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Abstract: This special issue gathers fourteen papers focused on the application of a variety of target
object detection and identification techniques for remotely-sensed data. These data are acquired by
different types of sensors (both passive and active) and are located on various platforms, ranging from
satellites to unmanned aerial vehicles. This editorial provides an overview of the contributed papers,
briefly presenting the technologies and algorithms employed as well as the related applications.

Keywords: target detection; target identification; SAR; visible; infrared; hyperspectral

Target object detection and identification is among the primary uses for a remote sensing system.
It is of paramount importance in several fields, including environmental and urban monitoring,
hazard and disaster management, and defense and military applications. In recent years, these analyses
have made use of the tremendous amount of data acquired by sensors mounted on satellite, airborne,
and unmanned aerial vehicle (UAV) platforms.

The papers included in this special issue exploit different remote sensing phenomenologies
for target object detection and identification; this includes synthetic aperture radar (SAR) imaging,
which uses active sensors operating in the microwave domain, and multispectral and hyperspectral
imaging, which uses passive sensors that typically capture visible and/or infrared radiation.
The selection of one particular technology depends on both the specific application and the desired
signal detection technique. As such, these aspects will be highlighted when summarizing the
aforementioned papers.

Data acquired by SAR sensors are used in two papers [1,2], both focusing on environmental and
hazard monitoring. In particular, Biondi et al. [1] present a robust procedure to evaluate water flow
elevation by using SAR data (e.g., using COSMO-SkyMed images). By tracking the double-bounce
reflections from a bridge crossing a river over time, it is possible to estimate the distance between the
river surface and the bridge and, consequently, the water flow level. The paper by Liu et al. [2] is
focused on the assessment of flood hazard for power grids using SAR data, where the aim is to assess
the safety of the transmission line towers. This is performed by identifying indicators such as the
shortest distance from a tower to a flood, the proportion of flood in a search area, and the difference in
elevation between the tower base and the flood level.

Another group of papers [3–9] proposes object detection and recognition approaches that use
images (or videos) acquired in the visible and near-infrared (VNIR) wavelength range, making use of
the high (or very high) spatial resolution and high spectral content. Indeed, the latter are key features
in order to identify shapes, thus enabling more reliable object detection and recognition. The use of
convolutional neural networks (CNNs) in particular is becoming more widespread, as demonstrated in
the work of Zhang et al. [3]. In this paper, a region-based object detection is performed, relying on the
so-called feature pyramid network (FPN) which combines high and low resolution features without

Remote Sens. 2020, 12, 196; doi:10.3390/rs12010196 www.mdpi.com/journal/remotesensing1
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any additional memory consumption. Alternatively, Ma et al. [4] employ CNNs to perform a stable and
robust multi-model decision fusion, which jointly uses contextual features and object spatial structure
information. Another interesting application of CNNs is described in Zhang et al. [5], in which vehicle
detection for traffic monitoring systems is performed using satellite video data. In contrast, Li et al. [6]
focus their work on the design of a parallel hardware architecture, based on multiple neural processing
units (NPUs), for performing a power-efficient object detection by using CNNs. Liu et al. [7] explore
alternative frameworks to CNNs with the aim of avoiding time-consuming training phases. Specifically,
in [7], the authors exploit an unsupervised saliency detection method aimed at the identification of
oil tanks when the images are affected by various disturbance factors, such as different colors and
shadows (caused by changes in view angles and illumination conditions). The problem of vehicle
detection is also addressed by Cao et al. in [8], where the authors present a new object matching
framework based on affine-function transformations by using images acquired by UAVs (i.e., the DJI
Phantom 4 Pro). Finally, Yang et al. [9] perform anomaly detection by using high spectral resolution
hyperspectral data from visible to infrared wavelengths. The anomalies are caused by rare and sparse
small objects whose spectra are significantly different from the background. In order to deal with the
high dimensionality of the problem and to reduce the computational burden, an approach based on
low-rank representations is presented.

The third group of papers [10–14] focuses on object detection using infrared sensors.
Zhang et al. [10] propose a method based on a low rank sparse decomposition that uses a non-convex
optimization with an Lp-norm constraint in order to identify small targets in sequences of infrared
images. In this paper, an efficient solver based on the alternating direction method of multipliers
(ADMM) is presented. The detection of small targets by using infrared radiation is also the main topic
of the contribution by Zhang et al. [11], in which a low-rank-based method with a regularization term
based on the nuclear norm is proposed. This approach is able to properly solve the tensor robust
principal component analysis (TRPCA) problem which models the separation of targets from the
background. Again, ADMM is employed to provide a computationally efficient solver. Sun et al. [12]
address the infrared small target detection problem using a noise model based on a non-independent
identically distributed mixture of Gaussians, which is able to deal with real and complex scenarios
in which the noise can change in different frames of a sequence of infrared images. The final target
identification paper is focused on a flux density-based algorithm, which is able to identify the different
infrared gradient vector fields between target and noise. Li et al. [13] present a thermal infrared
(TIR) target tracking algorithm based on semantic features. Specifically, a mask sparse representation
is used to distinguish the reliable pixels (for target tracking) from the unreliable ones in each TIR
frame. The last step uses this model to improve a particle filter-based approach for TIR target tracking.
The final paper is authored by Niu et al. [14], and in this paper, the authors present a study about
the observability of an Earth entry orbital test vehicle (OTV) via ground-based infrared sensors.
The physical foundation of this work relies on the high-temperature flow field that originates during
the entry phase of an OTV. A suitable physical model is developed in order to simulate the infrared
signature of the Earth entry OTV, which is useful in computing the so-called maximum detecting
range, and is more broadly useful in designing remote ground-based detection systems.
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thank the journal editorial team and reviewers for conducting the review process, and all of the authors for
their submissions.
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Abstract: The lack of availability of historical and reliable river water level information is an issue that
can be overcome through the exploitation of modern satellite remote sensing systems. This research
has the objective of contributing in solving the information-gap problem of river flow monitoring
through a synthetic aperture radar (SAR) signal processing technique that has the capability to
perform water flow elevation estimation. This paper proposes the application of a new method
for the design of a robust procedure to track over the time double-bounce reflections from bridges
crossing rivers to measure the gap space existing between the river surface and bridges. Specifically,
the difference in position between the single and double bounce is suitably measured over the time.
Simulated and satellite temporal series of SAR data from COSMO-SkyMed data are compared to the
ground measurements recorded for three gauges sites over the Po and Tiber Rivers, Italy. The obtained
performance indices confirm the effectiveness of the method in the estimation of water level also in
narrow or ungauged rivers.

Keywords: synthetic aperture radar (SAR); rivers water-flow elevation estimation; pixel-tracking;
phase unwrapping

1. Introduction

The flow of water in rivers and streams is of great interest because it represents the easiest access
to water, a fundamental natural resource for human beings, animals and cultivations. The ability to
quantify the flow of water in terms of river discharge and flow volume depends on the monitoring of
water surface height of water bodies [1]. In-situ gauges have been installed along rivers to measure the
water height and to describe its variation in the space and time. Unfortunately, the ground network is
not uniformly distributed worldwide (many rivers in developing countries are still unmonitored) and
since the 1980s, we have also been assisting the decline of gauge stations in the developed countries [2].
For this reason, the advanced capability of satellite sensors to monitor inland water and the direct

Remote Sens. 2019, 11, 2574; doi:10.3390/rs11212574 www.mdpi.com/journal/remotesensing5
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access to their data motivated scientists to integrate and reinforce the traditional monitoring of surface
water with this new source of information.

River discharge estimation from satellite remote sensing of river hydraulic variables has been
investigated in recent decades [3–6]. Nadir altimetry has been largely used for measuring the river
surface height from space [7,8]. From the first studies carried out with Geosat [7] to the more recent
analyses with Jason-2 and SARAL [8,9], the improved capability of the altimeters allowed to monitor
even narrow rivers, for example, the Po river (∼300 m wide) or the Garonne River (∼200 m wide).
Despite these encouraging results, the use of radar altimetry for narrow rivers is still limited because
of uncertainty in the evaluation of the water surface elevation due to the local topography that
contaminates the returned radar signal. With the synthetic aperture radar (SAR) technology applied
to altimeters, reliable measurements of water level are obtained for rivers of 200 m width [10] and
according to the requirements of the next SWOT mission, rivers of 100 m width will be accurately
observed by the new Karin sensors [11]. However, the nominal orbit of the satellites often does not
guarantee the global coverage of all narrow rivers. The designed inter-track diamond distances (when
the ground tracks of the low Earth orbits satellites, traveling on ascending and descending directions,
are depicted, geometric figures in the shape of diamonds are obtained) and the revisit time represent
obstacles to the monitoring of water courses. To overcome these issues, low cost satellite constellations
are investigated in order to provide global coverage and finer temporal resolution. Moreover, the use
of high resolution measurements is fundamental to ensure the level information of small water bodies.
In the literature, some examples show the use of SAR images to derive information about the water
level. For example, Reference [12] showed the use of SAR images from ENVISAT and RADARSAT
to indirectly estimate water level of the Severn River (UK) and the Red River (US). Other research
has investigated the use of Along Track Interferometry from SAR (ATI-SAR) to obtain water level
estimation. However, in order to obtain two interferometric InSAR images with a short time delay
from a moving platform, it is necessary to install two antennas separated by the corresponding spatial
baseline oriented along the flight direction. Accordingly, the technique is called ATI, which is different
if compared to the cross-track interferometry (XTI) used for topographic reconstruction. ATI can
be suitably exploited to estimate the surface velocity of water masses and classical dual-sensor ATI
geometric configuration was first proposed in Reference [13], in which the authors describe a new
method to measure sea surface currents. The experimental results refer to an airborne implementation
of the technique, tested over the San Francisco Bay near the time of maximum tidal flow and leading
to a map of the east-west component of the water current. This study also underlines that only the
line-of-sight (LOS) component of the targets velocities is measured by ATI. In Reference [14], the
authors investigated for the first time the application of ATI for the estimation of ocean currents. Data
have been acquired by the shuttle radar topography mission (SRTM), which used an auxiliary antenna
yielding a baseline aligned with the azimuth direction of 7 m. Unfortunately, the ATI configuration
requires the use of multiple receivers and it is clear that, in order to obtain high sensitivity in estimating
low-rate velocities, it is necessary to design relatively long baseline ATI geometries. However, there
are no satellite systems configured in this way and therefore it is necessary to identify other solutions.

Additionally, a common issue for techniques based on interferometric SAR is the dependency
of the results on the quality of the image pair registration. Interferogram formation requires images
to be co-registered with an accuracy finer than a few tenths of a resolution cell to avoid significant
loss of phase coherence. For InSAR products co-registration, a 2-D polynomial of low order is usually
chosen as a warp function, and the polynomial parameters are estimated through least squares fit
from the shifts measured on image windows [15]. A direct consequence of accurate co-registration
is the unlocking of the use of pixel tracking techniques. The use of pixel-tracking has proved to be
effective for the precise space offset measurements of pixels located on co-registered sets of SAR
images observing the same scenes by long temporal series. To this end, it is possible to process a
couple of along-track interferometry single-look complex (SLC) SAR images observing the same scene.
Specifically, the images must be formed in a short time interval, varying from some milliseconds
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to a few seconds. The phase differences between all range-azimuth resolution cells composing the
two images are proportional to the Doppler shift of the backscattered signal. This technique has
shown good potential for applications such as monitoring glacier movements, volcanic activities and
co-seismic tears in the solid earth resulting from severe earthquakes, addressing some of the limitations
of conventional differential InSAR (DInSAR) techniques, particularly their sparse coverage and the
impact of highly vegetated areas [16]. Similar techniques have also been applied in low resolution SAR
imagery, measuring large Earth deformations [17,18] and recently it was found that pixel tracking is
also suitable for micro-Doppler estimation of maritime targets [19,20].

In this paper, we introduce a pixel tracking technique based on the localized spectral analysis
with the objective to track in time the double-bounce scattering effect in order to measure the height
of rivers. To achieve this objective, the proposed technique exploits the measurement of the distance
between bridges or other man-made objects on the embankments. A necessary condition is that
the structures are perpendicular to the slant-range direction. The height estimation is obtained by
measuring the cross-slant-range distance between the edge of the structure and the echo of second
bounce reflected by the river surface. This physical phenomenon is tracked over time in order to
observe the trend of variation of the water level. The applicability of this method is supported by the
fact that the double bounce echoes can be easily detected thanks to the shading effect generated by
the bridge infrastructure. This echo is detected in the range cells immediately contiguous to those
containing the bridge. The time tracking of the double-bounce echo shift is possible because in the
instants of radar observation the river surface is operating as a mirror at variable distance. This
distance is proportional to the height variation of the river’s water surface. The echo space-time shift is
due to the particular geometric SAR configuration where the images are observed in slant coordinates.
In order to proceed with the estimation of the hydrometric levels it is therefore essential to develop
a reliable tracking algorithm. Unfortunately, the variation in pixels of the slant-range coordinates is
very small, because of the short distance existing between the bridge and the water surface. In order to
obtain robust measurements, it is necessary to design an efficient pixel dilation stage, to be performed
before the tracking algorithm [21]. The absolute shifts are derived after phase unwrapping [22]. In this
paper the proposed method is assessed by estimating water surface elevation for narrow-medium
rivers (50–300 m) using temporal series of COSMO-SkyMed (CSK) data. To the best of the author’s
knowledge, this is the first attempt to use SAR images directly to estimate river water level.

The remainder of the paper is organized as follows—details of the signal processing techniques
are described in the following section. In Section 3 results of a set of simulated data are presented
whereas in Section 4 the experimental results using real data (CSK) are reported. Section 5 provides
a discussion about the experimental results with the help of performance indices while Section 6
concludes the paper.

2. Rivers Water Flow Elevation Retrieval

In this section, the proposed methodology for the retrieval of rivers water flow elevation is
described in depth. We will discuss the geometry of observation in Section 2.1 and the workflow of the
algorithm in Section 2.2.

2.1. The Observation Geometry

The geometry of the proposed electromagnetic measurement system is depicted in Figure 1.
Precisely, Figure 1a shows the scheme of an existing river on the SAR representation plane, in the
range-azimuth reference system. The water of the river is represented flowing along the range
direction and from left to right (this is represented by the red arrow visible on the right side of the
figure). A bridge is present in the middle of the figure and crossing the azimuth dimension. Figure 1b
represents what is shown in Figure 1a but in the height-range coordinates. It is clear that the Ref
point, which is the focused single-bounce backscattered echo, is constituted by the front-edge of the
bridge that is visible on the Single Look Complex (SLC) image. Its position is constant during the
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entire time series. The positions of points P1, P2 and P3 on the SLC projection screen, represents the
double-bounce backscattered echoes of the same target. The distance of the two-way propagation
system depends on the heights of the water levels L1, L2 and L3, which are variable with respect to
the time.

Figure 1. Observation geometry for the river water flow elevation estimation: (a) Range-azimuth
representation (b); Range-height representation.

2.2. The Processing Scheme

The workflow of the proposed estimation technique is depicted in Figure 2 and comprises 5
main processing blocks. The main rationale of the proposed procedure is based on the pixel tracking.
Sub-pixel offset tracking (SPOT) is a relevant technique to measure large-scale ground displacements
in both range and azimuth directions. The technique is complementary to differential interferometric
SAR and persistent scatterers interferometry when the radar phase information is unstable [23,24].
In this paper, we apply the SPOT in an alternative way, as explained in the following.
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Figure 2. Flow chart of the main procedure to extract water level information from a temporal series of
synthetic aperture radar (SAR) data.

The starting point of this algorithm is a long temporal series of InSAR data but, instead of
investigating the deformations of the ground, we investigated the movements of the double-bounce
scattering effect of man made structures localized on the water surface. Although the variations in
the water levels of rivers vary over time much faster with respect to the movements of the ground,
we also apply the SPOT technique to trace their hydrometric levels. To this end, it is necessary to
design a specific mathematical model that is described in detail below. Indeed, as shown in Figure 2,
the starting point (block 1) is the selection of a long temporal series of SAR data, which is based on
the desired temporal observation period. This series is, then, processed using images pairs in order
to track the hydrometric levels variation over the time. Specifically, the magnitude at the output of
the two-dimensional matched filter of the receiver chain can be expressed as the following matrix (for
simplicity, we assume that target position in the range-azimuth plane is (0, 0)) [25] [Chapter 4], for
each interferometric complex pair, indexed by i and belonging to a time series of length G:

ri
c,D(nc, nD) = A

sin(ncδRc /Bc)

(ncδRc /Bc)
× sin(nDδRD /BD)

(nDδRD /BD)
, i = 1, . . . , G

nc = −Nc/2, . . . , 0, . . . , Nc/2, (1)

nD = −ND/2, . . . , 0, . . . , ND/2,

Nc, ND ∈ N (even),

where:

• A is the backscattering coefficient;
• Nc is the number of pixels of the image along the range;
• ND is the number of pixels of the image along the azimuth;
• δRc is the chirp resolution;
• δRD is the Doppler resolution;
• nc is the chirp wavenumber;
• nD is the Doppler wavenumber;
• Bc is the bandwidth of the transmitted chirp signal;
• BD is the synthesized Doppler band.
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Such data will necessarily have to be co-registered (the coregistration process consists of perfectly
aligning the pixels of any slave image to the corresponding pixels of the master image. The alignment
process is very precise and can also be accurately performed at the sub-pixel level). The co-registration
stage is performed as the second stage of the processing chain. After co-registration, the stage 3 exploits
the range shifts for an initial coarse estimation of the double-bounce shifts and error correction. To give
a sketch of these steps, let consider the offset components of the sub-pixel normalized cross-correlation,
that according to References [15,26] are described by the complex parameter Di

tot(c,D)
referred to as

total displacement, which is given by:

Di
tot(c,D)

= Di
displ(c,D)

+ Di
topo(c,D)

+ Di
orbit(c,D)

+ Di
control(c,D)

+ Di
atmosphere(c,D)

+ Di
noise(c,D)

, i = 1, . . . , G, (2)

where:

• Di
displ(c,D)

is the offset component of the signal position presented in (1), generated by the variation
of the river water level and detected as a sub-pixel misalignment existing between the first SAR
image (master) and the i-th slave SAR image;

• Di
topo(c,D)

is the offset component generated by the earth displacement when located on highly
sloped terrain;

• Di
orbit(c,D)

is the offset caused by residual errors of the satellite orbits;

• Di
control(c,D)

is the offset component generated by general attitude and control errors of the flying

satellite trajectory;
• Di

atmosphere(c,D)
and Di

noise(c,D)
are the contributions accounting for change in the atmospheric and

ionospheric dielectric constant and for decorrelation phenomena (spatial, temporal, thermal, etc.),
respectively.

Note that the above equation accounts for the general case where displacement exists in both
range and azimuth dimensions. In the operating scenario considered here, the displacement generated
by the double-bounce scattering component of the bridge, when perturbed by the temporal variations
of the river water levels, is significantly greater with respect to any other sporadic displacements due
to physical phenomena. As depicted in Figure 1, this phenomenon is maximum when the longitudinal
axis of the bridge is observed perpendicular to the range direction. With the above remarks in mind,
we can assume that the contribution in the displacement Di

tot(c,D)
is greater along the range dimension.

Thus, neglecting the azimuth component, we can consider Di
tot(c,D)

= Di
totc

.
Figure 3 is a schematic representation of the parameters estimated by the coregistration procedure.

The square number one is a focused pixel of the master image and the square number two is the same
pixel but located on the slave image. The parameters Di

totc
and θi are the distance between the master

and slave pixel centers and the angle respect to the horizontal axis respectively. In the present case,
since the shift of the double-bounce scattering occurs in range, the parameter θi = 0 so Di

totD
= 0.

Moreover, the atmospheric time-variation during the very short acquisition time interval has little
influence on the temporal component of the last displacement parameters because of its low accuracy.
All errors are compensated for, choosing only high energy and stable points and subtracting the initial
offsets in order to retrieve the shifts contributions only generated by the target displacement.
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Figure 3. Schematic representation of isolated pixels with a certain shift due to space displacement.

Once all the image pairs are co-registered and Di
totc

is computed, we proceed with the estimation
of the water level on a specific region of interest (ROI). The ROI extraction is performed by the block
number 4 and the last computational block (number 5) performs a precise range shifts estimation and
water level estimation as detailed in the sub-blocks (5.1–5.6). In particular, the data-input ROI are fed
to the block 5.1 that extracts the sub-ROI, containing only the bridge. Processing stage number 5.2
performs the azimuth average of the sub-ROI and computational block 5.3 is designed to perform
the pixel dilation by oversampling [21]. Computational block 5.4 performs the one-dimensional DFT
(in the range direction) of the sub-ROI average. To this end, we compute

DFT(ri
c,D(nc − Di

totc , nD)) = Ri
c,D(kc, kD) exp

(
−j2π

ki
c

Ni
c

Di
totc

)
, (3)

where

Ri
c,D(kc, kD) = DFT

(
ri

c,D(nc, nD)
)

=
Ñc−1

∑
nc=0

ÑD−1

∑
nD=0

(
A sin(ncδRc /Bc) sin(nDδRD /BD)

(ncδRc /Bc)(nDδRD /BD)
exp

(
−j2π

kc

Nc
nc

)
exp

(
−j2π

kD
ND

nD

))
,

(4)

with Ñc × ÑD the dimension of the sub-ROI under test and we have clearly exploited the shift theorem
of the DFT.

The last two processing stages (blocks number 5.5 and 5.6) convert the phase variations from
the output of the previous computational stage into effective water levels of the rivers. To this aim,
let us observe that the term exp

(
−j2π kc

Nc
(Di

totc
)
)

represents a rotational vector where the frequency

is proportional to the temporal-space shift amount Di
totc

. It follows that the higher the shift of the
double-bounce pixel, the higher the oscillation frequency of the phasor. This frequency increasing
will generate more turns of the phasor around the circle angle. All these turns, when unwrapped,
represent a distance proportional to the height of the river water. As a phase unwrapping algorithm,
we select the one-dimensional case of that developed in Reference [22]. Once the absolute phase
value is estimated, it is suitably scaled through a constant factor obtained by comparing absolute
phase measurement with the true height of the river. This operation is equivalent to an algorithm
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calibration procedure. Specifically, the river height at the i-th time instant is evaluated as follows (note
that ∠{Ri

c,D(kc, kD)} is known)

Hi
water = AcUnwrapp

(
∠exp

(
−j2π

k
N
(Di

totc)

))
, i = 1, . . . , G, (5)

where the term Ac is the calibration parameter and the function Unwrapp(.) performs the phase
unwrapping algorithm described in Reference [22]. As for the the constant Ac, it is obtained as

Ac =
H1

water

Unwrapp
(
∠exp

(
−j2π k1

c
N1

c
(D1

totc
)
)) . (6)

where H1
water is a measurement coming from fixed ground stations.

Finally, the computational stage number 5.5 performs the phase unwrapping of the frequency
variation exponential term reported in (4) and (5) and the last stage number 5.6 estimates the integral
below the unwrapped function.

3. Test on Simulated Data

The simulated data are generated in order to emulate as closely as possible the most suitable
observation and geometry characteristics. The bridge is designed with a longitudinal axis perfectly
perpendicular to the range direction, a bridge width of about 30 pixels and a maximum variation
of double-bounce scattering of about 1.5 pixels. The radar is designed with the same features as the
COSMO-SkyMed sensor.

In this specific case, simulated data consist of a sub-ROI reflectivity range profile for which the
energy is shown in Figure 4a. From inspection of the figure, it is possible to notice the beginning and
the end of the bridge edges. These scattering events, denoted by the numbers 1 and 2, are generated
by the direct reflection events and they are directly projected onto the slant-range line. The energy
peak generated by the double-bounce scattering mechanism is the one indicated by the number 3 and,
thanks to the layover effect, is located behind the main scatterers. The position in time of peaks 1 and
2 remain stable over time because the bridge does not move while peak 3 changes its position due
to the variation of the height level of the river’s water surface. According to the DFT property (6),
a time-variation position of the peak number 3 is corresponding to a frequency variation of its DFT.
The variation of the phasor oscillation frequency will increase its absolute phase value (unwrapped
phase) [21]. This distance, appropriately scaled and then calibrated at the first observation performed
by the ground station (terrain gauge), is being used as an indication of the river’s height. The input
signal is represented by the sinusoidal sub-pixel variation indicated by arrow number 3. In Figure 4b),
the unwrapped phases related to each interferometric pair are reported (the lines with different colors
are corresponding to the different observations). The reconstructed level variation is depicted in
Figure 4c. From Figure 4b we see that the output response of the function Unwrapp(.) is linear so
the parameter Ac of Equation (5) represents the angular coefficient of the linear phases. The ripple in
Figure 4c is present due to an oversampling factor of 10 has been used. The higher the oversampling
factor, the less visible this noise will be. In the experimental data using the satellite sensor, a very high
oversampling factor of 64 will be chosen.
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Figure 4. Results of simulated data. (a): reflectivity profile. (b): Unwrapped phases. (c): water-levels
estimated results (pixels).

4. Test on Cosmo-SkyMed Data

The performance of the procedure has been evaluated processing a long temporal series of CSK
data using three different case studies which are described in detail in Section 4.1. The results estimated
from satellite data are validated by comparison with the in-situ observations in Section 4.2.

4.1. Case Studies and In-Situ Observations

The processed data belong to the persistent Earth observation mission called MAPITALY procured
by the Italian Space Agency (ASI). This mission performs the interferometric observation of the whole
Italian territory with a revisiting time of about 10 days. For the analysis, three datasets of CSK images
were considered based on three study areas. The results estimated from satellite data were validated
by comparison with the ground observations of water level recorded in a consistent period with
respect to the satellite images. In particular, three gauged stations along two Italian rivers were
considered—Pontelagoscuro along the Po River, Ponte Nuovo and Ripetta along the Tiber River.

The first case study observes the Po River located on the Northern Italy at the Pontelagoscuro
station. Figure 5a shows the georeferenced representation of the SAR long temporal series. Inside
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the SAR acquisition footprints there is a small red box with a yellow marker inside, geolocated on
the following coordinates: datum WGS-84 (EPSG): 4240, 44◦ 53′ 16.66′′ N 11◦ 36′ 29.42′′ E. This box is
tagged in yellow with the number 1. This ROI-footprint is represented in detail in Figure 5b where the
bridge is observed by an optical image and contoured by the same red box. The ground water levels
are registered by the Agenzia Interregionale del Fiume Po.

The second data-set is measured over the Tiber river located in Central Italy. Figure 6a represents
some footprints of the SAR observations. Inside the SAR acquisition footprints there is a small red box
with a green marker inside, geolocated on the following coordinates—datum WGS-84 (EPSG): 4240,
43◦ 00′ 37.84′′ N 12◦ 25′ 44.89′′ E. This box is tagged in yellow with the number 1. This ROI-footprint is
represented in detail in Figure 6b where the bridge is observed by an optical image and contoured by
the same red box. The observed water levels are registered by the Servizio Idrografico of the Umbria
Region.

The last case study is composed of satellite observations concentrated on the city of Rome.
The optical representation of the environment where the river water level has been estimated is
reported in Figure 7a. The picture also reports the footprints of the long temporal series of the
interferometric SAR observations. The measurements are focused on the Cavour bridge where the
optical representation of the infrastructure is reported in Figure 7b. The data are registered by the
Agenzia Regionale Protezione Civile of the Lazio Region.

Figure 5. Case study 1 optical representations. (a): georeferenced footprints of the SAR long temporal
series. (b): region of interest (ROI) footprint.

Figure 6. Case study 2 optical representations. (a): georeferenced footprints of the SAR long temporal
series. (b): ROI footprint.
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Figure 7. Case study 3 optical representations. (a): georeferenced footprints of the SAR long temporal
series. (b): ROI footprint.

The number of processed images for study areas and the period of analysis is specified in Table 1.
The number of images varies from 27 images for the study area at Rome and 106 for Pontelagoscuro
station. The period of images is different, ranging from 2 to 9 years. For all the experiments, we set
the cross-correlation window size to 128 × 128 pixels and the oversampling factor to 64 in both the
range and azimuth directions. This value was found to be an optimal pixel dilation level. All the
coregistration parameters are reported in Table 2.

Table 1. Satellite datasets used in the analysis and corresponding river gauged stations

STATION RIVER COORDINATES (WGS-84) Time of Obs. Images River Width
Number [m]

Pontelagoscuro Po 44◦ 53′ 18.84′′ N, 11◦ 36′ 28.89′′ E May 2009–Aug. 2018 106 340
Ponte Nuovo Tiber 43◦ 00’ 37.11′′ N, 12◦ 25′ 45.15′′ E Mar. 2011–Apr. 2017 76 60

Ripetta Tiber 41◦ 54′ 17.59′′ N 12◦ 28′ 27.84′′ E Sept. 2009–Oct. 2016 37 100

Table 2. Coregistration parameters

Parameter Value

Initial shifts Coarse cross-correlation
Number of points 4000

Correlation threshold 0.8
Oversampling factor 200
search pixel window 48x48 pixel

Points skimming (minimum points) 30
Use of DEM Yes

Doppler Centr. Est. Strategy Polynomials

4.2. Experimental Results

In Figure 8a, the SLC-ROI is reported, referring to the small patch number 1 depicted in Figure 5a,b.
This ROI contains the electromagnetic representation of the bridge, used to calculate the water levels of
the Po river. The detailed sub-ROI SLC image is shown in Figure 8b. This sub-ROI consists of the data
input of the computational block number 5 depicted by Figure 2. Figure 9a is the long temporal series
time average sub-ROI particular. Figure 9b gives the description of the scattering events related to the
bridge. The purple line number 1 represents the beginning of the bridge structure. Purple line 2 shows
the position of the end of the bridge, this scattering event is considered to be a stationary landmark
in time. The blue line 3 represents the lowest deviation of the double-bounce scattering event with
respect to the reference point, which means that the river is in flood. Line 4 represents the slightest
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deviation of the double-bounce scattering event, if the pixel is represented it means that the river is
dry. The variance of the double-bounce layovered backscattered echoes is strictly located inside the
spatial gap contained by the blue layers 3 and 4. The temporal trend of this layover scattering line is
a function of the river water level. The trend of the estimated water levels is depicted in Figure 10a.
The blue line represents the water-levels measured by the CSK satellite system and the red function
represents the ground truths given by the ground observation station. The unwrapped phases of the
FT result are shown in Figure 10b.

Figure 8. Case study 1 magnitude SAR images. (a): Geolocated image with ROI footprint representation.
(b) Particular of the ROI magnitude in the slant coordinates.

Figure 9. Case study 1 Sub-ROI parameters. (a): Sub-ROI SAR image representation in the slant
coordinates. (b): Scattering parameters on the reference points and pixel spacing trend.
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Figure 10. Case study 1 experimental measurements. (a): Water levels observed by the ground
measurement station (blue line) and by the satellite (red line). (b): Unwrapped phases.

Case study 2 has the objective of studying the trend of the Tiber heights in the part of the river that
crosses the Umbrian region located in the Italian Central Apennines. This part of the Tiber is narrower
with respect to the Po and the radar observations are a bit noisier. Considering this phenomenon,
the estimation of the heights of the rivers on this section is more difficult. In Figure 11a the SLC-ROI
is reported, referring to the small patch number 1 depicted in Figure 7a,b. This ROI contains the
electromagnetic representation of the bridge, used to calculate the water levels of the Po river. The
detailed sub-ROI SLC image is shown in Figure 11b. This sub-ROI consists of the data input of the
computational block number 5 depicted by Figure 2. Figure 12a is the long temporal series time
average sub-ROI particular. Figure 12b gives the description of the scattering events related to the
bridge. The purple line number 1 represents the beginning of the bridge structure. Purple line 2 shows
the position of the end of the bridge, this scattering event is considered to be a stationary landmark
in time. The blue line 3 represents the lowest deviation of the double-bounce scattering event with
respect to the reference point, which means that the river is in flood. Line 4 represents the slightest
deviation of the double-bounce scattering event, if the pixel is represented it means that the river is
dry. The variance of the double-bounce layovered backscattered echoes is strictly located inside the
spatial gap contained by the blue layers 3 and 4. The temporal trend of this layover scattering line is
a function of the river water level. The trend of the estimated water levels is depicted in Figure 13a.
The blue line represents the water-levels measured by the CSK satellite system and the red function
represents the ground truths given by the ground observation station. The unwrapped phases of the
FT result are shown in Figure 13b.

Figure 11. Case study 2 magnitude SAR images. (a): Geolocated image with ROI footprint
representation. (b) Particular of the ROI magnitude in the slant coordinates.
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Figure 12. Case study 2 Sub-ROI parameters. (a): Sub-ROI SAR image representation in the slant
coordinates. (b): Scattering parameters on the reference points and pixel spacing trend.

Figure 13. Case study 2 experimental measurements. (a): Water levels observed by the ground
measurement station (blue line) and by the satellite (red line). (b): Unwrapped phases.

In the final case, it was planned to quantify the water height levels of the Tiber River as it
flows through the city center of Rome. Also for this case study the experimental measurements
were compared with the ground-based measuring facilities. Figure 14a shows the georeferenced
SAR extended image where the ROI is visible inside the red box tagged by the yellow number 1.
The geolocated SAR ROI is represented in detail in Figure 14b where the bridge is observed and
contoured by the same red box. Finally, the optical representation of the Cavour bridge is shown in
Figure 14c. The double-bounce electromagnetic scattering effects were generated by the Cavour bridge
(the yellow arrow which is geolocated on the following coordinates: datum WGS-84 (EPSG): 4240, 41◦

51′ 36.10′′ N 12◦ 28′ 38.00′′ E). The temporal trend of the river water levels is depicted in Figure 15a.
In Figure 15b, the errors corresponding to the estimated values in Figure 15a are reported. In addition
to the errors represented by a red line, the errors of the estimated values averaged over 5 and 10
samples are shown with a blue and a black line, respectively. As expected, it could be convenient, in
the case when the data are very noisy, to exploit the smoothing effect due to averaging. Moreover,
from the non-averaged errors of Figure 15b, it can be seen that some measurements are wrong but
such uncompliant samples are very few; in fact, observing the trend of the average errors on 5 and 10
samples a significant drop in the error can be seen, which remains well below one meter.
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Figure 14. (a): Case study 3 ROI. (b): ROI footprint. (c): Cavour bridge optical image.

Figure 15. Case study 3 results. (a): Ground-station data (red) and satellite observations (blue), versus
pixels. (b): Water level errors versus time. Blue: CSK versus true. Red: CSK versus true (5 observations
average). Black: CSK versus true (10 observations average).

5. Discussion and Performance Assessment

This section provides comments on the experimental results observed in the three case studies.
The experimental results show that the implemented algorithm is quite robust, although sometimes it
fails to provide a reliable estimate. This is because there is a temporal misalignment from the actual
SAR observation that occurs in Italy either early in the morning or late in the evening compared
to the measurement of the instrument located in the immediate vicinity of the bridges. This time
misalignment is also found to be many hours.

In Figure 16, the scatterplot is reported for each case study, representing the comparison between
the water levels estimated by satellite and those observed by the in-situ station. For the Po and the
Tiber in Rome (Figure 16 left and right) the water levels overlap the bisector line, as also indicated by
the linear regression (red line). In the case of Tiber at Ponte Nuovo (Figure 16 center) the simulated
water levels underestimate the ground-based observations up to 2 m, whereas they overestimate the
higher water levels. Therefore, the red line does not lie upon the bisector line as the other two cases.

The worst performance are obtained for the Ponte Nuovo case study (as shown at the center
of Figure 16). It is worth noticing that this case study has to be selected to provide an example of
a difficult scene to analyze. This difficulty can be attributed to the width of the river that in this
region is quite narrow (60 m as shown in Table 1) and is greatly contaminated by the surrounding
vegetation. These characteristics can affect the satellite measurements and represent a good testbed for
the proposed algorithm which, despite everything, would provide still reliable results as shown in the
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figure. A possible solution to improve the performance of the algorithm could be the installation of
corner reflectors in the scene to mitigate the effect of the noise introduced in the radar measurements.

Figure 16. Scatterplot of the water levels estimated by satellite and observed by in-situ stations for Po
at Pontelagoscuro (left), Tiber at Ponte Nuovo (center) and Tiber at Ripetta (right).

In order to quantify the performances of the analysis, four indicators are calculated:

• the Pearsone correlation coefficient (R),
• the Nash-Sutcliffe efficiency (NS) [27],
• the root-mean square error (RMSE), expressed in [m],
• the related root-mean square error (RRMSE), defined as the ratio between the RMSE and the mean

of the observed water levels.

Table 3 shows the performances for the three case studies comparing the water levels estimated
by the procedure and those observed by in-situ stations. As deduced by the scatterplots, best results
are obtained for case study one and three, with coefficient of correlation greater than 0.88 and NS
greater than 0.77.

Lower performances are obtained for case two with NS smaller than zero and RRMSE of 39%.
However, if we calculate the performance considering the linear regression as shown in Figure 16
(center), the performances improve (NS = 0.43; RMSE = 0.51; RRMSE = 0.29). This means that the
procedure can fail in terms of absolute values but can be a support to evaluate a variability of the water
level if no other measurements are available, as for example in ungauged basins.

In the first case study, the value of the RMSE is quite high (0.91 m) comparing to the other two
cases but the RRMSE is the lowest. This is due to the fact that the RMSE is an absolute figure of merit
that is not related to a specific value as, on the contrary, the RRMSE. In fact, for the case 1, the water
levels range from 6 to 15 m, whereas a narrower range characterizes the other two cases.

Table 3. Performance indicators of the simulated water levels versus the ground-based observations.

STATION R NS RMSE [m] RRMSE

Pontelagoscuro 0.88 0.77 0.91 0.10
Ponte Nuovo 0.65 −0.03 0.68 0.39

Ripetta 0.93 0.85 0.55 0.21

6. Conclusions

In this paper, an innovative procedure for estimating the water flow elevation of rivers is proposed.
Today, a shared and worldwide database containing historical and reliable data concerning the water
surface elevation of rivers has not been completed. Many areas are still unmonitored and due to the
large importance of fresh water, an evaluation of the river system is fundamental. The main scope
of this research is contributing to solving this information-gap problem by designing a SAR signal
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processing technique having the capability to perform water flow level estimation. The problem of
measuring such data is usually solved by designing an ATI SAR geometry, which is constituted by two
radars spatially distanced by a baseline extended in the azimuth direction. In the case of space-borne
missions the performing of ATI can be an unusual and difficult task. For several single-antenna
spaceborne SAR satellite systems, the refocusing of ATI observations from one raw data is a problem
because of the not-oversampled nature of the received electromagnetic bursts. This phenomenon
makes raw data very similar to a white random process and appearing interlaced Doppler bands
completely disjoint. After the range-Doppler focusing process, this problem causes decorrelation when
observing the ATI phase of distributed targets. Spaceborne LOS level measurements could be taken
into consideration only for small and very coherent targets and in any case were located within the
same radar resolution cell. This paper proposed the application of a robust technique for tracking the
double-bounce reflections of some principal bridges crossing the rivers and to measure the gap space
existing between the river surface and the bridges. The developed algorithm tracked over time the
double-bounce scattering event position reflected on the river surface with respect to the single-bounce
and direct backscattered echoes form the principal structures of the bridge. River water-flow data
were indirectly retrieved by converting the time-domain water surface variation in velocities. The
experiments were evaluated by processing simulated and a long temporal series of COSMO-SkyMed
data.
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Abstract: Synthetic Aperture Radar (SAR) has been extensively used in the monitoring of natural
hazards such as floods and landslides. Predicting whether natural hazards will cause serious harm to
important facilities on the ground is an important subject of study. In this study, the distance between
the water body and the tower and the flood ratio in the search area and the elevation are defined as
the evaluation indicators of the flood hazard of the tower, indicating whether flooding will threaten
the safety of the transmission line tower. Herein, transmission tower flood identification algorithms
based on the center distance of the tower and the grid distance of the tower are proposed. SAR
satellite image data of the flood with a resolution of 10 m are selected to prove the feasibility and
effectiveness of the proposed fault identification algorithm. The simulation results show that the SAR
satellite image data with a resolution of 10 m can identify the distance accuracy of the transmission
tower flood hazard by up to 7 m, which can be used to identify the flood fault of the transmission
line tower.

Keywords: hazard prevention; flood hazard; hidden danger identification; tower failure

1. Introduction

As the scale of the power grid increases, the scope, and thus the workload, of power grid
inspections continue to expand. At present, power inspections in most countries still rely on the
manual recording of data, which has disadvantages such as high cost, dangerous working conditions,
and absence of inspection. Over the past two decades, aerial inspections have been employed [1],
which can greatly improve detection efficiency and precision. However, this method is restricted by
factors such as flight safety, airline control, weathers changes, and refueling. Unmanned aerial vehicles
(UAV) are not widely used because of the safety issues and a lack of durability [2–4]. For these reasons,
the development of satellite technology provides a new and important means of fault detection and
hazard prediction for transmission lines.

Floods account for 40% of the losses caused by natural hazards worldwide. Flood hazards cause
damage to the power grid by submerging power equipment and thus causing short circuit damage,
internal discharge damage, and moisture damaged. Furthermore, the foundation of the transmission
line tower can be washed away by floods, which may cause the tower to collapse, thus causing power
interruptions and threatening the safe and stable operation of the power system [5–8]. In recent years,
the once-in-a-century floods in the Oder River and Nice River basins flowing through Poland, Czech
Republic, Austria, and Germany caused economic losses of 5.9 billion dollars. Two catastrophic floods
in the central and northern United States caused economic losses of 2215 billion dollars. In China,
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Jiangxi and Hebei suffered severe floods due to heavy rainfall, many substations and several lines were
shut down, and more than 300,000 users suffered blackouts [9,10]. In June 2015, in Georgia, floods
damaged Tbilisi’s transmission lines, resulting in power outages for about 22,000 consumers in two
districts of Tbilisi. In the summer of 2016, continuous heavy rainfall in the Hubei Province of China
caused severe floods in Tianmen, resulting in the outage of several substations, resulting in a total
of 30·10 kV line failures, involving 1158 stations and 115,276 users. In the Fujian Province of China,
floods and geological hazards occurred an average of 3.3 times a year over the past 10 years, resulting
in an average annual direct economic loss of 3.6 billion yuan [11–13]. If transmission line flood faults
can be located quickly, the loss can be reduced. Therefore, an identification algorithm of transmission
line tower flood faults is a subject that needs to be studied.

Synthetic Aperture Radar (SAR) has been widely used in hazard monitoring. This paper proposes
the use of SAR images to identify flood faults on transmission lines. At present, on the basis of the
SAR image water feature, the water body part of an image can be accurately extracted [14]; this can be
done in different scenarios such as floods in forest areas or floods in cities [15,16]. The introduction of
some improved algorithms also makes the extraction range of floods more accurate [17–32]. In [33,34],
methods for searching for mountain fire faults of transmission line towers are proposed. By combining
our research with the abovementioned methods, we propose an identification algorithm for flood
faults in transmission line towers. This is of great significance for the operation and maintenance of
transmission towers.

The objectives and novelty of the study are as follows:
(1) This is the first study based on SAR satellite imagery on hidden flood hazards related to

transmission line towers. When hazards occur, SAR has the advantages of a quick response, accurate
positioning, and a wide coverage, all of which help identify towers that may be infringed upon by
floods and aid inspectors design targeted emergency repair schemes to minimize the economic losses
caused by power outages;

(2) We propose two fast methods to calculate the shortest distance between tower and flood based
on the center distance of the tower and the grid distance of the tower. Furthermore, we can find
the nearest flood within a certain distance between tower and tower. The two algorithms fill in the
methodological gaps of calculating the shortest distance from tower to flood;

(3) We propose that the shortest distance from tower to flood, the proportion of flood in a search
area and the elevation difference between the tower base and the flood level should be taken as
indicators to give a certain weight to evaluate the hazard degree of the tower. This evaluation method
is a rapid evaluation made in emergency situations when floods occur. It can reflect the distribution of
floods around towers and the hazard degree of towers.

2. Flood Recognition Algorithm Based on SAR Imaging

2.1. Image Preprocessing

The SAR radar echo signals are superimposed onto each other, which causes the radar image to
produce granular spots. This phenomenon is the result of the influence of speckle noise, which is
the main cause of SAR image noise. The existence of speckles has an impact on the interpretation
and extraction of objects in the image, especially in terms of the extraction and recognition of the
contours and edges of the target, and may even cause the disappearance of features. In order to extract
and identify the feature information more accurately, it is necessary to weaken the fluctuation of the
luminance value and the influence of the speckle noise through filtering.

A comparison of the filtering effects of various filtering methods [30] on SAR images shows Lee
filtering to be an effective option.
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2.2. Identification Model For Flood Areas

For the processing of SAR images, threshold segmentation can be used to extract water bodies.
This principle is based on the low scatter value of the water body in the SAR image. It is achieved by
setting a suitable threshold to mark the image; thus, the values less than the threshold portion become
the water body, and the portions larger than the threshold portion become the background, forming a
binary image. The advantage of this algorithm is that it is fast and the principle is simple; however,
the determination of the threshold is difficult. Among several commonly used threshold segmentation
methods, Otsu’s optimal global threshold segmentation method has a low false alarm rate and high
water extraction accuracy [31]. The algorithm is as follows:

An image histogram distribution can be expressed by

Pq =
nq

n
q = 0, 1, 2, . . . , L− 1, (1)

where n is the total number of image pixels, nq is the number of pixels with a grayscale of q, and L is
the number of all possible gray levels in the image. Suppose the target area C1 contains gray levels
[0, 1, 2, . . . , k], C2 contains gray levels [k + 1, . . . , L− 1], and the threshold is k, the largest inter-class
variance σ2

B(k) is

σ2
B(k) = P1(k)

[
m1(k) −mG]

2 + P2(k)[m2(k) −mG]
2 (2)

P1(k) and P2(k) are the percentage of pixels of C1 and C2 in the whole image, respectively, m1(k)
and m2(k) are the average gray value of the pixels in the C1 and C2 regions, respectively, and mG is the
average gray value of the whole image. The average gray value of the gray level k can be obtained by
the following formula:

m(k) =
∑k

i=0
ipi. (3)

Expand Equation (2) and substitute P2(k) = 1− P1(k) to get the following formula:

σ2
B(k) =

[mGP1(k) −m(k)]2

P1(k)[1− P1(k)]
. (4)

Determining the values of m and P1(k) can determine the between-class variance. Under the
condition of maximum between-class variance, the threshold of the segmented image is easier to
determine. Since k is an integer in the range [0, . . . , L− 1], it is possible to find the k value at the
maximum of the variance between classes by continuous loop calculation, where k is the optimal
threshold. When the k value is not unique, the average of the plurality of k values is the optimal
threshold. The ratio of between-class variance to the grayscale variance of the total image is a
separability measure that divides the image into two categories:

η(k) =
σ2

B(k)

σ2
G(k)

. (5)

The algorithm automatically calculates the segmentation threshold by finding the maximum
between-class variance between the two types of features. Therefore, there is a good segmentation
effect when there is a significant difference between the gray value of the object in the region of interest
and the gray value of other features. That is to say, the gray value frequency distribution of the image
has obvious “peak and valley” characteristics, and the larger the difference between the peak value
and the valley value, the more obvious the segmentation effect.
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The grayscale value at the original image point (x, y) is I(x, y), and the target in the original image
is extracted with the threshold k. Herein, a is the value of the background and b is the value of the
target. The binary image F(x, y) is generated as follows:

F(x, y) =
{

a,
b,

I(x, y) ≥ k

I(x, y) < k.
(6)

The value of a is 1, and the value of b is 0. The original image completes the binary transformation
to extract the water body.

2.3. Flood Failure Evaluation Index

The severity of flood damage to the tower is positively related to the distance and the elevation.
The possibility of tower collapse caused by flood scouring near the water area is far greater than that
caused by a flood far away from the water area. The elevation difference between the tower base and
the flood level can reflect whether the tower is submerged. The distance and the elevation can be used
as the main parameter for the evaluation of hidden dangers of flood failure. On the basis of the SAR
image taken by satellite, the flood area is extracted through image processing. Combining this with the
information of the transmission line tower account, a judgment on whether the tower has been flooded
is made, and the hazard situation of the transmission line is preliminarily evaluated. If the tower is
not flooded, the distance between the tower and the edge of the flood should then be determined to
quickly judge the impact of the flood hazard on the transmission line.

An image is made up of pixels, and each point in the image can be converted into coordinates.
According to the account information of the tower, visual interpretation, and coordinate picking,
the pixel coordinate point set of the tower in the binary image extracted by the water body is determined
as follows:

U =
{
a1(x1, y1), a2(x2, y2), . . . , an(xn, yn)

}
(7)

where U is the set of tower coordinates, ai is the name of the tower, xi is the abscissa of the pixel
coordinates of the binary image, and yi is the ordinate of the pixel coordinates of the binary image.
F(xi, yi) is the value of the point (xi, yi) in the binary image. If F(xi, yi) = 0, it shows that the tower is
located in the water extraction part, the tower has been flooded, and the tower is most seriously affected.
If F(xi, yi) = 1, the tower is located in the non-water part and so has not been flooded. However, there
may still be potential flood hazards. The elevation layer and the distance between the tower and water
body boundary should be calculated. A search for transmission line towers around the waters that
may be endangered by floods should be conducted to determine the extent of the damage to the towers.
The elevation model can be extracted from any public available elevation model such as SRTM or
ASTER Global Digital Elevation Model. The elevation model is established to calculate the elevation
difference between the flood level and the tower foundation. The specific content of the algorithm will
not be discussed in this paper. The calculation of the distance between the towers and the water body
boundary is described below.

3. Tower Flood Failure Distance Algorithm and Criterion

On the basis of the extracted water body binary image characteristics, a search algorithm for the
center distance of the tower and a search algorithm for the tower base grid distance are proposed.

3.1. Tower Center Distance Search Algorithm

According to operating experience and flood control standards, floods beyond 3 km do not pose
a threat to transmission lines. Therefore, it is only necessary to search for transmission line towers
within 3 km of the water body. In addition, the safe distance can be increased or decreased as needed.
A circular area of 3 km around the tower is used as the search area. If there is a water body in the
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search area, it can be judged that there is a flood hazard on the transmission line. On the basis of the
SAR image and the tower information, the position information of the tower that may be affected and
the latitude and longitude information of each point of the image are determined.

In Figure 1, we choose the image coordinates. The upper left corner is the coordinate origin,
the horizontal axis is the x-axis, and the vertical axis is the y-axis. The two towers A1 and A2 have
a circle with a radius of R(R = 3km) centered on A1 and A2. L1 and L2 are water body boundaries,
and between L1 and L2 are water bodies. Let the image resolution be M (m), and each pixel is an M×M
rectangle. From this it can be obtained that M× r = 3000, r is the radius in the image, and the unit is a
pixel. The equation for indicating the boundary circle of the A1 tower search area by coordinates is

(x− x 1)
2 +(y− y 1)

2 = (
3000

M
)

2
. (8)

Points in the search area satisfy the following formula:

(x− x 1)
2 +(y− y 1))

2 < (
3000

M
)

2
. (9)

The search can be conducted from the center to the outside. If the existence point (xi, yi) satisfies
Equation (9) and F(xi, yi) = 0, then there is a water body in the search area of the tower. The nearest
distance from the water body to the tower should then be calculated. The distance between the tower
A1(x1, y1) and the water body is calculated according to the distance formula between two points:

d =

√
(x1 − xi)

2 + (y1 − yi)
2. (10)

The calculation accuracy is
√

2M/2.

 
Figure 1. Tower center distance search method.

3.2. Tower Base Grid Distance Search Algorithm

The tower center distance search method can judge the tower flood failure. However, when the
search area is wide and the number of towers is large, the calculation cost is high and so it takes a long
time. The circular search area can be changed to the grid search area of the tower base. With the tower
as the center, a square grid search area with a side length of 6 km is made. The four vertices of the grid
search area are A, B, C, and D, as shown in Figure 2.
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Figure 2. Tower base grid distance search method.

The coordinates of the tower are (x0, y0); the coordinates of the four endpoints are A(x1, y1),
B(x2, y2), C(x3, y3), and D(x4, y4). The mathematical relationship between x2 and x0 is

M · (x2 − x0) = 3000. (11)

This is formulated as
x2 =

3000
M

+ x0. (12)

By the same logic, ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x1 = x4 = x0 − 3000

M
x2 = x3 = x0 +

3000
M

y1 = y2 = y0 − 3000
M

y3 = y4 = y0 +
3000

M

. (13)

It can be concluded that the points in the search area satisfy Equation (14). If there are points
(xi, yi) in the binary image, which make F(xi, yi) = 0 and satisfy (14), then there is a potential flood
hazard in the towers search area. According to Equation (10), the minimum distance between the
tower and water body is calculated.

{
x0 − 3000

M ≤ xi ≤ x0 +
3000

M
y0 − 3000

M ≤ yi ≤ y0 +
3000

M
(14)

Compared with the tower center distance search method, the tower base grid distance search
method does not need to calculate the distance for each point, and the search process only involves a
coordinate value comparison, which can improve the calculation speed of the algorithm. However,
the grid search method searches for a square grid and searching near the vertex (a distance greater than 3
km) can cause false alarms. This type of false alarm can be avoided by distance quantitative comparison.

3.3. Flood Failure Criterion Based on Distance Algorithm, Flood Ratio and the Elevation

In the binary image, the function value of the water body is 0, and the function value of the
non-aqueous body is 1. F, the average value of the function in the search area, equals

F =
1
n

∑n

i=0
F(xi,yi). (15)
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If F = 1, there is no water body in the search area, and there is no potential flood hazard for the
transmission tower. If F < 1, there are water bodies in the search area, and there are potential flood
hazards for transmission line towers. The easiest way to get the F number is to count the number of
ones within the window of 3000 × 3000 m and divide it by the number of pixels.

H is the flood ratio. The flood ratio can reflect the extent of flooding in the search area. The larger
the H, the wider the flood range in the search area, and the greater the likelihood and severity of the
flood damage to the tower.

The elevation Δh can reflect the difference in height between the tower base and the flood level.
The smaller the Δh is, the closer the height of tower foundation and flood level is, and the greater the
threat of flood disaster to tower is.

On the basis of the standard for construction, operation of the transmission line towers and
overhaul experience accumulated over the years and the flood control standard, the flood hazard
coefficient V of the tower is designed to measure the hazard situation. The coefficient V is mainly
determined by the distance d between the tower and the flood, the flood ratio H in the search range of
the tower and the elevation Δh as shown in the following equation:

V = C1
d

3000
+ C2(1−H) + C3

Δh
1000

(16)

The distance d from the tower to the flood is divided by the search radius (3 km), reflecting the
distance between the flood in the search range and the tower. The closer the distance, the smaller the
value, and the greater the degree of danger; C1 is the weight of the distance. H is the proportion of
floods. The larger the flood ratio, the larger the number. When the value is adjusted to 1−H, the larger
the H, the smaller the value, and the weight coefficient is C2. The elevation Δh between the tower base
and the flood level is divided by 1000. If Δh > 1000 m, we think the tower is absolutely safe according
to” Flood Control Standard of Transmission Line (GB50201-2014)”. If Δh < 1000 m, the smaller Δh/1000
(a value less than 1) is, the closer the elevation difference between the tower base and flood level,
the smaller the value, and the greater the degree of danger. C3 is the weight of the elevation. Therefore,
the closer the flood, the larger the flood ratio in the search area, the closer the elevation between the
tower base and flood level, the smaller d/3000, 1 −H and Δh/1000 will be, and the smaller the V,
the greater the degree of danger. In Formula (16), C1 = 0.3C2 = 0.2C3 = 0.5. V is a number less than 1.
The smaller the V, the greater the threat of flood to towers. By calculating the distance d and the flood
ratio H and the elevation Δh in the search range of the tower, the tower flood hazard coefficient V is
calculated. Thereafter, it is possible to judge the severity of the flood. On the basis of the statistical
data of the State Grid, the Southern Power Grid and the Meteorological Bureau, the V coefficients of
transmission lines and towers in some flood-stricken areas in China are calculated. According to the
severity of actual hazards and the potential hazards of poles and towers, the hazard classification is
divided according to the calculation of the coefficient and the actual situation. The damage degree of
the tower is divided as follows:

1. When d = 0 m, the tower has been flooded and it is judged to be a super hazard;
2. When V < 0.1, the degree of hazard is judged to be in the A level;
3. When 0.1 ≤ V < 0.4, the degree of hazard is judged to be in the B level;
4. When 0.4 ≤ V < 1, the degree of hazard is judged to be in the C level.

After the hazard level is judged, it should be released quickly so that it can be utilized in time.
The warning information released includes tower location, line name, voltage level, flood impact area,
the location of flood relative to the tower, the distance between flood and tower, the elevation between
the tower base and the flood level, etc. This is all possible as a result of the advantages of rapid satellite
inspection and accurate positioning. According to the terrain, the soil, and the season, the values of
C1, C2 and C3 can be changed appropriately to adjust classification of the damage level caused by
floods. According to various sets of data (the “Standard for flood control GB50201-2014” and “Research
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on hazard damage characteristics and hazard prevention technology of distribution network flood
geological hazards”, the “Application of Correction Technique of Initial Soil Water Storage Capacity
Correction in Flood Forecasting”, and the “Study on the Supply And Demand of Soil Erosion Control
Service and Flood Control Service in Linfen Section of Fenhe River Basin”), the proportion of C1 can be
appropriately increased when the climate is humid and the soil is loose. This is because even if there is
a certain distance from the flood, continuous erosion by the flood may cause the tower foundation to
collapse, leading to tower collapse.

4. Case Analysis

To perform the analysis, the backscattering SAR image satellite image (resolution 10 m) in the
flood-prone area is selected and Lee filter processing performed. After the processing, the water body
is extracted using the threshold segmentation method, as shown in Figures 3–5.

   
(a) Example 1 (b) Example 2 (c) Example 3  

Figure 3. The original images.

   
(a) Example 1 (b) Example 2              (c) Example 3 

Figure 4. Images after Lee filtering.
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(a) Example 1 (including 
tower a1–a4) 

(b) Example 2 (including 
tower a5–a8) 

(c) Example 3 (including 
tower a9–a12) 

Figure 5. The binary images of the water body after threshold segmentation.

A set of points was randomly selected around the water bodies of the three binary images of
Figure 5, and each map selected four points, which are a1, a2, . . . , a12, as the positions of the towers.
We calculated the distance from flood to tower, the elevation difference between flood level and tower
foundation, and the flood ratio within the search range. The flood hazard coefficient was calculated.
The results are shown in Table 1.

Comparing the calculation time of the two algorithms in Table 1, the tower grid distance algorithm
is faster than the tower center distance algorithm. In order to make the test results more general, we
randomly picked points in the flood area of Figure 3 as the tower coordinates. This was done to verify
that the algorithm can accurately calculate the flood distance and make hidden danger evaluations
no matter where the tower was located. Tower a4 was located in the water body, which was used to
simulate the actual situation when a tower is submerged by flooding. The danger level S also reflects
the fact that the tower was submerged by the flood, which proves the reliability of the calculation results.
The results show that the combination of the distance and the elevation can accurately reflect the
hidden flood hazards of transmission line towers. At the same time, the elevation reduces commission
errors. The image resolution of the example is 10 m, and the calculation distance accuracy reaches 7 m.
When using higher resolution images, the accuracy increases. In addition, combined with the water
body around the tower, the hidden danger coefficient can effectively reflect the severity of the flood
hazard caused by the tower.
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5. Discussion

The calculated results show that the accuracy of the two distance algorithms is the same. Because
the two algorithms search for the water points around the towers comprehensively, and find the
shortest distance from towers, the location of the water points is the same, but the search methods are
different, resulting in different calculation speeds. In terms of algorithm speed, the tower-based grid
search algorithm is faster. The reason for this is that compared with the tower center distance search
method, the tower base grid distance search method does not need to calculate the distance of each
point, and only involves the comparison of coordinate values in the search process, which shortens the
calculation time. However, the search area divided by the grid search method is a square grid, and the
water near the vertex (a distance greater than 3 km) may cause a false alarm. This kind of false alarm
can be avoided by comparing the calculated distance with the safe distance quantitatively.

By comparing Figure 5a with Figure 3a, the non-water part is extracted from the binary image.
The accuracy of the binary image extracted by water threshold segmentation has a certain influence on
the calculation results of the shortest distance between tower and water body [33]. If the non-water
part is extracted from the binary image, the water point calculated to be the shortest distance between
the tower and the water point may be the extracted non-water point, resulting in errors in distance
calculation and even false alarms [35,36]. If the actual water body is not extracted, the shortest distance
calculated may not be the actual shortest distance (with other water body points being closer to the
tower). At the same time, the calculation results of flood proportion in the tower search area also
produce some errors. In order to make the evaluation index of flood hidden danger scenario and
the calculation of the shortest flood distance more accurate, it is necessary to improve the accuracy
of extracting binary maps from flood areas. In addition to the traditional Lee filtering and Otsu
threshold segmentation, an improved method for water extraction is proposed in the literature [37–43].
In [25], the selection criterion of target blocks with water is proposed. Gauss distribution is used to
fit the backscattering coefficient of ground objects. Combined with the improved Gamma model,
the optimal threshold position is determined, the optimization criterion is constructed, the target
threshold is solved by adaptive iteration, and the threshold accuracy is increased. In [37], the identified
seed point is confirmed locally based on two parameters corresponding to intensities and percentage
of occurrence of intensities around the seed. A densely populated range around the seed point is
computed. From the seed point, regions are grown until the intensity value of that point is within the
range to complete the task, with all flooded regions captured in the SAR image. Reference [38] proposes
the Bayesian network, a system whereby remote sensing data (such as multi-temporal SAR intensity
image and interferometric SAR coherent data) are combined with geomorphology and other ground
information to coordinate the use of different information layers, which helps to more accurately detect
flood-affected areas, and reduce false positives and omissions. Reference [39] proposes the use of
interferometric data to distinguish zones where water receded from areas where it persisted for a
longer time, and in one case, to measure changes in water level. In [40], water categories from Landsat
images are extracted and water categories from TerraSAR-X images are subtracted; the remaining
water represents the flooded area. According to the different scenarios of transmission line corridors,
different threshold segmentation methods can be selected to achieve the optimal extraction of the
water body.

According to the environment of transmission lines, considering the local temperature, humidity,
soil, plants and other factors, the C1, C2 and C3 values of flood hidden danger coefficient calculation
formula are adjusted based on the analytic hierarchy process; in this way, the flood hidden danger
coefficient can be widely and rationally used to evaluate the flood hidden danger of poles and towers,
and whether poles and towers are threatened by floods can be reasonably judged [44–46]. At the same
time, the safe distance from the tower to the flood can also be adjusted according to the environmental
conditions of the transmission lines. For example, in areas with loose soil, the foundation of transmission
line poles and towers may be affected to a certain extent even at greater distances from the flood,
and so the impact of the flood is larger. How to set the most reasonable safe distance and the value of
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C1, C2 and C3 according to the specific environment and the service life of the tower, considering the
influence of various factors comprehensively, is a problem worthy of further study [47–51].

The purpose of this study was to create a system in which the towers which suffered from flood
hazards and transmission line towers that may have potential hazards are discovered quickly, to make
a preliminary evaluation of the hazard situation, to provide a reference and basis for the emergency
repair of transmission line towers, and to reduce the economic losses caused by power blackouts in
flood hazard scenarios. This paper is a preliminary judgment of tower flood hazard scenarios based on
SAR images in which only a limited number of indicators are selected; therefore, the most intuitive
distance and the elevation in the satellite image is chosen as the main measure factor. If the tower is
submerged, the design scheme should focus on dealing with it. If it is not submerged, it should be
properly dealt with according to the distance, the elevation and the actual environment. The elevation
is the determining factor signifying whether a tower is submerged. The distance can reflect whether
there is a hidden danger. When the position of the tower is higher than the horizontal plane, the tower
is not submerged, but it cannot be guaranteed that the tower is absolutely safe. With the erosion from
water, the foundation soil of the tower may be loose, which may cause hidden dangers for the tower.
Therefore, the distance cannot be ignored, and the closer the distance is, the more likelihood there
is a potential problem. On the other hand, the transmission power could be located on the slope of
a small hill 30 meters above the flood and less than 1 km from the flood front edge and there is no
danger for the tower. The elevation will help the system to reduce false alarms. Equation (16), which
is related to hazard discrimination, shows that the closer the distance and the smaller the elevation
difference, the greater the hidden danger. The combination of distance and elevation makes the result
more accurate and comprehensive. At the same time, the proportion of floods in the search area helps
to assist in judging the hazard situation and potential flood hazards of each tower. Combined with the
results of the example, we think that the proposed index and evaluation method can be used to judge
the hidden danger degree of tower flooding.

In addition, the velocity and duration of the flood are also influencing factors. However, they are
not easy to visualize in satellite imagery. Flood velocity, duration, water level, and other factors do
affect the tower, but it is impossible to consider all factors as indicators because of the limitations of the
length of the article.

This is the first study into transmission line tower faults based on satellite images. Our system
involves choosing the SAR images to study the impact of flood hazards on transmission line towers,
selecting the distance and the elevation index, maximizing the use of limited information, responding
quickly when a hazard occurs, and providing sufficient references and guidance for line inspections.
In summary, the authors believe that the choice of distance and the elevation as the main indicator
is a suitable choice at this stage. In future studies, we will try to consider as many indicators as
possible, including distance, water level, velocity, soil, humidity and so on, to make the tower flood
risk assessment more accurate.

A future research direction may be the establishment of a high-resolution satellite image database
of the transmission line corridor. Through the comparison of multi-stage satellite images, various
kinds of geological hazards are found, and the use of higher resolution satellite images is conducive to
improving the accuracy of the calculations. An intelligent algorithm is used to identify the location of
the pole and tower, which makes the whole process more automated. By identifying and analyzing the
environment of the line, the appropriate threshold segmentation algorithm can be selected intelligently.

6. Conclusions

On the basis of backscattering water SAR imaging, this paper proposes two kinds of tower flood
failure algorithms. By combining these with the distance factor, the flood ratio and the elevation,
the hidden danger coefficient can be calculated, which can effectively judge the flood failure of the
transmission tower.
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Through testing, the tower center distance algorithm and the grid distance algorithm can accurately
calculate the nearest distance between the tower and flood. A 10 m resolution image can reach an
accuracy of 7 m, with the grid distance algorithm being the faster of the two.

The binary images obtained using threshold segmentation influence the judgment. Extracting the
non-water body part causes the flood hazard to be falsely reported. The water body information can
be extracted by combining various threshold segmentation methods to improve the accuracy.

In future research, the tower coordinates can be intelligently identified without the need for
manual selection. When searching the same area again, the tower position is determined directly
according to the latitude and longitude coordinates, and the database is perfected to construct an
expert system.
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48. Krejčí, J.; Petri, D.; Fedrizzi, M. From measurement to decision with the analytic hierarchy process:
Propagation of uncertainty to decision outcome. IEEE Trans. Instrum. Meas. Year. 2017, 66, 3228–3236.
[CrossRef]

49. Kang, H.G.; Seong, P.H. A methodology for evaluating alarm-processing systems using informational
entropy-based measure and the analytic hierarchy process. IEEE Trans. Nucl. Sci. 1999, 46, 2269–2280.
[CrossRef]

50. Bauer-Marschallinger, B.; Paulik, C.; Hochstöger, S.; Mistelbauer, T.; Modanesi, S.; Ciabatta, L.; Massari, C.;
Brocca, L.; Wagner, W. Soil moisture from fusion of scatterometer and SAR: Closing the Scale Gap with
Temporal Filtering. Remote Sens. 2018, 10, 1030. [CrossRef]

51. Chai, X.; Zhang, T.; Shao, Y.; Gong, H.; Liu, L.; Xie, K. Modeling and mapping soil moisture of plateau
pasture using RADARSAT-2 imagery. Remote Sens. 2015, 7, 1279–1299. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

37





remote sensing 

Article

Geospatial Object Detection on High Resolution
Remote Sensing Imagery Based on Double
Multi-Scale Feature Pyramid Network

Xiaodong Zhang *, Kun Zhu , Guanzhou Chen , Xiaoliang Tan, Lifei Zhang, Fan Dai,

Puyun Liao and Yuanfu Gong

State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing,
Wuhan University, Wuhan 430079, China; zkun@whu.edu.cn (K.Z.); cgz@whu.edu.cn (G.C.);
xl_tan@whu.edu.cn (X.T.); lifeizhang@whu.edu.cn (L.Z.); daifan@whu.edu.cn (F.D.);
LiaoPuyun@whu.edu.cn (P.L.); gongyuanfu@163.com (Y.G.)
* Correspondence: zxdlmars@whu.edu.cn; Tel.: +86-27-6877-8033

Received: 17 February 2019; Accepted: 23 March 2019; Published: 28 March 2019
��������	
�������

Abstract: Object detection on very-high-resolution (VHR) remote sensing imagery has attracted a
lot of attention in the field of image automatic interpretation. Region-based convolutional neural
networks (CNNs) have been vastly promoted in this domain, which first generate candidate regions
and then accurately classify and locate the objects existing in these regions. However, the overlarge
images, the complex image backgrounds and the uneven size and quantity distribution of training
samples make the detection tasks more challenging, especially for small and dense objects. To solve
these problems, an effective region-based VHR remote sensing imagery object detection framework
named Double Multi-scale Feature Pyramid Network (DM-FPN) was proposed in this paper, which
utilizes inherent multi-scale pyramidal features and combines the strong-semantic, low-resolution
features and the weak-semantic, high-resolution features simultaneously. DM-FPN consists of a
multi-scale region proposal network and a multi-scale object detection network, these two modules
share convolutional layers and can be trained end-to-end. We proposed several multi-scale training
strategies to increase the diversity of training data and overcome the size restrictions of the input
images. We also proposed multi-scale inference and adaptive categorical non-maximum suppression
(ACNMS) strategies to promote detection performance, especially for small and dense objects.
Extensive experiments and comprehensive evaluations on large-scale DOTA dataset demonstrate the
effectiveness of the proposed framework, which achieves mean average precision (mAP) value of
0.7927 on validation dataset and the best mAP value of 0.793 on testing dataset.

Keywords: very-high-resolution (VHR) remote sensing imagery; object detection; multi-scale
pyramidal features; multi-scale strategies

1. Introduction

Object detection on very-high-resolution (VHR) optical remote sensing imagery has attracted
more and more attention. It not only needs to identify the category of the object, but also needs to give
the precise location of the object [1]. The improvements of earth observation technology and diversity
of remote sensing platforms have seen a sharp increase in the amount of remote sensing images, which
promotes the research of object detection. However, the problems of the complex backgrounds, the
overlarge images, the uneven size and quantity distribution of training samples, illumination and
shadows make the detection tasks more challenging and meaningful [2–4].

The optical remote sensing image object detection has made great progress in recent years [5].
The existing detection methods can be divided into four main categories, namely, template
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matching-based methods, knowledge-based methods, object image analysis-based (OBIA-based) methods
and machine learning-based methods [2]. The template matching-based methods [6–8] mainly contain
rigid template matching and deformable template matching, which includes two steps, specifically,
template generation and similarity measure. Geometric information and context information are the two
most common knowledge for knowledge-based object detection algorithm [9–11]. The key of the algorithm
is effectively transforming the implicit connotative information into established rules. OBIA-based
image analysis [12] principally contains image segmentation and object classification. Notably, the
appropriate segmentation parameters are the key factors, which will affect the effectiveness of the
object detection. In order to more comprehensively and effectively characterize the object, machine
learning-based methods [13,14] are applied. They first extract the features (e.g., histogram of oriented
gradients (HOG) [15], bag of words (BoW) [16], Sparse representation (SR)-based features [17], etc.)
of the object, then perform feature fusion and dimension reduction to concisely extract features.
Finally, those features are fed into a classifier (e.g., Support vector machine (SVM) [18], AdaBoost [19],
Conditional random field (CRF) [20], etc.) trained with a large amount of data for object detection.
In conclusion, those methods rely on the hand-engineered features, however, they are difficult to
efficiently process remote sensing images in the context of big data. In addition, the hand-engineered
features can only detect specific targets, when applying them to other objects, the detection results are
unsatisfactory [1].

In recent years, the deep learning algorithms emerging in the field of artificial intelligence (AI)
are a new kind of computing model, which can extract advanced features from massive data and
perform efficient information classification, interpretation and understanding. It has been successfully
applied to the fields of machine translation, speech recognition, reinforcement learning, image
classification, object detection and other fields [21–25]. Even in some applications, it has exceeded
the human level [26]. Compared with the traditional object detection and localization methods, the
deep learning-based methods have stronger generalization and features expression ability [2]. It learns
effective representation of features by a large amount of data, and establishes relatively complex
network structure, which fully exploits the association among data and builds powerful detectors and
locators. Convolutional neural network (CNN) is a kind of deep learning model specially designed for
two-dimensional structure images inspired by biological visual cognition (local receptive field) and it
can learn the deep features of images layer by layer. The local receptive field of CNN can effectively
capture the spatial relationship of the objects. The characteristics of weight sharing greatly reduces the
training parameters of the network and the computational cost. Therefore, the CNN-based methods
are being widely used when automatically interpreting images [2,27–30].

In the field of object detection, with the development of the large public natural image datasets
(e.g., Pascal VOC [31], ImageNet [32]), and the significantly improved graphics processing units (GPUs),
the CNN-based detection frameworks have achieved outstanding achievements [33]. The existing
CNN-based detection methods can be roughly divided into two groups: the region-based methods
and the region-free methods. The region-based methods first generate candidate regions and then
accurately classify and locate the objects existing in these regions, and these methods have higher
detection accuracy but slower speed. Conversely, the region-free methods directly regress the object
coordinates and object categories in multiple positions of the image, and the whole detection process
is one-stage. These region-free methods have faster detection speed but relatively poor accuracy [34].
Among numerous region-based methods, Region-based CNN (R-CNN) [35] is a pioneering work.
It utilizes the selective search algorithm [36] to generate the region proposals, and then extracts features
via CNN on these regions. The extracted features are fed into a trained SVM classifier, which classifies
the category of the object. Finally, bounding box regression is used to correct the initial extracted
coordinates and non-maximum uppression (NMS) is used to delete highly redundant bounding boxes
to obtain accurate detection results. R-CNN [35] demands to perform feature extraction at each region
proposal, so the process is time-consuming [37]. Besides, the forced image resizing process on the
candidate regions before they are fed into the CNN also caused information loss. To solve the above
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problems, He et al. proposed Spatial Pyramid Pooling Network (SPP-Net) [38], which adds a spatial
pyramid layer, namely, Region-of-Interest (RoI) pooling layer, on the top of the last convolutional
layer. The RoI pooling layer divides the features and generates fixed-length outputs, therefore it
can deal with the arbitrary-size input images. SPP-Net [38] performs one-time features extraction
to obtain an entire-image feature map, and the region proposals share the entire-image feature map,
which greatly speeds up the detection. On the basis of R-CNN, Fast-RCNN [39] adopts the multi-task
loss function to carry out classification and regression simultaneously, which improves the detection,
positioning accuracy and greatly improves the detection efficiency. However, using the selective
search algorithm to generate region proposals is still very time-consuming because the algorithm
implements on the central processing unit (CPU). In order to take advantage of the GPUs, Faster
R-CNN [37], consisting of a region proposal network (RPN) and Fast R-CNN, was proposed. The two
networks share convolution parameters, and they have been integrated into a unified network. Thus,
the region-based object detection network achieves end-to-end operation. Feature pyramids play a
crucial role in multi-scale object detection system, which combine resolution and semantic information
over multiple scales. Feature pyramid network (FPN) [40] was proposed to simultaneously utilize
low-resolution, semantically strong features and high-resolution, semantically weak features, it is
superior to single-scale features for a region-based object detector and shows significant improvements
in detecting small objects. In addition to the region-based object detection frameworks, there are many
region-free object detection networks, including Over-Feat [41], you only look once (YOLO) [42] and
single shot multi-box detector (SSD) [43], etc. These one-stage networks consider object detection as
a regression problem, they do not generate region proposals and predict the class confidence and
coordinates directly. They greatly improve the detection speed, although sacrificing some precision.

