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Active pharmaceutical ingredients (APIs) are highly valuable, highly sensitive products resulting
from production processes with strict quality control specifications and regulations that are required
for the safety of patients. To ensure a profitable and growing pharmaceutical industry of significant
societal benefits and low environmental footprint, model-based tools are fundamental to advancing
the basic understanding, design, and optimization of pharmaceutical manufacturing processes in
accordance with the United Nations “2030 sustainable development goals”. Process analysis principles,
for instance, provide a better understanding of underlying pharmaceutical manufacturing mechanisms.
Model-based process design concepts facilitate the identification of optimal production and purification
pathways and configurations. Process monitoring and control strategies ensure low life-cycle costs
and provide new insights into critical failure modes and drug quality control issues.

The foregoing model-based concepts, and combinations of them, are key to exploring the
full potential of innovative, highly effective pharmaceutical manufacturing processes. These are
some of the grand challenges that can be tackled by process systems engineering (PSE), and they
have been catalyzed by an unprecedented advent of established methodologies and algorithmic
tools that are either available via open access environments or incorporated in commercial
software/databases for a plethora of purposes (thermodynamic and solubility modeling, fluid phase
equilibria, complex mixture thermophysical/mechanical property estimation, plant-wide simulation,
optimization and cost estimation). The respective advances achieved using such a diversity of enabling
computational technologies exemplify the Quality-by-Design (QbD) vision and its translation into
tangible artefacts and policies, illustrating how academia and industry respond to contemporary
challenges for high-quality, more affordable healthcare.

This Special Issue on “Model-Based Tools for Pharmaceutical Manufacturing Processes” intends
to curate novel advances in the development and application of model-based tools to address
ever-present challenges of the traditional pharmaceutical manufacturing practice as well as new
trends. As summarized below, the Special Issue provides a collection of nine papers on original
advances in the model-based process unit, system-level, QbD under uncertainty, and decision-making
applications of pharmaceutical manufacturing processes. The Special Issue is available online at
https://www.mdpi.com/journal/processes/special_issues/pharmaceutical_processes.

Processes 2020, 8, 49; doi:10.3390/pr8010049 www.mdpi.com/journal/processes1
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1. Process Unit Studies

Before complex pharmaceutical manufacturing processes can be simulated holistically,
dedicated unit operations have to be studied first, including upstream and downstream processes.
Starting with the synthesis of APIs and relevant intermediates, enzymatic syntheses are of particular
interest as a greener, more economical, and efficient viable alternative to chemocatalytic processes.
For instance, pyrimidine-nucleoside phosphorylases are highly versatile enzymes used for the
production of pharmaceutically relevant intermediates. In “Dynamic Modelling of Phosphorolytic
Cleavage Catalyzed by Pyrimidine-Nucleoside Phosphorylase” [1], the conversion of deoxythymidine
and phosphate to deoxyribose-1-phosphate and thymine by a thermophilic pyrimidine-nucleoside
phosphorylase from Geobacillus thermoglucosidasius was modeled in detail and validated experimentally
including UV/Vis spectroscopy data. The resulting dynamic model might be used to identify optimal
operating conditions of the enzymatic synthesis process, and can be extended to multi-enzyme
reactions too.

Moreover, antibiotics are an essential group of biologics, and thus of interest in pharmaceutical
manufacturing. In “Dynamic Modelling and Optimisation of the Batch Enzymatic Synthesis of
Amoxicillin” [2], the batch enzymatic synthesis of the antibiotic amoxicillin, listed as a World
Health Organization (WHO) “Essential Medicine”, was modeled and optimized. While including
non-isothermal kinetics, the authors identified an optimal temperature profile that ensures high
product quality at minimum feedstock consumption.

In addition to synthesis problems, modeling of downstream processes has attracted much interest
in the last few decades. For instance, spray drying is a basic unit operation in pharmaceutical
manufacturing. In “Global Sensitivity Analysis of a Spray Drying Process” [3], a sensitivity analysis
study of a spray drying process is discussed. To quantify the impact of different but interacting process
parameters, a model-based global sensitivity analysis with a low computational cost was implemented,
contributing to QbD and the identification of critical process parameters. These essential parameters
of the process might be relevant for the development of future control strategies that can result in
significant robustness for the spray drying process.

2. System-Level Studies

Next, based on determined process unit models, system-level studies are crucial for a detailed
understanding of pharmaceutical manufacturing processes. The interaction between process units,
the identification of critical process parameters, and their impact on critical quality attributes of
pharmaceutical products are of key interest at the system level. For instance, when modeling the
flow of material in a continuous process of several unit operations (e.g., blending, granulation,
and tableting), the study of residence time distributions is the tool of choice. In “Explicit Residence
Time Distribution of a Generalised Cascade of Continuous Stirred Tank Reactors for a Description
of Short Recirculation Time (Bypassing)” [4], the so-called tanks-in-series model was generalized to
a cascade of n continuous stirred tank reactors with non-integer non-negative n. Therefore, the model
can describe short recirculation times (bypassing) without the need for complex reactor networks.
When part of a reactor network, the proposed model can be used to predict the response to upstream
setpoint changes and process fluctuations, i.e., providing insights at the system level.

The relevance of model-based studies of process-wide manufacturing lines is highlighted in
“Dynamic Flowsheet Model Development and Sensitivity Analysis of a Continuous Pharmaceutical
Tablet Manufacturing Process Using the Wet Granulation Route” [5]. In this study, the authors
implemented a dynamic flowsheet model of the ConsiGmaTM-25 line for continuous tablet
manufacturing, including determined models of various unit operations, i.e., feeders, blenders,
a twin-screw wet granulator, a fluidized bed dryer, a mill, and a tablet press. Based on the developed
dynamic flowsheet model, the liquid feed rate to the granulator, the air temperature, and the drying
time in the dryer were identified via global sensitivity analysis methods as critical process parameters
that affect the tablet properties most.
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3. Studies Under Uncertainty

QbD, an essential paradigm in pharmaceutical manufacturing, benefits from mathematical
models. Model imperfections, however, have to be considered seriously; that is, uncertainty
quantification and analysis are mandatory in model-based studies. This is particularly true when
making use of mathematical models to study the design space of manufacturing processes.
In “An Optimization-Based Framework to Define the Probabilistic Design Space of Pharmaceutical
Processes with Model Uncertainty” [6], the authors introduced two algorithms to analyze the design
space under uncertainties at low computational costs. The usefulness of the proposed probabilistic
design space implementations was benchmarked with pharmaceutical manufacturing problems,
including the Michael addition reaction as an industrial relevant case study.

In addition to uncertain model parameters and kinetics, batch-to-batch variations cause severe
difficulties in pharmaceutical manufacturing, affecting drug quality, clinical studies, and therapeutics
in equal measure. The joint effect of model imperfection and batch-to-batch variation is addressed
in “Robust Process Design in Pharmaceutical Manufacturing under Batch-to-Batch Variation” [7].
Considering a freeze-drying process, the authors used an efficient model-based concept to predict
optimal shelf temperature and chamber pressure profiles under batch-to-batch variation.

4. Decision-Making Studies

In addition to process analysis and optimization in pharmaceutical manufacturing, mathematical
models can support the decision-making process in identifying the best manufacturing concepts in
terms of reduced capital and operating costs. For instance, the best choice between pharmaceutical
manufacturing process alternatives is challenging and benefits considerably from algorithms and
decision-making tools. In “Online Decision-Support Tool “TECHoice” for the Equipment Technology
Choice in Sterile Filling Processes of Biopharmaceuticals” [8], the authors proposed a model-based
tool to support users in choosing their preferred technology according to their input of specific drug
production scenarios. The usefulness of the prototype tool was demonstrated successfully with the
study of equipment technologies in the sterile filling of biopharmaceutical manufacturing processes.

Modeling and simulation are a central part of research and development activities in the
pharmaceutical industry, but the evaluation of modeling and simulation return on investments is
difficult to quantify in advance. In “Show Me the Money! Process Modeling in Pharma from the
Investor’s Point of View” [9], the authors provide an algorithmic methodology that allows for the
development of detailed business studies. They discuss an easy-to-use methodology that can help
an investor evaluate an investment in modeling and simulation systematically.

The present Special Issue on “Model-Based Tools for Pharmaceutical Manufacturing Processes”
and several more on adjacent topics which have either appeared or will be featured in Processes (but also
in journals of similar scope and mission) signify the rapidly expanding importance of this research
field towards securing sophisticated healthcare solutions and improving accessibility to medication
for the ever-increasing and ageing global population. Publishing the fruits of academic, industrial,
and collaborative efforts to this end should serve as inspiration for new challenges to set and solutions
to achieve; our fervent hope is hence that PSE contributions will remain front and center in this quest.
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Abstract: Pyrimidine-nucleoside phosphorylases (Py-NPases) have a significant potential to contribute
to the economic and ecological production of modified nucleosides. These can be produced via
pentose-1-phosphates, an interesting but mostly labile and expensive precursor. Thus far, no dynamic
model exists for the production process of pentose-1-phosphates, which involves the equilibrium
state of the Py-NPase catalyzed reversible reaction. Previously developed enzymological models are
based on the understanding of the structural principles of the enzyme and focus on the description of
initial rates only. The model generation is further complicated, as Py-NPases accept two substrates
which they convert to two products. To create a well-balanced model from accurate experimental
data, we utilized an improved high-throughput spectroscopic assay to monitor reactions over the
whole time course until equilibrium was reached. We examined the conversion of deoxythymidine
and phosphate to deoxyribose-1-phosphate and thymine by a thermophilic Py-NPase from Geobacillus
thermoglucosidasius. The developed process model described the reactant concentrations in excellent
agreement with the experimental data. Our model is built from ordinary differential equations and
structured in such a way that integration with other models is possible in the future. These could
be the kinetics of other enzymes for enzymatic cascade reactions or reactor descriptions to generate
integrated process models.

Keywords: enzymatic reaction; reversible reaction; dynamic modelling; pyrimidine-nucleoside
phosphorylase; spectroscopic assay; process kinetics; ODE model

1. Introduction

Pyrimidine-nucleoside phosphorylases (Py-NPases) are highly versatile enzymes used for the
production of pharmaceutically relevant nucleoside derivatives and pentose-1-phosphates. Generally,
nucleoside phosphorylases catalyze, in the presence of phosphate, the reversible conversion of
a nucleoside to the corresponding pentose-1-phosphate and nucleobase (Figure 1). Due to the
low yields of modified nucleosides or pentose-1-phosphates via conventional synthetic chemistry,
nucleoside phosphorylases have become attractive tools in their biocatalytic preparation [1–3]. Recently,
thermophilic Py-NPases have attracted increased interest, as they combine several favorable properties,
such as long shelf life due to their thermal stability, an excellent tolerance towards harsh reaction
conditions, high turnover rates, and a broad substrate spectrum [4,5].

Processes 2019, 7, 380; doi:10.3390/pr7060380 www.mdpi.com/journal/processes5



Processes 2019, 7, 380

  
(a) (b) 

Figure 1. Schematic and chemical illustration of an enzymatic nucleoside phosphorylation.

(a) Schematic drawing of the proposed mechanics for an enzymatic nucleoside phosphorylation
reaction as basis for the generation of the differential–dynamical model. Enzyme (E), nucleoside
(N), and phosphate (P) react in a three-particle collision towards the enzyme complex (EC), which
decays without other intermediates into enzyme, pentose-1-phosphate (S1P), and free nucleobase
(B). Both reactions can occur in the other direction, as well; (b) chemical structures of an enzymatic
phosphorylation using the example of the enzyme pyrimidine-nucleoside phosphorylase (Py-NPase; E)
catalyzed reaction of the nucleoside deoxythymidine (N) and ortho-phosphate (P) to the free nucleobase
thymine (B) and deoxyribose-1-phosphate (S1P).

However, their industrial use is hampered by a lack of models which integrate the understanding
of their behavior in enzymatic reactions over the full time course towards the reaction’s dynamic
equilibrium. Previous research has focused on either: (1) Integrated processes, mainly with
transglycosylation and/or product removal reactions, which renders modelling of the complete
process unfeasible because of its complexity; or (2) Michaelis–Menten conditions, i.e., reactions in
which one of the substrates (typically phosphate) is present in excess over the other substrate, and
only initial rates are measured (reviewed in [6]). This is because the Michaelis–Menten assumptions
are only fulfilled in the quasi-linear range of conversion at the very start of the enzymatic reaction.
Only in this time frame one can observe a constant conversion rate. Invariably, this only allows for the
investigation of the dependence of the initial rate of the reaction on the concentration of a substrate
and does not permit the evaluation of the whole time-course [6].

In industrial applications, the stoichiometric and quantitative conversion of substrates is highly
anticipated. These requirements are only met when the reaction approaches its thermodynamic equilibrium,
hence giving maximum product yield. Counteracting the accessibility of deoxyribose-1-phosphate is the
fact that the equilibrium for nucleoside phosphorylation reactions is strongly in favor of the substrates
(Keq = 0.03–0.10 for pyrimidines [7,8], and Keq = 0.01–0.02 for purines [9,10]). To increase the concentration
of desired products, it is therefore necessary to push the equilibrium, e.g., by increasing the phosphate
concentration. Despite the clear need for a Py-NPase model describing those industrially relevant
conditions, there has been no report of a suitable model so far.

Models of ordinary differential equations (ODEs) derived from elementary reaction steps and from
law of mass action kinetics (“differential–dynamical models”) present an attractive solution to many
biotechnological problems. Their modularity allows for the combination of models of different scales,
such as the progression of an enzyme reaction with a substrate feeding profile. Differential–dynamical
models have been used to describe, for example, enzymatic cellulose hydrolysis (reviewed in [11]),
the production of enantiopure amines from a racemic mixture [12], the continuous production of
lactobionic acid from lactose [13], or symmetric two-educts/one-product carboligations [14]. The rate
laws of differential–dynamical models are usually derived from an underlying mechanical model. This
enables chemical reaction engineering across different conditions and scales [15]. The ultimate promise
of differential–dynamical models is the model-based design of dynamic experiments [16], which are
favorable for biotechnological applications [17] and allow the in silico predictability of economic
production processes [18], even for processes where the experimental information is scarce [19].

In this work, we present experimental data deduced from the reaction monitoring of
small-scale Py-NPase reactions via a UV/Vis spectroscopy-based assay. Subsequently, we report

6
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the development of a differential–dynamical model for the Py-NPase-mediated biocatalytic preparation
of deoxyribose-1-phosphate from thymidine.

2. Materials and Methods

2.1. Materials

All chemicals used in this study were of analytical grade and used without further purification.
The water used in all solutions was deionized to 18.2 MΩ·cm with a water purification system from
Werner. Deoxythymidine was purchased from Carbosynth. Thymine and phosphate (KH2PO4) were
purchased from Sigma–Aldrich. Tris (2-Amino-2-(hydroxymethyl)propane-1,3-diol) was of buffer
grade and purchased from Carl Roth.

Tris buffer was prepared as a 50 mM solution, and the pH was adjusted to 9.0 using 1 M HCl.
Phosphate was prepared as a 1 M stock solution in 50 mM Tris buffer, and the pH was subsequently
adjusted to 9.0 using 1 M NaOH. Deoxythymidine, and thymine stock solutions were prepared in
different concentrations (ranging from 1 to 10 mM) by adding 50 mM of Tris buffer (of pH 9.0; the
final pH of the prepared solution was found to be 9.0 as well) and treated with ultrasound to facilitate
full dissolution.

The enzyme under investigation was a Py-NPase (EC 2.4.2.2, NCBI sequence accession number
WP_041270053.1) from Geobacillus thermoglucosidasius (DSM No.: 2542). After IPTG-induced recombinant
overexpression, the N-terminally His6-tagged Py-NPase was purified from E. coli BL21 using Ni-NTA
affinity chromatography, as described previously [20]. Purity was determined by SDS-PAGE analysis
and found to be >90%. Subsequently, the enzyme was dialyzed against 2 mM potassium phosphate
buffer, pH 7.0 (measured at 25 ◦C), and stored until use at +4 ◦C at a concentration of 3.69 mg/mL,
as judged by NanoDrop analysis (calculated with 0.48 absorption units (AU) at 280 nm = 1 mg/mL).
One unit (1 U) of enzyme activity was defined as the conversion of 1 μmol of deoxythymidine per
minute in a 1 mL assay mixture of 2 mM deoxythymidine and 75 mM phosphate in 50 mM Tris buffer
at a reaction temperature of 40 ◦C and at pH = 9.0 (measured at 25 ◦C), as determined by the method
described later. The molecular weight of the enzyme was 47.6 kDa, as calculated from its amino acid
sequence. The used enzyme preparation had an activity of approximately 0.46 U/mg.

UV/Vis transparent 96-well plates (UV-STAR F-Bottom #655801, purchased from Greiner Bio-One)
were used to host the solutions for UV/Vis spectroscopy.

2.2. Experimental

Phosphate and deoxythymidine concentrations were varied in the range of 2–80 mM and 0.8–5 mM,
respectively, in the assay mixture. The final enzyme concentration in the assay mixture was in the
range of 12.5–50 μg/mL. This corresponds to an enzyme monomer concentration of 0.26–1.05 μM, as
calculated from its molecular weight.

Reaction mixtures were prepared in 1.5 mL microreaction tubes. Appropriate amounts of
phosphate and deoxythymidine stock solutions were added to an appropriate amount of the 50 mM
Tris solution. All components were mixed by vortexing, and the microreaction tube preheated for at
least 5 min in an Eppendorf ThermoStat Plus. Subsequently, an appropriate amount of enzyme stock
solution was added to the tube, which was mixed by slight inversions. At given timepoints, a 60 μL
sample was removed from the microreaction tube and injected immediately into 940 μL of a 0.2 M
NaOH solution in a separate tube to stop the reaction and to dilute the sample simultaneously. After
vortexing, 300 μL of the diluted mixture was transferred into UV/Vis transparent 96-well plates. When
the concentration of UV/Vis absorbing compound, i.e., deoxythymidine or thymine, was varied, the
sampling volume was adjusted as appropriate to give a constant final concentration of approximately
60 μM UV/Vis absorbing compounds in the alkaline dilutions to generate a UV/Vis absorption in
the linear range, i.e., 0–1 absorption units (AU) at 260 nm. The ratio of substrate and product was
determined by fitting the spectral 300/277 nm ratio (see below).
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UV/Vis absorption spectra were recorded with a PowerWave HT or Synergy MX (BioTek Instruments,
Bad Friedrichshall, Germany) in the range of 250–350 nm in 1 nm steps. Spectra were corrected for
blanks, i.e., a 0.2 M NaOH solution, recorded within each set of measurements.

2.3. Spectroscopic Determination of Deoxythymidine/Thymine Ratio

The deoxythymidine/thymine ratio was determined with a spectrophotometric assay, modified
from [21]. In an extension to previous versions of this assay, the spectra were normalized to the
isosbestic point of deoxythymidine-thymine mixtures as suggested by [22], which we determined to be
at 277 nm. This increased robustness against random dilution errors [23], as they commonly appear in
high-throughput experimentation.

Briefly, the spectrum was first blank-corrected by subtracting a spectrum of 0.2 M NaOH, and
was subsequently divided by its absorption at the isosbestic point to normalize the spectrum at
this position to “1”. Then, the normalized absorption at 300 nm was considered as a proxy of the
deoxythymidine/thymine ratio.

Thus, the measured absorption ratio Abs300/277 = Abs300/Abs277 was fitted by a linear relationship
without intercept:

Abs300/277(experimental) = x×Abs300/277(deoxythymidine) + (1− x)×
Abs300/277(thymine),

(1)

where x is the mole fraction of deoxythymidine in the mixture. From pure compound spectra,
we determined Abs300/277(deoxythymidine) = 0.005115 and Abs300/277(thymine) = 0.772973.

The algorithms and data treatment functions were implemented in Python 2.7 [24] and Python
3.6 [25]. A snapshot of the software code and the data set used for this work is openly available on
zenodo.org and in the Supplementary Material [26–29].

2.4. Modelling of the Py-NPase Catalyzed Reaction

The model was implemented as a system of ordinary differential equations in SymPy [30].
The system of equations was wrapped by python-sundials [31] and subsequently integrated by
SUNDIALS-CVODE [32]. Parameter estimation was conducted via the lmfit interface [33]. The
experimental data handling was performed by in-house Python software, which is equally available
from the sources mentioned above.

2.4.1. Cost Functions

In the parameter estimation of the dynamic system (i.e., time courses of the reactions),
a weighted-least squares cost function Z was used:

Z(k) =
∑Q

i=1

1
Var(xi)

× (c(yi) − c(xi))
2 , (2)

where k is the parameter set used for calculation of the modelled concentrations; Var(xi) is the variance
of the i-th data point; c(yi) is the modelled concentration of nucleoside for i-th data point; c(xi)

is the nucleoside concentration as calculated from the experimentally determined mole fraction of
deoxythymidine for i-th data point, multiplied with c0(xi)

, i.e., the designed nucleoside concentration
at t = 0; and Q is the total number of data points.

For the determination of weights, the 95% confidence interval of data points was set to 5 percentage
points of the determined mole fraction as judged by inspection of calibration plots (Figure S1):

Var(xi) =

( √
ε

z0.975
× xi

)
× c0(xi)

, (3)
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where ε = 0.05 gives the absolute error of the analysis method, and z0.975 = 1.96 gives the standard
score to include 95% of values.

2.4.2. Definition of the Differential–Dynamical Model

A schematic visualization of the mechanical model is shown in Figure 1a, with specification into
its chemical meaning in Figure 1b. The underlying mechanics of our differential–dynamical model at
the process scale can also be represented indirectly by Scheme 1:

Scheme 1. Reaction equation of an enzymatic nucleoside phosphorylation. Enzyme (E), nucleoside
(N), phosphate (P), enzyme complex (EC), pentose-1-phosphate (S1P), free nucleobase (B), reaction rate
constants (k1, k−1, k2, k−2) as defined by Equations (7)–(10).

All steps indicated in the representation of the mechanics are considered elementary step reactions,
and, applying law of mass action, the reaction rate equations are derived as the following system of
ordinary differential equations:

d[N]

dt
=

d[P]
dt

= −r1 + r−1 (4)

d[E]
dt

= −d[EC]

dt
= −r1 + r−1 + r2 − r−2 (5)

d[S1P]
dt

=
d[B]
dt

= +r2 − r−2 (6)

where [N] is the concentration of nucleoside (i.e., deoxythymidine), [P] is the concentration of phosphate,
[E] is the concentration of free enzyme, [EC] is the concentration of enzyme complex, [S1P] is the
concentration of pentose-1-phosphate (i.e., deoxyribose-1-phosphate), and [B] is the concentration of
nucleobase (i.e., thymine), with the following rates:

r1 = k1 × [E]×[ N] × [P] (7)

r−1 = k−1 × [EC] (8)

r2 = k2 × [EC] (9)

r−2 = k−2 × [E]×[ S1P] × [B] (10)

3. Results

3.1. The Absorption Spectrum of Thymine but Not Deoxythymidine Changes at Alkaline Conditions

The evaluation of enzymatic deoxyribose-1-phosphate forming reactions requires the fast detection
of substrates and products. The detection of nucleoside and its corresponding nucleobase by HPLC,
and thus the indirect determination of pentose-1-phosphate, has been the standard method to date
(e.g., [8,34]). However, it is very time-consuming and laborious and therefore not suitable for use in
high-throughput screenings.

We intended to measure the deoxythymidine/thymine ratio by following wavelengths at regions
where thymine absorbs at high pH, but deoxythymidine does not, based on an early report [21], and
the more recent employment of an UV/Vis assay based on this principle [35]. These are wavelengths
>290 nm [36–38]. To correct for varying path lengths which are commonly observed in high-throughput
environments based on microtiter plates, and, thus, to make the assay more robust, we normalized
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the spectra to their isosbestic point, i.e., the point where no change in absorption is observed for any
mixture of deoxythymidine and thymine.

To verify this concept experimentally, spectra of pure deoxythymidine, thymine, and mixtures of
both were recorded after dilution in NaOH (Figure 2). We then calculated the composition of mixtures
from the Abs300/277 ratios as described in Materials and Methods. The composition of the full range of
mixtures (0–100%, in 10% steps) could be estimated with high accuracy, and the absolute errors between
the predicted and actual composition of the mixtures were approximately constant (Figure S1). With this
high-throughput tool in hand, we pursued our investigation of a Py-NPase-catalyzed phosphorylation
reaction and set out to describe our experimental data in a suitable model.

 
(a) (b) 

Figure 2. Comparison of absorption spectra of deoxythymidine and thymine in alkaline dilutions.

Absorption spectra of deoxythymidine and thymine were recorded as described in Materials and
Methods in an alkaline dilution at pH 13. The isosbestic point of deoxythymidine/thymine mixtures at
277 nm and the point for determination of the deoxythymidine/thymine ratio at 300 nm are indicated
on the x axis. (a) The spectra of pure deoxythmidine (red curve) and pure thymine (blue curve) differ
significantly when measured in an alkaline dilution. The Abs300/277 ratios of pure deoxythymidine
(Abs300/277(deoxythymidine) ≈ 0.77) and pure thymine (Abs300/277(thymine) ≈ 0.01) are indicated on
the y axis. The exact values are given in Materials and Methods. Both spectra are shown normalized to
the isosbestic point at 277 nm; (b) comparison of absorption spectra of pure deoxythmidine, thymine,
and indicated mixtures, measured in an alkaline dilution. Abs300/277 increases linearly with increasing
thymine mole fraction (given as percentage; from red to blue).

3.2. Model and Experimental Data Are in Excellent Agreement

Py-NPase-catalyzed phosphorylic cleavage reactions are reversible reactions proceeding towards
a dynamic equilibrium. Therefore, the reaction trajectory until equilibrium does not only depend
on physical parameters, like temperature and pressure, but also on enzyme concentration, the
concentration of substrates, or the presence of products. In order to investigate this enzymatic
reaction under biotechnologically relevant conditions, we performed 48 experiments with varying
concentrations of enzyme, nucleoside, and phosphate (see Table S1). For our experimental conditions,
i.e., reaction times of 24 h at pH 9.0 and 40 ◦C, we ensured that the enzyme remained active and
deoxyribose-1-phosphate did not degradate (see Figure S2).

To describe the recorded data, a differential–dynamical model was set up. This model allows for
the simulation of the concentrations of substrates, products, and enzyme forms over an arbitrarily long
time-course. The enzyme reaction can reach a dynamic equilibrium and assumes equal contribution of
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both substrates to reaction rates and level of equilibrium, as dictated by the underlying law of mass
action. We conducted local optimization of the parameters k = (k1, k−1, k2, k−2)T (given in unitless
numbers for simplicity and in transposed vector form for brevity) to find a parameter set which
described the data well. The parameter set we found to perform best on our experimental data is k =
(0.42, 0.17, 0.31, 7.6)T. The explicit form (k1 = 0.42 (mM)−2 min−1; k−1 = 0.17 min−1; k2 = 0.31 min−1;
k−2 = 7.6 (mM)−2 min−1) will be omitted from here on for reasons of brevity.

In the tested range of enzyme and substrate concentrations, we found an excellent agreement
between experimental data and our model with this parameter set (Figure 3). The predictions of our
models were consistent and evenly distributed around the experimental data points over the whole
time course of 24 h (Figures S3 and S4). We could not detect any particular trend of prediction errors
towards phosphate, deoxythymidine, or enzyme concentrations. Thus, we conclude that our model is
well balanced in the range of experimental conditions described here.

 
(a) (b) 

Figure 3. Exemplary fits for experimental data at low and high phosphate concentrations.

(a) Experimental data and model predictions for conditions with low phosphate-to-deoxythymidine
ratio (2 mM : 5 mM), and varying enzyme concentrations (red: High enzyme concentration, Experiment
#13; blue: Low enzyme concentration, Experiment #12). Though the speed of reaction differs in
the beginning, both reactions reach the same equilibrium during the time course of the experiment.
Error bars represent 95% confidence intervals for the experimentally determined concentrations;
(b) experimental data and model predictions for conditions with high phosphate-to-deoxythymidine
ratio (80 mM : 5 mM), and varying enzyme concentrations (red: High enzyme concentration, Experiment
#21; blue: low enzyme concentration, Experiment #20). The two conditions differ in their speed and
low enzyme concentration is not sufficient to reach equilibrium. Error bars represent 95% confidence
intervals for the experimentally determined concentrations. See Table S1 for experimental condition
numbers as given in this figure legend (“Experiment #”).

3.3. Multiple Parameter Sets Can Be Used for the Description of the Phosphorolysis Reaction

We performed global optimizations with basin-hop and differential evolution algorithms, as well
as large-scale local optimizations from widely distributed initial parameter set guesses to find the
best global parameter set. We found multiple parameter sets to describe the experimental dataset
with almost similar accuracy. Except for k2, which is almost constant, some alternative parameter
sets, e.g., k* = (0.18, 0.12, 0.35, 5.5)T or k** = (1.4, 0.94, 0.28, 4.6)T, differ drastically from the optimal
parameter set k = (0.42, 0.17, 0.31, 7.6)T. However, the cost functions are insignificantly different, with
Z(k) = 2.9 × 103, Z(k*) = 3.0 × 103, and Z(k**) = 3.2 × 103 (all values in (mM)2). In practice, this can
be attributed to the lacking difference in goodness-of-fit for comparison of simulations for k and the
alternative parameter sets, as visualized in Figure 4.
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Figure 4. Non-identifiability of parameter sets from given experimental data. Experimental data
(blue squares) and simulation of parameter sets k, k*, and k**, for a given experimental condition. The
modelled results from different parameter sets are almost indiscernible, and, therefore, no decision can
be taken on which parameter set is correct.

As the forward reaction is described reasonably well with multiple parameter sets, we cannot
decide for any parameter set from our experimental data. This is caused by low sensitivities of the
uncertain parameters in regard to our experimental data. As the scope of this work is fulfilled by
a model for the forward reaction only, and all parameter sets describe the forward reaction reasonably
well, we chose to communicate the parameter set k with lowest value of cost function Z.

3.4. The Value of the Thermodynamic Equilibrium Constant Is Constant across Methods of Determination

Finally, we investigated the behavior of the thermodynamic equilibrium constant across all
experimental conditions. The thermodynamic equilibrium is approached when there is no observable
change in the concentration of the enzyme complex, [EC]:

d[EC]

dt
= 0 . (11)

For our model, this yields two forms to express the equilibrium constant: Either (1) by considering
the concentrations of substrates and products at equilibrium:

Keq =
Beq × S1Peq

Neq × Peq
, (12)

or (2) by considering the parameter values:

Keq =
k1 × k2

k−1 × k−2
. (13)

Estimating the equilibrium constant from the values found in the parameter estimation, one
obtains Keq = 0.10. The value of the equilibrium constant is approximately the same for alternative
parameter sets, e.g., k* and k**, emphasizing the principal agreement between multiple parameter sets
with the given experimental data.

Similarly, it is possible to derive the equilibrium constant from the equilibrium concentrations
of products and substrates, giving a median value of Keq = 0.10, similar to the value calculated from
kinetic parameters (Figure 5).
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Figure 5. Equilibrium constant determined at different phosphate concentrations. Equilibrium
constants of the 48 experiments under varying conditions (see Table S1) as determined from the
deoxythymidine/thymine ratios of the 24 h data point as described in Materials and Methods.
For concentrations of >2mM phosphate, the experimentally determined values from the 24 h data
points are evenly distributed around the value calculated from the parameter estimation (Keq = 0.10).
For experiments with lower phosphate concentrations (dark purple circles), the equilibrium constant is
significantly off the calculated value from the parameter sets. The median of all experiments is equal
to the value calculated from the parameter estimation. Colored circles: Keq calculated from the 24 h
data points, purple to yellow: Increasing initial phosphate concentration; blue dashed line: Keq = 0.10,
as calculated from the parameter estimation.

4. Discussion

To the best of our knowledge, this study presents the first ODE model of an enzymatic two-substrate
two-product process. For biotechnological production processes, it is desired to reach equilibrium
state conditions to maximize the product yield. For the description of such processes, ODE models
are required. In this contribution, we developed such a differential–dynamical model, which places
a process perspective onto the enzymatic nucleoside phosphorylation reaction, and which is, regardless
of its simplicity, in excellent agreement with our experimental data.

4.1. Model Structure

Contrary to Cleland’s interpretation of multi-substrate/multi-product enzyme reactions [39–41],
which considers multiple enzyme complex intermediates, we modeled the production process as
consecutive law of mass actions, and only included one enzyme complex intermediate. Further,
we explicitly decided to simplify a probable ordered binding mechanism [10] towards a three-particle
collision. In our eyes, these simplifications are justified by the excellent agreement between the
experimental data and our model (Figure 3 and Figure S3).

Further elegance of our model is found in its pluggability of equations, which allows for the easy
introduction or decommissioning of individual reaction steps. Further, it does not need to rely on
steady-state assumptions, although it is easy to integrate these. Finally, it is easier to provide explicit
and precise description of, e.g., inhibitory actions into mechanistic models.

To date, our model does not include terms for the decay of enzyme activity or the degradation of any
chemical species. We base these decisions on reports of the exceptional stability in alkaline conditions
of deoxyribose-1-phosphate [34] and ribose-1-phosphate [42], as well as on the report of stable enzyme
activity over days for thermophilic pyrimidine- [20] and purine-nucleoside phosphorylases [43] at
even higher temperatures than those used in this study.
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4.2. Plausibility of Our Results

To check the correctness of our results, we compared the equilibrium constant (1) from literature
and (2) derived from our parameter sets or (3) determined by the equilibrium concentrations of the
latest data points. As shown in the Results section, (2) and (3) accord with each other. The values
for the equilibrium constant of the Py-NPase catalyzed reaction can be approximated by considering
examples from literature [9,10,44,45], being in the similar order of magnitude for related reactions but
differing in temperature, buffers, and exact specifications of base and sugar moiety. For a reaction with
similar substrates at not too distant experimental conditions, the equilibrium constant was found to be
Keq = 0.102 at 37 ◦C and pH 7.4 [7]. This equals the equilibrium constant determined in this work.

Searching for experimental conditions that could discriminate between multiple parameter sets,
we found major differences between the parameter sets to be only visible in kinetic study of the
backward reaction. Exemplarily, parameter set k** would show significantly faster conversion of
deoxyribose-1-phosphate than parameter set k, as k−1 is significantly larger. The parameters k−1

and k2 can be understood to correlate with the kcat values of the phosphorolysis and synthesis
reaction, respectively. Previous work [9] included the progress curve of one phosphorolysis and the
corresponding synthesis reaction, and the initial reaction rates can be estimated from the graph given
there, being of approximately similar speed. This argument favors k over k**, but for k and k* the
situation is less clear. Further research needs to be conducted to resolve this ambiguity.

4.3. Limitations and Domain of Validity of the Model

The stability of deoxyribose-1-phosphate and enzyme activity over the assay duration is
key to correct conclusions from the experimental data. In addition to reports from literature on
pentose-1-phosphate and enzyme stability [20,34,42,43], we performed a control experiment via
a coupled read-out, providing evidence for fulfilling these preconditions (Figure S2).

This also clearly points out the domain of validity of the model: In its current form, it applies only
in the direction of phosphorolytic cleavage at pH 9.0 and 40 ◦C for time frames up to 24 h. Outside
of this region, one should act on the assumption that corrections will be necessary not only for the
temperature- and pH-dependence of the kinetic constants but also in the model structure regarding
enzyme inactivation and reactant degradation, especially of deoxyribose-1-phosphate (Figure S3).

4.4. Application of Our Results to Production Processes

In the perspective of process control, our model has the potential to describe reactions in
a time-resolved fashion, integrating knowledge which was previously not put into equations. The
literature is rich in references of successful production processes with nucleoside phosphorylases,
but these are typically focused on transglycosylations [35,46–48]. These processes are coupling two
nucleoside-phosphorylase reactions, using pentose-1-phosphate as an intermediate in situ; however,
for these processes, a prediction of time-resolved process performance was usually not undertaken.

A major advantage of a dynamic model is the ability to optimize processes before or during the run
time. Exemplarily, one might want to minimize the amount of consumed enzyme for a batch-process
with fixed run time. Our model allows for the calculation of the final yield and required enzyme
amount for a fixed run-time, given constraints like, e.g., the solubility of substrate or limiting excess of
phosphate (which, for the synthesis of pentose-1-phosphates, is typically used in 1- to 2.5-fold excess
to ease down-stream processing). Similarly, one can calculate the run-time required to reach, e.g., 90%
of equilibrium, given an amount of enzyme, substrate, and phosphate. These predictions are the basis
of a cost-efficient production.

5. Conclusions and Outlook

The determination of the deoxythymidine/thymine ratios with UV/Vis spectroscopy is a fast and
cost-effective method for assaying Py-NPase reactions. With this method in hand, we were able to
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set-up a model capable of describing the time course of Py-NPase reactions for the biotechnological
production of deoxyribose-1-phosphate under diverse experimental conditions.

From this, we strive for the predictability of multi-step enzymatic reactions to produce nucleic
acid derivatives. Our results pave the way for a significant improvement of production processes
towards the synthesis of pharmaceutically interesting nucleosides.

Whenever available, time-resolved information on reaction progress can be used to parametrize
the presented model structure. We believe that dynamic modelling will enable efficient process
control and reaction engineering, especially when fully parametrized differential–dynamical models
for nucleoside phosphorylation reactions are shared within the community.

Especially in multi-enzyme reactions, it will be necessary to integrate terms for undesired
reactions, e.g., for product degradation or enzyme inactivation. Our model structure allows for an
easy integration of additional terms (“coupling of models”). This would be much less feasible for
traditional representations of enzyme kinetics, e.g., in Michaelis–Menten or Cleland notation.

After all, more studies on equilibrium constants and the relationship of kinetic rates at varying
experimental conditions, e.g., temperatures or pH values, will be necessary to elucidate the mechanisms
of this enzymatically catalyzed reaction further. Dynamic experiments, i.e., varying, for example,
the temperature or concentration of reactants, can be next steps for the evaluation and refinement of
our results.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9717/7/6/380/s1
and https://doi.org/10.5281/zenodo.3243519, Figure S1: Further mixtures of deoxythymidine/thymine, and
“predicted vs actual” plot, Table S1: Experimental conditions in this study, Figure S2: Degradation progress of
deoxyribose-1-phosphate at elevated temperatures, Figure S3: Fits of all experiments, Figure S4: Comparison of
inter-day controls.
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Abstract: Amoxicillin belongs to the β-lactam family of antibiotics, a class of highly consumed
pharmaceutical products used for the treatment of respiratory and urinary tract infections, and
is listed as a World Health Organisation (WHO) “Essential Medicine”. The demonstrated batch
enzymatic synthesis of amoxicillin is composed of a desired synthesis and two undesired hydrolysis
reactions of the main substrate (6-aminopenicillanic acid (6-APA)) and amoxicillin. Dynamic
simulation and optimisation can be used to establish optimal control policies to attain target product
specification objectives for bioprocesses. This work performed dynamic modelling, simulation and
optimisation of the batch enzymatic synthesis of amoxicillin. First, kinetic parameter regression at
different operating temperatures was performed, followed by Arrhenius parameter estimation to
allow for non-isothermal modelling of the reaction network. Dynamic simulations were implemented
to understand the behaviour of the design space, followed by the formulation and solution of a
dynamic non-isothermal optimisation problem subject to various product specification constraints.
Optimal reactor temperature (control) and species concentration (state) trajectories are presented for
batch enzymatic amoxicillin synthesis.

Keywords: Amoxicillin; enzymatic synthesis; non-isothermal modelling; parameter estimation;
dynamic optimisation

1. Introduction

Antibiotics are societally essential pharmaceutical products, making previously untreatable
illnesses such as pneumonia and tuberculosis curable, thus revolutionising modern medicine [1].
Access to essential medicines in low- to middle-income countries and antibiotic shortages in developed
countries remain an important issue [2,3]. The complex molecular structures of antibiotics imply
expensive, multistep and materially intensive syntheses required to make such molecules [4]. Designing
efficient and cost effective antibiotic manufacturing routes is imperative [5].

The family of β-lactam antibiotics includes some of the most important pharmaceutical products,
with cephalosporins and semisynthetic penicillins corresponding to around 65% of the global production
of antibiotics [6]. Figure 1 illustrates the leading antibiotics by share of infection treatments in the U.K.
in 2016, with five of the leading nine antibiotics belonging to the β-lactam family. Table 1 lists certain
β-lactam antibiotics with their applications, average sales volumes [7,8] and unit prices, taken from
the National Chemical Database Service. The production of high-sale-volume β-lactam antibiotics is
typically implemented via enzymatic methods [9]. Amoxicillin is one β-lactam antibiotic listed as a
World Health Organisation (WHO) “Essential Medicine”: It is applicable to a variety of ailments [10],
including respiratory and urinary tract infections (UTIs) and is the top antibiotic in terms of dosage
worldwide [11]. The demonstrated enzymatic synthesis of amoxicillin paves the way for the elucidation
of optimal design and operating parameters via modelling and optimisation [12,13].

Processes 2019, 7, 318; doi:10.3390/pr7060318 www.mdpi.com/journal/processes19
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Dynamic modelling and optimisation of batch processes have been substantially implemented in
the literature for a variety of bioprocesses, including fermentations [14,15], antibiotic synthesis [16,17]
and many other applications, illustrating the utility and versatility of such methods in bioprocess design.
Enzymatic synthesis, crystallisation and reactive crystallisation studies for β-lactam antibiotics have
been implemented in the literature [16–19]. A demonstrated batch enzymatic synthesis of amoxicillin
paves the way for theoretical studies [20]. Dynamic modelling and optimisation of the batch enzymatic
synthesis of amoxicillin has yet to be implemented. Moreover, introducing temperature dependence
into the model may allow for the optimisation of batch reactor temperature profiles to meet a specific
production objective, which, to the best of our knowledge, has not been previously implemented.

Figure 1. Leading antibiotics used in the U.K. in 2016 [21].

The main objectives and novelty of this work are as follows:

1. To introduce temperature dependency into the published kinetic model of batch enzymatic
amoxicillin synthesis;

2. To understand the attainable performances and inherent trade-offs (via isothermal operation) of
varying batch times and operating temperatures;

3. To optimise dynamic temperature profiles toward optimal process performance for varying
product quality constraints.

First, the enzymatic synthesis pathway is presented with the kinetic model. The temperature
dependence of kinetic parameters is introduced through the regression of Arrhenius constants from
published experimental data. An isothermal simulation is then implemented for design space
investigation. A constrained dynamic optimisation problem is then described, which compares
the resulting temperature (control) profiles required to meet certain product specification objectives
pertinent to the specific process.

