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Preface to “Ocular Tissue Engineering” 
Tissue engineering is a rapidly growing area, and complex three-dimensional 

tissue substitutes are emerging. Although cells are routinely cultured outside the 
body, current research shows that tissue engineered constructs can be used as 
replacement tissues for damaged or diseased human organs. This book is an 
outgrowth of a Special Issue of the Journal of Functional Biomaterials (JFB) 
devoted to Ocular Tissue Engineering and contains both original research and 
review articles. Each of the articles included here provides an up-to-date analysis 
and cutting edge technology in this fast growing field. Biomaterials and 
nanotechnology in cellular processes, as well as in ocular disease, are highlighted. 
We sincerely hope that readers will enjoy these articles and be inspired by the 
ideas presented. 

Dimitrios Karamichos 
Guest Editor 





 
 

 

Chapter 1:                                     
An Editorial 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 



Ocular Tissue Engineering: Current and
Future Directions
D. Karamichos

Reprinted from J. Funct. Biomater. Cite as: Karamichos, D. Ocular Tissue Engineering:
Current and Future Directions. J. Funct. Biomater. 2015, 6, 77–80.

Tissue engineering (TE) is a concept that was first emerged in the early 1990s
to provide solutions to severe injured tissues and/or organs [1]. The dream was to
be able to restore and replace the damaged tissue with an engineered version which
would ultimately help overcome problems such as donor shortages, graft rejections,
and inflammatory responses following transplantation. While an incredible amount
of progress has been made, suggesting that TE concept is viable, we are still not able
to overcome major obstacles. In TE, there are two main strategies that researchers
have adopted: (1) cell-based, where cells are been manipulated to create their
own environment before transplanted to the host, and (2) scaffold-based, where
an extracellular matrix is created to mimic in vivo structures. TE approaches for
ocular tissues are available and have indeed come a long way, over the last decades;
however more clinically relevant ocular tissue substitutes are needed. Figure 1
highlights the importance of TE in ocular applications and indicates the avenues
available based on each tissue.

In cornea, TE approaches are vital in order to maintain the transparent barrier
between the eye and the environment. Of the three corneal layers (epithelium, stroma,
and endothelium) probably the most difficult one to replace is the stroma. Stroma
is a thick, transparent middle layer, consisting of regularly arranged collagen fibers
along with sparsely distributed resident cells commonly known as keratocytes. The
corneal stroma consists of approximately 200 collagen fibril layers and account for
up to 90% of the total corneal thickness. Corneal transplantation is currently the only
surgical procedure for replacing damaged or diseased corneas. Damaged cornea is
replaced by donated corneal tissue in its entirety (penetrating keratoplasty) or in part
(lamellar keratoplasty). While the surgical procedure has been somewhat successful,
major problems remain including donor corneas shortage, risks of infection, and
graft rejection. In an attempt for an alternative avenue, several studies have reported
successful cultivation of corneal stroma, in combination with corneal epithelium
and endothelium, however the long-term in vivo data and clinical applications
are still lacking [1]. The corneal epithelium has been targeted by scientists and
a variety of TE applications using both cell and scaffold-based approaches have been
developed [2–6]. Studies reporting the successful transplantation of mucosal
epithelial cells [5,6] as well as limbal stem cells [2] are promising. Tissue grafts
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such amniotic membranes [3,4] have also been reported and used in humans. While
these have been assessed in clinical setting, long-term studies are still needed in
order to safely assess the benefits.

In lens, despite the limited number of studies developing TE solutions, there
is a clear need for cataract surgeries alternatives. Currently, lens opacification or
else known as cataracts are treated surgically by removing the lens and replacing
it with artificial intraocular lenses (IOL) [1,7]. Most of the people receiving cataract
surgery will need to come back for a second surgery due to the posterior capsule
opacification (PCO). PCO occurs because lens epithelial cells remaining after cataract
surgery have grown on the capsule causing it to become hazy and opaque [1,7,8].
Development of alternatives is almost nonexistent and urgently needed. One of
the few TE approaches was reported by Tsionis et al. [9] where a human retinal PE
cell line cultured in Matrigel was differentiated in lentoids and lens-like structures.
Nevertheless, therapies based on this technique or others are far away and it remains
unknown if TE is the future for lens related clinical problems.

In retina, both cell and substrate-based TE approaches have been reported
mainly in animal models. Homologous retinal pigment epithelium (RPE) cells
have been transplanted in the subretinal space with no visual benefits to the
patients [10,11]. On the other hand autologous RPE transplantation resulted in
clinically significant improvement of vision; however the limited number of healthy
cells that can be isolated from the patient is a huge problem [12,13]. The concept of
the use of polymers for retinal TE is rather new and has only been emerged in the
last decade or so. As reviewed by Trese and co-authors [14] the ideal polymer for
retinal transplantation should be thinner than 50 µm, porous, biodegradable, and
have the correct Young’s modulus. Several polymers fulfill this criteria including
but not limited to poly(lactic-co-glycolic acid) (PLGA), poly(lactic acid (PLLA),
poly(glucerol-sebacate) (PGS), and poly(caprolactone) (PCL) [14,15]. However, only
a few studies have shown promising results using these or other polymers for TE
retinal applications. The combination of PLLA-PLGA polymer reported by Thomson
and co-authors [16] showed good RPE cellular viability, adhesion and proliferation
for the course of the month long study. However, the main limitation of this study
was the use of cell lines instead of primary cells which are known to be different
in terms of their behavior. The general consensus is that embryonic stem cells
(ESC) and induced pluripotent stem (iPS) cells are a better choice since they more
closely resemble actual RPE. This, however, remains to be seen. Regardless of the
cell source, technical challenges still remain before cell-substrate based therapies
can be successful.
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Figure 1. Schematic diagram highlighting the importance of tissue engineering (TE)
approaches in ocular tissues: cornea, lens, and retina.

In conclusion, the human eye with the different structures, cell types, and tissues
is an ideal candidate for TE approaches. The eye structures and the inadequate to-date
therapies make this a very attractive tissue for TE. This is well understood within
the scientific community and that is why significant discoveries and knowledge
advancements have been made. Perhaps the one tissue with the most success is
the corneal epithelium. There is no reason why the other structures cannot be
regenerated or reconstructed using TE techniques. The challenge here is to be able to
get the scientists, engineers, and clinicians to work together in order to tackle today’s
challenges and give our patients the best possible treatment.
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Intraocular Implants for the Treatment of
Autoimmune Uveitis
Darren J. Lee

Abstract: Uveitis is the third leading cause of blindness in developed countries.
Currently, the most widely used treatment of non-infectious uveitis is corticosteroids.
Posterior uveitis and macular edema can be treated with intraocular injection of
corticosteroids, however, this is problematic in chronic cases because of the need
for repeat injections. Another option is systemic immunosuppressive therapies
that have their own undesirable side effects. These systemic therapies result in a
widespread suppression of the entire immune system, leaving the patient susceptible
to infection. Therefore, an effective localized treatment option is preferred. With
the recent advances in bioengineering, biodegradable polymers that allow for a
slow sustained-release of a medication. These advances have culminated in drug
delivery implants that are food and drug administration (FDA) approved for the
treatment of non-infectious uveitis. In this review, we discuss the types of ocular
implants available and some of the polymers used, implants used for the treatment
of non-infectious uveitis, and bioengineered alternatives that are on the horizon.

Reprinted from J. Funct. Biomater. Cite as: Lee, D.J. Intraocular Implants for the
Treatment of Autoimmune Uveitis. J. Funct. Biomater. 2015, 6, 650–666.

1. Introduction

Uveitis is the third leading cause of blindness in developed countries [1–3], with
an incidence of 52–93 cases per 100,000 persons per year and a prevalence of 115 cases
per 100,000 persons [4,5]. Uveitis can affect different parts of the eye and the affected
part distinguishes the different types of uveitis. Anterior uveitis involves the iris,
cornea, and ciliary body, intermediate uveitis involves the vitreous and pars plana,
and posterior uveitis is an inflammation of the retina [6,7]. Posterior uveitis can be
devastating to vision and is difficult to diagnose and treat [8], whereas anterior uveitis
is more common and can be easier to diagnose and treat [9]. Following an initial
episode of anterior uveitis the recurrence rate is 36% for three or more episodes within
five years [10]. Suppression of the inflammation can be achieved through the use of
topical corticosteroids, but is an ineffective long-term solution because the steroids
also cause cataracts and glaucoma [11–13]. The administration of systemic steroids is
more effective than topical steroids for posterior uveitis and has a lower incidence of
elevated intraocular pressure and cataracts [14]. However, systemic steroids can have
much more serious side effects, such as weight gain, hyperglycemia, osteoporosis,
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gastrointestinal ulceration, intense mood changes, depression, and violent aggressive
behavior [15].

The current treatment paradigm for autoimmune uveitis focuses on the
use of non-steroidal immunosuppressive therapies to keep the ocular inflammation
suppressed [1]. These therapies include anti-metabolites, such as methotrexate [2,16,17];
calcineurin inhibitors, such as cyclosporine A [2,18]; DNA alkylating agents, such
as cyclophosphamide and chlorambucil [2,18]; and biologics, such as Adalimumab
and Infliximab [19–22]. Most of these therapies are systemic treatments that are not
specific for the eye so can cause systemic side effects. Therefore, a localized treatment
approach has the advantage of avoiding systemic complications. Intravitreal injection
of methotrexate or sirolimus is a localized treatment approach for chronic uveitis, but
does not always lead to sustained suppression, so is not a viable long-term solution
in every case [17,23,24]. Moreover, frequent invasive intravitreal injections can lead
to retinal detachment, hemorrhage, or endophthalmitis. There is clearly a need for a
localized treatment approach for autoimmune uveitis and retinal diseases. In this
review, we will discuss the different types of FDA approved intraocular implants,
some of the polymers involved in their composition, and what other implants are on
the horizon.

2. Biodegradable Implants

An implantable long-lasting sustained release of medication is advantageous
for treatment of ocular disease because it allows for effective delivery to the posterior
region of the eye and eliminates the need for frequent intraocular injections of the
medication. This sustained release can be achieved by imbedding a biodegradable
polymer with the medication so as the polymer is degraded the medication is
released. The process of converting a hydrophobic polymer into a water-soluble
material is termed erosion. Erosion can occur through either surface-erosion or
bulk-erosion. The type of erosion that occurs is dependent on the permeability of
the polymer to water and the rate at which erosion of the polymer occurs. If the
polymer erodes slower than water can penetrate into the core, the surface continues
to erode as the molecular weight decreases and is termed surface-erosion [25]. In
bulk-eroding polymers the water penetrates into the polymer faster than degradation
of the polymer resulting in degradation of the entire material [25]. Because of the
penetration of water into the polymer during bulk-erosion, interaction of the water
with the medication can result in the destruction of the medication before it can be
released. Another problem with bulk erosion polymers is auto-catalysis, in which
the core is degraded quickly and once a pore is eroded the drug will be suddenly
released—resulting in a sudden increase in drug release [25,26]. Since the type of
polymers influences the surface or bulk erosion properties, the choice of materials
is important to consider for the application. The bulk-erosion polymer would be
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useful for tissue engineering where a permeable membrane is useful for hydrolytic
diffusion [27]. In the case of a desired sustained delivery, surface-eroding polymers
would be more appropriate because of the stable drug release [28]. Biodegradable
implants are advantageous because they do not require removal when the drug has
been exhausted [25].

2.1. Bulk-Eroding Polymers

Polyglycolide or poly(glycolic acid) (PGA) has been used as a degradable suture
since 1970 [29]. Glycolic acid is readily incorporated by cells through the citric acid
cycle [30]. However, it can affect the pH and elicit an inflammatory response [31–33],
so can be problematic for ocular implants.

Polylactide or poly(lactic acid) (PLA) has four different chiral forms [34].
Depending on the chirality, PLA can take 1–5 years or more to completely degrade [35].
Because of the extended degradation time research on PLA has been limited as such,
PLA alone has not been explored as a potential drug delivery system [36–39]. Instead,
PLA can be combined with PGA to form poly(lactide-co-glycolide) (PLGA) in order to
accelerate the degradation time. Moreover, by changing the ratio of PGA to PLA the
degradation time can be adjusted from 1–2 months to 5–6 months [40]. PLGA has been
used for sutures since 1974 [41], and has been used for the delivery of proteins [42–45],
anti-inflammatory drugs [46,47], and siRNA [48–50]. Unfortunately, two drawbacks
to PLGA is that PLGA degradation products can both lower the pH and bulk-erosion
can result in a sudden increase of the drug and destruction of the medication due to
water that has diffused into the matrix [51–53].

Polycarpolactones (PCL) have been used as a contraceptive that delivers
levonorgestrel for over a year and has been on the market for over 25 years [54].
Because degradation of micro-particles and nano-particles occurs over 2–3 years,
blending with other polymers, such as PLGA is done to accelerate erosion [49,55,56].

2.2. Surface-Eroding Polymers

Polyanhydrides are a class of polymers that contain two carbonyl groups joined
by an ether bond [34]. Hydrolysis of this bond results in two carboxylic acids that are
readily metabolized, so can lower the pH. Polyanhydrides are unique because the
polymer backbone has a direct relationship with the degradation rate that can vary
by more than six orders of magnitude [56,57]. Combining aromatic and aliphatic
diacids can slow degradation and extend drug delivery from days to years [28].

Polyacetals have two ether bonds connected to the same carbon (germinal)
and maintain a milder pH because they do not degrade into carboxylic acids [58].
Some degrade when entering the lysosome at pH 4–5 [58] and have been used
to deliver siRNA, DNA, and proteins for acute inflammation [59–66]. Despite
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these properties, polyacetals have found limited used because they do not meet
the mechanical strength needs of most implant applications.

Polycarbonates are very stable and consist of two geminal ether bonds and
a carbonyl bond. It is thought that enzymatic degradation is responsible for
surface erosion of this polymer [67]. Poly(trimethylene carbonate) (PTMC) is the
most characterized polycarbonate [68]. In order to increase the mechanical and
degradation properties, PTMC is copolymerized with PLA, PCL, polyether, or
poly(L-glutamic acid) [69–74]. The copolymer used can give the polycarbonate
drastically different mechanical properties. A gel that rapidly degrades can be
made with polycarbonate and dihydroxacetone for use in clotting [75]. In contrast,
significant mechanical strength and slow degradation can be achieved if the
copolymer is a tyrosine-derivative, this can be used in tissue engineering of bone or
muscle [76–84].

3. Non-Biodegradable Implants

The use of biodegradable implants for ocular disease has been limited because
intravitreal injection of PLGA microspheres can cloud vision [85] and movement
of the implant into the anterior chamber or in front of the retina can be a
complication [8,86]. Some non-biodegradable implants can be anchored to the sclera
for easy removal and to prevent the implant from mobilizing into an inconvenient
position [87]. The variable drug release kinetics associated with biodegradable
polymers [8,26] can be avoided by coating the polymer with a non-biodegradable
polymer or through storage of the drug in a reservoir encased in a non-biodegradable
polymer [8]. The coating can be porous or have a small hole to allow for a small
area of diffusion, these typically have an initial burst that is followed by a consistent
release of the medication [8,25,88,89]. A depleted non-biodegradable implant has a
risk of irritating the tissue or eliciting an inflammatory response, so requires a second
procedure to have the implant removed [25,90].

Silicon and ethylene-vinyl acetate copolymer (EVA) are used as hydrophobic
membranes for non-biodegradable implants [8,91,92]. Poly(vinyl alcohol) (PVA) is
more hydrophilic, so is more permeable to a wider range of drugs [88]. Polyimide
has been used for a variety of applications from photovoltaic cells to biomedical
implants [8,25,93]. Poly(methyl methacrylate) (PMMA) is a clear plastic that can
be used for drug delivery [94]. Phosphatidylglycerol is a negatively charged
phospholipid that can be used as a vehicle for drug delivery [95].

4. FDA Approved Implants for Uveitis

Ozurdex® is sold by Allergan and has been FDA approved to treat macular
edema secondary to branch or central retinal vein occlusion and non-infectious
posterior uveitis. Dexamethosone is released from a PLGA matrix for up to four
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months (Table 1) and because it is completely biodegradable it does not need to
be removed at a later date [87]. No patients that received the Ozurdex® implant
required intra-ocular pressure (IOP) lowering medications or surgery, and only 17%
of patients experienced an increase in IOP of 10 mmHg or more [96–98]. Migration of
the Ozurdex® implant to the anterior chamber has been reported [86,99]. However,
it is possible that this complication can be avoided with careful screening of patients
for post-lensectomy-vitrectomy aphakia [100,101].

Retisert® has been developed by pSivdea Corp. (Watertown, MA, USA) and is a
non-biodegradable implant that delivers fluocinolone acetonide. It has been FDA
approved for noninfectious posterior uveitis. The PVA and silicon coating allows for
consistent release of fluocinolone for up to 30 months (Table 1) [87,101]. The Retisert®

implant has been associated with the development of cataracts [102] and an increase
in IOP of more that 10 mmHg in more than 60% of patients [102–104].

Table 1. FDA approved intraocular implants.

Implant Medication Method of
Implantation Size Release Time Reference

Ozurdex Dexamethosone 22 gauge
designer applicator

rod-shaped, 0.46 mm
diameter, 6 mm long up to 6 months [25,101]

Retisert Fluocinolone
acetonide surgical insertion

1.5 mm diameter,
6 mm long,
2 mm wide

up to 2.5 years [25,30,101,104]

IIuvien Fluocinolone
acetonide

injection with
25 gauge needle 3.5 mm ˆ 0.37 mm tube up to 3 years [8,25,87,101]

Vitrasert Gancyclovir surgical insertion 4–5 sclerotomy up to 8 months [25,101,105]

Surodex * Dexamethosone
25 gauge needle,
placed during

cataract surgery
1 mm ˆ 0.5 mm 7–10 days [25,101]

* Surodex has been approved for use in China and Singapore.

5. FDA Approved Implants for Ocular Disease

Iluvien™ is a non-biodegradable implant that delivers fluocinolone acetate
that is in a PVA matrix within a polyimide tube. The tube has membrane caps on
each end to allow for diffusion of water into the matrix. Iluvien has been FDA
approved for diabetic macular edema, and delivers medication for up to 36 months
(Table 1) [8,87,101].

Vitrasert® contains gancyclovir in a PVA matrix with a non-biodegradable EVA
coating. Gancyclovir is delivered for 5–8 months (Table 1) and is effective in the
treatment of CMV [101,105,106].

Surodex® is a poly(lactic-glycolic acid) device approved for use in China and
Singapore that is used to control post-cataract surgery inflammation. This is inserted
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in the posterior or anterior chamber during cataract surgery and dexamethosone is
delivered for up to 10 days (Table 1) [101,107–109].

6. Implants in Development

While the above-discussed implants have been effective for the treatment of
uveitis and other ocular diseases, these devices still have additional challenges. For
instance, if elevated intraocular pressure control is a concern, these corticosteroid
delivery devices should be carefully considered [97,100,102–104]. In this case topical
steroid use is preferred over injectable steroids because the topical steroids can
be discontinued if an increase in pressure occurs. Therefore, a tunable implant
that allows for control over the delivery of medication is advantageous to avoid
unnecessary delivery of the drug. This type of device would also be advantageous
because uveitis is a relapsing and remitting disease and it would be attractive to be
able to control the drug concentration depending on the disease state [110]. We also
discuss the development of non-steroidal immunosuppressive drug delivery devices.

6.1. Non-Steroid Implants

In order to avoid the side effects associated with sustained corticosteroid use
it would be advantageous to have a non-steroidal implant to deliver a localized
immunosuppressant to the eye. Methotrexate has been used safely and effectively
as a systemic treatment for noninfectious uveitis for years [16]. It can also be
injected into the vitreous as a localized treatment for uveitis [17,23,24]. A nanogel of
PEGylated poly ethyleneimine containing methotrexate has shown to be effective in
reducing joint inflammation in a murine model of arthritis [111]. Cyclosporine A is a
calcineurin inhibitor that has been used as a systemic treatment for uveitis [2,18]. PCL
and PGLC nanoparticles are being developed as a vehicle to deliver cyclosporine
A as an injection into the subconjunctiva or vitreous [112,113]. There has been
some investigation into tethering neutralizing antibodies such as, anti-TNF, to
polymers [112,114]. If these non-steroidal immunosuppressive medications could
be adapted as an ocular implant they would provide an excellent alternative to the
current sustained corticosteroid delivery devices.

Another interesting device in development is NT-501, through Neurotech,
Inc. NT-501 contains polyethylene terephthalate yarn that is loaded with retinal
pigmented epithelial cells (RPE). The polyethylene terephthalate yarn is contained
within a polysulfone [8,88] membrane that is sutured with a titanium loop to the
scleral wall. The semipermeable membrane allows for the diffusion of nutrients into
the device to sustain the RPE cells and diffusion of RPE products out into the vitreous.
Neurotech is developing this device for the treatment of retinitis pigmentosa, so the
RPE is genetically engineered to produce recombinant CTNF or VEGF neutralizing
antibodies or both [25,115–117]. If the RPE cells could be genetically engineered to
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secrete steroidal or non-steroidal immunosuppressive drugs, this could be another
excellent implant for the treatment of uveitis.

6.2. Tunable Implants

A healthy eye has a clear cornea and lens that allows for the passage of light to
the retina [118]. This property can be exploited to deliver a specific wavelength
of light to an implant in the vitreous. Polymers can be formulated to include
light sensitive components that allow for a permanent or temporary change in
the chemistry or structure of the polymer matrix to either trigger drug release or
prevent drug release [8,119]. Temporary photo-activated changes are achieved with
chromophores that allow for drug release only in the presence of the photo-stimulus
because when that specific wavelength of light is removed the chromophore returns
to the stable state [8,120]. In contrast, an irreversible change occurs with pyrene
derivatives when the light is removed [120]. Another type of photo tunable system is
to convert the light into thermal energy. This can be achieved by coating the polymer
with a nontransparent metal that converts the light into thermal energy [121]. The
thermal energy then breaks down the polymer to create permeable pores or an
orifice for the drug to diffuse out. This photo-activated technology is limited because
wavelengths of light more than 900 nm cannot penetrate the eye, and wavelengths
too short can cause damage to ocular structures [122]. In addition, many of the
chromophores are too toxic to use in biological systems [8].

Another noninvasive method to achieve precise control of drug release from a
polymer matrix is with magnetic fields. Magnetically modulated systems for drug
release utilize a matrix or reservoir-based design. The matrix systems consist of
magnetic particles imbedded in the polymer matrix. Upon exposure to a magnetic
field, the magnetic particles vibrate in the pores to increase the pore size and allow
for a greater rate of drug release [123]. The reservoir-based device contains one or
more magnetic components that allows for modulating the diffusion of the drug
with an external magnetic field [124]. Repeated usage of these devices results in
a reduced magnetic response [125], so long term usage is not practical. Moreover,
these devices would be problematic if computerized tomography (CT) and magnetic
resonance imaging (MRI). There is potential for this technology, but further research
is necessary before it can be implemented in the clinic.

Conductive polymers have both polymer and metal properties [8,126]. Since
1977, conducting polymers have been studied for many biomedical applications, in
particular for the electrically tunable property for drug delivery [127,128]. Electric
stimulation alters the redox state of the polymer to affect the charge, volume,
permeability and hydrophobicity. Because the volume of the polymer can be altered
it is possible to contain the drug in a reservoir and upon electrical stimulation
the volume change causes the drug to be released from the polymer [129]. These
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polymers are biocompatible, non-toxic, and allow for fine control of drug release [130].
They are also non-biodegradable and can be altered to biodegrade, but at the expense
of lowering the conductivity, and drug release capacity [131]. The disadvantage of
conductive polymers is that the power source requires a bulky battery and wires to
actuate the device.

The Micro Electro Mechanical System (MEMS) is an implant that achieves
actuation through temperature, electrical stimulus, magnetic field, or osmotic
pressure [124,132–134]. These devices consist of a reservoir and an actuator to
mechanically push the medication out of the reservoir upon proper stimulation.
Ideally, these devices have the advantage of being able to refill the reservoir [8] and
have lower power requirements, so a wireless signal could be employed [124,135].
Unfortunately, MEMS are still in the developmental stages as the reservoir is small
and the lifetime is less than a year [25]. However, a new model is in clinical trials that
could last up to five years [25]. There is also a magnetic stimuli responsive MEMS
implant being investigated to deliver medication to the posterior of the eye [124].
However, the long-term feasibility of this magnetic device is still to be determined as
discussed with the magnetically modulated systems.

7. Summary

The current treatment paradigm for chronic noninfectious uveitis is to suppress
the inflammation with localized or systemic immunosuppressive medications for
a period of time that is sufficient for the patient to be slowly weaned off of the
medications [1]. Presumably, during the time that the uveitis is suppressed the patient
establishes a regulatory immune response to provide a resistance to relapse [136–139].
It is also probable that some aspects of ocular immune privilege are re-established
during this period of immunosuppression [140].

If medication is providing systemic immunosuppression the patient will require
careful monitoring to ensure systemic side effects do not occur [15]. Systemic side
effects may be severe enough that termination of a treatment may be necessary and
will often be related to a relapse. This is where localized treatments are ideally suited
for uveitis patients. We have discussed several ocular implants for the treatment of
uveitis and other ocular disease. Another advantage of ocular implants is that they
are effective in delivering drugs to the retina [8].

The implants available for the treatment of ocular inflammation are either
biodegradable or non-biodegradable. Biodegradable implants have the advantage
of only requiring one procedure to install the implant, the disadvantage is that the
implant can move and the release rate of the medication is not consistent [8,25]. The
non-biodegradable implants allow for a continuous release rate and some can be
secured to the sclera to prevent movement away from the implant site and for ease of
removal [8,25,87]. Both types of implants have their advantages and disadvantages so
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until additional advancement can eliminate the disadvantages the ophthalmologist
will need to evaluate the implants carefully before choosing which is more appropriate
for the particular patient.

Current ocular implants available for the treatment of ocular inflammation
deliver dexamethasone or fluocinolone acetate, both of which can trigger an increase
in IOP [96,97,100,102–104,141]. This can be problematic, especially if a patient has
steroid induced glaucoma. Fortunately, there are additional implants in development
that deliver non-steroidal medication as an alternative to the current implants
available. Polymers imbedded with non-steroidal immunosuppressive drugs, such
as cyclosporine A and anti-TNF are in development and could provide an excellent
alternative to the current sustained release corticosteroid delivery devices available
for the treatment of uveitis and other ocular disease [88]. The development of tunable
ocular implants is desirable because the ability to control the drug release can help to
reduce side effects and can extend the availability of drug in the implant, thereby
extending the life of the device [8]. Another interesting device is NT-501, currently in
clinical testing by Neurotech, Inc. NT-501 is in development for retinitis pigmentosa,
but if found to be a feasible long-term treatment, it could be adapted to function for
ocular inflammatory disease as well.

The availability of implantable corticosteroid delivery devices has improved
the outcome for noninfectious uveitis patients, particularly those with posterior
uveitis [100,141]. This represents an exciting area of research and the success
of the current devices available has bolstered an interest in the development of
additional implants for the treatment of uveitis and other ocular diseases. In the
next 4–5 years, we should see the translation of many new drug delivery devices
into early stage implantable systems and we hope that many more ocular implants
that are currently in clinical trials will become available for the treatment of ocular
inflammatory diseases.
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A Closer Look at Schlemm’s Canal Cell
Physiology: Implications for Biomimetics
Cula N. Dautriche, Yangzi Tian, Yubing Xie and Susan T. Sharfstein

Abstract: Among ocular pathologies, glaucoma is the second leading cause of
progressive vision loss, expected to affect 80 million people worldwide by 2020.
A primary cause of glaucoma appears to be damage to the conventional outflow
tract. Conventional outflow tissues, a composite of the trabecular meshwork and
the Schlemm’s canal, regulate and maintain homeostatic responses to intraocular
pressure. In glaucoma, filtration of aqueous humor into the Schlemm’s canal
is hindered, leading to an increase in intraocular pressure and subsequent
damage to the optic nerve, with progressive vision loss. The Schlemm’s canal
encompasses a unique endothelium. Recent advances in culturing and manipulating
Schlemm’s canal cells have elucidated several aspects of their physiology, including
ultrastructure, cell-specific marker expression, and biomechanical properties. This
review highlights these advances and discusses implications for engineering a 3D,
biomimetic, in vitro model of the Schlemm’s canal endothelium to further advance
glaucoma research, including drug testing and gene therapy screening.

Reprinted from J. Funct. Biomater. Cite as: Dautriche, C.N.; Tian, Y.; Xie, Y.;
Sharfstein, S.T. A Closer Look at Schlemm’s Canal Cell Physiology: Implications
for Biomimetics. J. Funct. Biomater. 2015, 6, 963–985.

1. Introduction

The Schlemm’s canal (SC), named after the German anatomist, Friedrich
Schlemm and first identified in 1830 [1], is a unique, ring-shaped, endothelium-lined
vessel that encircles the cornea [2,3] (Figure 1). Anatomically, it is situated directly
against the juxtacanalicular (JCT) region of the trabecular meshwork (TM). As
a consequence, one of its primary functions is to deliver aqueous humor into
the collecting channels, following filtration through the TM. Because of its close
apposition to the JCT, not all SC cells are created equal. As a result, the SC is
divided into the inner and outer wall, each possessing endothelial cells that differ in
morphology [4], cell-specific marker expression [5,6], specialized cellular organelles,
and functions (Table 1). However, these differences may be due to the differences
in biomechanical environment between the inner and outer wall, rather than any
underlying biological or biochemical differences between the inner and outer wall
endothelia. The inner wall has been more extensively studied, as the greatest
resistance to aqueous humor outflow is generated in or close to the SC endothelium
that lines the TM [7–11]. Excessive resistance leads to elevated intraocular pressure
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(IOP), the leading modifiable risk factor for glaucoma. This review will focus on the
development, anatomy, biology and physiology of SC inner wall endothelial cells as
they are relevant to engineering the SC inner wall.
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Figure 1. Schematic of the conventional outflow pathway. The left inset shows
an expanded view of the Schlemm’s canal’s microanatomy detailing the cell
morphology of the inner and outer wall.

The inner wall of the SC is a unique endothelium, specialized to maintain
aqueous humor homeostasis, and IOP regulation in conjunction with the TM. Unlike
the TM, controversy remains regarding the SC, especially in terms of development,
its contribution to outflow resistance in normal and glaucomatous states, and its role
in ocular immunity. This is, in part, due to the very limited amount of SC tissue
available as well as the difficulty in isolating SC cells. Moreover, 2D culture of SC cells
on tissue culture plastic results in dedifferentiation of the SC cells [12], limiting its
utility as a clinical model. Advances in nanotechnology, particularly materials science,
have permitted cultures of SC cells in more biomimetic environments, leading to
significant advances in characterizing SC cell mechano-biology and physiology,
which highlights the extremely dynamic nature of the inner wall [13,14].
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Table 1. Characteristics of Schlemm’s canal endothelial cells.

Property Inner Wall Outer Wall

Morphology Cobblestone appearance [15] Smooth and flat [5],
continuous basement membrane [17]Discontinuous basement membrane [15,16]

Cell-specific marker Zipper-like VE-cadherin [18] Desmin
Reactivity to Factor VIII-related antigen [19]

Subcellular structure Giant vacuoles [20], paracellular pores [21] Weibel-Palade bodies [17]

Function
Aqueous humor filtration

UnknownIOP homeostasis [5,22,23]

2. Embryological Origin: Of Lymph or Blood?

One of the greatest controversies that surrounds the unique endothelial nature
of the SC is its embryological origin. Although earlier studies suggested a vascular
origin [17,24–26], recent publications establish the SC as a lymphatic-like vessel. In
humans, prenatal SC development begins at week 17 [5] and is completed by week
24 [27], whereas in mice, the SC development is postnatal [2]. The organogenesis
of the SC is a stepwise process in which SC progenitors are first specified in the
transscleral veins and bud off laterally to anastomose, with subsequent lumenization
and development into the mature SC (Figure 2) [28–30]. Park and Aspelund and
their respective coworkers elucidated key molecular mechanisms and characteristics
of SC progenitors for their terminal differentiation into SC cells, while contrasting it
with lymphatic cell development (Figure 2). Although in mice, SC development is
postnatal, unlike the embryonic development of the lymphatic system, both processes
involve migration of venous endothelial cell (VEC) progenitors that undergo precise,
orchestrated changes in key markers for subsequent acquisition of lymphatic identity
(Table 2) [28,31].
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Table 2. Summary of key signaling necessary for Schlemm’s canal or lymphatic
development in mice.

Lineage Development Progenitors Budding Lumenization/Sac
Formation

Separation from
Venous Vasculature

Lymphatic Embryonic

PROX1 [32],
Sox18 [33],

COUP-FII [34],
VE-cadherin [35]

PDPN [36],
VEFGR3 [37],
CCBE1 [38],
NRP2 [39],
RAC1 [40],

LYVE-1 [41]

NFATC1 [42],
GATA2 [43,44],

Calcr1 [45],
Ramp2 [45],

TIE1 [46]

Syk [47], SLP76 [47],
Runx1 [48],
PDPN [36],
Meis1 [49],

Clec2 [50,51],
CXADR [52]

Schlemm’s
Canal Postnatal VEGFR-2,

TIE 2 [2,28] PROX1 [2,28,55] VEFGR-3 [2,28] PECAM1,
VEFGR-3 [2,18,28]

The SC development may be classified into four stages, SC progenitor
cell-fate specification, lateral sprouting, lumenization, and separation from
venous vasculature. Unlike lymphatic progenitor cell-fate specification, the key
regulatory molecules and specific markers needed to mediate SC progenitor cell-fate
specification have not been clearly identified. Aspelund et al. demonstrated that
vascular endothelial growth factor (VEGF)-C is necessary to initiate migration of
VECs and lateral sprouting from the transscleral veins. Park and Aspelund and
their respective coworkers elegantly demonstrated that SC progenitor cells are
VECs that are positive for vascular endothelial growth factor receptor (VEGFR) 2
and the tunica interna endothelial cell kinase (TIE) 2. These SC progenitor cells
subsequently acquired PROX1 expression for lumenization and VEGFR-3 for
subsequent maturation into SC cells [2,28] (Figure 2). Truong et al. were the
first to demonstrate high expression of the lymphatic transcription factor, PROX1,
in SC endothelium, suggesting a closer similarity between SC endothelium and
lymphatic endothelium [54]. Both aqueous humor and VEGF-C are required for
proper SC development. VEGF-C (VEGFc+/LacZ) heterozygous mice exhibited
delayed budding of SC endothelial cells from the venous system and retarded
tubular fusion [2,28]. Meanwhile, reduction of aqueous humor resulted in
endothelial-mesenchymal transition and loss of the lymphatic identity [28]. Thus,
the SC in mice is a unique, specialized endothelium of vascular origin that undergoes
partial lymphatic reprogramming during postnatal development to acquire a
transient lymphatic identity required for maintaining its proper function in aqueous
humor homeostasis [2,28,55]. Similar to lymphatic cells, SC cells experience flow from
a basal to apical direction. While these studies were conducted in mice, expression
of PROX1 by SC endothelial cells in humans, zebrafish, and mice indicates that
the lymphatic-like identity of the SC is conserved in vertebrate evolution [2], and
suggests that similar developmental pathways are likely to occur in humans, albeit
prenatally rather than postnatally.

Despite their lymphatic nature and expression of several (though not all)
lymphatic markers, SC cells do not appear to have lymphatic origins. Kizhatil et al.
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recently detailed the organogenesis of the SC, which arises from the limbal
vascular plexis (LVP) and radial vessels (RV) deep in the limbus that run in a
direction perpendicular to the LVP. They coined the term canalogenesis to describe
this process [53]. Canalogensis, the authors argued, is very similar to vascular
development, emphasizing a more vascular origin or identity of the SC cells.
However, there are important differences between angiogenesis and canalogenesis.
In canalogenesis, following endothelial sprouting and tip cell formation, tip cells
migrate into an intermediate zone between the LVP and RV to interact and adhere to
each other, forming clusters of tip cells. The cells in these clusters divide, producing
a chain of cells which acquire PROX1 expression for formation and remodeling into
a tube, which is the SC. They further demonstrated that specification of the inner and
outer wall of the SC is established during development with differential expression
of key markers such FLT4 and PROX1.

Understanding the exact molecular footprint of SC organogenesis is at its infancy.
However, these studies have radically advanced our knowledge of organogenesis of
the SC. Still, important questions remain to be investigated to understand the critical
contribution of the SC to aqueous humor homeostasis and glaucoma pathogenesis.
For example, what determines the number of SC progenitors that will bud from the
transscleral veins? What is the exact molecular footprint of SC progenitors? What
triggers aqueous humor influx into the SC? What is the role of aqueous humor in
the acquisition of the SC phenotype? What additional key regulators and signaling
pathways are likely to participate in SC progenitor differentiation and maturation?
What are the molecular events that facilitate separation from the venous system?
What factors specify the cell fate of endothelial cells in the inner wall and the outer
wall of the SC? Answers to these questions will facilitate establishment of platforms
for manipulating SC progenitor cells to address the scarcity of SC cells available for
research as well as further our understanding of human Schlemm’s canal inner wall
(HSCIW) cell biology and physiology.

3. Schlemm’s Canal Anatomy

3.1. Macroarchitecture

The SC is located at the drainage or iridocorneal angle. The iridocorneal angle
is lined by the TM, which overlies the SC. Together, they make up the conventional
outflow tract and account for 50%–90% of aqueous humor outflow [22,54,56–58].
The SC is an endothelium-lined circular canal with branching of several aqueous
channels. Until recently, the anatomy of the SC was characterized by histological
stains, which estimated the SC cross-sectional area to be 1709 µm2 [58]. Recent,
live, 3D, non-invasive visualization has facilitated more detailed and physiological
measurement of the SC. As a result, the cross-sectional area is now estimated to vary
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between 4064 to 7164 µm2 [59–63], with many branched aqueous channels [64,65]
(Figure 1).

3.2. Microarchitecture

The macroarchitecture of the SC dictates its microanatomy. The SC is lined by
a continuous endothelium with tight junctions, which is divided into an outer and
inner wall with regards to its relationship to the JCT (Figure 1). The SC endothelium
that lies directly against the JCT is known as the inner wall and is the most celebrated
and studied. The remaining endothelia comprise the outer wall. The endothelial
cells of the inner wall differ from that of the outer wall in morphology, cell-specific
markers and functions. In contrast to the outer wall, inner wall endothelial cells
lie on a discontinuous basement membrane [15,66] and are specialized to handle
flow in a basal-to-apical direction like lymphatic endothelium. The endothelial cells
of the outer wall are differentiated from the inner wall endothelia by the presence
of Weibel-Palade bodies [17], a positive desmin stain [67], and strong reactivity to
Factor VIII-related antigen [17]. Because of their location against the JCT, the inner
wall endothelial cells experience a unique biomechanical microenvironment that
subjects them to a basal-apical pressure gradient. As a consequence, endothelial cells
of the inner wall exhibit pores and giant vacuoles, as well as F-actin arrangements
that are distinct from that of the outer wall [68]. Outer wall endothelial cells have
stellate actin arrangements throughout much of the cell as compared to prominent
peripheral F-actin bands observed in inner wall endothelial cells [68]. Giant vacuoles
are not intracellular structures, but rather deformations of the inner wall to create
a small potential space between the extracellular matrix (ECM) of the JCT and the
inner wall [5]; whereas pores are inner wall structures with sizes between 0.6 and
3 µm [13] that mediate aqueous transport into the SC and may account for the SC
contribution to aqueous outflow [21,69–72].

Two types of pores have been identified and characterized, I-pores (transcellular)
and B-pores (paracellular) [21,73], which differ in location, sensitivity to strain and
mechanisms of formation [13]. While B-pores result from local disassembly and
widening of intercellular junctions, I-pores may be a result of fusion of the apical
and basal cell membranes that may come into apposition as the cytoplasm thins
under applied strain, with caveolae, vesicles, or “mini-pores” [13,74,75]. In addition,
Braakman et al. recently illustrated aqueous outflow segmentation mediated by these
pores, mainly B-pores [23]. Glaucomatous eyes exhibit decreased density of these
pores, highlighting the vital role of the inner wall in aqueous humor homeostasis.
Therefore, a goal of SC-targeted therapies might be to increase pore density and
hence outflow, thus lowering IOP in glaucoma.
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4. Characteristics of Human Schlemm’s Canal Cells

The cobblestone appearance of the HSCIW cells is attributed to the significant
biomechanical load experienced as well as the segmental flow of aqueous
humor [5,76]. Segmental flow relates to the non-homogenous filtration of aqueous
humor in the JCT, with greater flow occurring through certain portions of the TM
and less through other portions, which has been attributed to the presence or absence
of pores within the HSCIW [23,77,78]. The degree of biomechanical stress directly
affects the morphology of the inner wall, as its endothelial cells are described as
elongated and aligned to the longitudinal axis of the SC, with some flattened and
some with dome-like outpouchings (giant vacuoles) [13,57]. Because of their unique
development, SC cells share morphological characteristics and cell marker expression
with both lymphatic and venous endothelial cells (Table 3). In conventional 2D
culture, SC cells are characterized as a homogeneous and elongated monolayer.
The characteristic monolayer exhibits a net transendothelial electrical resistance
of 10 Ω¨ cm2 or greater [79], an absence of myocilin induction by dexamethasone,
and expression of vascular endothelial cadherin (VE-cadherin), integrin α6, and
fibulin-2 [79,80]. In vivo, SC cells are positive for PROX1 (with much higher levels
for HSCIW cells than outer wall cells), integrin α9, and CD31, but negative for
the differentiated lymphatic markers LYVE-1 and podoplanin, as well as the blood
vessel marker SMA [2,28,55,79,80]. The cytoskeleton of SC cells is enriched in both
microfilaments and intermediate filaments, and has a prominent actin-enriched cell
cortex [81]. Although traditional 2D culture systems allow for manipulation of the
SC endothelial cells, SC cells in traditional culture systems usually lose essential
signaling, both mechanical and biochemical, required for proper maintenance of their
in vivo phenotypes [5,79], reducing the utility of information obtained from such
systems. Therefore, 3D culture systems may promote in vivo-like SC morphology,
marker expression and function.
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Table 3. Comparison of Schlemm’s canal, lymphatic, and vascular
endothelial properties.

Molecular/Cellular
Characteristics

Schlemm’s Canal
Endothelium a Lymphatic Endothelium Vascular Endothelium

Sox18 – + [33] –
VEGFR-2 + [2,28] – + [82]
VEGFR-3 + [2,28] + [38] + [83]
PROX1 + [2,28,53] + [34] –
CCL21 + [2,28] – –
Itga9 + [2] – –

Collagen IV + [2] – –
PECAM1 + [18] – + [84]

VE-cadherin + [18] + [35] + [85]
Endomucin + [53] – –

Foxc2 + [2,28] – –
LYVE-1 – + [41] –

Podoplanin – + [36] –
vWF + [17] – + [86]

Wiebel-Palade bodies + [17] – + [86]
Endothelial monolayer continuous [5] continuous [29,87] continuous
Basement membrane discontinuous [5] discontinuous [29,87] continuous
Basal-to-apical Flow + [5,88] + [87,89] –

a Note that these studies did not distinguish between inner and outer wall endothelia.

We recently highlighted the importance of providing the proper 3D spatial and
biochemical cues in engineering a 3D SC in vitro model [90]. We demonstrated that
3D culture of HSC cells on microfabricated scaffolds with well-defined physical and
biochemical cues, rescued expression of key HSC markers, such as VE-cadherin and
PECAM1, and mediated pore formation, crucial for the SC regulation of IOP. Whether
the in vivo SC has been functionally or structurally replicated or even completely
simulated remains to be determined with studies of physiological and structural
responses to drugs and modulation of genes expression for genes such as VEGF-C.

5. Biomechanics

As a result of its location against the JCT, the HSCIW experiences a
biomechanical microenvironment that is much closer to that of lymphatic endothelia
than that of vascular endothelia. Similar to lymphatic endothelium, the HSCIW
endothelia experience a basal to apical pressure gradient during aqueous outflow.
Unlike lymphatic endothelium, the HSCIW endothelium is sealed by tight junctions,
and thus, must support the basal-to-apical pressure drop between IOP and episcleral
venous pressure, which tends to deform HSCIW cells off their supporting basement
membrane, creating giant vacuoles [89,91–94]. As a result, HSCIW cells are highly
contractile [95] with an estimated elastic modulus of 1–3 kPa, similar to, but
somewhat larger than other endothelial cells [88,96]. In addition, as a consequence
of the basal-to-apical flow, HSCIW cells also exhibit transcellular and paracellular
pores to mediate aqueous humor transport [21,97–99]. Their unique location against
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the JCT subjects HSCIW endothelial cells to biomechanical signals from the JCT’s
ECM [100], causing modification of gene expression to accommodate changes in
substrate stiffness. HSCIW cells stiffen in response to increasing substrate stiffness,
with glaucomatous HSCIW cells being more sensitive to substrate stiffness and
having a larger stiffening response [88]. HSCIW cells’ ability to adapt to large
deformations and respond to their microenvironment is reflected in a cytoskeletal
arrangement enriched in actin microfilaments and intermediate filaments [81].
Clearly, the HSCIW’s biomechanical microenvironment plays an important role
in maintaining HSCIW cells phenotype and proper function.

6. Perspective on Schlemm’s Canal Engineering

Although conventional 2D tissue culture is currently the primary system for
evaluating and characterizing HSC cell properties, its limitations have severely
impeded our understanding of trabecular outflow physiology as well as glaucoma
pathology and drug screening. Currently, there is no glaucoma therapy that lowers
IOP via mechanisms that target the physiology of HSCIW endothelial cells. This is,
in part, due to our poor understanding of the pathology at the SC, particularly the
HSCIW during glaucoma development as well as the lack of an in vitro system for
3D culture of these cells under flow conditions, which is necessary to capture their
in vivo characteristics and obtain relevant clinical information. The remainder of this
review will highlight the main challenges and opportunities in establishing cellular
microenvironments for engineering 3D HSCIW constructs, including sources of
HSCIW cells, biomaterials to mimic ECM, and soluble factors to direct and maintain
functional HSCIW differentiation.

6.1. Criteria for a 3D in Vitro Model of the Schlemm’s Canal Inner Wall

Until recently, HSC cell culture has been limited to traditional 2D culture
or culture on microporous Transwell® inserts. These studies have resulted in a
tremendous amount of information on cell biology, physiology, and biomechanics.
More importantly, these studies have highlighted the limitations of current systems
as well as the critical attributes that a 3D in vitro system should recreate to correlate
well with the in vivo characteristics and physiologic cellular response. From these
studies, it is clear that any in vitro 3D model of the HSCIW should perform the
following functions:

(1) Express key cell-specific markers, necessary for the endothelial integrity
and mechanosensing;

(2) Display both paracellular and transcellular pathways vital to aqueous outflow
function of the SC;
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(3) Mimic the in vivo cellular micro architecture with respect to morphological
features such as a cellular dimensions or surface area of cell-cell interactions
within the cultured monolayer, the spatial distribution of subcellular organelles
(vacuoles), the complexity of tight junctional strands;

(4) Allow for ease of culture using phenotypically stable cell lines to facilitate
high throughput screening. Thus, a well-characterized in vitro 3D model of
the HSCIW would provide a system in which to study and understand the
physiology, biomechanics, outflow functions, physiological drug responses as
well as pathological processes in glaucoma.

6.2. Potential Sources of Human Schlemm’s Canal Inner Wall Endothelial Cells

One of the biggest challenges facing SC inner wall engineering is the scarcity
of these cells [101]. Selective isolation of HSC cells from the limited amount of
corneoscleral remnants remains an art. To date, very few laboratories [6,79,102,103]
have developed complex protocols for successful isolation and culture of these cells
and have become the primary supply sources for HSC cells, which will certainly
contain both inner and outer wall HSC cells. In addition, successful isolation of
these cells depends on a variety of uncontrollable factors, such as the age of the
donor, duration of storage of the tissue after surgical removal before cell isolation,
etc. These challenges have dramatically hindered the availability of SC cells for
research and speak to the need to identify new ways of obtaining these cells. Stem
cell differentiation [104–106] is an attractive avenue to explore as an alternative way
of obtaining HSC cells with possible selection for HSCIW cells. Although stem cell
differentiation to generate TM cells has been successfully documented [107–110],
there are no reports addressing SC differentiation from stem cells. Recent
publications [2,28,55] on the organogenesis of the SC have highlighted key factors and
signaling molecules (e.g., PROX1 [32], VEGFR-3) that are necessary for acquisition of
the SC phenotype from transscleral veins. These recent studies suggest the possibility
of using primordial endothelial cells and/or venous endothelial cells [111–114] as a
strategy to obtain HSCIW cells through directed differentiation (Figure 3).

6.3. Biomaterials for 3D Culture of Human Schlemm’s Canal Inner Wall Cells

In addition to the scarcity of HSC cells, challenges in conventional 2D culture
of HSC cells have impeded our understanding of the functional contribution of the
SC to outflow physiology and glaucoma pathology. HSC cells in conventional 2D
culture are distinct from their in vivo counterpart as they lose expression of key in vivo
cell-specific markers [18,79,80]. This dedifferentiation speaks to the need to engineer
an in vitro model of the SC that can mimic the in vivo microenvironment, eventually
capturing the 3D in vivo characteristics of these cells. Given that the SC inner wall
layer is only a few microns thick [96,115], a top-down approach to engineering the
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inner wall may be the most feasible strategy. In the traditional top-down approach,
exogenous biocompatible and mechanically competent scaffolds are fabricated for
3D culture of the cells, which are then allowed to populate the scaffold, deposit and
remodel their ECM.
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endothelial cells.

Scaffolds are fundamental to tissue engineering. Their functions include
providing mechanical support, supporting ECM production and cell colonization,
and waste-nutrient exchange [116–118]. As a consequence of its endothelial
origin, scaffold materials and fabrication techniques being used in vascular tissue
engineering can provide insight into engineering the SC [119–122] although different
geometries will be required due to the unique nature of the SC canal, in particular,
the polarization between in the inner and outer wall. Successful biomaterials for
scaffolding for SC engineering might incorporate synthetic polymers, for their
mechanical strength and well controlled porosity [123], and natural polymers, for
their biochemical cues. In our previous work, we adapted the negative photoresist,
SU-8, to provide the necessary topographical and mechanical cues while using
the hydrogel Extracel™ to promote cell attachment and maintenance of SC cells
differentiated functions [90].

Micro and nanofabrication techniques, such as lithography and electrospinning,
are versatile fabrication techniques widely used in production of fibrous and
porous scaffolds for vascular tissue engineering. Given the porous nature of the
conventional outflow tract, scaffold considerations for SC engineering should be
tailored to mimicking the pore structures (e.g., pore size, porosity), and in particular,
extracellular, biochemical, and biomechanical microenvironments of the region
directly against the SC, the JCT. Pore sizes and ECM fiber diameters in the JCT
range from 2 to 15 µm [16]. Thus, scaffolds with various permutations of these
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properties might facilitate 3D culture of SC cells. In addition, biochemical cues
play a paramount role in maintaining cell phenotype and function. The JCT ECM
components, by virtue of their location against the HSCIW, might be providing key
biochemical signaling for HSCIW cell growth and function. Thus, natural polymers
of ECM components [8,124] like those found in the JCT, such as hyaluronic acid
and collagen IV can be used to provide biochemical cues for HSCIW cell growth
and function. Therefore, microfabricated scaffolds of synthetic polymers can be
surface-coated or chemically modified with ECM components found at the JCT-SC
border to provide key biochemical cues for successful HSCIW engineering. ECM
components, such as hyaluronic acid [125–127] and collagens [128–130], have been
used to support endothelial cell proliferation and function, indicating their potential
to modify microfabricated scaffolds for HSCIW engineering. Additionally, the
stratification of these ECM components at the JCT-SC interface highlights their
potential as scaffolding materials or scaffold supplements for 3D HSCIW cell culture.

6.4. Soluble Factors for Directed Schlemm’s Canal Cell Differentiation

Cellular differentiation is a result of coordinated dynamic expression of hundreds
of genes and proteins in precise response to external signaling cues [106,131], which
include soluble factors and spatio-physical cues from the ECM. Soluble factors
mediate cellular differentiation by binding to cell surface receptors, thus activating
downstream signaling [132]. Lineage specification of soluble factors, of the same
stem cell type, differs depending on whether the stem cells were cultured in 3D
or 2D configurations. For example, when induced to differentiate in restrictive
ECM environments, adhesive, flattened human mesenchymal stem cells (hMSCs)
in 2D preferentially adopt an osteogenic phenotype, whereas round hMSCs in 3D
cultures preferentially undergo adipogenesis [133–135]. Thus, soluble factors and
spatio-temporal cues in 3D culture are vital in providing the microenvironment
necessary for differentiation, and may favor one lineage over another.

Park and Aspelund and their respective coworkers have elegantly elucidated
key molecular footprints of venous endothelial cell differentiation to SC cells.
Together, their data highlights the essential role of soluble factors such as VEGF-C,
VEGF-D and aqueous humor for venous endothelial cells to acquire SC cell identity
and for proper development of the SC. In addition, these data suggest the possibility
of using these factors to mediate differentiation of induced pluripotent stem cells
into SC cells [136]. Given the intimate relationship of the HSCIW to the JCT and
that TM development precedes SC development, it is equally likely that soluble
factors from the JCT cells may be vital to acquiring and maintaining the SC/HSCIW
phenotype. Several groups have documented that cytokine (TNF-α, IL1-α, IL-β, and
IL-8) release by TM cells mediates SC cell function in regulating aqueous humor
outflow [100,137,138], highlighting the possible role of TM cells and their soluble
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factors in SC differentiation. Nitric oxide (NO) has been extensively studied for its
role in modulating SC cell behavior to regulate aqueous outflow [3,103,139]. Because
of the important role that NO plays in facilitating SC cell functions and endothelial
junctional integrity, this warrants exploring the role of NO in SC development [140].
Furthermore, given the vascular origin of the SC and its lymphatic-like development
and characteristics, it is important to consider soluble factors involved in vascular
endothelial and lymphatic cell differentiation. Because of the unique biomechanical
environment of the SC, direct addition of soluble factors to a 3D culture of the HSCIW
cells may not be sufficient. Hence, controlled and sustained delivery of these soluble
factors may be crucial for successful differentiation. Thus, other approaches such as
nanoparticle-based delivery or conjugation to nanofibers that facilitate timed and
spatial release should be consider for the delivery of soluble factors to induce SC cell
differentiation and organogenesis [141–145].

6.5. Dynamic 3D Culture

The in vivo forces generated by aqueous humor flow play an important role
in the SC organogenesis [2,28]. They are vital in maintaining the morphology and
physiology of the HSCIW cells. Several groups have attempted to replicate the
dynamic microenvironment of HSCIW cells in vitro through culture on microporous
Transwell® membranes [100,146–148]. Together these studies have highlighted
possible mechanisms for aqueous humor transport across the HSCIW, namely via
formation of giant vacuoles and paracellular pores. They have further demonstrated
the important role of the pressure gradient in modulating the barrier function of
the HSCIW through regulation of junctional proteins. While these studies were
able to capture the in vivo cell polarization and provided tremendous information
regarding the biomechanics of the HSCIW, this system is not ideal to study aqueous
outflow, or to perform continuous perfusion, medium exchange or gradient studies,
particularly in response to key signaling factors like VEGF-C. These limitations are
due to the nature of Transwell® membranes, which are track-etched and possess
irregular pore structures or have low porosity (i.e., 4%–20%), indicating poor
topographical approximation [149] and limiting their performance for assessing
physiologic parameters [150]. In addition, culture of endothelial cells on Transwell®

membranes results in a less stringent endothelial barrier with the occurrence of
irregular patterns of cell adhesion or “edge effect” [151], hampering the integrity of
the endothelial monolayer. Thus, culture of HSCIW cells on Transwell® membranes
to assess physiologic parameters uniquely associated with these cells may limit the
clinical relevance obtained from such systems. Therefore, culture methods which
incorporate a dynamic flow element might be instrumental not only for HSCIW cell
differentiation, but for proper simulation and maintenance of the HSCIW phenotype
in vitro. Dynamic flow system such as direct perfusion bioreactors and microfluidic

40



devices that enable sophisticated control of the spatial, temporal profile of gradients
as well as flow velocities are more suitable to culture of SC cells.

The in vitro system we previously described overcame some of the limitations
of commercially available Transwell® membranes. Using photolithography
techniques, we fabricated highly porous SU-8 membranes with pre-defined
porosity, well-controlled, uniform pore size, shape, and beam width [90,152,153],
demonstrating that well-defined SU-8 scaffolds support a more in vivo-like SC
morphology, characterized by re-expression of key in vivo endothelial markers,
PECAM1 and VE-cadherin, pore formation and outflow function. This system
is a major step forward in the culture of SC cells, but it does not simulate the
in vivo structure, in terms of fluidic or mechanical stress [90]. More studies
are needed exploring 3D cultured cells in systems that can better simulate their
in vivo dynamic microenvironment [154]. For instance, several studies have
documented the importance of mimicking the dynamic microenvironment in
lymphatic endothelial cell culture, demonstrating the critical role of interstitial flow in
modulating lymphatic endothelial cell proliferation, migration and function [155,156].
In the case of cardiac cell differentiation, culture methods that incorporate a
dynamic flow element improve cardiogenesis, beating percentage in size-controlled
hESC-derived embryoid bodies (EBs), and cardiac gene expression at mRNA and
protein levels in mESC-derived EBs [157–160] when compared to traditional static
culture methods [161]. Therefore, in a similar fashion, replicating the dynamic
microenvironment via continuous perfusion through SC cells might result in
differences in cellular morphology, junctional complex expression and formation,
and even outflow regulation. In addition, commercial Transwell® membranes
are not ideal for co-culture, as they are too thick to allow for necessary cell-cell
communications and their low porosity for appropriate rate of nutrients and
paracrine signal exchange. Given that the HSCIW is in close apposition to the JCT, the
most optimal culture system for both the SC cells and trabecular meshwork cells, is a
co-culture on a membrane thin enough to allow for direct cell-cell communication,
paracrine signals and a membrane strong enough to withstand appropriate flow
velocities while under continuous perfusion. Thus, the fluid dynamics of the SC
must be captured in vitro, for proper simulation of the in vivo tissue to obtain more
clinically relevant responses, especially for drug studies.