The CNN-based natural imagery object detection has made great progress, but high-precision
and high-efficiency object detection for remote sensing images still has a long way to go. Different
from natural images, remote sensing images usually show the following characteristics:

1. The perspective of view. Remote sensing images are usually obtained from a top-down view
while natural images can be obtained from different perspectives, which greatly affects how
objects are rendered on the images [1].

2. Overlarge image size. Remote sensing images are usually larger in size and range than natural
images. Compared with natural image processing, remote sensing image processing is more
time-consuming and memory-consuming.

3. Class imbalances. The imbalances mainly include category quantity and object size. Objects in
natural scene images are generally uniformly distributed and not particularly numerous, but
a single remote sensing image may contain one object or hundreds of objects and it may also
simultaneously include large objects such as playgrounds and small objects like cars.

4. Additional influence factors. Compared with natural scene image, remote sensing image
object detections are affected by illumination condition, image resolution, occlusion, shadow,
background and border sharpness [33].

Therefore, constructing a robust and accurate object detection framework for remote sensing
images is very challenging, but it is also of much significance. To overcome the size restrictions of the
input images, the problem of small objects loss and retain the resolution of the objects, Chen et al. [1]
put forward MultiBlock layer and MapBlock layer based on SSD [43]. The MultiBlock layer divides the
input image into multiple blocks, the MapBlock layer maps the prediction results of each block to the
original image. The network achieves a good effect on airplane detection. Considering the complex
distribution of geospatial objects and the low efficiency for remote sensing imagery, Han et al. [33]
proposed the P-R-Faster R-CNN, which achieves multi-class geospatial object detection by combining
the robust properties of transfer mechanism and the sharable properties of Faster R-CNN. Guo et al. [3]
proposed a unified multi-scale CNN for multi-scale geospatial object detection, which consists of a
multi-scale object proposal network and a multi-scale object detection network. The network achieves
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the best precision on the Northwestern Polytechnical University very high spatial resolution-10
(NWPU VHR-10) [44] dataset. However, for small and dense objects detection on remote sensing
images, they did not propose an effective solution, and did not make full use of the resolution and
semantic information simultaneously, which may lead to unsatisfactory results in the case of more
complex backgrounds, numerous data and overlarge image size [4,40]. Some frameworks [1,45–47]
only have effects for certain types of objects. Besides, RoI pooling layer in these networks will cause
misalignments between the inputs and their corresponding final feature maps, these misalignments
affect the object detection accuracy, especially for small objects.

To solve the above problems, we presented an effective framework, namely, Double Multi-scale
Feature Pyramid Network (DM-FPN), which makes full use of semantic and resolution features
simultaneously. We also put forward some multi-scale training, inference and adaptive categorical
non-maximum suppression (ACNMS) strategies. The main contributions of this paper are summarized
as follows:

1. We have constructed an effective multi-scale geospatial object detection framework, which
achieves good performance by simultaneously utilizing low-resolution, semantically strong
features and high-resolution, semantically weak features. Accordingly, the RoI Align layer used
in our framework can solve the misalignment caused by RoI pooling layer and it improves the
object detection accuracy, especially for small objects.

2. We proposed several multi-scale training strategies, including the patch-based multi-scale training
data and the multi-scale image sizes used during training. To overcome the size restrictions of the
input images, we divided the image into blocks with a certain degree of overlap. The patch-based
multi-scale training data strategy both enhance the resolution features of the small objects and
integrally divide the large objects into a single patch for training. In order to increase the diversity
of objects, we adopt multiple image sizes strategy for patches during training.

3. During the inference stage, we also proposed a multi-scale strategy to detect as many objects
as possible. Besides, depending on the intensity of the object, we adopt the noval ACNMS
strategy, which can effectively reduce redundancy among the highly overlapped objects and
slightly overcome the uneven quantity distribution of training samples, enabling the framework
preferably to detect both small and dense objects.

Experiment results evaluated on DOTA [48] dataset, a large-scale dataset for object detection
in aerial images, indicating the effectiveness and superiority of the proposed framework. The rest
of this paper is organized as follows. Section 2 introduces the related work involved in the paper.
Section 3 elaborates the proposed framework in detail. Section 4 mainly includes the description of the
datasets, evaluation criteria and experiment details. Section 5 implements ablation experiments and
makes reliable analyses to the results. Section 6 discusses the proposed framework and analyzes its
limitations. Finally, the conclusions are drawn in Section 7.

2. Related Works

In this section, we will first review some outstanding region-based object detection frameworks,
they have achieved remarkable accomplishments on natural image object detection. Then we will
introduce RoI Align layer, which can significantly improve the detection performance of small objects.

2.1. Region-Based Object Detection Networks

The region-based object detection networks are mainstream frameworks for high-precision object
detection, including R-CNN, SPP-Net, Fast R-CNN and Faster R-CNN [35,37–39]. Their common
process is to first generate numerous candidate areas by the region proposal algorithms [36,49,50].
Then, the networks employ CNN to extract abundant features from these candidate regions and infer
the category and coordinates of objects on each region. Finally, a bounding box algorithm is utilized to
get precise coordinates. Faster R-CNN integrates these steps to form a unified network and realizes
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end-to-end object detection. It consists of two modules, formally, RPN and Fast R-CNN, and the two
tasks share convolutional features. Figure 1 shows the overall architecture of Faster R-CNN.

Figure 1. The architecture of Faster R-CNN. The “conv” represents convolutional layer, the “relu”
represents activation function and the “fc layer” represents fully connected layer. The network outputs
intermediate layers of the same size in the same “stage”. The “bbox_pred” represents the position
offset of the object and the “cls_prob” represents the probability of the category.

RPN is a kind of fully convolutional network [51], it deals with the arbitrary-size input image
and outputs a set of region proposals with an objectness score. These candidate regions will be fed
into the following Fast R-CNN for precise detection. The core scheme of RPN is “anchors”, which
simultaneously predicts multiple region proposals of diversiform scales and aspect ratios with a total
number of k at each sliding window in the last shared convolutional layer. The features obtained from
each sliding window will be imported into two sibling 1 × 1 convolutional layers, specifically, the
box-classification layer (cls) and the box-regression layer (reg). The cls layer is used to identify a binary
class label of being an object or not while the reg layer is used to correct the coordinates of the object.
Therefore, the cls layer has 2k outputs while the reg layer has 4k outputs.

After RPN processing, we got a mass of candidate regions with class-agnostic and coordinate
attributes. These regions will be fed into the subsequent Fast R-CNN for further category judgment
and coordinate regression. Fast R-CNN adopts RoI pooling layer to extract fixed-length feature vectors
from arbitrary-size candidate regions and these feature vectors are fed into categorical classification
and regression layers to obtain the final detection results. The RPN and Fast R-CNN employ the
approximate joint training scheme to share convolution. As such, an efficient and end-to-end object
detection framework is constructed.

2.2. Feature Pyramid Network

Most region-based object detection frameworks only use the single-scale features for faster
detection, such feature representations are very unfriendly to small objects. In Faster R-CNN, the
backbone adopts Visual Geometry Group 16 weight layers (VGG16 [52]) and the last feature map
reduces to 1/32 compared to the original image after 5 convolutional layers (with a pooling step of 2),
some small objects like cars and ships will lose a large proportion of features after such operations.
In the deep convolutional networks, the low-level layers have poor semantic but strong resolution while
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the high-level layers have rich semantic but scarce resolution [40]. Although some frameworks [43,53]
adopt multi-scale feature maps that already computed from different layers, they abnegate low-level
features and therefore lose the opportunity to take advantage of higher-resolution features. Combining
strong resolution and semantic information will enhance the detection performance, especially for
small objects. In a pioneering way, FPN leverages the in-network features obtained from the last layer
of each stage in the convolutional networks (ConvNets). It combines coarse-resolution, semantically
strong features with high-resolution, semantically weak features to construct a multi-scale pyramidal
hierarchy network without additional memory consumption. We note that if the output feature maps
have the same size, they are in the same stage. As shown in the Figure 2, the core mechanism of the
FPN mainly includes bottom-up pathway, top-down pathway and lateral connections.

Figure 2. The core mechanism of the FPN mainly includes bottom-up pathway, top-down pathway
and lateral connections.

• Bottom-up pathway. Actually, this operation is the forward propagation process of the network.
During the operation, the last convolutional layer in each stage is extracted to establish a
feature pyramid. Compared with other methods [54–56], this mechanism requires no additional
memory footprint.

• Top-down pathway and lateral connections. The top-down pathway upsamples the feature map
obtained from the bottom-up pathway to the same size as the semantically coarser, but spatially
stronger feature maps. The lateral connections merge the same-size feature maps obtained
from the bottom-up pathway and the top-down pathway respectively, which first undergoes a
1 × 1 convolutional layer to reduce channel dimensions. The mergence process is implemented
by element-wise addition. Subsequently, a 3 × 3 convolution is executed on each merged feature
map to eliminate the aliasing effect of upsampling.

2.3. ROI Align

ROI Align is a kind of regional feature aggregation method proposed in Mask R-CNN [57], which
solves the problem of misalignment caused by RoI pooling during the two integer quantification
operations. RoI pooling layer divides the region proposal on the last convolutional layer into a
fixed-length (e.g., 7 × 7) feature map for subsequent classification and bounding box regression tasks.
Since the coordinates of candidate regions are obtained by regression, generally speaking, they are
floating-numbers. After rounding down, the data after the decimal point is abandoned. As shown in
Figure 3a, there are two rounding operations during the pooling: the coordinates of candidate region
are first quantified to integer, then the quantified RoI is divided into k × k bins on average, and each
bin is quantified again thus introducing misalignments between the RoI and the final feature map.
Such misalignments are harmful to objects detection task, especially for small objects.
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(a) RoI pooling layer. (b) RoI align layer.

Figure 3. RoI align layer solves misalignments caused by RoI pooling layer.

RoI Align was proposed to solve the above deficiency of RoI Pooling, it abnegates all quantifications
and utilizes bilinear interpolation to obtain the precise values. Formally, RoI Align retains the original
floating-numbers instead of quantified integers. The alignment process is shown in Figure 3b. During the
first quantification, the boundary coordinates of each candidate region are not round down to maintain
floating-numbers. During the second quantification, each RoI is divided into k × k bins and this process is
still not round down. Subsequently, four fixed sampled points are calculated by bilinear interpolation in
each RoI bin, and the maximum or average pooling is performed to get align results. RoI Align solves the
misalignments between the inputs and the extracted feature maps, which is significant for object detection
on remote sensing images that contain numerous small objects.

3. Framework

In this section, we will elaborate the details of our proposed framework. In order to efficiently
detect the objects on remote sensing images, we also propose some multi-scale training and inference
strategies. Meanwhile, different ACNMS thresholds are selected according to the size and intensity of
the category, which can improve the detector performance to some extent.

3.1. The Core Mechanism of the Proposed Network

3.1.1. The Overall Structure

The overall structure of the proposed framework named Double Multi-scale Feature Pyramid
Network (DM-FPN) is shown in Figure 4.

The infrastructure of DM-FPN is based on Faster R-CNN [37] with FPN [40]. Formally, both
the original region proposal network and the detection network were modified by FPN. DM-FPN
combines coarse-resolution, semantically strong features with high-resolution, semantically weak
features, and such operations have great advantages in detecting small objects. We adopt ResNet50 [58]
as backbone of our framework. The convolution can be divided into 5 stages and the output of each
stage’s last residual block was selected as {C2, C3, C4, C5}, noting that they have strides of {4, 8,
16, 32} pixels corresponding to the original image. We do not utilize the first stage because it is
memory-consuming. This process is called the bottom-up pathway, which has been described in
Section 2.2. The corresponding {P2, P3, P4, P5} were obtained by top-down path, lateral connections
and mergence. Actually, to eliminate the aliasing effect of upsampling, a 3 × 3 convolution is executed
on each merged feature map to obtain the final feature maps {P2, P3, P4, P5}, which are shared by the
region proposal network and the class-specific detection network.
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Figure 4. The overall structure of the proposed DM-FPN. It consists of a multi-scale region proposal
network and a multi-scale object detection network. These two modules share convolutional layers.

3.1.2. Multi-Scale Region Proposal Network

The original RPN extracts region proposals on the last single-scale convolutional layer. In order
to take advantage of the pyramid character of FPN, we need to extract candidate regions on multiple
convolutional layers, namely, {P2, P3, P4, P5, P6}, noting that P6 is simply a stride 2 subsampling of P5,
which is only used in multi-scale region proposal network. The anchors own ranges of {322, 642, 1282,
2562, 5122} pixels on {P2, P3, P4, P5, P6} respectively. On each feature map, there are three aspect ratios,
namely, {1:2, 1:1, 2:1}. As a result, there are a total of 15 anchors on these pyramidal feature maps.
The selection of positive and negative samples is determined by the Intersection-over-Union (IoU)
between the region proposal and ground-truth box. We note that IoU is defined as the ratio between
the intersection and the union of two boxes. If an anchor has the highest IoU with a given ground-truth
box or it has an IoU greater than 0.7 with any ground-truth box, then it will be assigned to the positive.
Conversely, if an anchor has an IoU less than 0.3 for all ground-truth boxes, it’s a negative sample.
We abandon samples that are neither positive nor negative. In a mini-batch of 256, the ratio of positive
to negative samples is 1:1. These rules apply to {P2, P3, P4, P5, P6} indistinguishably. Specially, the
common ground-truth boxes are equally participated in the calculation with the pyramid anchors
located on five-level feature maps. With these definitions, the loss function for an image is defined as:

L ({pi}, {ti}) =
1

Ncls
∑

i
(pi, p∗i ) + λ · 1

Nreg
∑

i
p∗i Lreg (ti, t∗i ) (1)

where i represents the index of an anchor in a mini-batch while pi is the predicted probability of anchor
i being an object. If the anchor is positive, the ground-truth label p∗i equals to 1, otherwise equals
to 0. ti is a vector that consists of four parameterized coordinates of the predicted bounding box,
and t∗i is that of the ground-truth box associated with a positive anchor. The classification loss Lcls is
represented by the log loss, which identifies a binary class label of being an object or not. And the
regression loss Lreg is constructed by the Smooth L1 loss. The above two loss functions are weighted by
a balancing parameter λ. Usually, the cls term is normalized by the mini-batch size while the reg term is
normalized by the number of anchors. In this paper, we specify that Ncls and Nreg are equal to 256 and
2000, respectively. We set λ is equals to 9 and thus both cls and reg terms are roughly equally weighted.
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We note that we reserve the top 2000 region proposals based on their cls scores on {P2, P3, P4, P5,
P6} respectively, then we concatenate these candidate boxes and adopt Non-Maximum Suppression
(NMS) with a fixed IoU threshold of 0.7 to retain the final 2000 RoIs, which will be fed into the
subsequen class-specific detection network for exact object detection.

3.1.3. Multi-Scale Class-Specific Detection Network

Fast R-CNN [39] is a single-scale region-based object detection framework, which utilizes RoIs
generated by RPN for object detection. Different from the previous networks that pooling RoI to
single-scale feature map, we need to align RoIs from different scales to the multiple pyramidal feature
maps. We assign an RoI of width w and height h (based on the input image) to the level Pk by:

k =
⌊

k0 + log2(
√

wh/224)
⌋

(2)

where 224 is the normative ImageNet pre-training size as FPN [40] does, and k0 is the level that an RoI
with a size of w × h = 2242 should be mapped into. Notably, we assigned k0 equals to 4 as [40] does.
These RoIs can be assigned to different levels according to their size. For example, if an anchor has a
width of 188 and a height of 111, it should be mapped into the P3 level. Subsequently, we adopt RoI
align to extract 7 × 7 feature maps, which will be fed into two 1024-d fully-connected layers before
the final classification and bounding box regression layers. Based on the above settings, both region
proposal network and class-specific detection network can utilize multi-scale pyramidal features for
object detection.

3.2. Multi-Scale Training Strategies

Multi-scale training strategies mainly include the patch-based multi-scale training data and the
multi-scale image sizes used during training. Their descriptions are as follows:

1. Patch-based multi-scale training data. The size restrictions of the input images cause a lot of
semantic information will lost in the deep convolutional layers, especially for small objects.
Therefore, we slice remote sensing images into patches with a certain degree of overlap, and
then send these image blocks into the network for training. At the same time, considering the
uneven distribution of objects on the remote sensing image, which may include large objects
such as playgrounds, and may also include small objects like cars, we enlarge and shrink remote
sensing images by a factor of 2 and 0.5 respectively. The enlarged remote sensing images enhance
the resolution features of the small objects while the shrunken remote sensing images integrally
divide the large objects into a single patch for training.

2. Multi-scale image sizes used during training. In order to enhance the diversity of objects, we
adopt multiple scales for patches during training. Each scale is the pixel size of a patch’s shortest
side and the network uniformly select a scale for each training sample at random.

3.3. Multi-Scale Inference Strategies

We scale images to detect as many objects as possible during inference, and the scaled images
include enlarged and shrunken images, horizontally and vertically flipped images. Specifically, we first
perform multi-scale process on each test image, then we slice it into patches with a certain degree of
overlap according to its size and carry out detection on these image blocks. Finally, we apply ACNMS
to these concatenate bounding boxes from each patch to get the final results.

3.4. Adaptive Categorical Non-Maximum Suppression (ACNMS)

NMS is a post-processing module in the object detection framework, which is mainly used to
delete highly redundant bounding boxes. A single remote sensing image may contain one big object
or hundreds small objects, thus there exists a class imbalance between different categories. In the
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previous multi-class object detection works [3,4,33], the NMS thresholds for different categories are
the same, but we find that different NMS thresholds for different categories based on the category
intensity (CI) can improve the accuracy of object detection to a certain extent. We define CI as:

CI = NIoC/Nimg (3)

where NIoC means the total number of instances for each category, Nimg means the total number of
images. If the CI of a category is greater than the given threshold, we set this category a larger NMS
threshold than the generic NMS threshold. In general, NMS thresholds for denser objects are larger
because they overlap each other more commonly.

4. Dataset and Experimental Settings

4.1. Dataset Description

We evaluated our proposed framework on DOTA [48] dataset, which contains 2806 aerial images
with pre-divided 1411 training images, 458 validation images and 937 testing images. We note that
the testing images have no labels, however, you can submit the test results in a fixed format to DOTA
Evaluation Server (http://captain.whu.edu.cn/DOTAweb/evaluation.html). Those DOTA images are
obtained from different sensors and platforms with crowdsourcing and the size ranges from 800 × 800
to 4000 × 4000 pixels. DOTA consists of 15 common categories, namely, plane, ship, storage tank,
baseball diamond, tennis court, basketball court, ground track field, harbor, bridge, large vehicle, small
vehicle, helicopter, roundabout, soccer ball field and swimming pool. The fully annotated DOTA
dataset contains 188,282 instances, each of which is labeled by an oriented quadrilateral instead of
an axis-aligned one, which is typically used for object annotation in natural scene images. Another
common geospatial object detection dataset is NWPU VHR-10 [44], which contains 800 images in
10 categories with a total of 3651 instances. The average size of NWPU VHR-10 is 1000 × 1000 pixels.
Compared with NWPU, DOTA is a larger annotated dataset for multi-class geospatial object detection,
which has more complex backgrounds, larger image size and denser object distribution thus more
reflective of the real-world applications [48]. Therefore, the evaluation on DOTA can better verify the
effectiveness and robustness of our proposed network.

The benchmark of DOTA contains two detection tasks. Task 1 uses the initial oriented bounding
boxes as ground truth. Task 2 uses the converted horizontal bounding boxes as ground truth. In this
work, we only focus on the horizontal bounding box detection task with (xmin, ymin, xmax, ymax)
format, so we need to convert the labeled oriented bounding box into the minimum bounding rectangle
for each image. Figure 5 shows some examples about the original annotations and their minimum
bounding rectangles.

4.2. Evaluation Criteria

We adopted Precision-Recall Curve (PRC) and Average Precision (AP) as evaluation criteria in
our experiments, which are widely used in the object detection works.
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Figure 5. Examples of Annotated Images. The red quadrilaterals represent original annotations, the
green rectangles represent minimum bounding rectangles.
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4.2.1. Precision-Recall Curve

The precision metric is the ratio of the correct identification quantity to the total identification
quantity while the recall metric is the proportion of the correct identification quantity to the total
labeled quantity, which can be illustrated by the following two formulas:

precision = TP/(TP + FP) (4)

recall = TP/(TP + FN) (5)

we note that if the IoU value between the predicted bounding box and the ground truth is larger than
0.5, it will be considered as true positive (TP), otherwise, it will be considered as false positive (FP).
In addition, false negative (FN) refers to the prediction boxes that overlap with ground truth but do
not have the maximum overlap value. The precision-recall curve (PRC) describes the relationship
between the precision metric and the recall metric, an object detector of a certain category is considered
good if its prediction stays high as recall increases.

4.2.2. Average Precision

Average Precision (AP) is the averaged precision across all recall values between 0 and 1, namely,
the area under the PRC. A higher AP indicates a better detector. Mean average precision(mAP)
represents the average AP over all categories.

4.3. Baseline Methods

We compared the proposed framework with the classic region-based methods including Faster
RCNN [37] and FPN [40] on DOTA validation dataset. For the testing dataset, we submitted the
inference results to DOTA website because of lacking annotated labels, and we selected several current
top-ranked results for comparison.

4.4. Implementation Details

We implemented our network on the open source Caffe2 (https://caffe2.ai/) framework and
executed on a 64-bit Ubuntu 16.04 computer with 8GB memory GeForce GTX1070Ti GPU. We note the
comparison models were implemented in their original environments without any additions.

4.4.1. Training

We first enlarged and shrunk the original images by a factor of 2 and 0.5 respectively, then we
sliced the original and scaled images into patches of 1000 × 1000 pixels with an overlap of 500 pixels.
All the original image patches, partial randomly selected enlarged and shrunken image patches were
taken as our training samples with a total number of 31,396. These training samples will be fed into
the network after data augmentation, which includes rotation and flip. We adopted three scales during
training, they are 800 × 800, 900 × 900 and 1000 × 1000 pixels respectively. Each scale is the pixel size
of a patch’s shortest side and the network uniformly select a scale for each training sample at random.
We adopted ResNet50 as our backbone, which was pre-trained on ImageNet dataset. We trained a
total of 300k iterations with a learning rate of 0.0025 for the first 150k iterations, 0.00025 for the next
50k iterations, and 0.000025 for the remaining 100k iterations, which took us about 40 hours in total.
The network was trained by stochastic gradient descent algorithm with a mini-batch of 2 images.
Weight decay and momentum are 0.0001 and 0.9 respectively.

4.4.2. Inference

We implemented inference based on the image patches in order to detect as many objects as
possible. To accelerate the inference, we sliced validation images into patches of 1000 × 1000 pixels
with an overlap of 200 pixels. We performed detection on each diced image and then concatenated
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the predicted results from each patch. We set CI threshold to 10, and the ACNMS threshold is 0.38.
Specifically, if the intensity of a category is greater than CI threshold, then its NMS threshold is 0.38,
otherwise we set its NMS threshold to 0.3. Meanwhile, to verify the effectiveness of the multi-scale
inference strategies, we also performed the same detections on the shrunken images, the horizontal
rotation and vertical rotation images simultaneously. We did not perform detections on the enlarged
images because of their vastly time-consuming.

5. Results and Analysis

5.1. Ablation Experiments

Ablation experiments were carried out to verify the effectiveness of the proposed multi-scale
training, inference and ACNMS strategies. In the following subsection, we will gradually verify the
relevant strategies. The multi-scale training and inference strategies can be expressed as Equation (6):

(p)_based(x) + (s)_scale (6)

where p represents the patch sizes used for training, x represents the patch sources used for training
and s represents the patch scales used for inference. For example, 800_based(4)+1_scale means that
we resized the pre-divided patches into 800 × 800 pixels for training. These multi-scale training
data include four data sources, specifically, the original images, the patches obtained from original
images, enlarged and shrunken images. During inference, we performed detection on the patches
only obtained from original images. The size of these patches is 1000 × 1000 pixels with an overlap of
200 pixels. Finally, we concatenated the bounding boxes from each patch and adopted ACNMS to get
the final results. The detailed explanations are shown in Table 1.

Table 1. Details of multi-scale training and inference strategies.

Parameters Connotation Values Details

p Patch sizes used for training

0 Training with original images
800 Training with patches of 800 × 800 pixels
900 Training with patches of 900 × 900 pixels
1000 Training with patches of 1000 × 1000 pixels

(800, 900, 1000) Training patches with a randomly selected size from (8002, 9002, 10002) pixels

x Patch sources used for training

0 Original images without slicing
1 Patches from original images

4
Original images, patches from original images, partial randomly selected enlarged

and shrunken images simultaneously

s Patch scales used for inference

0 Inference on the original images
1 Inference on the patches from the original images

4
Inference on the patches from original images, shrunken images, horizontal

and vertical rotation images simultaneously

5.1.1. Patch-Based Training and Inference Strategies

In this section, we conducted two sets of ablation experiments to illustrate the superiority of
patch-based training and inference strategies. We adopted (a), (b), (c), etc. to represent each method in
Table 2. In each column, the bold number indicates the best detection result, and the other tables are the
same. Table 2(a) carried out training using the original images without patches. For fair comparison,
we resized the original images to 1000 × 1000 pixels and the inference was also performed on the
original images. The training strategies of Table 2(b) were the same as Table 2(a), however, it performed
inference on the patches obtained from the original images. Both training and inference of Table 2(c)
were performed on the patches obtained from the original images.
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Table 2. The AP values of ablation experiments for patch-based training and inference strategies.

Method 0_based(0)+0_scale (a) 0_based(0)+1_scale (b) 1000_based(1)+1_scale (c)

plane 0.7078 0.8015 0.8986
ship 0.6023 0.829 0.8886

storage tank 0.4213 0.5483 0.7808
baseball diamond 0.6478 0.4105 0.8112

tennis court 0.888 0.9064 0.9078
basketball court 0.4822 0.5279 0.6671

ground track field 0.4304 0.4104 0.7225
harbor 0.8391 0.7742 0.8894
bridge 0.2973 0.308 0.6326

large vehicle 0.675 0.7244 0.764
small vehicle 0.5571 0.6002 0.679

helicopter 0.3309 0.1027 0.654
roundabout 0.2943 0.3957 0.722

soccer ball field 0.4059 0.3982 0.6588
swimming pool 0.4472 0.5328 0.6153

mAP 0.5351 0.5513 0.7528

Comparing Table 2(a) and Table 2(b), we can observe that patch-based inference strategy
has improved detection accuracy on most categories except baseball-diamond, ground-track-field,
harbor, helicopter and soccer-ball-field. Through further experiments we found that the sizes of
baseball-diamond, ground-track-field, harbor, and soccer-ball-field are so large that they often beyond
the scope of a single patch, therefore, training with original images but prediction with patches are
not conducive to these objects. However, the poor detection effect of helicopter is mainly caused by:
(1) Quite a few samples, the sample number (630) of helicopter is far fewer than other categories;
(2) Some helicopter samples are similar to airplane, and these two categories generally appear
simultaneously. Nevertheless, the patch-based inference strategy is still slightly ascending.

With the patch-based training strategy, Table 2(c) shows the superiority compared to Table 2(b),
it not only has an overwhelming advantage in mAP (0.5513 to 0.7528), but also increases the AP
value of each category, which illustrates that the patch-based training strategy is targeted and more
adequately understand the characteristics of the objects. Besides, the patch-based training strategy
implicitly increases the sample number of each category, especially for the sample-scarce categories.

Computational efficiency is also an important indicator in evaluating a framework’s performance,
so we calculated the average running time for each strategy. The results are shown in Table 3.

Table 3. Average running time of patch-based training and inference strategies.

Method 0_based(0)+0_scale (a) 0_based(0)+1_scale (b) 1000_based(0)+1_scale (c)

Average running time per image (second) 0.3882 4.2434 3.8553

We note that the patch-based inference strategies (Table 3(b),(c)) consume more average running
time than the original-image-based inference strategy (Table 3(a)), which is easy to understand because
the patch-based inference strategy handles more images (patches). In addition, Table 3(c) takes less
time than Table 3(b), which further demonstrates that the patch-based training strategy can more
adequately extract the characteristics of the objects. The quantified PRCs over two ablation experiments
are plotted in Figure 6.
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(a) The PRC of Table 2(a) (b) The PRC of Table 2(b) (c) The PRC of Table 2(c)

(d) Legend

Figure 6. The PRCs of training and inference strategies.

5.1.2. Multi-Scale Training Data and Multi-Scale Sizes Used during Training Strategies

Multi-scale training data consist of the original images, patches that based on the original images,
the enlarged images and the shrunken images. Multi-scale sizes used during training refers to that
an image or patch will be resized to a random scale from specified range before being fed into the
framework and each scale is the pixel size of an image or patch‘s shortest side. We performed two
relevant ablation experiments to verify the significance of multi-scale training data and multi-scale
sizes used during training. The results are shown in Table 4.

Table 4. The AP values of ablation experiments for multi-scale strategies.

Method 1000_based(1)+1_scale (a) 800_based(4)+1_scale (b) 900_based(4)+1_scale (c) 1000_based(4)+1_scale (d) (800,900,1000)_based(4)+1_scale (e)

plane 0.8986 0.899 0.9 0.8983 0.9007
ship 0.8886 0.8854 0.8856 0.891 0.8919

storage tank 0.7808 0.7781 0.7805 0.7794 0.7817
baseball diamond 0.8112 0.8339 0.8199 0.8172 0.8257

tennis court 0.9078 0.908 0.9084 0.908 0.908
basketball court 0.6671 0.6914 0.6976 0.7275 0.7061

ground track field 0.7225 0.7789 0.7681 0.7966 0.7683
harbor 0.8894 0.8832 0.8853 0.8894 0.891
bridge 0.6326 0.6232 0.6306 0.6362 0.6444

large vehicle 0.764 0.7504 0.752 0.7636 0.7599
small vehicle 0.679 0.6298 0.6416 0.7182 0.7209

helicopter 0.654 0.6815 0.7226 0.7222 0.7385
roundabout 0.722 0.7232 0.7173 0.7254 0.7281

soccer ball field 0.6588 0.6338 0.6724 0.673 0.7122
swimming pool 0.6153 0.7049 0.7215 0.672 0.7253

mAP 0.7528 0.7603 0.7669 0.7745 0.7802

The training data used in the Table 4(a) are only from the original images while the training
data used in the remaining groups include the original images, the patches from the original images,
the enlarged images and the shrunken images. Table 4(b)–(d) resize the training data to 800 × 800,
900 × 900, 1000 × 1000 pixels respectively. Table 4(e) utilizes multiple sizes including (800, 900, 1000)
pixels, and the training data will be resized to a randomly selected size before being fed into the
network. Apart from this, all experiment settings and inference strategies are identical.

Combining Table 4(a) and Table 4(d), we can find that multi-scale training data can really improve
the accuracy (0.7528 to 0.7745), especially for large-size categories such as basketball-court (0.6671
to 0.7275), ground-track-field (0.7225 to 0.7966) and sample-scarce category such as helicopter (0.654
to 0.7222). The accuracy of Table 4(e) is higher than Table 4(b)–(d), which indicates that multi-scale
training sizes are helpful in improving the accuracy. Comparisons between Table 4(b)–(d) illustrate
that the larger the training image size, the higher the detection average accuracy.
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Table 5 shows computational efficiency of multi-scale strategies. Similarly, the comparison
between Table 4(a) and Table 4(d) illustrates that multi-scale training data improve the framework
performance to a certain extent, so it performs better in terms of computational efficiency.
The comparisons between the last four groups reveal that multi-scale sizes used during training
not only improve the detection performance but also improve the computational efficiency.

Table 5. Average running time of multi-scale strategies.

Method Average Running Time per Image (second)

1000_based(1)+1_scale (a) 3.8553
800_based(4)+1_scale (b) 4.103
900_based(4)+1_scale (c) 3.864

1000_based(4)+1_scale (d) 3.818
(800,900,1000)_based(4)+1_scale (e) 3.7654

The quantified PRCs over multi-scale training data and multi-scale sizes used during training are
plotted in Figure 7.

(a) The PRC of Table 4(a) (b) The PRC of Table 4(b) (c) he PRC of Table 4(c)

(d) The PRC of Table 4(d) (e) The PRC of Table 4(e)

(f) Legend

Figure 7. The PRCs of multi-scale strategies.

5.1.3. Multi-Scale Inference and ACNMS Strategies

We performed multi-scale inference on the original images, the shrunken images, the horizontal
rotation and vertical rotation images simultaneously. For small and dense objects mainly including
ship, large vehicle and small vehicle, we appropriately increase the NMS threshold according to their
CI. The common NMS threshold is 0.3 while the ACNMS threshold is 0.38. The results are shown in
Table 6.
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Table 6. The AP values of ablation experiments for multi-scale inference and ACNMS strategies.

Method (800,900,1000)_based(4)+1_scale (a) (800,900,1000)_based(4)+1_scale+ (b) (800,900,1000)_based(4)+4_scales (c) (800,900,1000)_based(4)+4_scales+ (d)

plane 0.9007 0.9007 0.901 0.9004
ship 0.8919 0.8949 0.893 0.895

storage tank 0.7817 0.7817 0.8037 0.8037
baseball diamond 0.8257 0.8257 0.8265 0.8294

tennis court 0.908 0.908 0.908 0.9079
basketball court 0.7061 0.7061 0.7192 0.7192

ground track field 0.7683 0.7683 0.7985 0.7985
harbor 0.891 0.891 0.8924 0.8924
bridge 0.6444 0.6444 0.6652 0.6653

large vehicle 0.7599 0.78 0.7654 0.8201
small vehicle 0.7209 0.7208 0.7192 0.7183

helicopter 0.7385 0.7385 0.7447 0.7447
roundabout 0.7281 0.7281 0.7553 0.7554

soccer ball field 0.7122 0.7122 0.7179 0.7179
swimming pool 0.7253 0.7253 0.7197 0.7231

mAP 0.7802 0.7817 0.7887 0.7927

We note that the top right corner “+” in Table 6(b),(d) indicate that we utilized ACNMS strategy.
The two comparisons between Table 6(a) and Table 6(c), Table 6(b) and Table 6(d) illustrate the
effectiveness of multi-scale inference strategy, which has improved detection performance both
in large and small objects such as storage tank, ground track field and roundabout. The two
comparisons between Table 6(a) and Table 6(b), Table 6(c) and Table 6(d) illustrate the effectiveness of
ACNMS strategy. We slightly improved the NMS threshold of ship, large vehicle and small vehicle
because their CIs are far greater than other‘s. Specifically, the AP values of ship increase by 0.003
and 0.002 respectively in two comparison experiments, the AP values of large vehicle increase by
0.002 and 0.0055 respectively while the AP values of small vehicle remain unchanged. The relevant
comparisons illustrate that increasing NMS threshold according to the category intensity does improve
the detection accuracy.

Table 7 shows computational efficiency of multi-scale inference and ACNMS strategies. We note
that the average running time of multi-scale inference is about three times longer than that of
single-scale inference because the number of image (patch) processed by multi-scale inference is
about three times more than that of single-scale inference. In addition, using ACNMS strategy does
not increase additional average running time.

Table 7. Average running time of multi-scale inference and ACNMS strategies.

Method Average Running Time per Image (second)

(800,900,1000)_based(4)+1_scale (a) 3.7654
(800,900,1000)_based(4)+1_scale+ (b) 3.7237
(800,900,1000)_based(4)+4_scales (c) 12.5504

(800,900,1000)_based(4)+4_scales+ (d) 12.7018

The quantified PRCs over multi-scale test and adaptive category NMS strategies are plotted in
Figure 8.

5.2. Comparison with Other Methods

5.2.1. Comparison with Other Methods on DOTA Validation Dataset

We compared our framework with other region-based object detection networks mainly including
Faster R-CNN [37] and FPN [40] on DOTA validation dataset. The selected networks had the same
experimental settings as ours, however, they did not adopt our multi-scale training, inference and
ACNMS strategies. Table 8 shows the comparison of different networks on DOTA validation dataset.
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(a) The PRC of Table 6(a) (b) The PRC of Table 6(b)

(c) The PRC of Table 6(c) (d) The PRC of Table 6(d)

(e) Legend

Figure 8. The PRCs of multi-scale inference and ACNMS strategies.

We note that Faster R-CNN, FPN and Table 8(c) performed training and inference on the original
images instead of patches. The proposed framework has an overwhelming advantage in mAP and
AP values of each category. The mAP of Table 8(c) is 0.1712 higher than that of Faster R-CNN and
0.066 higher than that of FPN, which illustrate the superiority of the proposed network. The mAP
of Table 8(d) is 0.4163 higher than that of Faster R-CNN, 0.3111 higher than that of FPN and 0.2451
higher than that of Table 8(c) , which illustrate the great superiority of the proposed network and the
multi-scale training, inference and ACNMS strategies. The framework has great advantage in detecting
small and dense objects such as ship, large vehicle, small vehicle and storage tank. The detection
accuracy of sample-scarce objects such as helicopter and roundabout have also been greatly improved,
which further confirms that the proposed framework has outstanding performance in detecting both
small dense objects and large-scale objects.
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Table 8. The AP values of ablation experiments with other frameworks on DOTA validation dataset.

Method Faster R-CNN (a) FPN (b) 0_based(0)+0_scale (c) (800,900,1000)_based(4)+1_scale (d)

plane 0.4263 0.5404 0.7078 0.9007
ship 0.0909 0.3545 0.6023 0.8919

storage tank 0.1907 0.2656 0.4213 0.7817
baseball diamond 0.4852 0.6605 0.6478 0.8257

tennis court 0.8141 0.8179 0.888 0.908
basketball court 0.3612 0.4363 0.4822 0.7061

ground track field 0.385 0.464 0.4304 0.7683
harbor 0.5793 0.7114 0.8391 0.891
bridge 0.1972 0.377 0.2973 0.6444

large vehicle 0.4911 0.6115 0.675 0.7599
small vehicle 0.2852 0.4004 0.5571 0.7209

helicopter 0.3077 0.2727 0.3309 0.7385
roundabout 0.2312 0.3313 0.2943 0.7281

soccer ball field 0.3785 0.4072 0.4059 0.7122
swimming pool 0.2356 0.3862 0.4472 0.7253

mAP 0.3639 0.4691 0.5351 0.7802

The computational efficiency of different frameworks on DOTA validation dataset are shown in
Table 9. There is no doubt that the first three groups consume less time than the last group because
they performed training and inference on the original images instead of numerous patches. Besides,
the proposed DM-FPN (Table 9(c)) can achieve higher object detection accuracy while maintain the
same level of computational efficiency.

Table 9. Average running time of different frameworks on DOTA validation dataset.

Method Faster R-CNN (a) FPN (b) 0_based(0)+0_scale (c) (800,900,1000)_based(4)+1_scale(d)

Average running time per image (second) 0.3268 0.2895 0.3882 3.7654

The quantified PRCs over different frameworks on DOTA validation dataset are plotted in Figure 9.
We also visualized some detection results as shown in Figure 10.

5.2.2. Comparison with Other Frameworks on DOTA Testing Dataset

We submitted the inference results based on the testing dataset to DOTA Evaluation Server
(http://captain.whu.edu.cn/DOTAweb/results.html) to verify the effectiveness of the proposed
framework. Table 10 shows several current top rankings and our DM-FPN achieves the state-of-the-art
performance (Our result is named of “CVEO” in Task 2, which achieves the best mAP of 0.793.). Specifically,
DM-FPN achieves higher AP on 11 categories, especially in ship, small vehicle, large vehicle and swimming
pool, which demonstrates that DM-FPN performs better on small and dense objects. In addition, some
large-scale objects such as harbor and ground track field also achieve higher AP than the other frameworks,
which further demonstrates that our proposed framework can achieve better results both in small dense
objects and large-scale objects. The detection results on DOTA testing dataset are shown in Figure 11.

6. Discussion

We adopted DOTA dataset to train, verify and test the proposed DM-FPN, which achieved
considerable results in the object detection of very-high-resolution optical remote sensing images
with RGB three channels. DOTA is the largest dataset for object detection in aerial images, which
contains numerous very-high-resolution remote sensing images and 15 common categories. The spatial
resolution of the training dataset ranges [0.1, 5] meters, our framework achieves a better performance
within this range. The differential spatial resolutions allow the detector to be more adaptive and robust
for varieties of objects of the same category. In order to show the overall detection effect, we performed
inferences on full images and the results are shown in Figure 12.
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(a) The PRC of Table 8(a) (b) The PRC of Table 8(b)

(c) The PRC of Table 8(c) (d) The PRC of Table 8(d)

(e) Legend

Figure 9. The PRCs of different frameworks on DOTA validation dataset.

Table 10. The AP values of ablation experiments with other frameworks on DOTA testing dataset.

Method changzhonghan R2CNN_FPN_Tensorflow FPN with Hobot-SNIPER Improving Faster RCNN Ours

plane 0.901 0.902 0.882 0.898 0.887
ship 0.851 0.781 0.839 0.851 0.873

storage tank 0.828 0.864 0.838 0.843 0.871
baseball diamond 0.819 0.819 0.797 0.824 0.851

tennis court 0.908 0.909 0.904 0.909 0.908
basketball court 0.836 0.824 0.803 0.797 0.848

ground track field 0.706 0.733 0.746 0.738 0.789
harbor 0.79 0.758 0.788 0.676 0.833
bridge 0.588 0.553 0.51 0.517 0.621

large vehicle 0.82 0.776 0.767 0.733 0.833
small vehicle 0.698 0.721 0.665 0.645 0.782

helicopter 0.646 0.638 0.601 0.499 0.64
roundabout 0.624 0.634 0.648 0.596 0.693

soccer ball field 0.584 0.645 0.627 0.549 0.683
swimming pool 0.8 0.782 0.753 0.737 0.782

mAP 0.759 0.754 0.738 0.73 0.793
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Figure 10. Detection results on DOTA validation dataset.
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Figure 11. Detection results on DOTA testing dataset.
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Figure 12. Detection results on full images of DOTA.
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The trained network performs better in detecting the existing 15 categories. However, the
detection effects are not satisfactory in detecting the categories or scenes that did not appear in the
training dataset, e.g., plane or helicopter over snow. It is also a common problem of all deep learning
frameworks. If training samples are provided, the detection can still be performed hopefully.

7. Conclusions

In this paper, an effective region-based object detection framework named DM-FPN was proposed
to solve small and dense object detection problem in VHR remote sensing imagery. DM-FPN makes
full use of coarse-resolution, semantically strong features and high-resolution, semantically weak
features simultaneously. We also proposed multi-scale training, inference and ACNMS strategies to
solve the problem of the overlarge remote sensing images, the complex image backgrounds and the
uneven size and quantity distribution of training samples.

Our framework was experimented on DOTA dataset. The internal ablation experiments (the
same framework but different strategies) demonstrate the effectiveness of our proposed strategies
while the external ablation experiments (different frameworks) demonstrate the effectiveness of our
framework. In addition, we also submitted the inference results based on the testing dataset to DOTA
Evaluation Server and DM-FPN achieves the state-of-the-art performance, especially in detecting small
and dense objects.

In the future, we will improve our framework‘s performance in terms of detection speed and
accuracy, thus constructing a faster and more accurate network for very-high-resolution remote sensing
imagery object detection. At the same time, based on the work of this paper, we will expand our
framework to the research of arbitrary-oriented bounding box object detection.
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Abstract: Object detection in optical remote sensing images is still a challenging task because of
the complexity of the images. The diversity and complexity of geospatial object appearance and
the insufficient understanding of geospatial object spatial structure information are still the existing
problems. In this paper, we propose a novel multi-model decision fusion framework which takes
contextual information and multi-region features into account for addressing those problems. First,
a contextual information fusion sub-network is designed to fuse both local contextual features and
object-object relationship contextual features so as to deal with the problem of the diversity and
complexity of geospatial object appearance. Second, a part-based multi-region fusion sub-network
is constructed to merge multiple parts of an object for obtaining more spatial structure information
about the object, which helps to handle the problem of the insufficient understanding of geospatial
object spatial structure information. Finally, a decision fusion is made on all sub-networks to improve
the stability and robustness of the model and achieve better detection performance. The experimental
results on a publicly available ten class data set show that the proposed method is effective for
geospatial object detection.

Keywords: convolutional neural networks (CNNs); object detection; remote sensing images;
contextual information; part-based; multi-model

1. Introduction

Nowadays, optical remote sensing images with high spatial resolution are obtained conveniently
due to the significant progress in remote sensing technology, which leads to a wide range of applications
such as land planning, disaster control, urban monitoring, and traffic planning [1–4]. As one of the
most fundamental and challenging tasks required for understanding remote sensing images, object
detection has gained increasing attention in recent years. To deal with a variety of problems faced in
optical remote sensing image object detection, numerous approaches have been proposed [5,6]. A deep
review on object detection in optical remote sensing images can be found in [7].

As is known to all, a common method for object detection is to extract features. The quality of
the extracted features is critical as it will directly affect the final result of object detection. Powerful
feature representation can make an object more discriminative and its location more explicit, which
makes the object easier to detect. On the contrary, insufficient ability to represent objects will result
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in inaccurate detection. Therefore, it is important for us to choose a method to extract features for
object detection in remote sensing images. Currently, because of the advantage of directly generating
more powerful feature representations from raw image pixels through neural networks, deep learning
methods, especially CNN-based [4,8–25], are recognized as predominate techniques for extracting
features in object detection. Therefore, we select a CNN-based approach to extract features for object
detection in optical remote sensing images.

Object detection in remote sensing images becomes more complicated because of the diversity of
illumination intensities, noise interference, and the influence of weather. At present, there are still a lot
of problems to be solved, such as the diversity and complexity of geospatial object appearance, and
the insufficient understanding of geospatial object spatial structure information.

In the field of optical remote sensing images, lots of object detection algorithms only pay attention
to the features of objects themselves [16,17,26]. However, due to the diversity and complexity of
geospatial object appearance, in many cases, relying solely on the characteristics of an object itself
cannot effectively identify the object, and sometimes may even cause mis-detection between two
objects which belong to two different classes but look very similar in appearance factor. For instance,
recognizing a storage tank only through exploiting its features may be difficult as its appearance
is just circular, and a bridge is often mistaken for part of the road (as shown in Figure 1). In this
case, the application of auxiliary information can effectively help detect objects. Therefore, contextual
information is a choice. Some existing works [18,20,27] take local contextual information into account
and obtain good performance. For example, the work in [20] used features surrounding the regions
of interest, thus alleviating false detection caused by object appearance ambiguity. Although those
methods yield good results, there are still deficiencies. Also, relationships among objects play an
important role in improving the performance of detection. Therefore, in addition to the use of local
contextual information, the proposed method takes object-object relationship contextual information
into consideration.

bridge road

Figure 1. Examples difficult to detect. (Left) Only using the sample appearance features in the red
rectangle, just a circle, is hard to identify the storage tank. (Right) The bridge and the road are
easily confused.

The spatial structure of geospatial objects plays an important role in recognizing the objects.
Optical remote sensing images with high spatial resolutions always contain abundant spatial structure
information about objects. Therefore, investigating deeply the structural information about objects can
result in good detection results. It is necessary to design an object detector to effectively alleviate the
insufficient understanding of geospatial object spatial structure information. Each part of a geospatial
object provides many local visual properties and much geometric information about the object. Paying
attention to the various parts of an object can help us to understand more details about its spatial
structure. There are lots of part-based models [28–32] concentrating on using the various parts of objects
to improve detection performance. For example, Zhang et al. [28] proposed a generic discriminative
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part-based model (GDPBM), which divides a geospatial object with arbitrary orientation into several
parts to achieve good performance for object detection in optical remote sensing images. Unlike the
previous part-based approaches [28–32], which use traditional features such as histogram of oriented
gradients (HOG) [33], the proposed method applies the CNN-based technique to extract high-level
features for better feature representation. In addition, it is easier to obtain and process parts of objects
in the proposed approach.

In this paper, we propose a novel multi-model decision fusion framework for object detection
in remote sensing images. Aiming at the diversity and complexity of geospatial object appearance,
we build a local contextual information and object-object relationship contextual information fusion
sub-network. Focusing on the insufficient understanding of geospatial object spatial structure
information, we construct a part-based multi-region feature fusion sub-network. Furthermore, unlike
many methods just using single model, we make a decision fusion on several models for better stability
and robustness. For the implementation of the multi-model decision fusion strategy, in addition to the
above two sub-networks, we also fuse a baseline sub-network based on Faster R-CNN model.

In summary, the major contributions of this paper are presented as follows.
(1) We propose a local contextual information and object-object relationship contextual information

fusion sub-network based on gated recurrent unit (GRU) to form discriminative feature representation,
which can effectively recognize objects and reduce false detection between different types of objects
with similar appearance. The object-object relationship contextual information is introduced for the
first time in the field of remote sensing image object detection as far as we know.

(2) We propose a new part-based multi-region feature fusion sub-network to investigate more
details of objects, which can diversify object features and enrich semantic information.

(3) We propose a multi-model decision fusion strategy to fuse the detection results of the
three sub-networks, which can improve the stability and robustness of the model and obtain better
algorithm performance.

The remainder of this paper is organized as follows. The second section gives a brief review of
the related work on geospatial object detection, contextual information fusion, and the RoIAlign layer.
In the third section, we introduce the proposed method in detail. The details of our experiments and
results are presented in the fourth section. The last section concludes this paper with a discussion of
the results.

2. Related Work

2.1. Geospatial Object Detection

In the past decades, the research on the field of remote sensing image object detection has made a
breakthrough development. Many object detection algorithms have been proposed to address various
problems [17,20,34]. For example, Cheng et al. [17] proposed a novel and effective approach to learn a
rotation-invariant CNN (RICNN) model for addressing the problem of object rotation variations, which
is achieved by introducing and learning a new rotation-invariant layer on the basis of the existing
CNN frameworks. Han et al. [34] combined the weakly supervised learning (WSL) and high-level
feature learning to tackle the problems of manual annotation and insufficiently powerful descriptors.
Li et al. [20] put forward a novel region proposal network (RPN) including multiangle, multiscale,
and multiaspect-ratio anchors to address the problem of geospatial object rotation variations, and also
proposed a double-channel feature fusion network which can learn local and contextual properties to
deal with the geospatial object appearance ambiguity issue.

Low-level features are often used for image analysis [35]. Employing the extracted low-level
features of objects for object detection has been a very common method used by many scholars. Those
low-level features contain scale-invariant feature transform (SIFT) [3,34,36], histogram of oriented
gradients (HOG) [5,6,33], the bag-of-words (BoW) model [37–39], Saliency [40,41], etc. For example,
Tuermer et al. [5] used the HOG feature and disparity maps to detect airborne vehicles in dense urban
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areas. Shi et al. [6] developed a circle frequency-HOG feature for ship detection by combining circle
frequency features with HOG features. Han et al. [40] proposed to detect multiple-class geospatial
objects through integrating visual saliency modeling and the discriminative learning of sparse coding.
Although those low-level features show impressive success in some specific object detection tasks, they
have certain limitations because they do not represent the high-level semantic information required
for identifying objects, especially when visual recognition tasks become more challenging.

Currently, deep convolutional neural network (CNN) models are widely used in the field of
visual recognition [42–44], such as object detection, owing to the powerful ability of CNN to capture
both low-level and high-level features. The region-based convolutional neural network (R-CNN) [8]
is considered as a milestone among CNN-based object detection approaches, and achieves superior
performance. Subsequently, many advanced object detection algorithms in natural images, such as
Fast R-CNN [9], Faster R-CNN [10], YOLO [11], SSD [12], Mask R-CNN [13], are proposed successively
and yield unusually brilliant results. However, the aforementioned models can not be directly utilized
for geospatial object detection, because the properties of remote sensing images and natural images
are different and the direct application of those models to remote sensing images is not optimal.
Researchers have done a lot of work in applying CNN-based models to detect geospatial objects in
remote sensing images and achieved remarkable consequences [4,15–25,45]. For example, the work
in [4] utilized a hyperregion proposal network (HRPN) and a cascade of boosted classifiers to detect
vehicles in remote sensing images. Long et al. [16] proposed a new object localization framework
based on convolutional neural networks to efficiently achieve the generalizability of the features used
to describe geospatial objects, and obtained accurate object locations. Yang et al. [21] constructed a
Markov random field (MRF)-fully convolutional network to detect airplanes.

2.2. Contextual Information Fusion

Contextual information is advantageous to various visual recognition tasks [18,20,27,46–53],
such as object detection. For example, in order to promote object detection performance, the work
in [48] developed a novel object detection model, attention to context convolution neural network
(AC-CNN), through incorporating global and local contextual information into the region-based CNN
detection framework. Bell et al. [49] presented the Inside-Outside Net (ION) to exploit information
both inside and outside the regions of interest, which integrates the contextual information outside the
regions of interest by using spatial recurrent neural networks. Furthermore, some recent works [50–52]
proposed new architectures to investigate the contextual information about object-object relationships
for better object detection performance. In the field of remote sensing images, the work in [20] fused
local and contextual features to address the problem of object appearance ambiguity in object detection.
Considering that the appearance is not enough to distinguish oil tanks from the complex background,
Zhang et al. [27] applied trained CNN models to extract contextual features, which makes oil tanks
easier to recognize. Xiao et al. [18] fused auxiliary features both within and surrounding the regions
of interest to represent the complementary information of each region proposal for airport detection,
effectively alleviating detection problems caused by the diversity of illumination intensities in remote
sensing images. Motivated by those models, we believe that the local contextual information and
the object-object relationship context are very useful for object detection in optical remote sensing
images. It is necessary to remember features of the object itself before incorporating contextual
information. The process of merging messages follows the memory characteristics of Gated Recurrent
Units (GRU) [54]. Therefore, we use GRU to fuse the two types of features.

Next we introduce how the j-th hidden unit in a GRU cell works. First, the reset gate rj is
obtained by:

rj = σ([Wrx]j + [Urht−1]j) (1)

where σ is the logistic sigmoid function, and [.]j indicates the j-th element of a vector. x is the input,
while ht−1 denotes the previous hidden state. Both Wr and Ur are learnable weight matrices.
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Similarly, the update gate zj is calculated by:

zj = σ([Wzx]j + [Uzht−1]j) (2)

The actual activation of the proposed unit hj is then calculated by:

ht
j = zjht−1

j + (1 − zj)h̃t
j (3)

where
h̃t

j = φ([Wx]j + [U(r 	 ht−1)]j) (4)

φ denotes tanh activate function, and 	 indicates element-wise multiplication. W and U are weight
matrices which are learned. As described in [54], the reset gate r effectively allows the hidden state to
drop any information that is found to be irrelevant later in the future, which provides a more compact
information representation. On the other side, the update gate z dominates how much information
from the previous hidden state will carry over to the current hidden state. More details about GRU can
be seen in Figure 2.

1th h~

th

r

z

x

Figure 2. An illustration of a gated recurrent unit (GRU) [54]. The update gate z selects whether the
hidden state ht is to be updated with a new hidden state h̃. The reset gate r decides whether the
previous hidden state ht−1 is ignored.

2.3. The RoIAlign Layer

RoIAlign [13] is based on RoIPooling [10]. As we know, RoIPooling performs two quantizations,
first quantizing a floating-number RoI to the discrete granularity of the feature map and then
subdividing the quantized RoI into spatial bins which are themselves quantized. Unlike RoIPooling,
RoIAlign avoids any quantization of the RoI boundaries or bins. In the execution of RoIAlign,
bilinear interpolation [55] is exploited to calculate the exact values of the input features at four
regularly sampled locations in each RoI bin. The result after bilinear interpolation is aggregated by
average pooling.

3. Proposed Framework

The flowchart of the proposed object detection method is shown in Figure 3. The framework is
based on the VGG16 model [56] and the popular detection frame Faster R-CNN [10]. First, given a
remote sensing image, we employ the parts of VGG16 to extract object features and use the region
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proposal network (RPN) to generate region proposals. Unlike the work of Faster R-CNN using a RoI
pooling layer to convert the features inside any valid region of interest into a small feature map with a
fixed spatial extent, we apply the RoIAlign layer proposed in Mask R-CNN. There are misalignments
between the RoIs and the extracted features in RoI pooling. RoIAlign can address the problem of
misalignments introduced by quantizations, thus, enhancing the ability to detect small and intensive
objects. Second, motivated by the work in [51] and for adapting to remote sensing images which contain
complex backgrounds, we extract both local contextual information and object-object relationship
contextual information, and fuse them by GRU. The fused feature is employed subsequently to
obtain the classification and regression results of the contextual information fusion sub-network.
Then, we divide the object in candidate regions generated by RPN into several parts and utilize
the RoIAlign layer to pool each part. All parts are merged to gain better feature representations for
detecting objects. After that, we perform classification and regression to obtain the consequences of the
part-based multi-region sub-network. Finally, in the case of separately gaining results of the contextual
information fusion sub-network, the part-based multi-region fusion sub-network, and the baseline
sub-network, we execute a decision fusion on those results to acquire the bottom detection result,
which we call multi-model decision fusion. Each component of the proposed framework is described
as follows.

Conv 
layers                                                      

RoIAlign RoIAlign RoIAlign RoIAlign RoIAlign RoIAlign

concatenate 1x1
conv

FC

2:1:1

2:1:1 bbox
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Baseline sub-network
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Figure 3. The proposed framework, which is made up of four parts. (1) A contextual information
fusion sub-network; (2) a part-based multi-region fusion sub-network; (3) a baseline sub-network; (4)
the last multi-model decision fusion part.
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3.1. Local Contextual Information and Object-Object Relationship Contextual Information Fusion Sub-Network

Many works show the effectiveness of investigating features surrounding the regions of interest or
relationships among objects [20,51]. Therefore, for object detection in remote sensing images, inspired
by the work in [51], we construct our local contextual information and object-object relationship
contextual information fusion sub-network. Different from [51] using global contextual information
for the entire image, we employ local contextual features around objects. For some objects in remote
sensing images, scenes far from them are more diverse, resulting in unstable contexts which are likely
to be noise that affects the detection result. That is the reason we choose to exploit local contextual
information for geospatial object detection. In addition, we replace RoI pooling with RoIAlign because
of there existing a lot of dense and small objects in remote sensing images. The features to be fused
in the sub-network consist of three parts: local contextual information, features in original candidate
regions, and object-object relationship contextual information.

First, in conv5 layer, we extract the features from original proposal boxes and the 1.8× of original
proposal boxes. The features in 1.8× of original proposal boxes are used as local contextual information.
The RoIAlign layer and the fully connected layer act on the two types of features in succession. Second,
we build relationships among objects [as illustrated in Figure 4]. The process is the same as [51].
There we set V to represent the collection of candidate boxes generated by RPN. The term vi indicates
the i-th candidate box. We calculate the relationship between vi and vj by:

ej→i = relu(WpRp
j→i) ∗ tanh(Wv[ f v

i , f v
j ]) (5)

where ej→i represents the influence of vj on vi and it is a scalar weight. Wp and Wv are weight matrices
which are learned. The visual relationship vector is formed by concatenating visual feature f v

i and f v
j ,

indicated by [ f v
i , f v

j ]. The term Rp
j→i denotes the spatial position relationship. Visual feature f v

i and f v
j

are results after relu, which are sparse. A lot of information will be lost if relu is used again. So tanh is
applied to activate Wv[ f v

i , f v
j ]. Rp

j→i is obtained by:

Rp
j→i = [wi, hi, si, wj, hj, sj,

(xi − xj)

wj
,
(yi − yj)

hj
,

(xi − xj)
2

w2
j

,
(yi − yj)

2

h2
j

, log(
wi
wj

), log(
hi
hj
)]

(6)

where (xi, yi) means the center of RoI bi. wi and hi are the width and height of bi. si is the area of bi.
The final object-object relationship contextual information mi is calculated by:

mi = max
j∈V

pooling(ej→i ∗ f v
j ) (7)

It represents that we choose the box which has the greatest impact on vi as the final relationship
contextual message to be integrated. Then, we exploit GRUs to merge the three features gained in the
previous operation, taking the processed features from original proposed boxes as the initial hidden
states, both the relationship contexts and the processed features (local contextual information) which
stem from 1.8× of original proposed boxes as inputs related to two GRUs. Afterwards, we average the
outputs of the two GRUs and denote the final feature as C. Finally, we apply C to gain the class scores
SC and the predicted boxes RC.
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Figure 4. An illustration of building object-object relationship. The process is the same as [51].
For object vi, the message m1→i from object v1 to object vi is controlled by e1→i.

For large optical remote sensing images, it is necessary to use object-object relationship contextual
information within meaningful limited regions in images instead of the entire images. That is because
the effect of object-object relationship contextual information on the detection result is very little if
the distance between two objects is too long. The images used in this paper are 400 pixels wide and
400 pixels high, just like limited regions cropped from large remote sensing images. Therefore we can
obtain object-object relationship contextual information in the entire images.

3.2. Part-Based Multi-Region Fusion Sub-Network

For a specific object proposal, paying attention to each part of the object in it can help to obtain
much useful spatial structure information about the object, so we can obtain more semantic information
for better object detection performance. We use multiple parts of each object to acquire more local
visual properties and geometric information, providing an enhanced feature representation.

The parts used include the original proposal box, the left-half part of the proposal box,
the right-half part of the proposal box, the up-half part of the proposal box, the bottom-half part
of the proposal box, and the inner part obtained by scaling the proposal box by a factor of 0.7 (see
Figure 5). First, we gain those parts of each candidate region produced by RPN and perform the
RoIAlign operation soon after. Second, we concatenate the pooled features along the channel axis.
Then, a 1 × 1 convolution is implemented to reduce the dimension of the concatenated feature, which
makes the feature adapt to the input shape of the fully connected layer. Later, the feature is fed into
a fully connected layer to generate the final feature representation with more semantic information.
We denote the final feature representation as P. Finally, we utilize P to gain the class scores SP and the
predicted boxes RP.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Illustration of object parts used in the proposed framework. (a) Original candidate boxes.
(b) Left-half part of candidate boxes. (c) Right-half part of candidate boxes. (d) Inner part obtained by
scaling candidate boxes by a factor of 0.7. (e) Up-half part of candidate boxes. (f) Bottom-half part of
candidate boxes.

3.3. Multi-Model Decision Fusion Strategy

The multi-model decision fusion strategy, relying on several detection results, is more robust
compared to the single model which may cause much false detection. In addition to exploiting
the contextual information fusion sub-network and the part-based multi-region fusion sub-network,
we also utilize a baseline sub-network that only uses the original proposal regions for object detection.
In the baseline sub-network, we perform the RoIAlign operator as same as the two aforementioned
sub-networks. Then we employ a fully connected layer to obtain the final feature denoted as B. Finally,
we use B to gain the class scores SB and the predicted boxes RB.

After obtaining the three types of class scores SC, SP, SB and predicted boxes RC, RP, RB, we make
a decision fusion on them. The decision fusion ratio of SC, SP, and SB is 2:1:1, so do RC, RP, and RB,
which can provide better detection results in experiments. Then, we use a softmax layer to get the final
class labels of all predicted boxes. The loss function employed in this paper is as same as that in Faster
R-CNN [10].

4. Experiments and Results

In this part, we first introduce the data set and evaluation metrics used for the experiments. Then,
we describe the implementation details and parameter settings of the proposed method. The results and
some comparisons to other methods are discussed afterward. The models were trained on a computer
with two Intel Xeon E5-2630 v4 CPUs and two NVIDIA GeForce GTX 1080 GPUs. The operating
system and deep learning platform used were Ubuntu 16.04 and TensorFlow 1.3.0, respectively.

4.1. Data Set

We evaluate the performance of the proposed object detection method on a publicly available
data set: NWPU VHR-10-v2 data set [20]. The data set stems from the positive image set of the
original NWPU VHR-10 data set [31] and still contains ten classes of geospatial objects, including
airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track field, harbor,
bridge, and vehicle. There are 1172 images (400 × 400 pixels) in the data set we use. The data set is
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challenging, because the objects are multi-category and multi-scale and the backgrounds are complex.
In all experiments, the training data and test data we employ are the same as that in [20], 879 (75% of
the data set) remote sensing images in the training data and 293 images in the test data.

4.2. Evaluation Metrics

Here, we evaluate the performance of object detection methods through two standard, universally
agreed and widely used measures illustrated in [7], namely precision-recall curve (PRC) and average
precision (AP).

4.2.1. Precision-Recall Curve (PRC)

The Precision metric measures the fraction of detections which are true positives, and the Recall
metric weighs the fraction of positives which are correctly recognized. The number of true positives,
the number of false positives, and the number of false negatives are denoted as TP, FP, and FN,
respectively. Therefore, the Precision and Recall metrics can be obtained by:

Precision =
TP

(TP + FP)
(8)

Recall =
TP

(TP + FN)
(9)

The PRC metric is based on the overlapping area between the detection and the ground truth
object. A detection is considered to be a true positive if the intersection over union (IoU) between
the detection and the ground truth box exceeds a predetermined threshold; otherwise, the detection
is marked as a false positive. What is more, if several detections overlap with a same ground truth
bounding box, only one is regarded as the true positive, and others are labeled as false positives.
The intersection over union IoU is formulated as:

IoU =
area(detection ∩ groundtruth)
area(detection ∪ groundtruth)

(10)

4.2.2. Average Precision (AP)

The AP calculates the average value of Precision over the interval from Recall = 0 to Recall = 1,
namely the area under the PRC. Therefore, the higher the AP value, the better the performance, and
vice versa.

4.3. Implementation Details and Parameter Settings

The proposed model is based on the successful VGG16 network [56] that was pretrained on
ImageNet [57]. To augment the training data, we flip all the training images horizontally. For training
our model, we utilize the stochastic gradient descent with 0.9 momentum. The learning rate is
initialized to 0.001 and we use it for 20 k iterations; then we continue training for 10k iterations with
0.0001. The last fully connected layers for classification and bounding box regression are randomly
initialized with zero-mean Gaussian distributions with standard deviations of 0.001, simultaneously
other fully connected layers and the 1 × 1 convolutional layer with standard deviations of 0.01.
Biases are initialized to 0. For training RPN, each mini-batch arises from a single image which includes
many positive and negative example anchors, and we randomly sample 128 anchors in an image to
calculate the loss function of a mini-batch. The sampled positive and negative anchors have a ratio of
up to 1:1. If there are fewer than 64 positive samples in an image, we pad the mini-batch with negative
ones. The entire model is trained end-to-end. Furthermore, we consider a detection to be correct if the
IoU between the predicted bounding box and the ground truth bounding box exceeds 0.5. Otherwise,
the detection is considered as a false positive. In the implementation of the test, we employ Soft-NMS
to reduce redundancy for better detection performance.
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4.4. Evaluation of Local Contextual Information and Object-Object Relationship Contextual Information
Fusion Sub-Network

To evaluate the efficiency of our local contextual information and object-object relationship contextual
information fusion sub-network, we designed a basic set of experiments. First, we run the standard Faster
R-CNN model as a benchmark experiment. Then, on the basis of the baseline sub-network, we incorporate
the proposed sub-network which fuses both local contextual information and object-object relationship
contextual information. In the experiments, we find that using the features extracted from the 1.8× of
the original proposal boxes as local contextual features leads to better detection performance. In the field
of remote sensing image object detection, some works [18,20,27] take local contextual information into
account and therefore obtain good results. However, the object-object relationship contextual information
has not been proven to be beneficial for detecting geospatial objects. To illustrate the usefulness of the
object-object relationship contextual information, we implement an experiment in which we incorporate
the sub-network only containing local contextual information into the baseline sub-network. The detailed
experimental results are summarized in Table 1. As shown in Table 1, an improvement of 4.24 percent
points in mean average precision (mAP) can be seen by adding the local contextual information and
object-object relationship contextual information fusion sub-network compared to the Faster R-CNN
baseline network. This validates that our local contextual information and object-object relationship
contextual information fusion sub-network has a strong discriminating ability to represent features of
geospatial objects, providing useful contextual cues for better detection performance. In addition, Table 1
shows the mAP improves from 92.42% (only using local contextual information) to 94.04% (using both
local contextual information and object-object relationship contextual information), demonstrating that
the object-object relationship contextual information plays an important role in achieving better detection
performance for geospatial object detection. Furthermore, we execute an experiment to illustrate that
local contextual information is more useful than global contextual information for the entire image in
remote sensing image object detection. In the experiment, we replace local contextual information with
global contextual information for the entire remote sensing image in the overall proposed framework.
The results are shown in Table 1. As we can see, in terms of mAP over all ten object categories, applying
local contextual information outperforms the use of global contextual information for the entire image by
2.4%. This demonstrates that the use of local contextual information is critical, leading to better detection
results than using global contextual information for the entire remote sensing image.

4.5. Evaluation of Part-Based Multi-Region Fusion Network

To verify that the part-based multi-region fusion sub-network has a positive effect on geospatial
object detection, we compared the overall proposed model (including the part-based multi-region fusion
sub-network) with the previous variant where the framework only merges the baseline sub-network and
the local contextual information and object-object relationship contextual information fusion sub-network.
As can be seen from Table 1, incorporating the part-based multi-region fusion sub-network offers a further
performance increase of 1.0 percent point. This demonstrates that fusing multiple parts of each geospatial
object can investigate more spatial structural information about objects, which helps to diversify object
features and enhance semantic information for forming powerful feature representation.

4.6. Evaluation of Multi-model Decision Fusion Strategy

In the proposed approach, we make a decision fusion on the results of three sub-networks, which include
the local contextual information and object-object relationship contextual information fusion sub-network,
the part-based multi-region fusion sub-network, and the baseline sub-network. To evaluate the effectiveness
of the decision fusion ratio of 2:1:1 corresponding to those three sub-networks, we set 25 different ratios for
contrast. These ratios consist of 1:1:1, 1:1:2, 1:1:3, 1:2:1, 1:2:2, 1:2:3, 1:3:1, 1:3:2, 1:3:3, 2:1:1, 2:1:2, 2:1:3, 2:2:1, 2:2:3,
2:3:1, 2:3:2, 2:3:3, 3:1:1, 3:1:2, 3:1:3, 3:2:1, 3:2:2, 3:2:3, 3:3:1, 3:3:2. The experimental results are illustrated in Table 2.
As we can see, using the fusion ratio of 2:1:1 achieves the best result among all the experimental results,
gaining a mAP value 95.04%. This indicates that the set fusion ratio of 2:1:1 is beneficial to the detection.
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4.7. Comparisons with Other Detection Methods

We compared the proposed approach with five state-of-the-art methods, including the collection
of part detector (COPD) [31], a transferred CNN model from AlexNet [58], the rotation-invariant
convolutional neural network (RICNN) [17], the rotation-insensitive and context-augmented object
detector (RICAOD) [20], and Faster R-CNN [10]. In the implementation of the ten-class object detection
task, the COPD is made up of 45 seed-based part detectors. Each part detector is a linear support vector
machine (SVM) classifier and corresponds to a particular viewpoint of an object class, therefore the
collection of them providing a solution for rotation-invariant detection of multi-class objects. Exploited
as a common CNN feature extractor, the transferred CNN model has shown great success for PASCAL
Visual Object Classes object detection. For dealing with the problem of object rotation variations,
the RICNN is designed to introduce and learn a new rotation-invariant layer on the basis of the
existing CNN architecture, AlexNet. The RICAOD utilizes multiangle anchors for rotation-invariant
object detection and combines local and contextual features to address the problem of appearance
ambiguity. The quantitative comparison results of the six different methods are shown in Table 3 and
Figure 6, representing the AP values and PRCs, respectively. As can be observed in Table 3, in terms of
mean AP over all ten object categories, the proposed approach outperforms the COPD method [31],
the transferred CNN method [58], the RICNN method [17], the RICAOD method [20], and the Faster
R-CNN method [10] by 40.15%, 35.43%, 21.93%, 7.92%, and 5.24%, respectively. In addition, we also
obtain good detection accuracy in each category, especially airplane, storage tank, basketball, ground
track field, and harbor, with very high AP values. Those fully demonstrate that the proposed method
achieves much better performance compared to the existing state-of-the-art methods. Table 3 also
shows the average running time of each image for the six different approaches. We can observe that
the proposed method costs less computation time than other methods except Faster R-CNN.

For all results, it can be easily illustrated: due to the use of the contextual features containing local
contextual features and object-object relationship contextual features, the proposed method obtains a
discriminative feature representation ability to effectively recognize objects in spite of the diversity and
complexity of object appearance, such as storage tank, bridge, and so on; the part-based multi-region
fusion sub-network provides more spatial structural information about objects, so that more semantic
information can be obtained to enhance the feature representation; the multi-model decision fusion
strategy makes the algorithm more robust and provides better detection performance, because it acts
like operating on three different single CNN-based models, each of which generates representative
characteristics that describe the object.

Figure 7 shows a lot of geospatial object detection results. The green boxes denote true positives;
the red boxes denote false positives; the yellow boxes indicate false negatives.
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Figure 7. Some object detection results obtained by using the proposed method. The true positives,
false positives, and false negatives are denoted by green, red, and yellow rectangles, respectively.

5. Conclusions

In this paper, we proposed a multi-model decision fusion framework for geospatial object
detection. The framework combines a contextual information fusion sub-network, a part-based
multi-region fusion sub-network, and a baseline sub-network to recognize and locate geospatial objects.
The final detection results are obtained by way of making a decision fusion on the results of the three
sub-networks. The proposed model presents a remarkable performance on the publicly available data
set NWPU VHR-10-v2. All experiments show that: (1) local contextual information and object-object
relationship contextual information are beneficial to effectively recognizing objects and alleviating
the mis-detection between different types of objects with similar appearance; (2) the part-based
multi-region fusion sub-network can provide more details of objects to alleviate the insufficient
understanding of geospatial object spatial structure information; (3) the multi-model decision fusion
strategy can lead to a more stable and robust model and achieve better algorithm performance; (4) the
proposed framework can produce more accurate object detection results than other previous methods.
In future work, for better detection performance, we will continue to improve the proposed framework.
Many fine details of some small objects are lost due to the implementation of pooling, which can
lead to the inability to identify the objects. Therefore, we will consider the use of features from lower
convolutional layers. In addition, we will consider designing an operator to obtain more accurate
localization of detected objects.
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Abstract: Current new developments in remote sensing imagery enable satellites to capture videos
from space. These satellite videos record the motion of vehicles over a vast territory, offering
significant advantages in traffic monitoring systems over ground-based systems. However, detecting
vehicles in satellite videos are challenged by the low spatial resolution and the low contrast in
each video frame. The vehicles in these videos are small, and most of them are blurred into their
background regions. While region proposals are often generated for efficient target detection, they
have limited performance on satellite videos. To meet this challenge, we propose a Local Region
Proposing approach (LRP) with three steps in this study. A video frame is segmented into semantic
regions first and possible targets are then detected in these coarse scale regions. A discrete Histogram
Mixture Model (HistMM) is proposed in the third step to narrow down the region proposals by
quantifying their likelihoods towards the target category, where the training is conducted on positive
samples only. Experiment results demonstrate that LRP generates region proposals with improved
target recall rates. When a slim Fast-RCNN detector is applied, LRP achieves better detection
performance over the state-of-the-art approaches tested.