2. Dynamic Modelling and Optimisation

2.1. Amoxicillin Synthesis Pathway and Kinetic Model

The kinetically controlled reaction pathway for the synthesis of amoxicillin catalysed by penicillin
G acylase (PGA, denoted as E) is shown in Figure 2. A classical mechanistic approach to the complete
mechanism for this system has been shown to likely lead to an intractable problem: Thus, a simplified
semi-empirical kinetic model is used. Amoxicillin (AMOX) is synthesised from the reaction of
p-hydroxyphenyl glycine methyl ester (PHPGME) and 6-aminopenicillanic acid (6-APA). There are two
side reactions: PHPGME hydrolysis to p-hydroxyphenyl glycine (PHPG) and amoxicillin hydrolysis to
6-APA and PHPG. Pertinent species properties are listed in Table 2. The enzyme concentration, CE,
equals that considered in the literature [20].
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Figure 2. Simplified reaction pathway presented for the semiempirical model [20].

Equations (1)–(8) describe the kinetic model for the reaction pathways shown in Figure 2 [20].
Here, C = the species concentration at time t; vi = the species rate of formation; vh1 = the rate
of PHPGME hydrolysis; vh2 = the rate of AMOX hydrolysis; vS = the rate of AMOX synthesis;
k = the species inhibition constant; kEN = the 6-APA adsorption constant; kcat = the reaction rate
constant; KM = the reaction empirical rate constant; and Xmax is the maximum conversion ratio of the
enzyme reagent complex into AMOX. Subscripts i and j denote species and reactions, respectively.
The system of dynamic ODEs is solved simultaneously using the built-in MATLAB ODE solver ode15s.
Equations (1)–(8) are

dCi
dt

= vi (1)

vAMOX = vS − vh2 (2)

v6−APA = vh2 − vS (3)

vPHPG = vh1 + vh2 (4)

vPHPGME =
kcat,2CECPHPGME

KM1
(
1 +

CAMOX
kAMOX

+
CPHPG
kPHPG

)
+ CPHPGME

(5)

vh1 = vPHPGME − vS (6)

vh2 =
kcat,1CECAMOX

KM2
(
1 +

CPHPGME
kPHPGME

+
C6−APA
k6−APA

+
CPHPG
kPHPG

)
+ CAMOX

(7)

vS =
kcat,2CECPHPGME

KM1
(
1 +

CAMOX
kAMOX

+
CPHPG
kPHPG

)
+ CAMOX

CE

kE + CE
Xmax (8)

2.2. Kinetic Parameter Estimation

In this section, temperature dependency is introduced to the published kinetic model through
the regression of Arrhenius parameters for certain parameters in Equations (1)–(8). The considered
operating conditions of the batch reactor for enzymatic amoxicillin synthesis are as described in
the experimental demonstration in the literature [22]. A 2:1 molar mixture of PHPGME and 6-APA
(40:20 mM, respectively) in a 1-L batch volume was used for the batch enzymatic synthesis, with no
amoxicillin or PHPG present at the start of the reaction, i.e., CPHPG (t0 = 0), CAMOX (t0 = 0) = 0.

22
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Table 2. Properties of species in the reaction scheme for the batch enzymatic synthesis of amoxicillin.

Compound Abbreviation Type CAS # MW (g mol−1)

p-hydroxyphenyl glycine methyl ester PHPGME Feed 127369-30-6 180.18
6-aminopenicillanic acid 6-APA Feed/Side product 551-16-6 216.26

amoxicillin AMOX Product 26787-78-0 365.40
p-hydroxyphenyl glycine methyl ester PHPG Side product 37784-25-1 167.16

The original dynamic model for the batch enzymatic synthesis of amoxicillin assumes isothermal
operation, i.e., it does not account for the temperature dependence of kinetic parameters. Here,
the kinetic parameter temperature dependence for amoxicillin is introduced from published
temperature-dependent data: Values of kcat,1 and kcat,2 were regressed from published amoxicillin
concentration data at 5, 25, and 35 ◦C [22], from which Arrhenius parameters could then be estimated.
The remaining kinetic parameters were assumed to be temperature-independent, as a much wider
kinetic dataset is required for further multiparametric regression. Values of kcat,1 and kcat,2 at
different temperatures were regressed by minimising the residual error between the kinetic model
(Equations (1)–(8)) and the experimental data using the bound constrained solver “fminsearchbnd” in
MATLAB. Table 3 shows the regressed values of kcat,1 and kcat,2 at the given temperatures.

Table 3. Values of kinetic parameters under varying isothermal conditions.

Parameter T = 5 ◦C T = 25 ◦C T = 35 ◦C
T-dependent kcat,1 (IU g−1 min−1) 0.57 0.59 0.64

kcat,2 (IU g−1 min−1) 9.16 3.07 1.77

Fixed KM1 (mM) 0.20 0.20 0.20
KM2 (mM) 27.47 27.47 27.47
Xmax (–) 0.96 0.96 0.96
kE (mM) 16.03 16.03 16.03

kPHPGME (mM) 2672.04 2672.04 2672.04
kAMOX (mM) 4.59 4.59 4.59
kPHPG (mM) 4.51 4.51 4.51
k6-APA (mM) 4550.28 4550.28 4550.28

With temperature-varying values for kcat,1 and kcat,2, the Arrhenius parameters, k0 (the pre-exponential
factor) and Ea (the energy barrier), were then regressed. An Arrhenius-type temperature dependence
of kcat,1 and kcat,2 was assumed, according to Equation (9):

kcat(T) = k0 exp
(
− Ea

RT

)
(9)

where k0 and Ea are the Arrhenius pre-exponential factor and energy barrier, respectively; R is the
universal gas constant; and T is the reaction temperature. The fitting methodology for Arrhenius
constant regression also used “fminsearchbnd” in MATLAB, as described previously. Figure 3 shows
the lines of best fit for both Arrhenius plots, showing a good fit in both cases. The regressed Arrhenius
parameter values (listed in Table 4) allowed for good replication of the experimental data (Figure 4).
A corroboration of the regressed parameters with a wider dataset will further validate the values
used in this work. The experimental data in the literature that were used to regress the kinetic
parameters at different operating temperatures (T = 5, 25, 35 ◦C) provided no error values for the
calculated concentrations (estimated via HPLC) or temperatures, and thus error bars are not shown [22].
An investigation of the effect of errors on regressed parameter values (isothermal kcat,1 and kcat,2 and
non-isothermal Arrhenius parameters) could be implemented by perturbing their values and observing
the effect on the optimisation results as a form of sensitivity analysis.
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Figure 3. Arrhenius parameter regression from experimental data [22].

Table 4. Regressed Arrhenius parameters for kcat,1 and kcat,2.

Parameter kcat,1 kcat,2

k0 (IU g−1 min−1) 1.89 4.74 × 10−7

Ea (J mol−1) 2.80 × 103 −3.88 × 104

2.3. Dynamic Simulation and Optimisation

2.3.1. Design Space Investigation and Simulation

Surface plots of the concentrations of key species, PHPGME, 6-APA, AMOX and PHPG as a
function of isothermal reactor temperature and time were developed for design space investigation.
Additionally, various performance indices were investigated and compared to elucidate attainable
performances and inherent trade-offs. Selectivity, S, is the ratio of concentration of AMOX to PHPG
(Equation (10)), and productivity, P, is the rate of production of AMOX (Equation (11)). Surface plots
of these performance indices were also developed to understand the behaviour of the dynamic system.

S =
CAMOX

CPHPG
(10)

P =
Cmax

AMOX

tmax
(11)

Figure 4. Concentration profiles of amoxicillin: experimental [22] vs. Arrhenius modelled results.
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2.3.2. Dynamic Optimisation

The optimisation problem is posed such that different target amoxicillin product concentrations are
met while consumption of the valuable feedstock 6-APA (bulk price = 35–40 USD kg−1) is minimised.
Minimising feedstock consumption in different cases can lead to possible process configurations
where reagents and solvent are recycled following desired product (amoxicillin) crystallisation [23,24].
Although recycling options are not explicitly considered in this work, they have been demonstrated in
the literature for β-lactam antibiotic synthesis with nanofiltration for by-product (PHPG) removal [25].
This can allow for processes with greater material efficiencies and overall sustainability. Economic
analyses of specific process designs can further elucidate the benefits of such designs [5], but are
beyond the scope of this work.

The problem considers system state variables, i.e., species concentration profiles (C(t)) that vary
over time and are influenced by the reactor temperature control vector T(t). The problem aims to
simultaneously consider the minimisation of 6-APA consumption with the scope of potential recycling
of this key substrate along with amoxicillin product maximisation. The bicriteria problem is defined
by Equations (13) and (14). While J1 and J2 present competing objectives, the utility of the presented
optimisation results is in exploring how to manipulate the optimal temperature control profile over the
batch duration to yield the desired amount of amoxicillin while minimising feedstock consumption.
Equations (12)–(14) are

min
T(t)

{
J1

J2
(12)

J1 = C6-APA (t0) − C6-APA (tf) (13)

J2 = -CAMOX (tf) (14)

Numerous approaches can be used to modify a multiobjective problem for compatibility with
single-objective solution methods. Commonly, a weighted sum objective is used to combine competing
objectives into a single term, with weights defining the relative importance of each. However,
the weights assigned to various process targets to produce a single objective function may be considered
arbitrary in many cases, with decision-makers not necessarily able to quantify a priori the relative
importance of competing objectives. Rather, we elected to consider an ε-constraint approach [26].
One of the objectives can be considered to be a constraint in the problem formulation, while the other
is solved to optimality. This is repeated, increasing the value of the objective constraint by Δε and
re-solving, repeating this process by incrementally increasing the constraint value across the entire span
of permissible values for that particular objective. In this case, the amoxicillin product concentration
was treated as a secondary objective and converted into a constraint. The single objective herein
was to minimise the consumption of key feedstock 6-APA (formulated as the maximisation of final
6-APA concentration), subject to varying final amoxicillin concentrations (end-point constraints) and a
final batch time, tf = 500 min, which was observed as the maximum time beyond which amoxicillin
degradation via hydrolysis to 6-APA and PHPG dominated (Figures 3 and 4). Equations (12)–(14)
become Equations (15)–(18):

max
T(t)

J = C6−APA (tf) (15)

s.t.

CAMOX (tf) ≥ ε (16)

tf = 500 min (17)

5 ◦C ≤ T(t) ≤ 35 ◦C (18)

Reactor temperature control trajectories were considered to be piecewise constant with N = 20
time discretisation elements. A variety of different initialisation profiles were tested to investigate the
sensitivity of the problem to the initial guess of temperature trajectory, which consistently converged
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to the same optima presented in this work. Although global optima were not guaranteed, a variety of
initialisation profiles resulting in the same optima and profiles implied that as close to global optima
were attained as possible with the solution methods implemented. Temperature control profiles were
initialised as isothermal at T = 295 K across all time discretisations. Lower and upper boundaries on
temperature values were 5 and 35 ◦C, respectively (interior constraints, Equation (18)), corresponding
to the temperature range used to regress kinetic parameter Arrhenius constants. Different end-point
constraints on amoxicillin concentration (Equation (16)) were considered, as well as an unconstrained
case (ε = 0). Each case of a considered amoxicillin concentration constraint was solved as a separate
optimisation problem. The problem was solved using a direct, simultaneous method: Orthogonal
collocation on finite elements [27,28] to approximate the state (C(t)) and control (T(t)) trajectories to
convert the problem into a nonlinear programme (NLP), which was then solved using an interior point
filter line search algorithm (IPOPT) [29]. Dynamic optimisation was implemented in MATLAB using
DynOpt [30].

3. Results and Discussion

3.1. Dynamic Simulation

Concentration surface plots of PHPGME, 6-APA, AMOX and PHPG as a function of batch time and
reactor operating temperature are shown in Figure 5. The colours in Figure 5 represent concentration
data values on the z axis and are shown to aid in the interpretation of the surface plots. Species
PHPGME and PHPG concentrations were strong functions of batch runtime but were largely unaffected
by temperature, which was likely due to the model being fitted exclusively to AMOX concentration
data [22]. Key substrate (6-APA and PHPGME) concentrations were lowest at longer batch times and
higher temperatures, as these conditions favoured consumption toward amoxicillin and its hydrolysis
to PHPG. Amoxicillin synthesis was favoured by longer batch times and higher reactor temperatures,
while PHPG concentration was not affected significantly by reactor temperature. The concentration
of AMOX reached a maximum at ~430 min, after which it began to decrease due to the decreasing
ratios of vS to vh2 and vAMOX to vPHPG (as shown in Figure 6), both of which decreased significantly
with batch time. The colours in Figure 6 represent the reaction rate ratios shown on the z axis and are
shown to aid in the interpretation of the surface plots.

3.2. Non-Isothermal Simulation

Extensive simulations were performed as a preliminary investigation of attainable process
performances for non-isothermal batch reactor operations. Here, the T(t) domain was discretised on
a coarse grid (discretisation level N = 9) to generate a finite set of profiles for exhaustive simulation.
Possible temperature profiles were subject to the constraint that the temperature was allowed to change
by a maximum of 10 ◦C per interval. The different simulation cases are presented in Figure 7, showing
the maximum attainable amoxicillin concentrations versus the maximum batch time required (tMAX),
and also selectivity (Equation (10)) and productivity (Equation (11)). The banding observed was
due to stepwise temperature profile simulations. Different cases are highlighted on each of these
plots: (1) maximum selectivity, (2) maximum amoxicillin concentration and (3) a compromise between
selectivity and productivity. Maximum final amoxicillin concentration was achieved by operating at
the maximum temperature (35 ◦C), in agreement with previously observed results [22]. There are
inherent trade-offs between different process performance metrics. Doing so facilitates a visualisation
of the attainable performance of the process, subject to the rules imposed in generating the set of
profiles. Dynamic optimisation can be implemented for temperature profile manipulation in order
to investigate the possibility of the process benefitting from non-isothermal operation for specific
production objectives.
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Figure 5. Isothermal concentration response surfaces as a function of batch time and operating
temperature for (a) PHPGME, (b) 6-APA, (c) AMOX and (d) PHPG.

3.3. Non-Isothermal Dynamic Optimisation

The resulting temperature (control) and species concentration (state) trajectories for different
product amoxicillin constraints imposed on the dynamic optimisation problem are shown in
Figures 8 and 9, respectively. The temperature profiles varied significantly as the constraint
concentration of amoxicillin in the reactor product mixture increased.

v
v

v
v

Figure 6. Isothermal response surface of reaction rate ratios as a function of batch time and temperature.

When the optimisation problem was unconstrained, the temperature gradually decreased from
296 K at t = 0 min to 278.15 K at t = 325 min (lower temperature bound), after which isothermal
operation at this temperature continued for the remainder of the batch time. For CAMOX (tf) = 5 and
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6 mM, the temperature profile decreased until t = 375 min and then increased again, with a higher final
operating temperature required for a higher concentration constraint. When the constraint was set to
CAMOX (tf) = 7 mM, a gradual decrease from 296 to 290 K over the batch duration was implemented.
For CAMOX (tf) ≥ 8 mM, temperature profiles increased over the batch duration. At CAMOX (tf) =
9 mM, a steady increase from 295 to 305 K was observed. For CAMOX (tf) = 10 mM, the temperature
increased sharply from 292 to 308 K (upper temperature bound) at t = 100 min. For CAMOX (tf) =
11 mM, the temperature increase rate was more drastic, increasing to the upper bound at t = 25 min,
with subsequent isothermal operation for the remainder of the batch duration.

Figure 7. Non-isothermal simulation performance indices.

 
Figure 8. Optimal temperature trajectories for different production constraints.

These trends confirmed that lower amoxicillin target constraints required lower operating
temperatures, with higher temperatures required for higher target concentrations. This behaviour
was due to the effect of increasing temperatures favouring amoxicillin synthesis over undesired side
hydrolysis, consistent with the system behaviour shown earlier in Figure 5. For the unconstrained
case, the temperature was eventually pushed to the lower bound, and as the target amoxicillin
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concentration increased, the temperature was pushed to the upper bound. The temperature bounds
imposed on the dynamic optimisation problem corresponding to the lower and upper temperature
values at which experimental concentration data for kinetic and Arrhenius parameter regression were
implemented [22]. Relaxing these bounds may have resulted in different optimal control trajectories.
Industrial temperature controllers typically operate similarly to piecewise constant or linear profile
behaviours, but there is inevitably a temperature lag between the constant temperature discretisations.
The incorporation of time lag into temperature control will certainly affect the presented results: Such
an analysis was outside the scope of this work, but may enhance our understanding of attainable
optima for this work and other industrially relevant design cases. The optimal temperature profiles
for each case presented are those attained from our optimisation, having initialised the solver with
the same starting solution (isothermal at T = 295 K). There were different profiles that could still
meet the same amoxicillin product concentration constraints (i.e., different routes to the same product
specification). The isothermal concentration response surfaces in Figure 5 were unable to depict state
evolution under non-isothermal reactor operation, and thus dynamic optimisation was implemented.

The resulting species concentration (state) trajectories are shown in Figure 9. In all cases,
as substrates PHPGME and 6-APA were consumed, product amoxicillin and by-product PHPG
were formed. For the unconstrained and lower amoxicillin concentration constraints (e.g., CAMOX

(tf) = 5–7 mM), the target amoxicillin concentration was met before the concentration of 6-APA
(i.e., the objective function) was maximised. This indicated that there was scope to also optimise the
batch runtime in the dynamic optimisation problem as well, which can be considered in future work.
The final species concentrations at the end of the batch runtime (tf = 500 min) are shown in Figure 10.
As the product amoxicillin constraint was increased, the maximum objective function value decreased.

Figure 9. Optimal concentration trajectories for different production constraints.

The objective of the dynamic optimisation was to minimise 6-APA consumption (posed by
maximising the final 6-APA concentration at the end of the batch duration). Figure 10 shows the
fraction of 6-APA from the process feed that was present in the batch product versus that consumed in
the reaction network. In all design cases (varying the amoxicillin product concentration constraint),
a significant portion of the fed 6-APA was present in the product mixture.
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C t

Figure 10. Fraction of 6-APA remaining in the batch product versus that consumed via reaction.

It can be seen from Figure 9 that when CAMOX (tf) = 11 mM was specified, the constraint was not
met. Consideration of the maximum attainable objective function values for a broad range of CAMOX

(tf) (Figure 11) explains this result. This was a result of there being a maximum product concentration
of amoxicillin attainable from the given feed substrate concentrations. Figure 12 plots the attained
maximised objective function for different imposed amoxicillin product concentration constraints.
Until a certain amoxicillin product concentration (Point A), the maximum attainable objective function
value was the same: This was the maximum attainable value from the given initial conditions (feed
concentrations). As the product amoxicillin concentration increased, the maximum attainable objective
function decreased until the maximum constraint, CAMOX (tf) = 9.927 mM, allowing for an objective
function, C6-APA (tf) = 10.067 mM (Point B). The limiting points (A and B) highlighted in Figure 12
resulted from the initial concentration conditions of the system.

C
t

C t

C
t

C t

C
t

C t

C
t

C t

C t

Figure 11. Final concentrations (colour scheme congruent with Figure 9 trajectories).
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Figure 12. Maximum 6-APA concentration for different constrained amoxicillin concentrations.

The initial concentration values of PHPGME and 6-APA used in this work were the same as those
implemented in the literature, from which experimental data were used for parameter regression.
These values corresponded to typical industrial application ranges [20]. In the literature, it was observed
that concentrations of 6-APA > 20 mM led to a slower formation of the acyl-enzyme complex in the
amoxicillin synthesis reaction, which was detrimental to process performance [20,22]. For this reason,
the initial conditions (i.e., reagent concentrations) considered in this work were kept as demonstrated
in the literature. Additionally, an investigation of the applicability of the model at higher reactor
volumes for increased production scales would be of value, requiring further experimental validation
and corroboration. The results presented in this work assumed perfect mixing and heat transfer in the
batch reactor. As the process is scaled up, deviations from this ideal behaviour assumption must be
considered when interpreting the results presented in this work.

Measuring the material efficiency of different design cases is also an important consideration in
pharmaceutical production [31]. A variety of green chemistry metrics exist for quantification of the
effectiveness of processes, the applicability of which depends on the process [32]. Here, we compare
the efficiency of different optimisation scenarios (varying CAMOX (tf) considerations) via the reaction
mass efficiency (RME), calculated by Equation (19).

RME =
mAMOX(tf)

mPHPGME(t0) + m6−APA(t 0)
(19)

The RME is calculated as the mass ratio of amoxicillin (mAMOX) at the end of a batch run to the
masses of starting materials (PHPGME (mPHPGME) and 6-APA (m6-APA)) at the start (t0 = 0). Values of
RME for different product amoxicillin concentration constraints are shown in Figure 13. As the specified
amoxicillin concentration constraint increases, the RME increases, which is expected. All values of
RME were relatively midrange with respect to typical pharmaceutical manufacturing processes [33].
The effect of scale-up on material efficiencies, as well as plant-wide costs, is an important consideration
during process design and optimisation studies such as this one [34].
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C t

Figure 13. Reaction mass efficiencies (RMEs) for different constrained amoxicillin concentrations.

Figure 14 shows purity, with different species as the reference point corresponding to optima
(maximum product 6-APA concentrations) for different product amoxicillin concentration constraints,
calculated from the final concentration values shown in Figure 10. In all cases, PHPGME and 6-APA
(reagent) concentrations decreased as amoxicillin purities increased. While PHPG contents decreased,
they remained high compared to other species in the mixture. A consideration of mixture compositions
following synthesis is important for purification and separation process design, particularly for
crystallisation design [35]. Understanding the partitioning of different species between liquid phase
mixtures and solid phase product crystals is essential for understanding the effects of different operating
and design parameters on crystal product attributes (purity, size distribution, etc.). Another method
of circumventing the accumulation of impurities in crystals is reactive crystallisation, which aims to
preferentially crystallise the desired compound from the reaction mixture solution: This has been
implemented for various β-lactam antibiotics [16,17]. While such methods may allow for improved
purities over traditional crystallisation, ensuring rates of reaction compared to mass transfer rates to
avoid high supersaturation is paramount, as this can lead to undesirably wide crystal size distributions
and low mean sizes.

C t

Figure 14. Product mixture content for different amoxicillin product concentration constraints (colour
scheme congruent with Figures 9 and 11).

32



Processes 2019, 7, 318

The basis of the dynamic optimisation cases considered in this work was to establish optimal
temperature profiles to meet specific amoxicillin product concentrations while minimising the
consumption of key feedstock (6-APA). Varying constraints on the amoxicillin product concentrations
were considered to investigate the effect of different desired mixture qualities on optimal temperature
control trajectories. The objective of the dynamic optimisation problem was not to maximise amoxicillin
production, but rather to produce at least a certain desired quantity of amoxicillin while minimising
consumption of the key reagent 6-APA. In the presented results, dynamic temperature profiles were
confirmed to be optimal for attaining a range of target amoxicillin concentrations while minimising
6-APA consumption. The highest target amoxicillin concentration considered had a nearly isothermal
temperature profile over the batch duration: If the objective of the optimisation had been simply
the maximisation of amoxicillin product concentration, isothermal profiles would likely have been
preferable. However, for certain desired amoxicillin product concentrations, dynamic temperature
profiles were confirmed to be optimal.

4. Conclusions

A kinetic model for the batch enzymatic synthesis of amoxicillin was considered in this work for
dynamic modelling and optimisation. The novelty of this work is in the following:

1. The introduction of temperature dependency to the implemented existing kinetic model [20] using
experimental concentration data [22] for the batch enzymatic synthesis of amoxicillin; and

2. The first implementation of dynamic temperature profile optimisation in order to meet specific
product quality constraints and minimise feedstock consumption in β-lactam antibiotic production.

Temperature dependency in the model was introduced through the regression of Arrhenius
parameters to allow for non-isothermal modelling and optimisation of the temperature trajectories
to minimise key substrate (6-APA) consumption subject to varying constraints on the product
amoxicillin concentration. The attainable minimal substrate consumption was strongly dependent on
the amoxicillin product concentration. This work presents the first batch reactor temperature trajectory
optimisation for amoxicillin synthesis and can be extended to other antibiotics given similar reaction
networks and the availability of model kinetic parameters.
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Abstract: Spray drying is a key unit operation used to achieve particulate products of required properties.
Despite its widespread use, the product and process design, as well as the process control remain highly
empirical and depend on trial and error experiments. Studying the effect of operational parameters
experimentally is tedious, time consuming, and expensive. In this paper, we carry out a model-based
global sensitivity analysis (GSA) of the process. Such an exercise allows us to quantify the impact of
different process parameters, many of which interact with each other, on the product properties and
conditions that have an impact on the functionality of the final drug product. Moreover, classical
sensitivity analysis using the Sobol-based sensitivity indices was supplemented by a polynomial
chaos-based sensitivity analysis, which proved to be an efficient method to reduce the computational
cost of the GSA. The results obtained demonstrate the different response dependencies of the studied
variables, which helps to identify possible control strategies that can result in major robustness for the
spray drying process.

Keywords: quality by design; pharmaceutical manufacturing; polynomial chaos; global sensitivity
analysis; spray drying

1. Introduction

Spray drying is a widely-used unit operation in the production of high-value-added products in the
food, fertilizers, chemical, and pharmaceutical industries [1–4]. Its application ranges from the production
of milk and other diary products, to the very complex formulations of composite materials used in
medicines, to biological products for which few other drying technologies are feasible. Spray drying is
a cost-efficient, continuous, and relatively easy to operate process [5]. A typical spray dryer, as shown
in Figure 1, consists of two sections, an atomization section and a drying section. The atomizer
disperses the liquid mixture into small droplets, which then fall into the drying chamber. Small droplets
dispersed in a hot gas medium offer large surface areas for mass and energy transfer, while guaranteeing
short exposure of the product to high temperatures [6,7]. The dried product is then collected using
an array of cyclones and filters. Spray drying allows a more specific functional design of products.
It provides high flexibility on the input mixture because the liquid feed can be provided in various
forms, e.g., solutions, emulsions, or suspensions. The nature of the particulate product ranges from pure
substances, solid blends, to composite materials, and viable biological components. With proper tuning,
spray drying offers relatively narrow particle size distributions in the range between nano- to micro-sized
particles [8–10], and good control over other particle properties like residual solvent content, morphology,
and density. The major tuning parameters include the flow rate and temperature of the feed and drying gas;
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concentration, surface tension, viscosity, and density of the liquid feed; flow configuration; and atomizer
geometry. Any variations in these process conditions or the input feed properties will thus affect the
downstream properties.

Figure 1. Schematic of a spray dryer.

The continuous push from regulatory agencies, the tightening quality requirements, and the increase
in the number of specialized drug products drive the research on spray drying towards the development
of model-based approaches that replace the traditional empirical practices. Similar to many other unit
operations that handle particulate systems, the setup of large-scale spray drying operations remains
highly empirical [1]. Due to the complexity of the multiphase system involved, the process conditions
for spray drying are traditionally determined by trial and error experiments. This approach normally
involves large investments in time and money to determine those process conditions that result in a dried
product with the desired properties. In the pharmaceutical industry, the quality by design paradigm (QbD)
has already pushed for a more systematic view of the exploitation of the experimental knowledge [11].
Applying QbD to the spray drying process entails: (i) determination of powder properties, which are
critical quality attributes (CQAs) based on the impact they have on the performance of the drug product,
(ii) identification of the critical process parameters (CPPs) and input material attributes (CMAs) that affect
the CQAs, and (iii) establishment of a design space and control strategy in terms of CPPs and CMAs that
can guarantee the CQAs’ requirements.
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Within this context, this work evaluates the use of global sensitivity analysis (GSA) as a model-based
approach to apply the principles of QbD to the spray drying process. This approach bridges the research
drive towards model-based methods for spray drying and the goals of QbD in the pharmaceutical industry.
Previous research in these lines has focused on developing models for spray drying [1,12–16] or on QbD
for spray drying using the design of experiments and defining the design space based on statistical analysis
of the experimental data [17–20]. In this work, the focus is put first on the evaluation of the methods to
apply GSA to the spray drying process, followed by the critical analysis of the results to demonstrate its
potential to exploit the knowledge of the system contained in the model. GSA offers a structured approach
to identify, quantify, and rank the influences of the CPPs and CMAs on the CQAs.

Several models have been developed in the past for the spray drying process. The level of detail
and associated complexity of these varies from considering one dimensional differential equations [12,13]
to complex partial differential equations, which aim to capture gradients in more multiple dimensions [15].
CFD simulations show the complex flow patterns that are developed inside the drying chamber due to
the geometry of the chamber, velocity and pressure gradients in the gas, as well as the size distribution
of the particles [16]. Studies on atomization generally consider empirical equations to model specific
types of nozzles. Since the aim of this work is to demonstrate the power of GSA to capture the global
relation between variables and the mean responses of the CQAs, a validated one-dimensional system
of differential equations is chosen to describe the spray drying process [1]. This model is described in
Section 2.1. Additionally, two different atomization nozzle configurations are considered to evaluate the
differences induced in the process and the product. The pneumatic and the pressure nozzle considered are
discussed in Section 2.3.

A traditional approach to GSA is the use of Sobol sensitivity indices, which result from an analysis of
variance on the system [21]. This method is discussed in Section 2.2.1. An analytical solution to partial
variances is almost impossible for complex mathematical models, and typically, approximations based
on (quasi) Monte Carlo sampling are used. The current best practices to calculate the sensitivity indices
make use of Saltelli’s approach with a sufficient number of quasi-random samples [22,23]. However,
a large number of model evaluations for complex models lead to exorbitant computational times.
More computationally-efficient methods for the approximation of sensitivity indices are based on surrogate
meta-models. These approaches have already been investigated for the GSA of (bio)chemical processes [24].
In this work, polynomial chaos expansion (PCE) is used as a way to construct the meta-model for spray
drying and reduce the computational burden for the GSA [25–27]. PCE is based on the probabilistic
projection of the model output on the basis of orthogonal stochastic polynomials. In this work, arbitrary or
data-driven is investigated, as it does not depend on an assumption of any specific probability distribution
functions (PDF) for the inputs. To assess the PCE-based sensitivity indices, we assume that the indices
based on Saltelli’s approach are true iff the number of samples is large enough. The question of the size of
the sample set is discussed in Section 3.1. In the same section, the sensitivity indices calculated using the
PCE are then compared to the Saltelli approximations.

The results obtained are discussed in Sections 3.2 and 3.3. Two main aspects are reviewed based
on these results. (i) The validity of GSA using arbitrary or data-driven polynomial chaos expansions
(aPCE) is evaluated with respect to the indices computed from the comprehensive variance analysis
based on Saltelli’s method. (ii) A critical discussion is provided on the results of the GSA for the spray
drying process.
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2. Materials and Methods

2.1. Spray Drying Model

Considering the co-current gas flow spray dryer, the process proceeds in the following stages.
First, the liquid feed is atomized using special nozzles, and the droplets enter the drying chamber.
The solvent is then evaporated from the droplets by the drying gas fed to the chamber. At one point
along the drying chamber, the droplets transition to solid particles, which then need to be separated from
the drying gas. In this paper, the atomization section is modeled independently of the drying section.
The spray drying model developed in [1] was used for the study. The spray dryer is modelled axially,
ignoring any radial effects under a number of other simplifying assumptions.

For the solids, the humidity (Wp) in the droplet/particle follows Equation (1)

dWp

dz
= −πdpṁv

vpms
, Wp(z = 0) = Wp0 (1)

where z is the axial distance, vp and dp are the particle velocity and diameter, ms is the mass of solids in
the droplet (estimated from the initial liquid concentration), and ṁv is the rate of evaporation. The particle
humidity evolves until an equilibrium moisture content is reached. After this point, it stabilizes, and the
evaporation rate drops to zero.

A particle/droplet in the spray dryer goes through various stages of drying. Initially, as the rate
of evaporation is balanced by the rate of moisture transfer from the center of the particle to the surface,
the droplet shrinks in size, while its density increases. Further down the chamber, a critical moisture
content is reached where the droplet transitions to being a “wet particle”, and the size of the particle
remains constant. The transition of the wet particle to a dry particle is limited by the rate of moisture
being wicked to the surface of the particle. Once the equilibrium moisture content is reached, the particle
stops drying, and its density (ρp) and size (dp) remain constant. Cotabarren et al. [1] modeled the process
as follows.

When Wp ≥ Wpc,

ddp

dz
=

dp0ṁvπd2
p

3msvp

(
ρp0 − ρw

ρp − ρw

)− 2
3
(

ρp0 − ρw

(ρp − ρw)2

)(
1 − ρs

ρw

(1 + ρs
ρw

Wp)2

)
, dp(z = 0) = dp0 (2)

dρp

dz
= − ṁvπd2

pρs

msvp

1 − ρs
ρw

(1 + rhos
rhow

Wp)2
, ρp(z = 0) = ρp0 (3)

when Wpeq ≤ Wp < Wpc:

ddp

dz
= 0 (4)

dρp

dz
= − 6ṁv

dpvp
(5)

and when Wp < Wpeq,

dρp

dz
= 0 (6)
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The particle velocity is modeled by balancing the gravity with the drag forces acting on the particles.

dvp

dz
= g

(
ρp − ρa

ρpvp

)− 3
4

− 3CDρa

4dpρpvp
(va − vp)|va − vp| (7)

The rate of evaporation is described as a function of relative humidity of the gas and its saturation
moisture content at the particle surface temperature [28].

ṁv = β(Ysat − Yb) (8)

Ysat =
Pv M̃w

(P − Pv)M̃a
(9)

The vapor pressure Pv was calculated using Antoine’s equations. Pis the atmospheric pressure,
and M̃{a,w} is the molecular weight of the gas (air) and solvent (water). The mass transfer coefficient is
estimated as:

β =
αρaDe f f

ka
(10)

The heat transfer coefficient α is estimated using empirical formulation [28,29]

Nu = 2 + 0.6Re0.5Pr0.33 (11)

where Nu is the Nusselt number, Re the particle Reynolds number, and Pr the Prandtl number. The energy
balance on a single particle/droplet is given by:

dTp

dz
=

πd2
p[α(Ta − Tp)− ṁvΔHev]

vpms(cp,s + Wpcp,w)
, Tp(z = 0) = Tp0 (12)

where Tp is the particle temperature and ΔHev is the evaporation enthalpy of water.
The gas phase balances consider the total number of droplets, Nt, which is estimated as:

Nt =
Ṁl

Vp0ρp0
(13)

where Ṁl is the liquid mass flowing though the atomization nozzles and Vp0 is the initial droplet volume.
The gas moisture (Yb) balance is written as:

dYb
dz

= Nt
ṁvπd2

p

Ṁavp
, Yb(z = 0) = Yb0 (14)

The drying gas temperature (Ta) evolves as follows:

dTa

dz
= −Ntπd2

p(ṁvcp,v + α)(Ta − Tp)

vp Ṁa(cp,a + Xbcp,v)
+

U(Ta − Tamb)πDc

Ṁa(cp,a + Xbcp,v)
, Ta(z = 0) = Ta0 (15)

Further details on the model can be found in [1]. The limits of the empirical relations used to calculate
the dimensionless numbers (i.e., Re, Pr, Nu) and the mass and energy transfer coefficients are valid for the
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wide range of possible conditions observed in a spray drying chamber. These relations were tested in [29],
in the range 0 ≤ Re ≤ 200 and for gas temperatures up to 220 °C.

A typical spray drying profile obtained through the solution of the above model is depicted in
Figure 2. The profiles observed for all variables illustrate that most of the changes occur in the first part of
the drying chamber (i.e., Z <∼ 0.14 (m)); this is before the equilibrium humidity is reached. After this
point, most of the variables display a steady value. Only the temperatures continue to change due to the
heat transfer through the exterior wall of the drying chamber. In this part, the temperature of the gas
and of the particle are equal. In the section before the equilibrium point, the droplet/particle velocity
determines two distinctive phases. At the very beginning, when the droplet velocity is significantly higher
than that of the air (i.e., Z <∼ 0.02 (m)), the conditions for mass transfer are favored by the turbulence
around the droplets, and therefore, a high evaporation rate of the solvent can be observed. This causes the
temperature of the droplet to drop because energy is consumed for evaporation faster than it is transferred
from the hot air. The rate of change in droplet size and humidity is also distinctive in this section. Once the
droplets have reached terminal velocity, the rate of evaporation is controlled by the energy transferred
from the hot air to the droplet, and so the temperature stabilizes around a given value. In this section,
the particle size and humidity continue to decrease. This phase ends when the particle has reached
the equilibrium humidity. On the one hand, this stops the evaporation, reaching the final particle size,
humidity, and density. The temperature, on the other hand, rises very quickly to reach equilibrium with
the air temperature.

(a) Particle Diameter dp (b) Residual Solvent Content Wp (c) Particle Density ρp

(d) Particle Velocity vp (e) Particle Temperature Tp (f) Drying Air Temperature Ta

Figure 2. Example of the spray drying output evolution along the length of the drying chamber at
nominal conditions.

2.2. Global Sensitivity Analysis

The aim of sensitivity analysis (SA) is to study the variation in the outputs due to a variation in
the inputs. Local SA methods typically consider only one input and one output (e.g., one-at-a-time
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analysis) and are limited to small variations around the nominal operating point. Global sensitivity
methods (GSA) focus on output variations over a larger range of inputs, which are considered individually
(first order effects) and together (higher order/interaction effects). A classical variance-based GSA method
is the method using Sobol’s sensitivity indices [21]. The sensitivity indices are obtained via the ANOVA
decomposition (Sobol decomposition) of the model outputs. Here, we discuss a brief theory of variance
based GSA followed by practical methods to estimate these indices.

2.2.1. Variance-Based Sensitivity Analysis

Consider an d-dimensional input parameter vector θ with a parameter space Ωd. The parameters
are independent identically distributed (iid) random variables with a probability density function (PDF)
p(θ). Since the parameters are iid, p(θ) = ∏i p(θi). A physical model y = f (θ) describes the response of
a physical system. Note that although y is considered a scalar here, the theory is equally applicable for
multi-response systems. The response function can be decomposed into main effects and interactions:

f (θ) := f0 +
d

∑
i=1

fi(θi) +
d−1

∑
i=1

d

∑
j>i

fij(θi, θj) + · · ·+ fi1,...,id(θi, . . . , θd) (16)

The above decomposition is unique, and the following properties are satisfied [21,22]:

f0 =
∫

Ωd

f (θ)p(θ)dθ (17)∫
Ωdk

fi1,...,is p(θk)dθk = 0, 1 ≤ i1 ≤ · · · < is ≤ d, k ∈ i1, . . . , is (18)

From the properties (17) and (18), the terms in the decomposition (16) follow as:

f0 = E[ f (θ)]

fi(θi) = E[ f (θ)|θi]− f0

fi,j(θi, θj) = E[ f (θ)|θi, θj]− fi(θi)− f j(θj)− f0 (19)

· · ·

where E[·|·] is the conditional expectation. It can be shown that all the summands except f0 are
mutually orthogonal.

Similarly, the variance of the model response can be decomposed as:

V[ f (θ)] := D =
d

∑
i=1

Di + ∑
1≤i<j≤d

Di,j + · · ·+ D1,...,d (20)

where Di1,··· ,is are called the partial variances and are defined as

Di1,...,is := V[ fi1,...,is(θi1 , . . . θis)], s = 1, . . . , M (21)

The sensitivity indices for parameter [θi1 , . . . , θis ] are now defined as:

Si1,...,is =
Di1,...,is

D
(22)
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The first order sensitivity index Si lies between [0, 1], and for purely-additive models, the sum of all
first order indices is one.

The total impact of a parameter θi is assessed through the total sensitivity index [30]:

ST
i = Si + ∑

j<i
Sj,i + ∑

j<k<i
Sj,k,i + · · ·+ S1,...,M (23)

2.2.2. Computation of Sensitivity Indices by Saltelli’s Method

In this work, the method proposed by Saltelli et al. [22] was used, which is an extension of the original
Monte Carlo sampling-based method of Sobol [21]. For a model with d inputs, the method proceeds
as follows:

1. Generate a sample matrix of N × 2d using the Sobol sequences. The sample matrix is split into two
data matrices A (Equation (24)) and B (Equation (25)), each containing half of the samples. N is the
number of samples to be used for computing the indices. The order of N can vary between a few
hundreds to a few thousands.

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ
(1)
1 θ

(1)
2 · · · θ

(1)
i · · · θ

(1)
d

θ
(2)
1 θ

(2)
2 · · · θ

(2)
i · · · θ

(2)
d

· · · · · · · · · · · · · · · · · ·
θ
(N−1)
1 θ

(N−1)
2 · · · θ

(N−1)
i · · · θ

(N−1)
d

θ
(N)
1 θ

(N)
2 · · · θ

(N)
i · · · θ

(N)
d

⎤
⎥⎥⎥⎥⎥⎥⎦ (24)

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ
(1)
d+1 θ

(1)
d+2 · · · θ

(1)
d+i · · · θ

(1)
2d

θ
(2)
d+1 θ

(2)
d+2 · · · θ

(2)
d+i · · · θ

(2)
2d

· · · · · · · · · · · · · · · · · ·
θ
(N−1)
d+1 θ

(N−1)
d+2 · · · θ

(N−1)
d+i · · · θ

(N−1)
2d

θ
(N)
d+1 θ

(N)
d+2 · · · θ

(N)
d+i · · · θ

(N)
2d

⎤
⎥⎥⎥⎥⎥⎥⎦ (25)

2. Define matrix C (Equation (26)) as the matrix with all columns of B except the itextth column, which is
taken from A.

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎣

θ
(1)
d+1 θ

(1)
d+2 · · · θ

(1)
i · · · θ

(1)
2

θ
(2)
d+1 θ

(2)
d+2 · · · θ

(2)
i · · · θ

(2)
2d

· · · · · · · · · · · · · · · · · ·
θ
(N−1)
d+1 θ

(N−1)
d+2 · · · θ

(N−1)
i · · · θ

(N−1)
2d

θ
(N)
d+1 θ

(N)
d+2 · · · θ

(N)
i · · · θ

(N)
2d

⎤
⎥⎥⎥⎥⎥⎥⎦ (26)

3. Compute the model output for all the input values in the three matrices A, B, Ci.

yA = f (A) yB = f (B) yCi = f (Ci) (27)

4. The first order sensitivity indices are estimated as:

Si =
Di
D

=

1
N ∑N

j=1 y(j)
A y(j)

Ci
− f 2

0

1
N ∑N

j=1(y
(j)
A )2 − f 2

0

(28)
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where,

f 2
0 =

1
N

[
N

∑
j=1

y(j)
A

]2

(29)

The total sensitivity indices are estimated as:

ST
i == 1 −

1
N ∑N

j=1 y(j)
B y(j)

Ci
− f 2

0

1
N ∑N

j=1(y
(j)
A )2 − f 2

0

(30)

The total computational cost of this approach is N(d + 2) function evaluations, which is much lower
than the N2 evaluations that would have been required for the brute-force Monte Carlo method.