7. Conclusions

The SC is a unique vascular endothelium with lymphatic-like characteristics
that functions to mediate IOP outflow homeostasis together with the TM. The exact
contribution of the SC is yet to be delineated. This is partly due to the lack of
an in vitro model that can facilitate 3D culture of HSCIW cells, recapturing their
in vivo phenotype and thus, obtaining more physiologically relevant information.
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Research efforts targeting the engineering of the conventional outflow tract and
its components are in their infancy. Applying nanotechnology for engineering the
conventional outflow tract has great potential to mimic the nanoscale structure and
outflow function of HSCIW cells. If successful, 3D culture of HSCIW cells will
provide a valuable in vitro model that may revolutionize current thinking on the
contribution of the SC to conventional outflow tract physiology and pathology and
will hopefully translate into new drug modalities for glaucoma, targeting the SC.
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Abbreviations

Calcr1 Calcitonin Receptor 1
CCBE1 Collagen and calcium-binding EGF domain-containing protein 1
CCL21 Chemokine (C-C motif) ligand 21
Clec2 C-type lectin-like receptor 2
COUP-FTII Chicken ovalbumin upstream promoter-transcription factor 2
CXADR Coxsackie virus and adenovirus receptor
Foxc2 Forkhead box protein C2
GATA2 GATA binding protein 2
Itga9 Integrin alpha-9
LYVE-1 Lymphatic vessel endothelial hyaluronan receptor
Meis1 Meis homeobox 1
Nfatc1 Nuclear factor of activated T-cells, cytoplasmic 1
NRP2 Neuropilin 2
PDPN Podoplanin
PECAM1 Platelet endothelial cell adhesion molecule
PROX1 Prospero homeobox protein 1
RAC1 Ras-related C3 botulinum toxin substrate 1
Ramp2 Receptor activity modifying protein 2
Runx1 Runt-related transcription factor 1
SLP76 Lymphocyte cytosolic protein 2
Syk Spleen tyrosine kinase
TIE1 Tunica interna endothelial cell kinase 1
TIE2 Tunica interna endothelial cell kinase 2
VE-cadherin Vascular endothelial cadherin
VEFGR-2 Vascular endothelial growth factor 2
VEFGR-3 Vascular endothelial growth factor 3
vWF Von Willebrand factor
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Human Keratoconus Cell Contractility is
Mediated by Transforming Growth
Factor-Beta Isoforms
Desiree’ Lyon, Tina B. McKay, Akhee Sarkar-Nag, Shrestha Priyadarsini and
Dimitrios Karamichos

Abstract: Keratoconus (KC) is a progressive disease linked to defects in the structural
components of the corneal stroma. The extracellular matrix (ECM) is secreted and
assembled by corneal keratocytes and regulated by transforming growth factor-β
(TGF-β). We have previously identified alterations in the TGF-β pathway in human
keratoconus cells (HKCs) compared to normal corneal fibroblasts (HCFs). In our
current study, we seeded HKCs and HCFs in 3D-collagen gels to identify variations in
contractility, and expression of matrix metalloproteases (MMPs) by HKCs in response
the TGF-β isoforms. HKCs showed delayed contractility with decreased Collagen
I:Collagen V ratios. TGF-β1 significantly increased ECM contraction, Collagen I,
and Collagen V expression by HKCs. We also found that HKCs have significantly
decreased Collagen I:Collagen III ratios suggesting a potential link to altered collagen
isoform expression in KC. Our findings show that HKCs have significant variations
in collagen secretion in a 3D collagen gel and have delayed contraction of the
matrix compared to HCFs. For the first time, we utilize a collagen gel model to
characterize the contractility and MMP expression by HKCs that may contribute to
the pathobiology of KC.

Reprinted from J. Funct. Biomater. Cite as: Lyon, D.; McKay, T.B.; Sarkar-Nag, A.;
Priyadarsini, S.; Karamichos, D. Human Keratoconus Cell Contractility is Mediated
by Transforming Growth Factor-Beta Isoforms. J. Funct. Biomater. 2015, 6, 422–438.

1. Introduction

Keratoconus (KC) is an ecstatic corneal thinning disease that is linked to severe
dysfunction in the structural and refractive properties of the cornea [1]. KC affects
over 1 in 2000 people worldwide [2]. Age-onset of KC is generally early puberty to
middle age and can develop into a progressive disease with detrimental effects on
visual acuity [3,4]. Corneal transplantation is the most common option for severe
cases [5]. While recent advancements in collagen cross-linking have provided hope
for strengthening the KC cornea, its long-term effectiveness and safety has yet to
be established [6–8]. The molecular pathogenesis of KC is still unclear, and there
is currently no animal model for KC. We have previously developed a 3D in vitro
model of KC disease that mimics the in vivo condition [9]. We have shown that human
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keratoconus cells (HKCs) have an altered phenotype compared to normal human
corneal fibroblasts (HCFs) characterized by decreased extracellular matrix (ECM)
thickness, increased expression of fibrotic markers, and elevated oxidative stress in a
self-assembled 3D-model [9,10]. In our current study, we sought to investigate the
HKC disease phenotype in a floating 3D collagen gel matrix in order to measure the
contractility of HKCs compared to HCFs, which may provide further insight into
molecular defects present in HKCs that give rise to corneal thinning.

Floating 3D collagen gels have been used to study fibrosis and contractility in
various cell types, including smooth muscle cells [11], retinal pigment epithelial
cells [12], and fibroblasts [13–15]. This model utilizes a detached, free-floating
collagen gel to mimic the surrounding ECM found in many tissues. Moreover,
this 3D model is extremely useful in identifying the role of intracellular defects,
such as those observed in HKCs, which may alter the ability of fibroblasts to attach
and pull the surrounding collagen ECM. In this model, the cells begin to contract
the surrounding ECM, an activity characterized by the formation of stress fibers,
which are responsible for the puckering, stretching, and pulling observed when scar
formation occurs [16]. Contraction of the ECM by resident cells is required in normal
wound healing processes to promote wound closure [17,18]. However, variations in
contractility or altered response to growth factors can contribute to development of
fibrosis or inability to respond to external stimuli that may delay healing and cause
permanent damage to the tissue [19,20]. An altered wound healing response enacted
by KC stromal keratocytes in the presence of excessive eye rubbing has been posited
to play a role in KC development [21–23].

Within the healthy cornea, stromal keratocytes reside natively in an ECM
composed primarily of Collagen I (Col I) and Collagen V (Col V) in a ratio of 80:20
along with small glycoproteins and crystallins [24–26]. This assembled ECM is
important in regulating intracellular processes and provides the structural integrity
and refractive power of the cornea [27]. Various studies have identified significant
variations in collagen lamellae organization within KC corneal buttons compared
to normal controls [28,29]. Furthermore, significant variations in proteoglycan and
Col I within KC corneas suggest the presence of deleterious defects in secretion and
assembly of the ECM within the stroma that contribute to the KC pathology [30].
Collagen III (Col III) has been found to be upregulated in KC corneal buttons with
scarring [31], and we have found that HKCs secrete [32] and assemble [9] higher Col
III in a 3D in vitro model compared to normal HCFs. Furthermore, a mutation in
the Col V locus has been linked to KC development suggesting a potential genetic
association between defective collagen assembly and KC [33]. These studies suggest
that altered distribution of Col I, III, and V may play an important role in the altered
ECM assembled in KC.
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TGF-β signaling has been shown to be an important regulator of ECM
secretion [34,35], cell differentiation [36,37], and proliferation [38]. There are three
primary ligands, TGF-β1, -2, and -3, which are known to modulate downstream
genes expression. The pro-fibrotic ligands, TGF-β1 and TGF-β2, activate the
canonical TGF-β pathway leading to expression of factors indicative of myofibroblast
differentiation, including α-smooth muscle actin (α-SMA) and Collagen III [39,40].
Interestingly, TGF-β3 has been identified as promoting an anti-fibrotic wound healing
response with reduced expression of fibrotic markers, but increased native ECM
deposition [9,41]. We have previously identified [9,42] significant defects in HKC
ECM assembly and the TGF-β pathway, and therefore we sought to investigate
the effects of the TGF-β ligands on contractility, collagen deposition, and matrix
metalloproteases (MMP) expression by HKCs compared to normal HCFs. To date,
this is the first published report using 3D collagen gels to identify novel defects
present in HKCs that may contribute to structural defects and corneal thinning.

2. Results and Discussion

2.1. Contraction Profiles of HCFs and HKCs

In order to define the role of the surrounding matrix on contractility, we utilized
a pre-assembled 3D collagen gel with seeded HKCs and measured rate of contraction
compared to normal HCFs. We measured changes in the area of the gel matrix
biweekly for 4 weeks in control, TGF-β1, -2, and -3 treated samples using light
microscopy, as shown in Figure 1 for representative control samples. At day 1, we
identified a 57 mm2 (16%) reduction in gel area by HCF controls compared to a
12 mm2 reduction (7%) in matrix area in HKCs (Figure 2A, p < 0.0001). By day
12, HCFs had contracted the matrix at an average rate of 20 mm2/day compared
to a contraction rate of 15 mm3/day by HKCs (Figure 2E,F). The initial delay in
contractility by HKCs corresponded to an incremental delay in shrinkage of the
matrix area compared to HCFs, both of which reached maximal contraction by day
26. However, the average rate of contraction from day 0 to day 26 were comparable
between HCFs and HKCs (10 mm2/day and 9 mm2/day, respectively) showing that
though HKCs have an initial delayed contractility compared to HCFs, the KC cells
eventually reach similar HCF average contraction rate (Figure 2E,F).

In order to identify if HKCs have a differential response to the TGF-β isoforms,
we stimulated HCFs and HKCs seeded in the 3D-collagen gels with the three TGF-β
isoforms and measured changes in contraction rate. TGF-β1 treatment had an
increased effect on contractility in HCFs with a decrease by 89 mm2 (32%) in gel
area observed from day 0 to day 1 compared to a 6 mm2 (2%) reduction by HKCs
(Figure 2B, p < 0.0001). This delay in contraction was resolved by day 12, at which
time, HKCs had contracted to 43 mm2, or 15% of the initial area, in the presence
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of TGF-β1, TGF-β2, or TGF-β3, which was similar to the contraction exhibited by
HCFs (Figure 2B–D). Moreover, our results show that TGF-β1 and TGF-β3 stimulate
more significant contraction at day 1 with a 89 mm2 (32%) reduction in gel size in
HCFs compared to a 48 mm2 (17%) reduction stimulated by TGF-β2 (Figure 2B–D,
p < 0.0001). The most significant rate of contraction by HCFs occurred on day 1
following TGF-β1, -2, or -3 stimulation with rates of 88 mm2/day, 47 mm2/day,
and 119 mm2/day, respectively (Figure 2E). HKCs exhibited negligible contraction
at day 1 but had contraction rates of 22 mm2/day, 26 mm2/day, and 25 mm2/day
following stimulation by TGF-β1, -2, and -3, respectively (Figure 2F). This data shows
that HKCs have reduced initial contraction, but reach similar contractility by day
12 (20 mm2/day) in the presence of TGF-β suggesting increased responsiveness by
HKCs to the TGF-β isoforms compared to HCFs. Moreover, TGF-β3 significantly
increased the rate of contraction at day 1 (120 mm2/day) by HCFs compared to
the control (58 mm2/day) (Figure 2E). This data suggests that the anti-fibrotic
TGF-β3 [43] increases contraction or wound closure by normal stromal fibroblasts
and mediates wound healing by directly modulating ECM secretion compared to
the fibrotic nature of TGF-β1 and TGF-β2. Further studies are needed to identify the
molecular mechanism by which TGF-β3 exhibits anti-fibrotic properties.
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Figure 1. Floating 3D-collagen gel seeded with untreated control (A) human corneal
fibroblasts (HCFs) and (B) human keratoconus cells (HKCs). Change in area of the
collagen gel was measured every other day using ImageJ software. Representative
images shown, n = 3.

Our results show that HKCs have an initial delay in contractility compared
to HCFs, which suggests that HKCs are less adept to perform wound closure
immediately following injury to the corneal surface. It is well-established
that resident cells bind weakly to collagen fibrils directly and instead require
linker-proteins, such as fibronectin, to bind to cell-surface integrins and the
surrounding collagen bundles [44,45]. TGF-β1 is known to promote expression
of both fibronectin [35,46] and integrin subunits important in wound healing [47–49].
Our 3D collagen model results show that HKCs are unable to establish initial binding
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to the collagen gel, but eventually bind and contract the matrix to similar HCF levels
by day 26. This data suggests that HKCs may have altered secretion of ECM-linker
proteins that delay binding to the pre-assembled ECM. TGF-β1, -2, and -3 stimulation
increased the rate of contraction by HKCs and enabled similar contractility to
HCFs by day 12, which suggests that TGF-β growth factors stimulate a more
contractile-phenotype by HKCs, perhaps by modulating expression of fibronectin
and cell-surface integrins.J. Funct. Biomater. 2015, 6 426 

 

 

 

 

 

Figure 2. Quantification of the contraction of the collagen matrix in HCFs and HKCs from 

day 0 to 26. (A) control, (B) TGF-β1, (C) TGF-β2, and (D) TGF-β3 samples. A significant 

reduction in area of the collagen matrix correlates with increased contractility. Rate of 

contraction from day 0 to day 26 for (E) HCFs and (F) HKCs. n = 3, error bars represent 
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Figure 2. Quantification of the contraction of the collagen matrix in HCFs and
HKCs from day 0 to 26. (A) control, (B) TGF-β1, (C) TGF-β2, and (D) TGF-β3
samples. A significant reduction in area of the collagen matrix correlates with
increased contractility. Rate of contraction from day 0 to day 26 for (E) HCFs and (F)
HKCs. n = 3, error bars represent standard error of the mean (SEM). (**** denotes
p < 0.0001, *** denotes p < 0.001, ** denotes p < 0.01, and * denotes p < 0.05.)
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2.2. Collagen Secretion by HCFs and HKCs

Corneal ECM organization and composition provides the structural, mechanical,
and physiochemical properties that define the integrity and function of the tissue.
KC is characterized by a thin corneal stroma that leads to corneal protrusion
and disruption of visual acuity. The major components of the corneal stroma
include collagen fibrils and the resident cell, corneal keratocytes, which secrete
and assemble the surrounding matrix. The TGF-β pathway is a primary regulator of
ECM production by stromal keratocytes. Several studies have identified significant
defects in TGF-β signaling and ECM composition [9,43,50,51]. Col I is the dominant
structural component of the corneal stroma [52]. Col V is a known regulator of
collagen fibrillogenesis and is present at 20% of total collagen composition within
the cornea [26,53], whereas Col III is not normally expressed in the uninjured
cornea [54,55]. In order to determine the effect of the 3D-collagen gel on ECM
secretion by HCFs and HKCs, we measured the amount of Col I, Col III, and Col V
secreted into the media by HCFs and HKCs (Figure 3A–C). Basal secretion of Col
I was reduced in HKCs by 12% compared to HCFs (Figure 3A). TGF-β1, -2, and -3
increased Col I secretion by 32%, 35%, and 52%, respectively, in HCFs, compared to
an increase of 51%, 17%, and 17% by HKCs, respectively (Figure 3A, p < 0.05). Col III
secretion did not increase significantly in HCFs following treatment with the TGF-β
isoform, while HKCs showed increased Col III secretion by 49% following TGF-β2
stimulation (Figure 3B, p < 0.05). Col V secretion was not significantly different
between the two cell types with or without TGF-β treatment suggesting a significant
role for Col I and III regulation between HCFs and HKCs (Figure 3C).

Since the composition of the stromal ECM is tightly regulated and ultimately
defines the structural integrity of the cornea, we measured the effect on Col I and Col
V ratios. Our results show that Col I/Col V is 47% lower in control HKCs compared
to HCFs (Figure 3D, p < 0.05). TGF-β1 treatment significantly increased this ratio by
91% in HKCs (Figure 3D, p < 0.001). We found that TGF-β2 and TGF-β3 treatment
increased the Col I/Col V ratio in HKCs, but not HCFs, by 39% and 59%, respectively.
This data shows that the TGF-β isoforms mediate increased Col I/Col V secretion
by HKCs suggesting that secretion of select collagen types are regulated by TGF-β
signaling, which may play an important role in the wound healing response within
the KC cornea. We also measured the effect of the TGF-β isoforms on Col I/Col
III secretion in both cell types. TGF-β1 and TGF-β2 treatment did not significantly
increase the Col I/Col III ratio in HCFs (Figure 3E). However, TGF-β3 treatment
increased this ratio by 67% (Figure 3E, p < 0.01) suggesting that TGF-β3 is a potent
regulator of expression of specific collagen isoforms by normal HCFs. Col I/Col III
increased significantly in HKCs following TGF-β1 stimulation by 70% with a lack of
change in this ratio with TGF-β2 or -3 treatment (Figure 3E, p < 0.05).
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Figure 3. (A) Collagen I (Col I), (B) Collagen III (Col III), and (C) Collagen V (Col V)
secretion measured from conditioned media by Western blot from week 1 to week
4. Data reported as ratios of (D) Col I/Col V and (E) Col I/Col III. n = 3. Error bars
represent standard error of the mean. (*** denotes p < 0.001, ** denotes p < 0.01, and
* denotes p < 0.05.)

Alterations in ratios of collagen isoforms from normal distributions are known
to contribute to corneal dystrophies [31,56]. We have previously shown that HKCs
synthesize a significantly thinner ECM compared to normal HCFs [9]. In the collagen
gel, seeded HKCs secrete lower Col I/Col V, of which Col V is known to be essential
for lamellae formation within the cornea [57], suggesting that collagen fibrillogenesis
may be directly modulated in KC. We found that TGF-β isoform treatments increased
the basal Col I/Col V ratio to HCF levels, suggesting that modulating TGF-β
signaling may alter ECM secretion in KC.
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2.3. mRNA Expression of Collagen I, III, and V by HCFs and HKCs

In order to determine if expression of pro-collagens correlated with collagen
secretion detected in the conditioned media, we quantified the expression of Col I,
Col III, and Col V, using RT-PCR in HCF and HKC at day 26 following complete
contraction of the matrix. We found an increase in all three collagen types by control
HKCs compared to HCFs (Figure 4A–C). We also identified a significant increase of
638% and 994% in expression of Col I and Col III, respectively, by HKCs following
TGF-β1 stimulation (Figure 4A,B, p < 0.05). In contrast, HCFs did not significantly
increase Col I, Col III, or Col V expression following stimulation with TGF-β isoforms
(Figure 4A–C). Our results show that HKCs are more responsive to TGF-β isoform
treatment compared to HCFs at day 26. This data suggests that fully contracted
HCFs have reduced expression of ECM components compared to HKCs.

We also quantified the ratios of collagens expressed in the fully contracted ECM.
At day 26, HKCs had increased Col III and Col V expression compared to Col I
(Figure 4A–C), which is the dominant collagen isoform produced by normal HCFs.
We measured similar Col I/Col V by HCFs and HKCs following full contraction
(Figure 4D). Interestingly, we found a substantial increase in Col I/Col V ratio by
HCFs following TGF-β3 stimulation. Both TGF-β1 and TGF-β3 increased the Col
I/Col V ratio in HKCs by 100%, whereas TGF-β3 increased Col I/Col V secretion
by 600% in HCFs (Figure 4D, p < 0.01). Col I/Col III ratio was significantly reduced
by >50% in HKCs in the presence and absence of the TGF-β isoforms (Figure 4E,
p < 0.05). A significant downregulation of Col I/Col III expression was noted, by
45% in control HKCs compared to HCFs (Figure 4E, p < 0.05). Moreover, we found
significant downregulation of Col I/Col III secretion in both cell types following
TGF-β1 stimulation supporting the conclusion that TGF-β1 acts as a pro-fibrotic
ligand within the corneal stroma. These results show that the Col I/Col III ratio
expressed by HKCs in the fully contracted matrix is significantly lower than that of
the normal HCFs.

Changes in the ratios of specific collagen types can affect the structural integrity
of the ECM and contribute to pathological defects in tissue structure, such as
those observed in KC. We found a significant reduction in Col I/Col III ratio by
HKCs compared to HCFs. This data supports earlier findings that HKCs have
a myofibroblast phenotype that promotes altered ECM structure [9,43]. We have
identified that HKCs have defective TGF-β signaling that contributes to expression
of pro-fibrotic markers [43]. Our results in this study show that HKCs have increased
responsiveness to TGF-β1, -2, and -3 stimulation with increased contractility and Col
I/Col V ratios, which alters the native composition and assembly of the surrounding
matrix. Since Col V is known to be important in collagen fibrillogenesis [26,53]
variations in its expression would be expected to directly affect lamellae assembly.
The aberrant expression of Col I/Col V and Col I/Col III in HKCs may be a source
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of pathogenesis and should be explored further to identify the effects on structural
integrity of the KC stroma.
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Figure 4. (A) Collagen I (Col I), (B) Collagen III (Col III), and (C) Collagen V (Col
V) expression and (D–E) ratios of Col I/Col V and Col I/Col III by HCFs and
HKCs at week 4 measured by RT-PCR. n = 3, error bars represent standard error
of the mean. (**** denotes p < 0.0001, *** denotes p < 0.001, ** denotes p < 0.01 and
* denotes p < 0.05.)

2.4. MMP1 and MMP3 Expression by HCFs and HKCs

MMPs are important in ECM degradation and remodeling within tissues [58].
Increased MMP activity has been posited to play a role in KC disease progression [59,60].
Previous studies have linked upregulation of MMP1 in KC corneal buttons
suggesting that degradation of the resident stromal collagen may contribute to
KC pathogenesis [61,62]. Furthermore, MMP1 gene expression is transcriptionally
regulated with MMP3 gene expression [63], which has yet to be linked to KC. Since
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KC is associated with thinning of the corneal stroma, we measured expression of
MMP1 and MMP3, which are important mediators of ECM degradation in tissues [58].
Interestingly, we measured a 10-fold increase of MMP1 expression in HKCs compared
to HCFs (Figure 5A, p < 0.01). There was no significant difference in basal expression
of MMP3 between HCFs and HKCs (Figure 5B). We found a significant increase in
MMP1 expression by over 10-fold with TGF-β1 treatment in both HCFs and HKCs
(Figure 5A, p < 0.01). TGF-β2 and TGF-β3 increased MMP1 expression by 9-fold
and 19-fold, respectively, in HCFs compared to a 2.4-fold and 5.3-fold increase in
HKCs (Figure 5A). MMP3 expression also increased in both cell types with TGF-β1,
-2, and -3 isoform treatment with a 5.5-fold, 2.4-fold, 5.3-fold, respectively, in HCFs
and 8-fold, 4.4-fold, 5.9-fold, respectively, increase in HKCs (Figure 5B).
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Figure 5. (A) MMP1 and (B) MMP3 expression in HCFs and HKCs measured
by RT-PCR at week 4. n = 3, error bars represent standard error of the mean.
(** denotes p < 0.01.)

We measured a significant increase in MMP1 expression, which agreed with
earlier reports showing upregulation of MMP1 in corneal buttons [61,62]. Basal
expression of MMP3 was not significantly different between HKCs and HCFs,
which suggests that MMP3 does not play a prominent role in KC pathogenesis.
We measured a significant increase in MMP1 and MMP3 expression in both cell types
following stimulation with the TGF-β isoforms. Furthermore, the TGF-β isoforms
regulate MMP1 and MMP3 expression in a similar manner between the two cell
types. This data supports published reports [64,65] showing that TGF-β signaling
increases MMP gene transcription. Our results suggest that an increase in basal
expression of MMP1 and MMP3 may play a role in KC development; however,
further work is warranted to determine if the altered ECM assembled by HKCs is
primarily a result of ECM secretion, rather than degradation. Our data also suggests
that activation of MMP expression via TGF-β stimulation following activation of the
wound healing process may contribute to an increase in ECM degradation, which
may be important in KC.
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3. Experimental Section

3.1. Cell Culture

Corneas were obtained by the National Disease Research Interchange (NDRI)
and processed as previously described [9,32,66]. Briefly, the endothelium and
epithelium were removed by scraping briefly with a razor blade, they were then cut
into ~ 2 mm ˆ 2 mm pieces. The pieces of stroma were allowed to adhere to the
bottom of a T75 flask for 30 minutes at 37 degrees Celsius before adding 10% Fetal
Bovine Serum (FBS) Eagle’s Minimum Essential Media (EMEM) to the flask. After
2–4 weeks the explants were passaged in 10% FBS in EMEM.

3.2. Collagen Contraction Assay

Rat-tail Collagen type I (Advanced Biomatrix) was mixed with EMEM on ice
with 125 µL EMEM per 1 mL Collagen. The pH was then adjusted to pH 7–8 with
1 M NaOH. HCFs or HKCs were added at a concentration of 5 ˆ 105 and mixed
slowly to avoid air bubbles. This mixture was plated in a 12 well plate at 1 mL per
well and incubated in 37 ˝C for 30 min to promote solidification. After congealing
1 mL of 10% FBS EMEM was added on top of the construct. The collagen matrix
constructs were released after 48 h of incubation by running a sterile blade around
the edges of the well. Contraction was measured every other day for 4 weeks starting
at 24 h after the initial release. Treated media was supplemented with 0.1 ng/mL
of TGF-β1, TGF-β2, or TGF-β3, and the area of the gel was quantified using ImageJ
software following imaging by camera. Changes in contraction were measured from
day 0 to day 26. The constructs were fully contracted by day 26, and we did not
observe any reduction in gel area after day 26.

3.3. RT-PCR

Fully contracted constructs at day 26 were placed into 1 mL Trizol and incubated
at 22 ˝C for 5 min. 200 µL chloroform was added before shaking vigorously
and centrifuging for 15 min at 1200 rpm. The supernatant was further purified
using the Ambion RNA kit (Life Technologies, Carlsbad, CA, USA), following the
protocol given, with the RNA being dissolved in 30 µL RNase free water. The
LVis plate (Clariostar, BMG Labtech, Ortenberg, Germany) was used to measure
the concentration and purity of the extracted RNA. A 10% solution of cDNA was
made with RNase free water to use for the PCR. While a ratio of 10:7 master mix
to RNase free water was made along with 2 µL of a 10% cDNA sample solution
and 1 µL of Taqman gene specific assay (Life Technologies) per well. This was
quantified using mean cT values obtained from life technologies Real Time Thermal
Cycler with standards conditions for Taqman gene expression probes (Applied
Biosystems, Foster City, CA, USA) for 40 cycles. The following probes were purchased
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from Life Technologies: MMP1 (Hs00899658_m1), MMP3 (Hs00968305_m1), and
Collagen I (Hs00164004_m1), Collagen III (Hs00943809_m1), and Collagen V
(Hs00609133_m1). GAPDH (Hs99999905_m1) and 18S (Hs99999901_s1) probes were
used as endogenous controls (Table 1).

Table 1. RT-PCR probes and their concentrations.

Probe Catalogue # Company Final Concentration

GAPDH Hs99999905_m1 Life Technologies 1ˆ

18S Hs99999901_s1 Life Technologies 1ˆ

Col I Hs00164004_m1 Life Technologies 1ˆ

Col III Hs00943809_m1 Life Technologies 1ˆ

Col V Hs00609133_m1 Life Technologies 1ˆ

MMP 1 Hs00899658_m1 Life Technologies 1ˆ

MMP 3 Hs00968305_m1 Life Technologies 1ˆ

3.4. Western Blot

Western Blot was performed on media collected from the contracting matrix
at 1 week. Total protein content within conditioned media was measured using a
BCA assay (ThermoScientific, Rockford, IL, USA). Samples were then normalized to
the sample containing the lowest protein content, thereby enabling equal loading
onto the gel. Media samples were then run on a 4%–20% pre-cast polyacrylamide
gradient gel at 130 V for 1.5 h then transferred to a nitrocellulose membrane on ice
at 100 V for 1 h. The membrane was blocked in a 5% milk solution in Tris-buffered
Solution with Tween20 for 1 h, then incubated overnight in a cold room with
1:1000 primary antibody. Antibodies used include: Collagen (ab34710; Abcam,
Cambridge, MA, USA), Collagen III (ab7778; Abcam), Collagen V (ab94673; Abcam)
(Table 2). After primary incubation, the membrane was washed for 5 min (3ˆ)
in Tris-buffered Solution with Tween20 before probing with secondary antibody
Goat anti-Rb Alexafluor 568 (Life Technologies, Grand Island, NY, USA) at room
temperature for 1 h with rocking. The membrane was allowed to dry before imaging
using ChemiDoc-it to image. Western blots were quantified using densitometry
utilizes pixels measured within each band.

Table 2. Western blot antibodies and final dilutions.

Antibody Catalogue # Company Dilution

Col I ab34710 Abcam, Cambridge, MA, USA 1/1000
Col III ab7778 Abcam, Cambridge, MA, USA 1/1000
Col V ab94673 Abcam, Cambridge, MA,USA 1/1000
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3.5. Statistical Analysis

Statistical analyses were carried out using a two-way ANOVA test calculated
by GraphPad Prism software. p < 0.05 were considered statistically significant.
Error bars represent standard error of the mean. Data is representative of three
independent experiments.

4. Conclusions

In this study, we found that HKCs have a significant reduction in initial
contractility of the matrix and altered Collagen expression compared to HCFs.
Contraction of the ECM is important in normal wound healing processes within the
cornea [67,68]. The defect in contraction exhibited by HKCs suggests that stromal
fibroblasts in KC corneas are less able to respond to external stimuli and have
delayed closure of the surrounding matrix following wounding. The failure to
respond properly to normal wound healing mechanisms following injury can cause
significant pathologies within the cornea [69,70]. The role of eye rubbing in KC
development has been posited [23], but has yet to be thoroughly explored as the
causative agent of KC pathogenesis. Our study suggests that HKCs have reduced
contractility and thereby are less able to perform normal wound closure within
the cornea following trauma, which may occur following continual eye rubbing.
Clearly, further work is warranted to identify the molecular defects present in HKCs
that contribute to this phenotype. The TGF-β isoforms have been detected in the
human tear film, with TGF-β1 as the dominant isoform [71]. In our study, we found
that the TGF-β isoforms mediate accelerated contraction of the matrix by HKCs
up to HCF levels supporting the potential role of altered TGF-β signaling in KC
pathobiology. Moreover, HKCs exhibited lower Col I/Col III and Col I/Col V ratios
compared to HCFs, suggesting a significant defect in collagen deposition by HKCs
that may support a defected corneal stroma ECM. Our results show that MMP1,
but not MMP3, was elevated in HKCs compared to HCFs suggesting that MMP1
may play a significant role in the KC pathology. Overall, our study identified novel
defects in HKCs that give rise to altered ECM contractility and composition that may
contribute to the pathological ECM present in KC. In future studies, we will identify
the molecular mechanism supporting reduced contractility by HKCs and relate this
data to the KC phenotype in vivo.
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Incorporation of Human Recombinant
Tropoelastin into Silk Fibroin Membranes
with the View to Repairing
Bruch’s Membrane
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Neil A. Richardson, Traian V. Chirila and Damien G. Harkin

Abstract: Bombyx mori silk fibroin membranes provide a potential delivery vehicle
for both cells and extracellular matrix (ECM) components into diseased or injured
tissues. We have previously demonstrated the feasibility of growing retinal pigment
epithelial cells (RPE) on fibroin membranes with the view to repairing the retina
of patients afflicted with age-related macular degeneration (AMD). The goal of the
present study was to investigate the feasibility of incorporating the ECM component
elastin, in the form of human recombinant tropoelastin, into these same membranes.
Two basic strategies were explored: (1) membranes prepared from blended solutions
of fibroin and tropoelastin; and (2) layered constructs prepared from sequentially
cast solutions of fibroin, tropoelastin, and fibroin. Optimal conditions for RPE
attachment were achieved using a tropoelastin-fibroin blend ratio of 10 to 90 parts
by weight. Retention of tropoelastin within the blend and layered constructs was
confirmed by immunolabelling and Fourier-transform infrared spectroscopy (FTIR).
In the layered constructs, the bulk of tropoelastin was apparently absorbed into
the initially cast fibroin layer. Blend membranes displayed higher elastic modulus,
percentage elongation, and tensile strength (p < 0.01) when compared to the layered
constructs. RPE cell response to fibroin membranes was not affected by the presence
of tropoelastin. These findings support the potential use of fibroin membranes for
the co-delivery of RPE cells and tropoelastin.

Reprinted from J. Funct. Biomater. Cite as: Shadforth, A.M.A.; Suzuki, S.; Alzonne, R.;
Edwards, G.A.; Richardson, N.A.; Chirila, T.V.; Harkin, D.G. Incorporation of Human
Recombinant Tropoelastin into Silk Fibroin Membranes with the View to Repairing
Bruch’s Membrane. J. Funct. Biomater. 2015, 6, 946–962.

1. Introduction

While strategies for tissue regeneration are often based upon the replacement
of lost cells, such efforts often ignore the significant contribution of extracellular
matrix (ECM) components to tissue structure and function. A good example of this
problem is illustrated through the attempts to treat age-related macular degeneration
(AMD) of the retina. In short, although the pathology of AMD involves significant
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changes to both cellular and ECM components, most efforts to date have been largely
focused on replacing only the cellular components and, especially, retinal pigment
epithelial (RPE) cells [1–4]. In doing so, healthy RPE cells are ultimately delivered
into sites containing an abnormal composition and arrangement of ECM components.
In order to address this issue, a number of groups have explored the potential of
a variety of biomaterials as temporary ECM substitutes to support the RPE cells
during cultivation and implantation [5,6]. In our case, we have focused on the
development of a substitute prepared from the silk structural protein, fibroin [7,8].
Using this strategy, we have demonstrated the feasibility of establishing functional
monolayers of RPE cells grown on fibroin membranes. These RPE monolayers share
several important features with those found within the healthy retina, including
apical-basal polarity, patterns of growth factor secretion and phagocytic function [9].
As such, fibroin membranes have potential as a vehicle for implanting cultured
RPE cells into AMD patients. Since the fibroin membranes will eventually degrade,
the incorporation of ECM components, or their precursors, within the fabricated
membranes may further facilitate subsequent development of a more permanent
ECM. The aim of the present study, therefore, was to examine the feasibility of
incorporating ECM components found naturally within the outer retina. More
specifically, we have examined the incorporation of the precursor protein from which
elastin fibres are produced, tropoelastin [10].

Our focus on tropoelastin arises from considering the composition of the
ECM that resides immediately posterior to the RPE, a structure known as Bruch’s
membrane. A functional, native Bruch’s membrane contains an elastin fibre-rich
core that is thought to facilitate tissue compliance during cycles of tissue expansion
and recoil as blood flows through the adjacent capillaries of the choriocapillaris [11].
The elastic properties of Bruch’s membrane may also serve to protect the delicate
connections that exist between RPE cells and the adjacent photoreceptor cells [12].
However, age-related changes, such as the accumulation of abnormal deposits
referred to as drusen, disrupt the biochemical and mechanical properties of Bruch’s
membrane [11]. Moreover, an aged Bruch’s membrane deters the survival of both
endogenous, as well as implanted, RPE cells [13–17]. Importantly, RPE cells have
been shown to produce microfibrils, and lysyl oxidase, the enzyme responsible for
converting tropoelastin into elastin fibres [18]. Thus, by implanting RPE cells in
conjunction with tropoelastin it may be possible to regenerate the core element of
a functional, native Bruch’s membrane following degradation of the fibroin-based
delivery template. In addition, since tropoelastin shares similar elastic properties
with elastin [10], it may also be possible to create fibroin-tropoelastin constructs with
physical and mechanical properties that are more favourable for establishing and
implanting RPE cell cultures than constructs based solely on fibroin.
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Two strategies for incorporating tropoelastin into fibroin membranes were
examined in this study. Membranes were produced from fibroin solutions
supplemented with recombinant human tropoelastin (fibroin-tropoelastin blend)
or prepared from alternating cast solutions of fibroin and tropoelastin (layered
approach). In the case of the blend, we commenced by optimizing the amount of
tropoelastin that can be added to fibroin solution without negatively impacting on the
attachment of RPE cells to the resulting membranes. Freestanding membranes were
subsequently produced from the optimal blend formulation, and by using the layered
approach. The two types of biomaterial membrane were subsequently compared
in parallel with standard fibroin membranes using a variety of criteria, including
morphology (scanning electron microscopy), secondary structure (Fourier-transform
infrared spectroscopy-attenuated total reflectance, FTIR-ATR), the distribution of
tropoelastin (immunofluorescence), the cultivation of RPE cells, and mechanical
properties. These studies led to some unexpected findings, especially in regard to
how tropoelastin in solution interacts with cast fibroin membranes.

2. Results and Discussion

2.1. Properties of Fibroin and Tropoelastin Solutions

During their extraction from silkworm cocoons [19], a significant proportion
of the native fibroin proteins (heavy chain 350 kDa and light chain 26 kDa) were
cleaved into fragments of varying molecular weights (Figure 1). In contrast, human
tropoelastin produced via recombinant DNA technology [20] displayed a single
band by gel electrophoresis, at approximately 55 kDa (Figure 1). The aqueous
solutions of fibroin and tropoelastin mixed readily with increasing ratios of up to 50%
tropoelastin by weight. Phase separation was observed when combining solutions at
10% tropoelastin by weight (resulting in a cloudy solution); however, the resulting
dried films were transparent and smooth when cast in plastic (polystyrene) tissue
culture dishes.

2.2. Effect of Tropoelastin on RPE Cell Attachment to Fibroin

Since fibroin supports the attachment and growth of RPE cells [8] and
tropoelastin has also been shown to positively influence cell attachment [21,22], we
examined different blend ratios of fibroin and tropoelastin with the goal of identifying
an optimal formulation for the resulting blend membrane. As demonstrated in
Figure 2, a consistent trend was observed towards an optimal RPE cell attachment (as
defined by DNA content), in either the presence or absence of serum (10% v/v), using
a tropoelastin-fibroin ratio of 10 to 90 parts by weight. This result was consistent
with prior reports [21,22] and has been explained as the optimal ratio between the
two proteins.
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Figure 1. Relative molecular weight distribution for purified native Bombyx mori silk fibroin 

(B) and recombinant human tropoelastin (C), as displayed by gel electrophoresis. While the 

extracted fibroin proteins present as a broad range of peptide fragments, recombinant human 

tropoelastin has a defined molecular weight of approximately 55 kDa. The left lane (A) 

shows a selection of molecular weight markers. 
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Figure 2. Comparison of cell attachment of retinal pigment epithelial cell line (ARPE-19) 

on tissue culture plastic (TCP) coated with either fibroin solution, or fibroin mixed with 

increasing concentrations of tropoelastin (proteins blended in solution before coating TCP). 

Evidence of cell attachment was examined after 4 h in either the presence or absence of 10% 

(v/v) fetal bovine serum (with washing prior to measurement). Each substrate was tested in 

triplicate. Bars represent mean values ± standard error of the mean from three experiments. 

The difference between fibroin with 10% tropoelastin used in the presence of serum and the 

other identified bars was statistically significant (p < 0.05). 

Figure 1. Relative molecular weight distribution for purified native Bombyx mori
silk fibroin (B) and recombinant human tropoelastin (C), as displayed by gel
electrophoresis. While the extracted fibroin proteins present as a broad range
of peptide fragments, recombinant human tropoelastin has a defined molecular
weight of approximately 55 kDa. The left lane (A) shows a selection of molecular
weight markers.
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Figure 2. Comparison of cell attachment of retinal pigment epithelial cell line
(ARPE-19) on tissue culture plastic (TCP) coated with either fibroin solution, or
fibroin mixed with increasing concentrations of tropoelastin (proteins blended in
solution before coating TCP). Evidence of cell attachment was examined after 4 h
in either the presence or absence of 10% (v/v) fetal bovine serum (with washing
prior to measurement). Each substrate was tested in triplicate. Bars represent
mean values ˘ standard error of the mean from three experiments. The difference
between fibroin with 10% tropoelastin used in the presence of serum and the other
identified bars was statistically significant (p < 0.05).

2.3. Gross Morphology of the Freestanding Membranes

Having established the optimal blend ratio of fibroin to tropoelastin for RPE
cells, we proceeded to test the feasibility of producing freestanding membranes from
the optimal blend, as well as layered constructs produced by sequential addition and
drying/stabilization of aqueous solutions containing each protein (fibroin followed
by tropoelastin, then fibroin again). Both types of membrane were prepared in glass
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Petri dishes coated with Topas® polymer as described previously [23]. In brief, the
Topas® coating facilitated the subsequent removal of fibroin-based membranes from
the glass Petri dishes and was itself delaminated easily, leaving behind the protein
membranes. The membranes produced from the optimal blend (Figure 3B) or by
layering (Figure 3C) were physically comparable to the standard fibroin membranes
produced routinely in our laboratory (Figure 3A). All membranes were transparent
and could be cut into the 16-mm diameter discs required for our custom-designed
Teflon® cell culture chambers [8]. Nevertheless, the layered membranes (Figure 3C)
were noticeably more brittle during excision, resulting in discs with uneven edges
(Figure 3C). While no layers were evident within the membranes examined by
scanning electron microscopy (SEM) following freeze fracture (Figure 3 D–F), a
distinct band of positive immunolabelling for tropoelastin was observed within
the layered construct by confocal fluorescence microscopy (Figure 3I). In contrast,
an uneven distribution of staining for tropoelastin was observed within the blend
membrane (Figure 3H). Unexpectedly, only a single band of fibroin autofluorescence
was observed within the layered constructs (Figure 3I). This result initially suggested
to us that perhaps one of the fibroin layers had detached during handling, but
repeated attempts using multiple samples revealed the same result. Moreover, no
evidence of a detached fibroin sheet was observed in any sample mounted for
confocal microscopy. We, therefore, embarked upon an FTIR analysis of the layered
composites to determine the fate of the apparently “missing” third layer.
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tropoelastin (C, F, and I); (A–C): gross appearance of each membrane when placed over 

printed text (16-mm diameter discs); (D–F): internal structures revealed by scanning electron 
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Figure 3. Physical appearance of membranes prepared from either fibroin alone
(A, D, and G), tropoelastin-fibroin blend (10:90 ratio) (B, E, and H), and layered
solutions of fibroin and tropoelastin (C, F, and I); (A–C): gross appearance of each
membrane when placed over printed text (16-mm diameter discs); (D–F): internal
structures revealed by scanning electron microscopy following freeze-fracture;
and (G–I) visualization of tropoelastin (green) by immunolabelling and confocal
fluorescence microscopy (the presence of fibroin revealed as blue autofluorescence).
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2.4. Analysis of Membrane Structure by Fourier-Transform Infrared
Spectroscopy-Attenuated Total Reflectance, “FTIR-ATR”

The FTIR-ATR spectra in the range of 1800–950 cm´1 were used to examine
the surface structure of the different biomaterial membranes (Figure 4A). The amide
I region between 1720 and 1580 cm´1 is traditionally used for analysis of the
secondary structure in proteins, and this region has been well described for silk
fibroin [24]. In the spectrum of the standard fibroin membrane (water-annealed
for 6 h at 25 ˝C) (Figure 4A, A1), both the amide I band shape and its peak
maximum at 1640 cm´1 indicate a significant amount of random coil component.
The fibroin (Figure 4A, A2) and blend (Figure 4A, A3), membranes that were water
annealed for 12 h at 60 ˝C, revealed a strong band at 1621 cm´1 and a shoulder
at 1700 cm´1, corresponding to β-sheet structures and their aggregates [24]. If the
layered (fibroin-tropoelastin-fibroin) membrane truly had three layers as expected,
both surface spectra should reveal a similar fibroin signature. One side of the
layered membrane (Figure 4A, A4) did reveal a fibroin signature similar to those
described above; however, the other side (Figure 4A, A5) revealed more pronounced
β-sheet bands. This may be a result of the additional methanol treatment of the
initial fibroin layer after tropoelastin was added. The other side (Figure 4A, A5)
also revealed two weak bands at 1200 and 1135 cm´1 (indicative of tropoelastin)
(Figure 4A, A6), suggesting that one side of the layered membrane consists of a
mixture of fibroin and tropoelastin near the surface. The possibility that the methanol
treatment might be removing some of the tropoelastin layer was also considered. The
tropoelastin bands were used to investigate the stability of tropoelastin in two-layered
(fibroin-tropoelastin) membranes before and after methanol treatment (Figure 4B).
The spectrum for the tropoelastin side before methanol treatment (Figure 4B, B2)
presented two bands at 1200 and 1135 cm´1 which correspond to the spectrum of
the untreated tropoelastin membrane (Figure 4B, B5). After methanol treatment
these tropoelastin bands had dramatically decreased (Figure 4B, B4). Indeed, a thin
membrane (thickness of ~1 µm) of tropoelastin was readily soluble in pure methanol
which was demonstrated in a separate investigation to confirm FTIR results.

In considering the differences in relative molecular weight distributions for
fibroin and tropoelastin (Figure 1) and our previous studies of fibroin membrane
permeability (ď70 kDa using FITC-dextran) [25], the following explanation for the
“missing layer” was devised (Figure 5). When tropoelastin solution was cast onto the
first fibroin layer it is proposed that some tropoelastin penetrated through the loosely
stabilized fibroin hydrogel network. These tropoelastin molecules were subsequently
trapped within the fibroin network by drying and treatment with methanol. Hence,
the first fibroin layer had a well-distributed content of tropoelastin, as demonstrated
by immunofluorescence. A small proportion of tropoelastin remaining on top of the
first fibroin layer is also likely to have been washed away by methanol treatment.
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The final layer applied (second fibroin layer) would then appear as a single blue
layer by autofluorescence.J. Funct. Biomater. 2015, 6 952 
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the creation of a layered membrane of fibroin and tropoelastin. Based upon FTIR-ATR data, 

we propose that the bulk of applied tropoelastin is absorbed and subsequently trapped within 

the initially created fibroin membrane. Therefore, only two main layers are detected by 
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Figure 4. FTIR-ATR spectra of membranes. (A) (in the range of 1800–950 cm´1):
(A1) fibroin membrane (water annealed at 25 ˝C, 6 h), (A2) fibroin membrane
(water annealed at 60 ˝C, 12 h), (A3) blend membrane (fibroin:tropoelastin = 90:10),
(A4) three-layered membrane—side 1, (A5) three-layered membrane—side 2, (A6)
tropoelastin membrane (untreated); and (B) (in the range of 1300–1100 cm´1):
(B1) two-layered membrane (untreated)—fibroin side, (B2) two-layered membrane
(untreated)—tropoelastin side, (B3) two-layered membrane (methanol treated)—fibroin
side, (B4) two-layered membrane (methanol treated)—tropoelastin side, (B5)
tropoelastin membrane (untreated).

2.5. Cytocompatibility of the Membranes

The cytocompatibility of the fibroin, blend and layered membranes was
examined over an extended culture period using current best practice culture
conditions [26]. An assessment of cell numbers after three days’ culture (Figure 6A)
was quantified using the PicoGreen® assay (DNA content provides an indication
of cell numbers). There was no statistically significant difference in the number of
cells attached across the three biomaterial membrane types, and when compared to
the TCP control substrate. The RPE cells seeded on each membrane type showed a
similar appropriate morphology over the extended culture period (Figure 6B–D).
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Figure 5. Schematic scenario of the predicted (A) and actual (B) outcomes achieved
during the creation of a layered membrane of fibroin and tropoelastin. Based upon
FTIR-ATR data, we propose that the bulk of applied tropoelastin is absorbed and
subsequently trapped within the initially created fibroin membrane. Therefore,
only two main layers are detected by immunofluorescence/microscopy.

2.6. Mechanical Properties of the Membranes

While our primary goal is to use fibroin as a delivery vehicle for tropoelastin,
it is possible that combining the two proteins may produce changes in mechanical
properties that impact upon their handling during RPE cell culture and surgical
implantation. As a consequence, we compared the mechanical properties of standard
fibroin membranes to those displayed by the blend and layered constructs. The
results (Figure 7) revealed significant differences between the membranes. The
layered membranes, while considerably thicker than the other membranes (data
presented as mean values ˘ standard error of the mean; layered membranes
16.667 ˘ 0.639 µm, compared to fibroin membranes water-annealed at 25 ˝C
3.610 ˘ 0.369 µm, fibroin membranes water-annealed at 60 ˝C 4.612 ˘ 0.540 µm,
and blend membranes 6.112 ˘ 0.362 µm), were also more brittle (Figure 7B). In
contrast, membranes prepared using a 10% tropoelastin by weight blend with fibroin
were the stiffest (Figure 7A), however, they were also strong (Figure 7B) and elastic
(Figure 7C). The most interesting results were seen in the standard fibroin membranes
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that were water-annealed at 25 ˝C. There was no statistical difference between these
membranes and the fibroin membranes water-annealed at 60 ˝C, however, they did
show different properties. The former were the only membranes that had a Young’s
modulus (Figure 7A) within the range of native Bruch’s membrane (7–19 MPa; [27])
and a useful combination of maximum tensile strength (Figure 7B) and elongation
properties. This is especially clear when considering there was no difference in
elongation at break when compared to the blend membrane (Figure 7C). There was
also no statistical difference in recoil capacity of the fibroin (water-annealed at 25 ˝C)
and blend membranes after 200 cycles (Figure 7D) of stretching.
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Figure 6. Retinal pigment epithelial (RPE) cell behaviour on biomaterial
membranes. Quantification of RPE cell numbers (A) using the PicoGreen® assay
after 3 days culture on fibroin, blend, and layered membranes; Tissue culture plastic
(TCP) was included as control substrate. Phase contrast micrographs of RPE cells
after 21 days of growth on fibroin (B); blend (C); and layered (D) membranes.
The undulating nature of the suspended membranes is the reason some areas of
panels (B) and (D) are out of focus. The scale bar represents 200 µm and applied to
the micrographs.
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membranes water-annealed at 25 °C 3.610 ± 0.369 µm, fibroin membranes water-annealed at 60 °C 

4.612 ± 0.540 µm, and blend membranes 6.112 ± 0.362 µm), were also more brittle (Figure 7B). In 

contrast, membranes prepared using a 10% tropoelastin by weight blend with fibroin were the stiffest 

(Figure 7A), however, they were also strong (Figure 7B) and elastic (Figure 7C). The most interesting 

results were seen in the standard fibroin membranes that were water-annealed at 25 °C. There was no 

statistical difference between these membranes and the fibroin membranes water-annealed at 60 °C, 

however, they did show different properties. The former were the only membranes that had a Young’s 

modulus (Figure 7A) within the range of native Bruch’s membrane (7–19 MPa; [27]) and a useful 

combination of maximum tensile strength (Figure 7B) and elongation properties. This is especially clear 

when considering there was no difference in elongation at break when compared to the blend membrane 

(Figure 7C). There was also no statistical difference in recoil capacity of the fibroin (water-annealed at 

25 °C) and blend membranes after 200 cycles (Figure 7D) of stretching.  

 

Figure 7. Quantitative comparison of the tensile properties of biomaterial membranes.  

(A) Young’s modulus; (B) maximum tensile strength; (C) elongation to break; and  

(D) deformation/recoil capacity after 200 cycles. Bars represent mean values ± standard error 

of the mean. Asterisks indicate differences are statistically significant (* p < 0.05, ** p < 0.01, 

**** p < 0.0001). 

3. Experimental Section  

3.1. Production of Aqueous Solutions of Fibroin 

The procedure has been previously described in detail by our group [28]. Briefly, dried Bombyx mori 

silkworm cocoons (Tajima Shoji Co. Ltd., Yokohama, Japan) were boiled in a solution of sodium 

carbonate containing 0.85 g of salt for each gram of cocoon material. This procedure removed the sericin 

Figure 7. Quantitative comparison of the tensile properties of biomaterial
membranes. (A) Young’s modulus; (B) maximum tensile strength; (C) elongation
to break; and (D) deformation/recoil capacity after 200 cycles. Bars represent mean
values ˘ standard error of the mean. Asterisks indicate differences are statistically
significant (* p < 0.05, ** p < 0.01, **** p < 0.0001).

3. Experimental Section

3.1. Production of Aqueous Solutions of Fibroin

The procedure has been previously described in detail by our group [28]. Briefly,
dried Bombyx mori silkworm cocoons (Tajima Shoji Co. Ltd., Yokohama, Japan) were
boiled in a solution of sodium carbonate containing 0.85 g of salt for each gram of
cocoon material. This procedure removed the sericin outer coat from the core fibroin
protein. The resulting fibrous material was washed and dried, and then dissolved (at
60 ˝C for 4 h) in a concentrated solution of lithium bromide (9.3 M) to obtain a silk
concentration of approximately 10% wt./vol. The fibroin solution was subsequently
filtered using syringe filters in succession with pore size 0.7 µm and 0.2 µm. This
step is performed slowly to avoid shearing forces that could promote spontaneous
gelation. The filtrate was dialyzed against water using a dialysis cassette with a
molecular mass cut-off of 3.5 kDa (Slide-A-Lyzer, Pierce Biotechnology) using six
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changes of water over three days. The resulting fibroin solution was filtered again as
above and used to produce fibroin membranes.

3.2. Preparation of Films Cast in TCP Wells: Fibroin and Tropoelastin Solutions Blended in
Different Ratios

Films of fibroin and tropoelastin were prepared by the method reported by [21]
with some modifications. Briefly, tropoelastin (freeze-dried powder) was dissolved
in cold MilliQ water (4 ˝C) to make the concentration of 1.78%, and kept in an ice
bath for 2–3 h with occasional vortex mixing. The low temperature is required to
prevent coacervation of the solution (self-aggregation of hydrophobic domains). The
tropoelastin solution was slowly added to a cold fibroin solution (1.78%) by a pipet,
and mixed by inverting the tube slowly. The volume ratio of the fibroin solution to the
tropoelastin solution was mixed over the range 90:10, 75:25, and 50:50. The mixture
solutions were cast into wells of 24-well TCP plates and dried in a fan-driven oven
for 12 h at room temperature. For structural stabilization of fibroin with tropoelastin,
β-sheet formation was induced by water annealing the plates in a vacuum oven at
60 ˝C, ´80 kPa with ~100 mL water in a beaker, for 12 h, followed by drying in a
fan-driven oven for 12 h at room temperature.

3.3. Cell Culture of the Human RPE Cell Line ARPE-19

ARPE-19 cells were routinely cultured using the Miller’s medium
formulation [29]; minimum essential medium, alpha modification (MEM-α, M-4526)
supplemented with N1 supplement (N-6530), glutamine-penicillin-streptomycin
(G-1146), non-essential amino acids (M-7145), taurine (T-0625), hydrocortisone
(H-0396), and triiodo-thyronin (T-5516). All of these components were purchased
from Sigma Aldrich. This medium formulation allows RPE cultures to be incubated at
37 ˝C using a standard level of 5% CO2 air. Cultures were established in the presence
of 10% fetal bovine serum, and after 24 h this serum level was decreased to 1%. Stock
cultures were fed two to three times per week, and passaged routinely using Versene
(15040-066, Life Technologies, Carlsbad, NM, USA) and TrypLE™ (12563-011, Life
Technologies), between passages number 23 and 28. An independent STR profile
analysis of our working stocks by the Garvan Institute of Medical Research revealed
a 100% match with reference ARPE-19 cell line CRL-2302.

3.4. Testing the Attachment of RPE Cells on Films of Fibroin and Tropoelastin Blended in
Different Ratios

The cell attachment was quantified on films prepared by blending solutions of
fibroin and tropoelastin (Section 3.2). RPE cells (ARPE-19) were seeded at a density
of 40,000 cells/cm2 and incubated at 37 ˝C, 5% CO2 for 4 h using Miller’s medium
without serum. Fibroin films and TCP (used with and without serum) were used
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as control substrates for ARPE-19 cell attachment. Each substrate type was tested
in triplicate, with the experiment performed in triplicate and quantified using the
Quant-iT PicoGreen® dsDNA kit (Molecular Probes™, Life Technologies).

3.5. Preparation of Fibroin Membranes

Fibroin membranes were cast using a custom-made casting table as described
previously by our group [25]. The thickness of fibroin membranes was measured
using an upright micrometer and only areas of membrane 3 µm ˘ 1 µm thick were
used. For structural stabilisation of fibroin membranes, β-sheet formation was
induced by the water-annealing of the membranes in a vacuum oven at ´80 kPa
with ~100 mL water (beaker) for 6 h at room temperature (25 ˝C). The permeability
of fibroin membranes has been previously examined using a horizontal diffusion cell
using three model molecules [25].

3.6. Preparation of Freestanding Membranes of Fibroin and Tropoelastin, Proteins Blended
in 90:10 Solution Ratio

Freestanding membranes of fibroin and tropoelastin blend were prepared by the
method outlined above (Section 3.2), except that only the 90:10 volume ratio of the
fibroin solution to the tropoelastin solution was used. For casting, 45-mm Petri dishes
were first coated with a Topas® (a commercial hydrophobic cyclic olefin copolymer)
film (1 mL of a 7% solution) by the evaporation from a solution in cyclohexane. The
Topas® solution formed a hydrophobic film on the glass, facilitating easy removal of
the membranes from the dishes later. The mixture solution (1.78%, 1 mL) was poured
into the dish, and dried in a fan-driven oven for 12 h at room temperature. For
structural stabilisation of fibroin with tropoelastin, the blend membranes were water
annealed using a vacuum oven with a container of water and kept at ´80 kPa at
60 ˝C for 12 h, followed by drying in a fan-driven oven for 12 h at room temperature.
The membranes were peeled from the Topas® film and used for cell culture and
mechanical testing. The thickness of the membranes used was 2–3 µm.

3.7. Preparation of Freestanding Layered (Fibroin-Tropoelastin-Fibroin) Membranes

Layered membranes were fabricated using separate aqueous solutions of fibroin
and tropoelastin, layered in sequence and followed by stabilisation after each layer.
Before casting any protein solutions, 45-mm Petri dishes were first coated with a
Topas® film. The layered membrane was prepared as following. Firstly, 1 mL of
0.59% fibroin solution was cast and dried in a fan-driven oven at room temperature
overnight, followed by water annealing in a vacuum oven with a beaker of water
at ´80 kPa at room temperature, for 6 h. Then 1 mL of 0.59% tropoelastin solution
was cast and dried at 4 ˝C for four days. The tropoelastin layer was stabilized by
treatment with methanol (5 mL) for 24 h at room temperature. Finally, 1 mL of 0.59%
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fibroin solution was cast on top of the tropoelastin layer, and stabilized by water
annealing as above. The volumes used were calculated to generate 1 µm-thick layers
of each protein, which would result in a 3 µm-thick layered membrane. A 1 µm-thick
membrane of tropoelastin was cast and was not treated with methanol (untreated) as
a comparison for FTIR-ATR studies.

3.8. Suspension of the Membranes in Custom-Made Teflon® Chambers

Discs (16-mm diameter) of biomaterial membrane were inserted into
custom-made chambers designed by our group, which are manufactured from
interlocking Telfon® rings specifically for cell culture use [8]. The combined
membrane and chamber were sterilised together by immersion in 70% ethanol for 1
h at room temperature, air-dried, and washed thoroughly with phosphate-buffered
solution (PBS). The custom-made chamber suspends the biomaterial membrane
(reminiscent of the commercially available Transwell® insert system) creating an
apical compartment (upper chamber) and a basal compartment (lower chamber) on
either side of the membrane. This culture setup is required for the development of a
polarised epithelial culture.

3.9. Visualization of Tropoelastin within the Membranes Using Immunofluorescence

Samples of fibroin, blend, and layered membranes were incubated with
a primary monoclonal antibody to tropoelastin (BA4, 1:50, ab21599, Abcam,
Cambridge, UK). The secondary antibody used was an Alexa 488-conjugated
goat-anti-mouse IgG (Molecular Probes®, Life Technologies). Negative controls
for immunostaining were incubated with the secondary antibody only. Confocal
laser scanning microscopy (Nikon A1R, Nikon Corporation, Tokyo, Japan) was used
to image immunofluorescence.

3.10. Testing Cell Growth of RPE Cells on the Membranes

Cell growth after 72 h on the fibroin, blend, and layered membranes was
compared and quantified. RPE (ARPE-19) cells were seeded (4000 cells/cm2) on
discs (6-mm diameter) of the different biomaterial membranes and evaluated for
total cell numbers, 72 h after seeding using the Quant-iT PicoGreen® dsDNA kit
(Molecular Probes™, Life Technologies). This experiment was performed using discs
of the freestanding biomaterial membranes held down by rubber o-rings in the wells
of 96-well plates.

