defect object. Our proposed DLRSD-based segmentation method
consists of three steps: firstly, using DLRSD model to obtain the defect foreground image; then,
enhancing the foreground image to establish the good foundation for segmentation; finally, the Otsu’s
method is used to choose an optimal threshold automatically for segmentation. Experimental results
demonstrate that the proposed method outperforms state-of-the-art approaches in terms of both
subjective and objective tests. Meanwhile, the proposed method is applicable to industrial detection
with limited computational resources.

Keywords: surface defect of steel sheet; image segmentation; saliency detection; low-rank and
sparse decomposition

1. Introduction

Surface defect detection plays an important role in quality enhancement in industrial product
manufacturing. However, traditional defect detection is performed by human eyes, which yields low
efficiency and high missing rate. Currently, vision-based automated defect detection has drawn much
attention, which has important theoretical and practical value [1–4]. In automatic surface inspection of
steel sheet, segmentation of surface defect is a significant step, which generates a binary map to
identify defects. In the past two decades, commonly-used segmentation methods can be classified
into three categories: statistical-based methods, filter-based methods and model-based methods.
Statistical-based methods, such as Otsu’s method [5], gray level co-occurrence matrix, local binary
pattern, maximum entropy, region growing and morphological watersheds, are used to evaluate the
spatial distribution of pixel intensities for segmentation. Filter-based methods, such as discrete Fourier
transform [6], discrete Gabor transform [7] and discrete wavelet transform [8,9], apply a bank of
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filters to the image, in which the energies of the filters response are utilized as features to segment
the defects. Model-based approaches obtain certain models with specific feature distributions or other
attributes using diverse descriptors, for instance, level set, fuzzy theory, partial differential equations
and texture patterns.

Most recently, with the development of saliency detection technology, segmentation methods that
use saliency map are gradually rising in the industrial defect inspection field. This method constructs a
saliency map that highlights the defect regions standing out from the rest of the image, which provide
the good foundation for segmentation. Guan et al. [10] proposed saliency map construction method
using Gaussian pyramid decomposition. Then segmentation is conducted with the saliency map.
This model exhibits good performance for strip steel defect detection. Li et al. [11] devised a low-rank
representation-based saliency detection model for textile fabric defect detection. Zhao et al. [12] also
presented a novel saliency detection model, which obviously improve the accuracy of automated
defect segmentation.

These methods achieve good results on defect segmentation for a certain and homogeneous
texture, but remain a challenging issue for segmentation with miscellaneous textures due to random
disturbance. Specially, as the surface defect image of steel sheet has a low signal-to-noise ratio,
low contrast between defect object and background, heterogeneous and scattered defect, cluttered and
complicated background, these methods still lack of accuracy and suffer from limited adaptability and
robustness in industrial practice.

Usually, a defect-free surface in industrial products has consistent texture. The emergence of
defects can be regarded as the foreground object superposed in the regular-texture background.
As shown in Figure 1, a surface defect image of steel sheet I is decomposed into two parts: relatively
homogeneous background image B and a defect foreground image F that is the desired image for the
following segmentation.

 
Figure 1. Illustration of surface defect image decomposition.

Inspired by the above analysis, an easy-to-implement method based on double low-rank and
sparse decomposition (DLRSD) is proposed in this paper for surface defect segmentation. Considering
double low-rank and sparse characteristics of surface defect image, combined with a local consistency
constrain among spatially adjacent sub-regions by imposing Laplacian regularization, the feature
matrix that form by I can be adaptively decomposed into foreground feature matrix that form by
defect foreground image F and background feature matrix that form by background image B in a
certain feature space, respectively. Specifically, the foreground image F is served as the source image
for segmentation, which can better cope with the intra-class variations and background clutters,
leading to a higher performance. Theoretical analysis and experimental results demonstrate the
feasibility and effectiveness of the proposed DLRSD-based segmentation method for the surface
defect of steel sheet. At the same time, it provides an interesting perspective for the industrial
product’s surface defect segmentation.

The rest of this paper is organized as follows. In Section 2, we review some existing saliency
detection methods, especially the structural matrix decomposition-based methods. In Section 3 we
introduce the proposed DLRSD model, including formulation and optimization. Section 4 presents
the DLRSD-based defect segmentation method. Also, we give more detail on enhancing the original

281



Appl. Sci. 2018, 8, 1628

defect foreground image. Section 5 describes experimental results between our proposed method and
some state-of-the-art methods. Finally, conclusions are given in Section 6.

2. Related Work

During the past few years, there are many methods attempting to segment the salient object
from the saliency map of an input image [13–19]. The quality and effectiveness of segmentation
are decided by the quality of saliency map [20]. Based on the milestone work, some structural
matrix decomposition-based methods transform a saliency detection problem into a feature subspace
decomposition problem, which can improve detection results in terms of both speed and accuracy.
Particularly, many studies conclude that low-rank matrix decomposition-based methods can obtain
better saliency detection performance. These methods assume that an image can be represented as a
combination of a highly redundant part (e.g., visually consistent background regions) and a sparse part
(e.g., salient object foreground regions). Therefore, given the feature matrix of an input image, it can be
decomposed into a low-rank matrix corresponding to the non-salient background and a sparse matrix
corresponding to the salient foreground objects. Yan et al. [21] employed sparse coding as a feature
representation vector of image. Zou et al. [22] designed multi-scale superpixel segmentation to
construct the feature matrix and prior matrix. Although Shen et al. [23] adopted learnt linear
transformation of the feature space to integrate low-level features and high-level prior knowledge,
the learnt transform matrix is correlated for training data set. Unfortunately, the sparsity assumption of
the salient objects can’t be guaranteed universally, especially when the salient objects with big size
occupy most of the image, and then suffer from limited adaptability. Therefore, Peng et al. [24]
developed tree-structured sparsity-inducing regularization and Laplacian regularization to disentangle
the salient objects and background precisely, and then obtained competitive results. But it may be
difficult to suppress some small background regions with distinctive appearances because of the
constructed index-tree is not precise enough. Subsequently, Sun et al. [25] presented diversity-induced
regularization based on Hilbert–Schmidt independence criterion, which make the background much
cleaner in the saliency map and boost the saliency detection performance. But, they don’t consider the
low-rank characteristic for the foreground regions and background regions simultaneously, and ignore
the spatial and pattern relations of image regions, which may lead to very noisy saliency map and
influences on the final segmentation performance.

To solve the problems mentioned above, the proposed DLRSD model considers the correlation
between defective regions and defect-free regions, which is different from existing methods in essence.
Besides, it uses the nuclear norm to depict the low-rank property of defect object rather than
consider it as the sparse noises, which can produce more accurate and reliable saliency map that
represents the defect foreground image.

3. Double Low-Rank and Sparse Decomposition Model

In this section, we will introduce the proposed DLRSD model and optimization
procedure in details.

3.1. Problem Formulation

Let {R1, R2, · · · , RK} be a set of K non-overlapping sub-regions of a surface defect image I,
all the feature vectors of sub-regions can construct the feature matrix D. The proposed DLRSD
model is to design an effective model to decompose the feature matrix D into a feature matrix S that
represents a defect foreground image F and a feature matrix L that represents a background image B:

D = S + L (1)

In order to separate defect regions and background regions accurately, some constrains are
needed for characterizing two feature matrices S and L. According to the surface defect image I that is
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pre-processed by superpixel segmentation, both defect foreground and background contain multiple
homogeneous and highly similar sub-regions, for each defective sub-region, the corresponding
locations in saliency map has high probability in larger brightness, indicating that it has higher
saliency value. Besides, different defective sub-regions are highly correlated and the corresponding
feature vectors lie in a low-dimensional subspace. Therefore, the feature matrix S is expected to be
low-rank. Meanwhile, most of background sub-regions tend to have lower saliency value. They are
strongly correlated and lie in a low-dimensional feature subspace that is independent of the defect
foreground subspace. The strong correlations among the background sub-regions suggest that feature
matrix L may have the low-rank property. What is more, in order to reduce the influence of noises and
enhance the robustness to uneven illumination, we assume that the background lies in a sparse feature
subspace and can be characterized by a sparse matrix.

Based on above analysis, the structured matrix decomposition model can be constructed as
follows:

min
L,S

(rank(L) + αrank(S) + βΘ(S, L) + γ||L||0)
s.t.D = S + L

(2)

where rank(·) denotes the rank of matrix; ||·||0 denotes l0 norm of matrix, which equals the number of
non-zero element of matrix; Θ(S, L) denotes the regularization to enlarge the margin and reduce the
coherence between the feature subspaces induced by S and L; D ∈ Rd×K represents the feature matrix;
α > 0, β > 0 and γ > 0 are regularization parameters.

To separate the defect object from the background easily, spatially adjacent sub-regions with
smaller spatial distance and more similar feature vector should be assigned to similar and higher
weight values, the local invariance assumption [26] based Laplacian regularization Θ(S, L) [24] can be
defined as follows:

Θ(S, L) =
1
2

K

∑
i,j=1

||si − sj||22wij = tr
(

SMST
)

(3)

where tr(·) denotes the trace of a matrix; si denotes the i-th column of matrix S; the element wij of
affinity matrix W ∈ RK×K denotes the weight that represents the feature similarity between sub-regions
Ri and Rj; M ∈ RK×K is a Laplacian matrix.

According to the undirected graph model from a surface defect image, each sub-region is
represented by a node, the affinity matrix W is

wij =

⎧⎨⎩ exp
(

−||pi−pj ||22
2σ2

p

)
exp

(
−||fi−fj ||22

2σ2
f

)
Ri and Rj are spatially adjacent

0 otherwise
(4)

where pi ∈ R2 and pj ∈ R2 denote the central coordinate of Ri and Rj; fi ∈ Rd and fj ∈ Rd denote

the feature vector of Ri and Rj; exp
(

−||pi−pj ||22
2σ2

p

)
represents spatial connectivity between Ri and Rj,

which represents the spatial contiguity; exp
(

−||fi−fj ||22
2σ2

f

)
gives the feature similarity between Ri and Rj;

σp and σf are two scalars.
The Laplacian matrix M is

Mij =

⎧⎨⎩ −wij i �= j
∑
i �=j

wij otherwise (5)

In particular, the Laplacian regularization Θ(S, L) can preserve the local consistency and
invariance among the spatially adjacent sub-regions with similar saliency values in saliency maps.
More specifically, the defect foreground is more uniformly highlighted and the background noise is
also better suppressed, and eventually separates the defect from the background as much as possible.
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3.2. Optimization

As rank(·) and ||·||0 are not convex, Equation (2) is NP-hard problem. A common heuristic
criterion is to replace rank(·) and ||·||0 are replaced by nuclear norm ||·||∗ and l1 norm ||·||1 respectively.
It has been shown that nuclear norm-based models can obtain the optimal low-rank solution in many
kinds of applications [27,28]. Then, Equation (2) can be converted to the following convex surrogate
optimization problem:

min
L,S

(||L||∗ + α||S||∗ + βtr
(
SMST)+ γ||L||1

)
s.t.D = S + L

(6)

where ||·||∗ equals the sum of singular values of matrix; ||·||1 equals the sum of the absolute values of

each element of matrix. For a matrix A = aij ∈ Rm×n, ||A||p =

(
m
∑

i=1

n
∑

j=1

∣∣aij
∣∣p) 1

p

.

To solve Equation (6) efficiently, the alternating direction method (ADM) algorithm [29]
can be adopted. By introducing the auxiliary variables H and J, the augmented Lagrange function is
given as follows:

O(L, S, H, J, Y1, Y2, Y3, μ)

= ||L||∗ + α||S||∗ + βtr
(

HMHT)+ γ||J||1
+tr

(
YT

1 (D − L − S)
)
+ μ

2 ||D − L − S||2F
+tr

(
YT

2 (H − S)
)
+ μ

2

∣∣∣∣∣∣H − S||2F
+tr

(
YT

3 (J − L)
)
+ μ

2

∣∣∣∣∣∣J − L||2F

(7)

where ||·||2F denotes the Frobenius norm of matrix, which is defined as the sum of squares of each
element of matrix; Y1, Y2 and Y3 are Lagrange multipliers; μ > 0 is a penalty parameter.

Therefore, Equation (7) can be converted to the following equivalent optimization problem:

O(L, S, H, J, Y1, Y2, Y3, μ)

= 1
2

∣∣∣∣∣∣∣∣D − L − S + Y1
μ

∣∣∣∣∣∣2
F
+ 1

2

∣∣∣∣∣∣∣∣H − S + Y2
μ

∣∣∣∣∣∣2
F
+ 1

2

∣∣∣∣∣∣∣∣J − L + Y3
μ

∣∣∣∣∣∣2
F

+ 1
μ ||L||∗ + α

μ ||S||∗ + β
μ tr
(

HMHT)+ γ
μ ||J||1

(8)

The above optimization problem can be solved by alternately updating one variable while
others fixed. The detailed ADM algorithm for proposed DLRSD model is summarized in Algorithm 1.

(1) Updating H

In order to solve H, the optimal solution can be obtained by Equation (9):

min
H

(
1
2

∣∣∣∣∣
∣∣∣∣∣H − S +

Y2

μ

∣∣∣∣∣∣∣∣2
F
+

β

μ
tr
(

HMHT
))

(9)

Differentiating it with respect to H, and let it to be zero, therefore

H − S +
Y2

μ
+

2β

μ
HM = 0 (10)

The close-form solution can be obtained as follows:

H∗ =
(

S − Y2

μ

)(
I +

2β

μ
M
)−1

(11)
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(2) Updating J

In order to solve J, the optimal solution can be obtained by Equation (12):

min
J

(
1
2

∣∣∣∣∣∣∣∣L − Y3

μ
− J

∣∣∣∣∣∣∣∣2
F
+

γ

μ
||J||1

)
(12)

The solution is

J∗ = Ψ γ
μ

(
L − Y3

μ

)
(13)

where Ψ γ
μ
(·) denotes soft-thresholding shrinkage operator, which is defined as

Ψ γ
μ
(T) = sgn(T)max

(
|T| − γ

μ
, 0
)
=

⎧⎪⎨⎪⎩
Tij − γ

μ Tij >
γ
μ

0 − γ
μ ≤ Tij ≤ γ

μ

Tij +
γ
μ Tij < − γ

μ

(14)

where T denotes a matrix, Tij denotes the (i, j)-th element of T, sgn(T) is the matrix whose entries are
the signs of those of T.

(3) Updating L

In order to solve L, the optimal solution can be obtained by Equation (15):

min
L

(
1
2

∣∣∣∣∣∣D − S + Y1
μ − L

∣∣∣∣∣∣2
F
+ 1

2

∣∣∣∣∣∣J + Y3
μ − L

∣∣∣∣∣∣2
F
+ 1

μ ||L||∗
)

(15)

It can be rewritten as follows:

min
L

(
1
2

∣∣∣∣∣∣∣∣12
(

D − S + J +
Y1 + Y3

μ

)
− L

∣∣∣∣∣∣∣∣2
F
+

1
4μ

||L||∗
)

(16)

Its solution is
L∗ = UΨ 1

4μ
(Σ)VT (17)

where (U, Σ, V) = svd
[

1
2

(
D − S + J + Y1+Y3

μ

)]
, svd(·) denotes singular value decomposition

operator.

(4) Updating S

In order to solve S, the optimal solution can be obtained by Equation (18):

min
S

(
1
2

∣∣∣∣∣∣D − L + Y1
μ − S

∣∣∣∣∣∣2
F
+ 1

2 ||H + Y2
μ − S||2F + α

μ ||S||∗
)

(18)

It can be rewritten as follows:

min
S

(
1
2

∣∣∣∣∣∣∣∣12
(

D − L + H +
Y1 + Y2

μ

)
− S

∣∣∣∣∣∣∣∣2
F
+

α

4μ
||S||∗

)
(19)

Its solution is
S∗ = UΨ α

4μ
(Σ)VT (20)

where (U, Σ, V) = svd
[

1
2

(
D − L + H + Y1+Y2

μ

)]
.
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(5) Updating Y1, Y2 and Y3
Y1 = Y1 + μ(D − L − S)
Y2 = Y2 + μ(H − S)
Y3 = Y3 + μ(J − L)

(21)

(6) Updating μ

μ = min(ρμ, μmax) (22)

where 0 < ρ < 1.

Algorithm 1 Solving DLRSD via ADM.

Input: Data matrix D ∈ Rd×K , parameters α > 0, β > 0, γ > 0 and ε > 0

Output: The optimal solution L∗ ∈ Rd×K and S∗ ∈ Rd×K

1: Initializing
L = S = H = J = 0, Y1 = Y2 = Y3 = 0 μ = 10−1, μmax = 1010, ρ = 1.1, NUM = 100, k = 1

While k ≤ NUM OR ||D − L − S||2F < ε, ||H − S||2F < ε, ||J − L||2F < ε

2: Updating H

H∗ =
(

S − Y2
μ

)(
I + 2β

μ M
)−1

3: Updating J

J∗ = Ψ γ
μ

(
L − Y3

μ

)
4: Updating L

L∗ = UΨ 1
4μ
(Σ)VT

5: Updating S

S∗ = UΨ α
4μ
(Σ)VT

6: Updating Y1, Y2 and Y3

Y1 = Y1 + μ(D − L − S)
Y2 = Y2 + μ(H − S)

Y3 = Y3 + μ(J − L)

7: Updating μ

μ = min(ρμ, μmax)

8: Iteration
k = k + 1

End While

4. DLRSD-Based Surface Defect Segmentation

In this section, we describe how to apply the proposed DLRSD model to surface defect
segmentation. The segmentation method has three stages. In first stage, we use DLRSD model
to obtain the defect foreground image F. While in second stage, we utilize regression optimization to
enhance F. At last, the segmentation is finished by Otsu’s method. The framework of DLRSD-based
segmentation method is shown in Figure 2, the detailed procedure is summarized in Algorithm 2.
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Step 2: Matrix Decomposition

Feature Matrix S Feature Matrix L

Gray-scale

Steerable Pyramids

Gabor Filters 

Feature Abstraction
Super-pixel Segmentation

Feature Matrix D

Step 1: Feature Matrix Construction

Background Image BForeground Image F

Defect Image I

Step4: SegmentationStep3: Enhancement

 

Figure 2. Diagram of the proposed double low-rank and sparse decomposition (DLRSD)-based
segmentation method for surface defect image.

4.1. Feature Matrix Construction

According to [23,24], for each pixel {Ii}i=1,2,...,N of a surface defect image I, where N denotes the
number of pixels, different types of low-level visual features, including gray-scale, Gabor filters and
steerable pyramids, are extracted.

(1) Gray-scale

The pixel value of each pixel in defect image I is extracted for gray-scale feature, which is
normalized by subtracting its mean value over the entire image.

(2) Gabor filters

Gabor filters responses with eight directions on two different scales are performed on the defect
image I, yielding 16 filter responses for each pixel.

(3) Steerable pyramids

Steerable pyramid filters with four directions on two different scales are performed on the defect
image I, yielding 8 filter responses for each pixel.

All those 25 features are then stacked vertically to construct a 25-dimension feature vector
{fi}i=1,2,...,N ∈ Rd for each pixel. Then, in order to improve the efficiency of defect detection and achieve
the better structural information about defect image, we conduct superpixel segmentation for image
I by adaptive simple linear iterative clustering (ASLIC) algorithm [30]. Each compact, edge-aware
and perceptually homogeneous sub-region

{
Rj
}

j=1,2,...,K can be represented by feature vector fj ∈ Rd,

where fj represents the mean feature vector of all pixels that belong to Rj, where K denotes the number

of sub-regions. By arranging fj into a matrix, the feature matrix D =
(
f1, f2, · · · , fK

) ∈ Rd×K of image
I is obtained.
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4.2. Matrix Decomposition

According to Algorithm 1, the input feature matrix D is decomposed into structured components
S and L. According to the obtained S∗ = (s1, s2, · · · , sK) ∈ Rd×K and L∗ = (l1, l2, · · · , lK) ∈
Rd×K, each column of these two matrixes represents the feature vector of corresponding sub-region,
respectively. Then, we transfer S∗ and L∗ from the feature domain to the spatial domain for constructing
saliency map. The saliency value of each sub-region in foreground image F and background image
B are max

(
sj
)

and max
(
lj
)
, respectively, where sj ∈ Rd×1 and lj ∈ Rd×1 denotes the j-th column of

S∗ and L∗, max(·) denotes the maximum component of the vector, j = 1, 2, . . . , K. After allocating
the saliency value to corresponding pixels and normalizing, the defect foreground image F and
background image B can be obtained.

4.3. Enhancement

As shown in Figure 2, the original foreground image F can be enhanced in consistency,
completeness of defect objects and suppression of background noise. In the paper, the regression
optimization method is adopted by combining foreground image F and background image B.
The optimization problem can be formulated as follows:

min
si

(
K

∑
i=1

w f
i (si − 1)2 +

K

∑
i=1

wb
i s2

i +
K

∑
i,j=1

wij
(
si − sj

)2
)

(23)

where w f
i denotes saliency value of sub-region in foreground image F, w f

i = Val
(

Pj
)
; wb

i denotes
saliency value of sub-region in background image B, wb

i = Val
(
Qj
)
; si denotes the optimized saliency

value of sub-region in foreground image F.

According to s = (s1, s2, · · · , sK)
T ∈ RK×1, Wb = diag

[(
wb

1, wb
2, · · · , wb

K

)T
]

∈ RK×K,

and W f = diag
[(

w f
1 , w f

2 , · · · , w f
K

)T
]
∈ RK×K, the Equation (23) can be reformulated as follows:

min
s

(
sTWbs + sTW f s − 2W f s + W f 1 + 2sT Ms

)
(24)

where 1 ∈ RK×1 denotes a one vector, M ∈ RK×K denotes the same Laplacian matrix in Equation (5).
Differentiating it with respect to s, and let it to be zero, therefore

2Wbs + 2W f s − 2W f 1 + 4Ms = 0 (25)

The solution is
s =

(
W f + Wb + 2M

)−1
W f 1 (26)

Through Equation (26), the sub-regions within the same class (foreground or background) have
more similar saliency values while the sub-regions from different classes (foreground and background)
have different saliency values. The saliency value of defect sub-region in foreground image is bigger,
while the saliency value of background sub-region is smaller, so that the surface defect object can be
highlighted further.

4.4. Segmentation

After obtaining the enhanced foreground image F, the high-quality binary image can be obtained
through a simple Otsu’s method. In binary image of surface defect, white pixel represents surface
defect regions, and black pixel represents background regions.
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Algorithm 2 DLRSD-based defect segmentation.

Input: Surface defect image I
Output: Binary segmentation image
1: Construct the feature matrix D of I
2: Run Algorithm 1 to get the defect foreground feature matrix S
3: Enhance defect foreground image F
4: Segment enhanced F by Otsu’s method

5. Experiment

In this section, several experiments are conducted to verify the superiority of our proposed
method. We first introduce the experimental setups, which include parameters settings and evaluation
metrics. Then, computational complexity, convergence, noise immunity and segmentation results are
discussed. At last, the qualitative and quantitative comparisons are presented.

5.1. Experimental Setup

In order to verify and evaluate the effectiveness and robustness of the proposed method, we have
adopted the NEU surface defect database established by Kechen Song [12] in our experiments. The size
of each surface defect image is 200 × 200 and the number of image is 300 per class. Two typical surface
defect images, such as Patch and Scratch, are selected in the experiments. Our proposed method is
compared with eight representative saliency detection methods quantitatively and qualitatively, such
as RPCA [28], IS [13], ULR [23], RBD [31], SBD [32], DSR [33], RS [16] and SMF [24], where RPCA, IS,
ULR, RBD, SBD, DSR, RS and SMF represent the method of robust principal component analysis, image
signature, unified low rank matrix recovery, robust background detection, spaces of background-based
distribution, dense and sparse reconstruction, ranking saliency and structured matrix decomposition,
respectively. Only a few examples are shown in the paper, the whole segmentation results are uploaded
in Baidu Disk (https://pan.baidu.com/s/1QkwFfWsUE9hKL86prlL4nw, Code: iydw).

5.1.1. Parameters Settings

In Equation (6), α represents the redundancy of defect foreground, β represents the uniformity of
defect foreground, γ represents the sparsity of background. We conduct some experiments to study the
detection performance variation with respect to different α, β and γ, which shows that the detection
performance can achieve a high level at α ∈ (0.2, 0.4), β ∈ (0.9, 1.3) and γ ∈ (0.05, 0.25). In order to
achieve the better segmentation results, α, β and γ are set to 0.35, 1.2 and 0.1, respectively. For other
methods in our comparison, we use the source codes provided by the authors with default parameters.

5.1.2. Evaluation Metrics

The qualitative evaluation metrics refers to evaluate the detection performance based on human
subjective feeling. For example, the boundary of surface defect is clear, and the contrast between defect
object and background is obvious.

There are five quantitative evaluation metrics, including precision-recall (P-R) curve, receiver
operating characteristic (ROC) curve, average F-Measure (Fζ), area under ROC (AUC) and mean
square error (MAE). They are defined as follows:

FPR =
FP

FP + TN
(27)

TPR =
TP

TP + FN
(28)

Fζ =
1
N

N

∑
i=1

(
ζ2 + 1

)× precision × recall
ζ2 × precision + recall

(29)
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MAE =
∑H

i=1 ∑W
j=1|S(i, j)− G(i, j)|

H × W
(30)

where a pixel that belonging to defect is defined as a positive example, and a pixel that belonging to
background is defined as a negative example; true positive (TP) indicates that the positive pixel is
judged correctly, true negative (TN) indicates that the negative pixel is judged correctly, false positive
(FP) indicates that the positive pixel is judged as the negative pixel mistakenly, false negative (FN)
indicates that the negative pixel is judged as the positive pixel mistakenly; precision = TP/(TP + FP),
recall = TP/(TP + FN); N represents the number of surface defect image samples of the same class,
H and W denotes the height and width of surface defect image, respectively; precision is defined as the
percentage of defect pixels correctly assigned, while recall is the ratio of correctly detected defect pixels
to all true defect pixels. Fζ represents the weighted harmonic mean of precision and recall. Besides, P-R
curve is obtained by binarizing the saliency map using a number of thresholds ranging from 0 to 255;
TPR represents true positive rate, FPR represents false positive rate; MAE measures the dissimilarity
between the saliency map S and the ground truth G.

5.2. Experimental Results Analysis

5.2.1. Analysis of Computational Complexity

According to Algorithm 1, the main computational load is singular value decomposition operation
in updating matrix S and L. As the size of matrix D is d × K, the computational complexity is reduced
from

(
dK2) to (drK) by the low-rank constraint, where r denotes the rank of matrix. In our experiments,

d = 25, K = 100, so the computational complexity is low.

5.2.2. Analysis of Convergence

According to Algorithm 1 and ADM algorithm, when penalty parameter sequence {μk} is
increasing monotonically and bounded, the Lagrange multipliers Y1, Y2 and Y3 can converge to
the optimal solution linearly; when {μk} is increasing monotonically and unbounded, Y1, Y2 and
Y3 can converge to the optimal solution super-linearly. As shown in Figure 3, the x-axis denotes
the iteration number, and the y-axis is the value of objective function. We can see that the objective
function value converges in a very fast manner, usually within 40 iterations, which also proves the fast
convergence property of the proposed DLRSD model.

 

Figure 3. Convergence Curve of DLRSD model.

5.2.3. Analysis of Segmentation Results

From enhanced defect foreground image shown in Figure 4c, it has achieved the goal of “highlight
the foreground and suppressing the background”. It can accurately extract the entire defect object and
assigns nearly uniform saliency values to all sub-regions within the defect objects. Figure 4d shows
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that the segmentation images are similar to ground truth, the whole defect object can be uniformly
highlighted, and boundary of defect object is well-defined. Therefore, we locate the defects accurately.

 
Figure 4. Segmentation results of the proposed DLRSD-based method: (a) input image; (b) original
defect foreground image; (c) enhanced defect foreground image; (d) segmentation image by Otsu’s
method; (e) manual-labeled ground-truth image.

5.2.4. Analysis of Robustness to Noise

Considering the surface defect image is polluted by Gaussian noise with SNR, including 22 dB, 18
dB, 14 dB and 10 dB, the same experiments are conducted to verify the robustness of the proposed
DLRSD model. According to Table 1, when SNR decreases gradually, the AUC and MAE can remain a
high level, especially when SNR = 18 dB, AUC can remain around 0.8. It’s shown that the proposed
DLRSD model is robust to noise and can lead to better saliency detection result, which establishes
the good foundation for segmentation. The experimental results also indicate that adding sparse
constraint for background can reduce the influence from noises, which is a reasonable strategy for
surface defect detection.

Table 1. Experimental results with different noise.

Index
SNR

No Noise 22 dB 18 dB 14 dB 10 dB

AUC 0.8350 0.8216 0.7922 0.7414 0.6918
MAE 0.1584 0.1638 0.1837 0.2114 0.2384

5.3. Comparison with State-of-the-Art Methods

5.3.1. Qualitative Comparison

The qualitative comparison results by the proposed method and other eight methods are shown
in Figure 5. It’s shown that most saliency detection methods can handle well simple images with
relatively homogenous background (e.g., row 4, 5, 7 and 8). They can uniformly highlight the whole
defect object and generate high-quality saliency map and segmentation image. However, for some
complex defect images containing multiple objects (e.g., row 5, 6, 10 and 11), having a cluttered
background (e.g., row 6), and showing there are similarities between the defect objects and background
(e.g., row 2 and 9), the whole defect objects could not be uniformly highlighted, and parts of the
background being falsely taken as the defect objects. It can be seen that the contrast of saliency maps
obtained by RPCA, DSR and RS is low and ambiguous, especially for Patch defects (e.g., row 5 and 6),
which is difficult to define a proper threshold to segment the defects. The saliency maps obtained by
RBD and SBD miss detecting parts of the defect objects, while some incorrectly include background
regions into detection results. Hence, there are some missing defects and fake defects in their final
segmentation image. Differently, although IS, ULR and SMF produce the good saliency map, there are
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many pixels that belonging to the background are misjudged by defect, and some background regions
also stand out with the defect regions. By contrast, our proposed method separates the defect objects
from the background successfully and locates various defects precisely. It more efficiently highlights the
complete defect object with well-defined boundaries and effectively suppresses the backgrounds than
the other saliency detection methods. These results illustrate our proposed method not only enhances
the contrast between surface defect and background effectively but also improves the robustness to
the different illumination conditions, various shapes, scales, directions and locations of surface defect.

 

Figure 5. Qualitative comparisons: (a) ground-truth; (b) RPCA; (c) IS; (d) ULR; (e) RBD; (f) SBD; (g)
DSR; (h) RS; (i) SMF; (j) Ours. We can see that our segmentation results, which are produced by simple
Otsu’s method on the saliency map, are very closer to the ground truth.
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5.3.2. Quantitative Comparison

Figure 6 shows the quantitative results of the proposed DLRSD model against eight state-of-the-art
methods. It is known that it perform competitively and is both better than the other methods in terms
of the P-R curve, ROC curve and F-Measure curve. Especially, the precision can remain above 90%
within a large threshold range.

Recall FPR Threshold
(a) (b) (c)  

Figure 6. Quantitative comparisons: (a) precision-recall (P-R) curve; (b) receiver operating characteristic
(ROC) curve; (c) F-measure curve.

Table 2 summarizes the quantitative results of all the eight methods. We can see that the
proposed DLRSD model has achieved the best performance in AUC, Fβ and MAE. Compared with
SMF, it increased by 8.52% and 4.05% in AUC and Fζ , respectively, decreased by 5.01% in MAE.
All experiments are run in Matlab 2018a on a PC with an Intel Core i7-4790@2.90GHz CPU and 8GB
RAM, the running time of the proposed DLRSD model is slightly slower than RS but much faster than
ULR and SMF.

Table 2. Quantitative comparisons in terms of area under ROC (AUC), Fζ , mean square error (MAE),
and Time.

Method
Index

AUC Fζ MAE Time (s)

RPCA [28] 0.7636 0.3633 0.1860 0.1982
IS [13] 0.7140 0.2814 0.2485 0.0032

ULR [23] 0.7843 0.4780 0.2976 4.5504
RBD [31] 0.7125 0.4607 0.2090 0.0331
SBD [32] 0.6907 0.5038 0.2390 0.6619
DSR [33] 0.7786 0.6264 0.1626 1.1797
RS [16] 0.7469 0.6454 0.1758 0.1281

SMF [24] 0.7497 0.5655 0.2085 0.4615
Ours 0.8350 0.6060 0.1584 0.1713

Based on the above qualitative and quantitative analyses, it confirms that our proposed method
consistently outperforms some state-of-the-art methods and verifies the effectiveness of the proposed
structural constraints in separating the low-rank and sparse subspaces.

6. Conclusions

Based on the salient characteristics of the defects in the surface defect image of steel sheet,
we formulate the defect segmentation as a problem of saliency detection. We design a double
low-rank and sparse decomposition model to obtain high-quality defect foreground image directly,
which provides a robust way to segment the surface defect. We experimentally compare our proposed
method with some state-of-the-art methods on surface defect images. The experimental results prove
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that the proposed method performs efficiently and competitively for the surface defect segmentation
task and has a strong adaptive ability for the complex and varying surface defects of steel sheet.
Our proposed method is an unsupervised framework, which skips the training process and therefore
enjoys more flexibility. In the future, we will focus on combining our proposed method with
convolutional auto-encoder and expanding the method to other industrial products’ defect detection.
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Abstract: Rail surface defects seriously affect the safety of railway systems. At present, human
inspection and rail vehicle inspection are the main approaches for the detection of rail surface
defects. However, there are many shortcomings to these approaches, such as low efficiency, high
cost, and so on. This paper presents a novel visual inspection approach based on unmanned aerial
vehicle (UAV) images, and focuses on two key issues of UAV-based rail images: image enhancement
and defects segmentation. With regards to the first aspect, a novel image enhancement algorithm
named Local Weber-like Contrast (LWLC) is proposed to enhance rail images. The rail surface
defects and backgrounds can be highlighted and homogenized under various sunlight intensity by
LWLC, due to its illuminance independent, local nonlinear and other advantages. With regards to
the second, a new threshold segmentation method named gray stretch maximum entropy (GSME)
is presented in this paper. The proposed GSME method emphasizes gray stretch and de-noising
on UAV-based rail images, and selects an optimal segmentation threshold for defects detection.
Two visual comparison experiments were carried out to demonstrate the efficiency of the proposed
methods. Finally, a quantitative comparison experiment shows the LWLC-GSME model achieves a
recall of 93.75% for T-I defects and of 94.26% for T-II defects. Therefore, LWLC for image enhancement,
in conjunction with GSME for defects segmentation, is efficient and feasible for the detection of rail
surface defects based on UAV Images.

Keywords: rail surface defect; UAV image; defect detection; gray stretch maximum entropy; image
enhancement; defect segmentation

1. Introduction

Rail transportation plays a significant role in the development of economic and industrial
growth, and the failures of railway facilities (such as defects on the rail surface) are directly
related to catastrophic accidents [1]. With the development of high-speed and high-load rail transit,
the probability of rail surface defects is increasing rapidly. In general, rail surface defects which include
corrugations and discrete defects due to wheel-rail contact conditions are the most common forms of
defects [2]. Corrugations arise from periodic slip of the wheel on the rail as trains run on tracks [3].
The discrete defects are generated on the rail surface in an apparently random manner, i.e., without
periodic characteristics, as shown in Figure 1. Those defects might cause serious accidents, or may
even result in a catastrophic derailment of vehicles. Thus, this paper mainly discusses the detection of
surface discrete defects.
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Figure 1. The discrete defects on the rail surface.

Currently, there are regular inspections of tracks in order to maintain safe and efficient
operation [4]. Historically, inspection tasks are performed by trained personnel, by walking along the
tracks. However, the manual inspection is inappropriate due to its low-efficiency, lack of objectivity,
and high false alarm rate. Furthermore, the results are seriously dependent on the capability of the
observer to detect possible anomalies and recognize critical conditions [5]. Therefore, automatic and
nondestructive inspection methods should be urgently developed.

At present, nondestructive inspection methods have been widely developed in a variety of
industry inspection applications, due to their high efficiency and high precision [6]. Several methods
have been applied to rail defects inspection, such as acoustic emission inspection [7], electromagnetic
inspection [8], ultrasonic surface waves inspection [9], and visual inspection(VI) [10–12]. Particularly,
with the development of computer vision techniques, VI (visual inspection) has been widely applied.
VI is the most notable method for the surface defect detection because of its high speed and low
cost [13]. Some researchers have studied rail surface defects by VI [14–16]. The VI method is an
attractive approach for discrete defect detection.

According to the traditional VI approach for surface defects inspection, a high definition (HD)
camera is used to capture rail images; it is embedded in a detection system installed under an
inspection train. Currently, most related researches are based on this approach. However, it has
inevitable drawbacks, such as limited detection range, high cost, and so on. Inspection trains have to
run over significant distances to capture rail images for a wide range of detection. The detectable parts
and viewing angles are limited, especially for mountainous areas or across rivers.

Unmanned Aerial Vehicles (UAVs) have become a research hotspot in many fields. The UAV-based
inspection scheme is efficient and cost-effective, and has become attractive for change inspection in
small-scale regions [17]. With the rapid development of UAVs, UAV-based aerial photography has been
widely employed for engineering surveying and mapping [18], crop measurements [19], wind turbine
blade surface inspection [20], power facilities inspection [21], historical buildings inspection [22], forest
fire detection [23], bridge crack detection [24], fault detection in photovoltaic cells [25], and other
detection applications such as target tracking [26], tracking and classification of multiple moving
objects [27] and object recognition [28], etc. In general, UAV-based aerial photography has been
extensively applied in various industries due to its advantages: low cost, ease of control, and flexibility.

As mentioned, an inspection method of rail surface defects based on UAV combined with VI
is proposed in this paper. A typical approach to detect surface defects is to automatically extract
defects after image enhancement [15]. The most two popular methods for image enhancement
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are by the histogram equalization (HE) and homomorphic filtering algorithms. However, since
the HE is a linear algorithm and only averages the gray level distribution rather than enlarging
the gray scale, there are several shortcomings, such as loss of image detail information and noise
amplification [29]. Homomorphic filtering algorithm based on the illumination reflectance model is
a frequency-domain processing to compress image light regions and enhance contrast. This method
makes use of the frequency information of images. However, it often blurs image details, leading to a
lack of deliberation of the spatial local characteristics of images [29]. In addition, gray values in the
global scope change dramatically because of the uneven illumination and reflectance properties of rail
surfaces [14]. Therefore, the two global enhancement methods are not suitable for rail images.

For defect detection, research on models that automatically locate defects after image enhancement
has several achievements. For instance, a visual inspection system (VIS) is proposed for discrete defect
detection [14]. In the VIS, images are captured by a high-speed digital camera fixed on a train.
Subsequently, track extraction based on projection profile (TEBP) algorithm is used to extract the areas
of rail track in images, and then the local normalized (LN) method and the defect localization based on
projection profile (DLBP) method are applied to detect rail surface defects. The MLC-PEME model is
proposed for defect detection [30]. Firstly, the histogram-based track extraction (HBTE) algorithm is
used to extract areas of rail track in images which were captured by a camera fixed on an inspection
train, then the MLC (Michelson-like contrast) combined with proportion emphasized maximum
entropy (PEME) method is applied to detect defects. These methods performed well; however, they are
seriously influenced by noise and background points, and consequently, have massive false detection
rates [15]. An inverse PM diffusion model is proposed to enhance images [16]. Therefore, an adaptive
threshold binarization is able to readily locate surface defects. However, it is seriously influenced by
noise points, and yields in high false detection rates [15].

Most inspection models are based on the VI system fixed on inspection trains, and research on the
UAV-based inspection of rail surface defects is rarely discussed. In this study, we faced the following
serious challenges:

• Rail position variances in UAV images. Unlike inspection trains, the camera angle of HD camera
installed on UAV is sensitive to environment aspects (such as wind and turbulence) and operators.
Although the UAV can balance itself by using GPS flight mode, rail positions in images captured
by UAV aerial photography are extremely variable. Therefore, the variances of rail positions bring
difficulties to rail extraction.

• Non-uniform illumination and noise corruption. Due to partial occlusion of infrastructures
around the rail (such as catenary etc.), reflectance properties of rail surface and shake of the
UAV and other environmental factors, the brightness and contrast of images are uneven and
low. According to [17,31], UAV digital images are likely to be corrupted by noises during the
acquisition or transmission. In general, the gray levels of surface defects are lower than that
of background (non-defect area) [14], but the order of these values is often broken because of
non-uniform illumination and noise corruption, as shown in the Figure 1.

• Few characteristics for defects segmentation. A corrugation initiates and develops easily because
of the periodic occurrence of contact vibration [32]. However, it is difficult to inspect discrete
defects by the VI method due to the lack of periodicity. Surface defects have low grey-level, that
distinguishes them from the dynamic background. Therefore, the grey-level is considered to
be the most available feature [14]. Therefore, the existing object recognition methods based on
sophisticated texture and shape features are unfeasible, due to the limitation of visual features [15].

Also, due to the above challenges, these inspection models based on inspection trains are unable
to be used in the case of UAV rail images. To overcome these challenges, this paper presents a novel
image enhancement algorithm based on Weber’s law and a new threshold segmentation method based
on the gray stretch in wavelet domain.
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Weber’s law was first proposed by German physiologist Weber, and later formulated
quantitatively as a mathematical expression referred to as Weber contrast by psychologist Fechner [33].
It reveals the global influence of background stimulus on humans’ sensitivity to the intensity
increment [34]. Weber contrast is commonly used in cases where small features are present on a large
uniform background, i.e., where the average luminance is approximately equal to the background
luminance [35]. Due to few defects existing on rail surfaces and the high reflection properties of
rail surfaces, the brightness mean of longitudinal line along a track approximates to the background
luminance. It is supposed that the Weber’s law is suitable for enhancing UAV-based rail images.
Therefore, this paper proposes a novel LWLC (Local Weber-like Contrast) algorithm based on
Weber’s law.

Although the rail surface defects and backgrounds can be highlighted and homogenized by
LWLC, respectively, noise points and low contrast of background and defects still exist in UAV-based
rail images. This leads to inaccurate segmentation thresholds based on traditional threshold methods,
such as Otsu method [36] and maximum entropy (ME) method [37]. An image segmentation method
based on gray stretch and threshold algorithm (GSTA) [38] outperforms the Otsu method [38]. This
method of GSTA uses the Otsu method to obtain a threshold after image wavelet decomposition,
and then grayscale of object and background on this image is extended to a large scale based
on this threshold. Subsequently, the Otsu method is also used to get an optimization after the
image is reconstructed in wavelet domain. This method has achieved attractive results on image
segmentation. In addition, the wavelet transform combined with median/mean filtering is extremely
effective for image (or UAV image) de-noising [31,39,40]. Therefore, inspired by these successes,
this paper put forward a new threshold method named gray stretch maximum entropy (GSME), which
utilizes gray stretch in wavelet domain combined with median filtering de-nosing to increase defects
detection performance.

The advantages of the proposed methods in this paper are as follows: (1) LWLC algorithm
is local, nonlinear, and illuminance independent. This algorithm can adapt to different sunlight
illuminance, eliminate the significant changes of gray-scale, and highlight defects of UAV-based rail
images. (2) The GSME method emphasizes gray stretch and image de-noising on rail images, and
automatically gives more suitable segmentation thresholds for rail surface defects detection. (3) To the
surface defects detection based on UAV-based rail images, a LWLC-GSME model that achieves a recall
of 93.75% for T-I defects and a recall of 94.26% for T-II defects can provide a feasible solution.

The remaining sections of this paper is organized as follows: details of the LWLC and the GSME
algorithms are described in Methodology. The experiment setup and result analysis are presented in
Experiment results and performance analysis. A conclusion is provided at the end of the paper.

2. Methodology

The inspection method for rail surface defects based on UAV images is proposed in this
paper. The UAV-based rail images are captured by UAV equipped with a high-definition camera.
The customized image processing methods are applied to analyze and detect these images. The flow
diagram of inspection method for rail surface defects based on UAV image in the study is shown in
Figure 2. All images used for this paper are captured by a UAV equipped with HD cameras, with
the aircraft was flying at an altitude of 30 m above the rail. There are three subjects discussed in this
section: (1) the extraction of area of rail tracks; the pseudocode of the tracks extraction is presented in
the appendix, (2) UAV-based rail images enhancement based on LWLC algorithm, and (3) the defects
segmentation based on the GSME method.
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Figure 2. Flow diagram of the inspection method for the rail surface defects based on the UAV images.

2.1. Rail Track Extraction

The rail images captured by UAVs involves redundant areas, as shown in Figure 3. Besides the
areas of rail tracks, the rest areas are excluded for the next step. Therefore, Hough Transform and the
method based on cumulative gray value of each pixel column are used to extract the area of rail track
from rail images. Hough transform is a graphic detection algorithm based on the duality of point and
line, and can be applied in the extraction of rail tracks [41].

Considering an image as a M× N matrix, the N-dimensional matrix Cg that consists of cumulative
gray value of each pixel column of the image matrix is determined by:

Cg = [
M−1
∑

i=0
Di0,

M−1
∑

i=0
Di1, . . . . . .

M−1
∑

i=0
Di(N−1) ],

Cg(n) =
M−1
∑

i=0
Din, n ∈ [0, N − 1]

(1)

where, Dxy is the pixel value of the coordinate (x, y). The matrix Cg of the vertical rail image
(M = 550, N = 350) is shown in Figure 3. It should be noted that Cg(n) is mapped to a small range.
From this figure, it can be observed that the value Cg(n) of area of the rail track is higher than the rest.
This method is based on two factors: (1) Area of rail track has a higher value of Cg(n). (2) The width
wd of the rail track is fixed in the rail image, as shown in Figure 3. The detail procedure about the
method for rail track extraction is shown in Appendix A.
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Figure 3. Cumulative gray value of each pixel column for a rail image. Horizontal position denotes
location of pixel column.

2.2. The Local Weber-Like Contrast Algorithm for Rail Images Enhancement

The brightness of images is non-uniform because of uneven natural light, the reflectance properties
of rail surfaces [42], vibration of UAVs, or any other environmental factors. Therefore, defects and
backgrounds are always mixed together. According to our experience, the following characteristics of
UAV rail images occur:

• Lower variation range of gray values in local regions. The reflection property and illumination
of each longitudinal line in rail images is stable [14]. In the local line window, the variation
range of gray values has small variation, and the most obvious features can be used for image
enhancement [15].

• Greater variation range of gray values in global scope. In general, the rail images have a large
variation range of gray level in global scope due to uneven natural light and the reflectance
properties of rail surfaces. The reflected light in smooth parts of rail surfaces is more than the
rough parts [42].

• Confused gray values between defects and background. In general, the gray value of surface
defects is lower than that of background, but the order is often broken because of illumination
non-uniformity and noise corruption, as shown in the Figure 4.

• Consistent features in the same longitudinal direction. Actually, a rail surface shares consistent
features in the longitudinal direction as a train runs on a rail, since the friction for the points in the
longitudinal direction between the rail surface and train wheels has an almost identical impact
on the rail surface. In a rail image, intensity for the pixel points along longitudinal direction
is consistent with relatively gray value changes caused by defect points and noise points [15].
Therefore, the surface discrete defects can be derived by the analysis of the information in
longitudinal regions.

• Higher gray mean of each longitudinal line for a track. According to our observation, the gray
means along longitudinal lines of a UAV rail image are higher under normal conditions. This
is because that UAV are supposed to fly in fine weathers and natural light conditions, and the
surface reflectivity of rail tracks in operation is high because of its smoothness, as shown in the
Figure 4.

