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Preface to “Fixed Point Theory and Related Topics”

This book contains the successful submissions to a Special Issue of Axioms on the subject area

of “Fixed Point Theory and Related Topics”. Fixed point theory arose from the Banach contraction

principle and has been studied for a long time. Its application mostly relies on the existence of

solutions to mathematical problems that are formulated from economics and engineering. Fixed

points of functions depend heavily on the considered spaces that are defined using the intuitive

axioms. Different spaces will result in different types of fixed point theorems. The articles in this

Special Issue are summarized below.

Three articles study the best proximity point under different settings. H. Isik, H. Aydi, N. Mlaiki,

and S. Radenovic study the best proximity point for Geraghty-type z-proximal contractions.

N. Souayah, H. Aydi, T. Abdeljawad, and N. Mlaiki study the best proximity point on rectangular

metric spaces endowed with a graph. T.Sabar, A. Bassou, and M. Aamri also study the best proximity

point in the framework of newly introduced metric space.

Two articles study the fixed point in fuzzy metric space. D. Ram Prasad, G. Kishore, G,

H. Isik, B. Srinuvasa Rao, and G. Adi Lakshmi study the fixed point in c∗-algebra valued fuzzy

soft metric spaces. B. Rome, M. Sarwar, and P. Kumam study the fixed point theorems considering

fuzzy contraction.

Two articles study the common fixed points. A. Ghanifard, H. Masiha, M. De La Sen, and

M. Ramezani study the common fixed points for nonexpansive multi-valued mappings in convex

metric spaces. A. Perveen, I. Khan, and M. Imdad also study the common fixed points for generalized

weak nonlinear contractions.

E. Mohamed, A. Mohamed, and L. Samih study the fixed point theorems for relatively

cyclic and noncyclic p-contractions in locally k-convex space. V. Parvaneh, N. Hussain, A.

Mukheimer, and H. Aydi study the fixed points for modified JS-contractions. H. Faraji, D. Savic,

and S. Radenovic study the fixed point theorems for Geraghty-type contraction type mappings in

b-complete b-metric spaces.

Y. Gaba and E. Karapinar study the common fixed points for Kannan-type contractions.

E. Karapinar also provides a short survey for the non-unique fixed point results in various

abstract spaces.

T. Shanmugam, M. Muthiah, and S. Radenovic study the existence of positive solutions for the

eighth-order boundary value problem using a classical version of Leray-Schauder alternative fixed

point theorem.

M. Farid, K. Chaira, E. Marhrani, and M. Aamri study the fixed point theorems in Banach

algebras. H.-C. Wu studies the fixed point theorem in a newly proposed informal complete metric

space. Y. Sugimoto studies the square roots of diffeomorphisms.

Hsien-Chung Wu

Special Issue Editor

ix
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Abstract: In this paper, we prove convergence theorems for viscosity approximation processes
involving ∗−nonexpansive multi-valued mappings in complete convex metric spaces. We also
consider finite and infinite families of such mappings and prove convergence of the proposed
iteration schemes to common fixed points of them. Our results improve and extend some
corresponding results.

Keywords: ∗−nonexpansive multi-valued mapping; viscosity approximation methods; fixed point;
convex metric space

MSC: 47H10; 26A51

1. Introduction

Many of the real world known problems that scientists are looking to solve are nonlinear.
Therefore, translating linear version of such problems into their equivalent nonlinear version has a
great importance. Mathematicians have tried to transfer the structure of covexity to spaces that are
not linear spaces. Takahashi [1], Kirk [2,3], and Penot [4], for example, presented this notion in metric
spaces. Takahashi [1] introduced the following notion of convexity in metric spaces:

Definition 1. ([1]) Let (X, d) be a metric space and I = [0, 1]. A mapping W : X× X× I → X is said to be a
convex structure on X if for each x, y, u ∈ X and all t ∈ I,

d(u, W(x, y, t)) ≤ td(u, x) + (1− t)d(u, y).

A metric space (X, d) together with a convex structure W is called a convex metric space and is denoted by
(X, W, d).

A subset C of X is called convex if W(x, y, t) ∈ C, for all x, y ∈ C and all t ∈ I.

Example 1. Let X = M2(R). For any A =

[
a1 a2

a3 a4

]
and B =

[
b1 b2

b3 b4

]
and t ∈ I = [0, 1], we define the mapping W : X× X× I → X by

W(A, B, t) =

[
ta1 + (1− t)b1 ta2 + (1− t)b2

ta3 + (1− t)b3 ta4 + (1− t)b4

]

Axioms 2020, 9, 10; doi:10.3390/axioms9010010 www.mdpi.com/journal/axioms1
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and the metric d : X× X → [0,+∞) by

d(A, B) = Σ4
i=1|ai − bi|.

Then (X, W, d) is a convex metric space.

Example 2. Let X = R2 with the metric

d((x1, x2), (y1, y2)) = max{|x1 − y1|, |x2 − y2|},

for any (x1, x2), (y1, y2) ∈ X and define the mapping W : X× X× [0, 1]→ X by

W((x1, x2), (y1, y2), t) = (tx1 + (1− t)y1, tx2 + (1− t)y2),

for each (x1, x2), (y1, y2) ∈ X and t ∈ [0, 1]. Then (X, W, d)is a convex metric space.

Example 3. Let X = C([0, 1]) be the metric space with the metric d( f , g) =
∫ 1

0 | f (x)− g(x)|dx and define
W : X × X × [0, 1] → X by W( f , g, t) = t f + (1− t)g, for all f , g ∈ X and t ∈ [0, 1]. Then (X, W, d) is a
convex metric space.

This notion of convex structure is a generalization of convexity in normed spaces and allows us
to obtain results that seem to be possible only in linear spaces. One of its useful applications is the
iterative approximation of fixed points in metric spaces. All of the sequences that are used in fixed
point problems require linearity or convexity of the space. So, this concept of convexity helps us to
define various iteration schemes and to solve fixed point problems in metric spaces. In recent years,
many authors have established several results on the covergence of some iterative schemes using
different contractive conditions in convex metric spaces. For more details, refer to [5–14].

Now, let us recall some definitions and concepts that will be needed to state our results:

Definition 2. ([15]) Let (X, d) be a metric. A subset D is called proximinal if for each x ∈ X there exists an
element y ∈ D such that d(x, y) = d(x, D), where d(x, D) = inf{d(x, z) : z ∈ D}.

We denote the family nonempty proximinal and bounded subsets of D by P(D) and the family of
all nonempty closed and bounded subsets of X by CB(X).

For two bounded subsets A and B of a metric space (X, d), the Pompeiu–Hausdorff metric
between A and B is defined by

H(A, B) = max{sup
x∈A

d(x, B), sup
y∈B

d(A, y)}.

Definition 3. ([16]) Let (X, d) be a metric space. A multi-valued mapping T : X → CB(X) is said to be
nonexpansive if H(Tx, Ty) ≤ d(x, y), for all x, y ∈ X.
An element p ∈ X is called a fixed point of T if p ∈ T(p). The set of all fixed points of T are denoted by F(T).

Definition 4. ([17]) Let (X, d) be a metric space and D be a nonempty subset of X. A multi-valued mapping
T : D → CB(D) is called ∗−nonexpansive if for all x, y ∈ D and ux ∈ T(x) with d(x, ux) = inf{d(x, z) :
z ∈ T(x)}, there exists uy ∈ T(y) with d(y, uy) = inf{d(y, w) : w ∈ T(y)} such that

d(ux, uy) ≤ d(x, y).

It is clear that if T is a ∗−nonexpansive map, then PT is a nonexpansive map, where PT for T : D → P(D) is
defined by

PT(x) = {y ∈ T(x) : d(x, y) = d(x, T(x))},

2
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for all x ∈ D.

Definition 5. ([16]) Let (X, d) be a metric space. A multi-valued mapping T : X → CB(X) is said to satisfy
condition (I) if there is a nondecreasing function f : [0, ∞)→ [0, ∞) with f (0) = 0, f (r) > 0 for r ∈ (0, ∞)

such that d(x, T(x)) ≥ f (d(x, F(T))), for all x ∈ X.

First of all, Moudafi [18] introduced the viscosity approximation method for approximating the
fixed point of nonexpansive mappings in Hilbert spaces. Since then, many authors have been extending
and generalizing this result by using different contractive conditions on several spaces. For some new
works in these fields, we can refer to [19–27]. Inspired and motivated by the research work going on in
these fields, in this paper we investigate the convergence of some viscosity approximation processes
for ∗−nonexpansive multi-valued mappings in a complete convex metric spaces. The convergence
theorems for finite and infinite family of such mappings are also presented. Our results can improve
and extend the corresponding main theorems in the literature.

2. Main Results

At first, we present two lemmas that are used to prove our main result. Since the idea is similar to
the one given in Lemmas 2.1 and 2.2 in [28], we only state the results without the proof:

Lemma 1. Let {un} and {vn} be sequences in a convex metric space (X, W, d) and {an} be a sequence in [0, 1]
such that lim supn an < 1. Set

d = lim sup
n→∞

d(un, vn) or d = lim inf
n→∞

d(un, vn).

Let un+1 = W(vn, un, an) for all n ∈ N. Suppose that

lim sup
n→∞

(d(vn+1, vn)− d(un+1, un)) ≤ 0,

and d < ∞.Then
lim inf

n→∞
|d(vn+k, un)− (1 + an + an+1 + . . . + an+k−1)d| = 0,

for all k ∈ N.

Lemma 2. Let {un} and {vn} be bounded sequences in a convex metric space (X, W, d) and {an} be a sequence
in [0, 1] with 0 < lim infn an ≤ lim supn an < 1. Suppose that un+1 = W(vn, un, an) and

lim sup
n→∞

(d(vn+1, vn)− d(un+1, un)) ≤ 0.

Then limn→∞ d(vn, un) = 0

Now, we state and prove the main theorem of this paper:

Theorem 1. Let D be a nonempty, closed and convex subset of a complete convex metric space (X, W, d) and
T : D → P(D) be a ∗−nonexpansive multi-valued mapping with F(T) �= ∅, such that T satisfies condition
(I). Suppose that an ∈ [0, 1] such that 0 < lim infn an ≤ lim supn an < 1 and cn ∈ (0,+∞) such that
limn→∞ cn = 0. Let {xn} be the Mann type iterative scheme defined by

xn+1 = W(zn, xn, an), (1)

where d(zn+1, zn) ≤ H(PT(xn+1), PT(xn)) + cn for zn ∈ PT(xn). Then {xn} converges to a fixed point of T.

3
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Proof. Take p ∈ F(T). Then p ∈ PT(p) = {p} and we have

d(xn+1, p) = d(W(zn, xn, an), p)

≤ and(zn, p) + (1− an)d(xn, p)

≤ an H(PT(xn), PT(p)) + (1− an)d(xn, p)

≤ and(xn, p) + (1− an)d(xn, p) = d(xn, p).

Hence, {d(xn, p)} is a decreasing and bounded below sequence and thus limn→∞ d(xn, p) exists for
any p ∈ F(T). Therefore {xn} is bounded and so {zn} is bounded. On the other hand,

d(zn+1, zn) ≤ H(PT(xn+1), PT(xn)) + cn ≤ d(xn+1, xn) + cn.

Thus
lim sup

n→∞
(d(zn+1, zn)− d(xn+1, xn)) ≤ 0.

Applying Lemma 2, we get
lim

n→∞
d(zn, xn) = 0.

Hence, we have limn→∞ d(xn, T(xn)) = 0. Since T satisfies condition (I), we conclude that
limn→∞ d(xn, F(T)) = 0. Next, we show that {xn} is a Cauchy sequence. Since limn→∞ d(xn, F(T)) = 0,
thus for ε1 > 0, there exists n1 ∈ N such that for all n ≥ n1

d(xn, F(T)) ≤ ε1

3
.

Thus, there exists p1 ∈ F(T) such that for all n ≥ n1,

d(xn, p1) ≤
ε1

2
.

It follows that

d(xn+m, xn) ≤ d(xn+m, p1) + d(p1, xn) ≤ d(xn, p1) + d(p1, xn)

≤ ε1

2
+

ε1

2
= ε1,

for all m, n ≥ n1. Therefore {xn} is a Cauchy sequence and hence it is convergent. Let limn→∞ xn = p∗.
We will show that p∗ is a fixed point of T.
Since limn→∞ xn = p∗, thus for given ε2 > 0, there exists n2 ∈ N such that for all n ≥ n2,

d(xn, p∗) ≤ ε2

4
.

Moreover, limn→∞ d(xn, F(T)) = 0 implies that there exists a natural number n3 ≥ n2 such that for all
n ≥ n3,

d(xn, F(T)) ≤ ε2

12
,

and thus there exists p2 ∈ F(T) such that for all n ≥ n3,

d(xn, p2) ≤
ε2

8
.

4
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Therefore

d(T(p∗), p∗) ≤ d(T(p∗), p2) + d(p2, T(xn3)) + d(T(xn3), p2) + d(p2, xn3) + d(xn3 , p∗)

≤ H(PT(p∗), PT(p2)) + 2H(PT(p2), PT(xn3)) + d(p2, xn3) + d(xn3 , p∗)

≤ d(p∗, p2) + 2d(p2, xn3) + d(p2, xn3) + d(xn3 , p∗)

≤ d(p∗, xn3) + d(xn3 , p2) + 2d(p2, xn3) + d(p2, xn3) + d(xn3 , p∗)

= 2d(xn3 , p∗) + 4d(xn3 , p2) ≤
ε2

2
+

ε2

2
= ε2.

Thus, p∗ ∈ T(p∗) and therefore p∗ is a fixed point of T.

As a result of Theorem 1, Corollaries 1 and 2 are obtained:

Corollary 1. Let D be a nonempty, closed and convex subset of a complete convex metric space (X, W, d),
T : D → P(D) be ∗−nonexpansive multi-valued mapping with F(T) �= ∅ such that T satisfies condition (I)
and f : D → D be a contractive mapping with a contractive constant k ∈ (0, 1). Then the iterative sequence
{xn} defined by

xn+1 = W(zn, f (xn), an)

where zn ∈ PT(xn) and 0 < lim infn an ≤ lim supn an < 1, converges to a fixed point of T.

Corollary 2. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
T : D → P(D) be ∗−nonexpansive multi-valued mapping with F(T) �= ∅. Let {xn} be the Ishikawa type
iterative scheme defined by

xn+1 = W(z
′
n, xn, an)

yn = W(zn, xn, bn)

where z
′
n ∈ PT(yn), zn ∈ PT(xn), and {an}, {bn} ∈ [0, 1]. Then {xn} converges to a fixed point of T if and

only if limn→∞ d(xn, F(T)) = 0.

The above result can be generalized to the finite and infinite family of ∗−nonexpansive
multi-valued mappings:

Theorem 2. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
{Ti : D → P(D) : i = 1, . . . , k} be a finite family of ∗−nonexpansive multi-valued mappings such that
F := ∩k

i=1F(Ti) �= ∅. Consider the iterative process defined by

y1n = W(z1n, xn, a1n),

y2n = W(z2n, xn, a2n),

. . .

y(k−1)n = W(z(k−1)n, xn, a(k−1)n),

xn+1 = W(zkn, xn, akn),

where ain ∈ [0, 1] and zin ∈ PTi (y(i−1)n) (y0n = xn), for all n ∈ N and i = 1, 2, . . . , k. Then {xn} converges
to a point in F if and only if limn→∞ d(xn, F) = 0.

5
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Proof. The necessity of conditions is obvious and we will only prove the sufficiency. Let p ∈ F.
we have

d(y1n, p) = d(W(z1n, xn, a1n), p)
≤ a1nd(z1n, p) + (1− a1n)d(xn, p)
≤ a1n H(PT1(xn), PT1(p)) + (1− a1n)d(xn, p)
≤ a1nd(xn, p) + (1− a1n)d(xn, p) = d(xn, p),

d(y2n, p) = d(W(z2n, xn, a2n), p)
≤ a2nd(z2n, p) + (1− a2n)d(xn, p)
≤ a2n H(PT2(y1n), PT2(p)) + (1− a2n)d(xn, p)
≤ a2nd(y1n, p) + (1− a2n)d(xn, p)
≤ a2nd(xn, p) + (1− a2n)d(xn, p) = d(xn, p),

...
d(y(k−1)n, p) = d(W(z(k−1)n, xn, a(k−1)n), p)

≤ a(k−1)nd(z(k−1)n, p) + (1− a(k−1)n)d(xn, p)
≤ a(k−1)n H(PTk−1(y(k−2)n), PTk−1(p)) + (1− a(k−1)n)d(xn, p)
≤ a(k−1)nd(y(k−2)n, p) + (1− a(k−1)n)d(xn, p)
≤ a(k−1)nd(xn, p) + (1− a(k−1)n)d(xn, p) = d(xn, p).

Thus

d(xn+1, p) = d(W(zkn, xn, akn), p)

≤ aknd(zkn, p) + (1− akn)d(xn, p)

≤ akn H(PTk (y(k−1)n), PTk (p)) + (1− akn)d(xn, p)

≤ aknd(y(k−1)n, p) + (1− akn)d(xn, p)

≤ aknd(xn, p) + (1− akn)d(xn, p) = d(xn, p).

Therefore, {d(xn, p)} is a decreasing sequence and so d(xn+m, p) ≤ d(xn, p), for all n, m ∈ N. As in
the proof of Theorem 1, {xn} is a Cauchy sequence and thus limn→∞ xn exists and equals to some
p∗ ∈ D. Again, with a similar process as in the proof of Theorem 1, we conclude that p∗ ∈ PTi (q) for
all i = 1, . . . , k. Hence p∗ ∈ F and this completes the proof of theorem.

Theorem 3. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
{Ti : D → P(D) : i = 1, . . .} be an infinite family of ∗−nonexpansive multi-valued mappings such that
F := ∩∞

i=1F(Ti) �= ∅. Consider the iterative process defined by

xn+1 = W(z
′
n, xn, an)

yn = W(zn, xn, bn)

where z
′
n ∈ PTn(yn), zn ∈ PTn(xn) and {an}, {bn} ∈ [0, 1]. Then {xn} converges to a point in F if and only if

limn→∞ d(xn, F) = 0.

Author Contributions: Data curation, A.G.; Formal analysis, A.G.; Software, A.G.; Writing—original draft, A.G.;
Conceptualization, H.P.M.; Project administration, H.P.M.; Supervision, M.D.L.S.; Funding acquisition, M.D.L.S.;
Writing—review and editing, M.D.L.S. and M.R.; Validation, M.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Basque Government through grant IT1207-19.

Acknowledgments: The authors are grateful to the referees for valuable suggestions and to the Basque
Government for Grant IT1207-19.