3.11. Extended Culture of RPE Cells on the Membranes

RPE (ARPE-19) cells were seeded (10,000 cells/cm2) onto the apical surface of
biomaterial membranes suspended in Teflon® chambers (Section 3.8). All membrane
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types; fibroin, blend, and layered membranes, were precoated with a commercial
Collagen I solution obtained from porcine origin (0.3 mg/mL, Cellmatrix®, Nitta
Gelatin Inc., Osaka, Japan) diluted in MilliQ water. Cultures were incubated at 37 ˝C
and 5% CO2, and culture media was changed twice weekly. Phase contrast light
microscopy was used to examine the cultures over a two month culture period.

3.12. Fourier-Transform Infrared Spectroscopy of the Membranes

The FTIR-ATR spectra of the membranes (fibroin, blend, and layered) and
tropoelastin were collected using a Nicolet FTIR spectrometer (Thermo Electron
Corp, Waltham, MA, USA), equipped with a Nicolet Smart Endurance diamond ATR
accessory. Each spectrum was obtained by co-adding 64 scans over the range of 4000
to 525 cm´1 at a resolution of 8 cm´1. The OMNIC 7 software package (Thermo
Electron Corp, Waltham, MA, USA) was used to analyse and plot the spectra.

3.13. Mechanical Testing of the Membranes

Strips (1 cm ˆ 3 cm) were cut from each membrane type and subjected to tensile
measurements in an Instron 5848 micrometer, equipped with a 5 N load cell and a
set gauge distance of 14 mm. The membranes were mounted in pneumatic grips and
submersed in PBS at 37 ˝C in a BioPuls™ unit for 5 min prior to testing. Stress-strain
plots were recorded, and the Young’s moduli were computed in the linear region. The
mean values were calculated from results generated by 4–6 measurements for each
specimen. In addition, cyclic tensile loading/unloading testing was carried out to
evaluate recovery behaviour. The testing experiments were set up as above. However,
the following method profile was used: the repeated cyclic loading/unloading was
performed at strain of 20% in the stress-strain curve, which is the linear region,
with ˘ 5% strain of loading/unloading and the rate of 14 mm/min. The number
of cycles performed was 200 cycles. Four measurements were performed for each
specimen. From stress-strain plots, the areas under the curve of cycles 10 and 200
were calculated and used to evaluate deformation using the following equation:

Deformation p%q “ ppArea cycle 10´Area cycle 200q{Area cycle 10qˆ 100

3.14. Statistical Analyses

Results from cell attachment and growth assays were analysed for statistical
significance using a two-way ANOVA followed by a Tukey’s multiple comparisons
test (with the two variables being either “substrate and serum”, or “substrate and
time”). Mechanical testing data were analysed using a one-way ANOVA with Tukey’s
test comparing membrane types (with the variable being “membrane type”). Recoil
testing data for fibroin and blend membranes were analysed using an unpaired
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t test (since comparing only two independent samples). All statistical analyses were
performed using GraphPad Prism, V 6.

4. General Discussion

AMD is a leading cause of permanent vision loss in the elderly. Significant efforts
are therefore underway in countries with ageing populations to address this disease.
Consideration of the underlying histopathology indicates that therapies based upon
the replacement of both cellular (e.g., RPE cells), as well as extracellular tissue
components, may well be required. To this end, we have previously demonstrated
that freestanding membranes prepared from silk fibroin provide a potential vehicle
for delivering RPE cells into the subretinal space [8,9]. The present study builds
upon this research by examining the feasibility of incorporating elastin (in the
form of tropoelastin) into these same fibroin membranes. In doing so, we have
proposed that fibroin membranes may provide a vehicle for co-delivering RPE cells
and tropoelastin to the subretinal space. Moreover, since tropoelastin displays similar
elastic properties to elastin, we considered that the mechanical properties of fibroin
membranes may be significantly altered when combined with tropoelastin.

With regard to our first aim, our data confirms the feasibility of incorporating
human recombinant tropoelastin into fibroin membranes. Varying results, however,
are achieved according to the methods used. In short, membranes prepared from
blended solutions of the two proteins displayed a more heterogeneous composition
than those produced using a sequential layering method. We propose that the
patchy distribution most likely results from either phase separation or specific
molecular interactions between the two proteins when present together in solution.
By comparison, our subsequent analyses by FTIR suggest that the more homogenous
distribution of tropoelastin achieved using the layering approach is due to absorption
and subsequent fixation of this protein within the originally cast fibroin membrane
(by treatment with methanol). This result suggests that membranes prepared via
the absorption/fixation method should theoretically support a more even profile of
tropoelastin delivery following implantation to the subretinal space. Nevertheless,
the choice of technique is also likely to be influenced by consideration of membrane
mechanical properties.

Our study of the effects of tropoelastin on the mechanical properties of
fibroin membranes, when blended, led to some unexpected results. While others
have reported reduced stiffness of fibroin membranes following inclusion of
tropoelastin [21,22], we have presently reported the opposite result. On the surface,
this conflicting data seems quite difficult to resolve. A close comparison of the
methods used, however, reveals several significant variations including the source of
cocoons, fibroin isolation protocol, water annealing temperature and the thickness
of membranes used. In our experience, any one of the parameters alone can have
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significant effects on the properties of fibroin membranes. Thus, in combination, the
differing processes could well have been responsible for the variations in response to
the tropoelastin observed between each study.

A comparison of blended versus “layered” strategies for incorporating fibroin
and tropoelastin is also an interesting exercise. On the basis of their superior strength
and elasticity, it could be concluded that the blended membranes are superior to
the more brittle “layered” constructs. Nevertheless, a revised formulation whereby
the tropoelastin is simply absorbed and trapped, without an additional fibroin
layer being deposited, is worthy of investigation. In any case, the key comparison
to make is how closely each membrane resembles the mechanical properties of
Bruch’s membrane. It is, thus, significant that fibroin membranes water-annealed
at 25 ˝C and membranes prepared using the layered approach are closest to native
Bruch’s membrane in terms of Young’s modulus [27]. Therefore, on this basis, and
in combination with the more uniform distribution of tropoelastin, we propose that
the layered membranes are at present the better option to pursue in order to address
both issues of ECM delivery, as well as matching the desired mechanical properties.

5. Conclusions

Reconstructing both the cellular and ECM components of diseased and injured
tissues is an important area of tissue engineering and regenerative medicine. The
incorporation of a tropoelastin component in fibroin membranes, while maybe
not bestowing benefits to mechanical properties, offers a potential vehicle for the
delivery of RPE cells and Bruch’s membrane ECM components into the subretinal
environment of patients with AMD. Future studies will need to investigate the
suitability of these membranes in a pre-clinical animal model.
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Substrates for Expansion of Corneal
Endothelial Cells towards Bioengineering of
Human Corneal Endothelium
Jesintha Navaratnam, Tor P. Utheim, Vinagolu K. Rajasekhar and
Aboulghassem Shahdadfar

Abstract: Corneal endothelium is a single layer of specialized cells that lines the
posterior surface of cornea and maintains corneal hydration and corneal transparency
essential for vision. Currently, transplantation is the only therapeutic option for
diseases affecting the corneal endothelium. Transplantation of corneal endothelium,
called endothelial keratoplasty, is widely used for corneal endothelial diseases.
However, corneal transplantation is limited by global donor shortage. Therefore,
there is a need to overcome the deficiency of sufficient donor corneal tissue. New
approaches are being explored to engineer corneal tissues such that sufficient amount
of corneal endothelium becomes available to offset the present shortage of functional
cornea. Although human corneal endothelial cells have limited proliferative capacity
in vivo, several laboratories have been successful in in vitro expansion of human
corneal endothelial cells. Here we provide a comprehensive analysis of different
substrates employed for in vitro cultivation of human corneal endothelial cells.
Advances and emerging challenges with ex vivo cultured corneal endothelial layer for
the ultimate goal of therapeutic replacement of dysfunctional corneal endothelium
in humans with functional corneal endothelium are also presented.

Reprinted from J. Funct. Biomater. Cite as: Navaratnam, J.; Utheim, T.P.;
Rajasekhar, V.K.; Shahdadfar, A. Substrates for Expansion of Corneal Endothelial
Cells towards Bioengineering of Human Corneal Endothelium. J. Funct. Biomater.
2015, 6, 917–945.

1. Introduction

The cornea is the transparent anterior part of the eye that transmits and focuses
light onto the retina. From anterior to posterior (Figure 1), the cornea is composed of
the corneal epithelium (50 µm thick), the Bowman’s membrane (12 µm), the stroma
(480–500 µm), the Descemet’s membrane (8–10 µm), and the endothelium (5 µm) [1].
Recently, a new layer of the cornea, Dua’s layer, was also described [2].
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the endothelium (5 μm) [1]. Recently, a new layer of the cornea, Dua’s layer, was also described [2]. 

 

Figure 1. Anatomy of the cornea. (a) Section of the anterior part of the eye; (b) Section of 

the cornea illustrating six layers; (c) In vivo confocal microscopy image of the corneal 

endothelium. Courtesy of Geir A. Qvale. 

The human cornea has a thickness of 0.5–0.6 mm centrally and 0.6–0.8 mm peripherally [3]. The 

horizontal diameter of an average adult human cornea is 11.7 mm and the vertical diameter is 

approximately 1 mm less than the horizontal diameter. The cornea is one of the few avascular tissues in 

the body. The cornea is also one of the most heavily innervated and sensitive tissues in the body, with a 

density of nerve endings about 300–400 times greater than the skin [1,4], thus diseases of the cornea 

may be extremely painful. It has several functions that are essential for clear vision: The integrity and 

Figure 1. Anatomy of the cornea. (a) Section of the anterior part of the eye;
(b) Section of the cornea illustrating six layers; (c) In vivo confocal microscopy
image of the corneal endothelium. Courtesy of Geir A. Qvale.

The human cornea has a thickness of 0.5–0.6 mm centrally and 0.6–0.8 mm
peripherally [3]. The horizontal diameter of an average adult human cornea is
11.7 mm and the vertical diameter is approximately 1 mm less than the horizontal
diameter. The cornea is one of the few avascular tissues in the body. The cornea is also
one of the most heavily innervated and sensitive tissues in the body, with a density
of nerve endings about 300–400 times greater than the skin [1,4], thus diseases of the
cornea may be extremely painful. It has several functions that are essential for clear
vision: The integrity and functionality of the epithelium [5] and endothelium [6],
corneal shape [1], and transparency [1]. The corneal endothelium maintains corneal
transparency by regulating water content of corneal stroma. The cornea provides
approximately two-thirds of the total refractive power of the eye (Figure 2) [6]; thus,
even a small change in corneal contour may result in refractive errors.
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According to the World Health Organization’s global estimation of blindness and visual impairment 

in 2010, 285 million people were reported to be visually impaired [7]. Corneal diseases are the fourth 

leading cause of blindness worldwide [7]. Causes of corneal endothelial disease (CED) include 

endothelial dystrophies, iridocorneal endothelial syndrome, and endothelial dysfunction following 

cataract surgery and corneal transplantation. Corneal endothelial disease usually presents with a gradual 

onset of decreased vision. Advanced CED can cause recurrent corneal epithelial erosions, resulting in 

episodes of severe pain. The corneal endothelium is derived from embryonic neural crest cells [8]. 

Human corneal endothelial cells (HCECs) have limited proliferative capacity in vivo and are suggested 

to be arrested in the G1-phase of cell cycle [9]. In addition, age-related decrease in corneal endothelial 

cell density is reported. The mean corneal endothelial cell density decreases from 3600 cells per square 

millimeter (cells/mm2) at age 5 years to 2700 cells/mm2 at age 15 years [10]. Further reduction of  

the central corneal endothelial density in adults is reported at the rate of 0.6% yearly with gradual change 

in cell shape and size [11]. Corneal endothelial cell density below critical level of approximately  

500 cells/mm2 results in corneal edema and thereby decreased visual acuity. Significant HCEC loss and 

inadequate replacement of corneal endothelial cells in vivo suggest there is a lack of or inefficient cell 

division. In corneal endothelial wound healing in humans, the endothelial cells adjacent to the wound 

enlarge as they elongate and slide to the wound area [12]. At present, transplantation is the only available 

treatment for diseases affecting the corneal endothelium. There are two main types of corneal 

transplantation for CED: Penetrating keratoplasty and endothelial keratoplasty. Penetrating keratoplasty 

refers to the replacement of all corneal layers of the recipient’s cornea with a donor cornea. Selective 

replacement of the diseased posterior layer of the cornea is called endothelial keratoplasty [13]. The 

above surgical advancements are, however, hindered by the worldwide scarcity of available healthy 

donor corneas. 

Figure 2. The refraction of light. The cornea provides more than two-thirds of the
total refractive power of the eye. Courtesy of Geir A. Qvale.

According to the World Health Organization’s global estimation of blindness
and visual impairment in 2010, 285 million people were reported to be visually
impaired [7]. Corneal diseases are the fourth leading cause of blindness
worldwide [7]. Causes of corneal endothelial disease (CED) include endothelial
dystrophies, iridocorneal endothelial syndrome, and endothelial dysfunction
following cataract surgery and corneal transplantation. Corneal endothelial disease
usually presents with a gradual onset of decreased vision. Advanced CED can
cause recurrent corneal epithelial erosions, resulting in episodes of severe pain.
The corneal endothelium is derived from embryonic neural crest cells [8]. Human
corneal endothelial cells (HCECs) have limited proliferative capacity in vivo and are
suggested to be arrested in the G1-phase of cell cycle [9]. In addition, age-related
decrease in corneal endothelial cell density is reported. The mean corneal endothelial
cell density decreases from 3600 cells per square millimeter (cells/mm2) at age 5
years to 2700 cells/mm2 at age 15 years [10]. Further reduction of the central corneal
endothelial density in adults is reported at the rate of 0.6% yearly with gradual change
in cell shape and size [11]. Corneal endothelial cell density below critical level of
approximately 500 cells/mm2 results in corneal edema and thereby decreased visual
acuity. Significant HCEC loss and inadequate replacement of corneal endothelial
cells in vivo suggest there is a lack of or inefficient cell division. In corneal endothelial
wound healing in humans, the endothelial cells adjacent to the wound enlarge as
they elongate and slide to the wound area [12]. At present, transplantation is the
only available treatment for diseases affecting the corneal endothelium. There are
two main types of corneal transplantation for CED: Penetrating keratoplasty and
endothelial keratoplasty. Penetrating keratoplasty refers to the replacement of all
corneal layers of the recipient’s cornea with a donor cornea. Selective replacement of
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the diseased posterior layer of the cornea is called endothelial keratoplasty [13]. The
above surgical advancements are, however, hindered by the worldwide scarcity of
available healthy donor corneas.

A considerable research effort has been put into developing alternative methods
for treatment of CED. The remaining HCECs may be stimulated to proliferate
or enhance their function with topical eye drops [14] or cell suspension injection
into the anterior chamber [15,16]. Magnetic field-guided in vitro cultivated HCEC
delivery is thought to attract the cells towards Descemet’s membrane [15,17,18].
However, the possible complications of injection of cell suspension into the anterior
chamber, such as an increase in intracellular pressure due to clogging of the
trabecular meshwork, should be further investigated before human trials are initiated.
Although growth factors may promote corneal endothelial wound healing [19],
it does not induce HCEC proliferation [20]. Thus, there is a clinical interest for
engineering corneal endothelium for transplantation purposes. With increasing
advances in regenerative medicine, several research groups have investigated on
expansion of corneal endothelial cells and transplantation of tissue engineered
corneal endothelium in experimental animal models [21–36]. The present review
focuses on emerging substrates for improved culturing of HCECs. To provide a
background for the current use of substrates, cell sources for tissue engineering of
corneal endothelium are also described.

2. Cell Sources for Tissue Engineering of Corneal Endothelium

Various efforts have been made to increase the availability of human HCEC
lines. These include immortalization of retroviral transduction by simian virus 40
(SV40) T antigen [37,38], Cdk4R24c/CyclinD1 [39], and/or human papilloma virus 16
E6/E7 [40]. Immortalized cells increase the risk of tumor formation, aneuploidy [41],
and structural rearrangements [42]. Recently, the establishment of untransfected
HCEC line [43] and immortalization of HCECs with human telomerase reverse
transcriptase have been explored [44]. However, the limitation of methods not using
transfection is immortalization of only a subpopulation of the primary culture.

Although the HCECs have limited proliferative capacity in vivo, these cells have
the ability to proliferate under in vitro culture conditions [18,25,29–32,36,45–119].
Primary HCECs, human HCEC lines, and stem cells have been utilized for tissue
engineering of corneal endothelium. Donor corneoscleral rims, which remain after
corneal trephination for corneal transplantation, and human cadaver corneas that
are unsuitable for corneal transplantation provide sources for primary HCECs. The
age of donors used in tissue engineering of corneal endothelium varies substantially
in the literature. Primary HCEC cultures have been established from corneas from
8-week-old human embryos [120] up to age 80 [49,62]. The proliferative response
of HCECs tends to decrease in older donors [59,64,69,75,121–123]. Interestingly,
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Gao et al., in 2010, were not able to demonstrate a high proliferative rate in human
fetal corneal endothelial cells [124]. Regardless of age, human corneal endothelial
cells from peripheral areas of the cornea are reported to exhibit a higher replication
competency compared to the central area [60,73,121–124]. The lower proliferative
capacity of HCECs from the central area may be due to senescence-like characteristics
of central HCECs, including stress-induced premature senescence [122]. In addition,
it remains interesting to investigate if there are potential stem like progenitors of
corneal endothelium that may have more proliferative capacity to produce more
corneal endothelial cells than their progency with limited proliferative capacity in
center areas of the growing colonies in vitro. Isolation of sphere forming HCECs
has in fact been reported vividly and has been considered as a potential source of
progenitor cells [72,80,108,125–127]. It is possible that such progenitor cells in the
central region of the colonies in culture may acquire altered epigenetic modifications
which could in turn inhibit their further proliferation or result in their terminal
differentiation followed by senescence similar to that was reported with many
instances of embryonic stem cell colonies in cell cultures [128].

Stem cells are a potential source for engineering of many organs including
corneal endothelium. Organ specific adult stem cells, as well as directed
differentiation competent embryonic stem cells, and induced pluripotent stem
cells (iPS cells) form such sources. Adult stem cells are suggested to reside in
the junction between the peripheral corneal endothelium and anterior part of the
trabecular meshwork [129]. Embryonic stem cells [130] have the major advantages
due to their characteristics of pluripotency and an unlimited proliferation capacity.
However, ethical concerns, immune rejection, and risk of teratoma formation have
limited the application of embryonic stem cells in clinical trials. The use of iPS
cells in clinical trials is also limited because of bio-safety concerns, epigenetic
memory from somatic cells, unintended genomic alterations, and related oncogenesis
exacerbated by the use of retroviral or lentiviral transducing vectors. The above
said sphere forming HCECs [72,80,108,125–127] and also human corneal stromal
precursors may represent a potential source for corneal endothelial cells [131].
Other sources of human corneal endothelial-like cells for tissue engineering of
corneal endothelium include umbilical cord blood mesenchymal stem cells [132],
adipose-derived stem cells [133], and bone marrow-derived endothelial progenitor
cells [134]. Functional corneal endothelium tissue engineered from corneal stromal
derived stem cells of neural crest origin in humans and mice [131], and corneal
endothelial like cells from neural crest origin in rats [135], are also reported. However,
there are no specific bio-markers for identification of corneal endothelial cells.
Although sodium-potassium adenosine triphosphatase (Na+K+ATPase) and zonula
occludens-1 (ZO-1) are located on the corneal endothelial cell membrane, both are
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also present in other type of cells. Therefore, the isolation of HCECs from donor
corneas has been widely followed.

In 1965, Mannagh et al. reported successful expansion of HCECs [45]. Following
this report, different isolation techniques and culture media have been introduced to
harvest and expand HCECs. At present time, isolation of HCECs technique consists
of two steps. At first the Descemet’s membrane is peeled with HCECs, thereafter the
peeled membranes undergo enzymatic treatment to dissociate the HCECs. Human
corneal endothelial cells have largely been a challenging task to culture and expand.
So far, there is no superior culture medium for consistent expanding of HCECs.

3. Substrates for Cultivation of Human Corneal Endothelial Cells

In vitro expansion of HCECs is challenging, and the cells require native-like
favorable growth conditions. The cultivated corneal endothelium is fragile and
difficult to handle. Therefore, the use of substrates provides mechanical support
during transplantation of ex vivo engineered human corneal endothelial sheets.
In addition, they may create a favorable microenvironment needed for cellular
activity. Ideally, the substrate should mimic Descemet’s membrane in its biological,
mechanical, chemical, and physiological characteristics. A spectrum of substrates
is used in in vitro expansion of HCECs and in reconstruction of human corneal
endothelial layer. These include biological, synthetic, and biosynthetic materials
(Table 1).

For bioengineering of corneal endothelium the substrate materials should
preferably fulfil the following criteria: (i) provide favorable microenvironment for
corneal endothelial cellular activity; (ii) provide mechanical support; (iii) promote cell
layer-carrier interactions, cell adhesion, and extracellular matrix deposition; (iv) be
non-toxic; (v) allow transport of gases, nutrients, and molecules; (vi) be easy to handle
during cell layer transport or surgery (endothelial keratoplasty); (vii) be transparent;
(viii) be easily reproducible (i.e., (v)–(vii) are applicable for transplantation for tissue
engineered corneal endothelial grafts).

The substrate should preferably create desired microenvironment for HCEC
viability, cell proliferation, and signaling pathways. The corneal endothelium
displays high pump capacity and barrier function in vivo in order to maintain the
cornea in its relatively dehydrated physiological state. The substrate materials
must enable support of these principle functions of HCECs and corneal endothelium.
Following transplantation of tissue engineered corneal endothelial graft; the substrate
should allow sufficient transport of gases, nutrients and molecules between corneal
endothelium and stroma.
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The Descemet’s membrane is a specialized basement membrane. After birth,
the corneal endothelium secretes Descemet’s membrane consisting of non-banded
collagen in physiological conditions [136]. In tissue engineering, it is difficult to
reconstruct a substrate that totally mimics complex composition, dynamic nature and
multiple function of a native basement membrane. Therefore, it might be beneficial
if the substrates are able to stimulate collagen secretion.

The substrates should be easy to reproduce, and either degradable or
non-degradable substrates may be used in transplantation. If biodegradable, the
substrate dissolution rate must be at a preset value that does not give adverse effect
on rest of the eye. As microsurgery and minimal incision operations are increasingly
used, the tissue engineered corneal endothelium on substrate should be easy to
handle and fold/unfold under the surgery.

There are various substrates applied for cultivated HCECs in experimental
models (Table 1). In this review, the substrates are classified for convenience into
biological, synthetic, and biosynthetic groups of substrates.
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3.1. Biological Substrates

3.1.1. Amniotic Membrane

Amniotic membrane (AM) is a membrane composed of collagen type
IV similar to basement membrane of conjunctiva but not cornea [142]. The
anti-inflammatory [143] and non-immunogenic [144] properties of AM are believed
to be important factors that make it a suitable substrate. The AM is used in
treatment of different ocular surface diseases, and it is applied as substrate for
limbal transplantation in patients with limbal stem cell deficiency [5]. Ishino et al.
used denuded AM as a substrate for cultivated HCECs and transplanted onto
rabbit corneas denuded of corneal endothelium and Descemet’s membrane [68].
The authors demonstrated that the corneal endothelial cell density and function of
reconstructed corneal endothelial graft were similar to normal corneas. However,
the tissue-engineered grafts consisting of HCECs sheet on AM had some edema.
In another study, the basement membrane of AM was used as a carrier for
transplantation of cultivated cat corneal endothelial cells on cat cornea denuded of
Descemet’s membrane and endothelium [145]. The cultivated cells predominantly
displayed hexagonal shape, and the reconstructed corneal endothelial layer
maintained corneal graft thickness and remained transparent for six weeks.

Although AM provides good biocompatibility, dependency on donor tissue is
a limitation. However, AM displays several challenges for clinical use, and thus
efforts to identify alternative culture substrates should be encouraged. First, it is
semi-opaque; second, preparation is time-consuming; third, there is possible transfer
of pathogens from AM; and fourth, inter-donor and intra-donor variations and rate
of biodegradability may influence the outcome of its clinical use [146].

3.1.2. Decellularized/Devitalized Corneal Materials

The feasibility of using devitalized corneas or corneas denuded of endothelium
as substrate for HCECs is studied extensively [27,29–31,62,67,71,97,137,138]. They
are applicable without substantial redesign as they provide the desired shape,
mechanical support, and transparency. Reconstructed human corneal endothelial
graft with in vitro cultivated HCECs seeded on decellularized human corneal stroma
expressed ZO-1, Na+K+ATPase and connexin 43. Proulx et al. studied the function
of tissue engineered corneal endothelium [33]. In experimental animal models they
transplanted tissue engineered corneal endothelial grafts consisting of cultivated
feline corneal endothelial cells on devitalized human cornea denuded of endothelial
cells. The follow-up time after transplantation was only 7 days. In this study, 9 of 11
reconstructed corneal endothelial grafts were clear at the end of the follow-up time.
The pump function of the reconstructed corneal endothelial graft must have remained
functional in order to maintain the cornea transparent. In addition, the reconstructed
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corneal endothelial layers expressed proteins related to function such as ZO-1 and
Na+K+ATPase and sodium bicarbonate (Na+HCO3

´) transporter [33]. The same
research group performed ultrastructural and immunohistochemical studies of
cultivated feline corneal endothelial layer on devitalized cornea [147]. Scanning and
transmission electron microscopy demonstrated a monolayer of corneal endothelium,
and the tissue engineered endothelium expressed function related proteins including
ZO-1 and Na+K+ATPase and Na+HCO3

´ transporter.
Bayyoud et al. seeded in vitro expanded HCECs on devitalized posterior corneal

stromal lamellae. The reconstructed corneal endothelial graft had intact barrier and
expressed positive staining for sodium-potassium pump (Na+K+ATPase), membrane
transporter (Na+HCO3

´), tight junction (ZO-1), gap junction (connexin 43), and
extracellular matrix protein (collagen VIII) [137].

Current methods to decellularize or devitalize cornea include scraping off
corneal endothelium mechanically [67,71], use of chemicals [62,137], or freeze/thaw
method [33,147]. High-hydrostatic pressurization is an alternative technique to
decellularize cornea [148]. However, the following are some inherent technicalities
to be aware of using this approach. First, resident viable keratocytes may potentially
give raise to fibroblastic contamination. Second, biological tissues may transfer
infections. Third, stroma from donor corneas does not reduce the dependency of
donor tissues.

3.1.3. Lens Capsule

The human anterior lens capsule has been evaluated as potential substrate for
tissue engineered corneal endothelium. Yoeruek et al. received human anterior lens
capsule from patients who had undergone cataract surgery [88]. They seeded HCECs
on de-epithelialized anterior lens capsule and demonstrated that the HCECs grew
to confluency. The in vitro bioengineered corneal endothelium strongly expressed
staining for ZO-1, Na+K+ATPase, and connexin 43. Kopsachilis et al. compared
three different substrates; these included de-epithelialized human anterior lens
capsule, collagen membrane, and polystyrene culture plates [99]. They obtained
human anterior lens capsule of a mean diameter of 10 mm from cornea donors.
The cultivated cells displayed hexagonal morphology in all groups, and the cells
formed a monolayer of corneal endothelium at two weeks. They reported higher
cell density on anterior lens capsule and culture plates in comparison to collagen
membrane (Table 1). However, no statistically significant difference in cell density
was shown among all three groups. Although the de-epithelialized human anterior
lens capsule is a biocompatible substrate, it does not reduce donor dependency.
The diameter of anterior lens capsule following capsulorhexis in cataract surgery is
approximately half the size needed for a carrier for cultivated corneal endothelium
for endothelial keratoplasty.
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3.1.4. Natural Polymers

Extracellular protein coatings are composed of single proteins (e.g.,
collagen, gelatin) or combination of different proteins (e.g., FNC coating mix®).
Although the exact components and composition of the coatings are known,
the biological activity of HCECs on these coatings varies. The coating proteins
influence HCEC adhesion, proliferation, morphology, and function of HCECs. There
are many different types of coating materials available for expansion of HCECs.
These include collagen [28,56,65,74,90,93,97,99,110,139], fibronectin [59,90,93,97,110],
gelatin [32,50,76,94], laminin [93,97], extracellular matrix (ECM) from cultured bovine
corneal endothelial cells [25,27,59,67,71,93], a mixture of laminin and chondroitin
sulfate [51], and a mixture of fibronectin, collagen, and albumin (FNC Coating
Mix®) [97,101].

Choi et al. evaluated adhesion, proliferation, and phenotypic maintenance of
HCECs on ECM coated culture plates [97]. They studied collagen type I, collagen
type IV, fibronectin, laminin, and FNC coating mix. The HCECs expressed a number
of integrin genes (integrin α1, α2, α3, αv, β1 and β5), but not integrin gene β3. High
expression of integrin genes supports HCEC binding to ECM. Although cells on
collagen type IV and fibronectin showed the highest expression and cells on collagen
type I exhibited the least expression, there were no statistically significant differences.
Compared to uncoated control plates, HCECs adhered more tightly to culture plates
coated with coating proteins such as collagen I, collagen IV, fibronectin, and FNC
coating mix. The authors also investigated the cell adhesion strength, and showed
that all the coating proteins increased the adhesion strength compared to uncoated
controls, except for laminin. They were able to demonstrate that HCECs could
grow into a confluent layer in a week on all ECM tested, including uncoated culture
plates. Gene expression of ZO-1 and Na+K+ATPase was found in all conditions,
but Na+K+ATPase expression was significantly higher in collagen type I, fibronectin
and laminin coated culture plates [97]. In a previous study of Choi et al., it was
demonstrated that proliferation of HCECs on fibronectin coated culture plates was
significantly higher on day 2 after seeding compared to collagen type IV coated
culture plates and uncoated culture plates [90]. On day 4 after seeding, however, there
was no significant difference in the growth rate in any of the experimental groups.

Yamaguchi et al. studied HCEC adhesion and proliferation in the presence
of recombinant laminin-5 [93]. Their results showed significantly higher adhesion
of HCECs on recombinant laminin-5 coated dishes compared to uncoated control
culture dishes. Furthermore, HCECs did not proliferate on collagen type IV coated
culture dishes, and the number of adherent HCECs on laminin-5 coated culture
dishes increased 1.5 times after 7 days of cell culture.

In few studies gelatin as substrate for HCECs was evaluated [50,76,94].
Hsiue et al. were able to demonstrate that gelatin discs dissolved and the HCEC sheet
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was adherent to posterior part of corneal stroma two weeks after transplantation
of HCEC sheet [76]. Silkworm fibroin can be prepared as a transparent membrane
and used as carrier for cultivated corneal endothelial cells [149]. However, higher
cell density of B4G12 cell line was achieved on uncoated tissue culture compared
to on fibroin. Human corneal endothelial cells grew to confluency with polygonal
morphology only on collagen type IV coated fibroin [149].

Extracellular matrices from cultured bovine corneal endothelial cells are used
as coating material for in vitro cultivation HCECs [25,27,59,67,71,93]. In a study
the HCECs were cultured initially on bovine ECM coated culture dishes following
seeding of the cells on type I collagen sheet [28]. The HCEC sheet was reported to
also have cells with fibroblastic-like morphology. Extracellular matrices produced by
bovine corneal endothelial cells may be reservoir for progelatinase A, a matrix
metalloproteinase, which is important for turnover of ECM and is involved in
inflammation, wound healing, angiogenesis, and metastasis [150].

Studies were carried out by using collagen type I and IV as a substrate for
HCECs [74,90,93,97,110]. Cultivated monkey corneal endothelial cells were further
cultured on collagen type I carrier for 4 weeks and transplanted into monkeys. The
cultivated corneal endothelial layer produced confluent monolayer expressing ZO-1
and Na+K+ATPase. The transplanted tissue-engineered corneal endothelial graft
remained clear and had an endothelial cell density of 1992 to 2475 cells/mm2 on
examination using in vivo specular microscopy six months after transplantation [35].

Cultured HCECs on collagen sheets composed of cross-linked collagen type I
were transplanted into rabbits. Pump function was evaluated using Ussing chamber
and ouabain, a Na+K+ATPase inhibitor. The results showed that the cultured
HCECs on collagen sheets maintained 76%–95% of pump function of human donor
corneas [28].

The difference in adhesion, proliferation, and phenotype displayed by HCECs
on the same type of coating in different studies can be related to different culture
techniques and media used. However, further studies should be conducted to assess
the consistency of the different types of coatings. The use of these coatings in clinical
setting remains to be rigorously verified as the coatings are derived from animals.

3.2. Synthetic Substrates

Synthetic polymers have the advantage of high purity with known chemical
composition, structure and properties. They can be reproduced at controlled
conditions with known mechanical and physical properties. Coated hydrogel lens
was used as carrier for cultivated kitten and rabbit corneal endothelial cells, and
these constructs were transplanted into adult cats and rabbits with induced corneal
edema, respectively. The transplanted corneas became clear within three days after
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transplantation in both cats and rabbits, and the cornea remained clear for 50 days in
cats and 40 days in rabbits [23].

In few studies the HCECs were cultured on plastic culture plates without
coating [45–47,49]. These studies do not reveal details of adhesion and proliferation
profiles of HCECs. The cyclic dimers of glycolic and lactic acids are monomers used
in production of biomedical devices. Glycolic and lactic acids are by-products of
metabolic pathway in normal physiological conditions. Therefore, they are regarded
as highly biocompatible with minimal systemic toxicity. Poly(lactic acid) (PLLA)
and poly(lactic-co-glycolic acid) (PLGA) are synthetic polymers extensively studied
owing to their biocompatibility and biodegradability [151]. Hadlock et al. seeded
in vitro expanded rabbit corneal endothelial cells on PLLA and PLGA [152]. In tissue
culture conditions the cells grew into confluency on the synthetic materials and
stained for ZO-1 along the lateral cell borders.

Synthetic polymers are used commonly as drug delivery devices. In few
ocular diseases dexamethasone can be delivered into the vitreous cavity as an
implant. Ozurdex, consisting of dexamethasone and PLGA with hydroxypropyl
methylcellulose, is injected intravitreally in patients with e.g., macular edema
secondary to retinal vein occlusion. Poly(lactic-co-glycolic acid) polymer matrix
degrades slowly to lactic and glycolic acids meaning the final degradation products
are water and carbon dioxide [153]. Another dexamethasone delivery device,
Surodex, consisting of PLGA with hydroxypropyl methylcellulose is inserted into the
anterior chamber following cataract surgery to treat postoperative inflammation. In a
comparative single-masked parallel-group study, Wadood and coauthors compared
the safety and efficacy of dexamethasone eye drops and Surodex inserted into the
anterior chamber in patients following phacoemulsification cataract extraction and
posterior chamber intraocular lens implantation [154]. Out of 19 patients in this
study, 11 patients received Surodex. Surodex remnants were present in all eyes at
60-day post-operative control, and in 3 patients the traces of remnants were present
at 32–36 months. However, no significant complications were reported during the
follow-up time of 3 years. The authors reported peripheral anterior synechias of less
than 1 clock hour at the site of Surodex implantat in 1 patient, and they regarded this
as an adverse event. One patient developed high intraocular pressure after Surodex
implantation. The authors considered the patient to be a steroid responder. The
intraocular pressure normalized without treatment during the follow-up time of
36 months. Although PLGA is considered to be well-tolerated by patients when
inserted into the anterior chamber or vitreous cavity, the removal of device in e.g.,
cases of endophthalmitis remains a major concern due to residing remnants.
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In the early phase of cultivation of HCECs, adherence of the cells to the
substrate is of great importance to initiate cell growth, while detachment of an intact
and confluent cell layer in a later phase is necessary for transplantation purposes.
Stimuli-responsive polymers have the ability to change their molecular structures
or physicochemical properties according to the variation in the environment they
are in. The design of these polymers with associated processes is highly specialized.
Major changes, such as alteration in the shape, transparency and permeability to
water, can be achieved by a small stimulus, such as change in temperature, pH or
wavelength of light.

Research groups have cultivated HCECs on culture dishes grafted with
temperature-responsive polymer poly(N-isopropylacrylamide) (PIPAAm) which
reversibly alter its hydrophobicity/hydrophilicity dependent on incubation
temperature [32,74,76,140,141]. They have the advantage of providing both initial
cell adhesion and later cell layer detachment. At 37 ˝C the seeded cells adhere and
proliferate on hydrophobic PIPAAm-grafted surfaces. The HCEC sheet detaches from
PIPAAm-grafted culture dishes as surfaces become hydrophilic when temperature
is reduced below the lower critical solution temperature of 32 ˝C. A circular
portion of 18 mm in diameter in the center of 35 mm of culture dishes was grafted
with temperature responsive polymer, PIPAAm [74,76]. The in vitro cultivated
HCECs were seeded on PIPAAm-grafted culture dishes, and the cells reached
confluency in 1–3 weeks [32,74,76,140,141]. The gross appearance of confluent
HCEC layer on hydrophobic PIPAAm-grafted surfaces was whitish gray, and the
authors related this to accumulation of ECM [32]. Upon reduction of incubation
temperature from 37 to 20 ˝C, the HCEC sheets detached from culture dish surfaces
within 45–60 min [32,74,140,141]. Although the HCEC sheets detached as single
contiguous layers, their surfaces were reported as wrinkled by Lai et al. [140]
and as having a white paper-like texture by Hsiue et al. [76]. The monolayered
cell sheets expressed ZO-1 [32,76,140,141] and Na+K+ATPase [32,74,141] proteins.
Deposit of ECM on basal surface of HCEC sheets were observed [32,74,76,140,141],
and the ECM components, collagen type IV and fibronectin, were detected
by immunostaining [140]. Scanning electron microscopy micrographs showed
polygonal cells with cellular interconnections [74,76,140,141] and microvilli and
cilia [74,140], and transmission electron microscopy micrographs revealed abundant
cytoplasmic organelles, rough endoplasmic reticulum and mitochondria [32,140].
However, Hsiue et al. demonstrated the absence of clear cell boundaries [76].

In two studies, the harvested HCEC sheets from PIPAAm-grafted surfaces were
immediately transferred to gelatin disc carriers (7 mm in diameter and 700–800 µm
in thickness) [32,76]. The reconstructed corneal endothelium was transplanted into
experimental rabbit models denuded of corneal endothelium. The gelatin discs
dissolved in two weeks, and the corneas transplanted with reconstructed corneal
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endothelium were clear with near normal corneal thickness at four weeks [76].
In rabbits transplanted with tissue engineered corneal endothelium, the corneal
thickness increased to 892 µm at post-operative day 1, and then decreased to
near normal corneal thickness of approximately 500 µm at post-operative day
168 [32]. Sumide et al. transplanted HCEC sheet attached to cornea denuded of
corneal endothelium and Descemet’s membrane into rabbit models [74]. Control
rabbits underwent all procedures except for having HCEC sheet on corneal button.
Minimal corneal edema was reported in rabbits in HCEC sheet transplant group at
day 7. In contrast, the corneas were opaque in control group. The average corneal
thickness in HCEC sheet transplant group was significantly lower compared to
control group at day 7. Even though the stimuli-responsive polymers are investigated
extensively, their role in corneal endothelial layer transplantations and the effect of
the temperature change on the HCEC bioactivity remains to be investigated.

3.3. Biosynthetic Substrates

Substrates made from a mixture of natural and synthetic polymers are referred
to as biosynthetic substrates in this review. Gao et al. evaluated biocompatibility
and biodegradability of substrate composed of hydroxypropyl chitosan, gelatin, and
chondroitin sulfate [155]. Scanning electron microscopy images revealed a porous
structure without fibrils, and the light transmission (wavelength ranging 400–800
nm) measurements through the substrate showed transmittance of more than 90%;
both indicating the membrane transparency. They demonstrated comparable or
better glucose permeability through the substrate in comparison to native corneas.
Cultivated rabbit corneal endothelial cells on this substrate reached confluency on
day 4, and displayed characteristic cobblestone appearance. Histocompability and
biodegradability were assessed by implanting the substrates into skeletal muscle
of rats. Sign of inflammation was seen during post-mortem examination at the
interface between the host tissue and substrate even at the end of observation period
of 2 months. Degradation of substrate was observed from day 30.

Plastic compressed collagen gels [101] and a blending of chitosan and
polycaprolactone [156] may give the necessary mechanical strength as a carrier.
Synthetic polymers have the advantage of being reproduced under controlled
conditions with known mechanical and physical properties. Different ratio of
chitosan and polycaprolactone in a substrate were examined. A composition of
75% chitosan and 25% polycaprolactone supported cultivation of bovine corneal
endothelial cells and gave the necessary mechanical strength of a substrate. The cells
reached confluency on day 7 and expressed ZO-1 protein on substrate composed of
chitosan and polycaprolactone at raio of 75:25 [156].
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Plastic compressed collagen type I, termed Real Architecture For 3D Tissues
(RAFT), can be easily reproduced and trephined into the size required [101]. Scanning
and transmission electron microscopy imaging revealed a confluent monolayer of
corneal endothelial cells on RAFT. Human corneal endothelial cells cultivated on
RAFT stained for ZO-1 and Na+K+ATPase proteins [101].

The synthetic polymers degrade slowly, and hence potential adverse effects on
the eyes over long time course remains to be investigated. Biosynthetic substrate
is reported to give raise to inflammation in experimental animal models [155].
Therefore, histocompability studies should be performed before use of biosynthetic
substrates in humans.

4. Conclusions and Future Perspective

It is obvious to date that the development and utility of different substrates in
tissue engineering of corneal endothelium is slowly evolving. Functional realization
of the bioengineered corneal endothelium has not yet been optimal due to the
current limited knowledge of molecular mechanism of proliferation of HCECs
and their associated inter- and intra-signaling pathways that maintain the corneal
endothelial tissue homeostasis. Ideal substrates for cultivation of HCECs should
mimic Descemet’s membrane in molecular, physiological and mechanical terms.
Therefore, it is essential to have thorough molecular and functional insights into
the microenvironment of human corneal endothelium in vivo and engineer such
characteristics into the deriving HCEC grafts. Identification of specific marker(s)
of HCEC will be extremely advantageous in optimizing differentiation of large
numbers of HCECs from a variety of available cell sources. In addition, even perhaps
the patient specific iPS cells with the eventual goal of prospectively circumventing
the need for increasingly limiting donor corneas. Finally, though the preliminary
xenotransplantation studies appear promising, focused research on the discovery
and derivation of suitable substrates, optimization of HCEC culture techniques
and identification of specific marker(s) of HCESs appears very valuable before any
bioengineered human corneal endothelial graft is used clinically.

Acknowledgments: The authors would like to thank Geir A. Qvale at the Center for Eye
Research, Department of Ophthalmology, Oslo University Hospital, for contributing with the
figures. We thank many investigators that have contributed to this subject, while regretting to
be unable to include all the works of others due to space constraint.

Conflicts of Interest: The authors declare no conflict of interest.

109



References

1. Nishida, T. Neurotrophic mediators and corneal wound healing. Ocul. Surf. 2005, 3,
194–202.

2. Dua, H.S.; Faraj, L.A.; Said, D.G.; Gray, T.; Lowe, J. Human corneal anatomy redefined:
A novel pre-Descemet’s layer (dua’s layer). Ophthalmology 2013, 120, 1778–1785.

3. Rüfer, F.; Schröder, A.; Erb, C. White-to-white corneal diameter: Normal values in healthy
humans obtained with the orbscan II topography system. Cornea 2005, 24, 259–261.

4. Rozsa, A.J.; Beuerman, R.W. Density and organization of free nerve endings in the corneal
epithelium of the rabbit. Pain 1982, 14, 105–120.

5. Dua, H.S.; Azuara-Blanco, A. Limbal stem cells of the corneal epithelium.
Surv. Ophthalmol. 2000, 44, 415–425.

6. Meek, K.M.; Dennis, S.; Khan, S. Changes in the refractive index of the stroma and its
extrafibrillar matrix when the cornea swells. Biophys. J. 2003, 85, 2205–2212.

7. Pascolini, D.; Mariotti, S.P. Global estimates of visual impairment: 2010. Br. J. Ophthalmol.
2012, 96, 614–618.

8. Tuft, S.J.; Coster, D.J. The corneal endothelium. Eye 1990, 4, 389–424.
9. Joyce, N.C. Proliferative capacity of corneal endothelial cells. Exp. Eye Res. 2012, 95,

16–23.
10. Nucci, P.; Brancato, R.; Mets, M.B.; Shevell, S.K. Normal endothelial cell density range in

childhood. Arch. Ophthalmol. 1990, 108, 247–248.
11. Bourne, W.M.; Nelson, L.R.; Hodge, D.O. Central corneal endothelial cell changes over a

ten-year period. Investig. Ophthalmol. Vis. Sci. 1997, 38, 779–782.
12. Steele, C. Corneal wound healing: A review. Optom. Today 1999, 25, 28–32.
13. Melles, G.R.; Ong, T.S.; Ververs, B.; van der Wees, J. Descemet membrane endothelial

keratoplasty (DMEK). Cornea 2006, 25, 987–990.
14. Okumura, N.; Koizumi, N.; Kay, E.P.; Ueno, M.; Sakamoto, Y.; Nakamura, S.; Hamuro, J.;

Kinoshita, S. The rock inhibitor eye drop accelerates corneal endothelium wound healing.
Investig. Ophthalmol. Vis. Sci. 2013, 54, 2493–2502.

15. Mimura, T.; Shimomura, N.; Usui, T.; Noda, Y.; Kaji, Y.; Yamgami, S.; Amano, S.;
Miyata, K.; Araie, M. Magnetic attraction of iron-endocytosed corneal endothelial cells to
Descemet’s membrane. Exp. Eye Res. 2003, 76, 745–751.

16. Okumura, N.; Koizumi, N.; Ueno, M.; Sakamoto, Y.; Takahashi, H.; Tsuchiya, H.;
Hamuro, J.; Kinoshita, S. Rock inhibitor converts corneal endothelial cells into a
phenotype capable of regenerating in vivo endothelial tissue. Am. J. Pathol. 2012, 181,
268–277.

17. Mimura, T.; Yamagami, S.; Usui, T.; Ishii, Y.; Ono, K.; Yokoo, S.; Funatsu, H.; Araie, M.;
Amano, S. Long-term outcome of iron-endocytosing cultured corneal endothelial cell
transplantation with magnetic attraction. Exp. Eye Res. 2005, 80, 149–157.

18. Moysidis, S.N.; Alvarez-Delfin, K.; Peschansky, V.J.; Salero, E.; Weisman, A.D.;
Bartakova, A.; Raffa, G.A.; Merkhofer, R.M., Jr.; Kador, K.E.; Kunzevitzky, N.J.; et al.
Magnetic field-guided cell delivery with nanoparticle-loaded human corneal endothelial
cells. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 499–509.

110



19. Hoppenreijs, V.P.T.; Pels, E.; Vrensen, G.F.J.M.; Treffers, W.F. Corneal endothelium and
growth factors. Surv. Ophthalmol. 1996, 41, 155–164.

20. Pipparelli, A.; Arsenijevic, Y.; Thuret, G.; Gain, P.; Nicolas, M.; Majo, F. Rock inhibitor
enhances adhesion and wound healing of human corneal endothelial cells. PLoS ONE
2013, 8.

21. Fan, T.J.; Zhao, J.; Hu, X.Z.; Ma, X.Y.; Zhang, W.B.; Yang, C.Z. Therapeutic efficiency of
tissue-engineered human corneal endothelium transplants on rabbit primary corneal
endotheliopathy. J. Zhejiang Univ. Sci. B 2011, 12, 492–498.

22. Fan, T.; Ma, X.; Zhao, J.; Wen, Q.; Hu, X.; Yu, H.; Shi, W. Transplantation of
tissue-engineered human corneal endothelium in cat models. Mol. Vis. 2013, 19, 400–407.

23. Mohay, J.; Lange, T.M.; Soltau, J.B.; Wood, T.O.; McLaughlin, B.J. Transplantation of
corneal endothelial cells using a cell carrier device. Cornea 1994, 13, 173–182.

24. Mohay, J.; Wood, T.O.; McLaughlin, B.J. Long-term evaluation of corneal endothelial cell
transplantation. Trans. Am. Ophthalmol. Soc. 1997, 95, 131–151.

25. Hitani, K.; Yokoo, S.; Honda, N.; Usui, T.; Yamagami, S.; Amano, S. Transplantation of a
sheet of human corneal endothelial cell in a rabbit model. Mol. Vis. 2008, 14, 1–9.

26. Jumblatt, M.M.; Maurice, D.M.; McCulley, J.P. Transplantation of tissue-cultured corneal
endothelium. Investig. Ophthalmol. Vis. Sci. 1978, 17, 1135–1141.

27. Mimura, T.; Amano, S.; Usui, T.; Araie, M.; Ono, K.; Akihiro, H.; Yokoo, S.; Yamagami, S.
Transplantation of corneas reconstructed with cultured adult human corneal endothelial
cells in nude rats. Exp. Eye Res. 2004, 79, 231–237.

28. Mimura, T.; Yamagami, S.; Yokoo, S.; Usui, T.; Tanaka, K.; Hattori, S.; Irie, S.; Miyata, K.;
Araie, M.; Amano, S. Cultured human corneal endothelial cell transplantation with a
collagen sheet in a rabbit model. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2992–2997.

29. Insler, M.S.; Lopez, J.G. Transplantation of cultured human neonatal corneal endothelium.
Curr. Eye Res. 1986, 5, 967–972.

30. Insler, M.S.; Lopez, J.G. Heterologous transplantation versus enhancement of human
corneal endothelium. Cornea 1991, 10, 136–148.

31. Insler, M.S.; Lopez, J.G. Extended incubation times improve corneal endothelial cell
transplantation success. Investig. Ophthalmol. Vis. Sci. 1991, 32, 1828–1836.

32. Lai, J.Y.; Chen, K.H.; Hsiue, G.H. Tissue-engineered human corneal endothelial cell sheet
transplantation in a rabbit model using functional biomaterials. Transplantation 2007, 84,
1222–1232.

33. Proulx, S.; Bensaoula, T.; Nada, O.; Audet, C.; d’Arc Uwamaliya, J.; Devaux, A.;
Allaire, G.; Germain, L.; Brunette, I. Transplantation of a tissue-engineered corneal
endothelium reconstructed on a devitalized carrier in the feline model. Investig.
Ophthalmol. Vis. Sci. 2009, 50, 2686–2694.

34. Koizumi, N.; Sakamoto, Y.; Okumura, N.; Tsuchiya, H.; Torii, R.; Cooper, L.J.; Ban, Y.;
Tanioka, H.; Kinoshita, S. Cultivated corneal endothelial transplantation in a primate:
Possible future clinical application in corneal endothelial regenerative medicine. Cornea
2008, 27, S48–S55.

111



35. Koizumi, N.; Sakamoto, Y.; Okumura, N.; Okahara, N.; Tsuchiya, H.; Torii, R.; Cooper, L.J.;
Ban, Y.; Tanioka, H.; Kinoshita, S. Cultivated corneal endothelial cell sheet transplantation
in a primate model. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4519–4526.

36. Tchah, H. Heterologous corneal endothelial cell transplantation—Human corneal
endothelial cell transplantation in lewis rats. J. Korean Med. Sci. 1992, 7, 337–342.

37. Wilson, S.E.; Lloyd, S.A.; He, Y.G.; McCash, C.S. Extended life of human corneal
endothelial cells transfected with the SV40 large T antigen. Investig. Ophthalmol. Vis. Sci.
1993, 34, 2112–2123.

38. Bednarz, J.; Teifel, M.; Friedl, P.; Engelmann, K. Immortalization of human corneal
endothelial cells using electroporation protocol optimized for human corneal endothelial
and human retinal pigment epithelial cells. Acta Ophthalmol. Scand. 2000, 78, 130–136.

39. Yokoi, T.; Seko, Y.; Yokoi, T.; Makino, H.; Hatou, S.; Yamada, M.; Kiyono, T.; Umezawa, A.;
Nishina, H.; Azuma, N. Establishment of functioning human corneal endothelial cell line
with high growth potential. PLoS ONE 2012, 7.

40. Kim, H.J.; Ryu, Y.H.; Ahn, J.I.; Park, J.K.; Kim, J.C. Characterization of immortalized
human corneal endothelial cell line using HPV 16 E6/E7 on lyophilized human amniotic
membrane. Korean J. Ophthalmol. 2006, 20, 47–54.

41. Takeuchi, M.; Takeuchi, K.; Ozawa, Y.; Kohara, A.; Mizusawa, H. Aneuploidy in
immortalized human mesenchymal stem cells with non-random loss of chromosome 13
in culture. Vitro Cell. Dev. Biol. Anim. 2009, 45, 290–299.

42. Lin, Z.; Han, Y.; Wu, B.; Fang, W. Altered cytoskeletal structures in transformed cells
exhibiting obviously metastatic capabilities. Cell Res. 1990, 1, 141–151.

43. Fan, T.; Zhao, J.; Ma, X.; Xu, X.; Zhao, W.; Xu, B. Establishment of a continuous
untransfected human corneal endothelial cell line and its biocompatibility to denuded
amniotic membrane. Mol. Vis. 2011, 17, 469–480.

44. Schmedt, T.; Chen, Y.; Nguyen, T.T.; Li, S.; Bonanno, J.A.; Jurkunas, U.V. Telomerase
immortalization of human corneal endothelial cells yields functional hexagonal
monolayers. PLoS ONE 2012, 7.

45. Mannagh, J.J.; Irving, A., Jr. Human corneal endothelium: Growth in tissue cultures.
Arch. Ophthalmol. 1965, 74, 847–849.

46. Newsome, D.A.; Takasugi, M.; Kenyon, K.R.; Stark, W.F.; Opelz, G. Human corneal cells
in vitro: Morphology and histocompatibility (HL-A) antigens of pure cell populations.
Investig. Ophthalmol. 1974, 13, 23–32.

47. Baum, J.L.; Niedra, R.; Davis, C.; Yue, B.Y.J.T. Mass culture of human corneal endothelial
cells. Arch. Ophthalmol. 1979, 97, 1136–1140.

48. Fabricant, R.N.; Alpar, A.J.; Centifanto, Y.M.; Kaufman, H.E. Epidermal growth factor
receptors on corneal endothelium. Arch. Ophthalmol. 1981, 99, 305–308.

49. Tripathi, R.C.; Tripathi, B.J. Human trabecular endothelium, corneal endothelium,
keratocytes, and scleral fibroblasts in primary cell culture. A comparative study of
growth characteristics, morphology, and phagocytic activity by light and scanning
electron microscopy. Exp. Eye Res. 1982, 35, 611–624.

112



50. Nayak, S.K.; Binder, P.S. The growth of endothelium from human corneal rims in tissue
culture. Investig. Ophthalmol. Vis. Sci. 1984, 25, 1213–1216.

51. Engelmann, K.; Böhnke, M.; Friedl, P. Isolation and long-term cultivation of human
corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 1988, 29, 1656–1662.

52. Yue, B.Y.; Sugar, J.; Gilboy, J.E.; Elvart, J.L. Growth of human corneal endothelial cells in
culture. Investig. Ophthalmol. Vis. Sci. 1989, 30, 248–253.

53. Lass, J.H.; Reinhart, W.J.; Skelnik, D.L.; Bruner, W.E.; Shockley, R.P.; Park, J.Y.; Hom, D.L.;
Lindstrom, R.L. An in vitro and clinical comparison of corneal storage with chondroitin
sulfate corneal storage medium with and without dextran. Ophthalmology 1990,
97, 96–103.

54. Engelmann, K.; Friedl, P. Optimization of culture conditions for human corneal
endothelial cells. Vitro Cell. Dev. Biol. 1989, 25, 1065–1072.

55. Samples, J.R.; Binder, P.S.; Nayak, S.K. Propagation of human corneal endothelium
in vitro effect of growth factors Exp. Eye Res. 1991, 52, 121–128.

56. Insler, M.S.; Lopez, J.G. Microcarrier cell culture of neonatal human corneal endothelium.
Curr. Eye Res. 1990, 9, 23–30.

57. Engelmann, K.; Friedl, P. Growth of human corneal endothelial cells in a serum-reduced
medium. Cornea 1995, 14, 62–70.

58. Hoppenreijs, V.P.; Pels, E.; Vrensen, G.F.; Treffers, W.F. Basic fibroblast growth factor
stimulates corneal endothelial cell growth and endothelial wound healing of human
corneas. Investig. Ophthalmol. Vis. Sci. 1994, 35, 931–944.

59. Blake, D.A.; Yu, H.; Young, D.L.; Caldwell, D.R. Matrix stimulates the proliferation of
human corneal endothelial cells in culture. Investig. Ophthalmol. Vis. Sci. 1997, 38,
1119–1129.

60. Bednarz, J.; Rodokanaki-von Schrenck, A.; Engelmann, K. Different characteristics of
endothelial cells from central and peripheral human cornea in primary culture and after
subculture. Vitro Cell. Dev. Biol. Anim. 1998, 34, 149–153.

61. Schonthal, A.H.; Hwang, J.J.; Stevenson, D.; Trousdale, M.D. Expression and activity
of cell cycle-regulatory proteins in normal and transformed corneal endothelial cells.
Exp. Eye Res. 1999, 68, 531–539.

62. Chen, K.H.; Azar, D.; Joyce, N.C. Transplantation of adult human corneal endothelium
ex vivo: A morphologic study. Cornea 2001, 20, 731–737.

63. Engelmann, K.; Bednarz, J.; Schafer, H.J.; Friedl, P. Isolation and characterization of a
mouse monoclonal antibody against human corneal endothelial cells. Exp. Eye Res. 2001,
73, 9–16.

64. Miyata, K.; Drake, J.; Osakabe, Y.; Hosokawa, Y.; Hwang, D.; Soya, K.; Oshika, T.;
Amano, S. Effect of donor age on morphologic variation of cultured human corneal
endothelial cells. Cornea 2001, 20, 59–63.

65. Orwin, E.J.; Hubel, A. In vitro culture characteristics of corneal epithelial, endothelial,
and keratocyte cells in a native collagen matrix. Tissue Eng. 2000, 6, 307–319.

113



66. Mertens, S.; Bednarz, J.; Richard, G.; Engelmann, K. Effect of perfluorodecalin on human
retinal pigment epithelium and human corneal endothelium in vitro. Graefes Arch. Clin.
Exp. Ophthalmol. 2000, 238, 181–185.

67. Amano, S. Transplantation of cultured human corneal endothelial cells. Cornea 2003, 22,
S66–S74.

68. Ishino Y, S.Y.; Nakamura, T.; Connon, C.J.; Rigby, H.; Fullwood, N.J.; Kinoshita, S.
Amniotic membrane as a carrier for cultivated human corneal endothelial cell
transplantation. Investig. Ophthalmol. Vis. Sci. 2004, 45, 800–806.

69. Zhu, C.; Joyce, N.C. Proliferative response of corneal endothelial cells from young and
older donors. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1743–1751.

70. Joyce, N.C.; Zhu, C.C. Human corneal endothelial cell proliferation: Potential for use in
regenerative medicine. Cornea 2004, 23, S8–S19.