As Figure 4 shows, the gray means along longitudinal lines of the image is high and the brightness
of defects is quite low [14]. Since there are few defects in the image [30], the mean can be considered as
background in the longitudinal direction. This feature completely satisfies a suitable range of Weber
Contrast. As one of the most classical luminance contrast statistics, Weber Contrast is popular to cope
with small, sharp-edged graphic objects on larger uniform backgrounds [43]:

Cw =
Lo − Lb

Lb
(2)
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where, Lo is the luminance of the symbol and Lb is the luminance of the immediately adjacent
background. When the background is lighter than the object, Cw is negative and ranges from 0 to −1.
When the background is darker, Cw is positive and ranges from 0 to potentially very large numbers.

Figure 4. The gray value along longitudinal line of an image. (a) The gray value of 10th (red), 80th
(blue), 110th longitudinal line (green) of an UAV rail image form slight defects dataset. (b) The gray
value of 10th, 80th, 110th longitudinal line of an UAV rail image form datasets of serious defects.

Inspired by Weber Contrast and based on these characteristics for UAV rail images, the LWLC
algorithm is proposed for adapting to different sunlight illuminance and eliminating the significant
changes of gray-scale in this paper. The proposed gray stretch method for defects segmentation will be
introduced in the next section. Assuming a pixel (x, y) and its surrounding window T in a rail image I,
the intensity LWLC(x,y) of each pixel is given by:

LWLC(x,y) =
I(x, y)− E(I(x̃, ỹ))

E(I(x̃, ỹ))
, (x̃, ỹ) ∈ T (3)

where, I(x, y) denotes the gray value of the pixels in the image, E is the mean of I(x̃, ỹ) in T in window
T. Figure 5a shows LWLC value with the mean range [100, 255] due to higher brightness of UAV rail
images. And Figure 5b,c present the curve with E = 100 and the curve with E = 220, respectively.
In Figure 5b, the low range [0, 100] of I maps to [−1, 0], while the high range [100, 255] of I maps
to (0, 155/100). In contrast, the curve with E = 220 in Figure 5c shows that the greater low range [0, 220]
of I maps to [−1, 0] due to its low slope. Thereby, along with the brightness increasing, the LWLC value
is progressively reduced and the stretch of the range of I is weakened. These characteristics are similar
to the human vision system, that is likely to discern contrast under the darker illuminance [30,44].

Figure 5. The surface of LWLC (Local Weber-like Contrast) measure. (a) The surface of LWLC. (b) The
curve with E = 100. (c) The curve with E = 120.
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The gray value I(x, y) of the pixels in an image can be approximately determined by:

I(x, y) = L(x, y)× R(x, y) (4)

where L(x, y) is light source intensity on the camera lens, and R(x, y) is the coefficient of reflection
attribute [45]. In a local window T, L(x, y) can be regarded as a constant L due to the fact that the
sunlight intensity in this small T reflected by the surface of a rail track is barely change under sunlight
illumination. Therefore, Equation (3) can be replaced by:

LWLC(x,y) =
L × R(x, y)− L × μR(x̃, ỹ)

L × μR(x̃, ỹ)

=
R(x, y)− μR(x̃, ỹ)

μR(x̃, ỹ)
, (x̃, ỹ) ∈ T

(5)

where μR(x̃, ỹ) is the mean of reflection attribute coefficient R(x, y) in a local window T. From this
Equation (5), LWLC is just dependent on R(x, y) and μR(x̃, ỹ) rather than light source intensity L(x, y).
As a result, it is supposed that LWLC can keep steady under the change of sunlight illuminance.
On the other hand, R(x, y) generally varies less in a local window T. This means that the value of
R(x, y)− μR(x̃, ỹ) approximates 0. Thereby, when there are a smooth background window T1 with a
large μR(x̃, ỹ) and a coarse background window T1 with a small μR(x̃, ỹ) in a rail image, the difference
of their LWLC matrix is not obvious. Therefore, a uniform background can be achieved by LWLC.

Briefly, rail surface defects and backgrounds can be highlighted and homogenized by LWLC.
Based on these features, LWLC can enhance the UAV-based rail images of non-uniformity brightness
due to the various reflection attribute of rail surfaces under various sunlight intensity.

A transformed image can be obtained by Equation (3), which has contrast enhancement.
The choice of window T size is very important, because it affects the quality and efficiency of this
algorithm. Based on UAV rail image features in the same longitudinal direction presented in the above
characteristics, this study adopted a lined (longitudinal direction) window T (100 × 1) in this paper.
The experiment in [30] also proves the excellent performance of this local line window.

In a local line window, gray value of defects is considered to be lower than the other areas on rail
surface, because the light of the window is equal and less light can be reflected by defects. Therefore,
if gray value of a pixel is lower than the mean value of all pixels in this window, it may be regarded
as a defect point. In contrast, this is regarded as a background point. Based on these factors and
Equation (3), the pixels belonging to non-defect (background and irregular) points can be translated
into uniform background by setting a dynamic threshold E(I(x̃, ỹ)) by

LWLC(x,y) =

{
I(x,y)−E(I(x̃,ỹ))

E(I(x̃,ỹ)) , i f I(x,y) < E(I(x̃, ỹ))

0, otherwise.
(6)

In summary, the proposed LWLC algorithm for image enhancement is described as follows:

(i) By convolution with an image matrix I and a designed lined window, calculates LWLC value of
each pixel in I by Equation (6), so that a LWLC matrix can be acquired.

(ii) Mapping gray-values of the LWLC matrix to [0, 255].

2.3. Defect Segmentation Mehtod Based on Gray Stretch Maximum Entropy

The GSME algorithm is able to determine an optimal segmentation threshold by stretching
gray levels between the objection and background and reduces noise in the image’s wavelet domain.
The procedure of the algorithm is shown in Figure 6.

Based on one-level 2-D DWT algorithm, the rail image is decomposed into four bands (LL, HL, LH,
HH). For the LL band, the ME algorithm is used to obtain a segmentation threshold after reconstructing
its coefficient, and then the gray stretch method is used to enhance contrast between background and
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foreground. For HL, LH and HH bands, the median filtering template of horizontal line, vertical line,
and diagonal line is used to eliminate noise of three high frequency wavelet coefficients, respectively.

Subsequently, the ME algorithm is used to select a segmentation threshold after reconstructing
the rail image.

Figure 6. The procedure of the GSME method.

2.3.1. A Brief Introduction for 2-D Discrete Wavelet Transform

The discrete wavelet transform (DWT) can not only express some features of a signal
easily and efficiently, but also provides a powerful insight into an image’s spatial and
frequency characteristics [38,46]. Two-dimensional functions such as images can be expanded from
one-dimensional wavelet transform [46]. In two dimensions, a 2-D scaling function and three 2-D
wavelets are given by:

ϕ(x, y) = ϕ(x)ϕ(y)
ψH(x, y) = ψ(x)ϕ(y)
ψV(x, y) = ϕ(x)ψ(y)
ψD(x, y) = ψ(x)ψ(y)

(7)

where ϕ(x, y) is a two-dimensional scaling function, ψH corresponds to some variations along
columns(such as horizontal edges), ψV corresponds to variations along rows (for example, vertical
edges), and ψD responds to variations along diagonals. Each of them can be seen as products of two
1-D functions. If the 2-D scaling and wavelets functions are given, the 1-D DWT can be extended to
two dimensions. Firstly, the scaled and translated basis functions are defined as:

ϕj,m,n(x, y) = 2
j
2 ϕ(2jx − m, 2jy − n) (8)

ψi
j,m,n(x, y) = 2

j
2 ψ(2jx − m, 2jy − n), i = {H, V, D} (9)

where index i is a superscript that assumes the values H, V, and D in Equation (7). The discrete wavelet
transform of M × N image f (x, y) is given by:

Wϕ(j0, m, n) =
1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)ϕj0,m,n(x, y) (10)

Wi
ψ(j, m, n) =

1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)ψi
j,m,n

(x, y), i = {H, V, D} (11)

where j0 is an arbitrary starting scale that is set to 0 by default, the Wϕ(j0, m, n) coefficients are an
approximation of f (x, y) at scale j0, and the Wi

ψ(j, m, n) coefficients add horizontal, vertical, and
diagonal details for scales j ≥ j0. The 2-D DWT is achieved by using digital filters and down-sampling,
as shown in Figure 7. According to the 2-D DWT scaling and wavelet functions, we can take the 1-D
FWT (fast wavelet transform) of the rows of f (x, y), followed by the 1-D FWT of the resulting columns.
Therefore, an original 2-D image can be decomposed into four sub-image sets which contain different
frequency characteristics by high-pass and low-pass filter: a scaling component Wϕ involving low-pass
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information and three wavelet components, WH
ψ , WD

ψ , and WV
ψ , corresponding respectively to the

horizontal, diagonal, and vertical details, as in Figure 5. The 1-level DWT method can also reduce
noise and the background disturbances.

 

Figure 7. The 2-D DWT diagram for an image by using digital filters and down-sampling. An original
2-D image can be decomposed into four sub-image: a scaling component Wϕ and three wavelet
components, WH

ψ , WD
ψ , and WV

ψ . In Figure 7, ⊗ denotes convolution symbol, hψ denotes low pass filter,
and hϕ denotes high pass filter.

2.3.2. The Gray Stretch Maximum Entropy Threshold Method

T. Pun et al. proposed the entropy threshold principle [47,48] which uses entropy of image
gray histogram to obtain the segmentation threshold. The maximum entropy (ME) algorithm [37]
is proposed to optimize a threshold afterwards. ME method can confirm one threshold which
maximizes the total content of information provided by cumulative object probability distribution φo

and cumulative background probability distribution φb. They are given by:

Pn =
fn

M
, n ∈ [0, 255] (12)

φo =
T−1

∑
n=0

pn, φb = 1 − φo (13)

where Pn is the probability of gray value n in an image. Given a rail image I that is normalized to 256
gray levels, and the entropy of φo and φb is defined as:

Ho(T) = −∑T−1
n=0 (

Pn

φo(T)
ln

Pn

φo(T)
) , (14)

Hb(T) = −∑255
n=T (

Pn

φb(T)
ln

Pn

φb(T)
) (15)

where M is the total pixel number of image I, fn is the frequency of gray value n in I. An optimal
threshold T* can be obtained by:

T∗ = arg max (Ho(T) + Hb(T)), T ∈ [0, 255] (16)

The ME method takes into account both the distribution information of image pixel gray and the
spatial information of pixels. However, its performance is not perfect for defect segmentation due
to the aforementioned characteristics of rail images. Therefore, GSME algorithm is proposed in this
paper, as shown in Figure 6.
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(i) Based on one-level 2-D DWT algorithm, the rail image is decomposed into four wavelet
coefficients that include approximation (low frequency region), horizontal, vertical, and
diagonal details.

(ii) For low frequency region (LL region) of image decomposed by wavelet, the ME algorithm
is used to obtain a segmentation threshold after reconstructing its coefficient, and then the
gray stretch method is used to enhance contrast between background and foreground, as the
following equations:

fϕ(x, y) =
1√
MN

∑
m

∑
n

Wϕ(j0, m, n)ϕj0,m,n(x, y), (17)

fϕ
∗(x, y) =

{
fϕ(x, y) − a fϕ(x, y), i f fϕ(x, y) < T∗

fϕ(x, y) + a fϕ(x, y), otherwise.
(18)

where fϕ(x, y) denotes reconstructing image function, a denotes stretch factor and is set to and
value between 0.1 and 0.5 in general.

(iii) For the image, its energy is mainly distributed in the low frequency region. In the high frequency
area, the proportion of noise energy is large, so this study focuses on de-noising in this area.
In Ref [39], Tang et al. use the filter templates of three different directions for de-noising.
For example, the line template of horizontal direction is used for WH

ψ de-noising, because the
wavelet coefficients contain the high-frequency information in the horizontal direction and
low-frequency information in the vertical direction of the image signal. Inspired by the median
filtering method employed in wavelet domain, this study used the median filtering template of
horizontal line, vertical line, and diagonal line to eliminate noise of three high frequency wavelet
coefficients, respectively.

(iv) The rail image can be reconstructed based on discrete wavelet inverse transform algorithm.
The formula for reconstruction image is given by:

f (x, y) = fϕ
∗(x, y) +

1√
MN

∑
i=H,V,D

∞

∑
j=j0

∑
m

∑
n

Wi
ψ(j, m, n)ψi

j,m,n(x, y) (19)

(v) The ME algorithm is used to select a segmentation threshold after reconstructing the rail image
by discrete wavelet inverse transform.

The GSME algorithm performs well for processing rail images in which the contrast between
foreground and background is low.

3. Experiment Results

To demonstrate the proposed LWLC-GSME model, experiments were carried out with
comparisons with related well-established methods.

3.1. Experiment Setup

3.1.1. A Brief Introduction of the Equipment for UAV Images Acquisition

As shown in Figure 6, the DJI Matrice 600 equipped with Zenmuse Z30 (DJI-Innovations,
Shenzhen, China) was used to capture rail images. The Matrice 600 is a six-rotor flying platform
designed for professional aerial photography and industrial applications. The aircraft uses six
Intelligent Flight Batteries to extend the time of flight. The built-in API Control feature, expandable
center frame, and maximum takeoff weight of 15.1 kg make the Matrice 600 ideal for connecting other
devices to meet the specific needs of different applications. The Zenmuse Z30 enables non-contact
distance detection by a high-performance camera system with a zoom lens. This aerial camera offers
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30× optical zoom, 6× digital zoom, and HD 1080P video. The UAV adopts an industrial level
Zenmuse platform with a precision of 0.01 degrees, so the problem of image blur caused by jitter is
effectively solved.

3.1.2. Experiment Environment

As shown in Figure 8, the UAV equipped with an aerial camera was used to capture image or
video information of rails as it flies overhead. Then, customized image processing software was used
to analyze the captured UAV images. To avoid interference of obstructions, the flight height was set to
30 m. The images of rail tracks from the UAV were acquired on the freight line near the Baoding railway
south station and the freight line near Nansihuan in Beijing. One of the experiment environments
is shown in Figure 7. The speed of the UAV and the actual length of the rail track in an UAV image
are 2 m/s and 1 m, respectively. Therefore, to cover every part of the rail tracks, the frequency of the
camera shutter is set to 2 frames per second. Each image captured by an UAV has corresponding POS
information that contains the coordinates of the aircraft at that moment, and therefore, the location of
rail defects can be found based on these coordinates.

 

Figure 8. Experiment environment.

3.1.3. Defects and Evaluation

All images used for this experiment were captured, and several examples of UAV images
containing discrete defects are shown in Figure 9. A large dataset was constructed to verify the
algorithm, which contains 50 rail images, and each one has a lot of defects (more than 2) on its surface.
Rail surface defects are divided into two categories depending on size and maintenance standard of
the railway. In general, a defect whose size is larger than 255 mm2 should be inspected as soon as
possible, because it may result in serious accidents [49]. Therefore, in our data set, the defects are
divided into two types, according to size Ω of defects, as shown in Table 1.
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Figure 9. Examples of UAV images containing discrete defects on rail surfaces.

Table 1. The type of rail surface defects.

Defects Type T-I Defect T-II Defect

Area (Ω) 25 mm2 < Ω ≤ 255 mm2 255 mm2 < Ω

The dataset includes 208 defects: 126 in T-I and 82 in T-II. These defects are labeled by experts.
Within the Matlab 2014 compile environment, the designed software is achieved by Matlab

program languages, and an inspected defect is automatically marked by a rectangle. Then, the
inspected defect is accepted as correct if it matches the marked defect in the corresponding image.

In information retrieval and pattern recognition, recall and precision are the basic criteria for
evaluation of retrieval quality. The two criteria are used for evaluation of our experiment result in this
paper. The precision (P) and recall (R) are respectively given by:

P = TP/(TP + FP) (20)

R = TP/NP (21)

where TP is the number of defects that were inspected correctly, FP is the number of wrongly inspected
defects, and NP is the number of marked defects for the corresponding defect category (T-I and T-II).
Specifically, the recall is more significant than precision, because a defect which is not detected may
have severe consequences.

It should be noted that each defect in the dataset is labeled with a minimum enclosing rectangle;
thereby, the real region of rail surface defects is approximated by the region of its minimum enclosing
rectangle. As to the LWLC-GSME model, all these detected defects are also automatically marked by a
minimum enclosing rectangle. This is regard as correct inspection if the minimum enclosing rectangle
of a detected defect overlaps the corresponding labeled image more than 85%; otherwise, it is error
detection. TP denotes number of defects that were correctly inspected.

3.2. Performance Analysis

Two groups of visual comparison experiments and a qualitative comparison experiment for
defects inspection are presented in this section. Every defect in the images is marked by a red rectangle.

3.2.1. Image Enhancement

The effectiveness of image enhancement method was first verified by performing experiments on
several randomly selected images. It should be noted that these selected images include defects for
types T-I and T-II, and have characteristics of low contrast and varying illumination. In this section,
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this paper compares the LWLC algorithm with traditional enhancement methods, including histogram
equalization (HE), LN [14] and MLC [30] algorithms.

Figure 10 presents comparison results of these methods. The HE method only averages the gray
level distribution rather than enlarging the gray scale, and retains a number of irregular (noise) points,
as shown in the Figure 10B. The LN method has poor enhancement effect because the image loses a
lot of the significant detailed information. Not surprisingly, the MLC algorithm achieves competitive
performance and highlights defects on UAV-based rail images. However, to UAV-based rail images
having high brightness mean and a great deal irregular points, the MLC algorithm has a poor ability
at extending grayscale range between irregular points and defect points. The MLC algorithm can
distinguish defects from background, but the distinguishing capability for irregular (noise) points and
defect points is not as good as that of the LWLC algorithm. As shown in Figure 10D,E, the enhanced
defects by LWLC algorithm are more obviously highlighted than the MLC algorithm.

It is worth noting that the proposed method can effectively remove the influence of uneven
illumination. As shown in Figure 10A, for the above two images with several shadows, the global
image enhancement method (HE method, as shown in Figure 10B) makes images loss detail information
and amplifies irregular points (noise points and shadow points), since the HE is a linear algorithm
and only averages the gray level distribution. In addition, although the LN method (as shown in
Figure 10C) can remove shadows, it also removes defects, due to the fact that a rail surface contains a
small number of defects, and the difference between defects and backgrounds in longitudinal direction
is large. However, because of few defects existing on rail surfaces and high reflection properties of
rail surfaces, the brightness mean of longitudinal line along a track approximates to the background
luminance. Thereby, the proposed LWLC algorithm based on Weber’s law can address these issues,
and effectively remove the uneven illumination due to the feature of Weber’s law presented in Section 1.
It can be seen that the proposed LWLC algorithm is superior to other two methods, as shown in the
Figure 10E.

For defect segmentation, the LWLC algorithm combined with the GSME method can achieve
better performance, and the experiment of defect segmentation will be described in the next section.

Figure 10. Examples of four enhancement methods for non-uniform illumination rail images. (A) Three
examples of extracted rail images. (B) Three examples of enhancement image by HE method. (C) Three
examples of enhancement image by LN method. (D) Three examples of enhancement image by MLC
algorithm. (E) Three examples of enhancement image by LWLC algorithm. In Figure 10, the discrete
defects on images have been marked by red rectangle to compare enhancement performance of LWLC
algorithm with related methods.

3.2.2. Defect Segmentation

On the basis of the LWLC, this paper compares GSME with traditional image segmentation
methods including the maximum entropy (ME) algorithm, the proportion emphasized maximum
entropy (PEME) algorithm, and the GSTA method. The ME [37] method can confirm one threshold
which maximizes the total content of information provided by object distribution and background
distribution. After enhancing images by MLC, PEME [30] is used to obtain an optimal segmentation
threshold. PEME is an improved ME method which reduces the proportion of the background
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information and increases an exponent factor in original equation. The GSTA method uses wavelet
transform and the Otsu algorithm to enhance image edges, then Otsu to extract the objection of the
image. In the comparative experiment, the PEME method adopts MLC for image enhancement,
and the other three adopt the same LWLC approach. All methods adopt the same evaluation
criterion mentioned above, as shown in Figure 11. According to the Refs. [30,38] and our experiment,
the parameter ρ of GSTA method, the parameter β of MLC+PEME and the parameter α of LWLC+GSME
are set to 0.2, 2, and 0.3, respectively.

As shown in Figure 11B, LWLC+ME can retain more detailed information of defects than the
LWLC+GSTA and MLC+PEME methods, but its performance in terms of noise suppression, non-defect
points removal, and defect details preservation is weaker than that of LWLC+GSME. Reasons for the
inapplicability of the PEME approach are as follows: on one hand, UAV images have lower contrast,
relatively obscure texture features, and more noise due to lighting based on natural light and higher
distance between camera and rail; on the other, the variation in natural illumination can’t be controlled
by a human being, and it has an inevitable effect on defect extraction. If the image is captured as
the aircraft flies above the rail at different distances, there is no uniform model to set the exponent
factor β of the PEME model. In Figure 11C, it can be seen that defect details including shape and area
information can’t be effectively retained by the LWLC+GSTA method, and there are more noise and
non-defect points than with the other methods. Figure 11D shows that MLC+PEME highlighted defect
areas, but that noise and non-defect points in the image can’t be restrained. As shown in Figure 11E,
it can be seen that defects are remarkably segmented with the least noise and non-defect points based
on LWLC+GSME.

 

Figure 11. Examples of four defect segmentation methods for rail surface images. (A) Three examples
of extracted rail images. (B) Three examples of defect segmentation by LWLC+ME method. (C) Three
examples of defect segmentation by LWLC+GSTA. (D) Three examples of defect segmentation
by MLC+PEME method. (E) Three examples of defect segmentation by LWLC+GSME method.
In Figure 10, the discrete defects on images have been marked by red rectangle to compare enhancement
performance of LWLC+GSME method with related methods.

3.2.3. Qualitative Comparison between LWLC+GSME and Related Methods

Finally, a quantitative analysis for the defect inspection after segmentation is given by
Figures 12 and 13. The two figures further explain that the LWLC+GSME method is more suitable for
detection of rail defects based on the UAV image.

Although the GSTA method enhances image contrast, it can’t repress interference of noise
effectively. These three methods acquire poor segmentation effects because they are susceptible to noise
and background points. In contrast, LWLC+GSME not only achieves contrast enhancement between
defects and background, but also obtains the best segmentation effects. For example, LWLC+GSME
achieves a precision of 88.63% for T-I defects and a precision of 90.32% for T-II defects. It should be
noted that both of MLC+PEME and LWLC+GSME obtain similar effects for precision, because they see
non-defect regions as defect under light disturbance (such as uniform illumination and low contrast).
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Figure 12. Comparison of defection precision for four detection methods. The blue block and orange
block denotes T-I defect and T-II defect, respectively.

 

Figure 13. Comparison of defection recall for four detection methods. The blue block and orange block
denotes T-I defect and T-II defect, respectively.

In addition, based on the ME principle and characteristics of the defects mentioned above,
a suitable segmentation threshold should be relatively small under the condition of complete retention
of defects [30]. Three examples of the segmentation threshold with four segmentation methods are
shown in Table 2. From this table, a relatively small threshold is obtained based on LWLC+GSME.
It further illustrates that the proposed method can select a better segmentation threshold. It should
be noted that thresholds based on LWLC+GSTA are the smallest. However, this method achieves
poor performance for T-I and T-II defects, as shown in Figures 11 and 12; this is because this method
uses Gaussian kernels to enhance object edges of high frequency areas in the wavelet domain, and
UAV-based images contain a lot of irregular (noise) points. For this reason, the method also enhances
these noises in rail images, thereby yielding poor defects detection performance.
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Table 2. Examples of segmentation threshold values with four segmentation methods; LWLC: The
proposed Local Weber-like Contrast algorithm; ME: The maximum entropy algorithm; GSTA: The gray
stretch and threshold algorithm; MLC: The Michelson-like contrast algrorithm; PEME: The proportion
emphasized maximum entropy method; GSME: The gray stretch maximum entropy method.

Defects Inspection Model LWLC+ME LWLC+GSTA MLC+PEME LWLC+GSME

Original images (A1) 228 140 226 189
Original images (A2) 213 120 225 170
Original images (A3) 188 82 206 161

In Table 2, original images are correspond to the three images in Figure 10A. For example, A1 is the first line image
in Figure 10A.

4. Conclusions

To cope with rail surface defects, an inspection approach based on UAV images is proposed
in this study. The proposed LWLC algorithm can highlight not only defects and homogenized
backgrounds of UAV-based rail images, but also eliminates the adverse effects of non-uniform
illumination. Furthermore, we put forward the GSME method for defects segmentation, which
reduces irregular points and obtains excellent segmentation effects. The integrated LWLC+GSME
method further illustrates great flexibility and effectiveness in detecting discrete defects.

Finally, this study compared LWLC and LWLC+GSME with related methods, and the results of
experiments show the significance of the proposed method. The quantitative experimental results
show that the proposed method achieves a recall of 93.75% for T-I defects and of 94.26% for T-II defects,
and that it is efficient and feasible to detect rail surface defects based on UAV images. It was verified
that the proposed model can obtain excellent results.

In future, our research work will focus on the following two aspects: firstly, we will explore new
models for rail defect classification based on UAV images and assess the health of rails; secondly, based
on the development of high UAV photography, fast detection models in complex environments will be
developed to increase detection efficiency.
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Appendix A

In order to reduce the computation payload, the colored image is transformed into a gray image.
The method for rail track extraction is described as follows.

Firstly, the longest line of rail edge is detected by Hough transform, as shown in Figure A1B,
and the image is rotated by the angle θ between the line and horizontal direction so that the rails are
parallel to the vertical direction, as shown in Figure A1C. And then the followed Algorithm A1 is used
to find the most left position of a rail track after the matrix Cg(n) is obtained by Equation (1).
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Algorithm A1. The Algorithm A1 for track extraction.

1 procedure Algorithm A1 (Cg(n), Wd)
2 for m ← 1, M − Wd + 1 do

3 for n ← m, Wd do /* Wd is the width of the rail track.*/
4 Cg(n) ← Cg(n) + Cg(n + 1)
5 CumCg(m) ← Cg(n)
6 end for

7 maxCumCg ← −1
8 p_left ← 0
9 for m ← 1, M − Wd + 1 do

10 p_CumCg ← CumCg(m)
11 if p_CumCg > maxCumCg then
12 maxCumCg ← p_CumCg
13 p_left ← m
14 end if

15 end for

16 return p_left /* The most left position of a rail track (p_left)*/
17 end procedure

 

Figure A1. The example of the rail track extraction. (A) The original image contains a rail. (B) The
detection for the longest line and the inclined angle θ of the rail based on Hough transform method.
(C) The rail image correction by rotating the angle θ. (D) The rail track extraction based on integral
projection of vertical pixel column for a rail image.
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Featured Application: The main contribution of this work is to propose an inspection method

using image data generated at the actual manufacturing process. This proposed method can help

printed circuit board (PCB) manufacturers more effectively detect defects, such as scratches and

improper etching, in an automated optical inspection (AOI). Moreover, the proposed method of

this work can be also applied to the field of dermatology, where it has to detect skin diseases, as

well as in PCB inspection.

Abstract: With the coming of the 4th industrial revolution era, manufacturers produce high-tech
products. As the production process is refined, inspection technologies become more important.
Specifically, the inspection of a printed circuit board (PCB), which is an indispensable part of electronic
products, is an essential step to improve the quality of the process and yield. Image processing
techniques are utilized for inspection, but there are limitations because the backgrounds of images
are different and the kinds of defects increase. In order to overcome these limitations, methods based
on machine learning have been used recently. These methods can inspect without a normal image by
learning fault patterns. Therefore, this paper proposes a method can detect various types of defects
using machine learning. The proposed method first extracts features through speeded-up robust
features (SURF), then learns the fault pattern and calculates probabilities. After that, we generate
a weighted kernel density estimation (WKDE) map weighted by the probabilities to consider the
density of the features. Because the probability of the WKDE map can detect an area where the defects
are concentrated, it improves the performance of the inspection. To verify the proposed method,
we apply the method to PCB images and confirm the performance of the method.

Keywords: image inspection; non-referential method; feature extraction; fault pattern learning;
weighted kernel density estimation (WKDE)

1. Introduction

Because the era of the Internet of Things (IoT) has been accompanied by the rapid development of
the semiconductor industry and communication technologies, the use of high-tech products, such as
mobile phones and wearable devices, has been spreading widely in our daily lives. The printed circuit
board (PCB) is one of the key components of such electronic devices. A PCB is a thin plate made
by printing an electrically conductive circuit on an insulator. Figure 1 shows an image of a generic
PCB. As shown in Figure 1, a PCB connects to different parts electrically through a point-to-point
wiring process.
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In the past, handwork wiring led to frequent failures of the wire junctions and a short circuit
as the wire insulation began to age. Furthermore, this type of work was conducted manually for
inner-connecting components within the board. Such wiring, therefore, required a significant amount
of time and effort. With advancements in technology, PCBs were developed for efficient and automated
production. Because PCBs allow for the use of mass production, they allow devices to be smaller and
lighter. In addition, they allow a high level of reliability at low production costs. Because of these
advantages, most electronic devices use PCBs.

 

Figure 1. An illustrative image of a printed circuit board (PCB).

According to the recent trend of miniaturized and high-performance electronic devices,
the demand for PCBs has increased substantially. The current PCB market has shown an average
annual growth rate of 4%. Based on increasing demand, electronics manufacturers require perfect
quality and a high level of accuracy from their PCB inspections to assure their competitive edge.
To meet these quality requirements, PCB manufacturers conduct an inspection before proceeding to
the main process. The PCB manufacturing process consists of many steps: cutting, inner layer etching,
an automatic optical inspection (AOI), lay-up, lamination, etching, drilling, solder masking, routing,
a bare board test (BBT), quality control, packing, and shipping, in that order. Before proceeding to
the main processes, such as lamination and etching, faults in a PCB are detected during the AOI
stage. An AOI is an automated visual inspection using an image comparison method. Most PCB
manufacturers inspect their PCBs through the AOI process. The types of defects detected during
the AOI process include scratches, improper etching, and open circuits. In particular, scratches are
fatal defects because they have the potential to change the electrical properties and can result in a
malfunction of the completed product.

There are typically three methods applied during the AOI process: a comparison reference (CR),
non-reference verification (NV), and a hybrid approach (HA). The CR method compares an inspected
image with a reference image. It measures any existing dissimilarities between the reference image and
the inspected image. Thus, this method requires a reference image, and inspection is difficult without
such an image. The NV approach tests the design rule of the PCB for detecting faults. It essentially
verifies the widths of the insulators and conductors. However, this approach makes it difficult for
users to design the rules as restrictions on the image features, and it cannot detect faults without such
rules [1]. The HA approach combines various types of CR and NV methods. That is, the approach
utilizes a reference image or design rules to inspect a PCB image. However, it still does not solve
the limitation of being unable to conduct an inspection without reference information. Because the
circuits used in a PCB are diverse and complex, the reference information increases significantly,
thereby decreasing the inspection’s efficiency. Therefore, additional studies are required to detect
faults without reference information.

Numerous algorithms have been proposed to improve the accuracy of a PCB inspection.
Such algorithms can be categorized into two approaches: referential and non-referential methods.
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A referential method is based on a comparison between the inspected image and a reference
image. To measure the dissimilarity between these two images, image subtraction and template
matching techniques are used. Wu et al. proposed an inspection method based on a subtraction
method [2]. The image subtraction method compares both images using an XOR logic operator [3].
The resulting image, which is obtained after this operation, contains only portions of a fault [4].
Therefore, the reference image and the inspected image should be placed in a fixed position to compare
both images. In addition, a reference image of the same size is required. Template matching is a
technique for identifying the parts of the image that match the reference image. This method extracts
the features of both the reference and inspected images. It then calculates the similarities of these
features. One of the major disadvantages of template matching is that a large amount of information
regarding the reference image must be used. Therefore, this method requires a mass storage device
that can store all of the information. Moreover, the inspected images also have to be precisely matched
for a comparison with the reference image [5]. Acciani et al. suggested an inspection algorithm that
extracts the wavelet and geometric features, and then detects a defect after learning the fault pattern
using a neural network and k-nearest neighbors [6]. When extracting the features of a PCB image,
this method uses the maximum value of the correlation coefficients between the features of the reference
image and the inspected image. This approach of applying machine-learning algorithms is called
the learning-based model. The aim of this approach is to automatically detect faults through pattern
recognition [7]. In [8], the authors proposed a defect detection method using feature matching for
non-repetitive patterned images. The method first extracts features of both the reference image and the
inspected image using a modified corner detector. It then detects a fault by finding a correspondence
between two feature sets. Thus, the methods [6,8] still require a reference image to detect a fault.

A non-referential method, on the other hand, does not require a reference image. However,
this method uses design rules. If the inspected image does not conform to the design specification
standards, it is considered defective. Ye and Danielson suggested a verifying algorithm for minimum
conductive and insulator trace widths [9]. This algorithm uses morphological techniques, which are
methods for processing binary and grayscale images based on shape. Morphological techniques do not
require a predefined model of a perfect pattern because we can construct specific shapes in an image
by choosing an appropriate neighborhood shape [10]. However, this method has a disadvantage in
that we should apply different pre-processing algorithms to check for faults in a PCB. In addition,
it automatically increases the inspection time [5]. Tsai et al. proposed a non-referential defect detection
approach for bond pads [11]. This approach restores the shape of the bond pads using Fourier image
reconstruction. The method then evaluates the similarities and differences in the pad shape. However,
the method has difficulty in reconstructing an original image of a PCB in the absence of a reference
image because the shape of a circuit is quite varied and complex. Thus, the method is not suitable for
detecting faults on a PCB. As mentioned earlier, a non-referential image analysis has certain limitations.

Rosten and Drummon proposed a very fast and high-quality corner detector using
machine-learning techniques [12]. This algorithm uses a decision tree to learn the properties of
the corner points and determine which point is a corner point instead of directly counting the
number of consecutive points of the same type. Pernkopf proposed an approach for the detection of
three-dimensional faults on scale-covered steel surfaces [13]. After extracting features, the approach
uses a Bayesian network to learn the feature property and classify the faults. Classification research,
which is learning the patterns of the extracted features through image processing, is actively carried
out to diagnose skin cancer not only in manufacturing but also in dermatology [14]. It is indispensable
to extract meaningful features that can explain the properties of shape and color in order to effectively
detect a melanoma [15]. Roberta suggested a method to find meaningful features by combining three
characteristics of shape, texture, and color [16].

Based on the concept of a learning property, we propose a new non-referential method for
fault detection by extracting features based on an image-processing method and learning the
fault information using random forests. The proposed method utilizes features obtained through
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speeded-up robust features (SURF) to describe the fault information. Therefore, the method can detect
a fault quickly and accurately without a reference image and without being affected by environmental
changes, such as the size, rotation, and location of the PCB. The proposed method first extracts
robust features using an image-processing technique and learns the fault pattern using an efficient
classification technique utilizing high-dimensional data. We then calculate the probability and draw a
weighted kernel density estimation (WKDE) map weighted by the probability and identify whether a
fault has occurred.

The remainder of this paper is organized as follows: In Section 2, the background of the proposed
method is briefly reviewed. Section 3 describes the procedure of the proposed inspection algorithm.
Section 4 presents the experimental results through a comparison of the receiver operating characteristic
(ROC) curves. Finally, some concluding remarks are given in Section 5.

2. Background of the Proposed Method

This section describes the two algorithms used in the proposed method. We first introduce SURF,
which is used for extracting the features of the PCB. These features include important information
in the image, such as the size, angles, coordinates, and color. By digitizing the image, they enable
calculations related to the pattern recognition to be applied during image processing. We then describe
the random forests used to learn the fault pattern and calculate the probability.

2.1. Speeded-Up Robust Features (SURF)

SURF first digitizes a PCB image into a vector to enable computational calculations through image
processing for learning the fault pattern. Among the various types of image processing techniques,
including scale invariant feature transform (SIFT) and orientation by intensity centroid (ORB), we use
SURF, which is the most robust algorithm with regard to environmental factors such as size, shape,
and color. The performance of SIFT does not differ significantly compared to that of SURF. However,
SIFT is not able to extract the features in a small defective area. ORB is specialized in extracting the
features of a rounded or curved edge, rather than a straight line, in a circuit. Because a PCB is mainly
composed in a straight formation, ORB is inappropriate for extracting PCB features. On the other hand,
SURF is robust and useful for feature detection. It also improves the computational speed compared
to SIFT [17]. In addition, SURF provides robust features and distinctive descriptors to the size and
rotation transform. Thus, it results in a strong performance regardless of the fault size and shape of the
circuit. For this reason, the proposed method applies SURF for the feature extraction. The following
subsections describe the SURF algorithm, which has two phases. First, a point of interest is detected in
an image using a Hessian matrix. In the second phase, SURF generates descriptors with 64 dimensions,
which describe the characteristics of the features.

2.1.1. Interest Point Detection Based on a Hessian Detector

SURF uses a Hessian matrix for detecting interest points, which represent the characteristics of
the image and include useful information for identification, including corner points. An integral image
is used in an approximated Hessian matrix to improve the calculation speed of box-type convolution
filters. The integral image J(x, y) at coordinate x = (x, y) x = (x, y) is the sum of all pixels within
a rectangular area formed by the origin and coordinate x in input image I, the equation of which is
as follows:

J(x, y) =
i≤x

∑
i=0

j≤y

∑
j=0

I(i, j). (1)

Given point x = (x, y) in input image I, a Hessian matrix H(x, σ) at a scale of σ is defined through
Equation (2).

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)

Lxy(x, σ) Lyy(x, σ)

]
, (2)
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where Lxx(x, σ), Lxy(x, σ), and Lyy(x, σ) represent the convolution of the Gaussian second-order
derivative space with the image at coordinate x = (x, y).

Bay et al. proposed the use of 9 × 9 box filters to approximate the second-order Gaussian partial
derivatives and rapidly compute the image convolutions using integral images [17]. An approximation
of the second-order derivatives is denoted by Dxx(x, σ), Dxy(x, σ), and Dyy(x, σ. Bay et al. suggested
using a σ of 1.2, which is the lowest scale [17]. Therefore, the determinant of an approximated Hessian
matrix is calculated using Equation (3).

det
(

Happrox(x, σ)
)
= Dxx(x, σ)Dyy(x, σ)− (

0.9Dxy(x, σ)
)2. (3)

To obtain the robust features to scale, SURF forms a pyramid scale space with various scales on
the original image. The size of the box filter expands along with the pyramid scale space while the size
of the original image remains fixed. Consequently, we can have an effect of enlarging or reducing the
size of the image without scaling the original. Moreover, we can apply box filters of any size at the
same speed directly to the original image, which can improve the computational speed.

After the determinant of the approximated Hessian matrix is calculated at each scale,
non-maximum suppression in a 3 × 3 × 3 neighborhood is applied to find the maxima, which describe
the edge of the features best. The maxima are then interpolated in terms of both the scale and image
space [18]. Finally, we can detect the stable location of the feature through one of the maxima.

2.1.2. Descriptor Generation

After the features are detected as mentioned above, SURF generates a descriptor, which describes
the characteristics of the features, such as the shape and color, using the sum of the Haar wavelet
responses [19]. The Haar wavelets enable SURF to increase the robustness and decrease the
computational time. To generate the descriptor, the first step is constructing a square region around the
points of interest and assigning a reproducible orientation based on the orientation-selection method
introduced in [17]. The region is then split equally into 4 × 4 sub-regions to retain some of the spatial
information as shown in Figure 2. In each sub-region, we compute the Haar wavelet responses at
regularly 5 × 5 spaced sample points. Bay et al. suggested that the level of performance is best at
the each of the above sizes [17]. The wavelet responses are calculated in the x- and y-axis directions
(dx and dy) and summed over each sub-region. The wavelet responses are then weighted with a
Gaussian centered on the point of interest to increase the robustness toward geometric deformations
and localization errors. Moreover, to obtain information regarding the polarity of the intensity changes,
the absolute values of the responses |dx| and

∣∣dy
∣∣ are also summed. Thus, each sub-region has a

four-dimensional descriptor vector as shown in Equation (4).

v =
∣∣∑ dx, ∑ dy, ∑|dx|, ∑

∣∣dy
∣∣∣∣. (4)

As a result, the overall descriptor has a 64-dimension vector because 4 vectors are created for each
4 × 4 sub-region. Figure 2 shows a descriptor vector obtained by summing the wavelet response in
a sub-region.

Finally, the descriptor vectors for each sub-region are normalized to reduce the impact on the
environment, such as an external light or illumination. Eventually, we can obtain the robust features
and descriptors of the PCB image using SURF. The descriptor for a single feature is generated, as shown
in Figure 3, where m is the number of extracted features.
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Construct square sub-regions 
around the detected interest point

xd yd

|||| yxyx dddd

[sub-region]

Calculate the Haar wavelet 
responses for each of 25 points

Sum of all the Haar wavelet responses

44

[interest point]

Figure 2. Diagram for generating the descriptors.

Figure 3. Features and descriptors obtained in a PCB image using speeded-up robust features (SURF).

2.2. Random Forests

Random forests is a classification method proposed by Breiman and is a type of ensemble learning
method that constructs a multitude of decision trees and combines the predictions from them [20].
The random forests method is relatively accurate and fast for high-dimensional data. Furthermore,
it prevents overfitting problems by voting on multiple trees and shows good predictive performance
for noisy data. Because the descriptor vector obtained from SURF is composed of high-dimensional
data, the algorithm is efficient for feature classification. Therefore, we use random forests to learn the
fault pattern and calculate the probability of a fault feature being classified.

This algorithm begins by drawing many bootstrap samples from the training set. Classification
trees are then built for each bootstrap sample using a decision tree learning method. After the forests
are formed, the new data are put into each classification tree for classification. Each tree votes on the
result of the tree’s decision regarding the class of data. The forests then predict the class by taking the
majority vote from the classification trees [21]. Because the random forests method generates many
classification trees using bootstrapping rather than pruning, we can obtain low variation trees. It can
therefore avoid an overfitting and thereby improve the performance. However, the performance can
decrease when the data are extremely imbalanced. The class of PCB features is mostly normal, and the
number of fault features is low. Thus, the performance inevitably decreases. To complement this
disadvantage, we suggest utilizing the probability of being classified as a fault rather than predicting
the class using the random forests and by considering the density of the features. By considering
the density, the probability of being a defective feature increases, whereas the probability of being
a normal feature decreases. Therefore, the proposed method detects faults more effectively than a
method using only random forests. We next describe the process for calculating the probability of the
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test data being classified as a fault when using random forests. Then, in Section 4, we describe how to
use the calculated probability to detect a fault.

The probability p(y = k) of being classified as k is p(y = k) = πk, where 0 ≤ πk ≤ 1. Here, n
is the number of classes. The density function fk(x) for the features in class k is fk(x) = f (x|y = k) .
Thus, the density function f (x) for all features is calculated through Equation (5) [22].

f (x) =
n

∑
k=1

πk fk(x). (5)

Finally, we can estimate the probability that the class of new data xnew will be predicted as k using
a Bayesian probability. The equation of this probability is denoted through Equation (6).

p(y = k|x = xnew) =
πk fk(xnew)

f (xnew)
(6)

Thus, the probability pi that a new feature xi will be classified as a fault or as normal is calculated
using Equation (7).

pi =

⎧⎨⎩
πF f (xi)

f (xi)
, p(y = Fault|x = xi)

1 − πF f (xi)
f (xi)

, p(y = Normal|x = xi)
(7)

3. Proposed Method

Based on the algorithms described in Section 2, we propose a scratch fault detection method,
which is depicted in Figure 4. First, SURF extracts the features of the PCB image. The extracted features
are composed of a multivariate vector representing the properties found in the PCB image, such as an
edge, blob, or curve. Because SURF also extracts the features in a scratch-defective edge, it is difficult
to distinguish between a normal edge and a fault edge using only these features.

 

SURF based feature extraction and class assignment

Classifying the fault area with the threshold

Generation of  WKDE map by weighting the probability

Learning the fault pattern and 
calculating the probability based on random forests

Figure 4. Flowchart of the proposed PCB inspection method. WKDE, weighted kernel
density estimation.

Hence, we assign a normal or fault class to the features using the coordinates of the features within
a defective or normal area. We then learn the normal and fault properties using the multivariate vector
and feature class and calculate the probability of each feature being classified as a fault class. We then
generate a new weighted kernel density estimation (WKDE) map. Kernel density estimation (KDE)
is a technique for estimating the density based on the coordinates. That is, KDE is a technique that
considers the density of the features. To maximize the effectiveness of the features, the probability of
affecting the spatial density is given as a weight to the KDE. Thus, we consider not only the properties
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but also the densities of the features. After generating a WKDE map, we can predict the fault area based
on the WKDE value. The proposed method is described in more detail in the following subsection.

3.1. SURF-Based Feature Extraction and Class Assignment

As the first step of the proposed method, SURF digitizes a PCB image as a vector. SURF then
detects the features and extracts the descriptors in the form of a vector as mentioned in the previous
section. Figure 5a shows an example of an original PCB image. The circuits in the area inside the dotted
line have a defective edge, whereas the other circuits have a normal edge. The extracted features are
shown in the circles in Figure 5b. As Figure 5b illustrates, the features are obtained identically without
discriminating between a defective edge and a normal edge. In other words, SURF cannot distinguish
between a defective and a normal edge. Thus, we should learn the fault pattern of the features by
setting the normal and fault areas and assigning classes to each feature.

 
(a) (b) 

Figure 5. An example of SURF-based feature extraction (a) Original image; (b) A resultant image after
extracting the features of the PCB.

As shown in Figure 6a, we define a lozenge area with four points so that the fault area can be
visually represented in the clearest manner. We can then consider the fault occurring in the lozenge
area. We assign the features within the lozenge area in Figure 6b to the fault class. The remaining
features from areas other than the lozenge area are designated as being of a normal class through
Equation (8).

c(xi) =

{
Fault class, i f xi ∈ XL

Normal class, otherwise
, (8)

where xi indicates each feature composed using a multivariate vector and XL is a set of features within
the lozenge area.

 
(a) (b) 

Figure 6. An area selection for a class assignment: (a) A fault occurring in the lozenge area;
(b) The features within the lozenge area are the fault class and the remaining features are the
normal class.
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3.2. Learning the Fault Pattern and Calculating the Probability Based on Random Forests

Given the class-assigned features, the following step is to handle fault patterns using a
machine-learning algorithm. This method is based on the random forests method, which is a
well-known ensemble learning model for classification. We first learn the fault pattern of the features.
We use a 136-dimension input vector, Xi, composed using extended descriptors and the information of
each feature, such as its location and class, for a more precise description. The extended descriptors
are computed by summing dx and |dx| separately for dy < 0 and dy ≥ 0. Similarly, ∑ dy and ∑

∣∣dy
∣∣

are split for dx < 0 and dx ≥ 0. Thus, the number of vector dimensions of the descriptors doubles
to 128. After building the learning model by training the properties of the features, we can find the
probability pi that each feature of an inspected image will be classified as a fault, which is calculated
using Equation (7). Because the classes of the features are extremely imbalanced, most features are
classified as normal. That is, the probability that the features will be estimated as a fault is considerably
less than the probability that they will be predicted as normal. Consequently, because it is difficult
to detect a fault area using only the results of the random forests, we should consider the density in
addition to the map of the probability of being predicted as a fault.

3.3. Generation of WKDE Map by Weighting the Probability

This section describes how to apply the probability calculated in the previous section to generate a
weighted kernel density estimation (WKDE) map, a technique that reflects the kernel density estimation
(KDE). KDE is a probability density estimation method using a kernel function. In addition, it is a
nonparametric method that is even applicable to high-dimensional data [23]. The representative kernel
functions include Gaussian, uniform, and Epachenikov functions [24]. This paper uses a Gaussian
kernel function to estimate the density.

After calculating the probability, we generate a WKDE map by giving the weight, wi, to the kernel
function in order to complement any disadvantages as mentioned earlier. Because the PCB features
have x- and y-axis coordinates, this method uses the weighted multivariate kernel density estimation.