Conflicts of Interest: The authors declare no conflict of interest.

6



Axioms 2020, 9, 10

References

1. Takahashi, W. A convexity in metric spaces and nonexpansive mappings. Kodai Math. Sem. Rep. 1970, 22,
142–149. [CrossRef]

2. Kirk, W.A. An abstract fixed point theorem for nonexpansive mappings. Proc. Am. Math. Soc. 1981, 82,
640–642. [CrossRef]

3. Kirk, W.A. Fixed point theory for nonexpansive mappings II. Contemp. Math. 1983, 18, 121–140.
4. Penot, J.P. Fixed point theorems without convexity. Bull. Soc. Math. France Mem. 1979, 60, 129–152. [CrossRef]
5. Chang, S.S.; Kim, J.K. Convergence theorems of the Ishikawa type iterative sequences with errors for

generalized quasi-contractive mappings in convex metric spaces. Appl. Math. Lett. 2003, 16, 535–542.
[CrossRef]

6. Chang, S.S.; Kim, J.K.; Jin, D.S. Iterative sequences with errors for asymptotically quasi-nonexpansive type
mappings in convex metric spaces. Arch. Inequal. Appl. 2004, 2, 365–374.

7. Ding, X.P. Iteration processes for nonlinear mappings in convex metric spaces. J. Math. Anal. Appl. 1988, 132,
114–122. [CrossRef]

8. Khan, A.R.; Ahmed, M.A. Convergence of a general iterative scheme for a finite family of asymptotically
quasi-nonexpansive mappings in convex metric spaces and applications. Comput. Math. Appl. 2010, 59,
2990–2995. [CrossRef]

9. Kim, J.K.; Kim, K.H.; Kim, K.S. Three-step iterative sequences with errors for asymptotically
quasi-nonexpansive mappings in convex metric spaces. Nonlinear Anal. Convex Anal. 2004, 1365, 156–165.

10. Rafiq, A. Fixed point of Ciric quasi-contractive operators in generalized convex metric spaces. Gen. Math.
2006, 14, 79–90.

11. Saluja, G.S.; Nashine, H.K. Convergence of implicit iteration process for a finite family of asymptotically
Quasi-nonexpansive mappings in convex metric spaces. Opuscula Math. 2010, 30, 331–340. [CrossRef]

12. Tian, Y.X. Convergence of an Ishikawa type Iterative scheme for asymptotically quasi- nonexpansive
mappings. Comput. Math. Appl. 2005, 49, 1905–1912. [CrossRef]

13. Wang, C.; Zhu, J.H.; Damjanovic, B.; Hu, L.G. Approximating fixed points of a pair of contractive type
mappings in generalized convex metric spaces. Appl. Math. Comput. 2009, 215, 1522–1525. [CrossRef]

14. Wang, C.; Liu, L.W. Convergence theorems of fixed points of uniformly quasi-Lipschitzian mappings in
convex metric spaces. Nonlinear Anal. 2009, 70, 2067–2071. [CrossRef]

15. Roshdi, K. Best approximation in metric spaces. Proc. Amer. Math. Soc. 1988, 103, 579–586.
16. Shahzad, N.; Zegeye, H. On Mann and Ishikawa iteration schemes for multi-valued maps in Banach spaces.

Nonlinear Anal. 2009, 71, 838–844. [CrossRef]
17. Hussain, T.; Latif, A. Fixed points of multivalued nonexpansive maps. Math. Japon. 1988, 33, 385–391.
18. Moudafi, A. Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 2000, 241,

46–55. [CrossRef]
19. Deng, W.Q. A new viscosity approximation method for common fxed points of a sequence of nonexpansive

mappings with weakly contractive mappings in Banach spaces. J. Nonlinear Sci. Appl. 2016, 9, 3920–3930.
[CrossRef]

20. Khan, A.R.; Yasmin, N.; Fukhar-ud-din, H.; Shukri, S.A. Viscosity approximation method for generalized
asymptotically quasi-nonexpansive mappings in a convex metric space. Fixed Point Theory Appl. 2015,
2015, 196. [CrossRef]

21. Lin, Y.C.; Sharma, B.K.; Kumar, A.; Gurudwan, N. Viscosity approximation method for common fixed point
problems of a finite family of nonexpansive mappings. J. Nonlinear Convex Anal. 2017, 18, 949–966.

22. Liu, X.; Chen, Z.; Xiao, Y. General viscosity approximation methods for quasi-nonexpansive mappings with
applications. J. Inequal. Appl. 2019, 2019, 71. [CrossRef]

23. Liu, C.; Song, M. The new viscosity approximation methods for nonexpansive nonself-mappings. Int. J. Mod.
Nonlinear Theory Appl. 2016, 5, 104–113. [CrossRef]

24. Naqvi, S.F.A.; Khan, M.S. On the viscosity rule for common fixed points of two nonexpansive mappings in
Hilbert spaces. Open J. Math. Sci. 2017, 1, 111–125. [CrossRef]

25. Thong, D.V. Viscosity approximation methods for solving fixed-point problems and split common fixed-point
problems. J. Fixed Point Theory Appl. 2016. [CrossRef]

7



Axioms 2020, 9, 10

26. Xiong, T.; Lan, H. Strong convergence of new two-step viscosity iterative approximation methods for
set-valued nonexpansive mappings in CAT(0) spaces. J. Funct. Spaces 2018, 2018. [CrossRef]

27. Khan, S.H.; Fukhar-ud-din, H. Approximating fixed points of ρ-nonexpansive mappings by RK-iterative
process in modular function spaces. J. Nonlinear Var. Anal. 2019, 3, 107–114.

28. Suzuki, T. Strong convergence theorems for infinite families of nonexpansive mappings in general Banach
spaces. Fixed Point Theory Appl. 2005, 1, 103–123. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

8



axioms

Article

Measure of Weak Noncompactness and Fixed Point
Theorems in Banach Algebras with Applications

Mohamed Amine Farid 1, Karim Chaira 2, El Miloudi Marhrani 1,∗ and Mohamed Aamri 1

1 Laboratory of Algebra, Analysis and Applications (L3A), Faculty of Sciences Ben M’Sik,
Hassan II University of Casablanca, B.P 7955, Sidi Othmane, Casablanca 20700, Morocco;
amine.farid17@gmail.com (M.A.F.); aamrimohamed82@gmail.com (M.A.)

2 CRMEF, Avenue Allal El Fassi, Madinat Al Irfan, B.P 6210, Rabat 10000, Morocco; chaira_karim@yahoo.fr
* Correspondence: marhrani@gmail.com

Received: 12 September 2019; Accepted: 5 November 2019; Published: 14 November 2019 ��������	
�������

Abstract: In this paper, we prove some fixed point theorems for the nonlinear operator A · B + C in
Banach algebra. Our fixed point results are obtained under a weak topology and measure of weak
noncompactness; and we give an example of the application of our results to a nonlinear integral
equation in Banach algebra.

Keywords: Banach algebras; fixed point theorems; measure of weak noncompactness; weak topology;
integral equations

MSC: 47H09; 47H10; 47H30

1. Introduction

Integral equations are involved in various scientific problems such as transport theory, the theory
of radiative transfer, biomathematics, etc (see [1–6]). The use of these equations dates back to 1730
with Bernoulli in the study of oscillatory problems. With the development of functional analysis, more
general results were obtained by L. Schwartz, H. Poincaré, I. Fredholm, and others.

The problems of the existence of solutions for an integral equation can then be resolved by
searching fixed points for nonlinear operators in a Banach algebra. For this, many researchers have
been interested in the case where the Banach algebra is endowed with its strong topology; however,
few of them were interested to the existence of a fixed point for mappings acting on a Banach algebra
equipped with its weak topology [7–11]; such a topology allows obtaining some generalizations of
these results.

The history of fixed point theory in Banach algebra started in 1977 with R.W. Legget [12],
who considered the existence of solutions for the equation:

x = x0 + x · Bx, (x0, x) ∈ X×Ω (1)

where Ω is a nonempty, bounded, closed, and convex subset of a Banach algebra X and B is a compact
operator from Ω into X. Many authors [10,11,13,14] generalized Equation (1) to the equation:

x = Ax · Bx + Cx, x ∈ Ω, (2)

where Ω is a nonempty, bounded, closed, and convex subset of a Banach algebra and A, C : X −→ X,
B : Ω −→ X are nonlinear operators. Most of these authors have obtained the desired results through

the study of the operator
(

I−C
A

)−1
B.

Axioms 2019, 8, 130; doi:10.3390/axioms8040130 www.mdpi.com/journal/axioms9
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This study was based mainly on the properties of operators A, B, C, and I−C
A (cf. condensing,

relatively weakly compact, etc.).
The study of nonlinear integral equations in Banach algebra via fixed point theory was in initiated

by B.C. Dhage [15]. In 2005, B.C. Dhage [14] studied the existence of solutions for the equation:

x = Ax · Bx

The results were obtained in the case of the norm topology on Banach algebra. In 2014,
Banas et al. [8] proved some existence results of operator equations under the weak topology using
the measure of weak noncompactness. In 2015, Ben Amar et al. used the De Blasi measure of
non-compactness to obtain some generalizations of these results. In 2019, A.B. Amar et al. [16]
established new fixed point theorems for the sum of two mappings in Banach space and showed that
the condition «weakly condensing»can by relaxed by the assumption «countably weakly condensing».

In this paper, we use the measure of noncompactness to prove some fixed point results for a
nonlinear operator of type AB + C in a Banach algebra. We note that the condition «relatively weakly
compact », which is not easy to verify, is not required in most results in [16]. Our results are formulated
using the operator I − I−C

A under the weak topology in a Banach algebra.
As an application, we discuss the existence of solutions for an abstract nonlinear integral equation

in the Banach algebra C([0, 1], X); and an example of a nonlinear integral equation in the Banach
algebra C([0, 1],R).

2. Preliminaries

Let (X, ‖ ‖) be a Banach space with zero element θ. We denote respectively P(X), Pcv(X), Pbd(X)

and Pcl,cv(X) the family of all nonempty subsets, nonempty and convex subsets, nonempty and
bounded subsets, nonempty closed and convex subsets of X.
For any ε > 0, we denote Bε the closed ball of X centered at origin with radius ε. Moreover, we write
xn → x and xn ⇀ x respectively to denote the strong convergence and the weak convergence of a
sequence {xn}n to x.
For a subset K of X, we write K, Kw, convK, and convK, to denote the closure, the weak closure,
the convex hull, and the closed convex hull of the subset K, respectively; and byR(T), the range of the
operator T.

Definition 1. Let Ω be a nonempty subset of X. We say that a multivalued map H : Ω → P(Ω) has a weakly
closed graph if the following property holds: if for every net {xδ}δ, with xδ, x ∈ Ω such that xδ → x and {yδ}δ

such that yδ ∈ Hxδ, yδ → y, then Hx ∩ S(x, y) �= ∅; here, S(x, y) := {λy + (1− λ)x ; λ ∈ [0, 1]}.

We say that a map H : Ω → P(Ω) has a w-weakly closed graph in Ω× X if it has a weakly closed
graph in Ω× X with respect to the weak topology.

Definition 2 ([9]). Let X be a Banach space. An operator T : X → X is said to be weakly sequentially
continuous on X if for every sequence {xn}n with xn ⇀ x, we have Txn ⇀ Tx.

Note that T is weakly sequentially continuous if and only if I − T is weakly
sequentially continuous.

Definition 3. Let X be a Banach space. An operator T : X −→ X is said to be weakly compact if T(M) is
relatively weakly compact for every bounded subset M ⊂ X.

Definition 4 ([17]). Let Ω be a nonempty weakly closed set of a Banach space X and T : Ω → X a weakly
sequentially continuous operator. T is said to be a weakly semi-closed operator at θ if the conditions {xn}n ⊂ Ω,
xn − Txn → θ imply that there exists x ∈ Ω such that Tx = x.

10
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We recall that a function ω : Pbd(X)→ [0,+∞) is said to be a measure of weak noncompactness
(MWNC) on X if it satisfies the following properties.

1. For any bounded subsets Ω1, Ω2 of X, we have Ω1 ⊆ Ω2 implies ω(Ω1) ≤ ω(Ω2).
2. ω(conv(Ω)) = ω(Ω), for all bounded subsets Ω ⊂ X.
3. ω(Ω ∪ {a}) = ω(Ω) for all a ∈ X, Ω ∈ Pbd(X).
4. ω(Ω) = 0 if and only if Ω is relatively weakly compact in X.

The MWNC ω is said to be:

1. Positive homogeneous, if ω(λΩ) = λω(Ω), for all λ > 0 and Ω ∈ Pbd(X).
2. Subadditive, if ω(Ω1 + Ω2) ≤ ω(Ω1) + ω(Ω2), for all Ω1, Ω2 ∈ Pbd(X).

As an example of MWNC, we have the De Blasi measure of weak noncompactness [18], defined
on Pbd(X) by:

μ(M) = inf{ε > 0; there exists K weakly compact such that : M ⊂ K + Bε},

it is well known that μ is homogenous, subadditive, and satisfies the set additivity property:

μ(M ∪ N) = max{μ(M), μ(N)}, for all M, N ∈ Pbd(X).

For more properties of the MWNC, we refer to [19].
Let us formulate some other definitions needed in this paper.

Definition 5. Let Ω be a subset of a Banach space X, ω be an MWNC on X, and 0 ≤ k < 1. Let T be a
mapping from Ω into X; we say that:

1. T is k-ω-contractive if ω(T(M)) ≤ kω(M) for any bounded set M ⊂ Ω;
2. T is ω-condensing if ω(T(M)) < ω(M) for any bounded set M ⊂ Ω with ω(M) > 0;
3. T is countably k-ω-contractive, if ω(T(M)) ≤ kω(M) for any countable bounded set M ⊂ Ω;
4. T is countably ω-condensing if ω(T(M)) < ω(M) for any countable bounded set M ⊂ Ω with

ω(M) > 0;
5. T is weakly countable one-set-contractive if ω(T(M)) ≤ ω(M) for any bounded set M ⊂ Ω.

Clearly, every k-ω-contractive is countably k-ω-contractive, but the converse is not always true.

Definition 6. A mapping T : Ω ⊂ X −→ X is said to be:

1. Lipschitzian with the Lipschitz constant k > 0:

‖Tx− Ty‖ ≤ k‖x− y‖, for all x, y ∈ Ω.

If k = 1, T is called nonexpansive, and if k ∈ [0, 1[, T is called a contraction.
2. Pseudocontractive if for each r > 0, we have:

‖x− y‖ ≤ ‖r(Ty− Tx) + (1 + r)(x− y)‖, for all x, y ∈ Ω.

3. Accretive if for each λ ≥ 0, we have:

‖x− y‖ ≤ ‖x− y + λ(Tx− Ty)‖, for all x, y ∈ Ω.

In addition, ifR(I + λT) = X for every λ > 0, then T is called m-accretive.

Note that T is pseudocontractive if and only if I − T is accretive.
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Definition 7. An operator T : Ω ⊆ X → X is called D-Lipschitzian if there exists a continuous and
nondecreasing function ΦT : [0,+∞)→ [0,+∞) with ΦT(0) = 0 such that:

‖Tx− Ty‖ ≤ ΦT(‖x− y‖), for all x, y ∈ Ω.

Sometimes, ΦT is called a D-function of T on X. Moreover, if ΦT(r) < r for all r > 0, then the operator T
is called a nonlinear contraction with a contraction function ΦT.

Definition 8. An operator T : Ω ⊆ X → X is said to be ψ-expansive if there exists a function
ψ : [0, ∞)→ [0, ∞) such that ψ(0) = 0, ψ(r) > r for any r > 0, ψ is either continuous or nondecreasing, and
‖Tx− Ty‖ ≥ ψ(‖x− y‖) for all x, y ∈ Ω.

Definition 9. We say that H : Ω ⊆ X → P(X) is countably ω-condensing if H(Ω) is bounded on X and
ω(H(M)) < ω(M) for all countable bounded subsets M of Ω with ω(M) > 0.

The following result is crucial:

Theorem 1 ([20]). Let X be a Banach space.

(i) Let H be a bounded subset of C([0, T], X). Then:

sup
t∈[0,T]

μ(H(t)) ≤ μ(H),

where H(t) = {x(t); x ∈ H}.
(ii) Let H ⊂ C([0, T], X) be bounded and equicontinuous. Then:

μ(H) = sup
t∈[0,T]

μ(H(t)) = μ(H([0, T])),

where H([0, T]) = ∪t∈[0,T]H(t).

Here, μ is the De Blasi measure of weak noncompactness.

Lemma 1 ([21]). Let X be a Banach space and T : X −→ X a k-Lipschitzian map and weakly sequentially
continuous. Then, for each bounded subset S of X, we have:

μ(T(S)) ≤ kμ(S), for all x, y ∈ X;

here, μ is the De Blasi measure of weak noncompactness.

We recall that an algebra X is a vector space endowed with an internal composition law denoted
by «·», which is associative and bilinear. A normed algebra is an algebra endowed with a norm ‖.‖
satisfying the following property:

‖x · y‖ ≤ ‖x‖‖y‖, for all x, y ∈ X.

A complete normed algebra is called a Banach algebra. For basic properties of Banach algebra,
refer to [22].

In general, the product of two weakly sequentially continuous mappings on a Banach algebra is
not necessarily weakly sequentially continuous.
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Definition 10 ([9]). We will say that the Banach algebra X satisfies condition (P) if:

(P)
{

For any sequences {xn}n and {yn}n in X such that xn ⇀ x and yn ⇀ y,

we have xnyn ⇀ xy.

Note that, every finite dimensional Banach algebra satisfies condition (P). If X satisfies condition
(P), then the space C(K; X) of all continuous functions from a compact Hausdorff space K into X is
also a Banach algebra satisfying condition (P) (see [9]).

Definition 11. Let X be a Banach algebra. An operator T : X → X is called regular on X if it maps X into the
set of all invertible elements of X.

In [16] (Theorem 3.1), Afif Ben Amar et al. proved the following result:

Theorem 2 ([16], Theorem 3.1). Let Ω be a nonempty closed convex subset of a Banach space X and ω be
an MWNC on X. Assume that T : Ω → Ω is a weakly sequentially continuous and countably ω-condensing
mapping with a bounded range. Then, T has a fixed point.

Theorem 3 ([16], Theorem 3.3). Let Ω be a nonempty closed convex subset of a Banach space X, ω be a
positive homogeneous MWNC on X, and T : Ω → Ω be weakly sequentially continuous, weakly countably
one-set-contractive. In addition, assume that T is weakly semi-closed at θ with a bounded range. Then, T has a
fixed point.