Keywords: satellite videos; region proposals; convolutional neural networks; tiny and dim target
detection; component mixture model

1. Introduction

As one of the most promising developments in remote sensing imagery, the satellite videos
captured by Skybox and JL-1, have facilitated several emerging research and applications, including
super resolution [1,2], video encoding [3,4] and target tracking [5,6]. They expand the earth observation
capacity to rapid motion monitoring, such as vehicle and ship tracking [5,7,8]. To reveal these rapid
motions, targets of interests need to be located throughout the satellite video first, and the extracted
targets in each frame are then associated to construct the trajectories of targets of interest. Therefore,
target detection in satellite videos is a fundamental and critical step for target tracking and motion
pattern analysis.

Detecting objects of interest in a video can be achieved by the motion-based detectors, which search
the changed pixels in a sequence of images by comparing with an estimated background model [9,10].
Various algorithms, such as Frame-Difference [5,11,12], Median Background [13], Gaussian Mixture
Model (GMM) [14,15] and Visual Background Extractor (ViBe) [7,16,17], were developed for moving
object detection. However, these approaches are prone to the inadequate background modelling and
affected by the problem of parallax caused by the motion of the camera.

Alternatively, the image-based object detectors can extract objects of interest from a video frame
by frame [18], whose performance is less affected by the parallax motion. By taking the advantage
of the discriminative learning methods, these approaches employ a classifier to scan over possible
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locations of targets in an image by sliding window [19–21]. To reduce the number of the candidate
locations to examine, region proposals, which refer a sparse set of potential target locations, are
introduced to replace sliding windows over the entire image. For common computer vision tasks,
generating region proposals are commonly guided by the object saliency, such as the edges [22–24],
or based on superpixels [25–29] or segmentation masks [30,31]. In aerial videos, the coherent regions
extracted by Maximally Stable Extremal Regions (MSER) [32,33] or Top-hat-Otsu [34] are also adopted
for region proposal generation. Due to the weak contrast between targets and background in satellite
videos, saliency-based approaches result in degraded region proposal performance —either generating
too many region proposals or producing a low target recall rate. These approaches also lack the
mechanisms for quantifying the region proposals’ likelihood of being a target, and place the entire
burden of handling a large number of region proposals in the target recognition stage. Convolutional
Neural Networks were applied for searching region proposals in recent years. These approaches can
provide the confidence score for each region proposal, and a significant portion of false alarms in the
region proposals are removed before the recognition state [35–38]. However, they heavily rely on the
training of a reliable region proposal network using a large amount of training samples.

To improve the region proposal performance to handle dim and small target detection in satellite
video, we propose a Local Region Proposing (LRP) approach with three steps in this study. Our
observation is that vehicles in satellite videos appear small and dim globally. Therefore we propose
to perform segmentation at a coarse scale to form semantic region first. Possible locations of small
targets in each semantic region are then extracted. To reduce the false alarm further and alleviate
the computation burden on further target recognition stage, a discrete Histogram Mixture Model
(HistMM) is proposed to quantify their likelihoods towards the target category. HistMM presents little
difficulty in cooperating with most detectors, as it is estimated separately and only positive samples
are required for estimating the model.

The remaining part of this paper is structured as follows. Section 2 presents the proposed local
region proposal approach, after which the experimental results are presented in Section 3. We conclude
this paper in Section 4 with remarks on the promising direction for future study.

2. Local Region Proposing

Figure 1 shows the Local Region Proposing approach (LRP) developed in this study is composed
of three steps. First semantic regions are extracted by coarse-scale segmentation, then possible target
locations are searched in each extracted region. The Histogram Mixture Model is developed for
removing obvious false alarms from the region proposals.

Figure 1. Overview of the proposed region proposal algorithm.

2.1. Semantic Region Extraction

Extracting semantic regions from a video frame can be by segmentation at a coarse scale,
and the majority of pixels in each extracted region are more likely from a single land cover type.
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The Felzenszwalb’s graph-based segmentation approach [39] is a typical method for extracting the
semantic regions.

By this graph-based segmentation approach, the scale of the generated superpixels can be
controlled by a parameter k. Increasing k would lead to more coarse-scale superpixels, and these
superpixels tend to present regions from different land cover types. The semantic regions are allowed
to be larger than the target size on purpose. Decreasing k would generate fine-scale superpixels.
However, it is often difficult to make superpixels to associate with small targets in satellite videos, due
to the low spatial resolution and the low contrast of targets, for example, vehicles, to the background
in satellite videos.

2.2. Searching Possible Locations in Semantic Regions

Unlike most dominating saliency object-based approaches, such as Selective Search [26,40],
which merge superpixels to form region proposals, the proposed LRP searches region proposals
inside semantic regions, where an adaptive threshold is introduced to accommodate the statistics of
individual regions.

Note the set of extracted semantic regions as R, for a semantic region that contains m pixels,
the set of the pixels’ coordinates is noted as r = {(x0, y0), (x1, y1), . . . , (xm, ym)} ∈ R. The intensity of
a pixel at location (x, y) is referred to I(x, y). The blobs with high local saliency are constructed by the
pixels with intensities over a threshold thrr, I(x, y) > thrr, (x, y) ∈ r. The threshold thrr is defined by

thrr = μr + f ∗ σr, (1)

where μr and σr are the mean and standard deviation of pixel intensities in this local region r. The factor
f is the expected saliency against the backgrounds. For each extracted blob, a corresponding boundary
box is extracted as a possible location.

In the complex scenarios of satellite videos, this searching strategy may be affected by the presence
of crowded vehicles and the blurred boundaries of vehicles, which results in merged proposals or
incomplete proposals within an original boundary box extracted. We handle these cases by generating
multiple proposals. The large boxes should be divided into sub regions to match the target size
approximately and the small boxes should be expanded by half of the target size in each direction
as a conservative treatment. Figure 2a shows an example where 4 region proposals are generated.
To address those incomplete proposals, as shown in Figure 2b, the given bounding box is expanded in
each directions.

(a) (b)

Figure 2. Generating multiple region proposals from a possible location. The red box refers to the
groundtruth, green solid box refers to the extracted possible location, and green dash boxes refer to
the generated region proposals. (a) and (b) illustrate two examples of generating region proposals by
splitting and expanding original region proposals, respectively.
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2.3. Histogram Mixture Model

2.3.1. Histogram Mixture Model for Removing Obvious False Alarms

The proposed Histogram Mixture Model (HistMM) measures the likelihoods of the generated
region proposals towards their corresponding target category, so that obvious false alarms could be
removed at an early stage. The HistMM is a mixture model built on a set of histograms, and training
or estimating HistMM depends only on positive training samples.

Note the entire set of initial region proposals on a video frame as Xrp = {x0, x1, . . . , xnrp}, and nrp

is the number of initial region proposal on a given frame. For a region proposal ∀x ∈ Xrp, it is marked
as either target or background. We decide if x belongs to the target category (T) or the background
category (B) by a Bayesian decision function,

R =
p(T|x)
p(B|x) =

p(x|T)p(T)
p(x|B)p(B)

, (2)

in which R measures the membership rate of x belonging to the target category versus belonging to
the background category. R ≥ 1 implies x is a target. The corresponding decision function for x that
belongs to T can be simplified as

p(x|T) ≥ ct, (3)

where ct is a threshold.
The p(x|T) refers to the likelihood of a region proposal x to the target category. We model it by a

mixture model composed by a set of nH histograms, H = {h1, h2, . . . , hnH}. In this paper, we assume
that each histogram contributes equally to the likelihood p(x|T), therefore, the possibility of a proposal
r that belongs to T is defined as,

p(x|T) = 1
nH

nH

∑
i=1

p(x|hi). (4)

The decision function in Equation (3) can be then interpreted as

p(x|T) = 1
nH

nH

∑
i=1

p(x|hi) ≥ ct ⇒ ∃h ∈ H, p(x|h) ≥ ct, (5)

which means the likelihood to at least one histogram ĥi in H is larger than ct. On the contrary, a region
proposals is a background when all likelihoods toward histograms in H are less than the threshold
ct, as

p(x|h) < ct, ∀h ∈ H. (6)

For a given pair of a region proposal x and a histogram in h ∈ H, we appropriate p(x|h) by the
Intersection of Histogram (IoH) between the histogram h and the histogram extracted from the region
proposal x. For simplicity, we employ the Histogram of Color (HoC) for calculating p(x|h), as

p(x|h) = IoH(h, HoC(x)) = ∑ min(h, HoC(x)), (7)

which sums up the minimum values in all pairs of corresponding bins from h and HoC(x). As shown
in Figure 3, the IoHs on HoCs are distinct for distinguishing targets and backgrounds, although less
information is provided due to the dim appearance of the vehicles.

Our HistMM removes obvious false alarms by the threshold ct. A larger ct tends to removal
more possible false alarms, whereas it also risks abandoning some target instances. A smaller ct may
improve the coverage of targets in the region proposals, but the remaining number of proposals would
be high. The detailed effects of different parameter settings are discussed in Section 3.2.
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Figure 3. Histogram of Color can distinguish targets from backgrounds. Region proposal A and B are
vehicles, whereas the region proposal C and D are obvious false alarms. For the four selected region
proposals, their corresponding HoC are extracted, as shown in the right part of the figure. For A and B,
the IoH is high, while both C and D have low IoH due to the extremely low similarities.

2.3.2. Estimating Histogram Mixture Model

For a set of nrp possible region proposals Xrp on a video frame, we predict a region proposal
x ∈ Xrp as a target or a background by Equation (6), as summarized in Algorithm 1. The complexity for
predicting region proposals by HistMM grows linearly with the size of Xrp, O(nH × nrp). Therefore,
our proposed HistMM is computationally feasible and scalable for the case with a large number of
region proposals.

Algorithm 1 Removing Obvious False Alarms by Histogram Mixture Model (HistMM)

Input: Xrp = {x0, x1, . . . , xnrp}, ct > 0, and H = {h1, h2, . . . , hnH}
Output: Xrp

1: for x ∈ Xrp do

2: if ∀h ∈ H, p(x|h) ≤ ct then

3: Remove x from Xrp.
4: end if
5: end for
6: return Xrp

HistMM is estimated by a recursive learning algorithm on the positive samples of
groundtruths [14,41]. Note the estimated set of histograms by Ĥ = {ĥ1, ĥ2, . . . , ĥnH}, and all the
positive samples in the groundtruths is denoted by Xgt. For a groundtruth xgt ∈ Xgt, a histogram ĥm,
m ∈ {1, . . . , nH}, is updated by

π̂m ← π̂m + om(xgt)

ĥm ← ĥm × π̂m + HoC(xgt)× om

π̂m + om
,

(8)

where π̂m counts the updates of estimated histogram ĥm, and, as π̂m increases, the lower fraction of the
new samples are taken into ĥm. om(xgt) defines the xgt’s ownership of an estimated histogram ĥm as

om(xgt) =

⎧⎪⎨⎪⎩
1, p(xgt|ĥm) ≥ ct and m = arg max

i∈{0,1,...,nH−1}
p(xgt|ĥi)

0, otherwise
, (9)

by which om(xgt) = 1 indicts that the new sample xgt updates the histogram ĥm by Equation (8).
Otherwise, om(xgt) = 0 means no nearby histogram component exists for this sample xgt, and a
new histogram component ĥnH is added to Ĥ. π̂nH is then initialized as 1 and the added histogram
component ĥnH is initialized by HoC(xgt). This update procedure continues until it finishes iterating
over the groundtruth set Xgt, as summarized in Algorithm 2.
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Algorithm 2 Training procedure of Histogram Mixture Model (HistMM)

Input: Xgt = {x1, . . . , xngt}, ct > 0
Output: Ĥ

1: for x ∈ Xgt do

2: if ∃ĥ ∈ Ĥ, p(x|ĥ) ≥ ct then

3: Find the updating histogram ĥm and the ownership om(x) by Equation (9).
4: Update ĥm by

π̂m ← π̂m + om(x)

ĥm ← ĥm × π̂m + HoC(x)× om

π̂m + om
.

5: else

6: Initialize a new component by HoC(x), and add it to H.
7: end if
8: end for
9: return Ĥ

3. Experimental Results

3.1. Datasets

Two satellite video datasets, SkySat-Las Vegas dataset and SkySat-Burj Khalifa dataset, were used
for experimental evaluation of the proposed method for efficient region proposal. For both datasets,
the satellite videos were collected by SkySat, which recorded 1800 frames with 30 frames per second.
The spatial resolution of each frame in this video is 1.5 m and the frame size is 1920 × 1080 pixels.

The SkySat-Las Vegas dataset refers to the satellite video captured over Las Vegas, USA in March
2014. As illustrated in Figure 4a, two sub-regions were selected for training and one sub-region was
selected for evaluation.

The SkySat-Burj Khalifa dataset refers to the satellite video, which is captured over Burj Khalifa,
United Arab Emirates on April, 2014. This video is 60 seconds long, which counts up to 30 frames per
second. As shown in Figure 4b, 3 sub-regions were selected from the original video, two of which were
for training and the remaining one for evaluation.

(a) SkySat-Las Vegas dataset (b) SkySat-Burj Khalifa dataset

Figure 4. Two typical frames from the two satellite video datasets used. (The regions surrounded by
the rectangle in yellow color are for training, while the regions in green color are for testing.)

For both datasets, vehicles on five frames from each datasets were annotated, and their
corresponding boundary boxes were provided as labelled samples. As we can see in Table 1, the average
target sizes are very small.
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Table 1. Detailed information for the datasets.

Dataset Region Size Average Vehicle Size

SkySat-Las Vegas
Train. 1 360 × 360 7.09 × 5.12
Train. 2 580 × 1070 6.27 × 5.03

Eval 720 × 700 7.54 × 6.00

SkySat-Burj Khalifa
Train. 1 300 × 400 6.52 × 5.11
Train. 2 450 × 650 7.07 × 5.28

Eval 500 × 670 6.97 × 5.80

3.2. Parameter Discussion

The LRP approach is mainly controlled by 3 parameters: the local region scale k, the threshold
factor f and the threshold ct in HistMM. The effect of each of them is discuss below. Their performance
were evaluated in terms of the coverage of targets (recall), where a targets is recalled if there is at
least 50% of IoU between any proposals and the ground-truth bounding box. These evaluations were
conducted by the Leave-One-Out Cross Validation (LOOCV) strategy on training set of the SkySat-Las
Vegas dataset.

• Semantic region Scale k controls size of the semantic regions generated. A larger k is preferred as
it will generate a coarse segmentation as required. The semantic regions are allowed to be larger
than the target size on purpose. As presented in Figure 5, reducing k gives fine-scale segmentation
and leads to an increased number of region proposals with lower recall rate, while with increasing
k, LRP generates fewer region proposals with improved recall rate.

• Threshold Factor f controls the segmentation threshold in each semantic region. Selecting a
large f would result in fragmented region proposals and decrease recall scores. As illustrated in
Figure 5, increasing f from 1.0 to 3.5, the recall scores experience a drop of over 40%.

• HistMM Threshold ct is the Bayesian decision threshold in the HistMM for removing obvious
false alarms as presented Section 2.3. The HistMM model with a smaller ct tends to keep more
obvious false alarms, which leads to unnecessarily more region proposals decreases. On the
other hand, increasing ct would filter out more obvious false alarms from the searched region
proposals. As shown in Figure 6, when ct increases to 0.5, the number of region proposals (Nrp)
reduces significantly, while the recall scores holds nearly stable about 80%, which presents the
most efficient case.

When ct was set to 0.5 based on the cross validation on using the training data, the number
of region proposals are reduced by over 60% by HistMM with almost no decrease in recall rate,
las presented in Table 2 and Figure 7, which demonstrates the effectiveness of the proposed
HistoMM model.

Table 2. Evaluation on the effectiveness of HistMM.

Dataset
Recall Nrp

Before After Diff Before After Diff

SkySat-Las Vegas 75.92% 75.10% −0.82% 30,614 10,100 −67.01%
SkySat-Burj Khalifsa 77.31% 76.83% −0.48% 17,017 6525 −61.66%
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Figure 5. Region performance evaluation with different k and f .
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Figure 6. Region proposal performance by different ct with k = 81, f = 1.25.

(a) Before HistMM (b) After HistMM (Ct = 0.5)

Figure 7. Visualization on region proposals before and after HistoMM.

3.3. Comparison of Region Proposal Approaches

The region proposal performance was compared with a set of existing region proposals approaches
for both common object detection tasks as well as aerial object detection tasks. Inspired by the
systematic region proposal evaluation research [42], the proposed region proposal scheme was
evaluated against Superpixels (SP) [39,42], Selective Search (SS) [26] and Region Proposal Network
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(RPN) [36]. SP generates a region proposal for each extracted superpixel, and SS merges neighboring
superpixels as region proposals. For both SS and SP the extraordinarily tiny or large region
proposals are considered impossible for vehicles in satellite videos and removed by post-processing.
In addition to these well-known region proposals techniques, two approaches for aerial object detection
are also included for comparison, which are Maximally Stable Extremal Regions (MSER) [33] or
Top-hat-Otsu [34].

Qualitatively, the region proposals generated by our LRP are more concentrated on possible
targets, while those saliancy object-based approaches, SS and SP, produce more evenly distributed
region proposals, as shown in Figure 8. A similar phenomenon is observed on the results by RPN,
as both RPN and our LRP remove those obvious false alarms from the background.

Then quantitative performance evaluation on different approaches was conducted in terms of
recall scores. Benefiting from the adopted searching strategy and the HistMM, LRP generates a
reasonable number of region proposals with good coverage of the possible targets. As presented
in Table 3 and Figure 9, our LRP achieves the highest recall@0.5 scores on both evaluation datasets.
In term of the number of the generated region proposals, it seems like our LRP generates more region
proposals than SP, but it should be noted that more than one region proposals are generated by LRP
for most possible targets, as shown in Figure 8. Although RPN generates more region proposals with
better recall rates, it takes advantage of the finetune scheme from our Fast R-CNN model.

Table 3. Evaluation on region proposal performance.

Method
SkySat-Las Vegas SkySat-Burj Khalifsa

Nrp Recall Time (s) Nrp Recall Time (s)

SP 4092 37.95% 1.98 7922 51.38% 1.28
SS 18,222 20.00% 588.97 11,728 19.34% 264.00

MSER 15,347 37.73% 0.48 10,569 55.80% 0.34
Top-hat-Ostu 1329 2.01% 0.02 1280 29.28% 0.01

RPN
(Finetuned from Fast-RCNN-LRP) 13,288 90.00% 0.72 7908 90.05% 0.48

lLRP 9874 80.00% 4.23 7424 79.56% 3.60

Besides, we also compare the detection performance by using a slim Fast-RCNN detector. This
slim Fast-RCNN receives 128 × 128 video frame as input, and it includes two groups of convolutional
layers and a branch of fully connected layers for classification, where the branch for boundary box
regression are replaced with carefully selected anchor distribution. Each group of convolutional layers
contains three layers with kernel in the same size of 3 × 3, and the number of output channels is
16 and 32 for the first and second convolutional layer group, respectively. After each convolutional
layer, a non-linear transformation is conducted by a Rectifier Linear Unit (ReLU) [43,44], which is
followed by a Batch Normalization (BN) layer [45]. The output size by Roi Pooling is 2 × 2, which is
followed by two fully connected layers with 512 and 32 hidden neural units, respectively. A Faster
R-CNN model is also included for comparison. Due to the limited number of training samples, directly
training a Faster R-CNN model is challenging, therefore, this Faster R-CNN model is finetuned from
our Fast R-CNN-LRP. The performance evaluation is based on the PASCAL VOC metrics, where we
use Average Precision (AP) instead of Mean Average Precision (mAP), since only one target category is
contained in both datasets.

Compared with detection results by SP and SS approaches, our approach recalls most of the targets
with the highest AP scores, as presented in Table 4 and Figure 10. Compared with the state-of-the-art
Faster-RCNN model, the developed LRP with Fast-RCNN model achieves slightly improved detection
performance. As illustrated in Figure 11, fewer false alarms with higher detection scores are produced
by the Fast R-CNN model using the proposed LRP approach.
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(a) Groundtruth (b) SP (c) SS

(d) MSER (e) RPN (Finetuned from
Fast R-CNN-LRP)

(f) LRP

Figure 8. Visualization on generated region proposals by different approaches on SkySat-Las
Vegas Dataset.
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(b) SkySat-Burj Khalifa Dataset

Figure 9. Recall rates over different IoU thresholds.

In addition to aforementioned single-frame-based detection approach, we also compare our
approach with three popular background subtraction-based approaches —Gaussian Mixture Model
(GMM) [46], GMMv2 [14] and Visual Background Extractor (ViBe) [16] approaches (A post-processing
is applied to all these background subtraction-based approaches for removing extremely small or
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large blobs.). Their performance are compared in terms of recall, precision and F1 scores at IoU = 0.5.
Compared with these background subtraction-based approaches, Fast-RCNN-LRP that uses our region
proposals generates better F1 scores, and the background subtraction-based approaches suffer from
poor precision, as shown in Table 5.

Table 4. Detection performance evaluation.

Method
SkySat-Las Vegas SkySat-Burj Khalifa

Rcll Prcn F1 AP Rcll Prcn F1 AP

Fast R-CNN-SP 34.32% 35.53% 34.91% 29.20% 46.41% 31.82% 37.75% 35.30%
Fast R-CNN-SS 14.32% 19.57% 16.54% 7.43% 16.02% 12.78% 14.22% 5.90%

Fast R-CNN-MSER 30.45% 31.16% 30.80% 20.21% 41.44% 47.17% 44.12% 33.96%
Fast R-CNN-Top-hat-Ostu 1.82% 8.08% 2.97% 1.15% 26.52% 26.23% 26.37% 13.37%

Fast R-CNN-LRP 58.18% 43.91% 50.05% 49.48% 64.09% 42.49% 51.10% 50.57%

Faster R-CNN
(Finetuned from

Fast R-CNN-LRP)
59.32% 55.53% 56.31% 46.46% 62.43% 46.12% 53.05% 45.15%

(a) Groundtruth (b) Fast R-CNN-SP (c) Fast R-CNN-MSER

(d) Fast R-CNN-SS (e) Faster R-CNN (f) Fast R-CNN-LRP

Figure 10. Visualization on detection results by selected approaches on SkySat-Burj Khalifsa dataset.

Table 5. Detection results comparisons.

Dataset Method Rcll Prcn F1

SkySat-
Las Vegas

GMM 45.8% 49.6% 47.6%
GMMv2 64.7% 26.7% 37.8%

ViBe 58.0% 16.7% 25.9%
Fast-RCNN-LRP 58.18% 43.91% 50.05%

SkySat-
Burj Khalifa

GMM 33.5% 56.7% 42.1%
GMMv2 70.1% 37.7% 49.0%

ViBe 74.6% 22.0% 34.0%
Fast-RCNN-LRP 64.09% 42.49% 51.10%

95



Remote Sens. 2019, 11, 2372

0 20 40 60 80 100
0

20

40

60

80

100

Recall

Pr
ec

is
io

n

Fast R-CNN-SP

Fast R-CNN-SS

Fast R-CNN-MSER

Faster R-CNN

Fast R-CNN-LRP

(a) SkySat-Las Vegas Dataset

0 20 40 60 80 100
0

20

40

60

80

100

Recall

Pr
ec

is
io

n

Fast R-CNN-SP

Fast R-CNN-SS

Fast R-CNN-MSER

Faster R-CNN

Fast R-CNN-LRP

(b) SkySat-Burj Khalifa Dataset

Figure 11. Precision-recall curve.

4. Discussion and Conclusions

Region proposal extraction is a valuable step to make target detection efficient. However, it is
challenging to generate a small number of region proposals without missing any targets. This is more
difficult when the targets are small and dim, such as those presented in satellite videos, due to their
limited spatial resolution.

To address the degraded performance of current region proposal extraction methods for satellite
videos, we proposed a novel region proposal approach (LRP), in which possible locations of targets are
searched in semantic regions by coarse-scale segmentation and a Histogram Mixture Model (HistMM)
is proposed to select region proposals with high likelihood from them.

The proposed LRP achieves improved recall rates of the targets with an acceptable increase in
time cost, when compared with saliency object-based region proposal approaches, such as Superpixels
(SP), Selective Search (SS), Maximally Stable Extremal Regions (MSER) and Top-hat-Otsu. Although
the Region Proposal Network (RPN) recalls more targets with less time cost, it requires sufficient
training samples or finetuning from a pre-trained model, such as the one obtained from LRP. Another
advantage of the proposed LRP is that its training procedure only relies on positive training samples,
even when a limited number of training samples is available.

With the improved recall rates by LRP, the detection performance by it with a slim Fast R-CNN
is also superior to other saliency object-based region proposal approaches. The detection results are
comparable with those by a finetuned Faster R-CNN model from our Fast R-CNN model. Compared
with those background subtraction techniques, the proposal LRP approach outperforms them in term
of precision, as fewer false alarms are generated.

As more satellite video data are available, more extensive testing can be conducted in the
future study. In addition, the approach proposed in this manuscript is developed and tested on a
panchromatic video data without color information. It may be extended to multi-channel data in the
future research and improved detection performance can be expected.
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Abstract: Object detection in remote sensing images on a satellite or aircraft has important economic
and military significance and is full of challenges. This task requires not only accurate and efficient
algorithms, but also high-performance and low power hardware architecture. However, existing deep
learning based object detection algorithms require further optimization in small objects detection,
reduced computational complexity and parameter size. Meanwhile, the general-purpose processor
cannot achieve better power efficiency, and the previous design of deep learning processor has still
potential for mining parallelism. To address these issues, we propose an efficient context-based feature
fusion single shot multi-box detector (CBFF-SSD) framework, using lightweight MobileNet as the
backbone network to reduce parameters and computational complexity, adding feature fusion units
and detecting feature maps to enhance the recognition of small objects and improve detection accuracy.
Based on the analysis and optimization of the calculation of each layer in the algorithm, we propose
efficient hardware architecture of deep learning processor with multiple neural processing units
(NPUs) composed of 2-D processing elements (PEs), which can simultaneously calculate multiple
output feature maps. The parallel architecture, hierarchical on-chip storage organization, and the local
register are used to achieve parallel processing, sharing and reuse of data, and make the calculation
of processor more efficient. Extensive experiments and comprehensive evaluations on the public
NWPU VHR-10 dataset and comparisons with some state-of-the-art approaches demonstrate the
effectiveness and superiority of the proposed framework. Moreover, for evaluating the performance
of proposed hardware architecture, we implement it on Xilinx XC7Z100 field programmable gate
array (FPGA) and test on the proposed CBFF-SSD and VGG16 models. Experimental results show
that our processor are more power efficient than general purpose central processing units (CPUs) and
graphics processing units (GPUs), and have better performance density than other state-of-the-art
FPGA-based designs.

Keywords: object detection; remote sensing image; deep learning; convolutional neural networks
(CNNs); hardware architecture; processor

1. Introduction

Object detection in high resolution optical remote sensing images is to determine if a given
aerial or satellite image contains one or more objects belonging to the class of user focused and
locate the position of each predicted object in the image [1]. As an important research topic of remote
sensing images analysis, object detection in remote sensing images is widely applied to military
reconnaissance, intelligent transportation, urban planning, and other domains [2–5]. In recent years,
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with the development of optical remote sensing technology and space-borne intelligent information
processing system, it is a trend to construct a system that combines remote sensing detection with
information processing on satellite or aircraft. Efficient object detection in a remote sensing image and
processing on a satellite or aircraft can not only reduce the amount of communication data, but also
achieve efficient, flexible, and fast earth observation tasks. However, there are many challenges to
detect the user-concerned objects quickly and accurately from the massive remote sensing data. Firstly,
remote sensing images have ultra-high spatial resolution, which usually contains tens or hundreds of
millions of pixels. Quickly and accurately detecting the user-focused objects from massive amounts of
data is a challenging task. Secondly, objects in remote sensing images have multi-scale features. For
example, objects such as a ground track field, bridge, etc. have hundreds of pixels, while small objects
such as a vehicle, ship, etc. may only contain a few pixels. This feature makes accurate object detection
in remote sensing images more difficult, especially for small objects. Thirdly, objects in a remote
sensing image viewed from overhead have any orientation, while natural image sets are typically
acquired horizontally. Therefore, models trained on natural image sets cannot be directly applied to
remote sensing image object detection. In addition, the general-purpose processor that carries out
the algorithm cannot meet the requirements of space-borne or airborne information processing with
high performance and low energy consumption. Therefore, the design of efficient object detection
algorithm framework and hardware architecture for remote sensing images has become an urgent
problem to be solved for space-borne or airborne information processing.

There are many methods for object detection in remote sensing images after years of research and
development. We summarize these methods into traditional object detection methods based on prior
information and manual features and deep learning based object detection methods. The traditional
object detection methods based on prior information and manual designed features regard object
detection as a classification problem composed of feature extraction and object classification, which
includes template matching-based object detection methods, knowledge-based object detection methods,
object-based image analysis-based (OBIA-based) object detection methods, and machine learning object
detection methods based on prior information and manual designed features [1]. The template
matching-based object detection methods are divided into two steps. Firstly, the template is trained
from existing data by hand-crafting or statistical methods, and then the similarity measurement is
performed on the pre-processed input image to complete the detection. The template matching-based
object detection approaches are usually divided into a rigid template and deformable template according
to the template type selected by the user [1,6,7]. The knowledge-based object detection methods setup
knowledge and rules based on geometric information and context information, and generate hypotheses
on the input image and convert the object detection problem into a hypothesis testing problem [8–10].
The OBIA-based object detection methods accomplish the detection task by segmenting the input
image and classifying the object, wherein the scale of the image segmentation directly affects the
detection result [11–13]. The machine learning object detection methods based on prior information
and manual designed features are typically divided into two stages: feature extraction stage and
object classification and recognition stage. In the feature extraction stage, selective search is usually
used to extract handcrafted features, such as scale-invariant feature transform (SIFT) [14], histogram
of oriented gradients (HOG) [15], bag-of-words (BoW) feature [16], texture features [17], and so on.
In the stage of object classification and recognition, classifiers often include: support vector machine
(SVM) [18], AdaBoost [19], deformable parts model (DPM) [20], condition random field (CRF) [21],
sparse coding-based classifier [22] and artificial neural network (ANN) [23], and so on. However most
of these methods mentioned above rely on the prior information and manual designed features, and it
is difficult to efficiently achieve object detection tasks under massive remote sensing data.

In recent years, deep learning technology has achieved great success in computer vision
applications, and the deep learning based object detection methods have become the mainstream in the
field of image recognition. The deep convolutional neural network AlexNet proposed by Krizhevsky,
A. et al. not only won the 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVR 2012),
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but also set off a wave of deep learning research [24]. Since then, many researchers have proposed a
variety of excellent deep learning algorithms, and deep convolutional neural networks have become
the best deep learning algorithm in the field of image recognition. Researchers have also begun to
apply deep learning technology to object recognition in remote sensing images. For example, Cheng, G.
et al. applied the rotation-invariant convolutional neural networks (RICNN) to object detection in very
high resolution (VHR) optical remote sensing images [25]. Wang, G. et al. proposed the infrastructure
target detection of remote sensing image based on residual networks [26]. Although these object
detection methods based on convolutional neural networks perform well in remote sensing image
object detection, they do not form a unified and efficient object framework. Currently, the deep learning
object detection algorithm framework based on convolutional neural network has made great progress.
These mainstream algorithm frameworks include region proposal-based two-stage object detection
algorithm and regression-based one stage object detection algorithm [27]. The region proposal-based
algorithm generates a series of region proposals according to selective search (SS), Bing or edge
boxes methods firstly, and then extracts the features by the deep neural networks, and implements
object classification and boundary regression based on these features. For example, Girshick, R. et al.
proposed region-based convolutional neural networks (R-CNN) [28], which combines object candidate
regions and deep learning for object detection. Then he proposed the more efficient fast R-CNN
algorithm [29], which overcomes the shortcomings of R-CNN’s redundant operation when extracting
features. Subsequently, Ren, S. et al. proposed a faster R-CNN algorithm [30], which uses region
proposal networks (RPN) to extract object candidate regions, and integrates the entire object candidate
region extraction, feature extraction, object recognition, and detection into a deep neural network
framework. In order to solve the multi-scale detection problem, Lin, T.Y. et al. introduced the feature
pyramid network (FPN) to improve the recognition efficiency of small objects [31]. However, the object
detection algorithm framework based on the region proposal is not very efficient because it takes
more time to extract the candidate region. The regression-based object detection algorithm has no
candidate region extraction step, which combines all recognition and detection steps in a deep neural
network, and has high detection and recognition efficiency. For this type of algorithm framework, the
you only look once (YOLO) algorithm framework proposed by Redmon, J. et al. requires only a single
network to evaluate the entire image to obtain the target bounding box and category [32]. The single
shot multi-box detector (SSD) algorithm framework proposed by Liu, W. et al. introduces an anchor
mechanism based on YOLO, which detects the object on the different scales and improves accuracy
without affecting process speed [33]. In general, the deep learning based object detection methods
have made great progress in the accuracy and efficiency of object detection compared to the traditional
methods. At present, these algorithms are widely used in remote sensing image object detection.
However, these algorithms are not satisfactory for the detection of small objects in the images, and they
need to be improved. Meanwhile, for the airborne or space-borne application environment, not only the
object detection accuracy but also the computation complexity and model size need to be considered.

The rapid development of deep learning technology is inseparable from the support of high
performance hardware computing systems. The performance of deep learning algorithms is not only
related to its own structure, but also depends on the hardware architecture of computing system
that carries out the algorithm. Currently, the training and inference of deep learning algorithms
mainly depends on general-purpose processors, such as central processing units (CPUs) and graphics
processing units (GPUs). Although the general-purpose CPUs have higher flexibility and better parallel
computing power, the deep learning algorithm does not achieve better execution efficiency. GPUs are
widely used in training and inference of deep learning algorithms because of its unique many-core
architecture and superior parallel computing power, but it cannot obtain good performance-power ratio
due to high power consumption. In some specific applications, not only high processing performance
but also stricter power consumption requirements are required. For example, in embedded application
scenarios or on satellite or aircraft information processing systems, general-purpose CPUs and
GPUs will not be able to accommodate the application requirements in such situations. Therefore,
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application-oriented domain-specific architecture (DSA) is the solution to overcome such problems
currently [34]. In recent years, many researchers have proposed different hardware architectures
for their respective application scenarios. Farabet, C. et al. proposed CNP [35] with parallel vector
computing architecture for low-power lightweight unmanned aircraft vehicles (UAVs) or robots,
and a scalable dataflow 2-D grid hardware architecture Neuflow [36] optimized for the computation
of general-purpose vision algorithms. Peemem, M. et al. proposed hierarchical memory-centric
accelerator architecture to improve the performance of convolutional operations and reduce the
overhead of memory access [37]. Alwani, M. et al. reduced the transfer of off-chip feature map data by
modifying the order of input data and fusing multiple continuous convolutional layer processing [38].
Chen, T. et al. presented a high-throughput algorithm accelerator DianNao based on adder tree structure
for large-scale convolutional neural network (CNN) and deep neural network (DNN) [39]. Du, Z. et al.
proposed ShiDianNao based on 2-D mesh topology structure for image recognition applications near
to sensors, and reduced memory usage through weight sharing [40]. Zhang, C. et al. designed a
CNN accelerator based on the adder tree structure by quantitative analysis of memory bandwidth
required for throughput [41]. Google has introduced a high-performance tensor processing unit (TPU)
for data centers based on 2-D systolic array architecture [42]. Li, L. et al. designed a co-processor
with 2-D mesh topology structure for image recognition by optimization calculation of algorithm [43].
Chang, J.W. et al. proposed a deconvolutional neural networks accelerator (DCNN) with 2-D mesh
architecture for super-resolution images [44]. These hardware architectures are designed for a specific
application scenario and are mainly used to accelerate the calculation of the deep learning algorithms.
The processing elements (PEs) in these processors are typically organized in 1-D or 2-D topology
structure. These processors only implement parallel computation of synapses and neurons, which
compute each feature map one by one. However, the feature map in the image object detection is 3-D,
but the current design do not consider the parallel calculation of feature map, so there is still potential
for mining parallelism. Meanwhile, the storage organization and data reuse need to be considered
in the architecture to adapt to large-scale algorithms and parameters, which is very important for
computing and storage dual-intensive remote sensing images object detection applications.

In order to adapt to the characteristics of object detection in remote sensing images and tackle
the problems of the algorithm framework and hardware architecture mentioned above, we propose
an efficient context-based feature fusion SSD (CBFF-SSD) algorithm framework. Subsequently, we
have designed hardware architecture of deep learning processor with multiple 2-D mesh architecture
supporting feature maps parallel processing by analyzing and optimizing the calculation of each
layer in the deep learning algorithm framework. Finally, the efficiency and performance of the
algorithm framework and processor are evaluated by multiple experiments and indicators. The main
contributions of this paper are summarized as follows:

1. We propose a context-based feature fusion SSD (CBFF-SSD) framework for object detection in
remote sensing images. MobileNet is used as the backbone network in the algorithm framework
to reduce the amount of calculation and parameters, which makes the algorithm more efficient.
Two feature fusion units and seven feature maps are used in the algorithm to enhance the detection
of multi-scale objects and small objects, and improve the detection accuracy.

2. We analyze and optimize the calculation of each layer in the algorithm framework, which makes it
easy to implement in hardware, and lays a foundation for the design of time-division multiplexing
processing unit in the subsequent hardware architecture of deep learning processor.

3. We propose efficient hardware architecture of deep learning processor with multiple 2-D mesh
topology oriented to image object recognition, which can simultaneously calculate multiple
output feature maps. Hierarchical on-chip storage organization makes the neurons and weights
to be efficiently delivered to the neural processing units (NPUs). The parallel architecture, the
hierarchical storage organization, and the register designed in the PE effectively realize the sharing
and reuse of the calculation data.
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4. We evaluate the performance and efficiency of the algorithm framework and hardware architecture
based on several experiments and evaluation indicators. The performance of the proposed
algorithm framework is compared with the several popular algorithms on the NWPU-VHR-10
dataset. We realize the proposed hardware architecture of the deep learning processor on the field
programmable gate array (FPGA), and then evaluate the processing performance and compared
with the CPU, GPU, and the current popular deep learning processors. The experimental results
confirmed the effectiveness and superiority of the proposed algorithm framework and hardware
architecture of deep learning processor.

The rest of this paper is organized as follows. Section 2 proposes the context-based feature fusion
SSD (CBFF-SSD) framework. The calculation of each layer in deep learning algorithm framework and
optimization are described in Section 3. Section 4 introduces the details of the hardware architecture of
deep learning processor. Section 5 presents the experimental results and analysis. The experimental
results are discussed in the Section 6. Finally, the conclusions are drawn in Section 7.

2. Context-Based Feature Fusion SSD Framework

2.1. Related Works

The deep learning algorithm based on the convolutional neural network model has achieved
excellent results in image object detection applications, which not only improves the accuracy of
recognition, but also improves the efficiency of recognition. In particular, the recent rapid development
of the region proposal-based objects detection algorithm framework and the regression-based objects
detection algorithm framework are particularly outstanding. Since remote sensing images have
ultra-high resolution, diverse object sizes and directions, including small targets, and diverse shooting
angles, it is full of challenges to quickly and accurately detect the user-focused object from massive
remote sensing data. For the application of remote sensing image object detection, many researchers
have conducted a lot of research based on the two popular algorithm frameworks.

For examples, Han, X. et al. proposed a highly efficient and robust integrated geospatial object
detect framework based on the faster region-based convolutional neural network (Faster R-CNN),
which realized the integrated procedure by sharing features between the region proposal generation
stage and the object detection stage [45]. Zhu, M. et al. proposed an effective airplane detection method
in remote sensing images based on Faster R-CNN and multiplayer feature fusion, which solved the
problem of insufficient representation ability of weak and small objects and overlapping detection
boxes in airplane object detection [3]. Etten, A.V. presented a rapid multi-scale object detection method
based on YOLO and DarkNet for the detection of small objects in large satellite imagery [46]. In order
to solve the detection of small and dense objects, Zhang, X. et al. proposed an effective region-based
VHR remote sensing imagery object detection framework named double multi-scale feature pyramid
network (DM-FPN) [47].

In summary, the above algorithms are improved for the small objects detection in remote sensing
images, and have achieved good object detection results. However, efficient on-board remote sensing
image object detection not only needs to consider the accuracy of detection, but also needs to think
about the efficiency of calculations such as computational complexity and the number of parameters.

2.2. CBFF-SSD Framework

Based on the in-depth analysis of the characteristics and challenges of object detection in a remote
sensing image on a satellite or aircraft, we proposed a context-based feature fusion SSD (CBFF-SSD)
algorithm framework shown in Figure 1. The whole algorithm framework was designed based on the
SSD framework [33]. This is because on the one hand, the regression-based object detection framework
is considered to be more efficient in image object detection, and the other is because the algorithm
framework is more suitable for multi-scale object detection. Different from the SSD framework, the
backbone network uses the MobileNet [48] instead of VGGNet. The lightweight MobileNet uses

105



Remote Sens. 2019, 11, 2376

depth-wise separable convolution to effectively reduce the amount of calculation and parameters of the
algorithm, which is more conducive to efficient object detection in embedded applications, especially
in a space-borne or airborne application environment. We compared the number of parameters and
the amount of calculations of the proposed CBFF-SSD algorithm framework and the SSD algorithm in
Table 1. It can be seen that the number of parameters of the proposed CBFF-SSD algorithm framework
was 56.09% of the SSD algorithm, and the calculation amount was only 17.56% of the SSD algorithm.
By reducing the size of the model parameters and computational complexity, the proposed algorithm
framework was more effective in object detection.

 

Figure 1. The overall structure of the proposed context-based feature fusion single shot multi-box
detector (CBFF-SSD) algorithm framework.

Table 1. Comparison of the number of parameters and calculation amount of the SSD and the proposed
CBFF-SSD framework.

Framework Input Size Parameters Mult_Adds

SSD 300 × 300 × 3 26.28 Million 31.37 Billion
CBFF-SSD 416 × 416 × 3 14.74 Million 5.51 Billion

The high-level features of the convolutional network were rich in semantics and suitable
for detecting large objects. After layer-by-layer down-sampling, the features lose too much detail
information, and it is often important to small object detection. The feature rich in semantic information
was mapped back to the lower layer features with larger resolution and richer detail information, and
they were fused in an appropriate way to improve the effect of small object detection. Therefore, in the
algorithm framework, the low-level feature map Conv5 (52 × 52 × 256) was added, and the Conv14
and Conv15 were respectively up-sampled and fused with Conv5 and Conv11 layers to improve the
precision of small object detection.

Figure 1 shows the architecture details of the CBFF-SSD algorithm framework. The Fusion_layer1,
Fusion_layer2, Conv13, Conv14, Conv15, Conv16, and Conv17 were used to predict both location
and confidences. In the deep learning algorithm, the resolution of the input image and the number
of detection boxes for each class of object affected the accuracy of the detection. Based on the
SSD framework, we adjusted the input resolution from 300 × 300 to 416 × 416, and increased the
number of detection boxes from 8732 to 13806 to ensure the recognition accuracy of the proposed
algorithm framework.
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2.3. Feature Fusion Unit (FFU)

There are two feature fusion units in the proposed algorithm framework as shown in Figure 1.
The structure of the feature fusion unit is shown in Figure 2. The design of feature fusion unit is inspired
by the design of the deconvolution module in the deconvolutional single shot detector (DSSD) [49].
The high-level feature maps are processed by deconvolution to the same size and channel as the
lower-level feature maps. Then they are fused by element wise addition.

Taking the feature fusion layer 1 as an example, in order to fuse the feature maps of the Conv14 and
Conv5, it is necessary to up-sample the resolution of the Conv14 layer by eight times. Specifically, for
the Conv14 layer, we designed three deconvolution layers with stride 2 to achieve up-sampling. Since
the feature maps in the feature fusion unit are computationally intensive, we also applied depth-wise
separable convolutions here to reduce parameters and computational complexity. The deconvolution
layer was followed by depth-wise separable convolution. The depth-wise separable convolution was
composed of 3 × 3 depth-wise convolutional layer, batch normalization, rectified linear unit (ReLU)
layer, 1 × 1 point-wise convolutional layer, batch normalization layer, and ReLU layer. The Conv5
layer underwent a depth-wise separable convolution module. After the normalization layer, we fused
them by element-wise addition, and finally passed the ReLU to complete the fusion.

 

Figure 2. The structure of feature fusion unit (FFU).

Fusion layer 2 used the same calculation method, and only the channel was adjusted. Only minor
modifications were required for models with different input resolutions.

2.4. Training

We used the same training strategy as SSD [33]. During training, a set of default boxes was
matched to the ground truth boxes. For each ground truth box, we matched it to the default box with
the Jaccard overlap higher than a threshold (e.g., 0.5). This was more conducive to predicting multiple
bounding boxes with high confidence for overlapped objects. We selected the non-matched default
boxes with top loss value as the negative samples so that the ratio of negative and positive was 3:1.

The training objective was for multiple object categories. We set x to be an indicator for matching
the default box to the ground truth box of category p, which equaled to 1 or 0. The c, l, and g represent
confidences, the predicted box, and ground truth box respectively. The overall objective loss function
is a weighted sum of the localization loss Lloc and the confidence loss Lconf, which is defined as:

L(x, c, l, g) =
1
N
(Lconf(x, c)+αLloc(x, l, g)), (1)

where N is the number of matched default boxes, and the weight term α is set to 1 by cross validation.
The localization loss Lloc is a smooth L1 loss between the predicted box (l) and the ground truth box
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(g) parameters. The confidence loss Lconf is the Softmax loss over multiple classes’ confidences (c).
The confidence loss Lconf and the localization loss Lloc are defined the same as SSD [33].

Seven feature maps were used to predict both location and confidences in the proposed CBFF-SSD
framework. Specifically, we adopted four default boxes at each feature map for Fusion_layer1, Conv16,
and Conv17, and used six default boxes at each feature map location for all other layers. We made a
minor change on the scale of default boxes, the lowest layer had a scale of 0.15 and the highest layer
had a scale of 0.9. The aspect ratio setting of default boxes were selected as 1, 2, 3, 1/2, and 1/3.

We also used the data augmentation strategy that was consistent with SSD to make the framework
more robust to various input object sizes and shapes. These methods included random cropping,
flipping, photometric distortion, and random expansion augmentation trick, which are very helpful
for detecting small objects.

3. Calculation of Each Layer in the Deep Learning Algorithm Framework and Optimization

Based on the analysis of many deep learning algorithms used in image object detection and the
framework proposed in Section 2, it can be seen that although the structures of these algorithms
were different, they were all designed based on the deep convolutional neural network. These object
detection algorithms are composed of some basic calculation layers, including the convolutional
layer, deconvolutional layer, pooling layer, nonlinear activation function layer, normalization layer,
element-wise sum layer, full connection layer, and Softmax layer. The hardware architecture suitable
for algorithm computing was abstracted based on the analysis and optimization of each layer in
the following.

3.1. Convolutional Layer and Deconvolutional Layer

The convolutional layer is composed of several convolution kernels, which is used to extract
various features from the input feature maps. When calculating, the size of input feature maps fin is
defined as W × H × C; the kernels are expressed as Kx × Ky × C ×M (M is the number of kernels, which
is also equal to the number of output feature maps).

The output neuron N at position (x, y) of output feature map fout is computed with:

N fout
x,y =

C−1∑
fin=0

Ky−1∑
j=0

Kx−1∑
i=0

W fin, fout
i, j ∗N fin, fout

x∗Sx+i,y∗Sy+ j+Bias fin, fout , (2)

where W and Bias represent the kernels and bias parameters between input feature map fin and output
feature map fout respectively, and Sx and Sy are the sliding steps when the image convoluted in the
x-direction and y-direction.

The standard convolutional formula is shown as Equation (2), which can be transformed into
depth-wise convolution and 1 × 1 point-wise convolution by modifying the kernels. The depth-wise
convolution and point-wise convolution are the two key computation layers of depth-wise separable
convolution, which is widely used in my proposed framework. When the kernel channels C are equal to
1, and the number of kernels M are equal to the number of channels of input feature maps, the kernels
can be expressed as Kx × Ky × M, the standard convolution has been transformed into depth-wise
convolution. When the kernel size Kx and Ky are both equal to 1, the standard convolution has been
transformed into 1 × 1 point-wise convolution. It can be seen from the above Equation that the basic
calculations of the convolutional layer are multiplication and addition.

Deconvolutional in image object detection typically refer to transposed convolution or dilated
convolution, which is used to up-sample the result of the convolutional layer back to the resolution
of the original image. The calculations of deconvolutional are similar to the convolutional layer.
The output neuron can be calculated according to the Equation (2), and its basic calculation is also
composed of multiplication and addition.
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3.2. Pooling Layer

The pooling layer is also called the down-sampling layer, which reduces the amount of data onto
feature maps by maximizing or averaging the neuron in each pooling window. The calculation of
pooling not only retains the main features, simplifies the computational complexity of network, but also
effectively controls the risk of over-fitting of deep neural networks. Maximum pooling and average
pooling are two commonly used pooling methods. In the pooling calculation of two-dimensional
image feature map, the pooling window is defined as Px × Py, and the input feature map fin and output
feature fout are one-to-one correspondence.

The maximum pooling formula for the output neuron N at position (x, y) of output feature fout is:

N fout
x,y = max

0≤i≤Px−1,0≤ j≤Py−1
N fin

x+i,y+ j, (3)

where the maximum pooling is done by successively comparing the maximum values of neuron in the
pooling windows, which can be achieved by a hardware comparator. The average pooling formula for
the output neuron N at position (x, y) of output feature fout is:

N fout
x,y =

∑Px−1
i=0

∑Py−1
j=0 N fin

x+i,y+ j

Px ∗ Py
. (4)

The calculation of average pooling is realized by the accumulating the neurons in the pooling
window and dividing by the size of the pooling window. Since the structure of the neural network
is determined, the 1/(Px × Py) in formula (4) can be regarded as a coefficient, that multiplied by
each neuron in the pooling window and accumulated to realize the calculation of average pooling.
This method saves hardware resources by eliminating divisions in average pooling calculations and
converting them into multiplication and addition operations.

3.3. Nonlinear Activation Function Layer

The nonlinear activation functions are widely used in neural networks, which not only make
the neural network have nonlinear learning and an expression ability by layered nonlinear mapping
compound, but also enhance the ability of the network to represent the high-level semantics of data.
Commonly used activation functions include Sigmoid, Tanh, ReLU, and so on. The Sigmoid and Tanh
functions are usually approximated by piecewise linear interpolation method, which is composed of
multiplication and addition.

Recently, the ReLU has been widely used in many current deep learning algorithms and neural
networks because it can effectively alleviate over-fitting and is less prone to gradient loss. Its calculation
formula is:

ReLU(N) =

{
N, N > 0
0, N ≤ 0

, (5)

where N is the neuron. Since the signed fixed-point number is adopted in the hardware architecture
design of deep learning processor, the calculation for ReLU can be completed directly by judging the
sign bit of neuron.

In this paper, we drew on an efficient hardware pipeline architecture proposed by Li, L. et al. to
realize the calculation of the activation function, which is another result of our work [50].

3.4. Normalization Layer

The normalization operation in the neural network is to solve the problem that the distribution
of the data in the middle layer changes during the training process to prevent the gradient from
disappearing or exploding and speed up the training. Krizhevsky, A. et al. used a local response
normalization (LRN) operation in AlexNet to reduce the error rates of top-1 and top-5 by 1.4% and
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1.2% [24]. Du, Z. et al. added local response normalization (LRN) and local contrast normalization
(LCN) in the design of ShiDianNao, which improved the recognition accuracy, but increased the
computational and hardware complexity [40]. The batch normalization proposed by Ioffe, S. et al. in
2015 is widely used in the deep neural network, which effectively accelerates the speed of training
and convergence [51]. The batch normalization is calculated as a separate layer in the neural network
forward inference process. The batch normalization formula for the neuron N located at the (x, y)
position of output feature map fout is as follows:

N fout
x,y = (N fin

x,y −
mean fin

x,y

scale f actor
)/

√√
Variance fin

x,y

scale f actor
+ε, (6)

where mean and Variance are the mean and variance of the input feature map fin respectively, and
scalefactor is the scaling factor. These three parameters are learned by network training. The ε is a small
constant, usually taken as 0.00001. It can be intuitively seen that the batch normalization calculation
includes complex operations such as division and square root, and we will optimize the calculation
using the parameter preprocessing strategy. Therefore, the Equation (6) can be converted into the
Equation (7) shown below, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N fout
x,y = BN _a fin

x,y ∗N fin
x,y +BN _b fin

x,y

BN _a fin
x,y = 1/

√
Variance

fin
x,y

scale f actor +ε

BN _b fin
x,y= −

mean
fin
x,y

scale f actor ∗BN _a fin
x,y

, (7)

where BN_a and BN_b are new parameters obtained by parameter preprocessing. Thus, complex
batch normalization calculations are converted into multiplication and addition operations, thereby
simplifying the complexity of the hardware structure.

3.5. Element-Wise Sum Layer

The calculation of element-wise sum is introduced when performing feature fusion, and this
layer fuses feature maps of the same size produced on different paths. The main calculation of this
layer is the addition of neurons at the corresponding positions of input feature maps, which can be
implemented by hardware adder.

3.6. Full Connection Layer

The full connected layer is used to combine the features extracted from previous layers of the
network, which is usually at the top of the neural network and used as a classifier. Although the
full connect layer is no longer used in some current object detection algorithms, in order not to lose
generality, the calculations of this layer are listed here. The input feature maps fin is a vector of 1 × 1 × C,
and the output feature maps fout is a vector of 1 × 1 ×M. The output neuron N at position (1, 1) of
output feature map fout is computed with:

N fout
1,1 =

C−1∑
fin=0

W fin, fout
1,1 ∗N fin

1,1+Bias fin, fout , (8)

where W and Bias represent the kernels and bias parameters between input feature map fin and
output feature map fout respectively. The calculation of the full connect layer is similar to that of the
convolutional layer, which is composed of multiplication and addition.

110



Remote Sens. 2019, 11, 2376

3.7. Softmax Layer

The Softmax layer is used for the output of the multi-classification neural network, which maps the
M-dimensional vector V into an M-dimensional vector S with a range between (0,1) and a cumulative
sum equal to 1. The calculation of the Softmax layer is:

Si =
eVi∑M

j=1 eVj
(i = 1, 2, . . . , M), (9)

where V and S are both M-dimensional vectors. The Softmax layer also includes exponential calculation.
Consequently, we drew on an efficient hardware pipeline architecture based on piecewise linear
interpolation proposed by Li, L. et al. [50], which shares the same hardware as the calculation of the
activation function.

Based on the characteristics of neural network layer-by-layer calculation, this section analyzed
and optimized the calculation of each layer, and summarized the basic calculation of deep learning
processor. The algorithm also includes some calculations that are difficult to implement in hardware.
We would implement them in software, such as the calculation of the default boxes, non-maximum
suppression (NMS), and so on. By considering the complexity of the hardware implementation, the
same or a similar calculation were used at each layer as much as possible, laying the foundation for the
design of the time-division multiplex hardware architecture in the next section.

4. Hardware Architecture of Deep Learning Processor

In order to adapt to the high performance and low power consumption environment on the
satellite or aircraft, we used the dedicated deep learning processor to replace the traditional CPUs
or GPUs for object detection algorithm processing. Due to various considerations, the deep learning
hardware architecture we designed only supports the calculation of the algorithm inference stage, and
the training and the acquisition of parameters are realized by the offline mode.

Based on the characteristics of algorithmic hierarchical computing and the analysis and
optimization of the calculation of each layer in deep learning algorithm in Section 3, we designed the
hardware architecture of deep learning processor shown in Figure 3. Our deep learning processor
consists of the following main components: memory controller interface, feature maps buffer,
parameters buffer, instruction memory, decoder, buffer controller and processing data setup module,
neural processing engine, and activation pipeline module.

 

Figure 3. The overall diagram of the designed hardware architecture of the deep learning processor.
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The memory controller interface interacts with the outside system through the advanced extensible
interface (AXI) bus. It stores the received image data, parameters, and instructions into the feature
maps buffer, the parameters buffer, and instruction memory respectively, and returns the calculation
result of the deep learning processor to the system. The feature maps buffer is used to store input and
output feature maps. The parameters buffer is used to store the weight and bias parameters obtained
by offline training. The instructions of deep learning processor are stored in the instruction memory.
After the instruction is decoded, the control signals are respectively transmitted to the respective
functional modules. The buffer controller and processing data setup module readout feature maps
data and parameters, and then sends them to the neural processing engine after organization, and
stores the calculated output feature maps data of the activation pipeline module into the feature maps
buffer. The neural processing engine performs basic neuron operations such as multiplication, addition
and comparison. The activation pipeline module is used to implement an approximate calculation of
the nonlinear activation function.

4.1. Parallel Computing Architecture

In the image object detection application, the input and output feature maps are both
three-dimensional. According to the characteristics of the feature map, we naturally thought of
parallel computing for three different dimensions in calculation. However, in the current research,
most designs were performed in parallel for a two-dimensional neuron of an output feature map until
this one was finished and next one began [35–44]. Therefore, we designed multiple neural processing
units (NPUs) in the neural processing engine to realize parallel computing of multiple output feature
maps. The hardware architecture of neural processing engine we designed is shown in Figure 4.

 

Figure 4. The hardware architecture of the neural processing engine. The left part is the neural
processing engine consisting of multiple neural processing units (NPUs) and its data flow. The right
part is the structure and data flow of a neural processing unit (NPU) composed of multiple processing
elements (PEs).

We designed Ni neural processing units (NPUs) in the neural processing engine, which can
simultaneously calculate the Ni output feature maps. The buffer controller and processing data setup
module provides neurons and synapses for each neural processing unit for calculation. It reads
data from the feature maps buffer and parameters buffer and reorganizes it for distribution to the
neural processing units. After the calculation is completed, the neural processing engine outputs
to the activation pipeline module for processing, and then writes the results to the feature maps
buffer-by-buffer controller. The neural processing unit (NPU) consists of Px × Py processing elements
(PEs) arranged in 2-D format. As can be seen from the right part of Figure 4, the neuron data calculated
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by the PEs could come not only from the buffer controller but also from right or bottom PEs. The data
propagation between the PEs achieved data reuse, and reduced the bandwidth of reading the feature
maps buffer.

The data propagation path and the computation path were designed in the PE structure shown in
Figure 5 to implement data reuse and neuron calculation functions respectively. The data propagation
path was used for local transfer of neuron data between PEs, thereby realizing data reuse. Inspired
by the calculation process of the sliding window during image convolutional operations, the input
of this path included three ways of reading from the buffer controller and reading from the right or
bottom PE. We set two sets of shifter registers in this path, which were row shift register (Row_Shifter)
and column shift register (Col_Shifter). These registers were used to implement temporary storage
and propagation of the reused neuron data. Based on the analysis of many current mainstream deep
learning algorithms and the object detection algorithm proposed in Section 2, the stride of convolutional
operations generally did not exceed 2. Therefore, in each set of shift registers we set up two serially
connected 16-bit registers to form a queue. The specific use of these two registers was detailed in
the Section 4.3 data sharing and reuse. The hardware structure of the computation path included a
multiplexer, multiplier, adder, comparator, and register. The computation path mainly completed
the calculation of the PE, which supported multiplication, addition and comparison operations, and
implemented all the calculation of the algorithm layers except for activation function and Softmax.
When the computation path worked, the neuron data came from the PE_Reg, and the parameters
were selected according to the calculation of each layer. For example, weight and bias were used
for the calculation of convolutional layer, and two pre-processed parameters BN_a and BN_b for the
computation of the normalization layer.

 

Figure 5. The structure of the processing element.

4.2. Hierarchical Storage Organization

The application of object detection in a remote sensing image is not only computation intensive,
but also storage-intensive. Therefore, the efficient calculation of the neural processing engine is
inseparable from the efficient organization and timely delivery of neuron data. The hierarchical storage
organization structure as show in Figure 6 was adopted to store the feature maps in our design.
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Figure 6. The hierarchical storage organization of the feature maps buffer.

We can see from the Figure 6, the structure of the feature map buffer was related to the number
of PEs in the NPU. We designed Px independent 16-bit width memory in one bank, where Px is the
number of PEs in a row of the NPU. Designing with independent memory made it easy for us to
address a single neuron. In the upward level of storage, we designed Py banks, where Py is the number
of PEs in a column of the NPU. This design allowed us to not only address a single neuron, but also
read Px × Py neurons in one clock period. In order to achieve greater memory bandwidth, we could
also design the separate memory similar to the multi-port format of the register file. The feature map
buffer was divided into eight blocks, each of which contained Py banks. Each of the two memory
blocks constituted a set of Ping-Pong memories for alternately storing input or output feature maps.
When a set of memory (e.g., FMB0 and FMB1) is the input feature map buffer, another set (e.g., FMB2

and FMB3) is used to store the output feature map. The input and output characteristics of the buffer
were alternately changed, and the current output feature map buffer was the input feature map buffer
calculated by the next layer of the algorithm. The other half of the buffer was used as a temporary
buffer to handle data interactions of large algorithm when the feature maps size was larger than the
on-chip buffer capacity. At this time, the two halves of the buffer acted as Ping-Pong memory to
achieve alternate storage of the feature maps.

In order to effectively read out neuron data and reorganize it, the buffer controller reads the
feature map buffer in four ways:

• Read Px × Py neurons from Py banks.
• Read Px neurons from 1 bank.
• Read Py neurons from Py banks with given stride.
• Read a single neuron.

These four reading modes can complete the reading of the neuron data in each layer of the deep
learning algorithm.

The parameters buffer mainly stores the weights and bias data of the convolutional layer and
the preprocessing parameters of the normalization layer. Due to the parameter sharing feature in the
convolutional network, the structure of the parameters buffer is slightly different from the feature map
buffer. The parameters buffer contains two levels storage structure. We designed Ni independent
memories in its first level storage for a bank, where Ni is the number of NPUs. The second level storage
contains four independent banks, which form two sets of Ping-Pong memory. In order to adapt to the
large-scale model, the two sets of buffer were alternately used for the storage of current parameters
and the interaction of subsequent parameters. The parameters are sequentially stored in the first-level
independent memory according to the dimensions of the output feature map. The instruction buffer
was designed as a FIFO (first input first output) with a width of 128 bits and a depth of 2 k. The very
long instruction word (VLIW) instructions are sequentially stored in it. Since the structure of the
instruction buffer is simple, it will not be described more here.
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4.3. Data Sharing and Reuse

In order to reduce the bandwidth of the read buffer and perform calculations efficiently, and to
make full use of the weight sharing of the convolutional neural network, we took a lot of work in the
design of the deep learning processor. Taking the convolutional operation with the largest amount of
calculation in the object detection algorithm as an example, since the Ni NPUs share the input neurons,
only the Px × Py neurons data are read out and broadcast to the Ni NPUs for calculation in the first
cycle. At the same time, the weights are shared within the NPU, and only the Ni weights are read
from the parameters buffer and sent to the corresponding NPU for calculation. In the subsequent
cycles of convolutional operation, not only data sharing but also data reuse based on inter-PE neuron
propagation was adopted. The specific process of data reuse based on inter-PE neuron propagation in
the convolutional operation is show in Figures 7 and 8.

We can see from Figure 7 that when stride was equal to 1, neuron reuse used only one row register
and one column register for 3 × 3 convolutional operations. The row and column shift registers in
the PE could be configured by the control signal to write neuron data directly to the output stage
registers while masking the first stage registers. When Stride was equal to 1, the data could be reused
for all cycles of the convolutional operation except for the first cycle. Specifically, (Kx − 1) × Ky row
propagations were performed, and (Ky − 1) column propagations were performed, where Kx and Ky

was the kernel size.

 
 

(a) (b) 

 
(c) 

Figure 7. The neuron propagation between PEs and data reuse during the convolutional operation
when stride = 1. (a) The mapping between neurons and PEs. (b) PE model, register operations, and
neuron propagation between PEs. (c) The neuron propagation and register operation of the neuron
between PEs in first six cycles during the convolutional operation.
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(a) 

 
(b) 

Figure 8. The neuron propagation between PEs and data reuse during the convolutional operation
when stride = 2. (a) The mapping between neurons and PEs. (b) The specific operation of the PE
registers and neuron propagation between PEs.

Based on the analysis of many current mainstream deep learning algorithms and the object
detection algorithm proposed in Section 2, the stride of convolutional operations generally did not
exceed 2. Therefore, in each set of shift registers in PE we set up to two serially connected 16-bit registers
to form a queue. We can see from Figure 8, for a convolutional operation with a stride equal to 2, only
four 16-bit registers were needed to achieve data reuse, which saved hardware resources compared to
the design of FIFO for six 16-bit storage cells in [40]. When stride was equal to 2, taking 3 × 3 convolution
as an example, data reuse could be performed in only four cycles. Fortunately, this situation was a
small percentage of the calculation in the algorithm.

Data sharing and reuse were mainly applied to the convolutional layer, the normalized layer, and
the fully connected layer. The remaining layers required a larger buffer read bandwidth because there
was no overlapping of data.

5. Experiments and Results

In order to evaluate the efficiency and accuracy of our proposed algorithm framework and
performance of the deep learning processor hardware architecture, we tested them separately by
several experiments and evaluation indicators.
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5.1. Experimental Settings

The evaluation experiment was divided into two parts. First, we used the publicly available
remote sensing image dataset to evaluate the performance of the proposed algorithm framework in an
open source deep learning framework. Then, we would implemented the hardware architecture of the
deep learning processor on the FPGA and test its processing performance. The dataset, experiment
environment, and test procedure used in the experiments are detailed below.

5.1.1. Dataset Description

We evaluated the performance of the proposed algorithm framework on the Northwestern
Polytechnical University very high resolution remote sensing image dataset with 10 classes objects
(NWPU VHR-10), which was constructed by Cheng, G. [1,25]. The resolution of these remote sensing
images is between 0.5–2 m, and the average size is about 600 × 800 [25,45]. This dataset contained in
total 800 VHR remote sensing images, which was divided into two parts, one was the positive image
set and the other was the negative image set. The positive image set contained 650 remote sensing
images, which were manually annotated with 757 airplanes, 302 ships, 655 storage tanks, 390 baseball
diamonds, 524 tennis courts, 150 basketball courts, 163 ground track fields, 224 harbors, 124 bridges,
and 477 vehicles. The negative image set was not used in this paper.

In our work, in order to obtain better detection results, we took the data augmentation on the
dataset by cropping, flipping, rotating, scaling, and chromatic spatial transformation. During training,
we randomly selected 20% as training set, 20% as validation set, and 60% as the test set.

5.1.2. Experiment Environment

To evaluate the performance of the proposed algorithm framework and the hardware architecture
of deep learning processor, we leveraged the popular open source Caffe framework [52] and FPGA.
For the evaluation of algorithm performance, we implemented the proposed algorithm framework on
the Caffe, which executed on a 64-bit Ubuntu 16.04 PC with Intel i7-7700 CPU, 16GB memory and
NVIDIA GeForce GTX1070Ti GPU. For the evaluation of the deep learning processor performance,
we described the proposed hardware architecture using Verilog HDL and implemented it on Xilinx
Zynq-XC7Z7100 FPGA.

5.1.3. Test Procedure

In the performance evaluation of the algorithm, we implemented the proposed CBFF-SSD
algorithm framework on the Caffe, and then trained it with GPU. We used the pre-trained
MobileNet-SSD model on VOC0712 [53] dataset for CBFF-SSD training, and then fine-tuned our
model on NWPU VHR-10 dataset. We set batch size to 8 for 416 × 416 input during training, and set
the learning rate at 10−3 for the first 60 k iterations, then decreased it to 10−4 for the next 40 k iterations,
and 10−5 for the last 20 k iterations. The momentum and weight decay were set to 0.9 and 0.0005
respectively by using stochastic gradient descent (SGD). The performance of the proposed algorithm
framework was compared with the newly trained CNN [25], rotation-invariant CNN (RICNN) [25],
R-P-Faster R-CNN [45], and SSD [33]. For a fair and accuracy comparison, the detection accuracy,
computational time, and the precision-recall curves (PRCs) were taken as the evaluation indexes.

For the evaluation of the performance of the hardware architecture of the deep learning processor,
the proposed hardware architecture was implemented on the Xilinx XC7Z100 FPGA. In the specific
implementation of the deep learning processor, we designed 16 NPUs to form the neural processing
engine, and designed 8 × 8 PEs in each NPU. The feature map buffer contained eight buffer blocks, each
contained eight banks, each bank with a capacity of 8 × 16 bit. The multiplier and adder in the processor
were implemented by embedded digital signal processing slice (DSPs) in the FPGA. The feature maps
buffer, parameter maps buffer, instruction buffer, and the look up table (LUT) in the activation function
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pipeline were all implemented by block random access memory (BRAM). The resource utilization of
the deep learning processor is shown in Table 2.

Table 2. Resource utilization of the deep learning processor.

Resource BRAM (18 k) DSP FF LUT

Available 1510 2020 554,800 277,400
Utilization 912 1152 156,238 136,892

Utilization (%) 60 57 28 49

The performance of the proposed hardware architecture of deep learning processor was compared
with CPU and GPU platform, and the other state-of-the-art processor based on FPGA implementations.
The technology, frequency, power, performance, power efficiency, and performance density were taken
as the evaluation indexes.

5.2. Evalutaion Indicators

In order to quantitatively evaluate the performance of the proposed algorithm framework and
the deep learning processor, the widely utilized evaluation indicators of average precision (AP),
mean average precision (mAP), average running time per image, and precision–recall curves (PRCs)
were adopted for the object detection algorithm framework, and the Giga operations per second
(GOP/s), power consumption, power efficiency, and performance density were adopted for the deep
learning processor.

5.2.1. Average Precision

The average precision (AP) is the average of the precision over the interval from recall = 0 and
recall =1, which is also equal to the area under the precision-recall curve. The higher the AP value,
the better the performance of the algorithm. The mean average precision (mAP) is another indicator,
which reflects the average of the average precision (AP) of all categories in the dataset. The AP and
mAP reflect the performance of the algorithm from the detection accuracy. The average running time
per image reflects the execution efficiency of the algorithm, but it depends on the hardware that carries
the algorithm.

5.2.2. Precision–Recall Curve

The precision and recall are two important indicators that evaluate the performance of the object
detection algorithm from other perspectives. They are formulated as follows:

Precision =
TP

TP + FP
. (10)

Recall =
TP

TP + FN
. (11)

The precision refers to the proportion of true positive (TP) in all data that are predicted to be
positive. The recall reflects to the proportion of data predicted to be true positive (TP) to all positive
data. When the area overlap between the predicted box and the ground-truth box exceeds a threshold
(e.g., 0.5), the detection map is considered to be a TP. Otherwise, the detection map is considered to
be a false positive (FP). In addition, the detection is considered to be a false negative (FN) when the
predicted boxes that overlap with ground-truth box but does not have the maximum overlap value.
The PRCs describes the relationship between the precision and recall, the larger the area under the
curve, the better the performance of the detector.
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5.2.3. Processor Performance

The performance evaluation indicators of the deep learning processor mainly include the Giga
operations per second (GOP/s), power consumption, power efficiency, and performance density.
It reflects the processing performance of the deep learning processor. The power consumption is
another indicator of the processor, which is particularly sensitive to embedded systems, especially for
the on-board information processing system in my work. The power efficiency is the ratio of processing
performance to power consumption, which reflects the processing performance of the same energy
consumption. The performance density is defined as the number of arithmetic operations performed
by one DSP slice in one cycle, which can better reflect the computing performance of deep learning
processors with different hardware architectures based on FPGA implementation [56].

5.3. Test Results of Object Detection Algorithm Framework

Detection examples of proposed CBFF-SSD algorithm framework on the NWPU VHR-10 dataset
are shown in Figure 9. The qualitative detection results of proposed CBFF-SSD algorithm framework
for the ten categories of aircraft, ship, storage tank, baseball diamond, tennis court, basketball court,
ground track field, harbor, bridge, and vehicle are shown in Figure 9, respectively. It can be seen from
Figure 9 that the proposed CBFF-SSD algorithm framework shows good detection performance both
for large objects such as storage tank, baseball diamond, tennis court, basketball court, ground track
field, harbor, and bridge, as well as small objects such as airplane, ship, and vehicle.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 9. Cont.
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(i) (j) 

Figure 9. Object detection examples on NWPU VHR-10 dataset with the proposed CBFF-SSD algorithm
framework. (a) Airplane; (b) ship; (c) storage tank; (d) baseball diamond; (e) tennis court; (f) basketball
court; (g) ground track field; (h) harbor; (i) bridge and (j) vehicle.

In Table 3 and Figure 10, we quantitatively compared the performance of five different object
detection algorithms by the AP value, mAP value, average running time per image, and PRCs,
respectively. In each row of Table 3, the bold number indicates the best test result. It can be seen
from the comparison of the test data of the five algorithms in Table 3 that the proposed algorithm
had an advantage in the average accuracy of the detection of six classes of objects such as airplane,
ship, tennis court, basketball court, ground track field, and vehicle. The detection accuracy of storage
tank was lower than the newly trained CNN and RICNN algorithms. The proposed algorithm was
slightly inferior to the SSD algorithm in the detection of tennis courts, harbor, and bridge. The average
precision of the test data also verified that the proposed CBFF-SSD algorithm framework was more
effective for detecting small objects such as an airplane, ship, and vehicle. In Table 3, it can be seen
that the proposed CBFF-SSD algorithm obtained the best mean AP value of 0.9142 among all the
object detection algorithms. It can also be seen from Table 3 that the proposed CBFF-SSD algorithm
framework detected an image with an average running time of 0.0133s, which was faster than other
algorithms. This is due to the efficient of regression-based SSD object detection framework and the
reduced computational complexity of lightweight MobileNet backbone network. In addition, it was
also inseparable from the support of high-performance GPU evaluation platform.

Table 3. Performance comparison of different algorithms.

Newly Trained
CNN [25]

RICNN [25]
R-P-Faster

R-CNN [45]
SSD [33] CBFF-SSD

Airplane 0.7014 0.8835 0.9060 0.9565 0.9693

Ship 0.6370 0.7734 0.7620 0.9356 0.9426

Storage tank 0.8433 0.8527 0.4030 0.6087 0.8095
Baseball diamond 0.8361 0.8812 0.9080 0.9939 0.9909

Tennis court 0.3546 0.4083 0.7970 0.8765 0.9150

Basketball court 0.4680 0.5845 0.7740 0.9200 0.9264

Ground track field 0.8120 0.8673 0.8800 0.9864 0.9882

Harbor 0.6228 0.6860 0.7620 0.9460 0.9159
Bridge 0.4538 0.6151 0.5750 0.9704 0.8968
Vehicle 0.4480 0.7110 0.6660 0.7447 0.7878

Mean AP 0.6177 0.7263 0.7430 0.8939 0.9142

Average running time
per image (second) 8.770 8.770 0.150 0.0217 0.0133

As can be seen form Figure 10, the proposed CBFF-SSD algorithm framework shows better
detection performance in most classes, especially in the classes of airplane, ship, tennis court, basketball
court, ground track field, and vehicle. However, it was slightly inferior to the other algorithms in the
classes of storage tank, tennis courts, harbor, and bridge.
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By jointly analyzing the AP values, mAP value, average running time per image, the recall rate,
and the PRCs, it can be seen that the proposed CBFF-SSD algorithm was superior to other algorithms
in most classes of detection accuracy and detection efficiency.