Let {x1, y1}, {x2, y2}, · · · , {xm, ym} be the coordinates of the PCB features. The WKDE value is
denoted through Equation (9) [25].

f̂ (x, y) =
1

mh

m

∑
i=1

wiK
{
(x, y)− (xi, yi)

h

}
, (9)

where m is the total number of PCB features, h is a scaled kernel that controls the smoothness of
the estimate, and wi is the probability of being classified as a fault. In addition, K is a Gaussian
kernel function.

KDE and WKDE maps were drawn using the features extracted from the PCB image in Figure 5
as shown in Figure 7. The x and y axes in the KDE and WKDE maps represent the coordinates of
the features. The z axis of the KDE map indicates the KDE value, which is calculated based on the
coordinates of each feature, whereas the z axis of the WKDE map is the WKDE value obtained by
weighting the probability to the KDE. Because the KDE considers only the density, it has a high KDE
value in areas where many features are extracted regardless of the defective area as shown in Figure 7a.

Consequently, it is difficult to distinguish between a normal area and a fault area on the KDE map.
On the other hand, the WKDE value, which reflects the probability, increases when the probability of
each feature being classified as a fault is higher than the probability of the other features. Otherwise,
the WKDE value decreases because there is a relative difference between the probabilities. The area
marked with a circle in Figure 7b has a relatively high WKDE value owing to the weight. That is,
because the marked area is densely concentrated with fault features, the WKDE value of this area
is higher than the KDE value. In addition, the KDE values in the remaining areas are randomly
distributed, but decrease significantly after being weighted. Thus, we can predict the marked area as a
fault area.
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Figure 8 shows a three-dimensional (2-D) WKDE map overlapping the original image (Figure 5a).
In the 3-D WKDE map, it is difficult to intuitively recognize the coordinates of a feature. Thus, we
convert the 3-D image into a two-dimensional (2-D) image to prove that the marked area in Figure 7b
is consistent with the real fault area. The area within the dotted line in Figure 8 indicates where the
actual faults occur, whereas the shaded area is an area predicted as a fault because the WKDE value
exceeds the threshold. As Figure 8 shows, we can confirm that the shaded area matches the dotted
area. Therefore, we monitor the WKDE value and predict the features as being a fault if the WKDE
value exceeds the threshold. In this paper, we set a WKDE value of higher than 1% as the threshold.
However, the threshold changes according to the process yield or to past experience.

(a) (b) 

Figure 7. The kernel density estimation (KDE) and WKDE map in three-dimensions (3-D) for a PCB
image: (a) KDE map; (b) Proposed WKDE map.

 

Figure 8. Two-dimensional (2-D) WKDE map on an original image.

4. Experimental Results

The present experiment used PCB image data to verify the proposed method. PCB images were
collected from a battery manufacturer in Korea. We obtained 10 PCB images by selecting a fault image
with a particular scratch property. As shown in Figure 9, the scratch fault, which is indicated by the
dotted line, has a fine and thin form, indicating that the circuit may be broken. Because a scratch defect
may prevent a current flow within the circuit, it has a significant impact on the PCB quality. Therefore,
this paper analyses PCB images with a scratch defect.

We first extracted the features in the 10 PCB images using SURF. We then assigned a class to each
feature by designating the defective area and organized the 136-dimension input vector including
information such as the coordinates and class. The data were then divided into the test set and training
set for learning purposes. This experiment applied a 10-fold cross validation using the 10 images.
For example, nine images are used for training, and the remaining image is used for testing. Next,
we obtained the WKDE value for each of the 10 PCB images as mentioned in Section 3.

To diagnose a fault area, statistical process control (SPC) can be applied to monitor the WKDE
value. SPC is a method of quality control that uses statistical methods based on the distribution
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of data [26]. However, there is no assumption regarding the distribution of the features. For this
reason, this research cannot utilize SPC. Hence, a binary classification was applied based on a single
continuous WKDE value to examine whether a feature is a fault. The features were classified by
comparing the WKDE value with a threshold x∗, which is called the cut-off value. A feature was
classified as a fault if f̂ (x, y) ≥ x∗ and was classified as normal otherwise.

The appropriate threshold can be chosen based on various criteria [27]. Thus, we conducted the
experiments using a variety of thresholds, and adopted an appropriate threshold based on a receiver
operating characteristic (ROC) curve, which is a tool for demonstrating the performance of a classifier.
An ROC curve is a threshold-independent technique for evaluating the performance of a model and
represents the relationship between the model’s sensitivity and specificity [27]. In this study, the ROC
curve was drawn based on the true- and false-negative rates. The ROC curve for a good model achieves
a high true-negative rate whereas the false-negative rate is relatively small. Therefore, the performance
of a model can be evaluated by comparing the area under the ROC curve (AUROC). Robust models
have an AUROC of close to 1.0, whereas poorer models have an AUROC near 0.5, and worthless
models have a value of less than 0.5 [28].

  
(a) (b) (c) 

  
(d) (e) (f) 

  
(g) (h) (i) (j) 

Figure 9. Example images of the 10 PCB images used: (a)–(j) The area marked with a circle or an
ellipsoid on the dotted line is where the scratch-fault occurred.

To demonstrate that both the probability and density of the features have to be considered for
detecting a fault, this paper compares the performances of three different methods: (1) monitoring
only the probability (Method 1), (2) using a KDE map (Method 2), and (3) using the proposed WKDE
map (Method 3). Each method applies binary classification to detect a fault. Method 1 detects a fault
area by monitoring only the probability obtained by the random forests. An area is determined as
a fault area when the probability of the feature being a fault exceeds a certain threshold. That is,
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this method does not consider the density of the features. Method 2 identifies a defect by considering
only the density of the features without taking into account the probability. Thus, it monitors the
KDE value. Finally, Method 3, the proposed method, detects a fault by monitoring the WKDE value.
This method considers both the properties of the features and their density. Finally, we draw an ROC
curve to compare the performances of the three methods. Figure 10 shows the ROC curves for the three
methods. A method in which the AUROC is close to 1.0 detects a PCB fault more precisely. As can
be seen, the AUROC of Method 1 is larger than that of Method 2 for 6 of the 10 images. However,
the AUROC of Method 1 is less than that of Method 3 for all 10 images. Thus, the performance of
Method 1 is not proper for detecting faults. Although Method 2 outperforms Method 1 for certain
images, it has a poorer level of performance than Method 3. On the other hand, Method 3 outperforms
the other methods, and its AUROC is close to 1.0 for all images. Therefore, Method 3 is appropriate for
detecting a scratch fault on a PCB.

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 
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Figure 10. Performance comparison of three different methods for 10 scratch-fault images: (a)–(j) For
the 10 PCB images, the mean AUROC of the Method 1 is 0.70, the Method 2 is 0.78, and the Method 3
is 0.91. The Method 3 considering both probability and density has better detection performance in all
10 images than the other method considering only one property.

5. Conclusions

In this paper, we proposed a new non-referential method by learning the fault pattern and
generating a WKDE map. This method can learn various fault patterns regardless of the type of
defect. Thus, the proposed method allows for a flexible PCB inspection without limitations regarding
the specific type of fault. Furthermore, it can be extended to deal with unknown faults for PCB
inspection. The performance of the proposed method is demonstrated by comparing the ROC curve
for the three methods presented above. In addition, it was found that considering both the probability
and density of the features is effective for detecting a scratch fault. Thus far, our method has dealt
only with the 10 scratch faults due to security issues, and it needs to be applied to other PCB images
with more data and various fault patterns. In addition, using a clustering technique, further work
needs to be conducted to redefine the fault type when it is not specified, and an appropriate detection
method for each type of defect should be studied. Although this paper used SURF to detect robust
features, other image processing techniques can be applied. In other words, the classification accuracy
can be further enhanced using another algorithm that includes more detailed edge information.
The classification performance of the proposed algorithm is proved by the ROC curve. In the future,
it is necessary to study the threshold selection method and its performance evaluation method for
practical application in the future.
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Abstract: The automation and intellectualization of the manufacturing processes in the iron and steel
industry needs the strong support of inspection technologies, which play an important role in the field
of quality control. At present, visual inspection technology based on image processing has an absolute
advantage because of its intuitive nature, convenience, and efficiency. A major breakthrough in this
field can be achieved if sufficient research regarding visual inspection technologies is undertaken.
Therefore, the purpose of this article is to study the latest developments in steel inspection relating to
the detected object, system hardware, and system software, existing problems of current inspection
technologies, and future research directions. The paper mainly focuses on the research status and
trends of inspection technology. The network framework based on deep learning provides space
for the development of end-to-end mode inspection technology, which would greatly promote the
implementation of intelligent manufacturing.

Keywords: defect inspection; image processing; feature extraction; classification methods

1. Introduction

China’s iron and steel industry has made tremendous contributions to the development of
its national economy. In recent years, the rapid rise in the output of steel products has been
accompanied by a large number of defects, which could bring significant economic losses to enterprises,
and ultimately affect their brand image. Therefore, it is necessary to study detection methods,
particularly since artificial detection methods no longer meet the enterprise requirements regarding
time, cost, and precision.

Visual detection technology based on image processing has been widely used in various fields,
such as medicine [1], the iron and steel industry [2,3], art [4], the textile industry [5], and the
automobile industry [6] for its unique advantages of intuition, accuracy, and convenience. Early
detection methods for steel defects are classified as contact detection and non-contact detection [7].
The former receives information through direct contact with the sample surface by the sensing
element of a contact-detection device. The latter is based on the technology of photoelectricity,
and electromagnetism to obtain the parameter information of the sample surface without contacting it.

Contact-detection methods include magnetic particle testing (MPT) and liquid penetration testing
(LPT). Although intuitive images can be quickly obtained via these methods, to do so is not practicable.
Non-contact methods include ultrasonic scanning, electromagnetic testing, etc., in which ultrasound
or electromagnetic signals are converted to optical signals. Results are not intuitive, but need to be
judged by professionals.

Visual detection based on image sensors stands out from the range of non-contact detection
technologies, because it is an effective combination of the high speed achieved with contact detection
methods and the independence of non-contact detection methods. The key feature is that it can be
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implemented by using only a universal computer and a dedicated image processor. Indeed, the number
of publications related to defect detection has grown rapidly over the past decade, which is a trend
that may be due to the rapid advance of computing capacity, the enhancement of sensor performance,
and the great improvement of image processing technology.

The basic components of a typical visual system are an image acquisition unit, an image processing
unit, and a control execution unit (Figure 1). The image acquisition unit is the component of the system
hardware, and its main task is to obtain high-quality images, since low-quality images lead to algorithm
burden. Excellent visual software can quickly and accurately detect the target features in the image and
minimize dependence on the system hardware. The sorting mechanism can adopt an electromechanical
system or hydraulic system, but the dynamic characteristics (i.e., rapidity and stability) of the system
are important. This paper focus on image acquisition and image processing units.

Figure 1. Visual inspection system. Note: CCD: Charge coupled devices; ROI: Region of interest.

With the maturity of the basic theory of image analysis, the development of the detection field
has advanced by leaps and bounds, and several reviews of defect detection have been undertaken.
Commercially available inspection equipment and visual inspection systems, as well as practical
applications of visual inspection, are summarized in Chin [8], Newman, [9]. Amongst recent literature
reviews, a large number of methods and techniques for the free surface detection of parts are studied in
Li [10]. Development trends of visual inspection are presented in article Shirvaikar [11], which mainly
focuses on the introduction of visual detection systems relating to hardware and software, but detailed
algorithm comparisons are not provided. Reviews of visual detection in the manufacture of textiles
Hanbay [12], food, and agriculture Jfs [13] have also contributed to the development of detection
technology. However, because the reflective properties of steel products (55–65%) [14] differ between
foods and fabrics, these testing methods are for reference only. Notably, a comprehensive review of
defect detection in steel surfaces has been conducted Neogi [15], and is a valuable article for researchers
in the field. However, the chronological distribution of the references in Neogi [15] suggests that it is
somewhat dated, with 13.82% of references from before 2000, 65.5% from 2001–2010, and 20.68% from
after 2010. In contrast, the chronological distribution of references in the present paper—10.41% from
prior to 2000, 37.5% from 2000–2010, and 52.08% from after 2010—indicates that it is more up-to-date
with the latest technological developments. Thus, it is intended that the present study provide a
supplement to Neogi [15].
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In Section 2, the types of steel products and common defects are presented, so as to understand
the complexity and diversity of visual detection. In Section 3, the hardware composition of inspection
systems is explained. Detection and classification methods are reviewed according to different theories
in Sections 4 and 5. In Section 6, a literature analysis is conducted, which includes not only an analysis
of detection technology, but also an analysis of the scale of the detection market. Conclusions and
further prospects are provided in Section 7.

2. Types of Defects in Steel Products

The wide variety of steel products can be roughly divided into two categories: flat products and
long products (Figure 2).

Figure 2. Types of steel products (reproduced from Neogi [15]).

Steel products have been identified as having 55 types of defects Neogi [15]; Figure 3 shows
some examples.

Rolled-in scale Patches Crazing Pitted surface Inclusion Scratches 

Figure 3. Examples of steel defects (reproduced from Song [16]).

The wide range of defects can be classified according to the general type of steel product as
follows in Table 1.
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Table 1. Common defect types of different steel products.

Steel Type Type of Defect References

Billet Cracks, scratches [17–21]

Hot strip

Cracks, longitudinal scratches,

[16,22–30]
transverse scratches, scales,

delamination, roll marks,
pit defects, seams, inclusions

Cold strip
Bruises, slags, inclusions, seams, oxide
scales, cracks, holes, feather roll marks, [31–43]

Latex marks

Stainless steel
Slag inclusions, scratches in pickling,

[44]scratches

Rod/bar Cracks, scratches [45–49]

Establishing a defect detection system is not easy. In order to create a reliable and repeatable test
system, produ ct manufacturers often need to work with test engineers to conduct qualitative and
quantitative analyses of potential defects. Defects can be roughly divided into three situations:

(1) In most cases, defects can be easily detected by using standard imaging tools. For example,
pinholes Liu [31] and certain impurities are usually round, and pixels that appear bright on an
image fall on a dark background, or vice versa, so are easily discernible.

(2) A slightly more complex situation is that the defect definition, including its size and shape,
are not very clear, but it can still be distinguished from the underlying background. This situation
mainly includes wear, or slender, low-contrast linear defects Yun [17]. Examples are scratches
Dupont [18] and cracks Choi [50] on products. These types of defects may require more advanced
imaging detection tools.

(3) The most complicated case is a defect in which its definition, size, and shape are not clear,
and there is no recognition mode, so that it is difficult to distinguish the defect from the underlying
background. This kind of situation mainly includes printing defects and some random medium
“impurities” which pose significant challenges to detection technology.

3. The Hardware Composition of the Inspection System

3.1. Camera

An industrial camera is at the core of the system hardware. The frame rate (the rate at which the
camera collects and transmits images) and resolution are two important parameters of the camera.
The frame rate must be greater than the detection speed; 10 fps is usually sufficient to meet industrial
requirements. The required resolution depends on the size of the features relative to the overall
image. For example, suppose the surface scratch of an object is detected, the size of the object to be
photographed is a × b mm, and the detection accuracy is 0.01 mm. Then, the minimum resolution
formula of the camera can be determined as:

(a/0.01)× (b/0.01) = Resolution (1)

Industrial cameras are divided into two types according to the differences of the image sensors:
charge coupled devices (CCD) and complementary metal oxide semiconductor devices (CMOS)
Koller [51]. The differences are as follows.

(1) Different imaging processes: A CCD utilizes a small number of output nodes to output data
uniformly, thereby ensuring good signal consistency. By contrast, each pixel in a CMOS chip has
its own signal amplifier, with charge conversion done separately, so output signal consistency
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is poorer and more greatly affected by signal noise than with a CCD. However, a significant
advantage of CMOS is low power consumption.

(2) Different integration: The CCD manufacturing process is complex, and the output of a CCD
consists only of an analog electrical signal, which requires a decoder, analog converter, and image
signal processor. As a result, a CCD has low integration. A CMOS, on the other hand, can collect
signals with an analog-to-digital converter on a chip with high integration and low cost. With the
advancement of CMOS imaging technology, CMOS will have greater applications in the future.

(3) Different image output speed: A CCD adopts photosensitive outputs sequentially, relatively
slowly. With a CMOS, each charge element has its own switch controller, and the readout speed
is very fast. Most high-speed cameras with a frame rate greater than 500 fps use CMOS.

(4) Different noise levels: CCD technology is mature, and the imaging quality is superior to that of
CMOS. CMOS has a higher degree of integration, a closer spacing distance, and more interference.

As part of so-called Industry 4.0, factories around the world are developing automation and
intelligence, in which smart sensors play an important role. The smart camera Lee [52] has
the functions of processor, memory, communication interface, operating system, etc., which can
process a large amount of data in advance and assist subsequent automatic detection and judgment.
Nguyen et al. [53] noted an ultra-high-speed silicon image sensor. The test chip of this image sensor
realizes a temporal resolution of 10 ns. For a silicon image sensor, the limit is 11.1 fps. Considering the
theoretical derivation, this high-speed image sensor can reach a frame rate near the theoretical limit.

3.2. Light Selection

Lighting devices will vary because of different operating environments. For hot rolled steel,
the strip itself is a luminous heating element. In order to reduce the interference of internal light sources,
the intensity of the light source should be much higher than that of the steel strip. Thus, the light
source can only have high-power, long-distance characteristics, so that it can provide high-intensity
light at a long distance. For the cold rolling environment, although the relative distance between the
light source and the steel strip is short, a more continuous light is needed to attenuate unstable infrared
light, in order to ensure the highest sensitivity of the lens to the visible light spectrum. Overall, high
strength, life span, design freedom, heat radiation, and response speed should be considered during
lighting arrangement.

At present, some classical light sources are optical fiber, LED (light-emitting diode) lights,
and stroboscopic xenon lamps. Among the latter, the strobe xenon lamp is mainly used in the
area array CCD detection system as shown in Figure 4a, since it can effectively deal with adverse
environmental conditions, such as fog Luo [22].

   
(a) (b) (c) 

Figure 4. (a) Stroboscopic xenon lamps; (b) Halogen lamps; (c) Light-emitting diode (LED) lamps.

An example of an optical fiber light source is the halogen lamp (Figure 4b), which is used in
conjunction with a color filter adapter. The output of light through the cylinder prism can avoid
overflow and increase light intensity by 10% Wu [54], which can result in an ideal performance if

334



Appl. Sci. 2018, 8, 2195

high-power halogen lamps are used in industrial sites. However, halogen lamps are not suitable for
hot-rolled steel in poor environments, and are mainly used in the testing environments of cold-rolled
steel and finished products because of their high price and susceptibility to damage.

LED lamps (Figure 4c) are a spontaneous radiation source. Spontaneous radiation is a process
in which an excited atom spontaneously transitions from a high-energy state to a low-energy state,
emitting a photon at the same time. LED lamps have the advantages of non-related light, no optical
resonator, long lifespan, and easy maintenance. However, the weaknesses of the lamps are their narrow
spectral range and that the wavelength is affected by the materials. The lifespan of LED lamps will also
shorten as the ambient temperature increases, so they are not suitable for high-temperature applications.
In addition, LEDs cannot be directly connected in parallel. Therefore, a method of a single-channel
serial multi-channel parallel connection method is used to form an array LED, which then forms a
light source through the prism. Owing to its low cost and long lifespan, LED light sources are usually
equipped with cooling devices for hot-rolled inspection.

3.3. Lighting Method Selection

In addition to the influence of the light source and CCD sensor on detection effects, the lighting
mode has a greater impact on the detection effect of steel products. Usually, lighting can be divided
into light and dark lighting.

The bright field lighting method is shown in Figure 5a. In this mode, the light source and the
CCD are on the same side of the strip. The light emitted by the light source enters the camera after
being reflected by the detection target. The reflection angle β is equal to the incident angle α, and the
line between the CCD sensor and the image of the light source must be on the same line as the
reflected light.

   
(a) Bright field (b) Dark field (c) Bright and dark field 

Figure 5. Lighting methods.

The reflected light is evenly distributed on each area of the CCD sensor when there is no defect
on the surface. However, reflected light at the defect position will change when a defect exists, and the
illuminance entering the CCD sensor will be weakened. Therefore, the reflection of light in the defect
area is altered for three-dimensional defects, and the illuminance of the defect position into the CCD
sensor is less than the background light entering the CCD sensor; that is to say, the defect image is
darker than the background image. As for two-dimensional defects, the reflection of the defect does
not change, but two-dimensional defects are usually of different shades. The light in the darker region
absorbs more light; therefore, the gray value of the defect image is higher than the background image
when the defect color is lighter than the surface color of the strip. Conversely, the grayscale value of
the defect image is lower than the background image when the color of defects is darker than the color
of non-detects.

Therefore, the use of bright field lighting can not only detect two-dimensional (2D) defects,
it can also detect three-dimensional (3D) defects. However, it is worth noting that the results will be
significantly affected if a large fluctuation of the steel strip leads to exceeding the range of the reflection
angle. Overall, the bright field method is more appropriate for detecting a type of defect that reflects
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and absorbs light, especially dark targets with a bright background, such as scales, oxide skins, pits,
water marks, etc.

In the dark field lighting method (Figure 5b), the light source and the CCD sensor are also on the
same side of the strip. In this case, the reflection angle β is not equal to the incident angle α, and the
line between the CCD sensor and the image of the light source is not on the same line as the reflected
light; therefore, it is difficult for light to enter the CCD sensor. Only when three-dimensional defects
exist on the strip surface will the defect change the reflective nature of the light into a diffuse reflection.
Then, the camera is able to collect some diffuse light, and the light from the defect position will be
stronger than from areas without a defect. In addition, the light source itself has a collection effect
of high-intensity light. Even if the incident angle is changed, it has little effect on the illumination of
reflected light on CCD sensors. As a result, the CCD can still effectively detect a surface defect when
the surface of the strip steel generates vibration. On the whole, the dark field lighting method is more
suitable for the type of defects that can emit diffuse reflected light on the surface of a bright steel plate,
and, in particular, bright targets with dark backgrounds, such as skins, pits, and indentations. There is
a certain degree of tolerance to the vibration of the detection point.

The bright and dark double field lighting mode (Figure 5c) addresses the problems of detection
of two-dimensional defects in dark field lighting and vibration at the detection point. However,
this method has a high requirement for a high-intensity concentrated light effect of the light source;
that is to say, the part of the dark field detection that is included will not be ideal if the concentrated
light effect is not strong.

Overall, the appropriate light source and lighting mode allow us to capture the features of the
object more accurately and improve the contrast between the object and the background. In this way,
high-quality images can be obtained, and good detection results can be achieved.

4. Detection Methods

The performance of the software algorithm directly determines the result of detection.
The detection task is arduous and challenging due to similarities between classes of defects and
diversity within the classes. Due to this, domestic and foreign scholars have conducted significant
research regarding steel inspection. Publications of the past 30 years can be classified according to
basic theories, as shown in Figure 6.

 

Figure 6. Classification map of steel surface defect detection methods.
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4.1. Statistics

The statistical method is to establish a mathematical model using probability theory and
mathematical statistics, which can be used to infer, predict, quantitatively analyze, and summarize
the spatial distribution data of pixels. As a result, it can provide a basis and reference for subsequent
decision-making. In the statistical method, the spatial distribution of gray values is defined with
various forms of characterization, such as mathematical morphology, the co-occurrence matrix,
histogram properties, and local binary models. These methods are widely used in the field of visual
inspection. Table 2 compares defect detection methods based on statistics.

Table 2. Strengths and weaknesses of statistical detection methods for steel defects.

Method Strengths Weaknesses

Mathematical morphology
Computational simplicity. Morphological operations are only

implemented on non-periodic
steel defects.

Geometric representation of texture images.

Highly suitable for random or natural textures.

Co-occurrence matrix
Extracting spatial relationship of pixels with
different statistical computations.

Difficult to judge the optimal
displacement vector.

High accuracy rate.

Histogram properties
Translation and rotation invariance. Low detection rate (50–70%) for

irregular textures.

Calculation is simple. Sensitive to noise.

Local binary pattern
Calculation is simple.

Too dependent on the gray value
of the center point pixel.Recognition ability is strong.

Rotation invariance and gray invariance.

4.1.1. Mathematical Morphology

Mathematical morphology is a subject of image analysis based on lattice theory and topology.
The basic operations include: corrosion and expansion, open and closed operations, skeleton extraction,
limit corrosion, hit-and-miss transformation, morphological gradient, top-hat transformation, particle
analysis, and watershed transformation. The cost matrix theory based on mathematical morphology,
combined with the K-nearest neighbor (KNN) classifier, has been shown to detect eight defects of flat
steel products in Dopont [18].

In Yun [19], Liu [23], Zheng [55], a genetic algorithm combined with mathematical morphology
was adopted to realize the defect detection of steel products. In particular, Liu [23] studied an
enhancement operator based on mathematical morphology (EOBMM), combined with a binarization
method based on genetic algorithm (BMBGA), which can effectively overcome the effects of
non-uniform illumination and enhance the detailed information of the image. A method using
mathematical morphology in combination with filtering methods was described in Wu [24]. There are
other, similar combinations; for example, mathematical morphology can be combined with the
curvelet transform or the Gabor transform. Mathematical morphology in conjunction with the curvelet
transform has been used for the detection of metallic surfaces Cord [56]. A morphological operation
combined with an optimized Gabor filter method was derived to address the problem of detection
performance decreasing due to billet shape, multiple defects, and scales Yun [57]. There are also studies
on morphological methods Nguyen [53], Wu [54]. .

4.1.2. Co-Occurrence Matrix

The spatial gray level co-occurrence matrix was first proposed by Haralick [58], and it is a popular
texture analysis method belonging to second-order statistics, which is defined by the joint probability
density of two positional pixels. Texture features derived from the co-occurrence matrix (energy,
entropy, contrast, uniformity, deficit moment, and correlation) have been used in various surface
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defects detection methods. The detection and classification of defects can be realized by extracting the
spatial features of a gray-level co-occurrence matrix (GLCM) in combination with a classifier Yu [32].

4.1.3. Histogram Properties

Image histograms are widely used in various fields of image processing, because they have
low computational cost and many other advantages, such as image translation, rotation, and scale
invariance, specifically in the fields of threshold segmentation of grayscale images, image retrieval,
and image classification based on color. There are many histogram statistics, four of which
(mean, standard deviation, variance, and median) are the most frequently used as texture features.
Liu et al. [59] performed a multivariate discriminant function based on a statistical histogram to model,
and used three statistical characteristics—the deviation (Dg), the mean (mg), and the variance (Vg)—to
represent the shape of a point. In Luo [22], they also adopted a method that selected a suitable
threshold based on the histogram to extract features. In Martins [33], a study of principal component
analysis combined with histogram statistics were presented.

4.1.4. Local Binary Pattern

The local binary pattern (LBP) is an operator that describes the local texture features of the
image with rotation invariance and grayscale invariance. It is worth mentioning that the application
of the LBP in classification recognition generally uses the statistical histogram of the LBP feature
spectrum as the feature vector rather than the LBP feature spectrum itself. In order to improve the
recognition rate, a new feature descriptor known as the adjacent evaluation completed local binary
pattern (AECLBP) was proposed by Song et al. [16] for hot-rolled steel strip detection. In a recent
study, an LBP operator with symbol and size, combined with a histogram and shape and distance
statistic features, were developed by Chu et al. [60]. On one hand, this method can solve multi-class
classification problems; on the other, it also has an anti-noise ability and high classification efficiency.
On the whole, the LBP method performs better than the co-occurrence matrix and filtering methods in
accurately detecting the surface texture defects of steel.

4.2. Methods Based on Filtering

Most of the methods discussed in this section have the common feature that they apply a filter
bank to an image to calculate the energy of the filter response. These methods can be divided into the
spatial domain, frequency domain, and joint spatial/frequency analysis methods. Table 3 compares
filtering-based detection methods.
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Table 3. Strengths and weaknesses of filtering-based detection methods for steel defects.

Name Strengths Weaknesses

Spatial domain A more centralized text-based approach (in which the segmentation of
the text file is separate from the image).

Difficult to determine the optimal
filter parameters.

High computation cost.

Frequency analysis

Spatial frequency spectrum is invariant to shift, rotation, and scaling. Lack ability of spatial orientation.

Suitable for the detection of global and local defects.
Not suitable for random
texture detection.FFT (Fast Fourier transform.) calculation time is short (600 pixels

with 2.2 ms).

Gabor Transform

Suitable for high dimensional feature space. Difficult to determine the optimal
filter parameters.An adaptive filter selection method is implemented to reduce the

computational complexity.
No rotation invariance.

Suitable for defect detection in airspace and frequency domain.

Wavelet transform
Suitable for multi-scale image analysis.

Easily to be affected by feature
correlations between the scales.High detection rate (83–97%).

Efficient image compression with less information loss.

Multiscale Geometric Analysis

Suitable for the optimal and sparse representation of
high-dimension data. Redundancy problem

(i.e., repeated data in a data set)
cannot be solved.Good at image processing of strong noise background.

Compression with less information.

4.2.1. Spatial Domain

Spatial filtering is an enhancement method based on neighborhood processing that directly
conducts operations in the two-dimensional space where the image is located. The most common
operation of spatial filtering is template arithmetic, and the basic idea is to use the value of a pixel
as a function of its own gray value and the gray value of its neighboring pixels. In spatial filtering,
the gradient filters are mainly used to detect edges, lines, and isolated points. Sobel, Robert, Canny,
Laplacian, and Deriche filters are popular tools for measuring edge density. Dupont et al. provided a
method that used the Prewitt filter to extract edge information and realize defects of sheet products [18].
Guo et al. [61] used the Sobel gradient edge detection operator combined with the Fisher discriminant
to detect defects on steel surfaces. Spatial filtering methods are also discussed in the literature [25,
34,35,45,46,62–64] for the defect detection of various steel products. For the optical properties of
highly reflective surfaces of cold-rolled strip, Zhao et al. [36] adopted a kind of homomorphic filtering
algorithm based on a partial differential equation (PDE). Recently, the application of filter banks has
been expressed in Bulnes [46], Liu [65], Li [47], and particularly in Li [47], which used mean filtering
combined with a local annular contrast (LAC) detection method, which led to better performance.

4.2.2. Frequency Analysis

To address the limitation of spatial filtering methods (i.e., the kernel cannot be found in the defect
image), the frequency domain analysis method was derived. This method firstly converts the image
into frequency domain signals using the Fourier transform, and secondly performs a filtering analysis
of the signals, and finally converts the signals back to the spatial domain to be stored by inverse Fourier
transform. Three articles [25,37,38] were published successively, outlining the methods of frequency
domain analysis for the defect detection of cold-rolled and hot-rolled steel. Among them, the method
proposed in Wu [25] is the most effective, with a detection rate of up to 92.68%. They proposed a
method of fast Fourier transform (FFT) combined with a local border search algorithm (LBSA) for the
detection of hot-rolled steel strips.

4.2.3. Joint Spatial/Frequency Analysis Methods

Gabor Transform

Since the Fourier transform lacks spatial localization ability, it has a poor performance in
practical applications. In order to solve this problem, the windowed Fourier transform was
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developed in 1946; this is known as the Gabor transform if the window function is a Gaussian
function. Yun et al. [19] applied a Gabor filter optimized by genetic algorithm (GA) for the detection
of corner cracking and thin cracking defects. Jeon et al. [66] adopted the Gabor filter to perform
edge-pair detection in order to reduce the influence of lighting conditions, with satisfactory effects.
D. Choi et al. [67] used a Gabor filter with morphological defect detection algorithms to detect pinholes
on the surface of the steel plate. Choi [50] employed Gabor filtering and dual-threshold segmentation
detection methods for the crack detection of steel plates. Among these methods, Choi [50] achieved
the best results, with a detection rate of up to 94.43%.

Wavelet Transform

The Gabor transform is not adaptive, because the sliding window function is fixed once selected.
On the contrary, the wavelet transform has a time-frequency window that can be adjusted; that is,
the width of the window changes with the frequency. Thus, it overcomes the limitation of the Gabor
transform. Wavelet transform was first put forward in 1974. The method was first used for defect
detection Kaya [44] in 1995, because of the poor performance in diagonal detection using traditional
edge-detection methods. Soon after, there were a lot of extensions of the method based on wavelet
transform, such as the snake projection wavelet algorithm Li [68], undecimated wavelet transform
algorithm [17], wavelet transform to obtain the approximate sub-image method Zhang [48], three-layer
Haar wavelet feature set method Ghorai [26], discrete wavelet transform combined with adaptive local
binarization method Yun [49], wavelet filtering in combination with center-surrounding difference
method Xu [69] and, recently, anisotropic diffusion filter based on wavelet transform method [31].
The characteristics of wavelet transform are presented incisively and vividly in a large number
of publications.

Multiscale Geometric Analysis

The excellent characteristics of wavelet transform in one-dimensional data analysis cannot be
simply extended to two-dimensional or multi-dimensional data, because it cannot make full use
of the unique geometric features of the data itself in the case of higher dimensions. Thus, it is not
the optimal or the sparsest method for function representation. The multi-scale geometric analysis
(MGA) method arose in response to the proper time and conditions, and typical representations of
multi-scale geometric analysis appeared. Ridgelet transform Candès [70], wedgelet Claypoole [71],
beamlet Donoho [72], curvelet Candès [73], bandelet Pennec [74], and contourlet Do [75] were
successively proposed.

Zhang [27] studied a new image fusion method using bandelet transform based on MGA. In this
method, a low-pass subband coefficient of a source image by bandelet transform is inputted into a
pulse-coupled neural network (PCNN), and the fused image can then be obtained through inverse
bandelet transform using the coefficient and geometric flow parameters. Ai et al. [20] applied the
curvelet transform to decompose the image combined with Fourier transform to extract features.
Xu et al. [76] explored a method of MGA based on the non-symmetry and anti-packing model (NAM).
This method can adaptively be applied to three types of steel products—continuous casting slabs,
hot-rolled steel, and cold-rolled steel—that cannot be assessed by the traditional method.

It can be seen from the theoretical development of signal analysis methods that Fourier analysis is
especially suitable for analyzing stable signals over a long period of time. The Gabor transform has its
own application, but its effect depends on the window function. Wavelet analysis is especially suitable
for analyzing mutated and singular signals. Multi-scale geometric analysis is suitable for the “sparse”
function representation of high-dimension data.
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4.3. Method Based on Model

4.3.1. Fractal Model (FM)

The fractal model (FM) was first derived by Mandelbrot [77] in 1983. Fractal dimension
and porosity are the most important metrics in a fractal model. The former is a measure of
complexity and irregularity, while the latter represents structural change or unevenness. In 2008,
Blackledge et al. [78] used a membership function to analyze the partial structure and fractal features of
images for extracting new information. Yazdchi et al. [79] researched a multifractal-based segmentation
method to locate defects, and then extracted 10 features, such as multi-dimensional fractal dimension,
variance, mean value, and maximum value in the principal component vector to achieve defect
detection. The method achieved accuracies of 97.9%.

4.3.2. Markov Random Field Model

One of the main uses of the Markov random field (MRF) model in image processing is image
segmentation, which is the technology and process of dividing the image into several specific and
unique regions and extracting the target of interest; hence, it is a key step between image processing
and image analysis.

In MRF, two random fields are often used to describe the image. One is the labeling field, which is
often called the implicit random field. The prior distribution is used to describe the local correlation of
the label field. The other is the grayscale field or feature field. The distribution function is often used
to describe the distribution of observation data or feature vectors under the condition of the labeling
field. The process of obtaining feature vectors is the process of detection.

Based on Bayesian theory, MRF turns the image segmentation problem into a process of obtaining
the maximum probability density. The formula is as follows:

P(W|S ) = P(S|W )P(W)

P(S)
(2)

where P(W), P(S), and P(S|W ) are the prior probability, fixed value based on the observed value,
and conditional probability distribution based on the observation S (also called the likelihood function),
respectively. Then, the problem is converted into finding the maximum value of P(S|W )P(W).
The Markov random field was used as a texture analysis method, which was combined with a KNN
classifier to achieve six kinds of steel surface defects detection, with classification rates of 79.36–91.36%
Ünsalan [80]. Table 4 shows the comparison of model-based detection methods.

Table 4. Strengths and weaknesses of model-based detection methods for steel defects.

Name Strengths Weaknesses

Fractal model (FM)
Remain invariant to large
geometric transformations and
lighting variations.

Low characteristic dimensions
lead to weak judgment.

Markov random field model

Can be used with statistical and
spectral methods for
segmentation applications.

Not invariant to rotation
and scaling.

Cannot detect small defects.

Not suitable for global
texture analysis.

Captures the local texture
orientation information. Strong spatial constraint.
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4.4. Method Based on Machine Learning

4.4.1. Artificial Neural Networks

Since 1980, artificial neural networks (ANN) have been a hotspot in the field of artificial
intelligence. ANN abstracts the human brain neural network from the perspective of information
processing to establish a simple model, and can then be used to form different networks
according to different connection modes to achieve various functions (Figure 7). As early as 2000,
Caleb [28] proposed an adaptive learning classification for surface defects of hot-rolled steel, and the
average percentage classification accuracy was 84% for training data and 64% for test data. Later,
an improved BP (Back propagation) algorithm based on error function was mentioned in Peng [39] to
conduct the surface quality inspection of cold-rolled strip. Zhao [81] came up with an improved BP
algorithm based on singular value decomposition and a generalized inverse matrix for five common
defects (cracks, oxide, skin, holes, and scratches) of steel plate, overcoming the slow training of the
traditional BP algorithm, with results showing that it could meet real-time requirements.

Figure 7. Artificial neural networks (ANN) model.

4.4.2. Convolutional Neural Network

Convolutional neural networks (CNNs) belong to a branch of ANN. As a network structure with
fewer layers, ANNs have limited representation ability for complex functions, and generalization ability
for complex classification problems is restricted to some extent. However, CNNs can realize complex
function approximation by learning a deep nonlinear network structure. The deep neural network (DNN)
has more layers (8–152 layers) than ANN, and needs more training data (4000–10,000 images).

An end-to-end detection network model was outlined in Yi [40]. Since the feature detection
layer of CNNs is learned by training data, explicit feature extraction is avoided when using CNNs,
while implicit learning is carried out from the training data. Moreover, since the weights of neurons
on the same feature mapping surface are the same, the network can learn in parallel. It is worth
mentioning that the detection accuracy is 99.29%. The CNN’s structure for surface defect recognition
model is presented in Table 5. In a recent study, Park et al. [82] employed CNNs to detect several
types of defects on textured and non-textured surfaces, which was difficult to achieve by traditional
machine learning methods. The recognition rate was 98%, and the time consumed for single image
recognition was 0.01135 s. Masci et al. [21] proposed a max-pooling convolutional neural network
method for the classification of steel defects. Compared with the commonly used support vector
machine (SVM) classifier for feature descriptor training, this method can not only obtain better
detection effects, it can also be directly used to detect the original image and segmentation defects,
avoiding further time consumption and difficulty in optimizing adaptive preprocessing. However,
changes in image size in a particular classification task have not yet been addressed by standard CNNs;
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nevertheless Masci et al. [41] put forward the multi-scale pyramidal pooling network, which had three
characteristics: (1) a pyramidal pooling layer that made the net independent of input image size;
(2) multi-scale feature extraction; and, (3) an encoding layer emulating standard dictionary-based
encoding strategies. Hence, the problem of image scale in traditional CNNs was solved.

Table 5. Convolutional neural networks (CNNs) structure for surface defect recognition model
(reproduced from Yi [40]).

Layer Type Filter Size Volume Size

Input N/A (3,144,144)
Convolution (5,5) (32,140,140)
Max pooling (2,2) (32,70,70)
Convolution (5,5) (32,66,66)
Max pooling (2,2) (32,33,33)
Convolution (4.4) (64,30,30)
Max pooling (2,2) (64,15,15)
Convolution (4,4) (64,12,12)
Max pooling (2,2) (64,6,6)
Convolution (3,3) (128,4,4)
Max pooling (2,2) (128,2,2)

Fully connected N/A (256)
Fully connected N/A (512)

Softmax N/A (7)

4.4.3. Moving Center Hypersphere

The moving center hypersphere (MCH) is a way to compress a reference sample. The basic idea
of the MCH is to use a hypersphere to represent a cluster of points to approximate each sample with a
number of hyperspheres. The center of the hypersphere is then moved, and its radius is expanded
so that it should contain as many sample points as possible, and ultimately contain all of the sample
points in the space. Two recent articles fully illustrate the novelty of this method. In 2017, a method
with quantile hypersphere based on machine learning (QH-ML) was employed in Chu [83] for six
kinds of defects on a steel surface. Soon after, in 2018, a defect classification model was established
in Gong [84], which was a multi-hypersphere support vector machine (MHSVM) with additional
information. It is not hard to see that this method has good generalization ability.

4.4.4. Sparse Coding

A sparse coding algorithm is an unsupervised learning method. The purpose of the sparse coding
algorithm is to find a set of overcomplete base vectors ϕ, so that we can represent the input vector x as
a linear combination of these base vectors:

x =
k

∑
i=1

aiφi (3)

where a is the weight. In reference Liu [85], the method of sparse coding was adopted to achieve defect
detection. Table 6 shows the comparison of defect detection methods based on machine learning.

Table 6. Strengths and weaknesses of machine learning-based detection methods for steel defects.

Name Strengths Weaknesses

Artificial neural networks

Real-time performance suitable for
industrial application.

Large-scale feature vectors lead to
high calculation cost.

Can learn complex nonlinear
input-output relationships.

Need lots of data
(100–4000 images).
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Table 6. Cont.

Name Strengths Weaknesses

Convolutional neural network

End-to-end mode (raw image
input, classification
results output).

Large data sets are required
(4000–10,000 images).

High detection rate (95–100%).

Moving center hypersphere
Not sensitive to noise.

Optimal choice of parameters
is difficult.High classification accuracy and

efficiency (93–96%).

Sparse coding
Can be used not only in the input
phase, but also in the
output phase.

The calculation time is too long
(more than 45.6 s [85]) to allow
real-time detection.

5. Classifier

The overall framework of the classifier is shown in Figure 8. There are two types of classifiers that
are commonly used: supervised and unsupervised. The supervised classifier is a method of pattern
recognition that is based on the samples provided by known training areas to find the characteristic
parameters as decision rules, and then to establish the discriminant function to classify unknown
sample images. The unsupervised classifier is an image classification method without a priori category
standard, which is based on the characteristic differences of different image categories in the feature
space. Based on the cluster theory, the decision rule of classification is established according to the
statistical characteristics of the samples, and the classification is then presented.

 

Figure 8. Kinds of classifiers. Note. KNN: K-nearest neighbor, ANN: artificial neural network,
SVM: support vector machine.

5.1. Supervised Classifier

5.1.1. K-Nearest Neighbor (KNN)

The KNN method is uses the following steps. First, it extracts the characteristics of new data,
and compares them with each data feature in the test set. Then, it extracts the nearest K data point’s
feature labels from the test set. Finally, the most frequently occurring category of the nearest K data
points is counted as the category of the new data.

The KNN algorithm is the simplest and most effective classification algorithm; it is simple and
easy to implement. When the training data set is large, a large amount of storage space is required,
and the distance between the samples to be measured and all of the samples in the training data set
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needs to be calculated, so it is very time-consuming, and time complexity is O(n) (which is a level of
time complexity).

Ünsalan et al. [80] developed a texture analysis method combined with the K-nearest neighbor
classifier to achieve satisfactory recognition accuracy; however, the method could not meet
real-time requirements.

5.1.2. Artificial Neural Network

Artificial neural networks are free of the restrictions of early discrete transfer functions, and use
continuous functions, such as sigmoid or hyperbolic tangent functions, to imitate the response of
the neuron to excitation. The training process adopts the back propagation algorithm. The ANN
resolves matters that could not be simulated or solved with logic problems before. Further, more
layers allow the network to implement complex situations in practice. Moreover, this method can
automatically construct nonlinear features, so it can be used to solve the problem of nonlinear
partitions. Examples of practical applications include Martins [33], Wu [37], Kang [42], Tang [62],
Li [68], Yazdchi [79], Yazdchi [86], among which Yazdchi [86] employed a three-layer feed forward
neural network, with training by the error back-propagation method. Classification accuracy reached
97.89%. The publication of literatures using this classifier was mostly concentrated in 2000–2010,
and its status in the mainstream has been gradually replaced since 2010.

5.1.3. Support Vector Machine

Since neural network training requires a large number of samples and there are multiple local
optimums, the expression ability of shallow neural networks for feature learning is limited. However,
there are many parameters in deep neural networks, which may lead to an overfitting problem.
Support vector machines (SVMs) can overcome this problem. SVMs have the following advantages
over neural networks (ANNs): (1) their cost function is convex, and there is a global optimal value;
(2) they are able to cope with small sample sets; (3) they have good generalization performance and
robustness; (4) the introduction of a kernel function solves the nonlinear problem; and, (5) they can
also avoid the dimension disaster. In Neogi [87], Yu [32], Song [16], Chu [60], Wu [25], Liu [65], Jia [88],
Zhao [36], Ghorai [26], Choi [43], Agarwal [29], the excellent performance of support vector machines
is demonstrated. We found that there has been a large amount of literature based on support vector
machine classifiers since 2010.

5.1.4. Discriminant Function (DF)

Pattern classification using discriminant functions not only depends on the geometric properties
of the discriminant function (i.e., linear and nonlinear functions), it also depends on the coefficients of
the discriminant function. As long as the samples that are being studied are separable, the coefficients
of the discriminant function can be determined using a given set of samples [56,59].

5.1.5. Fuzzy Logic (FL)

Fuzzy logic based on the concept of a membership function makes use of fuzzy sets and fuzzy
reasoning rules, and can represent transitional boundaries or qualitative knowledge experience.
Therefore, fuzzy logic is good at expressing qualitative knowledge and experience with unclear
boundaries. For example, an information extraction technique based on fuzzy logic and membership
function theory to design decision rules is discussed in Blackledge [78].

5.1.6. Learning Vector Quantizer (LVQ)

The learning vector quantizer (LVQ) is a kind of supervised learning algorithm for pattern
classification that was put forward in 1988, which is an extension of the unsupervised self-organizing
map (SOM) algorithm. The basic idea of LVQ is to use a small number of weight vectors representing
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the topology of the data. Compared with the unsupervised self-organizing neural network algorithm,
the LVQ algorithm has a wider application in the field of pattern recognition because of the introduction
of supervised signals during the process of updating weight vectors. Olsson et al. [89] developed a
statistical feature extraction technology combined with an LVQ classifier to complete defect inspection.
Subsequently, Wu et al. [30] employed an FFT-based extraction feature combined with the LVQ
classifier for the detection of surface defects in hot-rolled strips.

5.2. Unsupervised Classifier

The self-organizing map (SOM) is an important type of neural network based on unsupervised
learning methods that was first put forward in 1981. Since then, with the rapid development of neural
networks in the mid to late 1980s, self-organizing map theory and its applications have also made
considerable progress. The self-organizing map network conducts classification by finding the optimal
set of reference vectors. Compared with the traditional pattern clustering method, the clustering center
can be mapped to a surface or a plane while keeping the topology unchanged. Hence, the problem of
discriminating unknown cluster centers can be solved by using self-organizing maps. For example,
in Kang [42], the authors researched an adaptive classification technique based on a combination of
supervised learning neural network with error back-propagation (NN-BP) and unsupervised learning
(SOM).

Table 7 shows the performance comparison of classification methods for steel defects recognition.

Table 7. Strengths and weaknesses of classifiers for steel defect recognition.

Name of Classifier Strengths Weaknesses

Supervised classifier

KNN
The algorithm is simple, clear,
and easy to achieve.

Time consuming (time complexity
is O(n)).

Not suitable for the unbalanced
distribution of samples.

ANN
Suitable for nonlinear
separable problems.

Too many layers (i.e., more than eight
layers) make it prone to overfitting.

High classification accuracy.

SVM

Suitable for small sample sets.
Difficult to find the kernel function.

Good generalization
performance and robustness.

Solving quadratic programming of
functions requires a lot of storage space.

Suitable for nonlinear problems.

Suitable for high-
dimensional situations.