2.2.3. Computation of Sensitivity Indices Using Arbitrary Polynomial Chaos Expansions

The method described in the previous section requires N(d + 2) model evaluations. For models
that are computationally expensive, Saltelli’s method can quickly become impractical. One way to
reduce the computational cost is to approximate the decomposition (16) using meta-modeling techniques.
One such approach is the polynomial chaos expansions (PCE). In the PCE approach, the model response is
approximated by an infinite sum of orthogonal basis functions. For practical implementation, this series is
truncated to M terms.

f (θ) := yPCE =
M

∑
i=0

αiΦi(θ) (31)

The number of terms M depends on the polynomial order p and the number of random inputs d:

M + 1 =
(p + d)!

p!d!
(32)

The basis function Φi can be formulated using one-dimensional polynomials chosen according to
the Wiener–Askey scheme [31]. Using this scheme requires the input parameters to follow one of the
five well-defined PDFs (normal, uniform, exponential, beta, and gamma). If any of the inputs do not
follow either of these PDFs, they need to be transformed to one. This makes using the Wiener–Askey PCE
inefficient. Moreover, in many cases, the input parameter could exist as raw data without an analytical
expression of its PDF, making any transformation impossible. In this work, we utilized arbitrary or
data-driven polynomial chaos expansions (aPCE). In aPCE, the one-dimensional orthogonal polynomials
are constructed through statistical moments of the random inputs and thus do not require them to follow
any particular PDF [32]. A one-dimensional polynomial of order p can be generated iff 0 to 2p − 1 order
statistical moments exist and are finite. Additionally, to normalize the polynomials, the existence of a finite
2pth moment is necessary [32,33].

Once the basis function is available, the coefficients αis of the PCE model (31) need to be computed.
The methods to compute these coefficient can be categorized as intrusive or non-intrusive methods [34,35].
In this work, the non-intrusive method based on least squares regression was used. This method requires

45



Processes 2019, 7, 562

the model to be evaluated at N samples resulting in a vector y = [ f (θ(0)), · · · , f (θ(N))]. A set of N linear
equations with the M unknown coefficients is then generated as:

⎡
⎢⎢⎢⎢⎣

f (θ(1))

f (θ(2))
...

f (θ(N))

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
y

=

⎡
⎢⎢⎢⎢⎣

Φ0(θ
(1)) · · · Φ0(θ

(1))

Φ0(θ
(2)) · · · Φ0(θ

(2))
...

. . .
...

ΦM(θ(N)) · · · ΦM(θ(N))

⎤
⎥⎥⎥⎥⎦
�

︸ ︷︷ ︸
Λ�

⎡
⎢⎢⎢⎢⎣

α0

α1
...

αM

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
a

(33)

The coefficients can be computed explicitly as:

a =

((
ΛΛ�

)−1
Λ
)

y (34)

The statistical moments of the model response can be derived based on the PCE coefficients as

E[ f (θ)] = α0 (35)

DPCE := V[ f (θ)] =
M

∑
j=1

αj (36)

The PCE can be reordered into separate individual and interactive contribution of each parameter,
following which, the PCE-based sensitivity indices can be evaluated. This requires defining a set of
multiple indices Ik1,...,ks as:

Ik1,...,ks =
{
(k1, . . . , ks) : 0 ≤ pj

k ≤ p, pj
k = 0, k ∈ {1, . . . , d} \ {k1, . . . , ks}

}
, (37)

where pj
k is the degree of the univariate polynomial. Using this notation, the sensitivity indices can be

expressed as [26,27]:

Si =
∑j∈Ii

α2
j

DPCE
(38)

Similarly, higher order sensitivity indices can be obtained as:

Si1,...,is =
∑j∈Ii1,...,is

α2
j

DPCE
(39)

Thus, the computation of PCE-based sensitivity indices requires only N function evaluations rather
than N(2 + d) evaluations required for Saltelli’s method. For PCE, a rough estimate for the minimum
number of samples required is N = 2(M + 1) [36].

2.3. GSA of the Spray Drying Process

The model was evaluated considering two different spray nozzle configurations: (i) a pneumatic
nozzle and (ii) a pressure nozzle. These two configurations were considered to evaluate the impact
that the parameters influencing the droplet formation had on the properties of the particulate product.
It was also intended to determine if a specific nozzle provided more robustness against any process
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variability. In a pneumatic nozzle, the gas at high velocity (around sonic) disperses the liquid into droplets.
Although many different configurations are available within pneumatic nozzles, a nozzle with parallel
flow was considered in this study (Figure 3a). In such nozzles, the droplet size is mainly determined
by: (i) the nozzle dimensions, (ii) the liquid properties, (iii) the gas velocity, and (iv) the ratio between
gas and liquid flows (ALR). An empirical estimate of the droplet size using these properties is given
by Equation (40) [1].

d32 = Adn

⎡
⎢⎣ We(

1 + 1
ALR

)2

⎤
⎥⎦

B

(1 + COh) (40)

(a) Pneumatic nozzle (b) Pressure nozzle

Figure 3. Schematics of the two different nozzles of diameter D.

Nozzle diameter and the air liquid ratio enter the above equation explicitly, while the air/liquid
properties and gas velocity enters via the Ohnsorge (Oh) and Weber (We) numbers. The three empirical
parameters A, B, and C need to be determined through experimental data. In this study, the parameters
determined in [1] were used. The dispersion of liquid due to the impact of a gas jet in a pneumatic nozzle
occurred when the dynamic pressure of the gas exceeded the internal pressure of the droplets formed.
In [37], it was established that the breakup of liquid started in the range 8 < We < 10. The minimum
required gas velocity in the nozzle can be computed from this condition, given the properties of the liquid.

In a pressure nozzle (Figure 3b), the droplets were formed by an abrupt pressure drop at the tip of
the nozzle. At this point, the energy of the liquid upstream, in the form of pressure, was converted into
velocity. Among the many pressure nozzle configurations available, the swirl atomizer type nozzle was
considered in this study. The droplet size in this case was determined by the inner nozzle dimensions,
the fluid properties, and the upstream pressure upstream. An empirical relation for this nozzle is given in
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Equation (41). This relation relates the droplet size to: (i) the nozzle diameter (dn), (ii) pressure drop (Δp),
(iii) fluid properties via the Reynolds number (Rep), (iv) and the density ratio [37].

d32

dn
= 2.3Ψ1/4Δp∗−1/4Re−1/4

p

(
ρ

ρa

)1/4
(41)

The discharge coefficient (Ψ) of the swirl nozzle was calculated using the empirical correlation
developed in [38]. The formation of small droplets depends on the formation of a thin sheet of liquid from
the tip of the pressure nozzle. According to [37], this condition is achieved with low viscosity liquids
for which Oh < 0.05. Additionally, a minimum pressure is required to form this hyperbolic sheet in the
swirl nozzles.

3. Results

Five main outputs were considered for the sensitivity analysis: (i) the final particle size, (ii) residual
solvent content, (iii) particle density, (iv) maximum temperature, and (v) the distance in the chamber
at which the equilibrium was reached (if it was reached). The first three outputs can be important
CQAs, which need to be monitored. For temperature-sensitive products, the maximum temperature is
an important factor to consider, as they might degrade at high temperatures. For the pressure nozzle,
the upstream liquid pressure P was included to evaluate the flow energy requirement. The input
parameters depending on the nozzle used and their ranges are given in Table 1.

Table 1. Input and output variables considered for the sensitivity analysis with their ranges. Viscosity and
upstream liquid pressure are considered only for the pressure nozzle, while ALR is considered only for the
pneumatic nozzle.

Variable Symbol Range of Variation Units

Input
variables

Flow of the liquid feed Ql 5 × 10−8–2 × 10−7 m3/s
Flow of the drying gas Ma,d 8.5 × 10−4–8.5 × 10−2 kg/s
Initial Temp.of the gas Ta,0 350–420 K
Initial Temp. of the liquid Tl,0 300–350 K
Viscosity of the liquid νl 1 × 10−3–2 × 10−2 Pa·s
Air-to-liquid ratio ALR 0.5–4 -

Output
variables

Particle diameter dp - μm
Residual solvent content Wp - -
Particle density ρp - kg/m3

Length for equilibrium Zeq - m
Particle’s maximum temperature Tp,max - K
Upstream liquid pressure P - bar

All the models were implemented in MATLAB 2017b (The MathWorks Inc., Natick, MA, USA).
The system of differential equations was solved using a variable order variable step solver based on
numerical difference formulas (ode15s), which is known to handle stiff systems well. The sensitivity indices
were calculated using Saltelli’s approximation and PCE approximation. In the following sections, the two
approximations are compared, and then an analysis on the spray drying process is provided.

3.1. Computation of Sensitivity Indices

As analytical calculation of sensitivity indices is almost impossible for complex models,
so an approximation based on pseudorandom sampling was used to get a good estimate. Traditionally,
sampling-based methods assume that a large sample size (>10,000 samples) is enough to guarantee a valid
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solution. However, how many samples are enough is a difficult question to answer a priori. In this study,
an approach with an iterative increase in the number of samples was used to determine the sample size.
Starting from 5000 samples, the sample size was increased by 1000 samples at every iteration. A stopping
criterion was defined based on the relative change of the normalized first order and total sensitivity
indices. Figure 4 shows the evolution of the mean (μ) and the standard deviation (σ) of the change in
normalized sensitivity indices (first order, Sij/∑j Sij; and total ST,ij/∑j ST,ij) with the increasing number of
samples. The number of samples was considered large enough when the the standard deviation in the
relative change was less than 1%.

Based on Figure 4, a set of 23,000 samples was considered large enough for the approximation for
a stable estimation of the sensitivity indices. Even though there were smaller sample sizes that met the
criterion, it was only after 23,000 samples that the results seemed to stabilize below the defined threshold.
With 23,000 samples and five input parameters, the calculation of sensitivity indices required around
161,000 function evaluations!As mentioned before, the current best practices suggest that the sensitivity
indices calculated as above can be considered true values [23]. Thus, these will be used to compare the
accuracy of sensitivity indices approximated by the PCE approach.
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Figure 4. Stability of the sensitivity indices calculated by Saltelli’s approximation. The mean change is
defined as ek = mean(Sk

ij − Sk−1
ij ), where k ∈ {5000, 6000, . . .} is the number of samples considered.

The PCE approach is a meta-modeling approach used to reduce the number of function
evaluations. Figure 5 shows the results for the absolute sensitivity indices of the spray dryer operating with
the pneumatic nozzle. The two heat maps at the top correspond to the sensitivity indices approximated
using Saltelli’s method, and those at the bottom were approximated using PCE. Table 2 presents the input
ranking based on the total sensitivity indices.

Table 2. Input ranking based on total sensitivity indices computed using Saltelli’s approximation (Sal) with
23,000 samples and third order PCE with 200 samples.

Rank dp Wp ρp Zeq Tpmax

Sal PCE Sal PCE Sal PCE Sal PCE Sal PCE

ALR 1 1 1 1 1 1 2 2 2 2
Ql 2 2 2 2 4 4 4 4 4 4

Ma,d - - 2 2 2 2 1 1 3 3
Ta,0 - - 3 3 3 3 3 3 1 1
Tl,0 - - - - - - - - 4 3
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The rank was assigned assuming that a difference smaller than 5% between the sensitivity indices
was insignificant. Consequently, any sensitivity index below 0.05 was considered equal to zero and the
output assumed to be independent of the input. Similarly, the same rank was given to multiple inputs
whose sensitivity indices did not differ significantly.
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(b) Total sensitivity indices ST,i (Saltelli).
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Figure 5. Qualitative comparison of sensitivity heat maps for a spray dryer with the pneumatic nozzle
computed using Saltelli’s approximation with 23,000 samples and third order PCE with 200 samples.
The x-axis shows the operating parameters, and the y-axis shows the output parameters considered.

The input ranking obtained by both the Saltelli and PCE approach was the same, except for the output
Tp,max. In this case, although the first order sensitivity indices were comparable, total sensitivity indices
showed significant variation from the ones calculated by Saltelli’s method. A plausible reason for this could
be that Tp,max was extremely nonlinear in inputs, and the correct estimation would require a higher order
polynomial. This is evident from Table 3. With increasing order, nonlinearity was captured with much
more ease. However, the number of samples required to evaluate the sensitivity indices also increased
with the order of the PCE. The benefits on computational time provided by the PCE approach outweighed
the slight decrease in accuracy. Even if a high order PCE was used, the number of function evaluation was
at least an order of magnitude less than the number of function evaluations for Saltelli’s approach.
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Table 3. Change in total sensitivity indices (ST,i) for Tp,max with increasing polynomial order (p) in the
PCE approach.

Parameter PCE (p = 3) PCE (p = 4) PCE (p = 5) PCE (p = 6) PCE (p = 7) Saltelli

ALR 0.3826 0.4481 0.4444 0.5030 0.5031 0.4920
Ql 0.0706 0.1652 0.1789 0.2975 0.2352 0.2350

Ma,d 0.1596 0.2315 0.3127 0.3825 0.3498 0.3582
Ta,0 0.4883 0.4626 0.4463 0.5011 0.4728 0.5352
Tl,0 0.2341 0.2514 0.2939 0.1907 0.2964 0.2289

# of Samples 200 400 600 1000 2000 23,000
# of Function Evaluations 200 400 600 1000 2000 161,000

3.2. Global Sensitivity Analysis of Spray Dryer with a Pneumatic Nozzle

Based on the previous discussion and to avoid excessive computational costs, the PCE approach was
used for the sensitivity analysis of the two spray dryers. A fourth order PCE was used to determine the
sensitivity indices, and 600 samples were used to compute the coefficients of the expansion.

Figure 6 depicts the sensitivity indices for a spray dryer operating with the pneumatic nozzle.

(a) Sdp (b) SWp (c) Sρp

(d) SZeq (e) STp,max

Figure 6. Sensitivity indices (Si, ST,i ∀i ∈ {dp, Wp, ρp, Zeq, Tp,max}) for the spray dryer operating with
a pneumatic nozzle calculated using fourth order PCE with 600 samples.

Based on the response to the inputs depicted in Figure 6, the output variables could be divided
into two groups. The first group consisted of the variables whose responses were mostly determined by
the individual change of a single input. The other group contained outputs whose response involved
significant high order input interactions. In the first group, the particle diameter and the residual humidity
were characterized by a strong first order effect from the ALR along with a minor influence from the other
inputs. For the particle size, only the liquid flow rate had a significant effect apart from the ALR. For the
residual solvent content, the flow rate and temperature of the drying air played a minor role. This means

51



Processes 2019, 7, 562

that in a spray dryer equipped with a pneumatic nozzle, the final particle size and residual humidity were
conditioned by the droplet formation, which was determined by the amount of atomization gas used with
the liquid flow rate.

In Figure 7, the scatter plots illustrate the solutions for dp and Wp, from which samples were taken to
perform the sensitivity calculations. The blue dots correspond to a product that has reached its drying
equilibrium, while red dots correspond to non-equilibrium. It can be noticed that most of the variation
occurred at non-equilibrium conditions. It can also be seen that the ALR determined whether equilibrium
was reached, and equilibrium was reached only at high ALR. The low spread in the particle size data
showed that the particle size was mostly dominated by the ALR. With the increase in the ALR, the spread
of the final particle size reduced, and the possible solutions tended to concentrate close to the equilibrium
solution. This is the result of the small droplet size obtained from the pneumatic nozzle at high ALR.
Since the droplet size was already very close to the equilibrium size of the particle, other conditions
in the process did not have a major impact, and the spread of the possible end particle size was very
narrow. Differently, in the case of the residual solvent Wp, its large spread of solutions indicated that
other inputs remained influential at any value of ALR. For high ALR, the final humidity of the particle
at a non-equilibrium condition would depend also on the number of droplets in the chamber; the larger
the number of droplets, the more solvent needed to evaporate to reduce their humidity. Thus, for the
pneumatic nozzle, the particle size could be tuned solely by the ALR, whereas an accurate control over the
residual solvent content required tuning the liquid feed rate as well.

(a) ALR vs dp (b) ALR vs Wp

Figure 7. Scatter plots of final particle size dp (a) and residual moisture content Wp with respect to ALR
(b). The red dots indicate the values at non-equilibrium conditions, while blue dots represent the values at
equilibrium. The figures clearly indicate the significant effect ALR has on particle size, along with its effect
on residual solvent content. This effect is, however, limited only to the non-equilibrium zone.

For the second group of outputs (ρp, Zeq, and Tp,max), the ALR was not the sole significant input.
The contributions of other inputs varied with every output, but a similarity could be observed between
the responses of ρp and Zeq. As could be expected, the input temperature played a greater role in the
determining the maximum particle temperature. The liquid feed temperature was relevant only for Tp,max.
Figure 8 presents the scatter plots of the length required to reach equilibrium with respect to ALR and Ma,d.
The scatter plots confirmed that ALR had a significant influence on the point at which the equilibrium
was reached. For ALR below one, all solutions were in the non-equilibrium region. Once this threshold
value of ALR was crossed, the scatter suggested that the point at which the equilibrium was reached
was determined by more factors than just the ALR. The scatter plot for the relation between Zeq and Ma,d
showed that an increase in the amount of drying air tended to move the equilibrium point towards the
bottom of the dryer.
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(a) ALR vs Zeq (b) Ma,d vs Zeq

Figure 8. Scatter plots of equilibrium length Zeq with respect to ALR (a) and the mass flow rate of the drying
air Ma,d (b). The red dots indicate the values at non-equilibrium conditions, while blue dots represent the
values at equilibrium.

3.3. Global Sensitivity Analysis of the Spray Dryer with a Pressure Nozzle

Figure 9 depicts the sensitivity indices for the spray dryer operating with a pressure nozzle.
Analogously to the pneumatic nozzle, the outputs could be divided into two groups. The first group

consisted of the particle diameter and the upstream liquid pressure, which were dominated by first order
effects corresponding to the droplet formation. For liquid feed pressure, this was expected, as the pressure
required for the liquid to go through the nozzle was independent of the drying. Contrary to the pneumatic
nozzle, the residual solvent content was not part of this group. Since there was no additional process
parameter affecting the droplet formation, the feed flow rate Ql became the most influential variable for
the end particle size.

Along with Ql , the viscosity of the liquid also had a significant effect on the particle diameter.
In practice, the variation in the feed flow might be intentional or induced by uncontrolled variability in
the nozzle characteristics when the spray dryer is operated at a fixed upstream pressure. The variability
of the viscosity might be uncontrolled due to the properties of the material added to the feed mixture.
Figure 10 depicts the scatter of dp with respect to Ql and νl . The dependence of the particle size on these
two variables is clearly visible from these figures. Additionally, these relations were also maintained in
equilibrium conditions. However, at equilibrium, the variation was reduced. The narrow spread of the dp

scatter for Ql explained the significance of Ql .
The residual solvent content showed a higher level of interaction between the droplet formation and

the drying process. The contributions were distributed along the evaluated process conditions. Along with
the feed flow rate and viscosity, the flow rate of drying air and its initial temperature also had a significant
impact on the residual solvent content.
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(a) Sdp (b) SWp (c) Sρp

(d) SZeq (e) STp,max (f) SP

Figure 9. Sensitivity indices (Si, ST,i ∀i ∈ {dp, WpρpZeqTp,maxP}) for the spray dryer operating with a
pressure nozzle calculated using fourth order PCE with 600 samples.

(a) Ql vs dp (b) νl vs dp

Figure 10. Scatter plots of final particle size dp with respect to feed flow rate Ql (a) and feed viscosity νl
(b). The red dots indicate the values at non-equilibrium conditions, while blue dots represent the values at
equilibrium. The equilibrium points are also shown explicitly in the insets. Unlike the pneumatic nozzle,
the pressure nozzle conditions also influence the equilibrium values.

The second group consisted of particle density, the distance at which equilibrium was reached, and the
maximum temperature reached. As was the case with the pneumatic nozzle, the sensitivity profile of ρp

and Zeq for the pressure nozzle was also similar. These two outputs showed high sensitivity to the viscosity,
the feed flow rate, and the flow rate of drying gas. Figure 11 shows the scatter of Zeq with respect to νl
and Ma,d. The former can easily be identified as the most influential parameter. In Figure 11, the scatter
cloud was made primarily of blue dots, i.e., results achieving equilibrium at different lengths inside the
drying chamber, and all other results at a non-equilibrium condition had a value Zeq = 0.5 m. This shows
that for product leaving the dryer at equilibrium, the viscosity had a major impact on the particle size,
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and in turn also on the length required to reach the equilibrium. Figure 11 illustrates how the same drying
parameter might affect in a different way an output variable due to the difference in the interactions with
the parameters from the two different nozzles. The direct comparison of this plot with its equivalent in
Figure 8 shows that Ma,d had a much more significant individual impact on Zeq for the pneumatic nozzle.
In case of the pressure nozzle, the velocity of the droplets in the dryer chamber was influenced both by the
pressure drop (P) in the nozzle and the Ma,d determining the velocity of the gas in the chamber, leading to
a much more entropic scatter.

(a) nul vs Zeq (b) Ma,d vs Zeq

Figure 11. Scatter plots of equilibrium length Zeq with respect to the feed viscosity νl (a) and mass flow rate
of the drying air Ma,d (b). The red dots indicate the values at non-equilibrium conditions, while blue dots
represent the values at equilibrium.

4. Conclusions

Based on the discussion above, it can be concluded that PCE was an attractive approach to reduce the
computational burden required for a global sensitivity analysis. The quantitative values of the sensitivity
indices computed using PCE approach, although different, were still comparable to Saltelli’s approximation.
The input ranking obtained, which was arguably more important than the quantitative values themselves,
was the same if a proper PCE order was used. It has to be noted that if the process were highly nonlinear,
a low order PCE could lead to erroneous results. However, there is no a priori way of determining the
nonlinearity associated with any output. In such situations, an iterative approach with increasing the
order of PCE is recommended. Even with such an iterative approach, the number of function evaluations
required for the PCE approach were orders of magnitude fewer than the quasi Monte Carlo approach.
For the case study considered above, use of a fourth order PCE instead of a stable quasi Monte Carlo
approach led to around a 99.6% reduction in computational cost. Even if a seventh order PCE was used,
the computational savings were around 96%.

The GSA of the spray drying model allowed the system to be characterized based on the dominant
relationships between the CQAs and the CPPs. This analysis provides a detailed view on how the
phenomena occurring during atomization and drying interact and determine the output response. Based
on this study, it was possible to discriminate the behavior of the spray dryer depending on the type
of nozzle.

The sensitivity patterns demonstrated that independent of the nozzle used, mean particle size
was affected predominantly by the atomization phenomena, while others’ outputs were affected by
an interaction between the atomization and drying parameters. The type of nozzle to be used will always
depend on the application. Given the presence of the ALR, the pneumatic nozzle had more flexibility for
the control of the final particle size. However, this also meant that a tight ALR control was required as
a small variance on this parameter would have a large impact on the particle size. For the pressure nozzle,
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a strong dependency was established along all outputs on the feed flow rate, which additionally will
determine the throughput of the unit. This dependency was strengthened by the fact that both the initial
droplet size and velocity were extremely affected by changes in the liquid flow rate. This diminished the
effect of the drying parameters. This was specifically clear for particle density and the distance to reach
equilibrium. The direct effect of the drying flow rate for these two outputs was found to be less important
in the case of the pressure nozzle compared to the pneumatic nozzle.

Future work will be focused on applying other computational intelligence methods, e.g., fuzzy
logic and genetic programming, to compare their performance for GSA, but also for knowledge
discovery purposes.
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Abbreviations

The following abbreviations are used in this manuscript:

ALR Air liquid ratio
CMA Critical material attributes
CPP Critical process parameters
CQA Critical quality attributes
GSA Global sensitivity analysis
PCE Polynomial chaos expansions
QbD Quality by design
List of Symbols

α W/m2K Heat transfer coefficient
β kg/m2s Mass transfer coefficient
ν Pa s Viscosity
ρ kg/m3 Density
Ψ - Discharge coefficient
CD - Drag coefficient
d m Diameter
De f f m2/s Effective diffusivity
g m/s2 Acceleration due to gravity
ΔH j/kg Enthalpy of evaporation
ms kg Solid mass
ṁv kg/m2s Mass transfer rate
M kg/s Mass flow rate
M̃ kg/mol Molecular weight
Nu - Nusselt number
Oh - Ohnsorge number
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P Pa Pressure
Pv Pa Vapor pressure
Q m3/s Volumetric flow rate
Re - Reynolds number
Si - First order sensitivity index
ST,i - Total sensitivity index
T K Temperature
U W/m2K Overall heat transfer coefficient
v m/s Velocity
W - Residual solvent content
We - Weber number
Yb - Gas moisture content
Ysat - Gas saturation moisture content
Z m Axial distance in the spray drying chamber
Subscripts

a Air/gas
c Critical
eq Equilibrium
l Feed liquid
n Nozzle
p Particle
s Solids
w Water/solvent
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Abstract: The tanks-in-series model (TIS) is a popular model to describe the residence time distribution
(RTD) of non-ideal continuously stirred tank reactors (CSTRs) with limited back-mixing. In this
work, the TIS model was generalised to a cascade of n CSTRs with non-integer non-negative n. The
resulting model describes non-ideal back-mixing with n > 1. However, the most interesting feature of
the n-CSTR model is the ability to describe short recirculation times (bypassing) with n < 1 without
the need of complex reactor networks. The n-CSTR model is the only model that connects the three
fundamental RTDs occurring in reactor modelling by variation of a single shape parameter n: The
unit impulse at n→0, the exponential RTD of an ideal CSTR at n = 1, and the delayed impulse of an
ideal plug flow reactor at n→∞. The n-CSTR model can be used as a stand-alone model or as part
of a reactor network. The bypassing material fraction for the regime n < 1 was analysed. Finally, a
Fourier analysis of the n-CSTR was performed to predict the ability of a unit operation to filter out
upstream fluctuations and to model the response to upstream set point changes.

Keywords: residence time distribution; continuous stirred tank reactor; bypassing; Fourier analysis;
continuous manufacturing

1. Introduction

The pharmaceutical industry is currently transforming batch production processes to continuous
manufacturing. Continuous manufacturing offers several technical and economic advantages compared
to batch processes, such as lower downtimes, better process control, smaller footprints, and ease
of scale-up by extending time [1–4]. Better process understanding and control lead ultimately to
improved quality of the final product, in a quality-by-design (QdB) framework [3,5,6]. However,
material tracking from raw material to finished product remains challenging.

The tool of choice for modelling the flow of material in a continuous process is the prediction and
modelling of residence time distributions (RTDs). Each unit operation (e.g., blending, granulation,
tableting) is characterised by its RTD. The individual RTDs are then chained together by convolution
integrals, in order to calculate the RTD of the overall process. With this information it is possible
to predict how long the material remains, on average, in the process (mean residence time, MRT),
the response of the system to fluctuations in the material stream (e.g., feeder refills), and to develop
process control strategies [7–11].

Residence time distribution modelling is not only used to describe a complete continuous
manufacturing line; it is also utilised to describe the complex behaviour of single unit operations within
reactor networks. A reactor network contains multiple connected ideal or non-ideal reactors, with a
known analytical RTD. The two most common types are the continuous stirred tank reactor (CSTR) and
the plug flow reactor (PFR). These reactor types are too idealised to correctly model the behaviour of a
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real reactor. However, if these basic models are combined in reactor networks, it is possible to describe
the behaviour of a real unit operation, including effects such as dead zones, non-ideal back mixing,
and/or bypassing effects. This approach is not limited to pharmaceutical processes, but is also utilised,
for example, in chemical reaction engineering and modelling of water treatment processes [12–14].

A well-established model for non-ideal CSTRs is the tanks-in-series (TIS) model, describing a
cascade of n CSTRs. This model has an analytical solution for integer n, that was first published by
MacMullin and Weber [15] and is now part of standard chemical engineering literature [16,17]. A long
chain of tanks-in-series results into a sharp RTD peak around the MRT, which is better described by
the diffusion model. The diffusion model accounts for axial diffusion in a non-ideal PFR and produces
broader peaks in the RTD with increasing diffusion [18–20]. If the fluid velocities inside the PFR
are high, compared to the total length of the reactor but still in the laminar flow regime, the RTD is
dominated by the parabolic shape of the velocity profile and not by slow diffusion processes. In this
case, the RTD is better explained by the convection model [21–24].

Martin [25] generalised the TIS model to non-integer n ≥ 1 to fine-tune the resulting RTD.
This generalisation has been used as a stand-alone model and as a building block in reactor
networks [13,24,26–28]. Toson et al. [29] used the model with a narrow parameter range 0.5 < n
< 1.1 to fit the RTD of a continuous powder mixer and linked n to the quality of the mixing process.

The n-CSTR model discussed in this work is an extension of Martin’s model [25]. Just like Martin’s
model, a non-integer value of n > 1 allows fine tuning of the RTD shape for varying degrees of limited
back-mixing. The n-CSTR model extends the value range to n < 1, in order to model bypassing
conditions. The n-CSTR model has only one shape parameter, n, that can be varied to reach the unit
impulse at n→0, the ideal CSTR at n = 1, and the ideal PFR at n→∞, with the same analytical form.
The tanks-in-series model, the diffusion model, and the convection model only connect two of these
fundamental RTD shapes (see Figures 1 and 2)

Figure 1. Comparison of the parameter range of tanks-in-series (TIS), diffusion, and generalised cascade
of n continuous stirred tank reactor (n-CSTR) models.
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Figure 2. Comparison of the parameter range of n-CSTR+PFR (combined n-CSTR + plug flow reactor)
model with the convection model.

2. Fundamentals of RTD Modelling

The first step in RTD modelling is obtaining the residence time distribution. The experimental
setup uses a small amount of tracer material added to the process. The concentration of the tracer
material is measured at the relevant outlet. The result is the tracer concentration profile C(t). Once the
tracer concentration has decayed completely, the concentration profile is normalised to the so-called
E(t) of the RTD:

E(t) =
C(t)∫ ∞

0 C(t) · dt
(1)

The E(t) curve describes the distribution of exit times—its peaks indicate the time where most of
the tracer material is discharged. As E(t) is a normalised distribution with integral 1, it is possible to
calculate statistical indicators (mean residence time τ, standard deviation σ) directly from the E(t) curve:

τ =
∫ ∞

0 t · E(t) · dt
σ2 =

∫ ∞
0 (t− τ)2 · E(t) · dt

(2)

The key to RTD modelling is the ability to combine multiple RTDs—multiple E(t) curves—into
one process-level RTD. If a process with an RTD E1(t) feeds into a process with a different RTD E2(t),
the combined RTD is calculated by the convolution integral

RTD(t) =
∫ θ=t
θ=0 E1(t− θ) · E2(θ) · dθ

=
∫ θ=t
θ=0 E1(θ) · E2(t− θ) · dθ

(3)
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A shorthand notation for convolution uses the * operator. The convolution is symmetric:

RTD(t) = (E1 ∗ E2)(t) = (E2 ∗ E1)(t) (4)

The convolution operation has a neutral element—the Dirac (or unit) impulse δ(t). If any
distribution E(t) is convolved with the Dirac impulse, the result is the distribution itself, as shown in
Equation (5). Tracer experiments are the practical application of this equation: if a tracer impulse is
added at the inlet, the RTD of the process can be observed as a tracer concentration profile at the outlet.
Figure 1 shows the unit impulse in red.

(E ∗ δ)(t) = E(t) (5)

3. RTD Models and Their Limits

3.1. Ideal Plug Flow Reactor (PFR)

The ideal continuous stirred tank reactor (CSTR) and the ideal plug flow reactor (PFR) are the
most basic models for continuous reactors and are widely used model prototypes in the chemical
engineering community [16,17]. Both are characterised by their mean residence time τ. If a tracer
pulse is added at the inlet of the ideal PFR, the response at the outlet is a delayed pulse of the same
shape. Therefore, the residence time distribution of the ideal PFR is a Dirac impulse delayed by τ—see
Equation (6). The RTD of the ideal PFR is shown in Figure 1 in blue.

RTDPFR,τ(t) = δ(t− τ) (6)

3.2. Ideal Continuous Stirred Tank Reactor (CSTR)

The ideal CSTR is characterised by perfect back mixing. Each portion of the material has the same
chance to be discharged at the outlet, regardless of how long it has already been inside the CSTR. If
some tracer is added to the CSTR, it is perfectly mixed within the tank and a portion of the tracer
material is immediately visible at the outlet. The constant discharge chance leads to an exponentially
decaying tracer profile. The assumption of perfect mixing directly leads to the typical exponential RTD
shape of the ideal CSTR (black line in Figure 1). The RTD of an ideal CSTR with mean residence time τ

is given by:

RTDCSTR,τ(t) =
1
τ

exp
{
− t
τ

}
(7)

3.3. Tanks-in-Series (TIS)

A popular model for non-ideal CSTRs is the cascaded CSTR or tanks-in-series (TIS) model.
A defined number of CSTRs (n) are chained together such that the inlet of one CSTR is connected to
the inlet of the next. Due to the fact that material can only flow from one CSTR in the cascade to the
next, but not backwards, the TIS model describes imperfect back mixing. Each CSTR in the chain has
the same mean residence time of τ/n. The RTD of the TIS model can be calculated by convolving the
RTD of the CSTRs n times with itself. MacMullin and Weber [15] were the first to derive a general
formula for the TIS model with n CSTRs in series:

RTDn,τ(t) =
tn−1

(n− 1)!

(n
τ

)n
exp
{
− t n
τ

}
(8)

For n = 1, Equation (8) reduces to Equation (7), the RTD of an ideal CSTR. With higher values
of n, the peak of the RTD moves from t = 0 closer to t = τ, and the height of the peak increases.
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The theoretical limit for n→∞ is a singular peak at t = τ, which is the RTD of an ideal PFR with the
same mean residence time τ:

RTDn→∞,τ(t)→ δ(t− τ) = RTDPFR,τ(t) (9)

Figure 1 shows the RTD shapes and transition from ideal CSTR, over imperfect back-mixing, to
PFR as a black–blue gradient.

3.4. Diffusion Model

A classical model for non-ideal plug-flow reactors is the dispersion model. The basis for this is
the dimensionless partial differential equation:

∂C
∂θ

=
( D

uL

)
· ∂

2C
∂x2 −

∂C
∂x

(10)

with the concentration C = C(x,θ) as a function of non-dimensional position in the tube x and
non-dimensional time θ = t/τ, the axial diffusion coefficient D, the velocity of the material along the
tube u, and the length of the tube L.

The residence time distribution is then calculated from the concentration over time at the end
of the tube (x = 1). The exact analytical solution for closed boundary conditions is unknown. There
are approximations for low diffusion (D/uL) < 0.01, where the RTD is a Gaussian distribution centred
at the mean residence time τ and variance σ2 = (D/uL). For higher levels of diffusion, the results
have to be obtained numerically [16,18,20]. The results show that as the diffusion in the non-ideal
increases, the RTD assumes more and more the shape of the TIS model with low values of n. As D→∞,
the solutions approach the exponential distribution of the ideal CSTR.

In a sense, the CSTR and PFR reactor models are mirror images: the worst possible CSTR
imaginable with no back mixing at all (n→∞) is the ideal PFR (D = 0), and conversely, the worst
possible PFR with infinitely high diffusion (D→∞) has the perfect mixing properties of a CSTR (n = 1).
The limits and RTD shapes are summarised in Figure 1.

3.5. Convection Model

For very viscous fluids or very short tubular reactors, the dispersion model for non-ideal plug-flow
reactors may not feasible. In this case, the RTD is a consequence of the characteristic parabolic velocity
profile of a laminar flow, not driven by diffusion. Ananthakrishnan et al. [21] derived an RTD for a
pure convective flow with mean residence time τ.

RTDconv,τ(t) = τ3

2·t3 if t ≥ τ2 (11)

If the convection model has a dead time t0 = τ/2 before the first material exists the tube, followed by
a t−3 decay. This effect is independent from the velocity of the flow. There are some generalisations to
this model (for example, References [30,31]), but Gutierrez et al. [24] gave a dimensionless generalisation
which is parametrised with the normalised breakthrough time θ0 = t0/τwith 0 ≤ θ0 ≤1:

RTDconv,θ0(θ) =
1

1−θ0
· 1
θ ·
(
θ0
θ

) 1
1−θ0 if θ ≥ θ0 (12)

The θ0 = 0.5 Equation (12) simplifies to a non-dimensional version of Equation (11). Equation (12)
can also be rewritten to a dimensional version with mean residence time τ and breakthrough time t0

with 0 ≤ t0 ≤ τ:
RTDconv,τ,t0(t) =

τ2

t·(τ−t0)
·
( t0

t

) τ
τ−t0 if t ≥ t0 (13)

An interesting feature of this parameterisation is that the two limiting cases are the unit impulse
δ(t) as the breakthrough time approaches zero (t0→0) and a delayed Dirac impulse δ(t − τ)—the RTD of
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an ideal PFR—as the breakthrough time approaches the mean residence time (t0→τ). The RTD shapes
and limits of the convection model are summarised in Figure 2, the transition from unit impulse to
PFR is shown as a red–blue colour gradient.

4. Generalised Cascade of n Continuous Stirred Tank Reactors: The n-CSTR Model

The diffusion, TIS, and convection models cover a wide variety of RTD shapes. However,
because of their different analytical forms, the only way to describe transitions between a bypassing
condition and a non-ideal mixing condition, is to build reactor networks containing convective elements
and CSTR cascades or utilising parallel CSTRs in reactor networks [13,25,28,32]. The TIS model has
been generalised to a non-integer number of CSTRs in series [25], but it is also possible to utilise less
than one CSTR to describe short-circuiting and bypassing effects [29]. The result is the generalised
n-CSTR model.

4.1. The Γ(n) Function

The basis for the generalised n-CSTR Model is the TIS model in Equation (8) which is limited to
natural numbers of n. This limitation comes from the factorial expression (n − 1)! in Equation (8). If the
factorial could be replaced by a real-valued function, it would be possible to provide an analytical
residence time distribution of n CSTRs for any value of n. Such a function exists—the gamma
function Γ(n).

The gamma function traces back to Euler, who defined the first analytic continuation of the
factorial [33]. The gamma function is defined with an absolute converging infinite integral:

Γ(n) =
∫ ∞

0
xn−1 · e−n · dx (14)

and suffices the following conditions:

Γ(0) = Γ(1) = 1
n · Γ(n) = Γ(n + 1) ∀ n ∈ R
Γ(n) = (n− 1)! ∀ n ∈ N

(15)

The gamma function is available in many programming languages and tools, for example C [34],
Python via the SciPy library [35], Matlab [36], and Microsoft Excel [37]. With the help of the gamma
function, it is possible to re-write Equation (8) to be defined for any positive n:

RTDn,τ(t) =
tn−1

Γ(n)
·
(n
τ

)n
· exp

{
− t n
τ

}
(16)

4.2. Influence of Shape Parameter n

The RTD of a generalised cascade in Equation (16) has two parameters: the mean residence time
τ and the number of CSTRs in the cascade n. The generalisation allows a finer tuning of the shape
of the RTD, because non-integer values of n are allowed. While a cascade of 1.5 CSTRs may seem
counter-intuitive at first, non-integer values can occur when analysing experimental RTD curves.
The textbook example is calculating n from the mean residence time and variance of a measured RTD:

n =
τ2

σ2 (17)

With the limitation to integer n in the standard TIS model, it is usually recommended to round n
to the nearest integer [17,38]. With the generalised n-CSTR model it is possible to use the non-integer n
directly, to fine-tune the shape of the RTD (Figure 3).
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Figure 3. Influence of parameter n on the RTD shape for n ≤ 1 and n ≥ 1.

The number of n CSTRs is also connected to the Bodenstein number Bo, which is indirectly
proportional to the diffusion in the system. Thus, calculating the Bodenstein number for a process and
relating it back to the number of CSTRs in the cascade can result into a non-integer n. The relation
between n and the Bodenstein number Bo is given by Elgeti [39]:

n =
Bo
2

+ 1 (18)

As a side note, the Bodenstein number Bo and the Peclet number Pe are sometimes used
interchangeably in this context, although the numbers have a slightly different meaning [16]. Just like
the TIS model, the generalised n-CSTR cascade connects the ideal CSTR model (n = 1, Bo = 0, D→∞)
and the ideal PFR model (n→∞, Bo→∞, D = 0) with a region of limited back mixing (1 < n <∞).

The novelty of the n-CSTR model is expansion to the case n < 1. The resulting RTDs show a
sharp peak at t = 0, while still maintaining the exponentially shaped tail. The initial peak describes
a short-circuiting or bypassing behaviour without changing the overall mean residence time τ.
This behaviour is impossible to describe with the classical TIS and diffusion models. A common
practice to describe bypassing is building complex reactor networks utilising TIS or diffusion models
with short residence times, e.g., [13,25].

A way to build intuition for a cascade with less than one CSTR is to consider a single CSTR,
but it is not fully utilised and thus some material is able to bypass the mixing, moving directly from
inlet to outlet. It makes sense to describe this scenario with n < 1. A real-world example is a vertical
continuous mixing device described in Reference [29]. The construction is based on an ideal CSTR and
for a range of operating conditions it behaves exactly like one (n = 1). Small deviations from these
operating conditions cause small deviations from the ideal CSTR behaviour which fall either on the
limited back-mixing side (n > 1) or on the increased initial peak side (n < 1). As it is possible to describe
both non-ideal cases with the n-CSTR model with only one parameter, fitting the shape parameter n to
the obtained RTDs provides a way to describe the quality of the process with a single number.

As n becomes smaller and smaller, the RTD peak becomes sharper and converges to the unit
impulse δ(t) for n→0 (Figure 3). Intuitively, if there are no CSTRs in the cascade at all, there is nothing
that could change the RTD of any incoming material. A visual comparison of the generalised n-CSTR
model with the TIS and diffusion model is given in Figure 1.
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The behaviour for n < 1 is similar to the convection model; however, the convection model adds a
delay time t0, whereas the peak stays at t = 0 in the generalised CSTR cascade. If needed, the n-CSTR
model can be combined with an ideal PFR to add a delay time:

RTDn,τ,t0(t) =
(
RTDPFR,t0 ∗RTDn,τ

)
(t)

= RTDn,τ(t− t0) if t ≥ t0
(19)

The mean residence time of this system is τ + t0. The parameter range and possible RTD shapes
of this model is summarised and compared to the convection model in Figure 2.

4.3. Quantification of Bypassing Material Fraction

Any n-CSTR values in the range 0 < n < 1 are considered to model bypassing of material.
The fraction of material which bypasses the reactor/mixer increases for smaller values of n. In order to
quantify the bypassing material fraction, the cumulative residence time distribution has been calculated
by numerically integrating over Equation (16), up until a certain bypassing time threshold tmax.

Figure 4 shows the bypassing material fractions for tmax = 0.01 τ, 0.05 τ, 0.1 τ. By defining the
bypassing fraction as the integral of the first part of the RTD, the ideal CSTR at n = 1 also shows a
small bypassing fraction. This fraction corresponds to the small amount of the newly added material
which is perfectly mixed and immediately visible at the outlet. The bypassing fraction in the initial
peak of the RTD increases slowly for n values close to 1 and shows a steep increase for n values close to
0. The limiting case for n→0 is the Dirac impulse, where all material instantly leaves at t = 0.