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 10. Cont.
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(i) (j) 

Figure 10. The precision–recall curves (PRCs) of the proposed method and other state-of-the-art
methods for 10 classes object in NWPU VHR-10 dataset. (a) Airplane; (b) ship; (c) storage tank;
(d) baseball diamond; (e) tennis court; (f) basketball court; (g) ground track field; (h) harbor; (i) bridge;
and (j) vehicle.

5.4. Performance Evaluation of the Deep Learning Processor

In order to evaluate the performance of the processor fairly, we chose the proposed CBFF-SSD
remote sensing object detection algorithm as a benchmark to compare the performance of the CPU,
GPU and our deep learning processor when executing the algorithm. The evaluation results of the
proposed processor, CPU, and GPU are shown in Table 3. The performance evaluation of CPU and
GPU were based on the open source Caffe framework [52], which could choose the platform (CPU
or GPU) to run. The CPU platform was Intel i7-7700 CPU @ 3.60 GHz with 16 GB DRAM. The GPU
platform was NVIDIA GTX1070Ti GPU with 8 GB memory. The thermal design power (TDP) values of
the CPU and GPU were 65 W and 180 W, separately. The total power of our deep learning processor
was 19.52 W according to the power report by the Vivado design suite. We can see from Table 4 that the
NVIDIA GTX1070Ti GPU had a great leading advantage in terms of computing performance, and its
throughput was 1452 GOP/s. Our deep learning processor achieved the best power efficiency among
all the platforms, reaching 23.20 GOP/s/W. The power efficient of our deep learning processor was
29.74 times that of CPU and 2.87 times that of GPU.

Table 4. Evaluation results on CPU, GPU, and our processor.

Platform CPU GPU FPGA

Vendor Intel i7-7700 NVIDIA GTX1070Ti Xilinx XC7Z100
Technology (nm) 14 16 28
Frequency (MHz) 3600 1607 200

Power (W) 65 180 19.52
Benchmarks CBFF-SSD CBFF-SSD CBFF-SSD
Latency (ms) 382.15 13.27 42.59

Performance (GOP/s) 51 1452 452.8
Power Efficiency (GOP/s/W) 0.78 8.07 23.20

In order to further evaluate the performance of the proposed deep learning processor, we compared
it with the state-of-the-art FPGA-based deep learning processor or algorithm accelerator. In Table 5,
we compared the performance of deep learning processors implemented on different FPGA platforms.
For the sake of fairness, VGG16 was also selected as a benchmark for evaluating. The performance
of the deep learning processor based on FPGA was closely related to the on-chip resources used.
Therefore, it was inaccurate to simply evaluate the processor performance by GOP/s. We introduced
the performance density indicator, which is related to the GOP/s, the on-chip DSPs resources used,
and the operating frequency [56]. Performance density can better reflect the computing performance
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of deep learning processors with different hardware architectures based on FPGA implementation.
Note that a MAC (multiply and accumulate) was counted as two operations. As can be seen from
Table 5, our processor operated at 200 MHz, which was higher than other implements. Our processor
used 1152 on-chip DSPs in the implementation, achieving 452.8 GOP/s processing performance, and its
performance density was 1.97 OP/DSP/cycle. Although our processor did not achieve the highest value
of performance term, its performance density was the best among all the processors compared [54–56].

Table 5. Comparisons with previous implementations.

Ref. [54] Ref. [55] Ref. [56] Ours

FPGA Chip Xilinx XC7Z045 Arria10 GX1150 Xilinx XC7VX690T Xilinx XC7Z100
Frequency (MHz) 150 150 120 200

Precision 16-bit fixed 8–16 fixed fixed 16-bit fixed
CNN Model VGG16 VGG16 VGG16 VGG16

DSPs 780 3036 3595 1152
Performance (GOP/s) 187.80 645.25 691.6 452.8
Performance Density

(OP/DSP/cycle) 1.61 1.42 1.60 1.97

6. Discussion

We adopted the NWPU VHR-10 dataset to train, validate, and test the proposed CBFF-SSD
algorithm framework, which achieved considerable results in the object detection of very high
resolution optical remote sensing images. In order to fully verify the effectiveness of the algorithm
proposed in this paper and the deep learning hardware architecture, we carried out experiments on
small object detection, large-scale remote sensing image object detection, and deep learning processor
performance comparison, and analyzed the experimental results.

6.1. Small Objects Detection Result and Analysis

The algorithm proposed in this paper was optimized on the SSD [33] algorithm. The superiority
in computational efficiency was verified by the average running time of each image in Table 3. In order
to show the effect of the proposed CBFF-SSD algorithm on small object detection, we compared
the detection of small objects of different classes by the two algorithm and the results are shown in
Figure 11.

By comparing the results of the two algorithms in Figure 11 on the detection of small objects such
as the storage tank, airplane, and ship, it can be seen that both SSD algorithm and CBFF-SSD algorithm
had achieved good results for the detection of storage tank. For small and dense objects detection such
as airplane and ships, the CBFF-SSD algorithm was superior to the SSD algorithm. The experimental
results verified the effectiveness of the feature fusion unit that adds context feature fusion to the SSD
algorithm structure.

(a) (b) 

Figure 11. Cont.
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(c) (d) 

  
(e) (f) 

Figure 11. Small object detection results comparison. (a,c,e) are the detection results of the SSD
algorithm; (b,d,f) are the detection results of our proposed CBFF-SSD algorithm. The red rectangle
indicates incorrect detection.

6.2. Large-Scale Remote Sensing Image Object Detection Results and Analysis

In order to show the overall detection effect, we performed inferences on large-scale remote
sensing images and the results are shown in Figure 12.

We tested the proposed algorithm and deep learning processor through large-scale remote sensing
images. After the remote sensing image was calculated by the processor, the coordinates, categories
and confidence were marked by the software. It should be noted that for the testing of large-scale
remote sensing images, we could not directly scale them as input images. We processed the original
image by dividing and setting the overlap rate of 10%, and adopted non-maximum suppression (NMS)
to process the detection results of the overlap part.

It can be seen from the experimental results that the proposed algorithm and deep learning
processor had a good object detection effect for large-scale remote sensing images. However, it can
be seen from the experimental results that illumination and shadow had a certain influence on the
object detection. Meanwhile, the detection results of objects that did not appear in the training set
were unsatisfactory (for example, helicopters without wings). These problems could be improved by
training a large number of samples.

6.3. Discussion on Processor Implementation and Model Compression Methods

In the current research, there were many implementations of deep learning processors, such as the
general-purpose processor, FPGAs, application specific integrated circuits (ASICs), etc. We compared
the different implementations in Table 6.

By comparison we could see that the ASIC-implemented deep learning processors had higher
operating frequency, better processing performance, and lower power consumption. This provided
us with ideas and directions for the next step in improving the performance of our proposed deep
learning processor.

124



Remote Sens. 2019, 11, 2376
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(c)  

  
(d)  (e)  

  
(f) (g) 

Figure 12. Detection results on large-scale remote sensing images. (a) Baseball diamond, ground track
filed, tennis court, and vehicle; (b) vehicle, and tennis court; (c) harbor, and ship; (d) storage tank, ship;
(e) baseball diamond, basketball court, and vehicle; (f) vehicle; and (g) airplane.

We were currently using a refined model way to compress model parameters and reduce the
amount of computation. It can be seen from Table 1 that the number of parameters of the proposed
CBFF-SSD algorithm framework was 56.09% of the SSD algorithm, and the calculation amount was
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only 17.56% of the SSD algorithm. There are also model compression methods such as weight pruning,
weight sparse, processing data quantification, and so on. In particular, the method of processing data
quantization can achieve better model compression without changing the model structure. This method
includes binary neural networks [57], quantized neural networks (n-bits) [58], integer CNNs [59], and so
on. Google’s TPU [42] uses 8-bit integer data for superior processing performance and negligible error
relative to floating-point production in the engineering applications. Our current model compression
strategy could be combined with strategies for processing data quantification to achieve better model
compression. This will be the direction of our next step in optimizing the algorithm model.

Table 6. Comparison of deep learning processors with different implementations.

Jetson AGX Xavier [60] TPU [42] ShiDianNao [40] Ours

Implementations ASIC (ARM+GPU) ASIC ASIC FPGA
Frequency (MHz) 1370 700 1000 200

Precision 8-bit integer 8-bit integer 16-bit fixed 16-bit fixed
Performance (GOP/s) 22,000 92,000 194 452.8

Power (W) 10/15/30 75 0.320 19.52

7. Conclusions

In this paper, an efficient context-based feature fusion SSD (CBFF-SSD) framework and hardware
architecture of deep learning processor with multi-processor clusters were proposed to object detection
in remote sensing images on space-borne or airborne. The design of the CBFF-SSD framework fully
considers small object detection, detection accuracy, and efficiency. The deep learning processor uses
multiple neural processing units (NPUs) composed of 2-D processing elements (PEs) to simultaneously
calculate multiple output feature maps. The parallel architecture, hierarchical on-chip storage
organization, and the register designed in the PE make the calculation of the processor more efficient.

A comparison test with five algorithms on the NWPU VHR-10 dataset shows that our algorithm
framework had an advantage in the average accuracy of the detection of six classes of objects, and
it was superior to other algorithms in terms of the mean AP value and average running timer per
image. The effectiveness of the proposed CBFF-SSD algorithm was verified by small object detection
experiments and large-scale remote sensing image object detection experiments. The proposed processor
implemented in FPGA was compared with CPU, GPU, and other FPGA-based deep learning processor.
In the comparative test of general-purpose processors, our deep learning processor achieved the
best power efficiency, which was 29.74 times that of CPU and 2.87 times that of GPU. In comparison
with the state-of-the-art FPGA-based deep learning processors, although our processor did not
achieve the highest value of performance term, its performance density was the best among all the
processors compared.

In the future, we would improve our algorithm frameworks in terms of identifying the classes of
the object and accuracy to realize more effective network for remote sensing images object detection.
We would use a strategy for processing data quantification to optimize the proposed algorithm
framework. Furthermore, we would implement the proposed hardware architecture of deep learning
processor in application specific integrated circuit (ASIC) way to achieve higher computing performance
and lower power consumption.
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Abstract: Traditional oil tank detection methods often use geometric shape information. However,
it is difficult to guarantee accurate detection under a variety of disturbance factors, especially
various colors, scale differences, and the shadows caused by view angle and illumination. Therefore,
we propose an unsupervised saliency model with Color Markov Chain (US-CMC) to deal with oil tank
detection. To avoid the influence of shadows, we make use of the CIE Lab space to construct a Color
Markov Chain and generate a bottom-up latent saliency map. Moreover, we build a circular feature
map based on a radial symmetric circle, which makes true targets to be strengthened for a subjective
detection task. Besides, we combine the latent saliency map with the circular feature map, which
can effectively suppress other salient regions except for oil tanks. Extensive experimental results
demonstrate that it outperforms 15 saliency models for remote sensing images (RSIs). Compared
with conventional oil tank detection methods, US-CMC has achieved better results and is also more
robust for view angle, shadow, and shape similarity problems.

Keywords: oil tank detection; unsupervised saliency model; Color Markov Chain; bottom-up and
top-down

1. Introduction

With the rapid development of remote sensing applications, the detection of valuable remote
sensing targets has become a hot issue in the field of remote sensing images (RSIs) and computer
vision. As an important energy storage device, oil tanks have become one of the key targets for remote
sensing reconnaissance or exploration systems.

In RSIs, an oil tank is usually round in shape and painted in white or other light colors,
the arrangement rule of which is very random. Due to many factors such as illumination, position,
viewing angle, and imaging quality, the edges of oil tanks become fuzzy, and their colors are not
uniform. They may also have a certain degree of geometric deformation. Moreover, the background of
large area RSIs becomes complicated and oil tank targets are relatively small. These complex situations
have brought great difficulties to the detection and identification of oil tanks. Therefore, how to
accurately and completely detect an oil tank is the most important question. Based on the above, in this
paper, we mainly resolve how to accurately and completely detect a tank target under the interference
of complex ground objects.

In recent years, many oil tank detection methods have been proposed, which include the template
matching method [1,2], geometric shape method [3–7], saliency detection method [8,9], and machine
learning method [10–12]. The template matching method requires lots of calculations. Furthermore,

Remote Sens. 2019, 11, 1089; doi:10.3390/rs11091089 www.mdpi.com/journal/remotesensing131



Remote Sens. 2019, 11, 1089

the template selection is susceptible to many factors such as scale and rotation. Ref [2] combines an
improved Hough transform algorithm with Canny and a fast template matching algorithm. Through
template matching to locate oil tanks, the detection rate is often low. Many conventional methods
for oil tank detection are based on geometric shape, such as the standard circular Hough transform
proposed by Duda [13]. Ref [3] employs Hough circle detection method with scale invariance to
improve efficiency of detection. Ref [4] proposes an improved fuzzy Hough transform, which avoids
the occurrence of peak diffusion and false peaks, thus improving the detection results. Han [5] uses a
depth-first map search strategy, grouping the detected circles according to the special distribution of
the oil tank and then eliminating false alarms. Ref [6] applies semantic analysis to retrieve the oil tank
area and combines this with the Hough transform to detect oil tanks in the optical satellite images.
However, this method is only used for specific images including big targets and is not universal. In case
of unsupervised detection, the Hough transform relies on the color gradient of the image and clear
object boundaries. When the background is very complicated, the detection result is not often satisfied.
In addition to this, the methods above pay more attention to the bottom characteristics of the oil
tank and almost ignore the influence of the background, resulting in a high probability of misses and
false detections. In terms of shape information, a new method of detecting oil tanks has appeared in
recent years. Ok [7] proposes a detection method based on circular radial symmetry by calculating the
boundary gradient direction and the center of the circle to obtain a very good detection result. But oil
tanks cannot be detected completely when oil tanks are small or have shadows, three-dimensional
structures, and low contrast. In the synthetic aperture radar(SAR) images, [1] detects the oil tanks by
using a template to combine circular shadows and high-brightness parts of the light. Ref [14] proposes
a method based on multidimensional feature vector clustering to search for oil tank targets in SAR
images. With regard to supervised methods, [10–12] use convolutional neural networks(CNNs) to
extract the depth feature of the oil tank in the network and then classified the final results. However,
CNN requires a large number of samples for training. To save training time and solve the problems
such as shadow, shape interference, and certain angle due to the latitude of the earth, we consider
using human visual perception to provide complete and accurate results for oil tank detection, so we
choose saliency methods.

In recent years, saliency has become a very popular area due to its ability to highlight salient
areas of the image faster and better, just to provide the interest candidate areas for object detection.
Traditional bottom-up saliency models, such as [15–20], utilize bottom feature mining. Most of these
models take advantage of the color contrast differences in the images, and the resulting resolution
is often low and only applies to natural images, not RSIs. Ref [21] obtains the saliency result by
calculating the reconstruction errors of sparse and dense graphs, then uses K-means clustering and an
object-biased Gaussian model to optimize the result. Ref [22–25] apply boundary connectivity to obtain
background information and use it to find out if super-pixels are connected to the background, then
use saliency optimization to get better results. The saliency methods above rely too much on the color
information of the boundary. When the target exists at the boundary, they often cause false detection.
As for top-down saliency models, in [26,27] for example, they add a bootstrap learning algorithm
and hierarchical cellular automata to detect the saliency of the image. With the popularity of deep
convolutional neural networks, many saliency detection methods have begun to use CNNs for feature
extraction. Some people also think that CNNs can provide a lot of help for saliency detection. Ref [28]
employs VGG-net to extract advanced features and combines high-level features with low-level
features for detection. By using two deep neural networks, [29] proposes a saliency detection model
that combines local estimation and global search. However, the saliency methods above only consider
natural images in terms of space and color. Although saliency models have been applied to the field
of RSIs, there is still a lack of reasonable use of saliency in oil tank detection, which often leads to a
large number of false and misdetections. Ref [8] makes use of a saliency model and Hough transform,
combined with support vector machine(SVM), for oil tank detection. But this method only works for
larger oil tanks, and its detection rate is relatively low. Ref [9] used a saliency region detection method
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with an Otsu threshold to detect oil tanks; however, the lack of shape guidance led to the omission of
oil tanks that are not salient in the RSI.

Though the methods above use saliency to detect oil tanks, they have missed some of the oil tanks
and only have good results under certain conditions. At present, oil tank detection still has many
problems, such as when oil tanks present three-dimensional structures, similar shape interference,
and shadow interference, and it is impossible to accurately and effectively detect the oil tank area.
To solve above problems, we propose an unsupervised saliency model with Color Markov Chain
(US-CMC). US-CMC not only utilizes bottom-up low-level color features that can highlight the oil tank
areas and eliminate the interference of shadows, but also introduces top-down characteristics of the
shape to the saliency model, which can effectively eliminate surrounding similar colors or view angle
interference. By fusing bottom-up and top-down feature cues, US-CMC has better performance and
robustness than other oil tank detection methods.

The main contributions of our approach are summarized in three aspects below:

1. Aiming at the difficult problems of oil tank detection, we propose an unsupervised saliency model
with Color Markov Chain (US-CMC). US-CMC makes use of the CIE Lab space to construct a
Color Markov Chain for effectively reducing the influence of the shadow. Moreover, the constraint
matrix is constructed to suppress the interference of non-oil-tank circle areas. By using the linear
interpolation process, the oil tank targets with variable view angles can also be detected completely.

2. Different from the previous methods using circular features, US-CMC transforms circular radial
symmetry features into a circular gradient map and then generates a series of confidence values
for the circular region.

3. We employ an unsupervised framework, which can avoid the extra time cost in large sample
training. Furthermore, US-CMC can restrain other salient regions apart from oil tanks by combining
bottom-up latent saliency maps with top-down circular feature maps. Consequently, our model can
not only quickly locate the oil tank targets, but can also maintain the detection accuracy.

2. Proposed Method

2.1. Bottom-Up Latent Saliency Map Based on Color Markov Chain

As shown in Figure 1, the US-CMC model is mainly divided into the following steps. Firstly, we
use the SLIC [30] method to segment the image into super-pixels, and then we use a Color Markov
Chain to obtain a coarse saliency region. Then we calculate the color and position matrix of super-pixel
blocks and use them to obtain the saliency image. Secondly, we use the radial symmetry method to get
information about the circular shapes in the image. Thirdly, The final grayscale image is obtained by
Bayesian integration. Finally, the binary detection result is obtained by GrabCut and post-processing.
Next, we will introduce each step in subsections.

Because oil tanks are distributed targets, just like the absorption nodes in the Absorbing Markov
Chain, each oil tank can be regarded as an absorbed node, and the super-pixels along the image side
are regarded as the start nodes to absorb the entire super-pixels. Thus, we use Absorbing Markov
Chain to help us with oil tank detection. a Markov chain is a relatively common and familiar random
process. A Markov chain containing an absorption state is called an Absorbing Markov Chain. Given
a series of data S = {s1, s2, . . . , sl}, the process starts from one of these states and moves continuously
from one state to another. If the chain is currently in state si, the probability of moving to state sj is
called the transition probability, represented by Pij. Therefore, the Markov chain can be determined
by the transfer matrix P. For any Absorbing Markov Chain with k absorption states and m transient
states, the canonical form of the above transition matrix P can be obtained as follows:

P =

[
Q R
0 I

]
, (1)
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where Q is the probability transfer matrix of the transient state, the element in R means the transition
probability between the transition and the absorption state, and I is the identity matrix of k × k. We can
get another matrix based on the matrix Q:

N = (I − Q)−1. (2)

The element Nij in N gives the expected number of times that the process changes to the transient
state sj if it starts at the transient state si. The final absorption probability matrix is as follows:

B = NR. (3)

In the past, the saliency model based on an Absorbing Markov Chain used the absorption time to
determine the saliency value. What we propose is a Color Markov Chain model that judges the saliency
value based on the contrast of the image in CIE Lab color. The Color Markov Chain is a random
walk model that is used to detect saliency regions in the image. Due to the segment representation
by the super-pixel method, we can identify the image as G(V, E). The vertex V is represented by a
super-pixel, and E is a set of undirected edges containing the connectivity between two super-pixels.
The edge connecting the two nodes i and j is denoted as eij, and wij represents the weight of the edge
eij based on the similarity between the features defined on the nodes i and j. We use the CIE Lab color
space to define the color characteristics of each super-pixel node because the CIE Lab color model
describes how the color is displayed based on a human’s perception of color. The weight relationship
expression between adjacent nodes i and j is:

wij = exp(−
‖ci − cj‖2

2σ2 ). (4)

Figure 1. Flowchart of the unsupervised saliency model with Color Markov Chain (US-CMC) method.
First, a bottom-up latent saliency model combined with a circle matrix was applied to get the latent map.
At the same time, the radial symmetry method was used to get the circular feature map then combine
both maps by using Bayesian integration. Then, after One Cut for GrabCut and post-processing,
the final result was obtained.
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We take all three channels of the CIE Lab color in the super-pixel block as the feature quantity
of the two nodes i and j, which are represented by ci and cj, and ‖ci − cj‖2 = (ciL − cjL)

2 + (cia −
cja)

2 + (cib − cjb)
2, where ciL , cia , and cib are the values of three channels in ci. cjL , cja , and cjb are the

values of three channels in cj. The super-pixel result is shown in Figure 2b. σ is a constant used to
control the weight; generally we set σ2 to 0.05. Then we get the affinity matrix W = [wij]mm of the
undirected graph G(V, E). Then we use the edge of the selected image as the absorption node to
start the absorb process. At the same time, another affinity matrix T = [tij]mk between the transient
node i and the absorption node j is established, where tij represents the correlation between nodes

i and j in the image. tij = exp(−‖ci−cj‖2

2σ2 ). The σ is the same as in (4). We find the final correlation
matrix D = {d11, d22, . . . , dmm}, where dii = ∑m

j=1 wij + ∑k
j=1 tij. Then make Q = D−1W, R = D−1T.

The final absorption probability matrix B is obtained according to the above formula. Then define the
saliency of each node as the dissimilarity with the image boundary. For the transient state si in the
Color Markov Chain, the probability bij absorbed by the absorption state sj actually represents the
relationship between them. For each node i in the image, we sort the absorption probability values bij
of all boundary nodes j(j ∈ {1, 2, . . . , k}) in the image boundary in descending order:

bi1 ≥ bi2 ≥ · · · ≥ bik. (5)

We take the first r column of bij, r is the number of columns in bi (where 1
2 k ≤ r ≤ k), which is

bg(i) = ∑r
j=1 bij to represent the similarity between node i and the boundary node. And we present

f g(i) = ∑k
j=r bij as the dissimilarity between node i and boundary nodes. So we get the final saliency

value for each node:
Markov(i) = e(1−bg(i)) · f g(i). (6)

In this way, we get a coarse saliency map based on the Color Markov Chain, which is the
foreground probability distribution map. The results are shown in Figure 2d. Although it is not very
accurate, it suppresses most of the background from the map. It also removes some of the shadow
interference. Next we will use the color, position, and shape information of the map to construct a
function to extract the features and then will highlight the salient areas we are really interested in.

Figure 2. An example of the process of a Color Markov Chain. (a) is the input image, (b) is the
super-pixel segmentation, (c) is the result after averaging, (d) is the result of the Color Markov Chain,
and (e) is the ground truth.

When the image is divided by super-pixel, the image is labeled as S = {s1, s2, . . . , sn}, where n
represents the number of super-pixels. In the previous process of the Color Markov Chain, we have
formed an undirected graph G(V, E), so that we can calculate the Euclidean distance of each super-pixel
in the CIE Lab color space as the weight value of the edges. We define it as Labij(si, sj). Then,
the Euclidean distance dist(si, sj) between the center points of the super-pixel blocks si and sj is
obtained, and the weight formula of the Euclidean distance is proposed:

wdist(si, sj) = exp(−
dist2(si, sj)

2σ2
dist

). (7)
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We set σdist to 0.25 according to the convention. Finally, we can get the contrast determination
formula between two super-pixel blocks:

Ctr(si, sj) = Labij(si, sj)wdist(si, sj)dcir(si, sj), (8)

where dcir(si, sj) is the circle matrix, which is the Euclidean distance of the average gray value in a
super-pixel block between the super-pixels si and sj in the circular feature map. The Formula (8) is
also the basic formula for contrast optimization of the Color Markov Chain. In this paper, considering
the characteristics of remote sensing object detection and the shape characteristics of the oil tank,
we should also combine shape features for processing when we optimize the contrast of the Color
Markov Chain. For shape features, we extract the circular features by calculating the radial symmetry
of the gradients in the image. The method of radial symmetry will be explained in the next section.
We integrate the result of the contrast determination formula into the Color Markov Chain as follows:

Sal(si, sj) = dmarkov(si, sj) · (1 − exp(−Ctr(si, sj))), (9)

where dmarkov(si, sj) is the Euclidean distance of saliency values between each super-pixel block in
Markov(si). Then we sum Sal(si, sj) to get the saliency value of each super-pixel block itself:

FinalSal(s) =
n

∑
i=1

Sal(s, si). (10)

The relevant results are shown in Figure 3c. The calculation of the saliency map in the above
formula simply uses the method of multiplication and weighted summation, combining various
low-level features and clues, and then optimizes the results of the Color Markov Chain. However,
this kind of optimization is not enough, obviously. Through experiments, we find that some of the
background areas are still not removed. Furthermore, we will optimize the results of the saliency map.

Figure 3. (a) is the input image, (b) is the result of Color Markov Chain, and (c) is the result after
contrast constraint.

2.2. Saliency Map Optimization and Background Suppression

Since the background of the original input image is very complicated, there is a significant
disadvantage in some saliency maps where the background of the saliency map is not sufficiently
suppressed. To solve this problem, we propose the following two methods. First, we group the nodes
of the input image into K clusters by a K-means clustering algorithm in the CIE Lab color space,
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and then the saliency of each node can be corrected by simple interpolation of nodes in the same
cluster. The saliency optimization of the node si can be implemented by the following formula:

S f (si) = α · FinalSal(si) + (1 − α)
∑m

j=1 Dij · FinalSal(sj)

∑m
j=1 Dij

, (11)

where m is the number of nodes in the cluster. Dij = e−
‖ci−cj‖2

2σI , and σI is the sum of the variances in
each feature dimension of the CIE Lab space. The term on the left side of Equation (11) represents
the saliency of the initial optimization of the node si, while the FinalSal(si) and FinalSal(sj) on the
right side of the formula are the original saliency results of the nodes si and sj, respectively. The above
parameter α is set to 0.5 according to experience.

Although the above interpolation method effectively highlights the foreground of some saliency
maps, some parts are still not well suppressed. To further solve this problem, we introduce a simple
piecewise function to remove the part that is not saliency, or large, error regions. The function is
defined as:

f (si) =

⎧⎨⎩si, si > θ
s3

i
θ2 , si ≤ θ

, (12)

where θ is the threshold that defines the saliency range, set to 0.6 according to experience, and si is the
super-pixel. This way we get the final image of the latent map, as shown in Figure 4c.

Figure 4. (a) is the input image, (b) is the result after the above saliency model, and (c) is the latent map.

2.3. Top-Down Circular Feature Map Based on Circular Confidence Value

Oil tanks are often constructed of metal and are cylindrical in shape. In RSIs, the shape of the
oil tank often appears round. Therefore, the result of target detection can be obtained by detecting
circle areas in the image. However, the satellite may be at a certain angle to the surface of the earth.
Especially in some areas with high latitudes, the final result of detection is probably not a regular circle.
Therefore, the traditional Hough transform circle detection method is not able to detect most of the oil
tanks that appear and even has a large number of misdetection problems. Aiming at this problem, we
propose a circle detection method based on improved fast radial symmetric transformation, which can
be applied to the above situation and has strong robustness. Though target detection only based on
shape is not enough, it gives us a new way to think about the problem. The process is as follows:

Given a radius interval R, let the radius of oil tank r′ ∈ R. Then, after obtaining the gradient
of the image using Sobel transform, we can get the magnitude, which is called the “impact”, caused
by a series of radii r and also calculate the direction of the gradient to determine whether the radius
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“fits” the gradient to form a circle. In theory, if the pixel is located just at the boundary of the circle
with radius r′, then at r′ ∈ R, the effect of these pixels will be enriched at the center of the circle so
that the approximate center position can be obtained. We can get the confidence value Valcon of each
center point by adding all the magnitudes together. Then we find the point with max(Valcon) and use
this point as a center to form a circle with r′ as its radius. We set the confidence value of the center as
the gray value of the entire circle after being normalized. Then we can obtain the average distance
dcir(si, sj) between the super-pixels si and sj in the circular feature map. Figure 5 shows the circular
feature map generation process.

Figure 5. (a) is the input image, (b) is the center point map, (c) is the candidate map, and (d) is the final
circular feature map.

2.4. Fusion of Color Saliency Map and Circular Feature Map

After extracting the shape and color features of the target, we need to integrate these two different
modules to achieve a better result. Therefore, we introduce a Bayesian integration function to fuse the
results of the above two modules.

We set the latent map to S1 and the result of the circular feature map to S2. We first define one
of the pictures Si(i = {1, 2}) as the foreground map and the other picture Sj(j �= i, j = {1, 2}) as the
background map. We calculate the possibilities of both so that we can integrate more information from
different saliency maps. First, we use the average gray value of the image as the threshold and then
we divide the graph Si by it. The images are divided into Forei and Backi , respectively, where Forei is
the foreground area and Backi is the background area. In each region, we calculate the likelihood by
comparing the foreground and background regions of Sj and Si at pixel z. The formula is as follows:

p(Sj(z) | Forei) =
NbForei(Sj(z))

NForei

, (13)

p(Sj(z) | Backi) =
NbBacki(Sj(z))

NBacki

, (14)

where NForei is the number of nonzero pixels of the foreground region in the image i, and NbForei(Sj(z))

represents the number of pixels whose saliency regions fall into the foreground bin bForei(Sj(z)),
which contains Sj(z). Similarly, NBacki

represents the number of pixels of the background area i.
The formula for calculating the posterior probability using Si is:

p(Forei | Sj(z)) =
Si(z)p(Sj(z) | Forei)

Si(z)p(Sj(z) | Forei) + (1 − Si(z))p(Sj(z) | Backi)
. (15)

We can also use the formula in (16) to get another posterior probability using Sj.

p(Forej | Si(z)) =
Sj(z)p(Si(z) | Forej)

Sj(z)p(Si(z) | Forej) + (1 − Sj(z))p(Si(z) | Backj)
. (16)
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We then use these two posterior probabilities to calculate the final saliency map, which is
as follows:

Smap(S1(z), S2(z)) = p(Fore1 | S2(z)) + p(Fore2 | S1(z)). (17)

We should notice that Bayesian integration enforces the two graphs as prior and they cooperate
with each other in an efficient manner; then the final result uniformly highlights the salient objects. So
we add the two images together so that we can highlight the foreground of the two images at the same
time. But the final result we need to get is a binary map. In the current situation, it is difficult to find
a suitable threshold to convert the final saliency map into a binary map. The idea of setting a fixed
threshold is too simple and easy to get false detections. So we introduce the One Cut for GrabCut [31]
method to implement the binarization process. It is an improved version of GraphCut that sets an
energy minimization function to calculate the threshold in each image, while also considering the
completeness of the segmentation results. Minimized energy can be obtained by the following formula:

Esal(S) = ∑
p∈Ω

m(Smap)− Smap(z) · binz + |δS| − Penalty, (18)

where Smap is the saliency map we get, and Smap(z) refers to the saliency value of pixel z. binz indicates
whether this pixel belongs to the foreground, 1 means the foreground, and 0 means the background.
Penalty = ‖θs − θ s̄‖ is the background and foreground overlap penalty, θs and θ s̄ are histograms inside
object S and background S̄, respectively, and |δS| is a smooth term. With One Cut, we can get the
binarized form of each map.

2.5. Post-Processing

The post-processing part was introduced because we have obtained the binary map results for the
oil tank area, but the result we need to get is a more accurate one. Because Grabcut brings problems
such as some small noises, we extract the area information and shape information from all of the noises
separately and compare it with the area of the oil tank, then propose a method to remove the noise.
We first remove the regions with less than 40 pixels and then solve the circularity for all the remaining
connected domain. The circularity formula is as follows:

τ =
4π · Area(i)

PM2(i)
, (19)

where Area(i) is the area of the connected domain i, and PM(i) is the perimeter of it. Then we will
get the circularity τ and can remove all the parts that do not conform to the circle, and the remaining
regions we see as the final oil tank area, so we get the final result.

3. Experimental Results And Discussion

We created a dataset for detection that is comprised of a total of 240 multi-resolution images from
Google Earth. The resolution of the test images is 400 × 400. All test images contain at least two or
more oil tanks for testing. The full dataset has a total of more than 2200 oil tanks of various colors and
luminances. The scales of the oil tanks are from 7 m to 40 m. In addition, we manually mark all of the
ground truth to ensure that the ground truth fits perfectly with the oil tank area. At the same time,
in order to make the detection task more difficult, we also added nearly 35 test images with similar
color and shape interferences for detection. Here is our experiment:

3.1. Parameter Selection

Before comparing the saliency models and oil tank detection methods, we need to use experiments
to verify the parameters. For all of the parameters such as σ2, σdist, α, and θ in our text, we supplanted
the parameter analysis through a P–R curve to verify the performance of each parameter on our results.
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As shown in Figure 6, the change of four parameters does not have a significant effect on the P–R
curve. Therefore, these four parameter selections are appropriate.

Figure 6. The P–R curve result of four parameters.

3.2. Comparison with Saliency Models

In order to highlight the superiority of our method, we first compare the US-CMC model with 15
currently advanced saliency models, namely wCtr [22], SF [20], GS [24], MR [23], BL [26], DSR [21],
FT [17], GC [32], HS [33], RCRR [34], AMC [35], MST [25], LPS [36], SCA [27], Itti [15]. We will use
three indicators, mean absolute error(MAE), precision–recall curve(P–R Curve), and F-measure to
evaluate the advantages and disadvantages of each model. The mean absolute error formula and the
F-measure formula are as follows:

MAE(X, h) =
1

W × H

W

∑
x=1

H

∑
y=1

|S(x, y)− GT(x, y)| , (20)

Fmeasure =
(1 + β2)× Precision × Recall

β2Precision + Recall
, (21)

When the test results are evaluated using the F-Measure in this paper, the value of β2 is set to 0.3.
Since the P–R curve needs to ensure that the final image is a grayscale image, we compare the Smap

results with other saliency models.
As shown in Table 1, Figures 7 and 8, our model is the best of all the saliency detection models and

far better than all of the others. This is mainly due to the following reasons: Firstly, previous saliency
models are generally designed to solve the problem of natural images. For RSIs, due to their complex
background information, saliency models can only judge whether the region is salient by relying on
the color information and the position of the parts of interest in the image. Although the color of the
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oil tank is mostly light, it is still easy to misjudge just according to color information because other
light-colored natural objects or buildings are also regarded as oil tanks. At the same time, it is difficult
to accurately identify the oil tank because of the similarity in color and texture between oil tank and
background. Since it combines a bottom-up low-level feature with a top-down circular feature map,
the US-CMC model can be more accurate in identifying the oil tank target. Therefore, our model has
better detection performance for oil tanks than the traditional saliency models.

Figure 7. The result of the P–R curve and F-measure in the experiment.

Table 1. The MAE result.

Ours wCtr [22] SF [20] GS [24] MR [23]

0.009276 0.043808 0.028008 0.116892 0.093963

BL [26] DSR [21] FT [17] GC [32] HS [33]

0.166116 0.082601 0.093677 0.106212 0.189343

RCRR [34] AMC [35] MST [25] LPS [36] SCA [27]

0.089126 0.082153 0.078306 0.066183 0.109985
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Figure 8. Comparison of results with other saliency models.

3.3. Comparison with Oil Tank Detection Methods

After comparing it with the saliency detection models, in order to verify the effectiveness of our
proposed method, we also need to compare it with the current advanced oil tank detection methods.
We compare two different methods of oil tank detection. The first [10] is a supervised algorithm
combined with CNN feature extractor and SVM classifier, and the other [7] is an oil tank detection
method based entirely on geographic shape information. We randomly select 190 of the 240 images
to train the CNN network, and then use the remaining images to compare the effects of the three oil
tank detection methods. To evaluate the test results, we define the result of true positives when the
Intersection over Union(IoU) value is greater than 0.7 and define false positives as the result of IoU
values less than 0.3. This will prevent some unsuccessfully detected oil tanks from being labeled with
both false and missed inspections. The test results are shown in Table 2.

In Table 2, we can see that our method is the best in terms of both the precision rate and the recall
rate compared with the other state-of-art detection methods. Although Zhang’s method combines
feature extraction and supervised learning with CNN, it requires a large dataset as training set,
which undoubtedly consumes human and material resources for marking ground truth and lacks
efficiency. In the face of a small training dataset, there is no superiority of the supervised algorithm.
The excellent performance of our method shows that even without effective learning, there are still very
good performances. As shown in Figure 9c, Ok’s method relies only on the circle shape information
obtained from the gradient of the image. It has its own limitations. When the oil tank has a circular
shadow, or other non-oil tank areas have a circular gradient, it is easy to lead to false detection. At the
same time, many external factors such as illumination will change the gradient of the oil tank contour,
and because of its lack of guidance and assistance from other features, they always misjudge the actual
size of the oil tank, resulting in false detection results.
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Figure 9. Comparison of final test results. Green is the positive detection area, blue is the false detection
area, and red is the missed detection area.

Table 2. IoU test results for three oil tank detection methods.

Methods Precision Recall F-Measure

Ours 0.928 0.946 0.932
Ok’s method [7] 0.923 0.909 0.920

Zhang’s method [10] 0.898 0.710 0.846

Compared with the radial symmetry detection method separately, we find that our method
performs better than the radial oil tank detection method proposed by Ok in the following three cases.
Figures 10–12 show that our method can overcome these influences well when the oil tank is at a
certain angle, or when there are certain non-tank circular zone disturbances and shadow problems
caused by the sunlight.

Firstly, our method is based on a US-CMC model. In the process of the Color Markov Chain,
due to the color difference with the main part of the oil tank and the similarity with the background,
shadows are more easily absorbed. Therefore, the saliency value of a shadow is generally low, while the
saliency value of an oil tank’s body is relatively high. With further color constraints, the shadow has
been largely eliminated. So this method is robust to the presence of shadows. At the same time, when
the oil tank is at a certain angle to the satellite, according to Figure 10, we can see that the body part of
the oil tank can be detected well after color interpolation. Therefore, even if the oil tank has a certain
angle due to the latitude of the Earth, the oil tank can still be detected completely, while using only
one single feature such as the circle is unachievable. Finally, when similar shapes occur, as shown in
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the second column of Figure 11, there is a roundabout in the input image, which is identified as the oil
tank by Ok’s method. However, our method determines this area to be background by comparing
with the surrounding area. The input image in the fourth column has an incomplete ring next to the oil
tank, which is identified as a true target by Ok’s method. It is obvious that there are great limitations
in oil tank detection by relying only on shape detection. Our method can solve such limitations and
improve the accuracy of the whole process of detection.

Figure 10. Comparison of two detection methods when the oil tank is at a certain angle. (a) is the input
image, (b) is the method from Ok, (c) is our method.

Figure 11. Comparison of two detection methods when similar shapes occur. (a) is the input image,
(b) is the method from Ok, (c) is our method.
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Figure 12. Comparison of two detection methods when shadow interference occurs. (a) is the input
image, (b) is the method from Ok, (c) is our method.

3.4. Robustness for Our Methods

In this section, we will show that our method is good not only when the oil tank is at a certain
angle, or has certain non-tank circular zone disturbances and shadow problems caused by the sunlight,
but also has excellent results when oil tanks are in misty and dusty condition, as well as in higher
resolution visible light remote sensing images.

The principle of our algorithm is based on color, gradient, and shape information so that the
target existing in the image can be detected. In addition to against disturbances caused by shadows
and sensor inclination angle, our method also works well in misty and dusty environments. From the
result shown in Figure 13, it can be seen that our method is also excellent. In terms of high resolution,
our method can also achieve better results and is robust in high-resolution remote sensing images.
The results can be seen in Figure 14. The input images in Figure 14 are all four times bigger than the
images in the test dataset.

Figure 13. Our method works in misty and dusty condition. (a) is the input image, (b) is the ground
truth, (c) is our method.
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Figure 14. Our methods works in high resolution images. (a) is the input image, (b) is the ground truth,
(c) is our method.

4. Conclusions

According to the characteristics of oil tanks in RSIs, in this paper, we propose an unsupervised oil
tank detection method that takes advantage of low-level saliency to highlight latent target areas and
introduce a circular feature map to the saliency model to suppress the background. Compared with
other saliency models, our model is designed for oil tanks, and can better eliminate the interference
of color and texture in similar areas. Our method is also simpler and faster than the learning-based
detection method because it does not need sample collection or a training process. Compared with
the geometry-based detection method, we incorporate shape information into the saliency model,
both using color features to extract the potential target regions and shape information to eliminate the
interference of similar regions. Consequently, the US-CMC has outstanding performance in terms of
precision rate and recall rate under the conditions with shadows, view angle, and shape interference.
Next, we plan to apply the Markov chain to higher-resolution remote sensing images and try to use
shape information to absorb and reconstruct the super-pixel blocks in order to obtain better results.
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Abstract: Vehicle detection from remote sensing images plays a significant role in transportation
related applications. However, the scale variations, orientation variations, illumination variations,
and partial occlusions of vehicles, as well as the image qualities, bring great challenges for accurate
vehicle detection. In this paper, we present an affine-function transformation-based object matching
framework for vehicle detection from unmanned aerial vehicle (UAV) images. First, meaningful
and non-redundant patches are generated through a superpixel segmentation strategy. Then, the
affine-function transformation-based object matching framework is applied to a vehicle template
and each of the patches for vehicle existence estimation. Finally, vehicles are detected and located
after matching cost thresholding, vehicle location estimation, and multiple response elimination.
Quantitative evaluations on two UAV image datasets show that the proposed method achieves
an average completeness, correctness, quality, and F1-measure of 0.909, 0.969, 0.883, and 0.938,
respectively. Comparative studies also demonstrate that the proposed method achieves compatible
performance with the Faster R-CNN and outperforms the other eight existing methods in accurately
detecting vehicles of various conditions.

Keywords: vehicle detection; object matching; superpixel segmentation; unmanned aerial vehicle;
remote sensing imagery

1. Introduction

Periodically and effectively monitoring traffic conditions is greatly important for transportation
management department to conduct traffic controls and make road plans. Accurate traffic monitoring
can help to avoid potential traffic disasters and alleviate traffic congestions. Traditionally, traffic
monitoring is basically performed through on-site surveillances of traffic police or using traffic cameras
installed along roads. To monitor the traffic condition over a large area, the monitoring data from
different observation sites should be collected manually or digitally and further merged to carry
out post analysis. Therefore, such means are labor-intensive and inefficient to some extent. With
the advent and rapid advance of remote sensing techniques, the acquisition of high-resolution and
rich-detail remote sensing images can be easily and quickly accomplished using satellite sensors and
unmanned aerial vehicles (UAV). Satellite images have a large perspective and can cover an extensive
area of interest, as well as collecting a series of data over a long period of time [1]. Comparatively,
benefiting from high portability, low-cost platform, and flying flexibility, UAV systems can quickly
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reach the surveillance area and capture images with different levels of details [2]. Thus, due to the
advantages of high convenience, low cost, and abundant information, remote sensing sensors and their
resultant images have been applied to various traffic-related applications. Consequently, extensive
studies have also been conducted for information extraction and interpretation from remote sensing
images, such as road segmentation [3,4], road feature extraction [5,6], vehicle detection [7,8], and traffic
monitoring [9,10].

Among the wide range of traffic-related applications, vehicle detection plays a significant role in
intelligent transportation and has attracted increasing attention in recent years. The vehicle detection
results can be used for controlling traffic flows, planning road networks, estimating parking situations,
tracking specific targets, and analyzing economic levels of cities and living standards of citizens.
Consequently, a great effort has been paid for vehicle detection using remote sensing images and a great
number of achievements have been made in the literature. The existing approaches for vehicle detection
from remote sensing images can be simply categorized into implicit model-based methods [11,12] and
explicit model-based methods [13,14]. Implicit model-based methods typically characterize intensity
or texture features in the vicinity of individual pixels or pixel clusters. The detection of vehicles is
performed by evaluating the features surrounding the target region. In contrast, explicit model-based
methods usually depict a vehicle using a box, a wireframe representation, or a morphological model.
The detection of vehicles is performed by a top-down matching scheme or a classification-oriented
strategy. However, automated and accurate detection and localization of vehicles from remote sensing
images is still facing great challenges because of orientation variations, within-class dissimilarities and
between-class similarities in texture and geometry, partial occlusions caused by trees and buildings,
and illumination condition variations.

To explore distinct feature representations of vehicles or its local parts towards vehicle detection, a
great number of strategies have been proposed in the literature. Niu [15] developed a semi-automatic
framework to detect vehicles based on a geometric deformable model. By minimizing the objective
function that connects the optimization problem with the propagation of regular curves, the geometric
deformable model obtained a promising vehicle detection rate. Kembhavi et al. [11] combined the
histograms of oriented gradients (HOG) features, color probability maps, and pairs of pixels to
capture the statistical and structural features of vehicles and their surroundings. Vehicle detection
was performed through partial least squares regression. To achieve invariant feature characterization,
Bag-of-Words model was explored and used by Zhou et al. [8] to detect vehicles. In this method, local
steering kernel descriptor and orientation aware scanning were introduced to localize vehicle positions
in the image. Similarly, orientation aware vehicle detection was also designed by Zhou et al. [16].
Wan et al. [17] presented a cascaded vehicle detection framework consisting of affine invariant
interest point detection, bag-of-words feature encoding, and large-margin dimensionality reduction.
Xu et al. [18] proposed to detect vehicles using a hybrid scheme integrating the Viola-Jones and linear
support vector machines (SVM) with HOG features. Later on, to solve the sensitivity of Viola-Jones to
in-plane rotations of objects, an enhanced version of Viola-Jones through road orientation adjustment
was presented by Xu et al. [19] for vehicle detection. A segment-before-detect pipeline was suggested
by Audebert et al. [20] to detect vehicles through semantic segmentation of images. In this method,
a semantic map was constructed to segment vehicle instances by extracting connected components.
By using integral channel features in a soft-cascade structure, Liu and Mattyus [21] designed a fast
binary detector to conduct vehicle detection. The output of the binary detector was further fed into a
multiclass classifier for orientation and type analysis. Recently, disparity maps [22], hard example
mining [23], catalog-based approach [24], and expert features [25] have also been studied for vehicle
detection from remote sensing images.

To tackle occlusions and complicated scenarios towards accurate vehicle detection, machine
learning based methods and classification-based methods have been intensively exploited in recent
years. Generally, such methods use extracted features to train different classifiers, which convert the
vehicle detection task into a binary classification problem. Cao et al. [26] proposed to detect vehicles
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using exemplar-SVMs classifiers with a hard negative example selection scheme. The features used for
training the classifiers were extracted through a deep convolutional neural network. To handle the
difficulty of labelling sufficient training instances, weakly supervised, multi-instance discriminative
learning and transfer learning were also explored by Cao et al. [7,27]. In their implementations, weakly
labelled instances and across domain samples were selected for SVM classifiers training. Similarly,
SVM classifier trained with deep features was also adopted by Ammour et al. [28] to detect vehicles.
Sparse representation was introduced to assist high-performance classifier construction towards
vehicle detection [13,29]. The feature encoded dictionaries created through sparse representation were
applied to distinct training sample selection. Considering both local and global structures of vehicles,
Zhang et al. [30] trained a part detector and a root detector using front windshield samples and entire
vehicle samples, respectively. The root detector localized a potential vehicle candidate, while the part
detector scanned within the candidate to remove false alarms. To well handle illumination, rotation, and
scale variations, Bazi and Melgani [31] designed a convolutional SVM network. The convolutional SVM
network was constructed based on a set of alternating convolutional and reduction layers that were
terminated by a linear SVM classification layer. Elmikaty and Stathaki [32] proposed a combination of
two subsystems, namely window-evaluation and window-classification systems, to achieve robust
detection of vehicles. The window-evaluation subsystem used a Gaussian-mixture-model classifier to
extract regions of interest, whereas the window-classification subsystem adopted an SVM classifier to
distinguish descriptors related to vehicles. In addition, multi-source data fusion strategies have also
been explored and applied to vehicle detection recently [33,34].

Deep learning techniques [35–37] have shown their superior advantages in mining hierarchical,
high-level, distinctive feature representations. They have been widely used in a variety of applications,
such as image segmentation [38,39], object detection [40,41], classification [42,43], image registration [44],
etc. Consequently, vehicle detection by using deep learning techniques has also been intensively
studied [45]. Mou and Zhu [46] proposed a semantic boundary-aware multitask learning network to
detect and segment vehicle instances. In this method, through residual learning, a fully convolutional
network was constructed to encode multilevel contextual features. To effectively generate and select
representative training samples, Wu et al. [47] presented a superpixel segmentation and convolutional
neural network (CNN) iteration strategy. Patches were generated based on the centers of segmented
superpixels. The CNN used as a feature extractor was iteratively refined through a training sample
iterative selection strategy. Tang et al. [48] combined region convolutional neural networks (R-CNNs)
and hard negative example mining to improve vehicle detection performance. To accurately extract
vehicle-like targets, a hyper region proposal network was constructed with a combination of hierarchical
feature maps. Similarly, Deng et al. [49] adopted coupled R-CNNs to detect vehicles. Schilling et al. [50]
designed a multi-branch CNN model containing two CNN branches, respectively, for vehicle detection
and segmentation purposes. Zhong et al. [51] constructed a cascaded CNN model consisting of two
independent CNNs. The first CNN was applied to generate vehicle-like regions from multi-feature
maps, whereas the second CNN functioned to extract features and make decisions. To solve the problem
of vehicle scale variations and the production limitation of training samples, Yang et al. [52] suggested
using a multi-perspective CNN that was trained with different initial receptive fields. Utilizing a
regression-based CNN model, Tang et al. [53] proposed an oriented single shot multi-box detector
aiming at detecting vehicles with arbitrary orientations. On the whole, deep learning techniques have
achieved plentiful breakthroughs on vehicle detection tasks. However, the performance of the deep
learning-based methods suffered greatly from the sufficient number of labelled training samples and
the rational selection of representative training samples.

In this paper, we propose an affine-function transformation-based object matching framework
for vehicle detection from UAV images. The proposed method can effectively deal with vehicles with
varying conditions: such as scale variations, orientation variations, shadows, and partial occlusions.
The contributions of this paper include: (1) an affine-function transformation-based object matching
framework is designed for vehicle detection; (2) a successive convexification scheme is proposed to
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obtain tight transformation parameters. For a test image, first, superpixel segmentation strategy is
adopted to generate meaningful and non-redundant patches. Then, object matching is carried out
between a vehicle template and each of the patches. Finally, after matching cost thresholding, vehicle
location estimation, and multiple detection results elimination, vehicles are detected and located in
the image.

The remainder of this paper is organized as follows. Section 2 details the affine-function
transformation-based object matching framework and the methodology for vehicle detection. Section 3
reports and discusses the experimental results. Finally, Section 4 gives the concluding remarks.

2. Methodology

A detailed vehicle detection workflow is illustrated in Figure 1. As shown in Figure 1, for a test
image, we first over-segment it into a group of superpixels using the simple linear iterative clustering
(SLIC) superpixel segmentation method [54]. Then, centered at each superpixel, a patch is generated
with a size of np × np pixels. Then, to estimate the existence of vehicles from these patches, we proposed
an affine-function transformation-based object matching method, in which both the template and each
of the patches, a collection of scale-invariant feature transform (SIFT) feature points are generated and
characterized with SIFT feature vectors, and then a vehicle template is selected for conducting matching
between the template and each of the generated patches. Compared to traditional methods that usually
adopt a sliding window strategy to generate a group of candidate regions for individual vehicle
detection [8], we, in this paper, the SLIC superpixel segmentation method to generate meaningful
and non-redundant patches as operating units for individual vehicle detection. The SLIC superpixel
segmentation method is detailed in the literature [55]. In the following subsections, we focus on the
description of the affine-function transformation-based object matching framework, followed by an
optimal matching processing by using a successive convexification scheme in Section 2.2.

Figure 1. Illustration of the vehicle detection workflow using the proposed affine-function
transformation-based object matching framework.

2.1. Affine-Function Transformation Based Object Matching

The problem of object matching can be defined as matching a group of template feature points,
representing a specific object of interest, to another group of scene feature points, representing a
scene containing an instance of the object of interest (See Figure 2). Each feature point has a unique
location and is depicted with a feature vector that characterizes the local appearance around that
location. The matched scene feature points should preserve similar local features and relative spatial
relationships of the template feature points. Most of existing object matching techniques dedicate
to seek for point-to-point matching results, which might show low performance when dealing with
occlusions. In contrast, we propose an affine-function transformation-based object matching framework,
whose objective is to determine each template feature point’s optimal transformation parameters (not
point-to-point matching) so that the matching location (which may not be a specific scene feature
point) of each template feature point is close to a scene feature point with similar local appearance and
geometric structure.
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Figure 2. Illustration of object matching. (a) A group of template feature points representing a vehicle,
(b) a group of scene feature points representing a scene containing a vehicle instance, and (c) the
matched scene feature points.

(1) Affine-function transformation

Denote nt and ns as the numbers of template feature points and scene feature points, respectively.
Let P = {pi = [xpi

, ypi
]T|i = 1, 2, . . . , nt} and Q = {q j = [xq j

, yq j
]T| j = 1, 2, . . . , ns} be the sets of template

feature points and scene feature points, respectively. Then, our object matching objective is to optimize
the transformation parameters of each template feature point in P based on the scene feature points in
Q. Define Ti(Φi) : Rn → R2, i = 1, 2, . . . , nt as an affine transformation function that transforms the ith
template feature point pi into a location in the scene with transformation parameters Φi ∈ Rn. The
result of Ti(Φi) is the corresponding matching location of template feature point pi in the scene. In this
paper, we define the affine transformation function as follows:

Ti(Φi) =

[
α β φ
γ δ ϕ

]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xpi

ypi

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦+
[
ξi
ϑi

]
(1)

where Ti(Φi) : R8 → R2 computes the matching location of template feature point pi under an
affine transformation with parameters Φi = [α, β,γ, δ,φ,ϕ, ξi,ϑi]

T ∈ R8. We define a separate affine
transformation function for each template feature point. The matching location of a template feature
point pi is computed by its corresponding function Ti(Φi). In Equation (1), [α, β,γ, δ,φ,ϕ]T are
the global affine transformation parameters that are shared by all template feature points, whereas
[ξi,ϑi]

T are the local translation parameters for only template feature point pi. Therefore, different
template feature points might have different versions of [ξi,ϑi]

T. As illustrated in Figure 3, the local
translation parameters allow small local deformations between the template feature points and their
matched locations.

Figure 3. Illustration of the affine transformation model. q1 to q4 are, respectively, the corresponding
matched locations of p1 to p4 after applying the affine transformation function.

(2) Dissimilarity measure

According to the object matching principles, one objective is to match each template feature
point pi to the corresponding location Ti(Φi) in the scene with the constraint that the local
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appearances of pi and Ti(Φi) should be similar. Therefore, we define a dissimilarity measure
function dissi(q) : R2 → R1, i = 1, 2, . . . , nt , respectively, for each template feature point to measure the
local appearance dissimilarities between template feature point pi and its corresponding matched
location q in the scene. Generally, two feature points having similar local appearances will result in a
low dissimilarity measure value.

To solve the object matching problem, our overall objective is to determine the optimal
transformation parameters Φ1, Φ2, . . . , Φnt for template feature points p1, p2, . . . , pnt

to minimize
the following objective function:

minimize
Φ1,Φ2,...,Φnt

nt∑
i=1

dissi(Ti(Φi)) + R(Φ1, Φ2, . . . , Φnt),

subject to Cj(Φ1, Φ2, . . . , Φnt) ≤ 0, j = 1, 2, . . . , nc

(2)

where dissi(Ti(Φi)) computes the local appearance dissimilarity between template feature point pi
and its corresponding matching location Ti(Φi) in the scene. R(Φ1, Φ2, . . . , Φnt) denotes a convex
relaxation term regularizing the transformation parameters. Cj(Φ1, Φ2, . . . , Φnt) ≤ 0, j = 1, 2, . . . , nc

defines a series of convex constraints. Here, nc is the number of convex constraints. By such a definition,
the overall objective function in Equation (2) can be effectively solved through convex optimization
techniques. Next, we focus on the design of the dissimilarity measure function.

Recall that each feature point is associated with a location, as well as a feature vector characterizing
the local appearance around that location. In this paper, each feature point is described using a
scale-invariant feature transform (SIFT) vector [56]. Let Costi, j, i = 1, 2, . . . , nt, j = 1, 2, . . . , ns denote the
feature dissimilarity between a template feature point pi and a scene feature point q j. Then, we define
Costi, j as the square root of the χ2 distance [57] between the SIFT feature vectors of pi and q j as follows:

Costi, j =

√√√√√√√√∑
k

(
Fk

pi
− Fk

q j

)2

Fk
pi
+ Fk

q j

(3)

where Fk
pi

and Fk
q j

are the kth channels of the SIFT feature vectors of feature points pi and q j, respectively.
Then, for each template feature point pi, i = 1, 2, . . . , nt, we define a discrete version of the dissimilarity
measure function Dissi(q j) : Q→ R1, i = 1, 2, . . . , nt as follows:

Dissi(q j) = Costi, j, j = 1, 2, . . . , ns, q j ∈ Q (4)

The domain of this function indicates that a template feature point pi can be only matched to a
certain scene feature point q j with the feature dissimilarity measure determined by function Dissi(q j).
Minimizing Dissi(q j) still results in a point-to-point matching pattern, which violates our objective
to optimize the affine transformation parameters to compute the matching locations. Moreover, the
discrete function Dissi(q j) is non-convex. Therefore, adopting Dissi(q j) as the dissimilarity measure
in Equation (2) to minimize the overall objective function is difficult and cannot effectively obtain
optimal solutions.

(3) Convex dissimilarity measure

To solve the aforementioned problem, we relax each discrete function Dissi(q j) and construct a
continuous and convex dissimilarity measure function dissi(q), which can be effectively optimized
through convex optimization techniques. To this end, for each template feature point pi, i = 1, 2, . . . , nt,
we organize all the scene feature points together with their feature dissimilarities Costi, j, j = 1, 2, . . . , ns

as a set of three-dimensional (3D) points {[xq j
, yq j

, Costi, j]
T| j = 1, 2, . . . , ns}, whose first two dimensions

are the location of a scene feature point and the third dimension is the corresponding feature dissimilarity.
As illustrated in Figure 4, we give an example of the feature dissimilarities, viewed as a 3D point set,
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of the scene feature points associated with a template feature point. Obviously, this is actually the
discrete version of the dissimilarity measure function Dissi(q j).

Figure 4. Illustration of the feature dissimilarity measures viewed as a 3D point set and the constructed
convex dissimilarity measure function (facets).

We construct the convex dissimilarity measure function dissi(q) based on the lower convex hull
of the 3D point set associated with template feature point pi with respect to the feature dissimilarity
dimension. As shown in Figure 3, the facets are the lower convex hull of the 3D point set. Denote
{z = akx + bky + ck|k = 1, 2, . . . , nf} as the plane functions defining the nf facets on the lower convex
hull. [ak, bk, ck]

T are the plane parameters of the kth plane. Then, we define the continuous convex
dissimilarity measure function as follows:

dissi
(
[x, y]T

)
= max

k
(akx + bky + ck), k = 1, 2, . . . , nf (5)

where [x, y]T can be any location in the scene domain. In other words, by such a relaxation, template
feature point pi can be matched to any location [x, y]T in the scene, not necessarily being a specific
scene feature point. To effectively minimize Equation (5), we convert it into an equivalent linear
programming problem:

minimize
x,y

dissi
(
[x, y]T

)
⇔ minimize

x,y,ui
ui

subject to akx + bky + ck ≤ ui, k = 1, 2, . . . , nf

(6)

where ui is an auxiliary variable representing the upper bound of dissi
(
[x, y]T

)
. Equation (6) can be

efficiently optimized using convex optimization techniques.
In order to use Equation (6) to minimize dissi(Ti(Φi)) in the overall objective function in

Equation (2), we rewrite the affine transformation function Ti(Φi) into Ti(Φi) = [ fi(Φi), gi(Φi)]
T, where

fi(Φi) = αxpi + βypi + φ+ ξi and gi(Φi) = γxpi + δypi + ϕ+ ϑi are affine functions that computes the
x and y components of the matching location of template feature point pi. By substituting x and y
in Equation (6) with fi(Φi) and gi(Φi), we obtain the following convex optimization model which is
equivalent to minimizing dissi(Ti(Φi)) with respect to transformation parameters Φi:

minimize
Φi

dissi(Ti(Φi)) ⇔ minimize
Φi,ui

ui

subject to ak fi(Φi) + bkgi(Φi) + ck ≤ ui, k = 1, 2, . . . , nf
(7)
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Then, summing up all the minimization terms dissi(Ti(Φi)), i = 1, 2, . . . , nt results in our overall
objective function with respect to optimizing the affine transformation parameters Φ1, Φ2, . . . , Φnt with
convex constraints defined in Equation (7):

minimize
Φ1,Φ2,...,Φnt

nt∑
i=1

dissi(Ti(Φi)) + λ
nt∑

i=1

‖
[
ξi
ϑi

]
‖

2

2

(8)

where the regularization term functions to penalize local deformations of the matching locations in the
scene. It indicates that the local deformations of the matching locations should not be too large. λ is a
parameter that weights the dissimilarity measure term and the regularization term.

When partial occlusions of an object of interest exist in the scene, directly optimizing Equation (8)
may degrade the performance of the proposed affine-function transformation-based object matching
framework. To solve this problem, we assign a weight factor wi, i = 1, 2, . . . , nt for each template
feature point pi to describe its distinctiveness and contribution to the matching. Then, we obtain the
final overall objective function with convex constraints defined in Equation (7) as follows:

minimize
Φ1,Φ2,...,Φnt

nt∑
i=1

wi · dissi(Ti(Φi)) + λ
nt∑

i=1

‖
[
ξi
ϑi

]
‖

2

2

(9)

2.2. Successive Convexification Scheme for Solving the Objective Function

Recall that the continuous convex dissimilarity measure function dissi([x, y]T) : R2 → R1 is
constructed by relaxing the discrete dissimilarity measure function Dissi(q) : Q→ R1 based on the
lower convex hull. If the feature descriptions of feature points are distinctive, the dissimilarity measures,
computed using Dissi(q), between a template feature point and all the scene feature points differ
significantly. Therefore, the lower convex hull relaxation provides a satisfactory lower bound to the
discrete measure function Dissi(q). However, when features are not distinctive, the lower convex
hull might not generate a very tight lower bound to Dissi(q). To solve this problem, we propose a
successive convexification scheme, similar to that adopted by Jiang et al. [58], to iteratively optimize
the overall objective function to obtain a tighter solution.

Initially, we assign an identical weight factor wi = 1, i = 1, 2, . . . , nt to all template feature points.
In each iteration of the convexification, a trust region is defined for each template feature point. Only the
scene feature points within the trust region can be used to construct the convex dissimilarity measure
functions. In the first iteration, we fix the weight factors wi = 1, i = 1, 2, . . . , nt and define the entire scene
as the trust region for each template feature point pi, as illustrated by D(1)

i in Figure 5a. That is, initially,
all scene feature points are used to construct the convex dissimilarity measure functions. Then, these
convex dissimilarity measure functions are applied to the overall objective function in Equation (9) to
optimize the affine transformation parameters Φ1, Φ2, . . . , Φnt . The corresponding matching locations
of template feature points are computed by T1(Φ1), T2(Φ2), . . . , Tnt(Φnt). Afterwards, we adjust the
weight factors wi, i = 1, 2, . . . , nt to deal with partial occlusions. If the dissimilarity measure value
dissi(Ti(Φi)) between template feature point pi and its matching location Ti(Φi) is high, wi is decreased
by Δw (i.e., wi = wi − Δw) to degrade the contribution of pi. Otherwise, if the dissimilarity measure
value is low, wi is increased by Δw (i.e., wi = wi + Δw) to upgrade the contribution of pi. In this way,
the actual matching locations Ti(Φi) occluded by other objects in the scene will be considered less to
optimize the overall objective function.
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Figure 5. Illustration of the successive convexification scheme. (a) In the first iteration, all the scene
feature points (red dots) are used to construct the convex dissimilarity measure function, (b) in the
second iteration, only the scene feature points in the trust region (red dots) are used to construct the
convex dissimilarity measure function, and (c) similar operations as those in the second iteration are
performed in the latter iterations.

In the second iteration, we fix the weight factors wi, i = 1, 2, . . . , nt and define a shrunken trust
region centered at the matching location Ti(Φi) = [ fi(Φi), gi(Φi)]

T for each template feature point
pi. Only the scene feature points located within the trust region are used to construct the convex
dissimilarity measure functions (See Figure 5b). Mathematically, the trust region of pi in the second
iteration is defined as follows:

D(2)
i =

{
[x, y]T ∈ R2| fi(Φi) − L(2)

2
≤ x ≤ fi(Φi) +

L(2)

2
, gi(Φi) − L(2)

2
≤ y ≤ gi(Φi) +

L(2)

2

}
(10)

where L(2) = min(Hs, Ws)/2 is the side length of the trust region in the second iteration. Here, Hs and
Ws are the height and width of the scene, respectively. Then, we apply the convex dissimilarity measure
functions constructed using the scene feature points in trust regions D(2)

i , i = 1, 2, . . . , nt to optimize the
overall objective function to obtain a set of tighter affine transformation parameters Φ1, Φ2, . . . , Φnt .
The tighter matching locations are represented by T1(Φ1), T2(Φ2), . . . , Tnt(Φnt). Afterwards, we adjust
the weight factors wi, i = 1, 2, . . . , nt using the same principle as described in the first iteration.

The same optimization operations are performed in the subsequent iterations with smaller and
smaller trust regions that consider fewer and fewer scene feature points (See Figure 5c). Specifically, in
the kth iteration, the trust region is defined as follows:

D(k)
i =

{
[x, y]T ∈ R2| fi(Φi) − L(k)

2
≤ x ≤ fi(Φi) +

L(k)

2
, gi(Φi) − L(k)

2
≤ y ≤ gi(Φi) +

L(k)

2

}
(11)

where L(k) = L(k−1)/2 is the side length of the trust region in the kth iteration. Generally, four iterations
are enough. Through the proposed successive convexification scheme, we can obtain a tighter matching
result with satisfactory consideration of handling partial occlusions.

After optimizing the overall objective function in Equation (9) through the proposed successive
convexification scheme, we obtain two results: a set of affine transformation parameters Φ1, Φ2, . . . , Φnt

and a matching cost (i.e., the value of the overall objective function). The corresponding matching
locations in the patch can be computed by T1(Φ1), T2(Φ2), . . . , Tnt(Φnt), and the matching cost is used
to estimate the existence of a vehicle in the patch. If the matching cost lies below a predefined threshold,
we confirm that there is a vehicle instance in the patch. Then, as illustrated in Figure 6a, the location of
the vehicle is estimated as the geometric centroid of the matching locations T1(Φ1), T2(Φ2), . . . , Tnt(Φnt).
However, as shown in Figure 6b, a vehicle instance might exist in multiple patches by using the
superpixel segmentation-based patch generation strategy. Consequently, multiple locations are
estimated for a single vehicle instance. In fact, these locations associated with a vehicle instance
exhibit a cluster form and are extremely close to each other. Thus, we further adopt a non-maximum
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suppression process [55] to eliminate the repetitive detection results. The final vehicle detection result
is illustrated in Figure 5.

Figure 6. Illustrations of (a) the vehicle location is estimated as the centroid of the matching locations
(yellow dot), and (b) a vehicle existing in two patches generates two locations.

3. Results and Discussions

3.1. Study Areas and Datasets

In this paper, we tested our proposed vehicle detection method on the UAV images. The UAV
images used in this study were captured using the DJI Phantom 4 Pro UAV system (See Figure 7a).
This is a quadrotor aircraft mounted with a one-inch high-resolution Exmor R CMOS image sensor.
The maximum measuring frequency is 20 Hz. The detailed specification of the DJI Phantom 4 Pro
UAV system is listed in Table 1. While surveying, we set the image capture mode to be “BURST mode”
(a continuous shooting mode) with an image capture interval of 2 seconds. Therefore, a total number
of 30 images with a size of 5472 × 3648 pixels were captured every minute.

Figure 7. Illustrations of (a) the DJI Phantom 4 Pro Unmanned Aerial Vehicle (UAV) system, (b) the
Nanjing study area, and (c) the Changsha study area.

In this study, two UAV image datasets were collected in two different urban areas for evaluating
the proposed vehicle detection method. As shown in Figure 7b, the first dataset was collected in the
urban area of City Nanjing, Jiangsu Province, China in 2016. The surveying area had a size of about
5.0 × 5.5 km2. While surveying, the UAV system was flying at a height of about 150 m with a horizontal
flight speed of about 15 m/s. A total number of 30,728 UAV images were collected to form the first
dataset. As shown in Figure 7c, the second dataset was collected in the urban area of City Changsha,
Hunan Province, China, in 2017. The surveying area had a size of about 7.5× 6.0 km2. While surveying,
the UAV system was flying at a height of about 150 m with a horizontal flight speed of about 16 m/s. A
total number of 44,180 UAV images were captured to form the second dataset.
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Table 1. Specification of the DJI Phantom 4 Pro Unmanned Aerial Vehicle (UAV) system.

Parameter Value

Manufacturer DJI
Weight 1388 g

Maximum horizontal flight speed 72 km/h
Maximum take-off altitude 6000 m

Maximum flight height 500 m
Maximum flight time 30 min

Maximum wind speed tolerable 10 m/s
Field of view front-back: 70o, left-right: 50o

Measuring frequency 20 Hz
Image sensor 1 inch Exmor R CMOS sensor, 20M pixels

Image size 5472 × 3648 pixels
Maximum control distance 7000 m

3.2. Robustness Evaluation

In the UAV images, different vehicles exhibit different sizes and orientations. Some are even
partially occluded by other high-rise objects (e.g., trees and buildings). The illumination conditions
and the vibrations of the surveying platform also affect the quality of the captured images. Thus,
the proposed vehicle detection method should have the capability to effectively deal with the
aforementioned circumstances. In this section, we evaluated the robustness of the proposed
affine-function transformation-based object matching framework to scale variations, orientation
variations, partial occlusions, and noise contaminations. To this end, we manually created a scene test
dataset containing 500 scenes, each of which contains a vehicle instance. A subset of the test scene
dataset is shown in Figure 8b. The same vehicle template shown in Figure 8a was used to conduct
matching in all the experiments. For each matching experiment between the template and a scene, a
group of feature points were extracted and described using the SIFT features. Then, we applied the
affine-function transformation-based object matching framework to a pair of template and scene to
conduct matching. After matching, if the matching cost was below a predefined threshold, the scene
was regarded as correctly matched. Otherwise, it was regarded as a bad matching.

Figure 8. Illustrations of (a) the vehicle template, and (b) a subset of the scene dataset used for
robustness evaluation.

To examine the properties of the proposed object matching framework to scale variations, we
transformed each scene with the following scale factors: 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4, 1.5, 1.6, 1.8,
and 2.0. Therefore, a scale variation test dataset containing 5500 scenes was created for robustness
evaluation. Figure 9a shows an example of a scene transformed with different scales. Then, we
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applied the affine-function transformation-based object matching framework to the template shown in
Figure 8a and each scene in the scale variation test dataset to conduct matching. The matching results
are detailed in Table 2. We used the matching rate, which was defined as the proportion of correctly
matched scenes, to analyze the matching performance in different scales. As shown in Table 2, when
the scenes were enlarged by scale factors ranging from 1.2 to 2.0, as well as shrunk by scale factors 0.6
and 0.8, the matching performance was unaffected. This is because when a scene is enlarged or shrunk
slightly, the features of the feature points and their relative position relationships are almost unchanged.
Thus, the proposed matching framework obtained stable performance. However, when the scenes
were shrunk by scale factors 0.4 and 0.5, some of the scenes were not correctly matched, resulting
in a decrease of the matching rate. In fact, when a scene is shrunk greatly, the local descriptions of
the feature points will change greatly. In addition, the distinctiveness between the feature points will
diminish. Moreover, some adjacent feature points might be merged into one feature point. Thus,
the matching performance was degraded. Fortunately, in actual UAV images captured with a bird
view, the scale variations among vehicles are not very big, since the sizes of vehicles do not change
dramatically. Therefore, the matching performance is hardly affected.

Figure 9. Illustrations of (a) a scene sample transformed with different scales, (b) a scene sample
rotated with different angles, (c) a scene sample occluded with different proportions, and (d) a scene
contaminated with different levels of salt and pepper noises.
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Table 2. Vehicle matching results on the scale variation test dataset.

Scale 0.4 0.5 0.6 0.8 1.0 1.2 1.4 1.5 1.6 1.8 2.0

Matching rate 0.94 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

To test the robustness of the proposed object matching framework to rotation variations, we
successively rotated each scene clockwise with an angle interval of 30 degrees. Therefore, a rotation
variation test dataset including 6000 scenes was created for robustness evaluation. Figure 9b presents
an example of a scene rotated with different angles. Then, object matching was carried out between the
template and each of the rotated scenes. The vehicle matching results in different rotations are listed
in Table 3. As reflected in Table 3, the matching rates were the same and unaffected by the rotations
of scenes. This is because, when a scene is rotated, the features of the feature points, as well as their
relative position relationships, still maintain without any modifications. Thus, the proposed matching
framework performed equally under different rotation variations. This property is very useful for
handling real world scenes, since vehicles always exhibit with different orientations.

Table 3. Vehicle matching results on the rotation variation test dataset.

Rotation 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

Matching rate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

To assess the performance of the proposed object matching framework to occlusion variations,
we manually masked the vehicle instance in each scene with the following proportions of occlusions:
0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. Therefore, an occlusion variation test dataset
containing 5000 scenes was created for robustness evaluation. Figure 9c shows an example of a vehicle
instance occluded with different proportions. Then, object matching was performed on each pair of the
template and an occluded scene. Table 4 details the vehicle matching results. As shown in Table 4,
when the vehicles were partially occluded slightly (occlusion proportions ranging from 10% to 40%),
the proposed matching framework performed effectively. All the scenes were correctly matched. This
is benefited from the introduction of the weight factors in the overall objective function for evaluating
the contributions of different feature points to a matching. When half part of a vehicle instance was
occluded, the matching performance was slightly affected but still satisfactory. However, when the
vehicle instances were occluded significantly, the matching performance dramatically decreased. This
is because, when a vehicle instance is occluded significantly, the number of feature points contributing
to the matching become very less. The majority of the matching locations computed through the affine
transformation parameters are not correct, resulting in high dissimilarity measure values.

Table 4. Vehicle matching results on the occlusion variation test dataset.

Occlusion Proportion 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Matching rate 1.0 1.0 1.0 1.0 1.0 0.98 0.82 0.51 0.32 0.17

To evaluate the robustness of the proposed object matching framework to noises, we superimposed
each scene with different levels of “salt and pepper” noises. We tested the following noise densities in
our experiments: 0.00, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.18, 0.20, 0.22, 0.25, 0.28, and 0.30. Therefore, a
noise contamination dataset including 6500 scenes was constructed for robustness evaluation. Then, we
applied the proposed object matching framework to the template and each of the noise-contaminated
scenes to conduct matching. Table 5 presents the vehicle matching results analyzed using the matching
rate. As reflected in Table 5, the proposed object matching framework showed superior performance
when the scenes were contaminated with low densities of noises. This is benefitted from the robustness
of the SIFT feature descriptor, which has excellent properties of noise resistance. However, when the
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scenes were contaminated with high levels of noises, the feature descriptions of the feature points
would be influenced, resulting in feature difference between a template feature point and its matching
location. Thus, the dissimilarity measures between the template feature points and their matching
locations became higher.