DF
Suitable for
multi-class classification. Difficult to determine the coefficients

of functions.
Accurate and efficient.

FL

Suitable for expressing
qualitative knowledge and
experience in cases of
unclear boundaries.

Poor classification accuracy (60%–85%).

LVQ
Simple structure. Input of heterogeneous samples will

prevent convergence of weight vectors.

Adaptive ability. Information of each dimension of the
input sample is not fully utilized.

Unsupervised classifier SOM

Suitable for identifying
unknown cluster centers. “Dead nodes” can appear when the

number of neuron nodes is more than
the number of categories.

Fault tolerant function.

Self-associative function.

Note: KNN: K-nearest neighbor, ANN: Artificial neural network, SVM: Support vector machine, DF: Discriminant
function, FL: Fuzzy logic, LVQ: Learning vector quantizer, SOM: Self-organizing map.
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6. Analysis

The following is an analysis of visual detection from the perspective of scientific literature to the
perspective of market size.

6.1. Literature Analysis

From the review of detection methods, we can see that a large number of publications over the
past 30 years have been related to statistics and filtering methods, as shown in Figure 9.

From the point of development trends, both statistical methods and filtering methods have shown
a significant downward trend since 2010, while the discussion of learning-based methods has steadily
improved. This has much to do with the upsurge of deep learning in recent years. Model-based
detection methods have always been out of the mainstream.

Figure 9. Distribution map detection method.

A detailed analysis of filtering methods is provided in Figure 10, because these methods have
attracted much attention. From the 36 papers collected (relating to space filtering and frequency
domains), it can be seen that although the best method of defect detection cannot be determined, it is
clear that the joint spatial/frequency analysis methods (i.e., Gabor transform, wavelet transform,
and MGA) have increased since 2010, which shows that these methods have been increasingly
recognized by a majority of researchers.

Figure 10. Distribution of filtering detection methods.
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In terms of classification methods, supervised classification methods have always dominated
compared to unsupervised classification methods. As the knowledge set of defect models is imperfect,
the supervised classification method is preferred if prior knowledge is available, since this method can
achieve superior results.

Support vector machines and neural networks based on back propagation (NN-BP) are the
mainstream supervised classification methods.

It can be seen from the Figure 11 that the NN-BP method was a classifier that was commonly
discussed in the literature prior to 2010, and that the frequency of discussion of SVMs has increased
sharply since 2010.

Figure 11. Distribution of classification methods.

6.2. Market Size Analysis of Visual Inspection

In 2017, the size of the global machine vision market was about USD $7.2 billion, growing 6.8%
year-on-year. The market size is expected to be USD $7.7 billion in 2018, and could break through
USD $9 billion in 2021, with an expected average annual compound growth rate of around 7.5% for
2018–2021. Germany and the United States are the world’s two largest national machine vision markets,
accounting for more than 30% of the worldwide market in 2017. China’s machine vision industry has
emerged since 2010, and is now in a period of rapid development. China’s market size in 2017 was
CNY ¥2.9 billion (about USD $42.64 million), accounting for 6.41% of the global market, and up 18.3%
year-on-year. With the deepening of automation and the intellectualization of various industries, it is
estimated that the average annual growth rate of China’s machine vision market will be around 20%
in 2018–2021, which was higher than the global average growth rate, as shown in Figure 12 [90].

The world’s major machine vision manufacturers include Keenshi, Konrad, Darsa, Panasonic,
and Omron. In 2016, their combined market share was about 38.0%. Typical Chinese enterprises are
Daheng, New Epoch Technology, and Shenzhen JT Automation Equipment, which are less competitive
compared with international well-known players, and each made up less than 1.5% of the global
market in 2016.

At present, Chinese machine vision products are mainly used in semiconductor, electronic
manufacturing, automobile, and other fields. The demand for machine vision in these fields accounted
for nearly 60% of total demand in 2017.
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Figure 12. China machine vision market size.

7. Conclusions

In this paper, studies of software and hardware for visual detection from 90 papers are reviewed.
The discussion of hardware includes coverage of cameras, light sources, and lighting modes,
and a basis of selection is provided. In the software discussion, detection methods are divided into the
categories of statistics, filtering, models, and machine learning according to basic theories of image
processing. Classification methods are divided into supervised and unsupervised learning. The main
ideas, advantages, and disadvantages of these methods are discussed, which can help users choose the
most appropriate methods for different application environments.

Recommendations relating to the key technologies of visual detection, cameras, light sources,
and image-processing algorithms can be summarized as follows:

1. The linear array camera is an inevitable choice for the selection of industrial cameras, because
area-array cameras cannot achieve the resolution and frame rate required in conditions of high
detection accuracy and fast motion. The frame rate of the camera must be greater than the
speed of the object. Therefore, large frame rate, small pixel size line array cameras have good
development prospects.

2. LED light sources have good color performance, a wide spectrum range (i.e., they can cover the whole
range of visible light), high luminous intensity, and a long period of stability. As their manufacturing
processes and technology matures, and prices fall, LED lamps will be used more widely.

3. It is difficult to select one kind of detection algorithm to meet the range of needs of accurate
detection for multiple types of unbalanced defects; therefore, the fusion of multiple technologies
is an expected trend.

4. The conventional detection process starts with feature extraction, followed by classification and a
result output. The feature extraction process adopts artificial design features, and is tedious and
complicated. However, the end-to-end approach combines feature extraction and the classification
process into one body through deep learning neural networks, and features are extracted
automatically through the learning of training sets (Figure 13), as seen in Yi [40], Park [82],
Masci [21]. This method is simple and achieves high detection accuracy. Moreover, it can be
readily generalized. However, its biggest disadvantage is that it needs a large number of training
images, with specific needs of training sets (e.g., the training set must cover sufficient defect
types); otherwise, detection results are not ideal. The excellent performance of convolutional
networks based on deep learning in the field of image processing makes it inevitable that it will
be developed further in the future. The convolutional neural network algorithm with small and
zero samples will be the focus of future research in the field of visual detection.

5. For industrial applications, it is important that real-time performance meets production
requirements. However, detection accuracy depends on the complexity of the deep network,
while the complexity of the network can restrict the production process. Therefore, it is a direction
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of future efforts to find a balance between algorithm complexity, detection accuracy, and time
taken for detection.

6. A well-recognized standard data set and a good communication protocol for experimental data
is required for the detection of defects on steel surfaces. Only in this way can fair, comparative
analysis be realized.

Figure 13. Two models of image processing.

In addition, our future work will pay attention to research progress on the detection of surface
defects of steel products based on image processing in order to continuously enrich and update the
relevant literature review.
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Featured Application: The application of this research aims to provide clinicians with a robust

deep learning model for fine-grain segmentation of tissues in medical images, and therefore to

provide accurate quantitative information of intervertebral discs in magnetic resonance spine

images, which can be useful for diagnosis, surgical planning, and treatment monitoring.

Abstract: We propose a new deep learning network capable of successfully segmenting intervertebral
discs and their complex boundaries from magnetic resonance (MR) spine images. The existing
U-network (U-net) is known to perform well in various segmentation tasks in medical images;
however, its performance with respect to details of segmentation such as boundaries is limited
by the structural limitations of a max-pooling layer that plays a key role in feature extraction
process in the U-net. We designed a modified convolutional and pooling layer scheme and applied
a cascaded learning method to overcome these structural limitations of the max-pooling layer of
a conventional U-net. The proposed network achieved 3% higher Dice similarity coefficient (DSC)
than conventional U-net for intervertebral disc segmentation (89.44% vs. 86.44%, respectively;
p < 0.001). For intervertebral disc boundary segmentation, the proposed network achieved 10.46%
higher DSC than conventional U-net (54.62% vs. 44.16%, respectively; p < 0.001).

Keywords: intervertebral disc; segmentation; convolutional neural network; fine grain segmentation;
U-net; deep learning; magnetic resonance image; lumbar spine

1. Introduction

Low back pain is a common disease in modern society. It can be caused by disorders of
lumbar components such as an intervertebral disc, paraspinal muscle, and vertebral body. Therefore,
it is important to examine the specific components of the lumbar spine for accurate diagnosis and
treatment. Assessment of the intervertebral disc is particularly important since its shape is liable to
physiological (age-related) and pathological changes [1,2]. Magnetic resonance (MR) imaging is a very
effective non-invasive imaging modality for obtaining such information. However, segmentation of
intervertebral discs in MR spine images is typically challenging for the following reasons: (1) object
shapes are deformed and rotated; (2) the contrast between an object and its surroundings can be very
low, which renders the boundary unclear; (3) the intensity within an object is not uniform.

Appl. Sci. 2018, 8, 1656; doi:10.3390/app8091656 www.mdpi.com/journal/applsci355
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Segmentation of intervertebral discs in MR spine images has been extensively studied.
Ayed et al. [3] studied the application of graph-cut method for intervertebral disc segmentation and
Michopoulou et al. [4] sought to detect and segment intervertebral discs using atlas-based and fuzzy
clustering methods. Law et al. [5] proposed a detection and segmentation method for intervertebral discs
using anisotropic oriented flux, while Rabia et al. [6] proposed a 3D intervertebral disc segmentation
algorithm using a simplex active surface model using weak shape prior. However, performance of
these conventional methods, which depend on mathematical algorithms with hand-crafted features,
is limited by the challenges mentioned above.

Recent years have witnessed remarkable advances in the field of machine learning, especially with
the use of deep-learning techniques. Convolutional neural networks (CNNs) effectively extract image
features and perform effective classification based on these features. Several intelligent techniques,
such as computer aided diagnoses that employ CNNs, have been reported in the field of medical
imaging [7]. Ji et al. [8] attempted segmentation of intervertebral discs in MR spine images using
a classification network by splitting the entire image into small patches.

The most common and effective CNN in medical image segmentation is the U-network (U-net)
proposed by Ronneberger et al. [9]. As shown in Figure 1, a U-net is composed of an encoding part and
a decoding part. The encoding part of conventional U-net is composed of convolutional layers and
pooling layers and the decoding part is composed of convolutional layers and up-convolutional layers.
Conventional U-net performs efficient feature extraction and segmentation using a large receptive
field obtained through this structure [8]. However, since conventional U-net is based on feature
extraction network for image classification, information pertaining to fine details of the image may
disappear during the pooling process in the encoding part. For example, max-pooling layers, which is
commonly used in U-nets, retains a pixel with the largest value among the neighboring four pixels
and removes the information of the other pixels. Therefore, the pooling layer helps to efficiently detect
the dominant information representing image characteristics, albeit with a loss of detailed information.
The missing detail is not restored during up-convolutional layers. A skip connection can be added
to this network to overcome this problem; however, it cannot completely recover the finer details.
As a result, low-frequency information of the image is generally emphasized [10,11]. Figure 2 displays
a comparison between the results of the conventional U-net segmentation and manually segmented
labels. Dice similarity coefficient (DSC) [12] of segmentation for a whole area of intervertebral discs
is 87.49%, while the DSC at the boundaries of the discs is as low as 40.87%. This suggests that it is
difficult to achieve fine grain segmentation with conventional U-net and it may lead to unsatisfactory
results for complex objects, such as intervertebral discs.

Dilated convolution is a way to overcome this limitation. Dilated convolution uses filters of
various sizes with various rates. It allows users to control the resolution in the feature extraction
process and to enlarge the field of view (FOV) without increasing parameter and cost [13,14].

In this paper, we propose a new network which can effectively perform fine grain segmentation
for intervertebral discs. In our proposed network, pooling layers are modified to compensate for
the aforementioned drawbacks. Convolutional layers and network structure are also improved to
maximize the efficiency of the overall segmentation network. A preliminary study of this method was
partially presented at the annual meeting of International Society for Magnetic Resonance in Medicine
(ISMRM) in 2018 [15].
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Figure 1. Structure of conventional U-network (U-net).

 

Figure 2. Intervertebral disc segmentation results from the conventional U-net. Blue areas are the
results from the conventional U-net and red areas are manually segmented labels. Red lines are the
boundaries of the labels.

2. Materials and Methods

2.1. Network Design: Boundary Specific U-Network (BSU-Net)

The purpose of this paper is to design a new network architecture based on U-nets, which can
overcome the problems encountered in the detailed segmentation tasks. Hence, we propose a boundary
specific U-network (BSU-net). The proposed network has a complex form of pooling layers and
convolutional layers which are referred to as BSU-pooling layers and residual blocks respectively,
and has a cascaded structure that uses preliminary outcomes of conventional U-net for efficient
network learning. A schematic illustration of BSU-net is shown in Figure 3.
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Figure 3. Whole structure of the proposed network. (a) Structure of the boundary specific U-network
(BSU-net). (b) Structure of residual block. (c) Structure of BSU-pooling layer.

2.1.1. BSU-Pooling Layer

BSU-net has three components. The first is the advanced pooling process. Conventional
max-pooling layer used in conventional U-net discards rest of the pixels in a calculation field except for
one pixel with maximum value. This process contributes to the efficiency of feature extraction; however,
the loss of the information contained in the discarded pixels during the pooling process results in
an inaccurate estimation of boundaries of target object in detailed segmentation tasks. Therefore,
there is a need for an advanced pooling layer scheme that can minimize the loss of information while
increasing the efficiency of feature extraction. The proposed BSU-pooling layer shown in Figure 3c
uses both a max-pooling layer that increases the efficiency of feature extraction and convolutional
layers that compute the neighboring information without discarding it. In this case, the stride of the
convolutional layers is set to 2, so that down-sampling effect as in the max-pooling layer is possible.
Furthermore, the inputs of the layer are preserved through multiple paths: a path passing through
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3 × 3 convolutional layer and a path passing through 1 × 1 convolutional layer and another subsequent
3 × 3 convolutional layer (Figure 3c).

2.1.2. Residual Block

The second component of BSU-net is the application of residual learning. Residual learning
is applied to improve the efficiency of the convolutional layer. Conventional U-net is a very
deep neural network with a large number of convolutional layers. Conventional U-net used
in this study has a total of 38 convolutional layers and 62,803,650 learning parameters. Use of
such a large number of consecutive convolutional layers can lead to the problem of gradient
vanishing, which can degrade learning efficiency. The concept of residual learning was introduced
to solve this problem [16]. Suppose we have a simple network H which is a part of a certain
deep neural network. When H consists of two convolutional layers Fn and Fn+1 and activation
functions σ as shown in Figure 4a, output for the network with an input vector x is defined as
H(x) = σn+1(Fn+1(σn(Fn(x)))), x ∈ Rw×h×c where w, h, and c, respectively, denote the width,
height, and the number of channels. During back propagation, gradient vanishing can occur if
the weights of Fn or Fn+1 are close to zero [16]. But if we change the network output H(x) to H(x)− x,
gradient vanishing is avoided. The changed network S is defined as S(x) = H(x)− x and is also
expressed as H(x) = S(x) + x. H is converted to S with “shortcut connection” between input and
output as shown in Figure 4b. In this case, gradient vanishing rarely occurs because 1 is added to
∂S(x)

∂x . This change improves learning efficiency and allows the network to respond appropriately to
small changes in input [16]. Residual block embeds this residual learning in BSU-net as displayed
in Figure 3b. The first 1 × 1 convolutional layer immediately after the input is arranged to match
filter size.

Figure 4. Introduction of residual learning. (a) Conventional neural network layers. (b) A learning
network of residual function S .

2.1.3. Cascaded Network

Several studies have revealed that cascaded learning of networks improves learning efficiency and
network performance [17–19]. It is an efficient way to improve performance of an entire network to
provide outcomes from other networks or to combine outcomes from multiple networks like ensemble
networks [20–22]. As shown in Figure 3a, conventional U-net outcomes are used to guide the learning
of the entire BSU-net. This augments overall segmentation and fine grain segmentation and results in
improved overall performance of the network.
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2.2. Experimental Materials

The dataset used in the experiments comprised of 3D MR spine images of 20 patients sourced
from Spineweb dataset 10 [23,24]. Among this dataset, the images used in actual experiments are 1 to
3 mid-sagittal images per patient, totaling 25. The pixel size of images is 1.5 × 1.5 mm. Label data were
made manually by a spine MR researcher and reviewed by a radiologist with an experience of more
than 10 years. The experiments were implemented using 5-fold cross validation and each experiment
had 5 test images and 20 training images. For fair validation of the network, all images from a single
patient were used exclusively for either training or test.

The segmentation accuracy was evaluated using a DSC [12], and to assess the accuracy of
measurement of fine details the evaluation was divided into the following three parts: (1) whole area;
(2) boundary area; (3) boundary area with 2 pixels’ thickness. The first part evaluates segmentation
accuracy of the entire area of intervertebral discs. The second and third parts evaluate the accuracy of
the boundaries of the intervertebral discs whose boundary thickness was defined as 1 pixel and 2 pixels,
respectively. A modified Hausdorff distance (MHD) was also used to evaluate the segmentation
accuracy [25]. Smaller MHD indicates the better segmentation performance. Paired t-test [26] was
used to compare the results for three types of measurements; p-values below 0.05 were considered
statistically significant.

Conventional U-net and dilated U-net were compared with BSU-net. Dilated U-net is a network
in which dilated convolution is applied to conventional U-net. In the structure of dilated U-net used
in this study, max-pooling layers used in conventional U-net are replaced with convolutional layers
with stride 2, and dilated convolution blocks are placed before each convolutional layer with stride 2.
Dilated convolution blocks are composed of three concatenated dilated convolutional layers whose
rate is 1, 2, and 3 respectively, and a convolutional layer placed after them. Activation function
(rectified linear unit (ReLU)) and batch normalization were used after each convolutional or dilated
convolutional layer.

The proposed network and all the neural networks used in our experiments were trained and
tested using Google tensorflow library based on python 2.7 (Google, Mountain View, CA, USA) [27].
The computing hardware used in the experiments were as follows: GPU, NVIDIA GeForce GTX 1080
(NVIDIA Corp., Santa Clara, CA, USA); CPU, 3.60 GHz Octa core (Xeon, Intel, Santa Clara, CA, USA);
Memory, 32 GB. Hyper parameters applied to the experiments were as follows: Learning rate was 10−3,
total training epoch was 200, and optimizer was Adam. All images used as input for the networks
were resized to 256 × 256 size matrix and normalized to values between 0 and 1.

3. Results

As shown in Table 1, both dilated U-net and BSU-net showed better results than conventional
U-net in all DSC measurements. Furthermore, BSU-net showed better results than dilated U-net.
As observed from these common trends, application of cascaded learning, BSU-pooling, and residual
learning improved segmentation performance. In DSC measurement 1 (whole area segmentation),
dilated U-net showed 2.02% higher DSC than conventional U-net and BSU-net showed a 3.00% higher
DSC than conventional U-net. In DSC measurement 2 (boundary segmentation, thickness = 1 pixel),
dilated U-net showed 8.29% higher DSC than conventional U-net and BSU-net showed 10.45% higher
DSC than conventional U-net. In DSC measurement 3 (boundary segmentation, thickness = 2 pixels),
dilated U-net showed 5.66% higher DSC than conventional U-net and BSU-net showed 7.34% higher
DSC than conventional U-net. MHD results for three different networks showed similar trends (Table 2).
Dilated U-net showed 0.03 mm lower MHD than conventional U-net and BSU-net showed 0.08 mm
lower MHD than conventional U-net. Figure 5 compares the distributions of results according to
the three DSC measurements and MHD measurement. In three DSC measurements, dilated U-net
and BSU-net showed significant improvement in performance over conventional U-net. In DSC
measurement 1, dilated U-net showed significantly increased DSC compared to conventional U-net
(p < 0.01) and BSU-net showed significantly higher DSC compared to conventional U-net (p < 0.001).
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In DSC measurements 2 and 3, both dilated U-net and BSU-net showed significantly higher DSC than
conventional U-net (p < 0.001) On the other hand, in MHD measurement, dilated U-net showed no
statistical difference compared to conventional U-net (p > 0.05), while BSU-net showed statistically
significant MHD compared to conventional U-net (p < 0.05). Figure 6 shows the comparisons between
three networks. It is noticeable that under-segmented area in the boundaries of intervertebral discs
decreased in order of Figure 6b–d and correctly segmented area increased in order of Figure 6b–d.
This indicates that BSU-net segmented more accurately than the other two networks.

Table 1. Dice similarity coefficient (DSC) measurements for the three different models. Accuracy for
boundary area is very limited.

Mean (%) SD (%)

Whole area segmentation
U-net 86.44 2.24

Dilated U-net 88.46 2.63
BSU-net 89.44 2.14

Boundary segmentation
(thickness = 1 pixel)

U-net 44.16 4.18
Dilated U-net 52.45 4.08

BSU-net 54.62 4.59

Boundary segmentation
(thickness = 2 pixels)

U-net 67.51 3.59
Dilated U-net 73.17 3.70

BSU-net 74.85 3.20

Table 2. Modified Hausdorff distance (MHD) measurements for the three different models.

Mean (mm) SD (mm)

U-net 0.89 0.14
Dilated U-net 0.86 0.14

BSU-net 0.81 0.10

Figure 5. Segmentation results of networks. (a) Dice coefficients for whole area of intervertebral discs.
(b) Dice coefficients of the boundaries of intervertebral discs whose thickness is defined as 1 pixel.
(c) Dice coefficients of the boundaries of intervertebral discs whose thickness is defined as 2 pixels.
(d) MHDs of intervertebral discs. A paired t-test was performed to calculate p-values. * denotes p < 0.05,
** denotes p < 0.01, *** denotes p < 0.001, and n.s. denotes not significant (p > 0.05).

BSU-net has three components: BSU-pooling layer, residual block, and cascaded network. Table 3
shows the results of five different networks including U-net, BSU-net and three different networks
applying several BSU-net components (BSU-pooling layer, BSU-pooling layer and residual block,
and cascaded learning network). When pooling layers of U-net were replaced with BSU-pooling
layers, the results of three DSC measurements and MHD measurement were improved compared to
conventional U-net. The applications of residual blocks and BSU-pooling layers (i.e., BSU-layers) to
U-net improved the results of all DSC measurements compared to conventional U-net while there was
little increasement of MHD result. Cascaded U-net has a similar structure to BSU-net, but conventional
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convolutional layers and pooling layers are used instead of BSU-layers. Cascaded U-net showed
higher DSC and smaller MHD compared to conventional U-net. The application of each component
improved the segmentation performance in most cases.

Figure 6. Segmentation result from networks. Brown area, yellow area, and blue area denote correctly
segmented area, under-segmented area, and over segmented area, respectively. (a) Input image.
(b) U-net result. (c) Dilated U-net result. (d) BSU-net result.

Table 3. DSC and MHD measurements for five different networks including conventional U-net,
BSU-net and three different networks applying several components of BSU-net.

DSC (%)
MHD (mm)

Measurement 1 Measurement 2 Measurement 3

Conventional U-net 86.44 ± 2.24 44.16 ± 4.18 67.51 ± 3.59 0.89 ± 0.14
U-net + BSU-pooling layer 87.30 ± 3.16 50.68 ± 5.50 71.68 ± 4.76 0.88 ± 0.14

U-net + BSU-layer 87.19 ± 2.67 51.88 ± 5.67 71.68 ± 5.48 0.90 ± 0.18
Cascaded U-net 87.70 ± 4.00 50.25 ± 8.68 71.33 ± 7.63 0.86 ± 0.17

BSU-net 89.44 ± 2.14 54.62 ± 4.59 74.85 ± 3.20 0.81 ± 0.10

Figures 7–9 show the results of the five different networks in Table 3. Figure 7b–d shows
segmentation results of conventional U-net, U-net applying BSU-layers, and BSU-net, respectively.
U-net applying BSU-layers segmented more delicately than conventional U-net, but there are some
incorrectly segmented areas. On the other hand, the results of BSU-net have detailed boundaries
and no incorrectly segmented area. Figure 8b–d shows segmentation results of conventional U-net,
cascaded U-net, and BSU-net, respectively. The white pixels represent estimated boundary pixels that
are perfectly matched with true boundary labels. It is easily noticeable that cascaded U-net found
a higher number of true boundary pixels than conventional U-net, and BSU-net detected the most
among the three different networks. The enlarged views at the bottom of Figure 8 clearly show the
results from each and demonstrate the improved performance of BSU-net. Figure 9b–d also shows
segmentation results of conventional U-net, cascaded U-net, and BSU-net, respectively. In this case,
cascaded U-net did not properly segment intervertebral disc, and its results are worse than those
of conventional U-net. In some cases of cascaded U-net, it segmented intervertebral discs smaller
than their actual size. On the other hand, BSU-net showed successful performance in these cases.
Standard deviations in Table 3 shows the stability of BSU-net. Standard deviations of BSU-net are
the lowest in most accuracy measurements while those of cascaded U-net are the highest in most
accuracy measurements.
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Figure 7. Segmentation results of the networks overlaid on the input image. (a) The input magnetic
resonance (MR) image. (b) The input MR image with U-net segmentation result. (c) The input MR
image with the result from the modified U-net which is U-net whose convolutional and pooling layers
are replaced with BSU-layers. (d) The input MR image with BSU-net result.

 
Figure 8. Segmentation results. (a) Input MR spine image. (b) Boundary segmentation result from
U-net. (c) Boundary segmentation result from cascaded U-net. (d) Boundary segmentation result from
BSU-net. White pixels correspond to boundary pixels that were perfectly matched with true boundary
labels. BSU-net preserved more boundaries than other models.

 
Figure 9. Segmentation results from all networks illustrating the outlier case of cascaded U-net. Brown
area, yellow area, and blue area denote correctly segmented area, under-segmented area, and over
segmented area, respectively. (a) Input image with label. (b) U-net result. (c) Cascaded U-net result.
(d) BSU-net result.

4. Discussion

Conventional U-net is a commonly used deep learning network that displays good performance
in various kinds of studies. It is used for segmentation of organs and cancers in various types
of medical images [28–30], and it is also used for object segmentation of optical images [31].
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However, conventional U-net has limited ability for detailed boundary segmentation [10] due to
the structural limitations of a max-pooling layer that plays a key role in feature extraction process.
It is not suitable for segmentation of objects with complex boundaries, such as intervertebral discs.
The purpose of our proposed network, BSU-net, is to improve the pooling layer of conventional U-net.
In this paper, BSU-net showed a better performance than conventional U-net for intervertebral disc
segmentation in MR spine images. This indicates that BSU-net can perform more precise and fine-grain
segmentation than conventional U-net. BSU-net will be of value in MR studies where quantitative MR
values of disc need to be determined.

As shown in Tables 1 and 2 and Figure 5, dilated U-net performed better than conventional
U-net and BSU-net showed better performance than dilated U-net. In most accuracy measurements,
dilated U-net showed statistically significant performance improvement, but the improvement in
MHD measurement was quite small. MHD indicates the accuracy of boundaries because it is based on
the distances between obtained boundaries and reference boundaries. This indicates that the results of
dilated U-net have many incorrectly segmented areas. Figure 10 shows the results of dilated U-net
and BSU-net. There are some incorrectly segmented areas in the results of dilated U-net while the
results of BSU-net have no incorrectly segmented areas. This is because the feature extraction process
of dilated U-net did not remove unnecessary information compared to BSU-net. The number of
trainable parameters used in BSU-net is 53,740,674 which is approximately 22% lower than dilated
U-net (69,048,584) and approximately 14% lower than conventional U-net (62,803,650). This indicates
that BSU-net performed successful fine-grain segmentation efficiently.

 

Figure 10. Comparison between dilated U-net and BSU-net. Blue area denotes segmentation results of
dilated U-net and green area denotes segmentation results of BSU-net.

The components of the BSU-net are the BSU-pooling layer and residual block, and cascaded
network. As shown in Table 3, the application of each component contributed to performance
enhancement. The performance improvement of applying residual blocks is much smaller than those
of applying other components. However, the number of trainable parameters were approximately
12% decreased. Therefore, the application of residual blocks brought efficiency to the entire learning.

When BSU-layers were applied to U-net, the result of DSC measurement 1 was only 0.74% higher
than conventional U-net. The application of BSU-layers brought improved performance in terms of
fine-grain segmentation, given the fact that the result of DSC measurement 2 was 7.72% higher than
conventional U-net and the result of accuracy measurement 3 was 4.18% higher than conventional
U-net. However, the MHD result of U-net applying BSU-layers is worse than conventional U-net.
These results indicate that the results of U-net applying BSU-layers had many incorrectly segmented
areas. Figure 7 shows many incorrectly segmented areas in the results of U-net applying BSU-layers
and they decreased the accuracy of whole segmented areas. These incorrectly segmented areas
occurred because BSU-layers preserved the detailed information which was discarded in the feature
extraction process in conventional U-net. The retention of this information affected the performance
of the network. Therefore, in order to fully utilize the advantages of BSU-layers, there is a need for a
guiding mechanism that can discard unnecessary parts and narrow the target area into proper regions.
Cascaded learning method can use the outcomes of conventional U-net to effectively guide BSU-layers
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to focus on the proper regions. This is the reason why BSU-net, which combines cascaded learning
method and BSU-layers at the same time, can achieve a high performance. Figure 7d shows the
successful segmentation results of BSU-net without incorrectly segmented area. Appropriate guidance
for BSU-layers improved the efficiency of the entire network.

In general, cascaded learning uses the outcomes of former networks as inputs at the beginning
of following networks [17–19]. However, cascaded learning applied to BSU-net puts the outcomes of
conventional U-net at the back-end rather than the beginning of the following network. This is because
detailed information of conventional U-net outcomes disappeared during the pooling process in the
encoding part of the network. A network showed 1.67%, 4.01%, and 2.92% lower accuracy for three
DSC measurements respectively when the outcomes of conventional U-net were put into the initial
part of the following network.

As shown in Table 3, standard deviations of cascaded U-net are highest in most accuracy
measurements. Figure 9 also shows the unstable performance of cascaded U-net. For eight out
of the 25 cases, cascaded U-net showed over 1% lower accuracy than conventional U-net in all eight
cases; two of these showed more than 7% lower accuracy. Contrastingly, BSU-net showed lower
accuracy than conventional U-net in just one case where the difference is smaller than 1%. This is
because important information pertaining to the boundary areas was discarded during the feature
extraction process in cascaded U-net. The loss of important information in the max-pooling process
is a noticeable problem. On the other hand, BSU-net distinguished most intervertebral disc areas
correctly, while unsegmented areas and over-segmented areas did not deviate much from the actual
boundaries. These results also indicate that the application of BSU-layers to cascaded U-net provides
stability and generality to the network. Furthermore, the use of BSU-layers enables efficient training of
the network. Cascaded U-net used in our experiments has 63,912,898 trainable parameters in a total of
42 convolutional layers (3 × 3 convolutional layers: 41 and 1 × 1 convolutional layer: 1), while BSU-net
has 53,740,674 trainable parameters, approximately 16% less than that in cascaded U-net, in a total of
79 convolutional layers (3 × 3 convolutional layers: 35 and 1 × 1 convolutional layer: 44).

5. Conclusions

Intervertebral disc segmentation in MR images is challenging owing to their complex shapes and
non-uniform intensity. This study introduces a robust deep-learning segmentation network, boundary
specific U-net (BSU-net), which can successfully segment intervertebral discs with complex boundaries.

Conventional U-net is a deep learning segmentation algorithm for image segmentation which
is commonly used in various fields. However, conventional U-net is not suitable for intervertebral
disc segmentation because its performance with respect to the details of segmentation (such as the
boundaries) is still limited owing to the structural limitations of the max-pooling layer that plays a key
role in the feature extraction process in conventional U-net. The proposed BSU-net can overcome
the limitations of conventional U-net and achieve fine-grain segmentation. BSU-net uses modified
convolutional and pooling layers and applies cascaded learning method to overcome the structural
limitations of conventional U-net. BSU-net performed intervertebral discs segmentation in MR spine
images with higher accuracy than conventional U-net, especially in the boundary areas.

Obtaining specific information about intervertebral discs is of great help for the diagnosis and
treatment of lumbar diseases. In many translational studies with real patients, quantitative MRI such as
T2 mapping is used to show treatment efficiency or track subtle changes over time. BSU-net, though not
clinically applicable at this time, will be of great value in translational MR studies where quantitative
MR values of the disc need to be determined using regions of interest. Our finding of 89% Dice
similarity coefficient of BSU-net against human annotator compares favorably with inter-observer
agreement of about 80% [32].
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Abstract: We propose a semi-automatic algorithm for the segmentation of vertebral bodies in
magnetic resonance (MR) images of the human lumbar spine. Quantitative analysis of spine MR
images often necessitate segmentation of the image into specific regions representing anatomic
structures of interest. Existing algorithms for vertebral body segmentation require heavy inputs from
the user, which is a disadvantage. For example, the user needs to define individual regions of interest
(ROIs) for each vertebral body, and specify parameters for the segmentation algorithm. To overcome
these drawbacks, we developed a semi-automatic algorithm that considerably reduces the need for
user inputs. First, we simplified the ROI placement procedure by reducing the requirement to only
one ROI, which includes a vertebral body; subsequently, a correlation algorithm is used to identify
the remaining vertebral bodies and to automatically detect the ROIs. Second, the detected ROIs are
adjusted to facilitate the subsequent segmentation process. Third, the segmentation is performed
via graph-based and line-based segmentation algorithms. We tested our algorithm on sagittal MR
images of the lumbar spine and achieved a 90% dice similarity coefficient, when compared with
manual segmentation. Our new semi-automatic method significantly reduces the user’s role while
achieving good segmentation accuracy.

Keywords: semi-automatic segmentation; MR spine image; vertebral body; graph-based
segmentation; correlation

1. Introduction

Low back pain is a common disease in modern society [1,2]. As a multifactorial disease, numerous
lumbar components including intervertebral discs, paraspinal muscle, or alterations of the vertebral
body may contribute to low back pain. Magnetic resonance (MR) imaging is a noninvasive imaging
modality that is widely used for both morphological and quantitative evaluation of the human lumbar
spine. Evaluation of the vertebral bodies in MR images (Figure 1a) plays a key role in the diagnosis
and establishing treatment strategies. Vertebral body segmentation on MR images provides clinically
useful information including quantitative biomarkers, volume, and shape. Previous methods for
vertebral body segmentation are inherently challenging, owing to the similar signal intensity of the
vertebral body and anatomically contiguous tissues and the inconsistent boundaries [3,4].

The segmentation of grayscale medical images has been extensively researched [5]. Some of the
classical methods are described here. Histogram-based segmentation is one of the most commonly
used methods [6,7]; it uses only pixel intensity to segment the image by applying a threshold. However,
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this method faces many limitations, because it does not include shape or position information. Another
conventional method is the region-growing method that begins by placing a seed [8–11]. This seed point
grows on the basis of the similarity of its neighboring pixels and extends out to fill a region of interest
(ROI). This method is also based on pixel intensity, which is disadvantageous in the case of noisy images.
Another approach employs an edge detection algorithm. For example, the Canny edge-detection
algorithm obtains vertical and horizontal gradients using various kernels after limitation of noise
via medial or Gaussian filters [12]. Subsequently, non-maximum suppression is used to make the
edge thinner and more precise, whereas thresholding and edge tracking further improves the edge.
Clustering is another commonly used method. The K-means clustering algorithm determines the
number of clusters, k, with the initial center position of the clusters and repeats the process until the
center position of the clusters and their corresponding data converge [13–15]. The fuzzy C-means
algorithm is another clustering method that sets the number of clusters and the objective function with
initial values and repeats the calculation until the objective function is minimized [16–19].

The actively investigated segmentation method in recent medical imaging is the graph-cut
algorithm. This algorithm transforms an image into a graph G = (V, E), where V (node) is the actual
spatial element to be segmented and E (edge) is the similarity of each pixel [20–24]. Depending on
how V and E are specified, various graphs can be created. The generated graph is transformed into a
similarity matrix to perform division. Various algorithms, such as the min-cut max-flow algorithm,
are used for the division [25,26]. Use of the graph-cut algorithm for medical image segmentation
has shown good results. Egger and Kapur reported a 91% Dice similarity coefficient (DSC) [27],
whereas Schwarzenberg and Freisleben reported an 81% DSC using the graph-cut method for vertebral
body segmentation [3]. However, in both these studies, each vertebral body was individually
segmented, and the method required repeated user inputs to assign a seed point at the center of
each vertebral body. Furthermore, because the performance of the algorithm depends on the number
of nodes and the connection method, the method requires the user to calibrate multiple parameters for
each segmentation.

The most recent approaches are the deep-learning-based methods, which exhibit superior
performance over existing mathematical algorithms. Ronneberger reported successful segmentation of
medical images using a U-net image segmentation network [28]. Korez also showed the possibility of a
deep learning segmentation for vertebral bodies in MR lumbar spine images [29]. However, these deep
neural networks require a large amount of data and use a large amount of memory, which is a key
limitation. For example, it might be difficult for a single graphics processing unit (GPU), sold in the
market, to learn and use the U-net with a 512 × 512 size image matrix. Furthermore, a repeated heavy
training processes may be required for the segmentation of different types of images (e.g., use of
different contrasts, sequences, or different MR scanners). On the other hand, mathematical algorithms
do not require a large amount of training datasets and can be applied to large sized images. Unlike
common optical images, the acquisition of a large amount of data is a key limitation in medical
imaging. Therefore, the segmentation methods that employ mathematical algorithms for medical
image processing are still needed.

Our proposed method aims to reduce user inputs to a minimum while still achieving high
accuracy in a short execution time during the segmentation of vertebral bodies. We first reduce the
number of user inputs for vertebral body selection (i.e., a rectangular ROI containing a single vertebral
body) to just one for the whole image. The remaining vertebral bodies are automatically detected using
a correlation algorithm without any further user inputs. Subsequently, the boundary of the vertebral
body inside each ROI is automatically segmented using the graph-cut and line-based methods together
with the incorporation of the Hough transform and edge-detection algorithm. No additional user
input is required. A preliminary study of this paper was partially presented at the annual meeting of
International Conference on Electronics, Information, and Communication in 2017 [30].
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This paper comprises four sections. Section 2 describes the details of our proposed algorithm.
Section 3 presents the experimental results. Finally, Section 4 discusses the study as a whole and
concludes the article.

Figure 1. Protocol to find vertebral body region of interest (ROIs) using minimum user input.
(a) T2-weighted spin echo MR image of a cadaveric lumbar spine and a user-defined ROI placement.
(b) Correlation map and the location of the user-defined ROI (the first location, p1 by the maximum
value). (c) Determination of the second location, p2, of the next closest vertebral body and the reference
distance, d. (d) Detection of the other remaining ROI locations utilizing the reference distance, p1,
and p2. Black pixels in (c,d) are disregarded pixels for the next ROI search.

2. Materials and Methods

2.1. Materials

This cadaveric study was exempted from institutional review board approval. Nineteen lumbar
spines (L1 through L5) from cadaveric donors (age range 46–60 years) were obtained from a local
tissue bank. MR imaging was performed on a 3-Tesla system (General Electric Signa HDx, San Diego,
CA, USA). The cadaveric spines were placed in the supine position to ensure vertical alignment of the
vertebral bodies in the MR images. Our segmentation algorithm was developed on the basis of this
position, which is typically used in many MR imaging protocols. A T2-weighted fast spin echo sequence
was used with the following parameters: Mid-sagittal plane; repetition time (TR) = 2000 ms; echo time
(TE) = 7.6 ms; field of view (FOV) = 180 − 220 mm; pixel spacing = 0.39 mm; slice thickness = 3 mm;
flip angle = 90◦; and bandwidth = ±62.5 kHz. Image processing and test experiments were conducted
using Matlab R2012b (The Mathworks Inc., Natick, MA, USA).

2.2. ROI Detection

The first part of our algorithm requires minimal user inputs regarding the location of one of the
vertebral bodies and the size of the rectangular ROI window (width: lx and height: ly); the automated
algorithm then searches other locations with the same window for the remaining vertebral bodies.
This ROI detection step is necessary to increase the efficiency of the subsequent segmentation process
by setting uniform ROIs, each of which contains only one vertebral body. When the user defines
a rectangular area containing a single vertebral body along with some of the surrounding tissues,
as shown in Figure 1a, the correlation algorithm [31] obtains a correlation map (Figure 1b) between the
user-defined ROI and other candidate ROIs throughout the image.

When examining the correlation map (Figure 1b), the highest correlation value is easily found
at the center position (p1) of the user specified ROI. The next vertebral body location is searched by
finding the second highest correlation value. However, the pixels in the immediate vicinity of p1 tend
to have high correlation values that are close to the correlation value of p1. Therefore, correlation
values in the immediate neighborhood of p1 (equivalent to 1/3 of the ROI size) are disregarded. Then,
the search continues for the next highest correlation value and the corresponding location of the next
vertebral body, p2. After finding p2, the neighborhood of p2 in the correlation map is also disregarded
to search for the next vertebral body locations. In this case, we use a reference distance, d, defined as
the distance between p1 and p2 (Figure 1c) for subsequent searches. The searching area can be reduced
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to the small area whose width and height are lx and ly, respectively, because the reference distance
provides the approximate locations of the upper or lower vertebral bodies. Through this process,
vertebral body positions are found in the entire image and each ROI for the individual vertebral body
is set for subsequent fine segmentation, as described in the next section.

The information on the intervertebral disc can also be used to further refine the vertebral body
location. The searched locations are corrected again using these intervertebral discs that are sandwiched
between the vertebral bodies. Assuming that an intervertebral disc ROI exists in the lx/2 portion
just above the vertebral body ROI, locations of other intervertebral discs can also be obtained in
the same manner (Figure 1). The horizontal locations of the vertebral bodies and the intervertebral
discs are generally similar. Therefore, if the horizontal location of a searched vertebral body ROI is
significantly different from the horizontal location of the surrounding intervertebral disc, the horizontal
location of a searched vertebral body ROI needs to be adjusted. When the difference between the
horizontal locations of the searched vertebral body and the intervertebral disc is larger than 10% of
ly, the horizontal location of the searched vertebral body ROI is replaced with that of the searched
intervertebral disc ROI.

2.3. Roi Fine Tuning—Hough Transform and Canny Edge Filtering

The vertebral bodies are slightly different in size and these may be rotated with respect to each
other due to kyphosis or lordosis [32]. Therefore, after identifying ROIs for the vertebral bodies,
the ROIs need to be fine-tuned to make the orientation and size of the vertebral bodies similar to each
other for ease of segmentation. Canny edge filtering and the Hough transform [12,33] are used for
this purpose.

2.3.1. ROI Fine Tuning—Orientation Adjustment

First, Canny edge filtering is applied to the vertebral body region R to extract the edge components
E of the region. Second, a Hough transform is applied to E to estimate the rotation angle of the vertebral
body. H is the Hough transformed image of E, as shown in Figure 2c. The x-axis of H is a rotation
angle, and the y-axis of H is the distance from origin. Assuming that the shape of the vertebral body is
similar to a rectangle, the y-axis value of H has the smallest value at 0◦. However, when the vertebral
body rotates, the x-coordinates of the smallest H deviates from 0◦; the degree of deviation indicates the
rotation angle of the vertebral body. Therefore, the ROI can be adjusted by rotating it in the direction
opposite to that of the estimated rotation angle.

Figure 2. Analysis for the region of interest (ROI) refinement of the vertebral body. (a) Vertebral body
ROI. (b) Edge of the vertebral body ROI. (c) Hough transformed image of the vertebral body ROI.
(d) Length of nonzero area at each angle.

2.3.2. ROI fine Tuning—Boundary Adjustment

Define Px(x) as the result of projecting E on the x-axis, and Py(y) as the result of projecting E

on the y-axis. and represent the size of the vertebral body ROI. As the vertebral body is rectangular,
the minimum values of Px and Py are Px

(
lx
2

)
and Py

(
ly
2

)
. On the other hand, the projection of

the left and right sides of the vertebral body edge will be at both ends of Px, having considerably
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larger values than Px
(

lx
2

)
. Similarly, the point at which the upper and lower sides of the vertebral

body edge are projected will be at both ends of Py, having larger values than Py
(

ly
2

)
. Therefore,

if max(Px
(

2 < i < lx
2

)
< αPx

(
lx
2

)
), it implies that the ROI does not include the left side of the vertebral

body, and hence, the ROI should extend to the left. Likewise, if max(Px
(

lx
2 < i < lx − 2

))
< αPx

(
lx
2

)
),

the ROI should extend to the right. This rule is also applied to the relationships between Py and both the
upper and lower sides of the ROI, such that the ROI can contain the vertebral body within a specified
interval. This process allows us to adjust vertebral body ROIs so that they contain all the necessary
boundaries of the vertebral body, thereby increasing the effectiveness of the subsequent segmentation.

2.4. Segmentation

During the ROI fine tuning process, we can determine the approximate position of the vertebral
body boundary.

bL = argmax
i

(
Px

(
1 < i <

lx
2

))
(1)

bR = argmax
i

(
Px

(
lx
2

< i ≤ lx
))

(2)

bU = argmax
i

(
Py

(
1 < j <

ly
2

))
(3)

bD = argmax
i

(
Py

(
ly
2

< j ≤ ly
))

(4)

where (bL, bU), (bR, bU), (bL, bD), and (bR, bD) are approximate vertices of the vertebral body
boundary. Then, we draw lines connecting each dot at points spaced inward and outward from
the approximate vertices, as shown in Figure 3a. Using these points, the vertebral body ROI is divided
into eight areas, as illustrated in Figure 3b, and different segmentation methods are applied to these
areas. Figure 4 shows the flowchart of the segmentation process. Areas U and D detect boundaries
using the graph-cut based method. U and D are converted to graph G = (V, E). As G should be
divided into the top and bottom, the nodes n ∈ V and edges e ∈ E are set along the x-axis. Intervals
between each pixel along the x-axis are set to the nodes n ∈ V and pixel intensities between the nodes
are set to the edges e ∈ E [25]. As a result, boundaries that can properly distinguish the top and bottom
in the x-direction of U and D are detected.

Figure 3. Partitioning area. (a) Pointing base vertices. (b) Partitioned area.

Because L and R contain the background, applying the graph-cut to find the minimum route is
difficult. In this case, segmentation is performed by capturing boundary points for each line of the ROI.
First, k-means clustering is performed to divide the total ROI into 10 clusters. Let YL be the clustered
L, whose size is (lx, ly) and YLi be the i-th line of YL. At this time, the base value BLi is ly or the peak
point nearest to ly, and the reference value RLi = ceil(YLi(BLi)/2). YLi can be divided into three
cases. Case 1 has one or more deep valleys and peaks between BLi and 1, and the peak value far from
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BLi is larger than RLi. Case 2 is similar to the case 1, but the peak values are smaller than RLi. Case 3
is the case without a valley. For each case, the boundary point ELi is as follows:

Case 1 : ELi = argmin
j

(YLi(PLi < j < ly)) (5)

Case 2, 3 : ELi = MLi (6)

PLi denotes the peak point closest to BLi which has a valley smaller than RLi towards BLi and having a
larger value than the valley by 2 cluster stages or more. MLi is the point closest to BLi among the points
having the value of ceil(YLi(BLi)/3). The case of region R is similar to the case of L, but performed in
the opposite direction. YR is the clustered R, whose size is (rx, ry) and let YRi be the i-th line of YR.
BRi is 1 or the peak point nearest to 1, and the reference value RRi = ceil(YRi(BRi)/2). Case 1 has
one or more deep valleys and peaks between BRi and ry, and the peak value far from BRi is larger than
RRi. Case 2 is similar to case 1, but the peak values are smaller than RRi. Case 3 is the case without a
valley. For each case, the boundary point ERi is as follows:

Case 1 : ERi = argmin
j

(YRi(1 < j < PRi)) (7)

Case 2, 3 : ERi = MRi (8)

PRi denotes the peak point closest to BRi, which has a valley smaller than RRi towards BRi and having
larger value than the valley by 2 cluster stages or more. MRi is the point closest to BRi among the
points having the value of ceil(YRi(BRi)/3).

Before the segment the UL1, UL2, UR1, UR2, DL1, DL2, DR1, and DR2 have to change their
triangular shape to parallelograms by copying points. Subsequently, the segmentation method of
U and D is applied to UL1, UR1, DL1, and DR1 areas, and the segmentation method of L and R is
applied to the UL2, UR2, DL2, and DR2 areas.