Theorem 4 ([16], Theorem 3.2). Let Ω be a nonempty convex closed subset of a Banach space E, U ⊂ E be a
weakly open subset of Ω with θ ∈ U, and ω be a subadditive MWNC on E. Assume T : Uw −→ X is a weakly
sequentially continuous countably ω-condensing map with T(Uw

) bounded. Then, either T has a fixed point
or there exists u ∈ ∂ΩU and λ ∈]0, 1[ such that u = λT(u) ( ∂ΩU denotes the weak boundary of U in Ω).

The following lemma is useful for the sequel.

Lemma 2. Let X be a Banach algebra satisfying condition (P). Then, for any bounded subset M of X and
relatively weakly compact subset K of X, we have w(MK) ≤ ‖K‖w(M).

3. Results

Our first main result is a new version of Theorem 3.2 proven by Jeribi et al. in [23].

Theorem 5. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach algebra X and ω be a
subadditive MWNC on X. Let A, C : X −→ X, and B : Ω −→ X be three operators that satisfy the
following conditions:

(i) A is regular on X, and
(

I−C
A

)−1
exists on B(Ω),

(ii) B and I−C
A are weakly sequentially continuous,

(iii) I − I−C
A is countably α-ω-contractive on Ω,

(iv) B is countably β-ω-contractive,
(v) x = Ax · By + Cx, for all y ∈ Ω implies x ∈ Ω.

Then, there exists x ∈ Ω such that x = Ax · Bx + Cx, whenever β
1−α < 1.

Proof. Note that x = Ax · Bx + Cx, x ∈ Ω if and only if x is a fixed point for the operator

T :=
(

I−C
A

)−1
B.

13



Axioms 2019, 8, 130

Let y ∈ Ω; from Assumption (i), there is a unique xy ∈ X such that:(
I − C

A

)
xy = By,

then:
xy = Axy · By + Cxy;

by Condition (v), we have xy ∈ Ω, and then, T is well defined on Ω.
By Theorem 2, it suffices to prove that the map T is weakly sequentially continuous and

countably ω-condensing.
Let {xn}n be a sequence in Ω such that xn ⇀ x; the set {xn : n ∈ N} is relatively weakly compact;

and since B is weakly sequentially continuous, the set {Bxn : n ∈ N} is relatively weakly compact.
Assume that ω({Txn : n ∈ N}) > 0. Since:

T = B +

(
I − I − C

A

)
T,

and I − I−C
A is countably α-ω-contractive, we obtain:

ω ({Txn : n ∈ N}) ≤ ω ({Bxn : n ∈ N}) + ω

((
I − I − C

A

)
({Txn : n ∈ N})

)
≤ αω ({Txn : n ∈ N})
< ω ({Txn : n ∈ N}) ,

which is absurd. It follows that {Txn : n ∈ N} is weakly relatively compact; hence, there exists
a subsequence {xσ(n)}n of {xn}n such that Txσ(n) ⇀ y for some y ∈ Ω. Moreover, I−C

A is weakly
sequentially continuous; then, I − I−C

A is weakly sequentially continuous, and then:(
I − I − C

A

)
Txσ(n) ⇀

(
I − I − C

A

)
y,

As we have
(

I − I−C
A

)
T = −B + T and −Bxσ(n) + Txσ(n) ⇀ −Bx + y, we obtain:

−Bx + y = y−
(

I − C
A

)
y

which gives Tx = y, and therefore, Txσ(n) ⇀ Tx.
We claim that Txn ⇀ Tx. Assume that there exists a subsequence {xσ1(n)}n of {xn}n and a weak

neighborhood Vw of Tx such that Txσ1(n) /∈ Vw for all n ∈ N. Since {xσ1(n)}n converge weakly to x,
we may extract a subsequence {xσ1σ2(n)}n of {xσ1(n)}n such that Txσ1σ2(n) ⇀ Tx and Txσ1σ2(n) /∈ Vw,
which is absurd. Hence, Txn ⇀ Tx; it follows that T is weakly sequentially continuous.

T is countably ω-condensing. Indeed, let M be a countably subset of Ω with ω(M) > 0; we have:

ω(T(M)) ≤ ω(B(M)) + ω

((
I − I − C

A

)
(T(M))

)
≤ βω(M) + αω(T(M)),

then ω(T(M)) ≤ β
1−α ω(M) < ω(M), which ends the proof.

Corollary 1. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach algebra X and ω be
a subadditive MWNC on X. Let C : X −→ X and B : Ω −→ X be two operators that satisfy the
following conditions:
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(i) (I − C)−1 exists on B(Ω),
(ii) B and I − C are weakly sequentially continuous,
(iii) C is countably α-ω-contractive on Ω,
(iv) B is countably β-ω-contractive,
(v) x = By + Cx, for all y ∈ Ω implies x ∈ Ω.

Then, there exists x ∈ Ω such that x = Bx + Cx, whenever β
1−α < 1.

Remark 1.

1. Note that Hypothesis (ii) in Theorem 5 may be replaced by “A, B, and C are weakly sequentially
continuous”, but the Banach algebra X must satisfy condition (P).

2. In Theorem 5, we do not require the conditions “A satisfies condition (H1)” and “A(Ω) is relatively
weakly compact”, but in Theorem 3.2 in [23], these conditions are necessary.

3. In Theorem 5, Condition (i) may be replaced by
(ĩi) A is regular on X and, A and C are nonlinear contractions on X with contraction functions ΦA and
ΦC, respectively, and LΦA(r) + ΦC(r) < r, for r > 0 and L = ‖B(Ω)‖.

In the following result, we will use the notion of D-Lipschitzian operators.

Theorem 6. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach algebra X satisfying
condition (P) and ω a subadditive MWNC on X. Let A, C : X −→ X, and B : Ω −→ X be three weakly
sequentially continuous operators with the following conditions:

(i) A is regular on X,
(ii) I − I−C

A is countably α-ω-contractive on Ω,
(iii) B is countably β-ω-contractive,
(iv) A and C are D-Lipschitzian with the D-function φA and φC, respectively, and LφA(r) + φC(r) < r for

r > 0 and L = ‖B(Ω)‖,
(v) x = Ax · By + Cx, for all y ∈ Ω implies x ∈ Ω.

Then, there exists x ∈ Ω such that x = Ax · Bx + Cx, whenever β
1−α < 1.

Proof. Let y ∈ Ω and Fy : X −→ X by Fy(x) = Ax · By + Cx.
For each x, z ∈ X, (iv) gives:

‖Fy(x)− Fy(z)‖ ≤ ‖Ax · By− Az · By‖+ ‖Cx− Cz‖
≤ ‖Ax− Az‖‖By‖+ ‖Cx− Cz‖
≤ LφA(‖x− z‖) + φC(‖x− z‖).

By the Boyd–Wong fixed point theorem ([24]), the mapping Fy has a unique fixed point xy. Hence,

the operator T =
(

I−C
A

)−1
B : Ω −→ X is well defined; and by (v), we have T(Ω) ⊂ Ω.

Let {xn}n be a sequence in Ω such that xn ⇀ x; as seen in the proof of Theorem 5, there exists a
subsequence {xσ1(n)}n of {xn}n such that Txσ1(n) ⇀ y for some y ∈ Ω. Since:

T = AT · B + CT,

and A, B, and C are weakly sequentially continuous, we obtain:

Txσ1(n) = A(Txσ1(n)) · Bxσ1(n) + C(Txσ1(n)) ⇀ y = Ay · Bx + Cy

Thus, y = Tx, and then, Tσ1(n) ⇀ Tx. As above, we can prove that Txn ⇀ Tx; and then, T is weakly
sequentially continuous. By Theorems 2 and 5, T is countably ω-condensing.
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Remark 2. Note that the hypothesis “A and C are weakly sequentially continuous” in Theorem 6 can be
replaced by “ I−C

A is weakly sequentially continuous”, and in this case, the condition (P) is not required.

Theorem 7. Let Ω be a nonempty, closed, convex, and bounded subset of a Banach algebra X and ω be
a subadditive MWNC on X. Let A, C : X −→ X, and B : Ω −→ X be three operators satisfying the
following conditions:

(i) A is regular on X, and B is weakly sequentially continuous,
(ii) I−C

A is ψ-expansive, accretive, and continuous,
(iii) I − I−C

A is countably α-ω-contractive on Ω,
(iv) B is countably β-ω-contractive,
(v) x = Ax · By + Cx, for all y ∈ Ω implies x ∈ Ω.

Then, there exists x ∈ Ω such that x = Ax · Bx + Cx, whenever β
1−α < 1.

Proof. For y ∈ Ω, we define the mapping Fy : X −→ X by:

Fy(x) =
(

I − I − C
A

)
x + By

Since I−C
A is continuous and accretive, I − I−C

A is continuous and pseudocontractive, and Fy is
continuous and pseudocontractive.

Moreover, we have:

‖(I − Fy)x− (I − Fy)z‖ = ‖
(

I − C
A

)
x−

(
I − C

A

)
z‖,

for all x, z ∈ Ω, and I−C
A is ψ-expansive. Then, I − Fy is ψ-expansive, continuous, and accretive.

It follows that I − Fy is m-accretive (see [25], Corollary 3.2). By [26], Theorem 8, we deduce that I − Fy

is surjective. Then, there exists an x ∈ X such that θ = (I − Fy)x. It follows that:

x = Fy(x) =
(

I − I − C
A

)
x + By

which implies By =
(

I−C
A

)
x ∈

(
I−C

A

)
(X). We conclude by Theorem 5.

In the following result, we present a nonlinear alternative of the Leary–Schauder type in
Banach algebra.

Theorem 8. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach algebra X, U be a weakly
open subset of Ω with θ ∈ U, and ω be a subadditive MWNC on X. Let A, C : X −→ X, and B : Uw −→ X
be three operators satisfying the following conditions:

(i) A is regular on X, and
(

I−C
A

)−1
exists on B(Ω),

(ii) B and I−C
A are weakly sequentially continuous,

(iii) I − I−C
A is countably α-ω-contractive on Ω,

(iv) B is countably β-ω-contractive,
(v) x = Ax · By + Cx, for all y ∈ Uw implies x ∈ Ω.

Then, either:

(i) there exists x ∈ U such that x = Ax · Bx + Cx, or
(ii) there exists u ∈ ∂ΩU and λ ∈]0, 1[ such that u = λA

( u
λ

)
· Bu + λC

( u
λ

)
,

where ∂ΩU denotes the weak boundary of U in Ω and α
1−β < 1.
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Proof. Let T :=
(

I−C
A

)−1
B; Condition (vi) implies T(Uw

) ⊂ Ω, and T is weakly sequentially
continuous and countably ω-condensing. Theorem 4 implies that T has a fixed point in U, or there exists
u ∈ ∂ΩU and λ ∈]0, 1[ such that u = λT(u), then either there exists x ∈ U such that x = Ax · Bx + Cx,
or there exists u ∈ ∂ΩU and λ ∈]0, 1[ such that u = λA

( u
λ

)
· Bu + λC

( u
λ

)
.

Corollary 2. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach algebra X, U be a weakly
open subset of Ω with θ ∈ U, and ω be a subadditive MWNC on X. Let C : X −→ X and B : Uw −→ X be
two operators that satisfy the following conditions:

(i) (I − C)−1 exists on B(Ω),
(ii) B and I − C are weakly sequentially continuous,
(iii) C is countably α-ω-contractive on Ω,
(iv) B is countably β-ω-contractive,
(v) x = By + Cx, for all y ∈ Uw implies x ∈ Ω.

Then,

(i) either there exists x ∈ U such that x = Bx + Cx, or
(ii) there exists u ∈ ∂ΩU and λ ∈]0, 1[ such that u = λBu + λC

( u
λ

)
,

where ∂ΩU denotes the weak boundary of U in Ω, and α
1−β < 1.

Remark 3. In Theorem 8, Condition (i) may be replaced by
(ĩ) I−C

A is ψ-expansive and Bx ∈
(

I−C
A

)
(X), for all x ∈ Ω.

Theorem 9. Let Ω be a nonempty, closed, convex, and bounded subset of a Banach algebra X, U be a weakly
open subset of Ω with θ ∈ U and ω be a subadditive MWNC on X. Let A, C : X −→ X, and B : Uw −→ X be
three operators satisfying the following conditions:

(i) A is regular on X,
(ii) B and I−C

A are weakly sequentially continuous,
(iii) I−C

A is ψ-expansive, accretive, and continuous,
(iv) I − I−C

A is countably α-ω-contractive on Ω,
(v) B is countably β-ω-contractive,
(vi) x = Ax · By + Cx, for all y ∈ Uw implies x ∈ Ω.

Then, either:

(i) there exists x ∈ Ω such that x = Ax · Bx + Cx, or
(ii) there exists u ∈ ∂ΩU and λ ∈]0, 1[ such that u = λA

(
1
λ u
)
· Bu + C

(
1
λ u
)

.

where ∂ΩU denotes the weak boundary of U in Ω, and α
1−β < 1.

Proof. Define T : Ω −→ Ω by Tx =
(

I−C
A

)−1
Bx. As seen in the proof of Theorem 7, the operator T is

well defined; moreover, T is weakly sequentially continuous and countably ω-condensing, and by (vi),
we have T(Uw

) ⊂ Ω; we conclude by Theorem 4.

Remark 4. If we take A is the unit element in the Banach algebra X, we obtain Theorem 3.9 in [16].

In the following result, the operator I−C
A is not invertible.

Theorem 10. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach algebra X and ω be
a subadditive MWNC on X. Let A, C : X −→ X, and B : Ω −→ X be three operators that satisfy the
following conditions:

17
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(i) A is regular,
(ii) I − I−C

A is countably α-ω-contractive on Ω,
(iii) B is countably β-ω-contractive,
(iv) for every net {xδ}δ, xδ ∈ Ω, if xδ ⇀ x, x ∈ Ω, then, Bxδ ⇀ Bx and

(
I−C

A

)
xδ ⇀

(
I−C

A

)
x,

(v) for every net {xδ}δ, xδ ∈ Ω, if
(

I−C
A

)
xδ ⇀ y, y ∈ Ω, then there exists a weakly convergent subset of

{xδ}δ,

(vi)
(

I−C
A

)−1
Bx is convex, for all x ∈ Ω;

(vii) Bx ∈
(

I−C
A

)
(X) for all x ∈ Ω and x = Ax · By + Cx, for all y ∈ Ω implies x ∈ Ω.

Then, there exists x ∈ Ω such that x = Ax · Bx + Cx, whenever β
1−α < 1.

Proof. By (vii), the multivalued mapping:

H : Ω −→ P(Ω)

x �−→ Hx =

(
I − C

A

)−1
Bx,

is well defined.
Step 1. H has a ω-weakly closed graph in Ω×Ω.
Let {xδ}δ and {yδ}δ be nets in Ω such that xδ ⇀ x ∈ Ω, yδ ⇀ y ∈ Ω and yδ ∈ Hxδ.
Since

(
I−C

A

)
yδ = Bxδ, we obtain

(
I−C

A

)
yδ ⇀

(
I−C

A

)
y and Bxδ ⇀ Bx; it follows

that
(

I−C
A

)
y = Bx and then y ∈ Hx; which gives:

y ∈ S(x, y) = {λy + (1− λ)x : λ ∈ [0, 1]}

then, Hx ∩ S(x, y) �= ∅, and H has a ω-weakly closed graph.
Step 2. By Step 1, Hx is closed, for all x ∈ Ω, and by (vi), H(Ω) ⊂ Pcl,cv(Ω).
Step 3. H maps weakly compact sets into relatively weakly compact sets.
Let K be a weakly compact set in Ω, and let {yn}n be a sequence in H(K); choose {xn}n in K

such that yn ∈ Hxn for all n ∈ N and {xσ1(n)}n a subsequence of {xn}n such that xσ1(n) ⇀ x. By (iv),(
I−C

A

)
yσ1(n) = Bxσ1(n) ⇀ Bx, and (v) implies that {yn}n has a weakly convergent subsequence. Then,

by the Eberlein–Šmulian theorem [27], H(K) is relatively weakly compact.
Step 4. H is countably ω-condensing.
Let M be a countable subset of Ω with ω(M) > 0; we have:(

I − C
A

)
(Hx) = {Bx}, for all x ∈ M,

then, for all y ∈ Hx we have: (
I − C

A

)
y = Bx;

hence:

y = Bx +

(
I − I − C

A

)
y;

consequently:

Hx ⊂ Bx +

(
I − I − C

A

)
(Hx), for all x ∈ M,

then:

H(M) ⊂ B(M) +

(
I − I − C

A

)
(H(M)),
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and:

ω(H(M)) ≤ ω (B(M)) + ω

((
I − I − C

A

)
(H(M))

)
≤ βω(M) + αω (H(M)) ,

It follows that ω((H(M)) ≤ β
1−α ω(M) < ω(M); and then, H is countably ω-condensing.

By Theorem 3.18 in [16], we conclude that H has a fixed point in Ω.

The following result requires the condition “relatively weakly compact” and where β
1−α ≤ 1.

Theorem 11. Let Ω be a nonempty, bounded, closed, and convex subset of a Banach algebra X and ω be a
positive homogenous MWNC on X. Let A, C : X −→ X, and B : Ω −→ X be three operators that satisfy the
following conditions:

(i) A is regular on X, and
(

I−C
A

)−1
exists on B(Ω),

(ii) B and I−C
A are weakly sequentially continuous,

(iii)
(

I − I−C
A

)
(Ω) is relatively weakly compact,

(iv) B is countably β-ω-contractive,
(v) If {xn}n is a sequence in Ω such that (I − B)xn ⇀ x, then {xn}n has a weakly convergent subsequence,
(vi) I − I−C

A is countably α-ω-contractive on Ω,
(vii) x = Ax · By + Cx, for all y ∈ Ω implies x ∈ Ω.

Then, there exists x ∈ Ω such that x = Ax · Bx + Cx, whenever β
1−α ≤ 1.

Proof. Let x ∈ Ω, and consider:

T : Ω −→ Ω

x �−→ Tx =

(
I − C

A

)−1
Bx;

by (i) and (vii), it is clear that T is well defined.
We will show that T satisfies the conditions of Theorem 3. From the proof of Theorem 5, we can

see that T is weakly sequentially continuous, and then, it suffices to prove that T is weakly countably
one-set-contractive and semi-closed at θ.