Table 5. Vehicle matching results on the noise contamination dataset.

Noise Density 0.00 0.02 0.05 0.08 0.10 0.12 0.15 0.18 0.20 0.22 0.25 0.28 0.30

Matching rate 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.97 0.93 0.88 0.81 0.78

3.3. Vehicle Detection

To evaluate the performance of our proposed vehicle detection method, we applied it to the
Nanjing and Changsha UAV image datasets aforementioned in Section 3.1. For a test image, first,
we over-segmented it into a series of superpixels using the SLIC superpixel segmentation method.
Then, meaningful and non-redundant patches were generated centered at each superpixel. In the
UAV images, the length of a vehicle is approximately 54 pixels. Thus, in order to enclose an entire
vehicle instance in a patch with some relaxations, we set the patch size to be 70 × 70 pixels. Next,
object matching between the vehicle template shown in Figure 8a and each of the generated patches
was carried out using the proposed affine-function transformation-based object matching framework.
To successively optimize the overall objective function to obtain a group of tight transformation
parameters, we performed four iterations of the successive convexification process and configured the
weight adjustment factor as Δw = 0.2. After matching cost thresholding, vehicle location estimation,
and multiple detection results elimination, we obtained the final vehicle detection result.

Table 6 lists the vehicle detection results, as well as the ground truths, on the two UAV image
datasets. As reflected in Table 6, for each of the datasets, the majority of vehicles were correctly
detected and only a small number of false alarms were generated. However, the number of false
alarms took a very small proportion and was acceptable. For visual inspections, Figures 10 and 11
illustrate a subset of the vehicle detection results on the two UAV image datasets. As shown in these
figures, the vehicles exhibiting with different colors, different sizes, different orientations, different
illumination conditions, different densities, and different levels of occlusions were effectively detected
by the proposed vehicle detection method. Specifically, as shown in Figure 11a, for a scene with
very high density of vehicles, the proposed method still obtained promising vehicle detection results.
Figure 11b shows a scene containing vehicles covered with large areas of shadows. These shadows
might affect the appearance and the saliency of the vehicles. Fortunately, benefiting from the use of the
SIFT features, which has a strong property of invariance to illumination variations, these vehicles were
correctly detected by using the proposed method. However, as shown by the vehicle marked by a
yellow box labeled with #1 in Figure 10, it was covered with a severe shadow. The vehicle was almost
hidden in the background. Thus, our proposed method failed to detect it because of extremely low
distinctiveness of feature points. As shown in Figure 11c,d, some vehicles were partially occluded by
high-rise buildings and overhead trees. Since in our proposed affine-function transformation-based
object matching framework, occlusion is considered and handled by assigning each template feature
point with a weight factor, which is successively adjusted to degrade the contributions of occluded
matching positions in the successive convexification process. Therefore, our proposed method still
achieved promising performance on such occluded vehicles. However, as shown by the vehicles
marked by yellow boxes labeled with #2, #3, and #4 in Figure 10 and the vehicles marked by yellow
boxes in Figure 11c,d, these vehicles were occluded severely, resulting in very high matching costs.
Therefore, they were failed to be detected. In addition, as shown by the vehicle marked by a yellow
box labeled with #5, it was entirely covered with a cloth. Its appearance feature being a vehicle almost
disappeared. Thus, it was also undetected. Moreover, due to the high similarities of some real-world
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objects (e.g., air conditioner external units) to the vehicles, they were falsely detected as vehicles caused
by low matching costs.

Table 6. Vehicle detection results and quantitative evaluations on the Nanjing and Changsha Unmanned
Aerial Vehicle (UAV) image datasets.

Dataset Ground Truth
Detection Results Quantitative Evaluations

Vehicles False Alarms Completeness Correctness Quality F1-Measure

Nanjing 672,184 613,032 17,659 0.912 0.972 0.889 0.941
Changsha 896,722 813,327 28,626 0.907 0.966 0.879 0.936

Average 1568,906 1426,359 46,285 0.909 0.969 0.883 0.938

Figure 10. Illustration of a subset of vehicle detection results on a Unmanned Aerial Vehicle (UAV) image.

To quantitatively evaluate the accuracy and correctness of the vehicle detection results on the two
UAV image datasets, we adopted the following four quantitative measures: completeness, correctness,
quality, and F1-measure [41]. Completeness assesses the proportion of correctly detected vehicles with
respect to the ground truth. Correctness evaluates the proportion of correctly detected vehicles with
respect to all the detected instances. Quality and F1-measure reflect the overall performance. They are
defined as follows:

completeness =
TP

TP + FN
(12)

correctness =
TP

TP + FP
(13)

quality =
TP

TP + FN + FP
(14)

F1 −measure =
2 · completeness · correctness
completeness + correctness

(15)

where TP, FN, and FP are the numbers of correctly detected vehicles, undetected vehicles, and falsely
detected non-vehicle objects, respectively. The quantitative evaluation results using these four measures
are listed in Table 6. The proposed vehicle detection method achieved a completeness, correctness,
quality, and F1-measure of 0.912, 0.972, 0.889, and 0.941, respectively, on the Nanjing UAV image
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dataset. For the Changsha UAV image dataset, a completeness, correctness, quality, and F1-measure of
0.907, 0.966, 0.879, and 0.936, respectively, were obtained. On the whole, through visual inspections
and quantitative evaluations, we confirmed that the proposed vehicle detection method performed
effectively and was feasible for vehicle detection from UAV images.

The proposed vehicle detection method was tested on a cloud computing platform with eight
16-GB GPUs, one 16-core CPU, and a memory size of 64 GB. In practice, for a test image, after patch
generation, the generated patches were distributed to the eight GPUs for parallel processing. The
processing time of the proposed method was also recorded to analyze its computational performance.
On average, the proposed method achieved a processing speed of 31 patches per second on a GPU.
Thus, by adopting the parallel processing strategy, 248 patches were under processing every second.

Figure 11. Illustrations of vehicle detection results on Unmanned Aerial Vehicle (UAV) images under
challenging scenarios. (a) high density of vehicles, (b) vehicles covered with shadows, (c) vehicles
occluded by high-rise buildings, and (d) vehicles occluded by overhead trees.
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3.4. Comparative Studies

To further compare the performance of the proposed method in this paper and other existing vehicle
detection methods, a set of comparative experiments were conducted with the following nine existing
vehicle detection methods: coupled region-based convolutional neural networks (CR-CNN) [49], hard
example mining based convolutional neural networks (HEM-CNN) [23], affine invariant description and
large-margin dimensionality reduction based method (AID-LDR) [17], bag-of-words and orientation
aware scanning based method (BoW-OAS) [8], Viola-Jones based method (VJ) [18], enhanced Viola-Jones
based method (EVJ) [19], fast binary detector based method (FBD) [21], YOLOv3 [59], and Faster
R-CNN [36]. In the CR-CNN method, first, vehicle candidate regions are extracted based on a vehicle
proposal network; then, a coupled region-based CNN is performed on the candidate regions to detect
vehicles. For the HEM-CNN method, to train an effective CNN model, hard example mining is applied
to the stochastic gradient descent to select informative training samples; then, the CNN model is
used for vehicle detection based on a sliding window strategy. Both of the AID-LDR and BoW-OAS
methods adopt the bag-of-words model to represent the statistical feature of a vehicle. The detection
of vehicles is achieved through a sliding window-based classification process. For the VJ and EVJ
methods, Viola–Jones object detection scheme is proposed to detect vehicles. To well handle vehicles
of varying orientations, a road orientation adjustment method is adopted to make sure that roads and
on-road vehicles are aligned with the horizontal direction. In the FBD method, a fast binary detector
using integral channel features is designed to detect vehicles. YOLOv3 is a one-stage object detection
network which accomplishes feature extraction and object prediction in a single network. In contrast,
Faster R-CNN is a two-stage object detection framework composed of a region proposal network and
an object detection network. The region proposal network generates a group of object proposals, which
are further identified by the object detection network to verify the objects of interest.

We applied these nine methods to the Nanjing and Changsha UAV image datasets to evaluate
their performances on vehicle detection. Quantitative evaluations using completeness, correctness,
quality, and F1-measure were also carried out on the detection results. The detailed detection results
and quantitative evaluations of different methods are listed in Table 7. As reflected by the overall
evaluations of quality and F1-measure, the HEM-CNN and AID-LDR methods obtained relatively
lower performances on the two datasets; whereas the YOLOv3 and Faster R-CNN methods obtained
the best performance. In addition, the BoW-OAS and EVJ methods obtained similar performances. By
analyzing the number of correctly detected vehicles with respect to the ground truth and the number
of correctly detected vehicles with respect to the detected objects, the YOLOv3 and Faster R-CNN
methods outperformed the other seven methods with higher completeness and correctness values. This
is because, these two methods adopt deep learning techniques to exploit high-level features of vehicles.
Thus, they showed superior performance than the other methods. Comparatively, by using region
proposal mechanism, Faster R-CNN performed a little better than YOLOv3. However, the AID-LDR
and BoW-OAS methods generated more false alarms, thereby resulting in relatively lower correctness
values than the other methods. This is because the AID-LDR and BoW-OAS methods adopt mid-level
statistical features of vehicles represented using the bag-of-words model. According to the statistical
property, the bag-of-words representation can only characterize the existence of some features; however,
the relative relationships of these features cannot be reflected. As shown in Figure 12, Figure 12a is
a patch containing a normal vehicle; Figure 12b and c are generated by cutting Figure 12a into four
parts and making some transformations and combinations on these parts. Apparently, Figure 12b,c
cannot be considered as a vehicle. However, the bag-of-words representations of these three patches
are almost similar. They are equally detected as normal vehicles. Therefore, more false alarms were
detected by the AID-LDR and BoW-OAS methods. Compared with these nine methods, our proposed
method obtained compatible performance with the Faster R-CNN and outperformed the other eight
methods. Through comparative studies, our proposed method can effectively tackle various scene
conditions and obtained advantageous performance in accurately detecting vehicles from UAV images.
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Table 7. Vehicle detection results and quantitative evaluations of different methods.

Method Dataset
Detection Results Quantitative Evaluations

Vehicles False Alarms Completeness Correctness Quality F1-Measure

CR-CNN
Nanjing 564,635 32,231 0.840 0.946 0.802 0.890

Changsha 752,350 54,027 0.839 0.933 0.791 0.884

HEM-CNN
Nanjing 545,142 32,951 0.811 0.943 0.773 0.872

Changsha 719,172 49,996 0.802 0.935 0.760 0.863

AID-LDR
Nanjing 576,062 48,734 0.857 0.922 0.799 0.888

Changsha 739,796 71,383 0.825 0.912 0.764 0.866

BoW-OAS
Nanjing 602,277 48,833 0.896 0.925 0.835 0.910

Changsha 782,839 70,856 0.873 0.917 0.809 0.894

VJ
Nanjing 576,734 40,094 0.858 0.935 0.810 0.895

Changsha 745,176 57,815 0.831 0.928 0.781 0.877

EVJ
Nanjing 590,850 35,050 0.879 0.944 0.835 0.910

Changsha 772,078 56,332 0.861 0.932 0.810 0.895

FBD
Nanjing 580,767 41,706 0.864 0.933 0.814 0.897

Changsha 759,524 66,944 0.847 0.919 0.788 0.882

YOLOv3
Nanjing 605,638 20,021 0.901 0.968 0.875 0.933

Changsha 806,153 36,222 0.899 0.957 0.864 0.927

Faster
R-CNN

Nanjing 612,360 16,993 0.911 0.973 0.889 0.941
Changsha 811,533 27,695 0.905 0.967 0.878 0.935

Figure 12. Illustration of three patches having almost the similar bag-of-words representations. (a) a
complete vehicle, (b) and (c) transformed vehicles on (a).

4. Conclusions

In this paper, we have proposed an affine-function transformation-based object matching
framework for detecting vehicles from UAV images. The proposed method has advantageous
properties to tackle scale variations, orientation variations, illumination variations, and partial
occlusions of vehicles. For a test image, to generate meaningful and non-redundant patches, an
SLIC-based superpixel segmentation strategy is adopted for patch generation. Then, the affine-function
transformation-based object matching framework is applied to a vehicle template and each of the
generated patches for vehicle existence estimation. Finally, after matching cost thresholding, vehicle
location estimation, and multiple response elimination, vehicles are accurately detected and located
in the image. The proposed method has been tested on two UAV image datasets for performance
evaluation on vehicle detection. Quantitative evaluations confirmed that an average completeness,
correctness, quality, and F1-measure of 0.909, 0.969, 0.883, and 0.938, respectively, were achieved
towards vehicle detection. Visual inspections also showed the robustness of the proposed method
in handling various vehicle conditions. In addition, comparative studies with nine existing vehicle
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detection methods demonstrated that the proposed method obtained compatible performance with
the Faster R-CNN and outperformed the other eight methods in detecting vehicles from UAV images.
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Abstract: Anomaly detection (AD), which aims to distinguish targets with significant spectral
differences from the background, has become an important topic in hyperspectral imagery (HSI)
processing. In this paper, a novel anomaly detection algorithm via dictionary construction-based
low-rank representation (LRR) and adaptive weighting is proposed. This algorithm has three main
advantages. First, based on the consistency with AD problem, the LRR is employed to mine
the lowest-rank representation of hyperspectral data by imposing a low-rank constraint on the
representation coefficients. Sparse component contains most of the anomaly information and can be
used for anomaly detection. Second, to better separate the sparse anomalies from the background
component, a background dictionary construction strategy based on the usage frequency of the
dictionary atoms for HSI reconstruction is proposed. The constructed dictionary excludes possible
anomalies and contains all background categories, thus spanning a more reasonable background
space. Finally, to further enhance the response difference between the background pixels and
anomalies, the response output obtained by LRR is multiplied by an adaptive weighting matrix.
Therefore, the anomaly pixels are more easily distinguished from the background. Experiments on
synthetic and real-world hyperspectral datasets demonstrate the superiority of our proposed method
over other AD detectors.

Keywords: anomaly detection; hyperspectral imagery; low-rank representation; dictionary
construction; HSI reconstruction; sparse coding; adaptive weighting

1. Introduction

In contrast to color and multispectral imagery, hundreds of narrow and contiguous spectral bands
covering a wide range of wavelengths contained in hyperspectral imagery provide abundant spatial
and spectral information about Earth observations [1,2]. Since each material has unique electromagnetic
reflection characteristics at different wavelengths, their spectral information can be used for target
detection [3]. According to the availability of prior knowledge about the target signatures, target
detection can be divided into two categories: supervised and unsupervised [4]. Unsupervised target
detection, known as anomaly detection (AD), has attracted a lot of attention over the last 20 years
because it does not require any prior information about the spectral characteristics of targets that
are usually difficult to obtain [5]. Moreover, it does not need radiation calibration and atmospheric
absorption compensation [6].

Anomalies refer to the small objects with low probability of occurrence and whose spectra are
significantly different from the main background. AD can be regarded as a binary classification
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problem designed to separate the background class and the anomaly class automatically [7]. In recent
years, many AD methods have been proposed, and among them, the Reed-Xiaoli (RX) detector
is the most well-known method based on statistical modeling [8]. It uses the probability density
functions of the multivariate normal distribution to measure the probability of the detected pixel to
be background, and its solution is the Mahalanobis distance between the spectrum of the detected
pixel and the background. It has two versions: global RX (GRX) and local RX (LRX). Specifically,
GRX estimates background statistics from the full image scene, whereas the background in LRX
is estimated from the local neighborhood of the detected pixel using a dual-window strategy [9].
However, the background composition of HSI is usually complicated and nonhomogeneous in
practical, so a single multivariate normal distribution is generally unsuitable for describing the
background [10]. Moreover, the anomaly contamination in background statistics (background mean
and covariance matrix) is another potential problem with RX. Based on these two shortcomings, several
improved RX-based AD methods have been proposed. For example, the Gaussian mixture model-based
detector [11] uses a mixture of multivariate Gaussian distributions to model the multimode background
to capture the complexity of the background. The cluster-based anomaly detector (CBAD) [12] applies
a clustering technique to divide the dataset into some homogeneous clusters and then implements
RX on each cluster. The subspace RX (SSRX) [13] performs RX on a finite number of principal
components obtained by principal component analysis (PCA), thereby reducing computational cost
and improving the separability of background and anomalies. Due to the rich nonlinear information
among the inter-bands of HSI, kernel-RX (KRX) [14] and support vector data description (SVDD) [15]
are applied to project the original data into an infinite high-dimensional space through a kernel function.
Cluster KRX (CKRX) [16], as an improved version of KRX, groups background pixels into clusters
and then applies a fast eigendecomposition algorithm to generate anomaly indexes. It significantly
reduces computation time by replacing each pixel with its cluster center. There are some AD methods
trying to mitigate anomaly contamination for a pure estimation of the background. For example,
the random-selection-based anomaly detector (RSAD) [17] applies a selection procedure several times
to choose some representative background pixels. The blocked adaptive computationally efficient
outlier nominator (BACON) detector [18] uses the subsets of the entire HSI to iteratively update a
stable and robust background to suppress anomaly contamination in the background estimation.

With the development of representation theory in recent years, some representation-based
methods have been successfully applied to AD. They sidestep the difficulty of modeling the
complicated distribution of background in statistics-based methods. The sparse representation-based
detector (SRD) [19] assumes that the spectrum of a pixel can be sparsely represented by a linear
combination of a few sparse coefficients with respect to a background dictionary, and the reconstruction
error is used to measure the anomaly response. The collaborative representation-based detector
(CRD) [20] is based on the fact that background pixels can be well approximated by their spatial
neighborhoods, whereas anomalies cannot. In addition to CRD, there are some other methods to
incorporate spatial or feature information into detection and classification. In [21], during the recovery
of sparse vector in sparse representation, two different approaches are proposed to incorporate the
contextual information of HSI to improve the classification performance. In [22], the joint sparsity
model is extended to a feature space induced by a nonlinear kernel function for improving the
discrimination between background and targets. In this case, the spectral, spatial, and feature
information are jointly used.

Recently, low-rank-based methods have drawn much attention and been applied to AD. It exploits
the intrinsic low-rank property of background and the sparse property of anomalies [23]. It also
does not require modeling the distribution of complex background. For instance, robust principal
component analysis (RPCA) [24] performs detection by decomposing HSI data into a low-rank
background matrix and a sparse anomaly matrix. However, the sparse matrix obtained is always
contaminated by isolated noise, thus causing some false alarm points [25]. As an improvement,
low-rank and sparse matrix decomposition (LRaSMD) [26] extracts noise from the valuable signals,
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and then further separates the low-rank background and sparse anomalies. The anomaly detector
in [27] first extracts some source components by using the unmixing operation, and then identifies
the components that are sparse and have the largest accumulated distance from other components.
The optimization problem is converted to a low-rank matrix decomposition problem and can be
solved. Low-rank representation (LRR) [28] assumes that the HSI data lie in multiple subspaces
and requires a dictionary to span the data space to separate the background and anomalies. Due
to the mixed property of real-world datasets, the pixels of an HSI are usually drawn from multiple
subspaces. Therefore, compared with RPCA and LRaSMD, LRR is theoretically more suitable for
real HSI datasets by imposing l21 constraint on the sparse component [25]. In addition, the l21

constraint makes the background component unaffected by the column-wise sparse anomalies [29].
Some advanced LRR-based AD methods have been proposed in recent years and they improve the
detection performance of LRR from different aspects. For example, the anomaly detector based
on low-rank and learned dictionary (LRALD) in [23] constructs a dictionary from the whole image
with a random selection process and then performs LRR. The abundance- and dictionary-based
low-rank decomposition (ADLR) in [25] applies spectral unmixing to obtain some abundance maps
that contains more distinctive features, and then constructs a dictionary based on the mean shift
clustering, and finally performs LRR. The low-rank and sparse representation-based detector (LRASR)
in [28] improves LRR through a sparsity-inducing regularization term and a cluster-based dictionary
construction strategy. It can be found that all these methods build a reasonable dictionary and try
to make the anomalies easier to be recognized. Dictionary construction is an important process in
many HSI problems and there are many ways to implement it. [30] proposes an AD method based on
sparse presentation through constructing multiple dictionaries to learn discriminative features. In each
category, the representative spectra that can significantly enhance the difference between background
and anomalies are selected.

In the original model of LRR, the entire input dataset is used as the dictionary to span the data
space. However, due to the anomaly contamination in this dictionary, sparse anomalies cannot be
effectively separated from the background component [23]. In addition, the heavy computational
burden caused by large data size is also an important issue. In the LRR model based on randomly
selected dictionary, there is no guarantee that the selected dictionary atoms contain all background
categories. In this paper, taking into account the above issues, a novel AD algorithm via dictionary
construction-based LRR and adaptive weighting is proposed. To better represent the background
subspace and separate the anomaly component from the background, a background dictionary
construction strategy based on the usage frequency of each dictionary atom for HSI reconstruction
is adopted in LRR. To cover all background classes in the dictionary, the K-means clustering is first
executed to divide the data into several clusters. Then, we estimate the background pixels in each
cluster. It is based on the observation that if an atom has a high usage frequency for HSI reconstruction,
it is more likely to be a background pixel [31]. Therefore, from the perspective of the usage frequency of
the dictionary atoms used for HSI reconstruction in each cluster, we can obtain a reasonable estimation
of the background dictionary, which can exclude anomaly contamination and contain all background
categories. Furthermore, for further enhancing the response difference between the anomaly pixels
and the background pixels, an adaptive weighting method based on the reconstruction residual of the
entire data with respect to the background dictionary constructed above is proposed. The final anomaly
response of each pixel is calculated by multiplying the value obtained through LRR by the weight.
Compared with the existing LRR-based detectors, our proposed algorithm avoids the randomness
brought by the random selection process (compared with LRALD), does not damage the physical
structure of HSI (compared with ADLR), and needs less computation time than LRASR, which adds a
sparsity-inducing regularization term to LRR. In addition, the distinction between background and
anomalies can be significantly improved by our adaptive weighting method, which has not been
used in other LRR-based algorithms. The main contributions of our proposed algorithm for AD can
summarized as follows:
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(1) Use of the LRR model. First, the LRR model is highly consistent with the hyperspectral
AD problem and is therefore used in this paper. Second, the real-world HSIs are usually lying in
multiple subspaces due to the presence of mixed pixels caused by insufficient sensor resolution [25].
The LRR model assumes that the data are in multiple subspaces by imposing l21 constraint on the
sparse component, so it is suitable for real data. Third, the l21 constraint also makes the background
unaffected by the column-wise sparse anomalies [29].

(2) Background dictionary construction strategy. To better separate the sparse anomalies from
the background component and reduce the computational burden, a novel background dictionary is
constructed by analyzing the usage frequency of the dictionary atoms for HSI reconstruction in each
cluster. The dictionary is an excellent representation of the background subspace since it excludes
anomaly contamination and covers all background categories. Therefore, the sparse component
containing most of the anomaly information is extracted accurately.

(3) Adaptive weighting method. To further enhance the diversity between the background pixels
and the anomaly pixels, an adaptive weighting method is introduced in our proposed algorithm by
reusing the constructed background dictionary. By multiplying the results of LRR by the weights,
the background and anomalies are more easily distinguished in the final detection map.

The rest of this paper is organized as follows. In Section 2, we briefly review the LRR model and
its solution. In Section 3, the background dictionary construction strategy and adaptive weighting
method in our proposed algorithm are described in detail. In Section 4, experimental results and
analysis based on synthetic and real-world HSI datasets are provided. Finally, Section 5 concludes
this paper.

2. Low-Rank Representation and Its Solution

In this section, we briefly introduce the consistency of the LRR model and the hyperspectral AD
theory. Then the solution of LRR is provided. It plays a significant role in our proposed algorithm.

2.1. LRR Model for AD

There are several typical characteristics in HSIs. (1) Unlike anomaly pixels, there are strong
correlations among the background pixels, i.e., the spectrum of a background pixel can be represented
as a linear combination of some other background pixels [32]. (2) Anomalies occupy only a few pixels
with a low probability of occurrence, that is, they are sparse spatially [33]. (3) Due to the limitation of
the resolution of hyperspectral sensors, there are many mixed pixels in the real-world HSIs. Since the
spectrum of each mixed pixel can be represented as a mixture of some pure materials (endmembers)
and each endmember can be described in a subspace, all pixels in the HSI can be drawn from multiple
subspaces [34]. The LRR model takes into account the above characteristics of HSI and is therefore
very suitable for AD. The model of LRR is as follows:

min
S,E

‖S‖∗ + λ ‖E‖2,1 s.t. X = DS + E, (1)

where the HSI matrix X is decomposed into a background component DS and an anomaly component
E. D is the dictionary spanning the data space, and S is called the low-rank representation of X with
respect to D. ‖·‖∗ is the nuclear norm, which is a good alternative to the rank function because of
the convex optimization problem it causes. It attempts to find the lowest-rank representation of all
data jointly by imposing low-rank constraint on the representation coefficient matrix S, instead of the
background itself. ‖·‖2,1 is the l21-norm used to encourage the sparse nature of E, indicating that the
anomalies are column-wise sparse, i.e., sample-specific. E is obtained by the residual of the data and
the recovered background component. It contains most of the anomaly information and can therefore
be used for AD. λ > 0 is the tradeoff parameter used to balance these two parts. LRR assumes that
the data are drawn from multiple subspaces corrupted by anomalies and tries to find the lowest-rank
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representation of all data jointly to recover the underlying multiple subspaces. In the original LRR
model, the entire input matrix X is used as the dictionary D to span the data space.

The difference between the PCA model and the LRR model is illustrated in Figure 1. As we can
see, with the l21 constraint, LRR assumes that the data lie in multiple subspaces, while the data in
PCA are drawn from a single subspace because of the l1 constraint. Due to the presence of mixed
pixels, multiple subspaces can better describe the real HSI data. In addition, the l21 constraint on the
sparse component in LRR indicates that the anomalies are column-wise sparse, i.e., sample-specific.
It means that most of the data vectors are clean and a few of them are corrupted, which ensures that the
background spectra are not affected by the anomalies. On the contrary, in RPCA and LRaSMD [35,36],
the anomalies are entry-wise sparse, and all the spectra of background component can be affected by
the nonzero anomalies due to the l1 constraint on the anomaly component. Moreover, LRR can also
exclude the noise that is normally randomly distributed in each band from the anomaly component.
After comparison, we find that LRR can better separate a sparse component as pure as possible from
the background. The models and characteristics of RPCA, LRaSMD and LRR are summarized in
Table 1. The advantages of LRaSMD over RPCA is that it considers the additive noise in the dataset and
thus avoids the isolated noise being detected as anomalies [37]. In Section 4.2, we will experimentally
demonstrate that the l21 constraint is superior to the l1 constraint for the LRR model.

pixels

bands

3D cube

2D matrix Background component

+

+

Anomaly component

bands =

pixels

bands
bands =

RPCA
l1 constraint

LRR
l21 constraint

Figure 1. Difference between the l1 constraint in RPCA and the l21 constraint in LRR. Each square
represents the digital number of a pixel in a band. The greens correspond to the backgrounds and the
reds correspond to the anomalies.

Table 1. Comparison of models and characteristics of RPCA, LRaSMD and LRR.

Methods Models Theories Characteristics

RPCA X = L + E
Abstract the low-rank

component as L and the
sparse component as E

Single subspace
assumption

l1 constraint on E

LRaSMD X = L + E + N

Consider the additional noise;
Abstract the low-rank

component as L and the sparse
component as E with predefined

rank(L) and card(E)

LRR X = DS + E

Recover the background
component DS using the

lowest representation
of all data jointly

Multiple subspaces
assumption l2,1 constraint on E
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2.2. Solution of LRR

To solve the problem in Equation (1), we introduce an auxiliary variable J to make the objective
function separable [38]. The optimization problem is converted to:

min
S,E,J

‖J‖∗ + λ ‖E‖2,1 s.t. X = DS + E, S = J, (2)

Then, the following Lagrange function can be obtained:

min
S,E,J,Y1,Y2

‖J‖∗ + λ ‖E‖2,1 + tr
[
YT

1 (X − DS − E)
]
+ tr

[
YT

2 (S − J))
]

+
μ

2
(‖X − DS − E‖2

F + ‖S − J‖2
F),

(3)

where Y1 and Y2 are Lagrange multipliers, μ > 0 is the penalty parameter. The equation can be solved
by inexact Augmented Lagrange Multiplier (ALM) via alternatively updating one variable when the
others are fixed [39]. The solution of LRR is outlined in Algorithm 1.

Algorithm 1. Solving LRR by Inexact ALM for AD

Input: dataset matrix: X; dictionary matrix: D; tradeoff parameter: λ > 0
Initialize: S = J = E = Y1 = Y2 = 0, μ = 10−6, μmax = 1010, ρ = 1.1, ε = 10−8

While not converged do
1. Update J and fix the others: J = arg min 1

μ ‖J‖∗ + 1
2 ‖J − (S + Y2/μ)‖2

F
2. Update S and fix the others: Z = (DTD + I)−1 [DTX − DTE + J + (DTY1 − Y2)/μ

]
3. Update E and fix the others: E = arg min λ

μ ‖E‖2,1 +
1
2 ‖E − (X − DS − Y1/μ)‖2

F
4. Update the Lagrange multipliers: Y1 = Y1 + μ(X − DS − E)), Y2 = Y2 + μ(S − J))
5. Update the tradeoff parameter μ: μ = min(ρμ, μmax)
6. Check the convergence conditions: ‖X − DS − E‖∞ < ε and ‖S − J‖∞ < ε, where ‖·‖∞ is the infinite norm.
end while
Output: the optimal solution of S and E

In Algorithm 1, the sub-problems in step 1 and step 3 are respectively solved by the singular
value thresholding operation [40] and the l21 minimization operation [38].

Finally, the anomaly response of pixel x is calculated by the l2-norm of the corresponding column
of E, i.e.,

ν(x) = ‖Ei(:)‖2 (1 ≤ i ≤ N), (4)

where Ei(:) is the corresponding column of pixel x in E, and N is the number of pixels in X.

3. Proposed Method

The LRR model has high consistency with the hyperspectral AD problem because it can effectively
capture the low-rank representation of all data jointly and mine the sparse component contained
in the dataset for AD [38]. However, in LRR, the entire input dataset or randomly selected data
are usually used as the dictionary, where the former will bring a large computational burden and
an unsatisfactory separation of sparse anomalies from the background component, while the latter
cannot ensure that all background material categories are covered in the dictionary [28]. In this case,
to achieve a better separation performance between the background component and the anomaly
component with a low computational complexity, a background dictionary that excludes anomaly
contamination and contains all background categories is required. In Section 3.1, we propose a novel
background dictionary construction strategy based on the usage frequency of the dictionary atoms
for HSI reconstruction in each cluster. In addition, for further enhancing the response difference
between the background pixels and the anomaly pixels, an adaptive weighting method based on the
reconstruction residual of the entire data with respect to the constructed dictionary is introduced in
Section 3.2.
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3.1. Background Dictionary Construction Strategy

To contain all background categories in the dictionary, the K-means clustering algorithm is first
used to divide the data into K clusters, where the value of K can be estimated a priori by the HySime
algorithm [41]. A complex background consisting of many types of background materials should
have a larger K, and the value of K we choose should be larger than the true number of background
categories in the scene to cover all background materials. After performing K-means clustering on
dataset X, we obtain K clusters {X1, X2, ..., XK}. For each cluster Xi(1 < i < K), we randomly select M
percent of the pixels to form the dictionary B to sparsely reconstruct each sample in Xi, and then the
sparse reconstruction coefficients are obtained by using the sparse coding method [31]. Specifically,
the spectrum of pixel x is assumed to be approximately represented as a linear combination of only a
few atoms in B, i.e.,

x = Bα + r, (5)

where x is a sample in Xi, α is the reconstruction coefficient vector where most of the entries are zero,
and r is the residual vector. Given a fixed dictionary B, α can be obtained by solving the following
optimization problem:

min ‖x − Bα‖2 s.t. ‖α‖0 < K0, (6)

where ‖·‖0 denotes the l0-norm and K0 is the upper bound of the sparsity level. The sparse coding
method provides the optimal solution of α using greedy pursuit algorithms, such as matching pursuit
(MP) [42] and orthogonal matching pursuit (OMP) [43], where OMP is superior to MP due to its fewer
iterations and better convergence. For cluster Xi, the sparse coefficient vector α for each sample is
obtained, constituting the sparse coefficient matrix Ai.

We focus on Ai and then count the usage frequency of each atom in B for reconstructing Xi.
For a pixel in Xi, some dictionary atoms in B participate in its reconstruction while the others do not.
As mentioned above, background dominates the scene while the anomalies occupy only a few pixels
with a low probability of occurrence. From this point of view, we can conclude that if a dictionary atom
is used frequently for reconstruction, it contains more background information and is more likely to be
a background pixel [31]. In contrast, the rarely used atoms are anomaly pixels with high probability.
In this case, in cluster Xi, assuming bj is the jth atom of B, its usage frequency f j for reconstructing Xi
is defined as:

fj =
∑Ni

k=1

∣∣∣αj,k

∣∣∣
‖Ai‖1

, (7)

where ‖·‖1 denotes the l1-norm, which is the sum of the absolute values of all elements in a matrix. Ni
is the number of pixels in Xi. The numerator in Equation (7) is the sum of the reconstruction coefficients
of atom bj used to reconstruct all pixels in Xi, and the denominator is the sum of all entries in Ai. Then,
we choose P atoms corresponding to the first P largest usage frequency to constitute the background
pixels we estimate in Xi.

The above procedure is repeated in each cluster with the same M and P. The estimated background
pixels in all clusters are summarized, constituting the estimated background pixels in the whole image.
Figure 2 shows an illustration of the background dictionary construction strategy. The constructed
background dictionary, which effectively excludes possible anomalies and contains all background
categories in the scene, is finally used for LRR. It is worth nothing that since sparse coding requires an
over-complete dictionary, in each cluster, the number of atoms randomly selected for HSI reconstruction
should be larger than the dimension H of the dataset. If the total number of pixels in a cluster is less
than H, then this cluster should be ignored and skipped because it may belong to the anomalies due to
its small size and we have set K larger than the true number of background material categories.

In Section 4.3, we will compare the dictionary we construct with two other commonly used
dictionaries, including the dictionary using the entire input data and the dictionary with randomly
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selected atoms, to demonstrate the advantages of our proposed dictionary construction strategy in
terms of detection performance and computation time.
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Figure 2. Illustration of the background dictionary construction strategy.

3.2. Adaptive Weighting Method

After performing LRR on an HSI based on our constructed background dictionary, the anomaly
response of each pixel is calculated using the sparse component obtained. However, the response
difference between anomaly pixels and background pixels can be further enhanced to improve the
discrimination degree between them. Fortunately, through implementing sparse reconstruction
on the entire dataset based on the background dictionary constructed in Section 3.1, the resulting
reconstruction residuals provide an effective way to assign adaptive weight values to different pixels
according to their likelihood of being background pixels or anomalies. It is well known that the
background in HSI is highly correlated and the spectrum of a background pixel can be represented
by a linear combination of some other background pixels, while the anomalies cannot. That is to
say, compared with anomaly pixels, the background pixels can be better sparsely reconstructed by
the background dictionary D [44]. Similarly, the sparse coefficient vector can be solved by the OMP
algorithm [43]. Therefore, the following reconstruction residual can be used to assign an adaptive
weight to each pixel:

ξ (x) = ‖x − Dβ‖2 , (8)

where x is an arbitrary test pixel in X, D is the background dictionary constructed in Section 3.1, and
β is the sparse coefficient vector of x with respect to D. Obviously, an anomaly pixel will obtain a
larger residual while the residual for a background pixel will be small. In this case, the response
difference between the background pixels and anomalies is enhanced, which will further improve the
AD performance. The final anomaly response of each pixel is calculated by multiplying the weight
defined in Equation (8) by the anomaly value obtained through LRR, i.e.,

ν′ (x) = ξ (x) · ν (x) , (9)

3.3. Overview of the Proposed Algorithm

According to the consistency of the LRR model and the AD theory, the detection algorithm
proposed in this paper is based on the LRR model, which can effectively mine the hidden lowest-rank
structure in the data and extract the sparse component for AD [38]. A background dictionary
construction strategy is applied to better depart the sparse anomalies from the background component.
An adaptive weighting method is introduced for further enhancing the response difference between
the background pixels and the anomaly pixels. Our proposed method is called the hyperspectral AD
algorithm via dictionary construction-based LRR and adaptive weighting (DCLaAW). The main steps
of DCLaAW are summarized as Algorithm 2, and the corresponding schematic flowchart is given
in Figure 3.
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Algorithm 2. Hyperspectral AD via the proposed DCLaAW

Input: HSI data: X; parameters: K, M, P, λ > 0
1. Divide X into K clusters using K-means clustering.
2. for i = 1 : K

(1) Randomly select M percent of the pixels in this cluster as the dictionary atoms for HSI reconstruction.
if L < H (L is the number of pixels in this cluster, and H is the number of bands of X)

ignore and skip this cluster.
end
(2) Perform sparse coding to obtain the sparse coefficient matrix A.
(3) Count the usage frequency f of each atom in the dictionary based on A.
(4) Choose P pixels corresponding to the first P largest f as the background pixels we estimate.
end

3. Summarize the estimated background pixels in all clusters to constitute the background dictionary D
for LRR.
4. Perform LRR using Algorithm 1 to obtain the anomaly component E, and then calculate the response
value ν of each pixel.
5. Create the weight matrix based on the reconstruction residuals of X with respect to D.
6. Multiply ν by the weight to obtain the final anomaly response value of each pixel.
Output: Anomaly response values of X
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Figure 3. Schematic flowchart of the proposed DCLaAW algorithm for hyperspectral anomaly detection.

4. Experiments and Analysis

In this section, the effectiveness and superiority of our proposed DCLaAW are evaluated on both
synthetic and real-world datasets. The AD performance is assessed by four commonly used indexes,
including color detection map, ROC (receiver operating characteristic) curve [45], AUC (area under
curve) value [46], and background-anomaly separation map. The superiority of the l21 constraint in
LRR, the effectiveness of both the dictionary construction strategy and the adaptive weighting method
are illustrated in Section 4.2, Section 4.3 and Section 4.4, respectively. In Section 4.5, we compare the
detection performance of DCLaAW with that of eight existing state-of-the-art anomaly detectors in
detail. Then, the sensitivity of the detection performance of DCLaAW to the relevant parameters
is analyzed in Section 4.6. In Section 4.7, we provide a comparison between the LRR, the sparsity
formulation, and the L2 formulation to further demonstrate the superiority of our proposed algorithm.
All the experiments are implemented on a personal computer with an Intel Core i3 3.70-GHz central
processing unit, 8GB memory, and 64-bit Windows 7. MATLAB 2016a provides the simulation and
computing platform.

4.1. Dataset Description

The synthetic dataset is generated based on a real-world dataset collected by the HyMap airborne
hyperspectral imaging sensor from a small town of Cook City, MT, USA [47]. It has an area of
280× 800 pixels and 126 spectral bands with wavelengths ranging from 450 to 2500 nm. After removing
the bands corresponding to water absorption regions and low signal-to-noise ratio, 120 bands are
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retained. A sub-region with a size of 230 × 240 pixels on the right side of the scene is chosen to
form the simulated image, where the background types mainly conclude trees, grasses, and rocks.
Based on the linear mixing model (LMM), a synthetic subpixel anomaly with spectrum x and a specified
abundance fraction α is generated by fractionally implanting a desired target with spectrum t in a
given background pixel with spectrum b [48], as follows:

x = α · t + (1 − α) · b, (10)

The implanted target corresponds to a vehicle with distinctive spectral characteristics outside
the scene. In this experiment, 30 anomalies are synthesized and distributed in 5 rows and 6 columns.
In each row, the abundance fraction α remains unchanged and the sizes of anomalies are 1 × 1, 1 × 1,
3 × 3, 3 × 3, 5 × 5, and 5 × 5 from left to right. In each column, the abundance fraction α are 0.1, 0.3,
0.5, 0.8, and 1.0 from top to bottom. The pseudo-color image, the ground-truth map, and the spectral
curves of the implanted target and main backgrounds are shown in Figure 4a–c, respectively.
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Figure 4. Synthetic dataset. (a) Pseudo-color image of the scene; (b) Ground-truth map; (c) Spectral
curves of implanted target and main backgrounds.

The first real-world dataset was collected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor from the San Diego airport area, San Diego, CA, USA [49]. It has a spatial resolution
of approximately 3.5m and 224 spectral bands spanning a wavelength range of 0.37 to 2.51 um.
After removing the bands corresponding to water absorption regions and low signal-to-noise ratio,
189 bands are retained. A sub-region with a size of 100 × 100 pixels is chosen for this experiment,
where the background types mainly include parking apron, road, roofs, and shadow. Three aircraft,
occupying 58 pixels in the image, are considered as anomalies in this experiment. The pseudo-color
image, the ground-truth map, and the spectral curves of mean anomalies and main backgrounds are
shown in Figure 5a–c, respectively.

The second real-world hyperspectral dataset was collected by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) remote sensor. It covers a suburban residential area with 10 nm
spectral resolution and 210 spectral bands ranging from 0.4 to 2.5 um [50]. After removing the bands
corresponding to water absorption regions and low signal-to-noise ratio, 160 bands are retained.
A sub-region with a size of 80 × 100 pixels is chosen for this experiment, where the background types
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mainly include parking lot, water, soil and two roads. Some synthetic vehicles, containing 21 pixels,
are the anomalies in this experiment. The pseudo-color image, the ground-truth map, and the spectral
curves of mean anomalies and main backgrounds are shown in Figure 6a–c, respectively.
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Figure 5. San Diego dataset. (a) Pseudo-color image; (b) Ground-truth map; (c) Spectral curves of
mean anomalies and main backgrounds.
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Figure 6. Urban dataset. (a) Pseudo-color image; (b) Ground-truth map; (c) Spectral curves of mean
anomalies and main backgrounds.

4.2. Superiority of the l21 Constraint for LRR

As described in Section 2.1, for the sparse component in LRR, the l21 constraint is theoretically
more suitable to discriminate the background and anomalies than the l1 constraint. In this section,
to experimentally demonstrate the superiority of the l21 constraint, the detection performance of
LRR under l21 constraint is compared with that under l1 constraint. To compare only the effects of
different constraints in the performance of LRR, the optimal background dictionary is adopted while
the adaptive weighting is not implemented. Here we present the experimental results for the San
Diego dataset, and the other two datasets can get the similar conclusions. The detection maps obtained
by LRR with different constraints are shown in Figure 7, and the corresponding AUC values and
calculation times (in seconds) are listed in Table 2. The ROC curve plots the relationship between
the false alarm rate (FAR) and the detection rate (DR), where the FAR is generally measured by a
base 10 logarithmic scale to better illustrate the details. The closer the ROC curve is to the upper left
corner of the coordinate plane, the better the performance of the corresponding detector. The AUC
value represents the whole area under the ROC curve, so a larger AUC value usually means a better
detection performance. For each constraint, the sensitivity of the obtained AUC value to the number
of dictionary atoms is shown in Figure 8.

As shown in Figure 7, the detection map obtained by the l1 constraint has significantly more false
alarm points than the l21 constraint. This is mainly because the l1 constraint finds the entry-wise sparse
points, which are usually sparse in a certain band, not in all bands. This results in the background pixels
that are sparse in only a band being extracted into the sparse component, and further leads to serious
false alarms in the detection result. From Table 2, we see that the l21 constraint achieves a slightly
larger AUC value, consistent with the observation in the detection maps. In addition, the l21 constraint
requires less computation time than the l1 constraint and is therefore more practical. After several
experiments, we find that the l1 constraint requires 240 iterations in one experiment, while the l21
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constraint requires only 152 iterations. Figure 8 shows that the LRR with l21 constraint is more robust
to the number of dictionary atoms. Therefore, after comprehensive consideration, we believe that the
l21 constraint is superior to the l1 constraint both theoretically and experimentally.

(a) (b)

Figure 7. Color detection maps obtained by LRR with different constraints for the San Diego dataset.
(a) l1 constraint; (b) l21 constraint.

Table 2. Performance comparison of different constraints for the San Diego dataset.

Constraint l1 Constraint l21 Constraint

AUC value 0.9936 0.9949

Computation time (s) 72.923 49.260
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Figure 8. AUC values achieved by LRR under different numbers of dictionary atoms for the San Diego
dataset. (a) l1 constraint; (b) l21 constraint.

4.3. Effectiveness of the Background Dictionary Construction Strategy

In this section, our proposed background dictionary construction strategy is compared with two
other commonly used LRR dictionaries, including the dictionary using the entire input data and the
dictionary with randomly selected atoms, to demonstrate the superiority of our dictionary in terms of
detection performance and computation time. In the original LRR, the entire input matrix is used as
the dictionary to span the data space. In the randomly selected dictionary-based LRR, atoms in the
dictionary are randomly selected from the entire dataset. In this comparison, for the sake of fairness,
the number of randomly selected atoms is set equal to the number of atoms in DCLaAW. To make
objective comparisons only for different dictionaries, we do not implement weighting operation when
performing DCLaAW in this section. When the original LRR is executed on a large data, an error
occurs due to “out of memory”. Therefore, in this part, a sub-region taken from the upper right corner
of the San Diego image is used as the toy dataset to perform the experiment. The ground-truth map,
and the color detection maps achieved by these three different algorithms are shown in Figure 9 for
intuitive comparisons. The ROC curves of each algorithm and their corresponding AUC values are
plotted in Figure 10 for quantitative comparisons. In addition, the computation times of each algorithm
are listed in Table 3 for a practical comparison.
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(a) (b) (c) (d)

Figure 9. Color detection maps obtained by LRR using different dictionaries for the toy dataset. (a) Ground-
truth map; (b) Original LRR; (c) LRR using randomly selected dictionary; (d) LRR using our dictionary.
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Figure 10. ROC curves and AUC values achieved by LRR using different dictionaries for the toy dataset.

Table 3. Computation times of LRR using different dictionaries for the toy dataset.

Time(s) Original LRR LRR Using Random Dictionary LRR Using Our Dictionary

Toy Dataset 1340.505 9.471 11.057

As shown in Figure 9, the LRR algorithm using our dictionary achieves the best detection
map in terms of background suppression and anomaly highlighting. For the original LRR, since
the whole dataset, as the dictionary for LRR, cannot separate the background component and the
anomaly component very well, it is difficult to identify the anomalous aircraft in the detection map.
For LRR based on randomly selected dictionary, random selection cannot avoid anomalies being
selected as dictionary atoms, and it is difficult to ensure that each background category is covered.
Therefore, the background component extracted by it cannot adequately describe the real background.
Our proposed background dictionary construction strategy can guarantee the exclusion of anomaly
contamination and the inclusion of all background categories in the background dictionary to a
considerable extent, thus providing the best detection map. From Figure 10, we can see that the ROC
curve obtained by the LRR algorithm using our dictionary is basically always above that obtained by
the LRR using the other two dictionaries. Consistently, the AUC value achieved by LRR using our
dictionary is the largest. In addition, Table 3 shows that the time taken to execute the original LRR is
long, so it is impractical to use it to process the real-world HSI datasets. Although the computational
cost of the LRR using our dictionary is slightly larger than that of the LRR using a random dictionary,
it is within an acceptable range.

4.4. Effectiveness of the Adaptive Weighting

After performing LRR based on the background dictionary we construct, the adaptive weighting
method described in Section 3.2 is implemented to further increase the diversity between the
background pixels and the anomaly pixels. The weighting effect can be clearly reflected by the
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detection map and the background-anomaly separation map. Here, to demonstrate the effectiveness of
our proposed adaptive weighting method, the detection result obtained by DCLaAW with adaptive
weighting is compared with that obtained by DCLaAW without adaptive weighting. The detection
maps and normalized background-anomaly separation maps for the three datasets are shown in
Figures 11 and 12, respectively. The background-anomaly separation map is a graph used to evaluate
the separation performance of background pixels and anomaly pixels. It normalizes the detection
result to 0-1 and uses a green box and a red box to represent the compactness and tendency of the
distribution of backgrounds and anomalies, respectively. The central mark of each box is the median,
the bottom and top edges refer to the lower quartile and the upper quartile, and the whisker are the
extreme values within 1.5 times the interquartile range from the end of the box. Therefore, a larger gap
between two boxes means a better separation between background and anomalies.

(a) (b) (c)

Figure 11. Effect of adaptive weighting on the detection map obtained by DCLaAW for each dataset.
For each dataset, the top is the DCLaAW without adaptive weighting and the bottom is the DCLaAW
with adaptive weighting. (a) Synthetic dataset; (b) San Diego dataset; (c) Urban dataset.

From Figure 11, we can see that for the San Diego and Urban datasets, the response
brightness of the background pixels through weighting is significantly lower than that without
weighting. The anomalous are also brightened noticeably. For the Synthetic dataset, after weighting,
the background materials in the upper left corner are suppressed and the response outputs of the
anomalies in the third to fifth rows are greatly improved. This effect can be clearly observed through the
background-anomaly separation map shown in Figure 12, where the gap between the background box
and the anomaly box becomes larger after weighting, meaning an easier identification of anomalous
objects from the background.

4.5. Detection Performance

Eight state-of-the-art anomaly detectors are used as the benchmarks to evaluate the detection
performance of our proposed DCLaAW, including GRX [8], LRX [9], KRX [14], CKRX [16], SSRX [13],
CRD [20], LRaSMD [36], and LRASR [28]. All compared detectors are implemented with their
optimal parameters.

For the synthetic dataset, the color detection maps of all compared algorithms are shown in
Figure 13 for an intuitive comparison. As shown, GRX obtains the worst detection map, where almost
no anomalies can be successfully detected. LRX performs well for anomalies with an abundance
fraction greater than 0.5 because of its advantages in dealing with local uniform background. For KRX,
all the anomalies except for those in the first row are highlighted satisfactorily, but it is obvious that
the background materials corresponding to the grasses and rocks in the scene are not well suppressed.
For CKRX, all the anomalies are effectively highlighted, but the background materials, especially rocks
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and grasses, have undesirably high response values. For SSRX, anomalies with a large abundance
fraction are well identified, but there are still some background materials with slightly high response.
Both CRD and LRaSMD achieve a satisfactory extrusion for almost all anomalies, regardless of their
sizes. However, they perform poorly for anomalies with an abundance fraction of 0.1 and there is some
noise pollution scattered throughout the detection map of CRD. Compared with LRASR, our proposed
DCLaAW achieves a better performance in anomaly highlighting and background suppression due to
its more reasonable background dictionary construction strategy and adaptive weighing. All anomalies
can be detected by DCLaAW, regardless of their sizes and abundance fractions. In general, besides
DCLaAW, the detection map of LRaSMD is relatively good.
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Figure 12. Effect of adaptive weighting on the background-anomaly separation map for each dataset.
(a) Synthetic dataset; (b) San Diego dataset; (c) Urban dataset.

(a) (b) (c)
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(g) (h) (i)

Figure 13. Color detection maps of all compared algorithms for the Synthetic dataset. (a) RX; (b) LRX;
(c) KRX; (d) CKRX; (e) SSRX; (f) CRD; (g) LRaSMD; (h) LRASR; (i) DCLaAW.
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Figure 14 provides the quantitative comparisons of these detectors for the synthetic dataset
through the ROC curves and normalized background-anomaly separation maps. As shown in
Figure 14a, our proposed DCLaAW obtains the best ROC curve with a DR close to 1 for all FARs.
The ROC curves of LRaSMD and SSRX are slightly worse than that of DCLaAW, but still better than
that of the other 6 detectors. The ROC curve of LRX approximates a straight line. Figure 14b shows the
normalized background-anomaly separation maps of each detector. As shown, DCLaAW achieves
the largest gap between the background box and the anomaly box with no overlap. In addition to
DCLaAW, CKRX and LRaSMD can also satisfactorily separate anomalies from the background.
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Figure 14. Quantitative comparisons of all compared algorithms for the synthetic dataset. (a) ROC
curves; (b) Background-anomaly separation maps.

For the real-world San Diego dataset, the color detection maps of all compared algorithms are
shown in Figure 15. We can see that neither GRX nor LRX can identify any anomalous aircraft from
the background, thus providing the worst detection maps among all detectors. KRX achieves the most
outstanding anomaly extrusion in all detectors, but there are some serious false alarms in the lower
left and upper left corners. The anomaly extrusion of CKRX is satisfactory, but the background in the
lower left corner needs to be further suppressed. For SSRX, when eliminating redundant background
interference, some useful anomaly information is also removed by PCA, resulting in weak brightness
of anomaly pixels in the detection map of SSRX, as shown in Figure 15e. The centers of the anomalous
aircraft are well extruded by CRD, but the edges are ignored. LRaSMD achieves a very satisfactory
background suppression for most of the background areas, but it is obvious that there are some high
background responses in the lower left corner of the scene. For our proposed DCLaAW, all three
aircraft are extracted from the background with very high brightness, and the background interference
is well suppressed, demonstrating its superiority over LARSR which has relatively weak brightness in
the anomaly pixels. Figure 16 presents the ROC curves and background-anomaly separation maps
of these detectors. As shown in Figure 16a, DCLaAW obtains a DR greater than 0.3 when the FAR is
approximately 0, and its DR is about 0.95 when the FAR is 0.007. Therefore, our proposed DCLaAW
achieves the best detection performance among all detectors. The ROC curves of GRX and LRX are
the worst, consistent with the conclusions of the above detection maps. Figure 16b illustrates that
both LRX and LRaSMD successfully suppress the background to a very low and narrow range of
brightness, but the anomalies in LRX are not well highlighted. The separation of CKRX is quite good,
but the brightness of the background is too high. Although our proposed DCLaAW is not optimal for
background suppression, it can obtain the maximum distance between the background box and the
anomaly box, thus achieving the best background-anomaly separation performance.
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Figure 15. Color detection maps of all compared algorithms for the San Diego dataset. (a) RX; (b) LRX;
(c) KRX; (d) CKRX; (e) SSRX; (f) CRD; (g) LRaSMD; (h) LRASR; (i) DCLaAW.
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Figure 16. Quantitative comparisons of all compared algorithms for the San Diego dataset. (a) ROC
curves; (b) Background-anomaly separation maps.

For the real-world Urban dataset, the detection maps are shown in Figure 17. As we can see,
compared with GRX, LRX effectively eliminates some false alarm points in the scene. However, some
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anomalies are also suppressed undesirably by LRX. For KRX and CKRX, there are some background
areas with high brightness, especially in the lower right corner of CKRX. For SSRX, almost all anomalies
can be found, and its background suppression is much better than KRX and CKRX. For LRaSMD,
the anomalies are well highlighted and most of the background areas in the scene are suppressed
to a very low brightness. However, due to the presence of some background objects with sparse
property, the detection map of LRaSMD may also contain some bright background responses, as
shown in Figure 17g. Our proposed DCLaAW achieves an excellent anomaly extrusion from the
background with almost no false alarms, and all background pixels are suppressed to a small interval.
Figure 18 gives quantitative comparisons of these detectors by ROC curves and background-anomaly
separation maps. It can be observed from Figure 18a that our DCLaAW obtains a DR greater than
0.6 when the false alarm is 0, and its FAR is the smallest compared with others when the DR reaches
1. The ROC curves of KRX and CKRX are the worst as they are close to the lower right corner of
the coordinate plane. From Figure 18b, we can see that both LRX and LRaSMD achieve the best
background suppression because their background boxes are very narrow, and their background
values are close to 0. For DCLaAW, the gap between background and anomalies is the largest, meaning
the best background-anomaly separation performance among all detectors.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17. Color detection maps of all compared algorithms for the Urban dataset. (a) RX; (b) LRX;
(c) KRX; (d) CKRX; (e) SSRX; (f) CRD; (g) LRaSMD; (h) LRASR; (i) DCLaAW.

In addition, the AUC values of all compared algorithms for each dataset are listed in Figure 19.
It can be seen that DCLaAW obtains the largest AUC value for all three datasets, proving its advantages
in AD. For the Urban dataset, all these detectors achieve an AUC value larger than 0.9, which mainly
because this dataset has high anomaly fractions, relatively uniform background and weak anomaly
contamination caused by small anomaly size.
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Overall, our proposed DCLaAW generally performs best on both synthetic and real-world
hyperspectral datasets. Compared with these compared algorithms, the main reasons for the
superior performance of DCLaAW can be summarized as follows: (1) it requires no assumptions
on the distribution of the background, which is the main limitation of the conventional probability
distribution-based RX methods. (2) anomaly contamination in LRX and CRD is a major factor affecting
their performances, which can lead to some false alarms and the missed detection of real anomalies.
(3) for LRaSMD, because of the decomposition error, the sparse property of some background objects
and the large upper bound of sparsity level, some background information is usually included in
the extracted sparse component, which may result in the presence of some false alarms. (4) LRASR
and DCLaAW, as improved versions of LRR, both construct a reliable background dictionary that can
remove anomalies and contain all background categories. However, our proposed weighting strategy
further enhances the response difference between the background pixels and the anomaly pixels, thus
providing a better AD performance.
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Figure 18. Quantitative comparisons of all compared algorithms for the Urban dataset. (a) ROC curves;
(b) Background-anomaly separation maps.
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Figure 19. AUC values of all compared algorithms for each dataset. (a) Synthetic dataset; (b) San Diego
dataset; (c) Urban dataset.

Furthermore, the computational costs of all these algorithms for each dataset are listed in
Table 4 for a practical comparison. The computational cost of each algorithm refers to its runtime
on our designated platform, and the number is in seconds. For the three datasets, although the
detection performance of CKRX is slightly worse than KRX, its computation time is significantly less.
The LRR-based algorithms, such as LRASR and DCLaAW, require more time to perform the detection
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operation than other algorithms. Due to the use of sparsity-inducing regularization term in LRASR,
the computational cost of LRASR is slightly larger than that of our proposed DCLaAW. It is worth
nothing that although our dictionary construction strategy greatly reduces the computation time of
the original LRR algorithm, the main calculation of DCLaAW is still spent on the solution of LRR.
Specifically, for the synthetic dataset, the San Diego dataset, and the Urban dataset, LRR accounts for
88.12%, 90.41% and 90.38% of the computational cost of DCLaAW, respectively.

Table 4. Computational costs of all compared detectors for each dataset.

Times (s) GRX LRX KRX CKRX SSRX CRD LRaSMD LRASR DCLaAW

Synthetic Dataset 0.698 87.726 21.043 11.823 0.464 32.134 58.079 520.356 466.527
San Diego Dataset 0.157 48.108 10.218 1.946 0.161 9.953 16.885 62.877 60.015

Urban Dataset 0.143 20.930 2.561 1.677 0.155 2.552 10.919 58.111 55.787

4.6. Parameter Analysis

There are some important parameters in our proposed DCLaAW that may influence the detection
performance, mainly including: (1) in the K-means clustering step: K is the number of clusters. (2) in the
background dictionary construction step: M is the percentage of atoms selected for HSI reconstruction
in each cluster; P is the number of pixels selected as the estimated background pixels in each cluster.
(3) in the LRR step: λ is the tradeoff parameter. When we analyze the specified parameters, the other
parameters are set to be optimal.

Firstly, we investigate the sensitivity of the detection performance of DCLaAW to K and M with the
other parameters fixed. The AUC values are calculated when jointly taking K and M into consideration.
Without loss of generality, K is set as {1, 2, 4, 6, 8, 10, 12, 14, 16, 20} and M is set as 10–100% with an
interval of 10%. For each dataset, the AUC values obtained with different combinations of K and M
are exhibited in Figure 20. It should be noted that since the sparse coding in each cluster requires an
over-complete dictionary, we ignore and skip the clusters where the number of pixels is less than the
number of dimensions of the dataset. As shown in Figure 20, it is clear that the AUC surfaces for the
three datasets are similar, where the DCLaAW algorithm is more sensitive to the transformation of K
than that of M. The detection performance of DCLaAW with small K is poor, mainly because the value
of K is too small to enable the K-means clustering algorithm to segment the HSI dataset into a sufficient
number of clusters. In this case, the constructed background dictionary for LRR cannot contain enough
background categories and therefore cannot span the entire data space. The AUC value is relatively
low when both K and M are very small. When K is in the range of 8–20 and M is in 30–100%, the AUC
values are stable and satisfactory for all three datasets, demonstrating the robustness of DCLaAW to
parameter K and M. For simplicity, in our experiments, we choose K = 12 and M = 50% for all the three
datasets. It is worth noting that K = 12 is also slightly larger than the number of categories estimated
by HySime and is therefore a reasonable choice.

Then, we investigate the influence of P on the detection performance of DCLaAW for each dataset.
Since the value of K can significantly affect the variation of detection performance with P, here we
jointly analyze K and P. The value of K is set as {1, 4, 8, 12, 16, 20} and P is in the range of 10–100 with
an interval of 10. Since the background dictionary we use for HSI reconstruction in the weighting
operation needs to be over-complete, the product of K and P should be larger than the dimension of
the dataset. Therefore, when the product of K and P is lower than the dimension, we do not execute
the adaptive weighting operation. It is worth mentioning that since we have made the dictionary for
sparse coding in each cluster over-complete, we can ensure that the selection of P atoms in each cluster
is sufficient, even if P takes the maximum value of 100. Figure 21a–c illustrate the change of AUC
values with P under different K for each dataset.
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Figure 20. AUC illustration of DCLaAW with different combinations of K and M for each dataset.
(a) Synthetic dataset; (b) San Diego dataset; (c) Urban dataset.
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Figure 21. AUC values achieved by DCLaAW with different K and P for each dataset. (a) Synthetic
dataset; (b) San Diego dataset; (c) Urban dataset; (d) Relationship between calculation time and the
number of dictionary atoms used for LRR.

As shown in Figure 21a–c, we can see that for the three datasets, the changes of AUC exhibit
similar characteristics. Specifically, on the one hand, an increased K means a better clustering result
and a more comprehensive background dictionary, thus resulting in a more satisfactory detection
performance. On the other hand, as P increases, more background dictionary atoms for LRR make
the background space to be more adequately spanned and thus further lead to a larger AUC value.
However, as P further increases, the AUC value will not increase anymore because the background
space has been fully described. Here, we choose several representative K-curves to illustrate the details.
For K = 1, the detection performance is very poor because the weighting method is not executed in
this case and such a small K makes the background dictionary unable to contain enough background
categories. For K = 4, there is a turning point where the AUC value increases rapidly. Prior to this
point, the weighting strategy is not implemented. At this point, the weighting strategy optimizes the
detection results. For K = 20, the weighting strategy is executed under all P values, so the detection
performance is satisfactory. It is worth nothing that although a larger P and K can result in a larger
AUC value, it also brings a greater computational cost. Though experiments, we plot the change
of the calculation time of LRR with the number of atoms in the dictionary, as shown in Figure 21d,
where the x-axis is the number of atoms in the dictionary for LRR and the y-axis is the calculation time.
Therefore, the values of K and P should be chosen to be moderate after jointly considering the detection
performance and time cost. For example, K = 12 and P = 30 is a good choice for all the three datasets.

Finally, the sensitivity of DCLaAW to the tradeoff parameter λ is analyzed. λ is chosen from
{0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}, and the ROC curve is used as the evaluation measure.
From the results shown in Figure 22, we can see that the variation trend of ROC curves with λ for
the synthetic dataset is significantly different from that for the two real-world datasets. Specifically,
for the synthetic dataset, as λ increases, the ROC curve initially becomes better and then reaches the
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best when λ is 0.02, and finally deteriorates as λ further increases. In the detection maps, λ larger
than 0.2 will result in the appearance of false alarm points corresponding to the rocks and grasses
in the scene. Differently, for the two real-world datasets, the ROC curves exhibit similar trends and
are not sensitive to λ. To observe the details, we plot the AUC values as a function of λ, as shown in
Figure 23. It reveals that for the two real-world datasets, all λ in the range of {0.001, 0.5} can achieve an
AUC value larger than 0.994, demonstrating the robustness of DCLaAW to λ. For the synthetic dataset,
when λ is less than 0.1, we can achieve an AUC value larger than 0.98. In our experiments, we choose
λ = 0.02, λ = 0.02 and λ = 0.4 for the three datasets, respectively.
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Figure 22. ROC curves achieved by DCLaAW with different λ for each dataset. (a) Synthetic dataset;
(b) San Diego dataset; (c) Urban dataset.
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Figure 23. AUC values achieved by DCLaAW with different λ for each dataset. (a) Synthetic dataset;
(b) San Diego dataset; (c) Urban dataset.

4.7. Comparison between Sparsity and l2 Formulation

In our proposed algorithm, based on the constructed background dictionary, the LRR is used to
separate the sparse anomaly component from the background for AD. As described in Section 3.2,
since the background pixels can be reconstructed sparsely by the background dictionary very well,
while the anomalies cannot, the reconstruction errors of the sparsity formulation can be used to assign
anomaly responses to pixels. l2 formulation, as a more commonly used approach, can theoretically also
achieve AD based on the constructed dictionary. That is to say, the LRR, the sparsity formulation, and
the l2 formulation perform AD from different aspects, and they adopt different models. In this section,
the AD performances of these three approaches are compared through experiments to demonstrate the
superiority of our proposed algorithm.

The models of LRR and sparsity formulation are Equation (1) and Equation (6), respectively,
both of which are used in our algorithm. l2 formulation, whose regression is called ridge regression,
is usually used to prevent data overfitting. In fact, with the l2 formulation, the entries of the coefficient
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vector are close to 0, but not equal to 0, which is the main difference between it and the sparsity
formulation. With the background dictionary D, the l2 formulation is as follows:

min ‖x − Dθ‖2
2 + δ ‖θ‖2

2 , (11)

where δ is the Lagrange multiplier. It can be found that for the l2 formulation, each pixel is reconstructed
by all atoms in the background dictionary. Differently, for the sparsity formulation, each pixel is
sparsely reconstructed by a few atoms in the dictionary. The above optimization problem can be
solved by making the derivative zero, and an analytical expression can be obtained. Without adaptive
weighting, the optimal detection maps obtained by these three approaches are shown in Figure 24, and
the corresponding AUC values are listed in Table 5. In addition, for each approach, the relationship
between the calculation time (in seconds) and the number of dictionary atoms is shown in Figure 25
for practical comparisons. Here we only show the experimental results for the San Diego dataset, and
the other two datasets can get the similar conclusions.

(a) (b) (c)

Figure 24. Detection maps obtained by different approaches for the San Diego dataset. (a) LRR with l21

constraint; (b) Sparsity formulation; (c) l2 formulation.

Table 5. AUC values obtained by different approaches for the San Diego dataset.

Approach LRR with l21 Constraint Sparsity Formulation l2 Formulation

AUC value 0.9949 0.9922 0.9937
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Figure 25. Relationship between computation time and the number of dictionary atoms for each
approach for the San Diego dataset.

As shown in Figure 24, LRR achieves a uniform and satisfactory suppression for almost all
background materials, thus obtaining the largest AUC value, as listed in Table 5. For the sparse
formulation, the overall background brightness is too high and needs to be further suppressed. The l2
formulation achieves the best suppression for most background areas, but the response values of the
background objects in the upper left and lower left corners are quite high. Table 5 shows that the
detection performance of LRR is the best, followed by the l2 formulation, while the sparse formulation
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has the worst performance. However, in our algorithm, if we use the l2 formulation instead of the
sparsity formulation to adaptively weight, the final AUC value obtained by the LRR weighted by l2
formulation is 0.9952, while the final AUC value obtained by the LRR weighted by sparsity formulation
is 0.9973. The reason may be that for the l2 formulation, the high background responses in the upper left
and lower left corners make the FAR of the final detection result serious. For the sparsity formulation,
although the overall background suppression in the weight map is not satisfactory, it is uniform. As a
result, the final detection performance can be effectively improved. As can be seen from Figure 25,
for the l2 formulation, the AUC value increases rapidly as the number of dictionary atoms increases.
Therefore, when the number of dictionary atoms is large, it is impractical to process HSI datasets using
the l2 formulation. In fact, the LRR with l1 constraint has the longest computation time compared to
these three approaches. After jointly considering the final detection performance and the calculation
time, we use the sparsity formulation to weight the detection result of the LRR with l21 constraint,
while the l2 formulation is not adopted.

5. Conclusions

In this paper, a novel hyperspectral AD algorithm via DCLaAW is proposed. Based on the
consistency of the LRR model and the hyperspectral AD problem, the LRR is used to mine the
lowest-rank representation of all data jointly and extract the sparse component for AD. Considering
the shortcomings of the conventional dictionaries for LRR and the fact that the background atoms
participate more frequently in HSI reconstruction, a background dictionary construction strategy based
on the usage frequency of the dictionary atoms for HSI reconstruction in each cluster is proposed.
Such a background dictionary guarantees the exclusion of anomaly pixels and the inclusion of all
background categories to a considerable extent, thus achieving a satisfactory separation between the
anomaly component and the background component. In addition, to further enhance the response
difference between the background pixels and the anomaly pixels, an adaptive weighting method
based on the reconstruction error of the entire data with respect to the constructed background
dictionary is proposed. The final anomaly value of each pixel is calculated by multiplying the weight
value by the response value obtained through LRR.

Experiments on both synthetic and real-world datasets demonstrate the superiority of our
proposed anomaly detection algorithm over the other eight state-of-the-art AD detectors. Moreover,
the effectiveness of the dictionary construction strategy and the adaptive weighting method is proven
by experiments. Finally, the influences of relevant parameters on the detection performance of our
algorithm are analyzed in detail. Although our algorithm can greatly alleviate the computational
burden of the original LRR, its calculation time is still larger than some other anomaly detectors.
Therefore, computational complexity is the focus of future research.
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Abstract: The infrared search and track (IRST) system has been widely used, and the field of infrared
small target detection has also received much attention. Based on this background, this paper
proposes a novel infrared small target detection method based on non-convex optimization with
Lp-norm constraint (NOLC). The NOLC method strengthens the sparse item constraint with Lp-norm
while appropriately scaling the constraints on low-rank item, so the NP-hard problem is transformed
into a non-convex optimization problem. First, the infrared image is converted into a patch image
and is secondly solved by the alternating direction method of multipliers (ADMM). In this paper,
an efficient solver is given by improving the convergence strategy. The experiment shows that NOLC
can accurately detect the target and greatly suppress the background, and the advantages of the
NOLC method in detection efficiency and computational efficiency are verified.

Keywords: low rank sparse decomposition; Lp-norm constraint; non-convex optimization; alternating
direction method of multipliers; infrared small target detection

1. Introduction

In recent years, as an indispensable part of infrared search and track (IRST) system, infrared
small target detection system is widely used in early warning systems, precision strike weapons and
air defense systems [1–3]. On the one hand, since the imaging distance is usually several tens of
hundreds of kilometers, the signal is attenuated by the atmosphere, and the target energy received by
the IRST is weak. For the same reason, the target usually occupies a small area and lacks texture and
structural information; on the other hand, the background and noise account for a large proportion,
while the background is complex and constantly changing, resulting in a low signal-to-clutter ratio
gain (SCR Gain) of the target in the image [4–7]. Therefore, infrared small target detection methods
attract the attention of a large number of researchers [8–10].

At present, the mainstream infrared small target detection algorithm can be divided into two
major categories: Track before detection (TBD) and detection before track (DBT). Among them, the TBD
method jointly processes the information of multiple frames to track the infrared small target, and has
higher requirements on computer performance, so the degree of attention is weak. The DBT method is
to process the image in a single frame to get the target position, which is usually better in real time and
has received more attention. Next, we will introduce the two methods and the research motivation of
this article.

Remote Sens. 2019, 11, 559; doi:10.3390/rs11050559 www.mdpi.com/journal/remotesensing197
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1.1. Track before Detection

Track before detection (TBD) methods use spatial and temporal information to estimate the target
location by processing multiple adjacent frames. Traditional 3-D matched filtering [11], improved
3-D filtering [12] and Spatiotemporal multiscan adaptive matched filtering [13] are only for static
backgrounds. However, the difference between the target and background in the infrared image tends
to change rapidly, and the background is also complex and changeable. Therefore, the above methods
are not effective.

Braganeto et al. used morphological connected operators to jointly consider target detection
and tracking [14]; Dong et al. proposed a novel target detection method [15] by combining the
difference of Gaussian (DOG), human visual system (HVS) and clustering methods; Li et al. proposed
a biologically inspired multilevel approach for multiple moving target detection [16]; Li et al. proposed
a spatio-temporal saliency approach [17]. However, since such methods usually require a large amount
of computation and storage, and have high requirements for computer performance, TBD methods are
not commonly used in practical applications.

1.2. Detection before Track

Detection before track (DBT) methods usually use the characteristics of small targets to process
images on a single frame. The DBT methods can be roughly divided into three categories.

The background suppression based methods. This category of methods is based on the assumption
of background consistency of infrared images, and usually adopts filters to suppress background
and clutter. The Tophat method [18], Max-Mean and Max-Median method [19], facet model
method [20,21] have been proposed and applied to the field of infrared small target detection. However,
the assumptions and principles of the background suppression based methods are relatively simple,
and the detection effect is not ideal.

The human visual system (HVS) based methods. Borji A [22] pointed out that the contrast between the
target and background allows humans to observe small targets. Based on this point, Chen et al. [23]
proposed the local contrast method (LCM). It derives the saliency map by sliding the window through
each pixel to calculate the local contrast. Han J [24] increased the efficiency of the algorithm by
increasing the sliding window step size and proposed improved local contrast method (ILCM).
Deng H [25] proposed the weighted local difference measure (WLDM). Wei Y [26] proposed a multiscale
patch-based contrast measure (MPCM) after analyzing the characteristics of bright and dark targets.
Bai X [27] introduced the concept of derivative entropy into small target detection and proposed a
derivative entropy-based contrast measure (DECM). Shi Y [28] proposed a high-boost-based multiscale
local contrast measure (HB-MLCM). The prior knowledge of HVS based methods is simple, and usually
the computational efficiency is relatively low, so the HVS based methods have been widely used.
However, this category of method does not have an ideal facing complex background and noise,
leading to low robustness.

The sparse and low-rank matrices recovery based methods. This category considers that the observed
image is a linear combination of the target image, the background image, and the noise image, while
assuming that the target image is sparse and the background image is low rank. Through the above
process, a small target detection problem is transformed into an optimization problem, specifically
the robust principal component analysis (RPCA) problem. Gao C [29] used the nuclear norm and
the L1-norm as the characteristics of the optimal convex approximation of the rank function and
the L0-norm and proposed infrared patch image (IPI) model. He et al. [30] proposed the low-rank
representation (LRR) method. Wang C [31] proposed an adaptive target-background separation (T-BS)
model. Dai Y [32] applied local steering kernel [33] to the penalty factor and proposed the weighted
infrared patch image (WIPI) model. Dai Y [34] improved the way patch images are built, introduced the
concept of a tensor [35,36] and proposed a reweighted infrared patch tensor (RIPT) model. Dai Y [37]
relaxed the constraint of low-rank, added a non-negative prior, and proposed non-negative infrared
patch image (NIPPS) model. Wang X [38] introduced total variation [39,40] to extract sharp edges
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(TV-PCP) in the infrared image and obtained a purer target image. L Zhang [41] combined the l2,1 norm
to describe the background and proposed a novel method based on non-convex rank approximation
minimization joint l2,1 norm (NRAM). Since this category of method is assumed to be closer to the real
situation, it will perform better than other categories, and with the continuous improvement of the
solution algorithm, the convergence speed of such methods is also increasing.