Finally, when all edge points are found, the cubic function is fitted for each side of the boundary
to remove the edge points above the error range. The points that deviate by a regular distance from
the cubic function curve are replaced with points on the function curves, and finally the segmentation
process is ended by connecting all the points.

Figure 4. Flow chart of segmentation process.
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3. Results and Discussions

3.1. ROI Detection

We tested the ROI detection algorithm using the whole image and user-defined ROI as the
minimum user input. The first test was performed with only vertebral body correlation maps, and the
second test was performed with both correlation maps of the vertebral body and intervertebral disc.
For all 85 vertebral bodies in 19 MR spine images, the number of detection failure cases in the vertebral
body test was three, whereas the vertebral body and intervertebral disc test was zero. Detection error
of the vertebral body and the intervertebral disc test was 10.41 pixels, which was 19.36% lower than
that of the vertebral body test (12.91 pixels). Therefore, it is clear that the use of both ROIs yields better
results and that the intervertebral disc exhibits more precise information of location as compared with
the vertebral body. Figure 5 also shows that the use of the intervertebral discs adjusts the ROI detection
more closely. Detection of ROIs using the vertebral body ROI offered by the user poses a difficulty
only in finding other vertebral bodies of the MR spine images; however, more precise detection can be
performed if the intervertebral disc ROI is additionally used for ROI detection. In addition, when the
user ROI was set to the central vertebral body, there was no detection failure case. On the other hand,
when the ROI was set to the uppermost vertebral body, the detection failure case occurred 0.93 times
per image, and when the ROI was set to the undermost vertebral body, the detection failure case
occurred 0.77 times per image.

Figure 5. Results of the region of interest (ROI) detection. Green boxes are the results of using only
vertebral body ROI, and brown boxes are the results of using both vertebral body ROI and intervertebral
disc ROI.

In most cases, the vertebral bodies and intervertebral discs are at a similar position in the
horizontal direction. In other words, knowing the position of the intervertebral discs helps to
understand the horizontal position of the vertebral bodies. As the intervertebral discs have more
compact and unique shapes than the vertebral body, their correlation with other tissues is quite small.
Therefore, more accurate locations of vertebral bodies can be found using correlation maps of the
intervertebral discs.

Aligning the ROIs with a fixed size cannot completely cover all the vertebral bodies because the
vertebral bodies have various sizes and shapes. The ROI fine tuning process adjusts the ROIs to be
fitted for each of these various vertebral bodies and aligns them to the center of the ROIs. When the
ROI fine tuning process was not applied, there were several cases in which a part of the vertebral body
was not included within the ROI, on average, of 1.31 cases per image.

3.2. Segmentation Results

Segmentation experiments were performed on 19 MR spine images including 85 vertebral bodies.
All user ROIs were manually specified vertebral body regions. The DSC was used to evaluate the
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accuracy of segmentation, and the references were manually obtained by an expert [34]. DSC is
defined as

DSC =
2|Fmanual ∩ Fresult|
|Fmanual|+ |Fresult| (9)

where Fmanual represents the manual references and Fresult represents the segmentation results of the
proposed method. Table 1 shows the DSC results for 19 MR spine images.

Table 1. Dice similarity coefficient (DSC) results of the experiments.

No.
Volume of Vertebral Body

(
mm3

)
Number of Voxels

DSC (%)
The Proposed Manual The Proposed Manual

1 2347.58 2134.11 5723.00 5379.40 90.96
2 2069.50 2059.26 5298.25 5265.50 94.11
3 2904.11 2731.39 7435.00 6882.25 90.50
4 1363.59 1468.81 3491.00 4037.00 88.11
5 2028.70 2034.23 5193.80 5263.20 93.77
6 2422.79 2360.53 6202.75 6003.50 91.01
7 1858.32 1843.76 4757.60 4864.00 86.94
8 2247.85 2136.49 5231.20 4847.00 87.79
9 1762.97 1520.00 4102.80 3548.40 86.58
10 1658.64 1686.57 3860.00 3933.60 85.30
11 2412.74 2172.44 6177.00 5408.00 88.82
12 2376.49 2240.58 6084.20 5695.20 90.20
13 2148.50 2127.33 5500.50 5432.75 92.80
14 3222.66 2872.19 8689.50 7508.25 86.43
15 2667.37 2445.22 7192.25 6443.50 88.81
16 2264.05 2365.08 6104.75 6445.25 93.33
17 2212.97 2296.04 5967.00 6247.00 93.51
18 2494.64 2662.20 6726.50 7231.25 91.34
19 2385.87 2425.71 6433.20 6694.60 87.92

μ ± σ 2255.23 ± 429.94 2188.52 ± 377.83 5798.44 ± 1265.49 5641.56 ± 1110.66 89.91 ± 2.77

The average DSC was 89.91% (Table 1). This is a valuable result as it is comparable to the 90.97%
achieved by Egger et al. who used the square-cut algorithm that requires more user inputs than the
proposed method [27]. Further, it is higher than the 81.33% reported by Schwarzenberg et al. who used
the cube-cut algorithm [3]. The standard deviation score 2.77% is similar to that reported by Egger et al.
(2.2%) [27] and much smaller than that reported by Schwarzenberg et al. (5.07%) [3]. For the number of
voxels and the vertebral body volume, the square-cut algorithm showed a difference of 3.83% on both,
compared with manual segmentation results [27], and the cube-cut algorithm showed differences of
15.95% and 5.97%, respectively, compared with manual segmentation results [3]. Our method, on the
other hand, showed differences of 3.05% and 2.78% respectively, compared with manual segmentation
results. Our results are lower than the cube-cut algorithm and square-cut algorithm. While a direct
comparison of the results obtained with different algorithms is difficult, owing to differences with
respect to image contrast type, resolution, image quality, and the number of test datasets used in each
study, it generally suggests a comparable performance range of our algorithm. The square-cut and
cube-cut algorithms, which are based on the graph-cut method, have no ROI detection processes;
therefore, these algorithms require the locations of all vertebral bodies. Furthermore, because the
results depend on the cost of constructing the graph, these algorithms require users to adjust the
parameters such as the number of nodes and edges according to the circumstances. On the other
hand, the proposed method requires the user to draw just one vertebral body ROI. Table 2 shows
the comparison of the user inputs between Square-cut and Cube-cut algorithms and our method.
Square-cut and Cube-cut algorithms requires four parameters to adjust and seed points for all vertebral
bodies, but our method only needs a single vertebral body ROI. This suggests that our method
can maintain or improve the segmentation performance despite reduction in the number of user
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inputs, and the automated portion of the whole segmentation process increases, as compared with the
existing methods.

Table 2. Comparisons of the user inputs between existing algorithms and the proposed method.

Square-Cut & Cube-Cut The Proposed Method

Parameter tuning

The number of rays

None
The number of nodes

Maximum length of the rays
Delta value

Necessary inputs Seed points for each vertebral body A single vertebral body ROI

Figure 6 shows a representative segmentation result, wherein Figure 6b shows the manually
segmented areas, and Figure 6c shows the results of the proposed method. Figure 6d shows the
difference between the manual references and the result of the proposed method. The results of the
proposed method are generally similar with the manual references. It can be seen that four vertebral
bodies are correctly identified and segmented and that most regions are recognized as vertebral
bodies. Nonetheless, there are some limitations. The results of the proposed method have non-smooth
boundaries, as compared with the manual references. When examining each vertebral body, the top
and bottom boundaries are smooth and match well with the actual reference, whereas the left and
right boundaries are not entirely smooth and have protruding parts. Based on these experiments and
evaluations, it seems that the results of the line-based algorithm are not as good as those obtained with
the graph-based algorithm.

Figure 6. Result of the segmentation algorithm. (a) Original image. (b) Manual segmentation result.
(c) The result of the proposed segmentation algorithm. (d) The comparison between (b) and (c).

Figure 7 shows eight different examples of the results of the proposed method. It can be observed
that the overall performance looks good in terms of ROI detection and the subsequent segmentation
has an average DSC of 89.91 (Table 1). These results show that the proposed method has successfully
reduced the user’s role while maintaining a performance comparable to existing methods. There are
slight differences between the manual references and the results of the proposed method with respect
to the upper and lower parts of the images. The proposed method performs segmentation depending
on the relative contrast of pixel intensities in the ROI. Therefore, the proposed method may not be able
to achieve accurate segmentation if the contrast of the images is not good as shown in the upper and
lower parts of the images in Figure 7. This problem may arise with most segmentation algorithms
depending on the image contrast.
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Figure 7. Segmentation results for other magnetic resonance (MR) spine images. Manual segmentation
results (red line). The proposed method results (green line).

For additional experiments, the data augmentation technique using a rotation process was applied
to the original sample images. 19 MR images were rotated by 10◦, 20◦, and 30◦ with respect to the
vertical axis. Therefore, a total of 51 rotated images were obtained. Table 3 shows the segmentation
results for them. The average DSC scores were 89–90 in all the cases, and the standard deviations of
the DSC scores were about three, which was similar to the results of the original sample MR images.
Both results in Tables 1 and 3 demonstrate the robustness of our method.

Table 3. Dice similarity coefficient (DSC) results of the additional experiments.

Images Rotated by 10◦ Images Rotated by 20◦ Images Rotated by 30◦

μ 89.15 89.70 89.55
σ 3.45 2.96 3.18

4. Conclusions

Obtaining information about the vertebral bodies in the lumbar spine is very important for the
diagnosis and treatment of low back pain [35]. In this study, we proposed a semi-automatic algorithm
for vertebral body segmentation that requires the user to specify only a single ROI. Our method
overcomes the disadvantages of the existing algorithms that require multiple user inputs, such as
clicking on each vertebral body, assigning ROIs for each vertebral body, or adjusting multiple
parameters depending on circumstances. In our method, only one user-defined-ROI is required
to identify the ROIs for all vertebral bodies in the image. Additionally, the detected ROIs were finely
adjusted using the edge-detection algorithm and Hough transformation to consider the orientation and
size of the vertebral bodies. The subsequent automatic segmentation was performed by combining both
the line-based and graph-cut-based methods depending on the parts of the bodies. The experimental
results demonstrate comparable or an even higher performance than the existing methods, even though
the automated portion of the entire segmentation process is increased. Furthermore, our method does
not require a heavy training dataset necessary for deep-learning -based methods and can be applied
regardless of the image size.

In future studies, we will apply this technique to in vivo datasets and evaluate its performance for
various types of contrast images obtained from living patients. The in vivo datasets may have different
noise levels, field of views, contrasts, and resolutions. Motion-related artifacts and abnormality
of the vertebral bodies and discs with spinal injuries or diseases should be further investigated.
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The application of dorsal vertebrae, which was not included in this study, can be a good future topic to
expand and evaluate our technique. A three-dimensional (3D) extension of this technique is also one
of our future studies. 3D extension of other approaches has yielded better results than those obtained
via two-dimensional (2D) methods [28,36]. Our 3D extension is also expected to improve the overall
segmentation performance.
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Abstract: Data imbalance is often encountered in deep learning process and is harmful to model
training. The imbalance of hard and easy samples in training datasets often occurs in the segmentation
tasks from Contrast Tomography (CT) scans. However, due to the strong similarity between adjacent
slices in volumes and different segmentation tasks (the same slice may be classified as a hard sample
in liver segmentation task, but an easy sample in the kidney or spleen segmentation task), it is hard to
solve this imbalance of training dataset using traditional methods. In this work, we use a pre-training
strategy to distinguish hard and easy samples, and then increase the proportion of hard slices in
training dataset, which could mitigate imbalance of hard samples and easy samples in training dataset,
and enhance the contribution of hard samples in training process. Our experiments on liver, kidney
and spleen segmentation show that increasing the ratio of hard samples in the training dataset could
enhance the prediction ability of model by improving its ability to deal with hard samples. The main
contribution of this work is the application of pre-training strategy, which enables us to select training
samples online according to different tasks and to ease data imbalance in the training dataset.

Keywords: data imbalance; Contrast Tomography (CT); pre-training strategy; segmentation

1. Introduction

Accurate segmentation of the liver can greatly help the subsequent segmentation of liver tumors,
as well as assisting doctors in making accurate disease condition assessment and treatment planning of
patients [1]. Traditionally, liver delineation relies on the slice-by-slice manual segmentation of Contrast
Tomography (CT) or Magnetic Resonance Imaging (MRI) by radiologists, which is time-consuming
and prone to influence by internal and external variations. With the rapid increase of CT and MRI data,
traditional manual segmentation method has become increasingly unable to meet the clinical needs.
Therefore, automatic segmentation tools are required for practical clinical applications.

Automatic segmentation methods such as region growing, intensity thresholding, and deformable
model-based methods have achieved automatic or semi-automatic segmentation to a certain extent,
with good segmentation results. However, these models rely on hand-crafted features and have limited
feature extraction ability. Recently, methods of deep learning, especially full convolutional networks
(FCNs), have achieved great success on a broad array of recognition problems [2–4]. Many researchers
advance this stream using deep learning methods in segmentation tasks such as liver [1,5–7], kidney [8],
vessel [9–11] and pancreas [12–14]. All the models mentioned above are based on a large amount of
data. However, there often are two kinds of data imbalance problems in the training process for the
segmentation of CT scans: (i) data imbalance in images: the imbalance between background voxels
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and target voxels, as shown in Figure 1; (ii) data imbalance between images: the imbalance of hard or
easy predicted examples in training datasets (the easily segmented slices are called easy samples or
easy slices, while the difficult samples are defined as hard samples or hard slices) in training dataset.
As shown in Figure 2A,B, the features of some slices are obvious and easy to segment. However,
in some others, as shown in Figure 2C,D), the features of liver are not obvious, which may be due to
poor quality of CT image or the liver self-defect (e.g., liver morphological variation, liver lesions, etc.),
and it is difficult to accurately segment liver from these slices. Moreover, it is easy to qualitatively
divide hard samples and easy samples according to the segmentation results, but it is difficult or almost
impossible to describe the characteristics of hard samples and easy samples, and accurately distinguish
them in training dataset before training process.

 
Figure 1. Examples of the imbalance between background voxels and target voxels in images. Each row
shows a CT scan from individual patients. The read regions denote the liver.

Figure 2. Examples of easy and hard predicted slices in CT scans. The predicted results are based on
the FCN model with 10 × 105 iterations. (A,B) display the easy samples; (C,D) display the hard slices.
Blue and red lines denote ground truth and prediction results. Each row shows results acquired from
an individual case.

Using Dice coefficient [15] as the loss function in training process can solve the first kind of
data imbalance by reducing or even ignoring the contribution of background voxels. However,
due to the similarity between adjacent slices in medical images, and different training tasks (for
example the same slice may be a hard example in liver segmentation task but an easy example in
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kidney or spleen segmentation task), it is difficult to classify medical images in training dataset
automatically using traditional methods before the training process. When there are many easy
samples, the contribution of hard slices will be overwhelmed in the training process, which could cause
a significant reduction in the prediction ability of the model for difficult samples, and may even lead to
overfitting. Therefore, it is necessary to classify the training samples and increase the proportion of
hard samples in training datasets.

Recently, focal loss, which could automatically adjust the contribution of easy-negative samples
in training process and rapidly focus on hard examples in every batch training process, has achieved
great success in one-stage detector objection [16]. However, focal loss failed to change the imbalance
between hard samples and easy samples in training dataset, the contribution of hard slices may
still be overwhelmed in the training process. In order to solve or alleviate this imbalance problem,
we introduce an online hard example enhancement method to increase the proportion of the hard
samples in the training dataset. Frist, we use partial slices in the whole training dataset to train a
pre-training model according to the needs of segmentation task, and then the pre-training model is
used to distinguish hard samples and easy samples in the rest slices of the whole training dataset,
i.e., adding the identified hard samples to the training datasets used in the pre-training processes.
Second, the hard slices identified by pre-training model are selected and enhanced by flipping, and
then these slices are added to the dataset used in pre-training process to enhance the ratio of hard slices
in training dataset, and improve the contribution of hard slices in training process. Therefore, the basic
purpose of pre-training strategy is to get a sample classifier, which could distinguish hard/easy slices
according to actual task need.

To demonstrate the effectiveness of the proposed method, we adopt a classical 2D FCN model
based on VGG-16 [17] and 2D U-Net [3], as shown in Figures A1 and A2 respectively, for the task of
the liver segmentation, kidney segmentation and spleen segmentation from Computed Tomography
(CT) scans.

2. Materials and Methods

2.1. Dataset and Processing

We test our method on datasets acquired from different scanners of different medical institutions.
The collected dataset composes of 260 CT scans, with a largely varying in slice spacing from 0.45 mm to
5 mm. And 220 CT scans were randomly selected for training, the rest 40 cases for testing. For images
pre-processing, the image intensity values were truncated to the range of [−150, 250] hounsfield unit
(HU) to remove the irrelevant details [9].

2.2. Selection of Training Samples

Inspired by pre-training strategy, in this work, a pre-training model is used as a sample classifier
to classify hard samples and easy samples in training dataset. Frist, the whole training dataset was
divided into two parts (A and B) based on their simple statistics information (e.g., the number of slices
in volume, the proportion of positive and negative samples in volume). In this way, the ratio of positive
and negative slices in two subsets (A and B) can be guaranteed the same as that of the whole training
dataset. Part A is used for the later sample classification and screening, while part B is used for model
pre-training. Second, slices in part B are enhanced by flipping and mirroring, and then these enhanced
slices are used in model pre-training process. And we get a pre-training model when model is trained
to a set iteration (such as 5 × 105 iterations in this work). Third, the pre-training model is used to predict
slices in part A, and all slices in part A are simply divided into two categories, hard samples, and easy
samples, by their Dice score. Next, the hard slices in part A are enhanced by flipping, and then added to
the training dataset (part B) used in pre-training process. Finally, we continue the training process until
reaching to the set 10 × 105 iterations, and then get the final segmentation model. Just 5 × 105 iterations
are needed in the final training process if 5 × 105 iterations were done in the pre-training process and
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the pre-training model structure is consistent with the final model, while 10 × 105 iterations are needed
in the final training stage if the pre-training model structure is inconsistent with the final model. In this
study, we use the same model structure in pre-training process and final training stage.

2.3. Evaluation Metrics

Dice coefficient, which measures the amount of an agreement between two image regions,
was used to evaluate the segmentation performance on the test dataset.

2.4. Implementation Details

Classical 2D FCN model structure and 2D U-Net are used for segmentation tasks from CT scans
using the TensorFlow package [9]. We use stochastic gradient descent (SGD) with a mini-batch size 16.
Inspired by [1], the “poly” learning rate policy where the current learning rate equals to the initial
learning rate multiplying (1−(iterations)/(total_iterations))ˆpower. We set the initial learning rate to
0.001 and the power to 0.9 and the models are trained for up to 10 × 105 iterations. We use the Dice
coefficient as the loss function in the training process. For data augmentation, we adopt a random
mirror, flip for all datasets. We use the aforementioned training strategy in the pre-training process
and the final training stage.

3. Results

As for the strong similarity between adjacent slices in CT scans, we assume that the contribution
of some slices could be replaced by others in the training process. To test this idea, we select partial
cases at a certain ratio from the whole training dataset, based on their simple statistical information
(e.g., the number of slices in volume, proportion of positive samples and negative samples in volume).
And then the selected cases were enhanced by flipping and mirroring.

As shown in Table 1, reducing the number of training samples within a certain range has less
influence on the segmentation ability of FCN. However, the prediction ability of FCN decreases
significantly when the selection of training samples is further reduced. The max value, which refers to
the best segmentation results of the model, has little change in different selection ratio (the ratio of
training scans in part B to total number of scans in training dataset) experiments. Meanwhile, the min
value, referring to the worst segmentation results of the model, decreases significantly when training
samples decrease substantially. These phenomena are also observed in kidney segmentation and spleen
segmentation from CT scans using FCN model, as shown in Tables A1 and A2. Moreover, the same
results were also discovered in liver segmentation, kidney segmentation and spleen segmentation
tasks using U-Net model, as shown in Tables A3–A5. These results suggest that there is redundancy in
the training dataset, and that too little training data is harmful in the model training process.

Table 1. Liver segmentation results on test dataset based on different selection ratio using FCN model.

Model
Dice Score

Mean Min Max

selection ratio = 1, baseline 0.9705 ± 0.011 0.923 0.9856
selection ratio = 0.8 0.9706 ± 0.011 0.921 0.9853
selection ratio = 0.5 0.9702 ± 0.013 0.9124 0.9843
selection ratio = 0.3 0.9512 ± 0.035 0.8635 0.9844
selection ratio = 0.2 0.9475 ± 0.039 0.812 0.9817

proposed model 0.9789 ± 0.012 0.947 0.9854

As for the performance of FCN model begins to decline significantly when the selection ratio is
less than 0.5, so we set selection ratio as 0.5 in the proposed model, and divide the training dataset into
two parts (A and B) in liver segmentation. Slices in part B are used for model training, and we get the
pre-training model after 5 × 105 iterations. Using the pre-training model to predict slices in part A,
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we then simply classify these slices in part A into two categories, i.e., hard and easy simples, based on
their Dice score. In the liver segmentation task using FCN model, we set the threshold to 0.923, the min
Dice scores of baseline. Six thousand, two hundred and sixty-eight slices are classified as hard samples;
however, 35,984 slices are classified as easy samples, almost 6-fold the number of hard samples. Hard
samples in part A were enhanced by flipping and added to the dataset (part B) used in pre-training
process. Then, we continue the training process until model reaching 10 × 105 iterations.

As shown in Table 1, the proposed model performs slightly better than the baseline in liver
segmentation with a smaller training dataset. Moreover, adding hard examples has almost no effect on
the max value of Dice score, but it can significantly increase the min value compared with the baseline.
This indicates that increasing the ratio of hard samples in the training dataset has little influence on
easily segmented cases, but could greatly improve the segmentation ability of model on hard samples.

The segmentation results display in 3D form in Figure 3A,B show that the proposed method
could enhance liver segmentation results, especially in some details. Liver segmentation results of
hard examples have been greatly improved compared with the baseline, as shown in Figure 3C,D,
which may be attributed to the increase of the number of hard samples in training dataset. The above
results suggest that enhancing the proportion of hard samples in the training dataset could improve
the prediction performance of FCN model in the liver segmentation task, as well as model’s ability to
deal with hard samples.

Figure 3. Results of Liver segmentation using FCN model. (A,B) display the 3D liver segmentation
result of the baseline and proposed a model, respectively; (C,D) display the hard samples liver
segmentation results of the baseline and proposed a model, respectively; Blue and red lines in C and D

denote ground truth and prediction results. Each row shows results acquired from an individual case.

4. Discussion

It is often thought that the more data, the better the performance in deep learning. However,
in this work, we observed that a proper reduction of training samples in training process had little
effect on the segmentation performance of model. This may be due to the strong similarity between
two adjacent slices in CT images, which makes it difficult to ensure each image in the training dataset is
independent from others; in other words, the contribution of some samples can be replaced by others
in the training process. However, it is hard to screen out which one may be redundant. The relatively
shallow network structure, which has relatively weak deep feature extraction capability, may be
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another reason for the phenomenon observed in this work. Meanwhile, the significantly reduced
performance of the model in the case of a large reduction in training dataset also supports the point
that the more data, the better the performance in deep learning.

Additionally, the same slices may play different roles in different segmentation tasks. For example,
the positive-hard samples in the liver segmentation task may be negative-easy ones in kidney or spleen
segmentation. Therefore, it is difficult to classify samples with the traditional unsupervised method.
Inspired by the pre-training strategy, we use a pre-training method as a sample classifier to classify
hard samples and easy samples in training dataset. We obtained better performance from the model
after adding the enhanced hard examples.
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Appendix A

Figure A1. FCN architecture. Each blue box corresponds to a multi-channel feature map. The number
of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box.
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Figure A2. U-net architecture. Each blue box corresponds to a multi-channel feature map. The number
of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box.
White boxes represent copied feature maps. The arrows denote the different operations.

Table A1. Kidney segmentation results on test dataset based on different selection ratio using
FCN model.

Model
Dice Score

Mean Min Max

selection ratio = 1, baseline 0.9167 ± 0.13 0.8262 0.9698
selection ratio = 0.8 0.9106 ± 0.089 0.8213 0.9703
selection ratio = 0.5 0.9078 ± 0.114 0.822 0.9693
selection ratio = 0.3 0.8835 ± 0.035 0.7935 0.9687
selection ratio = 0.2 0.8511 ± 0.039 0.7724 0.9684

proposed model 0.9258 ± 0.067 0.8547 0.9693

Table A2. Spleen segmentation results on test dataset based on different selection ratio using FCN model.

Model
Dice Score

Mean Min Max

selection ratio = 1, baseline 0.9773 ± 0.016 0.9364 0.9973
selection ratio = 0.8 0.9762 ± 0.012 0.9379 0.9957
selection ratio = 0.5 0.9767 ± 0.014 0.9359 0.9969
selection ratio = 0.3 0.9714 ± 0.035 0.9358 0.997
selection ratio = 0.2 0.8981 ± 0.139 0.7724 0.9965

proposed model 0.9801 ± 0.007 0.9563 0.9975

Table A3. Liver segmentation results on test dataset based on different selection ratio using U-Net model.

Model
Dice Score

Mean Min Max

selection ratio = 1, baseline 0.9532 ± 0.035 0.9017 0.9875
selection ratio = 0.8 0.9501 ± 0.031 0.908 0.9863
selection ratio = 0.5 0.9486 ± 0.023 0.898 0.9867
selection ratio = 0.3 0.9107 ± 0.057 0.834 0.9821
selection ratio = 0.2 0.8932 ± 0.063 0.796 0.9806

proposed model 0.9604 ± 0.022 0.912 0.987
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Table A4. Kidney segmentation results on test dataset based on different selection ratio using
U-Net model.

Model
Dice Score

Mean Min Max

selection ratio = 1, baseline 0.9206 ± 0.073 0.8345 0.9732
selection ratio = 0.8 0.9188 ± 0.092 0.8351 0.9725
selection ratio = 0.5 0.9158 ± 0.113 0.8298 0.973
selection ratio = 0.3 0.8735 ± 0.127 0.7653 0.9563
selection ratio = 0.2 0.8621 ± 0.153 0.7549 0.9517

proposed model 0.9287 ± 0.028 0.8591 0.9708

Table A5. Spleen segmentation results on test dataset based on different selection ratio using
U-Net model.

Model
Dice Score

Mean Min Max

selection ratio = 1, baseline 0.9795 ± 0.009 0.9473 0.9971
selection ratio = 0.8 0.9803 ± 0.007 0.9482 0.9962
selection ratio = 0.5 0.9780 ± 0.015 0.9367 0.9969
selection ratio = 0.3 0.9704 ± 0.023 0.9289 0.9972
selection ratio = 0.2 0.9057 ± 0.089 0.8124 0.9963

proposed model 0.9857 ± 0.005 0.9579 0.9969
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Featured Application: The proposed face sketch synthesis method can be applied for various

applications, such as law enforcement and digital entertainment.

Abstract: The exemplar-based method is most frequently used in face sketch synthesis because of
its efficiency in representing the nonlinear mapping between face photos and sketches. However,
the sketches synthesized by existing exemplar-based methods suffer from block artifacts and blur
effects. In addition, most exemplar-based methods ignore the training sketches in the weight
representation process. To improve synthesis performance, a novel joint training model is proposed
in this paper, taking sketches into consideration. First, we construct the joint training photo and
sketch by concatenating the original photo and its sketch with a high-pass filtered image of their
corresponding sketch. Then, an offline random sampling strategy is adopted for each test photo patch
to select the joint training photo and sketch patches in the neighboring region. Finally, a novel locality
constraint is designed to calculate the reconstruction weight, allowing the synthesized sketches to have
more detailed information. Extensive experimental results on public datasets show the superiority
of the proposed joint training model, both from subjective perceptual and the FaceNet-based face
recognition objective evaluation, compared to existing state-of-the-art sketch synthesis methods.

Keywords: face sketch synthesis; face sketch recognition; joint training model

1. Introduction

Face sketch synthesis is a key branch of face style transformation, which generates face sketches
for given input photos with the help of face photo-sketch pairs as the training dataset [1]. It has
achieved wide applications in both law enforcement and digital entertainment. For example, sketches
drawn according to the description of victims or witnesses can help identify a suspect by matching the
sketch against a mugshot dataset from a police department. Face sketch synthesis reduces the texture
discrepancy between photos and sketches for the face recognition procedure [2] and thus increases
the recognition accuracy [3]. In digital entertainment, people are increasingly preferring to use face
sketches as their portrait in social media; the sketch synthesis technique can also simplify animation
production [4].

During the past two decades, various sketch synthesis methods have been proposed. The exemplar-
based method is an important category of existing synthesis approaches. It synthesizes sketches
for test photos by utilizing photo-sketch pairs as training data. The exemplar-based method mainly
consists of neighbor selection and reconstruction weight representation [5]. In the neighbor selection
process, K nearest training photo patches are selected for a test photo patch. In the reconstruction
weight representation, a weight vector between the test photo patch and the selected photo patches is
calculated. The target sketch patch can be obtained using weighted averaging of the K training sketch
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patches corresponding to the selected photo patches with the calculated weight vector. The final sketch
is obtained by averaging all the generated sketch patches.

Exemplar-based face sketch synthesis originates from the Eigen-transformation research by
Tang et al. [6]. In their work, all training photo-sketch pairs were used to generalize the target sketch.
Principal component analysis was adopted to learn the weight coefficients by projecting the input test
photo onto the training photos.

It is difficult to represent nonlinear relationships between face photos and sketches by only learning
one holistic reconstruction model. Thus, Liu et al. [7] proposed a locally linear embedding (LLE)-based
sketch synthesis method to estimate the nonlinear mapping with piecewise linear mappings. The LLE
method works at the image patch level, in which K nearest training photo patches are searched in
terms of Euclidean distance for each test photo patch. However, the LLE method suffers from a serious
noise problem. To resolve this problem, Song et al. [8] formulated face sketch synthesis into a spatial
sketch denoising problem and calculated the reconstruction weight using the conjugate gradient solver.

To describe the dependency relationship between neighboring sketches, Wang et al. [9] introduced
a multi-scale Markov random fields (MRF) model to represent the neighboring constraint between
adjacent sketch patches using a compatibility function. However, this method only chose the best
single sketch patch from the training data for the test photo patch, meaning it could not synthesize
new sketch patches. Additionally, the optimization process in the MRF model is an NP-hard problem.
To overcome these limitations, Zhou et al. [10] extended the MRF model by introducing the linear
combination of nearest neighbors to structure a Markov weight fields (MWF) model, which is capable
of synthesizing new sketch patches that do not exist in the training dataset. In reference [11], a sparse
representation-based face sketch synthesis method was proposed by Gao et al. Peng et al. [12] proposed
a multiple representation-based face sketch synthesis method, which is able to obtain high-quality
sketch images. However, this method is time-consuming because of the online neighbor selection.

Recently, Wang et al. [13] proposed a state-of-the-art face sketch synthesis method, based on
random sampling and locality constraint (RSLCR). They randomly sampled the training photo and
sketch patches in place of a neighbor search, and then employed the locality constraint to model
the distinct correlations between the test photo patch and sampled photo patches while calculating
the reconstruction weight coefficients. However, the target sketch patch reconstruction obtained by
weighted-averaging the hundreds of sampled sketches can be regarded as a low-pass filter process,
which results in blurred synthesized sketches. In addition, the Bayesian inference was utilized in
reference [14] to incorporate the neighboring constraint in both the neighbor selection and reconstruction
weight representation, which can obtain impressive performance.

Apart from the exemplar-based method, deep learning techniques were also applied to face sketch
synthesis, generating new trends. Zhang et al. [15] first proposed a fully convolutional network (FCN)
to learn end-to-end mapping from photos to sketches. It consisted of six convolutional layers with
rectified linear units as activation functions. Zhang et al. [16] utilized the branched FCN to structure
a decomposition representation learning framework for sketch synthesis. Additionally, the generative
adversarial network (GAN) [17] was developed for image style transformation (e.g., photo-to-sketch
generation or vice versa). The deep learning-based sketch synthesis methods can preserve textural
structure well; however, serious noise effects occur in the synthesized results. This is mainly because
of the limited available of training data, which is insufficient to train large networks robustly [18].

A common problem with these exemplar-based approaches is that they ignore the role of training
sketches when calculating reconstruction weights. This is because the basic assumption of these
exemplar-based methods is that a photo patch and its corresponding sketch patch have a similar
geometric manifold structure. If two photo patches are similar, then their sketch patch counterparts
are also similar. However, owing to potential misalignment, the reconstruction weight obtained
from the test photo patch and selected training photo patches may not be suitable for sketch patches
reconstruction [19].
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We propose a new exemplar-based method, the joint training model, to solve the problem. In our
method, the training photo and the sketch patches are concatenated. Instead of directly using the
sketch patches, the high-pass filtered component of the training sketches are adopted to reduce the
effect of the modality difference between a photo and a sketch. Then, we employ the offline random
sampling method to select the joint training photo and the sketch patches for the test photo patch.
Moreover, a modified locality constraint is designed to calculate the reconstruction weight. With the
obtained reconstruction weight, the target sketch patch can be synthesized. Experimental results
indicate that the proposed joint model significantly eliminates noise and improves the synthesized
sketch quality. It also preserves the detail information of the test photo, which other methods cannot
do. Therefore, synthesized face sketch images using our method achieve higher accuracy in face
sketch recognition.

The contributions of this paper are summarized as below.

(1) To consider the training sketches during the reconstruction weight representation process, a joint
training model is proposed to integrate the training photo and sketch information.

(2) We design a modified locality constraint that modulates the reconstruction weight through
the distance between the high-pass filtered images of test patches and the sampled training
sketch patches.

(3) The proposed method yields high quality sketches with more detail information and
less noise over the wide range of datasets, promoting the accuracy of the sketch-based
suspect identification.

The organization of the rest of the paper is as follows. Section 2 introduces the relevant works,
including some example-based sketch synthesis methods, which are the basic works of the proposed
method. The proposed model is described in detail in Section 3. Section 4 provides a comparison of
experiments and their results. Conclusions are then given in Section 5.

2. Technical Backgrounds

In this paper, excepted as noted, a bold uppercase letter and a bold lowercase letter represent
a matrix and a column vector, respectively; regular uppercase and lowercase letters denote scalars.
Given a test photo T, it is divided into patches t(i, j) with r pixels overlapping between neighboring
patches. (i, j) denotes the location of the patch at the i-th row and the j-th column, i ∈ {1, · · · , m},
j ∈ {1, · · · , n}. Notice that each patch is represented as a q-dimensional column vector, where q = p2,
and p is the size of the patch. Similarly, the target sketch is denoted as S. s(i, j) denotes the target sketch
patch corresponding to the testing patch t(i, j). The training dataset, which consists of M photo-sketch

pairs, are similarly divided into patches. Let X(i, j) = {x(i, j)k }K
k=1

and Y(i, j) = {y(i, j)
k }K

k=1
denote the set of

K selected training photo patches and the corresponding sketch patches of the test photo patch t(i, j),

respectively. The weight coefficients w(i, j) = (w(i, j)
1 , · · · , w(i, j)

K )
T

are calculated to linearly combine the
candidate sketch patches.

2.1. The LLE Method

In the LLE method [6], K nearest patches are first obtained for each test photo patch t(i, j).
Then, the linear reconstruction coefficients w(i, j) can be calculated by resolving the following
minimization problem:

min
w(i, j)
||t(i, j) −X(i, j)w(i, j)||22, s.t. 1Tw(i, j) = 1, (1)
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Then the target sketch patch s(i, j) can then be synthesized.

s(i, j) =
K∑

k=1

w(i, j)
k y(i, j)k = Y(i, j) ·w(i, j), (2)

After all target sketch patches are generated, the final sketch can be achieved by averaging the
overlapped pixel intensities.

2.2. The RSLCR Method

Instead of searching the nearest neighbor photo patches, the RSLCR method [13] proposed to
randomly sample K photo-sketch patch pairs from training data in a predicted neighbor region for the
test patch t(i, j). Additionally, to consider the correlation between different sampled patches, a locality
constraint [20] was introduced to impose a weight to the distances of the test photo patch and random
sampled photo patches. The reconstruction weight representation model of the RSLCR method can be
written as follows.

min
w(i, j)
||t(i, j) −X(i, j)w(i, j)||22 + λ||d(i, j) �w(i, j)||, s.t. 1Tw(i, j) = 1, (3)

where � denotes element-wise multiplication, λ balances the reconstruction error and the locality
constraint, and d(i, j) is the Euclidean distance vector between the test photo patch t(i, j) and sampled
training photo patches X(i, j).

3. Joint Training Model for Face Sketch Synthesis

In most exemplar-based face sketch synthesis methods, only the test photo and training photos
are considered for selecting the candidate photo patches and calculating the reconstruction weight.
This strategy cannot achieve an optimal result when the training photo and sketch are misaligned.
In this paper, we put forward a novel exemplar-based face sketch synthesis approach, which takes
the training sketch into account by joining it with its corresponding training photo for reconstruction
weight representation.

Figure 1 shows the illustration of the proposed face sketch synthesis method. First, the high-pass
filtered components of the sketch images in the training data are extracted by using the Laplacian
of Gaussian (LoG) filter. Then, the extracted high-pass filtered components are attached to their
corresponding photo and sketch images to form the joint training data. After that, the candidate joint
patch pairs are sampled with the offline random sampling strategy. In the test phase, the high-pass
filtered component of the input photo is extracted with the same filter and attached to the input
photo to obtain the joint test photo. For each joint test patch, a reconstruction weight can be
calculated by approximating the joint test patch and joint training photos. Finally, the target patch
can be constructed by linearly combining the sampled joint training sketches with the reconstruction
weight and the final sketch image can be synthesized by averaging the overlapping sketch patches.
The strategy to structure the joint training model and the way to calculate the reconstruction weight
coefficients of the proposed method will be explained next in detail.
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Figure 1. Illustration of the proposed joint model for face sketch synthesis.

3.1. Joint Training Model

For each training sketch, the corresponding high-pass filtered component is first obtained with a

LoG filter. Let Z(i, j) = {z(i, j)k }K
k=1

denote the set of K randomly selected high-pass filtered image patches

of the training sketches corresponding to a test patch t(i, j). Then, the sampled K joint training photo
and sketch patches for t(i, j) can be denoted as Equations (4) and (5), respectively.

U
(i, j)

=

(
X(i, j)

Z(i, j)

)
=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝ x

(i, j)
k

z
(i, j)
k

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

K

k=1

, (4)

V
(i, j)

=

(
Y(i, j)

Z(i, j)

)
=

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎜⎜⎜⎝ y

(i, j)
k

z
(i, j)
k

⎞⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

K

k=1

, (5)

For the test photo T, the high-pass image H is obtained with a LoG filter. Let h(i, j) denotes the
high-pass image patch corresponding to the test photo patch t(i, j). We concatenate these two patches

as the joint test patch t
(i, j)
1 :

t
(i, j)
1 =

(
t(i, j)

h(i, j)

)
. (6)

After modeling the joint training photos and sketches, the reconstruction weight can be calculated
by approximating the joint test patch and joint training photos, which will be discussed next.

3.2. Face Sketch Synthesis

Assuming there are M pairs of joint training photos and sketches that are geometrically aligned,
they are divided into patches of fixed size (p × p × 2). Each joint patch is reshaped to a 2q-dimensional
column vector. For each joint test patch location, we extend the search region around the patch
with c pixels. Thus, there are (2c + 1)2 patches in the search region for one patch location, and there
are (2c + 1)2M joint training photo/sketch patch-pairs. Among these patch-pairs, K joint training
photo patches U(i, j) ∈ R2p2×K and joint training sketch patches V(i, j) ∈ R2p2×K are randomly and
simultaneously selected.
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For each joint test patch t
(i, j)
1 , the reconstruction weight is calculated as follow:

min
w(i, j)
||t(i, j)1 −U(i, j)w(i, j)||22 + λ||d(i, j)

1 �w(i, j)||+ μ||d(i, j)
2 �w(i, j)||, s.t. 1Tw(i, j) = 1, (7)

where w(i, j) ∈ RK×1 is the weight coefficient for the joint test patch t
(i, j)
1 . d

(i, j)
1 ∈ RK×1 is the Euclidean

distance vector between the joint test patch t
(i, j)
1 and sampled joint training photo patches U

(i, j)
, and

d
(i, j)
2 ∈ RK×1 is the Euclidean distance vector between the LoG test patch image h(i, j) and K sampled

LoG training sketch patches Z(i, j).
Equation (7) has the closed-form solution:

aw′(i, j) = (Ci, j + λdiag(d(i, j)
1 ) + μdiag(d(i, j)

2 ))\1, (8)

w(i, j) = w′(i, j)/1Tw′(i, j), (9)

where 1 is a column vector in which all elements are 1. Ci, j = (U(i, j) − 1t
(i, j)T

1 )(U(i, j) − 1t
(i, j)T

1 )
T

denotes
the data covariance matrix, and diag(·) extends the vector into a diagonal matrix.

The target joint sketch patch s(i, j) can be synthesized by linearly combining the sampled joint
training sketches with the reconstruction weight coefficients w(i, j).

s(i, j) = V(i, j)w(i, j). (10)

The obtained joint sketch patch is a 2q-dimensional vector. Thus, we extract the first half and
reshape it to a p× p patch, which is the target sketch patch. After obtaining all target sketch patches,
the final target sketch can be achieved with an averaged overlapping area.

4. Evaluation Experiments

4.1. Datasets

We evaluated the performance of the proposed method on two publicly available datasets:
The Chinese University of Hong Kong (CUHK) face sketch (CUFS) dataset [9] and the CUHK face
sketch FERET (CUFSF) dataset [21]. The CUFS dataset includes three sub-datasets: The CUHK
student dataset (188 subjects) [22], the AR dataset (123 subjects) [23], and the XM2VTS dataset (295
subjects) [24]. The CUFSF dataset includes 1194 subjects from the FERET dataset [25]. Artist drew
sketches corresponding to each face photo in these datasets. In our experiments, all face images were
normalized into the size of 200×250 by centering the coordinates on two eyes and the mouth. Some
face photo-sketch pairs from these two datasets are shown in Figure 2.
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Figure 2. Example of face sketch-photo pairs in the CUFS dataset (first two rows) and the CUFSF
dataset (last two rows). The first and the third row are face photos and the second and the last rows are
corresponding face sketches drawn by the artist.

4.2. Experimental Setting

In this section, the data distribution and parameter settings are introduced. For fair comparison,
we employed the same cross validation technique used in most exemplar-based sketch synthesis works.
For the CUFS dataset, 88 face photo-sketch pairs were taken as the training dataset and the remaining
100 pairs were taken for test in the CUHK student dataset; 80 pairs were chosen for training and the
remaining 43 pairs for test in AR dataset; 100 pairs for training and the remaining 195 pairs for test
in XM2VTS dataset. For the CUFSF dataset, 250 face photo-sketch pairs were randomly chosen for
training and the rest of the 944 pairs for test.

Parameters were set as follow. Patch size was p = 20, overlap size was o = 14, search length was
c = 5, the number for random sampling was K = 800, and the regularization parameter λ and μwere
both set to 0.5. The window size and standard deviation of LoG filter were 5 and 0.5, respectively.

To evaluate performance, four traditional exemplar-based methods (LLE [7], MRF [9], MWF [10],
and RSLCR [13]) and two deep learning-based methods (FCN [15] and GAN [17]) were compared.
These six state-of-the-art face sketch synthesis results are released by Wang et al. [13].

4.3. Synthesizesd Sketch Results Comparison

Figure 3 shows some synthesized face sketches from different methods on the CUFS dataset.
The first two rows are from the CUHK student dataset, the middle two rows are from the AR dataset,
and the last two rows are from the XM2VTS dataset. Moreover, the corresponding local blocks of
the synthesized sketches are displayed in Figure 4. From Figure 3, it can be seen that the sketches
synthesized by the LLE and MRF methods suffer serious block effects. The MWF method obtains
better performance than the LLE and MRF methods in the CUHK student and AR datasets. However,
the results are unsatisfying in the XM2VTS dataset, because it contains more face variations, such as
aging, race, and hair styles. The RSLCR method generates fine textures and structures, because more
candidate patches are incorporated via random sampling and the locality constraint. However, this
method results in blurred outputs. The FCN and GAN methods overcome the blurring effect by using
pixel-to-pixel mapping from a photo to a sketch. However, they tend to have undesirable artifacts
because of instabilities in training, while generating high-resolution images. Our proposed method
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achieves much better performance than these six benchmarked methods in all the three datasets. More
detailed information is preserved in the synthesized sketches, such as the double-fold eyelids and hair
grain. This illustrates that the proposed method is capable of generating identity-preserved sketches.

 
     Photo        LLE         MRF       MWF        RSLCR       FCN        GAN     Proposed 

Figure 3. Synthesized sketches on the CUFS dataset by locally linear embedding (LLE) [7], Markov
random fields (MRF) [9], Markov weight fields (MWF) [10], random sampling and locality constraint
(RSLCR) [13], fully convolutional network (FCN) [15], generative adversarial network (GAN) [17], and our
proposed method, respectively. Face photos in the first two rows are from the CUHK student dataset;
second two rows are from the AR dataset; and the last two rows are from the XM2VTS dataset, respectively.

 

 

 

 

 

 

Figure 4. Local cut-out effect on Figure 3; same marshalling sequence as Figure 3.
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We also investigated the robustness of the proposed method against shape exaggeration and
illumination variations on the CUFSF dataset. Figure 5 shows some synthesized face sketches from
different methods used on the CUFSF dataset. The block effect still exists in the LLE and MRF results.
The MWF and RSLCR methods obtain similar performance on the CUFSF dataset. The FCN method
suffers from serious noise and artifacts. The GAN results show much improvement, but distortion
occurs in the synthesized sketches by this method. By comparison, the proposed method achieves the
most vivid and clear sketches, reflecting the robustness of our proposed method.

    Photo        LLE         MRF       MWF        RSLCR       FCN        GAN     Proposed 

Figure 5. Synthesized sketches on the CUFSF dataset by LLE [7], MRF [9], MWF [10], RSLCR [13],
FCN [15], GAN [17], and the proposed method, respectively.

Overall, the synthesized face sketch images on the CUFS and CUFSF datasets by our method have
the following superiorities compared to the benchmarked methods: (1) Less block artifacts and noise,
because we calculated the target sketch patch by weighted averaging hundreds randomly sampled
training sketch patches but not few nearest patches; (2) rich facial detail, due to the high-pass filtered
components were adopted to build the joint training model, which is able to generate high-quality
face sketch patches; (3) complete facial structures, as a result of the training sketch images were took
into consideration when computing the reconstruction weights, which weakens the influence by the
misalignment in training images.

Table 1 shows the average time consumption of different methods on different datasets. Here, only
exemplar-based methods are compared, because it takes a very long time to train the neural network
for deep learning-based methods, though the test time is quite fast once the model is trained. From
Table 1, it can be seen that the LLE, MRF, and MWF methods have no scalability of training data. With
the amplification of training data, the running time increased radically, such as the CUFSF dataset.
The RSLCR and our proposed method were less susceptible to the size of training data, owing to the
random sampling strategy. Although the proposed method is not the fastest, it still has comparable
time consumption as the other methods.

397



Appl. Sci. 2019, 9, 1731

Table 1. Average running time (s) to generate one sketch by different methods.