Figure 4. Bypassing mass fraction in the first 1%, 5%, and 10% of the mean residence time τ as function
of the number of CSTRs n.

4.4. Filtering of Mass Flow Fluctuations in a Continuous Manufacturing Line

The RTD of the generalised n-CSTR model can in principle be used anywhere the models of the
non-ideal CSTR or non-ideal PFR have been applied: description of complete processes, as a model for
a single unit operation, or as a building block in a reactor network.

The idea of RTD modelling is to characterise each unit operation in the continuous manufacturing
process (e.g., mixing, granulation, tableting) with the residence time distribution. The goal is to predict
how the fluctuations in the initial material stream propagate throughout the process and effect the final
product quality. If the RTD—in our case the generalised n-CSTR model RTDn,τ(t)—and the input mass
flow min(t) is known, it is possible to calculate the mass flow at the outlet mout(t) with a convolution
integral [8]:

.
mout(t) =

( .
min ∗RTDn,τ

)
(t) (20)
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Vertical continuous mixing devices have broad RTDs that filter out mass fluctuations in the input
stream. Typical mean residence times in a continuous mixing device are in the range of 100 s, and good
mixing behaviour is indicated with number of CSTRs n close to 1 [29].

Even if no data for min(t) are available, it is possible to characterise the filterability of the RTD with
Fourier analysis (for details see Reference [40]). The filterability Fe(f) indicates how much the frequency
f is damped by the RTD. The filterability spectrum has been calculated using Matlab’s built-in function
fft() for calculating the fast Fourier transformation. The input is the RTD curve given by the n-CSTR
model, with τ = 100 s in Equation (16). The RTD curve has been sampled with a constant time step
Δt = 0.01 s up to 6000 s, thus the frequency spectrum is available up to 50 Hz with a resolution of
1/3000 Hz.

The filterability spectra are shown in Figure 5. All spectra start at one for 0 Hz, because it
is impossible to filter a constant input stream. As the frequency increases, the amplitude of the
fluctuations is reduced. For example, an RTD with n = 1 and τ = 100 s damps frequencies f = 1 Hz to
Fe(f) ≈ 1/1000 of its initial value (see Figure 5a).

 
(a) (b) 

Figure 5. Filterability of a continuous mixing device with τ = 100 s and n-CSTR close to 1. (a) Higher
values of n indicate better filtering of higher frequencies. (b) Very low frequencies below 0.3 τ−1 (i.e.,
drifts in the data that are longer than one third of the mean residence time τ) are better filtered with
lower values of n-CSTR.

Generally speaking, residence time distributions with higher mean residence times are better
frequency filters. The filterability spectrum is inversely proportional to the mean residence time τ.
Increasing τ effectively compresses the filterability spectrum, reaching the low frequency amplitudes
faster (see normalised frequencies τ−1 in Figure 5).

The value of n changes the shape of the frequency filter: Lower values of n filter very low
frequencies f < 0.3τ−1 slightly better (Figure 5b), but they also show significantly worse damping of
higher frequencies (see Figure 5a). This can also be explained with the bypassing behaviour described
by the n-CSTR model with n < 1: Rapid changes (high frequencies) in the inlet material stream are
immediately visible at the outlet due to bypassing. However, slow drifts in the inlet stream (low
frequency) are damped by the narrow and long tail of the remaining RTD after the initial peak.

Another way to analyse the filterability of the n-CSTR model is to construct an inlet condition
and perform the convolution integral in Equations (3) and (20). Figure 6a shows the response of the
n-CSTR model to a rectangular inlet condition with a length of one MRT. While appearing artificial,
this rectangular inlet condition is a good model for set point changes occurring in a continuous
manufacturing process [9,10,29]. Even though the change in the inlet condition (e.g., mass flow,
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concentration) persists for one mean residence time, the peak at the outlet is damped significantly
compared to the height of the rectangle.

Figure 6b plots the outlet peak for different rectangle widths Δt and n-CSTR values close to 1.
Higher n-CSTR values lead to better damping of the rectangular input and lower peaks at the outlet.
This effect is more visible at narrower rectangle widths: the longer the rectangular inlet condition,
the harder it is to dampen.

Figure 5b shows that lower n-CSTR values lead to a better damping behaviour at lower frequencies
and higher durations, which seem to contradict the results from Figure 6b. The reason is that even
rectangles with a high duration (and thus low frequency) have a complex frequency spectrum with
high frequencies occurring at the flanks of the rectangle. Although lower n-CSTR values damp very
low frequencies better, the filterability of high frequencies is significantly worse. The result is an overall
higher response at low n-CSTR values, as shown in Figure 6b.

 
(a) (b) 

Figure 6. (a) Response of the n-CSTR model to a rectangle with a length Δt = τ and n = 1.
(b) Concentration peak at the outlet for n-CSTR values around 1 for 3 different rectangle lengths
Δt = 0.25 τ, 0.5 τ, 1.0 τ.

5. Conclusions

In this work, the tanks-in-series (TIS) model has been generalised to a cascade of an arbitrary
number of continuous stirred tank reactors (n-CSTR model). Several unique properties of the n-CSTR
model have been discussed.

The n-CSTR model does not only allow fine-tuning of the well-known TIS model with n > 1, but it
also expands to a new class of residence time distributions describing short-circuiting and bypassing
effects with n < 1. The already established convection model offers similarly shaped residence time
distributions with a high initial peak for bypassing effects; however, the parameterisation with t0

changes both shape and position of the peak simultaneously. Changing the number of CSTRs in the
n-CSTR model changes only the shape of the distribution, but the start of the RTD always remains at
t = 0. Thus, if desired, it is trivial to choose the starting position of the RTD of the n-CSTR model by
applying an additional offset (t0).

The n-CSTR model is the only model which connects the unit impulse (n→0), a bypassing regime
(0 < n < 1), the ideal CSTR (n = 1), a limited back-mixing regime (n > 1), and the ideal plug flow reactor
(n→∞) with the same analytical form for any given mean residence time τ, by only adjusting one
shape parameter: n. Bypassing effects in processes with near ideal CSTR behaviour can be modelled
with shape parameters n < 1, without the need for reactor networks with multiple fitting parameters.
The smooth transition between bypassing and limited back-mixing enables a simple curve fitting with
the shape parameter n. This parameter seconds as a descriptor for the mixing quality of a process,
with values close to 1 being optimal (ideal CSTR).
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Lastly, the applicability of the generalised n-CSTR model has been demonstrated by analysing
bypassing fractions, dampening behaviour of fluctuations occurring in a continuous manufacturing
line, and the response to set point changes.
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Abstract: In view of growing interest and investment in continuous manufacturing, the development
and utilization of mathematical model(s) of the manufacturing line is of prime importance. These
models are essential for understanding the complex interplay between process-wide critical process
parameters (CPPs) and critical quality attributes (CQAs) beyond the individual process operations.
In this work, a flowsheet model that is an approximate representation of the ConsiGmaTM-25 line for
continuous tablet manufacturing, including wet granulation, is developed. The manufacturing line
involves various unit operations, i.e., feeders, blenders, a twin-screw wet granulator, a fluidized bed
dryer, a mill, and a tablet press. The unit operations are simulated using various modeling approaches
such as data-driven models, semi-empirical models, population balance models, and mechanistic
models. Intermediate feeders, blenders, and transfer lines between the units are also simulated.
The continuous process is simulated using the flowsheet model thus developed and case studies are
provided to demonstrate its application for dynamic simulation. Finally, the flowsheet model is used
to systematically identify critical process parameters (CPPs) that affect process responses of interest
using global sensitivity analysis methods. Liquid feed rate to the granulator, and air temperature and
drying time in the dryer are identified as CPPs affecting the tablet properties.

Keywords: model integration; flowsheet modeling; sensitivity analysis; continuous manufacturing;
wet granulation

1. Introduction

Flowsheet models are approximate mathematical representations of the manufacturing line.
The incentives for flowsheet model development for the pharmaceutical industry have been described
in the paper of Escotet-Espinoza et al. [1]. Gernaey et al. [2] also wrote extensively on the value of
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Process Systems Engineering (PSE) for pharmaceutical process development, in which flowsheet
models contribute to combine knowledge and models of different unit operations and different scales
for a holistic understanding of the process. The incentives for flowsheet modeling boil down to the
in-silico achievement of process design and optimization, control system design and optimization,
and an accurate risk assessment tool that could be used for regulatory instances. The first step
in attaining these benefits is by the development of a flowsheet model that captures the relevant
mechanisms for assessing the desired product properties as a function of process settings and material
properties. This foundation built in this work, comprised of several diverse unit operation models that
capture critical mechanisms, as a function of the process inputs.

The flowsheet model simulation enables the assessment of unit operation outputs downstream
in the process. This has the advantage that, instead of applying the unit operation models separately
for model-based research, the flowsheet model allows for targeted optimization of unit operation
performance as a part of the entire line. In terms of the Quality-by-Design (QbD) paradigm, a flowsheet
model allows for investigating the influence of critical process parameters (CPPs) in one unit to the
critical quality attributes (CQAs) of material downstream in the process line. Namely, through
flowsheet model development, process phenomena are directly linked to the final product quality
downstream. Moreover, analysis of the developed model allows assessment of criticality of the various
critical process parameters (CPPs) of the process, and subsequently research effort can be targeted
towards those most critical areas.

In this work, composing the integrated system requires extensive synchronization of the unit
operation models themselves, as these need to run seamlessly in one simulation, regardless of the
different time scales, variable magnitudes, or stiffness of the various models. Population balance
models, for example, require specific solution methods, and these need to run at par with other less
computationally demanding models. This work therefore captures the research into the simultaneous
simulation of these diverse models. In addition, process dynamics are included into the flowsheet
model. This allows tracing the material properties throughout the entire line. This feature is included
as the foundation of applying the model to assess the propagation of process disturbances, with respect
to the product quality, i.e., which products needs to be discarded, or how fast can the process recover
and return to a position where product critical quality attributes (CQAs) are within specification limits.

Previous work on the development of flowsheet models are restricted to direct compaction [3–6]
and dry granulation routes [7,8] for continuous solid oral dosage manufacturing. Park et al. [7] created
a flowsheet model of continuous dry granulation and applied it for optimization. Boukouvala et al. [9]
developed a flowsheet model for the wet granulation route. This model served as a proof-of-concept
and with no connection to specific experimental data. Boukouvala and Ierapetritou [10] also
investigated a methodology for optimization of computationally expensive flowsheet models.
Rogers and Ierapetritou [11] showed a flowsheet modeling case with hybrid models incorporating
information from both detailed and reduced-order models.

The work presented in this manuscript includes models systematically developed based on
experiments on units in the ConsiGmaTM-25 line for continuous tablet manufacturing using the same
formulation and relevant materials across all the units. Specifically, the units involved are feeders,
blenders, twin-screw wet granulator (TSWG), fluid bed dryer (FBD), comill, and tablet press. Models
for these processes are developed [12–16] and included. Besides these, models for intermediate feeding
and blending operations are also included. Transfer lines that lead to material holdup in between the
units are added to the flowsheet model as well.

1.1. Objectives

The specific objectives of this work are:

• Develop a flowsheet model approximating the ConsiGmaTM-25 wet granulation manufacturing line;
• Demonstrate the use of the flowsheet model for simulating effects of disturbances in the

continuous process;

76



Processes 2019, 7, 234

• Identify critical process parameters (CPPs) affecting the properties of intermediate and
final product.

Section 2.1 details various models used to build the flowsheet model. To enunciate how the
flowsheet model can be used for propagation of information and disturbances across the units,
a detailed discussion is provided in Section 3.1 along with supporting case studies in Section 3.2.
In addition to building the flowsheet model, a detailed analysis of the developed model is provided.
The scenario analysis, explained in Sections 2.2 and 3.3, serves to ensure that the flowsheet model which
is a complex set of equations from various modeling approaches, runs successfully at several values
of process variables and the process responses thus obtained are aligned with process knowledge.
Following this, critical process parameters (CPPs) that affect product quality are identified through
implementation of sensitivity analysis as explained in Sections 2.3 and 3.4.

2. Materials and Methods

The model formulation consisted of two active pharmaceutical ingredients (API), a lubricant
and four excipients. Hereafter, the two two active pharmaceutical ingredients (API)s and the four
excipients are referred to as API 1, API 2, and Excipient A, B, C, and D respectively. The formulation
was processed using demineralized water as granulation liquid. The formulation used in this work is
given in Table 1.

Table 1. Formulation used for model development.

Component Name Weight %

API 1 75.58
API 2 8.72

Lubricant 0.58
Excipient A 6.05
Excipient B 1.51
Excipient C 6.05
Excipient D 1.51

2.1. Flowsheet Modeling

Since flowsheet models are approximate representations of the integrated manufacturing line,
developing individual unit operation models aid in the development of a flowsheet model. In this
work, the models developed are based on experiments conducted using the ConsiGma™-25 system
(GEA Pharma systems, Collette, Wommelgem, Belgium), which is an oral solid dosage manufacturing
line based on continuous wet granulation. In Sections 2.1.1–2.1.8 the individual unit models used in this
work are briefly described. Figure 1 pictorially shows transfer of information across the unit operations
i.e., feeder, blender, granulator, dryer, mill, and tablet press, in that order. Further, intermediate units
are added and relevant information is transferred. These models are implemented in the software
gPROMS FormulatedProducts v1.2.1 (PSE, London, UK). It is a platform for flowsheet simulations
that uses an equation-oriented approach. An overview on the equation-oriented techniques particular
to the gPROMS platform is given in Pantelides et al. [17].

2.1.1. Feeder

Loss-in-weight (LIW) feeders are used to feed the required powder components in the continuous
manufacturing line. The feeder used in this work has a hopper and a conveying unit, a refill unit,
and a PID controller. The hopper is used as a receptacle for the raw materials whereas the conveying
system has a rotating screw that is used to move the material out of the feeder. The refill unit is used
to feed material into the hopper when the fractional fill level in the hopper drops below a setpoint
value. The PID controller enables the feeder to run in gravimetric mode, i.e., the screw speed in the
conveying unit is adjusted to maintain a constant mass flow rate out of the unit. The three models
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(refill, feeding, and PID controller) work in conjunction to represent the overall feeding operation in
the continuous line.

Figure 1. Schematic showing transfer of information between units required for flowsheet
model development.

The mass flow rate out of the feeder is simulated using a feed factor model [3]. Feed factor is
a time-dependent property ( f f (t)), defined as maximum mass of powder fitting in a screw flight and
has the unit of mass per screw revolution. It is found to be dependent on the amount of material in
the hopper (w(t)) as given in Equation (1). The parameters f fmax, f fmin, and β are dependent on the
powder bulk density, compressibility, cohesion and permeability. More details on the feed factor model
and its dependence on material properties are published in [18]. The mass flow rate of the powder
out of the feeder can then be obtained as given in Equation (2) where ω(t) is the screw speed that is
manipulated by the PID controller.

f f (t) = f fmax + ( f fmin − f fmax)exp(−βw(t)) (1)

Ṁout(t) = f f (t)ω(t) (2)

2.1.2. Blender

Continuous blenders that are used to mix the powder components in the continuous line, dampen
the flow rate variations from the feeding units. The build-up of mass in the blender M(t) was found
to be following a first order relationship as given in Equation (3), where Mss is the steady state mass
holdup and τ is the time constant. From the mass holdup and flow rate of the material into the
blender (Ṁin), flow rate out of the unit (Ṁout) can be computed as given in Equation (4). An axial
dispersion equation [3] is used to model the mixing calculation in the blending unit as a function
of time. The equation as given in (5) is subject to initial and boundary conditions (Equation (6)).
The coefficients of the axial dispersion model (τax and Pe) are calculated based on their relationship to
a CSTR-in-series model constant i.e., number of tanks nt as given in Equation (7). Experimental data
were used to develop regression models that predict the model constants τ, nt, and Mss as a function
of flow rate and blade speed. More details on the blender model are available in [18].

τ
dM(t)

dt
+ M(t) = MSS (3)
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dM(t)
dt

= Ṁin − Ṁout (4)

τax
dCi

out
dt

=
1

Pe
∂2Ci

out
∂ξ2 − ∂Ci

out
∂ξ

(5)

I.C : Ci
out = 0, t = 0

B.C : Ci
out = Ci

in, ξ = 0

dCi
out

dt
= 0, ξ = 1

(6)

Pe = nt + (8nt + n2
t )

1/2 (7)

2.1.3. Twin-Screw Wet Granulator

The modeling of the change in particle size distribution (PSD) of the material through granulation
is executed with the compartmental population balance model of Van Hauwermeiren et al. [13].
The twin-screw wet granulator (TSWG) model mathematically links the aggregation and breakage
behavior in the granulator barrel to the granulator process settings of mass flow rate, screw speed, and
liquid flow rate. It moreover distinguishes two compartments in the barrel: the wetting zone (i.e., the
zone where the liquid is added to the dry powder blend) where only aggregation occurs, followed
by the kneading zone (i.e., kneading elements are present in the screws) with different aggregation
behavior complimented with breakage. Each compartment is thus modeled by its own population
balance model (PBM).

The PBM equation is given in Equation (8). The change in number of particles n of a certain size
x over time t is thereby described based on aggregation kernel β(t, x, ε), breakage selection function
S(ε) and breakage fragment distribution b(x, ε). The aggregation kernel β(t, x, ε) can be modeled as
the product of aggregation efficiency β0 with collision frequency β(x, ε), as the relation is in this case
independent of time t.

The formula of the collision frequency in the first PBM, describing the wetting zone, is given in
Equation (9). It comprises a two-dimensional stepping function and a product kernel in order to reach
bimodal granule (PSDs) starting from a monomodal powder (PSD). Kernel parameters β0 , R1, R2,
top 1, top 2, δ1, and δ2 are needed to achieve this mathematical connection [13].

δn(t, x)
δt

=
1
2

∫ x

0
β(t, x − ε, ε)n(t, x − ε)n(t, ε)dε

− n(t, x)
∫ ∞

0
β(t, x, ε)n(t, ε)dε

+
∫ ∞

x
b(t, x, ε)S(t, ε)n(t, ε)dε − S(t, x)n(t, x)

(8)

β(x, ε) =

(
top1

2

(
1 + tanh

(
R3

1 −
(

x2 + ε2)1/2

δ1

))

− top1 − top2
2

(
1 + tanh

(
R3

2 −
(

x2 + ε2)1/2

δ2

)))

·
(

x1/3 · ε1/3
)

(9)

The breakage in the kneading zone is modeled by a linear breakage selection function:

S(ε) = S0ε1/3, (10)

and a breakage fragment distribution b(x, ε) describing a combination of erosion and uniform breakage:
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b(x, ε) = fprim
1√
2πσ

e−
(x1/3−μ)

2

2σ2
ε

μ3
1

3x
2
3
+
(
1 − fprim

) 2
ε

, (11)

with ε the volume of the breaking particle, x the volume of the fragment, S0 the breakage rate constant,
σ and μ respectively the standard deviation and mean of the Gaussian distribution representing the
size distribution of the small eroded particles, and fprim the volume fraction of erosion in the overall
breakage (as opposed to a fraction (1 − fprim) of uniform breakage).

Aggregation in this zone could be described by a sum kernel (Equation (12)).

β(x, ε) = x + ε (12)

Overall, kernel parameters R2, β0, and top1 in the wetting zone and β0, S0, fprim, μ, and σ in the
kneading zone are linearly related to the process setting values in the units given in Table 2.

Table 2. Process setting ranges of the validated twin-screw wet granulator (TSWG) model [13].

Process Setting Lower Bound Upper Bound

Mass flow rate (kg/h) 10 20
Screw speed (RPM) 500 900

Liquid/solid-ratio (kg/kg ) 0.08 0.18

2.1.4. Dryer

The fluidized bed dryer (fluid bed dryer (FBD)) model consists of prediction of granule batch
drying kinetics based on single granule drying kinetics for one dryer cell [15]. The single granule
drying kinetics are governed by Stefan diffusion of water vapor through the granule pores, from the
source of evaporation to the edge of the granule. The mass transfer rates are corrected with the
equilibrium moisture content Xe. When the moisture content of the granule is larger than its pore
fraction, the remaining liquid is modeled as a layer of water of uniform thickness around the granule,
evaporating according to a droplet:

ṁv = hD(ρv,s − ρv,∞)Ad (13)

with mass transfer rate ṁv (kg s−1), mass transfer coefficient hD (m s−1), partial vapor density over
the droplet surface ρv,s (kg m−3), partial vapor density in the ambient air ρv,∞ (kg m−3), and droplet
surface area Ad (m2). The energy balance paired with this drying behavior is described by:

h f gṁv + cp,wmd
dTd
dt

= h(Tg − Td)4πR2
d (14)

with specific heat of evaporation h f g (J kg−1), specific heat capacity of the liquid cp,w (J kg−1 K−1),
droplet mass md (kg), uniform droplet temperature Td (K), heat transfer coefficient h (W m−2 K−1),
drying gas temperature Tg (K), and droplet radius Rd (m). After this layer of water is depleted the wet
granule enters the subsequent drying phase. Herein the moisture is conceptualized as a sphere with
radius Ri (m), also referred to as the wet core, filling up the pore volume of the granule with radius Rp

(m). The mass transfer rate ṁv in this stage is given by [19]:

ṁv = −8πεβDv,cr Mw pg

�(Tcr,s + Twc,s)

RpRi

Rp − Ri
ln[

pg − pv,i

pg − ( �
4πMwhD R2

p
ṁv +

pv,∞
Tg

)Tp,s
] (15)

with ε the granule porosity (-), β an empirical coefficient, Dv,cr the vapor diffusion coefficient (m2 s−1),
Mw the liquid molecular weight (kg mol−1), pg the pressure of the drying air (Pa), � the ideal gas
constant (J mol−1 K−1), Tcr,s and Twc,s respectively the temperature of solids at the granule surface and
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at the gas-liquid interface (K), pv,∞ and pv,i respectively the partial vapor pressure in the drying air
(Pa) and at the gas-liquid interface, and Tp,s the temperature of the particle solids (K). Equation (14)
is assumed to apply for the energy balance of the granule during this drying phase. The physical
properties of the solids were assumed to be at environment conditions of 25 ◦C and atmospheric air
pressure in the model, whereas liquid properties were modeled as those of pure water. A value of 35 %
was assumed for the granule porosity. Finally, the mass transfer rates ṁv are corrected with the effect
of Xe:

ṁv,res =
X − Xe

X
ṁv (16)

Overall this means that the course of moisture content X of a granule amounts to:

ẊSPDM =
ṁv,res

mp
(17)

with ẊSPDM the change in moisture content X over time and mp the total mass of the granule (particle).
This is solved from time t = 0 until the FBD cell drying time t = tdry.

Connecting the single granule drying kinetics to those of the batch, along with the continuous
filling of the batch, is done according to the following simplified approach. Drying curves are calculated
for several size fractions of the granules, in which the arithmetic mean size is representative in the
XSPDM. Thus the average moisture content X f per size fraction f then equals the average moisture
content of different drying curves, starting a certain time τ later over the cell filling time t f ill :

X f =
∑

t f ill
τ=0 XSPDM(t − τ)

nτ
, (18)

with nτ the amount times τ that the drying curve was shifted over the cell filling time interval t f ill .
A constant ideal fluidization behavior, constant relative air humidity in the dryer cell and

atmospheric air properties in the drying chamber (with exception of the drying agent temperature)
were assumed in the batch approach.

The dryer model discussion so far dealt with the drying behavior of the material, other material
properties are directly governed by the dynamic output of the TSWG model. For each dryer cell,
these are mass-averaged over the drying cell filling period. This is illustrated in Equation (19) for the
concentration of active pharmaceutical ingredients (API) in the dryer cell CAPI,dryer, and is calculated
the same way for the material true density, PSD and the mass of the material in the dryer cell. They are
weighted by the mass flow rate at which they are flowing from the TSWG at time t (MFRTSWG(t)).

CAPI,dryer =

∫ t+t f ill
t CAPI,TSWG(u)MFRTSWG(u)du∫ t+t f ill

t MFRTSWG(u)du
(19)

After drying, the breakage of the material through pneumatic transport through a tube to the
evaluation module is calculated by a PBM. As aggregation is assumed not to take place based on
the experimental work of De Leersnyder et al. [14], only the last two terms in the right hand side of
Equation (8) need to be used. The same breakage kernel as in the kneading zone of the TSWG was
found to apply, i.e., breakage rate S(ε) from Equation (10) and breakage fragment distribution b(x, ε)

from Equation (11). Parameter S0 from from Equation (10) is linearly related to the remaining moisture
content after drying.

Finally, the six cells are simulated in parallel with the filling–drying–emptying sequences according
to the operation in the actual process. A cell is idle until the predecessor cell has been filled, at which
point the current cell enters the filling stage. Hereafter, the remainder of the drying time is completed
in the drying stage, where the mass flow rate at time t (MFRTSWG(t)) in that cell is zero. In the final
emptying stage, the mass transfer rates in Equations (13) and (15) are set to zero, and the change in

81



Processes 2019, 7, 234

PSD is calculated by the PBM model based on the residual moisture content of the material. These
material property values are thus those perceived at the inlet of the evaluation module.

2.1.5. Mill

In the wet granulation continuous manufacturing route, comilling is used to break the granulated
product through collisions from a rotating impeller and walls. Granules that are broken to the required
size exit the comill through a screen. In this work, the comill model published in Metta et al. [16] is
used. Briefly, the mill model is a hybrid model that includes a PBM approach and a partial least squares
(PLS) approach. Trajectories of change in mass of particles of various sizes over time is predicted
through the PBM as shown in Equation (20) where M(w, t) represents the mass of particles of volume
w at time t, R f orm and Rdep represent the rates of formation and depletion of particles respectively. Ṁin
and Ṁout are the mass flow rates of particles entering and exiting the mill respectively. The rate of
depletion Rdep is defined in the model (Equation (21)) using a breakage kernel K(w), which represents
the probability that a particle of volume w undergoes breakage. A classification kernel as given in
Equation (22) is used in this work, where vimp is the impeller speed, vimp,min is the minimum impeller
speed and the parameter β is calibrated using data from experiments. The rate of formation R f orm as
shown in Equation (23) uses the breakage kernel and a breakage distribution function. The breakage
distribution function b(w, u) represents the distribution of daughter particles formed when a particle
of volume w undergoes breakage. The Hill–Ng distribution function given in Equation (24) is used
in this work, where the parameters p, q are estimated using experimental data. The mass flow rate
out of the mill Ṁout(w, t) as given in Equation (25) is modeled using the feed particle size distribution
(din) and a parameter Δ = dscreenδ, where dscreen is the screen size and δ is referred to as critical screen
size ratio. A linear model is used to define the function fd. The parameter δ is formulated as given
in Equation (26) which represents the phenomenon of reduced apparent screen size available for
a particle to exit the mill as impeller speed increases.

dM(w, t)
dt

= R f orm(w, t)− Rdep(w, t) + Ṁin(w, t)− Ṁout(w, t) (20)

Rdep(w, t) = K(w)M(w, t) (21)

K(w) =

⎧⎨
⎩β(

vimp
vimp,min

)2( w
wre f

) if w ≥ w(24)

0 else
(22)

R f orm(w, t) =
∫ ∞

w
K(u)M(u, t)b(u, w)du (23)

b(w, u) =
p u

w
q−1(1 − u

w )
r−1

wB(q, r)
(24)

Ṁout(w, t) = (R f orm(w, t)− Rdep(w, t) + γdin(w, t))(1 − fd) (25)

δ = ε(
vimp,min

vimp
)α (26)

Impeller speed showed little effect on the milled product when the comill feed is obtained from
the fluid bed dryer because of breakage that occurs during transport to and from the fluid bed dryer
in the horizontal ConsiGmaTM-25 configuration. Hence, vimp is considered equal to vimp,min in the
breakage kernel given in Equation (22).

The PBM is thus used to predict milled granule size distribution. The PLS model is an empirical
modeling approach used to predict the milled product bulk density and tapped density, using the
granule size distribution and moisture content as inputs. To use the mill model in the flowsheet model,
batches of material are added to the milling unit each time the FBD completes a drying cycle and
initiates an emptying cycle. When a batch of material is added to the existing material in the mill,
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breakage occurs. Properties of the material exiting the mill are obtained through mass averaging over
the milling period tmill . This is illustrated in Equation (27) for the bulk density of milled granules and
is calculated the same way for the tapped density, span, and true density of the material exiting the
mill. The instantaneous bulk density ρbulk,PLS is obtained from the PLS model and weighted by the
total mass flow rate of material exiting the mill, Ṁout,total , at time t.

ρbulk,milled =

∫ t+tmill
t ρbulk,PLS(x)Ṁout,total(x)dx∫ t+tmill

t Ṁout,total(x)dx
(27)

2.1.6. Tablet Press

The tablet press model consists of four submodels. Firstly, a residence time distribution (RTD)
model is used to describe the propagation of material properties through the powder dosing valve
and the tablet press feed frame into the tablet die. The other models work with the material properties
modeled as present in the die. The weight model relates material densities to the mean weight of the
tablets semi-mechanistically (Equations (28) and (29)). The tablet potency model is a first-principles
model (Equation (31)), and the tablet mean hardness model harbors literature empirical correlations
related to tablet hardness and tensile strength (Equations (32) to (37)).

Propagation of the material properties through the feed frame is modeled according to a series of
a continuously stirred tank reactor (CSTR) and a plug flow RTD model, with respective delay times
tcstr and td related to the feed frame turret speed. The solution of the feed frame model is performed in
the same way as the transfer line models explained in Section 2.1.8. The tablet mean weight model uses
the tooling dimensions (cup volume Vcup, die surface Adie, and punch cup depth Dcup), the material
densities at the die (true density ρtrue, bulk ρbulk and tapped ρtapped density), a fill density factor pρ f ill ,
and the fill depth d f ill to calculate the mean tablet weight m, according to the following equations.

ρ f ill = ρbulk + pρ f ill

(
ρtapped − ρbulk

)
(28)

m = (Vcup + Adied f ill)ρ f ill (29)

The volume of the solids in the die Vsolid is then:

Vsolid = m/ρtrue (30)

The potency P simply follows from the API concentration CAPI and m:

P = m CAPI (31)

The hardness model in the end uses Vsolid from the tablet mean weight model, the main
compression height process setting MCH and the tablet dimensions (width W, thickness T, and
upper punch penetration upp) to calculate the tablet hardness through estimation of the tablet tensile
strength. W and T are calculated according to:

W = MCH − upp (32)

and
T = (MCH − upp) + 2Dcup, (33)

resulting in a tablet volume Vtablet and relative density ρrel through:

Vtablet = (WAdie) + 2Vcup (34)

and
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ρrel =
Vsolid
Vtablet

. (35)

In order to relate the experimentally obtained hardness N values to the material properties
for the biconvex tablets, a tensile strength σT normalization needs to be applied w.r.t. the tablet
dimensions [20].

σT =
10N
πD2

(
2.84

t
D

− 0.126
t

W
+ 3.15

W
D

+ 0.01
)−1

(36)

The tensile strength is linked to the critical density for tableting of the material ρc, and maximum
achievable tensile strength σmax [21]:

σ = σmax

[
ρc − ρrel − ln

(
1 − ρrel
1 − ρc

)]
. (37)

The constants of σmax and ρc are obtained through empirical linear correlations with the relative
size span Rspan of the material and the moisture content X.

Finally, two modes of using the tablet press model are defined. In the process setting mode, tablet
press process setting values (fill depth and MCH) are supplied to the model along with the material
properties. Tablet properties such as the mean weight and hardness then result from the combination of
the user defined process setting values with the incoming properties. These might however not match
and result in unrealistic tablet properties as well as infeasible calculations, such as in the case where
Equation (38) is not satisfied. In this mode, this is amended by the inclusion of a boolean variable that
is only True when the input variables are such that condition Equation (38) is fulfilled.

ρc < ρrel < 1 (38)

Another mean weight control (MWC) mode was created to allow for the tablet press model to
calculate its process setting values in order to achieve a certain mean weight and hardness. These
two variables thus serve as an input to the model in the flowsheet model, and the fill depth and
MCH are calculated. This allows avoidance of the situation where user-specified tablet press process
settings are not compatible with the simulated material properties governed by the process setting
values upstream, possibly leading to a long simulation where no tablet weights or hardnesses could
be calculated.

2.1.7. Overview

Once the individual unit operation models are developed and parameterized, the flowsheet model
is built via connecting the inlet of a unit to the outlet of the preceding unit. Required information
(material properties, operating conditions, etc.) are transferred from one unit to the succeeding unit
as shown in Figure 1. The interaction between various modeling approaches in the individual unit
operations is pictorially shown in Figure 2 to illustrate how empirical, semi-empirical, statistical,
and mechanistic models interact to yield a flowsheet model. The system is solved using a backward
differentiation solver with variable time steps, which is one of the two built-in solvers in gPROMS.

2.1.8. Intermediate Feeders, Blender, and Transfer Lines

The ConsiGmaTM-25 line includes an intermediate feeder for feeding powder blend from blender
to the granulator (hereafter referred to as ’powder blend feeder’), and an intermediate feeder for
feeding granulated material from the mill (hereafter referred to as ’granule feeder’). Thus, to achieve
a more accurate representation of the ConsiGmaTM-25 line, transfer lines and the intermediate feeder
and blender units are also included in the flowsheet model. A key difference in the implementation
of the feeder model to the intermediate units is that the powder blend feeder and granule feeder do
not have refilling units assigned to them, as these units receive material from their preceding units
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(powder blend feeder receives material from the blender and granule feeder receives material from
the mill).

Figure 2. Schematic showing interaction between units and various modeling approaches.

In addition, a blending unit is also included to add lubricant to the granulated material from
the mill. This intermediate blender will hereafter be referred to as ’granule blender’. The granule
blender is modeled based on the axial dispersion equation as explained in Section 2.1.2. The blender is
assumed to be filled with granulated material and the axial dispersion equation is used to transfer
information regarding new or changing material properties from the upstream mill and the lubricant
feeder. The true density of lubricated material from the granule blender is taken as weighted average
of bulk densities of the milled granule product and lubricant.

In the dynamic flowsheet simulation, an accurate representation of the material properties at all
times and at every location in the process would not be complete without accounting for material
hold-up between unit operations. Hereto, transfer line models have been implemented to propagate
variable values in between unit operation models. These models delay the propagated values according
to a plug flow regime, assuming no back-mixing or axial dispersion is taking place during the transfer
of materials between unit operations.

The plug flow propagation of these materials is often modeled applying a convolution of the
inlet concentration profile at the modeled system, with the residence time distribution function
of the material, as for instance described in [22]. This convolution requires information on the inlet
concentration values over a range of time, which is not accessible for calculation in gPROMS. Therefore,
this plug flow behavior is emulated using an axial dispersion model. A new simulation domain z
is created to represent the normalized length of the transfer line under consideration, therefore this
domain [0, L] is always equal to [0, 1]. Over this domain, the change in input signal S over time t at
z = 0 is propagated over the domain as in Equation (39) where the plug flow time delay is represented
as τdelay. The input and output of the transfer lines are hence given by S(t, 0) and S(t, 1) respectively.
The smaller ∂z is chosen, the smoother and more accurate the signal will propagate through the domain
z, yet more computational burden is involved with this choice of more grid points. A value of 1/1000
for ∂z has been found to give a good balance between smoothness and computational burden. Finally,
it has been found that normalization of the delayed signal S drastically improves CPU time in the
gPROMS solvers.

τdelay
dS(t, z)

dt
=

∂S(t, z)
∂z

(39)
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The above unit operation models are connected to develop the flowsheet model representing the
ConsiGmaTM-25 line as shown in Figure 3. The flowsheet includes intermediate units and transfer
lines as well. When the flowsheet model is simulated, it is important to have a clear understanding of
the initial states of the model as it impacts the dynamic model state. For example, feeder hoppers could
have various amounts of material at the start of the simulation. Similarly, the mill could start empty
or have a certain amount of mass held up at the start of the simulation. Table 3 gives an overview of
initial and dynamic states of the various units in the developed flowsheet model. The full flowsheet
model thus developed can be used to simulate the continuous process as described in Section 3.1.
Two case studies are provided in Section 3.2 where the full flowsheet model is used to understand the
effect of step changes in process settings. The flowsheet model can also be used for advanced process
analyses as described in the next sections.

Figure 3. gPROMS Formulated Products schematic of the full flowsheet model developed.
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Table 3. State of unit models used in flowsheet model development.

Unit Initial State Dynamic State

Feeders Full Refills when empty

Blender Empty Reaches steady state

Granulator Empty Output obtained when input is in studied range
Plug flow delay added to instantaneous response

Dryer Empty Releases batches of material at the end of drying time

Mill Empty Releases material in semi-continuous mode

Tablet Press Empty Output obtained when input is in studied range
Delay from RTD model in feed frame

Powder blend feeder Full with powder blend Continuous feed from blender

Granule feeder Full with granules Refill from mill

Granule blender Always full Delay from axial dispersion

2.2. Scenario Analysis

It is important to ensure that the flowsheet model developed successfully runs simulations at
various process conditions. This affirms that the models are successfully integrated. In addition,
it is important to verify that the process responses from these simulations are aligned with process
knowledge. Scenario analysis provides a structured framework to achieve this, as several simulations
at various combinations of process settings can be run in parallel and the resulting process responses
can be analyzed. In this work, only process responses at the end of simulation, i.e., steady state tablet
properties, are analyzed.

However, this exercise is computationally demanding as one simulation takes several hours to
run. In this work, a more pragmatic approach is applied and the flowsheet model as given in Figure 3
is adapted in order to implement scenario analysis. Specifically, the intermediate units (powder blend
feeder, granule feeder, granule blender) and the transfer lines are not considered. Since only the end
of simulation responses are studied, the flowsheet model simplification is valid as the intermediate
units and transfer lines do not affect the steady state process responses. The modified model lowers
the computational expense and allows implementation of study required to affirm that the process
responses from integration of unit operation models are meaningful. The full flowsheet model takes
approximately 4 h to run a six-cell drying cycle, whereas the modified model only takes approximately
7 min for the tablet properties to reach steady state. Hence, the adapted model as shown in Figure 4 is
used for the implementation of scenario analysis. In addition, the factors used for the study are also
chosen judiciously in order to keep the total number of flowsheet model evaluations low. For example,
factors such as blender blade speed, mill impeller speed are not considered. The blender blade speed
influences the mass holdup in the blender, as explained in Section 2.1.2, but not the steady state flow
rate, as this depends on the incoming feed flowrate. The mill impeller speed does not have an effect
on granules obtained from a FBD [16]. Overall, the factors considered, their corresponding lower
and upper bounds, and number of levels for each factor is listed in Table 4. In addition, the process
responses that are recorded for each simulation run are also listed in Table 4. Three levels for flow
rate setpoint, and four levels for LS ratio, granulator screw speed, dryer air temperature, and drying
time, are chosen. In Section 3.3, an analysis of process responses from the simulations run is discussed
in detail.

While the adapted flowsheet model is useful in implementing further analyses, it is also important
to understand its limitations. The simplified flowsheet does not capture the effects of the intermediate
units. For example, effects of refilling and propagation of disturbances from the intermediate units are
ignored. In addition, a successful scenario analysis on the simplified model does not capture scenarios
where the full flowsheet model fails due to the intermediate units. The simplified flowsheet does
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not support study of dynamic behavior of the line. Analyses such as dynamic sensitivity analysis or
identification of dynamic feasible region cannot be accomplished.

Table 4. Factors and responses for scenario analysis and sensitivity analysis.

Unit Factor Bounds Number of Levels Response

Blender flowrate setpoint, kg/h [10, 20] 3 Mean Residence time
Number of tanks

Granulator LS ratio, kg/kg [0.08, 0.18] 4 PSD: d10, d50, d90
Screw speed, rpm [500, 900] 4 Moisture content

Dryer Air temperature, deg C [40, 60] 4 PSD: d10, d50, d90
Drying time, s [200, 1080] 4 Moisture content

Mill PSD: d10, d50, d90
Span
Bulk density
Tapped density

Tablet Press Tablet hardness
Tablet potency
MCH
Fill depth

Figure 4. Schematic of the flowsheet model used for scenario analysis and sensitivity analysis.
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2.3. Sensitivity Analysis

Sensitivity analysis is one of the key process systems engineering tools that can be used for quality
risk assessment through identification of critical process parameters (CPPs). Sensitivity analysis is the
investigation of how variability in the model inputs contributes to variations in model outputs [23]. It is
an effective tool to rank and prioritize the process variables based on the effects they have on the output
variables of interest. In the context of operation of a continuous manufacturing line, it helps identify
the source of issues in meeting product quality or production demands. In the context of process
model development, sensitivity analysis has been extensively used to identify the parameters that
affect model outputs, thus helping focus experimental and model calibration efforts [23,24]. This helps
researchers identify the areas where further model development needs to be focused on. Specifically
for a flowsheet model where there is high number of input factors, sensitivity analysis can be used to
reduce the number of input factors that need to be studied further. This helps in simplifying a high
dimensional problem by filtering out the variables that have negligible effects on the outputs of interest.
With this simplification, other tools can be applied for identification of design space of the process and
its optimization [3].

Sensitivity analysis can be categorized into local and global methods. Local methods study the
effect of input variables around a nominal point (or base case), whereas global methods study the
effects over an entire input space. In this work, we focus on global sensitivity analysis as this is
more relevant for pharmaceutical processes. For pharmaceutical processes, the input factors may
include operating variables such as blender impeller speed, granulator screw speed, etc. The output
variables of interest may include product properties such as tablet hardness, granule mean particle
sizes, or process variables such as mill mass hold up, total flow rate, etc. There are various global
sensitivity analysis methods available. The choice of method usually depends on the computational
cost of evaluating the models, sampling budget available, and the detail of sensitivity information
desired. In this work, Elementary effects method and Variance based sensitivity analysis methods are
used, details of which are described in the next section. These methods are chosen as they are available
in gPROMS FormulatedProducts with parallel computing capability.

2.3.1. Morris Method

Morris method also referred to as Elementary effects method is categorized under screening
methods for sensitivity analysis. Screening methods are the most effective way to identify the most
influential factors with relatively fewer samples [23]. Morris method is based on OAT (one-at-a-time)
design where each of the input factors is varied and effects on the model outputs are studied.

For a model with k number of inputs, at a selected base point (x1, x2, . . . , xk), the elementary
effect EEi of the ith factor is given by Equation (40) where Δi is the step change in the ith input
factor, Y represents the model output and 0≤ Δi ≤1. In order to represent the sensitivity information
accurately, the sample points must be spread in the input space.

EEi =
Y(x1, x2, . . . , xi + Δi, . . . , xk)− Y(x1, x2, . . . , xi, . . . , xk)

Δi
(40)

Based on the calculation of EEi, the sensitivity metrics as given in Equations (41)–(43) can be
calculated, where r is the number of trajectories or radial base points for sampling. μi represents the
average EEi, σ2

i represents the variance and reflects non linearity or interactions in the ith input. μi∗
represents the average elementary effect using absolute EEi to ensure the negative and positive effects
do not cancel each other. It is suggested to look at all three metrics together to understand sensitivity
information. Total sampling cost for this method is r(k + 1) where r can be less than 20 [25]. Hence,
it is especially useful for models with a large number of input factors (factor of ten) or when the model
is computationally expensive. In this work, the value of r is chosen as 20.