1.3. Motivation

As can be seen from the above, the infrared small target detection methods can be described as a
dazzling variety. Among them, the sparse and low-rank matrices recovery-based method has received
much attention. However, since such methods usually use the L1-norm as an approximation of the
L0-norm, the result may fall into the local minimum rather than the global minimum [42], which affects
the constraints of the sparse item; consequently, the detection result is mixed with clutter, and the
detection algorithm is poorly robust. Fortunately, there is still much room for improvement in the
design of methods.

Previous work has demonstrated that the strategy of using Lp-norm regularization can greatly
improve the ability of the algorithm to recover sparse signals compared to the L1-norm [43–46].
Besides, Lp minimization with 0 < p < 1 recovers sparse signals from fewer linear measurements
than does L1 minimization [43]. Another advantage of the Lp-norm is that when a sparse signal
can be recovered, it often requires fewer iterations to converge the equation [44]. For RPCA
problem, Chen X [47] theoretically established a lower bound of nonzero entries in solution of L2-Lp
minimization. Furthermore, recent studies [48–51] have also given a solution to the RPCA problem
of Lp-norm regularization. Although the optimization problem of the Lp-norm is non-convex, it has
been studied before, and it has the advantages of being able to obtain a more sparse solution, fewer
iterations to converge, and a theoretical basis for the L2-Lp minimization problem. The schatten q-norm
can be understood as a sparse constraint on the singular value of the matrix, therefore obeying the
above analysis.

Inspired by this, we aim to apply the constraints of the schatten q-norm and Lp-norm to the field
of infrared small target detection and propose a novel infrared small target detection method based on
non-convex optimization with Lp-norm constraint (NOLC). This method has the advantages of high
detection accuracy, anti-noise, and fast convergence. Because of the excellent nature of the Lp-norm,
the model is data-driven and can adapt to a variety of complex scenarios.

The main contributions of this article can be summarized as:
(1) Apply schatten q-norm and Lp-norm to the field of infrared small target detection, and propose

NOLC method. This method transforms the NP-hard problem into a non-convex optimization problem,
and it can restore sparser target images by enhancing constraints on a sparse item.

(2) An optimization solver is given to handle the non-convex optimization problem. This solver
combines the ADMM method [52–54] to solve the problems. In order to speed up the convergence of
this solver, an additional convergence condition is added to it. Similar optimization problems with
this model can also use this solver.

(3) Through the specific experimental analysis, this paper gives the influence of different main
parameters on the experimental results. Then, the set values of the key parameters are given.
The experimental results for real infrared image sequences also verify the feasibility of this method.

The remaining part of this paper is organized as follows: Section 2 shows the principle of
the NOLC method and solution of the non-convex optimization problem; Section 3 shows the
experimental results, showing the effect of the method by analyzing the real infrared image sequences;
The comparison between NOLC and other methods is given in the Section 4, highlighting the difference
between this method and others; The conclusion is given in Section 5.
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2. Methodology

This section will start with the basic schatten q-norm and Lp-norm, explain the application of
these two norms in infrared small target detection, and propose a novel infrared small target detection
method based on non-convex optimization with Lp-norm constraint (NOLC). Finally, a concrete
solution method combining ADMM of this optimization is given.

2.1. Schatten q-norm and Lp-norm

Assume that matrix A has singular value decomposition A = U ∗ S ∗ VT , where S denotes the
singular value diagonal matrix. As we all know, the definition of the two norms of A is as Equations (1)
and (2), where ‖A‖sq represents schatten q-norm and ‖A‖p represents Lp-norm.

‖A‖sq =

(
min{m,n}

∑
i=1

σ
q
i

)1/q

, 0 < q < ∞ (1)

‖A‖p =

(
m

∑
i=1

n

∑
j=1

∣∣aij
∣∣p
)1/p

, 0 < p < ∞ (2)

where σi represents the ith singular value of matrix A, or can be expressed as the ith diagonal component
of S; aij represents the pixel value of the ith row and the jth column of the matrix A. Since the matrix
singular value is non-negative, the schatten q-norm of matrix A can be regarded as the Lp-norm of S.
Therefore, we can understand the Schatten q-norm as a sparse constraint on singular values and it also
obeys the following analysis of the Lp-norm.

For the optimization problem in Equation (3), geometrically, the constraint is a hyperplane and
the Lp-norm is a ball blown from the origin point. As shown in Figure 1, when the blown ball is in
contact with the hyperplane for the first time, the intersection is the optimal solution of problem (3).

min
X

‖X‖p

p
s.t. AX = b (3)

Figure 1 shows the geometry of p when taking different values in 3D space. It can be seen that
when p is greater than 1, the obtained optimal solution is not sparse, and when p is less than or equal
to 1, the intersection point is on the coordinate axis, and two of the three elements are 0, so the optimal
solution is sparse. Therefore, it can be geometrically stated that a sparse solution can be obtained when
p is less than or equal to 1.

Broadly speaking, the values of p in the Equation (2) can range from 0 to positive infinity. But, in
order to obtain the sparse solution, only the case where p is less than or equal to 1 is considered. In the
special case where q and p equal to 0, the two norms can be expressed as Equations (4) and (5), where
Equation (4) is a constraint on low rank and Equation (5) is a constraint on sparseness.

‖A‖s0 = #(i) with σi �= 0 = rank(A) (4)

‖A‖0 = #(i) with ai �= 0 (5)

However, these two functions above are non-convex and very difficult to solve, so they need to be
approximated. Another special case is when q and p equal to 1, shown in Equations (6) and (7). These
two norms are used in the reference [29] to approximate Equations (4) and (5) and constrain low rank
and sparseness. Since Equations (6) and (7) are convex function, sub-problems with these two norm
constraints can be easily solved.

‖A‖s1 =
min{m,n}

∑
i=1

σi = ‖A‖∗ (6)
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‖A‖1 =
m

∑
i=1

n

∑
j=1

∣∣aij
∣∣ (7)

From the above analysis, the IPI model in reference [29] is a special case of the schatten q-norm
and Lp-norm in this paper. It is worth mentioning that the strategy of using Lp-norm regularization can
greatly improve the ability of the algorithm to recover sparse signals compared to the L1-norm [43–46].
Another advantage of the Lp-norm is that when a sparse signal can be recovered, it often requires
fewer iterations to converge the equation. Based on this knowledge, we begin to introduce the model
proposed in this paper.

Figure 1. Geometry with different p values. From left top to right bottom, p equals to 2.8, 1.4, 1,
0.7, respectively.

2.2. The Proposed Method

In reference [10], when the noise can be approximated as additive, and the infrared small target
image can be seen as a linear combination of target image, background image, and noise image. This
assumption is also widely used in future models [30–34]. This model can be represented by the
following equation.

fD = fB + fT + fN (8)

where fD denotes the infrared image; fB, fT and fN represent the target image background image and
noise image, respectively. Among them, because the target occupies a small area, it can be considered
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as a sparse matrix. The background contains many repetitive elements, so it can be considered as low
rank matrix. The target image can be recovered by solving the model.

Then, by transforming the original image with the sliding window into patch image, the sparsity
of the target and the low rank of the background are enhanced. The model is transformed into
Equation (9):

D = B + T + N (9)

where D, B, T and N denotes the patch images. Subsequently, we apply constraints on B and T using
schatten q-norm and Lp-norm, respectively, and propose a method based on non-convex optimization
with schatten q-norm and Lp-norm constraint (NOSLC). The objective function is expressed as follows.

min
B,T

‖B‖q
sq + λ‖T‖p

p s.t.‖D − B − T‖F ≤ δ (10)

where λ is the penalty factor and δ denotes the noise level in the image; ‖•‖F denotes the Frobenius
norm which is a special case of Lp-norm when p equals to 2.

As we mentioned earlier, the smaller the q and p values, the stronger the constraint on low rank
and sparsity. However, we analyzed the real infrared image and found that the low rank property of
the background patch image is not very strict compared to the sparsity of the target patch image.

Figure 2 shows the proportion of singular values greater than one and the proportion of target
pixels for different infrared images. In the figure, six infrared images are analyzed, wherein the marked
regions R1 to R3 are patch images with relatively large background changes, and are also regions
that make the low rank property of background image less stringent. In the radar chart, the red dots
indicate the proportion of singular values greater than 1, and the blue dots indicate the proportion of
targets. It is obvious that the blue dots are squeezed together because their value is much smaller than
that of the red dots. This image also shows that the sparsity of the target should be stricter than the
low rank property of the background.

 

Figure 2. Illustration of low rank property and sparsity of infrared images.
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Based on the above description, we know that it is unscientific to impose strong constraints on
both the low rank property and sparsity, so we relax the constraint on the low rank property and let q
equal to 1. Then, we propose a method based on non-convex optimization with Lp-norm constraint
(NOLC). The objective function is shown in Equation (11).

min
B,T

‖B‖∗ + λ‖T‖p
p s.t.‖D − B − T‖F ≤ δ (11)

where ‖B‖∗ denotes the nuclear norm of matrix B which is the special case of the schatten q-norm
when q equals to 1. We have scaled down the constraints on low-rank property, so the model is not as
sensitive as NOSLC to structural clutter in the background image which is inevitable. We qualitatively
consider the two models presented above, and the NOLC method will achieve better results.

2.3. Solution of NOLC model

We obtained the physical model and objective function that we need to solve from the previous
section. In this section we will give the solution to the NOLC model. Combined with the ADMM
method, the Lagrange function of the objective function (11) is shown by Equation (12).

L(B, T, Y) = ‖B‖∗ + λ‖T‖p
p + 〈Y, D − B − T〉+ ρ

2
‖D − B − T‖2

F (12)

where 〈•, •〉 represents the inner product of two matrices, ρ is a penalty factor and Y is Lagrange
multiplier matrix. Now we need to use an iterative method to minimize the Lagrange function. In this
process, two sub-problems are solved. Next, we explain their solution method separately.

(a) The First Sub-Problem

The function is as follows:

Bk+1 = argmin
B

L
(

B, Tk, Yk
)

= argmin
B

‖B‖∗ +
ρ
2‖B −

(
D + ρ−1Yk − Tk

)
‖

2

F

(13)

The above formula is a convex optimization problem and can be solved by the singular value
shrinkage operator [54].

Bk+1 = Q ∗ Sρ−1 [diag(∑)] ∗ RT (14)

where Q, ∑, R represents the singular value decomposition of matrix Dk + ρ−1Yk − Tk, that is to say
Dk + ρ−1Yk − Tk = Q ∗ ∑ ∗RT ; diag(∑) denotes the diagonal elements of matrix ∑; Sρ−1 [•] is the soft
thresholding operator; its definition is given in the following formula.

Sε[x] =

⎧⎪⎨⎪⎩
x − ε i f x > ε

x + ε i f x < −ε

0 others
(15)

(b) The Second Sub-Problem

For the second sub-problem, a non-convex optimization problem is involved.

Tk+1 = argmin
T

L
(

Bk+1, T, Yk
)

= argmin
T

λ‖T‖p
p +

ρ
2‖T −

(
D + ρ−1Yk − Bk+1

)
‖

2

F

(16)
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Since the elements in the matrix are linearly independent, this problem can be refined to each
pixel to solve [50]. For each pixel, the optimization goal is:

x∗ = min
x

1
2
(x − a)2 + λ|x|p (17)

Let the optimization function of each pixel be g(x).

g(x) =
1
2
(x − a)2 + λ|x|p (18)

In problem (17), we want to get the corresponding x value when g(x) is the smallest. The curve
of this function is shown in Figure 3. Obviously g(x) is not a convex function, but the minimum point
of g(x) is easy to find.

a < a ≥

Figure 3. Illustration of the g(x) curves for different a and λ.

By analyzing the first second and third derivative of g(x), we can get the minimum point of g(x),

either 0 or x1. We set two parameters v = (λp(1 − p))
1

2−p and v1 = v + λp|v|p−1. The solution to
problem (17) is:

x∗ =

{
0 a ≤ v1

argminx∈{0,x1}g(x) a > v1
(19)

where x1 is the solution of g′(x) = 0 in the case of v < x < a, and can be obtained by Newton
iteration method. In the case where the initial value is set to v, it can be iteratively converged five
times. The iterative formula of Newton method is as shown in Equation (20).

xn+1 = xn −
g′(x)
g′′ (x)

(20)

where g′(x) and g′′ (x) denote the first and second derivative of function g(x). We define an operator
Tλ[•] to solve problem (17) in the matrix.

Tλ,p[W] = argmin
X

λ‖X‖p
p +

1
2
‖X − W‖2

F (21)

By applying Equation (19) pixel by pixel, an optimal solution can be obtained. Therefore, it is
obvious that problem (16) is solved by the definition of the operator Tλ[•].

Tk+1 = Tρ−1λ,p

[
D + ρ−1Yk − Bk+1

]
(22)
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The specific process of solving the non-convex optimization problem (12) in combination with the
ADMM is shown in Algorithm 1. So far, we have explained the definition and properties of schatten
q-norm and Lp-norm, and have also described the principle and solution method of NOLC model
in detail.

Algorithm 1 Solving the objective function of NOLC model

Input: Patch Image D, λ, p.
Output: Target patch image T and background patch image B.

1: Initialization parameters: B0 = D, T0 = 0, Y0 = 0, ρ0 = 1/(5 ∗ std(D));
2: While not converged do

3: % Update Bk+1 via solving Bk+1 = argmin
B

L
(

B, Tk, Yk
)

4: Bk+1 = Q ∗ Sρ−1 [diag(∑)] ∗ RT ;

5: % Update Tk+1 via solving Tk+1 = argmin
T

L
(

Bk+1, T, Yk
)

6: Tk+1 = Tρ−1λ,p

[
D + ρ−1Yk − Bk+1

]
;

7: % Update Yk+1 and ρk+1

8: Yk+1 = Yk + ρk
(

D − Bk+1 − Tk+1
)

, ρk+1 = 1.5 ∗ ρk;

9: % Judge whether it has converged
10: stopCriterion = ‖D − Bk+1 − Tk+1‖F/‖D‖F
11: if stopCriterion < 10−7

12: converged and stop iteration;
13: endif
14: End while

15: Return: B = Bk+1, T = Tk+1.

2.4. Detection Procedure

Here are the specific implementation steps for the NOLC method proposed in this paper. Figure 4
also shows the detection steps.

(a) Traversing an infrared image I(x, y) using a sliding window of length len and a step size into
the patch image D(x, y); the values of these two parameters will be discussed in detail in Section 3.

(b) Initialize some parameters: lambda = L/
√

max(size(D)), the value of L and p will be
discussed in Section 3; the recommended setting here is 1 and 0.4;

(c) Enter patch image D(x, y) into Algorithm 1, and solve the target patch image T(x, y) iteratively.
It is worth mentioning that during the experiment we found that the non-zero elements in the target
patch image no longer increase before the algorithm converges. In order to speed up the convergence
of the algorithm, we set the non-zero element to no longer to increase as one of the conditions for the
algorithm to stop iterating;

(d) Restore the target image t(x, y) with the same sliding window as step (a);
(e) Threshold segmentation to the target image using the following formula, where th is the

threshold for segmentation; μ and σ represents the respective mean and variance of the target image.
Figure 5 shows the detection result of NOLC model.

th = μ + k ∗ σ (23)
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Figure 4. Detection flow of NOLC model.

 
Figure 5. Infrared small target detection result of NOLC model.
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3. Experiments

In this section we will introduce the evaluation indicators of this paper, discuss the impact of
different parameter settings on the NOLC model, and compare NOLC with state-of-the-art, and finally,
verify the validity of the NOLC model through the above steps.

3.1. Experimental Setting

This paper compares the NOLC model to the Tophat method (Tophat), Max Median method
(MaxMedian), Local Contrast Method (LCM), Multiscale Patch-based Contrast Measure (MPCM),
Infrared Patch Image (IPI) model and Reweighted Infrared Patch Tensor (RIPT) model, Non-Convex
Rank Approximation Minimization (NRAM). The algorithm parameter settings used in this paper are
given in Table 1. In addition, the specific information and image descriptions of the four sequences
tested in this paper are summarized in Table 2. The software used in this article is MATLAB R2014a
and the CPU is Core i5 7500, 3.4 GHz.

Table 1. Algorithm parameter setting.

Algorithm Name Abbreviation Parameter Setting

Tophat Method Tophat Structure shape: disk
Structure size: 5 × 5

Max Median Method MaxMedian Support size: 5 × 5

Local Contrast Method LCM Window radius: 1,2,3,4

Multiscale Patch-based Contrast Measure MPCM Window radius: 1,2,3,4

Infrared Patch Image model IPI
Patch size: 30 × 30
Slide step: 10, L: 1

Lambda: L/
√

min(m, n)

Reweighted Infrared Patch Tensor model RIPT

Patch size: 30 × 30
Slide step: 10, L: 1

Lambda: L/
√

min(I, J, P)
h: 10, ε: 0.01

Non-Convex Rank
Approximation Minimization NRAM

Patch size: 30 × 30
Slide step: 10, L: 1

Lambda: L/
√

min(m, n)

Non-Convex Optimization with
Lp-Norm Constraint NOLC

Patch size: 30 × 30
Slide step: 10

Lambda: L/
√

max(size(D))
L: 1, p: 0.5

Table 2. Test sequence information.

Sequence Resolution Image Description

Seq1 256 × 200 The target is a long strip, the target is relatively pure, but there is a
lot of horizontal cloud interference above the image.

Seq2 320 × 240 The target is close to a circle with noise interference around it, and
there are a lot of irregular clouds at the edges of the image.

Seq3 256 × 172

The target is relatively bright, and it shuttles through the clouds.
There are a lot of structural disturbances around it. At the same

time, the target changes greatly in the field of view, and the
background changes quickly.

Seq4 252 × 213
The target occupies a small number of pixels, and there is vertical

clutter interference around the target, there is cluttered grass
under the image, and the brightness around the target is uneven.
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In order to objectively illustrate the effectiveness of the NOLC method, this paper uses quantitative
evaluation indicators such as the receiver operating characteristic (ROC) curve, signal-to-clutter ratio
gain (SCR Gain), background suppression factor (BSF) and iteration number.

(a) ROC curve

The ROC curve is widely used in the evaluation of two-class models and also in the field of
infrared small target detection. It can quantitatively describe the dynamic relationship between the
true positive rate (TPR) and false positive rate (FPR), and give neutral and objective suggestions when
evaluating algorithms. The abscissa of the ROC curve is TPR, which reflects the proportion of the
target being correctly detected; the ordinate is FPR, which reflects the proportion of non-targets being
misdetected as targets. Therefore, the closer the ROC curve is to the upper left corner, the better the
algorithm works. When the ROC curve is applied to infrared small target detection, the abscissa and
ordinate are defined as follows:

FPR =
%number of pixels detected in background region

%real targets
(24)

TPR =
%real targets detected

%real targets
(25)

Another key indicator of the ROC curve is the area under the curve (AUC). In general, the larger
the AUC, the better the algorithm works.

(b) SCR Gain and BSF

SCR Gain and BSF are indicators for measuring the degree of improvement of the target and the
ability to suppress the background, respectively. Their definition of the target and background area is
shown in Figure 6, defined as Equation (26).

SCRG =
(S/C)out
(S/C)in

, BSF =
Cin
Cout

(26)

where S and C denote the signal (target region) amplitude and clutter (background region) standard
deviation, respectively; in and out represent the original image and the detection result image. In the
experiment, the values of a and b are 10 and 40, respectively. According to the definition, the larger the
values of SCR Gain and BSF, the better the detection performance of the algorithm.

b a

a

b

 

Figure 6. Neighborhood defined by SCR Gain and BSF.
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(c) Iteration number

All the sparse and low-rank matrices recovery based methods involve iterative solution, in which
the iteration number of the algorithm directly affects the detection efficiency and running time. If a
method has fewer iterations, it basically shows that the operation time is shorter, so the iteration
number is also a key evaluation indicator.

3.2. Algorithm Validity

This section will prove the robustness of the NOLC model in various scenarios from the scene
validity, and compare the proposed model with the IPI model and NOSLC model to prove the feasibility
of NOLC.

(a) Validity of Diverse Scene

The NOLC model strengthens the constraint on sparse items, and at the same time appropriately
shrinks the constraints on low rank items, so it has a good detection effect. Figure 7 shows multiple
original images, NOLC processing results, and their three-dimensional display.

 

Figure 7. Display of the NOLC results of Seq1 to Seq4. (a) The original image; (b) the result of NOLC;
(c) 3D display of (a); (d) 3D display of (b).

In order to better display the target information, the target region in the Figure 7 is enlarged and
placed in the corner of the image. Each row in Figure 7 represents the presentation of the images
in Sequence 1–4, with each column being the original image, NOLC processing results and their
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three-dimensional display. It can be seen from the Figure 7 that NOLC can accurately detect small
targets regardless of whether the background is submerged in the clutter or the gray scale of the image
is not uniform. As far as the result is concerned, the detected target image has only a corresponding
target position, and the background region is suppressed to 0, so the effect of NOLC is remarkable.

(b) Validity of the Proposed Algorithm

The previous section verifies that NOLC is effective. This section compares it with the IPI and
NOSLC model mentioned in this paper, and the effectiveness of this method will be further confirmed.
Figures 8 and 9 show the results of the three algorithms.

Figure 8. Comparison of IPI NOSLC and NOLC. (a) Original images; (b) IPI processing result;
(c) NOSLC processing result; (d) NOLC processing result.

In Figure 8, from left to right are the original image, IPI, NOSLC and NOLC result image and
from top to bottom are sequences 1–4. Similar to Figure 7, the target region is placed in the corner of
the image in the processing result. For better illustration, Figure 9 shows a three-dimensional view of
the corresponding position image of Figure 8. In the figure, the target position in the original image
is circled in red, and the position of the clutter is circled with cyan in the 3D display of processing
result. Since the clutter is relatively small in 3D display, it is not easy to visually see it, so it is marked
in a cyan circle. It can be seen from the figure that all three methods can detect the target, but the IPI
method contains much clutter when dealing with complex background images. The results of the
NOSLC method are relatively low in terms of clutter, but because the constraints on the background
low rank are stricter, the result is not very satisfactory. The NOLC method enhances the sparsity of
the target and appropriately scales the background low rank property. The result is the lowest among
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the three methods in terms of clutter, and the background of most images is suppressed to 0. The test
results of the sequence images are shown in Figure 10.

 
Figure 9. 3D display of Figure 8. (a) Original images; (b) IPI processing result; (c) NOSLC processing
result; (d) NOLC processing result.

Figure 10. Cont.
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Figure 10. ROC curves for IPI, NOSLC and NOLC.

From the upper left corner to the lower right corner in Figure 10 are sequences 1–4. It can be
seen that the three algorithms in Seq 4 have similar effects. The NOLC and IPI effects in Seq 2 are
comparable and superior to NOSLC. In Seq 1, 3 the FPR of NOLC rises to 1 at the fastest, which is better
than the other two. According to the above analysis, NOLC can not only accurately detect infrared
small targets, but is also better than the IPI method and NOSLC method designed in this paper.

3.3. Parameter Analysis

In this section, we compare the four key parameters of NOLC to discuss the effect of parameter
settings on the detection of NOLC method. The four parameters are the sliding window size len,
the window sliding step size step, the Lambda initialization parameter L and the value of p in the
Lp-norm. Figure 11 shows the ROC curve for comparison of these parameters.

The three columns from left to right in Figure 11 represent the ROC comparison chart of sequence
1–3, respectively. From top to bottom, the ROC curve comparison of the sliding window size len, sliding
step, L and p parameters is shown. In the comparison experiment of the sliding window size len, we set
the len values to 20, 30, 40, 50 and 60, and the remaining parameters are consistent. For qualitative
considerations, if the len value is small, then the elements of each column in the patch image D will be
relatively small, and the information contained will be less, the association between the columns will
be missing, and the low rank and sparsity cannot be accurately guaranteed. On the contrary, if the len
value is relatively large, it will not strictly conform to the constraint due to too many elements and
redundant information. The first row of the ROC curve in Figure 11 also illustrates this. In the figure,
when the len value is 30, a good ROC performance can be maintained in more sequences, and thus the
len value can be taken as 30.

For the sliding window step, the step value is smaller, the window change is smaller each time,
and the low rank property is stronger, but the small step greatly increases the block image matrix
dimension and affects the algorithm detection efficiency. The second row in Figure 11 shows the ROC
contrast image with step values of 6, 8, 10, 12, 14 when the remaining parameters are unchanged.
In order to achieve a balance between algorithm efficiency and detection efficiency, the step value is
recommended to be 10. In addition, the value of L also affects the detection effect. The third row in
Figure 11 shows the ROC contrast image with different L values. It can be seen from the figure that the
ROC curve performs best when the value of L is 1.

The fourth row of Figure 11 shows the ROC comparison of the last key parameter p. As mentioned
in the second section, the smaller the p, the stronger the constraint on the low rank property and the
efficiency of the algorithm is guaranteed. But when p is too small, the target cannot be detected. When
the p value is increased, although the detection accuracy of the target can be ensured, it will increase
the calculation time. Therefore, the choice of p value should be as small as possible. In combination
with the ROC curve comparison in Figure 11, the p value is recommended to be 0.4.
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Figure 11. Parameter setting comparison.

3.4. Comparison to State-of-the-Art

The above sections verify the effectiveness of the diverse scene and the proposed method,
and discuss the setting of key parameters. In this section, we compare the NOLC algorithm with
other detection algorithms. The parameter settings of the seven contrasting algorithms and NOLC are
presented in Table 1. We compared the NOLC model to the Tophat method (Tophat), Max Median
method (MaxMedian), Local Contrast Method (LCM), Multiscale Patch-based Contrast Measure
(MPCM), Infrared Patch Image (IPI) model, Reweighted Infrared Patch Tensor (RIPT) model and
Non-Convex Rank Approximation Minimization (NRAM). The effect of all algorithms on a single
frame image is shown in Figures 12 and 13.
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Figure 12. Performance of multiple methods.
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Figure 13. 3D display of original image and multiple method processing results.
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Figure 12 shows the processing results of the original image and the above seven algorithms.
For better display, the target region is framed in red and enlarged to the corner of the image. Figure 13
is a 3D representation of the corresponding position image of Figure 12. As in the previous section, the
target position in the original image is circled in red, and the position of the clutter is circled in cyan in
the 3D display of processing result.

In the above method, Tophat and MaxMedian are classic infrared small target detection methods.
It can be seen that Tophat has a lot of clutter, while MaxMedian has less relative clutter but the target is
greatly weakened. LCM and MPCM are typical methods based on the HVS method, but because the
processing mechanism of LCM is relatively simple, the effect is not ideal. MPCM is able to accurately
detect the target, but there is still a significant clutter in Sequence 1. IPI, RIPT, NRAM and NOLC are
all sparse and low-rank matrices recovery based methods. Both IPI and RIPT can observe obvious
clutter and have poor robustness. NRAM and NOLC can accurately detect the target while keeping
the background basically suppressed to zero. However, as shown in the figure, the NRAM processing
result has significant clutter.

To further demonstrate the superior performance of the NOLC method, we have experimented
with four other complex scenarios. The processing results are shown in Figures 14 and 15 and the
marking method is the same as above. The target position in the original image is circled in red, and
the position of the clutter is circled in cyan in the 3D display of the processing result. The background
of scene 1 is a large number of clouds, and the target occupies very few pixels and is disturbed by
the clouds; scene 2 is a sea-sky background, in which there is sea level interference, and the bridge
body appears as a structural disturbance in the picture, and the scene is very complicated; scene 3 is an
air background, and irregular clouds appear on the edges. The image noise is relatively large, which
also brings difficulty to the detection; the random noise in scene 4 is very strong, and there is a strong
architectural disturbance in the lower left.

It can be seen from the experimental results that the background suppression based methods
and the HVS based methods are very difficult to detect small targets in complex backgrounds. This
is because the assumptions of the two methods are simple, and it is difficult to distinguish between
clutter and target when encountering complex backgrounds. In contrast, because the assumptions of
the sparse and low-rank matrices recovery based methods are supported by scientific physical models,
they are superior in effect to other kinds of algorithms. However, there is still a lot of clutter in the
processing results of IPI and RIPT. This is because the IPI model only limits the sparse item to a rough
one, resulting in poor detection results. The RIPT method uses structural tensors to weight the sparse
item, and the sparse constraints are still not strict, so the detection effect of RIPT is not ideal. As for
the NRAM method, since the method only imposes constraints on the clutter, the contribution of
this constraint to the detection effect is indirect, and the sparsity of the target is not strictly limited,
so there is still clutter in the complex background. The NOLC method directly strengthens sparsely
constrains and thus always finds sparse target locations in complex backgrounds, which explains why
NOLC processing results have little clutter. This experiment also preliminarily illustrates the excellent
robustness of NOLC.

The ROC comparison chart for the seven algorithms for the above four sequences is given by
Figure 16 where the black line represents the curve of NOLC. From the top left to the bottom right,
they represent sequences 1–4. As can be seen from the figure, the NOLC curve can always achieve a
TPR of 1 when the FPR is relatively small, which means that the AUC of the NOLC is larger. To better
compare the AUC of each of the curves in Figure 16, their specific values are listed in Table 3, where
the maximum value of each sequence AUC is indicated in red and the second largest value is indicated
in purple. From Table 3 we can quantitatively observe that the AUC of NOLC is the second largest in
Sequence 2 and 3, and the rest are the largest. Therefore, it can be said that NOLC's performance in the
sequence image test is remarkable.
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Figure 14. Comparison of four complex scenes. (a)–(d) are scenes 1–4.
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Figure 15. 3D display of Figure 14. (a–d) are scenes 1–4.
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Figure 16. Seven algorithm comparison ROC curves.

Table 3. AUC of the ROC curves in Figure 14.

Seq1 Seq2 Seq3 Seq4

Tophat 0.8591 0.9384 0.8814 0.9974

MaxMedian 0.0688 0.7698 0.9679 1.0000

LCM 0.9828 0.9369 0.4835 0.7855

MPCM 0.9731 0.9712 0.9494 0.9996

IPI 0.8900 0.9489 0.9721 1.0000

RIPT 0.7256 0.8781 0.9959 1.0000

NRAM 0.8769 0.9535 1.0000 1.0000

NOLC 0.9866 0.9657 0.9996 1.0000

Note: The maximum value of each sequence AUC is indicated in red and the second largest value is indicated in purple.

The test data for the other two key evaluation indicators, SCR Gain and BSF, are listed in Table 4.
Similarly, the maximum value is indicated in red and the second largest is indicated in purple. You can
see that the two classic methods do not perform very well. In the HVS based method, MPCM performs
excellently with two maximum values and five second largest values. In the sparse and low-rank
matrices recovery based methods, in addition to NOLC, the performance of RIPT is also excellent, with
four maximum values and one second largest value. Overall, the comparison of the eight algorithms
of NRAM and NOLC has the upper hand and has a maximum in each sequence. This shows that the
two methods also do a better job of suppressing the background.
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To further illustrate that the performance of the NOLC method is superior to the rest of the
methods while verifying its robustness, we add normal noise with a mean of zero to the two sequences
and compare it with IPI, RIPT and NRAM. The variance of the normal noise in Figure 17 is 0.04, 0.05
and 0.06. It can be seen that both IPI and RIPT are sensitive to noise, and the noise is very strong in
the processing result. In the process of increasing the variance of the noise, the NRAM processing
result is also mixed with a lot of clutter. While NOLC has always shown good performance, it can
accurately detect the target and suppress the background very purely when the variance becomes
larger. Figure 18 also illustrates the same fact in Seq 4. The above experiments show that the NOLC
method is superior to other algorithms in terms of detection accuracy and algorithm robustness.

 

Figure 17. Comparison of processing results for Seq 2 noise images. The variance from top to bottom is
0.04, 0.05 and 0.06. (a) Noise image; (b) IPI processing result; (c) RIPT processing result; (d) NRAM
processing result; (e) NOLC processing result.
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Figure 18. Comparison of processing results for Seq 4 noise images. The variance from top to bottom
is 0.01, 0.02, 0.03. (a) Noise image; (b) IPI processing result; (c) RIPT processing result; (d) NRAM
processing result; (e) NOLC processing result.

Table 4. Comparison of SCRG and BSF in various methods.

Seq1 Seq2 Seq3 Seq4

Evaluation Indicators SCR Gain BSF SCR Gain BSF SCR Gain BSF SCR Gain BSF

Tophat 10.78 5.196 3.936 2.764 11.68 14.62 2.451 1.864
MaxMedian 0.850 3.237 3.975 2.092 4.882 12.18 3.638 2.643

LCM 3.047 1.575 2.742 1.772 6.007 6.428 7.524 5.806
MPCM 102.2 111.3 193.8 138.9 Inf Inf 129.1 116.9

IPI 121.3 53.50 48.06 25.19 218.5 190.6 22.10 12.80
RIPT 122.7 68.44 Inf Inf Inf Inf 12.97 9.929

NRAM Inf Inf Inf Inf Inf Inf Inf Inf
NOLC Inf Inf Inf Inf Inf Inf Inf Inf

Note: The maximum value is indicated in red and the second largest is indicated in purple.

The last evaluation indicator is the iteration number. Since other methods do not involve iterative
solution, four methods of IPI, RIPT, NRAM and NOLC are compared here. Figure 19 shows the
iteration curves of the four methods in four sequences, where the algorithm name and the iteration
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number are given in the legend. It can be seen that since the IPI is solved by the accelerated proximal
gradient (APG) method, the number of iterations is the highest, while RIPT and NRAM are solved
by the faster ADMM method, and the iteration number is still higher than 10. The NOLC method
not only uses the Lp-norm which can converge faster, but also improves the convergence judgment
mechanism, so it can basically converge within 5 iterations. The convergence speed of NOLC is much
better than the similar method, and it also has more advantages in running time.

In the experiments in this section, we show the detection effect of NOLC, and demonstrate the
feasibility of NOLC by comparing IPI, NOSLC and NOLC. Then, in the aspects of the single frame effect,
ROC curve, AUC, SCR Gain and BSF, the NOLC and other infrared small target detection methods
are compared. It can be seen that the detection effect of NOLC has great advantages. The comparison
of the image plus noise further illustrates the robustness of the NOLC method. Finally, the iteration
number of NOLC and other sparse low-rank matrix reconstruction based methods are compared.
The advantage of NOLC is explained again from the efficiency of the algorithm. All in all, NOLC is an
excellent infrared small target detection method in terms of detection effect and running time.

 

Figure 19. Iteration number comparison.

4. Discussion

The sparse and low-rank matrix recovery-based methods have been widely used by researchers,
and a large number of methods are also applied to the field of infrared small target detection. However,
starting from the IPI model, researchers often only pay attention to the use of additional constraint
coefficients to improve the detection effect, while ignoring the difference in the sparse degree of low
ranking items and sparse items in the infrared small target image. Experiments on six sets of actual
data show that the sparsity degree difference between low-rank items and sparse terms is very large,
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even not within an order of magnitude, so it is unscientific to use only L1-norm constraints. Aiming at
this property of infrared small target image, this paper uses the Lp-norm to constrain the sparse term
and relaxes the constraint on the low ranking term, and the NOLC method is proposed.

Compared with other methods, the IPI model is the original method, and its principle and
solution method are relatively simple. From the perspective of background characteristics, the RIPT
model uses the local structure tensor as the penalty coefficient of the sparse term, in order to obtain
a more accurate background. Because the results of local structure tensor are relatively rough and
cannot be used as an ideal sparse penalty factor, RIPT does not work well in the face of complex
backgrounds. The NRAM method is based on the structural noise and uses the L21-norm constraint.
The L21-norm emphasizes that the row of the block image is sparse. To achieve this effect, the size
of the structured noise must be smaller than the size of the sliding window to obtain the effect of
row sparseness. However, for structured noise, its size often cannot meet the requirements (such as
bridges and houses), which makes the NRAM using the L21-norm constrained noise term sometimes
unconvincing. The NOLC method considers the difference between the target and the background
sparsity from the perspective of the target, and directly uses the stricter Lp-norm to constrain the
sparse item. This method can describe the target more directly and accurately than the IPI model
and the NRAM method, can also obtain good detection effects under various complex backgrounds,
and can always restore sparse targets in the noisy infrared small target image. The NOLC method
improves the convergence strategy while utilizing the Lp-norm property, making the convergence
speed better than other methods.

This article gives ample demonstration of the performance of NOLC through experiments. Firstly,
the effect of the NOLC method in multiple scenarios is verified. Then, the key parameters in the
method are analyzed and the values of the parameters are given. Then, compared with the existing
methods, the results are also in line with the above analysis. NOLC is superior to other algorithms in
detection accuracy, and can suppress most backgrounds to zero in terms of background suppression.
Then, the noise infrared small target image is tested to verify the anti-noise ability of NOLC, and the
robustness of the algorithm is further illustrated. Finally, comparing the iterative convergence speed of
the four methods, NOLC also has obvious advantages.

In summary, the NOLC method has the advantages of high detection accuracy, anti-noise,
fast convergence, etc. This method is not only a change of the metric, but an improvement of the
performance brought by the improvement of the method. Recently, tensor-based infrared small target
detection methods have also received extensive attention [34,55]. These method replace the matrix
with tensor, and they can also provide good detection results.

5. Conclusions

In this paper, a novel infrared small target detection method based on non-convex optimization
with Lp-norm constraint (NOLC) is proposed. The detection effect of the algorithm is enhanced by
extending the original nuclear norm and L1-norm to the schatten q-norm and Lp-norm to strengthen the
constraints on sparse items and appropriately scaling the constraints on low-rank items. At the same
time, the NP-hard problem is transformed into a non-convex optimization problem. The NOLC model
can not only accurately detect the target, but also greatly suppress the background area, achieving a
good infrared small target detection effect. In the final part of the experiment, NOLC was compared
with seven methods. It performed well on the ROC curve and also had very high SCR Gain and BSF.
The comparison of the image plus noise further illustrates the robustness of the NOLC method. At the
same time, it is also ahead of other algorithms in the number of iterations, which means that NOLC
also leads in computing time.
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Abstract: Excellent performance, real time and strong robustness are three vital requirements for
infrared small target detection. Unfortunately, many current state-of-the-art methods merely achieve
one of the expectations when coping with highly complex scenes. In fact, a common problem is
that real-time processing and great detection ability are difficult to coordinate. Therefore, to address
this issue, a robust infrared patch-tensor model for detecting an infrared small target is proposed
in this paper. On the basis of infrared patch-tensor (IPT) model, a novel nonconvex low-rank
constraint named partial sum of tensor nuclear norm (PSTNN) joint weighted l1 norm was
employed to efficiently suppress the background and preserve the target. Due to the deficiency
of RIPT which would over-shrink the target with the possibility of disappearing, an improved
local prior map simultaneously encoded with target-related and background-related information
was introduced into the model. With the help of a reweighted scheme for enhancing the sparsity
and high-efficiency version of tensor singular value decomposition (t-SVD), the total algorithm
complexity and computation time can be reduced dramatically. Then, the decomposition of the target
and background is transformed into a tensor robust principle component analysis problem (TRPCA),
which can be efficiently solved by alternating direction method of multipliers (ADMM). A series of
experiments substantiate the superiority of the proposed method beyond state-of-the-art baselines.

Keywords: infrared small target detection; local prior analysis; nonconvex tensor robust principle
component analysis; partial sum of the tensor nuclear norm

1. Introduction

Infrared small target detection is of great importance in many military applications,
such as early-warning systems, missile-tracking systems, and precision guided weapons.
Unfortunately, infrared small target detection is still full of challenges, which is mainly related to the
following. Firstly, because of the long imaging distance, small target is often spot-like, lacking texture
and structural information; secondly, infrared imaging is also influenced by complex backgrounds,
clutters, and atmospheric radiation, resulting in low signal-to-clutter (SCR) ratio in infrared images,
and sometimes the target is even submerged by the background; thirdly, interferences such as artificial
buildings, ships in the sea and birds in the sky also have a bad impact on detection ability. How to
effectively suppress the background, improve the detection ability of the target, and reduce false
alarms have always been difficult problems to solve.

In general, infrared small target detection methods can be divided into two categories:
sequential-based and single-frame-based methods. Traditional sequential-based methods including
pipeline filtering [1], 3D matched filtering [2], and multistage hypothesis testing [3] are applicable when

Remote Sens. 2019, 11, 382; doi:10.3390/rs11040382 www.mdpi.com/journal/remotesensing227



Remote Sens. 2019, 11, 382

the background is static and homogeneous, utilizing both spatial and temporal information to capture
the target trajectory. However, in real applications, the movement between the target and imaging
sensor is fast, coupled with various complex backgrounds, the performance of sequential-based
methods degrades rapidly. Besides, those methods are unable to meet the real-time requirements due
to the usage of multiple frames. Although there are still some studies on sequential-based methods [4,5],
single-frame-based methods have attracted more research attention in recent years [6–8].

The prior information is the key to the success of single-frame-based methods, also in many
other fields [9–11]. Up to now, the consistency of backgrounds [12–15], the saliency of targets [16–19],
the sparsity of targets and the low rank of backgrounds [20–24] are the most used assumptions to detect
infrared small targets in single image from different perspectives. The former two are local priors,
whereas the latter two are nonlocal priors which are usually exploited simultaneously. Under simple
scenes, the local priors are enough to distinguish target from background. Nevertheless, most
real scenes are complex, which greatly limits the application of local priors. The nonlocal priors
are more powerful and fit the real scenes well but still suffer from the sparse edges and noise.
In fact, the combination of two types of prior information can improve the detection performance.
Therefore, a suitable model for incorporating the local and nonlocal prior information plays a vital role
in realizing high-efficiency detection methods.

1.1. Related Works on Single-Frame-Based Infrared Small Target Detection

According to the usage of prior information, the single-frame-based approaches can be mainly
classified into two groups: filtering methods using local priors and optimizing methods using nonlocal
priors. The first type of filtering methods exploits filters to estimate the background based on the
prior information of background consistency. The target is enhanced by subtracting the predicted
background from the original image. Conventional typical filters including Top-hat filter [12],
two-dimensional least mean square (TDLMS) filter [15], and Max-mean filter [13] can catch the
target easily under simple uniform scenes. Unfortunately, these filters cannot handle complex scenes
full of edges and interferences well. In order to overcome this disadvantage, many improved filter
were developed [25–28]. Another type of filtering methods highlights the small target based on the
human visual system (HVS) via the calculation of saliency map. The contrast between target and its
local neighborhood is a common measure to obtain the saliency map. Many HSV-based approaches
such as Laplacian of Gaussian (LoG) filter [29], difference of Gaussian (DoG) filter [30], local contrast
measure (LCM) [16], relative local contrast measure (RLCM) [19], multiscale patch-based contrast
measure (MPCM) [31], weighted local difference measure (WLDM) [32], and multiscale gray and
variance difference (MGVD) [33] measure were raised gradually. There are also methods to analyze
visual saliency in the Fourier domain [34,35].

Unlike the filtering methods, optimizing methods employ the nonlocal self-correlation of infrared
background and the sparsity of the target to reveal the data inner structure, which have been developed
rapidly within the past decade. Assuming that the background comes from a single low-rank subspace,
infrared patch image (IPI) model [20] regards the target as an outlier, so that the conventional target
detection problem is converted to a robust principle component analysis (RPCA) [36] optimization
problem. Compared with the traditional baselines, the detection ability has been significantly improved.
Two obvious shortcomings of IPI are target over-shrinking and noise residuals mainly because of
the low-rank regularization term which utilizes the nuclear norm. Subsequently, following this
direction, more low-rank matrix recovery techniques were introduced into IPI model to get a better
performance [21,37–39]. Considering that the original data are drawn from a union of low-rank
subspaces, methods based on dictionary learning and sparse representation were proposed [24,40,41].
Unfortunately, either generating artificially or learning desired dictionaries to adapt to most scenarios
is not easy but complex, especially when more dictionaries are needed. To dig out more useful
information from the nonlocal configuration in patch space, Dai et al. [42] firstly generalized the IPI
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model to a novel infrared patch-tensor (IPT) model with the assumption that all the unfolding matrices
are low rank, resulting in improved detection ability and reduction of computation time.

1.2. Motivation

For infrared small target detection, real-time processing and excellent performance are two
fundamental expectations. However, one of the biggest problems of existing approaches is the imbalance
between time and performance. Table 1 shows the computation time and performance of eight
representative methods which concludes from our previous work [39]. Note that the time is obtained from
processing an image of 256×200 pixels, and the full score of performance is five, the higher, the better.
From Table 1, we can observe that the three filtering methods are fast but poor in performance, because of
the simple assumptions regarding either the background or target. On the contrary, the six optimizing
methods can obtain high-quality detection results but they are time consuming. The framework of
optimization brings complex calculation and accurate detection results at the same time. How to simplify
the calculation steps without destroying the detection performance is a crucial issue.

Table 1. The computation time and performance of eight representative methods.

Tophat LCM MPCM IPI NIPPS ReWIPI SMSL NRAM

Time (s) 0.022 0.074 0.089 11.907 7.486 15.469 1.245 3.378
Score 1 1 2 3 3.5 3 2.5 4

Experiments had shown the superiority of the RIPT model compared with state-of-the-art approaches
(please see details in Ref. [42]). The intrinsic reasons lie in two aspects; for one thing, the novel patch-tensor
model can extract more spatial correlations to reduce the interference, which is named the rare structure
effect; for another, utilizing both local and nonlocal priors simultaneously increases the robustness of the
RIPT upon various scenes and noise, as they are complementary when dealing with infrared small target
detection. Nevertheless, the singleton model [43] used in RIPT may lead to a suboptimal value, since
the sum of nuclear norms (SNN) [44] is not the convex envelope of the corresponding sum of ranks [45].
Furthermore, RIPT takes the difference of two eigenvalues derived from the structure tensor for the
involvement of the local prior. The local structure weight map is illustrated in Figure 1, from which we can
easily obtain the background edge information. An unfortunate fact worth mentioning is that the edge
of the target is also highlighted. More specifically, it means the target would be over-shrunk, especially
when the target lies upon boundaries such as those in Figure 1a, or there are no clear edges but the target is
similar to that in Figure 1b. RIPT considers the background-related prior while ignoring the target-related
prior since both of them can cause false alarms.

 
(a) 

 
(b) 

Figure 1. Illustration of the local structure weight map.

Inspired by the RIPT, the patch-tensor model can be exploited to seek out more intrinsic priors
from a higher dimension. Another key factor is that RIPT with an additional stopping criterion is
much faster than IPI. Hence, to alleviate the issue of imbalance and to overcome the two deficiencies
of RIPT, this paper mainly makes three contributions.
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• First, to avoid the problem of equal treatment on singular values and reduce some biases,
we develop a nonconvex infrared small target detection model based on partial sum of tensor
nuclear norm (PSTNN), which can approximate the tensor rank better, and convert the detection
task into a problem of solving the tensor robust principle component analysis model.

• Second, by introducing the local prior which relates to background and target simultaneously
as the local weight map, coupled with the reweighted scheme, thus the proposed model can
preserve the target and suppress the background better, which assists us to complete the infrared
small target detection task with good performance.

• Third, an efficient algorithm based on the alternating direction method of multipliers (ADMM) is
designed for solving the proposed model accurately. Meanwhile, with the help of tensor singular
value decomposition (t-SVD) and an extra stopping condition, the algorithm complexity and
computation time are dramatically reduced, leading to a faster speed in comparison with similar
state-of-the-art methods.

The rest of this paper is structured as follows. Some related notations and preliminaries about
tensor and mathematical theorems are introduced in Section 2. In Section 3, the construction of local
prior map and proposed model are described in detail, and the ADMM solver to the optimization
problem is also provided. Extensive experiments on various scenes and sequences are conducted to
verify the effectiveness of the proposed method in Section 4. Sections 5 and 6 present the discussion
and conclusion of this paper, respectively.

2. Notations and Preliminaries

We first briefly introduce some necessary notions and preliminaries. In this paper, a tensor is
denoted as X , a matrix is denoted as X, a vector is denoted as x, and a scalar is denoted as x. A fiber
is a vector obtained by fixing every index of X but one, a slice is a matrix obtained by fixing every
index of X but two. For a three-order X ∈ Rn1×n2×n3 , its (i, j, k)-th entry is denoted as xijk, and we
use Xi::, X:i:, and X::i respectively representing the i-th horizontal, lateral and frontal slice. In most
cases, the i-th frontal slice Xi:: is alternatively denoted as X(i). The mode-i unfolding of X denoted by
X(i) is composed by taking the mode-i fibers as its columns, which is also known as matricization or
flattening. We define the operator unfold that maps X to a matrix, namely, X(i) = un f oldi(X ), and its
inverse operator is fold. Besides, there are many acronyms used in this paper; we give a summary of
these in Table 2 (excluding the acronyms of the comparison methods).

Table 2. Detailed parameter settings of the 10 tested methods.

Acronym Full name

IPT [42] Image Patch-Tensor
PSTNN [46] Partial Sum of Tensor Nuclear Norm
t-SVD [47] Tensor Singular Value Decomposition
RPCA [36] Robust Principle Component Analysis

TRPCA [48] Tensor Robust Principle Component Analysis
ADMM [49] Alternating Direction Method of Multipliers

SNN [44] Sum of Nuclear Norms
PSSV [50] Partial Sum of Singular Values
PSVT [50] Partial Singular Value Thresholding operator
TNN [51] Tensor Nuclear Norm

2.1. Tensor Singular Value Decomposition

For a three-order X ∈ Rn1×n2×n3 , we denote X ∈ Cn1×n2×n3 as the result of DFT along its third
dimension by using the matlab command fft, i.e., X = f f t(X , [], 3). The inverse operator ifft computes
X from X , i.e., X = i f f t(X , [], 3).
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Definition 1. (tensor conjugate transpose) [47] The conjugate transpose of a tensor X ∈ Rn1×n2×n3 is the
tensor X T ∈ Rn1×n2×n3 obtained by conjugate transposing each of the frontal slice and then reversing the order
of transposed frontal slices 2 through n3:

(
X T)(1) = (

X (1)
)T

and(
X T)(i) = (

X (n3+2−i)
)T

, i = 2, · · · , n3

(1)

Definition 2. (identity tensor) [47] The identity tensor I ∈ Rn1×n2×n3 is the tensor with its first frontal slice
being the n × n identity matrix, and the other frontal slices being all zeros.

Definition 3. (orthogonal tensor) [47] A tensor Q ∈ Rn1×n2×n3 is orthogonal if it satisfies

QT ∗ Q = Q ∗QT (2)

Definition 4. (f-diagonal tensor) [47] A tensor X is called f-diagonal if each frontal slice X(i) is a
diagonal matrix.

Theorem 1. (t-SVD) [47] Let X ∈ Rn1×n2×n3 . Then it can be factorized as

X = U ∗ S ∗ VT (3)

where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal tensors, and S ∈ Rn1×n2×n3 is an f-diagonal tensor.

The illustration of t-SVD decomposition of an n1 × n2 × n3 tensor is in Figure 2. Note that t-SVD
can be obtained via computing matrix SVDs in the Fourier domain. An efficient and fast way to
compute t-SVD is shown in Algorithm 1 [52].

n

n

n

=

n

n

n

n
n

n

n

n

n

∗ ∗

Figure 2. Illustration of tensor singular value decomposition.

Algorithm 1 T-SVD for three-order tensors

Input: X ∈ Rn1×n2×n3

Output: T-SVD components U , S and V of X .
1. Compute X = f f t(X , [], 3)
2. Compute each frontal slice of U , S and V from X by

for i = 1, · · · , �(n3 + 1)/2� do

[U(i), S(i), V(i)
] = SVD(X(i)

);
end for

for i = �(n3 + 1)/2�+ 1, · · · , n3 do

U(i)
= conj(U(n3−i+2)

);

S(i)
= S(n3−i+2);

V(i)
= conj(V(n3−i+2)

);
end for

3. Compute U = ifft(U , [], 3),S = ifft(S , [], 3), and V = ifft(V , [], 3).
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2.2. Some Mathematical Preliminaries

Theorem 2. (soft thresholding operator) [53] Let τ > 0 and X, Y ∈ Rn1×n2 , define a l1 norm minimization
problem as

argmin
X

τ‖X‖1 +
1
2
‖X − Y‖2

F (4)

Then, Equation (4) could be solved by an elementwise soft thresholding operator defined as

Sτ(x) = sign(x)× max(|x|−τ, 0) (5)

Definition 5. (partial sum of singular values, PSSV) [50] For a matrix X ∈ Rn1×n2 , the PSSV is defined as
‖X‖p=N = ∑

min(n1,n2)
i=p+1 σi(X), where σi(X)(i = 1, · · · , min(n1, n2)) is the i-th largest singular value of X,

and N is the preserved target rank.

Theorem 3. (partial singular value thresholding operator, PSVT) [50] Let τ > 0, l = min(n1, n2) and
X, Y ∈ Rn1×n2 which can be decomposed by SVD. Y can be considered as the sum of two matrices, Y =

Y1 + Y2 = UY1 DY1 VH
Y1

+ UY2 DY2 VH
Y2

, where UY1 , VY1
are the singular vector matrices corresponding to the

N largest singular values, and UY2 , VY2
from the (N+1)-th to the last singular values. Define a complex

minimization problem for PSSVas

argmin
X

τ‖X‖p=N +
β

2
‖X − Y‖2

F (6)

Then, the optimal solution of Equation (6) can be expressed by the PVST operator, which is defined as:

PN,τ(Y) = UY(DY1 + Sτ [DY2 ])V
H

Y
= Y1 + UY2Sτ [DY2 ]V

H
Y2

(7)

where τ = λ/β, DY1 = diag(σY
1 , · · · , σY

N , 0, · · · , 0), and DY2 = diag(0, · · · , 0, σY
N+1, · · · , σY

l ).

3. Proposed Method

Overall, an infrared image with small target can be described as follows [14]:

fD = fB + fT + fN (8)

where fD, fB, fT denotes the original image, background image, target image respectively, and fN
stands for the noise component. Depending on whether concentrating on merely the background,
merely the target, or both of them leads to different methods to detect infrared small target. Unlike the
general infrared image model, Gao et al. [20] generalized the traditional model into the IPI model,
which can be formulated as

D = B + T + N (9)

where D, B, T and N correspond to patch images of the original image, background image, target
image and random noise, all of which are constructed by vectorizing the matrix within the sliding
window. Since the infrared background is regarded as slowly transitional, that means that many local
patches are approximately linearly correlated with each other. In other words, the configuration of
nonlocal self-correlation leads to a low-rank background patch image. Besides, the small target only
occupies a few pixels with respect to the whole image; thus the target patch image can be considered as
a sparse matrix. Then, to separate the background and target is to solve an RPCA problem of recovering
low-rank and sparse matrices. In terms of data dimensionality reduction and representation, the most
popular method is PCA [54]. Recently, many other approaches spring up [36,55], and RPCA is an
improvement of traditional PCA.
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3.1. Infrared Patch-Tensor Model

To dig out more correlations among different patches, Dai et al. [42] proposed a novel
target-background separation framework named the infrared patch-tensor model (IPT) based on a slightly
different idea of construction. Transforming the original infrared image into a tensor is the first step.
As indicated in Figure 3, without transforming each patch matrix into a vector, the original patch-tensor in
IPT model is constructed by directly stacking the patches obtained via sliding a window from the top left
to the bottom right over an image into a 3D cube. Hence, Equation (9) is transferred to the patch space:

D = B + T +N (10)

where D, B, T , N ∈ Rm×n×k are the input patch-tensor, background patch-tensor, target patch-tensor,
and noise patch-tensor, respectively. m and n are the patch height and width, and k is the patch number.

Figure 3. Illustration of tensor construction. The left is original image and the right is the
constructed patch-tensor.

For a three-way tensor, we can get the mode-i (1 ≤ i ≤ 3) unfolding matrices by taking the
corresponding fibers (i.e., columns, rows and tubes in tensor) as columns. Figure 4 illustrates the singular
values of the mode-i (1 ≤ i ≤ 3) unfolding of the patch-tensor under typical scenes. Without any
doubt, the curves of all the unfolding matrices changing sharply to zeroes demonstrate the low-rank
property of the background patch-tensors along each mode. Particularly, the patch-image model could
be seen as a special case of the patch-tensor model, as the patch-image is just the mode-3 flattening
matrix of the corresponding patch-tensor. The IPT model not only generalizes the IPI model from matrix
to tensor, but also encodes enough priors delivered by different flattening matrices with the spatial
structure preserved. Therefore, we can impose a strong constraint on the unfolding matrices of background
patch-tensor B:

rank(B(1)) ≤ r1, rank(B(2)) ≤ r2, rank(B(3)) ≤ r3 (11)

where r1, r2, and r3 are nonnegative constants related to the complexity of the background image.

(a)                    (b)                      (c)                    (d) 

Figure 4. Illustration of the nonlocal self-correlation property of unfolding matrices. (a) Two
representative scenes; (b)–(d) Singular values of mode-1, mode-2, and mode-3 unfolding matrices of
the corresponding patch-tensors.
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Obviously, the target patch-tensor T is actually a sparse tensor, which implies ‖T ‖0 ≤ k, where k
is a small integer that is totally determined by the size and the number of small targets. Assuming that
the noise is additive white Gaussian noise and ‖N‖F ≤ δ for some δ > 0, we have ‖D − B − T ‖F ≤ δ.
Thus, we can obtain the following tensor robust principle component analysis (TRPCA) problem which
attempts to separate the low-rank and sparse tensors:

min
B,T

rank(B) + λ‖T ‖0

s.t. D = B + T
(12)

where λ is a compromising parameter that controls the tradeoff between the target patch-tensor and
the background patch-tensor, ‖ · ‖0 denotes the l0 norm, which counts the number of nonzero entries.

3.2. Local Prior Analysis

The grayscale-based measures that are used in most filtering methods are merely focusing
on how to extract local prior such as local contrast [16,56,57], local entropy [58,59], and local
difference [32,33,60]; nevertheless, this type of insufficient information is not enough to differentiate
target and background. Conversely, optimizing methods with nonlocal property involved are more
robust to complex scenes, but still suffer from background residuals in target components mainly
because of the salient edges. Its intrinsic reason is because that the sparsity of the salient edges is
similar to that of the targets. In fact, the stubborn edges can be easily identified by local prior, which
means that the defects of optimizing methods can be alleviated via adding extra local prior. For this
reason, the RIPT model employs structure tensor [61] to discriminate all of the image boundaries, since
these boundaries tend to contaminate the sparse target matrix. The two highest eigenvalues λ1 and λ2

(λ1 ≥ λ2) are applied to depict the local geometry structure. As the value of λ1 − λ2 highlights image
boundaries clearly, the local structure weight patch-tensor used in the RIPT model is defined as:

WLS = exp(h · (L1 −L2 )− dmin

dmax − dmin
) (13)

where L1 and L2 are the corresponding patch-tensors of two obtained eigenvalue matrices, h is a
weight-stretching parameter, dmax and dmin are the maximum and minimum of L1 −L2, respectively.

As analyzed in Section 1, the operator λ1 − λ2 that is utilized to calculate WLS is completely poor
at determining whether the edge components belong to the target or background. When serving as
the local structure weight, such ambiguity causes the distortion of target shape, due to the similar
weights between the background edge and the target edge. This situation becomes even worse with the
increasing of h, as shown in Figure 5. We know that when locating at the corner region, λ1 ≥ λ2 � 0;
when locating at the edge region, λ1 � λ2 ≈ 0; when locating at the flat region, λ1 ≈ λ2 ≈ 0.
Hence, structure tensor tends to give lower values at corners even if some of them are part of the edges
sometimes. As pointed out in [62], when the weight stretching parameter h decreases, the difference
would be more significant, causing an increase in the false alarm rate. In summary, on one hand,
to preserve the target and prevent it from being completely lost, a smaller h is needed; in contrast,
to avoid the interference of residuals, a larger h is needed. This is contradictory and finding an
appropriate value of h is difficult because the size of small target varies within a somewhat large range.
Another disadvantage is that RIPT merely considers the background-edge-related prior while ignoring
the target-related prior since both of them can cause false alarms.
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(a)                    (b)                      (c)                    (d) 

Figure 5. The phenomenon of target over-contraction with the increasing of h. (a) Original image;
(b)–(d) The separated target image when h = 1,3,5, respectively.

Due to the objective existence of the target edge, it is hard to utilize operator λ1 − λ2 to only
obtain the background prior. To alleviate the issue of target over-shrinking and corner disappearance,
a new local structure descriptor related to the target prior without an additional stretching parameter
was exploited. In [63], a “corner strength” function was computed to find the interest points:

wcs(x, y) =
det(ST(x, y))
tr(ST(x, y))

=
λ1λ2

λ1 + λ2
(14)

where (x, y) represents the pixel location, ST(·) denotes the structure tensor, ST(x, y) is a matrix,
det(·) and tr(·) are the determinant and trace of matrix respectively, and wcs(x, y) is the half of
the harmonic mean of the eigenvalues (λ1, λ2). Figure 6 indicates the map of interest points of an
infrared image (i.e., Figure 6c) compared with the local structure weight (i.e., Figure 6b), which
demonstrates two underlying facts: (i) the target information is highlighted that fully complies with
our expectation, and (ii) the corner regions that have been lost in the local structure weight map used
in RIPT are identified. Furthermore, we replaced the subtraction operator as the maximum between
two eigenvalues, namely:

wm(x, y) = max(λ1, λ2) (15)

It should be noted that the same problems also exist in the maximum operator but not so badly.

target edge

corner 
loss

target prior

corner

 
(a)                   (b)                   (c)                     (d) 

Figure 6. Comparison of different prior maps. (a) Original image; (b) The local structure weight map
used in RIPT (calculated by Equation (13)); (c) The corner strength map (calculated by Equation (14));
(d) The prior weight map used in the proposed model (calculated by Equation (16)).

Thus, as shown in Figure 6d, the final version of prior weight map Wp is

Wp(x, y) = wcs(x, y) · wm(x, y) = max(λ1, λ2) ·
λ1λ2

λ1 + λ2
(16)

Then, the patch-tensor of the prior weight map with normalization is defined as:

Wp =
Wp − wmin

wmax − wmin
(17)
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where wmax and wmin denote the maximum and minimum of Wp, respectively.

3.3. IPT Model Based on PSTNN

3.3.1. The Surrogate of Tensor Rank

Considering that the background changes slowly because of the high correlations among local and
nonlocal patches, low rank is an intrinsic property of the infrared background. The straightforward
measurement to access the low-rank characteristic of a tensor is the tensor rank. However, there is
no direct way to extend the low-rankness from the matrices to tensors. More specially, due to the
variety of tensor decomposition methods, the definition of tensor rank is not unique. The most popular
definitions are CP rank [64] and Tucker rank [65]. Another difficulty lies in the tensor extension of
RPCA (i.e., TRPCA) since the numerical algebra of tensors is fraught with hardness results [66]. How to
choose a suitable tensor rank with a tight convex relaxation is of great importance.

In reweighted infrared patch-tensor (RIPT) model, the low-rank characteristic of the background
patch-tensor is accessed via the sum of nuclear norms (SNN), which is based on the singleton model [43].
SNN, defined as ∑i

∥∥∥X(i)

∥∥∥
∗
, is used as a convex surrogate of ∑i rank(X(i)). A rational fact behind

the regularizer SNN is that the nuclear norm is the tightest convex envelope to matrix rank within
the unit ball of the spectral norm. Besides, instead of calculating the complex tensor nuclear norm,
SNN calculates the simpler matrix nuclear norm. Nevertheless, SNN is not a tight convex relaxation
of ∑i rank(X(i)) [45], which implies SNN has the limitation of obtaining suboptimal value. In other
words, when served as a background constraint, SNN would produce false alarms.

Derived from t-SVD, the tensor nuclear norm (TNN) was proposed in [51] and successfully applied
to image recovery which had shown its advancement compared to SNN. Generally, minimizing the
TNN may cause some unavoidable biases [46]. Meanwhile, SNN and TNN treat each singular value
equally which is irrational, since the larger singular values are generally associated with the image
details; thus, they should be assigned smaller weights. To alleviate those phenomena, it’s appropriate
to adopt a nonconvex relaxation with unequal weights. In [46], Jiang et al. extended the partial sum of
singular values (PSSV) [50] to the tensor version and presented the partial sum of the tensor nuclear
norm (PSTNN) to replace the TNN as the nonconvex approximation of tensor csor X ∈ Rn1×n2×n3 is
defined as

‖X ‖PSTNN =
n3

∑
i=1

∥∥∥X(i)
∥∥∥

p=N
(18)

where ‖ ·‖p=N denotes the PSSV. Since the infrared backgrounds could vary from simple to complex,
it’s better to employ an adaptively predicted rank constraint. On the contrary, considering that the
small target only holds an extremely small part of the entire image, a simpler way to determine
the parameter N is to set a fixed energy ratio without directly concentrating on the changeable
backgrounds. To approximate the tensor rank with high accuracy, the PSTNN is a better candidate
than SNN and TNN.

3.3.2. Model Construction

Likewise, we utilized the conventional way to relax the non-smooth and discrete l0 norm. So the
infrared small target detection model based on patch-tensors with the priors of target and background
is as follows:

min
B,T

‖B‖PSTNN + λ‖T 	Wrec‖1

s.t. D = B + T
(19)

where 	 denotes the Hadamard product, Wrec is the tensor corresponding to elementwise reciprocals
of the corresponding elements in Wp, and ‖ · ‖1 denotes the l1 norm, which is the sum of the absolute
values of all the elements.
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In [67], Candès proposed a reweighted l1 minimization to address the imbalance in which larger
coefficients are penalized more heavily than smaller ones. Subsequently, the reweighted scheme
achieved great success in many publications [68–70]. As indicated in Table 1, the computing time of
optimizing methods is always a major concern. Therefore, to speed up the convergence rate, and reduce
the time of the whole procedure, we adopted the reweighted scheme as well. The sparsity weight is
defined as follows:

W k+1
sw =

c∣∣T k
∣∣+ ε

(20)

where c is a nonnegative constant, ε > 0 is a small number to avoid division by zero, and k+1 denotes
the (k+1)-th iteration. In some cases, c is fixed to 1 [42,62]. We combined the two weights to get a
simplified form

W = Wsw 	Wrec (21)

Then, Equation (19) is rewritten as follows:

min
B,T

‖B‖PSTNN + λ‖T 	W‖1

s.t. D = B + T
(22)

In addition, as the same as analyzed in [42], we observed that the number of nonzero entries
in target patch-tensor stops changing after a few iterations, which is just a little proportion of the
entire procedure if the stop condition is when the relative error is smaller (i.e., ‖B + T −D‖2

F/‖D‖2
F)

than a given threshold. Hence, to better utilize this observation and alleviate the imbalance between
computing time and performance, the algorithm stops the iterations once the number of nonzero
entries ceases to decrease or the relative error is smaller than the given threshold.

3.3.3. Solution of the Proposed Model

The alternating direction method of multipliers (ADMM) [49] has a fast convergence rate and high
accuracy. In this section, an ADMM-based solver is devised to solve Equation (22). The augmented
Langrangian function of Equation (22) is defined as

Lμ(B, T ,W ,Y) = ‖B‖PSTNN + λ‖T 	W‖1 + 〈Y ,B + T −D〉+ μ

2
‖B + T −D‖2

F (23)

where Y is the Lagrange multiplier, 〈 · 〉 denotes the inner product of two tensors, ‖ · ‖F is the
Frobenius norm, and μ > 0 is a penalty factor.

Then, the problem argminB,T ,W ,YLμ(B, T ,W ,Y) in Equation (23) can be separated as several
subproblems, and in the (k+1)-th step, T and B are updated as:

T k+1 = argmin
T

λ‖T 	W k‖1 +
μk

2
‖Bk + T −D +

Y k

μk ‖
2

F
(24)

Bk+1 = argmin
B

‖B‖PSTNN +
μk

2
‖B + T k+1 −D +

Y k

μk ‖
2

F
(25)

The subproblem (24) can be solved easily via Theorem 2.3:

T k+1 = S λWk

μk

(
D −Bk − Y k

μk

)
(26)

The subproblem (25) is calculated by Theorem 2.2 utilizing Algorithm 1 in the Fourier domain,
which is described in Algorithm 2 (please see Ref. [46] for details).
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Y and μ update in the standard way:

Y k+1 = Y k + μk
(
D −Bk+1 − T k+1

)
(27)

μk+1 = ρμk (28)

where ρ > 1. Finally, the whole process is described in Algorithm 3.

Algorithm 2 Solve Equation (25) using PSVT

Input: Ak = D − T k+1 − Y k

μk ∈ Rn1×n2×n3 , λ, μk

1. Compute Ak
= f f t(Ak, [], 3)

2. Compute each frontal slice of Bk+1 by
for i = 1, · · · , �(n3 + 1)/2� do

(Bk+1
)
(i)

= PN,λ/μk

(
(Ak

)
(i)
)

(Operator P( · ) is defined in Equation (7));

end for

for i = �(n3 + 1)/2�+ 1, · · · , n3 do

(Bk+1
)
(i)

= conj((Bk+1
)
(n3−i+2)

);
end for

3. Compute Bk+1 = i f f t(Bk+1, [], 3)

Algorithm 3 ADMM solver to the proposed model

Input: D, Wp, λ, μ0, ε, N
Initialization: B0 = T 0 = Y0 = 0, Wsw = 1, W0 = Wrec 	Wsw, μ0 = 3 × 10−3, ρ = 1.1, c = 1, k = 0

while not converge do

1. Fix the others and update T k+1 by Equation (26);
2. Fix the others and update Bk+1 by Algorithm 2;
3. Fix the others and update Y k+1 by Equation (27);
4. Fix the others and update W k+1 by
W k+1

sw = c
|T k |+ε

;

W k+1 = Wrec 	W k+1
sw ;

5. Update μ by Equation (28);
6. Check the convergence conditions

‖Bk+1+T k+1−D‖2
F

‖D‖2
F

< ε or ‖T k+1‖0 = ‖T k‖0;

7. Update k: k = k+1;
end while

3. Output: Bk, T k

3.4. The Whole Procedure of the Proposed Method

Figure 7 shows the whole procedure of the infrared small target detection method based on the
proposed model, which can be described as follows:

(1). Local prior extraction. Given an infrared image, by calculating Equation (16), the prior weight
map Wp related to the target and background information is obtained.

(2). Patch-tensor construction. By sliding a window of size k × k from top left to bottom right to
transform the original infrared image fD ∈ Rm×n and the prior weight map Wp ∈ Rm×n into the
original patch-tensor D ∈ Rk×k×t and the prior weight patch-tensor Wp ∈ Rk×k×t respectively,
where t is the number of window sliding.

(3). Target-background separation. The input patch-tensor D is decomposed into a low-rank
patch-tensor B ∈ Rk×k×t and a sparse patch-tensor T ∈ Rk×k×t via Algorithm 3.
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(4). Image reconstruction and target detection. The target image fB ∈ Rm×n and background
image fT ∈ Rm×n are reconstructed from the low-rank patch-tensor B ∈ Rk×k×t and sparse
patch-tensor T ∈ Rk×k×t, and the process of reconstruction is contrary to that of construction.
Meanwhile, a one-dimensional median filter is exploited to determine the value of the position
overlapped by several patches. Once the reconstruction is done, small targets are detected easily
via adaptive threshold segmentation as in [20].

f

w

w

p

p

f

f

w

w

 
Figure 7. The overall procedure of the proposed model in this paper.

4. Experiment and Results

In this section, extensive experiments are conducted to verify the feasibility of the proposed model
from different aspects including robustness against various scenes, robustness to noise, the ability
of background suppression and target enhancement, target detection ability, and the computation
time of the algorithm. To fully access the superiority of the proposed algorithm, nine state-of-the-art
approaches are included for comparison.

4.1. Experimental Setup and Description

The diversity of scenes is one of the biggest challenges for detecting small targets embedded in
infrared images. In order to validate the robustness of our approach to scenes, 24 infrared images with
different varied scenes from uniform backgrounds with extremely dim targets to complex scenes with
salient interferences and clutters were tested, which are displayed in Figure 8. All of the targets are
marked with red (or green) square boxes. Moreover, for the sake of better observation and comparison,
we had enlarged the target areas and then placed most of them in the lower left (right) corner of
the image. Following this, six typical scenes were chosen from the 24 tested images to evaluate the
performance of our method in the case of noise with different levels. Note that the added noise obeys
the Gaussian distribution. Next, four sequences (Figure 8a–d) were used to quantify the detection
ability of the proposed model. Finally, the algorithm complexity and computation time for different
sizes are given. Nine methods including the Top-hat filter [12], Laplacian of Gaussian (LoG) filter [29],
multiscale patch-based contrast measure (MPCM) [31], relative local contrast measure (RLCM) [19],
infrared patch-image model (IPI) [20], nonnegative infrared patch-image model based on partial
sum minimization of singular values (NIPPS) [21], reweighted IPI (ReWIPI) [38], nonconvex rank
approximation minimization (NRAM) [39], and reweighted infrared patch-tensor model (RIPT) [42]
were employed as the baselines. The same experiments were carried out with these baselines for
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all-round comparison. Given space limitations, only part of the experimental results are shown in
this paper; the full extent can be found in the Appendices A and B. Table 3 summarizes the parameter
settings of all the methods used in this paper. All of the optimizing methods, i.e., IPI, NIPPS, ReWIPI,
NRAM, RIPT and the proposed method were solved via ADMM. In addition, all of the experiments
were implemented with Matlab R2018a in Windows 7 based on Intel Celeron 2.90 GHz CPU with 4G
of RAM.

 
Figure 8. The 24 real scenes used in the experiments. For the sake of visualization, all of the images are
changed to the same size.

Table 3. Detailed parameter settings of the 10 tested methods.

Method Parameters

Top-hat [12] Structure shape: disk, structure size: 3×3
LoG [29] σ = [0.50, 0.60, 0.72, 0.86, 1.03, 1.24, 1.49, 1.79, 2.14, 2.57, 3.09, 3.71]

MPCM [31] N = 3, 5, 7, 9, mean filter size : 3 × 3
RLCM [19] (K1, K2) = (2, 4), (5, 9), and (9, 16)

IPI [20] Patch size : 50 × 50, sliding step : 10, λ = 1/
√

min(m, n), ε = 10−7

NIPPS [21] Patch size : 50 × 50, sliding step : 10, λ = 2/
√

min(m, n), ε = 10−7

ReWIPI [38] Patch size : 50 × 50, sliding step : 10, λ = 2/
√

min(m, n), ε = 10−7, εB = εT = 0.04
NRAM [39] Patch size : 50 × 50, sliding step : 10, λ = 1/

√
min(m, n), μ0 = 3

√
min(m, n), γ = 0.002, C =

√
min(m, n)/2.5, ε = 10−7

RIPT [42] Patch size : 30 × 30, sliding step : 10, λ = L/
√

min(m, n), L = 1, h = 1, ε = 10−7

Ours Patch size : 40 × 40, sliding step : 40, λ = 0.6/
√

max(n1, n2) ∗ n3, ε = 10−7

4.2. Evaluation Metrics

In this subsection, for a comprehensive comparison with the aforementioned state-of-the-art
approaches, several typical metrics, including the signal-to-clutter ratio gain (SCRG), the background
suppression factor (BSF), and the receive operating characteristic (ROC) curve with the area under
curve (AUC) were used, where the ROC curve shows the tradeoff between the detection probability
Pd and false-alarm probability Fa. These metrics would reveal the ability of one method in target
enhancement, background suppression, and target detection. The most widely used criterion SCRG is
defined as

SCRG =
SCRout

SCRin
(29)
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where subscripts out and in represent the original image and the obtained target image respectively,
and SCR is a measurement of the difficulty of detecting a small target in an infrared image, whose
definition is

SCR =
|μt − μb|

σb
(30)

where μt is the average grayscale of the target area, μb and σb are the average pixel value and standard
deviation of the surrounding local neighborhood region, respectively.