Let M be a countably subset of Ω; we have:

T = B +

(
I − I − C

A

)
T,

then:

ω(T(M)) ≤ ω(B(M)) + ω

((
I − I − C

A

)
(T(M))

)
≤ βω(M) + αω(T(M)),

and so:
ω(T(M)) ≤ β

1− α
≤ ω(M);

therefore, T is weakly countably one-set-contractive.
Now, let {xn}n be a sequence in Ω such that (I − T)xn → θ.

yn = (I − T)xn = xn − Bxn −
(

I − I − C
A

)
Txn
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By (iii), there exists a subsequence {xσ1(n)}n of {xn}n such that
(

I − I−C
A

)
Txσ1(n) ⇀ y; and then,

(I − B)xσ1(n) = yσ1(n) +
(

I − I−C
A

)
Txσ1(n) ⇀ y. By (v), we conclude that there exists a subsequence

{xσ1σ2(n)}n of {xσ1(n)}n, which converges to some element x. Since (I− T)xσ1σ2(n) → θ and T is weakly
sequentially continuous, we obtain Tx = x, and then, T is weakly semi-closed at θ.

Let Ω be a nonempty closed and convex subset of a Banach algebra X, and let A, C : X −→ X,
and B : Ω −→ X be three operators. For any D ⊆ Ω, we set (see [28]):

F (A, C, B, D) = {x ∈ X : x = Ax · By + Cx, y ∈ D} .

If A = 1X and C = 0, we obtain F (1X , 0, B, D) = B(D).

Theorem 12. Let X be a Banach algebra satisfying condition (P) and Ω be a nonempty, closed, convex,
and bounded subset of X; ω is an MWNC on X. Let A, C : X −→ X, and B : Ω −→ X be three operators
satisfying the following conditions:

(i) A is regular on X, and B is weakly sequentially continuous,
(ii) I − I−C

A is a contraction on Ω,
(iii) ω (F (A, C, B, D)) < ω(D), for any countably subset D of Ω with ω(D) > 0,
(iv) F (A, C, B, Ω) ⊂ Ω,
(v) If {xn} ⊂ F (A, C, B, Ω), then {Axn}n and {Cxn}n have weakly convergent subsequences (converging

respectively to y and z), and if xn ⇀ x, we have y = Ax and z = Cx.

Then, there exists x ∈ Ω such that x = Ax · Bx + Cx.

Proof. For y ∈ Ω, we define the mapping:

Fy : X −→ X

x �−→ Fy(x) =
(

I − I − C
A

)
x + By,

(ii) implies that Fy is a contraction; then, Fy has a unique fixed point τ(y) ∈ X; we

have τ(y) =
(

I − I−C
A

)
τ(y) + By or equivalently τ(y) = Aτ(y) · By + Cτ(y); which shows that

τ(y) ∈ F (A, C, B, Ω) . It follows that τ(Ω) ⊂ Ω.
Let M be a countable subset of Ω such that ω(M) > 0; we have:

τ(M) = {τ(x) : x ∈ M}
= {τ(x) = A(τ(x)) · Bx + C(τ(x)) : x ∈ M}
= {τ(x) : τ(x) ∈ F (A, C, B, M)}
⊆ F (A, C, B, M) ,

Hence, ω(τ(M)) ≤ ω (F (A, C, B, M)) < ω(M); then, τ is countably ω-condensing.
Moreover, τ is weakly sequentially continuous. Indeed, let {xn}n be a sequence in Ω

such that xn ⇀ x; since B is weakly sequentially continuous, we have Bxn ⇀ Bx, and since
{τ(xn)}n ⊂ F (A, C, B, Ω), there exists a subsequence {τ(xσ1(n))}n and {τ(xσ2(n))}n of {τ(xn)}n such
that Aτ(xσ1(n)) ⇀ y and Cτ(xσ2(n)) ⇀ z. It follows that:

τ(xσ1σ2(n)) = Aτ(xσ1σ2(n)) · Bxσ1σ2(n) + Cτ(xσ1σ2(n)) ⇀ y · Bx + z.

With (v), we obtain A(y · Bx + z) = y and C(y · Bx + z) = z; and then,
y · Bx + z = A(y · Bx + z) · Bx + C(y · Bx + z).
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The uniqueness of the fixed point implies that τ(x) = y · Bx+ z; and therefore, τ(xσ1σ2(n)) ⇀ τ(x).
We claim that τ(xn) ⇀ τ(x). For this, assume that there exists a weak neighborhood V of τ(x) and
a subsequence {xϕ1(n)}n of {xn}n such that xϕ1(n) /∈ V for all n ∈ N. Since xϕ1(n) ⇀ x, we can
extract a subsequence {xϕ1 ϕ2(n)}n of {xϕ1(n)}n such that τ(xϕ1 ϕ2(n)) ⇀ τ(x). This is not possible,
since xϕ1 ϕ2(n) /∈ V for all n ∈ N. We conclude that τ is weakly sequentially continuous. By Theorem 2,
there exists x ∈ Ω such that x = τ(x) = Ax · Bx + Cx.

If A = 1X in Theorem 12, we obtain Theorem 3.11 in [16].

Theorem 13. Let Ω be a nonempty, closed, convex, and bounded subset of a Banach algebra X; ω is an MWNC
on X. Let A, C : X −→ X, and B : Ω −→ X be three operators that satisfy the following conditions:

(i) A is regular on X, and I−C
A is one-to-one,

(ii) I − I−C
A is nonexpansive,

(iii) B and I−C
A are weakly sequentially continuous,

(iv) ω (F (A, C, B, D)) < ω(D), for any countably subset D of Ω with ω(D) > 0,
(v)

(
I − I−C

A

)
x + By ∈ Ω for all x, y ∈ Ω,

(vi) If {xn}n ⊂ Ω such that
{(

I−C
A

)
xn

}
n

is weakly convergent, then the sequence {xn}n has a weakly
convergent subsequence.

Then, there exists x ∈ Ω such that x = Ax · Bx + Cx.

Proof. Let y ∈ Ω, and define Fy : Ω −→ X by:

Fy(x) =
(

I − I − C
A

)
x + By

By (ii), Fy is nonexpansive, and by (v), we have F(Ω) ⊂ Ω. Then, by ([29], Theorem 2.15),

there exists a sequence {xn}n in Ω such that ‖xn − Fy(xn)‖ −→ 0, and then,
(

I−C
A

)
xn −→ By.

Using (vi), we can extract a subsequence {xσ1(n)}n of {xn}n such that xσ1(n) ⇀ x ∈ Ω, and then,(
I−C

A

)
xσ1(n) ⇀

(
I−C

A

)
x; then:

By =

(
I − C

A

)
x ∈

(
I − C

A

)
(Ω)

which implies B(Ω) ⊂
(

I−C
A

)
(Ω).

Define T : Ω −→ Ω by Tx =
(

I−C
A

)−1
Bx. Let D ⊆ Ω and x ∈ D; the equality

Tx = A(Tx) · Bx + C(Tx) implies that Tx ∈ F (A, C, B, D) ; then:

T(D) ⊂ F (A, C, B, D)

for any subset D of Ω.
The assumption (iv) implies that T is countably ω-condensing. Moreover, T is weakly sequentially

continuous. Indeed, let {xn}n be a sequence such that xn ⇀ x; we have Bxn ⇀ Bx; then,(
I−C

A

)
Txn ⇀ Bx. By (vi), there exists a subsequence {xσ2(n)}n such that Txσ2(n) ⇀ y ∈ Ω; thus,(

I−C
A

)
Txσ2(n) ⇀

(
I−C

A

)
y, which leads to

(
I−C

A

)
y = Bx, and so, Txσ2(n) ⇀ Tx. As in the proof of

Theorem 5, we can prove that Txn ⇀ Tx, and we apply Theorem 2 to end the proof.

Remark 5. If we take A = 1X in Theorem 13, we obtain Theorem 3.13 in [16].
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4. Application

Let X be a real Banach algebra satisfying condition (P); we denote E = C([0, 1], X) the
Banach space of all X-valued continuous functions defined on [0, 1], endowed with the norm
‖x‖∞ = supt∈[0,1] ‖x(t)‖. In this section, we discuss the following abstract nonlinear quadratic
integral equation ((FIE)) (see [30]):

x(t) = K(t, x(ξ(t))) + Tx(t)
(

q(t) +
∫ σ(t)

0
g(s, x(η(s)))ds

)
, t ∈ J = [0, 1],

where q : J −→ X, g, K : J × X −→ X, ξ, σ, η : J −→ J, and T : E −→ E. Note that E is a Banach
algebra satisfying condition (P) and the integral in (FIE) is the Pettis integral, while the solutions of
(FIE) are in E. Make the following assumptions for (FIE):

Hypothesis 1 (H1).

(i) The functions ξ, σ, η : J −→ J are continuous, and σ is nondecreasing,
(ii) the function q : J −→ X is continuous,

Hypothesis 2 (H2).

(i) for all t ∈ [0, 1], K(t, .) : X −→ X is weakly sequentially continuous,
(ii) for each u ∈ X, K(., u) : J −→ X is continuous,
(iii) there is a continuous function δ : J −→ [0,+∞) with bound Δ = supt∈J |δ(t)| such that

‖K(t, x(t))− K(t, y(t))‖ ≤ δ(t)‖x(t)− y(t)‖ for all x, y ∈ E and t ∈ [0, 1],

Hypothesis 3 (H3). The operator T : E −→ E satisfies:

(i) there is a continuous function γ : J −→ [0,+∞) with bound Γ = supt∈J |γ(t)| such that
‖Tx(t)− Ty(t)‖ ≤ γ(t)‖x(t)− y(t)‖, for all x, y ∈ E and t ∈ [0, 1],

(ii) T is weakly sequentially continuous on E,
(iii) T is regular on E; 1E

T is well defined on E; 1E
T is weakly compact; and there exists m0 ∈ [0, 1) such that

supx∈E

∥∥∥1E − 1E
Tx

∥∥∥
∞
≤ m0, where 1E represents the unit element in the Banach algebra E,

Hypothesis 4 (H4).

(i) for each continuous x : [0, 1] −→ X, the function s �−→ g(s, x(s)) is weakly measurable on [0, 1], and for
almost every t ∈ [0, 1], the map u �−→ g(t, u) is weakly sequentially continuous on X,

(ii) there are a function φ ∈ L1([0, 1],R+) and a continuous nondecreasing function
ϑ : [0,+∞) −→ [0,+∞) such that:

‖g(s, u)‖ ≤ φ(s)ϑ(‖u‖) a.e for all s ∈ [0, 1], and all u ∈ X,

(iii) there is a constant 0 ≤ β < 1 such that:

μ (g ([0, 1]×W)) ≤ βμ(W),

for any countably bounded subset W of X,

Hypothesis 5 (H5). There is a constant r > 0 such that QΓ + Δ < 1, where:

Q = Q1 + ϑ(r)
∫ 1

0
φ(s)ds with Q1 = supt∈J ‖q(t)‖
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Now, we are in a position to state our main result of this section:

Theorem 14. Assume that Hypotheses (H1)–(H5) hold and r0 = L+Q‖T0‖∞
1−Δ−QΓ ≤ r with

L = supt∈[0,1] ‖K(t, 0)‖; then (FIE) has a solution in C([0, 1], X) whenever m0 + Δ(1 + m0) < 1 and
β

1−(m0+Δ(1+m0))
< 1.

Proof. The integral equation (FIE) may be written in the form:

x(t) = Ax(t) · Bx(t) + Cx(t),

where:

Bx(t) = q(t) +
∫ σ(t)

0
g(s, x(η(s)))ds,

Ax(t) = Tx(t),

Cx(t) = K(t, x(ξ(t))).

Let Ω = {x ∈ C([0, 1], X) : ‖x‖∞ ≤ r0}; note that Ω is a closed, convex, and bounded subset of E.
We will show that the mappings A, B, and C verify all the conditions of Theorem 6.

Step 1. We show that A and C are Lipschitzian. First, we verify that the mapping C is well defined.
Let x ∈ E, and let {tn}n be a sequence in J such that tn → t ∈ J. We have:

‖Cx(tn)− Cx(t)‖ = ‖K(tn, x(ξ(tn)))− K(t, x(ξ(t)))‖
≤ ‖K(tn, x(ξ(tn)))− K(tn, x(ξ(t)))‖+ ‖K(tn, x(ξ(t)))− K(t, x(ξ(t)))‖
≤ δ(t)‖x(ξ(tn))− x(ξ(t))‖+ ‖K(tn, x(ξ(t))− K(t, x(ξ(t))‖
≤ Δ‖x(ξ(tn))− x(ξ(t))‖+ ‖K(tn, x(ξ(t))− K(t, x(ξ(t))‖.

Since K(., x) is continuous and ξ is continuous, then ‖Cx(tn)− Cx(t)‖ → 0; we conclude that
Cx ∈ E. Now, let x, y ∈ E and t ∈ J; we have:

‖Cx(t)− Cy(t)‖ ≤ δ(t)‖x(ξ(t))− y(ξ(t))‖,

then:
‖Cx− Cy‖∞ ≤ Δ‖x− y‖∞,

and we have:

‖Ax(t)− Ay(t)‖ = ‖Tx(t)− Ty(t)‖
≤ γ(t)‖x(t)− y(t)‖,

then:
‖Ax− Ay‖∞ ≤ Γ‖x− y‖∞.

Thus, A and C are Lipschitzians with the Lipschitz constants Δ and Γ, respectively.
Step 2. From the assumption (H3)(ii), the mapping A is weakly sequentially continuous on E. Now, we

show that C is weakly sequentially continuous on E; for this, let {xn}n in E such that
xn ⇀ x ∈ E, then {xn}n is bounded on E; from Dobrokov’s theorem ([31], p. 36) , we get
for all t ∈ [0, 1], xn(t) ⇀ x(t). Since K(t, .) is weakly sequentially continuous for all t ∈ [0, 1],
we get Cxn(t) ⇀ Cx(t). Again, from Dobrokov’s theorem, we deduce that Cxn ⇀ Cx, then C is
weakly sequentially continuous on E. Now, we prove that B is weakly sequentially continuous.
Firstly, we verify that if x ∈ Ω, then Bx ∈ E. Let x ∈ Ω and t, t

′ ∈ [0, 1], such that t ≤ t
′
;

without loss of generality, we may assume that Bx(t)− Bx(t
′
) �= 0. Using the Hahn–Banach
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theorem, we get that there exists x∗ ∈ X∗ such that x∗(Bx(t)− Bx(t
′
)) = ‖Bx(t)− Bx(t

′
)‖

and ‖x∗‖∗ = 1; hence:

‖Bx(t)− Bx(t
′
)‖ = x∗(Bx(t)− Bx(t

′
))

= x∗(q(t)− q(t
′
)) +

∫ σ(t
′
)

σ(t)
x∗(g(s, x(η(s))))ds

≤ sup
t∈J
‖q(t)− q(t

′
)‖+ ϑ(‖x‖∞)

∫ σ(t
′
)

σ(t)
φ(s)ds

≤ sup
t∈J
‖q(t)− q(t

′
)‖+ ϑ(r0)

∫ σ(t
′
)

σ(t)
φ(s)ds;

consequently, Bx ∈ E. As q and σ are uniformly continuous on the compact [0, 1], we get that
B(Ω) is an equicontinuous family of functions. Now, we show that B is weakly sequentially
continuous on Ω. Let {xn}n be a sequence in Ω such that xn ⇀ x ∈ Ω, then we get for all
t ∈ [0, 1], xn(t) ⇀ x(t). Furthermore, for n ∈ N and x∗ ∈ X∗:

x∗(Bxn(t)) = x∗(q(t)) +
∫ σ(t)

0
x∗(g(s, xn(η(s))))ds, for all t ∈ J,

From (H1)(i) and (H4)(i), we have x∗(g(s, xn(η(s)))) → x∗(g(s, x(η(s)))) for all s ∈ [0, 1].
The Lebesgue dominated convergence theorem yields:

∫ σ(t)

0
x∗(g(s, xn(η(s))))ds −→

∫ σ(t)

0
x∗(g(s, x(η(s))))ds,

then Bxn(t) ⇀ Bx(t); by Dobrokov’s theorem ([31], p. 36), we get Bxn ⇀ Bx.
Step 3. B i countably β-ω-contractive. First, we show that B(Ω) is bounded. Let x ∈ Ω and t ∈ [0, 1].

Without loss of generality, we may assume that Bx(t) �= 0. Using the Hahn–Banach theorem,
we deduce that there exists x∗ ∈ X∗ such that x∗(Bx(t)) = ‖Bx(t)‖ and ‖x∗‖∗ = 1. Hence,

‖Bx(t)‖ = x∗(Bx(t))

= x∗(q(t)) +
∫ σ(t)

0
x∗(g(s, x(η(s))))ds

≤ sup
t∈J
‖q(t)‖+

∫ 1

0
‖g(s, x(η(s)))‖ds

≤ Q1 + ϑ(r)
∫ 1

0
φ(s)ds = Q,

then B(Ω) is bounded.
Now, let V be a countably bounded subset of Ω; for each t ∈ [0, 1], we have by ([32], Theorem 3):

μ(B(V)(t)) ≤ μ

({∫ σ(t)

0
g(s, x(η(s)))ds : x ∈ V

})
≤ μ (σ(t)co {g(s, x(η(s))) : x ∈ V, s ∈ [0, 1]})
≤ μ (g ([0, 1]×V([0, 1])))

≤ βμ (V([0, 1]))

≤ β sup
t∈J

μ(V(t))

≤ βμ(V),
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because V is bounded, then we can apply Theorem 1.
Since V(B) is bounded and equicontinuous, again, by Theorem 1, we get:

μ(B(V)) ≤ βμ(V).