89



Processes 2019, 7, 234

μi =
1
r

r

∑
j=1

EEj
i (41)

σ2
i =

1
r − 1

r

∑
j=1

(EEj
i − μi)

2 (42)

μi∗ =
1
r

r

∑
j=1

| EEj
i | (43)

After the metrics are obtained, input factors with large μi and/or μi∗, σ2
i are considered to be

significant. Practically, if the metric of an input factor is less than 10% of the largest value of this metric,
the input factor is considered insignificant. While the method can be used to rank the factors, it does
not quantify how much an input factor is more important than the other factors.

2.3.2. Variance Based Method

In this category of methods, the variance of the output is decomposed into several components
including the individual inputs and the interactions between the inputs [26]. For an independent set
of input factors, the variance V(y) is expressed as given in Equation (44), where Vi is the variance term
solely due to the input factor xi, and Vi,j is the variance term due to the interaction between the input
factors xi and xj. Based on this variance decomposition, sensitivity measures can be defined as given
in Equations (45)–(47).

V(y) =
k

∑
i=1

Vi + ∑
1≤i<j≤k

Vi,j + . . . + Vi,j,. . . ,k (44)

Si =
Vi

V(y)
(45)

Sij =
Vi,j

V(y)
(46)

STi =

Vi + ∑
j =i

Vi,j + V1,2,..k

V(y)
= 1 − V∼i

V(y)
(47)

For the input xi, Si represents the ‘first-order sensitivity index’ whereas Sij represents the
‘second-order sensitivity index’ which is the interaction effect of xi and xj on the process output.
The metric STi indicates the ‘total sensitivity index’, which accounts for the main effects as well as all
the higher order interaction effects.

Specifically, this method uses Monte–Carlo techniques to compute the sensitivity indices as
given in Equations (48) and (49) where E(.) is the expected value and X∼i represents all possible
combinations of input factors with ith input factor Xi fixed. For this method, total number of samples
required is N(k + 2) where N is recommended to be at least 500 [23]. In this work, the value of N is
chosen as 500.

Si =
VXi (EX∼i (Y | X∼i))

V(Y)
(48)

STi =

Vi + ∑
j =i

Vi,j + V1,2,..k

V(y)
= 1 − VX∼i (EXi (Y | X∼i)

V(y)
=

EX∼i (VXi (Y | X∼i)

V(y)
(49)

For the variance based method, higher values of the metrics Si and STi indicate larger influence of
the input factor. Also, Si is always lower than or the same value as STi. Hence, the difference between
these metrics reflects interaction effects of the input factor with other factors. The adapted flowsheet
model as explained in Section 2.2 is used for implementing the sensitivity analysis methods as well.
In this work, details of factors and responses listed in Table 4 are also applicable for executing sensitivity

90



Processes 2019, 7, 234

analysis. In the next sections, results from simulating the flowsheet model, case studies to demonstrate
dynamic simulation capabilities of the model and further analysis are presented and discussed.

3. Results and Discussion

3.1. Simulation Results

The flowsheet model as described in Section 2.1 is simulated using process settings as given in
Table 5. The flow rate setpoints for the feeders are based on the formulation given in Table 1 and a total
flow rate of 15 kg/h. The operating variables for other units were set within the ranges that were
used to develop the individual unit operation models. The flowsheet model is simulated for 1500 s
to complete a drying cycle using six dryer cells. Feeder levels in the seven component feeders (two
API, one lubricant, and four excipient feeders) decrease until refill occurs at a fractional fill level of 0.1.
The fill level in the powder blend feeder reduces until the blender starts feeding powder blend to it.
The fill level in the granule feeder reduces until the mill starts feeding granules in a semi-continuous
mode. Fill levels of all the component feeders and flow rate are shown in Figure 5a,b, respectively.
Figure 5c shows fill levels and flow rates of the two intermediate feeders, i.e., powder blend and
granule feeder.

Table 5. Values of process variables used for simulating the flowsheet model.

Unit Process Variable Units Value

Feeders API 1 flow rate kg/h 11.337
API 2 flow rate kg/h 1.308
Lubricant flow rate kg/h 0.087
Excipient A flow rate kg/h 0.907
Excipient B flow rate kg/h 0.227
Excipient C flow rate kg/h 0.907
Excipient D flow rate kg/h 0.227
Powder blend feeder flow rate kg/h 14.913
Granule feeder flow rate kg/h 14.913

Blenders Bladespeed rpm 250

Granulator Liquid-solid ratio kg/kg 0.12
Screw speed rpm 500

Dryer Air flow m3/h 360
Air temperature deg C 40
Drying time s 450
Filling time s 180

Tablet Press Turret speed rpm 29.8
Mean weight g 0.43

Powder blend flows continuously to the granulator. Wet granules start filling the first cell of
the dryer and drying begins. After a filling time of 180 s, the second dryer cell starts filling. Dried
granules in the first cell are emptied to the mill after a total drying time of 450 s. Thus, the cycle
of filling, drying and emptying continues for the duration of simulation. Batches of dried granules
fed to the mill are broken and leave the mill. The left axis in Figure 6a shows flow rate of the blend
from the granulator. The right axis in Figure 6a shows mass of the batches of dried granules fed to
the mill and corresponding change in holdup in the mill due to granules entering and leaving the
mill. Figure 6b shows the evolution of moisture content of wet granules from the granulator and dry
granules from the dryer as simulation progresses. As the simulation of the drying behavior requires
a moisture content value at the beginning of its simulation, the results for the first dried batch are
not representative because the wet granule moisture content at time t = 0 s equaled zero. This is
the moisture content output of the FBD-model at time t = 450 s, which just indicates that the first
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dryer cell has emptied. This should be improved towards the future so that the FBD-model has a fully
dynamic response towards its input (see Section 4).

(a) (b)

(c)
Figure 5. (a) Component feeder fill levels (b) Component feeder flow rates (c) Powder blend feeder
and granule feeder fill levels and flow rates.

(a) (b)
Figure 6. (a) Granulator flow rate, mass of granules from the dryer and holdup in mill (b) Moisture
content of wet and dry granules.

As milled granules exit the mill, properties of the batch of milled granules are mass averaged
and this information is propagated to the subsequent units. Figure 7a shows profiles of bulk density,
tapped density, and true density of milled granules as the simulation progresses. Profiles of LOD,

92



Processes 2019, 7, 234

span, and API concentration of the milled product are shown in Figure 7b. It can be observed that the
true density, LOD, and API concentration of milled product shows a step change around 600 s. This is
because the intermediate powder blend feeder initially contains powder blend with a true density of
1291 kg/m3, at the start of the simulation. This is eventually replaced when the powder blend of true
density of 1344 kg/m3, coming from the unit operations upstream, reaches that intermediate feeder in
the simulation. Similarly, powder blend containing no API is replaced by a powder blend containing
API 1 and API 2. This is reflected in the API concentration profile as shown in Figure 7b. In addition,
LOD of the first batch of dried granules is lower (as shown in Figure 6b), which reflects in the milled
granule LOD profile as well.

(a) (b)
Figure 7. Profiles of milled granules (a) bulk density, tapped density, and true density (b) LOD, span,
and active pharmaceutical ingredient (API) concentration.

Milled granules fed to the granule feeder eventually replace granular material in it. Milled
granules exiting the granule feeder are mixed in the granule blender with lubricant. Granules thus
lubricated are sent to the feed frame, which is modeled as a PFR and CSTR in series. Propagation
of properties (bulk density, tapped density, true density) in the granule feeder is shown in Figure 8a.
The density profiles in this figure shows replacement of granules in the granule feeder with granules
from the mill. Similarly, Figure 8b shows LOD, span, and API concentration profiles that simulate
replacement of material existing in the granule feeder (2% LOD, span of 2, and 0.7 fractional API
concentration) with milled granules from the upstream unit. Figure 9a shows density profiles of
granules entering and leaving the feed frame. Similarly, Figure 9b shows profiles of LOD, span, and
API concentration of granules entering and leaving the feed frame. The profiles changes seen in these
figures is self explanatory based on the milled granule profiles (Figure 7a,b) and granule feeder profiles
(Figure 8a,b).

The propagation of bulk density, tapped density, true density, API concentration, LOD, and span
affect the profiles of tablet properties, namely, tablet hardness, weight, and potency. Figure 10a shows
dynamic evolution of tablet properties as powder from component feeders replace material existing in
the intermediate units (powder blend feeder and granule feeder). The tablet press hardness model was
developed for material with bulk density greater than 300 kg/m3. Hence, an initial tablet hardness
of zero is shown in the hardness profile. In addition, since the tablet press is used in a mean weight
control mode, main compression height and fill depth are adjusted as shown in Figure 10b in order to
make tablets with a weight of 0.43 g.

3.2. Case Study

To clearly demonstrate the use of the flowsheet model for dynamic simulation purposes, two
case studies are presented in this section. In both case studies, the full flowsheet model developed
as explained in Section 2.1 is used. The initial simulation process variable settings are the same as
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explained in Section 3.1, Table 5. Later, in case study 1, a step change from 1.3 kg/h to 4 kg/h is made
to the API 2 feeder flow rate setpoint at 200 s. In case study 2, a step change from 40 ◦C to 50 ◦C is made
to the dryer air temperature at 455 s. A comparison between simulation results with and without the
step changes implemented, and a demonstration of propagation of effects of the changes is discussed
in the following sections.

(a) (b)
Figure 8. Profiles of (a) bulk density, tapped density, and true density (b) LOD, span, and API
concentration of granules from the granule feeder.

(a) (b)
Figure 9. Profiles of (a) bulk density, tapped density, and true density (b) LOD, span, and API
concentration of granules entering and leaving the feed frame.

(a) (b)
Figure 10. Profiles of (a) tablet hardness, weight, and potency (b) tablet press fill depth and main
compression height.
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3.2.1. Case Study 1: Step Change in Feeder Flow Rate

A step change in API 2 feeder flow rate setpoint from an initial value of 1.3 kg/h to 4 kg/h is
expected to lead to a change in API concentration (API 1 and API 2) in the powder blend, the granules,
and subsequently potency of the tablets. Figure 11 shows the step change made in setpoint at 200 s
leads to a change in API 2 feeder flow rate.

A change in fractional API concentration at the blender outlet from 0.85 to 0.87 is seen in Figure 12a
as a result of the step change. Figure 12a also shows a change in API concentration of the powder blend
leaving the powder blend feeder as initial material in the feeder (with no API) is eventually replaced
by powder blend with API concentration of 0.87. A comparison with profiles from the simulation
explained in Section 3.1 is also shown in this. Since the change is made at 200 s, the first cell in the
dryer is filled (dryer filling time = 180 s) with granules from powder blend already present in the
powder blend feeder. Hence, profiles of API concentration from the outlet of the granulator and dryer
from the simulation explained in Section 3.1 and this case study are the same until the first dryer cell
is emptied. This is shown in Figure 12b. Similarly, Figure 12c shows the propagation of change in
API concentration at the outlet of respectively the mill and the granule feeder. As a result of this,
a change in API concentration profiles at the outlet of granule blender and the feed frame are shown in
Figure 12d. Finally, due to the step change in the amount of API 2 in the feed components an eventual
deviation in the potency of tablets from 0.364 g to 0.374 g is shown in Figure 13. Thus, the case study
demonstrates the use of the flowsheet model developed to track the effects of disturbances in upstream
units on the final product quality.

Figure 11. Step change in API 2 feeder flow rate setpoint showing an effect on the feeder flow rate.

3.2.2. Case Study 2: Step Change in Dryer Air Temperature

In case study 2, a step change from 40 ◦C to 50 ◦C is made to the dryer air temperature. The step
change is made at 455 s as shown in Figure 14 (right axis). At 455 s, filling, drying, and emptying of the
first cell are completed. In the second dryer cell, filling is completed and drying is in progress. In the
third dryer cell, filling, and drying are in progress. Profiles of dried granule moisture content from the
simulation explained in Section 3.1, along with this case study, are also plotted in Figure 14.

It can be observed that the dried granule moisture content from the first dryer cell is same in
both cases as the step change occurs after emptying the first cell. In the second cell, dried granule
moisture content is lower in the case where the step change is imposed. This is because granules in
this cell are exposed to a higher air temperature for a duration of 175 s (180 × 1 + 450 − 455), which
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leads to a lower granule moisture content. In the third cell, dried granule moisture content is further
lowered as drying at 50 ◦C occurs for a longer duration of 355 s (180 × 2 + 450 − 455). In the fourth cell,
the moisture content is further lowered to a steady state value as all the granules are dried at 50 ◦C.

(a) (b)

(c) (d)
Figure 12. Comparison of API concentration profiles from simulations with fixed and step change
in API 2 feeder flow rate setpoint for (a) blender and powder blend feeder (b) granulator and dryer
(c) mill and granule feeder (d) granule blender and feed frame.

Figure 13. Comparison of tablet potency profiles from simulations with fixed and step change in API 2
feeder flow rate.
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Figure 14. Comparison of dried granule moisture content profiles from simulations with fixed and step
change in dryer air temperature.

Figure 15 shows propagation of LOD for both cases in the feed frame, which is the result of profile
changes in the dryer and subsequent mill, feeder and blender units. It can be seen that the profiles
follow the same path until about 750 s, after which a lower steady state value is reached for the case
where step change to a higher air temperature occurs. The effect of difference in LOD profiles is also
reflected in the tablet hardness as shown in Figure 16. Thus, implementation of the flowsheet model
allows analysis of effects of such dynamic changes made to an upstream process variable on the final
product quality of interest.

Figure 15. Comparison of moisture content of granules entering and leaving the feed frame from
simulations with fixed and step change in dryer air temperature.
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Figure 16. Comparison of tablet hardness profiles from simulations with fixed and step change in dryer
air temperature.

3.3. Scenario Analysis Results

The adapted flowsheet model as shown in Figure 4 was used to implement a scenario analysis
as explained in Section 2.2. Scenario analysis entails running the flowsheet model at various process
setting values. It serves as a useful step before running a more computationally demanding sensitivity
analysis. The flowsheet model is developed and errors are typically debugged at fixed values of
process settings. However, this masks errors that may occur at other process setting values and does
not provide confidence that the flowsheet model can run seamlessly. Debugging model errors at this
stage before running more expensive analyses such as variance based sensitivity analysis serves as an
effective modeling practice. Total flow rate, LS ratio, granulator screw speed, dryer air temperature,
and drying time as tabulated in Table 4 are the input factors considered for scenario analysis. A total
of 768 simulations from three levels of total flow rate, four levels each for LS ratio, granulator screw
speed, dryer air temperature, and drying time (3 × 4 × 4 × 4 × 4 = 768) were successfully run. Process
responses from blender, granulator, mill, dryer, and tablet press models as given Table 4 were recorded
at the end of each simulation. For brevity, only few process responses are discussed in this section.

Specifically, wet granule d50, dry granule d50, dry granule LOD, and tablet hardness are plotted
and discussed. Since, this is a multivariate analysis (five variables) plotting and analyzing responses
from simultaneous change in all the variables is not possible. Hence, a matrix of plots as shown
in Figure 17 are used. The matrix consists of 10 plots, each of which shows process response plots
from varying two distinct factors with the three other factors fixed at baseline values. Figure 17a
can be used to visualize and understand the effect of the five variables on wet granule d50. It can
be observed that wet granule d50 increases with LS ratio and screw speed, and decreases with flow
rate. This is in accordance with the experimental data used for granulator model development [13].
Figure 17b,c can be used to understand effects on dry granule size and moisture content respectively.
Figure 17c shows that moisture content decreases with drying time which is an expected phenomenon.
Figure 17b shows that dry granule size increases with LS ratio, screw speed, drying time, and air
temperature, and decreases with flow rate. This is in accordance with experiments used for dryer
model development [15]. Drying is expected to increase granule strength and lower breakage rate,
which leads to a larger size. Hence, increase in drying time and air temperature increases granule size.
The effect of flow rate, LS ratio, and screw speed on the dry granule size is due to the propagation of
effects of these variables on the size of the wet granule feed to the dryer. Similarly, the effect of changes
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in the variables on tablet hardness is plotted in Figure 17d. It can be observed that low drying time
leads to tablets with very low hardness. In other words, granules with high moisture content cannot
be used to make tablets. This is in accordance with process knowledge as gained from experiments.
It is also worth noting that development of a flowsheet model has enabled study of the effect of change
in a process variable in an upstream unit on the final product quality.

(a) (b)

(c) (d)
Figure 17. Scenario analysis plots for (a) wet granule d50 (b) dry granule d50 (c) dry granule LOD (d)
tablet hardness.

3.4. Sensitivity Analysis Results

Sensitivity analysis was conducted using the adapted flowsheet model as explained in Section 2.2
and using five input factors, flow rate, LS ratio, granulator screw speed, dryer air temperature, and
drying time. The effect of these input factors on 20 model responses are studied. The list of factors
and responses, ranges for the factors are tabulated in Table 4. The input factors are considered to vary
uniformly within these ranges. Morris analysis is implemented using 120 samples (= 20 × (5 + 1)).
The results of the analysis are shown in Appendix A.1 that lists the metrics μ, μ∗, and σ. From the
metrics, we observe that LS ratio influences wet granule moisture content, which is expected. Wet
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granule size is influenced by all three granulator process variables. This finding conforms with
experiments that show effect of these variables on granulation rate [12]. For the dryer model outputs,
flow rate and granulator screw speed do not show influence on dry granule moisture content and all
five input factors show influence on dry granule size and dry granule properties (bulk density, tapped
density, and angle of repose). For the mill model outputs, LS ratio shows the most influence on milled
granule size, bulk, and tapped density. This is due to the effect of LS ratio on the size distribution
of feed to the mill. The tablet press variables, main compression height and fill depth, are shown to
be most influenced by air temperature, drying time and LS ratio. This is due to the effect of all these
factors on the granule moisture content as granules with LOD higher than 3% cannot be used to make
tablets. Thus, these factors also show an effect on tablet hardness.

From Morris analysis, dryer air temperature, drying time, and LS ratio are identified as the
significant factors that influence tablet properties. Variance based analysis as explained in Section 2.3.2
can be applied to this subset of factors to obtain a quantitative understanding of their influence.
However, for this work, variance-based sensitivity analysis is performed using all five factors and
compared to results obtained from Morris method. The analysis was implemented using 3500 (=
500 × (5 + 2)) samples . First order sensitivity indices (Si), as well as total sensitivity indices (STi), were
computed to quantify effects of the five input factors on 20 output responses. For brevity, the indices
are tabulated in Appendix A.2. Here, only the total sensitivity indices, STi are pictorially represented
in Figure 18 as the first order effects Si are close to STi for responses from granulator, dryer, mill, and
blender units. The responses from tablet press show interactions for the factors air temperature,
drying time, and LS ratio. Generally speaking, findings from variance based sensitivity analysis agree
with the findings from Morris analysis. The variance based method identified LS ratio as a significant
factor for granulator. All five factors were identified as significant for dryer. LS ratio showed the
greatest influence for the mill. All of these findings align with conclusions obtained from implementing
Morris analysis. For the tablet press, air temperature, drying time, and LS ratio were identified as
significant factors that influence tablet hardness, main compression height, and fill depth. In addition,
all five factors were identified as significant for tablet potency. The influence of these factors on tablet
potency was not observed from Morris analysis. This is because, in Morris analysis, the metrics are
not dimensionless. For example, the metrics have a unit of g for tablet potency. Hence, any factor
that shows an effect less than 0.01 g was identified as insignificant for Morris analysis. However,
in variance based analysis, the metrics are dimensionless and the effect of various factors on the
responses are normalized. A potency difference in the order of 1 × 10−6 g is also accurately identified
in the sensitivity indices. Overall, both Morris and Variance-based methods serve in identifying critical
factors. While, the Morris method requires fewer samples and allows ranking the factors by the order
of influence, it does not provide quantitative information on relative effects of the factors. On the other
hand, variance based analysis requires much higher number of samples but can provide detailed and
quantitative information on the relative effects of the factors.
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(a) (b)

(c) (d)

(e)
Figure 18. Total sensitivity index (STi) plots for (a) Granulator (b) Dryer (c) Mill (d) Tablet press
(e) Blender.

4. Conclusions and Future Direction

In this work, a flowsheet model that approximates the ConsiGmaTM-25 line for continuous tablet
manufacturing through the wet granulation route is developed. The flowsheet model is based on
models that are developed from experimental runs on units included in the continuous line using the
same formulation and materials. For a complete virtual representation of the continuous line, models
for intermediate units (powder blend feeder, granule feeder, and granule blender), as well as transfer
lines, are also included in the flowsheet model. The developed model successfully demonstrates its
ability to simulate the effect of changes in the process variables through case studies where step changes
in API flow rate and dryer air temperature are implemented, and their effect on final tablet properties
is understood. The robustness of the developed model is established by systematically running the
flowsheet model at several combinations of process settings and analyzing the corresponding process
responses. The model is also used to identify CPPs that affect intermediate and final product critical
quality attributes (CQAs).
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Throughout this article, several applications and capabilities of the developed flowsheet model
have already been alluded to in the discussion. However, it is also worth noting some gaps in the
developed model, which helps throw light on areas where future research efforts can be focused.
For instance, the developed flowsheet model is computationally expensive. A simulation of about
1600 s takes approximately 4 h. While a simplified model is adapted in this work to implement
steady state sensitivity analysis, it is not feasible to run dynamic sensitivity analysis using this model.
Other areas of improvement include further development of the unit operation models. The blender
model currently used predicts only 10%, 50%, and 90% percentile diameters for the powder blend.
However, a much higher resolution PSD is required in the TSWG model. In addition, the TSWG model
predicts only steady state PSD output based on process setting values. For the dryer model used in
this work, drying behavior is based on input material properties at the start of the drying cycle of the
cell. This could be further improved by incorporating dynamic modeling of drying behavior. For the
mill model, the model parameters used currently are not a function of drying time in the fluid bed
dryer. In addition, some of the submodels for unit operations use empirical relationships which are
formulation specific. Another valuable verification of the model would be to check the mass balance
over the entire system. The approximation of the axial dispersion models modeling the material flow
propagation could thus be achieved. As research efforts continue on improving the unit operation
models, the flowsheet model in its current state has already shown to be a useful tool for enhancing
process understanding and enabling better decision making.

Overall, the developed flowsheet model is a prerequisite for identification of design space
and optimization of the continuous line. Future research efforts should be focused on reducing
computational expense of the model, as well as improving the capability of the unit models to
capture dynamics and their applicability for other formulations suited for continuous solid oral
dosage manufacturing.
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Acronyms

PBM population balance model
GSD granule size distribution
PSD particle size distribution
TSWG twin-screw wet granulator
FBD fluid bed dryer
CPPs critical process parameters
CQAs critical quality attributes
API active pharmaceutical ingredients
CSTR continuously stirred tank reactor
RTD residence time distribution
MWC mean weight control
LIW Loss-in-weight
PLS partial least squares
QbD Quality-by-Design
PSE Process Systems Engineering
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Nomenclature

Unit Symbol Description

General t time
Feeder f f Feed factor

f fmax, f fmin, β Model parameters
ω Screw speed
Ṁout Mass flow rate, out

Blender τ Time constant
M Mass holdup
Mss Steady state mass holdup
Ṁin Mass flow rate, in
Ṁin Mass flow rate, out
τax Axial dispersion time constant
Cin API concentration, in
Cout API concentration, out
Pe Peclet number
nt Number of tanks

Granulator n Number density
x,ε Particle volumes
β Collision frequency
β0 Aggregation efficiency
b Breakage fragment distribution
β0 , R1, R2, top 1, top 2, δ1, δ2 Aggregation kernel parameters
S Breakage selection rate
S0 Breakage rate constant
σ Standard deviation of a Gaussian distribution
μ Mean of a Gaussian distribution
fprim volume fraction of erosion in breakage

Dryer ṁv Mass transfer rate
hD Mass transfer coefficient
ρv,s Partial vapor density over the droplet surface
ρv,∞ Partial vapor density in the ambient air
Ad Droplet surface area
h f g Specific heat of evaporation
cp,w Specific heat capacity liquid
md Droplet mass
Td Uniform droplet temperature
h Heat transfer coefficient
Tg Drying gas temperature
Rd Droplet radius
Ri Wet radius
Rp Particle radius
ε Granule porosity
β empirical coefficient
Dv,cr Vapor diffusion coefficient
Mw Molecular weight liquid
pg Pressure of the drying air
� Ideal gas constant
Tcr,s Temperature of solids at the granule surface
Twc,s Temperature at particle gas-liquid interface
pv,∞ Partial vapor pressure drying air
pv,i Partial vapor pressure at gas-liquid interface
Tp,s Temperature of the particle solids
X Moisture content
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Xe Equilibrium moisture content
Ẋ Change in moisture content over time
t f ill Filling time
tdry Drying time
f Size fraction
X f Average moisture content size fraction
τ Time
nτ Dryer batch model parameter
CAPI API concentration
MFRTSWG(t) TSWG mass flow rate

Mill M Mass holdup
w,u Particle volumes
R f orm Rate of formation
Rdep Rate of depletion
Ṁin Mass flow rate, in
Ṁout Mass flow rate, out
K Breakage kernel
b Breakage distribution function
vimp Impeller speed
vimp,min Minimum impeller speed
din Feed particle size distribution
dscreen Screen size
Δ Critical screen size
p, q, β, ε, α, γ, δ Model parameters
ρbulk Bulk density

Tablet Press tcstr Delay time CSTR
td Delay time plug flow
Vcup Tablet cup volume
Adie Tablet cup die surface
Dcup Tablet punch cup depth
ρtrue True density
ρbulk Bulk density
ρtapped Tapped density
pρ f ill Fill density factor
d f ill Fill depth
m Mean tablet weight
Vsolid Volume of solids in tablet die
MCH Main compression height
W Tablet width
T Tablet thickness
upp Upper punch penetration depth
P Tablet potency
Vtablet Tablet volume
ρrel Relative density
N Hardness
σT Tensile strength
ρc Critical density
σmax Maximum tensile strength
Rspan PSD size span

Intermediate
units

S Signal to axial disperion model

z Axial dispersion domain
L Transfer line length
τdelay Plug flow time delay
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Sensitivity
analysis, Morris

EEi Elementary effect for factor i

Y Model output
Δi Step change in ith input factor
μi Average elementary effect for factor i
μi∗ Average absolute elementary effect for factor i
σ2

i Variance of elementary effects for factor i
Sensitivity
analysis, Variance
based

VX Variance of matrix X

EX Expectede values for matrix X
Si Sensitivity index for factor i
STi Total sensitivity index for factor i

Appendix A

Appendix A.1. Morris Method Sensitivity Analysis

Granulator
Output → d10, μm d50, μm d90, μm Moisture, kg/kg

Input ↓ μ μ∗ σ μ μ∗ σ μ μ∗ σ μ μ∗ σ

Air temperature 0.11 0.21 0.30 0.52 0.87 1.29 0.98 1.77 2.59 0.00 0.00 0.00
Drying time 0.10 0.22 0.37 0.34 0.80 1.26 0.64 1.51 2.39 0.00 0.00 0.00

LS ratio 407.42 407.42 103.79 458.99 458.99 246.00 656.49 656.49 296.79 0.08 0.08 0.02
Screw speed 37.45 37.45 14.53 127.43 127.43 70.74 115.23 121.95 111.01 0.00 0.00 0.00

Flow rate −35.49 38.10 28.06 −145.43 148.57 138.75 −148.87 154.33 136.70 0.00 0.00 0.00

Dryer
Output → d10, μm d50, μm d90, μm Moisture, %

Input ↓ μ μ∗ σ μ μ∗ σ μ μ∗ σ μ μ∗ σ

Air temperature 17.30 17.39 17.79 81.69 82.11 55.76 139.08 139.79 103.01 −2.01 2.01 1.64
Drying time 22.77 22.94 36.96 101.87 102.56 139.46 182.81 184.14 243.99 −2.77 2.77 3.50

LS ratio 273.71 273.71 81.03 410.60 410.60 206.75 307.38 326.94 200.84 1.50 1.50 1.93
Screw speed 18.03 18.03 7.37 121.74 121.74 53.72 86.86 86.86 48.09 0.00 0.00 0.00

Flow rate −22.44 22.44 11.43 −109.86 115.99 99.38 −102.19 114.15 96.78 0.00 0.00 0.00

Output → Bulk Density, Kg/m3 Tapped Density, Kg/m3 Angle of Repose, deg

Input ↓ μ μ∗ σ μ μ∗ σ μ μ∗ σ

Air temperature −6.19 6.24 5.89 −4.75 4.78 4.53 0.79 0.80 0.62
Drying time -8.30 8.33 12.12 −6.21 6.23 8.76 1.07 1.08 1.50

LS ratio 16.70 16.70 11.80 11.25 11.39 8.56 1.17 1.43 1.20
Screw speed −14.25 14.25 5.73 −12.32 12.32 4.64 0.85 0.85 0.40

Flow rate 4.53 6.99 7.71 3.82 5.23 5.57 −0.63 0.80 0.76

Mill
Output → d10, μm d50, μm d90, μm Span

Input ↓ μ μ∗ σ μ μ∗ σ μ μ∗ σ μ μ∗ σ

Air temperature 4.81 4.81 5.06 7.94 7.96 5.06 8.76 8.80 6.68 −0.02 0.02 0.01
Drying time 6.50 6.56 10.44 9.45 9.52 12.07 11.21 11.27 13.85 −0.02 0.02 0.03

LS ratio 146.63 146.63 46.95 252.14 252.14 68.84 83.55 83.55 31.47 −0.96 0.96 0.29
Screw speed 3.38 3.68 3.56 3.16 9.13 10.91 16.16 16.53 10.26 0.01 0.03 0.03

Flow rate −7.63 8.39 8.91 −8.83 13.65 12.13 −16.54 19.73 23.27 0.01 0.05 0.06
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Output → Bulk Density, Kg/m3 Tapped Density, Kg/m3

Input ↓ μ μ∗ σ μ μ∗ σ

Air temperature 4.93 4.93 3.24 4.09 4.09 2.54
Drying time 5.34 5.39 6.93 4.33 4.38 5.59

LS ratio 237.08 237.08 62.79 236.53 236.53 57.64
Screw speed 1.76 5.14 8.27 −16.09 17.69 14.84

Flow rate −13.81 13.81 5.26 −8.02 12.52 14.14

Tablet press
Output → Hardness, N Potency, g Compression Height, mm Fill Depth, mm

Input ↓ μ μ∗ σ μ μ∗ σ μ μ∗ σ μ μ∗ σ

Air temperature 28.85 28.85 38.87 0.00 0.00 0.00 0.37 0.37 1.67 0.85 0.96 4.05
Drying time 84.89 84.89 100.13 0.00 0.00 0.00 2.62 2.62 3.71 4.57 4.63 6.83

LS ratio −21.40 21.40 38.55 0.00 0.00 0.00 −0.37 0.37 1.67 −3.83 3.83 4.10
Screw speed 0.01 0.27 0.41 0.00 0.00 0.00 0.00 0.00 0.00 −0.02 0.14 0.24

Flow rate 0.06 0.49 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.22 0.21

Blender
Output → Time Constant, s Number of Tanks Steady State Holdup, kg

Input ↓ μ μ∗ σ μ μ∗ σ μ μ∗ σ

Air temperature 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Drying time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LS ratio −0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Screw speed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Flow rate −15.53 15.53 3.68 −0.15 0.15 0.07 0.03 0.03 0.01

Appendix A.2. Variance Based Sensitivity Analysis

Granulator
Output → d10 d50 d90 Moisture

Input ↓ Si STi Si STi Si STi Si STi

Air temperature 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Drying time 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LS ratio 0.98 0.99 0.87 0.92 0.90 0.94 1.00 1.01
Screw speed 0.00 0.01 0.03 0.05 0.00 0.02 0.00 0.00

Flow rate 0.00 0.01 0.03 0.09 0.03 0.09 0.00 0.00

Dryer

Output → d10 d50 d90 Moisture

Input ↓ Si STi Si STi Si STi Si STi

Air temperature 0.00 0.01 0.00 0.03 0.04 0.10 0.11 0.27
Drying time 0.01 0.02 0.05 0.08 0.17 0.27 0.64 0.85

LS ratio 0.97 0.98 0.78 0.84 0.58 0.70 0.00 0.08
Screw speed 0.00 0.01 0.04 0.07 0.01 0.05 0.00 0.00

Flow rate 0.00 0.01 0.01 0.06 0.00 0.06 0.00 0.00
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Output → Bulk Density Tapped Density Angle of Repose

Input ↓ Si STi Si STi Si STi

Air temperature 0.01 0.06 0.01 0.06 0.04 0.11
Drying time 0.12 0.20 0.11 0.18 0.21 0.32

LS ratio 0.24 0.38 0.19 0.30 0.38 0.53
Screw speed 0.40 0.41 0.49 0.50 0.11 0.15

Flow rate 0.00 0.08 0.00 0.07 0.00 0.11

Mill
Output → d10 d50 d90 Span

Input ↓ Si STi Si STi Si STi Si STi

Air temperature 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Drying time 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00

LS ratio 0.99 1.00 0.99 1.01 0.91 0.96 0.99 1.01
Screw speed 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00

Flow rate 0.00 0.01 0.00 0.00 0.00 0.03 0.00 0.00

Output → Bulk Density Tapped Density

Input ↓ Si STi Si STi

Air temperature 0.00 0.00 0.00 0.00
Drying time 0.00 0.00 0.00 0.00

LS ratio 1.00 1.01 0.99 1.00
Screw speed 0.00 0.00 0.00 0.01

Flow rate 0.00 0.00 0.00 0.00

Tablet press

Output → Hardness Potency Compression Height Fill Depth

Input ↓ Si STi Si STi Si STi Si STi

Air temperature 0.14 0.33 0.04 0.45 0.08 0.39 0.08 0.32
Drying time 0.58 0.88 0.52 0.85 0.51 0.96 0.40 0.72

LS ratio 0.03 0.14 0.01 0.28 0.02 0.21 0.26 0.40
Screw speed 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00

Flow rate 0.00 0.00 0.02 0.13 0.00 0.00 0.00 0.00

Blender
Output → Time Constant Number of Tanks Steady State Holdup

Input ↓ Si STi Si STi Si STi

Air temperature 0.00 0.00 0.00 0.00 0.00 0.00
Drying time 0.00 0.00 0.00 0.00 0.00 0.00

LS ratio 0.00 0.00 0.00 0.00 0.00 0.00
Screw speed 0.00 0.00 0.00 0.00 0.00 0.00

Flow rate 1.00 1.00 1.00 1.01 1.00 1.00
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Abstract: To increase manufacturing flexibility and system understanding in pharmaceutical
development, the FDA launched the quality by design (QbD) initiative. Within QbD, the design space
is the multidimensional region (of the input variables and process parameters) where product quality
is assured. Given the high cost of extensive experimentation, there is a need for computational
methods to estimate the probabilistic design space that considers interactions between critical
process parameters and critical quality attributes, as well as model uncertainty. In this paper
we propose two algorithms that extend the flexibility test and flexibility index formulations to
replace simulation-based analysis and identify the probabilistic design space more efficiently.
The effectiveness and computational efficiency of these approaches is shown on a small example and
an industrial case study.

Keywords: pharmaceutical processes; flexibility analysis; probabilistic design space; global optimization

1. Introduction

To increase manufacturing flexibility, process robustness, system understanding, and to prevent
the shortage of critical medicines due to unreliable quality in pharmaceutical development and
manufacturing, the FDA launched the quality by design (QbD) initiative [1]. Later, the concept of
the design space was characterized as “the multidimensional combination and interaction of input
variables (e.g., material attributes) and process parameters that have been demonstrated to provide
assurance of quality” [2]. On one hand, the design space offers operational flexibility for industries
to continuously improve performance as long as the combination of input variables and process
parameters fall within the approved design space [3]; on the other hand, the design space provides
regulatory agencies with a convenient tool to monitor the compliance of a pharmaceutical production
process [4].

The design space is identified by the limits of acceptability of critical quality attributes (CQAs).
In a conventional approach, four steps are carried out to find such a design space [4,5]. The first step is
to perform extensive experiments to determine the relationships between the process parameters and
the CQAs.

The second step is to assess the impact of the process parameters on the CQAs (through design
of experiments analysis) and select the process parameters that have a medium/high impact on the
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CQAs. The third step involves the employment of response surface modeling and optimization to
establish a design space graphically. The final step is to run confirmatory experiments to verify the
design space that will be submitted to the regulatory agency for assessment and approval. A few recent
industrial applications of such a traditional method have been reported by Kumar et al. (2014) [6] and
Chatzizaharia and Hatziavramidis (2015) [7].

However, establishing the design space with this approach has significant disadvantages.
Pharmaceutical processes are expensive and associated raw materials may be costly. Furthermore,
extensive experimentation is time consuming. Therefore, there are limits on the number of experiments
that can be performed in practice. Recently, data-driven approaches like Bayesian methods [8] and
multivariate statistical techniques such as PCA and PLS [3,5,9] have been used to better manage the
extent of these costs, however, these techniques require significant, high quality data [10]. Alternatively,
we can use mechanistic models that intrinsically contain relationships between process parameters,
uncertain variables, and critical quality attributes. This model-based approach allows for more
informative and targeted experiments to be performed during design space formulation.

In a model-based approach we consider process parameters θp which include both design
decisions and fixed process decisions that do not change during operation (e.g., reactor dimensions,
feed conditions). Assuming deterministic system behavior, the deterministic design space can be
easily found by performing simulations over the space of these process parameters and checking the
critical quality attributes at each of these points. However, uncertainty in model parameters plays an
important role and cannot be ignored. Uncertain model parameters θm (e.g., kinetic rate constants,
heat transfer coefficients) are typically estimated by maximum-likelihood or Bayesian techniques
based on experimental data. In addition to point estimates of the parameters, such approaches
provide an estimate of the distribution of those uncertain model parameters (e.g., covariance matrix).
The uncertainty arising from this estimation propagates to uncertainty in the acceptability of the
CQAs [4]. Accounting for this uncertainty, the probabilistic design space captures the region in
the process parameter space where product quality is assured within a given probability over the
uncertain parameters.

One approach to determine the probabilistic design space is through Monte-Carlo simulation.
The space of process parameters is first discretized (e.g., a fine uniform grid), and for each point in
the process parameter space an ensemble of simulations is performed using sampled values for the
uncertain model parameters. For every sampled simulation, the CQAs can be checked, recording
success or failure and, over the entire ensemble, the probability that the CQAs are acceptable can
be computed for each particular point in the process parameter space. This approach and similar
sample-based approaches have been shown to be effective [11–14], however, they are computationally
expensive since simulations are performed for each sample in the Monte-Carlo simulations for
every point in the discretized process parameters. There is a need for approaches with improved
computational efficiency to address larger uncertainty and process parameter spaces.

The concept of the design space in the pharmaceutical industries is very similar to flexibility
analysis [15] from the chemical process industry. They share a similar goal of quantifying the
operational flexibility for manufacturers. Halemane and Grossmann (1983) [16], Swaney and Grossmann
(1985) [17,18], and Grossmann and Floudas (1987) [19] introduced multi-level optimization formulations
to assess flexibility of chemical processes. The flexibility test formulation maximizes the violation of
the inequality constraints over a predetermined region in the uncertain parameters. This provides
a check of whether or not operation and product quality constraints are satisfied over the entirety
of that region [16,19,20]. The flexibility index formulation extends the idea and solves for this
region directly. It seeks to find the largest hyperrectangle in the space of the uncertain parameters
where the set of inequality constraints is guaranteed to be satisfied [17,18]. Solving these multi-level
optimization problems can be very challenging, and early work focused on algorithms for improving
efficiency by assuming that the worst-case behavior occurred at vertices of the parameter space [16–18].
An active-set strategy was later proposed that could identify solutions at points that were not necessarily
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vertices [19,21]. This approach replaced the inner problem (over the control variables) with explicitly
first-order optimality conditions and was globally valid only under certain problem assumptions.
This limitation was later overcome with an approach that guaranteed global optimality in the general
non-convex case (through relaxation) [15].

For a linear system with model parameter uncertainty, a stochastic flexibility index formulation
that exploits the probabilistic structure of the problem is presented by Pistikopoulos and Mazzuchi
(1990) [22]. Extensions and variations of the flexibility test and flexibility index formulations have
been proposed that optimize over both the design and the operations. One example is a two-level
formulation that optimizes a certain process performance metric (such as the production rate or
the profit) while maximizing the flexibility region for a given design. Many researchers have made
significant contributions to the solution to such a problem, including Mohideen et al. (1996) [23],
Bahri et al. (1997) [24], Bernardo and Saraiva (1998) [25], and Samsatli et al. (2001) [26].

In this paper, we propose flexibility test and flexibility index formulations within two algorithms
to compute the probabilistic design space with improved computational efficiency over traditional
Monte-Carlo approaches based on exhaustive simulation. In the first approach, process parameters θp

are still discretized and, for each fixed point on the process parameter grid, the Monte-Carlo simulations
are replaced with a flexibility index formulation. The flexibility index formulation computes a region
in the uncertainty space over which the inequalities (e.g., acceptability of the CQAs) are guaranteed to
be satisfied. To extend this to the probabilistic design space one could employ sample-based approaches
or chance constraints (which would increase complexity and computational effort). Instead, we overlay
simple statistical testing with the flexibility analysis and solve for the largest region in θm that satisfies
the CQAs and then determine the probability that a realization of θm will lie in this region. We further
propose a second approach that pushes these ideas further by solving for the probabilistic design space
in θp directly. We extend the flexibility test formulation to include a statistical confidence constraint on
the uncertain parameters and a hyperrectangle constraint on the process parameters. This approach
removes the need to discretize the process parameters and reduces computational time significantly,
however, it produces more conservative results since the relative dimensions (but not the size) of the
design space is fixed. The results of both of these approaches are validated against the Monte-Carlo
sampling approach [4].

The rest of this article is organized as follows. In Section 2, we describe the Monte-Carlo approach
from [4], provide background on the flexibility test and flexibility index problems, and then present
the proposed approaches for computing the probabilistic design space with extensions to the flexibility
analysis concepts. In Section 3, we demonstrate the approach on a small case study as well as the
industrial Michael addition reaction case provided by the Eli Lilly and Company [27]. These case
studies are used to compare the effectiveness of the new approaches with the Monte-Carlo simulation
based approach. Discussions and conclusions are presented in Section 4.

2. Problem Formulation and Solution Approach

In this section, we will first describe the probabilistic design space problem and the Monte-Carlo
solution approach (from [4]). We will then briefly introduce the concept of the flexibility test and
flexibility index formulations and introduce the two proposed approaches to compute the probabilistic
design space more efficiently.