71. Amano, S.; Mimura, T.; Yamagami, S.; Osakabe, Y.; Miyata, K. Properties of corneas
reconstructed with cultured human corneal endothelial cells and human corneal stroma.
Jpn. J. Ophthalmol. 2005, 49, 448–452.

72. Yokoo, S.; Yamagami, S.; Yanagi, Y.; Uchida, S.; Mimura, T.; Usui, T.; Amano, S. Human
corneal endothelial cell precursors isolated by sphere-forming assay. Investig. Ophthalmol.
Vis. Sci. 2005, 46, 1626–1631.

73. Konomi, K.; Zhu, C.; Harris, D.; Joyce, N.C. Comparison of the proliferative capacity
of human corneal endothelial cells from the central and peripheral areas. Investig.
Ophthalmol. Vis. Sci. 2005, 46, 4086–4091.

74. Sumide, T.; Nishida, K.; Yamato, M.; Ide, T.; Hayashida, Y.; Watanabe, K.; Yang, J.;
Kohno, C.; Kikuchi, A.; Maeda, N.; et al. Functional human corneal endothelial cell sheets
harvested from temperature-responsive culture surfaces. FASEB J. 2006, 20, 392–394.

75. Enomoto, K.; Mimura, T.; Harris, D.L.; Joyce, N.C. Age differences in cyclin-dependent
kinase inhibitor expression and RB hyperphosphorylation in human corneal endothelial
cells. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4330–4340.

76. Hsiue, G.H.; Lai, J.Y.; Chen, K.H.; Hsu, W.M. A novel strategy for corneal endothelial
reconstruction with a bioengineered cell sheet. Transplantation 2006, 81, 473–476.

77. Lai, J.Y.; Lu, P.L.; Chen, K.H.; Tabata, Y.; Hsiue, G.H. Effect of charge and molecular
weight on the functionality of gelatin carriers for corneal endothelial cell therapy.
Biomacromolecules 2006, 7, 1836–1844.

78. Kikuchi, M.; Zhu, C.; Senoo, T.; Obara, Y.; Joyce, N.C. P27kip1 sirna induces proliferation
in corneal endothelial cells from young but not older donors. Investig. Ophthalmol. Vis. Sci.
2006, 47, 4803–4809.

79. Joko, T.; Nanba, D.; Shiba, F.; Miyata, K.; Shiraishi, A.; Ohashi, Y.; Higashiyama, S. Effects
of promyelocytic leukemia zinc finger protein on the proliferation of cultured human
corneal endothelial cells. Mol. Vis. 2007, 13, 649–658.

80. Li, W.; Sabater, A.L.; Chen, Y.T.; Hayashida, Y.; Chen, S.Y.; He, H.; Tseng, S.C. A novel
method of isolation, preservation, and expansion of human corneal endothelial cells.
Investig. Ophthalmol. Vis. Sci. 2007, 48, 614–620.

114



81. Suh, L.H.; Zhang, C.; Chuck, R.S.; Stark, W.J.; Naylor, S.; Binley, K.; Chakravarti, S.;
Jun, A.S. Cryopreservation and lentiviral-mediated genetic modification of human
primary cultured corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2007, 48,
3056–3061.

82. Yoeruek, E.; Spitzer, M.S.; Tatar, O.; Aisenbrey, S.; Bartz-Schmidt, K.U.; Szurman, P. Safety
profile of bevacizumab on cultured human corneal cells. Cornea 2007, 26, 977–982.

83. Zhu, Y.T.; Hayashida, Y.; Kheirkhah, A.; He, H.; Chen, S.Y.; Tseng, S.C. Characterization
and comparison of intercellular adherent junctions expressed by human corneal
endothelial cells in vivo and in vitro. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3879–3886.

84. Ishino, Y.; Zhu, C.; Harris, D.L.; Joyce, N.C. Protein tyrosine phosphatase-1B (PTP1B)
helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial
cells. Mol. Vis. 2008, 14, 61–70.

85. Miyai, T.; Maruyama, Y.; Osakabe, Y.; Nejima, R.; Miyata, K.; Amano, S. Karyotype
changes in cultured human corneal endothelial cells. Mol. Vis. 2008, 14, 942–950.

86. Patel, S.V.; Bachman, L.A.; Hann, C.R.; Bahler, C.K.; Fautsch, M.P. Human corneal
endothelial cell transplantation in a human ex vivo model. Investig. Ophthalmol. Vis. Sci.
2009, 50, 2123–2131.

87. Engler, C.; Kelliher, C.; Speck, C.L.; Jun, A.S. Assessment of attachment factors for
primary cultured human corneal endothelial cells. Cornea 2009, 28, 1050–1054.

88. Yoeruek, E.; Saygili, O.; Spitzer, M.S.; Tatar, O.; Bartz-Schmidt, K.U.; Szurman, P. Human
anterior lens capsule as carrier matrix for cultivated human corneal endothelial cells.
Cornea 2009, 28, 416–420.

89. Joyce, N.C.; Harris, D.L. Decreasing expression of the G1-phase inhibitors, p21cip1 and
p16INK4a, promotes division of corneal endothelial cells from older donors. Mol. Vis.
2010, 16, 897–906.

90. Choi, J.S.; Williams, J.K.; Greven, M.; Walter, K.A.; Laber, P.W.; Khang, G.; Soker, S.
Bioengineering endothelialized neo-corneas using donor-derived corneal endothelial
cells and decellularized corneal stroma. Biomaterials 2010, 31, 6738–6745.

91. He, Z.; Campolmi, N.; Ha Thi, B.M.; Dumollard, J.M.; Peoc’h, M.; Garraud, O.; Piselli, S.;
Gain, P.; Thuret, G. Optimization of immunolocalization of cell cycle proteins in human
corneal endothelial cells. Mol. Vis. 2011, 17, 3494–3511.

92. Shima, N.; Kimoto, M.; Yamaguchi, M.; Yamagami, S. Increased proliferation and
replicative lifespan of isolated human corneal endothelial cells with l-ascorbic acid
2-phosphate. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8711–8717.

93. Yamaguchi, M.; Ebihara, N.; Shima, N.; Kimoto, M.; Funaki, T.; Yokoo, S.; Murakami, A.;
Yamagami, S. Adhesion, migration, and proliferation of cultured human corneal
endothelial cells by laminin-5. Investig. Ophthalmol. Vis. Sci. 2011, 52, 679–684.

94. Watanabe, R.; Hayashi, R.; Kimura, Y.; Tanaka, Y.; Kageyama, T.; Hara, S.; Tabata, Y.;
Nishida, K. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation.
Tissue Eng. A 2011, 17, 2213–2219.

115



95. Lee, J.G.; Song, J.S.; Smith, R.E.; Kay, E.P. Human corneal endothelial cells employ
phosphorylation of p27(Kip1) at both Ser10 and Thr187 sites for FGF-2-mediated cell
proliferation via PI 3-kinase. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8216–8223.

96. Hara, H.; Koike, N.; Long, C.; Piluek, J.; Roh, D.S.; SundarRaj, N.; Funderburgh, J.L.;
Mizuguchi, Y.; Isse, K.; Phelps, C.J.; et al. Initial in vitro investigation of the human
immune response to corneal cells from genetically engineered pigs. Investig. Ophthalmol.
Vis. Sci. 2011, 52, 5278–5286.

97. Choi, J.S.; Kim, E.Y.; Kim, M.J.; Giegengack, M.; Khan, F.A.; Khang, G.; Soker, S. In vitro
evaluation of the interactions between human corneal endothelial cells and extracellular
matrix proteins. Biomed. Mater. 2013, 8.

98. Bi, Y.L.; Zhou, Q.; Du, F.; Wu, M.F.; Xu, G.T.; Sui, G.Q. Regulation of functional corneal
endothelial cells isolated from sphere colonies by rho-associated protein kinase inhibitor.
Exp. Ther. Med. 2013, 5, 433–437.

99. Kopsachilis, N.; Tsinopoulos, I.; Tourtas, T.; Kruse, F.E.; Luessen, U.W. Descemet’s
membrane substrate from human donor lens anterior capsule. Clin. Exp. Ophthalmol.
2012, 40, 187–194.

100. Kimoto, M.; Shima, N.; Yamaguchi, M.; Amano, S.; Yamagami, S. Role of hepatocyte
growth factor in promoting the growth of human corneal endothelial cells stimulated by
l-ascorbic acid 2-phosphate. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7583–7589.

101. Levis, H.J.; Peh, G.S.; Toh, K.P.; Poh, R.; Shortt, A.J.; Drake, R.A.; Mehta, J.S.; Daniels, J.T.
Plastic compressed collagen as a novel carrier for expanded human corneal endothelial
cells for transplantation. PLoS ONE 2012, 7.

102. Okumura, N.; Hirano, H.; Numata, R.; Nakahara, M.; Ueno, M.; Hamuro, J.; Kinoshita, S.;
Koizumi, N. Cell surface markers of functional phenotypic corneal endothelial cells.
Investig. Ophthalmol. Vis. Sci. 2014, 55, 7610–7618.

103. Kopsachilis, N.; Tsaousis, K.T.; Tsinopoulos, I.T.; Welge-Luessen, U. Air toxicity for
primary human-cultured corneal endothelial cells: An in vitro model. Cornea 2013, 32,
e31–e35.

104. Peh, G.S.; Toh, K.P.; Ang, H.P.; Seah, X.Y.; George, B.L.; Mehta, J.S. Optimization of
human corneal endothelial cell culture: Density dependency of successful cultures
in vitro. BMC Res. Notes 2013, 6.

105. Cheong, Y.K.; Ngoh, Z.X.; Peh, G.S.; Ang, H.P.; Seah, X.Y.; Chng, Z.; Colman, A.;
Mehta, J.S.; Sun, W. Identification of cell surface markers glypican-4 and CD200 that
differentiate human corneal endothelium from stromal fibroblasts. Investig. Ophthalmol.
Vis. Sci. 2013, 54, 4538–4547.

106. Fujita, M.; Mehra, R.; Lee, S.E.; Roh, D.S.; Long, C.; Funderburgh, J.L.; Ayares, D.L.;
Cooper, D.K.; Hara, H. Comparison of proliferative capacity of genetically-engineered
pig and human corneal endothelial cells. Ophthalmic Res. 2013, 49, 127–138.

107. Nakahara, M.; Okumura, N.; Kay, E.P.; Hagiya, M.; Imagawa, K.; Hosoda, Y.;
Kinoshita, S.; Koizumi, N. Corneal endothelial expansion promoted by human bone
marrow mesenchymal stem cell-derived conditioned medium. PLoS ONE 2013, 8.

116



108. Yoon, J.J.; Wang, E.F.; Ismail, S.; McGhee, J.J.; Sherwin, T. Sphere-forming cells from
peripheral cornea demonstrate polarity and directed cell migration. Cell Biol. Int. 2013,
37, 949–960.

109. Chng, Z.; Peh, G.S.; Herath, W.B.; Cheng, T.Y.; Ang, H.P.; Toh, K.P.; Robson, P.; Mehta, J.S.;
Colman, A. High throughput gene expression analysis identifies reliable expression
markers of human corneal endothelial cells. PLoS ONE 2013, 8.

110. Numata, R.; Okumura, N.; Nakahara, M.; Ueno, M.; Kinoshita, S.; Kanematsu, D.;
Kanemura, Y.; Sasai, Y.; Koizumi, N. Cultivation of corneal endothelial cells on a
pericellular matrix prepared from human decidua-derived mesenchymal cells. PLoS ONE
2014, 9.

111. Giasson, C.J.; Deschambeault, A.; Carrier, P.; Germain, L. Adherens junction proteins are
expressed in collagen corneal equivalents produced in vitro with human cells. Mol. Vis.
2014, 20, 386–394.

112. Choi, J.S.; Kim, E.Y.; Kim, M.J.; Khan, F.A.; Giegengack, M.; D’Agostino, R., Jr.; Criswell, T.;
Khang, G.; Soker, S. Factors affecting successful isolation of human corneal endothelial
cells for clinical use. Cell Transplant. 2014, 23, 845–854.

113. Niu, G.; Choi, J.S.; Wang, Z.; Skardal, A.; Giegengack, M.; Soker, S. Heparin-modified
gelatin scaffolds for human corneal endothelial cell transplantation. Biomaterials 2014, 35,
4005–4014.

114. Ha Thi, B.M.; Campolmi, N.; He, Z.; Pipparelli, A.; Manissolle, C.; Thuret, J.Y.; Piselli, S.;
Forest, F.; Peoc’h, M.; Garraud, O.; et al. Microarray analysis of cell cycle gene expression
in adult human corneal endothelial cells. PLoS ONE 2014, 9.

115. Koo, S.; Muhammad, R.; Peh, G.S.; Mehta, J.S.; Yim, E.K. Micro- and nanotopography
with extracellular matrix coating modulate human corneal endothelial cell behavior.
Acta Biomater. 2014, 10, 1975–1984.

116. Muhammad, R.; Peh, G.S.; Adnan, K.; Law, J.B.; Mehta, J.S.; Yim, E.K. Micro-
and nano-topography to enhance proliferation and sustain functional markers of
donor-derived primary human corneal endothelial cells. Acta Biomater. 2015, 19,
138–148.

117. Okumura, N.; Kakutani, K.; Numata, R.; Nakahara, M.; Schlotzer-Schrehardt, U.;
Kruse, F.; Kinoshita, S.; Koizumi, N. Laminin-511 and -521 enable efficient in vitro
expansion of human corneal endothelial cells. Investig. Ophthalmol. Vis. Sci. 2015,
56, 2933–2942.

118. Vianna, L.M.; Kallay, L.; Toyono, T.; Belfort, R., Jr.; Holiman, J.D.; Jun, A.S. Use of human
serum for human corneal endothelial cell culture. Br. J. Ophthalmol. 2015, 99, 267–271.

119. Peh, G.S.; Chng, Z.; Ang, H.P.; Cheng, T.Y.; Adnan, K.; Seah, X.Y.; George, B.L.; Toh, K.P.;
Tan, D.T.; Yam, G.H.; et al. Propagation of human corneal endothelial cells: A novel dual
media approach. Cell Transplant. 2015, 24, 287–304.

120. Hyldahl, L. Primary cell cultures from human embryonic corneas. J. Cell Sci. 1984, 66,
343–351.

121. Konomi, K.; Joyce, N.C. Age and topographical comparison of telomere lengths in human
corneal endothelial cells. Mol. Vis. 2007, 13, 1251–1258.

117



122. Mimura, T.; Joyce, N.C. Replication competence and senescence in central and peripheral
human corneal endothelium. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1387–1396.

123. Song, Z.; Wang, Y.; Xie, L.; Zang, X.; Yin, H. Expression of senescence-related genes in
human corneal endothelial cells. Mol. Vis. 2008, 14, 161–170.

124. Gao, Y.; Zhou, Q.; Qu, M.; Yang, L.; Wang, Y.; Shi, W. In vitro culture of human fetal
corneal endothelial cells. Graefe Arch. Clin. Exp. Ophthalmol. 2011, 249, 663–669.

125. Noh, J.W.; Kim, J.J.; Hyon, J.Y.; Chung, E.S.; Chung, T.Y.; Yi, K.; Wee, W.R.; Shin, Y.J.
Stemness characteristics of human corneal endothelial cells cultured in various media.
Eye Contact Lens 2015, 41, 190–196.

126. Amano, S.; Yamagami, S.; Mimura, T.; Uchida, S.; Yokoo, S. Corneal stromal and
endothelial cell precursors. Cornea 2006, 25, S73–S77.

127. Mimura, T.; Yamagami, S.; Yokoo, S.; Usui, T.; Amano, S. Selective isolation of young
cells from human corneal endothelium by the sphere-forming assay. Tissue Eng. Part
C Methods 2010, 16, 803–812.

128. Rajasekhar, V.K.; Begemann, M. Concise review: Roles of polycomb group proteins in
development and disease: A stem cell perspective. Stem Cells 2007, 25, 2498–2510.

129. Yu, W.Y.; Sheridan, C.; Grierson, I.; Mason, S.; Kearns, V.; Lo, A.C.; Wong, D.
Progenitors for the corneal endothelium and trabecular meshwork: A potential source
for personalized stem cell therapy in corneal endothelial diseases and glaucoma.
J. Biomed. Biotechnol. 2011, 2011.

130. Zhang, K.; Pang, K.; Wu, X. Isolation and transplantation of corneal endothelial cell-like
cells derived from in vitro-differentiated human embryonic stem cells. Stem Cells Dev.
2014, 23, 1340–1354.

131. Hatou, S.; Yoshida, S.; Higa, K.; Miyashita, H.; Inagaki, E.; Okano, H.; Tsubota, K.;
Shimmura, S. Functional corneal endothelium derived from corneal stroma stem cells of
neural crest origin by retinoic acid and wnt/beta-catenin signaling. Stem Cells Dev. 2013,
22, 828–839.

132. Joyce, N.C.; Harris, D.L.; Markov, V.; Zhang, Z.; Saitta, B. Potential of human umbilical
cord blood mesenchymal stem cells to heal damaged corneal endothelium. Mol. Vis.
2012, 18, 547–564.

133. Dai, Y.; Guo, Y.; Wang, C.; Liu, Q.; Yang, Y.; Li, S.; Guo, X.; Lian, R.; Yu, R.; Liu, H.; et al.
Non-genetic direct reprogramming and biomimetic platforms in a preliminary study for
adipose-derived stem cells into corneal endothelia-like cells. PLoS ONE 2014, 9.

134. Shao, C.; Fu, Y.; Lu, W.; Fan, X. Bone marrow-derived endothelial progenitor
cells: A promising therapeutic alternative for corneal endothelial dysfunction.
Cells Tissues Organs 2011, 193, 253–263.

135. Ju, C.; Zhang, K.; Wu, X. Derivation of corneal endothelial cell-like cells from rat neural
crest cells in vitro. PLoS ONE 2012, 7.

136. Johnson, D.H.; Bourne, W.M.; Campbell, R.J. The ultrastructure of Descemet’s membrane.
I. Changes with age in normal corneas. Arch. Ophthalmol. 1982, 100, 1942–1947.

118



137. Bayyoud, T.; Thaler, S.; Hofmann, J.; Maurus, C.; Spitzer, M.S.; Bartz-Schmidt, K.U.;
Szurman, P.; Yoeruek, E. Decellularized bovine corneal posterior lamellae as carrier
matrix for cultivated human corneal endothelial cells. Curr. Eye Res. 2012, 37, 179–186.

138. Yoeruek, E.; Bayyoud, T.; Maurus, C.; Hofmann, J.; Spitzer, M.S.; Bartz-Schmidt, K.U.;
Szurman, P. Decellularization of porcine corneas and repopulation with human corneal
cells for tissue-engineered xenografts. Acta Ophthalmol 2012, 90, e125–e131.

139. Yoshida, J.; Oshikata-Miyazaki, A.; Yokoo, S.; Yamagami, S.; Takezawa, T.; Amano, S.
Development and evaluation of porcine atelocollagen vitrigel membrane with a spherical
curve and transplantable artificial corneal endothelial grafts. Investig. Ophthalmol. Vis. Sci.
2014, 55, 4975–4981.

140. Ide, T.; Nishida, K.; Yamato, M.; Sumide, T.; Utsumi, M.; Nozaki, T.; Kikuchi, A.; Okano, T.;
Tano, Y. Structural characterization of bioengineered human corneal endothelial cell
sheets fabricated on temperature-responsive culture dishes. Biomaterials 2006, 27,
607–614.

141. Lai, J.Y.; Chen, K.H.; Hsu, W.M.; Hsiue, G.H.; Lee, Y.H. Bioengineered human corneal
endothelium for transplantation. Arch. Ophthalmol. 2006, 124, 1441–1448.

142. Fukuda, K.; Chikama, T.; Nakamura, M.; Nishida, T. Differential distribution of subchains
of the basement membrane components type IV collagen and laminin among the amniotic
membrane, cornea, and conjunctiva. Cornea 1999, 18, 73–79.

143. Chen, H.J.; Pires, R.T.; Tseng, S.C. Amniotic membrane transplantation for severe
neurotrophic corneal ulcers. Br. J. Ophthalmol. 2000, 84, 826–833.

144. Kubo, M.; Sonoda, Y.; Muramatsu, R.; Usui, M. Immunogenicity of human amniotic
membrane in experimental xenotransplantation. Investig. Ophthalmol. Vis. Sci. 2001, 42,
1539–1546.

145. Wencan, W.; Mao, Y.; Wentao, Y.; Fan, L.; Jia, Q.; Qinmei, W.; Xiangtian, Z. Using
basement membrane of human amniotic membrane as a cell carrier for cultivated cat
corneal endothelial cell transplantation. Curr. Eye Res. 2007, 32, 199–215.

146. Utheim, T.P.; Lyberg, T.; Raeder, S. The culture of limbal epithelial cells. Methods Mol. Biol.
2013, 1014, 103–129.

147. Proulx, S.; Audet, C.; Uwamaliya, J.; Deschambeault, A.; Carrier, P.; Giasson, C.J.;
Brunette, I.; Germain, L. Tissue engineering of feline corneal endothelium using a
devitalized human cornea as carrier. Tissue Eng. Part A 2009, 15, 1709–1718.

148. Hashimoto, Y.; Funamoto, S.; Sasaki, S.; Honda, T.; Hattori, S.; Nam, K.; Kimura, T.;
Mochizuki, M.; Fujisato, T.; Kobayashi, H.; et al. Preparation and characterization
of decellularized cornea using high-hydrostatic pressurization for corneal tissue
engineering. Biomaterials 2010, 31, 3941–3948.

149. Madden, P.W.; Lai, J.N.; George, K.A.; Giovenco, T.; Harkin, D.G.; Chirila, T.V. Human
corneal endothelial cell growth on a silk fibroin membrane. Biomaterials 2011, 32,
4076–4084.

150. Menashi, S.; Vlodavsky, I.; Ishai-Michaeli, R.; Legrand, Y.; Fridman, R. The extracellular
matrix produced by bovine corneal endothelial cells contains progelatinase a. FEBS Lett.
1995, 361, 61–64.

119



151. Astete, C.E.; Sabliov, C.M. Synthesis and characterization of plga nanoparticles.
J. Biomater. Sci. Polym. Ed. 2006, 17, 247–289.

152. Hadlock, T.; Singh, S.; Vacanti, J.P.; McLaughlin, B.J. Ocular cell monolayers cultured on
biodegradable substrates. Tissue Eng. 1999, 5, 187–196.

153. Haghjou, N.; Soheilian, M.; Abdekhodaie, M.J. Sustained release intraocular drug
delivery devices for treatment of uveitis. J. Ophthal. Vis. Res. 2011, 6, 317–329.

154. Wadood, A.C.; Armbrecht, A.M.; Aspinall, P.A.; Dhillon, B. Safety and efficacy
of a dexamethasone anterior segment drug delivery system in patients after
phacoemulsification. J. Cataract Refract. Surg. 2004, 30, 761–768.

155. Gao, X.; Liu, W.; Han, B.; Wei, X.; Yang, C. Preparation and properties of a chitosan-based
carrier of corneal endothelial cells. J. Mater. Sci. Mater. Med. 2008, 19, 3611–3619.

156. Wang, T.J.; Wang, I.J.; Lu, J.N.; Young, T.H. Novel chitosan-polycaprolactone blends as
potential scaffold and carrier for corneal endothelial transplantation. Mol. Vis. 2012, 18,
255–264.

120



Transcriptome Analysis of Cultured Limbal
Epithelial Cells on an Intact Amniotic
Membrane following Hypothermic Storage
in Optisol-GS
Tor Paaske Utheim, Panagiotis Salvanos, Øygunn Aass Utheim, Sten Ræder,
Ole Kristoffer Olstad, Maria Fideliz de la Paz and Amer Sehic

Abstract: The aim of the present study was to investigate the molecular mechanisms
underlying activation of cell death pathways using genome-wide transcriptional
analysis in human limbal epithelial cell (HLEC) cultures following conventional
hypothermic storage in Optisol-GS. Three-week HLEC cultures were stored in
Optisol-GS for 2, 4, and 7 days at 4 ˝C. Partek Genomics Suite software v.6.15.0422,
(Partec Inc., St. Louis, MO, USA) was used to identify genes that showed significantly
different (P < 0.05) levels of expression following hypothermic storage compared
to non-stored cell sheets. There were few changes in gene expression after 2 days
of storage, but several genes were differently regulated following 4 and 7 days of
storage. The histone-coding genes HIST1H3A and HIST4H4 were among the most
upregulated genes following 4 and 7 days of hypothermic storage. Bioinformatic
analysis suggested that these two genes are involved in a functional network highly
associated with cell death, necrosis, and transcription of RNA. HDAC1, encoding
histone deacetylase 1, was the most downregulated gene after 7 days of storage.
Together with other downregulated genes, it is suggested that HDAC1 is involved in
a regulating network significantly associated with cellular function and maintenance,
differentiation of cells, and DNA repair. Our data suggest that the upregulated
expression of histone-coding genes together with downregulated genes affecting cell
differentiation and DNA repair may be responsible for increased cell death following
hypothermic storage of cultured HLEC. In summary, our results demonstrated that a
higher number of genes changed with increasing storage time. Moreover, in general,
larger differences in absolute gene expression values were observed with increasing
storage time. Further understanding of these molecular mechanisms is important for
optimization of storage technology for limbal epithelial sheets.

Reprinted from J. Funct. Biomater. Cite as: Utheim, T.P.; Salvanos, P.; Utheim, Ø.A.;
Ræder, S.; Pasovic, L.; Olstad, O.K.; de la Paz, M.F.; Sehic, A. Transcriptome Analysis
of Cultured Limbal Epithelial Cells on an Intact Amniotic Membrane following
Hypothermic Storage in Optisol-GS. J. Funct. Biomater. 2016, 7, 4.
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1. Introduction

Limbal epithelial stem cells exist in specialized niches in the limbus [1] where
they function to maintain the corneal epithelium [2]. When this function is lost
through disease or injury, limbal stem cell deficiency (LSCD) results. This is a
potentially blinding and painful disease characterized by neovascularization and
ingrowth of the conjunctiva over the cornea. Transplantation of ex vivo expanded
human limbal epithelial cells (HLEC) has proved successful in treating LSCD [1].

As cell-based corneal regenerative therapies become more common, demand
for access to culture laboratories is anticipated to increase [3]. Concurrently, there is a
trend towards increased centralization of culture facilities to meet increasingly strict
safety regulations. An effective, standardized transport strategy would therefore
have widespread clinical impact, allowing widespread distribution of cell-based
regenerative treatment to eye clinics from specialized culture facilities. Recent
studies have illustrated the feasibility of this strategy. Oie et al. demonstrated that
cultured oral mucosal cell sheets retained viability and phenotype following 12 hours
transportation in Japan [4]. Moreover, cultured conjunctival epithelial cells were
successfully used for treatment of pterygium in 23 patients following distribution to
four eye clinics in India [5]. Advantages of a standardized short-term storage and
transport method for cultured HLEC include provision of a window for sterility and
quality assessment, improved surgery logistics, and wider access to treatment.

We have previously shown that storage temperature has a significant effect on
the quality of cultured HLECs when stored in Optisol-GS for one week. Morphology
and viability of cultured HLECs deteriorated significantly following storage of
cultured HLECs at 5 ˝C [6,7] compared to storage at 23 ˝C. Hypothermic storage
in serum-free media has been widely used [8]. Nonetheless, it has been shown
that hypothermic storage can be injurious to a variety of cell types [9] and excised
corneas [10]. Extended hypothermic preservation induces oxidative stress through
increased reactive oxygen species production, resulting in a myriad of effects on
cellular function, including DNA damage and impaired repair mechanisms [11].
If the production of repair proteins is insufficient to repair the injury, cell death
occurs [11,12].

The aim of the present study was to investigate the molecular mechanisms
underlying activation of cell death pathways using genome-wide transcriptional
analysis in HLEC cultures following 2, 4, and 7 days of conventional hypothermic
storage in Optisol-GS at 4 ˝C.
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2. Results

2.1. Genes Exhibiting Higher Levels of Expression Following 2, 4, and 7 Days of
Hypothermic Storage Compared to Control

Nine genes were upregulated (>2-fold) at at least one of the three time-points
investigated (Table 1). Following 2 days of hypothermic storage, only 1 gene,
GSTM2 encoding glutathione S-transferase 2, was upregulated (>2-fold). The most
substantial increase in gene expression in HLEC cultures stored at 4 ˝C in Optisol-GS
was displayed after 4 and 7 days, with 6 and 8 genes being upregulated (>2-fold),
respectively (Table 1). GSTM2 was the only gene showing over 2-fold increase in
expression across every time-point investigated, demonstrating 2.4, 3.3, and 5.3-fold
upregulation after 2, 4, and 7 days of hypothermic storage, respectively (Table 1).
Two histone-coding genes, HIST1H3A and HIST4H4, were upregulated (>2-fold)
following both 4 and 7 days of hypothermic storage (Table 1). Following 4 days of
storage, HIST1H3A and HIST4H4, were 2.5 and 2.7-fold upregulated compared to
non-stored cell sheets, respectively. Furthermore, after 7 days of hypothermic storage,
the same two genes were 4.7 and 2.2-fold upregulated, respectively. No histone genes
exhibited significantly increased levels of expression in HLEC cultures compared to
control following 2 days of storage (Table 1).

Table 1. Genes exhibiting higher levels of expression following hypothermic storage
compared to control. Included genes exhibit over 2-fold upregulation at at least one
of the time-points investigated.

Symbol 2 Days vs. Ctr 4 Days vs. Ctr 7 Days vs. Ctr

P-value Fold Change P-value Fold Change P-value Fold Change

CD177 1.41 ˆ 10´1 1.981 5.31 ˆ 10´2 2.050 2.71 ˆ 10´2 3.053
FMO1 2.53 ˆ 10´1 1.368 3.75 ˆ 10´1 1.273 1.49 ˆ 10´2 2.108

GLUD1 3.61 ˆ 10´2 1.644 6.07 ˆ 10´3 1.975 3.32 ˆ 10´4 2.746
GSTM2 2.59 ˆ 10´4 2.387 6.38 ˆ 10´6 3.312 1.30 ˆ 10´7 5.251

HIST1H3A 3.84 ˆ 10´2 1.333 1.75 ˆ 10´5 2.528 2.80 ˆ 10´8 4.660
HIST4H4 9.95 ˆ 10´2 1.112 5.19 ˆ 10´8 2.655 2.49 ˆ 10´10 2.164
RNU11 4.65 ˆ 10´5 1.963 2.32 ˆ 10´5 2.045 5.64 ˆ 10´6 2.316
RNU4-1 1.02 ˆ 10´1 1.365 1.51 ˆ 10´2 1.624 6.75 ˆ 10´4 2.163

SLC27A2 4.71 ˆ 10´1 1.161 2.44 ˆ 10´3 2.033 7.55 ˆ 10´1 1.070

Ctr: non-stored cell sheets.

Bioinformatic analysis showed that the upregulated (>2-fold) genes after
4 and 7 days of hypothermic storage were involved in a functional network
regulating molecular and cellular functions involved in “cell death,” “necrosis,” and
“transcription of RNA” (Figure 1, Table 2). These results suggest these cellular functions
to be more prominent in HLEC cultures after 4 and 7 days of storage in Optisol-GS at
4 ˝C compared to non-stored cell sheets. The resulting functional network consisted of
a total of 26 genes with only 2 upregulated (>2-fold) genes (HIST1H3A and HIST4H4).
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It was not suggested that the remaining 7 upregulated genes (CD177, FMO1, GLUD1,
GSTM2, RNU11, RNU4-1, and SLC27A2) were involved in this network (Figure 1).
These findings demonstrate that among 9 upregulated (>2-fold) genes, HIST1H3A
and HIST4H4 may play the most important functional role.
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Figure 1. Functional network derived using upregulated (>2-fold) genes after
7 days of conventional hypothermic storage in Optisol-GS. Genes are represented
as nodes and relationship between nodes are represented as lines. Expression
ratios (7 days vs. control) are shown below the nodes. Red colored nodes represent
upregulated (>2-fold) genes following 7 days of storage compared to non-stored
cell sheets. The remaining nodes do not belong to the upregulated population of
the genes, but are found as components of the network.

2.2. Genes Exhibiting Lower Levels of Expression Following 2, 4, and 7 Days of
Hypothermic Storage Compared to Control

In total, 26 genes were downregulated (<-2-fold) at at least one of the three
time-points investigated (Table 3). Seven of these genes were downregulated
(<-2-fold) after 2 days of hypothermic storage, whereas 16 and 14 genes were
downregulated (<-2-fold) following 4 and 7 days of storage, respectively (Table 3).
Interestingly, only one gene, miR-21, showed an over 2-fold decrease in expression
across every time-point investigated, with 2.7, 3.3, and 2.1-fold downregulation after
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2, 4, and 7 days of hypothermic storage, respectively (Table 3). HDAC1, encoding
histone deacetylase 1, was the most downregulated gene after 7 days of hypothermic
storage, exhibiting 3.4-fold decrease in expression compared to control (Table 3).

Table 2. Top ten molecular and cellular functions significantly associated with the
functional network (from Figure 1) derived using upregulated (>2-fold) genes after
7 days of hypothermic storage in Optisol-GS.

Functions P-Value No of Genes

Cell death 1.47 ˆ 10´7 20
Necrosis 3.06 ˆ 10´7 18
Transcription of RNA 4.12 ˆ 10´4 17
Binding of DNA 5.11 ˆ 10´4 17
Transcription of RNA 7.22 ˆ 10´4 12
Cellular assembly and organization 1.23 ˆ 10´6 9
Transcription of DNA 5.63 ˆ 10´7 8
Activation of DNA endogenous promotor 2.14 ˆ 10´6 5
Cell-cycle progression 2.27 ˆ 10´3 4
Gene expression 1.35 ˆ 10´4 2

Table 3. Genes Exhibiting Lower Levels of Expression Following Hypothermic
Storage Compared to Control. Included genes exhibit over 2-fold downregulation
at at least one of the time-points investigated.

Symbol 2 Days vs. Ctr 4 Days vs. Ctr 7 Days vs. Ctr

P-Value Fold Change P-Value Fold Change P-Value Fold Change

ANKRD50 2.82 ˆ 10´2 ´1.323 2.32 ˆ 10´6 ´2.191 2.35 ˆ 10´4 ´1.749
ANKRD36B 4.65 ˆ 10´3 ´2.292 1.85 ˆ 10´3 ´2.546 9.24 ˆ 10´3 ´1.979

C9orf3 7.91 ˆ 10´4 ´3.622 5.04 ˆ 10´4 ´3.860 6.56 ˆ 10´2 ´1.938
CCDC88C 1.82 ˆ 10´1 ´1.363 1.51 ˆ 10´1 ´1.398 6.70 ˆ 10´3 ´2.041
CYP24A1 9.28 ˆ 10´1 ´1.027 8.44 ˆ 10´1 ´1.060 3.32 ˆ 10´2 ´2.011

DGKH 3.48 ˆ 10´5 ´1.619 8.80 ˆ 10´8 ´2.114 2.51 ˆ 10´5 ´1.681
DHFR 3.77 ˆ 10´4 ´1.779 6.90 ˆ 10´4 ´1.717 3.10 ˆ 10´5 ´2.139
FAP 2.07 ˆ 10´1 ´1.562 4.72 ˆ 10´1 ´1.284 3.01 ˆ 10´2 ´2.314

GTF2B 2.33 ˆ 10´2 ´1.580 6.39 ˆ 10´4 ´2.131 1.37 ˆ 10´3 ´2.072
HDCA1 8.97 ˆ 10´1 ´1.015 2.43 ˆ 10´1 ´1.147 1.11 ˆ 10´2 ´3.399
HAS2 6.50 ˆ 10´2 ´1.375 7.49 ˆ 10´4 ´1.920 8.18 ˆ 10´5 ´2.342

LIF 4.97 ˆ 10´2 ´1.906 2.85 ˆ 10´1 ´1.403 1.23 ˆ 10´2 ´2.440
LRRN1 2.41 ˆ 10´1 ´1.422 1.78 ˆ 10´1 ´1.501 1.71 ˆ 10´2 ´2.217
mir-21 5.77 ˆ 10´4 ´2.677 6.96 ˆ 10´5 ´3.347 7.02 ˆ 10´3 ´2.131

MPLKIP 2.86 ˆ 10´4 ´1.829 1.59 ˆ 10´4 ´1.983 4.89 ˆ 10´6 ´2.618
NPIPL3 3.40 ˆ 10´3 ´2.249 2.27 ˆ 10´3 ´2.348 5.88 ˆ 10´2 ´1.398
NRG1 1.57 ˆ 10´3 ´1.666 4.65 ˆ 10´5 ´2.067 1.12 ˆ 10´4 ´2.022

PLA2G7 6.14 ˆ 10´1 ´1.062 3.73 ˆ 10´2 ´1.299 1.61 ˆ 10´5 ´2.018
PSD3 1.43 ˆ 10´1 ´1.141 1.78 ˆ 10´5 ´2.162 9.70 ˆ 10´5 ´2.012

RNF152 4.83 ˆ 10´1 ´1.118 1.16 ˆ 10´4 ´2.119 6.23 ˆ 10´2 ´1.381
SESN3 6.85 ˆ 10´2 ´1.206 5.50 ˆ 10´7 ´2.044 6.02 ˆ 10´5 ´1.684

SLC7A11 1.55 ˆ 10´1 ´1.279 3.03 ˆ 10´4 ´2.078 1.02 ˆ 10´3 ´1.963
SMAD2 4.59 ˆ 10´3 ´1.526 9.51 ˆ 10´6 ´2.195 2.76 ˆ 10´4 ´1.848
SMG1 1.43 ˆ 10´4 ´2.030 2.45 ˆ 10´5 ´2.503 4.67 ˆ 10´4 ´1.395
TAF1D 7.99 ˆ 10´3 ´1.961 2.85 ˆ 10´3 ´2.177 2.71 ˆ 10´2 ´1.770
TRA2A 1.38 ˆ 10´3 ´2.456 3.45 ˆ 10´3 ´2.229 6.73 ˆ 10´4 ´1.357

Ctr: non-stored cell sheets.
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Bioinformatic analysis demonstrated that downregulated (<-2-fold) genes
following 4 and 7 days of hypothermic storage constituted an important part of a
functional network involved in “cellular assembly and organization,” “differentiation
of cells,” and “DNA repair” (Figure 2, Table 4). The network consisted of a total
of 32 genes and included 9 downregulated (<-2-fold) genes, i.e. HDCA1, GTF2B,
MiR-21, PLA2G7, LIF, NRG1, HAS2, DHFR, and CYP24A1 (Figure 2). Our results
suggest that these functions are impaired in HLEC cultures after 4 and 7 days of
conventional hypothermic storage compared to non-stored cell sheets.
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Figure 2. Functional network derived using downregulated (>2-fold) genes after 7
days of conventional hypothermic storage in Optisol-GS. Genes are represented as
nodes and relationship between nodes are represented as lines. Expression ratios
(7 days vs. control) are shown below the nodes. Green colored nodes represent
downregulated (<-2-fold) genes following 7 days of storage compared to non-stored
cell sheets. The remaining nodes do not belong to the downregulated population of
the genes, but are found as components of the network.
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Table 4. Top ten molecular and cellular functions significantly associated with the
functional network (from Figure 2) derived using downregulated (<-2-fold) genes
after 7 days of hypothermic storage in Optisol-GS.

Functions P-Value No of Genes

Cellular assembly and organization 4.28 ˆ 10´5 19
Differentiation of cells 1.51 ˆ 10´2 19
DNA repair 6.17 ˆ 10´3 16
Cellular function and maintenance 1.31 ˆ 10´2 13
Transactivation of RNA 4.60 ˆ 10´4 10
Binding of DNA 1.86 ˆ 10´3 9
Activation of DNA endogenous promotor 3.45 ˆ 10´3 8
G1/S phase transition 9.14 ˆ 10´3 6
Cell-cycle progression 3.23 ˆ 10´3 2
Transcription of DNA 1.12 ˆ 10´2 3

3. Discussion

Genes exhibiting higher levels of expression following 4 and 7 days of storage
of cultured HLEC at 4 ˝C compared to non-stored cell sheets were significantly
associated with cell death, necrosis, and transcription of RNA (Table 2). In contrast,
downregulated genes following 4 and 7 days of hypothermic storage were associated
with cellular assembly and organization, differentiation of cells, and DNA repair
(Table 4). These results suggest enhanced apoptosis as a result of hypothermic
storage, which is in line with previous studies showing both apoptosis and necrosis
during corneal storage at 4 ˝C, with apoptosis appearing to predominate [10].

In a previous study on one-week storage in Optisol-GS of cultured LEC at 5 ˝C,
few apoptotic cells were observed [6]. Interestingly, in contrast to ambient organ
culture storage, storage in Optisol-GS at 5 ˝C induced dilated intercellular spaces,
increased intracellular vacuoles, detachment of epithelial cells, and detachment of
the epithelia from the amniotic membrane. Besides weak to moderate chromatin
condensation, rupture of cell membranes and dissolution of organelles were
frequently observed, indicative of necrosis [6].

Based on these results, the present study was designed to get insight into
possible underlying mechanisms. Comparing cultured LEC subjected to one-week
storage at 4 ˝C with cultured, non-stored cells (control cells) would be sufficient to
meet this end. However, such a design would not give any insight into the effects of
storage time on gene expression. Therefore, we extended the study to include three
storage times to allow information on both the effects of storage time and 4 ˝C as
a storage temperature. As cells are not cultured at 4 ˝C, we did not include such
an experimental group. We did not perform gene analyses after 1 week of storage
at 23 ˝C, as a previous study demonstrated excellent results at this temperature [7].
Moreover, our aim was to suggest possible mechanisms that deserve further studies
to improve storage technology. In summary, our results demonstrated that a higher
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number of genes changed with increasing storage time. In general, larger differences
in absolute gene expression values were observed with increasing storage time.

Explants from a total of four donors (two pairs) were distributed evenly between
the four experimental groups. We made sure that explants from the superior region
of the limbal ring was included in each of the experimental groups, as such explants
are known to generate superior growth [13]. The superior region of the cornea was
easily identified due to a suture at 12 o’clock position fastened by the surgeon at the
time of enucleation.

After 4 days of hypothermic storage, a more than 2-fold increase in the
expression of two histone-coding genes (HIST1H3A and HIST4H4) was observed.
This upward trend was strengthened after 7 days of hypothermic storage.
Transcriptome analysis of human corneal endothelium (HCE) has shown that
HIST1H3A was among nine genes that displayed the most significant differential
expression between pediatric and adult HCE [14]. The authors suggested that
this gene was important for cell division in corneal endothelium. So far, there
have not been any studies demonstrating the expression of HIST4H4 in human
corneas; however, Zhang and colleagues have shown that transcriptional activation
of histone H4 is important for adipocyte differentiation [15]. The histone gene
transcription is cell-cycle dependent and rapidly induced by a chain of response
effects at the transcriptional and translational levels when cells are subjected to
diverse stress stimuli, independent of the type of stimulus [16–18]. A robust increase
in unprocessed histone mRNA is observed upon activation of the DNA damage
checkpoint [19]. Our findings suggest that the low viability after one week of
hypothermic storage of HLEC [7] can be due to a histone-mediated mechanism
and that failure to repair DNA damage may explain cell death and reduced viability
of the transplants.

Allis and Turner proposed the “histone code” hypothesis where gene
transcription is changed in response to the modification of histones, through altered
access to promoter regions [20,21]. Specific histone modifications have also been
linked to apoptotic chromatin changes, providing evidence for the existence of an
apoptotic histone code [22]. Among the differentially downregulated genes, HDAC1
encoding histone deacetylase 1 exhibited the lowest levels of expression after 7 days
of storage with 3.4-fold change compared to control. Acetylation and deacetylation
of histones play an important role in transcription regulation of eukaryotic cells
by decreasing histone-DNA interaction and promoting accessibility of the DNA
for transcription activation [23,24]. In general, acetylation of histones promotes a
more relaxed chromatin structure, allowing transcriptional activation [23]. HDACs
can act as transcription repressors, due to histone deacetylation, and consequently
promote chromatin condensation. HDAC inhibitors (HDACi) selectively alter
gene transcription, in part, by chromatin remodeling and by changes in the
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structure of proteins in transcription factor complexes [25]. Further, the HDACs
have many non-histone proteins substrates such as hormone receptors, chaperone
proteins and cytoskeleton proteins, which regulate cell proliferation and cell
death [25]. Thus, HDACi-induced cell death involves transcription-dependent and
transcription-independent mechanisms [26–28]. It has also recently been postulated
that histone deacetylase inhibitors could be used in the prevention and treatment of
corneal haze and scar formation [29]. Decreased expression of HDAC1 in cultured
HLEC following hypothermic storage compared to control may lead to increased
acetylation of histones, which in turn results in enhanced transcription of RNA. This
is in accordance with our findings suggesting that HIST1H13A and HIST4H4 and
their related genes in the functional network (Figure 2) regulate transcription of
RNA (Table 2).

Interestingly, only one gene, miR-21, was found among differentially expressed
genes. MiR-21 exhibited significantly lower levels of expression across every
time-point investigated after hypothermic storage (Table 3). MiRNAs play important
functions in cell differentiation, cell proliferation, apoptosis, metabolism, and
immune regulation by promoting the degradation of their target mRNA or inhibiting
mRNA translation [30]. Overexpression of miR-21, an oncogenic miRNA, is
associated with the progression, metastasis, and poor prognosis of many types of
tumors [31–33]. MiR-21 is also known to be highly upregulated in malignant glioma,
and inhibition of miR-21 activity was found to enhance cell death of malignant
glioma cells [34]. Therefore, it may be speculated that increased cell death of HLEC
following hypothermic storage is associated with decreased expression of miR-21.

Further research is warranted on the effect of different storage media and
temperatures on gene expression. In conclusion, this study gives preliminary insight
into the molecular mechanisms that may explain the low viability when HLEC are
stored at 4 ˝C. Further investigations into time-dependent molecular mechanisms
during storage of cultured cells may provide clues for optimization of storage
medium for use in regenerative medicine technology.

4. Experimental Section

Dulbecco’s minimal essential medium (DMEM), HEPES-buffered DMEM
containing sodium bicarbonate and Ham’s F12 (1:1), Dulbecco’s modified
Eagle’s medium, Hanks’ balanced salt solution, fetal bovine serum (FBS),
insulin–transferrin–sodium selenite media supplement, human epidermal growth
factor, dimethyl sulfoxide, hydrocortisone, gentamicin, and amphotericin B were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Dispase II was obtained from
Roche Diagnostics (Basel, Switzerland), cholera toxin A subunit from Biomol (Exeter,
UK), Ethicon Ethilon 6-0 C-2 monofilament suture from Johnson & Johnson (New
Brunswick, NJ, USA), Netwell culture plate inserts from Costar Corning (New York,
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NY, USA), vancomycin from Abbott Laboratories (Abbott Park, IL, USA), and the
polypropylene containers from Plastiques Gosselin (Hazebrouck Cedex, France).
Optisol-GS was purchased from Bausch&Lomb (Irvine, CA, USA). GeneChip HT
One-Cycle cDNA Synthesis Kit, GeneChip HT IVT Labeling Kit, and GeneChip
Human Gene 1.0 ST Arrays were from Affymetrix (Santa Clara, CA, USA).

4.1. Human Tissue Preparation

Human tissue was handled according to the Declaration of Helsinki. The
experiment was conducted using four human corneas (two pairs) obtained from
Centro de Oftalmologia Barraquer (Barcelona, Spain). Placing a suture in the superior
scleral region prior to enucleation oriented the globes, and the corneoscleral tissue
was excised using a 14 mm trephine. The limbal tissue was prepared in a class II safety
cabinet as previously reported by Meller and colleagues [35]. The tissue was rinsed
three times with DMEM (Sigma-Aldrich, St. Louis, MO, USA) containing 50 µg/mL
gentamicin (Sigma-Aldrich) and 1.25 µg/mL amphotericin B (Sigma-Aldrich). After
careful elimination of excessive sclera, conjunctiva, iris, and corneal endothelium,
the remaining tissue was placed in a culture dish and exposed for 10 minutes to
Dispase II (Roche Diagnostics) in Mg2+ and Ca2+ free Hanks’ balanced salt solution
(Sigma-Aldrich) at 37 ˝C under humidified 5% carbon dioxide and carefully rinsed
with DMEM containing 10% FBS (Sigma-Aldrich). The central corneal button was
eliminated using a KAI 6 mm trephine. The paired corneoscleral rims were divided
into 24 explants, which were equally distributed between the four experimental
groups with regard to limbal circumference origin.

4.2. Human Limbal Explant Cultures on Intact Amniotic Membranes

Human amniotic membrane was preserved in accordance with a method
previously reported by Lee & Tseng and according to the Declaration of Helsinki.
After thawing at room temperature, amniotic membrane with the epithelium
intact and facing up was fastened to the polyester membrane of a Netwell culture
plate insert (Costar Corning, New York, NY, USA) using Ethicon Ethilon 6-0
monofilament suture (Johnson & Johnson, New Brunswick, NJ, USA) as previously
reported. On the center of each amniotic membrane insert, the explants were
cultured in a supplemented hormonal epithelial medium with the epithelial side
facing down as previously reported. The medium was made of HEPES-buffered
DMEM (Sigma-Aldrich) containing sodium bicarbonate and Ham’s F12 (1:1) and
was supplemented with 5% FBS, 0.5% dimethyl sulfoxide (Sigma-Aldrich), 2 ng/m
human epidermal growth factor (Sigma-Aldrich), 5 µg/mL insulin (Sigma-Aldrich),
5 µg/mL transferrin (Sigma-Aldrich), 5 ng/mL selenium (Sigma-Aldrich), 3 ng/mL
hydrocortisone (Sigma-Aldrich), 30 ng/mL cholera toxin (Biomol), 50 µg/mL
gentamicin, and 1.25 µg/mL amphotericin B. Cultures were incubated for 3 weeks

130



at 37 ˝C in an atmosphere of humidified 5% carbon dioxide and 95% air, and the
medium was changed every 2 to 3 days. Three-week HLEC cultures were prepared
for eye bank storage (n = 18) and controls (nonstored tissue) (n = 6).

4.3. Hypothermic Storage of Cultured Human Limbal Epithelial Cells in Optisol-GS

Preparation for eye bank storage was performed in a class II safety cabinet.
Twenty-five milliliters of Optisol-GS was added to radiation-sterilized 90-mL
Plastiques Gosselin polypropylene containers (interior diameter 43 mm). Three-week
HLEC cultures in polyester culture plate inserts were transferred by a disposable
forceps to the storage containers (Figure 3). The hinged cap with septum was closed
to establish a closed tissue storage system, and the containers were stored for 2 (n = 6),
4 (n = 6), and 7 days (n = 6) at 4 ˝C.J. Funct. Biomater. 2016, 7, 4 
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synthesis and labeling. Labeled and fragmented single stranded DNAs were hybridized to the gene 

microarray (E) before washing and staining. 

4.4. RNA Isolation 
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Figure 3. Experimental design of the study. The corneoscleral tissue was excised (A);
HLECs were cultured for 3 weeks on intact amniotic membranes in supplemented
hormonal epithelial medium (B); Disks of cultured epithelium were trephined with
a 5-mm biopsy punch and stored in Optisol-GS at 4 ˝C (C); RNA was extracted
(D); One hundred nanograms of total RNA was subjected to cDNA synthesis and
labeling. Labeled and fragmented single stranded DNAs were hybridized to the
gene microarray (E) before washing and staining.

4.4. RNA Isolation

Disks of cultured epithelium and amniotic membrane on polyester membranes
were trephinated from the cultures using a 5-mm biopsy punch. Biopsies were
stored in cryotubes at ´80˝C until needed. Total RNA was extracted from thawed
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biopsies using a Qiagen RNeasy Micro Kit (Hilden, Germany), according to
the manufacturer’s protocol. Three hundred and fifty microliters of RTL buffer
containing beta-mercaptoethanol was added to the disks in microcentrifuge tubes
and vortexed for 2 min. RNA concentration and purity was determined through
measurement of A260/A280 ratios with the Nano Drop ND-1000 Spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA). Confirmation of RNA quality
was assessed by the Agilent BioAnalyzer 2100 System and RNA 6000 Nano Assay
(Agilent Technologies, Santa Clara, CA, USA). RNA samples were immediately
frozen and stored at ´80 ˝C.

4.5. Microarray Analysis

The Affymetrix GeneChip Human Gene 1.0 ST Microarrays (Affymetrix, Santa
Clara, CA, USA) used in this study included approximately 28,000 gene transcripts.
Microarray analysis was carried out in triplicate using cultured HLEC stored in
Optisol-GC at 4 ˝C for 2, 4, and 7 days, and using non-stored control cultures.
Preparation of complementary DNA (cDNA) was carried out using GeneChip
HT One-Cycle cDNA Synthesis Kit (Affymetrix). Each of three microarrays was
hybridized with cDNA prepared from 100 ng of total RNA from each resulting
solution. Biotinylated and fragmented single stranded cDNAs were hybridized
to the GeneChips. The arrays were washed and stained using FS-450 fluidics
station (Affymetrix).

Signal intensities were detected by Hewlett Packard Gene Array Scanner 3000
7G (Hewlett Packard, Palo Alto, CA, USA). The scanned images were processed
using the AGCC (Affymetrix GeneChip Command Console) software and the CEL
files were imported into Partek Genomics Suite software (Partek Inc., St. Louis, MO,
USA). The Robust Multichip Analysis (RMA) algorithm was applied to generate
signal values and normalization. Gene transcripts with maximal signal values of less
than 32 across all arrays were removed to filter for low and non-expressed genes. For
expression comparisons of different groups, profiles were compared using a 1-way
ANOVA model. The results were expressed as fold changes (FC) with corresponding
P values.

4.6. Bioinformatic Analysis

Bioinformatic analysis using Ingenuity Pathways Analysis (IPA) (Ingenuity Inc.,
Redwood City, CA, USA) was carried out to find molecular and cellular functions and
canonical pathways that were significantly associated with differentially expressed
genes. Briefly, the data set containing gene identifiers and corresponding FCs and
P values was uploaded onto the web-delivered application and each gene identifier
was mapped to its corresponding gene object in the Ingenuity Pathways Knowledge
Base (IPKB). Functional analysis identified the biological functions and/or diseases
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that were significantly associated with the data sets. Fisher’s exact test was performed
to calculate a P value determining the probability that each biological function and/or
disease assigned to the data set was due to chance alone. The data sets were mined for
significant pathways with the IPA library of canonical pathways, using IPA generated
networks as graphical representations of the molecular relationships between genes
and gene products.
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Treatment of Silk Fibroin with
Poly(ethylene glycol) for the Enhancement
of Corneal Epithelial Cell Growth
Shuko Suzuki, Rebecca A. Dawson, Traian V. Chirila, Audra M. A. Shadforth,
Thomas A. Hogerheyde, Grant A. Edwards and Damien G. Harkin

Abstract: A silk protein, fibroin, was isolated from the cocoons of the domesticated
silkworm (Bombyx mori) and cast into membranes to serve as freestanding
templates for tissue-engineered corneal cell constructs to be used in ocular surface
reconstruction. In this study, we sought to enhance the attachment and proliferation
of corneal epithelial cells by increasing the permeability of the fibroin membranes
and the topographic roughness of their surface. By mixing the fibroin solution with
poly(ethylene glycol) (PEG) of molecular weight 300 Da, membranes were produced
with increased permeability and with topographic patterns generated on their
surface. In order to enhance their mechanical stability, some PEG-treated membranes
were also crosslinked with genipin. The resulting membranes were thoroughly
characterized and compared to the non-treated membranes. The PEG-treated
membranes were similar in tensile strength to the non-treated ones, but their
elastic modulus was higher and elongation lower, indicating enhanced rigidity. The
crosslinking with genipin did not induce a significant improvement in mechanical
properties. In cultures of a human-derived corneal epithelial cell line (HCE-T), the
PEG treatment of the substratum did not improve the attachment of cells and it
enhanced only slightly the cell proliferation in the longer term. Likewise, primary
cultures of human limbal epithelial cells grew equally well on both non-treated and
PEG-treated membranes, and the stratification of cultures was consistently improved
in the presence of an underlying culture of irradiated 3T3 feeder cells, irrespectively
of PEG-treatment. Nevertheless, the cultures grown on the PEG-treated membranes
in the presence of feeder cells did display a higher nuclear-to-cytoplasmic ratio
suggesting a more proliferative phenotype. We concluded that while the treatment
with PEG had a significant effect on some structural properties of the B. mori silk
fibroin (BMSF) membranes, there were minimal gains in the performance of these
materials as a substratum for corneal epithelial cell growth. The reduced mechanical
stability of freestanding PEG-treated membranes makes them a less viable choice
than the non-treated membranes.

Reprinted from J. Funct. Biomater. Cite as: Suzuki, S.; Dawson, R.A.; Chirila, T.V.;
Shadforth, A.M.A.; Hogerheyde, T.A.; Edwards, G.A.; Harkin, D.G. Treatment of
Silk Fibroin with Poly(ethylene glycol) for the Enhancement of Corneal Epithelial
Cell Growth. J. Funct. Biomater. 2015, 6, 345–366.
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1. Introduction

The silk produced by the larvae of domesticated silkmoth (Bombyx mori) or some
wild silkmoths have been known in the textile manufacturing for millennia [1–4].
In medicine, the use of silk threads as surgical sutures can be traced back to the
beginning of the Common Era, when it was suggested by Galen of Pergamon [5,6].
With the increasing availability of B. mori silk throughout the subsequent centuries,
the silk sutures became steadily used and, starting with the 19th century [7], they
dominated the surgical field owing to some remarkable properties [8–11]. In
1866, Williams used for the first time silk sutures in the eye surgery in cataract
operations [12], and Kuhnt followed his example in corneoscleral surgery [13].
Relatively slowly, silk became the suture material of choice in ophthalmic
surgery [14–17]. Today, although the silk sutures are still available on the market
and in clinical use, the sutures made of synthetic polymers (such as polyamides,
polyesters, lactone-based polymers, and polyolefins) are generally preferred by
surgeons. However, the medical applications of B. mori silk have not stopped at
sutures. With the significant progress over the last few decades in understanding
the complex structure and composition of silk and with the advent of methods
enabling the isolation of its polypeptidic components, new applications emerged
for the two main constitutive proteins of silk, fibroin and sericin [18–20]. Due to
an array of desirable properties (they can be processed into various forms; do not
elicit toxic or traumatic effects to living tissues; elicit low immune response; are
permeable for oxygen, fluids and biomolecules; degrade protractedly in physiologic
media and the resulting products do not accumulate in the body; and fibroin, in
particular, also displays suitable mechanical strength), the silk proteins have been
extensively investigated as biomaterials for tissue engineering, regenerative medicine
and sustained drug delivery [21–33].

The feasibility of utilizing silk proteins as biomaterials for reconstructing tissue
of clinical significance in the human eye was first reported by our group when we
demonstrated that primary human corneal limbal epithelial cells could attach and
proliferate on membranes of B. mori silk fibroin (BMSF) at levels comparable to those
observed on tissue culture plastic (TCP) substrata, both in serum-supplemented and
serum-free media [34,35]. Subsequent work has established BMSF as a functional
substratum of significant potential in ocular tissue engineering [36–39]. Our
investigations extended also to B. mori sericin [40], and to the fibroin produced
by a wild species of silkmoth, Antheraea pernyi [41,42]. We have reported extensively
on the evaluation of silk proteins as substrata for corneal cells (epithelial, limbal
epithelial, limbal mesenchymal stromal, endothelial) [34–36,40–46], and retinal
pigment epithelial cells [37,47].