Another evaluation indicator is BSF, showing the background suppression quality of detection
algorithms, which is defined as

BSF =
σin
σout

(31)

where σin and σout stand for the standard deviation values before and after suppression in the local
region. SCRG and BSF are calculated in the neighborhood region around the target, and Figure 9
shows the local region that is used in the experiment. Assuming that the target size is a × b, then the
local region size is (a + 2d)× (b + 2d); we set d = 20 in this paper.

Figure 9. Local region of a small target in an infrared image.

In addition to the above two evaluation indicators, the detection probability Pd and false-alarm
probability Fa is a pair of key metrics, which are defined as follows:

Pd =
number of true detections
number of actual targets

(32)

Fa =
number of false detections

number of images
(33)

The ROC curve is drawn according to Pd and Fa values, where Fa is abscissa and Pd is ordinate.
The AUC is the area enclosed by the ROC curve and the coordinate axis. Except for ROC, for all the
other metrics, the larger their value, the better the performance of the method.

4.3. Parameter Analysis

For the proposed model, there are several important parameters such as the patch size, the sliding
step, the penalty factor μ, and the tradeoff constant λ that usually affect the robustness for different
scenes. Hence, to obtain a better performance with real datasets, it is wise to choose proper parameters
via experiments. The ROC curves on four real infrared sequences for different model parameters are
given in Figure 10. Here, one point needs to be noted is that the performances obtained by tuning one
of the parameters with the others fixed may not be globally optimal.
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4.3.1. Patch Size

Patch size plays a vital role in determining not only the detection performance, but also the
computation complexity of the algorithm. We hope for a larger patch size to make sure that the
target is sparse enough due to the uncertainty of the target size; however, some noise with sparsity
properties such as salient edges would also have a higher probability of being identified as target
components, which degrades the separation results. On the other hand, a smaller patch size would
lead to a smaller computational complexity in each inner loop with singular value decomposition
(SVD), but the sparseness of the target is no longer so obvious. To figure out the influence of the patch
size on Sequences 1–4, we varied the patch size from 20 to 60 with 10 intervals and the corresponding
ROC curves are illustrated in the first row of Figure 10. By analyzing the ROC curves, we can conclude
that the best performance is achieved when the patch size is set to 40 for all of the sequences. The worst
performance is reached when the patch size is equal to 60 in most cases. This is because a too-large
patch size would regard the salient non-target noise as the “true” target, also resulting in incorrect
recovery, especially when the target is not so prominent. The performance of 20 depends on the target
size as the target in Sequence 1 is very dim and small while it breaks down when dealing with larger
targets in Sequences 3–4, which results from the lack of target sparsity. Another underlying fact is that
our proposed model is a little sensitive to the patch size particularly when facing extreme complex
scenes such as those in Sequence 1, the target of which is almost submerged. Therefore, we chose 40 as
the best patch size utilized in the following experiments.

4.3.2. Sliding Step

Similar to the patch size, the sliding step has a direct impact on the construction of patch-tensor,
which indirectly influences the computation time and detection performance simultaneously as well.
The sliding step determines how many frontal slices we can obtain to compose the desired patch-tensor.
Different from other similar models, we prefer a larger sliding step which results from the following
reasons. (i) A smaller sliding step implies that there would be more frontal slices containing the target,
leading to an insufficient sparseness of the target, and (ii) More frontal slices means an increased
computation time of t-SVD in Algorithm 1, because more inner loops are needed to calculate the matrix
SVD of each frontal slice. To investigate its actual influence, we show the effects of the sliding step in
the second row of Figure 10 via varying it from 10 to 40 (based on the best value of the patch size) with
five intervals. It can be observed that as the sliding step increases, the model works better. Ten is a
commonly used value; however, it performs the worst. Furthermore, even if the sliding step changes
slightly, this change has a great impact on the results, which means that the proposed model is very
sensitive to this parameter. Hence, the best choice for the sliding step is 40.

4.3.3. Penalty Factor μ

μ controls the tradeoff between the low-rank background and sparse target, namely the PVST
operator and soft-thresholding operator; thus, one has to choose μ carefully in order to ensure both
optimality and a fast convergence rate. With a smaller μ, more details would be preserved in the
background patch-tensor; nevertheless, the target may suffer from over-shrinking because its details
are remained by the background. In contrast, a larger μ could protect the target, but might leave more
non-target components in the target patch-tensor. To choose an appropriate value of μ for obtaining
better detection ability and a lower false alarm ratio, we investigated the influence of penalty factor on
Sequences 1-4 by changing μ from 1 × 10−3 to 9 × 10−3 with an interval of 0.002, as illustrated in the
third row of Figure 10. From the results we can arrival at a conclusion that μ cannot be too large or too
small, especially when μ = 1 × 10−3; the target is totally lost in most cases. Therefore, 3 × 10−3 was
used to get a better balance between the background patch-tensor and the target patch-tensor.
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4.3.4. Compromising Parameter λ

λ is a compromising parameter that controls the tradeoff between the target patch-tensor and
the background patch-tensor. Hence, it is of great importance to fine tuning λ. With reference to [48],
we set λ as L/

√
max(n1, n2) ∗ n3 and vary L from 0.2 to 1.4 instead of varying λ directly. We show

the influence of λ on Sequences 1-4 in the fourth row of Figure 10. From the illustration, we can
easily observe that when L = 1.2 and L = 1.4, the performance of the proposed method is always
worst. That is because as λ increases, the target patch-tensor would be suppressed to keep the whole
objective function at a minimum, and vice versa. In other words, on one hand, a larger λ leads
to a cleaner target image, but the target would be over-shrunk; on the other hand, a smaller λ can
keep the target complete, but background residuals would be kept too. How to find the balance is
a serious task. The experimental results shows that the performance is relative well when L = 0.6.
Then, λ = 0.6/

√
max(n1, n2) ∗ n3 was used at the end.

Figure 10. Detection performances under different parameters. Rows 1: ROC curves with respect to
different patch sizes, Rows 2: ROC curves with respect to different sliding steps, Rows 3: ROC
curves with respect to different penalty factors, Rows 4: ROC curves with respect to different
compromising parameter.

4.4. Qualitative Evaluation

In this subsection, the proposed method is compared with nine state-of-the-art methods from
qualitative aspects, i.e., robustness to different scenes and Gaussian noise, which reflects the ability
of target enhancement and background suppression of each approach. Note that due to the large
number of images, the results of all the methods except the proposed model and RIPT model are in the
Appendices A and B.

243



Remote Sens. 2019, 11, 382

4.4.1. Robustness to Different Scenes

One major challenge of infrared small target detection lies in its variety, which has two-fold
meanings. Firstly, infrared scenes are diverse, such as sky background with thick clouds such as those
in Figure 8b, a sea background with buildings and moving ships such as those in Figure 8f, a messy
background with lots of salient interferences such as those in Figure 8w, etc. Secondly, the size of
the small target is not fixed, but varies within a large range. For instance, as shown in Figure 8o,
the target embedded in the cloud layer can be viewed as a point target, while the target in Figure 8t
is much bigger than the aforementioned one. Therefore, a useful way to verify whether a detection
method is good or not is to test its robustness against different scenes containing different target sizes.
The separated target images obtained from the proposed model under 24 different scenes are displayed
in Figure 11, from which we can observe that the backgrounds are totally wiped out, remaining merely
the desired targets. Meanwhile, the shape of the targets has also been basically preserved.

Figure 12 indicates the results processed by the RIPT model; as analyzed in Section 3.2, it is
easy to observe that the RIPT model is suitable for dealing with a spot-like target, but when it
comes to a non-spot-like target, the issue of over-shrinking happens, which results from the local
structure weight treating the target edge and background edge equally, as shown in Figure 12c,t,u.
In addition, the suboptimality of SNN brings about remaining residuals (noise) in target images
such as those in Figure 12a,n. One more point worth mentioning is that the RIPT model may suffer
from totally losing the target when the background and target are both dim, such as in Figure 12d,h.
The results of handling the remaining methods with various scenes are displayed in Figures A1–A8 in
Appendix A, from which it is clear that they all lack robustness. Hence, compared with these baselines,
it’s fair to say that the proposed method shows advancement in dealing with different scenes and
targets simultaneously.

 
Figure 11. The separated target images of the proposed model under 24 scenes.
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Figure 12. The separated target images of the RIPT model under 24 scenes.

4.4.2. Robustness to Noise

In addition to various scenes, noise is also a key factor that affects the detection results.
In Figure 13, we further evaluated the proposed model in terms of noise with different levels
under six scenes selected from Figure 8. Gaussian noise with a mean of zero was imposed to the
images in the first row and third row of Figure 13, respectively. When the standard deviation is
10, the proposed method performs relatively well regarding background suppression and target
enhancement, as well as preserving the shape of the target. When the standard deviation increases
to 20, the proposed method still accurately locates the targets and wipes out the backgrounds in
Figure 13s,u,x. Unfortunately, in Figure 13t,v,w, the detected results deviate from the real targets
regardless of shape or size. This is acceptable considering the noise is so dense that the target can
hardly be detected. We can also conclude that as long as the target in the contaminative image is still
relative salient such as in Figure 13a–f, the proposed method can work.

 
Figure 13. The first and third row are infrared images with additive white Gaussian noise with standard
deviations of 10 and 20, and the second and fourth rows are the corresponding detection results by the
proposed method.
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We show in Figure 14 the performance of the RIPT model dealing with different levels of noise.
As can be seen from the figure, the target is more likely to be lost. Furthermore, although the target is
still salient within a noise-containing background (Figure 14a,m for instance), the target recovered via
RIPT is only spot-like, which demonstrates its weakness in handling slightly larger targets one more
time. The results of the remaining optimizing methods facing noise are displayed in Figures A9–A12
in Appendix B. We can easily observe that they all have unsatisfactory performances, especially when
the standard deviation is 20.

 
Figure 14. The first and third row are infrared images with additive white Gaussian noise with standard
deviations of 10 and 20, and the second and fourth rows are the corresponding detection results by the
RIPT method.

4.4.3. Visual Comparison with Baselines

To further visually compare the performance of all the competing methods, the results obtained by
all the tested methods on Sequences 1–4 are displayed in Figures 15–18, and the detailed descriptions
of four sequences are shown in Table 4. Note that for the convenience of observation, the contrast of
the results obtained by Top-hat, LoG and RLCM is adjusted. For conventional Top-hat transformation,
it can highlight the target to a certain extent in Figures 15a, 16a, 17a and 18a; however, it is extremely
sensitive to noise and clutters, which would produce many false alarms. The intrinsic reason is mainly
relevant to the usage of the fixed structural element without considering the surrounding neighborhood.
Besides, the fixed structural element with a fixed shape is difficult to perfectly match all the targets.
LoG, MPCM and RLCM are all HVS-based approaches but the performance of LoG is much worse
than the latter two. We can obviously see that LoG is also vulnerable to edges and noise which results
from the calculation of Gaussian scale space and its second derivative, making the target and edges
both enhanced, especially in the case of complex background such as those in Figures 15b and 16b.
The main difference between MPCM and RLCM is the definition of local contrast measure, leading
to distinguishing a detection ability. For MPCM, its local contrast measure is defined based on the
difference between the current patch and its adjacent background patches; while for RLCM, the local
contrast is associated with the mean grayscale value of each cell. Their improvement is apparent when
facing uniform scenes, and the RLCM is slightly better than the MPCM from Figures 17c and 18d.
Nevertheless, just as the results in Figures 15 and 16, the phenomenon of enhancing non-target pixels
still exists, which is caused by the inaccuracy of the local dissimilarity measure; in some cases, they are
even brighter than the real target.
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Figure 15. Results of the different approaches to Sequence 1.

 

Figure 16. Results of the different approaches to Sequence 2.

 
Figure 17. Results of the different approaches to Sequence 3.

 

Figure 18. Results of the different approaches to Sequence 4.
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Table 4. Detailed descriptions of four real sequences.

Frame Number Size Background Description Target Description

Sequence 1 52 128×128 Sky scene with banded cloud Tiny and dim
Sequence 2 30 256×200 Heavy banded cloud and floccus Small, size varies a lot
Sequence 3 67 320×240 Very bright, heavy noise Moves fast with changing shape, brightness

Sequence 4 46 320×240 Very blurry with black holes in
the middle

Keeps moving in the sequence and changing
shape and brightness

Generally speaking, the rest of the optimizing methods show superiority in both target
enhancement and background suppression. From the figures, there’s no doubt that IPI suffers from
residuals in the recovered target image, because the matrix nuclear norm treats all the singular values
equally, which usually leads to suboptimal solutions. Via minimizing the partial sum of singular
values, NIPPS achieves a better performance than IPI. However, as observed in Figures 15f and 18f,
either a complex scene including highlight interferences and intensive noise or a particularly dim
scene is still a challenge for NIPPS. To overcome the deficiencies of initial IPI, the ReWIPI adopts
weighted technology to restore the background and target simultaneously. We can see from the
results that the ReWIPI lacks robustness to different scenarios although it does well in Figure 16g.
NRAM provides a tighter surrogate of rank with nonconvex rank approximation involved, which
implies that the separated background image would be more accurate so that the problem of residuals
could be solved. NRAM reaches the desired results except for the last sequence, from which the target
is almost disappeared.

Unlike these matrix-level methods, RIPT directly stacks the patches into a tensor named
patch-tensor without vectorizing each patch into a vector, which successfully converts a low-rank
matrix recovery problem into a tensor recovery problem. As an extension of the IPI model, RIPT
accurately captures the low-rank property of the matrix that is obtained by unfolding the patch-tensor
along each mode, and thus achieving better detection performance. However, there are two issues for
which the RIPT model has not been resolved: namely, salient noise such as that in Figure 15i, and target
distortion with the possibility of completely loss such as that in Figure 18i. The proposed method
shows superior performance not only in the preservation of the target but also in the suppression
of backgroundcompared with the above baselines, especially in Figures 15 and 18. Basically, all the
methods are not performing well, except for ours. Furthermore, the computation time of the proposed
method is less than that of the similar optimizing methods, which will be discussed later.

4.5. Quantitative Evaluation

Apart from visually validating the robustness of our method through single-frame images with
different backgrounds and different noise levels, in this subsection, the detection performance of our
model and other baselines was further measured via quantitative evaluation indicators including the
signal-to-clutter ratio gain (SCRG), background suppression factor (BSF), and ROC curves on four
real sequences. Table 5 lists the experimental results for all 10 tested approaches for Sequences 1–4.
It should note that inf (i.e., infinity) represents the background is completely wiped out in the local
region. Since NRAM and RIPT are not able to detect the target in Sequence 4 in some cases, when
calculating SCRG and BSF for the last sequence, we don’t take these two methods into account. It can
be clearly seen that the proposed method achieves the highest values in terms of SCRG and BSF in
all of the datasets, showing great advantages in background suppression and target enhancement.
On the other hand, RIPT gets the second highest scores sometimes in terms of the two metrics, which
suggests that the tensor model can indeed seek more spatial information to improve the robustness.
Filtering methods get very low scores in comparison with optimizing methods, resulting from the
simple assumption based on background homogeneity or target saliency.

248



Remote Sens. 2019, 11, 382

Table 5. SCRG and BSF values of the ten methods.

Method
Sequence 1 Sequence 2 Sequence 3 Sequence 4

SCRG BSF SCRG BSF SCRG BSF SCRG BSF

Top-hat 1.04 1.99 9.56 1.90 0.36 0.22 0.58 12.46
LoG 8.25 1.88 7.33 1.30 1.30 0.30 2.28 7.86

MPCM 9.77 23.72 14.4 4.1 8.72 7.90 20.38 14.54
RLCM 28.97 35.14 30.63 62.99 2.05 1.82 2.22 16.25

IPI 106.12 140.32 43.33 16.73 8.05 1.88 5.36 2.66
NIPPS 456.15 544.79 180.08 118.16 43.2 35032728557 13.71 24.33

ReWIPI 242.14 641.92 302.55 153.61 5.10 1.35 5.42 4.16
NRAM 1004.48 677.2 687.02 178.69 109.83 inf — —

RIPT 523.44 222.97 690.32 276.02 46.8 inf — —
Ours 1059.58 1229.65 697.77 315.87 147.67 inf 46.34 60.21

NOTES: Underline with bold represents the highest value and underline represents the second highest value.

To further demonstrate the advantage of the proposed method, ROC curves corresponding to the
four sequences that reflect overall detection ability of one method are plotted in Figure 19, and the AUC
values are also listed in Table 6. A higher AUC value means that an algorithm has better performance.
The performance of RLCM fluctuates greatly; for Sequences 1 and 2, RLCM works very well, but fails
dealing with other sequences. The reason comes down to the local contrast measure utilized by RLCM,
which merely relates to the mean grayscale of each cell, being extremely unsuitable for handling the
low-contrast background embedded within a blurred target. Another interesting thing is that the AUC
values of RIPT are only at a medium level, which is due to the problem of the excessive shrinkage of a
slightly larger target, resulting in a relatively low detection probability. The ROC curves of IPI and
ReWIPI obtained from handling Sequence 1 confirm that they are not enough to cope with complex
scenes full of salient edges and clutters. In general, the proposed method always gets the highest
detection probability with respect to the same false-alarm ratio, indicating that the proposed model
outperforms other state-of-the-art methods in target detection performance.

Table 6. Area under curve (AUC) values of the 10 methods.

Top-hat LoG MPCM RLCM IPI NIPPS ReWIPI NRAM RIPT Ours

Sequence 1 0.311 0.861 0.613 0.986 0.387 0.829 0.173 1 0.987 1
Sequence 2 0.743 0.932 0.863 0.900 0.938 0.933 0.957 0.967 0.928 0.990
Sequence 3 0.604 0.927 0.930 0.181 0.938 0.856 0.849 0.944 0.606 0.945
Sequence 4 0.340 0.347 0.877 0.021 0.862 0.917 0.925 0.707 0.503 0.933

 
(a) (b) 

Figure 19. Cont.
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(c) (d) 

Figure 19. ROC curves of detection results of four real sequences. (a) Sequence 1; (b) Sequence 2;
(c) Sequence 3; (d) Sequence 4.

4.6. Algorithm Complexity and Computational Time

In addition to high accuracy, real-time performance is also a basic requirement in infrared
small target detection. However, it’s hard to balance good detection ability and real-time
performance. For filtering-based methods, simple assumptions coupled with simple calculations
are fast, but not effective. For the optimizing-based methods, one major challenge is that the
algorithms are time-consuming because of their high complexity, which is mainly associated with SVD.
Therefore, the computational efficiency of different methods is discussed in this part. Suppose that
the size of the original infrared image is M × N, in which m and n are the columns and rows of the
patch-image, and the size of the patch-tensor is n1 × n2 × n3. The computation cost of Top-hat is
O(I2 log I2MN), where I denotes the size of the structural element. Due to the computation complexity
of Gaussian filtering being O(M2N2), considering the use of k different scales, the final cost of LoG
is O(kM2N2). For MPCM and RLCM, the major time-consuming part is calculating the saliency
map pixel by pixel. The computation of MPCM and RLCM for a specific pixel needs an O(l2) cost,
where l(l = 1, 2, · · · , L) is the processing window scale. Further, the total cost of them is O(L3MN).
Furthermore, for low-rank matrix-based methods, the computation complexity is mainly derived
from the matrix SVD, which has a computational complexity of O(mn2). RIPT needs to calculate
the SVD of an unfolding matrix along each mode with the sizes of n1 × (n2n3), n2 × (n1n3) and
n3 × (n1n2), respectively. Therefore, the cost of the RIPT model is O(n1n2n3(n1n2 + n2n3 + n1n3)).
For the proposed model, the dominant factor of the complexity cost is calculating the SVD and FFT in
Algorithm 2. Considering that merely the frontal slice with the size of n1 × n2 is utilized to calculate
FFT, the final computation cost of proposed model is O(n1n2n3log(n1n2) + n1n2

2�(n3 + 1)/2�), which
shows a great reduction compared with RIPT. Note that because of the introduction of the new iteration
stop condition, RIPT and our method would actually be faster.

Table 7 summarizes the algorithm complexity of all the methods, and lists their average
computing time for Sequences 1–4. We can observe that all the optimizing methods based on the
matrix level are extremely sensitive to changes in image size. In other words, as the size increases,
the computation time increases dramatically, which is a big drawback of these methods. In contrast,
the tensor-based approaches improve significantly, and this gap is more pronounced as the size
increases. Among all the low-rank optimizing methods, the proposed method costs the least time.
Although it still slightly slower than the filtering methods, considering the excellent performance, this
is undoubtedly acceptable.
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Table 7. Comparison of computational complexity and average computing time (in seconds) of the
10 methods.

Methods Complexity Sequence 1 Sequence 2 Sequence 3 Sequence 4

Top-hat O(I2 log I2 MN) 0.015 0.015 0.018 0.016
LoG O(kM2N2) 0.019 0.035 0.048 0.046

MPCM O(L3 MN) 0.038 0.074 0.097 0.096
RLCM O(L3 MN) 0.895 2.941 4.414 4.385

IPI O(mn2) 0.327 8.717 22.063 21.941
NIPPS O(mn2) 0.321 7.561 19.182 18.097

ReWIPI O(mn2) 1.030 14.978 39.612 41.559
NRAM O(mn2) 0.494 3.661 8.357 8.341

RIPT O(n1n2n3(n1n2 + n2n3 + n1n3)) 0.211 1.079 1.279 3.217
Ours O(n1n2n3 log(n1n2) + n1n2

2�(n3 + 1)/2�) 0.081 0.136 0.127 0.217

5. Discussion

Even though many scholars are working in the field of infrared small target detection, there
is still room for improvement in this field. Based on simple assumptions, filtering methods enable
real-time detection whereas they cannot work well under complex scenes. Exploiting the nonlocal
self-correlation property of infrared backgrounds and the sparsity of targets, optimizing methods
show a strong detection ability and robustness in comparison with filtering methods, but they are
time-consuming. The cornerstone of early optimizing methods is the construction of an infrared
patch-image (IPI), which completely destroys the original structural information. To utilize more
spatial prior, an infrared patch-tensor (IPT) model was proposed, introducing the tensor recovery
technology into this filed.

By employing the IPT model with involving target-related and background-related priors,
the proposed method fully considers the nonlocal configuration and local structure of infrared images,
showing great performance not only in target enhancement but also in background suppression.
Moreover, with the help of an extra stopping condition and reweighted scheme, the complexity of
the ADMM solver for the proposed method is dramatically reduced, which is indicated in Table 6.
Hence, we meet the requirement of alleviating the issue of imbalance between the computation time
and detection performance.

Series experiments including robustness to various scenes, robustness to noise, target
enhancement, background suppression, detection ability, and computation time were carried out
to compare the proposed method and other baselines. The experimental results demonstrated that the
proposed method outperforms the nine representative state-of-the-art methods, including Top-hat,
LoG, MPCM, RLCM, IPI, NIPPS, ReWIPI, NRAM, and RIPT.

6. Conclusions

To cope with the issue of imbalance between the detection performance and computation
time of current methods and further improve the robustness to noise and various scenes, a robust
infrared patch-tensor model based on partial sum of tensor nuclear norm was proposed in this paper.
Furthermore, the local prior which relates to the background and target simultaneously was introduced
into the model as an effective means of suppressing edge residuals. Then, the traditional infrared
small target detection task is transformed into a problem of solving the nonconvex tensor robust
principal component analysis model. By incorporating a reweighted scheme with an accelerated
version of t-SVD, an efficient algorithm based on ADMM was designed to solve this new model.
Extensive experiments illustrated that the proposed method outperforms the state-of-the-art methods
both in background suppression and target enhancement, achieving strong robustness and a great
improvement in time reduction.

There are still some issues worth considering. For example, although we utilize the energy ratio
to estimate the preserved target rank, finding a better way of determining it is still needed.
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Appendix A

These are the obtained results of the other eight approaches that are not shown in the main body
of this paper.

 
Figure A1. The separated target images of Top-hat under 24 scenes.

 
Figure A2. The separated target images of LoG under 24 scenes.
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Figure A3. The separated target images of MPCM under 24 scenes.

 
Figure A4. The separated target images of RLCM under 24 scenes.
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Figure A5. The separated target images of IPI under 24 scenes.

 
Figure A6. The separated target images of NIPPS under 24 scenes.
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Figure A7. The separated target images of ReWIPI under 24 scenes.

 
Figure A8. The separated target images of NRAM under 24 scenes.

Appendix B

These are the obtained results of the four optimizing approaches (i.e., IPI, NIPPS, ReWIPI,
and NRAM) that are not shown in the main body of this paper. Note that the performances of
filtering methods even without noise are not satisfactory; therefore, we didn’t take them into account
in this part.
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Figure A9. The first and third row show infrared images with additive white Gaussian noise with
standard deviation of 10 and 20, and the second and fourth rows are the corresponding detection
results by IPI.

 
Figure A10. The first and third row show infrared images with additive white Gaussian noise with
standard deviation of 10 and 20, and the second and fourth rows are the corresponding detection
results by NIPPS.
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Figure A11. The first and third row show infrared images with additive white Gaussian noise with
standard deviation of 10 and 20, and the second and fourth rows are the corresponding detection
results by ReWIPI.

 
Figure A12. The first and third row show infrared images with additive white Gaussian noise with
standard deviation of 10 and 20, and the second and fourth rows are the corresponding detection
results by NRAM.
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Abstract: The robustness of infrared small-faint target detection methods to noisy situations has been
a challenging and meaningful research spot. The targets are usually spatially small due to the far
observation distance. Considering the underlying assumption of noise distribution in the existing
methods is impractical; a state-of-the-art method has been developed to dig out valuable information
in the temporal domain and separate small-faint targets from background noise. However, there
are still two drawbacks: (1) The mixture of Gaussians (MoG) model assumes that noise of different
frames satisfies independent and identical distribution (i.i.d.); (2) the assumption of Markov random
field (MRF) would fail in more complex noise scenarios. In real scenarios, the noise is actually
more complicated than the MoG model. To address this problem, a method using the non-i.i.d.
mixture of Gaussians (NMoG) with modified flux density (MFD) is proposed in this paper. We firstly
construct a novel data structure containing spatial and temporal information with an infrared image
sequence. Then, we use an NMoG model to describe the noise, which can be separated with the
background via the variational Bayes algorithm. Finally, we can select the component containing true
targets through the obvious difference of target and noise in an MFD maple. Extensive experiments
demonstrate that the proposed method performs better in complicated noisy scenarios than the
competitive approaches.

Keywords: infrared small-faint target detection; non-independent and identical distribution
(non-i.i.d.) mixture of Gaussians; flux density; variational Bayesian

1. Introduction

Distant and faint target detection is of great importance to infrared systems, as anti-missile
techniques and early-warning systems. Due to the unique characteristic of these military tasks,
the targets need to be detected accurately as early as possible in the infrared search and track systems
to provide ample time for deployment and striking back. However, the target usually occupies only a
few pixels and lacks texture information due to the very far observation distance. The backgrounds are
very complex, including sky background and sea–sky background, which means the acquired infrared
images are usually contaminated by a clutter background and a varying noise. The contrast between
targets, background and the varying noise might be very poor. The low signal-to-clutter ratio (SCR)
and signal-to-noise ratio (SNR) make the infrared targets very faint. Therefore, robust infrared small
and faint target detection technique remains a valuable research hotspot [1–3].

To achieve a satisfying target detection performance, many approaches have been proposed
for different scenarios, including two types: Track-before-detection (TBD) approaches [4,5] and
detection-before-track (DBT) approaches [6–8]. TBD approaches have good detection performance for
targets with continuous track motion, such as 3D matched filters [9] and its improved versions [10,11].
DBT approaches focus on suppressing the clutter background while enhancing the target in single
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frame, and are more efficient than TBD approaches. TBD approaches are widely used in practical
engineering. At present, the common types of DBT methods are filtering, human visual system (HVS)
and multi-feature based approaches. Filtering methods analyze spatial continuity of an input image,
and the target is modeled as a break point, such as max-median filter [12], top-hat filter [13] and 2D
least mean square (TDLMS) filter [14]. HVS based methods [15–17] assume that there is a significant
contrast between background and target regions. Multi-feature based methods [18–20] represent the
target characteristics and background region with features used to train the classifiers.

Moreover, the low-rank and sparse component recovery based approach, as a subdiscipline of
the low-rank representation (LRR) [21], has become very popular in recent years. In this approach,
the background regions are assumed to change gradually, and a special low-rank data structure can
be constructed with the original images, such as a 2D matrix and a 3D tensor. With the recovery of
the low-rank background, the dim target can be separated from the original image. Gao proposed
an infrared image-patch (IPI) model [22], which constructs a low-rank matrix by sliding window.
The IPI model uses vanilla nuclear norm minimization (NNM) [23] and l1 [24] to regularize the
background and the target, respectively. The performance of NNM in a low-rank component estimation
problem would degrade in a noisy scenario. The solution for this problem is to replace NNM with
a more suitable regularizer. Thus, Dai proposed a weighted IPI approach [25] and a non-negative
IPI approach [26], and Guo proposed a reweighted WIPI model (ReWIPI) based on weighted nuclear
norm minimization (WNNM) [27]. In the view of the dimension of data, Dai proposed a reweighted
infrared patch-tensor (RIPT) method to generalize the low-rank matrix to low-rank tensor for mining
more spatial information [28]. However, the RIPT method unfolds the background patch tensor as
three matrices and regularizes it via the sum of nuclear norms (SNN) [29], which is suboptimal and
inefficient. To remedy this issue, Sun proposed a weighted tensor nuclear norm with IPT (WNRIPT)
method [30].

However, most of the existing low-rank component recovery based approaches [22,25–28,30] only
use the Frobenius loss term [31] to constrain the noise, which models the noise as an independent
and identically distributed (i.i.d.) Gaussian distribution. In practical applications, the infrared images
usually include complex instrumental noise that degrades the performance for target detection.
The complex noise degrades the performance of the target detection severely. A robust method,
capable of distinguishing different kinds of noise, is needed.

To this end, a state-of-the-art method [32] digs out valuable information in time domain and uses
a mixture of Gaussian (MoG) noise models [33] to model the target component and noise component
together. The MoG model characterizes each pixel in the image and updates the mixed Gaussian
model after the new image is acquired. It matches each pixel in the current image with the MoG model,
and the matched pixels are classified into background regions [34,35]. Finally, the Markov random
field (MRF) method [34] is used to detect the target. However, the noise distribution in different
frames is modeled as i.i.d. MoG distributions substantially in [32], which is not suitable for complex
noisy scenarios. In addition, the MRF model does not provide a robust noise estimate in complex
scenarios, since its performance is based on the assumption that the noise component does not arise
in the neighborhood region of the targets. However, the noise permeates through the whole image,
including the target.

We propose a small and faint target detection approach based on a non-i.i.d. MoG (NMoG)
model [36] and modified flux density (MFD) maple [37]. The noise distributions in different frames
(sequences of images) is assumed to follow non-i.i.d. for improving the robustness in real scenarios.
The target is considered as a kind of noise extracted from the background via an NMoG low-rank
matrix factorization (NMoG-LRMF) model, solved by a variational Bayes (VB) algorithm. In a second
step, the MFD maple [37] method is used to distinguish the true target from the noise, accounting for
the fact that target flux density differs from the noise in infrared gradient vector field.
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This paper is organized as follows. The proposed method is described in Section 2. Section 3
provides the experimental results to validate the effectiveness of the proposed method. Finally, we
conclude our work in Section 4.

2. The Proposed Model

2.1. Spatio-Temporal Patch Model

Given an infrared image sequence, we can get a 3D cube patch tensor by storing each frame into
its slice. We vectorize each slice and get a 2D matrix. The procedure is given in Figure 1. Note that
it is possible to reconstruct the image sequence from the processed 2D matrix via inverse operation.
Assume an infrared image sequence f1, f2, · · · , fP ∈ Rm×n transformed into a matrix F with size
of N × P, where N=m × n and P denote the spatial and temporal dimensions. We divide F into
background component B and noise E, described as:

F = B + E, (1)

and the small-faint target component T is considered as a sparse noise component in E [32].

Figure 1. The framework of the proposed method.
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2.2. Background Component

In low-rank recovery based methods, background regions are assumed to vary slowly, and there
are a lot of repeated regions. The low-rank matrix B [32] is modeled as follows:

B = UV T =
R

∑
l=1

u·lv
T
·l , (2)

where U ∈ RN×R and V ∈ RP×R, and their l-th columns are represented as u·l and v·l . R is the
initial rank of B. The intrinsic low-rank nature of B is guaranteed by assuming u·l and v·l generated
according to a Gaussian distribution:

u·l ∼ N
(

u·l
∣∣∣0, γ−1

l IN

)
, v·l ∼ N

(
v·l

∣∣∣0, γ−1
l IP

)
, (3)

where IN (IP) is the N × N (P × P) identity matrix. γl denotes the precision of u·l and v·l that satisfies:

γl ∼ Gam (γl |ξ0, δ0 ) , (4)

where Gam (γl |ξ0, δ0 ) represents a gamma distribution, and ξ0, δ0 are scales. The low-rank component
can be estimated accurately by this model [38].

2.3. Noise Component

In [32], the noise of different frames are assumed to be i.i.d., which is not practical in real and
complex scenarios. Thus, we use the NMoG model [36] to model the noise distributions in different
frames, namely noise distribution of images in different frames are nonidentical. The ij-th element of
the noise E can be divided into K components as below:

eij ∼
K

∑
k=1

πjk N
(

eij

∣∣∣μjk, τ−1
jk

)
, (5)

where πjk denotes the mixing proportion that is non-negative, and ∑K
k=1 πjk = 1. μjk and τjk denote

mean and precision, respectively. Instead of setting the MoG parameters, i.e., πjk, μjk and τjk,
as unchanging value for k-th Gaussian component, we vary them in different frames. Equation (5) can
be equivalently expressed as a two-level generative model by introducing the indicator variables zij.
zij is the hidden variable generated from Multinomial distribution with parameter πj:

eij ∼
K

∏
k=1

N
(

eij

∣∣∣μjk, τ−1
jk

)zijk

zij ∼ Multinominal
(
zij

∣∣πj
) (6)

where zij =
(
zij1, . . . , zijK

)
∈ {0, 1}K, ∑K

k=1 zijk = 1. Multinomial( ) represents the multinomial
Dirichlet distribution. The conjugate priors of μjk, τjk and the mixing proportions πj = [πj1, . . . , πjK]

are also defined for completing the Bayesian model:

μjk, τjk ∼ N
(

μjk

∣∣∣∣m0,
(

β0τjk

)−1
)

Gam
(

τjk |c0, d
)

d ∼ Gam (d |η0, λ0 )

πj ∼ Dir
(
πj |α0

) (7)
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where β0, m0, c0, d are the hyper-parameters, and d satisfies Gam distribution with hyper-parameters
η0, λ0. Dir(.) is a Dirichlet distribution parameterized by α0 = (α01, . . . , α0K). Then, the noise
component can be modeled by Equations (6) and (7).

Combining Equations (2)–(7) together, Bayes’ theorem is used to estimate from F the values of
all parameters:

p (U, V ,Z , μ, τ, π, γ, d |F ) (8)

where Z =
{

zij
}

N×P, μ =
{

μjk

}
B×K

, τ =
{

τjk

}
B×K

, π = (π1, . . . , πP) and γ = (γ1, . . . , γR).

2.4. Variational Inference

In this section, the posterior of parametric model Equation (8) is inferred by the VB approach [39].
VB obtains the objective parameters x finding the minimum Kullback–Leibler (KL) divergence between
the approximated distribution q (x) and the actual distribution p (x |D ) with the known observation
D, which can be formulated as below:

q∗ (x) = min
q∈Ω

KL (q (x) ‖p (x |D ) ) , (9)

where Ω is the constrained probability densities for obtaining the feasible solution. We can factorize
q (θ) as q (θ) = ∏i qi (θi) by mean field theory, and the posterior distribution Equation (8) can be
approximated with the following form:

p (U, V ,Z , μ, π, τ, γ, d) = ∏
i

q (ui·)∏
j

q
(
uj·
)

∏
ij

q
(
zij
)
× ∏

j
q
(
μj, τj

)
q
(
πj
)
∏

l
q (γl) q (d) .

(10)

2.4.1. Estimation of Noise Component

For the noise component in the j-th frame, we need to estimate four parameters, μj, τj, Z and πj.
Firstly we update μj and τj in the following way:

q∗
(
μj, τj

)
= ∏

k
N

(
μjk

∣∣∣∣∣mjk,
1

β jkτjk

)
Gam

(
τjk

∣∣∣cjk, djk

)
, (11)

where

mjk =
1

β jk

{
m0β0 + ∑

i

〈
zijk

〉 (
fij − 〈ui·〉

〈
vj·
〉T
)}

,

β jk = β0 + ∑
i

〈
zijk

〉
, cjk = c0 +

1
2 ∑

i

〈
zijk

〉
,

djk = 〈d〉+ 1
2

{
∑

i

〈
zijk

〉〈(
fij − ui·vj·

T
)2
〉
+ β0m0

2

− 1
β jk

(
∑

i

〈
zijk

〉 (
fij − 〈ui·〉

〈
vj·
〉T
)
+ β0m0

)2
⎫⎬⎭ ,

(12)

where fij denotes the ij-th element of the F. The variables zij can be derived in closed form as below:

q
(
zij
)
= ∏k r

zijk
ijk (13)

where
rijk =

ρijk

∑k ρijk
, (14)
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lnρijk =
〈

lnπjk

〉
− 1

2
ln2π +

1
2

〈
lnτjk

〉
− 1

2

〈
τjk

(
fij − μjk − μi·vT

j·
)2
〉

.
(15)

Finally, we update πj by:

q
(
πj
)
= ∏k π

αjk−1
jk , (16)

where αjk = α0 + ∑i

〈
zijk

〉
, and the hyper-parameter d is updated by the following equation:

q (d) = Gam (d |η, λ ) , (17)

where η = η0 + c0KP and λ = λ0 + ∑j,k

〈
τjk

〉
.

2.4.2. Estimation of Background Component

For the background component, we need to estimate three parameters, including U, V and γ.
ui· (i = 1, . . . , N) can be estimated as follows:

q (ui·) = N (ui· |μui· , Σui· ) , (18)

where

μui· =

{
∑
j,k

〈
zijk

〉 〈
τjk

〉 (
fij −

〈
μjk

〉) 〈
vj·
〉}

Σui· ,

Σui· =

{
∑
j,k

〈
zijk

〉 〈
τjk

〉 〈
vT

j·vj·
〉
+ 〈Γ〉

}−1

.

Similarly, vj· (j = 1, . . . , P) is estimated by:

q
(
vj·
)
= N

(
vj·

∣∣∣μvj· , Σvj·

)
, (19)

where

μvj· =

{
∑
j,k

〈
zijk

〉 〈
τjk

〉 (
fij −

〈
μjk

〉) 〈
uj·
〉}

Σvj· ,

Σvj· =

{
∑
j,k

〈
zijk

〉 〈
τjk

〉 〈
uT

j·uj·
〉
+ 〈Γ〉

}−1

.

Γ = diag (〈γ〉), γl is a decisive factor for guaranteeing low-rank property of B by removing the
corresponding rows when its value is very large [38], which can be estimated by:

q (γl) = Gam (γr |ξl , δl ) , (20)

where
ξl = ξ0 +

1
2 (m + n) ,

δl = δ0 +
1
2 ∑

i

〈
u2

il
〉
+ 1

2 ∑
j

〈
v2

jl

〉
.

In the following experiments, we set m0 = 0, and α0, β0, c0, d0, η0, λ0, ξ0, δ0 are initialized with
10−6 [36].

2.5. Target Extraction

In this section, we firstly select the noise component containing small-faint target. Then, the MFD
method [37] is used to extract the target from the noise.
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2.5.1. Selecting Noise Component Containing Target

We obtain the noise component E separating it from the background component, and we can
divide it into K components E1, . . . , EK according to the maximum probability criteria [32]:

em
ij =

⎧⎨⎩ eij, if m= arg max
k=1,...,K

(
rijk

)
0, else

. (21)

The K components are restored to sequences Ē1, . . . , ĒK by the aforementioned method in
Section 2.1. Note that the intensity of the true target is quite different from the noise. Instead of using
variance guided method in [32], we calculate the difference between the minimum and maximum of
intensity and select the largest one Ēi as the component containing target, which can be described
as follows:

i = arg max
k=1,...,K

(
max

(
Ēk
)
− min

(
Ēk
))

(22)

The following experimental results demonstrate that this method is effective.

2.5.2. Extracting Target by MFD

Figure 2 gives the results of a representative infrared noisy image using NMoG method with
K = 3, and subfigure (c) is the slice containing the true target. It is observed from Figure 2c that
the restored slice containing true target is still contaminated by pixel noise. Thus, we use the MFD
method [37] to wipe out the noise and enhance the target.

(a) Original image (b) Background image (c) Slice 1 (d) Slice 2 (e) Slice 3

Figure 2. The results of NMoG method with K = 3.

The noise component E containing the target is firstly transformed into a gradient vector field by:

I (x, y) =

[
e′x (x, y)
e′y (x, y)

]

e′x (x, y) =
e (x + 1, y)− e (x − 1, y)

2

e′y (x, y) =
e (x, y + 1)− e (x, y − 1)

2

(23)

where e (x, y) denotes the value of E at location (x, y), e′x (x, y) and e′y (x, y) are the gradient value in
the x-direction and y-direction.

From Figure 3b,d, it can be observed that both the true target and bright noise residuals are a sink
in gradient vector field. But the gradient vectors of noise pixel focus on 4 directions, and MFD method
can compute the flux density of each pixel after removing its four largest gradient vectors, which is
defined as follows [37]:

MFDs (x, y) = ∑
(x′ ,y′)∈O′(x,y,s)

I (x′, y′) ·�no (x′ − x, y′ − y)
8s − 4 (24)
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where MFDs is s-scale MFD, s denotes the scale variable, O′ denotes the subset of O, which removes
four pixels containing the four largest gradient vectors. Note that the number of pixels on the curve is
8s − 4. O represents the neighborhood region as:

O (x, y, s) =
{(

x′, y′
) ∣∣max

(∣∣x′ − x
∣∣ ,
∣∣y′ − y

∣∣) = s
}

(25)

and the norm vector on the boundary point�no (x, y) is defined as follows:

�no (x, y) =

[
nox (x, y)
noy (x, y)

]

nox (x, y) =

⎧⎪⎨⎪⎩
−1, x = k
1, x = −k
0, else

noy (x, y) =

⎧⎪⎨⎪⎩
−1, y = k
1, y = −k
0, else

(26)

where nox (x, y) and noy (x, y) are the value in the x-direction and y-direction.

(a) Target image (b) MFD maple (c) Noise image (d) MFD maple

Figure 3. Modified flux density (MFD) maple. (a,c) Boundaries and norm vectors for flux density
calculation of the target and noise pixel. (b,d) The corresponding flux density of (a,c); the details are
(b) scale = 1, flux density = 24.38; (d) scale = 1, flux density = −0.29.

Figure 3 shows that noisy pixels are wiped out according to their MFD value. This is because the
MFD value of the noisy pixels is much smaller than that of the real target, which is usually a negative
element. Following this property, the corresponding noise pixels are wiped out in the target image.
Thus, we obtain an initial result by the following equation:

T (x, y) = Ēi (x, y) ∗ MFDs(x, y)+ (27)

where T (x, y) denotes the initial target image, MFDs(x, y)+ is the result by setting the positive elements
and negative elements in the original MFD maple to 1 and 0, respectively. Finally, we use an adaptive
threshold to further separate the target [22], which is described as below:

T = μ + kσ (28)

where μ and σ are the mean value and standard deviation of the small target image. k is a empirical
value, and we set it as 0.05 in our experiment. The framework of our method is shown in Figure 1,
and the detection procedure is given in Algorithm 1.
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Algorithm 1

Input: Infrared image sequence f1, f2, · · · , fP ∈ Rm×n.
Initialize: Set parameters (m0, β0, c0, d0, η0, λ0) = 10−6 in noise prior. Low-rank background component
U0, V0 and α0 parameters in the model prior (ξ0, δ0), scale parameter s = 1 in MFD method, iteration number
t = 1.
Step 1: Construct the spatio-temporal patch image F with the input infrared image sequence using the method
in Section 2.1.
Step 2: Build NMoG noise model under the Bayesian framework by Equations (2) and (5).
Step 3: While not converged do:
1. Update approximate posterior of noise component Z t, πt by Equations (13)–(16), μt, τt by Equations (11)
and (12) and dt by Equation (17), respectively.
2. Update approximate posterior of background component U, V by by Equations (18) and (19).
3. Update approximate posterior of parameters in noise component γt by Equation (20).
4. Update t = t + 1.
end While
Step 4: Noise component E by E = F − UV t. Decompose E into K components by Equation (21),
and reconstruct noise components into the corresponding image sequences by method in Section 2.1.
Step 5: Select the true target images by Equation (22).
Step 6: Calculate the original MFD map of the target images by Equations (23) and (24).
Step 7: Obtain the separated target images by using both MFD maple and adaptive threshold, which can be
computed by Equation (27).
Output: Separated target image sequence.

3. Experiments

To validate the effectiveness of the proposed approach, extensive experiments are performed on
simulated and real infrared image sequences in this section.

3.1. Metrics and Comparative Methods

In this paper, we use the receiver operating characteristic (ROC) to show the relationship between
the detection probability Pd and false alarm rate Fa, and they are described as below [22,25–28,32]:

Pd =
number of true detections
number of actual targets

(29)

Fa =
number of false detections

number of images
(30)

In addition, the local signal-to-noise ratio gain (LSNRG), background suppression factor (BSF) ,
signal to clutter ratio gain (SCRG) and contrast gain (CG) metrics are also used in our work, and the
detailed definitions can be found in [28,32]. We also introduce a local background region for computing
the LSNRG and SCRG [22], which is displayed in Figure 4. The width of neighboring region d is set as
20 here.

Figure 4. The neighboring background region.
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Nonetheless, the accuracy of the low-rank background estimation is also an important metric,
since less estimation error means better preservation of strong edges in the background component.
Thus, we use another metric, namely accuracy of background recovery (ABR), which is defined as:

ABR =
‖Bout‖F
‖Bin‖F

(31)

where Bin and Bout are the background before and after processing.
The five baseline methods for comparison including two classical filtering methods,

i.e., top-hat [13] and max-median filtering [12], and three low-rank matrix analysis methods IPI [22]
and RIPT [28] (using spatial information) and the MRF-MoG [32] (using spatio-temporal information
and assuming i.i.d. MoG noise) method. Table 1 gives the detailed parameter settings, where n1, n2, n3

denotes the dimensions of the infrared patch tensor [28].

Table 1. Parameter setting of methods.

Methods Acronyms Parameter Settings

max-median filter max-median Support size: 5 × 5
top-hat method top-hat Structure shape: Square, structure size: 3 × 3

Infrared Patch-Image Mode IPI
Patch size: 50 × 50, sliding step: 10, λ = L√

min(n1,n2,n3)
,

L = 1, ε = 1e − 7

Reweighted Infrared
Patch-Tensor Model RIPT

Patch size: 50 × 50, sliding step: 10, λ = L√
min(n1,n2,n3)

,

L = 1, h = 10, ε = 1e − 7
Mixture of Gaussians with
Markov random field MoG with MRF Noise component number: K = 3
Mixture of Non-i.i.d.
Gaussians with Modified
Flux Density NMoG with MFD Noise component number: K = 3

3.2. Simulated and Real Datasets

The noise of real infrared images usually includes five typical types: Gaussian noise, Poisson
noise, impulse noise, dead pixels or lines, and salt and pepper noise. To validate the effectiveness of
the proposed approach in complex noisy situations, five consecutive real infrared image sequences
are used as original images to add the mixture of the above five types of noises, and these original
images are approximately noise-free. Additive white Gaussian noise with two SNR value are added to
each frame of five sequences, and the SNR are in the range of [10, 15] dB and [15, 20] dB, respectively.
The location of pixels corrupted by different noises are chosen randomly. We choose forty frames of
Sequences 1–4 to add with various types of noise and different intensity. Finally, we add the mixture of
noise to each frame in sequence 5. The details are described in Table 2, and their representative frames
are displayed in the first column of Figure 9.
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Table 2. Characteristics of noisy infrared sequences.

Sequence
Number

of Frames

Image
Resolution

(pixels)

Noise
Characteristics

Background
Characteristics

SCR
______
SCR

1 135 220 × 140 Gaussian +
Deadline Noise Sea-Sky Clutters 0.25∼10.11 3.49

2 108 280 × 228 Gaussian + Salt
and Pepper Noise

Heavy cloud-sky
clutters 0.13∼8.24 2.71

3 114 250 × 200 Gaussian +
Poisson Noise

Heavy cloud-sky
clutters 0.11∼3.30 1.33

4 123 281 × 240 Gaussian +
Impulse Noise

Heavy cloud-sky
clutters 0.02∼4.32 1.90

5 102 200 × 150 Mixture Noise Heavy cloud-sky
clutters 0.05∼10.24 3.09

SCR is defined as follows [40]:

SCR =
|μt − μb|

σb
(32)

where μt is the average pixel value of the target region, μb and σb denote the average pixel value and
the standard deviation of the neighborhood region. Based on definition of SCR, the average SCR value
of targets is used to characterize the noisy sequence, which is defined as follows [22]:

_____
SCR =

1
N

N

∑
i=1

SCRi (33)

where N denotes the number of targets and SCRi denotes ith target.
Then we also carry out comparison experiments with three real infrared image sequences

contaminated by heavy noise.

3.3. Effect of Component Number

Here, we vary K from 2 to 7 for analyzing the influence of noise component parameter K on the
performance of the proposed model. For quantitative analysis, the experiments have fixed false-alarm
rates (Fa) by changing the segmentation thresholds on Sequences 1–5, which are given in Table 3. The
bold format number indicates the highest score. Besides, we also display the ROC curves in Figure 5.
We can observe from the result that there is no significant difference in performance when K is larger
than 2. From Figure 5a,d, it can be seen that Fa of K = 2 are higher than that of other K values, this
is because the target component might contain the sparse noise, which could not be wiped out by
the threshold. However, it is also improper to set K too large. From Figure 5a,c–e, the probability of
detection is decreasing as K becoming larger when K ≥ 4 due to the true targets might lose in the
separated target component. In addition, considering the computation complexity is increasing with
larger K, K is set as 3 in experiments.

Table 3. The detection performance of the proposed method with different K values.

Metric K Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Fa Fa = 0.01/image Fa = 0.1/image Fa = 0.5/image Fa = 2/image Fa = 0.25/image

Pd

2 0.98 0.90 0.90 0.90 0.85
3 1.00 0.90 0.94 0.93 0.87
4 0.96 0.90 0.87 0.85 0.86
5 0.96 0.90 0.86 0.84 0.80
6 0.96 0.89 0.84 0.84 0.81
7 0.96 0.89 0.85 0.82 0.80
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Figure 5. The receiver operating characteristic (ROC) curves of different values for the parameter K on
Sequences 1–5.

3.4. Effect of MFD

To demonstrate the superiority of the MFD method over other methods, we perform comparative
experiments on a representative image of simulated Sequence 5, including the MRF [32] and the
ablated version (NMoG without MFD). From Figure 6, we can observe that the MFD method can
effectively wipe out the bright noise, while the other two methods lose the true target and have many
residual noise pixels, and these residuals could cause a high false alarm ratio.
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(a) Original image (b) Noisy image (c) NMoG with MFD

(d) NMoG without MFD (e) MoG with MRF

Figure 6. The results of different methods on a representative image of Sequence 5. (a–e) are the
original image, the noisy image, the results of the NMoG (non-independent and identical distribution
(i.i.d.) mixture of Gaussians (MoG)) with MFD, NMoG without MFD and MoG with Markov random
field (MRF), respectively. The red rectangles denote the targets and the green ellipses are representative
examples of noise.

3.5. Performance of Multiple Targets Scene

Considering the number of targets may change in different scenes, such as antimissile systems, we
test the effectiveness of the proposed method in multi-target scenarios (the number of the targets is 3).
The method of embedding a synthetic target into the images can be found in [22]. The representative
images and the corresponding results are displayed in the first row and second row of Figure 7. All
the targets are detected successfully by the proposed method.

(a) (b) (c) (d) (e)

Figure 7. Multiple target scenes. The first and second row of (a–e) are five original images and
corresponding results processed by the proposed method, respectively.

3.6. Comparisons to Baseline Methods

3.6.1. Experiments on Simulated Data

In this experiment, we focus on analyzing and comparing the performance of different approaches
on real infrared images with synthetic noise. To illustrate the difference between the original
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images and noisy images, we display the gray histograms of five representative frames in Figure 8.
The representative images are chosen from one image of the corresponding 40 noisy images of
Sequences 1–4 and from one image of Sequence 5 randomly. It can be observed from Figure 8 that the
distributions of original and noisy images are quite different. Figure 9 shows the corresponding target
images of different approaches. We can observe that both max-median filter and top-hat filter can not
suppress the noise pixels clearly, and these residuals would increase Fa. Besides, top-hat filter loses the
target in Sequences 2 and 5. The performances of both max-median filter and top-hat filter are limited
by the filtering size required to be fixed as an input parameter without any knowledge of the target
size. Their performances degrade heavily when the filter size deviates from the target size.

From the comparison between the results of filtering based approaches and low-rank based
approaches, we conclude that the latter can achieve better performance than the former ones. All the
targets can be detected by IPI method, but many noise pixels are also retained due to the deficiency
effects [28], especially for Sequences 2, 4 and 5. This phenomenon demonstrate that the IPI method is
quite sensitive to salt and pepper noise and impulse noise. The RIPT approach has better background
suppression ability than IPI approach, but we can find that it is also sensitive to salt and pepper noise
from the corresponding results of Sequences 2 and 5. Moreover, the RIPT method fails in Sequence 3.
MoG-MRF only detects the true targets of Sequence 1 and 4, the unsatisfying performance of MoG-MRF
is because the i.i.d. MoG assumption is not suitable to the case when the noise distribution between
different frames is nonidentical. Besides, the segmentation performance of MRF would degrade when
the noise pixel is adjacent to true targets in complex noisy cases. From the last column of Figure 9, it
can be observed that all targets are detected correctly by the proposed model while noise pixels and
clutters being suppressed completely.
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Figure 8. The histograms of the representative frames in original and noisy Sequences 1–5. The first
row of (a–e) are the histograms of five original infrared images for experiments. The second row of
(a–e) are corresponding histograms of noisy infrared images.
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(a) Noisy image (b) max-median (c) top-hat (d) IPI (e) RIPT (f) MoG-MRF (g) NMoG-MFD

Figure 9. Separated target images of the representative frames in Sequences 1–5 by different methods.
Row 1: 31-st frame of Sequence 1. Row 2: 3-rd frame of Sequence 2. Row 3: 41-st frame of Sequence 3.
Row 4: 4-th frame of Sequence 4.Row 5: 22-nd frame of Sequence 5. (a) columns are the noisy images,
respectively. (b–g) columns are the separated target images of (b) MaxMedian, (c) TopHat, (d) IPI,
(e) RIPT (f) MoG with MRF and (g) NMoG with MFD methods.

In addition, we also use five metrics to analyze the performance of different approaches
quantitatively. The LSNRG, BSF and SCRG values of different approaches for the representative images
are given in Tables 4 and 5. The Inf means that the standard deviation of neighboring background is
zero, and the high scores in the above three metrics only reflect the good suppression performance
in a local region. Note that the values of low-rank based methods in the above three metrics are
usually Inf, as the results of RIPT method, MoG-MRF method and the proposed method on Sequences
1 and 4. Considering the above phenomenon, the average CG and ABR values of all images are also
computed for further comparison [32], as listed in Table 6. For quantitative analysis, the experiments
have fixed false-alarm rates (Fa) by changing the segmentation thresholds on Sequences 1–5, which are
given in Table 7. In conclusion, the proposed approach achieves the best performance. In conclusion,
the proposed approach achieves the best performance.

Moreover, we show the ROC curves of different approaches in Figure 10. From the result, we can
see that the Fa of max-median on Sequences 2 and 5 are very high. The performance of the proposed
approach is superior to other approaches on Sequences 1–3 and 5, which achieves the highest Pd with
very low Fa, this is because the noise pixels and background residuals are suppressed thoroughly by
the proposed method. As for Sequence 4, IPI achieves higher Pd than that of the proposed method
when Fa ≤ 1.1. However, the proposed method can achieve higher probability of detection when
Fa > 1.1. The ROC curves of IPI and RIPT on Sequences 2 and 5 demonstrate that they are sensitive
to salt and pepper noise, and the performance of MoG with MRF method is not satisfying due to the
identical noise distribution assumption fails in complex noise case.
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Table 4. Quantitative evaluation of different methods for the representative images of Sequences 1–3.

31st Frame of Sequence 1 3rd Frame of Sequence 2 41st Frame of Sequence 3

Method LSNRG BSF SCRG LSNRG BSF SCRG LSNRG BSF SCRG

Max-Meidan 1.6209 14.8329 2.7474 0.4829 7.0193 3.6076 0.4640 14.4141 0.0792
top-hat Inf Inf Inf Miss Miss Miss 1.0311 2.3991 0.2823

IPI 4.1182 1.5731 6.207 0.976 1.5658 0.6981 0.9828 1.3869 0.2679
RIPT Inf Inf Inf 0.6207 6.4585 13.3034 0 6.0941 32.9413

MoG-MRF Inf Inf Inf Miss Miss Miss 0 6.8651 53.2848
NMoG-MFD Inf Inf Inf Inf Inf Inf Inf Inf Inf

Table 5. Quantitative evaluation of different methods for the representative images of Sequences 4 and 5.

4th Frame of Sequence 4 22nd Frame of Sequence 5

Method LSNRG BSF SCRG LSNRG BSF SCRG

Max-Meidan 1.2486 9.5636 3.2359 0.2618 2.4965 0.366
top-hat Inf Inf Inf Miss Miss Miss

IPI 2.1088 3.8868 4.8508 0.9329 1.3979 0.4839
RIPT Inf Inf Inf 0.6674 2.901 3.6575

MoG-MRF Inf Inf Inf Miss Miss Miss
NMoG-MFD Inf Inf Inf Inf Inf Inf

Table 6. The evaluation results of average contrast gain (CG) and accuracy of background recovery
(ABR) values of different methods for all image sequences.

Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Method CG ABR CG ABR CG ABR CG ABR CG ABR

Max-Meidan 2.3312 0.9221 1.2661 0.9457 2.4625 0.9519 1.7005 0.868 1.4464 0.8981
top-hat 3.8321 0.9066 5.0661 0.9286 5.6079 0.9398 4.1474 0.9289 3.1628 0.9192

IPI 2.6185 0.8601 1.5188 0.8374 1.7097 0.9067 2.5819 0.9447 1.8794 0.8861
RIPT 3.1073 0.9179 3.7042 0.9303 6.1015 0.9423 3.0008 0.9321 2.1123 0.8993

MoG-MRF 4.7533 0.9327 5.2441 0.9700 6.3158 0.9508 4.0663 0.9584 3.8108 0.9435
NMoG-MFD 4.7798 0.9801 5.6895 0.9841 8.1627 0.9837 5.1757 0.9849 3.8432 0.9825

Table 7. The detection performance of different methods on Sequences 1–5.

Metric Methods Sequence 1 Sequence 2 Sequence 3 Sequence 4 Sequence 5

Fa Fa = 1/image Fa = 15/image Fa = 2.5/image Fa = 2/image Fa = 11/image

Pd

max-median 0.84 0 0.49 0.30 0
Top-hat 0.46 0.28 0.41 0.22 0.26

IPI 0.91 0.05 0.93 0.90 0.27
RIPT 0.91 0.17 0.93 0.91 0.54

MoG-MRF 0.90 0.52 0.88 0.74 0.75
NMoG-MFD 1.00 0.90 0.94 0.93 0.87
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(e) Sequence 5

Figure 10. The ROC curves of different methods on Sequences 1–5. (a) result of Sequence 1, (b) result
of Sequence 2, (c) result of Sequence 3, (d) result of Sequence 4, (e) result of Sequence 5.

3.6.2. Experiments on Real Data

We also carry out additional experiments on three real and noisy infrared image sequences, namely,
Sequences 6–8. Briefly, we use the most important metric, i.e., the ROC curves of 6 tested method on
real image sequences, to compare their performance, which are shown in Figure 11. In addition, Table 8
shows the quantitative analysis, and the proposed approach achieves the highest Pd with the same Fa.
The results demonstrate the superiority of the proposed approach on target detection, background
clutter and noise suppression ability over other competitive methods, because the NMoG model and
MFD maple improve the robustness of the proposed approach to different kinds of noise.

Table 8. The detection performance of different methods on Sequences 6–8.

Metric Methods Sequence 6 Sequence 7 Sequence 8

Fa Fa = 2/image Fa = 2/image Fa = 2/image

Pd

max-median 0 0 0
Top-hat 0.11 0.14 0.51

IPI 0.86 0.33 0.04
RIPT 0.34 0.28 0.32

MoG-MRF 0.63 0.14 0.85
NMoG-MFD 0.89 0.90 1.00
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Figure 11. ROC curves of different methods on real noisy Sequences 6–8. (a) result of Sequence 6, (b)
result of Sequence 7, (c) result of Sequence 8.

3.7. Complexity Analysis

Here, we analyze and compare the complexity of different approaches, which are listed in
Table 9. (m, n) and L denote the image size and the structure element, respectively. (n1, n2, n3)

represent the dimensions of the tensor in RIPT model, and the details can be found in [30]. As for
the proposed method, let F ∈ RN×P, we firstly need to infer the parameters in NMoG model, and its
complexity is O

(
(N+P) R3+KNPR

)
in each iteration. For computing MFD maple of an image

with size of m × n, the whole computational cost is O
(

mn(2s + 1)2
)

. For target segmentation,
the cost of this step is O (mn). Thus, the entire computation cost of the proposed method is
O
(

t
(
(N+P) R3+kNPR

)
+ mn(2s + 1)2 + mn

)
, where t is the iteration number. The MoG with MRF

method uses median operation to reconstruct image sequences, and its complexity is O (mnw), where
w denotes the number of overlapped pixels during the transformation from the spatio-temporal patch
image to the reconstruction image [32]. In addition, we compare the computational time of different
approaches on whole Sequence 6. It can be observed from the result that MOG with MRF method is
the slowest while the top-hat filter is the fastest. The processing time of the RIPT approach is shorter
than the IPI approach and max-median filter. The proposed approach is slower than RIPT method and
two filtering methods, but the superiority of its performance over other baseline methods can make up
for this deficiency.

Table 9. Algorithm complexity and computational time comparisons of different methods.

Method Complexity Times(s)

max-median O(mnL2) 392.997661
top-hat O(mnL2logL) 2.639046

IPI O(mn2) 682.764355
RIPT O (tn1n2n3 (n1n2 + n2n3 + n1n3)) 224.866089

MoG-MRF O
(
t
(
(N+P) R3+kNPR

)
+ mn(w + 1)

)
3002.7214

NMoG-MFD O
(

t
(
(N+P) R3+kNPR

)
+ mn(2s + 1)2 + mn

)
482.9220

4. Conclusions

In this paper, we propose a novel infrared small and faint target detection approach based on
NMoG and MFD models for complex and noisy scenarios. The proposed model can finely accord with
the noise characteristics embeded in real infrared image sequences by using the NMoG model. We
model the recovery of a low-rank background component and noise component as an LRMF model,
which can be solved by the VB algorithm. Finally, the target can be extracted correctly from the noise
by using MFD maple. Experimental results show that the proposed approach performs better than
other competitive approaches, since it is more robust to complex noisy scenarios in real application.
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Abstract: Thermal infrared (TIR) target tracking is a challenging task as it entails learning an effective
model to identify the target in the situation of poor target visibility and clutter background. The sparse
representation, as a typical appearance modeling approach, has been successfully exploited in the
TIR target tracking. However, the discriminative information of the target and its surrounding
background is usually neglected in the sparse coding process. To address this issue, we propose a
mask sparse representation (MaskSR) model ,which combines sparse coding together with high-level
semantic features for TIR target tracking. We first obtain the pixel-wise labeling results of the target
and its surrounding background in the last frame, and then use such results to train target-specific
deep networks using a supervised manner. According to the output features of the deep networks,
the high-level pixel-wise discriminative map of the target area is obtained. We introduce the binarized
discriminative map as a mask template to the sparse representation and develop a novel algorithm to
collaboratively represent the reliable target part and unreliable target part partitioned with the mask
template, which explicitly indicates different discriminant capabilities by label 1 and 0. The proposed
MaskSR model controls the superiority of the reliable target part in the reconstruction process via a
weighted scheme. We solve this multi-parameter constrained problem by a customized alternating
direction method of multipliers (ADMM) method. This model is applied to achieve TIR target
tracking in the particle filter framework. To improve the sampling effectiveness and decrease the
computation cost at the same time, a discriminative particle selection strategy based on kernelized
correlation filter is proposed to replace the previous random sampling for searching useful candidates.
Our proposed tracking method was tested on the VOT-TIR2016 benchmark. The experiment results
show that the proposed method has a significant superiority compared with various state-of-the-art
methods in TIR target tracking.

Keywords: thermal infrared target tracking; semantic features; mask sparse representation; particle
filter framework; ADMM

1. Introduction

With the improvement of the imaging quality and resolution of thermal cameras, thermal infrared
(TIR) target tracking has begun to attract many researchers’ attention in recent years. Compared with
visual target tracking, TIR target tracking is capable of working in total darkness and is less susceptible
to changes in external environment, such as lighting and shadows. Thus, it is important for both
military and civil use [1,2]. However, there are some adverse factors that could influence the accuracy
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and robustness of the TIR target tracking. Firstly, the TIR images have the characteristics of low-contrast,
low signal-to-noise ratio, low signal-to-clutter ratio and lack of color information [3,4], which cause a
lot of difficulty in distinguishing the moving target from the background. Secondly, the deformation
and scale change of the moving target also bring great challenges to the tracking task.

To handle these difficulties, several TIR tracking methods have been proposed, which can be
categorized into discriminative tracking methods [5–11] and generative tracking methods [12–18].
Discriminative approaches formulate tracking as a classification task, which aims to find the target area
whose features are most discriminative to the background. By comparison, generative approaches focus
more on building an appearance model to describe the target. Accordingly, the final tracking result is
determined by finding the candidate area with the maximum likelihood score. Sparse representation
has drawn much attention in the generative tracking branch due to its good adaption to target
appearance changes [13,14,17]. In the sparse representation-based method, the target templates are
linearly combined to describe candidate images, while the negative templates are used to handle target
partial occlusion, deformation, etc.

First, sparse representation-based tracking methods adopt a global model to describe the target,
which is susceptible to target local appearance changes [17,19,20]. Afterwards, some local sparse
models [21–23] are proposed successively, in which each target is divided into several rectangular
image blocks by a sliding window. These local blocks are treated equally in the sparse coding process,
regardless of the diverse discriminant capabilities of different object local parts. However, as shown in
Figure 1, the human body wrapped by the yellow line is much easier to distinguish compared with the
remaining area in the red bounding box, which is also annotated as the tracking target but actually
belongs to the background. Current local sparse representation-based trackers neglect this problem
and are prone to tracking drift when there are too many non-distinguishable pixels in some of the local
patches.

⊗ +

⊗ +

Figure 1. Comparison of the target partition using sliding window and semantic mask template.
The upper part of the illustration shows the target partition approach using sliding window, and the
lower part shows the target partition approach using semantic mask template: (a) tracking target area;
(b) sliding window; (c) target local parts; (d) tracking target area; (e) semantic mask template; (f) reliable
target partition; and (g) unreliable target partition.

This observation motivates an approach that can adaptively extract distinguishable/reliable
pixels from the whole target area, and then use the reliable target part to refine the reconstruction
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output of the unreliable target part. Considering the benefit of strong discriminative ability of the deep
convolutional neural networks (DCNN) [7,8,10,11,24], we propose a supervised learning manner to
extract high-level semantic features of the target area. Based on the convolutional neural networks
pre-trained for image classification, DCNN can learn information of salient objects at any position of
the input image. In [25], a soft-mask module is added to an optical flow estimation network, which
aims to mask out parts with consistency motions. The mask filters are trained by fixing the pre-trained
weights. In this paper, we propose to add a channel selection layer after convolutional layers, which is
more specific to the tracking task. With the pixel-wise labeling results of the target and its surrounding
background in the last frame, the output channels are sorted and filtered to obtain target-specific
features from DCNN.

The binarized semantic features are introduced as the mask template to extract reliable pixels
with powerful discriminative capability, as shown in the lower part of Figure 1. In the proposed
MaskSR model, the reliable target part (with label 1) and the unreliable target part (with label 0)
correspond to their respective dictionary sets. For each candidate image, the MaskSR model enables
representing its two local parts collaboratively by adding l1 regularization to the difference between the
sparse coefficients of the reliable part and unreliable part, aiming to preserve the category consistency
of the same candidate area. On the other hand, the fidelity term of the reliable target part is assigned
to a larger weight to ensure its superiority to the unreliable part in sparse coding. Therefore, our
model fully considers the reliability of different target parts in distinguishing the target from the
background. The multi-parameter problem is solved by a customized alternating direction method of
multipliers (ADMM). The proposed mask sparse representation model is applied to achieve TIR object
tracking under the particle filter framework. In the conventional particle filter method, the target
motion parameters should be set in advance to perform Gaussian random sampling on the next frame.
Moreover, to ensure efficient calculation, the number of particles cannot be too large, which makes
it uncertain whether the scattered random particles cover the real target region. To solve the above
two problems, we improve the random particle sampling strategy to discriminative particle selection,
which is achieved by the kernel correlation filter method. Experiments on VOT-TIR2016 benchmark
show that the developed method is effective for TIR object tracking.

In summary, the contributions of this paper include the following three points:

• To improve the ability of distinguishing the target from the clutter background, we propose a mask
sparse representation method for target appearance modeling. In this model, the distinguishable
and reliable pixels of the target are identified and are utilized to refine the reconstruction output
of the unreliable target part.

• With the pixel-wise labeling results of the target and its surrounding background in the last
frame, we develop a supervised manner to learn a high-level pixel-wise discriminative map of
the target area. The binarized discrimination map is introduced in the MaskSR model to indicate
discrimination capabilities of different object parts.

• The proposed MaskSR model is introduced in an improved particle filter framework to achieve
TIR target tracking. We achieved state-of-the-art performance on VOT-TIR2016 benchmark,
in terms of both robustness and accuracy evaluations.

The rest of this paper is organized as follows. In Section 2, some works that are closely related to
ours are introduced. In Section 3, we present the details of our tracking framework. Section 4 shows
the experiment results of the proposed tracker and the comparison results to other state-of-the-art
tracking methods. Section 5 is the conclusion of the whole paper.

2. Related Work

Our work is focus on the formulation of the target appearance model and candidate
searching strategy. Thus, we first review some TIR tracking methods based on deep learning and
sparse representation. Then, the development of particle filter framework for object tracking is
discussed afterwards.
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2.1. Deep Learning-Based TIR Tracking Method

Deep convolutional neural networks (CNN) have made great progress in the visual classification
task. However, there are some limitations for the usage of CNN in the TIR object tracking, which is
mainly caused by the lack of labeled infrared image data and the unfitness of the location estimation
task compared with label prediction. Many methods have been developed to address these two
problems recently. In [11], an image-to-image transition model is employed to generate synthetic
TIR data, on which they can train end-to-end optimal features for TIR tracking. By comparison,
most existing methods directly adopt a pre-trained network on visual image set and transfer it to the
TIR data. For example, in [8,26], a pre-trained Siamese network is utilized as a similarity function
to evaluate the similarity between the initial target and candidates. To improve the accuracy of
location estimation, some spatial related methods have been proposed [7,8,10] recently. The presented
spatial-aware Siamese network in [8] combines spatial and semantic features of TIR object together to
enhance the discriminative ability of the coalesced hierarchical feature. In [7], features are extracted
from multiple convolutional layers and are used to construct multiple weak trackers to give response
maps of the target’s location. The evaluation result in [27] has shown that the learned infrared features
perform favorably against the hand-crafted features (HOG and Gist) in the correlation filter-based
tracking framework.

2.2. Sparse Representation-Based TIR Tracking Method

From the presence of the l1 tracker, the sparse representation model has been widely applied in
object tracking, including the field of TIR object tracking. In [28], a discriminative sparse representation
model is presented for infrared dim moving target tracking, in which the dictionary is composed of a
target dictionary and a background dictionary. A sparsity-based discriminative classifier is proposed
in [9] to evaluate the confidence of different target templates, of which the best template is used for
calculating the convolution score of the candidate images. To explore the underlying relationship of
multiple candidates, a low-rank sparse learning method is proposed in [13] that describes corruptions
adaptively by finding the maximum-likelihood estimation solution of the residuals. Later, a multi-task
Laplacian sparse representation is proposed in [1] to refine the sparse coefficients by deploying
the similarity of each candidate pair. Due to the low-rank property of the infrared background,
some decomposition-based methods have been proposed for TIR object tracking. A block-wise
sparse representation-based tracker is proposed in [29], in which the infrared image is divided into
overlapped blocks. These blocks are further decomposed into low-rank target components and sparse
occlusion components with adaptive weighting parameters of different parts. A total variation term is
further added to constrain the occlusion matrix in [18] to prevent the noise pixel from being separated
into the occlusion term. Apart from the pure TIR object tracking, some methods integrate the RGB
information of the corresponding visual data with the thermal information to achieve RGB-T object
tracking [16,30–33]. In these methods, the joint sparse representation model is employed to ensure
multiple modalities in appearance representation.

2.3. Particle Filter for Tracking

Particle filter framework models object tracking as a state estimation process, which is
implemented by a Bayesian inference filter with Monte Carlo simulation. The dynamics between
the states in two adjacent frames is usually modeled by a Brownian motion. In most tracking
methods [19,28,34], the state parameters are predicted independently by a Gaussian distribution.
However, in these methods, many particles are needed to cover the states of the real target. In [15,35,36],
the result of the saliency extraction is utilized as a prior knowledge of the transition probability model to
limit the particle sampling process, which can improve the efficiency of particle sampling significantly.
In [37], an improved particle filter framework is proposed to enhance the mean state estimation and
resampling procedures, in which the number of high-weighted particles are determined adaptively by
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applying the k-means clustering over all particles’ weights. In [38], a multi-task correlation particle
filter (MCPF) is proposed for object tracking, which can cover object state space well with a few
particles. In this method, each particle corresponds to an image region enclosed by a bounding box
instead of a single target state. The above-mentioned methods employ the particle filter approach
to estimate the target space with affine space. In [39], Li et al. directly used it to infer whether the
reliable patches are on the tracked object. In contrast to the traditional particle filters, they do not need
to remove and resample particles at each frame. Instead, the posterior of each reliable patch can be
employed to estimate the scale and position of the tracked target through a Hong Voting-like scheme.

3. Proposed Approach

In this section, we first introduce the method of building the target appearance model for
TIR images, which is composed of two individual components, the target mask generation part
in Section 3.1 and the mask sparse representation part in Sections 3.2 and 3.3. Then, the proposed
appearance model is applied to an improved particle filter framework with discriminative particle
selection to achieve TIR object tracking, which is illustrated in Section 3.4. The algorithm overview
and update strategy are shown in Section 3.5.

Besides, we use a uniform rule to define the notations in the following context. Capital letters
are used to define matrices, bold lowercase letters are used to define vectors, and ordinary lowercase
letters are used to define scalars.