2.1. Probabilistic Design Space

Recall that θp are the process parameters; these are the process design variables and processing
decisions that are fixed during operation (e.g., fixed temperatures, pressures, or feed conditions), and θm

are the uncertain parameters in the mechanistic model (e.g., reaction rate constants, heat transfer
coefficients). It is assumed that the uncertain model parameters have been estimated (e.g., from
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experimental data), and that nominal values and the covariance matrix are available. Using this
notation, the model for the process is given by,

h(θp, x, θm) = 0

where x are the internal state variables computed from the model. The critical quality attributes (CQAs)
can be represented by the set of inequalities,

g(θp, x, θm) ≤ 0.

With these definitions, the deterministic design space is the region in θp over which the CQAs
are satisfied while using nominal values for the uncertain parameters. The probabilistic design space
considers uncertainty in the model parameters. It is characterized as the region in θp over which the
CQAs are satisfied with a given probability, where this probability is computed over the distribution
of the uncertain parameters. Note that the characterization of the probabilistic design space in García
Muñoz et al. (2015) [4] does not include adjustable control action to increase the size of the probabilistic
design space. For some pharmaceutical processes there is minimal online measurement and control of
the CQAs, and the process is instead carried to completion, followed by testing of the final product.
Furthermore, while traditional flexibility test and index formulations solve directly for “optimal”
control values, the underlying control laws may not be easy to implement in practice. Therefore,
consistent with the definition in García Muñoz et al. (2015) [4], we assume that any online control is
included directly in the model equations and not available for the optimization.

2.2. Probabilistic Design Space using Monte-Carlo

The Monte-Carlo approach for determining the probabilistic design space is shown below in
Algorithm 1 [4]. Let Θp be the set of discretized points for the process parameters θp (usually over
a uniform grid). For each of the points in this grid, the uncertain parameters are sampled, and the
ensemble of simulations is performed. The CQAs are checked for each of these simulations, and the
probability of acceptable operation is computed based on the fraction of samples for which the CQAs
are satisfied.

Algorithm 1 Monte-Carlo Probabilistic Design Space Determination

1: Discretize the process parameter space (Θp = {θi
p ∀ i})

2: for each θi
p do

3: Monte-Carlo Sampling

4: Generate samples for uncertain parameters (θ j
m ∼ N (θ̄m, C))

5: for each θ
j
m do

6: Perform the simulation: solve h(θi
p, x, θ

j
m) = 0 for xij

7: Check the CQAs (i.e., are all g(θi
p, xij, θ

j
m) ≤ 0)

8: Compute probability that CQAs are satisfied for θi
p

9: Generate the probability map over all points θi
p ∈ Θp

This approach is effective at determining the probabilistic design space. The grid can be made
arbitrarily fine through discretization of the process parameters, and the sampling step has no
restriction on the distribution of the uncertain parameters. However, the number of simulations
that need to be performed is equal to the number of process parameter discretizations (i.e., grid points
in θp) times the number of samples used in the Monte-Carlo step. Because of this, the computational
cost of the approach can be prohibitive.

The major computational overhead of the Monte-Carlo approach described above is related to
the large number of simulations performed due to the discretization of the process parameter space

114



Processes 2019, 7, 96

in step 1 and the Monte-Carlo sampling in step 3. In this paper, we propose two approaches that
make use of optimization-based flexibility concepts, and in the next section, we provide background
information on the flexibility test and flexibility index formulations, followed by a presentation of our
approaches for determining the probabilistic design space.

2.3. Flexibility Test and Flexibility Index Background

The flexibility test formulation is an approach to verify that a set of inequality constraints
(e.g., feasibility with respect to the CQAs) are satisfied over the entirety of a prespecified range
of the uncertain parameters. The formulations are typically written as multi-level programming
problems. The flexibility test problem is shown below [16,20].

χ (d) = max
ϑ∈T

min
z

max
k∈K

gk (d, x, z, ϑ)

s.t. hl (d, x, z, ϑ) = 0 l ∈ L

zL ≤ z ≤ zU

ϑL ≤ ϑ ≤ ϑU

The formulation assumes fixed values for the design variables d. These include traditional design
decisions (e.g., reactor dimensions) and any processing decisions that are fixed during operation
(e.g., feed concentrations). The equality constraints hl represent the system model, and the inequality
constraints gk represent the feasibility constraints, capturing product quality requirements or other
operational constraints. The variables x represent state variables for the system, and z are control
variables. The uncertain model parameters are given by ϑ (e.g., reaction rate constants).

Given a particular fixed design d and specified bounds on the uncertain parameters ϑ, this
formulation finds the point in ϑ that maximizes the violation of the inequality constraints. Note that
the optimal value may be negative (i.e., there is no violation). Therefore, if the value of χ (d) ≤ 0,
then the design is feasible with respect to the inequalities over the entire uncertainty range. In the
traditional treatment, the inner formulation is maximizing over ϑ (i.e., finding the worst-case value for
the feasibility constraints gk over the uncertain parameters) while minimizing over the control variables
z since they can be adjusted during operation to satisfy (as well as possible) the feasibility constraints.

The flexibility index problem extends this idea and, instead of testing over a given region,
directly finds the largest region in the parameter space over which the set of inequality constraints are
guaranteed to be satisfied. The flexibility index problem is shown below [17–19,21]:

F (d) =max δ

s.t. χ (d) = max
ϑ∈T

min
z

max
k∈K

gk (d, x, z, ϑ) ≤ 0

s.t. hl (d, x, z, ϑ) = 0 l ∈ L

zL ≤ z ≤ zU

ϑN − δΔϑ− ≤ ϑ ≤ ϑN + δΔϑ+

δ ≥ 0

Given a feasible nominal parameter value ϑN , this formulation seeks to find the largest value
of δ where the feasibility constraints are still satisfied. In the formulation above, the flexibility index
region is characterized as a hyperrectangle in ϑ with scaled deviations Δϑ+, Δϑ−, although other
representations of this constraint can be used.

Both formulations shown above are particularly challenging because they contain a multi-level
optimization problem, which are difficult to solve directly. Floudas and Grossmann (1987) [21] and
Grossmann and Floudas (1987) [19] proposed an active-set strategy based on the idea that ϕ (d, ϑc) =

min
z

max
k∈K

gk (d, x, z, ϑ) = 0 holds at the solution to the flexibility index problem, and F is given by the
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smallest δ to the boundaries of the feasible region (ϕ (d, ϑ) = 0). With this approach, the flexibility
index formulation is transformed into a mixed-integer minimization problem that selects the set of
active constraints gk. Their reformulation handles the inner minimization over z by incorporating the
first-order optimality conditions (KKT conditions) of this inner problem directly as constraints in the
formulation. This reformulation for the flexibility index problem is given below,

F (d) =min δ

s.t. hl (d, x, z, θ) = 0 l ∈ L

sk + gk (d, x, z, θ) = 0 k ∈ K

∑
k

λk
∂gk
∂x

+ ∑
l

ηl
∂hl
∂x

= 0

∑
k

λk
∂gk
∂z

+ ∑
l

ηl
∂hl
∂z

= 0

∑
k

λk = 1

∑
k

yk = nz + 1

λk − yk ≤ 0 k ∈ K

sk − U (1 − yk) ≤ 0 k ∈ K

θN − δΔθ− ≤ θ ≤ θN + δΔθ+

λk, sk ≥ 0, yk ∈ {0, 1} k ∈ K

δ ≥ 0

where nz is the number of control variables, sk are non-negative slack variables, λk and ηl are Lagrange
multipliers, and yk are binary variables indicating which constraints gk are active.

In this paper, we are applying the flexibility test and the flexibility index problems to compute the
probabilistic design space as described in García Muñoz et al. (2015) [4]. As discussed earlier, their
treatment of the probabilistic design space does not consider optimization of the control action to
increase the size of the design space. Therefore, it is assumed that there are no controls, or that the
control behavior is included explicitly in the model equations. As shown in Floudas (1985) [20] and
Grossmann et al. (2014) [28], applying the active-set approach to the flexibility test problem for the
case where nz = 0 gives a formulation shown with Equations (1)–(7) below.

χ (d) = max
u,x,ϑ,s,y

u (1)

s.t. hl (d, x, ϑ) = 0 l ∈ L (2)

sk + gk (d, x, ϑ)− u = 0 k ∈ K (3)

sk − U (1 − yk) ≤ 0 k ∈ K (4)

∑
k∈K

yk = 1 (5)

ϑL ≤ ϑ ≤ ϑU (6)

yk ∈ 0, 1, sk ≥ 0 k ∈ K (7)

This results in a mixed-integer nonlinear programming (MINLP) problem. The new variable u
is introduced to represent the largest value of the constraints gk. Equation (5) ensures that only one
of the constraints will be selected. The big-M constraint, Equation (4), along with the bound on sk
ensure that sk = 0 for the selected constraint, and that u is equal to the corresponding gk. Therefore,
at the solution, the objective function will return the largest possible value across all the constraints
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gk. Again, if χ(d) ≤ 0 at the solution, then the region defined by ϑL and ϑU is acceptable to the
inequality constraints.

This formulation is significantly easier to address since it does not include the inner minimization
over z (i.e., does not include the KKT conditions as constraints). Furthermore, the number of
inequalities gk is generally small and, more importantly, only one gk needs to be selected. Therefore,
this problem is solved efficiently by explicit enumeration of the binary variables (yk) [28]. Even with
these simplifications, however, the solution remains challenging since these problems must be solved
to global optimality.

Applying the active-set strategy to the flexibility index problem in the special case where nz = 0
produces a similar transformation as shown below in Equations (8)–(15).

F (d) = min
δ,x,θ,s,y

δ (8)

s.t. hl (d, x, θ) = 0 l ∈ L (9)

sk + gk (d, x, θ) = 0 k ∈ K (10)

sk − U (1 − yk) ≤ 0 k ∈ K (11)

∑
k

yk = 1 (12)

θN − δΔθ− ≤ θ ≤ θN + δΔθ+ (13)

sk ≥ 0, yk ∈ {0, 1} k ∈ K (14)

δ ≥ 0 (15)

For a thorough description of the flexibility index formulation and the active-set approach,
see [15,19,20]. In the subsections that follow, we will show how Equations (1)–(7) and Equations (8)–(15)
can be adapted within two algorithmic frameworks to compute the probabilistic design space.

2.4. Flexibility Index Formulation in θm

In this section, we present our first approach for determining the probabilistic design space using
a flexibility index formulation. The flexibility index problem is formulated over the uncertain model
parameters θm, replacing the Monte-Carlo simulations in Algorithm 1. With this approach, a flexibility
index problem is solved for each discretized point in the process parameter space. Although this still
requires solving an optimization problem for each of these discretized points, significant computational
performance improvement is possible.

This flexibility index formulation is a direct application of Equations (1)–(7) where the process
parameters θp are treated as fixed design variables (i.e., d ≡ θp) and the uncertainty is captured by
uncertain model parameters θm (i.e., ϑ ≡ θm) as shown below Equations (16)–(23).

F
(

θi
p

)
= min

δm ,θm ,x,s,y
δm (16)

s.t. hl
(
θp, x, θm

)
= 0 l ∈ L (17)

sk + gk
(
θp, x, θm

)
= 0 k ∈ K (18)

sk − U (1 − yk) ≤ 0 k ∈ K (19)

∑
k∈K

yk = 1 (20)

θ̄m − δmΔθ−m ≤ θm ≤ θ̄m + δmΔθ+m (21)

δm ≥ 0 (22)

yk ∈ 0, 1, sk ≥ 0 k ∈ K. (23)
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The formulation above is solved for each of the discretized process parameter points θi
p ∈ Θp

(i.e., θi
p is fixed), and the formulation is solved directly for δm to determine the size of the region in θm

for each of these points. Since only one gk needs to be selected, as discussed earlier, this problem is
solved efficiently by explicit enumeration of the binary variables (yk) [28]. Therefore, the problem is
solved as a sequence of NLP problems corresponding to each selection of gk.

Equation (21) characterizes the flexibility region as a hyperrectangle constraint over the uncertain
parameters θm. Such a hyperrectangle is centered at the nominal point with sides proportional to the
expected deviations, Δθ+m and Δθ−m . However, such a formulation fails to account for the correlation
between those uncertain model parameters. If we consider the case that θm follows a multivariate
normal distribution with the mean θ̄m and the covariance matrix Σθm , we obtain Equation (24) below.

(
θm − θ̄m

)TΣ−1
θm

(
θm − θ̄m

) ≤ δm (24)

This ellipsoidal constraint can be used to replace the hyperrectangle constraints with a joint
confidence region for θm. Although this constraint introduces nonlinearity, it is a convex constraint in
θm. Given that the covariance matrix Σθm is positive semidefinite, Equation (24) may be transformed
using an LDL transformation [29]. In our experience, this transformation improves the numerical
behavior of these models. Generalization of Equation (24) with an LDL transformation is shown below:

Σ−1
θm

= LDLT (25)

qT =
(
θm − θ̄m

)T LD1/2 (26)

qTq ≤ δm (27)

Flexibility index formulations should be written with Equation (21) or (24) (but not both).
This formulation provides a flexibility region over which the constraints are always guaranteed

to be satisfied. It remains to provide a link back to the probabilistic design space. One approach would
be to modify the formulation and consider the use of chance constraints for gk. However, this would
significantly increase complexity and computational effort required to solve the problem. Therefore,
we instead take the flexibility region obtained by Equations (16)–(23), and overlay a statistical test
based on our knowledge of the mean and covariance of the uncertain parameters, and directly compute
the probability that any realization of θm will lie within the region defined by δm (hyperrectangle or
ellipsoid). For the elliptical flexibility region, the cumulative density function (CDF) of the chi-square
distribution can be used to calculate the probability directly. However, if we use the hyperrectangle
constraint, we still need to integrate the probability density function over θm with upper and lower
boundaries. Note that this is a simple determination of the probability that a realization from a
particular multi-variate normal will lie in the given hyperrectangle, and can be efficiently approximated
through sampling.

The overall approach is described in Algorithm 2 below.

Algorithm 2 Probabilistic Design Space with Flex. Index in θm

1: Discretize the process parameter space (Θp = {θi
p ∀ i})

2: For hyperrectangle region, use Equation (21). Choose Δθ−m and Δθ+m
3: For ellipsoidal region, use Equation (24). The relative scale is set by Σθm

4: for each θi
p do

5: Solve Flexibility Index Problem, Equations (16)–(23)
6: Solve for δm using θp = θi

p and Equation (21) or Equation (24)
7: Compute prob. that θm will lie in the region identified by δm

8: Generate the probability map over all points θi
p ∈ Θp
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This algorithm is a direct application of the flexibility index formulation to replace the Monte-Carlo
simulations. In step 6, Equations (16)–(23) must be solved globally to guarantee a valid flexibility
region. As discussed above, enumeration is used and the solution is found by solving a series of
nonlinear programming (NLP) problems, each with a single yk = 1. It should be noted that if a local
solver is used, the optimization may solve to a local minimum, resulting in a δm that is larger than the
global minimum. Unfortunately, this means that the region returned could be larger than the true
flexibility region unless a global minimum is found. In the case studies below, we will show results
with both local and global solvers for this step.

Once the optimal value for δm is obtained, the probability in step 7 is computed directly or through
sampling depending on which region is used (i.e., Equation (21) or (24)). Note also that we expect
this approach to produce a more conservative representation of the probabilistic design space since it
restricts the relative shape of the region in θm when solving the flexibility index problem. While there
are no points inside the hyperrectangle or ellipsoid that are infeasible, the actual feasible region need
not follow this specific shape, and there could be points outside the region that remain feasible with
respect to the inequalities. The Monte-Carlo approach would be able to include these points. This will
be discussed further in the case studies.

2.5. Flexibility Test Formulation in θp

Our second proposed approach is based on iterative solution of an extended flexibility test
formulation. The major benefit of this approach is that the flexibility test formulation is written over
both θp and θm, and it solves for the probabilistic design space directly, thereby removing the need to
discretize the process parameters altogether. Consider the extended flexibility test formulation shown
below with Equations (28)–(36).

χ
(

δr
p

)
= max

u,θp ,x,θm ,s,y
u (28)

s.t. hl
(
θp, x, θm

)
= 0 l ∈ L (29)

sk + gk
(
θp, x, θm

)− u = 0 k ∈ K (30)

sk − U (1 − yk) ≤ 0 k ∈ K (31)

∑
k∈K

yk = 1 (32)

θ̄m − δmΔθ−m ≤ θm ≤ θ̄m + δmΔθ+m (33)(
θm − θ̄m

)TΣ−1
θm

(
θm − θN

m

)
≤ δm (34)

θ̄p − δr
pΔθ−p ≤ θp ≤ θ̄p + δr

pΔθ+p (35)

yk ∈ 0, 1, sk ≥ 0 k ∈ K (36)

As with the previous formulation, this problem can be written with Equation (33) or (34) for
θm (but not both). When solving the formulation, both δp = δr

p and δm are fixed. While δp is to be
determined, δm is pre-calculated to ensure that θm remains in the a region with a cumulative probability
that agrees with the desired confidence level pc (pc = 0.85 in this paper). The use of the flexibility test
formulation simplifies the optimization since there is no multi-level problem to solve. However, we still
want to know the largest value of δp over which the constraints g are satisfied.Our goal in this approach
is to select a value for δp that provides the largest region possible. That is the maximum constraint
violation is close to zero while still being negative. Here, we choose a simple bisection approach,
although other iteration strategies could be considered. With this approach, the discretization of the
process parameter space is replaced with a sequence of flexibility test problems to solve for δ∗p.

This approach is described in Algorithm 3 below.

119



Processes 2019, 7, 96

Algorithm 3 Probabilistic Design Space with Flex. Test in θp

1: If choosing hyperrectangle Equation (33) on θm
2: set Δθ−m and Δθ+m for desired relative dimensions
3: If choosing ellipsoidal Equation (34) the relative scale is set by Σθm
4: Compute δm based on desired confidence and selection of shape with Equation (33) or (34)
5: Select tolerance εtol
6: Choose θ̄p, Δθ−p , and Δθ+p
7: Let iteration counter r = 1
8: Initialize δL

p and δU
p for the bisection

9: Let δr
p =

(
δL

p + δU
p

)
/2

10: Solve Extended Flexibility Test Problem, Equations (28)–(36) for χ
(

δi
p

)
11: if χ

(
δr

p

)
> 0 then

12: Let δU
p = δr

p
13: else
14: if

∣∣∣χ (
δr

p

)∣∣∣ ≤ εtol then

15: done: solution is δ∗p = δr
p

16: else
17: Let δL

p = δr
p

18: Let r = r + 1 and return to 9

In step 5, the desired tolerance must be selected. The algorithm is written to only converge when
the χ(δi

p) < 0, so this tolerance is a measure of the distance “inside” the feasibility constraints. For our
case studies, this tolerance was set to 1 × 10−5. In step 6 one must select the nominal point and the
relative dimensions of the hyperrectangle for the probabilistic design space in θp. This will have a major
impact on the size and shape of the final design space. If the physics of the problem are reasonably
well understood, then it is often possible to select a nominal point well within the known acceptable
region and scale the relative dimensions effectively. In pharmaceutical manufacturing, the relative
dimensions are based on routine process parameter variability in equipment [30]. Otherwise, some
exploration of the space will need to be performed. In step 8, δL

p and δU
p must be selected so that

χ(δL
p ) < 0 and χ(δU

p ) > 0 (i.e., the solution is bracketed).
While this approach can be significantly more computationally efficient since the probabilistic

design space is computed directly, there are a couple of drawbacks. As discussed in the previous
approach, Algorithm 2, we expect the probabilistic design space to be more conservative since θm

is constrained by a hyperrectangle or ellipsoid. We expect it to be even more conservative since we
are also restricting the shape of the probabilistic design space in θp to be that of a hyperrectangle.
The convenience of a hyperrectangle is useful in providing simple bounds on the process parameters
that can be used in the manufacturing batch record to indicate the region around a nominal point that
is safely in the design space. When a process parameter falls outside this hyperrectangle, then the full
probabilistic design space can be used to determine if the CQAs are still met. Furthermore, Algorithm 2
does not provide a full probability map, but rather a region that is acceptable over a single given value
of probability or confidence. In the case studies that follow, Algorithms 2 and 3 will be compared with
results from and computational effort required by the Monte-Carlo approach in Algorithm 1.

3. Case Studies

In this section, we compare the results and computational performance of the proposed algorithms
for determining the probabilistic design space on two examples. All problems were modeled using
Pyomo [31,32], a Python-based optimization modeling environment, and solved using either IPOPT

(version 3.11.7) [33] as a local solver or “BARON” (version 16.12.7) [34–36] as a global solver. All timing
results were obtained on a 24 core (Intex Xeon E5-2697—2.7 GHz) server with 256 GB of RAM running
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Red Hat Enterprise release 6.10. The case studies include one small example for illustrative purposes
and an industrial example based on the Michael Addition reaction. For each of these case studies,
we compute the probabilistic design space using all three approaches: Algorithm 1, Algorithm 2 and
Algorithm 3.

The approach described in Algorithm 1 is used to provide a basis for comparing the computed
probabilistic design space and the computational performance. The process parameters are first
discretized as described later for each of the individual case studies. Then, for each discretized point,
1000 samples over θm are taken according to a known variance-covariance matrix. As described in
the algorithm, for each of these samples, the model is simulated, and the fraction of samples that
have acceptable values for the CQAs are recorded for each discretized point. The results are then
interpolated to create a map of the probabilistic design space.

The approach described by Algorithm 2 replaces the Monte-Carlo sampling but still requires
discretization of the process parameters. For all case studies, the process parameters are discretized
using the same points as in Algorithm 1 to enable effective comparison. For each of these discretized
points, the flexibility index problem is solved as described in the algorithm. Results are shown using
both the hyperrectangle connstraint, Equation (21), and the ellipsoidal constraint, Equation (24). For the
case of the hyperrectangle, the Δθ−m and Δθ+m values are chosen to be the standard deviations of the
corresponding uncertain parameters θm. For each discretized point, once the optimal δm is found
and the size of the flexibility region in θm is identified, we compute the corresponding probability
that a realization of θm will lie in this region. With these numbers for each discretized point, the
probability map in θp can be generated and compared with that of the Monte-Carlo approach. Results
are shown using both the local solver IPOPT and the global solver BARON. However, recall that the
use of a local solver on these formulations, although faster, provides no guarantees, and it is possible
that the probabilistic design space could be overestimated.

The approach described in Algorithm 3 is used to solve for the probabilistic design space in θp

directly. Again, results are included for this approach using both the hyperrectangle Equation (33) and
the ellipsoidal Equation (34) for θm. For these studies, the value of δm value was fixed to correspond to a
confidence level of 0.85. For Equation (33), this value was determined iteratively, and for Equation (34),
the inverse chi-square distribution was used. The values for Δθ−p and Δθ+p are chosen to approximately
scale δp between 0 and 1, and a convergence tolerance of εtol = 1 × 10−5 was used. As with the
previous approach, results are shown using both the local solver IPOPT and the global solver BARON.

3.1. Case Study 1: Simple Reaction

We first consider a simple reaction case provided by Chen et al. (2016) [27]. The reaction kinetics
may be described as such:

A + B
k1−→ C (37)

C
k2−→ D + E (38)

where A is 3-chlorophenyl-hydrazonopropane dinitrile, B is 2-mercaptoethanol, and the
intermediate product C is formed during reaction. The reaction product is D, 3-chlorophenyl-
hydrazonocyanoacetamide, with byproduct E, ethylene sulfide. The reaction rates ri may be calculated
by the following equations:

r1 = k1cAcB (39)

r2 = k2cc (40)
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The uncertain parameters θm for this study are the two rates constants (i.e., θm = {k1, k2}).
The estimated value for the rate constants is k̂ = [0.31051, 0.026650] and the related variance-covariance
matrix given by:

Covki
=

[
1.4409 × 10−4 3.27 × 10−6

3.27 × 10−6 8.45 × 10−6

]
(41)

In this case, all the reaction rates ri and component molar concentrations ci are state variables.
The mass balance of a steady state CSTR is given by:

0 = F0
i − Fi + V =

(
c0

i − ci

)
+ τ ∑

j
νijrj (42)

where F0
i and Fi are the inlet and outlet molar flow rates, νij are the stoichiometric coefficients, rj are

reaction rates, and τ is the residence time. Using the reactions in Equations (37) and (38), we may write
the following equations.

c0
A − cA + τ (−r1) = 0 (43)

c0
B − cB + τ (−r1) = 0 (44)

c0
C − cC + τ (r1 − r2) = 0 (45)

c0
D − cD + τ (r2) = 0 (46)

c0
E − cE + τ (r2) = 0 (47)

In this study, the initial concentrations
{

c0
A, c0

B, c0
C, c0

D, c0
E
}

are set to be
{

0.53, 0.53RB|A, 0, 0, 0
}

mol/L. The probabilistic design space is computed over RB|A (the ratio of the concentration of B to A in
the feed) and the residence time τ. That is θp = {RB|A, τ}. The process parameter space is discretized
with RB|A ranging from 4 to 6, and the residence time τ ranging from 350 to 550 s, with 11 and 21
points respectively.

The feasibility of process operation is determined by the CQAs represented with the following
inequality constraints:

cD

c0
A − cA

≥ 0.9 ⇒ 0.9c0
A − 0.9cA − cD ≤ 0 (48)

cD
cA + cB + cC

≥ 0.2 ⇒ cA + cB + cC − 5.0cD ≤ 0 (49)

The first equation states that the yield of product D must be greater than 90%. The second
equation states that the ratio of the concentration of D to the concentration of unreacted species must
be greater than 0.2.

For Equations (28)–(36), the model equations h are represented with Equations (39)–(40)
and (43)–(47), and the CQAs are represented with Equations (48) and (49).

All timing results for Case Study 1 are shown in Table 1. Generating the probabilistic design space
takes over 45 min using the Monte-Carlo approach and requires significantly more computational
effort because of the large number of required simulations. The approaches in Algorithms 2 and 3
are significantly faster taking a little over 35 s and approximately 3 s respectively (using the global
solver BARON). The approach using Algorithm 3 is significantly faster, however, recall that it restricts
the shape of the probabilistic design space in θp to a hyperrectangle as will be seen in the figures
later. While results with the local solver IPOPT are faster again (by about a factor of 2), recall that
the local solver cannot provide guarantees that the size of the probabilistic design space may be
overestimated. For this simple test case, we do not see significant differences in computational timing
when formulating Equations (16)–(23) and Equations (28)–(36) with either the hyperrectangle or the
ellipsoid constraint.
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Table 1. Timing results for Case Study 1 (in seconds).

Approach IPOPT (Local) BARON (Global)

Algorithm 1 2745.3 –
Algorithm 2 with Equation (21), 14.2 35.4
Algorithm 2 with Equation (24), 13.0 37.8
Algorithm 3 with Equation (33), 0.767 1.26
Algorithm 3 with Equation (34), 0.865 3.63

Figure 1 shows the probabilistic design space generated by Algorithm 1.

Figure 1. Probabilistic design space for Case Study 1 using Algorithm 1. (orange: p ≥ 0.85; green:
0.7 ≤ p < 0.85; red: 0.5 ≤ p < 0.7).

The results for the optimization-based flexibility methods are shown in Figure 2, and it includes
results for both Algorithm 2 and Algorithm 3, shown for the hyperrectangle and the ellipsoid constraint
with both the local solver IPOPT and the global solver BARON.

(a) Hyperrectangle region, local solver. (b) Ellipsoid region, local solver.

(c) Hyperrectangle region, global solver. (d) Ellipsoid region, global solver.

Figure 2. Probabilistic design space for case study 1 using the flexibility approaches. The colors (orange:
p ≥ 0.85; green: 0.7 ≤ p < 0.85; red: 0.5 ≤ p < 0.7; white: p < 0.5) represent the probability map
produced by Algorithm 2, and the black rectangle is the probabilistic design space determined by
Algorithm 3 with a confidence level of 0.85.
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The colored map shows the probabilistic design space obtained using Algorithm 2, and the black
rectangle shows the space identified by Algorithm 3 (generated with a single confidence level of 0.85).
In this case study, it was known that the upper left corner of the design space corresponded to the “safe”
operating region with respect to the CQAs, and the values for θ̄p, Δθ−p , and Δθ+p could be effectively
selected a priori. Also, since the shape of the probabilistic design space itself is also rectangular, the
differences between the regions from Algorithm 2 and Algorithm 3 are not dramatic. These differences
can be more pronounced with other case studies. For this case study, the probabilistic design space
identified is similar using both the hyperrectangle and ellipsoid constraints, and the regions identified
with the local and global solver are also very similar.

As expected, if we compare these results with the results from Algorithm 1 shown in Figure 1,
we see that the design space from the flexibility-based methods is indeed more conservative. Consider
results from Algorithm 2. While there are minor differences with respect to RB|A, the lower value for τ

corresponding to a confidence level of 0.85 is approximately 375 for the Monte-Carlo approach and
425 for the flexibility-based approaches. This is because the shape of the flexibility region in θm is
restricted. Consider a single point in the process parameter space. Figure 3 shows the results of 1000
simulations (from the Monte-Carlo approach), where the green points are feasible with respect to the
CQAs, and red points are not. On this figure, we are also showing the hyperrectangle and ellipsoid
generated with Algorithm 2. We can immediately see the impact of restricting the shape. Because
of the constraints, the acceptable region for the CQAs in θm is not symmetric, and the Monte-Carlo
approach is able to identify acceptable points that the flexibility-based approaches are not.

Figure 3. For case study 1, flexibility index produces a more conservative region than Algorithm 1.
Green points are feasible, red points are not feasible. This figure demonstrates both ellipsoid and
hyperrectangle regions are more conservative at τ = 400.0 and R = 5.0.
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3.2. Case Study 2: Michael Addition Reaction

In this section, we consider an industrial case provided by the Eli Lilly and Company—the
Michael addition reaction [27] with kinetics described in the following equations:

AH + B
k1−→ A− + BH+ (50)

A− + C
k2−→ AC− (51)

AC− k3−→ A− + C (52)

AC− + AH
k4−→ A− + P (53)

AC− + BH+ k5−→ P + B (54)

where AH (Michael donor) and C (Michael acceptor) are starting materials, B is a base, BH+, A− and
AC− are reaction intermediates, and P is the product. Reaction rates ri are defined as follows:

r1 = k1cAHcB (55)

r2 = k2cA−cC (56)

r3 = k3cAC− (57)

r4 = k4cAC−cAH (58)

r5 = k5cAC−cBH+ (59)

The rate constants ki are the uncertain model parameters (i.e., θm = {k1, k2, k3, k4, k5}), and these
rate constants have estimated values,

k̂ =
[

49.7796 8.9316 1.3177 0.3109 3.8781
]

and the multivariate normal variance-covariance matrix given by:⎡
⎢⎢⎢⎢⎢⎣

1.005 −3.428 × 10−4 −1.006 × 10−3 −1.523 × 10−3 2.718 × 10−3

−3.428 × 10−4 0.412 7.951 × 10−4 −3.937 × 10−3 2.364 × 10−3

−1.006 × 10−3 −7.951 × 10−4 3.224 × 10−3 1.466 × 10−3 −2.400 × 10−3

−1.523 × 10−3 −3.937 × 10−3 1.466 × 10−3 2.746 × 10−3 −4.102 × 10−3

2.718 × 10−3 2.364 × 10−3 −2.400 × 10−3 −4.102 × 10−3 7.148 × 10−3

⎤
⎥⎥⎥⎥⎥⎦ (60)

Using a CSTR mass balance over the reactions, Equations (50)–(54), we may write the
following equations:

c0
AH − cAH + τ (−r1 − r4) = 0 (61)

c0
B − cB + τ (−r1 + r5) = 0 (62)

c0
C − cC + τ (−r2 + r3) = 0 (63)

c0
A− − cA− + τ (r1 − r2 + r3 + r4) = 0 (64)

c0
AC− − cAC− + τ (r2 − r3 − r4 − r5) = 0 (65)

c0
BH+ − cBH+ + τ (r1 − r5) = 0 (66)

c0
P − cP + τ (r4 + r5) = 0 (67)

In this study, the initial concentrations
{

c0
AH , c0

B, c0
C, c0

BH+ , c0
A− , c0

AC− , c0
P

}
are set to be

{0.3955, 0.3955/R, 0.25, 0, 0, 0, 0} mol/L respectively, where R is the molar ratio between the feed
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concentration of AH and B. The process parameters include the molar ratio R and the residence time τ

(i.e., θp = {R, τ}). These process parameters are discretized with R from 10 to 30, and τ from 400 to
1400 min, with 21 and 11 points respectively.

Feasible process operation is determined by the following two CQA constraints:

c0
C − cC − cAC−

c0
C

≥ 0.9 ⇒ cC + cAC− − 0.1 × c0
C ≤ 0 (68)

cAC− ≤ 0.002 (69)

The first constraint states that the conversion of feed C must be greater than 90%, and the second
states that the concentration of AC− in the outlet must be less than 0.002 mol/L.

The model equations h are represented with Equations (55)–(59) and (61)–(67), and the CQAs are
represented with Equations (68) and (69).

The timing results for this case study can be found in Table 2.

Table 2. Timing results for Case Study 2 (in seconds).

Approach IPOPT (Local) BARON (Global)

Alg. 1 6116.2 –
Alg. 2 with Equation (21), 16.3 203
Alg. 2 with Equation (24), 18.0 –
Alg. 3 with Equation (33), 1.26 21.7
Alg. 3 with Equation (34), 1.65 245.3

Here we see similar results as with the first case study. The flexibility-based methods are
significantly faster than the Monte-Carlo approach. As before, Algorithm 3 was about an order
of magnitude faster than Algorithm 2. However, here we also see one of the challenges of the global
optimization approaches. For the ellipsoidal constraint with Algorithm 2, BARON failed to converge
for a small number of points, and therefore, timing results are not reported for this case. When using
BARON with the ellipsoidal constraint in Algorithm 3, the gap did not close within the specified time
limit on two iterations of the bisection method. However, when the maximum allowed time was
reached for these two points, both the upper and lower bounds on the objective value were negative,
signifying operational feasibility. The LDL transformation of the ellipsoid constraint was used in both
formulations during global optimization.

The probabilistic design space generated from the Monte Carlo procedure and from the
flexibility-based approaches is shown in Figure 4. As with case study 1, this figure includes results for
both Algorithm 2 and Algorithm 3. Since BARON did not solve with the ellipsoidal constraint using
Algorithm 2, this figure also includes the Monte-Carlo results in the subfigure (d).

As before, comparing the computed probabilistic design space, we see that Algorithm 2 is more
conservative than the Monte-Carlo approach. Here, however, we see the more significant differences
between the flexibility-based methods. The rectangular region produced by Algorithm 3 correctly lies
inside the probabilistic design space produced by Algorithm 2. But, since the actual probabilistic design
space is not rectangular, the rectangular region produced by Algorithm 3 significantly underestimates
the size of the region. In some applications, the region that is to be reported may be defined with
simple bounds on process parameters, and the rectangular region produced by Algorithm 3 will be
sufficient. For other applications, this underestimation may be too dramatic, and extensions of this
approach may need to be used to find a larger region (e.g., shifting the nominal point and producing
multiple overlapping rectangles).
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(a) Hyperrectangle region, local solver. (b) Ellipsoid region, local solver.

(c) Hyperrectangle region, global solver. (d) Monte-Carlo approach.

Figure 4. Probabilistic design space for case study 2 (Michael Addition) using the flexibility approaches
and the Monte-Carlo approach. The colors (orange: p ≥ 0.85; green: 0.7 ≤ p < 0.85; red: 0.5 ≤ p < 0.7;
white: p < 0.5) represent the probability map produced by Algorithm 2, and the black rectangle is the
probabilistic design space determined by Algorithm 3 with a confidence level of 0.85. The ellipsoid
region is not shown with the global solver since the global solver did not converge for those cases.

4. Discussion and Conclusions

A key component of the QbD initiative in the pharmaceutical industry is the identification of the
probabilistic design space defined as the region in the space of the process parameters over which the
critical quality attributes of the product are acceptable. Traditional Monte-Carlo approaches have been
used to compute the probabilistic design space by discretizing the process parameters and performing
simulations over hundreds (or more) of samples from the uncertain parameters.

Here, we proposed an optimization-based framework to define the probabilistic design space of
a pharmaceutical process with model uncertainty using concepts from flexibility analysis [15,19].
Specifically, we proposed two methods. The first, Algorithm 2, is a direct application of the
flexibility index formulation. This approach still discretizes the process parameters θp, but replaces
the Monte-Carlo simulations with a flexibility index formulation in the uncertain parameters θm.
The second approach solves for the probabilistic design space in θp directly, removing the need to
discretize the process parameter space as well. Both these approaches showed significant improvement
in computational performance over the Monte-Carlo approach, with Algorithm 3 being another order
of magnitude faster than Algorithm 2. While the Monte-Carlo approach can be easily run in parallel,
note that Algorithm 2 can also be run in parallel over the discretized points in θp. Given the difference
in solution time between the Monte-Carlo approach and Algorithm 3, it would take significant HPC
resources to make the Monte-Carlo approach faster.

However, the size of the probabilistic design space produced by the flexibility-based approaches
is more conservative since they restrict the shape of the confidence region in θm and, in the case of
Algorithm 3, the shape of the probabilistic design space itself. It will depend on the specific application
to determine if this trade-off is acceptable or not. Also, extensions of the flexibility test and flexibility
index approaches could be used to reduce this effect.
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Due to the problem definition, the formulations presented did not make use of online control
action to increase the size of the probabilistic design space. The flexibility test and flexibility index
formulations do provide rigorous treatment of controls [15,19,28], and future work will explore
this aspect.

With case study 2 (Michael addition reaction), the global solver did not fully converge for either
Algorithm 2 or Algorithm 3 when the ellipsoidal constraint in θm was used. While this constraint is
convex, it was presented to the solver as a sum of bilinear terms, and it is possible that solver tuning or
a straightforward outer-approximation would yield improved behavior.

As these problems become larger, performance of the global optimization step will become
the primary bottleneck. One approach to improve performance is to instead solve a relaxation of
Equations (16)–(23) or Equations (28)–(36). This will produce a design space that is more conservative,
but the relaxations could be progressively refined (e.g., piecewise outer approximation) to manage the
trade-off between the size of the design space and the computational effort of the approach.

This paper has shown that the concepts of flexibility analysis, and specifically the flexibility test
and flexibility index formulations, can be used to compute probabilistic design spaces much more
efficiently. Furthermore, there have been many advances in flexibility analysis that could be further
applied to improve scalability and reduce conservativeness when estimating the design space.
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Abstract: Model-based concepts have been proven to be beneficial in pharmaceutical manufacturing,
thus contributing to low costs and high quality standards. However, model parameters are
derived from imperfect, noisy measurement data, which result in uncertain parameter estimates
and sub-optimal process design concepts. In the last two decades, various methods have been
proposed for dealing with parameter uncertainties in model-based process design. Most concepts for
robustification, however, ignore the batch-to-batch variations that are common in pharmaceutical
manufacturing processes. In this work, a probability-box robust process design concept is proposed.
Batch-to-batch variations were considered to be imprecise parameter uncertainties, and modeled as
probability-boxes accordingly. The point estimate method was combined with the back-off approach
for efficient uncertainty propagation and robust process design. The novel robustification concept
was applied to a freeze-drying process. Optimal shelf temperature and chamber pressure profiles are
presented for the robust process design under batch-to-batch variation.

Keywords: robust process design; batch-to-batch variation; parametric probability-box; point
estimate method; pharmaceutical manufacturing; freeze-drying

1. Introduction

To implement Quality by Design (QbD) concepts, and to ensure optimally designed processes,
over the last two decades model-based process design has become an important tool in pharmaceutical
manufacturing and process systems engineering [1–5]. For instance, dynamic process models support
recent activities of the Food and Drug Administration (FDA) [6] and the International Council for
Harmonisation (ICH) Q11 guideline [7] regarding QbD, and the quantification of process variability [8].
Although uncertainties in process models and parameters are considered, and are frequently
incorporated in robust process design concepts [9–13], the applied algorithms are commonly based on
perfect uncertainty measures, i.e., using specific probability density functions (PDFs). In addition to
probability-based concepts for robust process design, scenario-based methods exist [14–16]. Simulation
studies seek the worst-case scenario for which the process is optimized, even when the worst-case
scenario rarely occurs in reality, and thus, lead to robust but extremely conservative designs with
considerable performance losses. Therefore, robust design concepts for pharmaceutical processes,
which aim to maximize process performance while satisfying critical process constraints under
probabilistic uncertainties, are preferred, to provide the proper trade-off between process performance
and robustness [2,17]. Probabilistic uncertainties, in turn, are the result of noisy experimental data
and system identification routines that assume a particular experimental setting, while neglecting
batch-to-batch variation effects [17]. In the pharmaceutical industry, the batch operation is the standard
operating mode when producing active pharmaceutical ingredients (APIs) and drugs [18], i.e., all
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materials are charged before the start of processing and discharged at the end of processing. Thus, slight
experimental deviations or the degradation of the process equipment might result in batch-to-batch
variation [18–20]. The source of batch-to-batch variation is difficult to predict, but can be quantified
with process analytical technology (PAT) and multivariate statistical analysis [19,20]. In the literature, it
is well-known that batch-to-batch variation causes severe problems in pharmaceutical manufacturing,
drug quality, clinical studies, and therapeutics [6,17,21,22]. To lower batch-to-batch variation in
pharmaceutical, and to improve QbD measures, analyzing the effect of measurement noise and
batch-to-batch variation is essential. The adverse effect of batch-to-batch variation in pharmaceutical
manufacturing is studied experimentally for various processing steps, e.g., fermentation, crystallization,
and (nanomaterial) formulation [17,19,23]. In model-based process design, in turn, recent studies try to
analysis and control batch-to-batch variation effects too [24,25]. For instance, in the case of model-based
process design, model parameters can be derived for each batch data set separately. When each batch
run is fit individually, batch-to-batch variation leads to different sets of model parameter estimates
and parameter uncertainties. Please note that the variability in the model parameters is not exclusively
the result of measurement noise, but the joint effect of measurement errors and slight differences in
the experimental settings and the raw materials of the batches [6,17]. Thus, simulation studies should
consider imprecise uncertainties [26–28] as well. These imprecise uncertainties cannot be described via
a single PDF, but via a set of PDFs that is known as the ambiguity set [29,30].

With the ambiguity set, we can distinguish between noise (aleatory uncertainty) and
batch-to-batch variation (epistemic uncertainty) [8]. The problem of imprecise uncertainties is also
closely related to the Dempster-Shafer theory, where uncertainties are expressed as so-called plausibility
functions (maximum amount of probability) and belief functions (minimum amount of probability).
The same holds for the probability bounds analysis (PBA), which combines probability theory and
interval analysis in probability bounds and probability-box (p-box) concepts [31–33]. Based on these
ambiguity set realizations, robust process design aims to incorporate imprecise uncertainties in
the framework of robust optimization. For instance, recent studies use p-box design concepts for
linear optimization problems in process design [30] and algebraic structural reliability analysis [28].
For dynamical systems, however, uncertainty analysis and propagation are challenging, because the
computational costs when standard Monte Carlo simulation techniques are used [34].