Consequently, B is countably β-μ-contractive.
Step 4. Now, we prove that I − I−C

A is countably α
′
-μ-contractive where α

′
= m0 + Δ(1 + m0). Firstly,

for all x ∈ E by Step 1, we have Cx ∈ E, and by (H3)(iii), we have 1E
Ax ∈ E; hence,(

I − I−C
A

)
x ∈ E. Now, let x ∈ Ω; we have:

∥∥∥∥(I − I − C
A

)
x
∥∥∥∥

∞
=

∥∥∥∥x− x− Cx
Ax

∥∥∥∥
∞

≤
∥∥∥∥1E −

1E
Ax

∥∥∥∥
∞
‖x‖∞ +

∥∥∥∥ 1E
Ax

∥∥∥∥
∞
‖Cx‖∞

≤ m0r0 + (1 + m0)(Δr0 + L),

then
(

I − I−C
A

)
(Ω) is bounded. Now, let V be a bounded subset of Ω such that μ(V) > 0;

note that for all x ∈ V, we have:(
I − I − C

A

)
x = x− x− Cx

Ax

=

(
1E −

1E
Ax

)
· x +

1E
Ax
· Cx,

then: (
I − I − C

A

)
(V) ⊂

(
1E −

1E
A(V)

)
·V +

1E
A(V)

· C(V),

because 1E
A is weakly compact; then, by the assumption (H3)(iii), we get:

μ

((
I − I − C

A

)
(V)

)
≤ μ

((
1E −

1E
A(V)

)
·V
)
+ μ

(
1E

A(V)
· C(V)

)
≤

∥∥∥∥1E −
1E

A(V)

∥∥∥∥
∞

μ(V) +

∥∥∥∥ 1E
A(V)

∥∥∥∥
∞

μ(C(V)).

because C is Δ-Lipschitzian and weakly sequentially continuous; by Lemma 1, we get
μ(C(V)) ≤ Δμ(V), then

μ

((
I − I − C

A

)
(V)

)
≤
∥∥∥∥1E −

1E
A(V)

∥∥∥∥
∞

μ(V) +

∥∥∥∥ 1E
A(V)

∥∥∥∥
∞

Δμ(V),

then:

μ

((
I − I − C

A

)
(V)

)
≤ m0μ(V) + (1 + m0)Δμ(V)

≤ α
′
μ(V),

where α
′
= m0 + Δ(1 + m0) < 1; then, I − I−C

A is countably α
′
-μ-contractive.

Step 5. We show that for all x ∈ E and y ∈ Ω, if x = Ax · By + Cx, then x ∈ Ω. We have for all
t ∈ [0, 1]:

x(t) = Ax(t) · By(t) + Cx(t),
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then,

‖x(t)‖ ≤ ‖Cx(t)‖+ ‖Ax(t) · By(t)‖
≤ ‖Cx(t)‖+ ‖Ax(t)‖‖By(t)‖
≤ Δ‖x(t)‖+ L + Q (Γ‖x(t)‖+ ‖A0‖) ,

then,

‖x(t)‖ ≤ L + Q‖A0‖
1− Δ−QΓ

= r0,

hence,
‖x‖∞ ≤ r0,

consequently, x ∈ Ω.

Applying Theorem 6, we get a fixed point for A · B + C and hence a solution to (FIE) in E.

5. Example

Consider the Banach algebra E = C([0, 1],R) of all continuous real-valued functions on J = [0, 1],
with norm ‖x‖∞ = supt∈[0,1] |x(t)|. In this case, X = R, and E is a Banach algebra satisfying
condition (P) and reflexive. Let b : [0, 1] −→ X be a continuous and nonnegative function such that
supt∈J |b(t)| = 1

4 . We consider the following nonlinear integral equation:

x(t) =
1
4

t3x(
t2

2
) +

(
1 +

∫ t

0

b(s)
1 + |x(s)|ds

)
.
(√

t +
∫ t

0

s2

20
|x(s)| · x(s)

e|x(s)|
ds
)

, t ∈ J. (3)

To show that (3) has a solution in E, we will verify that all conditions of Theorem 14 are satisfied.
Define K : [0, 1]× R −→ R, by K(t, x(t)) = 1

4 t3x( t2

2 ) (in this case ξ(t) = t2

2 ). For all t ∈ [0, 1],
the function K(t, .) : X −→ X is continuous (then weakly sequentially continuous, because X = R),
and for all x ∈ X, the function K(., x) : J −→ X is continuous. Now, let x, y ∈ E and t ∈ [0, 1]; we have:

|K(t, x(t))− K(t, y(t))| ≤ δ(t)|x(t)− y(t)|

where the function δ : t �→ 1
4 t3 is continuous with bound Δ = supt∈J |δ(t)| = 1

4 .

Next, we introduce the function T : E −→ E such that Tx(t) = 1 +
∫ t

0
b(s)

1+|x(s)| ds for all t ∈ J.
As seen in Step 2 in the proof of Theorem 14, the operator T is weakly sequentially continuous, regular
on E, and 1E

T is well defined on E. Let x ∈ E and t ∈ [0, 1]; we have:

∣∣∣∣1− 1
Tx(t)

∣∣∣∣ =
∫ t

0
b(s)

1+|x(s)|ds

1 +
∫ t

0
b(s)

1+|x(s)|ds
≤
∫ 1

0
b(s) ds ≤ 1

4
;

thus, supx∈X ‖1E − 1E
Tx‖∞ ≤ m0, where mo =

1
4 .

Moreover, 1E
T is weakly compact on E; indeed, let x ∈ E, and let t, t

′ ∈ J such that

t ≤ t
′
. Without loss of generality, we may assume that

(
1E
T

)
x(t) −

(
1E
T

)
x(t

′
) �= 0. Using the

Hahn–Banach theorem, we deduce that there exists x∗ ∈ X∗ such that x∗
((

1E
T

)
x(t)−

(
1E
T

)
x(t

′
)
)
=∣∣∣( 1E

T

)
x(t)−

(
1E
T

)
x(t

′
)
∣∣∣ and ‖x∗‖∗ = 1, hence,∣∣∣∣(1E

T

)
x(t)−

(
1E
T

)
x(t

′
)

∣∣∣∣ ≤ 1
4
|t− t

′ |,
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then
(

1E
T

)
(E) is weakly equicontinuous. Now, let {xn}n be a sequence in E, and fix t ∈ J; we have:

∣∣∣∣(1E
T

)
xn(t)

∣∣∣∣ =
∣∣∣∣∣∣ 1

1 +
∫ t

0
b(s)

1+|xn(t)|ds

∣∣∣∣∣∣ ≤ 1;

therefore, {
(

1E
T

)
xn(t)}n is weakly equi-bounded. Let t ∈ J; since X = R is reflexive, then by [33],

the set {
(

1E
T

)
xn(t) : n ∈ N} is weakly relatively sequentially compact. The Arzela–Ascoli theorem

implies that there exists a subsequence {
(

1E
T

)
xσ(n)}n such that

(
1E
T

)
xσ(n) ⇀

(
1E
T

)
x ∈ E; then,(

1E
T

)
(E) is relatively weakly compact. Therefore, 1E

T is weakly compact.
Let x, y ∈ E and t ∈ [0, 1]; we have:

|Tx(t)− Ty(t)| ≤
∫ t

0
b(s)(|x(s)− y(s)|)ds

≤ γ(t)‖x− y‖∞,

where γ : t �→ t
4 is continuous with bound Γ = supt∈J |γ(t)| = 1

4 .

Finally, we define g : [0, 1]× X −→ X, by g(s, x(s)) = s2

20
|x(s)|·x(s)

e|x(s)|
. For each u ∈ X, the function

g(., u) : [0, 1] −→ X is weakly measurable on [0, 1], and for almost every t ∈ [0, 1], the function
g(t, .) : X −→ X is continuous (then weakly sequentially continuous). Furthermore, we have:

|g(s, u)| ≤ ϑ(|u|)φ(s) a.e for all s ∈ [0, 1], and all u ∈ X,

where φ(s) = s2 and ϑ(v) = v
20 for all v ∈ [0,+∞) since e|z| ≥ |z| for all z ∈ X.

Moreover, if W is a countably bounded subset of X, we have:

μ (g([0, 1]×W)) = μ ({g(s, u) : u ∈ W and s ∈ [0, 1]})

≤ μ

({(
1
20

s2.|u|
e|u|

)
.u : u ∈ W and s ∈ [0, 1]

})
≤ μ

(
[0,

1
5
].W

)
≤ 1

5
μ (W) ,

Then:
μ(g([0, 1]×W)) ≤ βμ(W), where β =

1
5

.

We set q : [0, 1] −→ [0,+∞), such that q(t) =
√

t; we have that q is continuous and
Q1 = supt∈J |q(t)| = 1.

If we take r = 4, we get Q = Q1 + ϑ(4)
∫ 1

0 φ(s)ds = 16
15 and QΓ + Δ = 31

60 < 1 (then, for all s ∈ R+,
QφA(s) + φC(s) = QΓs + Δs < s where φA(s) = Γs and φC(s) = Δs).
Now, we have ‖T0‖∞ = supt∈J |1 +

∫ t
0 b(s) ds| ≤ 5

4 and r0 = L+Q‖T0‖∞
1−Δ−QΓ ≤ 80

29 , then r0 ≤ r,

m0 + (1 + m0) · Δ = 9
16 < 1 and β

1−(mo+(1+mo)·Δ) =
16
35 < 1.

Theorem 14 proves the existence of a solution to Equation (3).

6. Conclusions

In this paper, we proved some fixed point theorems for the nonlinear operator A · B+C in a Banach
algebra under a weak topology and with the help of the measure of weak noncompactness. Our results
improved and generalized some interesting fixed point theorems in the literature. Our examples
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showed that the results in this paper can be applied to prove the existence of the solution of a nonlinear
integral equation in Banach algebra.
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13. Bananś, J.; Lecko, M. Fixed points of the product of operators in Banach algebra. Panam. Math. J. 2002,

12, 101–109.
14. Dhage, B.C. On a fixed point theorem in Banach algebras with applications. Appl. Math. Lett. 2005,

18, 273–280. [CrossRef]
15. Dhage, B.C. On some variants of Schauder’s fixed point principle and applications to nonlinear integral

equations. J. Math. Sci. 1988, 22, 603–611.
16. Ben Amar, A.; Derbel, S.; O’Regan, D.; Xiang, T. Fixed point theory for countably weakly condensing maps

and multimaps in non-separable Banach spaces. J. Fixed Point Theory Appl. 2019, 21, 8. [CrossRef]
17. Ben Amar, A., Xu, S.: Measures of weak noncompactness and fixed point theory for 1-set weakly contractive

operators on unbounded domains. Anal. Theory Appl. 2019, 27, 224–238.
18. De Blasi, F.S. On a property of the unit sphere in Banach spaces. Bull. Math. Soc. Sci. Math. Roum. 1977,

21, 259–262.
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Abstract: In this work, we investigate the existence of solutions for the particular type of the eighth-order
boundary value problem. We prove our results using classical version of Leray–Schauder nonlinear
alternative fixed point theorem. Also we produce a few examples to illustrate our results.

Keywords: eighth-order boundary value problem; Green’s function; Leray–Schauder nonlinear
alternative; nontrivial solution; fixed points

PACS: 34B10; 34B15; 34K10

1. Introduction

Eighth-order differential equations govern the physics of some hydrodynamic stability problems.
Chandrasekhar [1] proved that when an infinite horizontal layer of fluid is heated from below and under
the action of rotation, instability sets in. When the instability sets in as overstability, the problem is
modeled by an eighth-order ordinary differential equation for which the existence and uniqueness of
the solution can be found in the book [2]. Many authors used different numerical methods to study
higher order boundary value problems. For example, Reddy [3] presented a finite element method
involving the Petrov–Galerkin method with quintic B-splines as basis functions and septic B-splines
as weight functions to solve a general eighth-order boundary value problem with a particular case of
boundary conditions. Prorshouhi et al. [4] presented a variational iteration method for the solution of
a special case of eighth- order boundary value problems. Ballem and Kasi Viswanadham [5] presented
a simple finite element method which involves the Galerkin approach with septic B-splines as basis
functions to solve the eighth- order two-point boundary value problems. Graef et al. [6] applied the
Guo–Krasnosel’skii fixed point theorem to solve the higher-order nonlinear boundary value problem.
Graef et al. [7] used various fixed point theorems to give some existence results for a nonlinear nth-order
boundary value problem with nonlocal conditions. Hussin and Mandangan [8] solved linear and nonlinear
eighth-order boundary value problems using a differential transformation method. Kasi Viswanadham
and Ballem [9] presented a finite element method involving the Galerkin method with quintic B-splines as
basis functions to solve a general eighth-order two-point boundary value problem. Liu et al. [10] used the
Leggett–Williams fixed point theorem to establish existence results for solutions to the m-point boundary
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value problem for a second- order differential equation under multipoint boundary conditions. Napoli
and Abd-Elhameed [11] analyzed a numerical algorithm for the solution of eighth-order boundary value
problems. Noor and Mohyud-Din [12] implemented a relatively new analytical technique—the variational
iteration decomposition method for solving the eighth-order boundary value problems. Xiaoyong and
Fengying [13] used the collocation method based on the second kind Chebyshev wavelets to find the
numerical solutions for the eighth-order initial and boundary value problems. Some basic fixed point
theorems on altering distance functions and on G-metric spaces were discussed in [14], and also some
fixed point results in cone metric spaces were collectively given in [15]. Metric fixed point theory and
metrical fixed point theory results were discussed in [16,17]. Deng et al. [18] generalized some results
using measure of noncompactness. Omid et al. [19] studied differential equations with the conformable
derivatives. Todorčević [20] presented harmonic quasiconformal mappings and hyperbolic type metrics
defined on planar and multidimensional domains. Recently Zouaoui Bekri [21] studied sixth-order
nonlinear boundary value problem using the Leray–Schauder alternative theorem. Ma [22] has given the
existence and uniqueness theorems based on the Leray–Schauder fixed point theorem for some fourth-order
nonlinear boundary value problems. Zvyagin and Baranovskii [23] have constructed a topological
characteristic to investigate a class of controllable systems. Ahmad and Ntouyas [24] conferred some
existence results based on some standard fixed point theorems and Leray–Schauder degree theory for an
nth-order nonlinear differential equation with four-point nonlocal integral boundary conditions. Motivated
by these study, we investigate the existence of solutions for the eighth-order boundary value problem.{

y(8)(x) = φ(x, y(x), y′′(x)), 0 < x < 1,

y(0) = y′(0) = y′′(0) = y′′′(0) = y(4)(1) = y(5)(1) = y(6)(1) = y(7)(1) = 0,
(1)

where φ ∈ C([0, 1]×R×R,R) and R = (−∞, ∞).

2. Preliminaries

We consider the following eighth-order boundary value problem under the assumption that
φ ∈ C([0, 1]×R×R,R). E = C([0, 1]) with the norm

‖y‖ = max{|y|∞, |y′′|∞} where |y|∞ = max
0≤x≤1

|y(x)| for any y ∈ E.

The following Lemma is used to prove our main theorem.

Lemma 1. (By Lemma 1 in [25]) Let f ∈ C[0, 1]. Then the following eighth-order boundary value problem{
y(8)(x) = f (x), 0 < x < 1

y(0) = y′(0) = y′′(0) = y′′′(0) = y(4)(1) = y(5)(1) = y(6)(1) = y(7)(1) = 0,
(2)

has the integral formulation

y(x) =
1∫

0

G(x, s) f (s)ds

where G : [0, 1]× [0, 1] −→ [0, ∞) is the Green’s function given by

G(x, s) =
1

5040

{
x4[(s− x)3 + 4s(s− x)2 + 10s2(3s− x)], 0 ≤ x < s ≤ 1,

s4[(x− s)3 + 4x(x− s)2 + 10x2(3x− s)], 0 ≤ s < x ≤ 1.
(3)
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Proof. Consider y(8)(x) = 0 for 0 ≤ x ≤ 1. Then,

y(x) = A + Bx + Cx2 + Dx3 + Ex4 + Fx5 + Gx6 + Hx7,

so that the Green’s function is of the form

G(x, s) =
1

5040

⎧⎪⎪⎨⎪⎪⎩
α1 + α2x + α3x2 + α4x3 + α5x4 + α6t5 + α7t6 + α8t7, 0 ≤ x < s ≤ 1,

β1 + β2(1− x) + β3(1− x)2 + β4(1− x)3 + β5(1− x)4

+ β6(1− x)5 + β7(1− x)6 + β8(1− x)7, 0 ≤ s < x ≤ 1.

(4)

where αi and βi are continuous functions for i = 1, ....., 8.
From the boundary conditions we have,

G(0, s) =
∂G(0, s)

∂x
=

∂2G(0, s)
∂x2 =

∂3G(0, s)
∂x3 = 0

i.e.,
α1 = α2 = α3 = α4 = 0

and
∂4G(1, s)

∂x4 =
∂5G(1, s)

∂x5 =
∂6G(1, s)

∂x6 =
∂7G(1, s)

∂x7 = 0

i.e.,
β5 = β6 = β7 = β8 = 0.

We deduce the Green’s function for the problem is,

G(x, s) =
1

5040

{
α5x4 + α6x5 + α7x6 + α8x7, 0 ≤ x < s ≤ 1,

β1 + β2(1− x) + β3(1− x)2 + β4(1− x)3, 0 ≤ s < x ≤ 1.
(5)

Since G satisfied continuity conditions up to the sixth-order and jump discontinuity at the seventh-order
by −1, we get,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1 + β2(1− s) + β3(1− s)2 + β4(1− s)3 − α5s4 − α6s5 − α7s6 − α8s7 = 0,

−β2 − 2β(1− s)− 3β(1− s)2 − 4α5s3 − 5α6s4 − 6α7s5 − 7α8s6 = 0,

2β3 + 6β4(1− s)− 12α5s2 − 20α6s3 − 30α7s4 − 42α8s5 = 0,

−6β4 − 24α5s− 60α6s2 − 120α7s3 − 210α8s4 = 0,

−24α5 − 120α6s− 360α7s2 − 840α8s3 = 0,

−120α6 − 720α7s− 2520α8s2 = 0,

−720α7 − 5040α8s = 0,

−5040α8 = 1.

(6)

By solving the above system, we can find the coefficients β1, β2, β3, β4, α5, α6, α7, α8,

i.e., β1 = − s7

5040
+

s6

720
− s5

240
+

s4

144
, β2 = − s6

720
+

s5

120
− s4

48
, β3 = − s5

240
+

s4

48
, β4 = − s4

144
,

α5 =
s3

144
, α6 = − s2

240
, α7 =

s
720

, α8 = − 1
5040

.

33



Axioms 2019, 8, 129

And finally, substituting these coefficients in Equation (5) we arrive to the expression of a
Green’s function

G(x, s) =
1

5040

{
x4[(s− x)3 + 4s(s− x)2 + 10s2(3s− x)], 0 ≤ x < s ≤ 1,

s4[(x− s)3 + 4x(x− s)2 + 10x2(3x− s)], 0 ≤ s < x ≤ 1.
(7)

Lemma 2. For all (x, s) ∈ [0, 1]× [0, 1], we have

0 ≤ G(x, s) ≤ G(s, s).

Proof. The proof is obvious, so we leave it.

Define the integral operator T : E −→ E by

T(y(x)) =
1

5040

x∫
0

s4[(x− s)3 + 4x(x− s)2 + 10x2(3x− s)] f (s) ds +

1
5040

1∫
x

x4[(s− x)3 + 4s(s− x)2 + 10s2(3s− x)] f (s) ds

By Lemma 1, the boundary value problem (Equation (1)) has a solution iff the operator T has a fixed
point in E. Hence to find the solution of a given boundary value problem, it is enough to find the fixed
point for the operator T in E. Since T is compact and hence T is completely continuous.