Methods LLE MRF MWF RSLCR Proposed

CUHK 536.34 8.60 16.10 18.79 20.80
AR 496.47 8.40 15.33 19.10 19.75

XM2VTS 642.50 10.40 18.80 18.14 20.78
CUFSF 1591.95 24.25 45.20 17.66 20.17

4.4. Face Sketch Recognition

Face sketch recognition is commonly used to quantitatively evaluate the face sketch synthesis
methods and to collectively compare the synthesized sketch images [8,15,26]. A higher face sketch
recognition rate means that the corresponding sketch synthesis method is more effective and the
synthesized sketch images are better. In this study, FaceNet [27] was employed to conduct the face
sketch recognition experiments. To demonstrate the recognition performance of the synthesized
sketches using our proposed method, we used the sketches synthesized using different methods as
probe images to match the gallery images, consisting of the corresponding artist-drawn sketches.
The 338 synthesized sketches in the CUFS dataset were taken as the probe set, and the corresponding
ground-truth sketches drawn by the artist were taken as the gallery set. For the CUFS dataset,
944 synthesized sketches were taken as the probe set and the corresponding sketches drawn by the
artist were taken as the gallery set.

Figure 6 shows the face sketch recognition accuracies of FaceNet on the CUFS and the CUFSF
dataset, respectively. The proposed method achieved the best accuracy on both datasets, 97.04% in
CUFS and 87.18% in CUFS, at rank-100, respectively. Table 2 shows the rank-1, rank-5, and rank-10
recognition rates, where rank-n measures the accuracy of the top-n best matches. The FCN and GAN
methods got higher recognition accuracy on CUFS dataset, but similar accuracy on CUFSF dataset
compared with the traditional exemplar-based methods. It indicates that the performance of deep
learning-based methods degrades when the dataset has challenging variations. The synthesized
sketches of our method obtained the highest rate in rank-1, rank-5, and rank-10. The recognition results
indicated that the better generated texture features and more detailed information preserved by the
proposed method contributes to the face sketch recognition. This further demonstrates the superiority
of our proposed method.

 (a)                                                   (b) 

Figure 6. Face sketch recognition accuracies of FaceNet on the CUFS (a) and the CUFSF (b) datasets.
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Table 2. Recognition accuracies (%) of FaceNet on the CUFS and CUFSF datasets.

Methods
CUFS CUFSF

rank-1 rank-5 rank-10 rank-1 rank-5 rank-10

LLE 38.7 63.6 72.8 11.3 26.3 36.2
MRF 39.6 65.1 76.3 7.2 18.0 25.3
MWF 47.3 68.0 77.5 10.6 23.6 31.5

RSLCR 51.7 74.2 83.4 14.3 32.4 43.1
FCN 51.4 76.3 84.0 11.4 26.4 35.2
GAN 52.6 78.7 84.9 9.2 24.9 35.6

Proposed 65.4 85.2 90.5 21.2 43.6 52.1

5. Conclusions

Without considering the training sketches in the reconstruction weight representation process,
the exemplar-based face sketch synthesis method had difficulty generating ideal results. This paper
proposed a joint training model by concatenating the original training photos and sketches with
high-pass filtered image patches of the training sketches. Additionally, we constructed a new locality
constraint in the reconstruction weight process. With these improvements, more detailed information
was preserved in the synthesized sketches. Experimental results demonstrated that the proposed
method not only reduced the noise, but it also increased the definition of the synthesized sketches.
Thus, the proposed joint training model is a practical and effective technique for face sketch synthesis.
As analyzed and discussed previously, the deep learning-based face sketch synthesis methods are
immature. In the future, a deep learning-based synthesis approach will be explored by employing
more training data and designing optimized networks.
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Featured Application: This article describes the evaluation of the automatic classification system

for computed tomography (CT) images using a deep learning technique. Additional learning for

automatic training will help to create various classification models in the medical fields. The results

in this study will be useful for creating new classification models.

Abstract: A large number of images that are usually registered images in a training dataset are
required for creating classification models because training of images using a convolutional neural
network is done using supervised learning. It takes a significant amount of time and effort to create
a registered dataset because recently computed tomography (CT) and magnetic resonance imaging
devices produce hundreds of images per examination. This study aims to evaluate the overall
accuracy of the additional learning and automatic classification systems for CT images. The study
involved 700 patients, who were subjected to contrast or non-contrast CT examination of brain,
neck, chest, abdomen, or pelvis. The images were divided into 500 images per class. The 10-class
dataset was prepared with 10 datasets including with 5000–50,000 images. The overall accuracy
was calculated using a confusion matrix for evaluating the created models. The highest overall
reference accuracy was 0.9033 when the model was trained with a dataset containing 50,000 images.
The additional learning for manual training was effective when datasets with a large number of
images were used. The additional learning for automatic training requires models with an inherent
higher accuracy for the classification.

Keywords: deep learning; medical image classification; additional learning; CT image; automatic
training; GoogLeNet

1. Introduction

Deep learning techniques [1–3], including deep convolutional neural networks (CNNs), are
being employed widely in the field of image processing to conduct image classification [4–6], object
detection [7,8], and image segmentation [9–12] tasks. Recently, many studies [4–17] have investigated
the applications of deep learning techniques in medical imaging, which now serve as an expansion to
this field.

Image diagnosis using computed tomography (CT) and magnetic resonance imaging (MRI) is
currently becoming indispensable in the medical field. Although a large number of CT and MRI images
are being generated from daily medical examinations, these images are referred to as a follow-up for
only a few specific patients. There are many existing models [4–7,13] for the classification of medical
images; however, these models are not usually updated since they are created only when needed.
Thus, it is not possible to improve such models because they lack procedures and feasibility to retrain
the additional medical images. Additionally, creating models requires a large number of images that
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usually are registered images in a training dataset because training images for CNN are processed
using supervised learning algorithms. Herein, we focus on additional learning and automatic learning
for CT images because a current CT scanner has the ability to generate a large number of images per
examination. Although there is an existing report [13] on the classification of CT images including
contrast enhancement data, there are no reports on the classification of medical images based on
the evaluation of the additional learning and automatic image learning system. This study aims to
evaluate the overall accuracy of the additional learning and the automatic classification systems for
CT images.

2. Materials and Methods

2.1. Subjects and CT Images

The study included 700 patients (male: 371, female: 329; mean age ± standard deviation (SD):
59.2 ± 19.5 years), who were subjected to either a contrast or non-contrast CT examination of the brain,
neck, chest, abdomen, or pelvis in January, 2016. This study was approved by the ethics committee of
the Hokkaido University Hospital. The CT images were obtained on a 320-detector-row CT scanner
(Aquilion ONE; Canon Medical Systems, Otawara, Japan), an 80-detector-row CT scanner (Aquilion
PRIME; Canon Medical Systems, Otawara, Japan), and a 64-detector-row Light Speed VCT (GE Medical
Systems, Milwaukee, WI, USA).

2.2. Datasets

The dataset of CT images for creating models for classification was divided in 10 classes for
brain, neck, chest, abdomen, and pelvis with contrast-enhanced (CE) and non-contrast-enhanced
examination, defined as plain (P). The number of images in each class was 500, 1000, 1500, 2000,
2500, 3000, 3500, 4000, 4500, and 5000 images from the earliest date that they were acquired from the
700 patients; the names of the corresponding datasets were defined as 5 K, 10 K, 15 K, 20 K, 25 K, 30 K,
35 K, 40 K, 45 K, and 50 K, respectively, where the letter K represents one thousand; e.g., the 5 K dataset
includes a total of 5000 images, 500 images each of the 10 classes in that dataset. For the validation
dataset, another three different datasets (A, B, and C) of 1000 images for each class were prepared
(a total of 30,000 images), which were exclusive from the above datasets. The names and details of
each dataset are listed in Table 1.

Table 1. Names of datasets and the number of images in each label.

Class Name Dataset Validation Dataset

5 K 10 K 15 K 20 K 25 K 30 K 35 K 40 K 45 K 50 K A B C

Brain (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Brain (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Neck (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000

Neck (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Chest (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000

Chest (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Abdomen (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000

Abdomen (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Pelvis (P) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000

Pelvis (CE) 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 1000 1000 1000
Total number of

images 5000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000 10,000 10,000 10,000

P: plain, CE: contrast enhanced.

The image range of each class was defined as follows. Brain: slice from the anterior tip of the
parietal bone to the foramen magnum; neck: slice from the foramen magnum to the pulmonary apex;
chest: slice from the pulmonary apex to the diaphragm; abdomen: slice from the diaphragm to the top
of an iliac crest; pelvis: slice from the top of an iliac crest to the distal end of the ischium (Figure 1). The
range of each class was the same as that of a previous report [13] for the classification of CT images.
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Figure 1. Slice position and sample CT images of the 10 classes.

CE examination involved the intravascular injection of contrast media before examination.
The timing of the scan from injection was not considered. Exclusion criteria of CT images for the
datasets were images with excessive magnification, images with the reconstruction kernel of bone
or lung, images with nothing above the anterior tip of the parietal bone, and images with only arms
or legs.

2.3. Preprocessing of Images for Creating the Models

The CT images were retrieved from the picture archiving and communication system. To convert
the images for use by the training database, the CT images were converted from digital imaging and
communications in medicine (DICOM) format to joint photographic experts group (JPEG) format
using a dedicated DICOM software (XTREK view, J-MAC SYSTEM Inc., Sapporo, Japan). The window
width and level of DICOM image were used to preset values in the DICOM tag. The DICOM images
were converted to JPEG images with a size of 512 × 512 pixels. JPEG files were sorted into folders
according to the class that each image belonged to.

2.4. Manual Training of the Images for Creating the Models

The outline of the training performed for creating the models is shown in Figure 2. The authoring
software for deep learning was performed via in-house MATLAB (The Mathworks Inc., Natick,
MA, USA) software, and a deep learning optimized machine with two GTX1080 Ti GPUs with
11.34 TFlops of single precision, 484 GB/s of memory bandwidth, and 11 GB of memory per board
were used. Herein, GoogLeNet [3] with 22 layers was used as the CNN architecture (Figure 3).
The hyper-parameters of the training models are as follows: Maximum training epochs were 10 and
an initial learning rate was 0.0001. The learning rate was fixed throughout the training. The overall
accuracy was calculated using the confusion matrix in the software. The results were evaluated
using the validation datasets. Each dataset for training was sorted by a radiological technologist with
17 years of experience. Datasets were divided into 500 images per class for every 5000 images and
1000 images per class for every 10,000 images to create a model for each dataset. Additional learning
processes, which were repeated up to the 50 K dataset, were performed to evaluate the accuracy after
additional effects.
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Figure 2. Outline of the training performed for creating the models. Additional learning for every
(A) 5000 images (B) 10,000 images.

Figure 3. The CNN architecture, which has 22 convolutional layers.
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2.5. Automatic Training for Creating Models

The outline of the training for creating the models is shown in Figure 3. The authoring software,
machine, CNN architecture, and hyper-parameters of training models were the same as those discussed
in Section 2.4. The automatic training system was developed with MATLAB software because
supervised learning usually requires images that were classified by humans. Differing from manual
training, the following functions were added to the software. (i) The created models with each dataset
were used to automatically classify new images into the classes to which they should belong. (ii) The
classified JPEG files were sorted into each folder according to their image classes. (iii) The classified
images were used for the training to create new models. (iv) The automatic classification and creation
of a model was repeated up to the 50 K dataset (Figure 4). The new images provided were divided
into 500 images per class for every 5000 images and 1000 images per class for every 10,000 images.

Figure 4. Details of the additional learning process for automatic training (Example case using
5 K datasets).

2.6. Evaluation of the Created Models

The confusion matrix obtained using each dataset, shown in Figure 5, is an indicator of the
performance of the created models. The training performed with 10 image classes is shown as
a 10 × 10 table and all performances were based on numbers obtained by applying the classifier to the
validation dataset. The overall accuracy was obtained as a ratio of the number of correctly classified
images in all validation images to the total number of images. The overall accuracies in each dataset
were calculated as reference accuracy. Accuracies of the manual and automatic training were calculated
for each dataset. Furthermore, the overall accuracies were evaluated three times with each validation
dataset and presented at mean regardless of the dataset.

405



Appl. Sci. 2019, 9, 682

Figure 5. Confusion matrix for evaluating the overall accuracy, which was calculated using the
validation dataset A with 50 K dataset.

3. Results and Discussions

3.1. Reference Accuracy

Table 2 shows the overall accuracy for each dataset. With an increase in the size of image datasets,
the overall accuracy became higher. The highest overall accuracy for the datasets used was 0.9033 and
the model was trained using the 50 K dataset.

Table 2. Overall accuracy for each dataset.

Dataset Type Group Dataset

5 K 10 K 15 K 20 K 25 K 30 K 35 K 40 K 45 K 50 K

Validation
dataset

A 0.6028 0.6532 0.7293 0.7914 0.8334 0.8369 0.8615 0.8947 0.8986 0.9033
B 0.4833 0.5352 0.5713 0.6166 0.6789 0.7056 0.7693 0.7877 0.7884 0.8422
C 0.4927 0.5101 0.5899 0.613 0.7121 0.7397 0.8208 0.8472 0.8633 0.8974

mean 0.5263 0.5662 0.6302 0.6737 0.7415 0.7607 0.8172 0.8432 0.8501 0.881

3.2. Manual Training

Figure 6 shows the relation between datasets and the overall accuracy of the created model for
manual training. For the additional learning of every 5000 images, the overall accuracy when additional
learning started from 5 K to 20 K increased continuously up to 25 K. However, after exceeding the 30 K
dataset, the overall accuracy fluctuated. For the additional learning of every 10,000 images, the overall
accuracy increased continuously up to 40 K. However, the overall accuracy of the dataset of 40 K
slightly declined compared to that of 30 K.
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Figure 6. Relation between datasets and overall accuracy for manual training. (A) Additional learning
for every 5000 images, (B) additional learning for every 10,000 images.

3.3. Automatic Training

Figure 7 shows the relation between datasets and the overall accuracy of the created model for
automatic training. For the additional learning of every 5000 images, there was little increase in
the overall accuracy when the additional learning started from 5 K to 20 K. There was a gradual
decrease in the overall accuracy when the additional learning started from 25 K to 35 K and over 40 K
dataset. There were no subsequent data when the additional learning started from 5 K to 20 K because
some created models could not classify new images up to 10 classes because they had incomplete
classification models. For the additional learning for every 10,000 images, there was little increase in
the overall accuracy. However, when the additional learning started from 40 K, the overall accuracy
was maintained at a high value.

Figure 7. Relation between datasets and the overall accuracy for automatic training. (A) Additional
learning for every 5000 images, (B) additional learning for every 10,000 images.

This study evaluated the overall accuracy of the additional learning and automatic classification
system for CT images. From the viewpoint of additional learning, there was a significant improvement
of the overall accuracy for the manual training. However, the additional dataset to be added should
be prepared with a large number of images because the training for every 5000 images might be
affected by specific feature amount. One of the reasons for the fluctuating accuracy, as shown in
Figure 6A, might be insufficient feature information in the dataset. For the additional learning of every
5000 images, the number of images for the additional training was small perhaps because, as shown
by a previous report [13], the number of CT images affected the accuracy of training the dataset. If the
additional dataset included specific patients’ data (for instance, the patient who suffered serious traffic
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accident), the feature amount through the training may be changed dramatically. Therefore, additional
images with a variety of features should be prepared by using a high enough number of images
for additional learning. On the contrary, automatic training showed no improvement in the overall
accuracy, one reason being that the inherent accuracy is not affected by the created models. As the
reference overall accuracy, the datasets between 5 K and 20 K were under 0.8 of the overall accuracy.
Inaccurate classification affected the models created for automatic training. As a result, there was no
further improvement in the overall accuracy. However, when additional learning started from the 40 K
and larger datasets, the reference accuracy around 0.9 maintained the overall accuracy at this value.
This means that automatic training with a model of higher inherent accuracy might be effective in
performing accurate classifications.

The limitations of this study are as follows. First, the hyper-parameters of the training models
used are fixed parameters. Although a previous study [13] showed that the hyper-parameters and
CNN architecture affected the overall accuracy, the CNN architecture of GoogLeNet is suitable for
performing classification in many fields owing to its high accuracy; thus, we used fixed parameters.
Second, the process of training accuracy and loss were not showed in this study because the ability
to generalize was most important for the intended application [18] in the training process; thus, we
only focused on the overall accuracy. However, the overfitting would hardly cause problems during
training in this study because GoogLeNet adopted the inception module [19] and global average
pooling [20] for preventing overfitting. Third, the additional image data was fixed at 500 images per
class. Actual human CT images are often taken from a specific region such as from the lung or liver.
The number of images in each class was unstable and imbalanced, as observed during the daily routine
examinations. Therefore, the standard of the additional images was required to be set to the number of
images and not patients because the additional learning needs to be evaluated in the same situation.
In the future, we plan to investigate the effects of an imbalanced number of images when creating an
additional model. As for the images, the CT images were converted from DICOM to JPEG images in
this study. The CT images have Hounsfield Units (HUs, CT-specific numbers); by definition, water
is zero HU and air is −1000 HU. A previous study [21] showed the strong correlation between HUs
and grayscales though the JPEG images have no information of absolute values. We supposed the
classification of the slice position might not be affected in this study.

4. Conclusions

Herein, we evaluated the overall accuracy of the additional learning and the automatic
classification system for CT images. It was found that additional learning for manual training was
effective when a large number of images were used. The additional learning for automatic training
requires models with the inherent higher accuracy for the classification.
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Abstract: The Nuss procedure is one of the most widely used operation techniques for pectus
excavatum (PE) patients. It attains the normal shape of the chest wall by lifting the patient’s chest wall
with the Nuss bar. However, the Nuss bar is for the most part bent by a hand bender according to the
patient’s chest wall, and this procedure causes various problems such as the failure of the operation
and a decreased satisfaction of the surgeon and patient about the operation. To solve this problem,
we proposed a method for deriving the optimal operation result by designing patient-specific Nuss
bars through computer-aided design (CAD) and computer-aided manufacturing (CAM), and by
performing auto bending based on the design. In other words, a three-dimensional chest wall model
was generated using the computed tomography (CT) image of a pectus excavatum patient, and an
operation scenario was selected considering the Nuss bar insertion point and the post-operative
chest wall shape. Then, a design drawing of the Nuss bar that could produce the optimal operation
result was derived from the operation scenario. Furthermore, after a computerized numerical control
(CNC) bending machine for the Nuss bar bending was constructed, the Nuss bar prototype was
manufactured based on the derived design drawing of the Nuss bar. The Nuss bar designed and
manufactured with the proposed method has been found to improve the Haller index (HI) of the
pectus excavatum patient by approximately 37% (3.14 before to 1.98 after operation). Moreover, the
machining error in the manufacturing was within ±5% compared to the design drawing. The method
proposed and verified in this study is expected to reduce the failure rate of the Nuss procedure and
significantly improve the satisfaction of the surgeon and patient about the operation.

Keywords: pectus excavatum; nuss procedure; patient-specific nuss bar; minimally
invasive surgery; computerized numerical control bending machine; computer-aided design;
computer-aided manufacturing
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1. Introduction

Pectus excavatum is one of the most well-known chest wall deformities, in which the entire
chest including the costal cartilage and sternum is depressed due to the overgrowth of the costal
cartilage. The exact cause of PE has not been accurately identified, and it affects about one in every 300
children worldwide. For these patients, the PE operation is strongly recommended since the major
organs in the chest such as the heart and lungs can be subjected to pressure, and problems such as the
degradation of cardiopulmonary function, growth, and physical activities are likely to be caused by
PE [1,2]. Furthermore, the PE operation is also required to solve potential problems related to cosmetic
and mental aspects, such as the avoidance of interpersonal relationships.

The PE operations include the Ravitch procedure, sternal turnover operation, Silastic molding
method, and Nuss procedure. The Ravitch procedure and the sternal turnover operation, which are
called open surgery, require a resection of all deformed costal cartilage. They can correct the chest wall
effectively, but it has disadvantages such as a large operation range, a long operating time, and a less
cosmetic effect. The Silastic molding method is a minimally invasive surgery that is used for cosmetic
effect, but this method cannot solve the problems of physical function. [3,4].

On the other hand, the Nuss procedure, one of the minimally invasive surgeries, was introduced
in 1998 by Donald Nuss, a thoracic surgeon. In this method, a metal bar called a Nuss bar is
inserted through the ribs and placed below the sternum to lift the depressed chest. It is widely
popular worldwide owing to a small surgical wound, a low risk of infection, and a better cosmetic
advantage [5,6]. Hence, the Nuss procedure was selected in the present study.

There are several types of PE, for example, symmetrical, asymmetrical, eccentric, and unbalanced
types. Accordingly, the proper type of the Nuss bar should be fabricated prior to operation in order to
correct the PE accurately and effectively [7]. However, most Nuss bars are manufactured in a straight
shape and provided as such to surgeons. For this reason, the surgeons must manually bend the Nuss
bar based on their intuition. However, it is extremely difficult to make a patient-specific shape of the
Nuss bar during operation. In addition, the Nuss bar can be damaged due to the repeated bending
process, and the adjacent tissues can be damaged if the Nuss bar has a sharp angle.

In order to overcome the above obstacle, Lin et al. [8] adopted the three-dimensional (3D) printing
method to fabricate a patient-specific Nuss bar. In their research, the polylactic acid-based 3D printed
Nuss bar was developed and implemented into 10 PE patients. They called this novel operation
the 3DPMAN (3D Printed Model-Assisted Nuss) procedure, and the initial results of the 3DPMAN
procedure was feasible, easy, convenient, and satisfactory.

There are many advantages in fabricating the Nuss bar using polymer 3D printing such as the
low fabrication cost, the short fabrication time, and others. However, the polymer Nuss bar has severe
shortcomings. The Nuss bars are usually made of titanium alloys or stainless steel since they can
maintain high stiffness and strength until they are removed from the body. Accordingly, the chest
wall, including the Nuss bar, may be free from sudden failure or fracture due to unexpected excessive
external forces. On the other hand, the polymer Nuss bars, such as polylactic acids, have low strength
and stiffness compared to titanium alloys or stainless steel. Therefore, the mechanical evaluation of
material/structural safety should be sufficiently carried out prior to clinical applications.

If the Nuss bar is made using metal 3D printing, the procedure is costly and time-consuming.
In other words, the metal powder (titanium alloy powder) is quite expensive, and the 3D printing
takes a great amount of time. In addition, the metal 3D printed Nuss bar must be properly surface
treated, and thus requires much time and cost. If the surface is poorly treated, the metal powder can
be absorbed into the human body and is extremely dangerous.

Due to the various problems described above, we adopted a method for bending a titanium alloy
Nuss bar to the expected normal chest wall shape after the patient’s operation. For this, we proposed
a method for deriving the optimal operation result of PE patients based on (1) technology to design
the patient-specific Nuss bar using a three-dimensional (3D) chest wall model (CAD method) and (2)
technology to fabricate the patient-specific Nuss bar using an auto bending machine (CAM method).
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2. Materials and Methods

2.1. Fabrication Procedure for the Patient-Specific Nuss Bar via CAD and CAM

The fabrication procedure for the patient-specific Nuss bar can be divided into a design process
for the patient-specific Nuss bar (CAD) and a machining process for fabricating the designed Nuss bar
(CAM). The overall flow for the fabrication procedure is shown in Figure 1. The detailed procedures
are described sequentially in the following chapters.

 

Figure 1. Fabrication procedure for the patient-specific Nuss bar.

2.2. Modeling of the Three-Dimensional (3D) Chest Wall for a Pectus Excavatum Patient

2.2.1. Collection of CT Images for PE Patients

The first step for deriving the 3D chest wall of a PE patient is to collect the medical imaging data
of the PE patients. We collected computed tomography (CT) images of 15 PE patients from the Pusan
National University Hospital, and classified them based on the chest wall shape into symmetrical and
asymmetrical types. Ten patients with a symmetrical depression based on the center of the sternum
were included in the symmetric group, and five patients with a depression deviated from the center of
the sternum or an asymmetrical depression were included in the asymmetric group.

In general, CT, magnetic resonance imaging (MRI), ultrasound, and other methods can be adopted
to fabricate the 3D surface and finite element (FE) model for several organs of the human body. For
example, Bonacina et al. [9] have developed a novel algorithm that automatically extracts the facial
surface from ultrasound images. Using this method, they fabricated a 3D foetal face model without
any human intervention or training procedure.

However, in this study, the CT image was adopted from among various medical images. The
reason is that in the case of MRI, the image can be distorted due to the patient’s breathing, and in the
case of ultrasound, it is not easy to generate a 3D surface and FE model using general-purpose medical
image processing software such as Materialise MIMICS due to the noise.

2.2.2. Establishment of 3D Model for PE Chest Wall

For our study, 3D chest wall models were fabricated based on the obtained patient CT images. The
models were then used to design patient-specific Nuss bars. The image processing software MIMICS
version 17 from Materialise (Leuven, Belgium) was used to produce the 3D chest wall model. From
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the original CT images, 12 ribs, sternums, and costal cartilages were extracted in the following four
steps (see Figure 2).

• Step 1: The CT file of a patient is loaded into the program (MIMICS). The loaded CT image
is displayed in black and white depending on the density of each tissue. Thus, the density
differences between tissues are used to select the desired body organ on the screen. The density
range is specified using the “Thresholding” feature. The 3D surface can be obtained by selecting
the rib and sternum tissues easily using the default value (bone region) of each tissue provided by
the “Region growing” function of the program.

 
(a) 

 
(b) 

 
(c) 

Figure 2. Fabrication procedure for the 3D chest wall model for a PE patient: (a) Step 1; (b) Steps 2 and
3; (c) Step 4.
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• Step 2: A 3D model is created from the obtained 3D surface using the “3D calculation” feature.
The spine or any other unnecessary tissues are removed using “Edit mask” or similar features
because the Nuss bar is not applied to them.

• Step 3: A separate selection task must be performed to obtain the 3D surface of costal cartilage
because the costal cartilage region cannot be taken with the Bone default value due to its low
density compared to the rib and sternum. A 3D model is created from the 3D surface of the costal
cartilage obtained through this separate process.

• Step 4: A smooth-shaped chest wall model is produced finally by modifying the 3D chest wall
models of the rib, sternum, and costal cartilage using the “Wrap” and “Smoothing” features.

2.3. Virtual Surgery Scenario for Nuss Procedure

2.3.1. Definition of Haller Index

Two conditions must be considered when performing the Nuss procedure. The first condition is
that the Haller index (HI) must be an HI value of a normal chest wall. The second condition is that
the damage of the Nuss bar and its adjacent tissues must be minimized. In order to satisfy these two
conditions, the insertion point and shape of the Nuss bar must be determined before performing the
Nuss procedure. In this study, the optimal operation position and shape were found by quantitatively
deriving the Haller index values before and after operation for each Nuss bar insertion point based on
the actual CT images of the patients.

Figure 3 shows the pectus indices. The Haller index is a simple mathematical method for
measuring and representing PE with a known pectus index. It is calculated by the ratio of the
maximum transverse diameter (the maximum length inside the thoracic cage, A) measured on the
axial CT section of the chest with the largest deformation and the minimum anterior-posterior (AP)
distance (minimum distance between the spine and the sternum, B) [10–12].

Equation (1) is the Haller index equation before the Nuss operation:

Pre-operation: HI = A/B. (1)

The Haller index expected after the PE operation is called the ideal chest index (ICI), which is
determined by dividing the corrected maximum transverse diameter (A’) by the corrected minimum
AP distance (C) [13].

 
(a) 

 
(b) 

Figure 3. Illustration of pectus indices calculated from the computed tomography (CT) axial image
with greatest sternum depression: (a) description of the Haller index; (b) measurement of the Haller
index before and after the Nuss operation.
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Equation (2) is the ideal chest index (ICI) equation, which is used instead of the Haller index after
the Nuss operation:

Post-operation: ICI = A′/C. (2)

The severity degree of PE is classified by the HI value. Dr. Mark Thurston classified the degree of
PE by HI value as is shown in Table 1 [14].

Table 1. Classification of the Haller index.

Degree of Pectus Excavatum Range of Haller Index

Normal chest <2.0
Mild excavatum 2.0–3.2

Moderate excavatum 3.2–3.5
Severe excavatum >3.5

According to the results of many studies that investigated the correlations between HI and PE,
the PE operation is required if the HI is equal to or greater than 3.2 [11,15].

2.3.2. Virtual Surgery Scenario for Insertion Point and Shape Design of Nuss Bar

The virtual surgery scenario for selecting the optimal insertion point and shape was set as
follows [16]. Three points were selected based on the ribs around the sternum with the largest
depression using the CT image and 3D model of Patient 1. As is shown in Figure 4, insertion point A is
the sternum between the second and third ribs, insertion point B is between the third and fourth ribs,
and insertion point C is between the fourth and fifth ribs.

 
(a) (b) 

Figure 4. Virtual surgery scenario for insertion point and shape design of Nuss bar: (a) Nuss bar is
inserted at A, B, and C points from 3D chest wall model; (b) CT axial images with insertion points A, B,
and C.

Figure 5 shows the chest wall shape expected after the Nuss procedure for each insertion point.
The blue line on the CT image is the optimal Nuss bar shape, which was designed by referring to the
PE shape type and the shape of a similar chest wall.

To fabricate a patient-specific Nuss bar based on the patient’s CT image, a computerized numerical
control (CNC) bending machine that can machine every curved surface within the range of the Nuss
bar curves must be first constructed. In this study, a CNC bending machine was constructed with the
machining purpose.
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Figure 5. Illustrations of corrected sternum after Nuss bar insertion. The same shape of the Nuss bar
was located on the CT axial image with insertion points.

2.4. Establishment of Computerized Numerical Control (CNC) Bending Machine for Patient-Specific Nuss Bar

2.4.1. Components and Modification of CNC Bending Machine

Figure 6 shows the components of the equipped CNC bending machine which consists of a main
body, control cabinet, and air pump. Of these, the main body where the material shaping occurs is
largely divided into feeding and rotation units and a bending unit.

 
Figure 6. Establishment of CNC bending machine. In the figure, components of the CNC bending
machine are (1) main body, (2) control cabinet, and (3) air pump.

Figure 7 shows the feeding and rotation units in the main body. The feeding and rotation unit
assembly (Figure 7a) consists of a feeder module which pushes the material to the bending head, a
set of clamps which holds the material, and a rotation module that rotates the material. The existing
set of clamps is designed for round materials such as wire and rod, and cannot hold the Nuss bar
material with the bar shape. Therefore, a customized jig for the Nuss bar was designed, fabricated,
and mounted onto the clamps (Figure 7b).

  
(a) (b) 

Figure 7. Images of feeding and rotation parts of the CNC bending machine: (a) image of the feeding
and rotation assembly, composed of the (1) rotation module, (2) set of clamps, (3) feeding module, and
(4) Nuss bar jig; (b) image of the customized jig tool for Nuss bar processing.

416



Appl. Sci. 2019, 9, 42

The design drawing of the jig for the Nuss bar is shown in Figure 8, which was designed considering
the specifications of the machined material (width of metal bar: 13 mm, thickness of metal bar: 3 mm).

Figure 8. Left and front view of Nuss bar jig design. Designed jig is holding metal bar during the
production process of patient-specific Nuss bar by CNC bending machine.

Figure 9 shows the bending unit for bending of the material. The bending unit is composed of
multiple tools and is designed to be able to machine 180◦ rotations at the maximum with 90◦ in two
directions (clockwise and counterclockwise) considering the characteristics of the material (for metal
bar, rotation by the rotation unit is impossible). The Nuss bar machining limits of existing tools were
overcome by manufacturing a tool that could perform bidirectional bending.

  
(a) (b) 

Figure 9. Bending unit for Nuss bar manufacturing by CNC bending machine. (a) This picture shows
the maximum range of movement of the bending tool. (b) This picture shows the Nuss bar (straight)
being inserted into the machine; the Nuss bar makes a 90-degree angle with the bending unit.

The control cabinet, which is another component of the CNC bending machine, is used to input
the machining data and manage the device-operating options, and the CAM software, which is
the machining program, is embedded in it. In addition, a separate air pump must be installed for
material feeding.

2.4.2. Installation and Specification of CNC Bending Machine

The metal body frame of the CNC bending machine must be installed on a concrete floor and
maintain horizontal balance. The control cabinet must be fixed by wheel brake pedals and all cables
connected to the main body must be protected. The specifications of the machine including power
consumption, electrical requirement, and air requirement are shown in Table 2.

Table 2. Specification of the CNC bending machine.

Average Power Consumption Electrical Requirement Installed Power Air Requirement

1.9 KW/h 230 Volts/single-phase/50–60 Hz 5 kVA Dry air 100 psi (min. 80 psi)

417



Appl. Sci. 2019, 9, 42

2.4.3. Operation Parameters of CNC Bending Machine

The parameters for machine operation such as home position and initial position can be set using
the parameters function of the CAM program. Table 3 shows the parameter list and values of the CNC
bending machine set for the fabrication of the patient-specific Nuss bar.

Table 3. Operating parameter values to operate the CNC bending machine for the Nuss bar.

Index Description Value

0 Default Units 0.0000
1 Stop Machine if done 0.0000
6 Return Bender Speed 100.0000
7 Delay at the end of program 0.0000

12 Cut at the end of program 3.0000
16 Negative Z-axis limit −200.0000
17 Positive Z-axis limit 200.0000
18 Initial Feeder position * 756.750
19 Initial Bender position 0.0000
20 Output ON Delay 80.0000
21 Output OFF Delay 80.0000
23 Feeder Clamp move to grip 0.0000
24 Arm Collision detection Rotation Default 5.0000

* Initial feeder position is defended on length of material (Nuss bar length)

The accurate bending of materials requires the setting of the tool geometry. After selecting
the material and tool in the material selection choice, the Bender Geometry window (click on tool
definitions icon) is activated and the appropriate tool geometry is set for the Nuss bar machining.

In this study, the mandrel type tool was selected as the default tool. Table 4 shows the main
setting values of the tool geometry for accurate machining of a linear Nuss bar.

Table 4. Tool geometry setting values for increasing accuracy of bending result.

Index Description Value

0 Inner bending roller diameter (mm) 19.050
1 Outer bending roller diameter (mm) 19.050
3 Upper Roller Center to X (mm) 27.305
10 Tool type (#) 5 (=Mandrel cluster)
11 Tool Cluster Diameter 75.001

Notes: Setting values for all items except for index numbers 0, 1, 3, 10, 11 on the Tool Geometry window are “0”.

3. Results

3.1. Validation of CAD-Based Patient-Specific Nuss Bar Design Technology

To fabricate the patient-specific Nuss bar, we reviewed the CT images of 15 patients and chose
one symmetric case called Patient No. 1 from the symmetric group. Then, we proposed three surgery
scenarios (Nuss bar insertion points) to derive the patient-specific Nuss bar shape and select the
insertion point for Patient No. 1.

The HI value before and after inserting the Nuss bar was calculated for each scenario. The pre-
and post-operative maximum transverse diameters (A, A’) and the minimum AP distances (B, C), and
HI values are summarized in Table 5.

According to a previous study, the post-operative maximum transverse diameter is 95% of the
pre-operative value [17]. The post-operative maximum transverse diameter (A’) was derived by
applying the results of the corresponding study.
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Table 5. Haller index values before and after the Nuss procedure in Patient No. 1.

Point
A (mm):
Pre-Op.

A’ (mm):
Post-Op.

B (mm):
Pre-Op.

C (mm):
Post-Op.

HI:
Pre-Op.

ICI:
Post-Op.

A 217.86 206.97 73.01 101.11 2.98 2.05
B 215.22 204.46 68.61 103.49 3.14 1.98
C 217.57 206.70 73.30 104.15 2.97 1.98

Figure 10 shows the pre- and post-operative minimum AP distances according to the Nuss bar
insertion point.

Point A Point B Point C

Insertion point of Nuss bar

0

20

40

60

80

100

120

73.01
68.61

73.3

101.1 103.5 104.2

Figure 10. Minimum AP distance before and after the Nuss procedure. Values of minimum AP distance
with Nuss bar insertion points are shown by histogram.

The B (Pre-operative) values for each insertion point (points A, B, and C) were measured at
73.01 mm, 68.61 mm, and 73.30 mm, respectively. The smallest value was obtained at position B. The C
values for each insertion point were 101.11 mm, 103.49 mm, and 104.15 mm, respectively. The largest
value was obtained at position C. The minimum AP distance increased by 38.49%, 50.84%, and 42.09%
at the insertion points, respectively. Thus, position B showed the largest increase.

Figure 11 shows the changes in HI values before and after the Nuss procedure.

Figure 11. Haller index before and after the Nuss procedure. The values of the Haller index with
insertion points of the Nuss bar are shown in the histogram.
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The post-operative HI value decreased by 31.31% from 2.98 to 2.01 at insertion point A, by 36.94%
from 3.14 to 1.98 at insertion point B, and by 33.33% from 2.97 to 1.98 at insertion point C. At every
insertion point, the HI value improved by more than 30%. Furthermore, the improved HI values were
near the target HI value of a normal chest wall (HI < 2.5).

The data analysis results revealed that the minimum AP distance and HI improved the most at
point B that had the largest HI value before operation. Therefore, the optimal insertion point was
confirmed to be B which had a corrected HI value lower than 2.0 and showed the greatest change.

Using the Nuss bar design technology which is described in Section 2.3, we derived the Nuss
bar design for asymmetric PE patients (Figure 12). Patients Nos. 2 and3 represent the eccentric and
unbalanced PE patients, respectively.

  
(a) Pre-op. (a’) Post-op. 

  
(b) Pre-op. (b’) Post-op. 

Figure 12. CT images of asymmetric patients. (a) and (b) are CT images taken before the Nuss
operation; (a’) and (b’) are images taken after the Nuss operation. Yellow lines in (a’) and (b’) show the
patient-specific Nuss bar.

The insertion position and shape of the patient-specific Nuss bar are derived using corrected HI
values. Additionally, the angle and height on the left and right side of chest have similar values after
the Nuss procedure, which is for the cosmetic aspect. Table 6 shows the corrected HI values after Nuss
bar insertion.

Table 6. Haller index before and after the Nuss procedure in Patients Nos. 2 and 3.

Type
A (mm):
Pre-Op.

A’ (mm):
Post-Op.

C (mm):
Pre-Op.

C’ (mm):
Post-Op.

HI:
Pre-Op.

ICI:
Post-Op.

Eccentric (Patient No. 2) 197.2 187.34 60.4 84.4 3.26 2.22
Unbalanced (Patient No. 3) 246.0 233.7 72.6 98.6 3.39 2.37

After Nuss bar insertion, the HI values of the eccentric case decreased by 31.9% from 3.26 to 2.22
in the insertion position A. In the unbalanced case, the HI values after Nuss bar insertion decreased by
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30% from 3.39 to 2.37 in the insertion position C. The corrected HI value of both patients (eccentric and
unbalanced) are below 2.5 (normal range of HI).

3.2. Validation of CAM-Based Patient-Specific Nuss Bar Fabrication Technology

3.2.1. Bending Test for Patient-Specific Nuss Bar Fabrication

Before fabricating the patient-specific Nuss bar, a bending test was performed to verify the
bending range and machining accuracy of the equipped CNC bending machine.

• Drawing of Test Design: Central Arc and Transition Value of Nuss Bar
A product drawing for machining test considering the maximum/minimum values of the arc and

transition parts of the Nuss bar components was created. Figure 13 shows the components of the Nuss
bar [18].

Figure 13. Three components of the Nuss bar. Arc and transition were used to draw the test sample for
the bending test.

(1) Central arc design: This part lifts the depressed sternum and is divided into five steps
by selecting 200–400 mm for the maximum/minimum lengths of the transverse diameter (50 mm
intervals). The maximum/minimum AP distances are determined by using the HI [19]. Five drawings
were created by using the circumference within 160◦ from the center of the ellipse shape. (2) Transition
part design: The machining occurs predominantly in this part and the applied value varies by the
degree of the chest wall deformation [18]. The maximum/minimum radius range of curvature of the
transition part was set to 20–100 mm, and was divided into five steps (20 mm intervals). Five drawings
were created with the representative angles of 30◦, 60◦, and 90◦ for each curvature.

• Computer-Aided Manufacturing (CAM) Data and Fabrication of Test Designs
The test products were fabricated using the biocompatible metal Titanium-6Al-4V ELI (Ti-Gr5)

and SUS 316 LVM (SUS) with a thickness of 3 mm and a width of 13 m. The bending method varied
according to the product shape. The feeding method was applied when the curvature of an ellipse
shape was low and machining over a wide range was required such as for the central arch. The
multi-bending method was applied if different bending methods had to be performed for each narrow
point such as for the transition type.

The desired machining result could not be obtained from the initial CNC bending test where the
design specifications were applied. In particular, Ti-Gr5 generated greater machining errors due to a
strong springback phenomenon compared to SUS.

The springback, which is a property that makes the material return to its original shape, is affected
by the material properties (yield strength, modulus of elasticity) and thickness, machining angle, and
bending radius [20–22].
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Therefore, the CAM data were established considering the springback phenomenon of materials
to perform accurate bending. First, the initial springback factor, Ks, of each material was calculated as
is shown in Figure 14. To calculate the initial Ks value, the data for each factor in Table 7 were input
into the Bending Springback Calculator (Figure 14) of CUSTOMPART.NET.

 
Figure 14. Bending Springback Calculator from CUSTOMPART.NET [23]; springback factor (Ks), final
bend radius (FR), and final bend angle are changed by input values which are sheet thickness (Mt),
K-factor, yield strength, elasticity, initial bend angle, and initial bend radius (IR).

Table 7. Data of springback factors.

Material
Sheet Thickness

(mm)
K-Factor

Yield Strength
(psi *)

Elastic Modulus
(psi) *

Initial Bend Radius
(mm)

Initial Bend Angle
(◦)

Ti-Gr5 3 0.33 140,000 16,500 Up to transition values
SUS 3 0.33 116,000 28,000

* The material properties of Titanium-6Al-4V ELI (Ti-Gr5) and SUS (SUS 316 LVM) were referenced from material
property data (MetWeb.com).

The CAM data (machining angle and radius value) for the final angle and radius values
were calculated reversely by applying the initial Ks value to the springback factor (Ks) equation,
Equation (3) [24], as follows:

Ks =
Initial angle (◦)
Final angle (◦)

=

(
2 × IR

Mt
+ 1

)/(
2 × FR

Mt
+ 1

)
, (3)

where IR and FR are the initial and final bend radii, respectively, and Mt is the sheet thickness.
The CAM data according to the material, angle, and bending radius were determined through

multiple bending trials and errors. Different CAM values were required depending on the material
even if a Nuss bar of the same shape was fabricated. The Ti-Gr5 product required additional bending
between 2% to 20% as compared to the SUS product.

The prototypes of the central arc and transition values were fabricated using the appropriate
machining method and the derived CAM values.

• Results of Bending Test
The machining accuracies of 60 prototypes in total were evaluated through measurement of

dimensions. For the dimension measurement test, the maximum width and height were specified as the
major measurement indices. Figure 15 shows the dimension measuring points for machining accuracy.
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(a) (b) 

Figure 15. Designs of test sample: (a) central arc design with measuring point of maximum width and
height; (b) transition Nuss bar design with measuring points.

The dimension accuracy results of the five design prototypes considering the central arc were
plotted as a graph. Figure 16 shows a graph for the measured width values of central arc designs 1–5
which were fabricated with SUS and Ti-Gr5. The SUS and Ti-Gr5 products have the dimension (width)
errors of ±0.41% and ±0.53%, respectively.

Figure 17 shows the height measurements of the central arc design products. SUS and Ti-Gr5
products have the dimension (height) errors of ±2.61% and ±1.48%, respectively. The major dimension
measuring results of Ti-Gr5 and SUS products considering the central arc confirmed that the dimension
accuracies of all the prototypes were within ±5%.

The dimension accuracy values of the five designs considering the transition values were plotted
as a graph. Figure 18 shows the width of the transition Nuss bars 1–5 fabricated with SUS and Ti-Gr5.
The width error is ±1.19% for the SUS product and ±0.57% for the Ti-Gr5 product.

Figure 19 shows the measured height, and the height errors of the SUS and Ti-Gr5 products are
±1.73% and ±0.9%, respectively. This result confirms that the dimension accuracies of Ti-Gr5 and SUS
products considering the transition value are within ±5%.
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Figure 16. This histogram shows the dimensions of the Nuss bar. The maximum width of SUS and
Ti-Gr5 central arc Nuss bars was measured and compared with original width.
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Figure 17. Results for the dimension accuracy of the central arc Nuss bar. This histogram shows the
maximum height of the central arc Nuss bars (SUS and Ti-Gr5). Heights were measured and compared
with original height.
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Figure 18. Results for the dimension accuracy of the SUS and Ti-Gr5 transition Nuss bar. This histogram
shows the maximum width of the SUS and Ti-Gr5 transition Nuss bars. Widths were measured and
compared with original width.
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Figure 19. Results for the dimension accuracy of the SUS and Ti-Gr5 transition Nuss bar. This histogram
shows the maximum height of the SUS and Ti-Gr5 transition Nuss bars. Heights were measured and
compared with original height.
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All values within the central arc and transition values of the Nuss bar can be machined using the
auto CNC bending machine, and the bending error range of the bending machine was found to be
within ±5%. In particular, it is expected that more accurate machining will be possible for products
fabricated with the Ti-Gr5 material.

3.2.2. Manufacture of Patient-Specific Nuss Bar

The patient-specific Nuss bars were fabricated with SUS and Ti-Gr5. The design of the
patient-specific Nuss bar was derived using CAD-based design technology, and the product design
drawings were created for symmetrical, eccentric, and unbalanced Nuss bar shapes in accordance with
the morphological classification of PE [2,7,18,25]. Each type of Nuss bar was designed by collecting
CT data and using virtual surgery scenarios, and they represent a different patient group (symmetric,
eccentric, and unbalanced group).

Figure 20a–c shows the product design drawings of the three types.

 
(a) 

 
(a’) 

 
(b) 

 
(b’) 

 
(c) 

 
(c’) 

Figure 20. Three types of patient-specific Nuss bar drawings and products with Ti-Gr5: (a) symmetric
Nuss bar design and (a’) symmetric Nuss bar product for Patient No. 1; (b) eccentric Nuss bar design,
which was fitted for an asymmetric chest wall patient (Patient No. 2), and (b’) eccentric Nuss bar
product; (c) unbalanced Nuss bar design, which was fitted for an asymmetric chest wall patient (Patient
No. 3), And (c’) unbalanced Nuss bar product.
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A total of 18 patient-specific Nuss bar prototypes were created with three prototypes for each
design using the CAM data obtained using the same method. Figure 20a’–c’ shows the fabrication
outputs of the patient-specific Nuss bars. Major dimensions were measured to verify the accuracy of
the fabricated patient-specific Nuss bar prototypes, and the measurement data and distribution are
shown in Table 8 and Figure 21.

Table 8. Data table for patient-specific Nuss bar dimension accuracy.

Symmetric Eccentric Unbalanced

SUS Ti-Gr5 SUS Ti-Gr5 SUS Ti-Gr5

Drawing (mm) Width (A) 298.1 304.2 297.8
Height (B) 86.3 84.4 78.6

Specimen 1 (mm) Width (A) 297.5 298 303 305 299 297
Height (B) 85 86 86 85 82 80.5

Specimen 2 (mm) Width (A) 298.5 298 302 304 296 298
Height (B) 86 85 86 86 82 79.5

Specimen 3 (mm) Width (A) 300 300 303 302 297 299
Height (B) 86 85 87 85 82.5 81.5

  
(a) 

 
(b) 
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Figure 21. Dimension accuracy histogram of patient-specific Nuss bar: (a) maximum width of
patient-specific Nuss bars was measured after Nuss bar processing and compared with original value;
(b) maximum height of patient-specific Nuss bars was measured and compared with original data.
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The average dimension accuracies of the titanium and SUS prototypes were ±0.85 % and ±1.47%,
respectively. These results show that the patient-specific Nuss bar fabricated with Ti-Gr5 has a higher
machining accuracy.

4. Discussion

Since the Nuss procedure was announced by Dr. Nuss in 1997, many Nuss procedures have
been carried out and various related studies have been conducted. However, the Nuss bars have been
formed by naked eye and experience in the operation room. This study verified the effectiveness of the
CAD-based patient-specific Nuss bar design technology for the optimal Nuss procedure.