For ocular tissue-engineered constructs, the templates should ideally be thin
(2–10 µm), transparent, flexible, strong enough for surgical manipulation, permeable
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to solutes, and should promote adequate levels of cell attachment and growth. While
most of these prerequisites are fulfilled by the membranes made of BMSF, there is
still a need to optimize some properties. Indeed, it can be said that the attachment
of cells to BMSF substrata is generally weak when compared to other materials.
The enhancement of substratum’s transport properties and of the adhesion and
growth of cells would be important for the development of better tissue-engineered
constructs, and strategies to achieve it have been actively pursued by some dedicated
research groups. To this aim, methods for creating surface topographic features
and/or rendering the substratum porous were investigated in order to improve
colonization by corneal cells of the BMSF templates. One of strategies consists of
mixing poly(ethylene glycol) (PEG), a water-soluble polymer, into the solutions of
BMSF prior to stabilizing the structure by conversion to the conformation “Silk II”
that makes the membrane insoluble in water. Subsequent washing in water removes
PEG, which thus fulfills its role as a porogen. NOTE: The nomenclature for PEG
needs, perhaps, some clarification. Poly(ethylene oxide) (PEO) is frequently used
as an alternative name, usually when the molecular weight (MW) of the polymer is
over 20 kDa, although this is rather a non-abiding convention. Equivalent names,
such as “polyoxyethylene” or “polyoxirane”, are seldom used, while the official
IUPAC-recommended name, “poly(oxyethane-1,2-diyl)”, is never seen in literature.
In this report, we will use exclusively the acronym PEG regardless of MW.

The first use of PEG to modify the properties of BMSF, with the explicit aim
of generating porosity, has been reported by Asakura and coworkers [48,49]. Their
objectives have been either to study the interaction between metal ions trapped
within the porous structure of BMSF [48] or to enhance the permeability of the
BMSF membranes used for enzyme immobilization [49]. PEG with a MW of 300 Da
was used, which probably explains why no microscopic evidence for pores could
be obtained, as the size (more precisely the diameter of an equivalent sphere) of
this particular PEG molecule is only about 1 nm [50]. However, the roughness of
the membrane surface and the permeability of membranes were both enhanced
significantly as the weight ratio PEG/BMSF increased. For instance, at a weight
ratio PEG/BMSF of 3, the permeability to glucose or to salt increased 20 times. As
a drawback, the mechanical strength and elasticity were drastically reduced with
increasing PEG content [49]. Nevertheless, Asakura’s studies have revealed that the
incorporation of PEGs, at least of those with low MWs, into BMSF led not only to an
increase of the permeability but also to changes in the surface topography.

Following the recognition of BMSF as a potential biomaterial, its blending
with relatively low amounts of PEG with a much higher MW (900 kDa, which
corresponds to a molecular size in the region of 100 nm [50]) has been investigated
as a method either to reduce the brittleness of BMSF templates (as fibrous scaffolds
or membranes) [51,52], or to induce porosity [53]. PEG blending also served in
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fundamental studies to create a model mimicking the behavior of natural silk proteins
in vivo [54]. In the field of ocular tissue engineering, PEG with a MW of 900 kDa
has been used to induce porosity in the BMSF membranes as substrata for corneal
cells [44,55] or retinal cells [47], while PEG with a MW of 300 Da has been used
with the same aim of improving the growth of corneal epithelial cells [56], the latter
study being in fact a continuation of Asakura’s work applied in ophthalmic tissue
engineering. The effects upon corneal cells’ growth of differing surface topographic
patterns, created by lithographic techniques on the surface of BMSF membranes,
have been also investigated on both porous [55] and non-porous membranes [57].

By using a PEG with high MW (900 kDa) as a porogen, well defined and
microscopically detectable porous features were achieved in the BMSF membranes,
but their performance as substrata for corneal cells was inferior to that of non-porous
membranes [44,47,55]. The use of a PEG with a much lower MW (300 Da = 0.3 kDa)
led to BMSF films (coated on cell culture inserts that are porous) with increased
permeability and roughness of the surface [56]. While the rough topography was
evident under the microscope, it appears that no pores could be seen inside the
material. Remarkably, the cultures of primary rabbit corneal limbal epithelial cells
on the PEG-treated substrata resulted in stratified epithelial layers, while only
monolayers were noticed on the original BMSF substrata [56]. This finding could
be indeed a consequence of favorable combined effects of higher permeability and
rougher surface topography. The use of an underlying layer of 3T3 murine fibroblasts
as feeder cells in this study almost certainly contributed to the improved growth of
cells of the BMSF membranes with higher permeability. Nevertheless, the authors
did not compare the growth in the presence and absence of the feeder cells. The
precise mechanism of PEG action remains therefore somewhat unclear.

In the present report, we compared the attachment and proliferation of human
corneal epithelial cells (HCECs as a cell line) and of human corneal limbal epithelial
cells (HCLECs) on BMSF membranes that either were treated with PEG (MW 300 Da)
or were not treated. Although the processing of substrata was similar to that
described by Higa et al. [56], our study was different in many respects, including:
human-derived cells instead of animal cells; freestanding BMSF membranes instead
of porous culture membranes coated with BMSF films; and crosslinked membranes
for enhanced mechanical stability. Moreover, we compared the growth of primary
cell cultures both in the presence and absence of the feeder cells. Other differences
will be discussed in the next section of this report. The aim of this study was to
investigate whether the treatment of BMSF substrata with a PEG of low MW is of
benefit to corneal epithelial cellular growth due to the potential synergism of higher
permeability and irregular patterning of the surface.
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2. Results and Discussion

2.1. Background

Being associated inherently with an enhancement of permeability, the presence
of pores in the templates for cellular constructs is beneficial for the cells’ growth due
to increased diffusion of oxygen, nutrients and biomolecules that must be supplied
to the cells and regenerating tissue, and to improved diffusion-based waste transport.
Porosity also has favorable effects on the intercellular communication and signaling,
and on the spatiotemporal control of the regions where the cells are expected to
operate [58,59]. Validity of these general principles for the system BMSF/ocular cells
(corneal or retinal) has been investigated in some studies [44,47,55,56]. It has been
found [55] that immortalized human corneal stromal fibroblasts were able to colonize
stacked BMSF layers (each 2 µm thick), where pores of size from 0.5 to 5 µm were
created by treatment with PEG (900 kDa), but no comparative quantitative evaluation
of cellular growth was provided. Our group has previously reported [44] BMSF
membranes (thickness 2.3 ˘ 1 µm), where pores (2.9 ˘ 1.5 µm) were made by the use
of the same PEG (900 kDa), which were evaluated in vitro as substrata for cultures
of human corneal limbal epithelial cells (HCLECs). The relatively larger number of
cells attached on the porous BMSF as compared to non-porous BMSF substrata or
TCP was not statistically significant. On the non-porous substratum, cultivation of
HCLECs for two weeks resulted in stratified layers of cells with a basal cuboidal
layer. In contrast, cells on the porous substratum formed flattened and squamous
monolayers. The same porous BMSF membranes have also been used as substrata
for the growth of retinal pigment epithelial (RPE) cells (line ARPE-19) [47]. It was
found that the attachment of cells was inferior to that on TCP, but no experimental
comparison was carried out against a non-porous BMSF substratum. Based on the
above results, porous morphologies induced by using a PEG of high MW appear
to offer no advantages for cell growth, perhaps due to the large size of the pores
(see further).

The ability of corneal cells to respond to the topography of the template has been
demonstrated on a variety of materials and involving a range of topographic features.
For instance, employing bovine corneal epithelial tissue explants or primary corneal
epithelial cells, has shown [60–62] that both tissue outgrowth and cell proliferation
were strongly affected by the size and number of the surface pores. These studies
have been carried out on various commercially available membranes such as
polycarbonate, cellulose, or polyester (Mylar®), over the pore size range 0.1 to 3 µm.
Continuous cell layers were seen on the surfaces with the smallest pore size. At pore
sizes over 0.9 µm the outgrowth and proliferation were almost halted. Comparing
the growth on the same material (polycarbonate), regular hemidesmosomal adhesive
structures occurred only on the surface with pores of 0.1 µm, while at higher pore
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size these structures were restricted, and they did not occur at all at the highest pore
size or on the smooth surface. In a series of reports [63–67], surface topographic
patterns consisting of features such as grooves and ridges were created on the surface
of silicon wafers (by lithography) or polyurethane membranes (by moulding) with
a pitch range between 400 and 4000 nm, the pitch being the distance between the
centres of two consecutive holes. The levels of adhesion and proliferation of primary
human corneal epithelial cells (HCECs) [63,67] or SV40-immortalized HCECs [64–67]
were systematically investigated. While on the substrata with smooth surfaces the
cells were mostly round, on the patterned surfaces they were elongated and tending
to adopt a stellate morphology, as well as aligned along the grooves and ridges.
Following normal incubation, the cells proliferated better on silicon wafers when
the features had high pitch values, and also on the smooth surface. On the contrary,
when the cells were exposed to shear stress in a laminar flow chamber, the features
with lowest pitch value induced the highest level of adherent cells; at the highest
pitch, the effect of topography was lost. On the patterned polyurethane substrata,
however, the proliferation of both types of cells decreased as the dimensions of
topographic features became smaller [67].

In a study involving BMSF [55], rabbit corneal stromal fibroblasts and
immortalized human corneal stromal fibroblasts were seeded on membranes
patterned with concentric circular or linear grooves. While the alignment of cells
during growth was evident on the patterned surfaces, the amount of adherent cells
was lower than on the smooth BMSF or TCP surfaces. In a more recent study from the
same laboratory [56], the initial attachment of an immortalized HCLEC line on BMSF
substrata patterned with linear grooves was greater than that on glass, smooth BMSF
or BMSF surfaces with circular grooves. After eight days of culture, the situation
reversed and the glass and smooth BMSF substrata supported the highest levels of
cellular growth. Significant improvement in the attachment and proliferation of pig
vascular endothelial cells has been reported on fibrous BMSF substrata fabricated by
electrospinning [68]. However, it is problematic to ascertain whether this result is
due to porosity, to surface topography, or to their combined effect.

The findings in all these studies, sometimes contradictory or difficult to interpret,
illustrate the complexity of the mechanochemical signalling mechanisms governing
the response of corneal cells to surface topographic cues. Notwithstanding such
complexity, there might be a distinct possibility of harnessing the cells’ response for
the purpose of enhancing the biocompatibility of the cell/template systems, resulting
in more extensive cellular colonization of the BMSF templates and, ultimately, to
functional and stable constructs for the restoration of ocular surface.

Considering the rather ambiguous results reported with a PEG of high
MW [44,47,55], and the promising results reported [56] using a PEG of low MW,
we developed freestanding BMSF membranes that were modified with PEG of
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MW 300 Da, with the expectation of increasing permeability and also of generating
topographic features on the surface of the membranes. However, our approach was
somewhat different from that adopted in the mentioned report [56]. Table 1 presents
the experimental differences between the two studies. Critically, our studies were
performed using freestanding membranes (as the substrata for clinical applications
would be required), and growth of primary cultures was compared in the presence
and absence of feeder cells.

2.2. Characterization of Silk Fibroin Membranes

BMSF membranes of ca. 3 µm or ca. 6 µm in thickness were produced on a
casting table. Upon addition of PEG with MW of 300 Da, at a PEG/fibroin weight
ratio of 2, the thickness of the resulting membranes almost doubled. While the
non-treated fibroin membranes were easy to peel off from the casting plate and to
handle (Figure 1a), the PEG-treated membranes were fragile and difficult to remove
without breaking them (Figure 1d).

Table 1. Comparison between experimental designs: reference [56] vs. this report.

Aspect Reference [56] This report

Cells Primary rabbit CLECs Primary human CLECs;
SV40-immortalized HCECs

Feeder cells Always present in cultures
Growth of primary cultures

compared in the presence and
absence of feeder cells

Maximum duration of cultures 7 days 12 days

Substrata BMSF films coated onto porous
cell culture membranes Freestanding BMSF membranes

Control substrata Non-treated BMSF film; AM Non-treated BMSF membrane; TCP

Ratio PEG/BMSF (by wt.) 0 to 38 (assessed);
2 (recommended) 2

Mol. wt. of molecules assessed
for permeability 0.376 to 15 kDa 26–28 kDa

Modification of membranes No Yes (by chemical crosslinking)
In vivo evaluation Yes (animals) No

CLECs: corneal limbal epithelial cells; HCECs: human corneal epithelial cells; BMSF:
Bombyx mori silk fibroin; AM: amniotic membrane; TCP: tissue culture plastic; PEG:
poly(ethylene glycol).

To improve mechanical stability, crosslinking of PEG-treated fibroin with
genipin was performed before mixing with PEG, using a previously established
protocol [40]. Although the resulting membranes were thicker (10 to 15 µm), they
remained more fragile than the non-treated BMSF membranes (Figure 1h). Their
handling, however, became somewhat easier than of the uncrosslinked PEG-treated
membranes. With care, therefore, a sufficient number of genipin-crosslinked
PEG-treated membranes of suitable size could be generated for the next experiments.
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Figure 1. Scanning electron micrographs of the B. mori silk fibroin (BMSF) membranes. 

Physical appearance of non-treated (a–c), PEG-treated (d–g), and genipin-crosslinked  

PEG-treated (h–j) fibroin membranes. (a,d,h) Gross appearance of dried membranes after 

removal from the casting plate. Images of surfaces (b,e,i), cross-sections (c,f,j) and the edge 

of the PEG-treated membrane (g). 

Figure 1. Scanning electron micrographs of the B. mori silk fibroin (BMSF)
membranes. Physical appearance of non-treated (a–c), PEG-treated (d–g), and
genipin-crosslinked PEG-treated (h–j) fibroin membranes. (a,d,h) Gross appearance
of dried membranes after removal from the casting plate. Images of surfaces (b,e,i),
cross-sections (c,f,j) and the edge of the PEG-treated membrane (g).

Scanning electron microscopy revealed that the surfaces of PEG-treated
membranes, either uncrosslinked (Figure 1e) or crosslinked (Figure 1i) were rougher
than that of non-treated membranes (Figure 1b), and no pores were noticeable.
These findings are in agreement with previous reports [49,56]. In cross-section, the
PEG-treated membranes also showed rough morphologies (Figure 1f,j), whereas the
fractured surface of the non-treated membranes was smoother and denser (Figure 1c).

In the case of the uncrosslinked PEG-treated membrane, nanoscale fibroin
globules were observed mainly in a region close to the edge of the membrane
(Figure 1g), which has been a general occurrence on the BMSF substrata reported
previously [56]. The surface roughness of membranes was further investigated by
contact mode atomic force microscopy (AFM) (Figure 2). The roughness average
(Ra) values measured from these images are given in Table 2. It is obvious that the
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treatment with PEG induced a significant increase in the value of Ra, very likely due
to phase separation induced through its presence.
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Figure 2. 2-D and 3-D AFM images of the surfaces of non-treated (a,b), PEG-treated (c,d) 

and genipin-crosslinked PEG-treated (e,f) fibroin membranes. Analysed area: 5 µm × 5 µm. 

Figure 2. 2-D and 3-D AFM images of the surfaces of non-treated (a,b), PEG-treated
(c,d) and genipin-crosslinked PEG-treated (e,f) fibroin membranes. Analysed area:
5 µm ˆ 5 µm.

Table 2. Roughness average of membranes estimated by AFM.

Fibroin membrane Ra (nm)

Non-treated 1.3
PEG-treated 4.4

Genipin-crosslinked
PEG-treated 5.9

144



Infrared spectroscopy was employed to characterize the secondary structure of
BMSF in the membranes [69,70]. The spectra in the Amide I region (1590–1720 cm´1)
of the annealed non-treated membrane and of the PEG-treated membranes are shown
in Figure 3. The spectrum of the non-treated membrane displayed a broad absorption
band with a peak at 1640 cm´1, indicating a substantial amount of random-coil
conformation (Figure 3a).

The broad shape of this band with a shoulder at 1619 cm´1 indicates a small,
but significant, amount of β-sheet component in the non-treated BMSF. The Amide
I band spectra of the PEG-treated membranes, either crosslinked or not, showed
strong peaks at 1619 cm´1 and shoulders at 1700 cm´1, respectively, indicating a
significant proportion of β-sheet conformations (Figure 3b,c) in both materials, and
suggesting a negligible effect of the crosslinking upon the secondary structure of
fibroin. More important here, the high content in β-sheet conformations proves that
the PEG-treated membranes do not need to be water-annealed in order to induce the
conformational conversion responsible for rendering the fibroin insoluble in water,
as this process is accomplished due to the presence of PEG as a polar agent able to
induce conversion to the β-sheet conformation more effectively than water.
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Figure 3. Fourier-transform infrared spectroscopy-ATR spectra of non-treated (a),
PEG-treated (b), and genipin-crosslinked PEG-treated (c) fibroin membranes.

The results of mechanical testing (Figure 4) indicated important differences
between certain tensile characteristics of the three types of membranes. Although
the ultimate strength values were similar for all samples, the elastic moduli of the
PEG-treated membranes were significantly higher than those of the non-treated
membranes, while their elongation at break was significantly lower. This can be a
consequence of increased rigidity due to higher proportion of β-sheet conformations
induced by the treatment with PEG, an assumption strongly suggested by the infrared
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spectrometric analysis. Rather unexpectedly, the crosslinking did not improve the
tensile strength of the PEG-treated membranes.

To estimate the permeability of the BMSF membranes to biomolecules, the
growth factor VEGF (vascular endothelial growth factor) was chosen as the permeant
molecule, and a method was designed for the purpose (Figure 5a). VEGF has a MW
of 26–28 kDa, and plays an important role in certain pathophysiological processes in
the eye. In this study, we determined the relative permeability of the non-treated and
of the crosslinked PEG-treated membranes. As shown in Figure 5b, the PEG-treated
membranes were relatively more permeable to VEGF molecule as compared to
the non-treated membranes. This clearly indicates that by blending BMSF with
PEG (MW 300 Da), the permeability is enhanced, thus supporting the observations
of Higa et al. [56]. Interestingly, approximately 50% and 70% of VEGF (i.e., 7.5
and 10.5 ng) for the non-treated and PEG-treated membranes, respectively, were
lost as shown by comparing the total amounts of protein in the apical and basal
compartments after 24 h to the initial amounts. This could be due to the trapping of
VEGF within BMSF due to electrostatic interactions of positively charged VEGF and
negatively charged fibroin molecules.J. Funct. Biomater. 2015, 6 354 
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Figure 5. Relative permeability of BMSF membranes to VEGF. (a) Schematic representation 

of the permeability experimental setup. (b) Comparison of VEGF concentrations after 24 h 

in the apical and basal compartments delimiting the membranes.  

Figure 4. Quantitative comparison of the tensile characteristics of non-treated
(1), PEG-treated (2) and genipin-crosslinked PEG-treated (3) fibroin membranes.
(a) Young’s modulus; (b) Ultimate tensile strength; (c) Elongation at break. Bars
represents mean ˘ standard error of the mean (n = 6). An asterisk indicates that
the difference is statistically significant (p < 0.05).
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Figure 5. Relative permeability of BMSF membranes to VEGF. (a) Schematic
representation of the permeability experimental setup. (b) Comparison of
VEGF concentrations after 24 h in the apical and basal compartments delimiting
the membranes.

2.3. Attachment and Proliferation of HCE-T Cell Line

The attachment and proliferation of an SV40-immortalized cell line (HCE-T)
was examined on membranes (ca. 6 µm in thickness) placed at the bottom of the
culture-plate wells. Since these cells can be serially propagated in the absence of
feeder cells, they provided a useful model of the human corneal epithelial cells’
growth in the absence of any accessory cells. The numbers of adherent cells was
expressed as the total DNA content with the PicoGreen® assay (Figure 6). In a
short-term attachment assay (over a period of 90 min), no quantitative difference
between the numbers of cells attached to the genipin-crosslinked PEG-treated and
those attached to non-treated membranes in serum-free conditions was noticed
(Figure 6a), but they were significantly lower than the number of cells attached
to the TCP control. In longer-term cultures (up to seven days), cell growth on
the PEG-treated membrane was higher than that on non-treated membrane in
serum-supplemented growth medium, albeit the differences were not statistically
significant (Figure 6b). However, the level of cell growth on the non-treated
membranes was found to be significantly lower than that on TCP substrata.
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to that observed on non-treated membranes. Moreover, both membrane types were tested in both the 
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When examined by phase contrast microscopy after five days of growth (Figure 7), a marked 
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Figure 6. Attachment and proliferation of cells of HCE-T line on BMSF
membranes. (a) Cellular attachment in serum-free medium; (b) Proliferation
in serum-supplemented medium on non-treated fibroin membrane (black),
genipin-crosslinked PEG-treated fibroin membrane (white) and TCP (grey).
Numbers of cells were measured via quantification of DNA content (PicoGreen®

assay). Bars represent mean ˘ standard error of the mean. The asterisk indicates
that the difference is statistically significant (p < 0.05).

2.4. Growth of Primary Human Corneal Limbal Epithelial Cells (CLECs)

Primary cultures of human CLECs were cultivated for up to 12 days on
freestanding BMSF membranes (ca. 6 µm) that had been mounted in Teflon® cell
culture chambers. The design of these chambers facilitates separation of culture
medium between the upper and lower membrane surfaces. The growth of cells
on genipin-crosslinked PEG-treated membranes (10 to 15 µm in thickness) was
compared to that observed on non-treated membranes. Moreover, both membrane
types were tested in both the presence and absence of irradiated 3T3 cells grown on
the lower membrane surface.

When examined by phase contrast microscopy after five days of growth
(Figure 7), a marked difference in culture morphology was observed in the
presence of 3T3 cells. In short, in the presence of feeder cells, the cultures
displayed a more confluent and compact morphology, which is indicative of a more
proliferative phenotype, and this effect of the feeder cells was observed irrespectively
of PEG-treatment.
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Figure 7. Phase contrast micrographs of primary cultures of human CLECs
after five days of growth on either non-treated BMSF membranes (A,C) or
genipin-crosslinked PEG-treated BMSF membranes (B,D), in either the absence
(A,B) or presence (C,D) of an underlying culture of feeder cells (irradiated 3T3
murine fibroblasts).

After 12 days of growth, all cultures were fixed and subsequently stained
with rhodamine phalloidin (to display F-actin filaments) and Hoechst nuclear dye
(to display cell nuclei). Using confocal fluorescence microscopy, a high-resolution
optical cross-section was obtained through each culture when folded and mounted
in glycerol under a glass coverslip (Figure 8). This technique revealed that human
CLEC cultures grown on fibroin membranes are consistently more stratified when an
underlying layer of irradiated 3T3 cells is present, and the stratification was observed
irrespectively of treatment with PEG. Nevertheless, the cells present within the
cultures grown on PEG-treated membranes, in the presence of feeder cells, displayed
a higher nuclear-to-cytoplasmic ratio suggesting a more proliferative phenotype.
This observation tends to support the conclusions of Higa et al. [56] that superior
growth is seen using PEG-treated membranes. Logically, this enhanced growth is due
at least in part to the presence of feeder cells, but since cultures grown on non-treated
membranes also displayed increased stratification, we cannot discount the potential
role of changes in membrane topography created by PEG in conjunction with effects
mediated by the feeder cells.
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Ultimately, both membranes may well support the manufacture of human CLEC
cultures of sufficient quality to enable therapeutic applications. Nevertheless, the
difficulties that we encountered in producing freestanding PEG-treated membranes
suggest that any potential benefits bestowed by this material are insufficient to
warrant changing our clinical strategy.J. Funct. Biomater. 2015, 6 357 
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Figure 8. Histology by confocal microscopy after cultivation of primary human
CLECs for 12 days on non-treated (A,B) and genipin-crosslinked PEG-treated
(C,D) BMSF membranes: without feeder cells (A,C); co-cultured with feeder cells
(irradiated 3T3 murine fibroblasts) (B,D). The feeder cells have become dislodged
during culture and subsequent preparation of samples for confocal microscopy.
The genipin-crosslinked PEG-treated membranes were thicker than the non-treated
membranes and displayed intense auto-fluorescence, as seen in (C) and (D).

2.5. Summary

As this study has duplicated experiments previously reported [56], albeit
with some important differences (see Table 1), we expected that our results would
confirm those findings. While the PEG-treated membranes were called “porous” [56],
there was no microscopic evidence for pores in the bulk of material, i.e., in the
cross-sectioned membranes. The only micrographs provided (see “Fig. 2A,B” in
ref. [56]) were those of the membrane surfaces, which showed that the surfaces
became rougher following treatment with PEG (MW 300 Da). Our study confirms
this observation, and also confirmed that the permeability increased after treatment
with PEG.

No difference in cell attachment and growth was observed in the experiments
using a transformed human corneal epithelial cell line. However, the results obtained
using primary cultures of human corneal limbal epithelial cells suggested that an
enhanced permeability of PEG-treated membranes does lead to subtle changes in
cell behaviour that could be of a clinical value (a more proliferative cell phenotype).

150



Nevertheless, since an underlying culture of irradiated 3T3 murine fibroblasts (as
feeder cells) can also influence positively the growth of HCECs when cultivated
on non-treated membranes, it would appear that even without PEG-treatment the
BMSF substrata are perhaps sufficiently permeable to support the manufacture of
clinically suitable cultures. Ultimately, further studies in a pre-clinical model of
ocular surface disease will be needed to resolve this issue. From our perspectives,
we believe that the technical difficulties associated with the routine manufacture of
freestanding PEG-treated membranes will outweigh any potential benefits arising
from the apparent increase in permeability of the substratum.

A rather tenuous cell adhesion is a known drawback of the BMSF templates [71].
However, the biomaterial characteristics of fibroin make these templates attractive for
tissue engineering applications, as proved by the growing number of the published
studies, and the enhancement of cell attachment to BMSF remains therefore a topic
of great interest. Rather than cell adhesion based on non-specific interactions, which
likely govern this process on BMSF, there is a need to promote physicochemical
characteristics in the substratum’s surface that will be able to mediate the cell-surface
anchorage in a specific way. Ideally, the surface shall comprise structural elements
leading to its recognition by the cells’ integrin receptors and thus generating true
focal adhesions between cells and surface. Whether the modification of BMSF
surface through covalent binding of extracellular matrix proteins or/and through
topographic patterning are sufficient for introducing specific interactions in order
to facilitate stronger cell attachment is yet to be determined, notwithstanding the
volume of research dedicated to this topic. The contribution of higher porosity
and/or permeability is limited to improving intercellular communication, however
without promoting specific interactions.

3. Experimental Section

3.1. Materials

Bombyx mori silkworm cocoons (with pupae removed) were purchased from
Tajima Shoji Co. Ltd. (Yokohama, Japan). Genipin (98% purity) was supplied by Erica
Co. Ltd. (Shenzhen, China). Topas® 8007S-04 (olefin copolymer) was supplied by
Topas Advanced Polymers (Frankfurt, Germany). Minisart®-GF pre-filters (0.7 µm)
and Minisart® filters (0.2 µm) were supplied by Sartorius Stedim Biotech (Göttingen,
Germany), and the dialysis cassettes Slid-A-Lyzer® (MWCO 3.5 kDa) by Thermo
Scientific (Rockford, IL, USA). Sodium carbonate, lithium bromide, PEG (MW 300 Da)
and 10% formaldehyde solution were supplied by Sigma-Aldrich. High purity water
(Milli-Q) was used in all experiments. The human vascular endothelial growth factor
(VEGF, #3045-VE-025/CF) and its enzyme-linked immunosorbent assay (ELISA) kit
(#DY3045) were purchased from R&D Systems (Melbourne, Australia). Amicon
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Ultra-4 centrifugal filters (#UFC801024, 10 kDa MWCO) were supplied from Merck
Millipore Ltd. (Darmstadt, Germany). Foetal bovine serum (FBS) was supplied by
Thermo Scientific (USA). All other cell culture reagents and supplements, as well as
Quant-iT™ PicoGreen® dsDNA assay kit were purchased from Life Technologies
(Melbourne, Australia).

3.2. Preparation of Fibroin Membranes

Silk fibroin solution was prepared according to a previously established
protocol [40]. The concentration of solution used in experiments was 1.78% (as
determined by gravimetric analysis). The standard BMSF membranes were prepared
by casting the fibroin solution in a custom-made casting table where the supporting
glass plate was pre-coated with a polyolefin polymer (Topas®) film [45]. The blade
height was set in order to generate an approximate dry thickness of either 3 µm
or 6 µm for the resulting BMSF membranes. After drying, the membranes were
water-annealed in a vacuum chamber at ´80 kPa for 6 h at room temperature in the
presence of a container filled with water, followed by peeling off from the supporting
Topas® film.

The PEG-treated BMSF membranes were prepared according to a published
protocol [56], with some modifications. In brief, PEG was slowly blended into the
1.78-% fibroin solution at a PEG/fibroin ratio of 2 (by weight). The solution was cast
as described above. After drying, the membranes were soaked in 2 L of water for
3 days with two water exchanges per day to remove PEG. The dried membrane was
then peeled off from the underlying Topas® film.

In order to crosslink the PEG-treated membranes, an amount of genipin
equivalent to 12 wt% of fibroin was mixed with fibroin solution and stirred slowly
for 5 h at 40 ˝C [40]. The mixture acquired a light blue hue, which is indicative
of a reaction taking place between genipin and amino acids [72]. Subsequently,
the membranes were processed following the method described above for the
PEG-treated BMSF membrane.

3.3. Scanning Electron Microscopy (SEM)

Small pieces of 3-µm thick membranes or freeze-fractured fragments (the
latter for the examination in cross-section), were placed on specimen stubs using
double-sided adhesive tapes and coated with a layer of iridium using a sputter coater.
Field-emission scanning electron microscopy (FE-SEM Sigma, Zeiss, Germany) was
employed to examine the surface and internal morphologies of various membranes.

3.4. Atomic Force Microscopy (AFM)

Fibroin films were cast on clean glass slides. A MultiScan AFM (BMT, Ettlingen,
Germany) in contact mode was employed using a silicon cantilever (ContAl-G,
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BudgetSensors, Bulgaria), with a tip radius of less than 10 nm and a scan rate of
0.50 Hz. The Ra value was obtained from the total area of 5.0 ˆ 5.0 µm2 of the
AFM image.

3.5. Fourier-Transform Infrared Spectroscopy (FTIR)

A Nicolet FTIR spectrometer (Thermo Electron Corp., Waltham, MA, USA),
equipped with a diamond attenuated total reflectance (ATR) sampling accessory,
was used to analyse the secondary structure of each type of BMSF membrane. Each
spectrum was obtained by co-adding 64 scans over the range 4000 to 525 cm´1 at
a resolution of 8 cm´1. The OMNIC 7 software package (Thermo Electron Corp.,
Waltham, MA, USA) was used to analyse and plot the spectra.

3.6. Tensile Testing

Strips (1 cm ˆ 3 cm) cut out from each of the 3-µm thick membranes were
subjected to tensile measurements using an Instron 5848 microtester (Instron, UK),
equipped with a 5 N load cell, at a crosshead speed of 14 mm/min. The stripes were
loaded by pneumatic grips, which were set to a gauge distance of 14 mm, and soaked
in phosphate buffered saline (PBS) (pre-heated to 37 ˘ 3 ˝C) in a BioPuls™ unit for
5 min prior to stretching. Stress-strain plots were recorded and Young’s modulus
was determined from the slope of the linear region of the curve. The mean values
were calculated from six measurements of each membrane.

3.7. Permeability of the Membranes

A permeability test was designed to quantify the movement of biomolecules
across the fibroin membranes. Custom-designed Teflon® chambers (Figure 5a) were
used to suspend the BMSF membrane, which creates separate upper and lower
compartments. This assay uses a known concentration of vascular endothelial growth
factor (VEGF) in the upper compartment, and at a set time point the movement of
the VEGF molecules into the lower compartment (through the membrane) can be
quantified by ELISA (enzyme-linked immunosorbent assay). VEGF is a basic protein
with a MW of 26–28 kDa and an isoelectric point of 8.5.

Discs cut out of each membrane were assembled in chambers and sterilized
by immersion in a 70% ethanol solution for 1 h, air-dried in a biohazard hood and
rinsed 3 times with PBS. Chambers were inserted into a 6-well plate well with 4 mL
fresh PBS. This volume creates the lower compartment below the membrane. A
VEGF solution (100 ng/mL) was prepared and 150 µL was added to the upper
compartment, above the membranes. The plate was incubated at 37 ˝C, and upper
and lower compartment volumes were collected after 24 h. Samples were frozen at
´40 ˝C immediately after collection. ELISA assay was performed to examine each
sample volume. The purpose of the assay is to determine if a particular protein
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is present in a sample and, if so, how much is present. We performed the assay
using a commercially available VEGF sandwich ELISA kit. Briefly, the assay TCP
plates (96-well) were prepared by coating with the capture antibody, and incubated
at room temperature overnight. The plates were then washed and blocked with
bovine serum albumin. The upper and lower compartment volumes were thawed
and added to the corresponding assay plate/wells. Lower compartment volumes
were concentrated using Amicon Ultra-4 centrifugal filters (MWCO 10 kDa) to be
equivalent to the upper compartment volume (about 150 µL). A VEGF standard
curve was also included on each assay plate. All samples and standards were tested
in duplicate. After incubation at room temperature for 2 h, each plate was washed,
and the detection antibody was added, and incubated.

In order to quantify the interaction of the detection antibody, the plate was
washed, and a secondary antibody coupled to horseradish peroxidase (HRP) was
added and incubated for 20 min. After a final wash step, the HRP enzyme was
activated using a Substrate System, incubated for 20 min, which initiated the visible
colour reaction. The enzyme reaction was completed with the addition of the Stop
Solution, and each plate was placed into an absorbance microplate reader. The optical
density was determined for each well at 450 nm and at 540 nm. The intensity of the
colour reaction is proportional to the amount of VEGF protein in the original sample
volumes, i.e. bound to the capture antibody on the bottom of the wells.

3.8. Culture and Growth of Transformed Human CECs on BMSF Substrata

A SV40-immortalized cell line (HCE-T) derived from human corneal epithelial
cells (CECs) was used for assaying the initial cell attachment and growth. HCE-T
cells were cultured in Dulbecco’s modified Eagle medium supplemented with 10%
FBS, glutamine and 1% v/v penicillin/ streptomycin. The cells were cultured
in a humidified atmosphere of 5% CO2 at 37 ˝C, and passaged using Versene
and TrypLE®.

Silk fibroin membranes were cut using a trephine blade to produce circular
pieces of approximately 14 mm in diameter, and placed into individual wells of a
24-well TCP plate using rubber O-rings. They were sterilized in 70% ethanol for
30 min followed by washing three times with PBS. The HCE-T cells (20,000/cm2)
were seeded into each well with 0.5 mL/well medium, and 0.25 mL medium was
exchanged every third day. Serum-free medium was used in the case of the short-term
attachment assay (90 min). For proliferation assay, the cultures were assayed after
incubation for 3 or 7 days in serum-supplemented media. At the end of each time
point, the O-rings were removed and the cultures were rinsed three times with PBS.
The DNA content of adhered cells was quantified using the PicoGreen® assay as
previously described [40]. All experiments were conducted in triplicate for each
series of three assessments.
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3.9. Culture and Growth of Primary Human CLECs on BMSF Substrata

Cadaveric human eye tissue was obtained with human research ethics
committee approval and donor consent from the Queensland Eye Bank, Brisbane,
Australia. The primary cultures of human corneal limbal epithelial cells were
established from the corneal limbus as described previously [40], and cultured
in Green’s medium [73]. Freshly isolated human CLECs were seeded into 25 cm2

flasks containing 1 ˆ 106 irradiated 3T3 murine fibroblasts (i3T3) as feeder cells.
Membranes, ca. 6 µm in thickness, were cut into circular pieces of approximately
14 mm in diameter and mounted in sterile Teflon® cell culture chambers as described
previously [43]. After sterilizing in 70% ethanol followed by rinsing with PBS,
3 ˆ 104 i3T3 cells were seeded on to the underside of the membrane and allowed to
attach for 24 hours. The chambers were then inverted before 1 ˆ 104 human CLECs
were seeded all in Green’s medium. The cells were cultured for 12 days with chamber
re-feeds every two to three days. After 12 days, the cells were fixed by immersing the
chambers in 3.7% formaldehyde and stained with rhodamine phalloidin and Hoechst
nuclear dye to highlight the actin fibres and the nuclei in the cells for examination by
confocal fluorescence microscopy on a Nikon A1 confocal system.

3.10. Statistical Analysis

The results of mechanical testing and cell culture were statistically processed
by the one-way analysis of variance (ANOVA) in conjunction with Tukey-Kramer
multiple comparisons, using the GraphPad Prism® version 6.0.

4. Conclusions

The characteristics of BMSF as a substratum for the growth of corneal epithelial
cells can be modified by blending with a PEG of low molecular weight such as
300 Da. Both permeability and surface topography are indeed changed in ways that
are expected to be beneficial to the process of cell attachment and proliferation. In
practice, however, the treatment with PEG enhances the fragility of membranes. This
effect appears to negate any potential benefits to cell growth.
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Culture of Oral Mucosal Epithelial Cells for
the Purpose of Treating Limbal Stem
Cell Deficiency
Tor Paaske Utheim, Øygunn Aass Utheim, Qalb-E-Saleem Khan and Amer Sehic

Abstract: The cornea is critical for normal vision as it allows allowing light
transmission to the retina. The corneal epithelium is renewed by limbal epithelial
cells (LEC), which are located in the periphery of the cornea, the limbus. Damage
or disease involving LEC may lead to various clinical presentations of limbal stem
cell deficiency (LSCD). Both severe pain and blindness may result. Transplantation
of cultured autologous oral mucosal epithelial cell sheet (CAOMECS) represents
the first use of a cultured non-limbal autologous cell type to treat this disease.
Among non-limbal cell types, CAOMECS and conjunctival epithelial cells are the
only laboratory cultured cell sources that have been explored in humans. Thus
far, the expression of p63 is the only predictor of clinical outcome following
transplantation to correct LSCD. The optimal culture method and substrate for
CAOMECS is not established. The present review focuses on cell culture methods,
with particular emphasis on substrates. Most culture protocols for CAOMECS used
amniotic membrane as a substrate and included the xenogeneic components fetal
bovine serum and murine 3T3 fibroblasts. However, it has been demonstrated that
tissue-engineered epithelial cell sheet grafts can be successfully fabricated using
temperature-responsive culture surfaces and autologous serum. In the studies using
different substrates for culture of CAOMECS, the quantitative expression of p63
was generally poorly reported; thus, more research is warranted with quantification
of phenotypic data. Further research is required to develop a culture system for
CAOMECS that mimics the natural environment of oral/limbal/corneal epithelial
cells without the need for undefined foreign materials such as serum and feeder cells.

Reprinted from J. Funct. Biomater. Cite as: Utheim, T.P.; Utheim, Ø.A.; Khan, Q.-E.-S.;
Sehic, A. Culture of Oral Mucosal Epithelial Cells for the Purpose of Treating Limbal
Stem Cell Deficiency. J. Funct. Biomater. 2016, 7, 5.

1. Introduction

1.1. Limbal Stem Cell Deficiency

The regenerating organs in the body (e.g., cornea, skin, and gut) harbor
tissue-specific stem cells, which are responsible for tissue homeostasis and efficient
healing in case of injury. The ocular surface is composed of corneal and conjunctival
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epithelium [1]. The corneal epithelium in particular plays a crucial role in maintaining
the cornea’s avascularity and transparency [2]. The self-renewal of the corneal surface
is a multistep process dependent on a small population of limbal stem cells [3,4]
located in structures referred to as limbal crypts [5] or limbal epithelial crypts [6].

Numerous external factors and disorders (e.g., chemical or thermal injuries,
microbial infections, surgeries involving the limbus, cicatricial pemphigoid, and
aniridia) can lead to dysfunction or loss of limbal epithelial cells (LEC), resulting in
either partial or total limbal stem cell deficiency (LSCD) [2]. The condition can be
painful and may lead to reduced vision, or even blindness, by causing persistent
epithelial defects, fibrovascular pannus, conjunctivalization, and superficial and
deep vascularization of the cornea. The persistence of epithelial defects may result in
ulceration, scarring, and corneal perforation [2]. Limbal stem cell deficiency is most
often bilateral.

1.2. Treatment Strategies for Limbal Stem Cell Deficiency

Treatment approaches for LSCD can be categorized as follows: (a)
transplantation of cultured cells [2]; (b) transplantation of non-cultured cells [2];
and (c) approaches that do not involve transplantation of cells, for example
keratoprostheses [7]. A great variety of cell-based therapeutic strategies have been
suggested for LSCD [8]. The stem cells of the corneal epithelium are believed to be
located in the limbus [3,4]. In 1989, limbal grafts were transplanted to eyes suffering
from LSCD to restore the corneal surface [9]. The results were promising. However,
the procedure carries a risk of inducing LSCD in the healthy eye because of large
limbal cell withdrawal [10], and the therapy is not possible in cases of bilateral
LSCD. This led to a novel therapeutic strategy with ex vivo expansion of LEC first
reported by Pellegrini and colleagues in 1997 [11]. In their study, successful ocular
surface reconstruction was achieved using autologous cultivated LEC isolated from
small biopsies in two patients, both affected with severe unilateral ocular surface
disease. Since then, more than 1000 patients suffering from LSCD have been treated
with ex vivo cultured LEC [11–18]. Since 2003, nine cultured non-limbal cell sources
have been successfully used to reconstruct the corneal epithelium in bilateral LSCD,
in which limbal tissue is not recommended for harvest [8]. The sources include
oral mucosal epithelial cells [19], embryonic stem cells [20], conjunctival epithelial
cells [21], epidermal stem cells [22], dental pulp stem cells [23], bone marrow-derived
mesenchymal stem cells [24], hair follicle bulge-derived stem cells [25], umbilical
cord lining stem cells [26], and orbital fat-derived stem cells [27]. Among non-limbal
cell types, cultured autologous oral mucosal epithelial cell sheet (CAOMECS) and
conjunctival epithelial cells are the only laboratory cultured cell sources that have
been explored in humans.
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2. Cultured Autologous Oral Mucosal Epithelial Cell Sheet

A significant advantage of CAOMECS as a cell source is easy isolation from
biopsies that heal quickly without residual scarring. As the CAOMECS are autologous,
there is no risk of immune rejection, thus making immunosuppression unnecessary.
However, a disadvantage of transplantation of CAOMECS is the development of
peripheral neovascularization [28–31]. Studies have demonstrated that angiogenesis
related factors were expressed in corneas after transplantation [32–35]. Anti-angiogenic
therapy has been proposed as a method to prevent corneal neovascularization and
improve the outcomes after transplantation with CAOMECS [36]. Thus far, 242 patients
with LSCD have been reported as treated, with a success rate of 72% and a follow-up
time of between one and 7.5 years [19,28–32,37–51].

An ideal substrate is easily available, transparent, and easy to manipulate; it
permits cells to proliferate and retain high viability. Though transplant success has
been demonstrated using various culture methods, the optimal culture method
for CAOMECS for use in corneal regeneration has not been established. The
determination of appropriate substrates and culture protocols for CAOMECS may
contribute to the development of standardized, safe, and effective regenerative
therapy for LSCD. The present review focuses on the current state of knowledge
of the culture methods and substrates used for CAOMECS in ocular regeneration.
The review was prepared by searching the National Library of Medicine database
using the search term “oral mucosal epithelial cells” in an attempt not to leave out
any relevant publications. In total, the search resulted in 4897 studies, of which 41
studies, published from 2003 to 2015, were related directly to the core topic of the
present review.

3. Characteristics of the Culture Protocol for Cultured Autologous Oral Mucosal
Epithelial Cell Sheet

The standard culture conditions used for production of transplantable epithelial
cell sheets, including CAOMECS, typically requires fetal bovine serum (FBS) and
murine 3T3 feeder layers [52]. The epithelial progenitor or stem cells isolated
from small biopsies can, under these conditions, be expanded in vitro to create
stratified epithelial layers that closely resemble native tissues [53]. However, these
constructs are classified as xenogeneic products, with the inherent possibility of
infection or pathogen transmission from animal-derived materials [54]. In addition,
xeno-contamination may result in immunogenicity [55]. The use of feeder layers
and foreign serum is, therefore, a concern in regenerative medicine. Furthermore,
dispase, a bacteria-derived protease, is commonly used to enable cell isolation [53].

Treatment of LSCD based on various methods using CAOMECS is
presented in Figure 1. The following culture methods and substrates
have been used in order to produce transplantable CAOMECS: (1) amniotic

163



membrane [28–30,32,35,37,39,40,42,43,45–47,49,51,56–63] (Table 1); (2) temperature-
responsive cell-culture surfaces [31,38,64–70] (Table 2); (3) fibrin-coated culture
plates [41,48] (Table 3); (4) fibrin gel [71] (Table 3); (5) collagen IV-coated culture
plates [72] (Table 3); and (6) culture plates without any substrate [33,34,73,74]
(Table 3).

The possibility of pathogen transmission cannot be excluded from xenogeneic or
allogeneic materials, such as human amniotic membrane obtained following elective
Caesarean operations [17,18,75], collagen isolated from porcine or bovine skin [76],
and hydrated gels made from fibrin derived from human donor blood [77–79].
Therefore, the establishment of culture conditions avoiding animal-derived products
and foreign undefined components is warranted.
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Figure 1. Treatment of LSCD based on various methods using CAOMECS. A biopsy
from the mucosa is harvested from the oral cavity (A). The biopsy is cultured in the
laboratory on different substrates (B) for 7–28 days (C). A stratified cultured tissue
is produced (D) and is transplanted to the diseased eye (E).
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4. Culture of Oral Mucosal Epithelial Cells on Amniotic Membrane

Amniotic membrane has been used on the ocular surface since 1940 [80], and for
the first time in treatment of LSCD in 1946 [81]. In cases of partial LSCD, amniotic
membrane can be applied to the affected eye and provide a suitable substrate for
corneal epithelial repopulation [82,83]. The amniotic membrane secretes several
growth factors such as hepatocyte growth factor, basic fibroblast growth factor,
and transforming growth factor β [84,85]. Amniotic membrane is suggested to
exert its effects by suppressing inflammation and scarring [86]. There is currently a
discussion over whether amniotic membrane should be deepithelialized/denuded
prior to culture, or if this substrate should remain intact. It has been reported that
native, intact amniotic membrane comprise higher levels of growth factors compared
to denuded amniotic membrane [87].

Amniotic membrane is the most common culture substrate for CAOMECS,
and has been used in 15 clinical, three animal, and six in vitro studies (Table 1).
With one exception [43], the amniotic membrane was denuded, i.e., the single
layer of epithelial cells on the amniotic membrane was removed (Table 1). In the
studies using amniotic membrane as a substrate for cultured CAOMECS, cell
suspension [28–30,32,35,37,39,42,45–47,49–51,56–58,61–63] was applied in all studies,
except four using the explant method [40,43,59,60]. The number of fabricated,
stratified epithelial cell layers varied from two [56] to 10 [32]. Oral mucosal
epithelial cells were normally cultivated between two to three weeks; however,
the culture time varied between seven [62] and 28 [63] days. The most frequently
used culture medium with added supplements was Dulbecco‘s Modified Eagle
Medium (DMEM:F12) [28–30,35,39,40,42,43,46,47,49–51,56–61,63], followed by
keratinocyte growth medium (KGM) [37,45] and supplemented hormonal epithelial
medium (SHEM) [32,62] (Table 1). Murine fibroblasts (3T3 strain) were used in
all but three studies [40,43,56]. Most of the culture protocols exposed the cells
to air-lifting (lowering the level of the culture medium to allow the cells to be
cultured at the air–liquid interface), including clinical [28,30,37,42,43,45,47,49–51],
animal [57,58], and in vitro studies [35,59,60,63] (Table 1). Fetal bovine serum
(FBS) [29,30,37,47,57–59,61–63] and fetal calf serum (FCS) [28,32,39,42,56,60]
were broadly used; however, six studies used human autologous serum
(HAS) [28,43,45,46,49,50] in an attempt to minimize/avoid the use of animal derived
components (Table 1).

Oral mucosal epithelial cells cultivated on amniotic membrane exhibited
multilayered, stratified epithelium and appeared very similar to a normal corneal
epithelium (Table 1). The presence of non-keratinized, stratified-specific keratins
K3 and K4/K13 was detected by immunohistochemistry, reverse transcription
polymerase chain reaction, and Western blotting (Table 1). The expression of p63, a
marker for undifferentiated cells, was reported in 33% (8/24) of the studies (Table 4).
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Using transmission electron microscopy it was demonstrated that the cultivated oral
epithelial sheet had junctional contacts, such as desmosomes, hemidesmosomes, and
tight junctions, which were almost identical to those of normal corneal epithelial
cells [30,56,60,62].

5. Culture of Oral Mucosal Epithelial Cells on Temperature-
Responsive Surfaces

In order to avoid the use of allogenic bacteria [53,67] and animal
derived [52] components in the cornea-engineered constructs, carrier-free
epithelial cell sheets using temperature-responsive culture dishes have been
developed [31,88,89]. The modified surfaces transition between hydrophilic and
hydrophobic states—depending on the temperature—by covalently immobilizing the
temperature-responsive polymer poly(N-isopropylacrylamide) onto commercially
available tissue culture wells. Under in vitro culture conditions at 37 ˝C, numerous
cell types adhere and proliferate similarly to those of normal tissue culture
polystyrene. By reducing the temperature to 20 ˝C, the cultured cells spontaneously
detach along with their deposited extracellular matrix (ECM) without the need for
proteolytic enzymes such as dispase [89,90]. Therefore, with temperature-responsive
culture surfaces the undesirable factors inherent to some substrates can be excluded
from transplantable constructs.

Nine studies (three clinical, four animal, and two in vitro) have utilized the
temperature-responsive cell-culture surfaces as a substrate for CAOMECS. In all
studies the cells were applied as a cell suspension and DMEM:F12 with added
supplements was used as a culture medium (Table 2). The culture time for CAOMECS
in these studies ranged from 10 [69] to 28 [65] days, but was most often two weeks [31,
64,66,67,70]. The most common nutrient used was FBS [64–66,69,70]; however, two
studies utilized HAS [67,68]. None of the studies exposed the cells to air-lifting
(Table 2). The number of fabricated cell layers varied from three [69] to eight [65].
Only one study did not use 3T3 murine fibroblasts [67]. Two studies reported the
cell viability of the cultured sheets to be 86% [68] and 93% [65]. The presence of p63
in the fabricated cell sheets was reported in 78% (7/9) of the studies (Table 4).
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Table 4. Expression of p63 in cultured autologous oral mucosal epithelial cell sheet
cultivated on different substrates.

Substrate Total Number of
Studies

Expression of p63
Not Reported

Non-Quantitative
Expression of p63

Reported

Quantitative
Expression of p63

Reported

Amniotic membrane 24 16 studies

4 studies: p63
expressed;

1 study: high
expression of ∆Np63;

2 studies: high
expression of p63

1 study: 3.0% ˘ 1.7%
of cells

Temperature-responsivecell
-culture inserts 9 2 studies 6 studies: p63

expressed
1 study:

30.7% ˘ 7.6% of cells

Fibrin-coated
culture plate 2 2 studies – –

Fibrin gel 1 – 1 study: high
expression of p63 –

Collagen IV-coated
culture plate 1 – 1 study: p63

expressed –

Culture plate 4 2 studies 2 studies: high
expression of p63 –

6. Culture of Oral Mucosal Epithelial Cells on Fibrin Substrates

Fibrin has been broadly used as a substrate in regenerative medicine and for
wound-healing [91,92]. It is easily available, assists epithelial cell growth, and its
degradation can be controlled by addition of fibrinolytic components. Rama and
colleagues first established the use of fibrin gels as a substrate for ocular surface
reconstruction in 2001 [78]. Fibrin gel is a hemostatic compound of thrombin,
fibrinogen, and calcium chloride [93]. The mixture of these components fabricates
a gel that is similar to the physiological lump formed at the last stage of the
coagulation cascade [94]. The gel produced by this reaction is biodegradable,
non-toxic, and inhibits fibrosis, tissue necrosis, and inflammation [94–96]. In vivo,
the gel is completely resorbed and ultimately replaced by matrix components
such as collagen [95]. A major disadvantage with fibrin as a substrate is that it
encourages angiogenesis [97]. The gel, however, is resorbed within days to weeks
after transplantation [94], minimizing the effects. Sheth et al. have demonstrated
that CAOMECS cultivated on fibrin gel results in production of multilayered
epithelium in vitro. The fabricated cell sheets expressed keratins K3, K4, and
K13 [71]. The putative epithelial progenitor cell marker p63 [98] was also highly
expressed (Table 3). Sheth and associates modified the pre-existing methodology to
produce a reproducible, robust gel that supports the expansion and transplantation
of CAOMECS, without the need for murine 3T3 fibroblasts. Fibrin-coated culture
plates have also been used as a substrate for CAOMECS [41,48] (Table 3). Both
studies utilized murine 3T3 fibroblasts and DMEM:F12 with added supplements as a
culture medium. Human autologous serum was used as nutrient, and the cells were
exposed to air-lifting [41,48].

172



7. Culture of Oral Mucosal Epithelial Cells on Collagen Substrates

All of the previously reported culture protocols for CAOMECS use serum, and
most also use feeder cells to support the stratification of the epithelial cells. Due to
the risk of infections associated with murine feeder cells and non-autologous serum
in the cultivation of cell sheets, Ilmarinen and colleagues sought other options to
support the stratification of isolated CAOMECS [72]. In their in vitro study, stratified
epithelium was generated on collagen IV-coated culture plates in serum-free culture
conditions without using 3T3 feeder cells. The authors analyzed the functional
properties of the cell sheets by transepithelial electrical resistance measurements,
in addition to morphology, differentiation, and regenerative capacity. This study is
the only report of a successful stratification of oral mucosal epithelium for ocular
surface regeneration in the absence of serum. The results showed that, in serum-free
conditions, oral mucosal epithelial cells attached to and proliferated on collagen
IV–coated inserts more readily than on amniotic membrane [72]. Ilmarinen and
colleagues also studied the effects of increased epidermal growth factor (EGF)
concentration, as EGF is known to stimulate the growth and differentiation of a
variety of epithelial tissues [99,100]. However, they detected no major effects on the
phenotype of the cell sheets using additional EGF.

8. Culture of Oral Mucosal Epithelial Cells on Non-Coated Culture Plates

Four studies (three in vitro and one animal) have used non-coated, substrate-free
culture plates in order to fabricate transplantable CAOMECS [33,34,73,74] (Table 3).
All of the studies used DMEM:F12 with added supplements as a culture medium and
FBS as a nutrient, without including air-lifting. In three studies, murine 3T3 feeder
cells were included [33,34,74]. The authors reported formation of a multilayered
epithelium [33,34,73], one study specifying the number of cell layers [74]. Two of the
four studies confirmed the expression of K3 and high expression of p63 [73,74].

9. Challenges and Future Perspectives

Recently, a meta-analytic concise review about transplantation of CAOMECS
for treating LSCD has reported a success rate of 72% [19]. In this review, the focus
was on clinical features of transplants of CAOMECS over the past 10 years, including
surgery and pre- and postoperative considerations. In contrast, herein we focus
on cell culture methods, with particular emphasis on substrates. Moreover, in the
present review we expand on both in vitro and animal studies.

A complete xenobiotic-free culture protocol has become a goal in regenerative
medicine; this is to avoid the risk of transferring known and unknown
microorganisms and to standardize the culture conditions. The properties of
epithelial cells are dependent upon extracellular signals supplied by the cell–cell
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and cell–substratum interactions. Further research is warranted to develop a culture
system for CAOMECS that mimics the natural environment of oral/limbal/corneal
epithelial cells without the need for undefined foreign materials such as serum and
feeder cells.

It is likely that the phenotype of CAOMECS affects clinical success following
transplantation. Thus far, p63 is the only predictor of clinical outcome following
transplantation to correct LSCD [12]. Recently, Rama et al. demonstrated that the
phenotype of cultured LEC is critical to ensure successful reconstruction of the ocular
surface following LSCD [12]. The authors showed that successful transplantation
was achieved in 78% of patients when using cell cultures in which p63-bright cells
constituted more than 3% of the total number of clonogenic cells. In contrast,
successful transplantation was only seen in 11% of patients when p63-bright cells
made up 3% or less of the total number of cells. In the studies using different
substrates for culture of CAOMECS, the expression of p63 varied considerably
(Table 4). Few studies reported the expression of p63 when using fibrin-coated culture
plates, fibrin gels, collagen-coated culture plates, and culture plates without substrate
(Table 4). When comparing amniotic membrane and temperature-responsive inserts,
33% (8/24) and 78% (7/9) of the studies showed the expression of p63, respectively
(Table 4). The quantitative expression of p63 was generally poorly reported; thus,
more research is warranted with quantification of phenotypic data.

The use of culture inserts with autologous serum has also been shown
to facilitate the stratification of oral mucosal epithelial cells in the absence of
3T3 feeders [67]. Kolli et al. found that autologous serum was superior to
FCS in generating an undifferentiated epithelium [43], and in another study the
porcine trypsin was replaced with xeno-free trypsin with successful outcomes [61].
Hirayama et al. [41] showed that transplantation of a substrate-free cell sheet resulted
in significantly better results than engrafting oral mucosal cells cultured on an
amniotic membrane. The improvements were significantly higher graft survival
rate, better visual acuity (1, 3, 6, and 12 months postoperatively), and reduction of
neovascularization (12 months postoperatively) [41]. Furthermore, except collagen
IV-coated culture plate, this review demonstrates that the use of different methods
and substrates for culture of CAOMECS did not appear to have any effect on the
number of cell layers generated (Table 5).
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Table 5. Overall Effect of Different Culture Methods and Substrates for Cultured
Autologous Oral Mucosal Epithelial Cell Sheet.

Substrate/Method Air-lifting Animal-derived
Nutrient

Use of
3T3

Serum-free
Medium Viability Morphology

Phenotype
(Expression

of p63)

Amniotic
membrane 17/24 16/24 21/24 0/24 >98% (1) 4.2 cell

layers (15) ++

Temperature-responsive
cell-culture inserts 0/9 5/9 8/9 0/9 86%–93%

(2)
4.3 cell

layers (6) ++

Fibrin-coated
culture plate 2/2 0/2 2/2 0/2 5–6 cell

layers (2) –

Fibrin gel 0/1 1/1 0/1 0/1 – – +++

Collagen IV-coated
culture plate 1/1 0/3 0/1 1/1 – 4–12 cell

layers (1) +

Culture plate 0/4 4/4 3/4 0/4 – 2–6 cell
layers (1) +++

Number of studies using different culture parameters is presented in the Table; –, indicates
not reported; +, low expression of p63; ++, moderate expression of p63; +++, high
expression of p63.