Theorem 1. [26,27] Let (E, ‖.‖) be a Banach space, U ⊂ E be an open bounded subset such that 0 ∈ U and
T : U −→ E be a completely continuous operator. Then
(1) either T has a fixed point in U, or
(2) there exist an element x ∈ ∂U and a real number λ > 1 such that λx = T(x).

3. Main Results

In this section, we prove some important results which will help to prove the existence of a nontrivial
solution for the eighth-order boundary value problem in Equation (1). Consider φ ∈ C([0, 1]×R×R,R)

Theorem 2. Suppose that φ(x, 0, 0) �= 0 and there exist nonnegative functions p, q, r ∈ L1[0, 1] such that

|φ(x, y, z)| ≤ p(x)|y|+ q(x)|z|+ r(x), a.e. (x, y, z) ∈ [0, 1]×R×R,

and
1

720

1∫
0

[5s7 + s6 + 5s4][p(s) + q(s)] ds < 1.

Then the boundary value problem (Equation (1)) has at least one nontrivial solution y∗ ∈ C([0, 1]).

Proof. Let

A =
1

720

1∫
0

[5s7 + s6 + 5s4][p(s) + q(s)] ds,

B =
1

720

1∫
0

[5s7 + s6 + 5s4]r(s) ds.
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By hypothesis, we have A < 1. Since φ(x, 0, 0) �= 0, there exists an interval [a, b] ⊂ [0, 1] such that
min

a≤x≤b
|φ(x, 0, 0)| > 0 and as r(x) ≥ |φ(x, 0, 0)| a.e. x ∈ [0, 1]. Hence B > 0.

Let L = B(1− A)−1 and U = {y ∈ E : ‖y‖ < L}. Assume that y ∈ ∂U and λ > 1 are such that
Ty = λy.

Then

λL = λ‖y‖ = ‖Ty‖
= max

0≤x≤1
|(Ty)(x)|

≤ 1
5040

x∫
0

s4[(x− s)3 + 4x(x− s)2 + 10x2(3x− s)]|φ(s, y(s), y′′(s))| ds

+
1

5040

1∫
x

x4[(s− x)3 + 4s(s− x)2 + 10s2(3s− x)]|φ(s, y(s), y′′(s))| ds

≤ 1
5040

max
0≤x≤1

x∫
0

s4[(x− s)3 + 4x(x− s)2 + 10x2(3x− s)]|φ(s, y(s), y′′(s))| ds

+
1

5040
max

0≤x≤1

1∫
x

x4[(s− x)3 + 4s(s− x)2 + 10s2(3s− x)]|φ(s, y(s), y′′(s))| ds

=
1

5040

1∫
0

s4[(1− s)3 + 4(1− s)2 + 10(3− s)]|φ(s, y(s), y′′(s))| ds

+
1

5040

1∫
0

s4[s3 + 4s(s)2 + 10s2(3s)]|φ(s, y(s), y′′(s))| ds

=
1

5040

1∫
0

[34s7 + 7s6 − 21s5 + 35s4]|φ(s, y(s), y′′(s))| ds

≤ 1
5040

1∫
0

[35s7 + 7s6 + 35s4]|φ(s, y(s), y′′(s))| ds

≤ 1
720

1∫
0

[5s7 + s6 + 5s4][p(s)|y(s)|+ q(s)|y′′(s)|+ r(s)] ds

≤ 1
720

1∫
0

[5s7 + s6 + 5s4][p(s) max
0≤s≤1

|y(s)|+ q(s) max
0≤s≤1

|y′′(s)|+ r(s)] ds

≤ 1
720

1∫
0

[5s7 + s6 + 5s4][p(s)|y|∞ + q(s)|y′′|∞ + r(s)] ds
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≤ 1
720

1∫
0

[5s7 + s6 + 5s4][p(s)‖y‖+ q(s)‖y‖+ r(s)] ds

=
1

720

1∫
0

[5s7 + s6 + 5s4][p(s) + q(s)]‖y‖+ 1
720

1∫
0

[5s7 + s6 + 5s4]r(s) ds

= A‖y‖+ B = AL + B.

Hence, λL ≤ AL + B

λ ≤ A +
B
L
= A +

B
B(1− A)−1 = A + (1− A) = 1,

which is a contradiction, since λ > 1, hence by Theorem 1, T has a fixed point y∗ ∈ U. Since φ(x, 0, 0) �= 0,
the boundary value problem (Equation (1)) has a nontrivial solution y∗ ∈ E.

Theorem 3. Let φ(x, 0, 0) �= 0 and there exist nonnegative functions p, q, r ∈ L1[0, 1] such that

|φ(x, y, z)| ≤ p(x)|y|+ q(x)|z|+ r(x) a.e. (x, y, z) ∈ [0, 1]×R×R.

Assume that one of the conditions given below is satisfied
(1) There exists a constant k > −5 such that

p(s) + q(s) ≤ 720(8 + k)(7 + k)(5 + k)
11k2 + 148k + 495

sk, a.e. 0 ≤ s ≤ 1,

μ

{
s ∈ [0, 1] : p(s) + q(s) <

720(8 + k)(7 + k)(5 + k)
11k2 + 148k + 495

sk
}

> 0

where μ = measure.
(2) There exists a constant k > −1 such that

p(s) + q(s) ≤
6

8
∏
i=1

(k + i)

k3 + 21k2 + 152k + 594
(1− s)k, a.e. 0 ≤ s ≤ 1,

μ

⎧⎪⎪⎪⎨⎪⎪⎪⎩s ∈ [0, 1] : p(s) + q(s) <
6

8
∏
i=1

(k + i)

k3 + 21k2 + 152k + 594
(1− s)k

⎫⎪⎪⎪⎬⎪⎪⎪⎭ > 0

where μ = measure.
(3) There exists a constant a > 1 such that

1∫
0

[p(s) + q(s)]a ds <

⎡⎢⎢⎣ 1

1
144

(
1

7b+1

) 1
b
+ 1

720

(
1

6b+1

) 1
b
+ 1

144

(
1

4b+1

) 1
b

⎤⎥⎥⎦
a

,
(

1
a
+

1
b
= 1

)
.

Then the boundary value problem (1) has at least one nontrivial solution y∗ ∈ E.
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Proof. To prove this theorem it is enough to prove A < 1.
Let

A =
1

720

1∫
0

[5s7 + s6 + 5s4][p(s) + q(s)] ds

(1) Consider,

A =
1

720

1∫
0

[5s7 + s6 + 5s4][p(s) + q(s)] ds

<
720(8 + k)(7 + k)(5 + k)

11k2 + 148k + 495

⎡⎣ 1
720

1∫
0

(5s7 + s6 + 5s4)sk ds

⎤⎦
=

720(8 + k)(7 + k)(5 + k)
11k2 + 148k + 495

⎡⎣ 1
720

1∫
0

(5s7+k + s6+k + 5s4+k) ds

⎤⎦
=

720(8 + k)(7 + k)(5 + k)
11k2 + 148k + 495

[
1

720

(
5

8 + k
+

1
7 + k

+
5

5 + k

)]
=

720(8 + k)(7 + k)(5 + k)
11k2 + 148k + 495

[
11k2 + 148k + 495

720(8 + k)(7 + k)(5 + k)

]
Thus, A < 1.

(2) In this case, we have

A =
1

720

1∫
0

[5s7 + s6 + 5s4][p(s) + q(s)] ds

<

6
8

∏
i=1

(k + i)

k3 + 21k2 + 152k + 594

⎡⎣ 1
720

1∫
0

(5s7 + s6 + 5s4)(1− s)k ds

⎤⎦

<

6
8

∏
i=1

(k + i)

k3 + 21k2 + 152k + 594⎡⎣ 1
720

1∫
0

5s7(1− s)k ds +
1∫

0

s6(1− s)k ds +
1∫

0

5s4(1− s)k ds

⎤⎦

<

6
8

∏
i=1

(k + i)

[k3 + 21k2 + 152k + 594]
1

720

⎡⎢⎢⎢⎣ 120
5

∏
i=1

(k + i)
+

720
7

∏
i=1

(k + i)
+

720× 35
8

∏
i=1

(k + i)

⎤⎥⎥⎥⎦

=

6
8

∏
i=1

(k + i)

k3 + 21k2 + 152k + 594

⎡⎢⎢⎢⎣ k3 + 21k2 + 152k + 594

6
8

∏
i=1

(k + i)

⎤⎥⎥⎥⎦ = 1
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Therefore, A < 1.
(3) By Hölder inequality, we have

A ≤

⎡⎣ 1∫
0

(p(s) + q(s))a ds

⎤⎦
1
a

·

⎡⎢⎣ 1
144

⎛⎝ 1∫
0

(s7)bds

⎞⎠( 1
b )

+
1

720

⎛⎝ 1∫
0

(s6)bds

⎞⎠( 1
b )

+
1

144

⎛⎝ 1∫
0

(s4)bds

⎞⎠( 1
b )
⎤⎥⎦

A ≤

⎡⎣ 1∫
0

(p(s) + q(s))a ds

⎤⎦
1
a

·
[

1
144

(
1

7b + 1

) 1
b

+
1

720

(
1

6b + 1

) 1
b

+
1

144

(
1

4b + 1

) 1
b
]

<

⎛⎜⎜⎜⎜⎜⎜⎝
1

1
144

(
1

7b + 1

)1
b +

1
720

(
1

6b + 1

)1
b +

1
144

(
1

4b + 1

)1
b

⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎣ 1

144

(
1

7b + 1

)1
b +

1
720

(
1

6b + 1

)1
b +

1
144

(
1

4b + 1

)1
b

⎤⎥⎦
= 1.

4. Examples

Here we have given some examples to verify the above results.

Example 1. Consider,⎧⎪⎪⎨⎪⎪⎩
y(8)(x) = x5

2 y sin
√

y +
√

x
3 y′′ cos y′′ − 5 + e2x, 0 ≤ x ≤ 1,

y(0) = y′(0) = y′′(0) = y′′′(0) = 0,

y(4)(1) = y(5)(1) = y(6)(1) = y(7)(1) = 0.

Set

φ(x, y, z) =
x5

2
y sin

√
y +

√
x

3
z cos z− 5 + e2x,

p(x) =
x5

2
, q(x) =

√
x

3
, r(x) = 5 + e2x.

One can easily verify that p, q, r ∈ L1[0, 1] are nonnegative functions, and

|φ(x, y, z)| =

∣∣∣∣ x5

2
y sin

√
y +

√
x

3
z cos z− 5 + e2x

∣∣∣∣
≤ p(x)|y|+ q(x)|z|+ r(x), a.e. (x, y, z) ∈ [0, 1]×R×R.
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Also,

A =
1

720

1∫
0

[5s7 + s6 + 5s4][p(s) + q(s)] ds

=
1

720

1∫
0

[5s7 + s6 + 5s4]

(
s5

2
+

s
1
2

3

)
ds

=
1

720

1∫
0

[
5
2

s12 +
5
3

s
15
2 +

s11

2
+

s
13
2

3
+

5
2

s9 +
5
3

s
9
2

]
ds

=
899251

630115200
< 1.

Thus, by Theorem 2, the boundary value problem (Equation (1)) has at least one nontrivial solution y∗ ∈ E.

Example 2. Consider the problem,⎧⎪⎪⎨⎪⎪⎩
y(8)(x) = y4

(5+4y3)
√

x cos y + 4(y′′)3

7
√

x + 2y′′√
x − cos

√
x, 0 ≤ x ≤ 1,

y(0) = y′(0) = y′′(0) = y′′′(0) = 0,

y(4)(1) = y(5)(1) = y(6)(1) = y(7)(1) = 0.

Set

φ(x, y, z) =
y4

(5 + 4y3)
√

x
cos y +

4z3

7
√

x
+

2z√
x
− cos

√
x,

p(x) =
1

5
√

x
, q(x) =

4
7
√

x
+

2√
x

, r(x) = cos
√

x.

One can easily verify that p, q, r ∈ L1[0, 1] are nonnegative functions, and

|φ(x, y, z)| =

∣∣∣∣ y4

(5 + 4y3)
√

x
cos y +

4z3

7
√

x
+

2z√
x
− cos

√
x
∣∣∣∣

≤ p(x)|y|+ q(x)|z|+ r(x), a.e. (x, y, z) ∈ [0, 1]×R×R.

Let k = − 1
2 > −5. Then,

720(8 + k)(7 + k)(5 + k)
11k2 + 148k + 495

=
631800
1695

hence,

p(s) + q(s) =
1

5
√

s
+

4
7
√

s
+

2√
s
=

97
35

s−
1
2 <

631800
1695

s−
1
2

μ

{
s ∈ [0, 1] : p(s) + q(s) <

720(8 + k)(7 + k)(5 + k)
11k2 + 148k + 495

sk
}

> 0

where μ = measure. Thus by the Theorem 3 assumption (1), the boundary value problem (Equation (2)) has at least
one nontrivial solution y∗ ∈ E.
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Example 3. Consider the problem,⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(8)(x) = y3

4(3+y4) 3
√

(1−x)2
sin y + (y′′)2

(5+y′′) 3
√

(1−x)2
+ e2x + sin 3x, 0 ≤ x ≤ 1,

y(0) = y′(0) = y′′(0) = y′′′(0) = 0,

y(4)(1) = y(5)(1) = y(6)(1) = y(7)(1) = 0.

Set

φ(x, y, z) =
y3

4(3 + y4) 3
√
(1− x)2

sin y +
z2

(5 + z) 3
√
(1− x)2

+ e2x + sin 3x

p(x) =
1

4 3
√
(1− x)2

, q(x) =
1

5 3
√
(1− x)2

, r(x) = e2x + sin 3x.

Here we can easily prove that p, q, r ∈ L1[0, 1] are nonnegative functions, and

|φ(x, y, z)| =

∣∣∣∣∣ y3

4(3 + y4) 3
√
(1− x)2

sin y +
z2

(5 + z) 3
√
(1− x)2

+ e2x + sin 3x

∣∣∣∣∣
≤ p(x)|y|+ q(x)|z|+ r(x), a.e. (x, y, z) ∈ [0, 1]× R× R.

Take k = − 2
3 > −1. Then

6
8

∏
i=1

(k + i)

k3 + 21k2 + 152k + 594
=

24344320
548613

.

Therefore,

p(s) + q(s) =
1

4 3
√
(1− s)2

+
1

5 3
√
(1− s)2

=
9
20

(1− s)−
2
3

<
24344320

548613
(1− s)−

2
3

μ

⎧⎪⎪⎪⎨⎪⎪⎪⎩s ∈ [0, 1] : p(s) + q(s) <
6

8
∏
i=1

(k + i)

k3 + 21k2 + 152k + 594
(1− s)−

2
3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ > 0

where μ = measure. Therefore, by Theorem 3 assumption (2), the boundary value problem (Equation (3)) has at
least one nontrivial solution y∗ ∈ E.

Example 4. Consider the problem,⎧⎪⎪⎪⎨⎪⎪⎪⎩
y(8)(x) =

4
√

2 + x
1 + y2 yesin x +

3 4
√

2 + x
(5 + (y′′)2)

cos y′′ + e−x cos x− sin 2x, 0 ≤ x ≤ 1,

y(0) = y′(0) = y′′(0) = y′′′(0) = 0,

y(4)(1) = y(5)(1) = y(6)(1) = y(7)(1) = 0.
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Set

φ(x, y, z) =
4
√

2 + x
1 + y2 yesin x +

3 4
√

2 + x
(5 + z2)

cos z + e−x cos x− sin 2x

p(x) = 4
√

2 + x, q(x) = 3 4
√

2 + x, r(x) = e−x cos x + sin 2x.

Here we can easily prove that p, q, r ∈ L1[0, 1] are nonnegative functions, and

|φ(x, y, z)| =

∣∣∣∣∣ 4
√

2 + x
1 + y2 yesin x +

3 4
√

2 + x
(5 + z2)

cos z + e−x cos x− sin 2x

∣∣∣∣∣
≤ p(x)|y|+ q(x)|z|+ r(x), a.e. (x, y, z) ∈ [0, 1]×R×R.

Let a = 4 > b = 4
3 > 1. We have that 1

a +
1
b = 1. Then

1∫
0

(p(s) + q(s))a ds =
1∫

0

[
4 4
√

2 + s
]4

ds = 640.

Also, we have⎡⎢⎢⎣ 1

1
144

(
1

7b+1

) 1
b
+ 1

720

(
1

6b+1

) 1
b
+ 1

144

(
1

4b+1

) 1
b

⎤⎥⎥⎦
a

=

⎡⎢⎢⎣ 1

1
144

( 3
31
) 3

4 + 1
720

(
1
9

) 3
4
+ 1

144
( 3

19
) 3

4

⎤⎥⎥⎦
4

≈ 9406732117.3529.

Therefore,
1∫

0

(p(s) + q(s))a ds < 9406732117.3529

Further, by Theorem 3 assumption (3), the boundary value problem (Equation (4)) has at least one nontrivial solution
y∗ ∈ E.

5. Conclusions

In this paper, we obtain the results to prove the existence of positive solution for the eighth-order
boundary value problem with the help of the classical version of Leray–Schauder alternative fixed point
theorem. By applying these results, one can easily verify that whether the given boundary value problem
is solvable or not.
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20. Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature: Cham,

Switzerland, 2019.
21. Bekri, Z.; Benaicha, S. Nontrivial solution of a nonlinear sixth-order boundary value problem.

Waves Wavelets Fract. 2018, 4, 10–18. [CrossRef]
22. Ma, R. Existence and uniqueness theorems for some fourth-order nonlinear boundary value problems. Int. J.

Math. Math. Sci. 2000, 23, 783–788. [CrossRef]
23. Zvyagin, V.G.; Baranovskii, E.S. Topological degree of condensing multi-valued perturbations of the (S) + -class

maps and its applications. J. Math. Sci. 2010, 170, 405–421. [CrossRef]
24. Ahmad, B.; Ntouyas, S.K. A study of higher-order nonlinear ordinary differential equations with four-point

nonlocal integral boundary conditions. J. Appl. Math. Comput. 2012, 39, 97–108. [CrossRef]

42



Axioms 2019, 8, 129

25. Cabrera, B. López, I.J.; Sadarangani, K.B. Existence of positive solutions for the nonlinear elastic beam equation
via a mixed monotone operator. J. Comput. Appl. Math. 2018, 327, 306–313. [CrossRef]

26. Isac, G. Leray–Schauder Type Alternatives, Complementarity Problems and Variational Inequalities; Springer: New York,
NY, USA, 2006.