The CAD-based patient-specific Nuss bar design technology was verified by measuring the Haller
index before and after the Nuss procedure. In particular, an increase of the minimum AP distance after
the procedure shows that the depressed sternum that pressured the organs inside the chest has been
successfully corrected by the patient-specific Nuss bar designed with CAD technology and sufficient
internal space has been attained. This method is expected to improve the accuracy and reliability of
surgery because the optimal insertion point and correction result of the Nuss bar can be predicted
before the actual Nuss procedure.

Furthermore, this study demonstrates the possibility and utility of fabricating the patient-specific
Nuss bar through a CNC bending machine using the CAM-based manufacturing technology, and it
shows that patient-specific Nuss bars with a dimension error range within ±5% can be fabricated.
Using the CAM data for correcting the springback phenomenon for each material and shape will
improve productivity because the same products with a certain performance can be manufactured
accurately within a short time. However, new CAM data must be constructed if the product shape
is changed, or if the material thickness, bending degree, and components are changed even if the
product has the same shape. This characteristic will act as a disadvantage when manufacturing
diverse products.

5. Conclusions

The CAD/CAM-based patient-specific Nuss bar design and fabrication technology verified in
this study will provide a good solution to solve the problems and inconveniences of the current
Nuss procedure.

However, the commercialization of the patient-specific Nuss bars fabricated with
CAD/CAM-based design and manufacturing technology is still problematic because the CAD-based
patient-specific Nuss bar design using the Haller index has limitations with respect to reliability
verification and the CAM-based manufacturing method has limitations related to the precise machining
of various shapes without establishing the CAM data.

Nevertheless, the proposed method has a positive value in that it can dramatically solve the
problem of Nuss bar formation during surgery. In the future, we should obtain clinical data to build
the reliability of patient-specific Nuss bars, carry out research based on computer-aided engineering
(CAE) to predict the prognosis of the Nuss procedure (e.g., the fixing point of the Nuss bar and the
load distribution according to shape)(, and build the CAM database to expand the manufacturing
scope of the Nuss bars. Then, we could not only enter the market through the patient-specific Nuss
bars, but also secure the possibility of manufacturing various patient-specific orthopedic implants for
knees, joints, and spines.
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Abstract: In this paper, a fully automatic and computationally efficient midsagittal plane (MSP)
extraction technique in brain magnetic resonance images (MRIs) has been proposed. Automatic
detection of MSP in neuroimages can significantly aid in registration of medical images, asymmetric
analysis, and alignment or tilt correction (recenter and reorientation) in brain MRIs. The parameters
of MSP are estimated in two steps. In the first step, symmetric features and principal component
analysis (PCA)-based technique is used to vertically align the bilateral symmetric axis of the brain.
In the second step, PCA is used to achieve a set of parallel lines (principal axes) from the selected
two-dimensional (2-D) elliptical slices of brain MRIs, followed by a plane fitting using orthogonal
regression. The developed algorithm has been tested on 157 real T1-weighted brain MRI datasets
including 14 cases from the patients with brain tumors. The presented algorithm is compared with a
state-of-the-art approach based on bilateral symmetry maximization. Experimental results revealed
that the proposed algorithm is fast (<1.04 s per MRI volume) and exhibits superior performance
in terms of accuracy and precision (a mean z-distance of 0.336 voxels and a mean angle difference
of 0.06).

Keywords: medical image registration; image alignment in medical images; misalignment correction
in MRI; midsagittal plane extraction; symmetry detection; PCA

1. Introduction

Segmentation of brain in magnetic resonance images (MRIs) is one of the difficult and crucial
steps of clinical diagnostic tools in medical images. The brain is the most complex organ in the human
body that can be split into two approximately symmetrical hemispheres using a plane. This plane
is known as the midsagittal plane (MSP) [1]. In brain symmetric/asymmetric analysis, automatic
MSP extraction that is independent for symmetrical and asymmetrical brain regions is an essential
brain segmentation task [2]. Enormous research reflects that the symmetrical structure of the brain
deteriorates due to psychological and physical ailments in the brain [3]. Clinical experts use the
symmetry of the brain to identify qualitatively asymmetric patterns that signify an ample range of
pathologies, such as brain tumors [4,5], brain infections [6], metabolic disorders [7], brain injury [8],
and perinatal brain lesions [9]. Similarly, the computer-aided diagnostic and image analysis systems
can use the symmetry and asymmetry information as a prior knowledge to embellish the system
efficiency in the analysis of altered brain anatomy [10].

Moreover, the detection of MSP is required in registration [11] of medical images as the first
step for spatial normalization [12] and anatomical standardization [13] of the brain images. However,
legitimate evaluation of symmetric and asymmetric patterns in brain images is possible only when
the symmetry axis or the symmetry plane (MSP) is accurately aligned and appropriately oriented
within the coordinate system of the MRI scanner [14]. This permits the system to adjust the possible
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misalignment of brain MRIs. A general phenomenon in brain MRI scanning is that many neuroimaging
scanners produce tilted and distorted brain images. The tilt of the head is not always detectable, due to
many reasons such as the health conditions, immobility of patients, imprecision of the data calibration
systems, and the inexperience of the technicians. Consequently, the slices of the brain MRIs are
no more alike within the same orientation, at either the axial or coronal level [15]. Disoriented
and misaligned brain MRIs can betray visual inspection and prevalently yield erroneous clinical
perception [16]. In summary, assessment of brain MRIs for any anomaly based on cross-referencing
of brain hemispheres (left and right), either by a human expert or computer-based software could be
affected by false geometrical representation. Consequently, it is essential to correct the tilt and realign
the brain MRIs data before further analysis.

Manual misalignment correction is extremely time-consuming and laborious to perform on a
huge scale. It also demands an urbane knowledge of brain anatomy. Therefore, it is neither sufficient
nor efficient. Alignment or tilt correction of brain MRIs is tantamount to realigning the MSP with
the center of the image matrix or image coordinate system [14]. If the MSP is computed precisely,
the orientation problem of the MRI volume can be resolved. Thus, the tilt of the head volume can be
assessed and adjusted. An ideal MSP can be defined as a virtual geometric plane passing through the
interhemispheric fissure (IF) [17], about which the three-dimensional (3-D) anatomical structure of the
brain (such as the ventricles, anterior/posterior commissures, corpus callosum, thalamus) exhibits
maximum bilateral symmetry [18].

Previously, several approaches that considered the problem of computing the MSP in brain MRIs
and other brain image modalities (Computed Tomography (CT), Positron Emission Tomography (PET),
Single Photon Emission Computed Tomography (SPECT)) have been published. These approaches
can be divided into two distinct groups, varying in their exclusive interpretation of prescribed MSP:
(1) shape-based algorithms that identify the location of cerebral IF using features of the head images to
estimate MSP; and (2) content-based algorithms that considered MSP as the plane which maximizes the
bilateral symmetry of the brain. A comprehensive survey of all the existing MSP extraction methods
can be found in a recent review [19].

Shape-based algorithms first segment the longitudinal fissure of the brain MRIs and employ
it as a landmark for symmetry analysis and MSP extraction. For instance, Brummer [20] utilized
Hough transform for straight line identification on each coronal slice and computed the MSP using
interpolation. Guillemaud et al. [21] exploited linear snakes to find the control points on IF lines and
estimate MSP plane through these lines using orthogonal regression. Volkau and Nowinski [17,22]
and Kuijf et al. [23] proposed simple and accurate methods based on Kullback and Leibler’s (KL)
measure. These approaches are computationally efficient and independent of internal asymmetries.
However, they became unstable in the presence of strong mass effect near IF or invisibility of IF, which
is common in some imaging protocols (CT, PET or SPECT).

Content-based algorithms, also known as the similarity-based methods, maximize some similarity
measure between the two halves (hemispheres) of the 3-D head volume. Ardekani et al. [24] proposed
an iterative local search-based algorithm that uses the cross-correlation between the voxels of either
side of the estimated MSP. This method failed on images having asymmetries due to pathological
effects. Liu et al. [18] computed the MSP by extracting the two-dimensional (2-D) symmetry axes on
each slice using cross-correlation from an edge image, followed by plane fitting. Another technique
based on the similarity between two sides of the head volume using block matching was given by
Prima et al. [25]. These methods are computationally intensive due to their iterative nature and
optimization scheme. Ruppert et al. [26,27] improved the efficiency of similarity and symmetric-based
methods, and developed an algorithm using 3-D Sobel edge operator, downsampling, and a multiscale
scheme. Although the algorithm used the sagittal orientation for MSP extraction, it can be applied to
other orientations (axial, and coronal) as well. The authors tested the algorithm on limited imaging
protocols and it is also sensitive to noise. The MSP extraction technique based on 3-D scale invariant
feature transform (SIFT) was formulated by Wu et al. [28]. The authors determined the MSP by parallel
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3-D SIFT matching and voting, followed by least median of square (LMS) regression. The paper also
compared the results of the algorithm with three other MSP extraction methods [16,27,29]. The authors
reported that the algorithm is sensitive to noise, blur, and asymmetry, greater than a certain threshold.
Moreover, the parameter setting of the algorithm is somehow complex. A computationally simple and
robust MSP extraction algorithm was presented by [30] using curve fitting. The method depends on
skull stripping in brain images and the authors reported that the algorithm may fail to identify the MSP
correctly if the image slices have a rotation angle of greater than 15◦ or unsuccessful skull stripping.

Recently, Ferrari et al. [31] devised a new MSP extraction algorithm using a sheetness measure
obtained from 3-D phase congruency (PC) responses. The authors reported results on synthetic and
real brain MRIs. A comparison study of three MSP extraction algorithms (symmetry-based [27], phase
congruency [31], and Hessian-based [32]) is presented in [33]. In spite of the enormous variety of
algorithms published on MSP extraction, there is no unanimity among the researchers about the best
algorithm, due to the ambiguous longitudinal fissure lines, low-contrast brain images, mass effect, and
absence of intensity standardization. Moreover, MSP extraction becomes more difficult and challenging
when the brain MRIs having a pathological disorder [18,25].

In this article, we have combined the advantages of both aforementioned techniques (to some
extent) and developed a new principal component analysis (PCA) and symmetric feature-based
approach to automatically compute and reorient the MSP in T1-weighted MRIs. In fact, the pathological
disorder and variations, such as stroke, brain tumor, bleedings, and brain injury, only alter the local
intensities and symmetries of brain MRIs. They do not affect the overall shape topological properties
of the 3-D head. Furthermore, when the head volume demonstrates a low signal-to-noise ratio
(SNR) and significant artifacts, the segmentation of external surfaces is easier as compared to that of
internal structures.

Therefore, by considering all these observations and assuming that the head is an ellipsoid-like
3-D solid object, a PCA-based algorithm is designed for MSP extraction. PCA is a fundamental and
prevailing statistical technique also known as Hotelling transform substantially used in digital image
processing for data dimension reduction [34], feature pattern recognition [35], quality control [36],
data decorrelation [37], data compression [38], and segmentation [39]. It is also acknowledged as a
low-level digital image processing tool for tasks such as the orientation assessment and alignment
of particular shape objects [40,41]. In this paper, PCA has been used for determining the rotation
angle (yaw angle) of the bilateral symmetric axis of the brain. The parameters of MSP (yaw angle,
roll angle, and offset) are estimated in two steps. In the first step, a coarse value of yaw angle has
been estimated using PCA. The angle value is further refined using a cross-correlation method. After
thresholding and elliptical area extraction, PCA is used to achieve a set of parallel lines (principal
axes) from the selected 2-D slices of brain MRIs. In the second step, the roll angle and the plane offset
(a perpendicular distance of MSP from the origin) have been computed by fitting a plane to these
parallel lines using orthogonal regression [42]. Initial slices in brain MRIs, where no or very small brain
is present (in size), show ambiguous symmetry features as compared to the slices near the center of the
brain. Therefore, selected slices have been used for MSP extraction and automatically discarded the
ambiguous slices based on semi-axes (major and minor of the ellipse). Similar to the work by Liu [18]
who used a weighted mean due to biasing in mean by the initial slices as compared to the superior
slices, the removal of ambiguous slices of brain MRIs makes this technique to perform robustly and
efficiently. Finally, an affine transformation has been applied to rotate the 3-D head volume to realign
(recenter) within the required coordinate system (scanner coordinate system). The proposed technique
is insensitive to pathological asymmetries, acquisition noises, and bias fields.

The rest of the paper is categorized as follows: Section 2 describes the methodology of MSP
extraction algorithm. Implementation of the algorithm, the description of datasets used for evaluation,
and results are reported in Section 3. Section 4 discusses some limitations of the developed algorithm
and concludes the proposed technique.
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2. Materials and Methods

2.1. Geometry of MSP

Generally, MRI of the brain consists of 3-D volumetric data in three orientations: axial, coronal,
and sagittal orientations. In the proposed algorithm, only the axial orientation was considered as an
input to the algorithm. The head coordinate system is defined as the ideal head coordinate system
(Xo, Yo, Zo) and the imaging coordinate system (X, Y, Z), as described by Liu et al. [18]. The origin of the
ideal coordinate is the center of the brain with positive Xo pointing to the right. Anterior and superior
directions represent positive Yo and Zo axes from the center of the brain, respectively. Mathematically,
Xo = 0 is defined to be the MSP with respect to the ideal coordinate system. Practically, the imaging
coordinate system (blue) varies from the ideal coordinate system (black) due to translations and three
rotations (pitch ω, roll ϕ, and yaw θ with respect to Xo, Yo, and Zo axes, respectively) of the patient
head as portrayed in Figure 1. Therefore, the main objective of MSP extraction is to determine the
transformation between the two planes, i.e., Xo = 0 and X = 0.

Figure 1. An ideal coordinate system XoYoZo (black) versus an imaging coordinate system XYZ (blue).

MSP in an image coordinate system can be defined as:

aX + bY + cZ + d = 0 (1)

where parameters (a, b, c) are not all zero and can be scaled by any non-zero scalar, vector (a, b, c) is
the normal vector of the MSP, and d/

√
a2 + b2 + c2 is the perpendicular distance of the plane from

the origin.
The intersection of MSP with each axial slice (slice cut perpendicularly to the Zo) is always a

vertical line in the ideal coordinate system. The rth axial slice is represented by a plane equation as:

Z = Zr (2)
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The intersection of Equations (1) and (2) is the vertical line (ideally a line of bilateral symmetry of
brain) on the rth slice and can be written as:

aX + bY + (cZr + d) = 0 (3)

This represents a normal equation of the 2-D line in the XY plane. By comparing Equation (3)
with the standard normal equation of the line, the orientation θr of the line (vertical line) can be
computed as:

θr = tan−1
(

b
a

)
(4)

Equation (4) exhibits that the orientation of all the 2-D symmetric lines should be the same,
irrespective of the position of slice i.e., Zr. This angle corresponds to the yaw angle of the patient’s
head. This angle is estimated using the PCA and cross-correlation technique described in the
succeeding paragraph.

Similarly, the perpendicular distance (translation offset) pr of the line (Equation (3)) from the point
(0, 0, Zr) can be calculated as:

pr = cZr + d (5)

Equation (5) demonstrates that the offset pr of the symmetric line on the rth slice (Z = Zr) is linearly
related to slice position as a function of plane parameters c and d. This represents an overdetermined
set of linear equations in pr and Zr. It can be solved by fitting a plane to a set of parallel lines having
the orientation θr. We use an orthogonal regression [42] using PCA to fit the plane to these lines in 3-D
Euclidian space.

To completely determine the MSP parameter (a, b, c, d), we need to assess the transformation
between the two planes Xo = 0 (MSP in the ideal coordinate system) and X = 0 (MSP in the image
coordinate system). The derivation of this transformation can be found in [18]. The final expression for
MSP Xo = 0 can be written in terms of the imaging coordinate system as:

X cos ϕ cos θ + Y cos ϕ sin θ − Z sin ϕ − (n · Δ) = 0 (6)

where n = [cos ϕ cos θ, cos ϕ sin θ, sin θ]T is the unit normal vector of the plane, (·) indicates the
standard dot product of the vectors, and Δ = [ΔXo, ΔYo, ΔZo]

T is the translation vector.
Dividing by cos ϕ and abs(ϕ) �= 90◦, and comparing the result with Equation (1), we obtain:

a = cos θ, b = sin θ, c = − tan ϕ, d = − n · Δ
cos ϕ

(7)

Therefore, ϕ is the roll angle and θ = θr is the yaw angle of each axial slice of the head’s imaging
coordinate system.

2.2. Estimation of Yaw Angle (θr)

The yaw angle is estimated in two stages. A coarse value (θ1) is estimated in the first stage using
PCA after the region of interest (ROI) extraction. Then, the image is vertically aligned by θ1. The value
of the yaw angle is further refined in the second stage and a cross-correlation technique is exploited to
measure θ2. The sum of θ1 and θ2 completes the procedure of calculating yaw angle (θr).

2.2.1. Region of Interest Extraction

Due to the fact that the human brain is nearly elliptical, PCA is used, as it aligns the data in the
direction of maximum variance (data spread). A reference 2-D slice Io is selected from the 3-D volume
of the brain MRIs. The selection of the slice is important. As in fact, the higher slice (before and after
the half of the total slices present in the volume), the brain in the 2-D image becomes more elliptical in
shape. It can give a good estimate of the angle of brain symmetric axis as compared to other slices [43].
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Therefore, a 1/55th slice of the total slices present in the volume of brain MRIs is considered as a
reference slice. Next, the image is binarized [44] and noise is removed by a mathematical morphological
filtering operation called area opening [45] (pp. 112–114). In this filtering procedure, small connected
pixels of which the area (in a number of pixels) is less than a specified threshold (η) are removed. The
value of “η” can be varied depending upon the type of brain MRIs and the extent of noise. After
several experiments, a value of 100 pixels has been considered a good estimate for η (area threshold) in
all the brain MRIs including tumor datasets. Mathematical, area opening is represented as:

γη = ∪
i

{
γBi |i is connected and card(i) = η

}
, i = 1, 2 . . . , k. (8)

where γη is the area opening, η is the value of threshold area of the connected pixels, and card(B) is the
number of elements (cardinal number) of B.

Area opening is equivalently defined as the union of all the morphological opening (erosion
followed by dilation) with the connected structuring element of which the size is equal to η. Then,
a rectangular area is achieved by searching for the first and last nonzero pixels along the rows (top and
bottom) and columns (left and right) of the noise-free binary image, as shown in Figure 2.

 

Figure 2. Steps for noise removal and region of interest (ROI) extraction.

Some of the ROI pixels inside the rectangular boundary (image I3) have value 0. To make all
the ROI pixels in the image I3 to one, the complement of noise-free binary image I2 is multiplied
(logical AND) with the rectangular boundary, such that all the pixels inside the boundary are equal
to 1 (Figure 3a). Largest connected component (LCC) is chosen (Figure 3b) from the resulted image
and added (logical OR) to I3 (Figure 3c). Lastly, morphological flood-fill operation [45] (p. 208) is used
to fill the holes (0-valued pixels) and achieved the binary image I4 with a single ROI. This image is
exploited as an input for PCA (Figure 3d).

 
(a) (b) (c) (d) 

Figure 3. Intermediate steps between images I3 and I4, (a) logical AND of I2 with the rectangular
boundary, (b) largest connected component, (c) logical OR of (b) with I3, (d) holes filling using
morphological flood-fill operation.
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2.2.2. Principal Component Analysis

After noise removal and ROI extraction steps, the method uses 2-D coordinates (column and row)
of the non-zero pixels of the object’s region as data points and an array X is formed as:

X =

⎡⎢⎢⎢⎢⎣
c1 r1

c2 r2
...

...
cn rn

⎤⎥⎥⎥⎥⎦ (9)

where r, c, and n represent row, column, and the total number of data points (1-valued pixels) in the
ROI, respectively.

The size of X is n × 2, and rows of X are the location coordinate values of each non-zero pixel.
Mean of X is a row vector mx (mean of the elements in each column of X), and can be computed as:

mx =
1
n

n

∑
i=1

Xi (10)

Similarly, a covariance matrix Px can be calculated as:

Px =
1

n − 1

n

∑
i=1

(Xi − mx)(Xi − mx)
T (11)

The mean subtraction is vital for performing PCA to ensure that the first principal component
represents the direction of maximum variance. The covariance matrix Px is a real and symmetric
matrix with a size of 2 × 2. Thus, finding a pair of orthonormal eigenvectors is always possible [46].

Suppose the elements of covariance matrix as:

Px =

[
f g
g h

]
(12)

where f = var(xii), h = var(xjj), and g = cov(xij).
The principal components can be determined by solving an eigenvalue problem as:

(Px − λI)e = 0 (13)

where λ, I, and e are the eigenvalue, identity matrix, and eigenvector, respectively.
If Equation (13) is to have a solution other than vector zero, then (Px − λI) must be a nonsingular

matrix. Therefore, it leads to a characteristics equation as:

det(Px − λI)e = 0 (14)

After expansion of Equation (14), it becomes a second-degree equation as:

λ2 − λ( f + h) +
(

f h − g2
)
= 0 (15)

The Equation (15) can be solved using a quadratic formula as:

λ1, λ2 =
tr(Px)±

√
tr(Px)

2 − 4|Px|
2

(16)

where tr(Px) = f + h and |Px| = f h − g2.
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The corresponding eigenvectors of the eigenvalues (λ1, λ2) can be calculated as:

ej =
1√

g2 + (λj − f )

[
g

λj − f

]
(17)

where ej(j = 1, 2), and λj denote the eigenvectors and eigenvalues of Px, respectively.
The eigenvalues represent the length of the semi-axes of the ellipse and the eigenvectors specify

the directions of these axes, as illustrated in Figure 4.
The rotation angle can be computed using the eigenvector corresponding to the largest

eigenvalue as:

θ1 = tan−1
(

vy

vx

)
, θ1 ∈

(
−90

◦
, 90

◦)
(18)

where vx, vy are the horizontal and vertical components of the eigenvector associated with the largest
eigenvalue, respectively.

  
(a) (b) 

Figure 4. Orthonormal eigenvector by principal component analysis (PCA). (a) Eigenvector e1 through
the center of the elliptical area represents the maximum variance and e2 is perpendicular to e1, and
(b) extracted eigenvectors from brain brain magnetic resonance images (MRI) are imposed on the image.

This procedure provides a rough estimate of brain bilateral symmetric axis orientation θ1. Next,
the slice is realigned with the vertical axis of the image using the angle θ1. Generally, it was observed
that PCA aligned the brain bilateral symmetric axis with the vertical axis of the image with an error of
less than 1◦, as displayed in Figure 5.

The first row of Figure 5 indicates that bilateral symmetry axis of the brain is successfully aligned
with the vertical axis (white vertical line) of the image by PCA, but sometimes as the second row in
Figure 5 depicts, the bilateral symmetric axis of the brain is not completely aligned with the vertical
axis of the image. Therefore, to ensure the accurate alignment of the bilateral symmetric axis of the
brain with the vertical axis of the image, another fine alignment step is applied using a cross-correlation
technique to find the angle θ2 with the vertical axis of the aligned image F (output of the previous step).
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Figure 5. Estimation of symmetry axis orientation θr. First column: input images; second column:
alignment of the brain bilateral symmetry axis with the vertical axis of the image using θ1; last column:
brain bilateral symmetry axis alignment using θr = θ1 + θ2. Note that θ2 = 0 in the first row.

2.2.3. Cross-Correlation

In the cross-correlation technique, the aligned image F acquired in the last step is reflected about
the current vertical center line to produce a new reflected image F′. The reflected image F′ is rotated
by 2θ2 (θ2 ∈ [−10◦, 10◦]) with a 0.5◦ interval about the center of the image, cross-correlated with the
image F, and the maximum correlation score is noted. The value of θ2 at which the cross-correlation
score is maximum will be the required angle of bilateral symmetry with the vertical axis of the image.
The cross-correlation is accomplished in the frequency space for greater efficiency. The detail of this
method can be found in [18].

If θ2 is zero, it means that the PCA accurately aligns the brain bilateral symmetric axis with the
vertical axis of the image, otherwise θr (yaw angle) will be:

θr = θ1 + θ2 (19)

where θ1 is the angle obtained from PCA and θ2 is the angle yielded from the
cross-correlation technique.

After applying the cross-correlation technique, the brain bilateral symmetric axis is completely
aligned with the vertical axis of the image, as displayed in Figure 5 (last column). Now, the angle θr can
be used to estimate the first two parameters of the normal of required MSP plane using Equation (7),
i.e., a = cos θ, and b = sin θ.
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2.3. Fitting of Plane in Three Dimensions

According to Equation (4), the angle θr will be same for all the 2-D axial symmetric lines on
each axial slice, irrespective of the position of slice Zr. Therefore, each image in the 3-D volume of
the brain MRIs is rotated by an angle of −θr, so that bilateral symmetry axis of the brain becomes
vertically oriented in each image. Normally, the translation offset pr of each symmetric axis can be
computed using a cross-correlation of the aligned image with its vertical reflection about the center
of the image [18,25]. This technique has two complications. The first one is the existence of outlier in
the translation offset due to pathology effects, image artifacts, and symmetry axis ambiguity in the
superior slices of brain. The second one is that this technique is also computationally intensive as it
takes approximately 10 s for each slice of size (rows, column) 512 × 512 [18].

We have introduced a fast approach to estimating the translation offset independent of these
constraints. The technique is based on the straightforward and effective observation that the head in
the slices of brain MRIs is shaped like an ellipse (ellipsoid in three dimensions). Moreover, a trapezoid
area on the surface of the head, center upon +x and −x (from ear to ear) directions of a height (30–45◦)
and a width (45–70◦), has the most significant geometrical features as described by [16]. Fitting of
plane consists of the following three steps:

1. Elliptical Area Extraction

The main objective to extract the elliptical area is to make the offset estimation independent of
pathological effects, image artifacts, symmetry axis ambiguity in the higher slices, and computationally
efficient. The aligned image is binarized [44] and noise is removed by the same procedure as described
in the previous Section 2.2.1. Then, a rectangular area is achieved by searching for the first and
last nonzero pixels along the rows (top and bottom) and columns (left and right) of the noise-free
binary image (Figure 6d). First and last nonzero columns and rows are denoted by c1, c2, r1, and r2,
respectively. Accordingly, the vertices of the rectangle are labeled as: A(c1, r1), B(c2, r1), C(c2, r2), and
D(c1, r2), respectively.

Now, the parameters of an ellipse can be determined as:

Center o f ellipse : O =

(
c1 + c2

2
,

r1 + r2

2

)
(20)

Semi − major axis : a =

(
r2 − r1

2

)
(21)

Semi − minor axis : b =

(
c2 − c1

2

)
(22)

Now, ellipse in parametric form can be written as:

x =
c1 + c2

2
+ b cos θ (23)

y =
r1 + r2

2
+ a sin θ (24)

Now, within I(i, j), which consists of all the pixels inside the elliptical boundary, the pixels are set
to “1” based on Equation (25), as shown in Figure 6e,f, respectively.

I(i, j) =

{
1 if (i, j) lies inside elliptical area

0 otherwise
(25)
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 6. Elliptical area extraction. (a) Input image, (b) binary image, (c) noise removal, (d) rectangular
boundary extraction, (e) elliptical area extraction, and (f) symmetric axis (midline) extraction
using PCA.

2. Set of Mid-Parallel Lines Extraction

In the axial orientation, inferior and superior slices of the brain volume have ambiguous symmetry
axes as compared to the slices near the center of the brain. Secondly, slices higher in the brain are
almost ovals [16]. Therefore, ambiguous symmetry slices are automatically eliminated based on the
ratio of the semi-axes of the ellipse, and only those slices of which this ratio is greater than 1.2 are
extracted. This significantly improves the accuracy and efficiency of the algorithm. Selected sample
slices with their respective elliptical area are illustrated in Figure 7.

 
(a) (b) 

Figure 7. Selected slices from a 3-D volume of brain MRIs. (a) Selected slices based on semi-axes, and
(b) extracted elliptical area from slices.
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The midline (principal axis) on each elliptical area slice is extracted using PCA as described in
the preceding Section 2.2.2. An array Ar,s is formed from the location coordinates of three points
(top, center, and bottom) on each midline (Figure 6f) as:

Ar,s =
[

xr,s yr,s zr.1s

]
rs×3

r = 1, 2, . . . , N. (26)

where r denotes the rth brain slice, s is the number of points considered on each midline, 1s is a column
vector (s-dimensional) with all its elements equal to one, and N is equal to the total number of slices
used (automatically selected).

The first column of Ar,s consists of pr (offset) values of the symmetric axis and the last column
contains the indices of the respective slice. According to Equation (5), this makes an overdetermined
set of linear equations in pr and Zr as a function of plane parameters c and d, as displayed in Figure 8.
It can be solved by fitting a plane in 3-D Euclidean space to a set of parallel lines (midlines) having the
orientation θr.

Figure 8. The relationship between the brain slice position (Zr) and the symmetric axis offset (pr). The
illustration is adapted from [47].

3. Fitting of Plane Using Orthogonal Regression

Orthogonal regression is employed using PCA to fit a plane to these midlines. PCA minimizes
the orthogonal distances from the data point to the fitting plane (fitting model). In the linear case, it is
also known as total least squares [42]. It is appropriate when all the variables are measured with errors.
In contrary to the usual regression, where the assumption is that the predictor variables are measured
precisely, and only the response variables have the component of error. Singular value decomposition
(svd) is used to find the principal components of the PCA. The first step is to center the location data
matrix Ar,s. This can be achieved by subtracting each data point of the matrix from its column mean.
The resultant matrix is labeled as B. Then, the svd of B can be expressed as:

B = USVT (27)

where U is a left-singular vector, S is a diagonal matrix of singular values, and V is a
right-singular matrix.
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The columns of V will be the required principal components. First two columns (first two principal
components) of V define vectors that form a basis for the plane, and the third column (third principal
component) is orthogonal to the first two principal components. The coefficients of the third principal
component define the normal vector (n) of the MSP having an orientation of θr (yaw angle). The third
coefficient of the normal vector n can be exploited to estimate the roll angle ϕ using Equation (7) as:

ϕ = − tan−1(c) (28)

where c is the third coefficient of the normal vector.
Similarly, the parameter d of the MSP can be calculated by taking the scalar product of the normal

vector n and the mean of Ar,s.

2.4. Transformation for Tilt Correction

After MSP normal vector computation, the translation matrix and the rotation matrix can
be easily determined to correct the tilt (recenter and reorientation) of 3D-volume of brain MRIs.
Let Rreq = yaw(θ)roll(ϕ)pitch(ω) be the required rotation matrix, which can be written as:

Rreq =

⎡⎢⎣ cϕcθ cθsωsϕ − cωsθ cωcθsϕ + sωsθ

sθcϕ cωcθ + sθsωsθ cωsθsϕ − sωcθ

−sϕ sωcϕ cωcϕ

⎤⎥⎦ (29)

where cθ ≡ cos θ, sθ ≡ sin θ, and so on.
The pitch (ω) angle will be zero for MSP, and yaw (θ) and roll (ϕ) angles are calculated using

Equations (19) and (28), respectively. The translation vector between the two coordinate systems, i.e.,
the center of the volume and centroid of the image grid, can be written as:

Δ = [ΔXo, ΔYo, ΔZo]
T (30)

Trilinear interpolation is used to reslice the head volume after realignment and tilt correction.

3. Results and Discussion

The presented algorithm has been implemented in MATLAB 2018a on a PC with Intel(R) Core
(TM) i5-6600 CPU @ 3.30 GHz, 8 GB RAM. Total time for all algorithmic steps is 1.04 s on average.
No attempt has been made on optimization of the code. The developed algorithm has been tested
on 157 real T1-weighted brain MRI datasets including 14 cases from the patients with the brain
tumors. All the brain MRI datasets are publicly available. The details of the sample dataset images
and parameters are given in Table 1. The first dataset is from Neurofeedback Skull-stripped (NFBS)
repository [48] containing 125 volumes of brain MRI having several clinical and subclinical psychiatric
syndromes. There is no ground truth (GT) for MSP available for this database. The second database is
from the Internet Brain Segmentation Repository (IBSR) [49], containing 18 volumes of T1-weighted
brain MRI with manually segmented hemispheres of the brain. The third dataset is from Montreal
Neurological Institute’s Brain Images of Tumors for Evaluation (MNI BITE) database [50], which
consists of 14 patients, 5 women and 9 men with a mean age of 52 years. The dataset includes 4 patients
with low-grade gliomas (brain tumors) and 10 patients with high-grade gliomas (brain tumors). The
mean tumor volume calculated manually by the experts was 30 cm3.
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Table 1. Datasets used for evaluation.

Datasets Detail of Images

NFBS [48]

There are 125 T1-weighted MRI scans, 77 females and 48 males in the 21–45 age range (average:
31) with a variety of clinical and subclinical psychiatric symptoms. The size of the individual scan
is 256 × 256 × 192 and each voxel size is 1 × 1 × 1 mm3. The first two dimensions in each scan
size indicate the individual image size (rows, columns) and the third dimension represents the
number of images in the scan.

IBSR [49]
Eighteen volumes of T1-weighted brain MRI from all age groups from juvenile to adult are
available online with ground truth. The size of the individual scan is 256 × 256 × 128 and each
voxel size is 1.5 × 1.5 × 1.5 mm3. Most of the scans in this database have low-contrast images.

MNI BITE [50]
Real T1-weighted brain MRI of 14 patients with brain tumors (gliomas). We have used scans from
Group 2 (pre-operative MRIs) and Group 3 (post-resection MRIs). The size of each scan in Group 2
is 394 × 466 × 378. Group 3 contains scans of different sizes and dimensions.

3.1. Evaluation on Real Datasets

The MSP is extracted from each dataset using the proposed algorithm and some slices
perpendicular to the estimated MSP are snipped and displayed in Figure 9. The green line in each
image is the intersecting line between the estimated MSP and the corresponding orthogonal slice. The
first row (Figure 9a) represents the images from the NFBS database with extracted MSP by the proposed
algorithm. The images of the same dataset (NFBS) are synthetically degraded by adding zero-mean
Gaussian noise of several levels. Proposed algorithm breaking points can be found by incrementally
adding the noise until the algorithm fails to detect the accurate MSP plane. The proposed algorithm
successfully estimated the MSP at levels of noise up to SNR = −10.09 decibel (dB). The second row
(Figure 9b) indicates representative resulting slices and the estimated MSP from noisy images. Images
from the IBSR database are portrayed in Figure 9c. Manual delineation (GT) of brain hemispheres
is available only for the IBSR database. The manual delineation boundary is superimposed on the
input image with the white pixels by using a morphological gradient and binary skeletonization [51],
as shown in Figure 9c. The proposed algorithm successfully extracts the MSP in all the volumes
of the IBSR database and no obvious error is detected. The last two rows in Figure 9 contain the
MSP-extracted results from the MNI BITE database. Group 2 (Figure 9d) comprises pre-operative MRIs
and Group 3 (Figure 9e) includes MRIs acquired at different intervals of time, i.e., before and after
surgery. Obvious asymmetries can be seen in the two groups of brain MRIs. The proposed algorithm
extracted the symmetry axes from these volumes robustly and accurately.

3.2. Evaluation and Comparison on Synthetic Datasets

The accuracy of the proposed algorithm for extracting MSP is also evaluated by creating a set of
50 symmetrical scans of the real brain MRI from the NFBS database [48]. Each head scan is manually
adjusted and perfectly aligned followed by reflecting one half of the head volume about the known
MSP to form the other half. The two mirror halves are stitched together to create a symmetrical head
scan with known GT MSP. The reason for creating such volumes is that perfectly symmetric head
volumes with GT can be manipulated and transformed arbitrarily. In this way, we can avoid typical
subjective factors of human visual inspection. Moreover, in reality, no human head scan exhibits perfect
digital symmetry [52]. Therefore, GT in real brain MRIs cannot be used directly for MSP algorithm
evaluation [18].
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 9. Visual comparison of the proposed algorithm in extracting the symmetric axis (MSP) from
real brain MRIs, (a) the NFBS database [38], (b) images of the same subjects with Gaussian noise, (c) the
IBSR database [39], (d) the MNI BITE database Group 2, and (e) the MNI BITE database Group 3 [40].

The presented algorithm results have been compared with a state-of-the-art MSP extraction
method proposed by Ruppert et al. [27]. The algorithm is based on maximization of bilateral symmetry
using 3-D Sobel edge operator, thresholding, downsampling, and a multiscale scheme. To improve the
quantitative analysis of MSP identification, the authors also introduced a new MSP estimation error
metric called average z-distance. The detail of this metric is discussed in the succeeding paragraph.
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Metrics: Two metrics are measured to assess how accurately the algorithms detected the MSP.
One is the angle difference (in degree) and is defined as the angle between normal vectors of GT MSP
and estimated MSP. Mathematically, it can be computed using the inner product as:

α = cos−1
(
< u, v >

‖u‖‖v‖
)
× 180

π
(31)

where α is the angular difference, u is the normal vector of GT MSP, and v is the normal vector of
calculated MSP.

When the two planes are parallel, this error metric is not sufficient and may be misleading
due to translation between the estimated MSP and GT MSP. This problem is circumvented by
Ruppert et al. [27] who proposed a new, simple, and fast metric known as average z-distance or
z-score (in voxels), to measure MSP estimation error as a function of the distance between the two
planes. This distance can be measured [27,33] by computing z coordinate from the plane equations, for
the GT plane and the estimated plane, using each “x” and “y”. It can be written as:

z distance =

∑
(x,y)

(|zcoord.(GT)− zcoord.(Est.)|)

dim(x)× dim(y)
(32)

where dim is the image dimension along x and y axes, and GT, and Est. stands for ground truth and
estimated MSPs, respectively.

Both the algorithms (the proposed algorithm and Ruppert et al. algorithm) are evaluated for
all the slices in the perfectly symmetrical head volume by determining their average z-distance with
respect to each corresponding GT MSP. The mean z-scores obtained for both algorithms on 50 perfectly
symmetric datasets are shown in Table 2.

Table 2. Quantitative results comparison for perfectly symmetric datasets.

Ruppert et al. Algorithm Proposed Algorithm

z Score
(Voxels)

Angle
Difference (◦)

Time (s)
z-Score
(Voxels)

Angle
Difference (◦)

Time (s)

Mean 1.246 0.10 35.02 0.336 0.06 1.04
Std. 2.041 0.22 1.12 0.324 0.21 0.02

Median 0.50 0.00 34.86 0.250 0.00 1.01

The plot of average z-distance for the individual scan is illustrated in Figure 10. Ruppert et al.
approach was unable to truly estimate the MSP in some scans and showed substantially large values
for average z-distances, as indicated by the black square in Figure 10. These scans were not considered
when measuring the mean z-score and the mean of angle differences, since they would synthetically
intensify the z-score and standard deviation results of Ruppert et al. algorithm.

The values of z-score are almost similar as they reported in their paper, except for some scans
having a rotation angle (either yaw or roll) of greater than 5◦, as displayed in Figure 11. The situations
at which their algorithm relied, i.e., smoothing, Sobel operator followed by thresholding of 5% brightest
voxels, and symmetric score, are not satisfied in the presence of noise, image artifacts, and intensity
inhomogeneity. This causes the offsets of plane underestimated. From Table 2, it is evident that
Ruppert et al. algorithm accurately estimated the orientation of the MSP but failed to correctly
calculate the offset of MSP. On the other hand, the proposed algorithm results are more consistent and
accurate in orientations as well as in offsets.
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Figure 10. Average z-distances of perfectly symmetric datasets (z-distances indicated by the square are
not included for mean z-score calculation).

 
(a) (b) (c) (d) 

Figure 11. Visual comparison of the proposed algorithm with Ruppert et al. algorithm for extracting
the symmetric axis (MSP) from perfectly symmetric datasets: (a) input slice, (b) ground-truth slice,
(c) Ruppert et al. [27] algorithm results, and (d) proposed algorithm results.

446



Appl. Sci. 2018, 8, 2203

To precisely inspect the accuracy of the proposed algorithm, many illustrative slices orthogonal
to the estimated MSP are displayed in Figure 11. The lines in different colors (magenta, blue and
green) are the intersecting lines between the extracted MSP and the respective orthogonal slice.
The first column represents the input images and the second column shows the input images with
the GT MSP intersection line (magenta color line). Similarly, third and fourth columns contain
the images of Ruppert et al. and proposed algorithm results, respectively. Visual comparison in
Figure 11 also reveals that the proposed algorithm outperformed Ruppert et al. algorithm in terms of
accuracy, both in orientation and offsets. Ruppert et al. algorithm could not always achieve a rigorous
estimate of MSP, particularly when the brain MRIs underwent a considerable transformation (rotation,
translation, noise).

3.3. Evaluation and Comparison on Real Datasets

The proposed method has also been compared with Ruppert et al. method on real brain MRIs.
Both techniques have been tested on 125 real head scans of the NFBS database [48] and 18 real head
volumes of the IBSR database [49]. No GT for MSP is available for NFBS. Therefore, only visually
comparison of the MSP extraction results has been reported for both the algorithms. The first row of
Figure 12 shows some of the input image slices orthogonal to MSP.

 

Figure 12. Visual comparison of the proposed algorithm with Ruppert et al. algorithm for extracting
the symmetric axis (MSP) from real head volumes (the NFBS database [48]). First row, second row,
and third row display the input images, the proposed algorithm results, and Ruppert et al. algorithm
results, respectively.

Extracted MSP (green lines) using the proposed algorithm is displayed in the second row of
Figure 12. Blue lines in the third row of Figure 12 displays the MSP extraction results of Ruppert et al.
algorithm. The same pattern of the results in detecting MSP is shown by Ruppert et al. algorithm
in real brain volumes. It estimates the orientation of the MSP more accurately but fails to correctly
calculate the offset of MSP. On the other hand, the proposed algorithm detects the MSP more precisely
and consistently.
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The IBSR database contains the manual delineation (GT) of brain hemispheres. For illustration,
the input image from a brain volume is shown in Figure 13a with its manual delineation (mask) of the
left (dark) and the right (bright) brain regions (Figure 13b). For comparison purpose, the boundary
of the right region is superimposed on the input image with the white pixels using a morphological
gradient and the binary skeletonization [51], as shown in Figure 13c. Therefore, this image is used
as a GT for evaluation of MSP extraction results. For the precise and accurate result, the intersection
line (between the estimated MSP and the corresponding orthogonal slice) should be overlapped or
coincided with the white pixels boundary in the GT image.

 
(a) (b) (c) 

Figure 13. Superimposition of the ground truth (GT) image on the input image of the IBSR dataset [49]:
(a) input image; (b) GT image; and (c) boundary of the right brain region is imposed on the input image
with the white pixels.

The first row in Figure 14 consists of all the input images with GT delineation of the right brain.
Since the MSP divides the brain into two roughly symmetrical regions, the detected MSP (green line)
by the proposed algorithm is almost completely overlapped with the boundary of the GT delineation
of the right brain, as shown in the second row of Figure 14. In contrary, the MSP (blue line) estimated
by Ruppert et al. algorithm is deteriorated significantly from the real boundary of the GT delineation
of the right brain. Note that we did not compare results of brain tumors datasets with Ruppert et al.
algorithm because they did not report results on such datasets in their paper.

 

Figure 14. Visual comparison of the proposed algorithm with Ruppert et al. algorithm for extracting
the symmetric axis (MSP) from real head volumes of the IBSR database [49]. First row, second row,
and third row display the input images, the proposed algorithm results, and Ruppert et al. algorithm
results, respectively.

In short, all the promising results given by the proposed algorithm indicates that the developed
technique has the highest accuracy and consistency in extracting the MSP. Finally, the results of
automatic MSP detection and tilt correction (recenter and reorientation) in brain MRIs are displayed
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in Figure 15, where the first row represents the tilted slices of the three distinct brain volumes. After
computing the parameters of the MSP and affine transformation, we reoriented and recentered the
brain volumes. The corrected volume images are displayed in the second row of Figure 15.

 

Figure 15. The results of symmetric detection and tilt correction (realignment of the brain head volume).
The input head volumes images are in the first row and reoriented (recentered) head volumes images
are in the second row.

4. Conclusions

In this paper, we have presented a fully automatic and computationally efficient MSP extraction
and tilt correction technique in brain MRIs. The proposed method is based on PCA and symmetric
features followed by plane fitting using orthogonal regression. Experimental results on 157 real
heterogeneous brain MRIs including 14 datasets with brain tumors and comparison with a
state-of-the-art method have confirmed that the proposed technique provides consistent performance
with the highest accuracy. Moreover, it is 30 times faster than the competitor algorithm and takes only
1.04 s (on average) for all algorithmic steps per MRI volume. It is also robust on pathological brain
MRIs having various intensity inhomogeneities, noises and image artifacts.

Some limitation of the proposed algorithm should be taken into consideration. The algorithm can
only take T1-weighted MRI of the brain in axial orientation as an input. Although one can convert
from one orientation (sagittal or coronal) to other using existing algorithms, the selection of brain slice
in the first step can affect the yaw angle due to the assumption that it should be the same in each axial
slice (see Equation (4)). The reason is that in the true anatomical structure of the brain, MSP is not
exactly the plane but a curved surface even for a normal brain. Even though the planer estimation
is adequate for many applications such as registration and symmetric/asymmetric analysis of brain
images, the results obtained from the PCA in estimating the yaw angle can also affect the performance
of the algorithm in the presence of high level of noise. When the SNR is less than −10.09 dB, estimates
of the yaw angle cannot be trusted. This problem can be circumvented by increasing the angle range in
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the cross-correlation step. Our future work will include evaluation of the algorithm on brain images of
various sources and modalities such as T2-weighted, Proton Density (PD) weighted, Fluid Attenuated
Inversion Recovery (FLAIR), PET, and SPECT.
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Abstract: Over recent years, computer-aided design (CAD) has become widely used in the dental
industry. In dental CAD applications using both volumetric computed tomography (CT) images
and 3D optical scanned surface data, the two data sets need to be registered. Previous works have
registered volume data and surface data by segmentation. Volume data can be converted to surface
data by segmentation and the registration is achieved by the iterative closest point (ICP) method.
However, the segmentation needs human input and the results of registration can be poor depending
on the segmented surface. Moreover, if the volume data contains metal artifacts, the segmentation
process becomes more complex since post-processing is required to remove the metal artifacts, and
initially positioning the registration becomes more challenging. To overcome these limitations,
we propose a modified iterative closest point (MICP) process, an automatic segmentation method for
volume data and surface data. The proposed method uses a bundle of edge points detected along an
intensity profile defined by points and normal of surface data. Using this dynamic segmentation,
volume data becomes surface data which can be applied to the ICP method. Experimentally,
MICP demonstrates fine results compared to the conventional registration method. In addition,
the registration can be completed within 10 s if down sampling is applied.

Keywords: local registration; iterative closest points; multimodal medical image registration

1. Introduction

In the dental computer-aided design and computer-aided manufacturing (CAD/CAM) industry,
volumetric computed tomography (CT) images and scan surfaces are most commonly used. However,
the two data types are very different, because their measurement techniques fundamentally differ.
The volume data contains intensity information of the internal organs of the human body, while the
surface data contains only the visible surfaces, that is, the teeth and the gingiva. Because of their
different features, volume data and surface data are used for different dental applications. However,
there are many applications which require both volume data and surface data and for the accurate
registration of the volume and surface data is necessary. To achieve this we propose a novel registration
method of volume data and surface data.