3.1. Target Mask Generation

The network structure of the VGG-Net19 has received considerable attention in many CNN based
trackers [7,24,40]. In this work, we adopt the popular VGG-Net19 pre-trained on the ImageNet dataset
and transfer the first four convolutional layers of it to extract features of the TIR images. To obtain the
high-level semantic attributes specific to the target area, we propose to add a channel selection layer
after the layer of conv 4-4 to account for the channel entry with target area enhancement. This process
is shown in Figure 2.

⊗

+

Figure 2. Illustration of generating binary mask template of the target based on CNN features.

In the online training stage, our goal is to use the given target and background classification labels
to obtain high-level feature channels specific to the target area. The feature maps are firstly resized
to the same size as the input image. Then, we use the local contrast value to evaluate the saliency
of the target area in the feature maps. Denote Tx,y ∈ Rw×h as the target area, where (x, y) and (w, h)
represent the target center position and target size, respectively, which are calibrated in the last frame.
Its surrounding background is denoted as Bx,y ∈ Rw(1+s)×h(1+s) , which is centered on (x, y) and is s
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times larger than the target size. The average gray values of the target and its surrounding background
are defined as follows:

tx,y =
1

nT
∑ Tx,y (1)

bx,y =
1

nB

(
∑ Bx,y − ∑ Tx,y

)
(2)

where nT and nB denote the target pixel number and background pixel number, respectively. The
contrast value cj on the jth channel is defined as follows:

cj =
tj
x,y

bj
x,y

(3)

where tj
x,y and bj

x,y are the target area and background area extracted from the jth channel. After the
local contrast values of all L channels are sorted, the indicating values of the first few channels are set to
1 and others are set to 0, which forms the channel selection layer. In this way, channels corresponding
to larger local contrast are output as target-specific feature maps, while other entries are removed.
Assuming that each feature map models a single part or multiple parts of the target, we adopt a maxout
operation to extract useful target information among the output channels. The obtained feature map is
further binarized to form a binary mask template of the target m ∈ Rd, where d is the dimension of
the target.

3.2. Mask Sparse Representation Model

By adding the binary mask template m to the input infrared image, the tracking object is
divided into two partitions. Pixels corresponding to label 1 definitely belong to the reliable
target part, while pixels corresponding to label 0 are denoted as the unreliable target part. Let
Y = {y1, y2, . . . yn} ∈ Rd×n denote the candidate target set, where d and n represent the dimension
of the target and the number of candidates, respectively. Let D =

[
Dpos, Dneg

]
denote the

dictionary base, which is composed of a positive dictionary set Dpos =
{

d1, d2, . . . dp
}

and a
negative dictionary set Dneg =

{
dp+1, dp+2, . . . dp+q

}
. Thus, the reliable candidate partition is

denoted as Tr = {m ⊗ y1, m ⊗ y2, . . . m ⊗ yn}, the unreliable candidate partition is denoted as
Tr′ = {(1 − m)⊗ y1, (1 − m)⊗ y2, . . . (1 − m)⊗ yn}, the reliable dictionary partition is denoted
as Dr =

{
m ⊗ d1, m ⊗ d2, . . . m ⊗ dp+q

}
, and the unreliable dictionary partition is denoted as

Dr′ =
{
(1 − m)⊗ d1, (1 − m)⊗ d2, . . . (1 − m)⊗ dp+q

}
. We use the reliable dictionary partition as

the basis to reconstruct the reliable candidate partition. Meanwhile, the unreliable dictionary partition
is utilized as the basis to reconstruct the unreliable candidate partition. The mask sparse representation
model is shown as follows:

arg min
xr ,xr′

w
2
‖Drxr − yr‖2

2 +
1
2
‖Dr′xr′ − yr′ ‖2

2 + λ1‖xr‖1 + λ2‖xr′ ‖1 + λ3‖xr − xr′ ‖1 (4)

where xr and xr′ are the sparse coefficient vectors corresponding to representation of the reliable target
part and the unreliable target part, respectively. w is the reliable weight, which is a constant larger
than 1. λ1, λ2 and λ3 are balance parameters.

The first and second terms of Equation (4) represent the reconstruction error of the reliable target
part and the unreliable target part, respectively. According to Section 3.1, the reliable part is the target
area corresponding to more salient semantic features, which means this part has better discriminative
ability on distinguishing the target from its surrounding background compared with the unreliable part.
Therefore, a larger weight is assigned to the first penalty function to ensure a higher reconstruction
accuracy of the reliable target part. When w is set to 1, these two terms can be combined together, and
the mask sparse representation model is equal to the traditional sparse representation model.
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For the representation of a single candidate, the obtained non-zero coefficients of the reliable part
and the unreliable part may correspond to different dictionary subsets, which will cause ambiguity
on deciding which category the candidate area belongs to. To solve this problem, a constraint term
‖xr − xr′ ‖1 is added to the mask sparse representation model. The difference between the coefficients
xr and xr′ is induced to be sparse by an l1 norm, which aims to encourage one candidate target to share
the same template basis d across different target partitions.

3.3. Optimization Approach

The objective function defined in Equation (4) is a convex problem which includes two variables xr

and xr′ to be solved. We adopt the alternating direction method of multipliers (ADMM) to optimize one
variable by fixing another one. More in detail, we first solve over x(k+1)

r given
(

x(k)r′ , z(k)1 , z(k)3 , u(k)
1 , u(k)

3

)
,

and then for x(k+1)
r′ given

(
x(k+1)

r , z(k)2 , z(k)3 , u(k)
2 , u(k)

3

)
. The algorithm flow of ADMM is summarized

in Algorithm 1. See Appendix A for formula derivation.

Algorithm 1 Optimization approach for solving the proposed mask sparse representation model via
ADMM

Input: dictionary Dr and Dr′ , candidate yr and yr′ , reliable weight w, regularized parameters λ1, λ2

and λ3, penalty parameters ρ1, ρ2 and ρ3, relaxation parameters α, iteration number MAX_ITER
Initialize: x(k)r′ = z(k)1 = z(k)2 = z(k)3 = u(k)

1 = u(k)
2 = u(k)

3 = 0 ∈ R(p+q)×1

while not converged do

Step 1: update variable x(k+1)
r : x(k+1)

r = arg min
xr

Lρ1,ρ3

(
xr; x(k)r′ , z(k)1 , z(k)3 , u(k)

1 , u(k)
3

)
Step 2: update variable x(k+1)

r′ : x(k+1)
r′ = arg min

xr′
Lρ2,ρ3

(
xr′ ; x(k+1)

r , z(k)2 , z(k)3 , u(k)
2 , u(k)

3

)
Step 3: update auxiliary variables z(k+1)

1 , z(k+1)
2 and z(k+1)

3 :

z(k+1)
1 = arg min

z1

Lρ1

(
z1; x(k+1)

r , u(k)
1

)
z(k+1)

2 = arg min
z2

Lρ2

(
z2; x(k+1)

r′ , u(k)
2

)
z(k+1)

3 = arg min
z3

Lρ3

(
z3; x(k+1)

r , x(k+1)
r′ , u(k)

3

)
Step 4: update dual variables u(k+1)

1 , u(k+1)
2 , u(k+1)

3 :

u(k+1)
1

/
ρ1 = u(k)

1

/
ρ1 +

(
x(k+1)

r − z(k+1)
1

)
u(k+1)

2

/
ρ2 = u(k)

2

/
ρ2 +

(
x(k+1)

r′ − z(k+1)
2

)
u(k+1)

3

/
ρ3 = u(k)

3

/
ρ3 +

(
x(k+1)

r − x(k+1)
r′ − z(k+1)

3

)
end while
Output: sparse coefficient vectors x(k+1)

r , x(k+1)
r′

3.4. Particle Filter Framework with Discriminative Particle Selection

In the particle filter-based tracking method, the posterior distribution of the target state Zt at time
t is approximated by a finite set of particles I1:t via the Bayesian inference:

p
(

Zt
∣∣∣I1:t

)
∝ p

(
It ∣∣Zt ) ∫ p

(
Zt
∣∣∣Zt−1

)
p
(

Zt−1
∣∣∣I1:t−1

)
dZt−1 (5)

where p
(
Zt
∣∣Zt−1 ) represents the state transition model and p

(
It
∣∣Zt ) is the observation model.

The optimal target state for time t is obtained from the maximal estimation of p
(
Zt
∣∣I1:t ). Thus, the

construction of these two models formulate the core problem of object tracking.
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In our tracking approach, the mask sparse representation method is employed as the observation
model, where reconstruction errors generated from two target partitions are adopted to calculate the
likelihood probability of candidate samples:

p
(

It ∣∣Zt ) = exp

(
−‖Dr (:, 1 : p) xr (1 : p)− yr‖2

2 + ‖Dr′ (:, 1 : p) xr′ (1 : p)− yr′ ‖2
2

σ2

)
(6)

From Equation (6), we can see that the efficiency of the likelihood estimation is determined by
the number of particles at time t. In the traditional particle filter framework, the state parameters of
Zt are generally denoted as (x, y, s, θ, α, φ), which represent displacement in x-axis, displacement in
y-axis, scale, rotation, aspect ratio and skew angle, respectively [19]. In the conventional particle filter
method, the state transition parameters between two frames are modeled by Gaussian distribution,
with every state parameter being treated independently with each other:

p
(

Zt
∣∣∣Zt−1

)
= N

(
Zt; Zt−1, Φ

)
(7)

where Φ =
(
σx, σy, σs, σθ , σα, σφ

)
represents the affine variance. To ensure that the real target state is

covered in the state transition process, many particles are needed, which will increase the computation
cost of solving the mask sparse model. The visualization of the random particle sampling modeled
by Gaussian distribution is shown in Figure 3a. To address this contradictory issue, we propose a
discriminative particle selection method to construct the state model more effectively.

150
60100

40
50 20

60
6040

40
20 20

Figure 3. Visualization of particle distribution: (a) 300 particles are sampled, which are modeled by the
Gaussian distribution; snf (b) 50 discriminative particles are drawn according to the peak values of the
response map obtained from the correlation filter.

We note that the output of the correlation filter [41] can provide a rough prediction of the existence
of the tracking object. On the other hand, the training of the correlation filter is very efficient, which
can achieve millisecond order of magnitude. As shown in Figure 3b, the positions of the peak values
appearing on the response map are selected as latent target states, to which the target areas correspond
are further modeled by the mask sparse representation method. In the simple scenario, there is a single
peak in the response map, which is the position of the target. In complex scenarios, multiple peaks
appear in the response map, as shown in Figure 3. These local peaks have potential discriminative
ability for the target and are selected to form the candidate set. After obtaining the placement state of
the target, a scale filter is applied to obtain the optimal target scale, the details of which are described
in [42].
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3.5. Algorithm Overview and Update Strategy

The algorithm flow of our proposed tracking approach is shown in Algorithm 2. The method of
obtaining the target mask has been described in Section 3.1. Detailed theory of the correlation filter and
the scale filter can be found in [41,42]. Steps 1–5 of the tracking implementation process are described
in Sections 3.2 and 3.3. In this subsection, we first introduce the details on how to construct and update
dictionary for target representation, and then present the update criteria for Steps 7–9.

Algorithm 2 The proposed approach for TIR object tracking

Input:

image sequence
{

f1, f2, . . . f f rame_end

}
target position in the first frame s1

target deep features in the first frame f eature1

Initialize:
construct object dictionary D
obtain target mask m
correlation filter
scale filter

for f = 2 to f rame_end do

1. generate discriminative particles with correlation filter
2. construct the mask sparse representation model according to Eq (4)
3. compute the likelihood value of each particle (candidate) by Eq (14)
4. obtain the optimal target position
5. compute the optimal scale factor by scale filter
6. update object dictionary D
7. update target mask m
8. update correlation filter
9. update scale filter

end for

Output: target states: s2 : s f rame_end

In this work, positive and negative dictionaries are constructed separately. The target state
in the first frame is initialized by the ground truth data. Firstly, we adopt the areas surrounding
the real target position as positive templates, and areas far away from the real target position as
negative templates. Then, the eigenbasis vectors extracted from the positive template set are employed
as the positive dictionary basis, which aims to preserve the information different observations have
in common. The negative templates are directly utilized as the negative dictionary basis. Both the
positive dictionary and the negative dictionary need to be updated in the tracking process to adapt to
target appearance changes, as well as scene variations. For the positive dictionary, the target templates
need to be updated frequently due to the inevitable appearance changes caused by target motion.
However, if we update the templates too frequently, wrong tracking results may be introduced into the
template set and cause tracking drift. Thus, we employ the cumulative probability-based method [21]
to update the earlier accurate tracking results at a slow pace and update the newly entrant templates
at a fast pace. The update probabilities for templates from older to newer ones are generated as:

Lp =

{
0,

1
2n − 1

,
3

2n − 1
, . . . 1

}
(8)
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The template to be replaced is determined by which interval the random number r ∈ [0, 1] lies in.
The new positive dictionary is formulated by adding p to the end of the old dictionary:

q = arg min
1
2

q

∥∥∥∥∥p −
[

U Dneg

] [ q
e

]∥∥∥∥∥
2

2

+ λ

∥∥∥∥∥
[

q
e

]∥∥∥∥∥
1

(9)

where U represents the eigenbasis vectors and p is the new observation. The new entrant q is the
target area removing noises and occlusion.

We propose a relatively strict criterion to update the negative dictionary with a slow pace to avoid
bringing the target into it. The likelihood probability of the optimal observation in the second frame
is denoted as a reference value con f re f . When the maximum likelihood probability in the current
frame exceeds th × con f re f , the current tracking result is regarded as a reliable new target. Then, the
background areas extracted from this frame are used to form the new negative dictionary. Otherwise,
the negative dictionary remains unchanged.

When the target result is considered to be reliable, the target mask, correlation filter and scale filter
are updated with a fixed learning rate. Equation (10) takes the update for target mask as an example.

m = (1 − γ)mold + γmnew (10)

4. Experiments

We first set the experiment environment in Section 4.1, including the parameters of our tracking
approach and the testing dataset. The evaluation metrics for method comparison are introduced in
Section 4.2. The parameter setting for optimization is discussed in Section 4.3. The quantitative and
qualitative comparisons of our tracker with other state-of-the-art methods are given in Sections 4.4
and 4.5, respectively.

4.1. Experiment Setup

The corresponding parameters of our tracker are given as follows. In the candidate searching stage,
we crop a searching area which is 1.5 times larger than the size of the target in the last frame.
The regularization parameter of the KCF tracker is set to 10−4. Fifty discriminative particles are
drawn according to the peak values of the correlation filter response map. In the mask sparse
representation stage, the infrared images are input into the VGG-Net19 pre-trained on the ImageNet
dataset to extract deep features. Ten channels are selected from the convolution layer conv 4-4 as the
output of target specific feature maps. The weight of the fidelity term for the reliable target part is set
to 1.5. The regularization parameters of the MaskSR model λ1, λ2 and λ3 are set to 0.01, 0.01 and 0.005,
respectively. In the optimization stage, the penalty parameters ρ1, ρ2 and ρ3 are set to 1. For the scale
searching, we use the same parameters as DSST method [42], which includes 17 scales with a scale factor
of 1.02. The learning rates of the correlation filter and scale filter are set to 0.01 and 0.1, respectively.
The update rate of the binary mask is set to 0.01. We conducted the simulation experiments of our
proposed method in Matlab 2017b combined with the Matconvnet toolbox. The proposed method ran
at 1.2 fps averagely on a laptop with an Intel i7-6700HQ CPU at 2.60 GHz and 16.0 GB RAM.

We carried out the comparison experiment on the VOT-TIR2016 benchmark. This dataset includes
25 TIR sequences, with the minimum length of 92 frames and the maximum length of 1420 frames.
The tracking objects include pedestrian, vehicle and animal with five challenging attributes annotated
on each frame: camera motion, dynamics change, motion change, occlusion and size change.

4.2. Evaluation Metrics

The benchmark for VOT-TIR2016 has a re-start scheme, which means when the tracking fails, the
tracker will be re-initialized after five frames. Accordingly, two performance measures, accuracy (A)
and robustness (R), are used as evaluation metrics [43]. The accuracy is calculated by the overlap rate
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between the predicted bounding box and the ground truth during successful tracking period. The
robustness measures the likelihood that the tracker will not fail in S frames, which is based on the
number of tracking failures in a new sequence. It is calculated by:

Ro =
Q
∑

j=0
Fj

R = e−S Ro
Q

(11)

where Q represents the sequence length on each attributes and Fj is the failure number.
Another measure called expected average overlap (EAO) is used to combine A and R together. To
calculate this measure, the tracker is only initialized at the beginning of the sequence. When it drifts
off the target, the remaining overlap rate is set to 0. Thus, the average overlap is computed by:

ΦNs =
1

Ns

Ns

∑
i=1

Φi (12)

where Φi is the per-frame overlap including the zero overlaps after failure. The EAO measure Φ is
calculated over an interval [Nlo, Nhi] as follows. The interval is provided by the benchmark.

Φ =
1

Nhi − Nlo
∑

Ns=Nlo :Nhi

ΦNs (13)

4.3. Parameter Analysis

Several parameters play important roles in solving the MaskSR model. In this section, we set
two comparison experiments to discuss the effect of the penalty parameter ρ and the regularization
parameter λ3 on the convergence of ADMM.

(1) Effect of ρ1, ρ2 and ρ3

The penalty parameter ρ is usually set to 1 in the standard ADMM algorithm. To test the effect of
different ρ on the convergence speed, we conducted several numerical examples. The convergence
of ADMM was evaluated by the primal residuals

∥∥∥r(k+1)
∥∥∥

2
and dual residuals

∥∥∥s(k+1)
∥∥∥

2
, which are

denoted by:
r(k+1) = x(k+1) − z(k+1)

s(k+1) = z(k+1) − z(k)
(14)

Figure 4a shows the dual residuals and primal residuals when ρ1 = 0.8, 1.0, 1.2, respectively.
Similarly, Figure 4b,c shows the convergence performance with different ρ2 and ρ3. We can see that,
with the increase of ρ, the convergence speed of dual residuals decreases; however, the convergence
speed of primal residuals improves. Thus, we define ρ = 1 to balance the convergence performance of
these two characters.
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(a) (b) (c)

Figure 4. Convergence of primal residuals and dual residuals with different penalty parameters:
(a) testing on penalty ρ1; (b) testing on penalty ρ2; and (c) testing on penalty ρ3.

(2) Effect of λ3

The parameter λ3 influences the sparseness degree of xr − x′r. A larger λ3 can lead to a better
performance on refining the representation result of the unreliable target part. However, when λ3 is
set too large, the optimization process cannot converge. As shown in Figure 5, when λ3 is set to 0.01,
which is equal to the value of λ1 and λ2, both the dual residual plot (Figure 5a) and the primal residual
plot (Figure 5b) diverge. Thus, we set λ3 to 0.005 to guarantee the convergence of the optimization
process.

(a) (b)

Figure 5. Convergence of primal residuals and dual residuals with different regularization parameters:
(a) primal residuals of λ3 = 0.01 vs. λ3 = 0.005; and (b) dual residuals of λ3 = 0.01 vs. λ3 = 0.005.

4.4. Quantitative Comparison

We compared our tracker with other 19 state-of-the-art trackers on VOT-TIR2016 in
the quantitative comparison experiment: two convolutional neural network based trackers,
deepMKCF [44] and MDNet_NoTrain [43]; six discriminative correlation filter-based trackers,
DSST [42], MvCFT [45], NSAMF [46], SKCF [47], SRDCF [48] and Staple+ [43]; seven part-based
trackers, BDF [49], BST [43], DPCF [50], DPT [51], FCT [43], GGT2 [52] and LT_FLO [43]; one mean-shift
based tracker, PKLTF [49]; one tracking-by-detection tracker, DAT [43]; and two fusion based trackers,
LOFT_Lite [43] and MAD [43]. We removed the SRDCFir tracker [43] because it uses motion threshold
to focus more on the performance evaluation of the target appearance model of different trackers.

There are three types of AR raw plot and AR rank plot in Figure 6. The mean AR raw plot
and mean AR rank plot were obtained by the average values and averages ranks of seven attributes
(including six challenging attributes and one empty tag). The weighted mean AR raw plot and
weighted mean AR rank plot take the sequence length of each attribute into account. The pooled plots
gather all frames and compute values and ranks on a single combined sequence. In all three rank
plots, the proposed method achieves the best robustness, which means our tracker has the least failure

292



Remote Sens. 2019, 11, 1967

probability on sequences with 100 frames. In the accuracy evaluation, the proposed tracker is not as
good as the MDNet_NoTrain tracker, deepMKCF tracker, Staple+ and DSST tracker according to the
pooled measurement. However, the accuracy difference between these trackers is very slight. On the
other hand, the low failure number of our tracker will also influence the average value of the overlap
rate. Thus, we further show the EAO comparison of 20 trackers in Figures 7 and 8, which show the
proposed tracker gives the best overall performance in the TIR object tracking.
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Figure 6. The overall AR raw plots and the AR rank plots of the 20 compared trackers on VOT-TIR2016.
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Figure 7. Expected overlap curves of the 20 compared trackers on VOT-TIR2016.
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Figure 8. Expected overlap scores of 20 compared trackers on VOT-TIR2016 (see Figure 6 for legend).

To illustrate the tracking performance of trackers on different challenging scenarios, we show
the accuracy ranking plot and robustness ranking plot with respect to six visual attributes in Figure
9: camera motion, dynamics change, empty tag, motion change, occlusion and size change. In the
robustness evaluation, our tracker ranks first in the situation of camera motion, dynamics change, size
change and empty. In the two other situations of occlusion and motion change, our tracker ranks fourth
and sixth, , respectively. The MDNet_NoTrain tracker and SRDCF tracker achieve the best performance
in the occlusion and motion change scenarios, respectively. According to the accuracy ranking, our
tracker achieves better performance in the situation of size change, motion change and empty. By
comparison, two CNN based trackers, the MDNet tracker and deepMKCF tracker, locate the target
more accurately in the tracking process. As shown in Table 1, the accuracy of the MDNet_NoTrain
tracker is 1.8% and 9.7% higher than the proposed tracker in the situation of empty and size change,
respectively. However, the robustness of the proposed tracker is 1.5% and 4.5% higher than the
MDNet_NoTrain tracker, respectively. Similarly, the accuracy of the deepMKCF tracker is 20.5% and
17.2% higher than the proposed tracker, while the robustness of the proposed tracker is 19.6% and
211% higher than the deepMKCF tracker, respectively. Generally speaking, the correlation filter based
trackers and CNN based trackers have better performance on the TIR object tracking.
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Figure 9. Accuracy ranking and robustness ranking of 20 trackers on six different attributes (see Figure
6 for legend).
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Table 1. Quantitative results of expected average overlap (EAO), Accuracy (A) and Robustness (R)
of the eight best trackers. The best, second best and the third best trackers in different situations are
marked by */**/***, respectively.

Measurements Staple+ MDNet_N DSST MVCFT DPT deepMKCF MAD Ours

ALL EAO 0.241 ** 0.240 *** 0.237 0.231 0.216 0.213 0.200 0.260 *

Camera Motion A 0.584 *** 0.611 ** 0.559 0.520 0.561 0.623 * 0.494 0.517
R 0.517** 0.496*** 0.410 0.465 0.418 0.490 0.382 0.586*

Dynamics Change A 0.568 *** 0.518 0.574 ** 0.467 0.523 0.612 * 0.483 0.522
R 0.389 *** 0.532** 0.322 0.322 0.389 *** 0.182 0.266 0.576 *

Empty A 0.544 0.624 * 0.579 0.522 0.585 0.589 *** 0.542 0.613 **
R 0.460 0.473 0.404 0.480 * 0.480 * 0.422 0.480 * 0.480 *

Motion Change A 0.514 0.613 * 0.551 *** 0.509 0.474 0.592 ** 0.490 0.521
R 0.867 * 0.848 ** 0.684 0.789 *** 0.684 0.717 0.752 0.752

Occlusion A 0.658 * 0.627 ** 0.625 *** 0.562 0.573 0.607 0.570 0.520
R 0.591 ** 0.664 * 0.349 0.468 0.496 0.468 0.392 0.557 ***

Size Change A 0.595 0.654 * 0.612 *** 0.544 0.474 0.643 ** 0.520 0.596
R 0.627 0.682 ** 0.607 0.627 0.607 0.637 *** 0.560 0.713 *

4.5. Qualitative Comparison

To display the tracking results more intuitively, we give a qualitative comparison for eight trackers
with better EAO ranks in the quantitative experiment, which is shown in Figure 10. Due to the re-start
scheme in the VOT-TIR2016 benchmark, there is no sense in displaying the predicted bounding box
for the sequence frames after re-initialization. Thus, when a tracker drifts off the target, the later
tracker results are placed on top left corner of the images without re-initialization. Six representative
sequences are selected in the qualitative experiment: “boat2”, “crouching”, “quadrocopter”, “car2”,
“garden” and “excavator”. Generally speaking, the proposed method has a better performance than
the seven other trackers. In Figure 10a (“boat2”); the predicted bounding boxes of the SRDCF and
MvCFT tracker are far larger than the real target size. In the sequence “crouching” shown in Figure
10b, four trackers, namely Staple+, SRDCF, DPT, and deepMKCF, fail to locate the target when the
target is occluded by another person. Targets in other two sequences, “car2” and “garden”, also
suffer from severe occlusion; only the proposed method locates the target correctly among the eight
trackers. For the sequence “quadrocopter” shown in Figure 10c, the appearance change of the target is
slight, however the background around target has a dramatic variation in the tracking process. The
proposed method uses the binary mask to extract reliable target part, which can improve the tracking
performance in the situation of background clutter significantly. The target in Figure 10f is almost
submerged in the background. Only the MDNet_NoTrain and the proposed trackers track the target
successfully.
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Figure 10. Visualized tracking results of several state-of-the-art trackers on representative sequences.
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5. Conclusions

In this paper, we propose a MaskSR-based appearance model to achieve TIR target tracking
in an improved particle filter framework. This model considers different discriminant capabilities
of different target parts at a pixel level, which can enhance the importance of the distinguishable
target pixels in the reconstruction process while weakening the diverse effect of target appearance
changes and background clutters. Moreover, to improve the tracking efficiency, a discriminative
particle selection strategy is proposed to replace the previous random sampling strategy, which can
greatly reduce the number of represented particles and improve the tracking accuracy simultaneously.
The proposed method was evaluated on the VOT-TIR2016 benchmark with a re-initialized scheme
when tracking fails. The experiment results of accuracy, robustness and expected average overlap show
that the proposed tracker is superior to 19 other state-of-the-art trackers for TIR object tracking. Future
improvement can be made by applying a regression-based strategy to train the channel selection layer
and using a more accurate segmentation method to divide the target.

Considering applying the proposed method to real applications, future improvement can be
made by redesigning the program using C or C++, which are advantageous for running speed and are
more convenient to be transplanted to the hardware platform. On the other hand, the improvement of
sensors on imaging quality will significantly improve the accuracy and robustness of the proposed
tracking in the real application.
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Appendix A

The ADMM algorithm is designed to solve equality constrained problems. Thus, we rewrite
Equation (4) in the following form by introducing auxiliary variables z1, z2 and z3:

min w
2 ‖Drxr − yr‖2

2 +
1
2‖Dr′xr′ − yr′ ‖2

2 + λ1‖z1‖1 + λ2‖z2‖1 + λ3‖z3‖1

s.t.

⎧⎪⎨⎪⎩
xr − z1 = 0
xr′ − z2 = 0
xr − xr′ − z3 = 0

(A1)

The augmented Lagrangian expression of Equation (A1) is formulated as:

Lρ1,ρ2,ρ3 (xr, xr′ , z1, z2, z3, u1, u2, u3) =
w
2 ‖Drxr − yr‖2

2 +
1
2‖Dr′xr′ − yr′ ‖2

2
+λ1‖z1‖1 + λ2‖z2‖1 + λ3‖z3‖1 + 〈u1, xr − z1〉+ ρ1

2 ‖xr − z1‖2
2 + 〈u2, xr′ − z2〉

+ ρ2
2 ‖xr′ − z2‖2

2 + 〈u3, xr − xr′ − z3〉+ ρ3
2 ‖xr − xr′ − z3‖2

2

(A2)

For Steps 1 and 2 in Algorithm 1, the solution for these two sub-problems can be easily derived as:

x(k+1)
r = arg min

xr

w
2 ‖Drxr − yr‖2

2 +
ρ1
2

∥∥∥xr − z(k)1 + u(k)
1

/
ρ1

∥∥∥2

2
+

ρ3
2

∥∥∥xr − x(k)r′ − z(k)3 + u(k)
3

/
ρ3

∥∥∥2

2

=
(
wDr

′Dr + ρ1 I + ρ2 I
)−1

(
wDr

′yr + ρ1

(
z(k)1 − u(k)

1
ρ1

))
+ ρ3

(
x(k)r′ + z(k)3 − u(k)

3
ρ3

) (A3)
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x(k+1)
r′ = arg min

x′r

1
2‖Dr′ xr′ − yr′ ‖2

2 +
ρ2
2

∥∥∥xr′ − z(k)2 + u(k)
2

/
ρ2

∥∥∥2

2
+

ρ3
2

∥∥∥xr′ − x(k+1)
r + z(k)3 − u(k)

3

/
ρ3

∥∥∥2

2

=
(

Dr′
′Dr′ + ρ2 I + ρ3 I

)−1
(

wDr′
′yr′ + ρ2

(
z(k)2 − u(k)

2
ρ2

))
+ ρ3

(
x(k+1)

r − z(k)3 +
u(k)

3
ρ3

) (A4)

Obviously,
(
wDr

′Dr + ρ1 I + ρ2 I
)−1 and

(
Dr′

′Dr′ + ρ2 I + ρ3 I
)−1 can be pre-calculated because

they are not included in the iteration process. The computation cost of solving this sub-problem is
O ((p + q)× d).

For Step 3, due to the presence of the non-derivate function ‖zi‖1 in the optimization problem,
we need to introduce the soft-threshold operator to solve these sub-problems. This operator is defined
as follows:

Sλ/ρ (x) = sign (x)max
{
|x| − λ

ρ
, 0
}

(A5)

where x is a scalar, representing the elements in a vector. Thus, the solution of Step 3 is:

z(k+1)
1 = Sλ1/ρ1

(
x(k+1)

r − u1 (x)
ρ1

)
(A6)

Similarly,

z(k+1)
2 = Sλ2/ρ2

(
x(k+1)

r′ − u2 (x)
ρ2

)
(A7)

z(k+1)
3 = Sλ3/ρ3

(
x(k+1)

r′ − x(k+1)
r − u3 (x)

ρ3

)
(A8)

The computation cost of this sub-problem is O (p + q).
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Abstract: Optical design parameters for a ground-based infrared sensor rely strongly on the target’s
optical radiation properties. Infrared (IR) optical observability and imaging simulations of an Earth
entry vehicle were evaluated using a comprehensive numerical model. Based on a ground-based
IR detection system, this model considered many physical mechanisms including thermochemical
nonequilibrium reacting flow, radiative properties, optical propagation, detection range, atmospheric
transmittance, and imaging processes. An orbital test vehicle (OTV) was selected as the research object
for analysis of its observability using a ground-based infrared system. IR radiance contours, maximum
detecting range (MDR), and thermal infrared (TIR) pixel arrangement were modeled. The results
show that the distribution of IR radiance is strongly dependent on the angle of observation and the
spectral band. Several special phenomena, including a strong receiving region (SRR), a characteristic
attitude, a blind zone, and an equivalent zone, are all found in the varying altitude MDR distributions
of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) irradiances. In addition,
the possible increase in detectivity can greatly improve the MDR at high altitudes, especially for the
backward and forward views. The difference in the peak radiance of the LWIR images is within
one order of magnitude, but the difference in that of the MWIR images varies greatly. Analyses
and results indicate that this model can provide guidance in the design of remote ground-based
detection systems.

Keywords: ground-based detection; infrared imaging; observability; detecting distance; earth
entry vehicle

1. Introduction

The use of ground-based remote sensing detectors is becoming an important method of accessing
information on trajectories, positions, and flight conditions in the growing field of space technology.
Recently, a very promising type of orbital test vehicle (OTV) came to the attention of many space
agencies [1]. It is believed to be a candidate for the next generation of space planes and can be reused
repeatedly due to low launch costs and high-speed maneuverability. A typical representative of this
type of OTV is the X-37B spaceplane [2]. The aircraft can maintain operations in space for several
months at a time, like a satellite, and can then return to the Earth’s atmosphere on its own. During
the entry phase, it is essential to track the vehicle’s trajectory and flight behavior. Up to now, thermal
infrared (TIR) remote sensing technology is widely used for monitoring the background environment
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and aerial targets [3,4]. However, numerical studies of this technique are rare due to the attendant
complexity of the physical processes.

The study of the observability of aircraft based on the TIR effect is a thermal–optical problem.
During the entry phase, the air around the aircraft undergoes strong compression along with high
frictional forces acting on the aircraft body, resulting in hot reaction air flows. In the high-temperature
flow field, many chemical reactions occur including dissociation, ionization, and recombination [5,6].
Under these conditions, air components, consisting of atoms, ions, and molecules, radiate strong optical
radiation [7]. For the gas molecules, the process of vibrational transition produces infrared radiation.
In addition, the aero-heating effect is also serious and causes a rapid increase in the temperature of
the aircraft’s surface, from which strong radiation can also be emitted. Infrared radiation from gases
(including air dissociation products and trace air components) in the flow field and the surface is
partially absorbed by the surrounding gases in the transmission process. The absorption process has
strong spectral band selectivity and can be divided into two regions: (a) self-radiation emitted from
the surface and hot gases in the high-temperature region, and (b) the atmospheric transmission effect
in the low-temperature region. The infrared radiation of the target and the radiation noise of the
environmental background are received by the optical sensor using Earth’s atmospheric attenuation.
The radiation is converted into electrical signals and then recognized by the infrared (IR) detector.

Lots of investigations on target detection were conducted for analysis of the aircraft IR signature.
Mahulikar et al. [8–10] took a low-altitude fighter as a research object to analyze the role of atmosphere
in IR signature, and the relationship between IR signature level and target susceptibility. Pan et al. [11]
predicted the IR radiation and stealth characteristics for the cabin of a supersonic aircraft. Huang and
Ji [12] investigated the effect of environmental radiation on the long-wave IR signature of a cruise
aircraft. In these studies, they focused mainly on the surface emission and the exhaust plume under
a low-temperature low-altitude condition. However, a comprehensive model that can be used for
analysis of the observability of hypersonic vehicles considering the high-temperature gas effect is still
rarely reported.

In the context of multi-mode detection requirements, ground-based remote detection saw much
development [13–15]. Some relevant observations of hypersonic aircraft were conducted with the
aid of TIR emissions. These experiments focused mainly on two aspects: TIR imaging of the space
transportation system (STS) and radiative heating of sample return capsules (SRC). For instance, NASA
carried out a series of hypersonic thermodynamic IR measurements (HYTHIRM) that relied on aerial
and ground-based infrared imaging systems [15,16]. The infrared images were used to determine
the surface temperature distribution on the viewable windward surface of the shuttle orbiter. These
observations of the SRC reentering the Earth’s atmosphere [17–19] were mainly concerned with the
near-infrared band, with the aim of verifying the radiation excitation mechanisms and flow structures.
However, those observations did not provide evaluation models and did not report on the maximum
detection range (MDR).

The MDR is an important parameter in the design of optical instruments, which reflects the
performance of the detection system. In most cases, it is appropriate that the target is treated as a
point source when the aircraft’s irradiance image only fills one or a few pixels of the sensor [20]. Prior
literature [13,20,21] indicated that the MDR of an infrared imaging system is a function of factors such
as background environment, target radiation characteristics, atmospheric transmittance, and the system
threshold signal-to-noise ratio (SNR). Recently, Zhao et al. [21] proposed a spectral bisection method for
calculating the operating distance of IR systems based on the MODTRAN (moderate spectral resolution
atmospheric transmittance algorithm and computer model) program. Ren et al. [22] suggested a
new formula for calculating the atmospheric transmittance based on the LOWTRAN (low-resolution
atmospheric transmission) database. Huang et al. [20] reported a photoelectric detection method based
on a long-wavelength infrared (LWIR, 8–14 μm) fisheye imaging system. In these literature sources,
the target was specified as a uniform low-temperature gray body without gas emissions. However,
such a treatment is overly simplistic. In fact, the surface temperature of a hypersonic vehicle may reach
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2000 K with a non-uniform distribution [23]. The TIR emission can also be radiated from gases in the
shock layer and wake flows [24]. This means that the temperature of both the aircraft’s surfaces and
the reacting flows may influence the evaluation of infrared optical observability.

Up to now, it remains a challenge to establish models to investigate the detectability and imaging
of a hypersonic vehicle based on its detailed radiative properties. To obtain the irradiance received
by a detector, lots of parameters should be calculated such as reacting flows, surface temperature,
species concentrations, absorption coefficients, reconstructed nodes, and optical path. These require
knowledge of fluid mechanics, spectroscopy, thermochemistry, and optics.

In this study, a comprehensive physical model was proposed to simulate the MDR and the
TIR image of an Earth entry OTV. Firstly, the hot reacting flows and surface temperatures were
simulated using a thermochemical gas-solid interaction computational fluid dynamics (CFD) solver.
In addition, the optical radiative properties of radiating species were evaluated in thermal equilibrium
and nonequilibrium. Then, TIR radiance characteristics were computed by solving the radiative
transfer equation (RTE) in a fluid inclusion. Furthermore, using the concept of the point source,
the MDR was simulated in different bands, trajectory points, and observation angles. Finally, the effects
of sensor detectivity on the MDR and the TIR images in the aperture of the detector were discussed
and analyzed.

2. Description of Physical Processes in Ground-Based Observation

An Earth entry OTV, with similar geometry to the X-37B [2], was used in this study. After
entering the atmosphere, the aircraft flies in a typical flight path, and its velocity as function of altitude
for the X-37B was reported in Reference [25], as shown in the lower right of Figure 1. During the
entry phase, the air around the aircraft is heated to an extremely high temperature. Under this
condition, there are two strong TIR radiation sources: (1) hot air components and gaseous products
from dissociation, ionization, and recombination chemical reactions, and (2) glowing aircraft surfaces.
These TIR radiations can be received by an IR detection system after being attenuated by passing the
Earth’s atmosphere.

 

Figure 1. Diagrammatic sketch of orbital test vehicle (OTV) thermal infrared (TIR) observation.
Atmospheric transmittance (gray) within the wavelengths of 0.4–14 μm at a low altitude is shown in
the lower left corner. The flight path of the OTV and altitude-varying thermal and chemical properties
are shown in the lower right corner. The variations of density and temperature with altitude are
normalized using the corresponding above sea level (ASL) conditions.

305



Remote Sens. 2019, 11, 2404

For the air around the OTV, the flows are hypersonic and go through chemical nonequilibrium and
thermal nonequilibrium conditions due to the drastic environmental changes. Figure 1 shows three
typical thermal–chemical regions [26]. For the vehicle surface, the wall temperature depends on the
aero-heating, structure heat conduction, radiation, etc. Due to the presence of atmospheric windows as
illustrated in the lower left of Figure 1, the spectral bands of interest are generally medium-wavelength
infrared (MWIR), with a wavelength of 3–5 μm, and LWIR [27]. At a flight altitude H above sea level
(ASL), the ground-based infrared system A can receive the TIR radiation from aircraft B or B1.

During the observation process, changes in the aspect angle between the detector and the aircraft
may exert an arbitrary effect on observability. Considering the Earth’s radius Rearth = 6371 km, there
is an MDR above the horizon Rmax, as shown in Figure 1. Below this MDR, the TIR intensity and
distribution of the target can be imaged in the aperture of the infrared system. This study focuses
mainly on the MDR and the TIR imaging during OTV entry.

3. Computational Methods

3.1. Description of CFD Solver

For hypersonic flows above 40 km, the time scale of the chemical and the internal energy exchange
processes is comparable with the characteristic time of flows [5]. The internal energy exchange should
be described through multiple temperatures. Recently, our research group carried out a series of
simulations of hypersonic reacting flows using an in-house code [5,6]. In the code, a two-temperature
CFD solver is available for predictions of thermal–chemical nonequilibrium flows. On assuming
continuous flows are valid, three-dimensional Reynolds-averaged Navier–Stokes (N–S) equations
are solved with a structured implicit scheme with the finite volume method (FVM). The viscous and
inviscid fluxes are computed using a central difference and Roe’s averaging scheme [28], respectively.
Yee’s symmetric total variation diminishing (STVD) limiter [29] is employed for accurate predictions of
the shock layer. The two-equation shear stress transport (SST) with compressible correction is used for
the flow simulations in the supersonic–hypersonic regime.

3.2. Optical Radiation and Transfer Models

3.2.1. Optical Radiative Properties of High-Temperature Gases

Studies [30,31] demonstrated that gaseous molecules of NO, CO2, and H2O are the main radiating
components of air. Among these species, CO2 and H2O belong to the set of trace components
and have a low number density. For instance, the volume fraction of CO2 at ground level is
approximately 3.628 × 10−4, which is two orders of magnitude lower than that of H2O. In hypersonic
flows, their number densities are associated with the degree of compression of the flow field. For NO,
it is the product of the combination reaction O + N → NO in air, and its formation is related to
the dissociation reactions N2 → 2N and O2 → 2O. Generally, high-altitude hypersonic flows are in
local thermodynamic nonequilibrium (non-LTE) [32]. In this case, the optical radiation properties of
radiating species should be evaluated under non-LTE conditions.

Currently, the new total internal partition sums (TIPS) routine [33] can be used for partition
function calculations for some components, including CO2 at temperatures below 5000 K and H2O
at temperatures below 6000 K. Based on the known partition function, the spectral lines of the
corresponding molecules can be calculated with the aid of the high-temperature database HITEMP [34]
(only the spectral lines in the standard conditions are provided). The TIPS routine provides an
applicable range for NO at temperatures under 3500 K. The application is limited for high-temperature
flows. Thus, a partition function suitable for high temperatures should be used. According to one of
the basic principles of quantum mechanics, the reduced partition function of NO can be determined
using Equation (1), neglecting the interaction between rotational and vibrational states [34].
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∑
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where dvib and drot are the degeneracy factors for states, and Gvib and Frot are the term values of
vibrational and rotational states, respectively. These parameters can be imported from Reference [35].

Relying on the partition function Q(T), the high-temperature line intensity at a given wavenumber
η can be calculated using the correction formula below.
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where S(Tref) is the line intensity under standard conditions; h, c, and kB are the Planck constant,
the speed of light, and the Boltzmann constant, respectively. El stands for the energy of the lower state.
The absorption coefficient of each species within the specified wavenumber and temperature intervals
can then be calculated using the line-by-line (LBL) method [36].

κ(η− η0) = Sη(T)Φ(η− η0)N, (3)

where N is the number density of species, and Φ is the line shape function, for which the Voigt line
profile [37] is often recommended. Finally, the total absorption coefficient of the mixture can be
computed on the assumption that the absorption coefficient is cumulative for each species.

3.2.2. Optical Radiative Properties of High-Temperature Surfaces

For the surface, the radiation intensity is determined using the temperature and emissivity, along
with the radiative properties of the surface element calculated in accordance with Planck’s radiation
law for a gray body [36].

Iλ,sur =
C1

π

ε(λ)

λ5
(
e

C2
λT − 1

) , (4)

where C1 and C2 are the first and second radiation constants, respectively; ε is the emissivity, Iλ,sur
is the radiance for a thermal source of the surface element, and λ is the wavelength which can be
converted to the wavenumber η. The surface emission requires coupling with the gas radiation along
the optical path of light propagation.

High-temperature gas radiation differs from the gray-body radiation characteristics of the surface.
Its self-emission and self-absorption properties need to be taken into consideration. The total radiation
spectral intensity can be calculated using discrete path intervals. Specifically, it can be described using
the RTE [36].

∂Iλ(s,
→
s )

∂s
= κλ(s)

(
Ib,λ(

→
s ) − Iλ(s,

→
s )

)
, (5)

where λ indicates the wavelength, and Iλ is the local spectral intensity. Ib,λ is the Planck blackbody
function, whereas s and

→
s represent the position and the optical path vector, respectively.

Methods commonly used to solve the RTE include the line-of-sight (LOS), ray tracing (RT),
and Monte Carlo (MC) methods. Under the condition of an absence of scattering particles, the LOS
method is equivalent to the other two. Thus, the LOS method was applied in this study due to a
compromise between computational cost and accuracy. The LOS method was introduced in our
previous studies [5,38]. LOS starts with a surface element, and the surface emission Iλ,sur can be treated
as the initial value of the RTE. According to the RTE, the spectral intensity of the target can be calculated
by summing the radiance from each path interval as follows:
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Iη,tar =
∑M

j=1
I0
ηm, j−0.5

(
κηm, j→M − κηm, j−1→M

)
ΔLn, (6)

where M is the number of segments in optical path, and Iη,tar is the radiance at the wavenumber η in a
inclusion with a cutoff value equal to the ambient condition.

3.3. Infrared Optical Observability of Ground-Based Sensors

3.3.1. Detection Range Model

For the optical detection system, the spectrum intensity that arrives at the detector is given by

Pλ = τ0(λ)
A0

R2 τa(λ, R)At
(
Iλ,tar − Iλ,bg

)
, (7)

where R is the distance between the target and the detector, τ(λ,R) is the atmospheric transmittance
with a distance of R, At is the effective radiation area of the target surface, τ0(λ) stands for the spectral
transmittance of the optical system, A0 is the pupil area of the objective lens system, and Iλ,bg denotes
the background radiance received by detector.

The optical radiant power must be converted into a signal voltage, which is integrated within the
wavelengths of λl–λu and has the following form [21]:

ΔVs =
Vn√

AdgΔ f
·
∫ λu

λl

D∗(λ)Pλdλ, (8)

where D*(λ) is the normalized system detectivity, Δf is the frequency bandwidth of the detector
circuitry, Ad is the pixel area of the detector, g is the photoconductive gain, and λu and λl stand for the
upper and lower limits of wavelengths for the band of interest.

According to the above equations, the detection distance of the optical system with respect to a
point target can be written as
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⎤⎥⎥⎥⎥⎥⎥⎥⎦
1
2

(9)

In Equation (9), ΔVs/Vn is the SNR of the system. Based on the noise equivalent flux density
(NEFD) [39], which is defined as the incoming TIR power per unit area at the aperture, the sensor
parameters (A0, D*, Ad, and Δf ) can be integrated into an evaluation parameter. In this study,
the background is the deep space. The basic value of the NEFD is 10−12 W/cm2, and the SNR is specified
as 5. According to these threshold values, R is the longest detecting range, namely, the MDR.

3.3.2. Atmospheric Transmittance and Radiance

In addition to the main components of nitrogen and oxygen, the atmosphere has a variety of
trace components that possess properties of radiation emission and absorption in the corresponding
spectral bands. The atmospheric transmittance is a complex parameter due to the selective absorption
of atmospheric molecules and the change in atmospheric density with altitude. Therefore, the TIR
radiation emitted from the high-temperature fluid inclusion can be absorbed partially by these
components, which means that the atmospheric transmittance and self-emission need to be calculated.
In the atmospheric environment, the spectral radiation and transmittance of the atmosphere are
associated with the path and the spectral band. In this study, the MODTRAN computer program [40]
was utilized, which is a moderate-resolution atmospheric radiation transfer model developed by
LOWTRAN that can provide atmospheric information for different paths and spectral bands, including
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atmospheric transmittance, background radiation (e.g., rural, urban, marine, and desert), and solar
irradiance in different seasons covering ultraviolent, visible, and infrared wave bands.

In the desired wavelength range of λl–λu, the spectral band is divided into many equally spaced
segments Δλ = λi+1 − λi, i = 1, 2, . . . , n. When the interval Δλ is sufficiently small, the atmospheric
transmittance τΔλi and radiance LΔλi in the interval wavelength of λi can be expressed as

τΔλi =
τλi + τλi+1

2
, and LΔλi =

Lλi + Lλi+1

2
. (10)

Based on the abovementioned treatment, the atmospheric transmittance and radiance for the
detecting distance R have the following expressions:

τa(λ, R) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τR1,λ1 τR1,λ2 · · · τR1,λn

τR2,λ1 τR2,λ2 · · · τR2,λn
...

... · · · ...
τRm,λ1 τR1m,λ2 · · · τRm,λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Similarly, the atmospheric spectral radiation intensity can be also given as

Ia(λ, R) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IR1,λ1 IR1,λ2 · · · IR1,λn

IR2,λ1 IR2,λ2 · · · IR2,λn
...

... · · · ...
IRm,λ1 IR1m,λ2 · · · IRm,λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Based on the self-radiation spectrum and the atmospheric transmittance, the attenuated spectrum
can be obtained, and then the radiance can be computed by integrating the attenuated spectrum within
the required band.

3.3.3. TIR Smoothing Distribution on the Sensor Aperture

Under detection distances below the MDR, the aircraft surface is partially detected along the
detection direction. This means that occlusion occurs in the detecting process. The TIR light rays are
emitted from the visible surface through the hot gases and undergo atmospheric attenuation and then
arrive at the aperture of the sensor. Usually, the geometric model of an aircraft is complex, and its shell
meshes consist of many uniformly arranged grids. However, the pixels of the detector are arranged in
an orthogonal array. A common occurrence involves more than one light ray arriving at one pixel.
In the pixel, the TIR intensity may be assigned to the center node in the imaging process, which results
in an unsmooth TIR image with many bright spots. Therefore, imaging techniques are used to deal
with such imaging problems, including the treatment of visible surfaces and mesh clipping.

Visible surface elements that are associated with the LOS direction are required in Equation (7).
This is attributed to the fact that the detector only receives the TIR irradiance of partial surfaces.
As shown in Figure 2a,b, there are two types of occlusion elements. One is a surface element with
radiation directions that have no component in the LOS direction, and the other is a surface element
obscured by the other elements. A flag 0 represents the invisible surface elements using the following
expression:

flagAi
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,

→
s ·→ni ≤ 0

0, (
→
s ·→ni > 0)&(Vi,p �

{
Aj, j�i

}
)

1, other

, (13)

where
→
ni is the outward normal of the target surface element Ai, and Vi,p is the pth vertex of the element

Ai. {Aj,j�i} represents the set of the surface elements excluding Ai, where j =1, 2, . . . , Nelement.
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The imaging process must calculate the irradiance received by each pixel of the detector, as shown
in Figure 2c. In this process, part of the surface element projected onto the pixel needs to be retained
for evaluation. In order to produce an accurate image, each separate region should be calculated in
each individual pixel. As shown in Figure 2d, mesh clipping can be used for computing the area of the
polygon V4V1IJKL. This procedure requires the vertices of the two sets (A, B, C, D and V1, V2, V3, V4)
and their candidate intersection points (W1, I, J, K, L, W2, W3, W4). The desired points should then be
selected from these vertices and intersection points. These unordered points must be arranged before
forming a closed polygon. A clockwise arrangement is established according to the cosine value of the
vertices as shown in Figure 2e.

In Figure 2f, a representative case is shown, in which the pixel element receives a total of TIR
radiation intensity from nine surface elements. According to the above image treatment, the irradiance
received by each detector pixel can be calculated by the following formula:

qi, j =

∑
k IkAi, j,k cos

(→
n ,
→
s
)
τ(λ, R)

R2 , (14)

where q is the radiant energy of the pixel, I is the TIR intensity received by the system which is emitted
from the surface element k, and Ai,j,k represents the visible area of the kth surface element in the
i × j pixel.

 

Figure 2. Sketch map of mesh clipping: (a) invisible elements caused by the obtuse angle between the
line of sight (LOS) and its outer normal vector; (b) invisible elements caused by occlusion of other
elements; (c) pixel array and relation between sensor pixel and target elements imaging; (d) distribution
of intersection points in mesh clipping; (e) vertex sequence in a clockwise arrangement; (f) general
position relationship between the target element and pixels.

3.4. Computational Flow Chart of MDR

A code was programed in FORTRAN considering above physical models. In these procedures,
the fluid computation is decoupled with the radiative computation on the assumption that the gas
and surface emissions have little influence on the flow field parameters. The computational flow
chart is shown in Figure 3. Firstly, the reacting flow and surface temperature can be obtained using a
two-temperature CFD solver based on the known freestream conditions and the structured grid [41].
The radiative properties of gases, including CO2, NO, and H2O, are evaluated relying on the HITEMP
database. Then, at a specified observation angle, the occlusion effect is considered, and the visible parts
of the aircraft are computed. Furthermore, the spectral irradiance is achieved along the LOS direction
in a fluid-domain inclusion. An initial detecting distance that is larger than the aircraft’s flight altitude
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is given and used for the computation of the irradiance received by the sensor. Finally, the MDR can be
obtained by comparing with the detectivity of the sensor.

 

Figure 3. Flow chart of the calculation.

3.5. Validations of Physical Models

At present, to the best of the authors’ knowledge, there are few reports on the radiation
observation data of hypersonic vehicles. In most cases, it is difficult to obtain the self-radiation intensity
of a hypersonic vehicle due to expensive measurement costs, complex test conditions, and strong
background noises. Up to now, calculations of the thermo-chemical nonequilibrium flow field and the
high-temperature nonequilibrium radiation characteristics of radiating gases are still challenging tasks.
Therefore, the physical models are verified separately against reference data in this paper.

3.5.1. Validations of Surface Temperature and Flow Field Parameters

From the two strong TIR radiation sources, accurately predicting the surface temperature and
flow field parameters is important. In this section, two available reference data are used for validation
studies of the surface temperature and the flow field parameters: (1) double-cone UHTC (Ultra-high
temperature ceramics) surface temperature test in the L2K wind tunnel at DLR (German Aerospace
Center) Köln in Germany [42], and (2) reference data of the ELECTRE [43] vehicle at 293 s reported
by Hao et al. [44]. The detailed computational parameters were given in our previous work [6,41]
including the geometry size, material thermal properties, grids, boundary conditions, and so forth.
In Figure 4, comparisons between computed results and reference data prove that the current CFD
solver has good performance in predictions of the surface temperature and flow field parameters of
the hypersonic vehicle. This work can assist in a study of ground-based IR optical observability and
imaging for an Earth entry vehicle.
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Figure 4. Validation of the surface temperature and main flow field parameters: (a) surface
temperature along the body at t = 60 s for the double-cone experiment in the L2K wind tunnel at DLR
(German Aerospace Center) Köln; (b) flow field parameters of translational–rotational temperature
(T), vibrational–electronic temperature (Tve), and mass fraction of dissociation product NO along the
stagnation line for ELECTRE vehicle.

3.5.2. Validations of High-Temperature Optical Radiative Properties

The dual-mode experiment on bow-shock interactions (DEBI) [45,46] was carried out in 2003.
In flight measurements, spectrometers mounted in the nose cone of a sounding rocket were used for
measuring the forward- and side-looking radiation signatures in the bow-shock layer. Ozawa et al. [46]
computed the forward-looking infrared spectrum at 40 km and 3.5 km/s using nonequilibrium radiation
distribution (NERD) and the NEQAIR-IR (nonequilibrium air radiation-infrared) program. These data
can be used to verify the current optical radiative property computational model.

The DEBI vehicle has a blunt cone with a 0.2032-m-radius nose and a 7.5◦ half-cone angle.
The computational parameters can be seen in Reference [46]. The flow field parameters were computed
using the two-temperature CFD solver, which can be treated as the input data in radiation computations.
Based on radiative properties of high-temperature gases using the LBL method, the forward-looking
infrared spectrum of the shock layer can be obtained, as shown in Figure 5. A comparison of the
infrared spectrum between computed and reference data indicates that the current model is in good
agreement with the results of NERD and NEQAIR-IR.

 

Figure 5. Comparison of spectral radiance between calculated and reference data: (a) spectrum of H2O;
(b) spectrum of CO2; (c) spectrum of NO.

3.5.3. Validations of Infrared Optical Observability

In this paper, the detection range calculation model was derived from the NEFD model, which is
based on the relationship between the total target flux density at the sensor location and the SNR, namely,
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NEFD = Ptar/SNR. The target flux density Ptar was mainly determined by the target’s self-radiation
intensity and atmospheric transmission. NEFD was determined by the sensor performance and the
background radiated noise. The reliability of the NEFD and SNR models was validated against
the observation results of a laboratory temperature-controlled blackbody by Richter and Fries [47].
It is demonstrated that the error between the SNR based on the NEFD model and the experimental
measurements is less than 5%. Therefore, the reliability of the infrared optical observability module is
determined by the target flux density Ptar, which depends on the radiation transfer calculation model.

An available reference dataset to verify the current transfer model is the ground-based observation
of an Atlas rocket exhaust plume. The observation schematic diagram is shown in Figure 6a.
In Reference [48], infrared radiation spectra of the Atlas rocket exhaust plume are numerically
presented. Detailed calculation conditions (geometry, boundary, inflow, etc.) of the plume were given
in Reference [48] and our prior work [49,50]. In this section, self-radiation of the exhaust plume is
studied using our IRSAT (infrared signature analysis tool) code [49], whereby the spectrum can be
used to compute the apparent radiation received by the sensor using the model described in Section 3.3.
The calculation steps are as follows: (1) the self-radiation spectrum of the plume is obtained without
soot at the altitude of H = 40 km by IRSAT, and (2) the apparent radiation spectrum is calculated
at the pupil of the sensor using the module in Section 3.3, in which the plume is treated as a point
source. A comparison of the apparent radiation spectrum received by the sensor between computed
and reference results is shown in Figure 6b. It is indicated that results of the current infrared optical
observability model are in good agreement with the reference data.

 

Figure 6. Validation of infrared optical observability: (a) observation schematic diagram of the
ground-based sensor for Atlas rocket exhaust plume; (b) comparison of the spectrum received by the
sensor between computed and reference results.

4. Results

4.1. Thermal–Optical Flow Field

In this study, a cube calculation domain was adopted for the OTV. Considering the symmetry
of the geometry, one half of the geometric model was used for fluid simulations. All grids were
structured, and their distribution is shown in Figure 7. For the conjunction heat transfer calculation,
the computational domain was divided into fluid and structure domains. The grids of the two
computational domains demonstrated a one-to-one correspondence at the interface. Generating grids
in two domains used a total of 102 blocks. The fluid domain consisted of 23 million grids, and the solid
domain contained 1.24 million grids with 80,000 shell grids. It was indicated in previous studies that
the mesh Reynolds number should be kept below two to guarantee the precision of the heat flux on
the surface of a hypersonic aircraft [51]. Therefore, the first wall–normal spacing from the wall was
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arranged to be approximately 1 × 10−5 m from the wall in this study. In addition, grids near the wall
and in the potential shock-layer region were also refined.

 
Figure 7. Grid distribution of OTV: fluid computational domain consisting of outlet (red), symmetry
plane (green), and far-field and inlet (blue) boundaries. The partially enlarged detail at the top right of
the figure shows the structure computational domain.

In the calculations, the inflow and far-field boundaries applied free stream conditions with uniform
pressure and temperature. A supersonic outflow boundary was employed. The gas–solid interface was
specified for the fluid and structure sides, respectively. The structural materials were assumed to be
the stainless steel, whose properties can be seen in Reference [42]. In the structure domain, a radiative
transfer wall with an emissivity of 0.85 was specified at the outer surface, and a wall with an initial
wall temperature of 300 K was used for the inner surface. According to the OTV’s flight regime as
shown in Figure 1, seven computing trajectory points were selected for analytical calculations. In this
study, it was assumed that the angle of attack (AOA) was zero during the flight and that the flow field
reached the steady state at these computing points. The detailed freestream conditions are listed in
Table 1.

Table 1. Freestream conditions at computing trajectory points.

Parameter Values

h, km 10 20 30 40 50 60 70
p∞, Pa 26,500 5529 1197 287 79 22 5
T∞, K 223 216 226 250 271 247 220

u∞, km/s 0.22 0.38 0.98 1.81 2.84 4.51 6.10

Based on these conditions, the steady reacting flows in these cases were calculated. A machine
with 52 central processing unit (CPU) cores was used for parallel computation, taking about 80 h to
calculate the flow field for each computational case. The contours of the flow field parameters in the
two representative cases (30 km and 70 km) are shown in Figure 8, including the surface temperature,
fluid temperature, and species distribution.
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Figure 8. Contours of flow field parameters: (a) translational–rotational (upper) and vibrational–
electronic (lower) temperatures in the 70-km case; (b) mass fraction of NO in the 70-km case;
(c) translational–rotational (upper) and vibrational–electronic (lower) temperatures in the 30-km
case; (d) surface temperatures in the 30-km (left) and 70-km (right) cases.

4.2. Self-Emission of OTV

Self-emission is defined as the radiance in the fluid inclusion within an ambient cutoff temperature.
It is the radiance of the glowing surface and hot gases occupying a small space before considering
atmospheric attenuation. In this study, gas emissions of the four species including NO, CO, CO2,
and H2O were considered. Profiles of the radiance of two groups of typical detecting angles, described
by θ1 and θ2, are plotted in Figure 9. It can be seen from these illustrations that the distribution of
radiation intensity is associated with spectral bands and detecting angles. For different computing
points, the radiance distribution within the same band is similar, but the radiation intensity is quite
different. In order to examine the contribution of the gas and the surface to the radiance, the spectrum
distribution at the angle of θ1 = 0◦ is shown in Figure 10.

 
Figure 9. (a–d) Profiles of radiation intensity in two typical detection surfaces.
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(a) (b) 

Figure 10. Spectrum distributions in the top view (θ1 = 0◦) in the 50-km and 70-km cases: (a) gas
radiance; (b) surface radiance.

As a matter of fact, the detecting angle may be arbitrary during target detection. An angular
coordinate system was used to describe the radiance distribution at all possible angle. The observation
angle can be described by a pair of the circumferential angle (ϕ) and the zenith angle (θ). The x-axis is
defined as being in the direction toward the nose of the aircraft, while the z-axis is toward the back of
the aircraft. ϕ is the angle between the direction vector and the x-axis within the range of 0◦–360◦. θ is
the angle between the direction vector and the z-axis within the range of 0◦–180◦.

Figure 11 shows the contours of the radiance for the two representative cases of 30 km and 70 km
in 2π space, which shows that the distribution of radiance is strongly dependent on the angle of
observation and the spectral band. The peak intensity distributions for different computing points of
the two bands are shown in Figure 12.

 
Figure 11. TIR contours: (a) medium-wavelength infrared (MWIR) in the 30-km case; (b) MWIR in the
70-km case; (c) long-wavelength infrared (LWIR) in the 30-km case; (d) LWIR in the 70-km case.
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Figure 12. Comparison of maximum TIR radiance for different computing points.

4.3. Detecting Distance of the Ground-Based Sensor

Based on the above radiance, the MDR could be evaluated by considering the atmospheric
transmittance. In the calculation, a discrete angle of 10◦ was used for the angles of θ and ϕ, and a total
of 722 observation angles were considered in 2π space. It should be noted that the occlusion of the
horizon was also considered in calculating the detecting distance, as shown in Figure 1.

On the assumption that the NEFD was 10−12 W/cm2, the MDR contours within the MWIR and
LWIR bands are shown in Figure 13. It can be seen from the figure that the MDR of the rear-most
parts of the aircraft (θ = 90◦, ϕ = 180◦) was the shortest. This was attributed to the low-temperature
tail section and parts concealed by the high-temperature gas in the shock layer and partial surfaces.
Figure 13c also presents a three-peak structure, which is distinctly different from the other three
illustrations. In the 30-km case, the MDR of the MWIR band was greater than that of the LWIR, which
was reversed in the 70-km case. This phenomenon was similar to the distribution of the radiance as
shown in Figure 11. The MDR profiles of the MWIR and LWIR bands as a function of the altitude are
shown in Figure 14.

 

Figure 13. Maximum detector distance distributions: (a) MWIR for the 30-km case; (b) MWIR for the
70-km case; (c) LWIR for the 30-km case; (d) LWIR for the 70-km case.
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Figure 14. Maximum detection range (MDR) profiles for different test points. There are four typical
zones: blind region (A-zone), LWIR strong receiving region (SRR) (B-zone), equivalent zone (C-zone),
and MWIR SRR (D-zone).

4.4. Effect of Sensor Detectivity on MDR

To examine the effect of the detectivity on the MDR, a detectivity equivalent of NEFD = 10−14 W/cm2

is employed in this section. Figure 15 shows the profiles of the peak MDR for seven computing points.
The MDR profiles for the MWIR and LWIR bands also intersected at the characteristic altitude of
40 km. Comparing these results with Figure 14 shows that the characteristic altitude decreased as the
detectivity increased. Above 40 km, the peak MDR did not drop, as shown in Figure 14.

Figure 16 shows the contours of the MDR increment for different detection angles from NEFD
= 10−12 W/cm2 to NEFD = 10−14 W/cm2. Profiles of the peak increment of the MDR are shown in
Figure 17. It can be seen from this figure that the peak MDR increment increased as the altitude
increased. The increments of the two bands were almost identical at altitudes of 30 km and 70 km.
In this region, the maximum increment of the MDR in the MWIR band was higher than that in the
LWIR band. This indicates that the increase in detectivity was helpful for increasing performance in
the MWIR band.

 
Figure 15. Maximum improve distance for different test points.
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Figure 16. MDR increments: (a) MWIR for the 30-km case; (b) MWIR for the 70-km case; (c) LWIR for
the 30-km case; (d) LWIR for the 70-km case.

 
Figure 17. Profiles of MDR maximum increments.

4.5. Infrared Optical Image of the Sensor

While below the MDR, the aircraft’s optical signature can be received by the pupil aperture of the
detection system, and the TIR image fills the detector’s pixels. At greater distances, the TIR intensity is
captured by only a few pixels. To examine the distribution of radiant energy in the detector pixels,
the imaging characteristics of the OTV are analyzed in this section.

Imaging is associated with the field of view (FOV) and the resolution of the detection system.
Usually, the FOV of the scanning telescope has a wide range of 0.01–100 mrad [52–54]. As the FOV
and the detection distance increase, the number of pixels receiving the TIR irradiance decreases.
This number may even decease to one or a few pixels. In this study, three artificial FOVs were
used for analyzing the distribution of TIR images, including α/2 = 0.01◦, α/2 = 0.05◦, and α/2 = 0.1◦.
All calculations were simulated on the assumption that the aperture of the system consisted of
100 × 100 pixels.

To display an enlarged image, partial background regions are removed in Figure 18a. In order
to get the images below the same detection distance, an assumed distance of R = 30 km was used in
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both the 30-km and 70-km cases. Figure 18b–f show the upward-view TIR images with α/2 = 0.05◦.
Figure 18b shows the result without the mesh clipping.

 

Figure 18. TIR images at an artificial detecting distance R = 30 km: (a) Pixel arrangement of target and
background regions; (b) LWIR image without mesh clipping for 70-km case; (c) LWIR image for 30-km
case; (d) LWIR image for 70-km case; (e) MWIR image for 30-km case; (f) MWIR image for 70-km case.

To analyze the TIR distribution for different observation angles, the computing point of H = 70 km
was selected. Figure 19 shows the TIR images of R = 70 km at α/2 = 0.01◦ and α/2 = 0.1◦. Imaging was
calculated in the front (θ = 90◦, ϕ = 0◦) and oblique-side (θ = 90◦, ϕ = 135◦) views. The upper left
corner of the figure shows plots of the images at α/2 = 0.1◦, and the right side of the figure presents the
ratio of the peak intensity at α/2 = 0.1◦ to that at α/2 = 0.01◦. It can be seen from Figure 19 that the
image nearly became a point when the FOV increased to α/2 = 0.1◦.

 

Figure 19. TIR images of two typical observation angles for the 70-km case: (a) MWIR at ϕ = 0◦, θ = 90◦;
(b) LWIR at ϕ = 0◦, θ = 90◦; (c) MWIR at ϕ = 135◦. θ = 90◦; (d) LWIR at ϕ = 135◦, θ = 90◦.
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Figure 20 shows the peak intensity profiles of the TIR image at α/2 = 0.01◦ for different trajectory
points. All calculations were performed on the assumption that R = H. The corresponding images
within the MWIR and LWIR bands are illustrated at the top and bottom of the figure, respectively.

 

Figure 20. Profiles of peak intensity and TIR images for different computing points.

5. Discussion

The flow field contours of Figure 8 show that the high-temperature region of the surface occurred
mainly at the windward surface of the nose and wing leading edges, and the temperature peak
reached 2110 K in the 70-km case and 560 K in the 30-km case. In fluid regions, a distinct thermal
nonequilibrium effect appeared in the case of 70 km, but these regions, appearing in the shock layer
around the nose, were small. The mass fraction of NO generated by air dissociation was as high as
0.35. In the 30-km case, the aerodynamic temperature was drastically reduced in comparison with the
70-km case, and the flow was in thermal equilibrium.

In the top-view observation, the radiation of both the overall wake flows and most parts of the
shock layer could be observed. It was demonstrated that the peak intensity radiation of the gases
occurred mainly at the 2.7-μm (H2O), 4.3-μm (CO2,) and 5.3-μm (NO) bands. The spectrum of the
surface radiation was smooth, and its peak intensity could be found around the short-wavelength
region. A comparison of the radiation intensity between in Figures 10a and 10b indicates that the gas
radiance was at least one order of magnitude lower than that of the surface.

From Figure 11, it can be found that the MWIR radiance was lower than the LWIR for the 30-km
case, but this phenomenon was reversed for the 70-km case. These two computational cases were
significantly different for the MWIR radiance. There were four high-intensity areas in the case of
30 km and two in the 70-km case. This can be explained by the fact that the peak wavelength of the
surface emission (in accordance with Planck’s law of gray-body radiation) moved toward the shorter
wavelength as the temperature increased. The peak intensity did not occur in the front (θ = 90◦, ϕ = 0◦)
or top (θ = 0◦, ϕ = 90◦) view, but in the oblique-side (θ = 22.5◦, ϕ = 67.5◦ or ϕ = 337.5◦) view. It can be
observed that the two profiles intersected at the altitude of 35 km, which was the characteristic altitude
Hc that separated the LWIR strong-emission regime (SER) and the MWIR SER.

In Figure 13, several phenomena can clearly be observed. Firstly, the MDR of the LWIR band was
larger than that of the MWIR band at altitudes below 50 km (B-zone), which was a strong receiving
regime (SRR) in the LWIR band, compared to the results shown in Figure 12, in which the characteristic
altitude was shifted back by 15 km. Secondly, the target could not be detected at altitudes below 30
km using the MWIR band, which was a blind region (A-zone). In this figure, the gray dotted line
indicates that the MDR was below the flight altitude H. Thirdly, there was an equivalent zone between
50 km and 60 km (C-zone) where the MDR was almost identical in two bands. Lastly, the MDR of the
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LWIR band decreased after 60 km in altitude, resulting in the presence of an SRR in the MWIR band.
This phenomenon was related to radiance features and atmospheric attenuation.

It can be observed from Figure 16 that the MDR increment had typical characteristics. In the
30-km case, the MDR increments for most angles were approximately distributed on an equivalent
flat plane except for a small fluctuation. Figure 16a,c show a heel-shaped distribution due to a low
MDR increment in the back view. This indicates that an increase in the detectivity could improve the
MDR in low-altitude cases. In the 70-km case, Figure 16b shows a crater-shaped distribution of the
MWIR band, which was significantly different from Figure 16a. The values in the center region were
larger than those in the marginal regions of the contour. For the LWIR band in Figure 16d, there was a
three-peak shape, which reveals that the increase in the detectivity could greatly improve the MDR in
the back and front views for high-altitude cases.

From Figure 18, the mesh clipping treatment demonstrated an obvious improvement in the
imaging. These images also show that the TIR distributions in the 70-km and 30-km cases were both
significantly different, and the peak intensity at 70 km was at least one order of magnitude higher than
that at 30 km. It is demonstrated in Figure 19 that a smaller FOV could contribute toward capturing
the TIR characteristics, but it required a more sensitive detectivity due to the reduction in TIR intensity
for a large FOV. It can be seen from Figure 20 that the peak intensity difference in the LWIR images
was within one order of magnitude, whereas the difference varied greatly for the MWIR images.
Furthermore, there was an intersection between the two profiles that was attributable to the detection
distance and the target’s radiance. In addition, TIR features of the nose and flanges became pronounced
as the altitude increased. For the LWIR images, the difference in intensity distribution was small above
altitudes of 40 km.

6. Conclusions

To examine the detection range and TIR images of an Earth entry vehicle, a complete numerical
model was developed by analyzing a ground-based IR detection system and the physical mechanism of
the TIR radiation. The proposed model was established considering optical radiative properties, optics
propagation, atmospheric attenuation, and TIR arrangements in the pixels. Computer simulations were
performed using known parameters for flight conditions and the IR detection system. The simulation
results indicated that the radiance was strongly dependent on the observation angle and the spectral
band. For the MWIR and LWIR bands, there was a characteristic altitude at which a strong-emission
regime was noted. The MDR increased and the characteristic altitude decreased as the detectivity of the
detector increased. The improvement in the detectivity could increase the MDR approximately linearly
at most observation angles of low altitudes, but the MDR could be greatly improved in high-altitude
cases. The TIR images showed that the mesh clipping treatment led to an obvious improvement
in the TIR distribution. For the same detection conditions, the difference in the peak intensity for
different trajectory points was at least one order of magnitude in scale. In addition, a smaller FOV
could contribute toward capturing the TIR characteristics, but it required more sensitive detectivity
due to the reduction in TIR intensity. The MWIR TIR features became more pronounced as the altitude
increased, and those in the LWIR images were more suitable for detecting the aircraft’s configuration.

In further work, a sensitivity study and an uncertainty estimate of the numerical simulation
should be carried out. Also, a more refined photodetector model should be used for evaluations of the
detectivity of the target, and the effect of weather conditions on infrared optical observability should
be considered in future work.
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Nomenclature

A0 pupil area of the objective lens system, m2

Ad pixel area of the detector, m2

Ai,j,k visible area of the kth surface element in the i × j pixel, m2

At effective radiation area of the target surface, m2

c speed of light, 2.99979 × 108 m/s
C1, C2 first and second radiation constants
d degeneracy factors for state
D*(λ) normalized system detectivity
El energy of the lower state
Δf frequency bandwidth of the detector circuitry
Frot term value of rotational state
g photoconductive gain
Gvib term value of vibrational state
h Planck constant, 6.6206896 × 10−34 J·s
kB Boltzmann constant, 1.38064852 × 10−23 J·K−1

I radiation intensity, W/(sr·m2·μm)
M number of segments in optical path
N number density of species
ni outward normal of the target surface element Ai
P spectrum intensity arrived at the detector, W/(sr·μm)
Q(T) partition function
R distance between the target and the detector, m
q irradiance received by each detector pixel, W/m2

s position
s optical path vector
S(Tref) line intensity under the standard condition
Vi,p pth vertex of the element Ai
Greek
η wave number, cm−1

Φ line shape function
ε emissivity
λ wavelength, μm
τ(λ,R) atmospheric transmittance with a distance of R
τ0(λ) spectral transmittance of the optical system
Subscript
u, l upper and lower limits of spectral band
tar target
bg background
a atmospheric air
s surface of aircraft

Abbreviations

ASL above sea level
AOA angle of attack
CFD computational fluid dynamics
FVM finite volume method
FOV field of view
HYTHIRM hypersonic thermodynamic IR measurements
LOS line-of-sight
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LWIR long-wavelength infrared
MDR maximum detecting range
non-LTE local thermodynamic nonequilibrium
NEFD noise equivalent flux density
OTV orbital test vehicle
RTE radiative transfer equation
TIR thermal infrared
SRC sample return capsule
SNR signal-to-noise ratio
SRR strong receiving region
STS space transportation system
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