Due to the lack of mechanical strength provided by various culture substrates,
transplantation of substrate-free cell sheets can be challenging. Hence, methods to
enhance the strength and durability of the epithelial cell sheets should be further
explored. Using the air-lifting technique, originally developed to formulate skin
cell culture sheets for transplantation, the mechanical strength of epithelial cell
sheets can be increased. The present review reveals that only 48.8% of the studies
applied the air-lifting method (Tables 1–3). Interestingly, the majority of studies
using amniotic membrane (71%) did utilize air-lifting, while none of the studies
with temperature-responsive surfaces applied this method (Table 5). Arguments for
air-lifting include the promotion of migration [101], proliferation [101], epithelial
stratification [101], and increased barrier function of LEC [102]. Arguments against
air-lifting include induction of squamous metaplasia [103], gradual loss of stem
cells [104], and differentiation of LEC [104,105]. Until 2010, the clinical implications
of increased differentiation of transplanted cells in corneal reconstruction were
unknown. This changed when Rama and colleagues demonstrated the critical
importance for clinical success of a substantial, putative stem cell population within
the cultured cells [12]. It is yet to be investigated whether the potential advantages
of air-lifting outweigh the disadvantages in corneal regeneration using CAOMECS.

10. Conclusions

Most culture protocols for CAOMECS used amniotic membrane as a substrate
and included the xenogeneic components FBS and murine 3T3 fibroblasts. However,
it has been demonstrated that tissue-engineered epithelial cell sheet grafts can
be successfully fabricated using temperature-responsive culture surfaces and
autologous serum. More studies on how various substrates and other culture

175



parameters affect the cell sheet, with special emphasis on the phenotype, are
warranted. Furthermore, it is important to focus on cell culture methods using
xenobiotic-free conditions.

Acknowledgments: The authors would like to thank Astrid Østerud, Department of Medical
Biochemistry, Oslo University Hospital, Oslo, and Catherine Jackson at Department of Medical
Biochemistry. Funding received from Department of Oral Biology, Faculty of Dentistry,
University of Oslo and Department of Medical Biochemistry, Oslo University Hospital, Oslo,
Norway is acknowledged.

Author Contributions: Tor Paaske Utheim, Øygunn Aass Utheim and Amer Sehic searched
and identified the literature; Tor Paaske Utheim and Amer Sehic analyzed the data; All wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Land, M.F.; Fernald, R.D. The evolution of eyes. Ann. Rev. Neurosci. 1992, 15, 1–29.
2. Utheim, T.P. Limbal epithelial cell therapy: Past, present, and future. Methods Mol. Biol.

2013, 1014, 3–43.
3. Cotsarelis, G.; Cheng, S.Z.; Dong, G.; Sun, T.T.; Lavker, R.M. Existence of slow-cycling

limbal epithelial basal cells that can be preferentially stimulated to proliferate:
Implications on epithelial stem cells. Cell 1989, 57, 201–209.

4. Davanger, M.; Evensen, A. Role of the pericorneal papillary structure in renewal of
corneal epithelium. Nature 1971, 229, 560–561.

5. Shortt, A.J.; Secker, G.A.; Munro, P.M.; Khaw, P.T.; Tuft, S.J.; Daniels, J.T. Characterization
of the limbal epithelial stem cell niche: Novel imaging techniques permit in vivo
observation and targeted biopsy of limbal epithelial stem cells. Stem cells 2007, 25,
1402–1409.

6. Dua, H.S.; Shanmuganathan, V.A.; Powell-Richards, A.O.; Tighe, P.J.; Joseph, A. Limbal
epithelial crypts: A novel anatomical structure and a putative limbal stem cell niche.
Br. J. Ophthalmol. 2005, 89, 529–532.

7. Modjtahedi, B.S.; Eliott, D. Vitreoretinal complications of the boston keratoprosthesis.
Semin. Ophthalmol. 2014, 29, 338–348.

8. Sehic, A.; Utheim, O.A.; Ommundsen, K.; Utheim, T.P. Pre-clinical cell-based therapy for
limbal stem cell deficiency. J. Funct. Biomater. 2015, 6, 863–888.

9. Kenyon, K.R.; Tseng, S.C. Limbal autograft transplantation for ocular surface disorders.
Ophthalmol. 1989, 96, 709–722.

10. Jenkins, C.; Tuft, S.; Liu, C.; Buckley, R. Limbal transplantation in the management of
chronic contact-lens-associated epitheliopathy. Eye 1993, 7, 629–633.

11. Pellegrini, G.; Traverso, C.E.; Franzi, A.T.; Zingirian, M.; Cancedda, R.; de Luca, M.
Long-term restoration of damaged corneal surfaces with autologous cultivated corneal
epithelium. Lancet 1997, 349, 990–993.

176



12. Rama, P.; Matuska, S.; Paganoni, G.; Spinelli, A.; de Luca, M.; Pellegrini, G. Limbal
stem-cell therapy and long-term corneal regeneration. New Engl. J. Med. 2010, 363,
147–155.

13. Nakamura, T.; Sotozono, C.; Bentley, A.J.; Mano, S.; Inatomi, T.; Koizumi, N.;
Fullwood, N.J.; Kinoshita, S. Long-term phenotypic study after allogeneic cultivated
corneal limbal epithelial transplantation for severe ocular surface diseases. Ophthalmology
2010, 117, 2247–2254.

14. Kolli, S.; Ahmad, S.; Lako, M.; Figueiredo, F. Successful clinical implementation of
corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency.
Stem Cells 2010, 28, 597–610.

15. Shortt, A.J.; Secker, G.A.; Rajan, M.S.; Meligonis, G.; Dart, J.K.; Tuft, S.J.; Daniels, J.T. Ex
vivo expansion and transplantation of limbal epithelial stem cells. Ophthalmology 2008,
115, 1989–1997.

16. Nakamura, T.; Inatomi, T.; Sotozono, C.; Ang, L.P.; Koizumi, N.; Yokoi, N.; Kinoshita, S.
Transplantation of autologous serum-derived cultivated corneal epithelial equivalents
for the treatment of severe ocular surface disease. Ophthalmology 2006, 113, 1765–1772.

17. Koizumi, N.; Inatomi, T.; Suzuki, T.; Sotozono, C.; Kinoshita, S. Cultivated corneal
epithelial stem cell transplantation in ocular surface disorders. Ophthalmology 2001, 108,
1569–1574.

18. Tsai, R.J.; Li, L.M.; Chen, J.K. Reconstruction of damaged corneas by transplantation of
autologous limbal epithelial cells. New Engl. J. Med. 2000, 343, 86–93.

19. Utheim, T.P. Concise review: Transplantation of cultured oral mucosal epithelial cells
for treating limbal stem cell deficiency-current status and future perspectives. Stem Cells
2015, 33, 1685–1695.

20. Homma, R.; Yoshikawa, H.; Takeno, M.; Kurokawa, M.S.; Masuda, C.; Takada, E.;
Tsubota, K.; Ueno, S.; Suzuki, N. Induction of epithelial progenitors in vitro from mouse
embryonic stem cells and application for reconstruction of damaged cornea in mice.
Investig. Ophthalmol. Vis. Sci. 2004, 45, 4320–4326.

21. Tanioka, H.; Kawasaki, S.; Yamasaki, K.; Ang, L.P.; Koizumi, N.; Nakamura, T.;
Yokoi, N.; Komuro, A.; Inatomi, T.; Kinoshita, S. Establishment of a cultivated human
conjunctival epithelium as an alternative tissue source for autologous corneal epithelial
transplantation. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3820–3827.

22. Yang, X.; Qu, L.; Wang, X.; Zhao, M.; Li, W.; Hua, J.; Shi, M.; Moldovan, N.; Wang, H.;
Dou, Z. Plasticity of epidermal adult stem cells derived from adult goat ear skin.
Mol. Reprod. Dev. 2007, 74, 386–396.

23. Monteiro, B.G.; Serafim, R.C.; Melo, G.B.; Silva, M.C.; Lizier, N.F.; Maranduba, C.M.;
Smith, R.L.; Kerkis, A.; Cerruti, H.; Gomes, J.A.; et al. Human immature dental pulp
stem cells share key characteristic features with limbal stem cells. Cell Prolif. 2009, 42,
587–594.

24. Ma, Y.; Xu, Y.; Xiao, Z.; Yang, W.; Zhang, C.; Song, E.; Du, Y.; Li, L. Reconstruction of
chemically burned rat corneal surface by bone marrow-derived human mesenchymal
stem cells. Stem Cells 2006, 24, 315–321.

177



25. Meyer-Blazejewska, E.A.; Call, M.K.; Yamanaka, O.; Liu, H.; Schlotzer-Schrehardt, U.;
Kruse, F.E.; Kao, W.W. From hair to cornea: Towards the therapeutic use of hair
follicle-derived stem cells in the treatment of limbal stem cell deficiency. Stem Cells
2010, 29, 57–66.

26. Reza, H.M.; Ng, B.Y.; Gimeno, F.L.; Phan, T.T.; Ang, L.P. Umbilical cord lining stem cells
as a novel and promising source for ocular surface regeneration. Stem Cell Rev. 2011, 7,
935–947.

27. Lin, K.J.; Loi, M.X.; Lien, G.S.; Cheng, C.F.; Pao, H.Y.; Chang, Y.C.; Ji, A.T.; Ho, J.H. Topical
administration of orbital fat-derived stem cells promotes corneal tissue regeneration.
Stem Cell Res. Ther. 2013, 4.

28. Inatomi, T.; Nakamura, T.; Koizumi, N.; Sotozono, C.; Yokoi, N.; Kinoshita, S. Midterm
results on ocular surface reconstruction using cultivated autologous oral mucosal
epithelial transplantation. Am. J. Ophthalmol. 2006, 141, 267–275.

29. Ma, D.H.; Kuo, M.T.; Tsai, Y.J.; Chen, H.C.; Chen, X.L.; Wang, S.F.; Li, L.; Hsiao, C.H.;
Lin, K.K. Transplantation of cultivated oral mucosal epithelial cells for severe corneal
burn. Eye 2009, 23, 1442–1450.

30. Nakamura, T.; Inatomi, T.; Sotozono, C.; Amemiya, T.; Kanamura, N.; Kinoshita, S.
Transplantation of cultivated autologous oral mucosal epithelial cells in patients with
severe ocular surface disorders. Br. J. Ophthalmol. 2004, 88, 1280–1284.

31. Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Yamamoto, K.; Adachi, E.;
Nagai, S.; Kikuchi, A.; Maeda, N.; Watanabe, H.; et al. Corneal reconstruction
with tissue-engineered cell sheets composed of autologous oral mucosal epithelium.
Engl. J. Med. 2004, 351, 1187–1196.

32. Chen, H.C.; Yeh, L.K.; Tsai, Y.J.; Lai, C.H.; Chen, C.C.; Lai, J.Y.; Sun, C.C.; Chang, G.;
Hwang, T.L.; Chen, J.K.; et al. Expression of angiogenesis-related factors in human
corneas after cultivated oral mucosal epithelial transplantation. Investig. Ophthalmol.
Vis. Sci. 2012, 53, 5615–5623.

33. Kanayama, S.; Nishida, K.; Yamato, M.; Hayashi, R.; Maeda, N.; Okano, T.; Tano, Y.
Analysis of soluble vascular endothelial growth factor receptor-1 secreted from cultured
corneal and oral mucosal epithelial cell sheets in vitro. Br. J. Ophthalmol. 2009, 93,
263–267.

34. Kanayama, S.; Nishida, K.; Yamato, M.; Hayashi, R.; Sugiyama, H.; Soma, T.; Maeda, N.;
Okano, T.; Tano, Y. Analysis of angiogenesis induced by cultured corneal and oral
mucosal epithelial cell sheets in vitro. Exp. Eye Res. 2007, 85, 772–781.

35. Sekiyama, E.; Nakamura, T.; Kawasaki, S.; Sogabe, H.; Kinoshita, S. Different expression
of angiogenesis-related factors between human cultivated corneal and oral epithelial
sheets. Exp. Eye Res. 2006, 83, 741–746.

36. Lim, P.; Fuchsluger, T.A.; Jurkunas, U.V. Limbal stem cell deficiency and corneal
neovascularization. Semin. Ophthalmol. 2009, 24, 139–148.

37. Ang, L.P.; Nakamura, T.; Inatomi, T.; Sotozono, C.; Koizumi, N.; Yokoi, N.; Kinoshita, S.
Autologous serum-derived cultivated oral epithelial transplants for severe ocular surface
disease. Arch. Ophthalmol. 2006, 124, 1543–1551.

178



38. Burillon, C.; Huot, L.; Justin, V.; Nataf, S.; Chapuis, F.; Decullier, E.; Damour, O.
Cultured autologous oral mucosal epithelial cell sheet (CAOMECS) transplantation
for the treatment of corneal limbal epithelial stem cell deficiency. Investig. Ophthalmol.
Vis. Sci. 2012, 53, 1325–1331.

39. Chen, H.C.; Chen, H.L.; Lai, J.Y.; Chen, C.C.; Tsai, Y.J.; Kuo, M.T.; Chu, P.H.; Sun, C.C.;
Chen, J.K.; Ma, D.H. Persistence of transplanted oral mucosal epithelial cells in human
cornea. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4660–4668.

40. Gaddipati, S.; Muralidhar, R.; Sangwan, V.S.; Mariappan, I.; Vemuganti, G.K.;
Balasubramanian, D. Oral epithelial cells transplanted on to corneal surface tend to
adapt to the ocular phenotype. Indian J. Ophthalmol. 2014, 62, 644–648.

41. Hirayama, M.; Satake, Y.; Higa, K.; Yamaguchi, T.; Shimazaki, J. Transplantation of
cultivated oral mucosal epithelium prepared in fibrin-coated culture dishes. Investig.
Ophthalmol. Vis. Sci. 2012, 53, 1602–1609.

42. Inatomi, T.; Nakamura, T.; Kojyo, M.; Koizumi, N.; Sotozono, C.; Kinoshita, S. Ocular
surface reconstruction with combination of cultivated autologous oral mucosal epithelial
transplantation and penetrating keratoplasty. Am. J. Ophthalmol. 2006, 142, 757–764.

43. Kolli, S.; Ahmad, S.; Mudhar, H.S.; Meeny, A.; Lako, M.; Figueiredo, F.C. Successful
application of ex vivo expanded human autologous oral mucosal epithelium for the
treatment of total bilateral limbal stem cell deficiency. Stem Cells 2014, 32, 2135–2146.

44. Nakamura, T.; Inatomi, T.; Cooper, L.J.; Rigby, H.; Fullwood, N.J.; Kinoshita, S.
Phenotypic investigation of human eyes with transplanted autologous cultivated oral
mucosal epithelial sheets for severe ocular surface diseases. Ophthalmology 2007, 114,
1080–1088.

45. Nakamura, T.; Takeda, K.; Inatomi, T.; Sotozono, C.; Kinoshita, S. Long-term results of
autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe
ocular surface disorders. Br. J. Ophthalmol. 2011, 95, 942–946.

46. Priya, C.G.; Arpitha, P.; Vaishali, S.; Prajna, N.V.; Usha, K.; Sheetal, K.;
Muthukkaruppan, V. Adult human buccal epithelial stem cells: Identification, ex
vivo expansion, and transplantation for corneal surface reconstruction. Eye 2011, 25,
1641–1649.

47. Satake, Y.; Dogru, M.; Yamane, G.Y.; Kinoshita, S.; Tsubota, K.; Shimazaki, J. Barrier
function and cytologic features of the ocular surface epithelium after autologous
cultivated oral mucosal epithelial transplantation. Arch. Ophthalmol. 2008, 126, 23–28.

48. Satake, Y.; Higa, K.; Tsubota, K.; Shimazaki, J. Long-term outcome of cultivated oral
mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency.
Ophthalmology 2011, 118, 1524–1530.

49. Sotozono, C.; Inatomi, T.; Nakamura, T.; Koizumi, N.; Yokoi, N.; Ueta, M.;
Matsuyama, K.; Kaneda, H.; Fukushima, M.; Kinoshita, S. Cultivated oral mucosal
epithelial transplantation for persistent epithelial defect in severe ocular surface diseases
with acute inflammatory activity. Acta Ophthalmol. 2014, 92, e447–e453.

179



50. Sotozono, C.; Inatomi, T.; Nakamura, T.; Koizumi, N.; Yokoi, N.; Ueta, M.; Matsuyama, K.;
Miyakoda, K.; Kaneda, H.; Fukushima, M.; et al. Visual improvement after cultivated
oral mucosal epithelial transplantation. Ophthalmology 2013, 120, 193–200.

51. Takeda, K.; Nakamura, T.; Inatomi, T.; Sotozono, C.; Watanabe, A.; Kinoshita, S.
Ocular surface reconstruction using the combination of autologous cultivated oral
mucosal epithelial transplantation and eyelid surgery for severe ocular surface disease.
Am. J. Ophthalmo. 2011, 152, 195–201.

52. Rheinwald, J.G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes:
The formation of keratinizing colonies from single cells. Cell 1975, 6, 331–343.

53. Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into
multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 1979, 76, 5665–5668.

54. Mariappan, I.; Maddileti, S.; Savy, S.; Tiwari, S.; Gaddipati, S.; Fatima, A.; Sangwan, V.S.;
Balasubramanian, D.; Vemuganti, G.K. In vitro culture and expansion of human limbal
epithelial cells. Nat. Protoc. 2010, 5, 1470–1479.

55. Martin, M.J.; Muotri, A.; Gage, F.; Varki, A. Human embryonic stem cells express an
immunogenic nonhuman sialic acid. Nat. Med. 2005, 11, 228–232.

56. Madhira, S.L.; Vemuganti, G.; Bhaduri, A.; Gaddipati, S.; Sangwan, V.S.; Ghanekar, Y.
Culture and characterization of oral mucosal epithelial cells on human amniotic
membrane for ocular surface reconstruction. Mol. Vis. 2008, 14, 189–196.

57. Nakamura, T.; Endo, K.; Cooper, L.J.; Fullwood, N.J.; Tanifuji, N.; Tsuzuki, M.;
Koizumi, N.; Inatomi, T.; Sano, Y.; Kinoshita, S. The successful culture and
autologous transplantation of rabbit oral mucosal epithelial cells on amniotic membrane.
Investig. Ophthalmol. Vis. Sci. 2003, 44, 106–116.

58. Nakamura, T.; Kinoshita, S. Ocular surface reconstruction using cultivated mucosal
epithelial stem cells. Cornea 2003, 22, S75–S80.

59. Promprasit, D.; Bumroongkit, K.; Tocharus, C.; Mevatee, U.; Tananuvat, N. Cultivation
and phenotypic characterization of rabbit epithelial cells expanded ex vivo from fresh
and cryopreserved limbal and oral mucosal explants. Curr. Eye Res. 2014, 1–8.

60. Sen, S.; Sharma, S.; Gupta, A.; Gupta, N.; Singh, H.; Roychoudhury, A.; Mohanty, S.;
Sen, S.; Nag, T.C.; Tandon, R. Molecular characterization of explant cultured human oral
mucosal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9548–9554.

61. Sharma, S.M.; Fuchsluger, T.; Ahmad, S.; Katikireddy, K.R.; Armant, M.; Dana, R.;
Jurkunas, U.V. Comparative analysis of human-derived feeder layers with 3T3 fibroblasts
for the ex vivo expansion of human limbal and oral epithelium. Stem cell Rev. 2012, 8,
696–705.

62. Shimazaki, J.; Higa, K.; Kato, N.; Satake, Y. Barrier function of cultivated limbal and oral
mucosal epithelial cell sheets. Investig. Ophthalmol. Vis. Sci. 2009, 50, 5672–5680.

63. Yokoo, S.; Yamagami, S.; Mimura, T.; Amano, S.; Saijo, H.; Mori, Y.; Takato, T. UV
absorption in human oral mucosal epithelial sheets for ocular surface reconstruction.
Ophthalmic Res. 2006, 38, 350–354.

180



64. Bardag-Gorce, F.; Oliva, J.; Wood, A.; Hoft, R.; Pan, D.; Thropay, J.; Makalinao, A.;
French, S.W.; Niihara, Y. Carrier-free cultured autologous oral mucosa epithelial cell
sheet (CAOMECS) for corneal epithelium reconstruction: A histological study. Ocul. Surf.
2015, 13, 150–163.

65. Hayashi, R.; Yamato, M.; Takayanagi, H.; Oie, Y.; Kubota, A.; Hori, Y.; Okano, T.;
Nishida, K. Validation system of tissue-engineered epithelial cell sheets for corneal
regenerative medicine. Tissue Eng. Part C Methods 2010, 16, 553–560.

66. Hayashida, Y.; Nishida, K.; Yamato, M.; Watanabe, K.; Maeda, N.; Watanabe, H.;
Kikuchi, A.; Okano, T.; Tano, Y. Ocular surface reconstruction using autologous rabbit
oral mucosal epithelial sheets fabricated ex vivo on a temperature-responsive culture
surface. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1632–1639.

67. Murakami, D.; Yamato, M.; Nishida, K.; Ohki, T.; Takagi, R.; Yang, J.; Namiki, H.;
Okano, T. Fabrication of transplantable human oral mucosal epithelial cell sheets using
temperature-responsive culture inserts without feeder layer cells. J. Artif. Organs Off. J.
Jpn. Soc. Artif. Organs 2006, 9, 185–191.

68. Oie, Y.; Hayashi, R.; Takagi, R.; Yamato, M.; Takayanagi, H.; Tano, Y.; Nishida, K. A
novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic
human dermal fibroblast feeder cells and modified keratinocyte culture medium for
ocular surface reconstruction. Br. J. Ophthalmol. 2010, 94, 1244–1250.

69. Soma, T.; Hayashi, R.; Sugiyama, H.; Tsujikawa, M.; Kanayama, S.; Oie, Y.;
Nishida, K. Maintenance and distribution of epithelial stem/progenitor cells after corneal
reconstruction using oral mucosal epithelial cell sheets. PloS One 2014, 9.

70. Sugiyama, H.; Yamato, M.; Nishida, K.; Okano, T. Evidence of the survival of ectopically
transplanted oral mucosal epithelial stem cells after repeated wounding of cornea.
Mol. Ther. J. Am. Soc. Gene Ther. 2014, 22, 1544–1555.

71. Sheth, R.; Neale, M.H.; Shortt, A.J.; Massie, I.; Vernon, A.J.; Daniels, J.T. Culture
and characterization of oral mucosal epithelial cells on a fibrin gel for ocular surface
reconstruction. Curr. Eye Res. 2014, 1–11.

72. Ilmarinen, T.; Laine, J.; Juuti-Uusitalo, K.; Numminen, J.; Seppanen-Suuronen, R.;
Uusitalo, H.; Skottman, H. Towards a defined, serum- and feeder-free culture of stratified
human oral mucosal epithelium for ocular surface reconstruction. Acta Ophthalmol. 2013,
91, 744–750.

73. Krishnan, S.; Iyer, G.K.; Krishnakumar, S. Culture & characterisation of limbal epithelial
cells & oral mucosal cells. Indian J. Med. Res. 2010, 131, 422–428.

74. Hyun, D.W.; Kim, Y.H.; Koh, A.Y.; Lee, H.J.; Wee, W.R.; Jeon, S.; Kim, M.K.
Characterization of biomaterial-free cell sheets cultured from human oral mucosal
epithelial cells. J. Tissue Eng. Regener. Med. 2014.

75. Schwab, I.R.; Reyes, M.; Isseroff, R.R. Successful transplantation of bioengineered tissue
replacements in patients with ocular surface disease. Cornea 2000, 19, 421–426.

76. Schwab, I.R. Cultured corneal epithelia for ocular surface disease. Trans. Am.
Ophthalmol. Soc. 1999, 97, 891–986.

181



77. Pellegrini, G.; Ranno, R.; Stracuzzi, G.; Bondanza, S.; Guerra, L.; Zambruno, G.; Micali, G.;
de Luca, M. The control of epidermal stem cells (holoclones) in the treatment of massive
full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation
1999, 68, 868–879.

78. Rama, P.; Bonini, S.; Lambiase, A.; Golisano, O.; Paterna, P.; de Luca, M.; Pellegrini, G.
Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of
patients with total limbal stem cell deficiency. Transplantation 2001, 72, 1478–1485.

79. Han, B.; Schwab, I.R.; Madsen, T.K.; Isseroff, R.R. A fibrin-based bioengineered ocular
surface with human corneal epithelial stem cells. Cornea 2002, 21, 505–510.

80. De Rötth, A. Plastic repair of conjunctival defects with fetal membrane. Arch. Ophthalmol.
1940, 23, 522–525.

81. Sorsby, A.; Symons, H.M. Amniotic membrane grafts in caustic burns of the eye (burns
of the second degree). Br. J. Ophthalmol. 1946, 30, 337–345.

82. Anderson, D.F.; Ellies, P.; Pires, R.T.; Tseng, S.C. Amniotic membrane transplantation for
partial limbal stem cell deficiency. Br. J. Ophthalmol. 2001, 85, 567–575.

83. Tseng, S.C.; Prabhasawat, P.; Barton, K.; Gray, T.; Meller, D. Amniotic membrane
transplantation with or without limbal allografts for corneal surface reconstruction
in patients with limbal stem cell deficiency. Arch. Ophthalmol. 1998, 116, 431–441.

84. Shimazaki, J.; Shinozaki, N.; Tsubota, K. Transplantation of amniotic membrane and
limbal autograft for patients with recurrent pterygium associated with symblepharon.
Br. J. Ophthalmol. 1998, 82, 235–240.

85. Sato, H.; Shimazaki, J.; Shinozaki, N.; Tsubota, K. Role of growth factors for ocular surface
reconstruction after amniotic membrane transplantation. Investig. Ophthalmol. Vis. Sci.
1998, 39, 428–430.

86. Tosi, G.M.; Massaro-Giordano, M.; Caporossi, A.; Toti, P. Amniotic membrane
transplantation in ocular surface disorders. J. Cell Physiol. 2005, 202, 849–851.

87. Koizumi, N.J.; Inatomi, T.J.; Sotozono, C.J.; Fullwood, N.J.; Quantock, A.J.; Kinoshita, S.
Growth factor mRNA and protein in preserved human amniotic membrane. Curr. Eye Res.
2000, 20, 173–177.

88. Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Maeda, N.; Watanabe, H.;
Yamamoto, K.; Nagai, S.; Kikuchi, A.; Tano, Y.; et al. Functional bioengineered
corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a
temperature-responsive cell culture surface. Transplantation 2004, 77, 379–385.

89. Yamato, M.; Utsumi, M.; Kushida, A.; Konno, C.; Kikuchi, A.; Okano, T.
Thermo-responsive culture dishes allow the intact harvest of multilayered keratinocyte
sheets without dispase by reducing temperature. Tissue Eng. 2001, 7, 473–480.

90. Kushida, A.; Yamato, M.; Konno, C.; Kikuchi, A.; Sakurai, Y.; Okano, T. Decrease in
culture temperature releases monolayer endothelial cell sheets together with deposited
fibronectin matrix from temperature-responsive culture surfaces. J. Biomed. Mater. Res.
1999, 45, 355–362.

91. Dunn, C.J.; Goa, K.L. Fibrin sealant: A review of its use in surgery and endoscopy. Drugs
1999, 58, 863–886.

182



92. Martinowitz, U.; Saltz, R. Fibrin sealant. Curr. Opin. Hematol. 1996, 3, 395–402.
93. Le Guehennec, L.; Goyenvalle, E.; Aguado, E.; Pilet, P.; Spaethe, R.; Daculsi, G. Influence

of calcium chloride and aprotinin in the in vivo biological performance of a composite
combining biphasic calcium phosphate granules and fibrin sealant. J. Mater. Sci.
Mater. Med. 2007, 18, 1489–1495.

94. Radosevich, M.; Goubran, H.I.; Burnouf, T. Fibrin sealant: Scientific rationale, production
methods, properties, and current clinical use. Vox Sang. 1997, 72, 133–143.

95. Tuan, T.L.; Song, A.; Chang, S.; Younai, S.; Nimni, M.E. In vitro fibroplasia: Matrix
contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels.
Exp. Cell Res. 1996, 223, 127–134.

96. Weisel, J.W. Fibrinogen and fibrin. Adv. Protein. Chem. 2005, 70, 247–299.
97. Dvorak, H.F.; Harvey, V.S.; Estrella, P.; Brown, L.F.; McDonagh, J.; Dvorak, A.M. Fibrin

containing gels induce angiogenesis. Implications for tumor stroma generation and
wound healing. Lab. Invest. 1987, 57, 673–686.

98. Pellegrini, G.; Dellambra, E.; Golisano, O.; Martinelli, E.; Fantozzi, I.; Bondanza, S.;
Ponzin, D.; McKeon, F.; de Luca, M. P63 identifies keratinocyte stem cells. Proc. Natl.
Acad. Sci. USA 2001, 98, 3156–3161.

99. Carpenter, G.; Cohen, S. Epidermal growth factor. J. Biol. Chem. 1990, 265, 7709–7712.
100. Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol.

Biol. Phys. 2004, 59, 21–26.
101. Dua, H.S.; Miri, A.; Alomar, T.; Yeung, A.M.; Said, D.G. The role of limbal stem cells in

corneal epithelial maintenance: Testing the dogma. Ophthalmology 2009, 116, 856–863.
102. Kawakita, T.; Espana, E.M.; He, H.; Li, W.; Liu, C.Y.; Tseng, S.C. Intrastromal invasion by

limbal epithelial cells is mediated by epithelial-mesenchymal transition activated by air
exposure. Am. J. Pathol. 2005, 167, 381–393.

103. Ban, Y.; Cooper, L.J.; Fullwood, N.J.; Nakamura, T.; Tsuzuki, M.; Koizumi, N.; Dota, A.;
Mochida, C.; Kinoshita, S. Comparison of ultrastructure, tight junction-related protein
expression and barrier function of human corneal epithelial cells cultivated on amniotic
membrane with and without air-lifting. Exp. Eye Res. 2003, 76, 735–743.

104. Henderson, H.W.; Collin, J.R. Mucous membrane grafting. Dev. Ophthalmol. 2008, 41,
230–242.

105. Meyer-Blazejewska, E.A.; Kruse, F.E.; Bitterer, K.; Meyer, C.; Hofmann-Rummelt, C.;
Wunsch, P.H.; Schlotzer-Schrehardt, U. Preservation of the limbal stem cell phenotype by
appropriate culture techniques. Investig. Ophthalmol. Vis. Sci. 2010, 51, 765–774.

183



 

  



 
 

 

Chapter 3:                                    
Ocular Nanotechnology and 
Tissue Engineering 

 
 
 
 
 
 
 
 
 
 
 
 



 

 



Lipid Nanoparticles for Ocular
Gene Delivery
Yuhong Wang, Ammaji Rajala and Raju V. S. Rajala

Abstract: Lipids contain hydrocarbons and are the building blocks of cells. Lipids
can naturally form themselves into nano-films and nano-structures, micelles, reverse
micelles, and liposomes. Micelles or reverse micelles are monolayer structures,
whereas liposomes are bilayer structures. Liposomes have been recognized as carriers
for drug delivery. Solid lipid nanoparticles and lipoplex (liposome-polycation-DNA
complex), also called lipid nanoparticles, are currently used to deliver drugs and
genes to ocular tissues. A solid lipid nanoparticle (SLN) is typically spherical, and
possesses a solid lipid core matrix that can solubilize lipophilic molecules. The lipid
nanoparticle, called the liposome protamine/DNA lipoplex (LPD), is electrostatically
assembled from cationic liposomes and an anionic protamine-DNA complex. The
LPD nanoparticles contain a highly condensed DNA core surrounded by lipid
bilayers. SLNs are extensively used to deliver drugs to the cornea. LPD nanoparticles
are used to target the retina. Age-related macular degeneration, retinitis pigmentosa,
and diabetic retinopathy are the most common retinal diseases in humans. There
have also been promising results achieved recently with LPD nanoparticles to deliver
functional genes and micro RNA to treat retinal diseases. Here, we review recent
advances in ocular drug and gene delivery employing lipid nanoparticles.

Reprinted from J. Funct. Biomater. Cite as: Wang, Y.; Rajala, A.; Rajala, R.V.S. Lipid
Nanoparticles for Ocular Gene Delivery. J. Funct. Biomater. 2015, 6, 379–394.

1. Introduction

The eye is made up of many components, and therapeutic agents could be easily
applied to the anterior part of the eye. However, it is difficult to administer these
agents to the posterior part of the eye. Intravitreal or subretinal routes are the only
means of targeting agents to the posterior area of the eye. The eye is one of the sensory
organs of the body, and frequent administration of drugs to the eye is undesirable.
Therefore, gene therapy would be an ideal way to provide sustained gene expression
that could overcome these limitations. The eyes have been early targets for gene
therapy because they are small—that is, they require relatively little active dose—they
are self-contained, and because the tools of eye surgery have advanced enough to
make these treatments possible. The eye offers an excellent target for gene therapy
studies, it is easily accessible and relatively immune privileged. If we inject any drug
or gene systemically, the drug or gene must then cross the blood retinal barrier (BRB).
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To our knowledge, most of the successful gene therapy trials use local administration
of drug(s)/gene(s) into the eye.

2. Uses and Advantages of Nanoparticles in Medicine

Nanoparticles play important roles in the diagnosis of disease, delivery of
drugs to target tissue, research into the organization of DNA, drug-mediated
apoptosis of cancer cells, studies of the pharmacological efficiency of drugs, and tissue
engineering. Their size and surface characteristics enable us to alter nanoparticle
properties to allow for continuous discharge of drugs during transport and release
at a defined location. Choosing the appropriate matrix is vital to drug delivery.
Modifying the surface properties of nanoparticles will help to clear the drug from
the patient’s body with significantly fewer side effects.

These particles are currently conjugated with either drugs or genes and
administered through several avenues, including the oral, nasal, intra-ocular, and
arterial routes. Researchers are exploring the use of various polymers to conjugate
drugs and genes to enhance therapeutic benefits while minimizing adverse effects.

Nanoparticles for gene therapy are broadly classified into three groups,
metal-based nanoparticles, lipid based-nanoparticles, and polymer-based
nanoparticles. These particles are different in size, charge, shape, and structure, and
have their own modes of delivering cargo into cells and assimilating the cargo into
the genetic machinery for gene expression [1–4]. Compacted DNA nanoparticles
formulated with polyethylene glycol-substituted polylysine have been used for gene
therapy in mouse models of eye diseases [5–8]. Solid lipid nanoparticles (SLNs) and
nanostructured lipid carriers (NLCs) have been developed to improve the ocular
delivery of acyclovir into excised corneal tissue [9].

A solid lipid nanoparticle is typically spherical, with an average diameter
between 10 and 1000 nm, and possesses a solid lipid core matrix that can solubilize
lipophilic molecules. The lipid core is stabilized by surfactants; the lipid component
may be a triglyceride, diglyceride, monoglyceride, fatty acid, steroid, or wax.
The lipid nanoparticle, called the liposome protamine/DNA lipoplex (LPD), is
electrostatically assembled from cationic liposomes and an anionic complex of
protamine and DNA. The LPD nanoparticles contain a highly condensed DNA core,
surrounded by lipid bilayers with an average size of ~100 nm. Lipid nanoparticles
have also been used to improve the efficiency of siRNA delivery in RPE cells and a
laser-induced rat model for the treatment of choroidal neovascularization [10].

Methazolamide (MTA) is an anti-glaucoma drug; however, systemic
administration produces side effects, while providing insufficient ocular therapeutic
concentrations [11]. Solid lipid nanoparticles containing MTA have been shown
to have higher therapeutic efficacy at low doses with more prolonged effects than
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those of the drug solution itself [11]. Lipid nanoparticles have also been shown to be
feasible for the ocular delivery of anti-inflammatory drugs [12].

Since the 1990s, solid lipid nanoparticles have been examined as potential
drug carrier systems. SLNs do not show bio-toxicity, as they are prepared from
physiological lipids, and are especially useful in ocular drug delivery, as they enhance
the corneal absorption of drugs and improve the ocular bioavailability of both
hydrophilic and lipophilic drugs [13]. Cyclosporine is commonly prescribed for
chronic dry eye, caused by inflammation, and cyclosporine A-loaded solid lipid
nanoparticles have been shown to improve drug efficacy when administered to
rabbit eyes [14,15].

Liquid lipid has also been incorporated into lipid nanoparticles to enhance
ocular drug delivery [16]. These particles have been tested on human corneal
epithelial cell lines and rabbit corneas [16]. The liquid lipid incorporation has
been shown to improve the ocular retention and penetration of therapeutics [16].
Surface-modified solid lipid nanoparticles have been shown to provide an efficient
way of improving the ocular bioavailability of drugs to bioengineered human
corneas [17]. Solid lipid nanoparticles have also been used for retinal gene therapy
and to study intracellular trafficking in RPE cells [18]. Solid lipid nanoparticles and
lipid nanoparticles have been extensively reviewed and described in detailed in
recently published articles [19,20].

The majority of solid lipid nanoparticles have been used to deliver drugs to
the cornea [9,13,16,17,21,22]. We recently formulated a novel lipid nanoparticle, and
examined its efficiency and delivery of genes and microRNA to the retina [23,24].
LPD has been used to successfully deliver the vascular endothelial growth factor gene
into mesenchymal stem cells [25]. In this article, we review several important aspects
of lipid nanoparticles, including their formulation, mechanism of internalization,
cell-specific expression, and barriers that affect gene expression.

3. Gene Therapy and Viral Vectors

The success of gene therapy relies on the development of efficient, non-toxic
gene carriers that can encapsulate and deliver foreign genetic materials into specific
cell types [26]. Gene therapy carriers can be classified into two groups, viral and
non-viral gene delivery systems. Although viral vectors, such as adeno-associated
virus (AAV), have attractive features, particularly their high gene transduction
capability, they face biosafety issues, especially innate and immune barriers [27],
toxicity [28], and potential recombination of or complementation [29] to vector
delivery. The size of viral vectors, which restricts the insertion of genes to <5 kb, is
another limitation [30]. Table 1 lists various viral and non-viral carriers. All viral
vectors have been used to deliver functional genes to the retina whereas non-viral
vectors have been used to deliver both drugs (liposome nanoparticles and solid lipid
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nanoparticles) and genes (solid lipid nanoparticles, LPD/lipoplexes and CK30-PEG)
to the retina.

Table 1. Viral and non-viral delivery systems for ocular gene delivery.

Vector Carrier Delivery Ref.

Virus

AAV Local/systemic [31–35]
Adenovirus Local [36]
Baculovirus Local [37,38]
Lentivirus Local [39]

Non-virus

Liposome
nanoparticles Local [40–43]

Solid lipid
nanoparticles Local [9,13,16,17,21,22]

LPD/lipoplexes Local [23,24,44]
CK30-PEG Local [5–8]

Despite rapid advances in gene therapy during the last two decades, major
obstacles to clinical applications for human diseases still exist. These impediments
include immune response, vector toxicity, and the lack of sustained therapeutic gene
expression. Therefore, new strategies are needed to achieve safe and effective gene
therapy. The ideal vector should have low antigenic potential, high capacity to
accommodate genetic material, high transduction efficiency, controlled and targeted
transgene expression, and reasonable expense and safety for both the patients and
the environment. These desired features led researchers to focus on non-viral vectors
as an alternative to viral vectors.

4. Lipid-Based Nanoparticles

The main constituent of lipid nanoparticles is the liposome. A liposome is
a spherical vesicle of a lamellar phase of the lipid bilayer. The liposome can be
used as a transport vehicle to send nutrients and drugs into the body [45–47].
One can prepare these liposomes through disruption of biological membranes by
sonication, a process of sending sound waves to disturb particles in a solution.
Lipids can naturally form themselves into nano-films and nano-structures, called
micelles, reverse micelles, and liposomes [20,48]. The monolayer structures are called
micelles or reverse micelles, whereas the lipid bilayer structures are called liposomes
(Figure 1A). In the lipid bilayer, phospholipids are principal lipids, which are
amphiphilic molecules with hydrophilic (water-loving, polar) and lipophilic (fat-loving)
properties, sometimes described as having hydrophobic tails and hydrophilic heads.
Therefore, liposomes are artificial phospholipid bilayers; as a result, liposomes have
biocompatible characteristics [49,50]. This biocompatibility accounts for their most
important advantages as drug carriers, (1) liposomes have almost no toxicity and
low antigenicity; (2) liposomes can be biodegraded and metabolized in vivo, and
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(3) liposomal properties, such as membrane permeability, can be controlled to some
extent [51–53]. Remarkably, liposomes can entrap and protect drug molecules or
nucleic acids on the journey to the target site [54].J. Funct. Biomater. 2015, 6 383 

 

 

 

Figure 1. Lipid, peptide, and protein components of the lipid nanoparticle. The monolayer 
structures are called micelles, whereas the lipid bilayer structures are called liposomes (A). 
Chemical structures of DOTAP (B), DOPE (C), and Cholesterol (D). NLS (E) and TAT (F) 
peptide sequences and protamine (small, arginine-rich, nuclear protein) (G) are also presented. 
DOTAP, 1, 2-dioleoyl-3-trimethylammonium-propane, DOPE, 1, 2-dioleoyl-sn-glycero-3-
phosphoethanolamine; NLS, nuclear localization signal; TAT, transactivator of transcription. 
Formulation of a peptide-based lipid nanoparticle (H). Peptide-based nanoparticles can be 
formulated by mixing liposome, protamine, DNA, TAT, and NLS. TAT, transactivator of 
transcription; NLS, nuclear localization signal.  

Figure 1. Lipid, peptide, and protein components of the lipid nanoparticle. The
monolayer structures are called micelles, whereas the lipid bilayer structures
are called liposomes (A). Chemical structures of DOTAP (B), DOPE (C), and
Cholesterol (D). NLS (E) and TAT (F) peptide sequences and protamine
(small, arginine-rich, nuclear protein) (G) are also presented. DOTAP, 1,
2-dioleoyl-3-trimethylammonium-propane, DOPE, 1, 2-dioleoyl-sn-glycero-
3-phosphoethanolamine; NLS, nuclear localization signal; TAT, transactivator of
transcription. Formulation of a peptide-based lipid nanoparticle (H). Peptide-based
nanoparticles can be formulated by mixing liposome, protamine, DNA, TAT, and
NLS. TAT, transactivator of transcription; NLS, nuclear localization signal.
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When nucleic acids, molecules, or drugs are enclosed in a lipid-based coating,
they have a lower degradation rates than do molecules without a lipid coating.
Such enclosure also increases the likelihood of endocytosis and uptake of nucleic
acids or drugs into cells [4,20,55]. These desired features led researchers to focus
on non-viral vectors as an alternative to viral vectors. The non-viral vectors
include polymers like polyethylenimine (PEI) [56] and poly L-lysine (PLL) [57],
peptides, liposomes (tiny fat-like particles) [58], and liposomes-protamine-DNA
(LPD) complexes [59,60]. However, the current non-viral vectors cannot achieve
tissue-specific or cell-specific sustained gene expression, nor eliminate the unwanted
and harmful effects on other cells.

The use of lipid nanoparticles as part of a system delivering drugs and genes
to the retina has been attempted [44]. We recently developed an artificial virus,
an LPD nanoparticle in combination with nuclear localization signaling (NLS) [61]
peptide and transactivator of transcription (TAT) peptide [62], to produce efficient,
cell-specific gene delivery to eye tissues, with sustained gene expression. The
key to our success arises from three unique features, (1) the use of biocompatible
lipid molecules to pack DNA and the biocompatible protamine molecules into the
nanoparticles; (2) the integration of cell-penetrating and nuclei-targeting peptides
into the nanoparticles, to improve the efficiency of gene transfer and the subsequent
lasting gene expression; and (3) the use of a DNA that carries the target gene, and
also bears a unique promoter to achieve cell-specific gene expression.

5. Composition of Lipid Nanoparticles

Liposomes were first identified in 1965 [63], and were successfully applied
as cationic liposome complexes via intravenous DNA delivery into adult mice
in 1993. Since then, liposomes have been successful and widely applied in
nanotechnology [64] and in various medical fields [23,24,61,65,66]. One approach
for more successful nanoparticle gene therapy is the liposome protamine/DNA
lipoplex (LPD), which is applied as a two-step packaging technology employing
a multilayering method [61,67]. First, the DNA is packaged into a condensed
core via electrostatic interactions with protamine, and various peptides (NLS
and TAT) and the plasmid DNA (pDNA) are mixed at various weight ratios
(Figure 1). Then, the liposomes, consisting of a cationic lipid DOTAP
(1,2-dioleoyl-3-trimethylammonium-propane), a neutral “helper” lipid DOPE
(1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and neutral cholesterol, are added
so that the positively charged DOTAP/DOPE/Chol liposome can form a complex
with the negative protamine/DNA particles, leading to the formation of LPD
nanoparticles (Figure 1B–G). The negatively charged DNA is complexed with
protamine, an arginine-rich, positively charged nuclear protein that replaces histone
late in the haploid phase of spermatogenesis, and is essential for sperm head
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condensation and DNA stabilization. The advantage of adding protamine to
DNA is that protamine condenses the DNA and the subsequent mixing of the
protamine/DNA complex to cationic liposomes, producing a small nanoparticle.
Another advantage of protamine is that the encapsulated DNA is protected from
nuclease degradation [23,59]. Inclusion of protamine in solid lipid nanoparticles
(SLN) has previously been shown to yield a six-fold increase in the transfection of
SLN in retinal cells, due to the presence of a nuclear localization signal [68].

6. Transfer Mechanism of LPD Nanoparticles into Cells

Successful gene delivery systems have their own transfer mechanisms into
the cell. Viral vectors have the advantage in cellular entry, because they bind
to the cellular receptors and co-receptors, which help them to internalize and
traffic to the nucleus [69–73]. In contrast, cationic liposomes take advantage of
biocompatible characteristics and are widely used to transfect DNA into cells in
culture and in vivo, since the formation of cationic lipid-DNA complexes can facilitate
the association with the cell membrane and allow the complex to enter the cell
through the endocytotic pathway [4,58,74]. The complex is internalized into an
endosome, which will destabilize the endosome membrane and result in a flip-flop
of anionic lipids that are mainly on the cytoplasmic side of the membrane. The
anionic lipids will then diffuse into the complex and form charge-neutralized ion
pairs with cationic lipids. This displaces the DNA from the complex and allows DNA
to enter into the cytoplasm [4,74,75]. Protamine in the solid lipid nanoparticles has
been reported to shift the internalization mechanism from caveolae/raft-mediated
to clathrin-mediated endocytosis [68]. Some researchers also proposed that LPD
nanoparticles could use two different endocytosis pathways, macropinocytosis
and clathrin-mediated endocytosis [58]. In the final analysis, liposomes depend
on continually improving the formulation of the nanoparticles’ coating and DNA
design to increase the transfection efficiency [76,77]. The mechanisms by which
peptide-modified liposome protamine/DNA lipoplex (LPD) nanoparticles improve
transfer efficiency is charge-ratio-dependent and dose-dependent in vivo, and
these mechanisms provide their own unique approaches to improve transfer
efficiency [23,59,61].

7. Cellular Barriers in the Internalization of Lipid Nanoparticles

DNA packed into liposomes must overcome biological barriers before it can
be integrated into the genome. These barriers are the cellular membrane, the
nuclear membrane, and chromosomal integrity. Cell targeting and cell-internalization
peptides have been extensively studied and used for efficient drug delivery and for
image analysis [61]. Arginine-rich (RNA-binding, DNA-binding, and polyarginine)
cell-permeable peptides have been shown to cross the cellular barrier [62]. Nuclear
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localization peptide of the SV40 T large antigen has been shown to promote
high LPD-mediated transfection efficiency [23,24,61,78]. In designing our recently
formulated lipid nanoparticle, we used a nuclear localization peptide derived
from SV40 T antigen (DKKKRKVDKKKRKVDKKKRKV), and another peptide
derived from human immunodeficiency virus transactivator of transcription (TAT;
YGRKKRRQRRR) peptide [79–82]. The TAT-fusions have been shown to cross
the blood–brain barrier [81]. A combination of these two peptides resulted in a
high level of sustained gene expression in vivo (Figure 2) [23]. The TAT-peptide
belongs to an arginine-rich family of peptides, which is an abundant source of
membrane-permeable peptides that have potential as carriers for intracellular protein
delivery [54,67]. Even with the omission of TAT-peptide, LPD nanoparticles were
able to mediate gene delivery [24].
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Figure 2. LPD-mediated gene delivery into the retina. Schematic illustration of the
eye and route of administration. The most commonly used and preferred mode of
administration to retinal layers is subretinal (A). Generation of green fluorescent
protein construct under the control of CMV promoter (B). CMV, cytomegalovirus;
GFP, green fluorescent protein; WRE, posttranscriptional regulatory element from
the woodchuck hepatitis virus; PolyA, polyadenylation sequence; increases the
stability of the molecule. Using BalbC mice, we injected the cDNA construct
subretinally into one eye. LPD was complexed with CMV-GFP-WRE-PolyA
construct. The other eye was injected with LPD, with a control vector without GFP.
Seventy-two hours later, eyes were removed and examined for GFP expression
under inverted fluorescence microscopy. GFP expression is clearly seen in the
GFP-injected eye (E), but not in the control eye (C). Whole RPE flat mounts were
prepared and examined for GFP expression under inverted fluorescence microscopy.
GFP expression is seen in the GFP-injected eye (F), but not in the control eye (D).
Scale bar, 20 µm.
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The cell-penetrating peptides (CPPs) are short peptides that facilitate cellular
uptake of various molecular cargo [63,64]. In 1988, the first CPP was sequenced
from an HIV-1-encoded cell-penetrating transactivator of transcription (TAT) peptide,
and delivered efficiently through cell membranes; TAT has been widely applied
since then [83–85]. The TAT mechanism of action is still poorly understood, but
we do know that this TAT may possess a common internalization mechanism
that is ubiquitous to arginine-rich peptides. However, the mechanism is not
explained by either adsorptive-mediated endocytosis or by receptor-mediated
endocytosis [62,86,87].

8. LPD Nanoparticle-Mediated Delivery of Genes to Eye Tissues

In the eye, the photochemical 11-cis-retinal allows the visual pigment rhodopsin
to absorb light in the visible range. Without the photochemical, we lose the ability
to see light [88]. Pre-clinical studies with viral vectors demonstrated restoration of
vision upon gene transfer into retinal cells in mice and dogs [31–34]. In clinical trials,
three independent groups reported vision improvements upon the viral-mediated
delivery of the Rpe65 gene in patients with Rpe65-associated Leber’s congenital
amaurosis (LCA) [89–91]. A mouse model lacking the Rpe65 gene has been
commonly used for gene therapy studies [5,92–94].

Retinal pigment epithelium protein 65 (Rpe65) is the key enzyme in regulating
the availability of photochemicals; a deficiency in this gene results in a blinding
eye disease. We showed for the first time that LPD promotes efficient delivery in
a cell specific-manner and long-term expression of the Rpe65 gene in mice lacking
Rpe65 protein, leading to in vivo correction of blindness [23]. The efficacy of this
method of restoring vision is comparable to AAV [93] and lentiviral [39] gene transfer
of the Rpe65 gene to Rpe65 knockout mice. Our recently published data suggest
that we successfully applied LPD to deliver miRNA-184 to the retina, to repress
Wnt-mediated ischemia-induced neovascularization [24]. Thus, LPD nanoparticles
could provide a promising, efficient, non-viral method of gene delivery with clinical
applications in the treatment of eye disease.

9. Cell-Specific Delivery of LPD Nanoparticles

One disadvantage of nanoparticles could be cell specificity. Often, delivery and
expression of genes in unwanted cells may lead to adverse or off target effects. We
recently achieved specificity by cloning the genes under the control of cell-specific
promoters [23]. VMD2-promoter specifically targets LPD to RPE cells, whereas rod
opsin promoter specifically drives the expression into rod photoreceptor cells [23].
These studies suggest that other retinal cell specific promoters, such as cone opsin
(cone), Thy1 (ganglion cell), and glial fibrillary acidic protein (Müller cells) could be
used to achieve cell specificity in conjunction with LPD. The cytomegalovirus (CMV)
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promoter is widely used, due to its ability to induce protein expression in varied cell
types [1,23]. Interestingly, our recent study suggests that CMV promoter exclusively
drives expression in retinal pigment epithelial cells [23]. These features make lipid
nanoparticles ideal for gene or drug delivery to ocular tissues.

10. Conclusions

Many unique genes have been associated with major retinal diseases, such
as retinitis pigmentosa (RP), Leber’s congenital amaurosis (LCA), and Stargardt
disease [65,69,95]. Until now, Rpe65 defection-induced LCA has been most
extensively researched retinal disease. LCA-Rpe65 gene therapy is an example
of successful, innovative, translational research. Further studies are needed
to determine how retinal gene therapy can be improved [96,97]. The LPD is
modified with cell-penetrating peptide and NLS peptide, and carries DNA capable
of cell-specific gene expression. Our recent studies suggest that LPD promotes
efficient and lasting gene expression in vivo without any corresponding inflammatory
response [23].

The LPD system could be a promising non-viral gene delivery vector yielding
long-term expression and lasting gene transfer efficiency, making it a favorable
gene carrier for future applications for eye cell-based therapies. The advantage
is that this system allows us to simultaneously introduce multiple biomolecules
to turn on the defective signaling pathway in vivo. Thus far, non-viral vectors
have traditionally been acknowledged as safer. However, non-viral vectors present
their own difficulties, with low gene expression efficiency and short transient
expression. Recently, the peptide-modified liposome protamine/DNA lipoplex
(LPD) nanoparticle has demonstrated the potential to overcome these barriers.

Based on the successful gene therapy of Rpe65 in peptide-modified LPD
nanoparticles, the optimization of liposome nanoparticle formulations is safe and
efficient. Improvements in gene expression are key to the further development
of liposomal nanoparticle technology for retinal gene therapy. The development
of modified and safe delivery systems to optimize transfection efficiency will be
a critical step toward clinical trials for human gene therapy. Thus, these new
peptide-modified LPD nanoparticles open avenues to investigate and develop highly
efficient liposome nanoparticles that can overcome the shortcomings of other viral
vectors in the treatment of ocular diseases.

These peptide-modified LPD have many advantages for future clinical
applications. First, liposome nanoparticles are able to deliver large molecular
cargo. Second, the optimization of peptide-modified LPD nanoparticles allows
multiple mutant genes to be simultaneously co-delivered to one vector. Third,
peptide-modified LPD formulations are more biocompatible and safe. On the whole,
a successful delivery formulation for gene therapy should encapsulate and protect
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the nucleic acid materials, escape endosomal degradation, and reach the specific
target site. These new peptide-modified LPD nanoparticles offer new hope for gene
therapy for ocular and other related diseases.
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Bioengineered Lacrimal Gland Organ
Regeneration in Vivo
Masatoshi Hirayama, Kazuo Tsubota and Takashi Tsuji

Abstract: The lacrimal gland plays an important role in maintaining a homeostatic
environment for healthy ocular surfaces via tear secretion. Dry eye disease, which is
caused by lacrimal gland dysfunction, is one of the most prevalent eye disorders and
causes ocular discomfort, significant visual disturbances, and a reduced quality of life.
Current therapies for dry eye disease, including artificial tear eye drops, are transient
and palliative. The lacrimal gland, which consists of acini, ducts, and myoepithelial
cells, develops from its organ germ via reciprocal epithelial-mesenchymal interactions
during embryogenesis. Lacrimal tissue stem cells have been identified for use in
regenerative therapeutic approaches aimed at restoring lacrimal gland functions.
Fully functional organ replacement, such as for tooth and hair follicles, has also
been developed via a novel three-dimensional stem cell manipulation, designated
the Organ Germ Method, as a next-generation regenerative medicine. Recently, we
successfully developed fully functional bioengineered lacrimal gland replacements
after transplanting a bioengineered organ germ using this method. This study
represented a significant advance in potential lacrimal gland organ replacement
as a novel regenerative therapy for dry eye disease. In this review, we will
summarize recent progress in lacrimal regeneration research and the development of
bioengineered lacrimal gland organ replacement therapy.

Reprinted from J. Funct. Biomater. Cite as: Hirayama, M.; Tsubota, K.; Tsuji, T.
Bioengineered Lacrimal Gland Organ Regeneration in Vivo. J. Funct. Biomater. 2015,
6, 634–649.

1. Introduction

Advances in regenerative medicine, influenced by our understanding of
developmental biology, stem cell biology, and tissue engineering, are expected
to underlie next-generation medical therapies [1–3]. Regenerative medicine for
various organs, such as stem cell transplants of enriched or purified tissue-derived
stem cells and cytokine therapies that activate tissue stem cell differentiation,
have been clinically developed and applied [4,5]. These therapies represent
attractive concepts with the potential to partially restore lost organ functionality
in damaged tissues, malignant diseases, myocardial infarction, neurological diseases,
and hepatic dysfunction [6–9]. Current tissue engineering technologies have
established two-dimensional tissue regeneration approaches, including the cell sheet
transplant technique [10]. The concept of regenerative medicine in ophthalmology
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includes corneal limbal stem cell transplants, which are based on the understanding
of stem cell biology, and regenerative cell sheets, such as cultivated corneal
epithelial cell sheets and cultivated oral mucosal epithelial cell sheets, and this
has contributed to effective ocular surface reconstruction in clinics for severe ocular
surface disorders [11–13]. Regenerative therapies in ophthalmology have steadily
advanced to overcome vision-threatening eye diseases, including those of the cornea
and retina [14].

Clinically transplanting donor organs is an important therapeutic approach
for severe organ dysfunctions; however, there are related medical issues, including
allogenic immunological rejection and critical donor shortage [15]. The use of fully
functional substitute organs, including artificial organs made from mechanical devices
and bio-artificial organs, which consist of living cells and artificial polymers, has been
demonstrated to reproduce physiological functions for various organs [16–19]. Organ
replacement regenerative therapy for tissue repair, via reconstruction of a fully
functional, bioengineered organ from stem cells using in vitro three-dimensional cell
manipulation, is one of the ultimate goals for regenerative medicine: the replacement
of dysfunctional organs arising from disease, injury, or aging [20]. Developing cell
manipulation techniques in vitro, through the precise arrangement of several different
cell species and organ culture methods, is required to realize the next generation
of three-dimensional, functional, bioengineered organ replacement regenerative
therapy [21].

This review details the physiological functions, diseases, and development of the
lacrimal gland obtained from published stem cell research. We illustrate that there is
potential for novel, fully functional lacrimal gland regeneration as a next-generation
regenerative medicine [22,23].

2. Physiological Function of the Lacrimal Glands

The lacrimal glands are essential for maintaining the physiological function and
homeostasis of the ocular surface microenvironment via tear secretion [24,25]. The
lacrimal gland consists of the main lacrimal gland, which primarily secretes aqueous
tears, and small accessory lacrimal glands [25]. Mature lacrimal glands are organized
into a tubuloalveolar system, which includes the acini, the ducts that carry fluid
from the acini to a mucosal surface, and the myoepithelial cells that envelop the
acini and early duct elements [25]. For physiological tear secretion, establishing the
secretagogue stimulus-secretion coupling mechanisms and innervation is required.
A tear film consisting of lipid, aqueous, and mucin layers contributes to the
microenvironment homeostasis and optical properties of the ocular surface [26–30].
The aqueous layer of the tear film is secreted by the lacrimal glands and contains
water and various tear proteins, such as lactoferrin, with biological functions
including moisturizing capacity and antimicrobial activity [31–36]. The lacrimal
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gland and tear functions are indispensable in protecting the epithelial surface and
visual function.