In the case of robust process design for nonlinear dynamic systems, highly efficient methods
for uncertainty propagation are mandatory [35]. In addition to (quasi-) Monte Carlo simulations and
improved sampling techniques [36], surrogate models (e.g., neural networks, Gaussian processes,
and polynomial chaos expansion) are used to accelerate uncertainty propagation problems in robust
process design, but typically suffer the curse of dimensionality [37–40]; that is, the cost increases
exponentially with the number of uncertain model parameters. Alternatively, in our previous work,
we demonstrated the usefulness of the point estimate method (PEM) [41] for the robust design of
pharmaceutical manufacturing processes [35]. The PEM ensures superior efficiency and workable
accuracy for many problems in engineering [41,42]. In the particular case of back-off-based robust design
methods, process optimization and uncertainty propagation can be considered sequentially [13,43].
Thus, combining back-off-based robust design concepts with the PEM can lead to a dramatic
reduction in computational costs, as demonstrated by Emenike et al. [12] for the synthesis of an
API intermediate. To the best of the authors’ knowledge, a back-off-based robust process design under
batch-to-batch variation has not been reported in the literature. Thus, the purpose of this work is
two-fold: (1) We integrate imprecise uncertainties caused by measurement noise and batch-to-batch
variation with the p-box approach in model-based process design, and (2) we combine the PEM
with a back-off-based approach to solve the underlying p-box robust optimization problem efficiently.
In Figure 1, the proposed robustification framework is summarized. The effectiveness of the robust
process design under batch-to-batch variation is demonstrated for freeze-drying as a highly relevant
pharmaceutical process, where the optimal shelf temperature and chamber pressure profiles are derived
for optimal process efficiency and process quality attributes.
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Figure 1. Flowchart of the proposed framework of robust process design under batch-to-batch variation.

The paper is organized as follows. Section 2 covers the basics of the robust process design
under batch-to-batch variation. In Section 3, an effective solution strategy with the PEM and the
back-off-based design is introduced. Section 4 summarizes the results from the p-box robust process
design of a freeze-drying process. Conclusions can be found in Section 5.

2. Robust Process Design

In what follows, the basics of the probability-based process design are summarized. Starting with
the standard probability-based robust optimization framework, an extension to imprecise uncertainties
representing model parameter uncertainties under batch-to-batch variation is given.

2.1. Probability-Based Robust Optimization

In the literature, various concepts of robust process design exist. Traditional methods for
propagating and quantifying model uncertainties are probabilistic and frequently used in robust
process design. Here, the interested reader is referred to [9,11,13,16,30,35,37] and references therein.
The general structure of the original probability-based robust process design reads as:

min
x(·),u(·)

Φ(M(xt f )) (1a)

subject to:

ẋd(t) = gd(x(t), u(t), p), (1b)

0 = ga(x(t), u(t), p), (1c)

xd(0) = x0, (1d)

Pv = Pr[hnq(x(t), u(t), p) ≥ 0] ≤ εnq, (1e)

umin ≤ u ≤ umax, (1f)

where t ∈ [0, t f ] is the time, u ∈ Rnu is the vector of the control variables, and p ∈ R
np is the vector of

the time-invariant parameters. xd ∈ R
nxd and xa ∈ Rnxa are the differential and algebra states; that

is, x = [xd, xa] ∈ Rnx . The initial conditions for the differential states are given by x0. Uncertainties
can exist in the parameters and the initial conditions ξ = [p; x0], where the probability space (Ω,F , P)
is defined with the sample space Ω, the σ-algebra F , and the probability measure P. Φ(M(xt f ))

denotes the robust formulation of the Mayer objective term M(xt f ) that is used for the nominal

process design. Equations (1b) and (1c) are the model equations with gd : R(nxd+nxa )×nu×np → R
nxd

and ga : R(nxd+nxa )×nu×np → Rnxa . Pv in Equation (1e) is the probability of violating the inequality
constraints hnq : R

(nxd+nxa )×nu×np → R
nnq . εnq is the tolerance factor that gives the maximum

acceptable probability for constraint violations. [umin, umax] are the upper and lower boundaries for
the control variables.

For a conventional robust process design, parameters uncertainties ξ are characterized
with well-defined probability distributions FΞ(ξ). The probability of constraint violations can be
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approximated with statistical moments, and thus, the robust inequality constraints in Equation (1e)
read as:

E[hnq] + βξ Var[hnq]
0.5 ≤ 0, (2)

where E[·] and Var[·] indicate the mean and variance calculated over the probability space of ξ, and βξ

determines the robust design’s conservatism to the variation of the model parameters ξ uncertainties.

2.2. Imprecise Uncertainties

In the case of imprecise uncertainties, the conventional robust process design concept can be
generalized with the parametric p-box approach, where the uncertainties of the parameters ξ depend
on the hyper-parameters θ of the parametric probability distributions:

FΞ(ξ) = FΞ(ξ|θ), θ ∈ DΘ ⊂ R
nθ , (3)

where θ is specified by upper and lower bounds, and DΘ = [θl
1, θu

1 ]× . . . [θl
nθ

, θu
nθ
] denotes the feasible

domain of these hyper-parameters. According to the p-box notation, the probability of a constraint
violation can be expressed as a bounded interval Pv ∈ [Pl

v, Pu
v ] with:

Pl
v = min

θ
Pv(θ), Pu

v = max
θ

Pv(θ). (4)

In the case of the p-box robust process design, the upper probability bound is of interest,
to guarantee a safe operation:

Pu
v = max

θ
(Pr[hnq(x(t), u(t), p) ≥ 0|θ]) ≤ εnq. (5)

If the upper boundary of Pv is lower than or equal to εnq, then Equation (1e) holds for all
realizations of hyper-parameters θ and Pv ∈ [Pl

v, Pu
v ], respectively. To avoid solving a cumbersome

double-loop sampling or optimization problem [31], Equation (5) can be, as for a conventional robust
design, also approximated with statistical moments according to:

Eθ[Eξ [hnq] + βξVarξ [hnq]
0.5] + βθVarθ[Eξ [hnq] + βξ Varξ [hnq]

0.5]0.5 ≤ 0, (6)

where βθ determines the conservativeness of the p-box robust design results from the variation
of hyper-parameters θ. Note the direct link to PBA, where the first term of Equation (6) refers to
the averaged value of the uncertain boundary, and the second term measures the variation. Thus,
with βθ = 2.32, the 99% confidence interval of the uncertain upper limit is calculated, and the upper
bound of the upper bound approximates the plausibility function sufficiently. Please note that the 99%
confidence interval indicates the interval of the probability distribution, in which the constraints are
satisfied, and does not have to be symmetric. Evaluating the plausibility function for a robust process
design might result in too-conservative designs under considerable performance loss. Note that
the plausibility function assigns the inequality constraints the highest probability. Alternatively,
setting βθ = −2.32 leads to the lowest probability of the inequality constraint under batch-to-batch
variation, and thus, approximates the belief function accordingly. Both strategies, i.e., βθ = 2.32 and
βθ = −2.32, are considered within the PEM-based back-off approach, and the general structure of the
double-loop approach is summarized in Figure 2.
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Figure 2. Illustration of the outer and inner loop setting for evaluating the inequality constraint
under aleatory and epistemic uncertainty. Sampling from epistemic uncertainty (a) results in aleatory
uncertainty realization (b), which is propagated to the inequality constraint (c) via the process model.
Re-sampling from the epistemic uncertainty (a) helps to quantify the variation in the upper limit of the
inequality constraint (d).

3. PEM-Based Back-Off Approach

Before introducing the basic notation of back-off-based process design, the concept of the PEM is
introduced, and how it can be efficiently used for problems of imprecise uncertainty propagation.

3.1. Point Estimate Method

The conventional robust and p-box robust process design problems are solved with the back-off
approach [12], where the back-offs are calculated with Equations (2) and (6), respectively. The statistical
moments used in Equations (2) and (6) are approximated with the PEM, as it is more efficient
than standard methods for uncertainty propagation [35]. Depending on the underlying parameter
distribution, specialized sample points and weight factors wi can be derived, and evaluated for
uncertainty propagation [35,41]. In the case of aleatory parameter uncertainties, 2n2

ξ + 1 PEM sample
points must be used to evaluate Equation (2), assuming Gaussian distributions for the model parameter
uncertainties. In detail, the deterministic 2n2

ξ + 1 sample points are generated by the first three
generator functions (GF[0], GF[±ϑ], and GF[±ϑ,±ϑ]) defined in [41], where ϑ controls the exploration
of the nξ-dimensional parameter space. Using specific weight factors for each generator function
results in the final approximation scheme for the mean value:

E[hnq] ≈ w0h0
nq(GF[0]) + w1

2nξ+1

∑
i=2

hi
nq(GF[±ϑ]) + w2

2n2
ξ+1

∑
i=2nξ+2

hi
nq(GF[±ϑ,±ϑ]), (7)

where w0 = 1 +
n2

ξ−7nξ

18 , w1 =
4−nξ

18 , w2 = 1
36 , and ϑ depends on the specification of the Gaussian

distribution [41]. Similarly, the variance can be estimated with the following equation:

Var[hnq] ≈w0(h
0
nq(GF[0])− E[hnq])

2 + w1

2nξ+1

∑
i=2

(hi
nq(GF[±ϑ])− E[hnq])

2

+ w2

2n2
ξ+1

∑
i=2nξ+2

(hi
nq(GF[±ϑ,±ϑ])− E[hnq])

2.

(8)

With Equations (7) and (8), the conventional robust design can be realized, but they ignore the
batch-to-batch variation and epistemic uncertainty, respectively. To incorporate epistemic uncertainty,
the outer loop of uncertainty propagation must be considered; see Figure 2. To do so, the scaling
factor ϑ and weights wi of the PEM are adapted to uniform probability distributions [35,41]. Thus,
for imprecise parameter uncertainties, and the given nested uncertainty propagation problem in
Equation (6), 2n2

ξ + 1 PEM sample points for the model parameters and 2n2
θ + 1 PEM sample points for
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the bounded hyper-parameters θ are evaluated that result in 4n2
θn2

ξ + 2(n2
θ + n2

ξ) + 1 total PEM sample
points. Please note that the deterministic sampling scheme from the PEM can be easily parallelized,
while ensuring reproducible results.

3.2. Back-Off Realization

For the back-off strategy, the inequality constraint of Equation (1e) is considered in its deterministic
form first:

hnq(x(t), u(t), p) ≤ 0. (9)

To guarantee that the inequality constraint is fulfilled under imprecise uncertainties, a back-off
term bc to the constraint at the nominal parameter vector p is introduced as:

hnq(x(t), u(t), p) + bc ≤ 0. (10)

In conventional robust process design with precise parameter uncertainties, the back-off term bc

can be calculated with the following equation [12]:

bc = E[hnq] + βξ Var[hnq]
0.5 − hnq,nom, (11)

in which hnq,nom represents the nominal value of the inequality constraints, and βξ determines the
robustness that could be obtained with this back-off term. For instance, bc calculated with βξ = 2.32
could provide a robust design, where 99% of the process realizations under aleatory uncertainty do
not violate the inequality constraints.

In comparison with the conventional robust design, the p-box robust process design determines
the back-off term bc with Equation (6) and reads as:

bc = Eθ[Eξ [hnq] + βξ Varξ [hnq]
0.5] + βθVarθ[Eξ [hnq] + βξ Varξ [hnq]

0.5]0.5 − hnq,nom, (12)

in which βξ and βθ decide the robustness of the individual batch and the batch-to-batch variation,
respectively. For instance, the back-off term determined with βξ = 2.32 and βθ = 2.32 could provide
robust design, with which 99% of different configurations of parameter uncertainties and process
realizations will have the desired robust performance; that is, the probability of a constraint violation
is smaller than 99%. Different values for βξ and βθ could also be used, depending on the preferred
robustness level required for the process under study. For more details regarding the PEM-based
back-off design and the selection of proper values for bc, we refer to our preview works [12,13] and
references in those works.

4. Case Study

The freeze-drying process, also known as lyophilization, is used extensively in pharmaceutical
manufacturing to stabilize APIs that have limited storage time in aqueous solutions, for example,
therapeutic protein formulations and vaccines [10]. The primary drying process, which dominates
the overall energy consumption of the lyophilization process, is considered the most critical step [44].
In this study, we analyze the robust process design of the primary drying process in the presence of
imprecise parameter uncertainties due to batch-to-batch variations. Thus, we advance our preliminary
work on robust process design for the primary drying process which was based on precise parameter
uncertainties [45], and we extend recent model-based studies and experimental work on inter-vial
heterogeneity in general [46–48].
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4.1. Mathematical Model of the Primary Drying Process

The mathematical model of the primary drying process used in this work is adapted from [10,44],
and the overall setup is illustrated in Figure 3. The mass transfer equation of vapor, which represents
the dynamics of the sublimation process at the sublimation surface, is given as:

dmsub
dt

= Ap
Pi − Pc

Rp
, (13)

where msub is the mass of ice removed by sublimation. Ap, Pc, and Rp are the cross-sectional area of
the product, the chamber pressure, and the dried product resistance to the vapor flux, respectively.
The heat used for sublimation is assumed to be equal to the heat transferred from the heating shelf:

Kv(Ts − TB)Av = ΔHs
dmsub

dt
, (14)

where Kv, Av, and Ts are the heat transfer coefficient, the outer cross-sectional area of the vial, and the
shelf temperature, respectively.

Figure 3. Illustration of the freeze-drying process. Model parameters can represent the dynamic
processes of a single vial (a) appropriately, but may fail for all vials that are handled in the freeze-dryer
(b) due to batch-to-batch variations.

Pi is the vapor pressure at the sublimation interface which depends on Ti [49]:

Pi = exp(9.55 − 5720
Ti

+ 3.53ln(Ti)− 0.00728Ti). (15)

Ti is the temperature at the sublimation interface, and is calculated with the energy balance equation
given in [44]. Kv, Av, and Ts are the heat transfer coefficient, the outer cross-sectional area of the vial,
and the shelf temperature, respectively. ΔHs is the heat of sublimation which also depends on Ti [49].
TB = Ti + ΔT is the temperature at the bottom of the vial. ΔT is the temperature difference across the
frozen layer [10]:

ΔT =
889200

(L f (Pi−Pc))

Rp
− 0.0102L f (Ts − Ti)

1 − 0.0102L f
, (16)

where L f is the height of the frozen layer and can be linked to msub via:

msub = (Ltotal − L f )ρIεAp. (17)
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Ltotal , ρI , and ε are the total height of the product layer, the density of the ice, and the volume of the ice
fraction, respectively. Nominal values and units for the parameters and the initial conditions can be
found in [10,44], and the used nominal parameter values are summarized in Table 1.

Table 1. Nominal values of the model parameters and the initial conditions for the primary drying
model [10].

Parameters Symbols Unit Nominal Value

cross-sectional area of product Ap m2 3.80 × 10−4

outer cross-sectional area of the vial Av m2 4.15 × 10−4

Av,n m2 1.25 × 10−4

dried product resistance Rp m/s 5.57 × 104

heat transfer coefficient Kv J/(m2sK) 11.47
Ltotal m 0.00658

ρI kg/m3 919
ε − 0.97
M kg/mol 0.018
k − 1.33
R J/(Kmol) 8.314

4.2. Optimal Process Design Strategy

This case study aims to maximize the efficiency of the primary drying step under parameter
uncertainties in Rp and Kv, while ensuring the product quality at the same time. The shelf temperature
and the chamber pressure are adapted to maximize the total mass of ice removed by sublimation, and to
minimize the operating time. To avoid irreversible product damage of the API cake, temperature Ti is
maintained to be smaller than the critical collapse temperature Tcrit = −34 ◦C [10]. Feasible operation
intervals for chamber pressure Pc and shelf temperature Ts are [5, 30] Pa and [−40, 30] ◦C, respectively.

First, the optimization problem is solved in the absence of parameter uncertainties for the nominal
design. Second, precise uncertainties in parameters Rp and Kv are included for the conventional robust
process design; that is, batch-to-batch variation effects are ignored. According to [10], we assume
that the uncertainties of Rp and Kv follow a Gaussian distribution; i.e., Rp ∼ N (56,000, 56002)
and Kv ∼ N (11.47, 1.152). Finally, we assume imprecise parameter uncertainties in Rp and Kv for
the p-box robust process design as introduced in Section 2. According to the parametric p-box
concept, the interval of the hyper-parameters and the type of probability distribution families are
listed in Table 2. For the sake of demonstration, the performance of the proposed framework, i.e.,
precise parameter uncertainties and imprecise parameter uncertainties, are assumed according to the
information from [10] and the reference therein.

Table 2. Imprecise uncertainties in model parameters represented as parametric p-boxes.

Parameters Distribution Mean Value Standard Deviation

Rp Gaussian [50,000, 80,000] [5000, 6000]
Kv Gaussian [9, 14] [0.5, 1.5]

The number of model evaluations needed to calculate the back-offs for the p-box robust design is
297 for each iteration, and the back-offs converge at the 4th iteration. The optimization problems were
implemented in MATLAB (2017a), and solved within the CasADi framework [50] using the nonlinear
programming (NLP) solver IPOPT [51].

4.3. Results and Discussion

In Figure 4, we show the designed profiles of the shelf temperature and the chamber pressure for
the nominal, robust, and p-box robust designs of the primary drying step. For the nominal design, Ti is
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kept at its upper boundary to ensure higher vapor pressure Pi at the sublimation interface, and thus,
to accelerate the sublimation process according to Equations (13) and (15). In the beginning, Pc is set to
9.6 Pa to achieve a higher sublimation speed and is decreased gradually to compensate for the influence
of the decreasing height of the frozen layer following Equation (16). However, with the existence of
(imprecise) parameter uncertainties, the variation of temperature at the sublimation interface will
lead to significant violations of the critical temperature which is necessary for maintaining the quality
of dried API product. Therefore, results from the robust designs attempt to reduce the temperature
of the heating shelf to avoid quality failures of the API cake, while the pressure is maintained at its
lower boundary to maximize the efficiency of the freeze-drying process. The shelf temperature for
the conventional robust design decreases, while that for the nominal design remains at the upper
limit; see Figure 4a. Moreover, the shelf temperature for the p-box robust design (plausibility function,
βθ = 2.32) decreases further as the effect of imprecise parameter uncertainties is taken into account
with the highest probability. The chamber pressure for the robust and p-box robust designs is also
lower than that for the nominal design, and is kept at the minimum to increase the efficiency of the
sublimation process; see Figure 4b. The increase in robustness is at the cost of decreased performance;
that is, the drying time of the p-box robust design shown in Figure 5 is longer than that for the
nominal and conventional robust designs. In addition, the effect of batch-to-batch variation and
epistemic uncertainties is also illustrated with the p-box design (belief function, βθ = −2.32). The shelf
temperature and chamber pressure profiles are close to those of the nominal case.

(a) (b)
Figure 4. Designed profiles for the shelf temperature Ts (a) and the chamber pressure Pc (b) of the
nominal, robust, p-box (plausibility function) robust, and p-box (belief function) robust designs.

In Figure 5, we illustrate the probability distributions of Ti calculated with the parameter
uncertainties of different hyper-parameter realizations for the nominal, robust, and p-box robust
designs. Results from the nominal design violate the upper limit of Ti in most scenarios, as indicated
in Figure 5a, and thus, the designed shelf temperature and chamber pressure profiles are unlikely to
be beneficial for most of the vials that are handled in the freeze-dryer. In Figure 5b, we show that
the conventional robust design increases the robustness of the process, but with significant constraint
violations when the hyper-parameters are different from the one used for the conventional robust
process design, i.e., when there is considerable batch-to-batch variation. In the case of batch-to-batch
variation and imprecise parameter uncertainties, the p-box robust design (plausibility function,
βθ = 2.32) ensures the lowest number of constraint violations; see Figure 5c. To demonstrate the effect
of batch-to-batch variation further, the p-box design (belief function, βθ = −2.32) is given in Figure 5d.
Considering the belief function, the p-box design is far from robust, and is close to the nominal design,
as indicated in Figure 5d.
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(a) (b)

(c) (d)
Figure 5. Probability density functions of the temperature at the sublimation interface (Ti) obtained
from different probability distributions of parameter uncertainties for (a) nominal, (b) robust, (c) p-box
robust (plausibility function), and (d) p-box robust (belief function) process designs. The red line is the
upper limit of Ti.

The performance of the nominal, robust, and p-box robust designs is further analyzed,
and validated for the imprecise parameter uncertainties of Rp and Kv with Monte Carlo simulations.
To this end, 1000 realizations of the hyper-parameters (epistemic uncertainty) and 1000 samples of
parameters Rp and Kv from each realization (aleatory uncertainty) are generated, which leads to 106

samples in total for the double-loop approach (Figure 2). In Figure 6, we summarize the number
of constraint violations determined from the 1000 model evaluations with the parameter samples
generated from the probability distributions of parameter uncertainties, with a fixed hyper-parameter
realization. The normalized histograms of the violation number, in turn, are obtained from the 1000
realizations of the hyper-parameters. Please note that for the sake of validation, we aim for a robust
design for the individual batches and batch-to-batch variations. Thus, two parameters, βξ = 2.32
and βθ = 2.32, are selected, and determine the final robustness level of the designed process. (1)
βξ = 2.32 (i.e., εnq is set to 1%) attempts to have a design with which the constraint violation number
should be lower than or equal to 10 in the case of 1000 parameter samples in single realization of the
hyper-parameters, and (2) βθ = 2.32 attempts to guarantee that fewer than or equal to 10 realizations
of hyper-parameters will not obey the first desired robustness.
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(a) (b)

(c) (d)
Figure 6. Normalized histograms of constraint violations for the (a) nominal, (b) robust, (c) p-box
robust (plausibility function), and (d) p-box robust (belief function) process designs.

The probability that the violation number ≥ 10 is the highest for the nominal design; see Figure 6a.
As indicated in Figure 6b, the conventional robust process design has a certain effect of, but results in
a considerable number of constraint violation, due to the neglected batch-to-batch variation. For the
p-box robust design (plausibility function, βθ = 2.32) in Figure 6c, the number of constraint violations
fulfills the given specification for almost all sample realizations. Only a small number of samples do
not fulfill the given specification of the violation number, which can be attributed to the approximation
errors of the PEM used for the inner and outer loops of uncertainty propagation (Figure 2). The effect
of the batch-to-batch variation becomes also obvious for the alternative p-box design (belief function,
βθ = −2.32) in Figure 6d. The likelihood of a constraint violation increases drastically when compared
with the previous p-box design (plausibility function, βθ = 2.32), and has a performance similar to that
of the nominal design. To summarize, the probability that the violation number is larger than 10 is
equal to 98.6%, 78.9%, 2%, and 96.8% for the nominal, conventional robust, p-box (plausibility function),
and p-box (belief functions) designs, respectively. As can be observed, the proposed p-box (plausibility
function) approach can handle the imprecise parameter uncertainties and provide a process design
which is robust enough for not only an individual batch but also for batch-to-batch variations.

5. Conclusions

In this work, we introduced a p-box robust process design to compensate for batch-to-batch
variation and imprecise parameter uncertainties, which were expressed as parametric p-boxes.
The notation of the robust inequality constraint was adapted according to the parametric p-boxes,
and further approximated with statistical moments that were calculated efficiently. Moreover,
combining the point estimate method with a back-off strategy for robust design implementation
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has been proven to be beneficial in terms of the computational costs for the p-box robust process design
concept. The efficiency of the proposed strategy was successfully demonstrated with a freeze-drying
process, as a highly relevant pharmaceutical manufacturing process. The results of the p-box robust
process design were compared with the results from the nominal and conventional robust designs.
The proposed strategy performed quite well, and could ensure the robustness of the inequality
constraint, even in the presence of batch-to-batch variation and imprecise parameter uncertainties,
respectively. For the p-box design, the two scenarios of plausibility and belief function illustrated
the considerable impact of batch-to-batch variation on the optimal process design results. Thus,
future work will focus on rigorous sensitivity studies of robust process designs for pharmaceutical
processes that have imprecise parameter uncertainties, and systematic analysis of the effect of epistemic
and aleatory uncertainties. Moreover, the proposed approach could also be incorporated into advanced
control strategies, e.g., model predictive control, to guarantee the robustness of process constraints in
the presence of imprecise parameter uncertainties, which is also an interesting aspect for novel Quality
by Control concepts.
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Abstract: In biopharmaceutical manufacturing, a new single-use technology using disposable
equipment is available for reducing the work of change-over operations compared to conventional
multi-use technology that use stainless steel equipment. The choice of equipment technologies has
been researched and evaluation models have been developed, however, software that can extend model
exposure to reach industrial users is yet to be developed. In this work, we develop and demonstrate
a prototype of an online decision-support tool for the multi-objective evaluation of equipment
technologies in sterile filling of biopharmaceutical manufacturing processes. Multi-objective
evaluation models of equipment technologies and equipment technology alternative generation
algorithms are implemented in the tool to support users in choosing their preferred technology
according to their input of specific production scenarios. The use of the tool for analysis and
decision-support was demonstrated using four production scenarios in drug product manufacturing.
The online feature of the tool allows users easy access within academic and industrial settings to
explore different production scenarios especially at early design phases. The tool allows users
to investigate the certainty of the decision by providing a sensitivity analysis function. Further
enrichment of the functionalities and enhancement of the user interface could be implemented in
future developments.

Keywords: process design; single-use technology; parenteral manufacturing; MATLAB Production
Server; software development; multi-objective decision-making

1. Introduction

Biopharmaceuticals represent a growing fraction of pharmaceutical production and can be used for
the treatment of many diseases such as cancer, rheumatism, or nephrogenic anemia. Biopharmaceutical
production processes consist of drug substance and drug product manufacturing. Drug substance (DS)
manufacturing involves the production of the active pharmaceutical ingredient (API) through upstream
cell cultivation and purification processes. On the other hand, drug product (DP) manufacturing
involves compounding of the API to the final concentration and sterile filling into vials or syringes.

The equipment used in drug manufacturing processes must satisfy certain quality requirements
of cleanliness and sterility to be ready for production [1]. New trends of shifting to small-scale and
multiple-product production have increased work of change-over operations that are conducted to
maintain equipment readiness for production between different batches or products. To realize
flexible and efficient production, new technologies, e.g., continuous technology or single-use
technology (SUT) are applied [2,3], which have increased the number of possible process alternatives.
Continuous technology is actively investigated both in small molecule drug manufacturing [4]
and biopharmaceutical manufacturing [5] through modeling [6] and experimental approaches [7].
SUT, another newly applied technology, uses disposable resin-made equipment requiring less time
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for change-over operations and cleaning validation. SUT can replace the conventional multi-use
technology (MUT) featuring reusable stainless steel equipment, which requires cleaning and sterilization
for change-over.

The choice between process alternatives involving SUT and MUT equipment is multifaceted.
The two technologies feature different characteristics in terms of investment, operational risks, and
quality challenges. SUT requires lower initial investment but higher running costs to replace the
disposable equipment, whereas MUT requires higher initial investment to install the equipment but
lower running costs. Maintaining a constant inventory of the sterile manufacturing equipment is an
important scheduling decision, which is required to avoid the supply risks of SUT equipment and
production interruptions. Various environmental concerns emerge depending on the chosen equipment
technology, e.g., emissions form production and disposal of the resin-made equipment versus the utility
consumption associated with the cleaning and sterilization processes required for the stainless-steel
equipment. In addition, different quality issues arise with each technology, such as chemical compounds
leaching from resin material into the drug solution for SUT, and cross-contamination due to failures
in the cleaning procedure for MUT. Therefore, the optimal implementation of available technologies
requires multi-criteria decision-making. Previous studies have evaluated these technology options
using a single evaluation indicator, with a focus on DS manufacturing, such as with economic or
environmental evaluations [8–11]. The authors have also presented a framework for the multi-objective
evaluation of equipment choice in sterile filling applications of DP manufacturing [12,13]. Another
layer of complexity in the decision-making process is the consideration of hybrid equipment technology
alternatives combining both resin-made and stainless-steel-made equipment in the same process.
One hybrid technology option was considered in a previous work that applies stainless-steel-made
fermentation tank and other resin-made equipment [14]. Ha.S., S.B., and Hi.S., part of the authors of
this paper, have also previously developed algorithms for the systematic generation of alternatives
and technology choice between SUT, MUT, and hundreds of hybrid alternatives [15]. However,
to navigate the complex decision-making process, tools are needed to facilitate the generation of
various alternatives, the multi-layered comprehensive assessment of the generated alternatives, and
the analysis and visualization of the results.

The evolution of decision-support and process design tools has revolutionized the bulk chemical
industry. The use of such tools, e.g., Aspen Plus and HYSYS [16,17], for process static and dynamic
simulation has allowed the investigation and analysis of complex processes at different design
stages. Specific features of the pharmaceutical industry have limited expanding the use of the same
tools. Pharmaceutical production is often carried out in relatively small-scale batches and involves
more complex chemical and biological interactions where data can sometimes be unavailable. In
addition, another difference in pharmaceutical production is the change-over operations required
to ensure equipment readiness. In recent years, the maturing understanding of the processes in
the biopharmaceutical sector has led to the development of more appropriate design tools for the
pharmaceutical industry. The Aspen Batch Process Developer is a recipe-driven process simulator used
for the modeling and design of batch processes that enable economic and environmental evaluation [18].
SIMBIOPHARMA is a prototype tool developed for the assessment of equipment technology options
and production strategies with focus on DS manufacturing [19]. Other commercial tools are also
available such as BioSolve [20] and Hakobio [21]. BioSolve is a stand-alone cost evaluation tool,
while Hakobio is an online tool for plant layout design and estimated area calculation especially with
disposable equipment with a limited analysis function inside the process. On the other hand, DP
manufacturing has not been fully addressed by such tools, due to the different nature of the processes
involved. DP processes combine physical and chemical processes at compounding and filtration with
other mechanical assembly line processes, like processes at the sterile filling stage. A decision support
and process design tool is still required in this field.

Our current work presents a decision-support tool for DP manufacturing processes of
biopharmaceuticals, considering the choice of SUT, MUT, and hybrid alternatives as equipment
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materials to be the key decision. The tool provides a comprehensive multi-objective evaluation of several
critical aspects including economic, environmental, quality, and supply robustness considerations. The
tool “TECHoice” (/tEkt

∫
OIs/), is derived from the combination of “technology” and “choice”. Several

versions of the tool currently exist. A full offline version in MATLAB is developed for use in a local
environment. A free access prototype online version applying Hypertext Transfer Protocol (HTTP),
which is the focus of this work, is also available. The online feature of this version allows a wider
reach for the tool and its underlying models within the academic and industrial communities. A
built-in database is included in this version, offering default parameters and properties to aid efforts
especially in earlier process development and design stages. A licensed, extended online version of the
tool is also currently under development to implement the full range of features and functionalities
of the current offline version. The online tool can be accessed from this Uniform Resource Locator
(URL): http://www.pse.t.u-tokyo.ac.jp/TECHoice/ (tested with Google Chrome Version 75.0.3770.100).
Our current study focuses on presenting the online prototype version of the tool, describing: the
background setup, the range of input functions, visualization of the output, and its role in the analysis
of the results. The development of the tool allows potential industrial users access to the models and
algorithms developed in an academic field.

2. Overview of the Tool “TECHoice”

2.1. Process and Equipment Technology Description

The manufacturing process for which the tool is developed is the sterile filling process of
biopharmaceutical drug product manufacturing. Figure 1 shows a flow of typical biopharmaceutical
drug product manufacturing processes with sterile filling. The configurations of full SUT, full MUT,
and HYB—a common hybrid plant—are also shown in Figure 1 [15]. Sterile filling processes typically
involve nine unit operations: retention, two-time-filtration, buffering, filling, and four-time transfer
between unit operations. A piece of equipment is allocated to each unit operation with the exception of
the filtration unit operations where two pieces of equipment, a filter housing and a filter membrane, are
assigned to one operation. Therefore, eleven pieces of equipment are used in sterile filling processes.
The two filter membranes and the set of filling tubes can only be resin-made, thus leaving eight pieces
of equipment having two options for equipment material (resin or stainless steel). This yields a total of
256 process alternatives: SUT, MUT with stainless steel equipment wherever possible, and 254 available
hybrid alternatives.

SUT, MUT, and hybrid technologies have different characteristics in terms of various aspects, as
shown in Table 1. SUT requires shorter time for a change-over operation, which involves assembling
and dismantling disposable equipment, but requires a larger number of operators as the operation is
manually conducted. MUT, on the other hand, requires a longer time for cleaning and sterilization of
the fixed stainless steel facility, i.e., clean-in-place (CIP) and sterilize-in-place (SIP) processes, using
media such as water for injection and pure steam. As the operation is automated, the required number
of operators is less than those required for SUT. The equipment installed for MUT requires larger
investment cost and larger manufacturing area compared to SUT, which uses disposable and flexible
resin-made equipment. In SUT, leachables—chemical compounds released from the resin—are a typical
concern, while residue caused by cross-contamination from previous drug production, is a typical
concern of MUT. Different reasons can cause manufacturing delays in SUT and MUT, affecting supply
robustness. For example, delay in transportation of disposables from vendors to pharmaceutical
manufacturing companies is a concern in the case of SUT, and equipment failure requiring extensive
maintenance is a concern for MUT.
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Figure 1. (a) Flowsheet of a typical biopharmaceutical drug product manufacturing process [15], and
configuration of plants using (b) single-use technology (SUT) [15], (c) multi-use technology (MUT) [15],
and (d) a common industrial hybrid technology option (HYB).

Table 1. Characteristics of the three equipment technologies.

Technology Single-use (SUT) Hybrid Multi-use (MUT)

Required time for
change-over Short Long Long

Investment cost Small Small/Large 1 Large
Number of operators Large Intermediate Small
Manufacturing area Small Intermediate Large

Usage of media N/A Small/Large 1 Large
Quality issues Leachables Both Residue/Cross-contamination

Supply robustness issues Vendor dependency Both Equipment failure
1 Depending on the material choice of the mixing tank.

2.2. Need for the Tool

An intensive discussion with experts from the ISPE (International Society of Pharmaceutical
Engineering) Japan community of practice “PharmaPSE COP” identified the appropriate application
phase, data needs, and the impediments to exposure within the community. The discussions confirmed
the existence of a gap in the available tools to support decision-making in DP manufacturing, but
especially highlighted the need in earlier design stages.

This tool thus aims to support the equipment technology choice, which is an important decision
that affects the initial investment and manufacturing area design for pharmaceutical manufacturing
companies. At such early process development phases, data are usually scarcer, and therefore, this
tool offers default design options for users to best explore the possible design landscape. The tool
can be used by industrial or academic research groups dedicated to investment decisions as a first
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indication at early decision phases. Figure 2 shows the different pharmaceutical production stages and
the intended use phase for this tool.

“

Figure 2. Intended use phase of the tool “TECHoice”.

Another important need addressed by the tool is its convenience and accessibility due to its online
feature. Several versions of the tool exist, offering different functionalities for various users. The
complete version of the tool is currently written in MATLAB R2018b (The MathWorks, Inc., Natick,
MA, United States). Several formats for algorithm delivery were reviewed and evaluated, such as
directly using the MATLAB (.m) files or compiling them into executables (.exe) using the AppDesigner
supplied by Mathworks. However, such formats may be inconvenient for industrial users since
proprietary software, such as MATLAB, is sometimes unavailable or with a restricted number of
licenses. Furthermore, the installation of software and contents from outside the company is normally
prohibited for data security reasons. Therefore, a version of the tool was then implemented as an online
web application, allowing easy access from anywhere without the need for periodical updates by users.

2.3. Key Features

Currently, two versions of the equipment technology choice decision-support tools are available:
a full offline version in MATLAB and a free access prototype online version. A licensed extended
online version is currently under development. The prototype online version is the focus of this work.

The online prototype version of the tool applies HTTP, which enables data communication between
users and servers. User interactions on a web browser are sent as requests to a web server as shown in
Figure 3. If any calculations are needed, the webserver sends a request to another calculation server,
the web server receives the calculation results as a response, and the results are displayed on the user’s
web browser. An Apache® HTTP Server Version 2.4 (The Apache Software Foundation, Forest Hill,
MD, United States) is used as the web server, and a MATLAB Production ServerTM (MPS) [22] is used
as the calculation server installed on a Windows Server 2016 operating system.

 

Server UserWeb page

Figure 3. Structure of the online tool applying Hypertext Transfer Protocol (HTTP).
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Source codes are written in TypeScript (TS), JavaScript (JS), and HyperText Markup Language
(HTML) for the user interface of data input and output visualization. These codes are developed and
compiled to be built on the web server. MATLAB codes have been developed based on the in-house
algorithms for the offline version of the tool and compiled to be built on MPS.

2.4. Built-in Database

Generally, each user must input values for parameters in their tested cases. However, if the data
is not available or the user is using the tool for exploration of alternatives rather than for a specific case,
the tool then offers default values that can be used from a built-in database. The availability of default
values for key model parameters is an especially useful feature for academic users who do not have
access to industrial data. Data have been collected from various sources and online databases to serve
as default values for model parameters. Table 2 shows the categories of database parameters with some
examples and their sources. More details regarding the values used and their sources can be found in
our previous work [13]. With respect to the data collected from industrial experts, average values of
the data range provided by the experts have been used in this tool as default parameters, which can
be freely used by anyone. Influential default parameters from the database, if selected by users, are
displayed on the “evaluation target” page in the tool for confirmation by the users or target audience.

Table 2. Database parameters and their sources.

Category Example Sources

Physical properties of the drug
product solution Molar weight, viscosity Online databases, e.g.,

ChemSpider [23], PubChem [24]

Flowsheet Number and order of unit
operations

Interviews with industrial experts,
e.g., pharmaceutical

manufacturing companies,
equipment suppliers

Equipment configuration Standard industrial
equipment sizes

Operating conditions Standard change-over times,
number of operators

Price information Prices of standard
equipment and utilities

Emission data Resin incineration and
utility consumption

Life cycle assessment (LCA)
databases, e.g., JLCA-LCA

database [25], LCI
Database IDEA [26,27]

Properties of leachables Saturation concentration,
permitted daily exposure

Online databases, e.g.,
ChemSpider [23], PubChem [24]

In the online prototype version of the tool, parameters listed in Table 2 are fixed to the default
values without the possibility of any user-induced changes. This option will only be available in the
full licensed version. Currently, users only specify the production scenario, e.g., project lifetime, annual
production volume (per plant), production mode, and number of products per year, in addition to the
filling volume of the containers, e.g., vials.

2.5. Algorithms and Models

The algorithms and models implemented in the tool are based on a framework developed for
generating and evaluating alternatives for sterile filling processes of drug product manufacturing [15].
The framework is composed of four decision layers as shown in Figure 4: product, flowsheet, equipment,
and operating conditions. Each of the layers has some parameters with discrete options or a range of
values. The order of the layers from “product” to “operating conditions” follows the decision order,
i.e., the parameters in the “product” layer are determined earlier than those in the “flowsheet” layer.
When all of the options and values of the parameters are specified, one process alternative is defined.
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Figure 4. Decision layers within the framework for alternative generation in DP (drug product)
manufacturing.

In this work, parameters, such as filling volume, lifetime, production volume, and number of
products, belong to the “product” layer. Once the user specifies these parameters in the prototype
version of the tool, the options or values of parameters on the “flowsheet” layer are fixed to the default
setting from the database. On the “equipment” layer, equipment configuration and sizes are fixed
to the default values. The full offline version of the tool varies the equipment material for each of
the unit operations in the process yielding a maximum of 256 alternatives. The prototype online
tool only displays results for the SUT, MUT, and most common industrial hybrid alternative (HYB),
shown in Figure 1d, which has a stainless steel mixing tank and resin-made equipment everywhere
else. On the “operating conditions” layer, users can define the production mode as either campaign
or alternating. Campaign production implies producing the same product in back-to-back batches,
whereas alternating production implies producing a different product with each batch. Operating
parameters, such as batch sizes and filling time, are calculated based on the data chosen in the previous
decision layers.

The generated alternatives are evaluated on the basis of four indicators. The economic aspect
Eco [JPY] uses net present value, and the environmental aspect Env [kg-CO2] uses life cycle CO2

emissions, as indicators. The product quality indicator PQ [–] evaluates the impact of patient exposure
to leachables and the potential risk of patient exposure to residues. The supply robustness indicator
SR [–] describes the risk of production delays. For detailed model assumptions and equations, see our
previous work [13,15]. Ultimately, the evaluated results with four indicators are aggregated to one
indicator, total score T [–], given by:

T = weconomy Eco/Eco’ + wenvironment Env/Env’ + wsupply SR/SR’ + wquality PQ (1)

where different weighting factors: weconomy, wenvironment, wsupply, and wquality, are used for economic
impact, environmental impact, supply robustness, and product quality, respectively. Here, Eco’, Env’,
and SR’ are the maximum values of economic impact, environmental impact, and supply robustness
among evaluated 256 alternatives, respectively. PQ is an aggregated value of two different product
quality impacts that are leachables Lea [–] and residue Res [–] given by:

PQ = wleachables Lea/Lea’ + wresidue Res/Res’ (2)
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where wleachables and wresidue are the weighting factors of leachables and residue, respectively. The
parameters Lea’ and Res’ are the maximum values of leachables and residue impacts among evaluated
256 alternatives, respectively.

2.6. Tool Architecture and Key Input Parameters

The prototype tool evaluates SUT, MUT, and HYB using multi-objective indicators. Figure 5
shows the architecture of the tool “TECHoice” which comprises four web pages.

1. “Start page” as a front page to show an explanation of the tool and the data management policy;
2. “Data input” as a data entry form of, e.g., product specifications and production scenario;
3. “Evaluation target” as a value confirmation page of physical properties of the drug product

solution, the choice of flowsheet, operating conditions, equipment configuration, sizes,
and material;

4. “Evaluation results” as a page showing the overall results, category results breakdown, and
sensitivity analysis.

Server Web page User

Calculation server Web server

Figure 5. Architecture of “TECHoice” with flows of requests and responses over four web pages.