1.1. Backgrounds

1.1.1. Volumetric Computed Tomography (CT) Data

Volumetric computed tomography (CT) data features a voxel structure, with each voxel having
an intensity value. The standard data format for this volume data is the Digital Imaging and
Communications in Medicine (DICOM) format, which contains more than 90 valuable information
fields such as intensity values, patient details, modality, and manufacturer, acquisition data, and so
on [1–3]. The volume data is obtained by X-ray computed tomography (CT) scanning. In practice,

Appl. Sci. 2018, 8, 1762; doi:10.3390/app8101762 www.mdpi.com/journal/applsci453



Appl. Sci. 2018, 8, 1762

the volume data is divided into three parallel planes, the sagittal, axial, and coronal planes, and is used
in the analysis of many operations. For dental applications, cone beam computed tomography (CBCT)
is used [4–6]. While a ‘fan-shaped’ X-ray beam is used in medical CT, a ‘cone’ X-ray beam is used in
cone beam CT. Because medical CT features higher X-ray exposure than CBCT, the resolution of the
volume data provided by medical CT is higher than that provided by CBCT [7]. However, CBCT is
used in many fields of dentistry due to the low X-ray exposure associated with it. Also, CBCT data is
much easier to use with 3D interpolation since, due to its X-ray geometry, it forms isotropic voxels,
whereas medical CT forms anisotropic voxels.

1.1.2. Dental Surface Data

3D scanners are well established and widely used in industry and dental 3D scanners, which are
optimized to scan plaster models, are also widely used in dentistry. The standard data format for the
surface data is standard triangle language (STL) [8] and polygon file format (PLY). This surface data
contains vertices, faces, normal vectors, and so on. To obtain the surface data, 3D optical scanners using
structured light are generally used because they are fast and precise [9,10]. The 3D optical scanner is
composed of two cameras for epipolar geometry and one projector for pattern projection. The surface
data features much better resolution and accuracy than the volume data.

1.2. Related Works

Volume data and surface data have different features and there are various dental CAD/CAM
applications which use both volume and surface data. Therefore, the registration of volume data and
surface data is necessary.

Before approaching the registration problem, the intrinsic errors of each data should be considered
numerically. 3D dental scanners (Identica Blue, MEDIT Corp., Seongbuk-gu, Seoul, Korea) are accurate
to 0.007 mm. However, considering the whole process of making the impression and the plaster model
for measurement, the total intrinsic error of the surface data is around 0.06 mm in practice [11,12].
On the other hand, the accuracy of CBCT (MercuRay, HITACHI, Chiyoda, Japan) is approximately
0.20 mm [13]. Dental prostheses cannot be designed using CBCT volume data because of this relatively
low accuracy. Thus, the intrinsic error of the scan-derived data is generally negligible and only that of
the volume data is a cause for concern.

Usually the registration problem concerns the same types of data and that is the basic premise in
2D images or 3D data registration. However, the registration problem in this paper concerns different
types of data, volume data and surface data. Data must be converted to identical data types before
the registration process, and most previous works convert the volume data to surface data. This type
of conversion process that extracts dental surface data from volume data is called segmentation.
Surface data registration can be performed on the resulting segmented dental surface data. Generally,
surface registration is done by the iterative closest point (ICP) method, which needs good initial
conditions [14–17] and is widely used in the dental CAD/CAM industry. The flow chart for the ICP
method is shown in Figure 1.

Although the established registration framework (ICP) is currently used clinically for dental
applications, some drawbacks still exist; the requirement of human inputs and the metal
artifact problem.

Human input is needed to set the initial positioning. Although there is much research on global
registration, which obtains the initial conditions automatically for ICP, applying this algorithm to
dental model registration is challenging because dental surface data suffers from ambiguity due to
teeth shape characteristics [18]. Segmentation also requires human input. The most commonly used
segmentation methods are thresholding, region growing, and active contour methods such as a level
set. Thresholding is the most straightforward and basic segmentation method and teeth volume data
is segmented by giving lower and upper intensity values [19]. The region growing method starts
with a set of seed points and regions are grown based on the similarity of intensity [20,21]. Level set
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segmentation is performed using 2D axial direction sliced images and stacked for a 3D segmentation
result [22–24]. To improve the result of segmentation, combining the above segmentation methods
has also been studied [25]. However, every segmentation method mentioned above needs a human
input; lower and upper threshold values must be defined for thresholding segmentation, seed points
must be defined for region growing segmentation, and initial contours must be defined for level set
segmentation. In the established framework for the registration of volume and surface data, this human
input stage for segmentation represents the most time-consuming step. Although some automatic
tooth segmentation methods have been studied, each study has constraints and cannot be used in a
wide variety of applications [26,27]. Also, once the segmentation has been done, post processing, such
as surface smoothing and island removing, is required. The result of segmentation may even differ
from person to person.

 
Figure 1. Flow chart: the iterative closest point (ICP)-based method, the established registration method.

Another drawback of the established registration procedure is the metal artifact problem [28].
If a patient has a prosthetic appliance made of metal, the volume data is seriously affected by white
saturation. The quality of the resulting segmented surface is also affected. Initial conditioning for ICP
also becomes more difficult because non-artifact points on the segmented surface must be selected
manually. Many studies have considered the metal artifact problem [29,30] but they have resulted in a
reduction rather than an elimination of the metal artifact effect so the problem remains unsolved.

1.3. Motivation and Contribution of the Thesis

ICP is the most useful fine registration algorithm and produces accurate results. However, volume
data is composed of voxel structures with intensity values and contains no points or normal data.
To find corresponding points between volume and surface data to apply to ICP, point data should be
segmented from the volume data. In the established registration procedure, the segmented surface is
used as a target surface for the ICP algorithm. Hence, the previous works must make considerable effort
to ensure good quality segmented surface data, and this requires human input. We are motivated to try
and overcome this fundamental limitation of the established registration procedure. Registration does
not require fully segmented surface information, but only the corresponding points for the ICP method.
Obtaining these points has proven the most challenging step in previous works on segmentation.
The proposed method, the modified iterative closest point (MICP) obtains the corresponding points
by dynamic segmentation defined by an intensity profile analysis. The remainder of this paper is
organized as follows. In Section 2 detailed explanations of the proposed method are given. In Section 3
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the results of the proposed method are shown and a comparison of its effectiveness with that of the
established method is provided. Finally, the concluding remarks of the paper are given in Section 4.

2. Proposed Method: MICP

2.1. Overview

The overall process of the algorithm can be written in pseudo-code as follows:

Pseudo-code: The overall process of the proposed method

Data: V, P
Result: Tf
while (e < ending criteria)
{V′} ← interpolation(V)
{E} ← step_edge(V)
{M} ← match(E,P′,N)
{Tinit} ← minimizing point-to-plane distance metric
{P′} ← {TinitP}
end{

Tf

}
← ICP(Tinit·Ps, Pt)

To align the volume data (V) and the scan data (P), the two were initially manually placed
proximally. For a single point and normal vector from the surface data, an intensity profile can be
defined in the volume data. The intensity profile has several new points aligned with the normal vector
to the surface data. These points are defined with uniform intervals and new intensity values are
given to these points by 3D interpolation (V′). Because the volume data and surface data are initially
positioned well, a single intensity step edge is apparent in the intensity profile (Figure 2).

Figure 2. Intensity profile and step edge point.

The step edge represents the boundary of the teeth in the volume data and provides valuable
information for both segmentation and registration. For most existing segmentation algorithms that
extract surface data from volume data, points of the segmented surface must be positioned in the step
edge(E). In other words, an edge point on an intensity profile should relate directly to a 3D segmented
point. From the registration aspect, if the volume data and scan data are aligned properly, this step
edge point must converge to the origin (x = 0).

The intensity profile is calculated for every point so the step edge can be determined. If the step
edge exists in the intensity profile, the interpolated edge point in the 3D vertex can be obtained and
the edge point becomes a segmented point. These points are the corresponding points used for the ICP
algorithm (M). The rigid transformation matrix can be calculated by minimizing the distance between
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the matching points. If the average distance between the two data sets becomes less than the ending
criteria, the dynamic segmentation process terminates.

Unlike the previous methods that use only volume data for segmentation, we use both volume
data and surface data. The proposed registration procedure does not need any human input except for
initial positioning and works automatically. In addition, the proposed method uses the edge points
of the teeth. Therefore, it is robust to the artifact problem. The overall flow chart of the proposed
registration procedure is shown in Figure 3.

 

Figure 3. Overall procedure of the proposed method.

2.2. Automatic Registration Process

2.2.1. Defining an Edge Point on Intensity Profile

Based on a single point of scan data, an intensity profile can be generated along the normal
direction of the point by 3D interpolating with a uniform interval. For this intensity profile generating
process, two parameters are needed, the maximum distance and the interval. In this study, we used
10 voxels as the maximum distance and 1 voxel as the interval, and a total of 21 interpolation values
are calculated for 1 intensity profile. With this intensity profile, the presence of step edges can be
determined. The first derivative of the line profile can be used to determine the presence of a step
edge. The determined step edge could correspond to an intensity increasing shape or an intensity
decreasing shape.

Because the normal direction of the surface data and the gradient direction of the volume data
are opposite, the sign of the first gradient of the step edge must be negative. In conclusion, if an
intensity profile has a high negative value for the first derivatives, that intensity profile has a step
edge and the point of the surface data becomes a corresponding point for ICP. Then, the minimum
value of the first derivatives is defined. Many studies have evaluated the HU values of materials in
CBCT volume data [31–34]. There are two step edges which define the teeth boundaries, whether
bone—air or bone—skin. To detect and use both step edges, the step edge defined by the relatively low
first derivatives value, the bone—skin value, becomes the reference. Based on the previous studies,
−800 was defined as a reasonable slope value of the first derivatives for defining the step edge [19].
All experiments in Section 3 used this slope value to define step edges. This edge point is physically
the same as a zero-crossing edge point [35]. The detected edge point on the intensity profile is a 3D
point because the intensity profile is defined by 3D interpolation from volume data.
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Volume data is highly complex data containing not only teeth, but also bones and tissues.
Therefore, more than two step edges could be found. These intensity profiles are not used for the
registration process. The proposed registration works based on only the defined points of surface data
which are near the step edges. Because of this strict standard, the proposed registration method is
robust to cases with metal artifacts.

Once the edge point is found, the sub-voxel level edge point is defined by local 3D interpolation
back and forth along the intensity profile. This is the final step for a single intensity profile.
The sub-voxel level edge point becomes a corresponding point to the point defining the intensity profile.

2.2.2. Dynamic Segmentation

For a single point on the surface data, a corresponding point in the volume data can be found by
intensity profile analysis. If this intensity profile analysis is applied to all points on the surface data,
a set of corresponding points for ICP can be obtained. The surface data and volume data are initially
positioned. All detected edge points can be visualized as surface data. This surface data is a segmented
surface representing the tooth volume data and can be a corresponding point for ICP. In the proposed
method, if correspondence is obtained, the conventional ICP step for finding corresponding points
becomes unnecessary. Now, points with edge points are set as moving surface data and the segmented
points are set as the target surface data. Then, the sum of the distance between the corresponding
points is minimized using the singular value decomposition (SVD) method and a rigid transformation
matrix can be obtained [36]. The moving surface data is transformed by the obtained transformation
matrix in a process which is a single iteration process under the proposed procedure. Even if the data
is down-sampled, ICP still uses several thousands of points for which it needs to find correspondences.
Repeating SVD iteratively increases the computational costs of ICP. In contrast, the proposed algorithm
uses only hundreds of points from the interpolated data and already knows the correspondences.
Therefore, the computational costs incurred by using SVD are substantially lower than those of ICP.

This whole process is performed iteratively just the same as for the conventional iterative closest
point algorithm. The procedure of the established registration method for volume data and surface
data uses only one segmented surface data. However, the proposed registration method includes
the segmentation process within the iteration which is why this segmentation method is termed
‘dynamic’ segmentation. The segmented surface used as the target surface differs every iteration.
For the proposed dynamic segmentation method using intensity profile analysis, the volume data can
be used directly as input data. Above all, the dynamic segmentation works automatically without
needing any human input. During the iteration process, the edge point on the intensity profile gets
closer to the point on the surface.

2.3. Factors to Consider in Proposed Method

2.3.1. Normal Correction

Fundamentally, the 3D vertex points are the raw data obtained from the 3D scanning and are
not positioned regularly due to the geometry of the model. From this point cloud, a mesh model is
generated from various meshing algorithms and a surface normal can be calculated. From the near
surface normal directions of a point, a vertex normal can be calculated. However, the mesh model
generated from raw scan data is not good mesh data because of its point irregularity. There are many
long-edge triangle faces on the raw mesh data and the calculated normal data is noisy. The dynamic
segmentation that is proposed for MICP is sensitive to the normal direction of the scan data. Using
raw scan data works fine but more accurate registration results can be achieved by correcting the
normal data. There are two ways to correct normal data, normal smoothing and remeshing [37,38].
Normal smoothing can remove the high-frequency noise in the normal data and generates more
reliable intensity profiles. However, the input normal for smoothing is basically inaccurate because of
the irregular mesh data from the raw point cloud data. To overcome the irregularity, we remeshed
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the mesh data. After remeshing from the original mesh data with equal edge lengths, points on
the surface are realigned and regular mesh data is generated (Figure 4). More accurate face normal
data can be calculated from the regular mesh data and more accurate vertex normal data can be
obtained sequentially.

Figure 4. Results of normal correction methods for scan data. (a) raw scan data, (b) normal smoothing,
(c) remeshing.

2.3.2. Length Value to Generate Intensity Profile

To generate the intensity profile through point normal direction, a limitation length should
be set before the process. To achieve accurate registration, a proper length value is needed. If the
intensity profile is set to a short length value, no edge points can be detected and registration cannot
be performed because there is no correspondence between the scan data and the CBCT volume data.
Alternatively, if the intensity profile is set to a long length value, unintended edge points can be
detected and wrong correspondences lead to inaccurate registration results. Edge points of gums,
tissue regions or metal artifact regions can be ignored automatically by the proper length value.
With the proper distance value, the edge points of teeth regions are segmented and can be used to
achieve good correspondences.

2.3.3. Down Sampling

One of the differences between volume data and surface data is their resolution. Surface data
have a much higher resolution than CBCT volume data. The resolution of volume data is not as high
as that of surface data even if 3D interpolated intensity values are given to all the points. A voxel
in the volume data may even correspond to more than dozens of points in the surface data. Thus,
using all points of the surface data is ineffective. To improve the efficiency of MICP registration, input
surface data was down sampled to match the volume data. The conventional registration process,
always contains a segmentation process that takes at least 20 min, so the expected time reduction is
low. However, the expected elapsed time of the proposed registration method is dramatically lowered
because segmentation is contained in the iteration. Generally, there are 4 down sampling algorithms
that are widely used in 3D data handling; uniform sampling, random sampling, normal sampling, and
covariance sampling [39]. The volume data has uniform resolution along the x, y, and z directions.
Given this feature of the volume data, it is reasonable to use uniform sampling to adjust the resolution
of the input data.
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3. Results & Discussion

In this chapter, the experimental results of MICP are presented. Also, the proposed method is
compared to the conventional registration method in terms of the average distance of points (D value).
The proposed algorithm was implemented in MATLAB R2017a (The MathWorks Inc., Natick, MA,
USA) on a personal computer with an i7-4770K processor with 8GB memory and a Windows 7
operating system (Microsoft Cop., Redmond, Washington, DC, USA). To visualize the results, MITK
2016.11.0 [40] and Meshlab 2016 [41] software were used.

3.1. Result

3.1.1. Data Sets

To be able to register the CBCT volume data and the dental scan surface data, naturally both data
types should be obtained from the same patient. To obtain the experimental result, four sets of volume
data and surface data were used for the registration (Figure 5). The volume data were obtained from
CBCT (CB MercuRay, HITACHI, Chiyoda, Japan) and the surface data was obtained from a 3D optical
dental scanner (Identica blue, MEDIT Corp., Seongbuk-gu, Seoul, Korea). The dimension of all volume
data is 512 × 512 × 512. The pixel spacing of the volume data of set1 and set2 is 0.2920 and of set3 and
set4 is 0.2.

 

Figure 5. Input data ((a): surface data, (b): volume data). (1) set no.1 (2) set no.2 (3) set no.3 (4) set no.4.

3.1.2. Registration by the Conventional Method

Although there is no ground truth for the registration result of volume data and scan data,
conventional registration using segmentation and the iterative closest point has been used in the dental
field for a long time. Therefore, to compare registration performance, the ground truth used was the
result of conventional registration. For the comparison, the conventional registration process was
performed on all input data sets. The region of interest (ROI) was set to the teeth region in the CBCT
volume data. In the ROI, thresholding and region growing was performed for segmentation. After
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the volume data has been segmented, the segmented region is extracted as surface mesh data. Then,
human input is used to select a 3-point pair for the initial condition. ICP is performed as the last
registration step. The result of ICP is shown in Figure 6 and Table 1. It is hard to measure the exact time
cost of this conventional registration because it varies with the skills of the user and the computing
power of the hardware. The conventional registration process takes at least 20 min for a no-artifact case
and even more for an artifact case. The most time-consuming steps are segmentation and exportation
of the surface data.

Figure 6. Conventional registration result. ((a): segmented surface data, (b): maxillary, (c): mandible)
(1) set no.1 (2) set no.2 (3) set no.3 (4) set no.

Table 1. The result of conventional registration.

Input Data Metal Artifact EICP (mm) SDICP (mm)

Set no.1
Maxillary No 0.3612 0.1308
Mandible No 0.3357 0.1140

Set no.2
Maxillary Yes 0.4170 0.1574
Mandible No 0.3812 0.1380

Set no.3
Maxillary Yes 0.3178 0.1242
Mandible Yes 0.3464 0.1420

Set no.4
Maxillary Yes 0.5025 0.1914
Mandible no 0.4834 0.1823

3.1.3. Modified Iterative Closest Point (MICP) Registration Results: Normal Correction

Modified iterative closest point (MICP) was performed on the four data sets to register the volume
data and surface data. The volume data was set as the fixed data and the surface data was set as
the moving data. The result of the MICP method is a 3D rigid transformation from dental scan
data to CBCT volume data. To compare the results to those of the conventional registration method,
the average point distance of the two surface data after registration was calculated (D).

The results of the MICP using row scan data converged well and show good results compared to
those of the conventional registration process. After normal correction, even more accurate registration
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results are obtained (Figure 7). Table 2 shows the registration numbers in detail both before and after
normal correction.

Figure 7. Registration result of modified iterative closest point (MICP) after normal correction.

Table 2. Registration result of modified iterative closest point (MICP) after normal correction.

Input Data Normal Correction NMICP EMICP (mm) SDMICP (mm) DMICP (mm)

Set no.1

Maxillary
No 212,125 0.3145 0.7173 0.6178

Normal sampling 0.3146 0.7198 0.6172
Remeshing 180,186 0.2882 0.6703 0.6219

Mandible
No 160,112 0.3953 1.0815 1.1811

Normal sampling 0.3723 1.0094 1.1774
Remeshing 131,545 0.3357 0.9217 1.1679

Set no.2

Maxillary
No 199,456 0.8431 1.8762 1.2145

Normal sampling 0.8374 1.8500 1.2461
Remeshing 185,546 0.7412 1.6113 1.2730

Mandible
No 113,333 0.4203 1.2217 1.1116

Normal sampling 0.4071 1.1760 1.1070
Remeshing 95,438 0.2830 0.8040 1.0955

Set no.3

Maxillary
No 78,442 0.3828 1.4925 0.4458

Normal sampling 0.3339 1.2376 0.4350
Remeshing 51,398 0.3337 1.2289 0.4466

Mandible
No 34,081 0.5730 1.9817 0.5957

Normal sampling 0.5000 1.6143 0.5366
Remeshing 78,657 0.4998 1.6196 0.5387

Set no.4

Maxillary
No 69,563 0.2920 1.1811 0.6204

Normal sampling 0.2602 1.0053 0.5959
Remeshing 56,335 0.2515 0.9704 0.5891

Mandible
No 56,817 0.1457 0.5928 0.9164

Normal sampling 0.1084 0.3837 0.9146
Remeshing 44,472 0.1059 0.3801 0.9298

3.1.4. MICP Registration Results: Different Length Values

To identify the optimal length for generating the intensity profiles of the four data sets, MICP is
performed as the length values are varied from 1 to 10 (Table 3). The length values 1 and 2 are too
short to find edge points on the intensity profiles. Also, the D value increases with the length value.
The registration result changes depending on the length used, and 3–6 seem to be good lengths for
generating the intensity profile due to the lower D values obtained. Note that, based on this length test,
all MICP registration results in this paper use 4 as the length when generating the intensity profile.
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Table 3. Modified iterative closest point (MICP) results with different length values for the
intensity profiles.

Input Data Metal
Artifact

D Value Respect to Length of Intensity Profile

1 2 3 4 5 6 7 8 9 10

Set
no.1

Maxillary No X 0.7009 0.5681 0.5512 0.5409 0.5402 0.5410 0.5442 0.5446 0.5453
Mandible No X X 1.1733 1.1743 1.1735 1.1734 1.1741 1.1776 1.1780 1.1738

Set
no.2

Maxillary Yes X 1.0571 1.1947 1.2525 1.0014 1.0817 1.0813 1.3574 1.3294 1.2866
Mandible No X 1.2707 1.1302 1.1186 1.1215 1.1185 1.1186 1.1185 1.1186 1.1184

Set
no.3

Maxillary Yes X 0.7850 0.4375 0.4101 0.4241 0.4533 0.4557 0.4725 0.4781 0.4817
Mandible Yes X X 0.5127 0.5345 0.5482 0.5703 0.5593 0.5508 0.5530 0.5501

Set
no.4

Maxillary Yes X X 0.5614 0.5604 0.5696 0.5844 0.5826 0.5838 0.5717 0.5824
Mandible No X X 0.9393 0.9370 0.9371 0.9371 0.9371 0.9372 0.0973 0.9371

3.1.5. MICP Registration Results: Down Sampling

Down sampling can be applied to the proposed MICP registration method and the expected time
saving is much higher than for the conventional registration procedure. Figure 8 shows the down
sampled point cloud using uniform sampling with grid sizes of 1, 5, and 10. The result of MICP using
the down sampled surface data is shown in Table 4.

Figure 8. Uniform sampling results. (a) No sampling, (b) uniform sampling (grid size = 1 voxel)
(c) uniform sampling (grid size = 5 voxels), (d) uniform sampling (grid size = 10 voxels).
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Table 4. MICP registration results using uniform down sampled data.

Input Data Sampling NPoint EMICP (mm) SDMICP (mm) DMICP (mm) Time (s)

Set no.1

Maxillary

No 180,186 0.2882 0.6703 0.6219 1062.8
1 47,499 0.2860 0.6622 0.6159 274.8
5 2157 0.2528 0.5933 0.5881 12.4

10 552 0.2434 0.5635 0.5299 3.5

Mandible

No 131,545 0.3210 0.8730 1.1677 793.4
1 34,781 0.3131 0.8470 1.1760 210.4
5 1593 0.2609 0.6881 1.1882 9.9

10 395 0.2401 0.5460 1.2847 2.9

Set no.2

Maxillary

No 173,449 0.7386 1.6003 1.2689 1142.4
1 46,158 0.7279 1.5659 1.2766 307.0
5 2155 0.6971 1.4932 1.2698 14.1
10 539 0.5489 0.9869 1.3935 4.0

Mandible

No 84,735 0.2716 0.7618 1.0742 550.4
1 22,285 0.2636 0.7348 1.0698 146.4
5 1021 0.1592 0.3407 1.0895 6.9

10 227 0.1789 0.4136 1.1974 1.7

Set no.3

Maxillary

No 163,714 0.3386 1.2525 0.4448 1149.0
1 77,997 0.3358 1.2416 0.4464 537.8
5 3982 0.3337 1.2247 0.4827 27.7
10 1013 0.3210 1.1381 0.4661 7.4

Mandible

No 78,657 0.4991 1.6165 0.5390 581.9
1 40,812 0.5004 1.6167 0.5388 303.0
5 2097 0.4993 1.6027 0.5468 15.9

10 543 0.5131 1.6708 0.5920 4.3

Set no.4

Maxillary

No 163,714 0.2597 1.0095 0.5843 1092.8
1 82,483 0.2589 1.0015 0.5862 580.0
5 4232 0.2576 0.9843 0.5753 29.4
10 1081 0.2462 0.9398 0.5856 7.6

Mandible

No 125,617 0.1093 0.3891 0.9128 871.6
1 65,067 0.1088 0.3857 0.9130 444.3
5 3384 0.1067 0.3621 0.9166 23.4

10 892 0.1248 0.4066 0.9329 6.4

3.1.6. MICP Registration Results

Detailed results of proposed MICP registration are shown in Figures 9 and 10. Surface data with
volume rendered volume data is shown. Also, both the axial and sagittal views are shown. The red
surface data is the initial condition, the blue surface data is the result of conventional registration, and
the green surface data is the result of the proposed MICP registration.

 
Maxillary (no artifact) 

 
Mandible (no artifact) 

 
Maxillary (artifact) 

 
Mandible (no artifact) 

(a) (b) 

Figure 9. Cont.
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Maxillary (artifact) 

 
Mandible (artifact) 

 
Maxillary (artifact) 

 
Mandible (no artifact) 

(c) (d) 

Figure 9. Modified iterative closest point (MICP) registration result. (a) Set no.1; (b) Set no.2; (c) Set
no.3; (d) Set no. 4.

 
(a) (b) 

Figure 10. Cont.
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(c) (d) 

Figure 10. Average point distance of the modified iterative closest point (MICP) result. (a) set no.1;
(b) set no.2; (c) set no.3; (d) set no.4.

3.2. Discussion

3.2.1. Evaluation of MICP Registration Results

Some patients who take both CBCT volume data and dental scanning surface data may have
uneven teeth geometry as in our data set. Even with this uneven and poor teeth condition, the proposed
algorithm showed fine results, even for the case with artifacts without needing any extra processing.
The convergence error of MICP is similar to that of ICP.

As the proposed algorithm selects reliable points, it is robust to artifact cases. In the proposed
procedure, registration and segmentation work complementarily; the better registration result causes
the dynamic segmented points to increase, and the increased dynamic segmented points cause a better
registration result. For artifact cases, the ratio of the increasing number of segmented points is lower.

The D value is computed in order to compare the result with the conventional registration result.
As mentioned earlier, there is no ground truth for the registration of volume data and surface data.
In other words, D = 0 does not exactly correspond to a perfect result. However, it is taken as the
ground truth on the basis that the conventional registration is currently used in all dental applications
by experts in this field. Maximum tolerance in the registration of volume data and surface data for
dental applications ranges from 1.0 mm to 2.0 mm. In most cases, the distance values D between
the conventional registration result and the result of the proposed method were less than 2.0 mm.
This means that the proposed MICP registration result has fine registration accuracy and can be used
for conventional applications without any problem. Also, from the early iterations of MICP, the D
values decreased in all test cases. This proves that the surface is moving in the right direction.
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While the established registration framework takes more than 20 min to register the volume data
and the surface data, the proposed MICP registration takes less than 10 min for all cases because the
segmentation process became automatic.

3.2.2. Evaluation of MICP Registration Results by Down Sampling

MICP using full surface data is two times faster than conventional registration and down sampling
makes MICP even faster. The MICP registration result using the most down sampled surface data
took less than 20 s and varying the D values caused almost no significant difference to this time. If the
faster registration of volume data and surface data is needed for some applications, MICP with down
sampling is a realistic solution, especially considering that it guarantees fine registration results.

3.2.3. Limitations

In the overall MICP process, segmentation is done automatically but setting the initial condition
still needs a human input. Like general ICP, MICP could suffer from poor initial conditions.
To determine the maximum effective limits of the initial condition, translations and rotations through
x, y, z directions are applied to each data set and used as the initial position of the MICP input data.
The D value is used to judge whether the registration works or not with the initial conditions.

To set an initial condition for MICP in real applications, landmarks selected by human input
are necessary. In medical image registration, landmark-based registration is widely used instead of
total manual registration by picking arbitrary point pairs. Consistency of the landmarks on medical
images is about 1.64 mm and this is the initial condition for the registration [42]. This 1.64 mm can
be considered directly as the initial condition error. From these initial condition tests, acceptable
registration results are obtained with 2 mm differences of translation and rotation.

4. Conclusions

In this paper, modified iterative closest point (MICP), an automatic segmentation method for
CBCT volume data and dental scan data is proposed. The proposed registration algorithm is based on
a classic local registration algorithm, the iterative closest point (ICP). To find corresponding points
for registration of CBCT volume data and dental scan data, previous methods had to extract full
surface data from the volume data by segmentation. In the proposed method, the step for finding
corresponding points was modified to a dynamic segmentation and the volume data could be directly
used as input data. The whole registration process, except for the initial condition setting, is automatic
and the registration result of the proposed method differs from conventional registration result by less
than 2 mm, which is an acceptable tolerance in the dental CAD/CAM industry. With normal correction,
more accurate registration results can be achieved and proper distance values for generating the
intensity profile are provided. The registration speed is at least two times faster than the conventional
method. With down sampling, MICP works much faster and registration is completed within only
10 s.
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Abstract: To address the registration problem in current machine vision, a new three-dimensional
(3-D) point cloud registration algorithm that combines fast point feature histograms (FPFH) and
greedy projection triangulation is proposed. First, the feature information is comprehensively
described using FPFH feature description and the local correlation of the feature information is
established using greedy projection triangulation. Thereafter, the sample consensus initial alignment
method is applied for initial transformation to implement initial registration. By adjusting the initial
attitude between the two cloud points, the improved initial registration values can be obtained. Finally,
the iterative closest point method is used to obtain a precise conversion relationship; thus, accurate
registration is completed. Specific registration experiments on simple target objects and complex
target objects have been performed. The registration speed increased by 1.1% and the registration
accuracy increased by 27.3% to 50% in the experiment on target object. The experimental results
show that the accuracy and speed of registration have been improved and the efficient registration
of the target object has successfully been performed using the greedy projection triangulation,
which significantly improves the efficiency of matching feature points in machine vision.

Keywords: machine vision; point cloud registration; greedy projection triangulation; local correlation

1. Introduction

With the rapid development of optical measurement technology and three-dimensional (3-D)
imaging [1–3], point cloud data has received substantial attention as a special information format that
contains complete 3-D spatial data. The application of the 3-D image information is widespread in the
fields of 3-D reconstruction for medical applications [4], 3-D object recognition, reverse engineering of
mechanical components [5], virtual reality, and many others such as image processing and machine
vision [6,7].

There have been many efforts to achieve point cloud registration. The classic algorithm for this
purpose is the iterative closest point [8], proposed by Besl and Mckay. This algorithm can be efficiently
applied to registration problems for simple situations. However, if there is significant variance in the
initial position of the two cloud points, it is easy to fall into a local optimum and thus increase the
possibility of inaccurate registration. In order to provide improved initial parameters, it is necessary
to perform the initial registration before accurate registration using algorithms such as the sampling
consistency initial registration algorithm [9]. Due to the large capacity and complexity of point cloud
data models, describing feature points is one of the most important and decisive steps in the processing
for initial registration. Various methods have been developed to obtain feature information, such as
local binary patterns (LBP) [10], local reference frame (LRF) [11], signatures of histogram of orientations
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(SHOT) [12], and point feature histograms (PFH) [13]. These feature operators can only provide a single
description for feature information with high feature dimensions and high computational complexity.

Other efforts have been made in terms of feature matching. Scale-invariant feature transform
(SIFT) [14–16] utilizes difference of gaussian (DOG) images to calculate key points. It describes local
features of images and obtains the corresponding 3-D feature points through mapping relationships.
It has certain stability in terms of the change of view and affine transformation; however, the matching
speed for this algorithm is the main limitation. The speeded-up robust features (SURF) algorithm
can be used to extract the feature points of the image [17–20] and implement image matching
according to the correlation. However, this algorithm relies too much on the gradient direction
of the pixels in the local area, which yields unsatisfactory feature matching results. The intrinsic shape
signature (ISS) algorithm has been proposed for feature extraction to complete the initial registration
process [21,22]; however, wide range in searching feature point pairs and low computational efficiency
are the limitations for this algorithm. The method for interpolating point cloud models using basis
functions has been proposed for establishing local correlation to reduce computational complexity [23].
There are some limitations in traditional methods, such as the inability to comprehensively describe
feature information and slow matching of feature point pairs. These issues limit the accuracy and
speed of 3-D point cloud registration and significantly impacts its application in practical fields.
Based on the traditional sampling consistency initial registration, and iterative closest point accurate
registration, a new point cloud registration algorithm is proposed herein. The proposed algorithm
combines fast point feature histograms (FPFH) feature description with greedy projection triangulation.
The FPFH feature descriptor describes feature information accurately and comprehensively, and greedy
projection triangulation reflects the topological connection between data points and its neighbors,
establishes local optimal correlation, narrows the search scope, and eliminate unnecessary matching
times. The combination solves the problems of the slow speed and the low accuracy in traditional
point cloud registration, which leads to improvements in the optical 3-D measurement technology.
The effectiveness of the proposed algorithm is experimentally verified by performing point cloud
registration on a target object.

The contents of the paper consist of four sections. In Section 2, the specifications of the point
cloud registration algorithm are discussed. In Section 3, experiments and analysis performed using the
point cloud library (PCL) are presented. Finally, the conclusions are presented in Section 4.

2. Point Cloud Registration Algorithm

Regarding the complexity of the target, integral information can only be obtained by scanning
multiple stations from different directions. The data scanned by each direction is based on its own
coordinate system, and then unify them to the same coordinate system. Control points and target
points are set in the scan area such that there are multiple control points or control targets with the
same name on the map of the adjacent area. Thus, the adjacent scan data has the same coordinate
system through the forced attachment of control points. The specific algorithm is as follows.

First, the FPFH of the point cloud is calculated and the local correlation is established to speed-up
the search for the closest eigenvalue using the greedy projection triangulation network. Because of the
unknown relative position between the two point cloud models, sample consensus initial alignment
is used to obtain an approximate rotation translation matrix to realize the initial transformation.
In addition, the iterative closest point is further refined to obtain a more accurate matrix with the initial
value. The point cloud registration chart is shown in Figure 1.
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Figure 1. Point cloud registration chart. FPFH (fast point feature histograms).

2.1. Feature Information Description

FPFH is a simplification algorithm for point feature histograms (PFH), which is a histogram of
point features reflecting the local geometric features around a given sample point. All neighboring
points in the neighborhood K of the sample point P are examined and a local UVW coordinate system
is defined as follows: ⎧⎪⎨⎪⎩

u = ns

v = u × (Pt−Ps)
‖Pt−Ps‖

w = u × v
. (1)

The relationship between pairs of points in the neighborhood K is represented by the parameters
(α, β, θ) and can be obtained as follows:⎧⎪⎨⎪⎩

α = v × ns

β = u × (Pt−Ps)
‖Pt−Ps‖

θ = arctan(w · ns, u · nt)

, (2)

where Ps and Pt (s �= t) denote the point pairs and ns and nt denote their corresponding normals in the
sample point neighborhood K.

The eigenvalues of all point pairs are then calculated and the PFH of each sample point Pc is then
statistically integrated. Next, the neighborhood K of each point is determined to form a simplified
point feature histogram (SPFH), which is then integrated into the final FPFH. Hence, each sample point
is uniquely represented by the FPFH feature descriptor. The eigenvalues of FPFH can be calculated
using the following equation:

FPFH(Pc) = SPFH(Pc) +
1
k

k

∑
i=1

1
wk

·SPFH(Pi), (3)

where wk denotes the distance between the sample point Pc and the neighboring point Pk in the known
metric space.

2.2. Greedy Projection Triangulation

Greedy projection triangulation bridges computer vision and computer graphics. It converts
the scattered point cloud into an optimized spatial triangle mesh, thereby reflecting the topological
connection relationship between data points and their neighboring points, and maintaining the global
information of the point cloud data [24]. The established triangulation network reflects the topological
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structure of the target object that is represented by the scattered data-set. The triangulation process is
shown in Figure 2. The specific steps are given as follows:

Figure 2. Greedy projection triangulation schematic.

Step 1: A point V and its normal vector exist on the surface of the three-dimensional object.
The tangent plane perpendicular to the normal vector must first be determined.

Step 2: The point V and its vicinity are projected to the tangent plane passing through V, denoted
as the point set {S}, and the point set {S}, which forms all N/2 edges between the two points,
is linearly arranged in order of distance from small to large.

Step 3: The local projection method is used to add the shortest edge at each stage and remove
the shortest edge from the memory. If the edge does not intersect any of the current triangulation
edges, then it is added to the triangulation, otherwise, it is removed. When the memory is empty,
the triangulation process ends.

Step 4: Triangulation is used to obtain the connection relationship of the points and return it to
the three-dimensional space, which forms the space triangulation of the point V and its nearby points.

Greedy projection triangulation can establish a reasonable data structure for a large number
of scattered point clouds in the 3-D space. When positioning a point, the path is unique, and the
tetrahedron can be located accurately and quickly, thereby narrowing the search range and eliminating
unnecessary matching. This fundamentally improves the overall efficiency of matching feature points.

2.3. Sample Consensus Initial Registration

The sample consensus initial alignment is used for initial registration. Assuming that there exists
a source cloud Os = {Pi} and a target cloud Ot = {Qj}, then the specific steps are as follows:

Step 1: Based on the FPFH feature descriptor of each sample point, greedy projection triangulation
is performed on the target point cloud to establish local correlation of the scattered point cloud data.

Step 2: A number of sampling points are selected in the source point cloud Os. In order to ensure
that the sampling points are representative, the distance between two sampling points must be greater
than the preset minimum distance threshold d.

Step 3: Search for the feature points in the target point cloud Ot, whose feature value are close
to the sample points in the source point cloud Os. Given that the greedy projection triangulation
establishes a reasonable data structure for the target point cloud and then performs feature matching,
it directly locates the tetrahedron with a large correlation and searches for the corresponding point
pairs within the local scope.
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Step 4: The transformation matrix between the corresponding points is obtained. The performance
of registration is evaluated according to the total distance error function by solving the corresponding
point transformation, which is expressed as follows:

H(li) =

{
1
2 li2 ‖li‖ < mi
1
2 mi(2‖li‖ − mi) ‖li‖ > mi

, (4)

in which, mi is the specified value and li is the distance difference after the corresponding point
transformation. When the registration process is completed, the one with the smallest error in all the
transformations is considered as the optimal transformation matrix for initial registration.

2.4. Iterative Closest Point Accurate Registration

The initial transformation matrix is the key to improved matching for accurate registration.
An optimized rotational translation matrix [R0, T0] was obtained by initial registration, which is used
as an initial value for accurate registration to obtain a more accurate transformation relationship by
the iterative closest point algorithm.

Based on the optimal rotation translation matrix obtained from the initial registration, the source
point cloud Os is transformed into Os

′, and it is used together with Ot as the initial set for accurate
registration. For each point in the source point cloud, the nearest corresponding point in the target
point cloud is determined to form the initial corresponding point pair and the corresponding point
pair with the direction vector threshold is deleted. The rotation matrix R and translation vector T

are then determined. Given that R and T have six degrees of freedom while the number of points
is huge, a series of new R and T are obtained by continuous optimization. The nearest neighbor
point changes with the position of the relevant point after the conversion; therefore, it returns to the
process of continuous iteration to find the nearest neighbor point. The objective function is constructed
as follows:

f (R, T) =
1

NP

NP

∑
i=1

|Oi
t − R · Oi

s − T|
2

, (5)

when the change of the objective function is smaller than a certain value, it is believed that the iterative
termination condition has been satisfied. More precisely, accurate registration has been completed.

3. Experiment and Analysis

During the experiment, Kinect was used as a 3-D vision sensor to realize point cloud data
acquisition. The original point cloud data that was collected was processed on the Geomagic
Studio 12 (Geomagic Corporation, North Carolina, the United States) platform and the experiment
was completed in Microsoft Visual C++ (Microsoft Corporation, Washington, the United States).
The traditional algorithm collects two point cloud data under different orientations of the same object,
performs initial registration and fine registration without applying greedy projection triangulation.
The greedy projection triangulation is added to address the limitations in terms of registration speed
and accuracy, and the superiority of the proposed algorithm is analyzed by comparing with the
traditional algorithm.

3.1. Point Cloud Registration Experiment for Simple Target Object

In this experiment, a cup is used as an example for registration. Figure 3a shows the original point
cloud data and Figure 3b shows cup point cloud data after removing the background. Figure 3c shows
the registration result obtained by the traditional algorithm while Figure 3d shows the registration
result obtained using the registration algorithm proposed in this paper. The red regions in the point
cloud represents the source point cloud data while the green and the blue regions represent the target
point cloud and the rotated cloud point data, respectively.
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(a) (b) 

  
(c) (d) 

Figure 3. (a) Original point cloud; (b) Processed point cloud; (c) Traditional algorithm; and (d)
Proposed algorithm.

Table 1 lists the experimental parameters. Table 2 lists the results of the target point cloud
conversion obtained using the traditional point cloud registration algorithm and the results obtained
using the proposed algorithm, which reflect the relative transformation relationship of the target object.
Table 3 compares the registration times of different algorithms.

Table 1. The experimental parameters.

The Number of Point
Clouds

Iterative Closest Point Accurate Registration Parameters

Source
point cloud

Target point
cloud Threshold (m) The maximum number

of iterations
Transform matrix

difference (m)
Mean square

error (m)
7009 5566 0.01 500 1 × 10−10 0.1

Table 2. Point cloud conversion results of different algorithms.

Algorithms
Transormation matrix of Initial

Registration (m)
Transormation matrix of Accurate

Registration (m)

Traditional algorithm

⎡⎢⎢⎣
0.999 0.008 −0.031 −0.049
−0.003 0.985 0.170 −0.040
0.032 −0.170 0.985 0.027

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0.999 0.007 −0.017 −0.057
−0.004 0.983 0.185 −0.049
0.018 −0.185 0.983 0.026

0 0 0 1

⎤⎥⎥⎦
Proposed algorithm

⎡⎢⎢⎣
0.999 0.008 −0.031 −0.049
−0.030 0.985 0.170 −0.040
0.032 −0.170 0.985 0.028

0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

0.999 0.012 −0.005 −0.062
−0.011 0.980 0.201 −0.059
0.007 −0.200 0.980 0.025

0 0 0 1

⎤⎥⎥⎦
Table 3. Registration time of different algorithms.

Algorithm
Total Registration Time

(s)
Initial Registration Time

(s)
Accurate Registration Time

(s)

Traditional algorithm 0.347 0.340 0.007
Proposed algorithm 0.257 0.252 0.005

When analyzing the above experiments, the attitude of the source cloud is considered as
a reference and the attitude of the target object is decomposed into three directions, namely X, Y,
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and Z. The rotation angle in three directions and the matching error distance between the source cloud
and the transformed point cloud are considered as the evaluation indices. The rotation angle and the
registration error distance in this experiment are shown in Table 4.

Table 4. Experimental results of different algorithms.

Algorithms
X-Direction Rotation

Angle (rad)
Y-Direction Rotation

Angle (rad)
Z-Direction Rotation

Angle (rad)
Average Error
Distance (cm)

Traditional
algorithm 0.186 0.018 −0.625 0.158

Proposed
algorithm 0.202 0.007 −0.617 0.149

From Table 3, it can be observed that for the same point cloud sample with the same experimental
parameters, the initial registration time using the traditional algorithm is 0.340 s. Because of the
combination of FPFH feature description and greedy projection triangulation, the initial registration
time obtained using the proposed algorithm is 0.252 s. Table 4 shows a comparison of the two
algorithms. The average error distance obtained is 1.58 mm and 1.49 mm using the traditional algorithm
and the proposed algorithm, respectively. As shown in Table 2, the point cloud is transformed
by the different transformation matrix, and the average error distance obtained is smaller by the
proposed algorithm.

3.2. Point Cloud Registration Experiment for Complex Target Object

In this experiment, the point cloud models of the same person in different orientations are collected
and then registered using different algorithms. Figure 4a shows the results of 3-D reconstruction.
Figure 4b,c show the registration results of the traditional algorithm and the proposed algorithm,
respectively. As can be seen from the figure, the blue point cloud and the red point cloud are more
highly integrated in Figure 4c than that in Figure 4b, which can be known the proposed algorithm is
more accurate than the traditional algorithm. Table 5 shows a comparison of the registration time of
different algorithms. Table 6 shows the obtained rotation angle and the registration error distance in
this experiment. The eight groups affine transformations are performed on the input point cloud data,
which verify the reliability of the algorithm. Table 7 shows a comparison of the average registration
error distance and the total registration time of the eight groups of experiments. The ratio of average
registration error reduction is between 27.3% and 50%, and the ratio of total registration time reduction
is about 1.1%. It can be seen that the average registration error distance of the proposed algorithm is
smaller and the total registration time is shorter than the traditional one, which verifies the reliability
of the proposed algorithm.

Table 5. Registration time of different algorithms.

Orientation Algorithms
Total Registration

Time (s)
Initial Registration

Time (s)
Accurate Registration

Time (s)

1
Traditional
algorithm 11.680 11.428 0.252

Proposed
algorithm 11.553 11.336 0.217

2
Traditional
algorithm 8.287 8.196 0.091

Proposed
algorithm 8.029 7.955 0.074
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(c) (d) 

  
(e) (f) 

Figure 4. (a,b) 3-D reconstruction; (c,d) Traditional algorithm; (e,f) Proposed algorithm.

Table 6. Experimental results of different algorithms.

Orientation Algorithms
X-Direction

Rotation Angle
(rad)

Y-Direction
Rotation Angle

(rad)

Z-Direction
Rotation Angle

(rad)

Average Error
Distance (cm)

1
Traditional
algorithm 0.283 0.702 −0.172 0.015

Proposed
algorithm 0.139 0.561 −0.002 0.011

2
Traditional
algorithm 0.053 0.469 −0.587 0.009

Proposed
algorithm 0.003 0.495 −0.625 0.005

Table 7. Comparison of average error distance and total registration time of multiple sets experiment.

Group

Registration
Error of

Traditional
Algorithm

(cm)

Registration
Error of

Proposed
Algorithm

(cm)

Percentage of
Average

Registration
Error

Reduction (%)

Total
Registration

Time of
Traditional

Algorithm (s)

Total
Registration

Time of
Proposed

Algorithm (s)

Percentage of
Total

Registration
Time

Reduction (%)

1 0.015 0.011 36.4 11.680 11.553 1.1
2 0.014 0.011 27.3 11.669 11.549 1.0
3 0.014 0.010 40.0 11.684 11.559 1.1
4 0.015 0.011 36.4 11.681 11.556 1.1
5 0.013 0.010 30.0 11.685 11.558 1.1
6 0.015 0.010 50.0 11.673 11.551 1.1
7 0.015 0.011 36.4 11.678 11.551 1.1
8 0.014 0.011 27.3 11.683 11.558 1.1

Compared with the results obtained from the traditional algorithm, it is concluded that the
proposed algorithm has higher registration accuracy and faster registration speed. Its advantages can
be attributed to the following factors:

(a) The FPFH feature descriptor describes feature information accurately and comprehensively and
avoids the errors in matching feature point pairs.
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(b) Greedy projection triangulation reflects the topological connection between data points and its
neighbors, establishes local optimal correlation, narrows the search scope, and reduce unnecessary
matching times.

(c) The combination of the FPFH feature description and the greedy projection triangulation can
match similar point pairs accurately and quickly, which is the key to efficient registration.

4. Conclusions

Based on the traditional sample consensus initial alignment and iterative closest point algorithms,
a new point cloud registration algorithm based on the combination of the FPFH feature description
and the greedy projection triangulation was proposed herein. The 3-D point cloud data is used to
improve the information regarding the two-dimensional image, and the data information is completely
preserved. The FPFH comprehensively describes the local geometric feature information around the
sample point. This simplifies the complexity of feature extraction and improves the accuracy of feature
description. Greedy projection triangulation solves the problem that the feature points have a wide
search range during the registration process. Thus, the number of matching processes is reduced.

In the registration experiment for target object, the registration speed increased by 1.1% and
the registration accuracy improved by 27.3% to 50%. The results show that the optimized spatial
triangular mesh established by greedy projection triangulation narrows the search range of feature
points, which improved the registration speed and accuracy. The initial registration determines an
approximate rotational translation relationship between the two point cloud models. Using it as the
initial value, accurate registration is performed to obtain a more precise relative change relationship.
The greedy projection triangulation optimizes the traditional registration algorithm, thereby making
the registration process faster and more accurate.
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