3. Dry Eye Disease

Dry-eye disease (DED) is caused by a tear shortage due to lacrimal gland
dysfunction that results from systemic diseases and environmental exposures,
such as Sjogren’s syndrome and ocular cicatricial pemphigoid, or other causes,
including aging, long-term work with visual displays, the use of contact lenses,
low-humidity environments, and refractive surgery [37–49]. DED is one of the most
common eye diseases, and it causes ocular surface epithelial damage, which leads to
ocular discomfort, significant loss of vision, and a reduced quality of life [12,50,51].
Current therapies for DED, such as artificial tear solutions, are palliative and do not
completely substitute normal tear complexes that contain water, salts, hydrocarbons,
proteins, and lipids [52–54]. A therapeutic approach using regenerative medicine is
expected to restore lacrimal gland function as a cure for DED [55].

4. Organogenesis of the Lacrimal Glands

Organs, including the lacrimal glands, are functional units composed of various
cells with the appropriate three-dimensiona histological architecture, which is
achieved through developmental processes in the embryo, to work efficiently. Almost
all ectodermal organs, such as teeth, hair follicles, and lacrimal glands, exhibit
similar embryonic development from their organ germs that involves reciprocal
epithelial and mesenchymal interactions [56]. Branching morphogenesis, which is
a fundamental process for developing lacrimal glands, leads to the specification
of the ocular surface epithelium and the induction of the lacrimal gland germ
(Figure 1a,b) [57,58]. The development of the murine lacrimal gland occurs on
embryonic day (ED) 13.5 via a tubular invagination of the conjunctival epithelium at
the temporal region of the eye [59]. After the epithelium invaginates and elongates,
the lacrimal gland germ invades the mesenchymal sac on ED 16.5 and begins to
rapidly proliferate and branch to form a lobular structure [59–62]. The development
of lacrimal gland structures is essentially completed by ED 19. By the time the eyes
open, seven days after birth, secretory tear components including proteins and lipids
are produced [63,64]. Mouse harderian glands, which secrete lipids, also play an
important role in protecting the ocular surface [65]. The harderian glands originate
from the nasal region of the conjunctival epithelium at ED 16 via a developmental
branching process similar to that of the lacrimal glands, and they are located behind
the eye [65,66]. The harderian glands are either degenerated or do not exist in
primates, including humans [65]. This comprehensive developmental mechanism,
involving branching morphogenesis, modulates lacrimal gland maturation.
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Figure 1. Lacrimal gland organogenesis via epithelial-mesenchymal interactions:  
(a) Schematic representation of the lacrimal gland development during embryogenesis;  
(b) Phase-contrast images of the in vitro lacrimal gland germ organ culture development. 
Scale bars, 100 µm. Modified and reprinted from Hirayama et al. [23]. 

5. Tissue Stem Cells in the Lacrimal Gland 

To restore lacrimal gland function, several therapeutic approaches have been reported, such as ectopic 
salivary gland transplantation in vivo [67,68] and regenerative medicine [69]. Secretory glands, 
including salivary glands, the pancreas [70,71], and mammary glands [72], can self-renew after tissue 
injury, and this process is mediated by tissue stem cells. Many studies aimed at restoring secretory gland 
function have attempted to use various stem cells derived from adult tissues [73,74]. For salivary glands, 
long-term abnormal ligation of the salivary excretory duct leads to inflammation and cell death, which 
results in gland atrophy; however, some repair processes, including the proliferation of the 
tubuloalveolar structure, do occur when the ligation is released [75–81]. The salivary gland can 
potentially regenerate using various stem cells, such as intercalated duct cells from the salivary gland [76], 
c-kit-positive duct cells in human salivary glands [75], salivary gland-derived progenitor cells isolated 
from duct-ligated animals, and bone marrow-derived Sca-1- and c-kit-positive cells [73]. For stem cell 
therapy of the lacrimal glands, the potential existence of stem cells or progenitor cells has been 
previously described [69,82]. Tissue stem/progenitor cells, which express nestin and Ki67, and 
mesenchymal cells both contribute to tissue repair after interleukin-1-induced inflammation in  
murine-lacrimal glands [83–86]. Stem cell candidates expressing stem cell markers such as c-kit, 
ABCG2, and ALDH1 have been identified in human lacrimal gland cells [87,88]. Tissue regeneration 
using transplanted stem cells in adult tissues to restore lacrimal gland function is an area of intense 
research because of its potential clinical benefits [89,90]. 

Figure 1. Lacrimal gland organogenesis via epithelial-mesenchymal interactions:
(a) Schematic representation of the lacrimal gland development during
embryogenesis; (b) Phase-contrast images of the in vitro lacrimal gland germ
organ culture development. Scale bars, 100 µm. Modified and reprinted from
Hirayama et al. [23].

5. Tissue Stem Cells in the Lacrimal Gland

To restore lacrimal gland function, several therapeutic approaches have
been reported, such as ectopic salivary gland transplantation in vivo [67,68] and
regenerative medicine [69]. Secretory glands, including salivary glands, the
pancreas [70,71], and mammary glands [72], can self-renew after tissue injury, and
this process is mediated by tissue stem cells. Many studies aimed at restoring
secretory gland function have attempted to use various stem cells derived from
adult tissues [73,74]. For salivary glands, long-term abnormal ligation of the salivary
excretory duct leads to inflammation and cell death, which results in gland atrophy;
however, some repair processes, including the proliferation of the tubuloalveolar
structure, do occur when the ligation is released [75–81]. The salivary gland can
potentially regenerate using various stem cells, such as intercalated duct cells from
the salivary gland [76], c-kit-positive duct cells in human salivary glands [75],
salivary gland-derived progenitor cells isolated from duct-ligated animals, and
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bone marrow-derived Sca-1- and c-kit-positive cells [73]. For stem cell therapy of
the lacrimal glands, the potential existence of stem cells or progenitor cells has
been previously described [69,82]. Tissue stem/progenitor cells, which express
nestin and Ki67, and mesenchymal cells both contribute to tissue repair after
interleukin-1-induced inflammation in murine-lacrimal glands [83–86]. Stem cell
candidates expressing stem cell markers such as c-kit, ABCG2, and ALDH1 have
been identified in human lacrimal gland cells [87,88]. Tissue regeneration using
transplanted stem cells in adult tissues to restore lacrimal gland function is an area
of intense research because of its potential clinical benefits [89,90].

6. A Novel Three-Dimensional Cell Manipulation Method Termed the Organ
Germ Method

To further these biological technologies, the development of methods for
the manipulation of multiple cells is required to realize three-dimensional organ
regeneration for functional bioengineered organ replacement therapy [20]. A novel
strategy for developing bioengineered organs by reproducing the developmental
process during organogenesis has been proposed for the functional replacement and
complete restoration of lost organs [21]. This bioengineered organ germ method,
which manipulates epithelial and mesenchymal cells via cell compartmentalization
at a high cell density in a type I collagen gel matrix, was developed to
reconstruct bioengineered organ germs in vitro as an organ engineering technology
(Figure 2a,b) [91,92]. This method successfully developed bioengineered ectodermal
organs, such as teeth and hair follicle germs, through multicellular assembly and
epithelial and mesenchymal interactions similar to those in natural organ germs
(Figure 2c,d) [91–95]. Importantly, the bioengineered tooth and hair follicle germ
transplants could restore physiological functions via cooperation with peripheral
tissues at the lost tooth or hair follicle [93–96]. Developing this method was a
substantial advance towards potentially regenerating other ectodermal secretory
organs, including the salivary glands [97,98] and lacrimal glands [23].

7. Fully Functional Lacrimal Gland Organ Regeneration

We investigated whether our organ germ method could regenerate a
bioengineered lacrimal gland and restore its physiological function. The
bioengineered lacrimal gland germ, which was reconstituted using the epithelial
and mesenchymal cells from the lacrimal gland germ of an ED 16.5 mouse,
successfully developed branching morphogenesis followed by stalk elongation and
cleft formation in organ culture in vitro. Bioengineered harderian gland germs were
also regenerated via the organ germ method (Figure 3a).
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  Figure 2. Strategy for bioengineered organ regeneration using the organ germ
method: (a) Functional organs, such as teeth, hair follicles, salivary glands, and
lacrimal glands, can now be regenerated in vivo by transplanting bioengineered
organ germs reconstituted from epithelial and mesenchymal cells via the organ
germ method; (b) Representative image of our developed three-dimensional
cell processing system, the organ germ method. A high density of dissociated
mesenchymal cells is injected into the center of a collagen drop (left panel).
Dissociated epithelial cells are subsequently injected into the drop adjacent to
the mesenchymal cell aggregate (center-left panel). The bioengineered tooth
regenerated via the organ germ method could develop into an appropriate tooth
germ via organ culturing (center-right and right panels); (c) Photograph showing
the green fluorescence protein (GFP)-labeled bioengineered tooth engrafted in an
adult mouse (green); (d) Photograph of the developed bioengineered hair follicles,
which were successfully engrafted into a nude mouse. Modified and reprinted
from Nakao et al. [21].
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7. Fully Functional Lacrimal Gland Organ Regeneration  

We investigated whether our organ germ method could regenerate a bioengineered lacrimal gland 
and restore its physiological function. The bioengineered lacrimal gland germ, which was reconstituted 
using the epithelial and mesenchymal cells from the lacrimal gland germ of an ED 16.5 mouse, 
successfully developed branching morphogenesis followed by stalk elongation and cleft formation in 
organ culture in vitro. Bioengineered harderian gland germs were also regenerated via the organ germ 
method (Figure 3a). 

 

 

Figure 3. Functional lacrimal gland regeneration via bioengineered lacrimal
gland germ transplant: (a) Phase-contrast images of the bioengineered lacrimal
gland germ (upper line) and bioengineered harderian gland germ (lower line)
development. Scale bar, 100 µm; (b) Photographs of the bioengineered lacrimal
gland germ after transplanting into a mouse with the extra-orbital lacrimal gland
removed (arrowhead) (left panel; Scale bar, 1 mm). At 30 days after transplantation,
the bioengineered lacrimal gland was successfully engrafted and developed
(center; Scale bar, 500 µm). The hematoxylin-eosin(H.E.) staining revealed that
the bioengineered lacrimal gland achieved a mature secretory gland structure
including acini (white arrowhead) and duct (black arrowhead) (right; Scale bar, 50
µm); (c) Histological analysis of the duct connection between the bioengineered
lacrimal gland and recipient lacrimal excretory duct. Bioengineered lacrimal
glands regenerated using DsRed transgenic mouse-derived epithelial cells (red)
and normal mouse-derived mesenchymal cells developed with the correct duct
association in the recipient mouse (arrowhead). Fluorescein isothiocyanate (FITC)
-gelatin (green), which was injected from the recipient lacrimal excretory duct, could
successfully reach the bioengineered lacrimal gland. 4',6-diamidino-2-phenylindole
(DAPI; blue) and the excretory duct (dotted line) are shown. Scale bars, 100 µm;
(d) Immunohistochemical analysis of the bioengineered lacrimal gland after
transplantation. Aquaporin-5 is red and E-cadherin is green in the left panel.
Calponin is red and E-cadherin is green in the center panel. Calponin is red,
neurofilament-H (NF-H) is green, and DAPI is blue in the right panel. Scale bars,
50 µm. Modified and reprinted from Hirayama et al. [23].
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7.1. Engraftment of Bioengineered Lacrimal Gland Germ with Duct Association

A duct association between the bioengineered lacrimal gland and the
mouse receiving the ocular surface discharge is required for tear secretion from
the bioengineered lacrimal gland. The bioengineered lacrimal gland germ
and the bioengineered harderian gland germ were successfully engrafted to
a mouse from which an extra-orbital lacrimal gland had been removed, and
the bioengineered lacrimal gland duct was connected to the recipient lacrimal
excretory duct using our thread-guided transplant method (Figure 3b,c). After the
transplant, the bioengineered lacrimal and harderian glands formed the appropriate
histo-architecture, including acini-expressing aquaporin 5 and myoepithelial cells,
duct, and nerve fibers, by reproducing the developmental process that occurs during
organogenesis (Figure 3c,d). Thus, the bioengineered lacrimal gland and harderian
gland can develop after in vivo orthotopic or ectopic transplantation.

7.2. Tear Secretion Ability of the Bioengineered Lacrimal Gland

Reconstituting neural pathways between the bioengineered lacrimal gland and
the recipient’s neural system is important to protect the ocular surface via restored
tear secretion [99–101]. Tearing resulting from a cooling stimulation at the ocular
surface that is activated via corneal thermoreceptors and is a representative neural
pathway for lacrimal gland function (Figure 4a) [102,103]. We demonstrated that the
bioengineered lacrimal gland could secret tears in cooperation with peripheral tissues,
including neural systems, because the tear secretion volume from the bioengineered
lacrimal gland increased after ocular surface cooling stimulation. Tear components
secreted from acini in the lacrimal and harderian glands, such as lactoferrin and
lipids, respectively, are essential for physiological tear functions such as increased
stability, wound healing, and anti-bacterial effects [104–109]. Current therapies
for severe lacrimal gland dysfunction include medical treatments such as albumin
eye drops and autologous serum eye drops that attempt to substitute tear protein
function [54,110–114]. We have shown that tears from the bioengineered lacrimal
gland contained major tear proteins, including lactoferrin. In addition, the lipid
concentration increased significantly in tears from the bioengineered harderian gland.
These results indicated that these bioengineered glands can produce appropriate tear
components. Functional replacements of the bioengineered lacrimal gland would be
an attractive strategy for treating severe dry eye disease.

7.3. Ocular Surface Protection Effect by the Bioengineered Lacrimal Gland

Protecting the ocular surface is the main purpose of using the bioengineered
lacrimal gland to restore lacrimal gland function. Punctate staining of the impaired
area on the ocular surface [115,116] and corneal epithelial changes including thinning
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and stromal fibroblast activation [117,118] were observed in a mouse with an
extra-orbital lacrimal gland defect, which mimics the corneal epithelial damage
caused by lacrimal gland dysfunction. However, these changes were prevented
using a bioengineered lacrimal gland (Figure 4b,c). Our results indicate that the
bioengineered lacrimal gland can develop and provide sufficient function to maintain
a healthy ocular surface.
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Figure 4. Tear secretion and ocular surface protection for the bioengineered lacrimal
gland: (a) Schematic representation of the neural reflex loop for tear secretion.
Cooling on the ocular surface stimulates tear secretion from the lacrimal gland
via the central nervous system; (b) Representative images of the corneal surface
of a normal lacrimal gland (upper), a lacrimal gland-defect mouse (center), and
a bioengineered lacrimal gland–engrafted mouse (lower). The punctate staining
area by fluorescein showed impaired area on corneal surface. Scale bar, 1 mm.
Modified and reprinted from Hirayama et al. [23]; (c) Representative microscopic
images of the corneal epithelium, including a normal mouse (upper), lacrimal
gland–defective mouse (center), and bioengineered lacrimal gland–transplanted
mouse (lower) are shown. Chronic dry eye status in lacrimal gland–defective mouse
induced corneal thickening as shown in the center panel, whereas these changes
were not observed in the bioengineered lacrimal gland-transplanted mouse. Scale
bars, 25 µm. Modified and reprinted from Hirayama et al. [23].
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8. Conclusions and Future Directions

Bioengineered lacrimal gland germs exhibit appropriate physiological functions,
such as tear secretion, in response to nervous stimulation and ocular surface
protection. These studies are a proof-of-concept for bioengineered organs that
can functionally restore the lacrimal gland. Our bioengineered organ regeneration
concept, which has also been applied to salivary gland regeneration [98], provides
substantial advances for regenerative therapies for dry eye disease and xerostomia.
Epithelial and mesenchymal stem cells, which have organ-inductive potential for
bioengineered organs, have not been reported in adult tissues. To realize the
future practical clinical applications of organ replacement regenerative therapy,
studies to develop technologies for organ regeneration, such as investigations of
available cell sources (e.g., pluripotent stem cells represented as embryonic stem
cells and induced pluripotent stem cells) and the efficacy of disease models (e.g.,
Sjogren syndrome and Stevens-Johnson syndrome) for these methods, technical
procedures for culture methods to create bioengineered organs, and appropriate
transplantation methods for human patients, are required. Bioengineered organ
regenerative therapy is expected to be an essential therapeutic strategy for the next
generation of regenerative medicine.
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Peptide Amphiphiles in Corneal
Tissue Engineering
Martina Miotto, Ricardo M. Gouveia and Che J. Connon

Abstract: The increasing interest in effort towards creating alternative therapies have
led to exciting breakthroughs in the attempt to bio-fabricate and engineer live tissues.
This has been particularly evident in the development of new approaches applied
to reconstruct corneal tissue. The need for tissue-engineered corneas is largely a
response to the shortage of donor tissue and the lack of suitable alternative biological
scaffolds preventing the treatment of millions of blind people worldwide. This
review is focused on recent developments in corneal tissue engineering, specifically
on the use of self-assembling peptide amphiphiles for this purpose. Recently, peptide
amphiphiles have generated great interest as therapeutic molecules, both in vitro and
in vivo. Here we introduce this rapidly developing field, and examine innovative
applications of peptide amphiphiles to create natural bio-prosthetic corneal tissue
in vitro. The advantages of peptide amphiphiles over other biomaterials, namely
their wide range of functions and applications, versatility, and transferability are
also discussed to better understand how these fascinating molecules can help solve
current challenges in corneal regeneration.

Reprinted from J. Funct. Biomater. Cite as: Miotto, M.; Gouveia, R.M.; Connon, C.J.
Peptide Amphiphiles in Corneal Tissue Engineering. J. Funct. Biomater. 2015, 6,
687–707.

1. Introduction

The cornea is the transparent, outermost part of the eye that serves as the
primary refractive organ in the visual system [1]. Diseases, traumas, or injuries are
the leading causes of corneal blindness and its prevalence varies from country to
country, and even from one population to another, depending on many factors such as
availability and general standards of eye care. It is estimated that 180 million people
worldwide have severely impaired vision in both eyes, resulting in a considerable
social and economic impact [2]. Corneal disease remains a major cause of blindness,
second only to cataracts. Although multi-factorial, the vast majority of corneal clinical
cases would benefit from a suitable corneal replacement. However, there is currently
a lack of donor cornea availability. The main factor behind this donor shortage is that,
in many parts of the world, there are limitations in the storage and distribution of
corneal tissue, as well as cultural and/or religious barriers [3]. Moreover, the supply
of human corneal tissue is expected to diminish even further due to the increasing
popularity of refractive surgery (such as LASIK), a technique that renders these
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corneas unsuitable for donation. However, even considering the best conditions,
donor grafts are typically variable in quality and usually fail due to immunological
rejection or endothelial decompensation resulting in an 18% failure rate for initial
grafts [4].

In the context of these limitations, the field of corneal tissue engineering has
made considerable advances in the last 10 years, focusing on alternative means of
replacing damaged corneal tissue. Approaches have included development of fully
artificial keratoprostheses, use of decellularized tissue scaffolding from animal or
human sources, and use of acellular, cross-linked collagen constructs as corneal
replacements [5,6]. Presently, bioengineered corneal substitutes are already available
for experimental clinical purposes such as corneal grafting [7,8]. In addition to
their clinical applications for transplantation and wound healing enhancement,
these engineered tissues also represent attractive in vitro models of human tissues
for various biological purposes. However, whilst much work is going on in this
research area [9,10], this review will instead focus on ongoing studies using different
biomaterials to create new corneal tissues, and more specifically, work involving
peptide amphiphiles (PAs) in corneal tissue engineering. The advantages of using
these biomaterials and the significant challenges involved will also be discussed,
along with the many future perspectives in the field.

2. Challenges in Corneal Tissue Engineering

The final purpose of corneal tissue engineering is the fabrication of corneal
tissue equivalents able to improve the function of their injured or diseased natural
counterparts. However, constructing a cornea presents several challenges to the field
of tissue engineering due to the very specific structural and cellular properties of the
organ. Strength, shape, transparency, biocompatibility, and molecular and cellular
compositions are important properties of the cornea that remain difficult to replicate
in vitro. Moreover, assembly and recovery of the engineered corneal tissues whilst
maintaining minimal manipulation before and during grafting remains an important
part of the bio-fabrication process and still requires intense study and optimization.

At a macroscopic level, from an anterior to a posterior location, the
human cornea is composed of a non-keratinized multi-layered epithelium, the
Bowman’s membrane, a 0.5 mm-thick stroma, the Descemet’s membrane, and an
endothelium [11] (Figure 1). The stroma accounts for 90% of the volume of the
cornea, and is essential to support the mechanical and refractive properties of the
organ. These properties are based on the ultrastructural organization of the stroma’s
extracellular matrix, comprised by a pseudocrystalline lattice of highly-ordered
collagen fibers and proteoglycans, and sparsely populated by quiescent stromal
cells, the keratocytes. This arrangement plays a fundamental role in the structure
and function of the cornea. Specifically, the orderly array of collagen fibers and
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the refractive index matching of these fibrils by interstitial proteoglycans play a
significant role in the transparency of the tissue [12]. Stromal collagen type-I fibers
have a 20–35 nm diameter, and are aligned parallel to each other with regular
30-nm spacing between fibrils. This regular spacing is thought to be regulated by
stromal-specific proteoglycans, which have been observed to form ring-like structures
around collagen fibrils in the normal cornea [13]. The aligned fibers are grouped
into layers called lamellae, which are stacked in an alternating lattice [14]. The
thickness of the stroma and arrangement of the collagen fibers are optimal for light
transmission through the cornea, with minimal light scatter.
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Figure 1. The human central cornea in cross-section. The outer-, anterior-most
surface of the cornea comprises a non-keratinized, multi-layered epithelium (blue)
supported by a basement membrane and above the Bowman’s layer (yellow). The
middle stromal tissue comprises 90% of the cornea’s thickness, and is sparsely
populated with keratocytes (green) interspersed within approximately 200 lamellae
of dense, collagen- and proteoglycan-rich extracellular matrix (lines). The innermost
posterior tissue consists of a single layer of endothelial cells (red) supported by the
Descemet’s membrane (grey).

Corneal transparency also has a cellular contribution. Keratocytes express
certain proteins, known as corneal crystallins, which are thought to match the
refractive index of the cell cytoplasm with the surrounding matrix material [15].
In addition, the cornea is avascular, a property maintained by its anti-angiogenic
milieu [16] which, if eliminated, can lead to blood vessel ingrowth and loss of
transparency [17]. Moreover, the overall structure of the stroma is dependent on its
hydration state, a feature regulated by the corneal epithelial [18] and endothelial
layers [19]. Furthermore, the correct development and function of these tissue
layers are dependent on the presence of a well-developed network of nociceptive
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neurons [20]. From this perspective, any attempts to engineer corneal tissues must
take into consideration the multi-cellular nature of the cornea, and the intricate direct
and indirect interaction maintained between the various tissues.

3. Previous Approaches to Engineer Corneal Tissue: Top-Down or Bottom-Up?

In recent years, the development of tissue-engineered corneal substitutes
emerged as an alternative method to overcome several issues related to corneal
transplantation, namely the relatively high host-rejection rate of keratoprosthesis.
In this context, different corneal stromal equivalents have been developed using
various biomaterials such as decellularized corneas [21], amniotic membrane [22] or
scaffolds produced from collagen type I [23], fibrin agarose [8,24–26], fish scales [27],
chitosan [28], caprolactone [29], or poly(ester urethane) urea [30]. For instance,
Du et al. [22] used amniotic membrane as a biomaterial upon which human corneal
epithelium stem cells were tested as therapy for limbal stem cell deficiency. Among
all the materials used for the production of biocompatible scaffolds, collagen-based
constructs seem to be the most interesting. A number of examples can be seen in the
work of Griffith and co-workers, where considerable effort was made to create and
optimize scaffolds produced from cross-linked collagen [31], recombinant human
collagen [32], and bio-functionalized collagen [33] for corneal tissue engineering
purposes. Although many of these approaches are currently being tested in the clinic,
none has had the broad success and acceptance of fresh tissue transplantation. The
reason for this discrepancy might be due to the different strategies used to produce
bioengineered tissues in general, and corneal tissue equivalents in particular.

Traditional tissue engineering typically employs what is called a top-down
approach. This is based on the use of scaffolds, necessarily biocompatible and
optionally biodegradable, to recreate the appropriate microarchitecture of the natural
tissue and serve as support for cell attachment and growth. Cells seeded on such
materials are expected to populate them while maintaining their native phenotype,
and use these scaffolds as support while creating a suitable growth environment
(e.g., by depositing their own extracellular matrix). Theoretically, a 3D scaffold
with a precise shape, composition and internal organization can provide a perfect
microenvironment allowing the organization of individual cells into a functional
tissue [34]. However, the design a priori of scaffolds with mechanical, physiochemical
and biological properties ideal for a specific tissue has not been yet realized, and is
probably beyond current knowledge and technology. On the other hand, bottom-up
approaches are emerging as an alternative for creating highly organized tissues, and
using these modular units as building blocks to engineer biological tissues. These
modular units can be fabricated using different methods such as self-assembled
aggregation [35], microfabrication of cell-laden hydrogels [36] and extracellular
matrix [37], overlapping of cell sheets [38], or direct printing of tissues [39]. Once

224



bio-fabricated, these blocks can be stacked, assembled, or combined to form larger
tissues or whole organs [40]. Commonly, the bottom-up approaches aim at providing
cells with a guiding template to direct cell-driven organization and tissue formation.
In other words, cells are instructed to recapitulate natural tissue differentiation,
growth and morphogenesis in vitro. These strategies have allowed the creation of
modular tissues with native-type composition and micro-architecture, without the
need to introduce scaffolds and with better perceived outcomes in downstream
applications (e.g., grafting). The difference between top-down and bottom-up
strategies constitutes an important topic for future approaches to corneal tissue
engineering, as discussed in a recent review article focused on the subject [41].

4. Peptide Amphiphiles in Tissue Engineering

Recently, small bioactive molecules capable of self-assembly have attracted
considerable interest as new functional materials with broad applications in tissue
engineering and regenerative medicine [42–44]. Specifically, these are self-assembling
molecules used to produce biocompatible materials for three dimensional cell
culture [45,46], drug delivery [47,48], inhibition of bacterial growth [49,50], delivery
of therapeutic molecules [51], or as scaffolds for cell therapy [52–55]. Concerning their
use as delivery systems, it is important to understand if and how supramolecular
nanostructures can cross the diffusion barriers present in the human body such as
the blood-brain barrier or, relevant to corneal applications, the corneal epithelial or
endothelial layers. One of the most promising types of such molecules comprises
small synthetic peptides. These molecules incorporate small bioactive or bio-inspired
peptide sequences, with several advantages over the use of whole-protein matrixes,
including sourcing (i.e., easier isolation/production and purification), reduced
immunogenicity [56], presentation (i.e., more effective and controlled density and
orientation of the bioactive motives [57]), and stability [58]. In addition, they can
be rationally designed to have amphiphilic characteristics, i.e., to contain both
hydrophilic and hydrophobic domains that help them self-assemble into a variety of
supramolecular 3D nanostructures, such as tubes, tapes, fibres, vesicles and micelles,
among other architectures [52,59–61] (Figure 2). However, despite this variability,
or maybe because of it, there are currently no set rules for this rational design. In
other words, there is still much work to be done regarding the development of a
supramolecular code that will allow us to predict the self-assembly of hierarchical
architectures and bio-function based solely on the primary structure of amphiphilic
peptides [62].

Amphiphilic peptides can be classified as peptide sequences with amphiphilic
properties arising from hydrophobic and hydrophilic residues, whereas peptide
amphiphiles (PAs) constitute a subset of the former comprising a peptide sequence
linked to a hydrophobic tail [63]. PAs can be easily synthesized by standard peptide
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synthesis protocols by standard solid phase chemistry that ends with the alkylation
of the NH2 terminus of the peptide; their structural folding and stability have been
extensively characterized [64,65]. However, and although small and medium-sized
peptides are easily obtained in high yields, large peptide sequences (i.e., longer
than 50 amino acids) are still difficult to produce and purify by direct chemical
synthesis [66]. An example of a representative PA contains three segments: a
hydrophobic sequence, commonly a lipid chain that guides aggregation through
hydrophobic collapse, a β-sheet-forming peptide that promotes nanofiber formation
through the formation of hydrogen bonds, and a peptide segment, usually less than
15 amino acids long, with ionisable side chains and a bio-functional amino acid
sequence [67]. In this review we will give specific attention to the characteristics and
applications of such PAs.

The self-assembly mechanism involved in these single-tailed PAs usually occurs
after changes in pH [68], mixing of oppositely charged PAs [69], or addition of
multivalent cations [54] to generate electrostatic repulsion between the PA molecules.
The supramolecular self-assembly of PAs in aqueous environments is governed
by at least three major forces: the interactions between the hydrophobic tails, the
electrostatic repulsions between charged groups, and the hydrogen bonding among
the middle peptide segments [52]. The derived ultrastructure of self-assembled
PAs reflects a balance of each force contribution, and has dimensions similar to
those of fibrils from natural extracellular matrix. Specifically, taking advantage
of their amphiphilic properties, the hydrophobic alkyl tails of PAs solubilized in
aqueous solutions are packed in the center of the fiber while the hydrophilic peptide
segments are exposed to the aqueous environment, forming an external corona. As
such, these molecules can be designed to display bioactive epitopes at the surface
of the self-assembled nanostructure, while keeping intermolecular hydrogen bonds
parallel to the long axis of the fiber [52]. To date, a considerable number of PAs have
been reported in the literature [70], including molecules with different hydrophobic
tails [71–73]. For example, PAs comprised of a similar peptide sequence but
with either saturated or diene-containing hexadecyl lipid chains self-assemble into
polydisperse nanotapes or spherical micelles, respectively [44,74]. These examples
illustrate the versatility of PAs, where increasing unsaturation and length of the
lipid chains, or changing from alkyl to aromatic tails dramatically alters the final
architecture of the self-assembled nanostructures [75]. However, this feature might
compromise the stability, physical properties, and function of the PA, namely when
exposed to UV [76] and γ-irradiation [77], two common sterilization methods used
in materials for biological applications. Moreover, the concentration in which these
molecules are used may constitute an important factor defining their self-assembled
architecture [78] and bio-compatibility [42].

226



J. Funct. Biomater. 2015, 6 692 

 

 

solubilized in aqueous solutions are packed in the center of the fiber while the hydrophilic peptide 

segments are exposed to the aqueous environment, forming an external corona. As such, these molecules 

can be designed to display bioactive epitopes at the surface of the self-assembled nanostructure, while 

keeping intermolecular hydrogen bonds parallel to the long axis of the fiber [52]. To date, a considerable 

number of PAs have been reported in the literature [70], including molecules with different hydrophobic 

tails [71–73]. For example, PAs comprised of a similar peptide sequence but with either saturated or 

diene-containing hexadecyl lipid chains self-assemble into polydisperse nanotapes or spherical micelles, 

respectively [44,74]. These examples illustrate the versatility of PAs, where increasing unsaturation and 

length of the lipid chains, or changing from alkyl to aromatic tails dramatically alters the final 

architecture of the self-assembled nanostructures [75]. However, this feature might compromise  

the stability, physical properties, and function of the PA, namely when exposed to UV [76] and  

γ-irradiation [77], two common sterilization methods used in materials for biological applications. 

Moreover, the concentration in which these molecules are used may constitute an important factor 

defining their self-assembled architecture [78] and bio-compatibility [42].  

 

Figure 2. Examples of supramolecular PA nanostructures. Graphical representation of some 

representative structures obtained by PAs self-assembly: (A) nanofibers; (B) micelles;  

and (C) multi-layered nanotapes. All three structures have a hydrophilic outer corona 

comprised of bioactive peptide (blue) and self-assembly-inducing/spacer sequence (white), 

and a hydrophobic inner core with organized and/or non-organized PA tails (red and green, 

respectively) (adapted from [63,79]). 

Figure 2. Examples of supramolecular PA nanostructures. Graphical
representation of some representative structures obtained by PAs self-assembly:
(A) nanofibers; (B) micelles; and (C) multi-layered nanotapes. All three structures
have a hydrophilic outer corona comprised of bioactive peptide (blue) and
self-assembly-inducing/spacer sequence (white), and a hydrophobic inner core
with organized and/or non-organized PA tails (red and green, respectively)
(adapted from [63,79]).

Some of the main applications of PAs in regenerative medicine are summarized
in Table 1. As reported in Table 1, PAs can be used in different forms, such as in
coatings, in solution, or as hydrogels. All of these forms have been quite extensively
tested, however, in spite of the advantages of using PAs in hydrogel form, it has to be
considered that they exhibit poor mechanical characteristics [80]. In this context, the
use of PAs as hydrogels is less suited to the production of scaffolds for engineering
tissues requiring high mechanical strength and integrity. Considering the application
of PAs in the field of tissue engineering, these molecules have been used by several
groups towards the development of engineered constructs, particularly for the
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regeneration of connective tissues with a collagen-rich extracellular matrix. In order
to achieve this objective using scaffold-based approaches, an artificial PA scaffold
should mimic the structure and biological function of the native extracellular matrix
as much as possible, both in terms of chemical cues and physical and mechanical
properties. The native extracellular matrix provides structural support to body
tissues, acting not only as a physical framework for arranging cells within the
connective tissues, but also as a dynamic and flexible substance defining cellular
behaviour and tissue function [81]. Indeed, it has been shown that the supramolecular
network formed by self-assembled PA mimics, from a structural point of view,
the natural extracellular matrix, albeit in a simplified way. In this context, the
main applications of PAs molecules, so far, have been in the repair of bone [82,83],
cartilage and tendon [84], blood vessels [85,86], cavernous nerves [87], skin [88,89],
and importantly for this review, the cornea [44,74].

5. Peptide Amphiphiles as Versatile Templates to Recreate Human
Corneas in vitro

Various biomaterials have been explored for use in tissue engineered
corneal substitutes, including, but by no means limited to, collagen [23,90,91],
fibrin-agarose [8], decellularised cornea [92], and amniotic membrane [93,94].
Considering the high transparency of the corneal tissue, it is fundamental to design
a scaffold preserving this characteristic whilst maintaining a high biocompatibility
and a low immunogenicity [95]. In addition, there is a strong need to develop
novel bioactive materials able to support cell adhesion and proliferation. In this
context, PAs are well placed in that they can be designed to support a range of cell
types important to corneal function, i.e. keratocytes, epithelial and endothelial cells.
In this case the use of PAs would not only support the formation of extracellular
matrix-inspired nanofibers following the self-assembly, but also enhance adhesion,
proliferation, and alignment of human corneal stromal fibroblasts due to the insertion
of specific bioactive motives. Notable research involving PAs in cornea tissue
engineering are reported in Table 2.

228



Ta
bl

e
1.

M
ai

n
w

or
ks

in
vo

lv
in

g
th

e
u

se
of

p
ep

ti
d

e
am

p
hi

p
hi

le
s

in
re

ge
ne

ra
ti

ve
m

ed
ic

in
e.

T
he

ta
bl

e
re

p
or

ts
th

e
PA

u
se

d
,i

ts
ch

em
ic

al
st

ru
ct

ur
e,

th
e

ai
m

of
th

e
st

ud
ie

s,
th

e
so

ur
ce

of
th

e
bi

oa
ct

iv
e

se
qu

en
ce

,t
he

co
nc

en
tr

at
io

n
of

PA
us

ed
,a

nd
it

s
fo

rm
.

PA
C

he
m

ic
al

St
ru

ct
ur

e
A

im
So

ur
ce

[P
A

]w
t%

PA
Fo

rm
R

ef
er

en
ce

C
16

-C
4-

G
3-

S-
R

G
D

J.
 F

un
ct

. B
io

m
at

er
. 2

01
5,

 6
 

69
4 

  

T
ab

le
 1

. M
ai

n 
w

or
ks

 in
vo

lv
in

g 
th

e 
us

e 
of

 p
ep

ti
de

 a
m

ph
ip

hi
le

s 
in

 r
eg

en
er

at
iv

e 
m

ed
ic

in
e.

 T
he

 ta
bl

e 
re

po
rt

s 
th

e 
P

A
 u

se
d,

 it
s 

ch
em

ic
al

 s
tr

uc
tu

re
, 

th
e 

ai
m

 o
f 

th
e 

st
ud

ie
s,

 th
e 

so
ur

ce
 o

f 
th

e 
bi

oa
ct

iv
e 

se
qu

en
ce

, t
he

 c
on

ce
nt

ra
ti

on
 o

f 
P

A
 u

se
d,

 a
nd

 it
s 

fo
rm

. 

P
A

 
C

he
m

ic
al

 S
tr

uc
tu

re
 

A
im

 
So

ur
ce

 
[P

A
] 

w
t 

%
 

P
A

 F
or

m
 

R
ef

er
en

ce
 

C
16

-C
4-

G
3-

S
-R

G
D

 
B

on
e 

 

re
ge

ne
ra

ti
on

 
F

ib
ro

ne
ct

in
 

0.
1 

co
at

in
g 

[8
3]

 

C
12

-H
S

N
G

L
P

L
G

G
G

S
 

E
E

E
A

A
A

V
V

V
(K

) 
 

C
ar

ti
la

ge
  

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

1 
hy

dr
og

el
 

[8
4]

 

C
16

-V
2A

2E
2-

N
H

2 
C

av
er

no
us

 n
er

ve
 

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

0.
85

 
hy

dr
og

el
 

[8
7]

 

C
16

-C
4-

G
3-

  

L
R

K
K

L
G

K
A

 

B
lo

od
 v

es
se

ls
  

re
ge

ne
ra

ti
on

 

H
ep

ar
in

 b
in

di
ng

  

co
ns

en
su

s 
se

qu
en

ce
 

3 
hy

dr
og

el
 

[8
5]

 

C
16

-K
T

T
K

S 
S

ki
n 

 

re
ge

ne
ra

ti
on

 
P

ro
co

ll
ag

en
 I

 
0.

00
03

 
so

lu
ti

on
 

[8
8]

 

Bo
ne

re
ge

ne
ra

ti
on

Fi
br

on
ec

ti
n

0.
1

co
at

in
g

[8
3]

C
12

-H
SN

G
LP

LG
G

G
S

EE
EA

A
A

V
V

V
(K

)

J.
 F

un
ct

. B
io

m
at

er
. 2

01
5,

 6
 

69
4 

  

T
ab

le
 1

. M
ai

n 
w

or
ks

 in
vo

lv
in

g 
th

e 
us

e 
of

 p
ep

ti
de

 a
m

ph
ip

hi
le

s 
in

 r
eg

en
er

at
iv

e 
m

ed
ic

in
e.

 T
he

 ta
bl

e 
re

po
rt

s 
th

e 
P

A
 u

se
d,

 it
s 

ch
em

ic
al

 s
tr

uc
tu

re
, 

th
e 

ai
m

 o
f 

th
e 

st
ud

ie
s,

 th
e 

so
ur

ce
 o

f 
th

e 
bi

oa
ct

iv
e 

se
qu

en
ce

, t
he

 c
on

ce
nt

ra
ti

on
 o

f 
P

A
 u

se
d,

 a
nd

 it
s 

fo
rm

. 

P
A

 
C

he
m

ic
al

 S
tr

uc
tu

re
 

A
im

 
So

ur
ce

 
[P

A
] 

w
t 

%
 

P
A

 F
or

m
 

R
ef

er
en

ce
 

C
16

-C
4-

G
3-

S
-R

G
D

 
B

on
e 

 

re
ge

ne
ra

ti
on

 
F

ib
ro

ne
ct

in
 

0.
1 

co
at

in
g 

[8
3]

 

C
12

-H
S

N
G

L
P

L
G

G
G

S
 

E
E

E
A

A
A

V
V

V
(K

) 
 

C
ar

ti
la

ge
  

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

1 
hy

dr
og

el
 

[8
4]

 

C
16

-V
2A

2E
2-

N
H

2 
C

av
er

no
us

 n
er

ve
 

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

0.
85

 
hy

dr
og

el
 

[8
7]

 

C
16

-C
4-

G
3-

  

L
R

K
K

L
G

K
A

 

B
lo

od
 v

es
se

ls
  

re
ge

ne
ra

ti
on

 

H
ep

ar
in

 b
in

di
ng

  

co
ns

en
su

s 
se

qu
en

ce
 

3 
hy

dr
og

el
 

[8
5]

 

C
16

-K
T

T
K

S 
S

ki
n 

 

re
ge

ne
ra

ti
on

 
P

ro
co

ll
ag

en
 I

 
0.

00
03

 
so

lu
ti

on
 

[8
8]

 

C
ar

ti
la

ge
re

ge
ne

ra
ti

on
D

e
no

vo
sy

nt
he

ti
ze

d
1

hy
dr

og
el

[8
4]

C
16

-V
2A

2E
2-

N
H

2

J.
 F

un
ct

. B
io

m
at

er
. 2

01
5,

 6
 

69
4 

  

T
ab

le
 1

. M
ai

n 
w

or
ks

 in
vo

lv
in

g 
th

e 
us

e 
of

 p
ep

ti
de

 a
m

ph
ip

hi
le

s 
in

 r
eg

en
er

at
iv

e 
m

ed
ic

in
e.

 T
he

 ta
bl

e 
re

po
rt

s 
th

e 
P

A
 u

se
d,

 it
s 

ch
em

ic
al

 s
tr

uc
tu

re
, 

th
e 

ai
m

 o
f 

th
e 

st
ud

ie
s,

 th
e 

so
ur

ce
 o

f 
th

e 
bi

oa
ct

iv
e 

se
qu

en
ce

, t
he

 c
on

ce
nt

ra
ti

on
 o

f 
P

A
 u

se
d,

 a
nd

 it
s 

fo
rm

. 

P
A

 
C

he
m

ic
al

 S
tr

uc
tu

re
 

A
im

 
So

ur
ce

 
[P

A
] 

w
t 

%
 

P
A

 F
or

m
 

R
ef

er
en

ce
 

C
16

-C
4-

G
3-

S
-R

G
D

 
B

on
e 

 

re
ge

ne
ra

ti
on

 
F

ib
ro

ne
ct

in
 

0.
1 

co
at

in
g 

[8
3]

 

C
12

-H
S

N
G

L
P

L
G

G
G

S
 

E
E

E
A

A
A

V
V

V
(K

) 
 

C
ar

ti
la

ge
  

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

1 
hy

dr
og

el
 

[8
4]

 

C
16

-V
2A

2E
2-

N
H

2 
C

av
er

no
us

 n
er

ve
 

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

0.
85

 
hy

dr
og

el
 

[8
7]

 

C
16

-C
4-

G
3-

  

L
R

K
K

L
G

K
A

 

B
lo

od
 v

es
se

ls
  

re
ge

ne
ra

ti
on

 

H
ep

ar
in

 b
in

di
ng

  

co
ns

en
su

s 
se

qu
en

ce
 

3 
hy

dr
og

el
 

[8
5]

 

C
16

-K
T

T
K

S 
S

ki
n 

 

re
ge

ne
ra

ti
on

 
P

ro
co

ll
ag

en
 I

 
0.

00
03

 
so

lu
ti

on
 

[8
8]

 

C
av

er
no

us
ne

rv
e

re
ge

ne
ra

ti
on

D
e

no
vo

sy
nt

he
ti

ze
d

0.
85

hy
dr

og
el

[8
7]

C
16

-C
4-

G
3-

LR
K

K
LG

K
A

J.
 F

un
ct

. B
io

m
at

er
. 2

01
5,

 6
 

69
4 

  

T
ab

le
 1

. M
ai

n 
w

or
ks

 in
vo

lv
in

g 
th

e 
us

e 
of

 p
ep

ti
de

 a
m

ph
ip

hi
le

s 
in

 r
eg

en
er

at
iv

e 
m

ed
ic

in
e.

 T
he

 ta
bl

e 
re

po
rt

s 
th

e 
P

A
 u

se
d,

 it
s 

ch
em

ic
al

 s
tr

uc
tu

re
, 

th
e 

ai
m

 o
f 

th
e 

st
ud

ie
s,

 th
e 

so
ur

ce
 o

f 
th

e 
bi

oa
ct

iv
e 

se
qu

en
ce

, t
he

 c
on

ce
nt

ra
ti

on
 o

f 
P

A
 u

se
d,

 a
nd

 it
s 

fo
rm

. 

P
A

 
C

he
m

ic
al

 S
tr

uc
tu

re
 

A
im

 
So

ur
ce

 
[P

A
] 

w
t 

%
 

P
A

 F
or

m
 

R
ef

er
en

ce
 

C
16

-C
4-

G
3-

S
-R

G
D

 
B

on
e 

 

re
ge

ne
ra

ti
on

 
F

ib
ro

ne
ct

in
 

0.
1 

co
at

in
g 

[8
3]

 

C
12

-H
S

N
G

L
P

L
G

G
G

S
 

E
E

E
A

A
A

V
V

V
(K

) 
 

C
ar

ti
la

ge
  

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

1 
hy

dr
og

el
 

[8
4]

 

C
16

-V
2A

2E
2-

N
H

2 
C

av
er

no
us

 n
er

ve
 

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

0.
85

 
hy

dr
og

el
 

[8
7]

 

C
16

-C
4-

G
3-

  

L
R

K
K

L
G

K
A

 

B
lo

od
 v

es
se

ls
  

re
ge

ne
ra

ti
on

 

H
ep

ar
in

 b
in

di
ng

  

co
ns

en
su

s 
se

qu
en

ce
 

3 
hy

dr
og

el
 

[8
5]

 

C
16

-K
T

T
K

S 
S

ki
n 

 

re
ge

ne
ra

ti
on

 
P

ro
co

ll
ag

en
 I

 
0.

00
03

 
so

lu
ti

on
 

[8
8]

 

Bl
oo

d
ve

ss
el

s
re

ge
ne

ra
ti

on

H
ep

ar
in

bi
nd

in
g

co
ns

en
su

s
se

qu
en

ce

3
hy

dr
og

el
[8

5]

C
16

-K
TT

K
S

J.
 F

un
ct

. B
io

m
at

er
. 2

01
5,

 6
 

69
4 

  

T
ab

le
 1

. M
ai

n 
w

or
ks

 in
vo

lv
in

g 
th

e 
us

e 
of

 p
ep

ti
de

 a
m

ph
ip

hi
le

s 
in

 r
eg

en
er

at
iv

e 
m

ed
ic

in
e.

 T
he

 ta
bl

e 
re

po
rt

s 
th

e 
P

A
 u

se
d,

 it
s 

ch
em

ic
al

 s
tr

uc
tu

re
, 

th
e 

ai
m

 o
f 

th
e 

st
ud

ie
s,

 th
e 

so
ur

ce
 o

f 
th

e 
bi

oa
ct

iv
e 

se
qu

en
ce

, t
he

 c
on

ce
nt

ra
ti

on
 o

f 
P

A
 u

se
d,

 a
nd

 it
s 

fo
rm

. 

P
A

 
C

he
m

ic
al

 S
tr

uc
tu

re
 

A
im

 
So

ur
ce

 
[P

A
] 

w
t 

%
 

P
A

 F
or

m
 

R
ef

er
en

ce
 

C
16

-C
4-

G
3-

S
-R

G
D

 
B

on
e 

 

re
ge

ne
ra

ti
on

 
F

ib
ro

ne
ct

in
 

0.
1 

co
at

in
g 

[8
3]

 

C
12

-H
S

N
G

L
P

L
G

G
G

S
 

E
E

E
A

A
A

V
V

V
(K

) 
 

C
ar

ti
la

ge
  

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

1 
hy

dr
og

el
 

[8
4]

 

C
16

-V
2A

2E
2-

N
H

2 
C

av
er

no
us

 n
er

ve
 

re
ge

ne
ra

ti
on

 

D
e 

no
vo

  

sy
nt

he
ti

ze
d 

0.
85

 
hy

dr
og

el
 

[8
7]

 

C
16

-C
4-

G
3-

  

L
R

K
K

L
G

K
A

 

B
lo

od
 v

es
se

ls
  

re
ge

ne
ra

ti
on

 

H
ep

ar
in

 b
in

di
ng

  

co
ns

en
su

s 
se

qu
en

ce
 

3 
hy

dr
og

el
 

[8
5]

 

C
16

-K
T

T
K

S 
S

ki
n 

 

re
ge

ne
ra

ti
on

 
P

ro
co

ll
ag

en
 I

 
0.

00
03

 
so

lu
ti

on
 

[8
8]

 
Sk

in
re

ge
ne

ra
ti

on
Pr

oc
ol

la
ge

n
I

0.
00

03
so

lu
ti

on
[8

8]

229



Ta
bl

e
2.

M
ai

n
w

or
ks

in
vo

lv
in

g
th

e
us

e
of

pe
pt

id
e

am
ph

ip
hi

le
s

in
co

rn
ea

lt
is

su
e

en
gi

ne
er

in
g.

T
he

ta
bl

e
re

po
rt

s
th

e
PA

us
ed

,t
he

so
ur

ce
of

th
e

bi
oa

ct
iv

e
se

qu
en

ce
,t

he
PA

bi
ol

og
ic

al
ef

fe
ct

,t
he

co
nc

en
tr

at
io

n
of

PA
us

ed
,a

nd
it

s
fo

rm
.

PA
So

ur
ce

B
io

lo
gi

ca
lE

ff
ec

t
[P

A
]w

t%
PA

Fo
rm

R
ef

er
en

ce

C
16

-G
3-

R
G

D
/R

G
D

S
+

C
16

-E
TT

ES
Fi

br
on

ec
ti

n
En

ha
nc

ed
ad

he
si

on
an

d
pr

ol
if

er
at

io
n

of
hC

SF
s

1
to

0.
00

5
co

at
in

g
[4

2,
96

]

A
6-

R
G

D
S

Fi
br

on
ec

ti
n

En
ha

nc
ed

ad
he

si
on

an
d

pr
ol

if
er

at
io

n
of

hC
SF

s
1

to
0.

1
co

at
in

g
[9

7]

C
16

-T
PG

PQ
G

IA
G

Q
-R

G
D

S
M

M
P

cl
ea

va
ge

se
qu

en
ce

+
Fi

br
on

ec
ti

n

Pr
om

ot
ed

ad
he

si
on

an
dg

ro
w

th
of

hC
SF

s.
St

im
ul

at
ed

co
lla

ge
n

pr
od

uc
ti

on
.G

ov
er

ne
d

ti
ss

ue
s

lif
t-

up

2
co

at
in

g
[4

4,
74

]

Fm
oc

-R
G

D
S

Fi
br

on
ec

ti
n

En
ha

nc
ed

ce
ll

at
ta

ch
m

en
t,

pr
ol

if
er

at
io

n
an

d
vi

ab
ili

ty
1

so
lu

ti
on

[4
3]

C
16

-K
TT

K
S

Pr
oc

ol
la

ge
n

I
St

im
ul

at
ed

co
lla

ge
n

pr
od

uc
ti

on
fr

om
hC

SF
s

0.
00

2,
0.

00
4,

0.
00

8
so

lu
ti

on
[9

8,
99

]

C
12

-V
VA

G
K

Y
IG

SR
La

m
in

in
En

ha
nc

ed
ke

ra
to

cy
te

pr
ol

if
er

at
io

n
an

d
m

ig
ra

ti
on

,a
nd

st
im

ul
at

ed
co

lla
ge

n
Is

yn
th

es
is

0.
2

co
at

in
g

[1
00

]

C
16

-Y
EA

LR
VA

N
EV

TL
N

Lu
m

ic
an

St
im

ul
at

ed
co

lla
ge

n
Ip

ro
du

ct
io

n
0.

01
,0

.0
05

,0
.0

02
5

0.
00

12
5,

0.
00

06
25

so
lu

ti
on

[1
01

]

230



For corneal tissue engineering one of the most used bioactive sequences is
represented by the fibronectin derived RGD motive. As extensively reported, this
sequence is frequently used for creating adhesive biomaterials able to promote cell
interaction and adhesion through binding to integrin subgroups like those composed
of subunits αV, α3β1, and α5β1 [102,103]. However, even if the tripeptide motif
RGD has been identified as a minimal essential cell adhesion sequence [104], the
definition of the minimo optimo bioactive epitope required in order to have the same
function as the whole protein, is still not known. In this respect, Castelletto et al. [96]
studied the self-assembly of two PAs designed ad hoc to enhance the potential for cell
attachment. These peptides contained RGD or RGDS bioactive motives as well as a
functional spacer in the β-sheet domain, consisting of a sequence of three consecutive
glycine (G) residues. In addition, they optimized the potential for cell attachment
by co-assembling the bioactive PA (RGD or RGDS) with a non-bioactive PA acting
as a diluent molecule able to vary the RGD density within its supramolecular form
following self-assembly above critical aggregation concentration. In particular, they
used a negatively charged PA composed of C16-Glu-Thr-Thr-Glu-Ser (C16-ETTES)
as this diluent. Castelletto et al. posited that by tuning the diluent concentration,
so the distance between neighbouring RGD groups would be greater than that
in the undiluted RGD(S)-PA following self-assembly, they could optimize the PA
for maximal cell attachment. When such a PA mixture was subsequently used
as a coating for 2D human keratocyte attachment and growth, the optimal molar
ratio of C16-RGD(S):C16-ETTES was found to be 15:85. Subsequently, this approach
was employed by Gouveia et al. [42] to produce stable biocompatible film coatings
which enhanced adhesion, proliferation and alignment of human corneal stromal
fibroblasts whilst inducing the formation of 3D lamellar-like stromal tissue. These
early results suggested that such mixtures of PAs constitute a promising new material
capable of directing corneal stromal cells to produce appropriate amounts and type of
extracellular matrix that are likely to be important to both corneal wound healing and
tissue engineering. However, the biophysical, mechanical, and biological properties
of these functional coatings require further extensive research. Castelletto et al. [97]
also demonstrated the ability to produce bioactive film coatings for corneal stromal
cell growth using an alanine-rich amphiphilic peptide containing the RGD motive
(A6-RGD). This PA was designed to simultaneously ensure solubility in water and
specific binding to cells. They found that the self-assembly motive depended on the
concentration of surfactant-like peptide (SLP) and demonstrated the co-existence of
vesicles and fibres with an increase in vesicle population relative to fibres when the
SLP concentration increases. Moreover, at low concentrations (0.1 wt % –1.0 wt %),
this SLP promoted adhesion and enhanced proliferation of human corneal stromal
cells. Thus, A6-RGD PA represents another promising bioactive peptide for the
manufacture of dry coatings for cornea tissue engineering.
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More recently, a study by Gouveia et al. [74] described an inventive way
to take advantage of PA film coatings for corneal tissue engineering. In
this work, they described a biologically interactive PA coating that integrated
both the abilities to induce tissue bio-fabrication and the subsequent tissue
self-release in vitro. This was made achievable by employing a custom
designed PA comprised a matrix metalloprotease (MMP)-cleavable sequence
(Thr-Pro-Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln) followed by the RGDS bioactive motive
which, as before, was mixed with C16-ETTES at a molar ratio of 15:85. The
subsequent self-assembly studies revealed that the PA self-assembled into nanotapes
that were also capable of forming film coatings providing a stable surface for the
attachment and growth of human corneal stromal cells in a quiescent phenotype.
Furthermore the supplementation of all-trans retinoic acid (RA) to the culture media
facilitated both retained cellular attachment and ultimately tissue formation via cell
stratification. Previously Gouveia and Connon [105] had shown that the addition
of RA inhibits the expression of several MMPs from the cells while enhancing their
native extracellular matrix production. Thus, in the presence of the MMP-sensitive
PA coating, the cells increased MMP expression and endogenous proteolytic activity
following RA removal. The resulting increase in proteolytic activity in the culture
supernatant cleaved the RGD peptide from the self-assembled PA (i.e., the nanotape
structures underpinning the tissue growth) facilitating the complete detachment of
the tissue from the bioactive surface, and creating a free-floating construct (Figure 3).
As such, this smart PA material represents a new and fascinating method for the
bio-fabrication of certain structural tissues including corneal stromal equivalents.

PAs have not only been shown to augment the amounts of extracellular matrix
produced by corneal stromal cells. For instance, PAs were also used to successfully
control the form and shape of corneal tissue-engineered constructs. It is known that
during embryonic development, corneal fibroblasts play a central role in exerting
physical forces that organize the extracellular matrix into a unique pattern providing
structural support whilst maintaining tissue transparency [106–110]. Furthermore,
corneal fibroblasts guide wound contraction and matrix remodeling after injury or
refractive surgery [14,111,112]. In the physiological process of corneal wound healing,
quiescent corneal keratocytes switch to the fibroblast phenotype and migrate through
the tridimensional matrix to restore it. In order to investigate cell-matrix mechanical
interactions during fibroblast migration, Petroll et al. [113,114] developed a model
in which cell-seeded compressed collagen matrices are nested within acellular
uncompressed matrices. They found that matrices cultured in medium containing
exogenous serum become significantly deformed due to keratocytes’ activation
and migration into the outer matrix [115]. Similar levels of matrix contraction can
disrupt or damage the unique and functional architecture of the corneal stroma
leading to the formation of scars or fibrosis. Therefore, a method able to limit it or
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to stimulate a low contractility migration is highly required. In this respect, a new
approach for the containment of the collagen contraction by corneal fibroblasts
has been developed through the novel use of PAs. In this example, again by
Gouveia et al. [43], hybrid materials were constructed comprising fibrillar collagen
type I and a PA formed from Fmoc-RGDS. Once encapsulated within this mixture,
and exposed to serum, human keratocytes were unable to contract the collagen gel
as they would normally (Figure 4). It is believed that this hybrid collagen PA system
forms an interpenetrating “gel within a gel” and that the cells preferential bind
to the Fmoc-RGDS motif inhibiting the cells from binding to and contracting the
collagen gel in the presence of serum. Thus the degree of tissue contraction and shape
was controlled by the concentration of the Fmoc-RGDS PA within the system. This
interesting study opens up the possibility of using PAs to control localized effects
on cells in a three-dimensional environment, thereby lifting the veil on much more
complicated tissue-engineered constructs rather than the homogenous forms that are
prevalent today.
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Figure 3. Bio-fabrication and controlled self-release of live tissues using
PA coating templates. Schematic representation of the method used for the
in vitro bio-fabrication and lift-off of human corneal stromal tissues, previously
reported in [74]. Cells isolated from human donors were seeded and grown
on low-attachment plates previously coated with a PA carrying both the
MMP1-sensitive sequence and the RGDS cell adhesion motive. Cells were cultured
in serum-free medium containing retinoic acid (RA) for 90 days and accumulated
large quantities of corneal-specific stromal extracellular matrix. Subsequently, the
bio-fabricated tissues were induced to express MMPs due to RA removal from the
medium. In three days, the tissues expressed enough endogenous MMPs into the
culture supernatant to provide the cue to degrade the adhesive PA coating, and
induce their own release. The resulting free-floating corneal stromal equivalents
were scaffold-free, easy to handle, and retained their shape and structural integrity
for more than 18 months in storage.
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Figure 4. Schematic representation of the effect of Fmoc-RGDS PA on collagen
gel contraction under different culture conditions. Human corneal stromal
fibroblasts were encapsulated within uncompressed collagen gels that have been
functionalized with the fibril-forming Fmoc-RGDS PA (+fPA), or produced without
it (CTR). The relative contraction of collagen gels after seven days in serum-free
medium (SFM) was negligible, but significantly minimized by the presence of the
structural PA in serum-containing media alone (+FBS) or supplemented with 50 µM
of soluble PA (+sPA) or cyclic RGD peptide (+cRGD) (adapted from [43]).