The main input parameters of the tool are product specifications, such as filling volume, and
production scenario, e.g., project lifetime, annual production volume, production mode, and number
of products per year. The possible ranges of the input parameters are shown in Table 3. According
to the user input data on the second page, the physical properties of the drug product solution and
the flowsheet are loaded from the built-in database, and equipment sizes and operating conditions,
such as batch size and filling time, are calculated. After users confirm the results on the third page,
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multi-objective evaluation is conducted with four indicators: economic and environmental impacts
as well as product quality and supply robustness, where price data, emission data, or properties of
leachables are loaded from the built-in database for the calculation. Overall results and a breakdown
of the results for each of the four indicators are shown for both SUT and MUT on the last page. The
current version of the tool offers different components of the economic and environmental results
(disposables, labor, utilities, and investment). However, despite individual equipment costs being a
part of the calculation, their values are not accessible in the current version. This feature will only
be available in the licensed online version. The total score, which integrates values of all the four
indicators, is shown for SUT, MUT, and HYB using weighting factors that reflect the indicator priorities
of the user. The total score determines the final technology choice where a smaller score value indicates
a better technology option. The results are sometimes sensitive enough to the indicator weighting
factors to change the choice of the preferred equipment technology. Therefore, the final page has a
function that can be used to display results of the sensitivity analysis to the weighting factors. The
default setting is equal weighting among the four indicators. Discrete options can be chosen to test the
sensitivity in some cases, such as “economy first” which allocates a minimum weighting factor of 0.1
to all indicators other than the economic aspect (allocated 0.7). Similarly, cases of “environment first”,
“supply first”, “quality first”, and “supply and quality first” are also evaluated.

Table 3. Possible range of input parameters.

Category Parameter Unit
Available Ranges or

Values

Product specifications
Product type – Default

Filling volume L/vial >0
Target disease – Default

Production scenario

Project lifetime y 0 < x ≤ 20
Annual production volume L/y >0

Production mode – {Campaign, Alternating}
Number of product per year product/y ≥1

Flowsheet – Default

Equipment technology Equipment technology – {SUT, MUT, HYB}
Equipment material for HYB – {Stainless steel, Resin}

Evaluation Chemical compounds to
evaluate as leachables – Default

3. Case Study

We conducted a case study to demonstrate the use of the tool with four different production
scenarios. The following sections outline the details and visualization of “TECHoice” from page 1, “start
page”; page 2, “data input”; page 3, “evaluation target”; to page 4, “evaluation results”. Screenshots
(as of 11 July 2019) of all four pages are shown in the Appendix A.

3.1. Start Page

This is the front page depicting an explanation of the tool, such as purpose, target, and key input
parameters, and the data management policy as shown in Figure A1. The users click the “next” button
after agreeing with the terms.

3.2. Data Input

The purpose of the page is for users to insert their input parameters. There are five sections where
users are required to fill in values or choose options: “Define your product”, “Define your production
scenario”, “Select your flowsheet”, “Select your options of equipment technology”, “Fill in the type of
chemical compounds you want to evaluate as leachables” as shown in Figure A2.
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In this case study, input parameters of four production scenarios were demonstrated. Table 4
shows the list of input values for each scenario. The tested scenarios are defined as follows:

• Scenario A: large-scale in campaign production mode with minimal change-over;
• Scenario B: large scale in alternating production mode with maximal change-over;
• Scenario C: small-scale in campaign production mode with minimal change-over;
• Scenario D: small-scale in alternating production mode with maximal change-over.

Table 4. Input parameters of each scenario.

Scenario

Parameter Unit A B C D

Project lifetime y 10 10 10 10
Annual production
amount (per plant) L/y 150,000 150,000 10,000 10,000

Production mode – Campaign Alternating Campaign Alternating
Number of

product per year product/y 2 10 2 10

In this case study, minimal and maximal change-overs were taken as two and ten
products, respectively.

In the product definition section, a monoclonal antibody for bowel cancer with the filling volume
of 0.015 L/vial was assumed. The default drug product solution properties were taken to be the same
as water in the prototype version. The target disease is used to estimate the potential patient demand
size, which is used to evaluate the supply robustness indicator in the tool. The default flowsheet was
assumed to have the same process as explained in Section 2.1. Three types of equipment technologies
were considered: SUT, MUT, and HYB. The prototype version of the tool takes stearic acid as the
default compound leaching from resin-made equipment since it is a common example of leachables.

3.3. Evaluation Target

The purpose of this page is for the users to confirm their input values, values from database, default
assumptions, and intermediate calculation results. This page is composed of five sections: “Product
data”, “Flowsheet data”, “Equipment data”, “Operating conditions”, and “Evaluation parameters”.

Table 5 shows some of the intermediate calculation results of batch size, filling time, and annual
number of batches, in addition to default values from the database, such as required time for change-over
and number of operators. Since alternating production features more time-intensive product-to-product
changeover operations, it can therefore accommodate a smaller number of annual batches (Scenarios B
and D) compared to campaign production modes (Scenarios A and C). The scenarios with larger annual
production volume (Scenarios A and B) were assigned larger batch sizes to fit into the fixed annual
working time. The filling time was proportional to the batch size due to the fixed pumping speed.
The number of batches calculated for Scenario C was higher than expected for a realistic industrial
production case. In this prototype version, however, no error messages will be displayed for such a
case. The full version will display a warning message.

3.4. Evaluation Results

The purpose of this page is to visualize the multi-objective evaluation results for interpretation
and choice of technologies. The page has five sections: “Overall”, “Result for SUT”, “Result for MUT”,
“Total score”, and “Sensitivity analysis”.
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Table 5. Parameters of the operating conditions decision layer of different (a) scenarios (intermediate
calculation results) and (b) technologies (default values from the database).

(a) Scenario

Parameter Unit A B C D

Batch size L 656 1725 26.8 70.9
Filling time h 3.04 8.00 0.124 0.328

Annual number of batches /y 229 87 373 141

(b) Technology

Parameter Unit SUT HYB MUT

Required time for
batch-to-batch

change-over operation
h 2 4.5 4.5

Required time for
product-to-product

change-over operation 1
h 2 7.5 7.5

Number of operators – 5 4 2
1 Change-over operations in SUT (single-use technology) do not differentiate batch-to-batch and product-to-product
change-over operations, whereas HYB (a common industrial hybrid technology option) and MUT (multi-use
technology) have different change-over types depending on the operation.

3.4.1. Overall/ Result for SUT/ Result for MUT

In Section 1, indicator values for the economic and environmental impacts, product quality, and
supply robustness aspects are shown in the form of a table. The next two sections show the breakdown
of the economic and environmental impacts of SUT and MUT in pie charts in terms of the contribution
of disposables, labor, utilities, and investment costs.

The breakdown of economic and environmental impacts of Scenario A (large-scale in campaign
production mode with two products) and D (small-scale in alternating production mode with ten
products) are shown in Table 6. The breakdown of the economic impact results showed similar common
trends between scenarios A and D. SUT incurs a large cost for purchasing disposable equipment and
minimal investment costs due to the lack of fixed stainless steel equipment. The overall results showed
that the economic impact of SUT was larger than that of MUT in Scenario A, and the impact of MUT
was larger than that of SUT in Scenario D. Scenario A had a larger annual number of batches which led
to more change-over in disposable equipment, causing the larger cost of SUT. Labor cost in SUT was
larger for Scenario A due to the larger number of operators compared to MUT. Scenario D, however,
featured frequent product-to-product change-over operations in the alternating production mode.
Given that the time for product-to-product change-over of MUT is longer than that of SUT, operator
working hours were longer in this scenario leading to higher labor costs for MUT.

The breakdown of the environmental results showed similar common trends between Scenarios
A and D. The impact from disposables was larger in SUT compared to MUT, where the contribution of
utility consumption was large for both SUT and MUT. The environmental impact of utility consumption
stems from the energy required for heating, ventilation, and air conditioning (HVAC) to keep the
manufacturing area clean. In the environmental impact calculation, manufacturing area and time are
the key parameters affecting process utility consumption. In the default setting, MUT with fixed piping
is assumed to have double the size of manufacturing area compared to SUT with flexible tube, causing
the impact of utilities in MUT to be larger than that in SUT.
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Table 6. Breakdown of economic and environmental impacts of Scenarios (a) A and (b) D.

(a)
Scenario A(Large-scale in campaign production mode

with two products)

Economic impact (JPY) Environmental impact (kg-CO2)

SUT MUT SUT MUT

Disposables 5.23 × 108 9.67 × 107 45.3 4.74
Labor 2.74 × 108 1.65 × 108 – –

Utilities 5.48 × 107 1.67 × 108 76.4 254
Investment 9.00 × 105 9.73 × 107 – –

Overall 8.53 × 108 5.27 × 108 122 259

(b)
Scenario D (Small-scale in alternating production mode

with ten products)

Economic impact (JPY) Environmental impact (kg-CO2)

SUT MUT SUT MUT

Disposables 2.79 × 108 5.96 × 107 38.4 4.74
Labor 7.81 × 107 1.65 × 108 – –

Utilities 1.56 × 107 1.68 × 108 35.3 440
Investment 4.99 × 105 9.14 × 107 – –

Overall 3.73 × 108 4.85 × 108 73.7 444

3.4.2. Total Score

In Section 4, the total score, an aggregated value of all the four evaluation results, is shown in
a stacked bar chart for the three evaluated alternatives: SUT, MUT, and HYB. Figure 6 shows the
results of the total score of the four tested scenarios. The alternative with the smallest total score is to
be chosen. In the case of alternating production of ten products (B, D), SUT was chosen as the best
alternative regardless of the annual production volume. In the case of campaign production with
two products (A, C), MUT was the best alternative regardless of the annual production volume. The
difference in the total score between SUT and MUT in Scenarios A and C is too small to make a decision
with confidence. Individual indicators, however, show different profiles between SUT and MUT. In
this case, the weighting factors of the different indicators play a significant role in the final decisions,
and a more in-depth analysis of the individual indicators’ results is required. Among the four tested
scenarios, the decision with the highest certainty was the choice of SUT in Scenario D as indicated by a
difference in the total score of SUT compared to the others. To finalize the decision, the values of the
weighting factors were varied for this scenario to test the effect of the variance on the conclusion.

3.4.3. Sensitivity Analysis

The sensitivity analysis function is embedded below the stacked bar charts of total score, where
users can choose six different combinations of weighting factors depending on the priority of aspects:
equal weighting, economy first, environment first, supply first, quality first, supply and quality first.
The bar charts showing the results of the total score change according to the change with the total score
calculated from the selected combination of weighting factors.

Figure 7 shows the results of the sensitivity analysis to the impact of weighting factors on the
assessment results for Scenario D (small-scale in alternating production mode with ten products).
Weighting factors of the four indicators were discretely changed. The default combination used in the
assessment is equal weighting factors (w = 0.25) for all indicators (same as the results already shown
in Figure 6). Equal weighting of the indicators showed SUT as the best alternative for Scenario D.
When supply robustness was prioritized, the total score of MUT was the smallest due to the lower
probability of delays due to equipment failures than delays due to supply failure of the disposable
equipment. HYB was the best when product quality was prioritized. The impact of product quality
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is the aggregated effect of leachables and residues, where the effect of leachables was the largest in
SUT, second largest in HYB, and the smallest in MUT. On the other hand, the effect of residue was the
largest in MUT, second largest in HYB, and the smallest in SUT. When the product quality impact was
calculated using Equation (2) with the same weighting factors for leachables and residue, the impact of
HYB became the smallest among the three alternatives. The HYB alternative has a smaller exposure to
leachables compared to SUT since it employs a stainless steel mixing tank, which is the equipment with
the largest area and residence time, and thus the highest contribution to leachable concentration in the
system. Residue concentration is assumed to be a function of only the contact surface area rather than
the residence time. Since the mixing tank’s area in this scenario is smaller than all other equipment
combined, the expected residue concentration is therefore smaller in the HYB alternative compared to
MUT. The combined effect of leachables and residue was also smaller compared to either SUT or MUT.
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Figure 6. Landscape results of the total score for different production scenarios of (A) large-scale in
campaign production mode with minimal change-over, (B) large scale in alternating production mode
with maximal change-over, (C) small-scale in campaign production mode with minimal change-over,
and (D) small-scale in alternating production mode with maximal change-over.
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Figure 7. Sensitivity analysis of total score for Scenario D by (a) applying equal weighting for the four
indicators, (b) prioritizing economic impact, (c) prioritizing environmental impact, (d) prioritizing
supply robustness, and (e) prioritizing production quality.
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4. Discussion

The equipment technology choice among SUT, MUT, and HYB can thus be made based on the
analysis presented in the case study for each scenario. Users can form a comprehensive picture of the
possible range of assessment results. The advantages of the tool include flexibility in changing input
parameters as well as visualization of the multi-objective evaluation and sensitivity analysis results.
The tool with these benefits establishes a basis for a platform that connects academically developed
models and algorithms to users in the industrial community with real production decisions.

The prototype tool can still be extended to a full online version offering more functionalities,
alternatives, and analysis features. For example, flexibility of input parameters could be upgraded.
Only “default” values are allowed for “product type” and “flowsheet” in the current version. In the
extended version, more “customized” choices will be allowed. In addition, in the prototype version no
error messages are shown regardless of values or options that users selected, e.g., negative values of
input parameters, such as project lifetime or annual production volume. Warnings are not given for
unrealistic production conditions, e.g., unrealistic batch numbers or batch sizes. Disposable mixing
tanks higher than 2000 L are not available, however, SUT options with higher batch sizes would not
get a warning message.

Output visualization will be improved to display results for other hybrid alternatives and to show
a more detailed breakdown of indicator results. In the current version, only results of SUT, MUT, and an
empirical hybrid alternative can be seen in full detail. More extensive sensitivity analysis can help users
identify critical process parameters of different design stages. The uncertainty analysis concerning the
influence of various model parameters and their ranges on the results will be the focus of our next
publication, which aims to parameterize and landscape at different design phases. Technical updates
can also be expected, e.g., for the user interface to visualize the results of the extended sensitivity
analysis, or security updates for the input data.
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Appendix A

 
Figure A1. Screenshot of the first page (Start page) of “TECHoice”.
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Figure A2. Screenshot of the second page (Data input) of “TECHoice”.
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Figure A3. (a–d) Screenshot of the third page (Evaluation target) of “TECHoice”.
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Figure A4. (a,b) Screenshot of the fourth page (Evaluation results) of “TECHoice”.
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Abstract: Process modeling in pharma is gradually gaining momentum in process development but
budget restrictions are growing. We first examine whether and how current practices rationalize
within a decision process framework with a fictitious investor facing a decision problem subject to
incomplete information. We then develop an algorithmic procedure for investment evaluation on
both monetary and diffusion-of-innovation fronts. Our methodology builds upon discounted cash
flow analysis and Bayesian inference and utilizes the Rogers diffusion of innovation paradigm for
computing lower expected returns. We also introduce a set of intangible metrics for quantifying the
level of diffusion of process modeling within an organization.

Keywords: process modeling; return on investment; diffusion of innovation

1. Introduction

Modeling and simulation (M&S) refers to the R&D (Research & Development) methodology
where mathematical equations (models) are solved numerically or analytically (via simulation) for the
description of physical systems. Such a generic definition captures all different types of representations
of physical systems: Mechanistic, empirical and hybrid. However, in this paper we only focus on
mechanistic and/or hybrid models. Modeling and simulation (M&S) has been gradually adopted by
different industries for the understanding, investigation, optimization and diagnostics of existing
and future processing technologies since the 1960s giving rise to what is commonly referred to as
process modeling.

The pharmaceutical industry constitutes an interesting case. On the one hand, computational
chemistry has long been an indispensable tool in drug discovery and, nowadays, in silico drug
discovery, it is spearheading future developments. On the other hand, the pharmaceutical industry is
among the last ones to join the party since process modeling has only been sporadically utilized despite
advocates preaching for the contrary [1,2]. This thought-provoking conundrum has not gone-by
unnoticed and there is a wealth of efforts devoted to its study [3–6]. A synthesis of the results has
revealed several factors with the most recurring ones being:

(i) Keeping science out of processing. This manifests itself through the continuous and oftentimes
erroneous belief that (a) the complexity of the processes is too high and (b) the maturity of M&S is
too low for the production of fruitful results. This line of thought has been perpetuating though
some recent efforts that hint that blending science-based solutions with engineering approaches
is growing momentum [7]. Moreover, and perhaps more importantly, there is a growing volume
of research efforts (i) corroborating both the pertinence and the efficacy of M&S on both upstream
and downstream [8–10], (ii) offering holistic and industrial-friendly frameworks [11] and (iii)
focusing on even the most novel processing techniques [12].

(ii) Lack of regulatory frameworks. M&S has been notably absent from regulatory frameworks.
However, recent publications [13], betoken that such ideas are cultivating.
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(iii) Domination of empirical/statistical modeling. Processing in pharma has partnered very
well with statistics. Progressively, statistical modeling has been integrated in the core of
R&D methodologies. Proposing alternative methodologies will undoubtedly be subject to
“appeal-to-tradition” reactions.

(iv) Emphasis on drug discovery: From an investment-risk portfolio management point of
view, investments in drug/vaccine discovery are more promising than those in process
development/understanding. Consequently, only the bare minimum has been done to get
the processes economically viable. Even so, investment-related decision making has been
relevant; rationally choosing, for example, between batch and continuous processing has attracted
considerable attention [14].

(v) Shortage of in-house M&S expertise. Accommodation of M&S components that are relatively
new and evolving requires dedicated FTEs (Full Time Equivalent) and building up competencies.
In the absence of an interest towards M&S, such internal expertise is cumbersome to be built
and updated. Consequently, new concepts or breakthroughs, are difficult to detect, digest and
eventually implement.

Nonetheless, process development has started to utilize elements of M&S oftentimes in a systematic
fashion as part of an organizations vision for digitization [15,16] and the accommodation of the quality
by design paradigm [13]. Moreover, given the persistently disappointing figures on return on
investment in pharma and the gloomier predictions [17], and the ever-growing development cost
and risk [18,19], acceleration of development has become a key management target [20], and here
M&S is expected to yield significant results. However, in such an environment which requires a
stricter scrutiny of investments, M&S teams should be prepared to address questions on the business
engineering front. Put simply, the diplomatic immunity granted to M&S has been relinquished.

Designing a business case for M&S is an arduous task because, although M&S costs are
straightforward to compute, outcomes of M&S exercises are laborious to quantify. What complicates
matters more, is the qualitative nature of such outcomes that render relevant efforts even more
challenging. Importantly, the described challenges are not confined within pharma but invariably
extend to other industries which explains the dearth of relevant studies in the literature.

To the best of our knowledge, the first organization that systematically investigated the business
case of M&S and openly archived it is the U.S. Department of Defense. In a series of landmark
publications [21–25], the authors have investigated the evaluation of M&S returns and presented real
case studies. A handful of subsequent studies have adjusted these findings though predominately in a
qualitative direction. With respect to pharma, in particular, we are only acquainted with the study
of [26] where the authors examine the effects of M&S in drug development and time to market and
find a positive correlation in turn backed by the presentation of NPV (Net Present Value) values.

The objective of this paper is to examine process modeling in pharma from an investor’s point
of view and bring forward an algorithmic methodology that allows for the development of detailed
business studies. Our methodology is endowed with both tangible and intangible metrics to provide
for a holistic approach to the problem in hand. On the tangible front, we examine M&S under the
prism of discounted cash flow analysis. As in regard to intangible metrics, our analysis draws from
and builds upon the earlier studies of [21–25] but incorporates them into a diffusion-of-innovation
paradigm based on the Rogers innovation curve [27].

2. State of the Art in Decision Making

Pharmaceutical corporations have already invested non-negligible amounts of capital for building
up M&S competency and internal capabilities. We model the current situation and use this framework
as a vehicle to optimize current practices. Let Mr. X be the budget owner of the R&D organization
within a pharmaceutical corporation. Mr. X is endowed with an annual budget of M$ (dollars) that
covers for both recurring (e.g., salary) and one-time costs.
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At some point, Mr. X is visited by a group of managers and/or scientists, henceforth referred
to as “the Group”, who propose to form a M&S team focusing on processing. They require
an upfront investment of M1 < M dollars per year plus M2 < M dollars for one-time costs.
In support of their request, the Group typically offers four anecdotal or poorly tractable quantitative
arguments: (a) Reduction of design/investigation time, (b) enhancement or replacement of real-life
tests, (c) circumvention of limitations of funding, (d) insight into issues unapproachable by alternatives.
Intuitively one expects that these four arguments are to a certain extent true. However, whether the
aggregate effect remains positive or there is a fallacy of composition has yet to be robustly demonstrated.
In layman terms, M&S can positively impact practices in processing but at what cost.

In cash-flow terms, our Group argues that the evolution of cash-flow will initially be negative,
as expected, but it will gradually shift upwards and eventually become positive as pedantically
shown in Figure 1a; In the absence of relevant data, figures in the present conceptual paper are rather
ad-hoc representing the accumulated empirical knowledge and industrial experience of the authors.
Manifestly, they offer a high-order qualitative illustration of the underlying trends and they should
be interpreted as such by the reader. Nonetheless, the same figure has superimposed an alternative
scenario where the cash-flow remains negative for a prolonged period. Given that penetration of a new
technology/method typically follows a Rogers S-shape curve [27] depicted in Figure 1b, the plausibility
of this scenario should not be ignored.

Figure 1. (a) Cash flow of modeling and simulation (M&S) as the time-history of profit, (b) A theoretical
Rogers curve for diffusion/penetration of innovation.

How should our investor react? Mr. X faces an interesting decision problem. Under the assumption
that Mr. X is a rational agent, the whole decision process can be modeled quite nicely, though a detailed
modeling framework of this problem is quite subtle. For the sake of simplicity, herein, we sketch the
basic ideas. In this respect, Mr. X is conditioning decisions on the outcomes of the following profit
maximization problem:

max π = (q−wL) (1)

where π, q, w, L stand for profit, production units in dollars, production units here is more broadly
interpreted, cost per employee, and number of employees. We can generalize this to include physical
capital and/or time but doing so increases complexity without further clarifying the picture. Mr. X
considers that a simplified Cobb–Douglas production function adequately describes the relation
between production units, physical capital and labor so that;

q = A La (2)

with A, a constants determining productivity. Note that, typically, the Cobb–Douglas functions has a
component related to cost of capital but we have neglected this here. The above is a classical paradigm
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that can be solved by Mr. X analytically. Now, the Group claims that the π that Mr. X has computed is
not optimal. They point towards the existence of another group of employees (M&S experts) who can
drive profits upwards. When Mr. X asks the Group to quantify their argument they posit that M&S
experts follow a different Cobb–Douglas production function:

qMS = eb1Lb2 (3)

where b1 and b2 are random variables which reflects the uncertainty that even the Group has with
respect to the quantification of benefits. With this information at hand, Mr. X can actually advance and
solve the corresponding model. However, the accuracy of the predictions depends on the properties of
b1, b2 and, more importantly, on whether these properties are known. Provocatively, a risk averse or
even risk neutral inventive should reject this proposal as non-tractable!

Nevertheless, we have multiple examples where our investor Mr. X succumbs to the demand of
the Group and grants the investment. A possible escape route may be found if we postulate that Mr. X
is not only rational but also informed in the following sense. In the absence of M&S, employees can
use a set of skills/prior knowledge S for the execution of their tasks. Furthermore, the net revenue per
employee in the organization R is p $/employee. Our investor has performed a comparative analysis
with competitors and concludes that p does not reflect the true potential of the organization and that
there is room for improvement. Mr. X goes a step further and theorizes that R = R(S) with R(S)′ ≥ 0
and R(S)′′ ≤ 0. Then, being acquainted with the state of the art in M&S, X makes the informed decision
that augmenting S with the competencies provided by M&S will result in an increase of R(S) though it
is not possible to predict the precise payoffs.

We now focus on the development and understanding of best practices. Strictly speaking, M&S (as
well as experiments and statistical models) acts as an evaluation mechanism. For instance, an M&S
exercise provides an insight to a phenomenon and as such empowers stakeholders to make informed
decisions. If economics is also put into the equation then, M&S, as an evaluation mechanism, can be
utilized for economically rational decisions. With the above in mind, we may, therefore, ask ourselves:
“To what extent must we model in order to make our next decision?” and provide the following answer:
“To the extent that the corresponding payoff is sufficiently positive” with sufficiently ideally being an
exogenous parameter.

2.1. Tradeoffs

When calculating payoff of M&S, a clear view of the tradeoffs is required to set expectations at
reasonable levels, conditioned on the risk behavior of choice: aversion/neutrality/love. Two important
tradeoffs are fidelity vs. cost and fidelity vs. complexity. Herein, fidelity refers to the quality of the
model in terms of describing the observations and predicting the general behavior of the system for
process design and operation relevant scenarios. A typical situation is plotted in Figure 2a,b.

Figure 2a provides a visualization of fidelity vs. cost in the plane where a typical progress trajectory
is plotted from conception to optimization vs the minimum level of fidelity required for practical
applications. We observe that early efforts in a terra incognita result in high cost and low fidelity.
Progressively, one reaches the minimum level of fidelity (though with high cost) but further increases
in fidelity eventually lead to cost decline and positive cost-effectiveness balance. Consequently,
knowledge of where M&S stands with respect to Figure 2a is imperative for accurate calculations
of payoffs.

Figure 2b depicts fidelity vs complexity lines; the lines should be perceived as a first-order
approximation of the true relation—in reality, complexity vs. fidelity curves have much more
complicated structure. The three lines correspond to early, moderate, and mature M&S in a
counter-clockwise fashion. The change in slopes denotes how the accumulation of expertise and
know-how leads to leaner approaches; for example, via systematic reductions, symmetry considerations,
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dimensional arguments, clever discretization techniques etc. Similarly to the fidelity vs cost case,
the status quo of fidelity vs complexity should be adequately known.

Figure 2. (a) Schematic representation of the relationship between fidelity with cost; (b) Schematic
representation of fidelity vs complexity.

2.2. Decision Flow-Chart

Calculation of payoffs requires an assessment plan of the outcomes of M&S conditioned on the
inputs. The flow chart of this process is plotted in Figure 3. We observe that input parameters are
cost, time and risk. The output is the results that an M&S exercise yields. It is the assessment of
results versus the aggregate effect of cost, time and risk that should drive a go or no go decision for
further investment.

Figure 3. Flow chart of assessment plan for M&S.

For the determination of cost of M&S, we dichotomize models into descriptive and prescriptive ones.
Henceforth, A model here is understood as a triplet (governing equations, numerical algorithm/method,
software) required for simulation. In other words, it is not only a series of mathematical equations.
Descriptive models describe the behavior of existing systems whereas prescriptive models envision to
describe the expected behavior of a hypothetical system. For example, a descriptive model would
be used to model an existing fermentation vessel. A prescriptive model would be used to design
and model a novel fermentation vessel without specific requirements. Descriptive and prescriptive
models share similarities with respect to cost, nevertheless, important differences may also be identified.
In Table 1, we have tabulated the costs associated with each type of models, further partitioned into
upfront (one-time) and recurring costs. One observes the absence of accreditation from prescriptive
models; this is to be expected since such models are spearheading R&D and are neither standardized
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nor subject to systematic upgrades, at least at their early phases of existence. An interesting disparity
is the presence of “temptation” in recurring costs. This explains the danger of getting lost in endless
exploratory studies, where one goes deeper and deeper whilst there is no clear vision or direction
ahead. Cost of temptation may be easy to tame upfront but the lack of a valorization strategy can allow
it to skyrocket and undermine budget considerations. Based on Table 1, we can compute the total cost
of M&S at year N:

Cost(year N) = Costso f t + Costhard + Costtrain + Costsupgrade + #FTEs ·CostFTE (4)

Here, Costso f t and Costhard designated costs related to procurement of software and hardware
whereas Costsupgrade stands for maintenance costs and upgrades. CostFTE is, as usual, the annual
cost of a full-time equivalent while Costtrain is the cost of related trainings. The concepts of design,
implementation, verification, validation, accreditation, and employment are embodied within CostFTE.
For the sake of simplicity, we have assumed that FTEs in M&S have the same cost.

Table 1. Cost description for prescriptive and descriptive models.

Upfront Costs Recurring Costs

Descriptive
Design, Implementation, Verification, Validation,

Accreditation, Training, Procurement Employment, Upgrades

Prescriptive
Design, Implementation, Verification, Validation,

Training, Procurement Employment, Design, Temptation

It is also interesting to visually look at the evolution of cost in time. A linearized picture for both
prescriptive and descriptive models is shown in Figure 4. The figure depicts how the temptation point
acts as a bifurcation for cost expansion or contraction and how exogenous interventions can act as cost
saving mechanisms.

Figure 4. Linearized cost vs. time plots for prescriptive and descriptive models.

Risk associated with M&S has been well documented. In general, M&S risk comprises (i)
accuracy, (ii) descriptive realism, (iii) uncertainty and (iv) applicability; each of these components is
defined below:

1. Accuracy is defined as the degree to which the predictions are correct (formally, accuracy is
defined with respect to a particular norm.).

2. Descriptive realism refers to the degree that a model predicates upon “true” principles [28].
3. Uncertainty refers to the confidence on outputs, given that some aspects are unknown.
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4. Applicability accounting for the potential that the exploitation of the model for the envisioned
purpose falls short, because the investigated/modeled phenomena do not govern the system in
the a priori expected manner.

Each of these components may be viewed as a normalized function that takes values in the range
[0, 1]. For accuracy and descriptive realism, zero and unity denote the minimum and maximum values,
respectively and the converse is true for uncertainty. We can therefore define the novel aggregate
measure of acceptability according to the following formula:

Acceptability =
1
4
(Accuracy + Descriptive realism + (1− uncertainty) + Applicability) (5)

where L is labor (FTEs + training) and C is physical capital (hardware/software) and a, b are elasticities
with a + b < 1. Acceptability takes values in the range [0, 1]; an idea M&S exercise would have 1
accuracy, 1 descriptive and 0 uncertainty thus giving acceptability its maximum value: Unity. (One can
go a step further and consider a weighted sum of accuracy, descriptive realism and uncertainty.
This preferential aggregate would then reflect a heterogeneous prioritization). For practical purposes,
acceptability assumes values in the open range (0, 1). Indeed, even at the start of a modeling effort it is
unlikely to expect zero acceptability and reaching unity is typically utopic. We take our analysis a
step further and link acceptability to cost. To do so, we consider acceptability as an asset and thus the
outcome of a production function. To fix ideas, we postulate that the production function follows a
Cobb–Douglas form and thus acceptability obeys the following equation:

Acceptability =
1
4
(Accuracy + Descriptive realism + (1− uncertainty) + Applicability) = LaCb (6)

where L is labor (FTEs + training) and C is physical capital (hardware/software) and a, b are elasticities
with a + b < 1.

Proponents of M&S typically invoke time as a competitive advantage. However, the required
time for M&S depends on the complexity of the problem in hand and the evolving technology and
know-how. Figure 5 portrays the trends of time versus complexity for the past decades. As expected,
evolution in hardware/software and physical modeling itself pushes the curve in a southeast direction.
However, despite this rather robust shift, time remains an exponential function of complexity.

Figure 5. Qualitative assessment of required time for M&S. The numbers represent the decades.

Mathematically, progress increases the part of the curve that can be accurately linearized.
This domain is labeled “on board the train” to emphasize that in this area one takes advantage of
the accumulated advancements. It is in this zone where time and complexity correlate in a favorable
manner. On the right of the “on board the train zone” is the “push the frontiers zone” where a linearized
curve changes slope and no longer provides an accurate fit. Here is where innovation mostly occurs.
Risk aversion dictates the avoidance of the purely exponential region and the focus on the “push the
frontiers” one.
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We can further quantify the time required for M&S. Our starting point is the observation that
aggregate time required for a M&S exercise can be written as the following sum:

Ttotal = Tmodel + Tdigitization + Tsimulation + Tinterpretation (7)

where Tmodel, Tdigitization, Tsimulation, Tinterpretation designate the time needed for the development
of a model, digitization of equipment, numerical simulation, post-processing and interpretation.
An order-of-magnitude analysis can be used to provide some estimates which are reported in Table 2.

Table 2. Order-of-magnitude analysis of required time for M&S per component.

Time
Required

Tmodel Tdigitization Tsimulation Tinterpretation

~DAYS Reuse Reuse Low & medium
complexity No post-processing required

~WEEKS Reuse/discover Digitize existing system Detailed CFD Meticulous post-processing/big data
~MONTHS Develop Design & digitize system Industrial scale CFD N/A

We remark that in the case of first time used or newly developed models, Tmodel accommodates
the validation phase as well. Experience has shown that, within pharma, this phase can be quite
elongated, as it often involves a chain of actors from non-scientific departments. Thus, one should not
underestimate such exogenous factors when drafting (or predicting) time schedules.

3. An Investor’s Approach to M&S

With all the above in mind, we can again call upon our investor, budget owner Mr. X who,
correctly or not, has already invested in a M&S team for some time now, being aware of the uncertainty
that dominates this decision. Mr. X has now to harvest the results of the investment and needs to
define a payoffmeasure. For a quantitative assessment, Mr. X has to attribute a set of relevant metrics
to the corresponding outcomes. This set of metrics will be decomposed into monetary metrics and
performance metrics. The need (or rationale) behind this decomposition is as follows. The overall
investment has had but a short life and aims in implicitly increasing the net revenue per employee by
enhancing the competences that employees have at their disposal. This is not an instantaneous process
as Figure 1b asserts. In this respect, Mr. X should keep track not only of monetary payoffs but also of
intangible metrics that evaluate the integration of M&S alongside existing R&D practices.

3.1. Monetary Metrics

The first bottleneck is the identification of gains or equivalent the payoff. Three monetary metrics
appear as the most prominent candidates: Cost savings, cost avoidance and increased revenues.
Formally, they are defined as follows:

1. Cost savings = Cost with M&S—Cost without M&S
2. Cost avoidance = Cost of unnecessary/harmful decision.
3. Increased revenues = profit due to changes in margins or production capacity.

Each of the above monetary metrics can have a single or permanent impact on the sector.
Cost savings has a single impact because it refers to gains that do not affect permanently the production
capacity and/or revenue. For instance, they may refer to cost savings in a project that failed and
never reached production. Cost avoidance has also single impact. It concerns multi-lemmas that
once resolved it is for permanent; for example, consider the case where a company needs to decide in
favor of one type of instrument vs another. Finally, increased revenues have permanent impact in the
corporation. This is a result of M&S permanently affecting the profit margin. (Calculating the above
metrics in practice is easier said than done and the typical example is that of knowledge-build projects).
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Having collected the required data, Mr. X proceeds to compute a time-dependent return on
investment as follows. Consider a time interval [t0, tn] uniformly discretized into time instances ti
such that ti − ti−1 = Δt = constant. Δt can assume any value, e.g., a month. For each ti calculate the
M&S cashflow:

CMS(ti) = Cost savings(ti − ti−1) + Cost avoidance(ti − ti−1)

+Increased revenues(ti − ti−1) − Investment cost(ti − ti−1 )
(8)

Cost savings(ti − ti−1) denotes the costs savings during the period ti − ti−1 and the same applies
for the other components. Consider that CMS(ti) have been measured from t0 = 0 until present
tpresent = KpresentΔt. Then, let Nproj ≥ 1 denote the number of projects that M&S personnel have been
working on during this time. Each project has an anticipated duration of Tj = Kj Δt, with j = 1, . . . , Nproj
and Tj > tpresent ∀ j and is expected to induce an internal rate of return (IRR) IRRj, which is a solution
to the following;

NPV =
∑Kj

i=0

E(Ctot
j(ti))(

1 + IRRj
)i = 0 (9)

and obeys the following inequality:
IRRj > RRR (10)

In the above relations, E
(
Ctot

j (ti)
)

stands for the expectation of the total cash-flow of project j at

time instance ti while RRR is the required rate of return which stands for the minimum accepted rate
that renders the investment rationally possible. (This is a rather traditional approach. Alternative
methodologies that use the real option value such as the Datar–Mathews method, and incorporate risk,
may be also utilized) [29].

Next, Mr. X applies a Bayesian inference of the time-series CMS(ti), as duly demonstrated in
Figure 6, and calculates stochastic predictions for the evolution of cashflows from t = tpresent + Δt
until Tmax = max

{
Tj
}
= KmaxΔt. Thus, Mr. X obtains a spatio-temporal probability distribution that

assigns to each possible CMS(ti) a probability. Then, probabilistic estimates of the IRRMS of the M&S
investment can be computed according to;

NPVMS =
∑Kmax

i=0

CMS(ti)

(1 + IRRMS)
i = 0, P(IRRMS) = p (11)

for all possible outcomes enveloped by the Bayesian inference and a graph, like the one reported in
Figure 7 displaying predicted IRRMS against probabilities, can be constructed.

Figure 6. Hypothetical data points of CMS(ti) vs. time, shown with ∗, concatenated with Bayesian inference.
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Figure 7. Predicted IRRMS values vs their probability for three hypothetical cases resulting in three
different probability distributions.

Next, a lower limit of acceptance (LLA) for the investment is developed. Assume that IRRMS ∼
N
(
μ, σ2

)
. Ostensibly, one could equate LLA with the expected rate of returns RRR. However, we propose

a modification so that the degree of diffusion of M&S within the organization is captured. The diffusion
of a new technology can be satisfactorily described via a sigmoid function (t) = 1

1+e−δt . (The parameter
δ determines the time needed for M&S to completely diffuse, i.e., at which point where the function
equals unity. It can be estimated with the help of the intangible metrics of the next section. Other more
elaborate and asymmetric functions may also be considered.). Then, a reasonable lower limit of
acceptance at time ti is as follows:

LLA(ti) = S(ti)RRR (12)

We can reconcile the stochastic nature of IRRMS with the risk aversion of Mr. X and Equation (12)
as follows. We assign to Mr. X a CARA (constant absolute risk aversion) utility function u(x) = 1− e−Ax

with A being the known risk aversion coefficient, that can be estimated via the methodology of [30],
and we recall the budget of M$. Consider the portfolio allocation problem with one risky asset
(investment on M&S) with random return IRRMS and a riskless asset with fixed return LLAMS(Tmax).
Under rationality, we can explicitly solve this two-asset (one risky and one riskless) portfolio allocation
problem, see for example [31]. This solution asserts that that recourses should be allocated if and
only if;

μ > LLAMS(Tmax) (13)

and that the optimal degree of allocation obeys the following condition:

MMS =
μ− LLAMS(Tmax)

σ2 · 1
A

(14)

Equations (13) and (14) have practical implications. First, Mr. X determines whether (13) is
satisfied. If yes, then given M1$ have already been invested in M&S, Mr. X can solve (14) in terms of
the expected return μ′, run a sensitivity analysis for σ2 and end up with a range of values

[
μlow,μhigh

]
.

Then, Mr. X can compare how well the predictions compare to their realizations, or equivalently where
μ lies in the range

[
μlow,μhigh

]
.

This is a decision tree with two negative outcomes. First, the realized expected return μ is lower
than the lower acceptable limit, i.e., inequality (13) is violated. Thus, the overall investment rates are
unfavorable. As the distribution of IRRMS is calculated based on Bayesian inference, it is updated as
soon as new data enter the system. Therefore, one should re-evaluate the overall investment at time
instances ti > tpresent and check if violation of inequality (13) is an artifact or not (the generation of
monetary gains might come with a (random) time delay). The second negative outcome concerns
Equation (14) and the range

[
μlow,μhigh

]
. If μ < μlow then the investment in M&S is still worthwhile
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but the expected return is probably overestimated. By contrast, if μ > μhigh then the investment
outperforms expectations.

3.2. Diffusion-of-Innovation Metrics

Diffusion-of-innovation metrics help our investor, Mr. X, to make better informed decisions
when making assessments. The authors of [32] proposed a notoriously high (over 200) number of
metrics that constitute assessment criteria of how well modeling and simulation is deployed within
the US Department of Defense. Therefore, to a first approximation, this pool of metrics can used for
the selection of diffusion-of-innovation metrics that pertain to our case. Of course, it is not only the
impractically large number that renders our task challenging but also the fact that several of these
metrics are bespoke to the army needs. By merging and redefining available metrics, so as to fit
the pharmaceutical world, we have arrived at the following seven (7) performance related metrics,
delineated in Table 3 alongside their numerical value.

Table 3. Diffusion metrics and their numerical value.

Name of Metric Numerical Value (s)

Awareness Relative frequency of different projects utilizing M&S
Coordination Relative frequency of M&S duplicate activities avoided

Congruity Relative frequency of M&S clients correctly interpreting/understanding the results
Guidance Relative frequency of M&S users conforming to existing standards

Proactivity Relative frequency of (early) decisions made by M&S
Empowerment Relative frequency of M&S decision makers attending key meetings

Foundation Relative frequency of foundational competencies covered

As the numerical values increase and approach unity so does the integration of M&S in R&D.
The numerical values of the metrics si, i = 1, . . . , 7 are functions of time, i.e., si = si

(
tj
)

where the values
tj conform to the previous section discussion. Next, consider the sigmoid function 1

1+e−δt which has the

diffusion rate as a free parameter, δ. Also, consider the sum 1
7
∑Kpresent

j=0 si
(
tj
)
. If the sum of the metrics

provides a satisfactory description of the diffusion of M&S in R&D, then it is reasonable to consider the
following approximation:

1
1 + e−δt

≈ 1
7

∑Kpresent

j=0
si
(
tj
)
+ u (15)

where u = N
(
0, σ2

u

)
is a white noise term to reflect the fact that the diffusion process is associated with a

certain degree of randomness and can be amenable to random shocks (depending on the strategy that
leadership has developed, the diffusion metrics could be assigned a weight

(
tj
)

with w1
(
tj
)
+ w2

(
tj
)
+

. . .+ w6
(
tj
)
= 1; note that the weights are also functions of time to reflect reprioritizations and changes

in strategy). Then, the constant δmay be estimated via simple regression from the above equation and
directly utilized in Equation (12) of the previous section.

4. Conclusions

Process modeling is gradually gaining momentum within the pharmaceutical industry.
This inevitably attracts attention from higher management and onsets the discussion of cost-benefit
analysis and investment decisions. This paper has examined process modeling from the investor’s
point of view.

We have commenced by examining whether current practices conform to a value-based decision
process by using an informed investor as the decision maker. Further, topics like cost, risk and
execution time for M&S exercises have also been thoroughly discussed and, wherever possible,
mathematical expressions for their description have been introduced. We subsequently proceeded
to the development of an easy-to-use methodology that can help an investor evaluate investment
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on M&S that encompasses both monetary and diffusion-of-innovation based aspects. The proposed
methodology builds upon a classical discounted cash flow analysis, infused with elements of Bayesian
inference, while accommodating a sigmoid-description of diffusion of innovation for the calculation of
lower expected returns. Via the introduction of a set of seven intangible metrics we were also able to
quantify the rate with which M&S diffuses within the organization thereby rendering the proposed
methodology tractable.

In the present study, we have limited ourselves to the theoretical presentation of the mathematical
model were emphasis has been placed on clarifying ideas and concepts. A natural next steps involves
exercising the proposed model with either real or simulated data and ideally with both. This step that
we intend to pursue as a follow up to this work will play a pivotal role in assessing the predictive
capacity of our methodological framework and underlying possible weaknesses that need mitigation.

This concept paper comprises different components that can collectively assist with the difficult
task of evaluating M&S. However, herein, we have restricted ourselves to the illustration of these
ideas without emphasis on their connectedness. Consequently, a further direction of future research
concerns the unification of all ideas presented herein in an umbrella framework.
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