27. Klaus, D. Nonlinear Functional Analysis; Springer: Berlin, Germany, 1985.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

43





axioms

Article

Informal Complete Metric Space and Fixed
Point Theorems

Hsien-Chung Wu

Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 802, Taiwan;
hcwu@nknucc.nknu.edu.tw

Received: 19 October 2019; Accepted: 2 November 2019; Published: 7 November 2019
��������	
�������

Abstract: The concept of informal vector space is introduced in this paper. In informal vector space,
the additive inverse element does not necessarily exist. The reason is that an element in informal
vector space which subtracts itself cannot be a zero element. An informal vector space can also be
endowed with a metric to define a so-called informal metric space. The completeness of informal
metric space can be defined according to the similar concept of a Cauchy sequence. A new concept of
fixed point and the related results are studied in informal complete metric space.

Keywords: Cauchy sequence; near fixed point; informal metric space; informal vector space; null set

MSC: 47H10; 54H25

1. Introduction

The basic operations in (conventional) vector space are vector addition and scalar multiplication.
Based on these two operations, the vector space should satisfy some required conditions (eight axioms
in total) by referring to [1–5]. However, some spaces cannot comply with all of the axioms given in
vector space. For example, the space consisting of all subsets of R cannot satisfy all of the axioms in
vector space (Wu [6]). Also, the space consisting of all fuzzy numbers in R cannot satisfy all of the
axioms in vector space, where the addition and scalar multiplication of fuzzy sets are considered (Wu
[7]). The main reason is that the additive inverse element does not exist.

Let S and T be two subsets of R. The addition and scalar multiplication for the subsets of R are
defined by

S + T = {s + t : s ∈ S and t ∈ T} and kS = {ks : s ∈ S} for any k ∈ R.

Let X denote the family of all subsets of R. Given any S ∈ X , the subtraction S− S by itself is
given by

S− S = {s1 − s2 : s1, s2 ∈ S} ,

which cannot be the zero element in X . Therefore, in this paper, we propose the concept of null set
for the purpose of playing the role of a zero element in the so-called informal vector space. Since the
informal metric space is a completely new concept, there are no available, relevant references for this
topic. The readers may instead refer to the monographs [1–5] on topological vector spaces and the
monographs [8–10] on functional analysis.

In this paper, we propose the concept of informal vector space that can include the space consisting
of all bounded and closed intervals in R and the space consisting of all fuzzy numbers in R. We also
introduce the concept of null set that can be regarded as a kind of "zero element" of informal vector
space. When the null set is degenerated as a singleton set {θ}, an informal vector space will turn
into a conventional vector space with the zero element θ. In other words, the results obtained in

Axioms 2019, 8, 126; doi:10.3390/axioms8040126 www.mdpi.com/journal/axioms45
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this paper can be reduced to the results in conventional vector space when the null set is taken to be
a singleton set.

Based on the concept of null set, we can define the concept of almost identical elements in informal
vector space. We can also endow a metric to the informal vector space defining the so-called informal
metric space. This kind of metric is completely different from the conventional metric defined in
vector space, since it involves the null set and almost identical concept. The most important triangle
inequality is still included in an informal metric space. Based on this metric, the concepts of limit
and class limit of a sequence in informal metric space are defined herein. Under this setting, we can
similarly define the concept of a Cauchy sequence, which can be used to define the completeness of
informal metric space. The main aim of this paper was to establish the so-called near-fixed point in
informal, complete metric space, where the near fixed point is based on the almost identical concept.
We shall also claim that if the null set is degenerated as a singleton set, then the concept of near a fixed
point is identical to the concept of a (conventional) fixed point.

In Sections 2 and 3, the concept of informal vector space and informal metric space are proposed.
The interesting properties are derived in order to study the new type of fixed point theorems.
In Section 4, according to the informal metric, the concept of a Cauchy sequence is similarly defined.
The completeness of informal metric space is also defined according to the concept of Cauchy sequences.
In Section 5, we present many new types of fixed point theorems that are established using the almost
identical concept in informal metric space.

2. Informal Vector Spaces

Let X be a universal set, and let F be a scalar field. We assume that X is endowed with the
vector addition x ⊕ y and scalar multiplication αx for any x, y ∈ X and α ∈ F. In this case, we call
X a universal set over F. In the conventional vector space over F, the additive inverse element of x
is denoted by −x, and it can also be shown that −x = −1x. In this paper, we shall not consider the
concept of inverse elements. However, for convenience, we still adopt −x = −1x.

For x, y ∈ X, the substraction x� y is defined by x� y = x⊕ (−y), where −y means the scalar
multiplication (−1)y. For any x ∈ X and α ∈ F, we have to mention that (−α)x �= −αx and
α(−x) �= −αx in general, unless α(βx) = (αβ)x for any α, β ∈ F. In this paper, this law will not always
be assumed to be true.

Example 1. Let C be a subset of complex plane C defined by

C = {a + bi : a, b ∈ R satisfying a ≤ b} .

The usual addition and scalar multiplication in C are defined by

(a + bi) + (c + di) = (a + c) + (b + d)i and k(a + bi) = ka + kbi for k ∈ R.

Given any z = a + bi ∈ C, its additive inverse in C denoted by −z is

−z = (−1)z = −a− bi.

We see that −z �∈ C. Therefore, the subset C is not closed under the above scalar multiplication. In other
words, the subset C cannot form a vector space. However, if the scalar multiplication in the subset C is defined by

k(a + bi) =

{
ka + kbi if k ≥ 0
kb + kai if k < 0.

then the subset C is closed under the above addition and this new scalar multiplication. In this case, we shall
consider the subset C as an informal vector space that will be defined below.
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Example 2. Let I be the set of all closed intervals in R. The addition is given by

[a, b]⊕ [c, d] = [a + c, b + d]

and the scalar multiplication is given by

k[a, b] =

{
[ka, kb] if k ≥ 0
[kb, ka] if k < 0.

We see that I cannot be a (conventional) vector space, since the inverse element cannot exist for any
non-degenerated closed interval. On the other hand, the distributive law for scalar addition does not hold true in
I ; that is, the equality (α + β)x = αx⊕ βx cannot hold true for any x ∈ I and α, β ∈ R. This shows another
reason why I cannot be a (conventional) vector space.

Definition 1. Let X be a universal set over the scalar field F. We define the null set of X as follows

Ω = {x� x : x ∈ X}.

We say that the null set Ω satisfies the neutral condition if and only if ω ∈ Ω implies −ω ∈ Ω.

Example 3. Continued from Example 1, for any z = a + bi ∈ C, we have

z� z = z + (−1)z = (a + bi) + (−b− ai) = (a− b) + (b− a)i ∈ C.

Therefore, the null set Ω is given by

Ω = {−k + ki : k ∈ R and k ≥ 0} = {−k + ki : k ∈ R+} .

Now we are in a position to define the concept of informal vector space.

Definition 2. Let X be a universal set over F. We say that X is an informal vector space over F if and only if
the following conditions are satisfied:

• 1x = x for any x ∈ X;
• x = y implies x⊕ z = y⊕ z and αx = αy for any x, y, z ∈ X and α ∈ F;
• The commutative and associative laws for vector addition hold true in X; that is, x ⊕ y = y ⊕ x and

(x⊕ y)⊕ z = x⊕ (y⊕ z) for any x, y, z ∈ X.

Definition 3. Let X be an informal vector space over F with the null set Ω. Given any x, y ∈ X, we say that x
and y are almost identical if and only if any one of the following conditions is satisfied:

• x = y;
• There exists ω ∈ Ω such that x = y⊕ω or x⊕ω = y;
• There exists ω1, ω2 ∈ Ω such that x⊕ω1 = y⊕ω2.

In this case, we write x Ω
= y.

Remark 1. Suppose that the informal vector space X over F with the null set Ω contains the zero element θ;

that is, x = x⊕ θ = θ⊕ x for any x ∈ X. Then, we can simply say that x Ω
= y if and only if ω1, ω2 ∈ Ω exists,

such that x⊕ω1 = y⊕ω2 (i.e., only the third condition is satisfied), since the first and second conditions can
be rewritten as the third condition by adding the zero element θ. We also remark that if we want to discuss some

properties based on x Ω
= y, it suffices to consider the third condition x⊕ω1 = y⊕ω2, even though X does not

contain the zero element θ. The reason is that the same arguments are still applicable for the first and second
conditions.
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According to the binary relation Ω
=, for any x ∈ X, we define the class

[x] =
{

y ∈ X : x Ω
= y

}
. (1)

The family of all classes [x] for x ∈ X is denoted by [X]. For y ∈ [x], it is not necessarily that the

class [y] is equal to the class [x], unless the binary relation Ω
= is an equivalence relation.

Proposition 1. Let X be an informal vector space over F with the null set Ω. If Ω is closed under the vector

addition, then the binary relation Ω
= is an equivalence relation.

Proof. For any x ∈ X, x = x implies x Ω
= x, which shows the reflexivity. According to the definition

of the binary relation Ω
=, the symmetry is obvious. Regarding the transitivity, for x Ω

= y and y Ω
= z,

we want to claim x Ω
= z. From Remark 1, it suffices to just consider the cases of

x⊕ω1 = y⊕ω2 and y⊕ω3 = z⊕ω4

for some ωi ∈ Ω for i = 1, · · · , 4. By the associative and commutative laws for vector addition,
we have

x⊕ω1 ⊕ω3 = y⊕ω3 ⊕ω2 = z⊕ω4 ⊕ω2,

which shows x Ω
= z, since Ω is closed under the vector addition. This completes the proof.

Let X be an informal vector space over F with the null set Ω such that Ω is closed under the
vector addition. Proposition 1 says that the classes defined in (1) form the equivalence classes. It is
clear to see that y ∈ [x] implies [x] = [y]. In other words, the family of all equivalence classes form
a partition of the whole set X.

We also need to remark that the space [X] is still not a (conventional) vector space. The reason is
that not all of the axioms taken in the vector space will be satisfied in [X], since the original space X
does not satisfy all of the axioms in the vector space. For example, we consider the informal vector
space I over R from Example 2. The quotient set [I ] cannot be a real vector space, since

(α + β)[x] �= α[x] + β[x]

for αβ < 0. The reason is that (α + β)x �= αx + βx for x ∈ I and αβ < 0.

3. Informal Metric Spaces

Now, we are in a position to introduce the concept of the so-called informal metric space.

Definition 4. Let X be an informal vector space over F with the null set Ω. For the non-negative, real-valued
function d defined on X× X, we consider the following conditions:

(i) d(x, y) = 0 if and only if x Ω
= y for all x, y ∈ X;

(i′) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Different kinds of metric spaces are defined below.

• The pair (X, d) is called a pseudo-metric space if and only if d satisfies conditions (ii) and (iii).
• The pair (X, d) is called a metric space if and only if d satisfies conditions (i′), (ii), and (iii).
• The pair (X, d) is called a informal metric space if and only if d satisfies conditions (i), (ii), and (iii).
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(iv) We say that d satisfies the null super-inequality if and only if, for any ω1, ω2 ∈ Ω and x, y, z ∈ X,
we have

d(x⊕ω1, y⊕ω2) ≥ d(x, y), d(x⊕ω1, y) ≥ d(x, y) and d(x, y⊕ω2) ≥ d(x, y).

(iv′) We say that d satisfies the null sub-inequality if and only if, for any ω1, ω2 ∈ Ω and x, y ∈ X, we have

d(x⊕ω1, y⊕ω2) ≤ d(x, y), d(x⊕ω1, y) ≤ d(x, y) and d(x, y⊕ω2) ≤ d(x, y).

(iv′′) We say that d satisfies the null equality if and only if, for any ω1, ω2 ∈ Ω and x, y ∈ X, we have

d(x⊕ω1, y⊕ω2) = d(x, y), d(x⊕ω1, y) = d(x, y) and d(x, y⊕ω2) = d(x, y).

Example 4. Continued from Example 2, we take X = I that consists of all bounded and closed intervals, which
is not a vector space. For I1 = [aL

1 , aU
1 ] and I2 = [aL

2 , aU
2 ] in I , we define a nonnegative real-valued function d

for I × I by
d (I1, I2) =

∣∣∣aL
1 + aU

1 − aL
2 − aU

2

∣∣∣ .

Suppose that
d (I1, I2) =

∣∣∣aL
1 + aU

1 − aL
2 − aU

2

∣∣∣ = 0.

We cannot obtain I1 = I2. Therefore, condition (i′) in Definition 4 is not satisfied, which says that (I , d)

cannot be a (standard) metric space. However, using the basic arithmetics, we can obtain I1
Ω
= I2. For any

I1, I2, I3 in I , it is not difficult to show that

d(I1, I2) = d(I2, I1) and d(I1, I2) ≤ d(I1, I3) + d(I3, I2).

Therefore (I , d) is indeed an informal metric space. Moreover, we are going to claim that d also satisfies the
null equality. We first note that the null set Ω in I is given by

Ω = {[−k, k] : k ≥ 0} .

For any k1, k2 ∈ R+, i.e., ω1 = [−k1, k1], ω2 = [−k2, k2] ∈ Ω, we have

d (I1 ⊕ω1, I2 ⊕ω2) = d
([

aL
1 , aU

1

]
⊕ [−k1, k1] ,

[
aL

2 , aU
2

]
⊕ [−k2, k2]

)
= d

([
aL

1 − k1, aU
1 + k1

]
,
[

aL
2 − k2, aU

2 + k2

])
=
∣∣∣(aL

1 − k1 + aU
1 + k1

)
−
(

aL
2 − k2 + aU

2 + k2

)∣∣∣
=
∣∣∣(aL

1 + aU
1

)
−
(

aL
2 + aU

2

)∣∣∣
= d

([
aL

1 , aU
1

]
,
[

aL
2 , aU

2

])
= d (I1, I2) ,

which shows that d indeed satisfies the null equality.

4. Cauchy Sequences

In this section, we are going to introduce the concepts of Cauchy sequences and completeness in
the informal metric space. We first introduce the concept of limit in the informal metric space.

Definition 5. Let X be an informal vector space over F with the null set Ω, and let (X, d) be a pseudo-metric
space. The sequence {xn}∞

n=1 in X is said to be convergent if and only if

lim
n→∞

d(xn, x) = 0 for some x ∈ X.
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The element x is called the limit of the sequence {xn}∞
n=1.

The sense of uniqueness of limit will be different for the metric space and informal metric space.
Let {xn}∞

n=1 be a sequence in (X, d). If there exists x, y ∈ X such that

lim
n→∞

d(xn, x) = 0 = lim
n→∞

d(xn, y),

then, by the triangle inequality (iii) in Definition 4, we have

0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y)→ 0 + 0 = 0 as n → ∞, (2)

which says that d(x, y) = 0.

• Suppose that (X, d) is a metric space. By condition (i′) in Definition 4, we see that x = y. This shows
the uniqueness.

• Suppose that (X, d) is an informal metric space. By condition (i) in Definition 4, we see that x Ω
= y.

Recall that if Ω is closed under the vector addition, then we can consider the equivalence classes.
In this case, we also see that y is in the equivalence class [x].

On the other hand, we further assume that d satisfies the null equality. If {xn}∞
n=1 is a sequence in

X such that d(xn, x) → 0 as n → ∞, then, for any y ∈ [x], i.e., x⊕ ω1 = y⊕ ω2 for some ω1, ω2 ∈ Ω,
we also have d(xn, y)→ 0 as n → ∞, as shown below:

0 ≤ d(xn, y) = d(xn, ω2 ⊕ y) = d(xn, ω1 ⊕ x) = d(xn, x)→ 0 as n → ∞.

Therefore, we propose the following definition.

Definition 6. Let (X, d) be an informal pseudo-metric space with the null set Ω. If {xn}∞
n=1 is a sequence in

X such that
lim

n→∞
d(xn, x) = 0

for some x ∈ X, then the class [x] is called the class limit of {xn}∞
n=1. We also write

lim
n→∞

xn = [x] or xn → [x].

Proposition 2. Let (X, d) be an informal pseudo-metric space with the null set Ω such that Ω is closed under
the vector addition. Then, the class limit in the informal metric space is unique.

Proof. Let {xn}∞
n=1 be a convergent sequence in X with the class limits [x] and [y]. According to the

definition, we have
lim

n→∞
d(xn, x) = 0 and lim

n→∞
d(xn, y) = 0.

Using (2) , it follows that d(x, y) = 0, which also implies y ∈ [x], i.e., [x] = [y]. This shows the
uniqueness in the sense of class limit.

Definition 7. Let (X, d) be an informal metric space.

• A sequence {xn}∞
n=1 in X is called a Cauchy sequence if and only if, given any ε > 0, N ∈ N exists,

such that d(xn, xm) < ε for all n > N and m > N.
• A subset M of X is said to be complete if and only if every Cauchy sequence in M is convergent to some

element in M.

Proposition 3. Every convergent sequence in an informal metric space is a Cauchy sequence.
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Example 5. Continued from Example 4, we see that (I , d) is an informal metric space such that d satisfies the
null equality. We are going to claim that (I , d) is complete. Given a sequence {In}∞

n=1 in the informal metric
space (I , d) by In = [aL

n , aU
n ] for n = 1, 2, · · · , suppose that {In}∞

n=1 is a Cauchy sequence. Then, given any
ε > 0, for sufficiently large n and m, we have

ε > d (In, Im) = d
([

aL
n , aU

n

]
,
[

aL
m, aU

m

])
=
∣∣∣(aL

n + aU
n

)
−
(

aL
m + aU

m

)∣∣∣ . (3)

Let an = aL
n + aU

n . Then, the expression (3) shows that {an}∞
n=1 is a Cauchy sequence in R.

The completeness of R says that a ∈ R exists, satisfying |an − a| < ε for sufficiently large n. Now we
define a bounded closed interval [aL, aU ] satisfying aL + aU = a. Then

d
([

aL
n , aU

n

]
,
[

aL, aU
])

=
∣∣∣(aL

n + aU
n

)
−
(

aL + aU
)∣∣∣ = |an − a| < ε

for a sufficiently large n, which says that the sequence {In}∞
n=1 converges to [aL, aU ]. Therefore, we conclude

that the space (I , d) is complete.

5. Near Fixed Point Theorems

Let X be a universal set, and let T : X → X be a function from X into itself. We say that x ∈ X
is a fixed point if and only if T(x) = x. The well-known Banach contraction principle presents the
fixed point of function T when X is taken to be a complete metric space. We shall study the Banach
contraction principle when X is taken to be an informal complete metric space.

Definition 8. Let X be an informal vector space over F with a null set Ω, and let T : X → X be a function

defined on X into itself. A point x ∈ X is called a near fixed point of T if and only if T(x) Ω
= x.