Another PA showing promising application in corneal wound repair is
represented by C16-KTTKS. This particular peptide is used in anti-wrinkle
cosmeceutical applications under the trade name of Matrixyl. In the first published
study on the effects of this commercially available PA, Castelletto et al. [98]
investigated the self-assembly of this PA in aqueous solution, observing tape-like
nanostructures with a broad distribution of widths and reporting that the internal
structure of these nanotapes comprised PA bilayers. Subsequently, the work
of Jones et al. [99] showed that this peptide was able to stimulate collagen
production from human corneal stromal cells (as well as dermal fibroblasts) in
a concentration-dependent manner. This finding paved the way for a more recent
investigation using another potent extracellular matrix stimulatory peptide sequence
in the form of a PA. In this case the bioactivity of a PA presenting a lumican-derived
bioactive sequence (C16-YEALRVANEVTLN) was studied [101]. Lumican is a
proteoglycan playing a structural role through binding to fibrillar collagens and
modulating fibril formation whilst regulating interfibrillar spacing. The choice
of this specific sequence is due to the fact that previous studies have shown it
to have matrikine properties [116] such as creating chemokine gradients [117]
and promoting the healing of corneal epithelial wounds [118]. Interestingly, this
PA self-assembled in twisting and curving tape-like structures, on the borderline
between nanotape and fibril structures. Regarding its functionality, this PA has
been shown to stimulate collagen production in a concentration-dependent manner,
indicating its potential use in tissue engineering and bio-fabrication. A further
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highly-represented protein family in the extracellular matrix is that of laminins.
It is well known that laminins trigger and control many cellular functions [119],
rendering them suitable candidates for the design of new bioactive PAs. In this
respect, Uzunalli et al. [100] reported an interesting study regarding the application
of a PA carrying a laminin-derived sequence for corneal stroma regeneration. In
particular, this peptide contained the sequence YIGSR derived from laminin β-chain,
which regulates cell adhesion through binding to the laminin binding protein (LBP).
Their results demonstrated that the PA containing the laminin-derived sequence
enhanced cell proliferation, keratocyte migration, and collagen I synthesis, both
from in vitro and in vivo, and to a greater extent compared to the more commonly
used RGD-PA. For this reason, this specific bioactive sequence should be considered
(alongside the others previously mentioned) in future studies involving corneal
stroma bio-fabrication and regeneration.

6. Future Perspectives

It can be argued that PAs are “eclectic” molecules, a notion related to the
fact that: (1) these molecules can be used in different forms (e.g., as colloidal
solutions or hydrogels, as well as thin coating films); (2) PAs can self-assemble in
distinct supramolecular structures depending on the molecule’s chemical structure;
(3) PAs can have a wide range of biological activities depending on the type and
number of bio-functional motives incorporated; (4) PAs can be easily designed
and used by researchers with limited expertise in synthetic and organic chemistry;
and (5) PAs can be used for various and specific applications in multiple fields,
including biochemistry, stem cell biology, biotechnology, and regenerative medicine.
Upon evaluating the state-of-the-art on the application of PAs in corneal tissue
engineering, it is evident that intriguing and promising results have been achieved
recently. In this regard, the potential next step would involve studies concerning
the response and the mechanism of integration of these constructs in animal models,
eventually followed by clinical trials. From this review, the possibility of abandoning
scaffolds (i.e., the top-down approach) also emerges . Indeed, it has been shown
that the bio-fabrication of corneal stromal tissue can be achieved entirely by human
keratocytes instructed by a smart, multi-functional PA coating template. Despite the
challenges involved in this work, current research constitutes the foundation and
inspiration for the bio-fabrication of other corneal tissues. With such a premise, it
is reasonable to conduct further studies in order to further produce multi-cellular,
multi-layered, whole-thickness corneas in vitro. Moreover, the production of such
artificial constructs paves the way for a wider range of applications. For instance,
bio-fabricated corneal constructs could be used in pharmacological studies as models
to test the effect of new drugs rather than using animals. Indeed, the development of
alternative methods that avoid or significantly reduce the use of animals for scientific
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purposes is still an important issue. In addition, PA templates could be designed
to bio-fabricate both corneal and other connective tissues using other cell sources,
such as mesenchymal or induced pluripotent stem cells, instead of adult cells. This
strategy would be useful for creating multi-cellular constructs in one step, possibly
through the use of patterned, multi-component PA systems with numerous specific
bioactive peptide motives designed to affect individual cell types. Moreover, since
the native ECM proteins are exceptionally multifunctional while PAs typically only
possess one bioactive sequence, it would be extremely interesting to design and
extensively test the self-assembling and function of PAs carrying more than one
epitope, or combine different bioactive PAs molecules in the same system.

7. Conclusions

The range of applications for PA-based nanomaterials is steadily expanding,
with emerging uses as modulators of extracellular matrix production, and as
templates of increasingly complex structure and composition. This wide range
of purposes is rooted in the fact that PAs can be rationally designed, and where the
primary, secondary, and tertiary structures of PAs depend on the a priori aim of the
study. Moreover, the use of PAs is continuously evolving, with new discoveries on the
function of specific peptide motives and advances in understanding supramolecular
chemistry facilitating the development of novel molecules. Although there are several
studies involving the use of PAs in biological systems, few are focusing on their
application in corneal tissue engineering and repair. This review has highlighted
this nascent but potentially useful specialized field, and demonstrates what can be
achieved from interdisciplinary collaboration among researchers from the physical,
chemical, biological, and clinical sciences. In this context, the current PA studies
represent an important step in the change of paradigm for tissue engineering and
regenerative medicine.
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Concise Review: Comparison of Culture
Membranes Used for Tissue Engineered
Conjunctival Epithelial Equivalents
Jon Roger Eidet, Darlene A. Dartt and Tor Paaske Utheim

Abstract: The conjunctival epithelium plays an important role in ensuring the optical
clarity of the cornea by providing lubrication to maintain a smooth, refractive
surface, by producing mucins critical for tear film stability and by protecting
against mechanical stress and infectious agents. A large number of disorders
can lead to scarring of the conjunctiva through chronic conjunctival inflammation.
For controlling complications of conjunctival scarring, surgery can be considered.
Surgical treatment of symblepharon includes removal of the scar tissue to reestablish
the deep fornix. The surgical defect is then covered by the application of a
tissue substitute. One obvious limiting factor when using autografts is the size
of the defect to be covered, as the amount of healthy conjunctiva is scarce. These
limitations have led scientists to develop tissue engineered conjunctival equivalents.
A tissue engineered conjunctival epithelial equivalent needs to be easily manipulated
surgically, not cause an inflammatory reaction and be biocompatible. This review
summarizes the various substrates and membranes that have been used to culture
conjunctival epithelial cells during the last three decades. Future avenues for
developing tissue engineered conjunctiva are discussed.

Reprinted from J. Funct. Biomater. Cite as: Eidet, J.R.; Dartt, D.A.; Utheim, T.P.
Concise Review: Comparison of Culture Membranes Used for Tissue Engineered
Conjunctival Epithelial Equivalents. J. Funct. Biomater. 2015, 6, 1064–1084.

1. Conjunctiva

Conjunctival epithelium is non-keratinized and is at least two cell layers thick [1].
The number of cell layers depends on the degree of conjunctival stretching [2]. The
conjunctival epithelium consists of two phenotypically distinct cell types, stratified
squamous non-goblet cells (90%–95%) and goblet cells (5%–10%) (Figure 1), in
addition to occasional lymphocytes [3] and melanocytes. The conjunctival epithelium
plays an important role in ensuring the optical clarity of the cornea by providing
lubrication to maintain a smooth, refractive surface, and by producing mucins critical
for tear film stability [4]. The conjunctiva also protects the eye against mechanical
stress and infectious agents. It, furthermore, contributes water and electrolytes to the
tear fluid [5]. The squamous cells produce cell membrane-tethered mucins, while
the goblet cells secrete the gel-forming mucins, both of which helps to maintain a
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protective tear film. The superficial surface of the squamous cells are covered by
the membrane-tethered mucins mucin-1 (MUC1), mucin-4 (MUC4) and mucin-16
(MUC16) [6], which are essential for tear stability and make up the glycocalyx [6].
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stained sections of rat conjunctiva. The black arrowhead in the HE photomicrograph 

indicates mucin granules of goblet cells. The black dotted line indicates the basal membrane, 

which overlies loose vascularized conjunctival forniceal connective tissue. Original 

magnification of the HE photomicrograph: ×630. Immunofluorescence photomicrographs of 

forniceal conjunctival sections show conjunctival epithelial cell markers, which include the 

goblet cell markers anti-cytokeratin 7 (Ck7), Ulex europaeus agglutinin 1 (UEA-1) lectin 

and anti-mucin 5AC (MUC5AC), as well as the marker for stratified squamous non-goblet 

cells anti-cytokeratin 4 (Ck4). Nuclei were stained with DAPI (blue). Ck7 is expressed in 

the goblet cell body, whereas UEA-1 and MUC5AC stain the goblet cell mucin-contents. 

Ck4 is only detected in squamous cells between goblet cell clusters. The basal membrane is 

indicated by the white dotted line. Scale bars: 100 μm. Adapted from Fostad et al. 2012 [7]. 

The gel-forming mucin-5AC (MUC5AC) and mucin-2 (MUC2) are secreted by goblet cells into the 

aqueous layer of the tear film [8,9] (Figure 2). The squamous conjunctival cells also contribute to the 

hydration of the ocular surface through ion transport across the apical cell membrane with accompanying 

osmotic water transfer [5]. Goblet cells contain mucin-granules and have traditionally been identified 

through their secretory product using markers, including the ulex europaeus agglutinin-1 (UEA-1) lectin, 

Figure 1. Photomicrographs show hematoxylin and eosin (HE) and
immunofluorescently stained sections of rat conjunctiva. The black arrowhead in
the HE photomicrograph indicates mucin granules of goblet cells. The black dotted
line indicates the basal membrane, which overlies loose vascularized conjunctival
forniceal connective tissue. Original magnification of the HE photomicrograph:
ˆ630. Immunofluorescence photomicrographs of forniceal conjunctival sections
show conjunctival epithelial cell markers, which include the goblet cell markers
anti-cytokeratin 7 (Ck7), Ulex europaeus agglutinin 1 (UEA-1) lectin and anti-mucin
5AC (MUC5AC), as well as the marker for stratified squamous non-goblet cells
anti-cytokeratin 4 (Ck4). Nuclei were stained with DAPI (blue). Ck7 is expressed
in the goblet cell body, whereas UEA-1 and MUC5AC stain the goblet cell
mucin-contents. Ck4 is only detected in squamous cells between goblet cell clusters.
The basal membrane is indicated by the white dotted line. Scale bars: 100 µm.
Adapted from Fostad et al. 2012 [7].

The gel-forming mucin-5AC (MUC5AC) and mucin-2 (MUC2) are secreted
by goblet cells into the aqueous layer of the tear film [8,9] (Figure 2). The
squamous conjunctival cells also contribute to the hydration of the ocular surface
through ion transport across the apical cell membrane with accompanying osmotic
water transfer [5]. Goblet cells contain mucin-granules and have traditionally
been identified through their secretory product using markers, including the ulex
europaeus agglutinin-1 (UEA-1) lectin, anti-mucin-5AC (MUC5AC) and anti-AM3
antibodies, and periodic acid-Schiff (PAS) reagent that target the goblet cell
gel-forming mucins [10]. In addition to cytokeratin 4 (Ck4) (Figure 1), squamous
conjunctival epithelial cells can be identified by Ck13, a binding pair of Ck4 [11].
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Figure 2. Model of the human tear film. Adapted from Nichols et al. 2001 [12].

2. Conjunctival Stem Cells

Conjunctival stem cells continuously regenerate the conjunctiva by giving rise
to both stratified squamous non-goblet and goblet cells [13], thereby maintaining
a healthy tear film [14]. Disorders that damage these stem cells cause varying
extent of keratinization, which disrupts the protective tear film and ultimately
leads to limbal stem cell deficiency (LSCD) and visual impairment or blindness.
The location of the conjunctival epithelial stem cells has been investigated in
several studies on mouse [15–17], rat [18,19], rabbit [20,21] and human [22–24]
tissue, yet no real consensus has been reached. The conjunctival stem cells have
been suggested to reside in the limbus [18], bulbar conjunctiva [15,22,23], medial
canthal [24], forniceal conjunctiva [16,17,20,22,24,25], palpebral conjunctiva [19] and
mucocutaneous junction [18,21]. Although the conjunctival stem cells may not solely
be located to one single region, their relative number generally appears to be highest
in the fornix [26].

Stem cells are surrounded and influenced by a three-dimensional
microenvironment known as a niche [27]. The niche comprises of numerous
components, including stromal cells, soluble factors, extracellular matrix (ECM),
mechanical/spatial cues and signaling molecules that dictates stem cell function [28].
The limbal stem cell niche has been reported to contain specific ECM proteins.
Moreover, the specific composition of the ECM shows topographical variations
throughout the ocular surface [29]. Thus, the specific composition of the ECM in the
substrate may affect the preservation of conjunctival stem cells in culture.
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3. Conjunctival Scarring Diseases

A large number of disorders can lead to scarring of the conjunctiva through
chronic conjunctival inflammation. Scarring varies in severity and can be self-limited,
such as in chemical/thermal burns and infectious diseases due to adeno- and herpes
viruses, or progressive, as in cicatrizing conjunctivitis, which consists of several
diseases including ocular cicatricial pemphigoid, Stevens-Johnson syndrome, atopic
keratoconjunctivitis and Sjögren’s syndrome [30]. Cicatrizing conjunctivitis is rare,
and in total these disorders have an incidence of 1.2 in 1 million in the United
Kingdom [30]. Treatment depends on the disease etiology and severity, but can
include various anti-inflammatory, immunomodulatory and immunosuppressive
drugs [31].

Surgical treatment of symblepharon includes removal of the scar tissue to
reestablish the deep fornix [32]. The surgical defect is then covered with a tissue
substitute to prevent re-obliteration. These include mechanical [33], physical [34] or
chemical [35] approaches and the grafting of conjunctival or mucous membranes [32].
Surgical techniques for restoration of a diseased conjunctiva have utilized different
conjunctival substitutes, including conjunctival autografts [36]. An obvious limiting
factor when using autografts is the size of the defect to be covered, as the amount of
healthy conjunctiva is limited. These drawbacks have led scientists to develop tissue
engineered conjunctival equivalents.

4. Tissue Engineered Conjunctival Equivalents

A tissue engineered conjunctival epithelial equivalent needs to be easily
manipulated surgically, not cause an inflammatory reaction, be biocompatible and
contain a mix of stratified squamous cells, goblet cells and undifferentiated cells.
Unlike tissue engineered corneal equivalents, conjunctival equivalents do not need
to be transparent, which increases the range of suitable culture membranes.

In addition to conjunctival epithelial cells (CEC) cultured on amniotic membrane
(AM) [4], there is likely a wide range of cell types that can be used for developing
a tissue engineered conjunctival equivalent. This assumption is based on multiple
studies demonstrating successful restoration of the cornea with cultured non-limbal
cells. Tissue engineered corneal equivalents share many of the same prerequisites as
conjunctival equivalents, e.g., with regard to barrier function and tear film support.
Besides limbal stem cells, corneal equivalents have been developed from oral mucosal
epithelial cells [37,38], embryonic stem cells (ESC) [39], bone-marrow-derived
mesenchymal stem cells (MSC) [40], immature dental pulp stem cells [41], hair
follicle-derived stem cells [42] and umbilical cord lining stem cells [43]. For
conjunctival reconstruction, epidermal keratinocytes have been cultured on AM
and transplanted to restore the conjunctiva in rhesus monkeys [44]. Although the
conjunctival stratified squamous cell markers MUC4 and Ck4 were present in the
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transplant, goblet cells were absent. In a recent study, a tissue engineered conjunctival
equivalent was developed from cultured AM epithelial cells [45]. The conjunctival
equivalent contained PAS-positive cells, indicative of goblet cells, and successfully
restored the conjunctiva in a rabbit model. Transplants containing goblet cells could
also be developed from nasal mucosa, which harbors goblet cells [46]. Thus, there
are multiple possible cell sources for developing conjunctival equivalents, though no
comparative studies have defined the optimal choice of donor cells.

A number of different substrates and membranes have been attempted for tissue
engineering conjunctival epithelial equivalents. These can be categorized into: (1)
biological membranes; (2) extracellular matrix protein-containing membranes; and
(3) synthetic polymer membranes.

4.1. Biological Membranes

Seventy-six years after it was first used in ophthalmology, AM, which constitutes
the innermost layer of the fetal membranes, has a prominent role in ocular surface
reconstruction [47]. AM is particularly suited for clinical use as it supports
epithelialization [48], reduces scaring [49], suppresses the immune response [50],
reduces pain, and decreases inflammation [51]. Prior to AM transplantation
(AMT), the AM is cryopreserved, which kills all the AM cells [52]. Hence, AM
grafts function primarily as a matrix and not by virtue of transplanted functional
cells. The membranes have most commonly been cryopreserved in a basal cell
medium at ´80 ˝C [53], but a technique for freeze-drying the AM has also been
developed [54]. Freeze-dried AM can be sterilized by gamma-irradiation [54],
however, AM treated this way may release a less amount of growth factors than
conventionally cryopreserved membranes [55]. In addition, the AM can be sterilized
with per-acetic acid/ethanol and air-dried [56]. The latter technique is, on the other
hand, reported to yield inferior results compared to cryopreserved AM with respect
to rate of cell outgrowth, release of wound-healing factors, and preservation of the
AM basement membrane (BM) [57]. In patients with chronic inflammation there is a
tendency for recurrent shrinkage and symblepharon formation after restoring the
ocular surface with AM [58]. The success of transplanting AM is therefore dependent
on the underlying disease [4].

Twelve studies have described culture of CEC on AM, of which eight used
denuded AM (dAM) (Table 1). Meller et al. first reported the use of dAM for cell
culture of CEC since they noticed that the devitalized AM epithelium inhibited
adhesion and growth of the CEC [59]. All later studies using intact AM have utilized
explant culture.
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Eight out of ten studies confirmed the presence of goblet cells on AM (detected
either by their mucin content or by Ck7), irrespective of whether dAM or intact AM
had been used [59]. Data on actual percentages of goblet cells in CEC cultures on AM
are sparse, although one study reported that between 25% and 75% of the cells were
MUC5AC positive [60]. Although Ck7 positive goblet cells have been demonstrated
under serum-free conditions, addition of 10% FBS improved the preservation of
goblet cells [61]. This is in line with a study showing that FBS promotes expression of
conjunctival epithelial cytokeratins due to the effect of vitamin A [62]. Development
of mucin-containing goblet cells have also been achieved on AM independent of
feeder cells, air-lifting or high calcium [60]. Thus, AM generally promotes goblet
cell development.

Stratified CEC were obtained in all studies using AM, except one [63]. Culture
techniques to induce stratification include the use of explants, air-lifting, feeder layer,
and high calcium. Air-lifting promotes cell polarity by increasing the number of
microvilli, tight junctions, and hemidesmosomes in CEC cultures [59]. The molecular
mechanisms involved in air-lifting include the p38 mitogen-activated protein kinase
and Wnt signaling pathways [64]. Stratification was achieved when including a
feeder layer [50], air-lifting [59] and/or high calcium [65] in cell cultures.

Stratified CEC cultures were also generated on cadaveric acellular dermis
(AlloDerm) coated with collagen type 4 (COL4) [65]. The latter study employed a
serum-free culture protocol without feeder cells. Goblet cells, however, were not
reported. Hence, except for the latter study on acellular dermis, culture of CEC on
biological membranes generally promotes stratified cultures with goblet cells.
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4.2. Extracellular Matrix Protein-Containing Membranes

The conjunctival BM is a thin connective tissue membrane, which is composed
of collagen type IV (collagen α1 and α2 chains), laminin (α5, β2 and γ1 chains),
nidogen-1 and -2 and thrombospondin-4 [29]. It is therefore reasonable to assume
that a tissue engineered CEC equivalent would benefit from being surfaced by ECM
proteins. Nineteen studies have described the culture of CEC on various ECM
proteins (Table 2). Collagen type 1 (COL1) was most commonly used, either in the
form of a coating [66], a gel [67] or as a compressed gel [68]. The latter two forms offer
the mechanical strength to transfer the cultured cells to the surgical site. In addition,
fibronectin (FN), laminin (LN), Matrigel, elastin-like polymer (ELP), gelatin-chitosan
and poly-l-lysine (PLL) were tried [61,66,69–77].

Goblet cells were seen when CEC were grown inside a collagen gel [78], but
not always when grown as a monolayer on top of the collagen gel [78]. Compared
to Matrigel, CEC grown on COL1 expressed more MUC5AC RNA than Matrigel
cultures [76]. Five percent PAS positive goblet cells were detected when culturing
CEC on top of a COL1:COL3 mix in serum-free medium [71]. The latter study also
achieved stratification. When cultured without feeder cells, air-lifting or high calcium,
the CEC formed monolayer cultures on COL1 [66]. Stratified cultures were achieved
with the addition of feeder cells [67], air-lifting [67], or high calcium [76].

Matrigel is composed of LN, COL4, heparan sulfate proteoglycans, entactin,
transforming growth factor (TGF), and basic fibroblast growth factor (bFGF) [71].
Cultured CEC generally form aggregates on Matrigel rather than continuous cell
sheets [66,76]. In one study the aggregates contained PAS positive goblet cells [66].

Use of fibronectin, either alone or in a mix with COL1, was reported in four
studies [69–72]. The CEC formed monolayer cultures [70], but the presence of goblet
cells were not reported. Elastin-like polymer has been used to grow Ck7 positive
cells of the cell line IOBA-NHC [79]. Gelatin-chitosan yielded stratified cultures
with Ck4 positive squamous cells when using explant culture [77]. Of all the ECM
protein substrates, collagen gels and compressed collagen appear the most useful
for conjunctival tissue engineering due to their mechanical properties and potential
promotion of goblet cell formation.
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4.3. Synthetic Polymer Membranes

Included in this group are polymers of glycolic acid, lactic acid, ε-caprolactone,
1,3-trimethylene carbonate, ethyl acrylate, hydroxyethyl acrylate, and methacrylic
acid. One of the benefits of using these polymers is that several of them,
including poly(L-lactide-co-glycolide) (PLGA) and poly(ε-caprolactone) (PCL), are
already approved by the Food and Drug Administration (FDA) for the use in the
human body for specific applications. In addition, the biodegradability of these
polymers can be adjusted by controlling the ratio and choice of polymers. For
instance, PLGA degrades faster than PCL. Furthermore, in contrast to biological
membranes, synthetic membranes can be manufactured under sterile conditions,
thereby considerably reducing the risk of transferring infectious agents to the patient.
Although biodegradable polymers have been investigated at length with various
types of cells, only four studies reported biocompatibility with cultured CEC [80–83]
(Table 3). Three of these explored growth of CEC on polymer substrates [80–82],
whereas one investigated the toxicity of polymer extract on cells cultured on
plastic [83]. One of the studies confirmed the presence of MUC5AC positive goblet
cells of comparable density to that seen when culturing CEC on AM [80]. The
remaining studies did not report presence of goblet cells. The extract study showed
lowest to highest viability with 50:50 poly(DL-lactide-co-glycolide) (PDLGA); 85:15
PDLGA and Inion GTRTM, respectively [83]. In cell growth studies, substrates with all
three polymers demonstrated high viability [82]. Equally high viability was also seen
when growing CEC on poly(ethyl acrylate-co-hydroxyethyl acrylate) (P(EA-co-HEA))
copolymers or 90:10 poly(ethyl acrylate-co-methacrylic acid) (P(EA-co-MAAc))
copolymers [81]. Interestingly, the latter two polymer substrates showed increased
adhesion, proliferation and viability when hydrophobicity was increased. In contrast,
Ang, et al. demonstrated increased proliferation when decreasing hydrophobicity
of their PCL membranes [80]. The latter authors also obtained stratified cultures,
which became more stratified by increasing surface hydrophilicity with NaOH.
Thus, surface modification of synthetic polymer membranes can affect adhesion,
proliferation, viability and stratification. Obvious advantages of synthetic polymer
membranes include existing FDA approval for specific uses in the human body, high
mechanical strength and biodegradability.
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5. Future Avenues for Developing Tissue Engineered Conjunctival
Epithelial Equivalents

5.1. Comparative Studies of the Effect of Different Substrates on Cultured Conjunctival
Epithelial Cells

In 2010, Rama and associates described the importance of the phenotype for
clinical success following transplantation of cultured limbal epithelial cells [84]. p63,
which is a marker for undifferentiated cells, was a significant predictor of clinical
outcome [84]. It is possible that the phenotype of cultured CEC will determine
success following transplantation of CEC. Comparative studies on how various
substrates affect the cell sheet with regard to the phenotype in particular are,
therefore, warranted.

5.2. Storage and Transportation of Cultured Conjunctival Epithelial Cells

With steadily stricter regulations for cell therapy, which lead to centralization
of culture units [85], storage technology of cultured CEC has become increasingly
important to allow the tissue to be transported to eye clinics worldwide [86]. Keeping
in mind the significance of the phenotype for clinical outcome [84], assessment
of the phenotype among other parameters prior to surgery should ideally be
performed during the storage period. Moreover, storage in a hermetically sealed
container enables microbiological assessment [87]. Finally, storage technology has the
advantage of offering increased flexibility in scheduling surgery [88]. Comparative
studies on how various substrates influence the ability to store cultured CEC with
regard to morphology, viability, and phenotype should be performed to enable
worldwide access to cultured CEC.

6. Conclusion

Amniotic membrane is the most commonly used substrate for CEC culture. The
majority of the studies demonstrated that AM support the growth of goblet cells, in
contrast to several alternative substrates. A major weakness in the current literature
is the lack of comparative studies, thus such studies should be prioritized to be
able to identify the most ideal substrate for ocular surface repair. Considering the
disadvantages inherent to the use of a foreign biological material such as AM, clinical
studies involving alternative membranes should be carried out as currently only AM
has so far been used for transplanting tissue engineered CEC in humans.
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Pre-Clinical Cell-Based Therapy for Limbal
Stem Cell Deficiency
Amer Sehic, Øygunn Aass Utheim, Kristoffer Ommundsen and
Tor Paaske Utheim

Abstract: The cornea is essential for normal vision by maintaining transparency
for light transmission. Limbal stem cells, which reside in the corneal periphery,
contribute to the homeostasis of the corneal epithelium. Any damage or disease
affecting the function of these cells may result in limbal stem cell deficiency (LSCD).
The condition may result in both severe pain and blindness. Transplantation of ex
vivo cultured cells onto the cornea is most often an effective therapeutic strategy for
LSCD. The use of ex vivo cultured limbal epithelial cells (LEC), oral mucosal epithelial
cells, and conjunctival epithelial cells to treat LSCD has been explored in humans.
The present review focuses on the current state of knowledge of the many other
cell-based therapies of LSCD that have so far exclusively been explored in animal
models as there is currently no consensus on the best cell type for treating LSCD.
Major findings of all these studies with special emphasis on substrates for culture
and transplantation are systematically presented and discussed. Among the many
potential cell types that still have not been used clinically, we conclude that two
easily accessible autologous sources, epidermal stem cells and hair follicle-derived
stem cells, are particularly strong candidates for future clinical trials.

Reprinted from J. Funct. Biomater. Cite as: Sehic, A.; Utheim, Ø.A.; Ommundsen, K.;
Utheim, T.P. Pre-Clinical Cell-Based Therapy for Limbal Stem Cell Deficiency.
J. Funct. Biomater. 2015, 6, 863–888.

1. Cornea and Limbal Stem Cells

The cornea is the anterior, transparent, and avascular tissue with high refractive
power that directs light bundles to the retina [1]. The highly specialized structure
of the cornea is essential for normal vision. From anterior to posterior, the cornea is
composed of five layers, i.e., epithelium, Bowman’s membrane, stroma, Descemet’s
membrane, and endothelium. The corneal epithelium is composed of a basal layer
of column-shaped cells, a suprabasal layer of cuboid wing cells, and a superficial
layer of flat squamous cells [2]. The thickness of the corneal epithelium in different
species, e.g., human, mouse, and rabbit, is conspicuously perpetual, ranging from
45 to 50 µm [3–5]. The renewal of corneal epithelium differs between species and is
renewed every 9–12 months in rabbits [6]. The corneal epithelium plays an essential
role in maintaining the cornea’s avascularity and transparency [7].
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The self-renewing properties of the corneal epithelium are an important
requirement for corneal integrity and function [8]. This process is dependent on a
small population of limbal stem cells that are situated in the basal region of the
limbus [9,10]. Limbal stem cells are presented in the basal layer of the limbal
epithelium and give rise to fast-dividing, transient amplifying cells [11]. Transient
amplifying cells go through a restricted number of divisions before becoming
terminally differentiated cells [12]. It has been hypothesized that corneal epithelial
maintenance can be defined by the equation X + Y = Z, in which X refers to
proliferation of basal cells; Y is the centripetal movement of peripheral cells; and Z is
the epithelial cell loss from the corneal surface [13].

2. Limbal Stem Cell Deficiency

Any process or disease that results in dysfunction or loss of the limbal epithelial
cells (LEC) may result in limbal stem cell deficiency (LSCD) [7]. In LSCD, the
conjunctival epithelium migrates across the limbus, resulting in loss of corneal
clarity and visual impairment. The condition is painful and potentially blinding [14].
Normal and well-functioning LEC act as an important barrier, preventing invasion
of the cornea by conjunctival tissue. Limbal stem cell deficiency typically worsens
over time since chronic inflammation not only results in the death of LEC, but also
negatively affects the remaining stem cells and their function [14].

The prevalence and incidence of LSCD worldwide are not known. In India,
the prevalence is estimated to be approximately 1.5 million [15], and the incidence
in North America is estimated to be “thousands” [16]. The etiology of many cases
of LSCD is known; however, idiopathic cases also exist [17,18]. Acquired causes of
LSCD include thermal and chemical burns of the ocular surface, contact lens wear,
ultraviolet radiation, extensive cryotherapy, or surgery to the limbus [7]. There are
also numerous hereditary causes of LSCD, including aniridia, where the anterior
segment of the eye including the limbus is imperfectly developed. Furthermore,
autoimmune diseases involving the ocular surface, e.g., Stevens-Johnson syndrome
and ocular cicatricial pemphigoid, are examples of nonhereditary causes of LSCD.

Limbal stem cell deficiency is classified as either partial or total, depending on
the extent of the disorder. Conjunctivalization is pathognomonic for LSCD. Other
signs are persistent epithelial defects, superficial and deep corneal vascularization,
and fibrovascular pannus. Limbal stem cell deficiency in patients with significantly
dry eyes results in a partial or total keratinized epithelium [19]. The diagnosis can be
corroborated by detection of conjunctival cells on the corneal surface by cytological
analysis [20] or in vivo confocal microscopy [21], but is seldom performed as the
diagnosis is often obvious.
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3. Treatment Approaches for Limbal Stem Cell Deficiency

The core of conservative treatment for LSCD lies in the improvement of epithelial
healing. A range of clinical procedures, with distinctive benefits and limitations,
are currently available for treating LSCD. However, variations in both the severity
and causes of LSCD explain why the application of one treatment approach will
not be adequate for all. A great variety of cell-based therapeutic strategies have
been suggested for LSCD over the past 10 years. In cases of partial LSCD, amniotic
membrane (AM) can be applied to the affected eye and aids in repopulating the
ocular surface with corneal epithelium [22]. With increased understanding of the
origin of the stem cells in the limbus [10], the transplantation of limbal grafts was
introduced in 1989 [23], a promising treatment strategy for restoring the ocular
surface following LSCD. This procedure, however, carried a risk of inducing LSCD in
the healthy eye due to the need of large limbal biopsy, making the therapy impossible
in cases of bilateral LSCD.

In 1997, a groundbreaking therapeutic strategy involving ex vivo expansion of
LEC was introduced [24]. The principle of this method is to culture LEC harvested
from the patient, a living relative, or a cadaver on a substrate in the laboratory
and then transfer the cultured tissue onto the eyes of patients suffering from LSCD.
This therapy has gained popularity in ophthalmology as it increases cell numbers
before transplantation without the need for a large limbal biopsy. It is suggested
that the mechanism underlying the improvement in the ocular surface after LEC
allograft transplantation is due to the stimulation of a small number of residual
dormant host cells, rather than transplanted cells, permanently replacing the ocular
surface [25]. Another possibility is that the transplanted graft somehow attends to
stimulate progenitor cells in the blood stream to repopulate the ocular surface [25].

Recently, the use of induced pluripotent stem cells (iPSCs) has attracted great
attention [26,27]. Following culture for two weeks on an amniotic membrane,
limbal iPSCs developed substantially higher expression of several putative limbal
stem cell markers, including ABCG2 and ∆Np63α, than did fibroblast iPSCs [27].
The successful generation of iPSCs from human primary LEC, and subsequent
re-differentiation back to the limbal corneal epithelium, has been demonstrated
in vitro [27]. However, IPSCs have so far not been used in clinical studies or
experimental animals for ocular surface reconstruction, despite the great promise
this treatment holds.

Since 1997, several research groups have shown favorable effects of ex
vivo cultured cell therapy for LSCD in both clinical studies and experimental
animals. There is currently a strong trend toward applying autologous sources
as there is no risk for immunological reactions and, therefore, no requirement for
immunosuppressive therapy with all known side effects [28]. Since 2003, several
non-limbal cells have been successfully used to reconstruct the corneal epithelium
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in bilateral LSCD, in which limbal tissue is not recommended for harvest. Among
non-limbal cell types, oral mucosal epithelial cells and conjuctival epithelial cells
are the only laboratory cultured cell sources that have been explored in humans.
Oral mucosal epithelial cells were the first non-limbal cell type to be identified as
a potential source for LSCD. So far, 242 patients have been reported to be treated
with a success rate of 72% [29]. Since 2009, conjunctival epithelial cells have also
been used with the purpose of reverting LSCD in clinical trials, but the number
of patients treated is small [30]. Since 2010, there have been two clinical studies
including 17 eyes that have used nasal mucosal epithelial cells to treat LSCD with
promising results [31,32]. In contrast to most of the other cell types that have been
used for LSCD therapy, nasal mucosa was transplanted to the eyes without prior ex
vivo cultivation, which substantially simplifies the procedure.

A number of other non-ocular cells have been investigated as alternative stem
cell sources for treating LSCD; however, they have only been studied in animal
experiments. As none of the cell types used in clinical trials have proved to be
successful in more than about three of four cases [7,29], there has been a constant
search for novel cell types that potentially could be more effective in reverting
LSCD. The present review focuses on these cell types. The review was prepared by
searching the National Library of Medicine database using the broad search term
“limbal” in an attempt not to leave out any relevant publications. In total, the search
resulted in 3634 studies, whereof 19 studies, published from 2004 to 2014, were
related directly to the core topic of the present review. These studies include the
following cultured cell types: (1) bone marrow-derived mesenchymal stem cells
(Table 1) [33–40]; (2) embryonic stem cells (Table 2) [41–44]; (3) epidermal stem cells
(Table 3) [45–47]; (4) hair follicle-derived stem cells (Table 4) [48]; (5) immature dental
pulp stem cells (Table 4) [49,50]; (6) orbital fat-derived stem cells (Table 4) [51]; and
(7) umbilical cord stem cells (Table 4) [52]. Various substrates and methods have been
applied to culture and transplant these cell sources onto damaged corneas of mice,
rats, rabbits, pigs, and goats (Figure 1, Table 5). In the present review, the ability of
all these cell sources to treat LSCD is discussed.
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Figure 1. Overview of stem cell sources used in animal experiments. Arrows,
including number of studies, indicate the connection between different stem cell
sources and LSCD animal models that they have been transplanted to. HFSCs,
hair follicle-derived stem cells; MSCs, mesenchymal stem cells; SCs, stem cells;
IDPDSCs, immature dental pulp stem cells; OFSCs, orbital fat-derived stem cells;
UCSCs, umbilical cord stem cells.
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Table 5. Different culture and carrier biomaterials and methods used in cell-based
therapies of LSCD, explored in animal models.

Methods Materials References

Transplantation Carrier-free cell sheets [36,41–44]
Transplantation Amniotic membrane [34,38,46,47,49,50,52,53]

Intravenous injection – [39]
Transplantation Fibrin scaffold [33,45,48]
Transplantation Nanofiber scaffold [40]

Injection under amniotic membrane – [37]
Topical application/Intra-limbal injection – [51]

4. Substrates for Corneal Reconstruction

To what extent biomechanical properties of the underlying substrate determine
the success of ex vivo expansion of stem cells in treatment of LSCD is unknown. It is
reasonable to assume that the optimal substrate will at least in some way resemble
the limbal niche, in which limbal stem cells reside. The most common culture
substrate for corneal reconstruction has so far been human AM. However, a number
of alternative biological, biosynthetic, or synthetic substrates have been suggested
as potential materials for ocular surface reconstruction (Table 6). The fundamental
characteristics of an appropriate scaffold include cell attachment and cell proliferation
both in culture and after transplantation, transparency, mechanical stability, and
biocompatibility. In the studies on cell-based therapies for LSCD that have only
been investigated in animal experiments, three substrates have so far been used:
AM [34,38,46,47,49,50,52,53], nanofiber scaffold [40], and fibrin scaffold [33,45,48].
In addition, carrier-free methods [36,41–44], transplanting intact cell sheets without
an underlying supportive membrane, injection of cells under transplanted AM [37],
topical application of cells [51], intra-limbal injection of cells [51], and intravenous
injection through an ear vein [39] have been applied (Table 5).

Amniotic membrane promotes cellular growth and exhibits anti-angiogenic
and anti-inflammatory characteristics [54]. However, AM exhibits some significant
disadvantages, including limited transparency and mechanical strength, poor
standardization of preparation, risk for disease transmission, and biological
variability (Table 7) [55]. There are extensive similarities between the basement
membrane composition of AM and limbal niche, but AM lacks limbus-specific
environmental factors, making it unsuitable as a surrogate niche for limbal stem
cells [56]. In the studies on cell-based therapies of LSCD that have only been
investigated in animal experiments, AM, with favorable results (Tables 1, 3 and 4),
has been used as a substrate for culture and transplantation of bone marrow-derived
mesenchymal stem cells (MSCs) [34,35,38], epidermal stem cells (SCs) [46,47],
immature dental pulp stem cells (IDPSCs) [49,50], and umbilical cord stem cells
(UCSCs) [52].
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Table 6. Potential biomaterials and carriers for ocular surface reconstruction.

Biological/Biosynthetic Synthetic

Amniotic membrane [57] Contact lenses [58]
Chemically cross-linked hyaluronic acid-based hydrogels [59] Mebiol Gel (thermo-reversible polymer gel) [53]
Chitosan matrix/silver matrix/gold matrix [60] Nanofiber scaffolds [40]
Collagen IV-coated plates [61] Petrolatum gauze [24]
Collagen membranes [62] Plastic [25]
Corneal stroma [63] Poly(lactide-co-glycolide) electrospun scaffolds [64]
Fibrin [65] Poly-ε-caprolactone electrospun scaffolds [66]
Human keratoplasty lenticules [67]
Laminin-coated compressed collagen gel [68]
Matrigel (reconstituted basement membrane extract) [69]
Plastic compressed collagen [70]
Recombinant human cross-linked collagen scaffold [71]
Silk fibroin [72]
Silk fibroin mixed with polyethylene glycol [72]

The list of possibilities is not complete.

As a substitution for natural extracellular matrix, investigators have attempted
to produce synthetic nanofiber scaffolds, primarily using electrospinning [66], with
the purpose of supporting cellular growth in corneal engineering. Nanofibers are
three-dimensional (3D) and exhibit an enormous surface area. Polycaprolactone,
which is a degradable polyester, has been found to have sufficient mechanical
strength, high biocompatibility, low production costs, and ease of use (Table 7) [73].
Polycaprolactone has proved to be a suitable substrate for culture of corneal [66],
limbal [66], and conjuntival cells [35]. Zajiceva et al. cultured bone marrow-derived
MSCs on 3D nanofiber scaffolds fabricated from polyamide and transplanted the
sheets onto the cornea of LSCD mice models [40]. The viability and morphology
of cells grown on these nanofibers were comparable with those grown on plastic.
Recently, a protocol for the use of nanofiber scaffolds for the growth of MSCs and
limbal stem cells, and for their transplantation onto a damaged ocular surface in
a mouse model, has been described, demonstrating the potential for nanofibers in
clinical studies [74]. There are no studies, however, that have used nanofiber scaffolds
for ocular surface reconstruction in humans.

Fibrin, a degradable natural substrate, has been used as a culture membrane
in the treatment of LSCD in humans [75,76]. Fibrin substrates provide several
advantages, such as relatively high mechanical strength, a high degree of
transparency, and rapid bioadsorbence (Table 7) [54]. Fibrin, compared to,
for example, collagen, has been shown to promote growth, survival, and an
undifferentiated phenotype of cultured LEC [77]. The value of this membrane in
ocular surface reconstruction has been further supported in LSCD rabbit models,
using bone marrow-derived MSCs [33] and epidermal SCs [45], and in mice with
hair follicle-derived stem cells (HFDSCs) [48].

Most of the cell-based therapeutic strategies entail the use of underlying
substrate scaffolds. However, carrier-free methods, without a supportive membrane,
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have also been applied. Polymers that are responsive to temperature can detach
adherent cells by reducing the temperature from 37 ˝C to 20 ˝C [78]. Carrier-free
techniques take advantage of adhesive properties of the basement membranes.
It was demonstrated that the presence of β1 integrin in the carrier-free group is
important for the attachment of cell sheets to the ocular surface [79]. Promising
results with carrier-free transplantation in animal studies are reported using
bone marrow-derived MSCs in rabbits [36] and embryonic SCs in pigs [43] and
mice [41,42,44].

Table 7. Properties, advantages, and disadvantages of different carrier biomaterials
and methods used in cell-based therapies of LSCD, explored in animal models.

Carriers/Methods Transparency Mechanical
Strength Elasticity Advantages Disadvantages

AM + ++ +++

Stimulates cell growth,
anti-inflammation,
anti-angiogenesis,
proper elasticity

Limited transparency,
variable quality, risk of
disease transmission,
limited mechanical
strength, poor
standardization

Carrier-free
method N/A N/A N/A

Rapid adhesion, does
not require preparation
and standardization of
membranes, does not
require sutures

Possibility for
detachment from the
ocular surface in the
early period
after surgery

Fibrin gel ++ +++ +++

Proper transparency,
good bioadsorbence,
easy manipulation,
good mechanical
strength, elasticity,
degradable

Possibility for immune
response, risk for
disease transmission

Nanofiber ++ ++++ ++

Good transparency, high
mechanical strength,
highly flexible, proper
biocompatibility, easy to
use, controlled shape
and pore size, low cost

Limited elasticity,
high cost

N/A indicates not applicable.

5. Cultured Bone Marrow-Derived Mesenchymal Stem Cells

Mesenchymal stem cells have multi-lineage potential [80]. Previous studies have
reported that bone marrow-derived MSCs have a beneficial effect on the survival,
growth, and proliferation of various types of cells, such as cardiac progenitor
cells [81], neural stem cells [82], neurons [83], and Schwann cells [84]. Studies
have demonstrated that in vivo administration of MSCs decreases the incidence of
graft-versus-host disease in humans and mice [85,86], inhibits the manifestation
of autoimmune diseases [87], impairs septic complications [88], and considerably
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counteracts rejection of allogeneic corneal allografts [89]. After in vivo application of
MSCs, these cells migrate into the damaged area, thus supporting tissue healing [90].

The role of bone marrow-derived MSCs has also been investigated in corneal
tissue regeneration. To date, as many as eight animal studies have been performed
using this cell source for corneal repair following induced LSCD (Table 1). Various
substrates and methods have been applied to transplant cultured MSC cells to
damaged cornea of mice, rats, and rabbits, including AM [34,35,38], nanofiber
scaffold [40], fibrin scaffold [33], carrier-free sheets [36], injection under transplanted
AM [37], and intravenous injection through an ear vein [39].

Overall, the results obtained from animal experiments show that bone
marrow-derived MSCs have a favorable effect with regard to cell differentiation into a
corneal epithelial phenotype, improved corneal clarity, and reduced vascularization
(Table 1). In one mouse study, with the short follow-up time of two weeks, the
authors reported that transplantation of bone marrow-derived MSCs on nanofiber
scaffold carriers supported the epithelial healing and inhibited local inflammatory
reactions [40]. The other studies, with follow-up times ranging from one to six
months, reported that the reconstruction of corneal epithelium after transplantation
of bone-marrow derived MSCs was achieved in 90.6% (29/32) of the experimental
rats [34,35,38] and 100% (31/31) of the experimental rabbits [33,36,37,39]. In rats
with induced LSCD, where cultured cells were transplanted on AM, the improved
corneal clarity was achieved in 87.5% (28/32) of the transplanted animals, and
the cornea was completely transparent in 78.6% (22/28) of the animals [34,35,38].
However, no studies reported that the cornea was completely transparent after
transplantation in rabbit LSCD models [33,36,37,39]. In one of these studies where
MSCs were transplanted on a fibrin carrier, the iris was partially clear in 30% (3/10)
and completely obscure in 70% (7/10) of the transplanted animals [33]. The studies in
both rats and rabbits have also revealed that some neovascularization was observed
in all transplanted eyes, with the best outcome being neovascularization limited to 2
mm central to the limbus 10 weeks after the transplantation [34].

It is speculated that the favorable effect of bone marrow-derived MSCs may
be mediated by the intercellular signaling of epidermal growth factor (EGF) [91]. It
has been suggested that EGF may be one of the most important mitogens of corneal
epithelial cells [33,34]. Furthermore, bone marrow-derived MSCs induced to corneal
lineage exhibited up-regulation of the putative limbal epithelial stem cell-specific
genes p63 and β1-integrin, and protein levels of p63 and CK3 were increased [38].
Other investigators have reported similar findings with the up-regulation of key
putative stem cell markers [33,34,36,37]. This may be particularly important in the
light of the recent finding by Rama et al. that the phenotype of cultured LEC is
critical to ensure successful reconstruction of the ocular surface following LSCD [76].
The authors found that cell cultures in which p63-bright cells constituted more than
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3% of the total number of cells were associated with successful transplantation in
78% of patients. In contrast, cultures in which p63-bright cells made up 3% or less
of the total number of cells, successful transplantation was only seen in 11% of
patients. In conclusion, the investigations performed in animal experiments suggest
that bone marrow-derived MSCs may serve as a possible stem cell source for corneal
reconstruction in humans, however, neovascularization was a consistent feature
following transplantation.

6. Cultured Embryonic Stem Cells

Embryonic SCs are widely accepted as a significant cell source in tissue
regeneration due to their great plasticity. A number of cell types have been induced
from embryonic SCs in vitro, e.g., lung alveolar epithelial cells [92] and epithelial cells
of the thymus [93]. It has also been demonstrated that embryonic SCs are capable
of differentiating into corneal epithelial-like cells [94,95]. There are hitherto four
studies that have investigated the potential of embryonic SCs for regeneration of
the cornea in animal LSCD models (Table 2). In these studies, embryonic SCs were
either cultured on collagen IV [41–43] or gelatin coated plates [44]. After culture,
the carrier-free cell sheets were transplanted onto the corneas of mice [41,42,44] and
pigs [43] (Table 2).

Following transplantation of cultured embryonic SCs onto corneas of LSCD
animal models, re-epithelialization of the corneal surface with monolayer [41]
and multilayer [42–44] epithelial-like cells was observed. The restored epithelium
exhibited high levels of expression of CD44 and E-cadherin, which are important in
corneal epithelial wound healing [41,42,44]. Furthermore, it has been demonstrated
that embryonic SCs induced into epithelial-like cells expressed the basal limbal
epithelial marker p63 [42,43] and the mature corneal epithelial marker CK12 [41–44].

Disadvantages of using embryonic SCs include difficulty of access, ethical
concerns, high costs, immunogenicity, and risk of tumor formation [96]. None of
the studies using embryonic SCs in animals have reported the degree of success
in terms of number of animals with corneal reconstruction, or the effect on
corneal transparency and neovascularization. Moreover, the follow-up time is
very short (from one day to five weeks). Taken together, more studies with longer
follow-up times, which also inform on the degree of success, are warranted prior to
clinical trials.

7. Cultured Epidermal Stem Cells

Epidermal SCs have the remarkable ability to differentiate into other types of
tissues [97]. Three studies have so far demonstrated the potential of epidermal SCs to
regenerate the corneal surface following LSCD (Table 3). Two of the studies used AM
for the culture and transplantation of epidermal SCs onto the cornea of goats [46,47],
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whereas the other used fibrin scaffold in rabbits [45]. These studies demonstrated
that culture and transplantation of epidermal SCs onto damaged cornea successfully
restored the corneal epithelium in 100% (22/22) of the animals. Moreover, the
cornea became completely transparent with only mild neovascularization [45–47]. In
one study, the corneal surface was intact with normal transparency for over three
months [45]. In a study by Yang and colleagues, with a follow-up time to 30 months,
the cornea was clear in three or four quadrants in 80% (8/10) of animals [46]. In a
third study, with a follow-up time to 24 months, 71.4% (5/7) of the eyes of the treated
animals had two or three quadrants of clear cornea [47]. Corneal perforation during
the operation was reported in one animal [47]. No other complications were noted in
any of the animals.

Following transplantation of the epidermal SCs onto the cornea of goats, the
epidermal markers CK1/10 were down-regulated in the corneal stroma at 12 months,
whereas the expression of the CK3, CK12, and PAX6 was up-regulated in the
reconstructed epithelium [46]. The authors suggested that a possible mechanism of
epidermal SCs in reconstruction of the damaged corneal epithelium involves the
down-regulation of CK1/10 and up-regulation of PAX6. The PAX6 gene is involved
in controlling eye formation during embryonic development [45,98,99], and recently
the transduction of PAX6 in skin epithelial stem cells has been demonstrated to be
adequate to transform epidermal SCs to limbal stem cell-like cells [45].

In conclusion, the results obtained with epidermal SCs in animal studies are
very promising, with a high degree of success following transplantation in many
animals, even with a follow-up period of 2.5 years [46,47]. Since epidermal SCs are
also exceptionally easy to access, they may prove to be an excellent cell type for
treating LSCD in humans.

8. Cultured Hair Follicle-Derived Stem Cells

The hair follicle harbors mesenchymal stem cells in the dermal papilla and
connective tissue sheath that have large plasticity and can differentiate—given
appropriate conditions in vitro and in vivo—into several cell lineages. These include
chondrogenic, osteogenic, adipogenic, myogenic, neurogenic, and hematopoietic
cell lineages [100–102]. In addition, the hair follicle comprises stem cells of
epithelial origin, residing in the bulge region of the outer root sheath. The cells
possess the ability to differentiate into hair follicles and sebaceous glands under
physiological conditions. Following injury, however, these stem cells differentiated
into epidermis [103–105].

By means of conditioned media harvested from corneal and limbal stromal
fibroblasts, Meyer-Blazejewska et al. found that hair follicle-derived stem cells
(HFSCs) were able to be reprogrammed in vitro into cells with a corneal epithelial
phenotype [106]. In a follow-up study, the same research group performed in vivo
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experiments using a transgenic mouse model that allows HFSCs to change color
upon differentiation to corneal epithelial cells, in which CK12 is expressed [48]. Hair
follicle-derived stem cells were cultured on fibrin scaffolds and transplanted onto the
cornea of mice with induced LSCD. The achieved results were promising, with cell
differentiation into a corneal epithelial phenotype and suppression of vascularization
and conjunctival ingrowth with reconstruction of the ocular surface in 87.5% (7/8) of
the transplanted animals two weeks following transplantation.

Due to promising results in an animal study comprising as many as 31 mice and
extremely easy access, HFSCs clearly warrant further investigations.

9. Cultured Immature Dental Pulp Stem Cells

Human immature dental pulp cells (IDPSCs) are capable of differentiation into
a multitude of cell types, including neurons, smooth and skeletal muscle, cartilage,
and bone [107]. There are two animal studies using human IDPSCs to treat LSCD in
which the cells were cultured on AM and transplanted onto the damaged cornea of
rabbits [49,50]. Human immature dental pulp cells expressed markers in common
with LEC/corneal cells, such as ABCG2, β1-integrin, p63, and CK3/12 [50]. In
2009, Monteiro et al. [50] demonstrated that transplantation of IDPSCs resulted
in reconstruction of the ocular surface in 100% (5/5) of experimental animals.
The authors also reported gradual improvement in corneal transparency during
a follow-up time of three months [50]. One year later, Gomes and colleagues showed
that rabbit eyes after transplantation of IDPSCs exhibited well-organized corneal
epithelium and improved corneal transparency in 100% (5/5) of animals with mild
chemical burn damage, while control corneas developed total conjunctivalization
and opacification [49]. In the animals with severe chemical burns, 75% (3/4)
of transplanted eyes showed less organized and loose corneal epithelium and
inflammatory cells within the superficial and stromal layers. Furthermore, one
animal exhibited a thin corneal epithelium and superficial neovascularization [49].

Overall, these two studies using IDPSC have shown that the transplantation
of tissue engineered IDPSC sheets could successfully restore the ocular surface in
animal models of LSCD. Human IDPSC are relatively easy to access from the dental
pulp; however, the need for extraction of the tooth is a clear disadvantage with
this technology.

10. Cultured Umbilical Cord Stem Cells

There is only one study on the potential use of umbilical cord stem cells
(UCSCs) to reverse LSCD in animals [52]. The UCSCs were cultured on AM
and then transplanted onto the cornea of a LSCD rabbit model, resulting in
regeneration of a clear corneal epithelium with a smooth surface and minimal corneal
neovascularization in 66.7% (4/6) of the animals. Mild superficial inflammation
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was reported in one eye, whereas severe neovascularization was observed in the
other. Furthermore, it was demonstrated that this new corneal smooth surface
exhibited expression of normal corneal-specific markers CK3 and CK12, but not
CK4 or CK1/10. Compared to embryonic SCs, umbilical cord stem cells have the
advantage of being less immunogenic [108], non-tumorigenic [108], and ethically
acceptable [52]. Compared to hair follicles and epidermal cells, the disadvantages of
UCSCs include more complicated accessibility and allogeneic transplantation.

11. Cultured Orbital Fat-Derived Stem Cells

Multipotent stem cells have recently been successfully isolated and purified from
human orbital fat tissue [109]. It has been demonstrated that the growth kinetics of
orbital fat-derived stem cells (OFSCs) resemble those of bone marrow-derived MSCs,
and that they share several surface markers [110]. Low immunogenicity of OFSC
transplantation has been demonstrated in a xenotransplant model [110]. Furthermore,
OFSCs possess adipogenic, chondrogenic, and osteogenic differentiation capacity,
and are capable of differentiating into corneal epithelial cells in vitro [109]. So far,
there is only one study on the potential use of OFSCs to treat damaged ocular surfaces
in mice [51]. The authors reported that the topical administration and intra-limbal
injection of OFSCs resulted in the reconstruction of clear corneal epithelium one
week after treatment. It is suggested that inflammatory inhibition and corneal
epithelial differentiation by OFSCs are responsible for corneal wound healing in
the first few days, and that corneal stroma engraftment of OFSCs at a late stage
is associated with corneal transparency [51]. The possibility of a topical approach
to deliver OFSCs to reconstruct the ocular surface is particularly promising as it
represents a non-invasive method. So far, few other non-invasive strategies have
been suggested for the treatment of LSCD, and currently include the use of amniotic
membrane extract [111], limbal fibroblast conditioned medium [112], and autologous
serum [113], “a tonic for the ailing epithelium” [114].

12. Challenges and Future Perspectives

Over the past 10 years, a number of stem cell sources have been suggested for the
treatment of ocular surface disorders. The clinical decision as to the optimal approach
to treat LSCD has become challenging due to a precipitous increase in treatment
options coupled with an almost absence of comparative studies. Comparisons
between animal experiments of cell-based therapies of LSCD are difficult due
to the following factors: (a) various methods for inducing LSCD in animals, (b)
assorted culture techniques, (c) various transplantation methods, (d) differences in
postoperative treatment, (e) disparities in follow-up time, and (f) huge differences in
the presentation of experimental data. Increased standardization of these parameters
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will simplify the comparisons between animal experiments involving different stem
cell sources, thereby encouraging corneal regenerative medicine.

Mechanisms through which cell-based therapies reconstruct the ocular surface
are still elusive. The transplanted cells may substitute the progenitor/stem cells of the
host for a period of time and/or revitalize the stem cells of the host, e.g., by secreting
growth factors. There are several lines of evidence supporting the hypothesis that
cultured cells transplanted onto the cornea primarily work by providing a favorable
environment. The fact that LSCD can be successfully treated by a number of cell types
implies that factors other than the choice of cell type may govern clinical success.
The identification of factors secreted from cultured non-limbal epithelial cells that
may be involved in the revitalization of limbal stem cells is an exciting future avenue
for research.

It is likely that the phenotype of cultured non-limbal cells affects success
following transplantation [76]. Studies on how various culture parameters affect the
cell sheet, with particular emphasis on the phenotype, are warranted.

13. Conclusions

Animal experiments with epidermal SCs, HFSCs, IDPSCs, and bone
marrow-derived MSCs have all shown promising results for the treatment of LSCD
(Table 8). They represent an autologous source of cells in contrast to embryonic SCs
and UCSCs. The long-term effects using embryonic SCs and UCSCs are unknown as
none of the cell types have a follow-up time longer than five weeks. This contrasts
sharply with the 2.5 year follow-up time for transplanted cultured epidermal SCs.
Epidermal SCs and HFSCs both have the distinct benefit of exceptional ease of
access. Coupled with promising results in many animals, these two types are
particularly strong candidates for future clinical trials. Future research on these cells
could include the development of a xenobiotic culture and storage [115–120] system
that can keep the cells in a relatively undifferentiated state [76], while maintaining
sufficient strength to be suitable for transplantation. Such a system would increase
the safety [121], flexibility [122], global impact [123], and, most likely, the clinical
results of the transplants [76].
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Table 8. Overall success in ocular surface reconstruction using different stem
cell sources.

Types of Stem Cells Success Complications
(Number of Animals)

Ease of
Access

Number of Animals
(Number of Studies)

Autologous
Source

Ethical
Concerns

Bone Marrow-
Derived MSCs +++ – ++ 63 (8) 1 Yes No

Embryonic SCs + Mild immune reaction * + 25 (4) 2 No Yes
Epidermal SCs ++++ Perforation (1) ++++ 22 (3) Yes No

HFSCs +++ – ++++ 31 (1) Yes No
IDPSCs +++ – ++ 14 (2) Yes No
OFSCs ++ – ++ 12 (1) Yes No

UCSCs ++ Mild superficial
inflammation (1) ++ 6 (1) No No

1 number of animals not reported in two studies; 2 number of animals not reported in one
study; * number of animals not reported; HFSCs, hair follicle-derived stem cells; MSCs,
mesenchymal stem cells; SCs, stem cells; OFSCs, orbital fat-derived stem cells; UCSCs,
umbilical cord stem cells; +: low degree; ++: moderate degree; +++: high degree; ++++:
very high degree.
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