Example 6. Continued from Example 5, we see that the null set Ω in (I , d) is given by

Ω = {[−k, k] : k ≥ 0} ,

which is closed under the vector addition. Let T : (I , d)→ (I , d) be a function from I into itself. Suppose that

[aL, aU ] is a near fixed point of T, i.e., T([aL, aU ])
Ω
= [aL, aU ]. By definition, nonnegative numbers k1 and k2

exist such that one of the following equalities is satisfied:

• T([aL, aU ])⊕ [−k1, k1] = [aL, aU ];
• T([aL, aU ]) = [aL, aU ]⊕ [−k1, k1];
• T([aL, aU ])⊕ [−k1, k1] = [aL, aU ]⊕ [−k2, k2],

where [−k1, k1] and [−k2, k2] are in the null set Ω.

Remark 2. We have the following observations.

• By definition, we see that T(x) Ω
= x if and only if ω1, ω2 ∈ Ω exist, such that T(x) = x, T(x)⊕ω1 = x,

or T(x) = x⊕ω1 or T(x)⊕ω1 = x⊕ω2.
• If the informal vector space X owns a zero element θ, then the (conventional) fixed point is also a near fixed

point.
• If the informal vector space X turns into a (conventional) vector space over F, then the concepts of near

fixed point and (conventional) fixed point are equivalent.

Definition 9. Let (X, d) be an informal metric space. A function T : (X, d)→ (X, d) is called a contraction
of X if and only if there is a real number 0 < α < 1 such that

d(T(x), T(y)) ≤ αd(x, y)
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for any x, y ∈ X.

Example 7. Continued from Example 4, suppose that T is a contraction of I . Then, a real number 0 < α < 1
exists, such that

d(T([aL
1 , aU

1 ]), T(aL
2 , aU

2 ])) ≤ α · d([aL
1 , aU

1 ], [a
L
2 , aU

2 ])

for any [aL
1 , aU

1 ], [a
L
2 , aU

2 ] ∈ I . In particular, we take Ī to be a collection of all subintervals of [0, 1]. Now, we take
T : Ī → Ī by

T([aL, aU ]) =
1
3
[aL, aU ]⊗ [aL, aU ]

=
1
3

[
min

{
aLaL, aLaU , aUaU

}
, max

{
aLaL, aLaU , aUaU

}]
=

1
3

[
aLaL, aUaU

]
,

where aL, aU ∈ [0, 1]. From Example 4, we have

d(T([aL
1 , aU

1 ]), T(aL
2 , aU

2 ])) = d
(

1
3

[
aL

1 aL
1 , aU

1 aU
1

]
,

1
3

[
aL

2 aL
2 , aU

2 aU
2

])
=

1
3

∣∣∣aL
1 aL

1 + aU
1 aU

1 − aL
2 aL

2 − aU
2 aU

2

∣∣∣
=

1
3

∣∣∣(aL
1 + aL

2

) (
aL

1 − aL
2

)
+
(

aU
1 + aU

2

) (
aU

1 − aU
2

)∣∣∣
≤ 2

3

∣∣∣(aL
1 − aL

2

)
+
(

aU
1 − aU

2

)∣∣∣ (since aL
1 , aU

1 , aL
2 , aU

2 ∈ [0, 1])

=
2
3

d([aL
1 , aU

1 ], [a
L
2 , aU

2 ]),

which says that T is a contraction of Ī .

Given any initial element x0 ∈ X, we define the iterative sequence {xn}∞
n=1 using the function T

as follows:
x1 = T(x0), x2 = T(x1) = T2(x0), · · · , xn = Tn(x0). (4)

Under some suitable conditions, we are going to show that the sequence {xn}∞
n=1 can converge to

a near fixed point.

Theorem 1. Let (X, d) be an informal complete metric space with the null set Ω such that d satisfies the null
equality. Suppose that Ω is closed under the vector addition, and that the function T : (X, d) → (X, d) is

a contraction of X. Then T has a near fixed point x ∈ X satisfying T(x) Ω
= x. More precisely, the near fixed

point x can be obtained by the following limit

d(xn, x)→ 0 as n → ∞,

where the sequence {xn}∞
n=1 is generated by the iteration (4). Moreover, we have the following properties.

• There is a unique equivalence class [x] satisfying that if x̄ �∈ [x], then x̄ cannot be a near fixed point, which
shows the sense of uniqueness.

• Suppose that x̄ ∈ [x]. Then x̄ is also a near fixed point of T satisfying T(x̄) Ω
= x̄ and [x̄] = [x].

• Suppose that x̄ is a near fixed point of T. Then x̄ ∈ [x]; i.e., [x̄] = [x]. In other words, if x and x̄ are the

near fixed points of T, then x Ω
= x̄.
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Proof. Proposition 1 says that the family of all classes [x] for x ∈ X forms the equivalence classes.
Given any initial element x0 ∈ X, we can generate the iterative sequence {xn}∞

n=1 using (4). We want
to claim that {xn}∞

n=1 is a Cauchy sequence. Since T is a contraction of X, we have

d(xm+1, xm) = d(T(xm), T(xm−1)) ≤ αd(xm, xm−1)

= αd(T(xm−1), T(xm−2)) ≤ α2d(xm−1, xm−2)

≤ · · · ≤ αmd(x1, x0).

For n < m, using the triangle inequality, we obtain

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤
(

αm−1 + αm−2 + · · ·+ αn
)
· d(x1, x0)

= αn · 1− αm−n

1− α
· d(x1, x0).

Since 0 < α < 1, we have 1− αm−n < 1 in the numerator, which says that

d(xm, xn) ≤
αn

1− α
· d(x1, x0)→ 0 as n → ∞.

This shows that {xn}∞
n=1 is indeed a Cauchy sequence. The completeness says that x ∈ X exists,

satisfying d(xn, x)→ 0, i.e., xn → [x] from Definition 6 and Proposition 2.
Now, we want to claim that any point x̄ ∈ [x] is a near fixed point. We first have x̄⊕ω1 = x⊕ω2

for some ω1, ω2 ∈ Ω. According to the triangle inequality and using the fact of contraction of X,
we obtain

d(x̄, T(x̄)) = d(x̄⊕ω1, T(x̄)) (since d satisfies the null equality)

≤ d(x̄⊕ω1, xm) + d(xm, T(x̄))

= d(x̄⊕ω1, xm) + d(T(xm−1), T(x̄))

≤ d(x̄⊕ω1, xm) + αd(xm−1, x̄)

= d(x̄⊕ω1, xm) + αd(xm−1, x̄⊕ω1) (since d satisfies the null equality)

= d(x⊕ω2, xm) + αd(xm−1, x⊕ω2)

= d(x, xm) + αd(xm−1, x) (since d satisfies the null equality),

which implies d(x̄, T(x̄)) = 0 as m → ∞. We conclude that T(x̄) Ω
= x̄ for any point x̄ ∈ [x].

Now, we assume that there is another near fixed point x̄ of T satisfying x̄ �∈ [x], i.e., x̄ Ω
= T(x̄).

Then
x̄⊕ω1 = T(x̄)⊕ω2 and x⊕ω3 = T(x)⊕ω4

for some ωi ∈ Ω, i = 1, · · · , 4. Since T is a contraction of X and d satisfies the null equality, we obtain

d(x̄, x) = d(x̄⊕ω1, x⊕ω3) = d(T(x̄)⊕ω2, T(x)⊕ω4) = d(T(x̄), T(x)) ≤ αd(x̄, x),

which implies d(x̄, x) = 0, since 0 < α < 1. Therefore, we obtain x̄ Ω
= x, which contradicts x̄ �∈ [x].

This says that any x̄ �∈ [x] cannot be a near fixed point. Equivalently, if x̄ is a near fixed point of T, then
x̄ ∈ [x]. This completes the proof.
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Example 8. Continued from Example 5, we see that (I , d) is a complete informal metric space, such that d
satisfies the null equality. Suppose that T is a contraction of I . Then, there exists a real number 0 < α < 1 such
that

d(T([aL
1 , aU

1 ]), T(aL
2 , aU

2 ])) ≤ α · d([aL
1 , aU

1 ], [a
L
2 , aU

2 ])

for any [aL
1 , aU

1 ], [a
L
2 , aU

2 ] ∈ I . Given any initial element I0 = [aL
0 , aU

0 ] ∈ I , we can generate the iterative
sequence {In}∞

n=1 using the function T, where In = [aL
n , aU

n ], as follows:

I1 = T(I0), I2 = T(I1) = T2(I0), · · · , In = Tn(I0);

that is,

[aL
1 , aU

1 ] = T([aL
0 , aU

0 ]), [aL
2 , aU

2 ] = T([aL
1 , aU

1 ]) = T2([aL
0 , aU

0 ]), · · · , [aL
n , aU

n ] = Tn([aL
0 , aU

0 ]).

Using Theorem 1, the near fixed point I = [aL, aU ] is obtained by the limit

d(In, I) = d([aL
n , aU

n ], [a
L, aU ])→ 0 as n → ∞.

Definition 10. Let (X, d) be an informal metric space with the null set Ω, and let Ω be closed under the vector
addition. A function T : (X, d)→ (X, d) is called a weakly strict contraction of X if and only if the following
conditions are satisfied:

• x Ω
= y, i.e., [x] = [y] implies d(T(x), T(y)) = 0;

• x �Ω= y, i.e., [x] �= [y] implies d(T(x), T(y)) < d(x, y).

We see that if T is a contraction of X, then it is also a weakly strict contraction of X.

Theorem 2. Let (X, d) be an informal, complete metric space with the null set Ω, and let Ω be closed under
the vector addition. Suppose that the function T : (X, d) → (X, d) is a weakly strict contraction of X.
If {Tn(x0)}∞

n=1 forms a Cauchy sequence for some x0 ∈ X, then T has a near fixed point x ∈ X satisfying

T(x) Ω
= x. More precisely, the near fixed point x can be obtained by the following limit

d(Tn(x0), x)→ 0 as n → ∞.

Assume further that d satisfies the null equality. Then, we also have the following properties.

• There is a unique equivalence class [x] satisfying that if x̄ �∈ [x] then x̄ cannot be a near fixed point,
which shows the sense of uniqueness.

• Suppose that x̄ ∈ [x]. Then x̄ is also a near fixed point of T, satisfying T(x̄) Ω
= x̄ and [x̄] = [x].

• Suppose that x̄ is a near fixed point of T. Then x̄ ∈ [x]; i.e., [x̄] = [x]. In other words, if x and x̄ are the

near fixed points of T, then x Ω
= x̄.

Proof. The assumption says that {Tn(x0)}∞
n=1 is a Cauchy sequence. Since X is complete, it follows

that x ∈ X exists, such that d(Tn(x0), x) → 0. From Definition 6 and Proposition 2, we see that
Tn(x0)→ [x]. Now, given any ε > 0, there exists an integer N, such that d(Tn(x0), x) < ε for n ≥ N.
Two cases will be considered.

• Suppose that Tn(x0)
Ω
= x. Since T is a weakly strict contraction of X, it follows that

d(Tn+1(x0), T(x)) = 0 < ε.

• Suppose that Tn(x0)
Ω
�= x. Since T is a weakly strict contraction of X, we have

d(Tn+1(x0), T(x)) < d(Tn(x0), x) < ε for n ≥ N.
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Therefore, we conclude that d(Tn+1(x0), T(x))→ 0. The triangle inequality says that

d(T(x), x) ≤ d
(

T(x), Tn+1(x0)
)
+ d

(
Tn+1(x0), x

)
→ 0 as n → ∞.

Therefore, we obtain d(T(x), x) = 0, i.e., T(x) Ω
= x. This shows that x is a near fixed point.

Now, we assume further that d satisfies the null equality. We want to show that each point x̄ ∈ [x]

is a near fixed point of T. Since x̄ Ω
= x, we have x̄ ⊕ ω1 = x ⊕ ω2 for some ω1, ω2 ∈ Ω. The null

equality says that

d(Tn(x0), x̄) = d(Tn(x0), x̄⊕ω1) = d(Tn(x0), x⊕ω2) = d(Tn(x0), x)→ 0 as n → ∞.

Therefore, we can also obtain d(Tn+1(x0), T(x̄)) → 0 as n → ∞ by using the above argument.
On the other hand, the triangle inequality also says that

d(x̄, T(x̄)) ≤ d(x̄, Tn+1(x0)) + d(Tn+1(x0), T(x̄))→ 0 as n → ∞,

which implies d(x̄, T(x̄)) = 0. Therefore, we obtain T(x̄) Ω
= x̄ for any point x̄ ∈ [x].

Suppose that x̄ �∈ [x] and x̄ is another near fixed point of T. Then, we have T(x̄) Ω
= x̄ and [x̄] �= [x],

i.e., x �Ω= x̄. We also have T(x)⊕ω1 = x⊕ω2 and T(x̄)⊕ω3 = x̄⊕ω4, where ωi ∈ Ω for i = 1, 2, 3, 4.
Now, we obtain

d(x, x̄) = d(x⊕ω2, x̄⊕ω4) (using the concept of null equality)

= d(T(x)⊕ω1, T(x̄)⊕ω3) = d(T(x), T(x̄)) (using the concept of null equality)

< d(x, x̄) (since T is a weakly strict contraction and x �Ω= x̄).

Therefore we led to a contradiction, which says that x̄ cannot be a near fixed point of T. In other
words, if x̄ is a near fixed point of T, then x̄ ∈ [x]. This completes the proof.

Meir and Keeler [11] studied the fixed point theorem for the weakly-uniformly strict contraction.
Therefore, under the informal metric space (X, d), we propose the following definition by considering

the fact d(x, y) = 0 for x Ω
= y.

Definition 11. Let (X, d) be an informal metric space with the null set Ω, and let Ω be closed under the vector
addition. A function T : (X, d)→ (X, d) is called a weakly uniformly strict contraction of X if and only if
the following conditions are satisfied:

• x Ω
= y, i.e., [x] = [y] implies d(T(x), T(y)) = 0;

• given any ε > 0, δ > 0 exists, such that ε ≤ d(x, y) < ε + δ implies d(T(x), T(y)) < ε for any x �Ω= y,
i.e., [x] �= [y].

Remark 3. It is clear to see that if T is a weakly uniformly strict contraction of X, then it is also a weakly strict
contraction of X.

Lemma 1. Let (X, d) be an informal metric space with the null set Ω, and let Ω be closed under the vector
addition. Let T : (X, d) → (X, d) be a weakly uniformly strict contraction of X. Then the sequence
{d(Tn(x), Tn+1(x))}∞

n=1 is decreasing to zero for any x ∈ X.

Proof. For convenience, we write Tn(x) = xn for all n. Let cn = d(xn, xn+1).

• Suppose that [xn−1] �= [xn]. By Remark 3, we have

cn = d(xn, xn+1) = d(Tn(x), Tn+1(x)) < d(Tn−1(x), Tn(x)) = d(xn−1, xn) = cn−1.
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• Suppose that [xn−1] = [xn]. Then, by the first condition of Definition 11,

cn = d(Tn(x), Tn+1(x)) = d(T(xn−1), T(xn)) = 0 < cn−1.

Therefore, we conclude that the sequence {cn}∞
n=1 is decreasing. Now, we also consider the

following two cases.

• Let m be the first index in the sequence {xn}∞
n=1 such that [xm−1] = [xm]. Then, we can show

that cm−1 = cm = cm+1 = · · · = 0. Since xm−1
Ω
= xm, we have cm−1 = d(xm−1, xm) = 0. The first

condition of Definition 11 says that

0 = d(T(xm−1), T(xm)) = d(Tm(x), Tm+1(x)) = d(xm, xm+1) = cm,

which implies xm
Ω
= xm+1; i.e., [xm] = [xm+1]. We can similarly obtain cm+1 = 0 and [xm+1] =

[xm+2]. Therefore, the sequence {cn}∞
n=1 is decreasing to zero.

• Suppose that [xm+1] �= [xm] for all m ≥ 1. Since the sequence {cn}∞
n=1 is decreasing, we can assume

that cn ↓ ε > 0, i.e., cn ≥ ε > 0 for all n, which says that δ > 0 exists, such that ε ≤ cm < ε + δ for
some m, i.e., ε ≤ d(xm, xm+1) < ε + δ. The second condition of Definition 11 says that

cm+1 = d(xm+1, xm+2) = d(Tm+1(x), Tm+2(x)) = d(T(xm), T(xm+1)) < ε,

which contradicts cm+1 ≥ ε.

This completes the proof.

Theorem 3. Let (X, d) be an informal complete metric space with the null set Ω, and let Ω be closed under the
vector addition. Let T : (X, d)→ (X, d) be a weakly uniformly strict contraction of X. Then T has a near fixed

point satisfying T(x) Ω
= x. More precisely, the near fixed point x is obtained by the following limit

d(Tn(x0), x)→ 0 as n → ∞ for some x0.

Assume further that d satisfies the null equality. Then we also have the following properties.

• There is a unique equivalence class [x] satisfying that if x̄ �∈ [x], then x̄ cannot be a near fixed point,
which shows the sense of uniqueness.

• Suppose that x̄ ∈ [x]. Then x̄ is also a near fixed point of T satisfying T(x̄) Ω
= x̄ and [x̄] = [x].

• Suppose that x̄ is a near fixed point of T. Then x̄ ∈ [x]; i.e., [x̄] = [x]. In other words, if x and x̄ are the

near fixed points of T, then x Ω
= x̄.

Proof. From Theorem 2 and Remark 3, we just need to show that if T is a weakly uniformly strict
contraction, then {Tn(x0)}∞

n=1 = {xn}∞
n=1 is a Cauchy sequence for x0 ∈ X. Suppose that {xn}∞

n=1
is not a Cauchy sequence. By definition, 2ε > 0 exists, such that, given any N, m, n ≥ N exists,
satisfying d(xm, xn) > 2ε. The assumption says that T is a weakly uniformly strict contraction on X.
Therefore, δ > 0 exists, such that

ε ≤ d(x, y) < ε + δ implies d(T(x), T(y)) < ε for any x �Ω= y.

Let δ′ = min{δ, ε}. We want to show that

ε ≤ d(x, y) < ε + δ′ implies d(T(x), T(y)) < ε for any x �Ω= y. (5)

It is clear to see that if δ′ = ε, i.e., ε < δ, then ε + δ′ = ε + ε < ε + δ.
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Let cn = d(xn, xn+1). Lemma 1 says that the sequence {cn}∞
n=1 is decreasing to zero. Therefore,

we can find N such that cN < δ′/3. For n > m ≥ N, we have

d(xm, xn) > 2ε ≥ ε + δ′, (6)

which implicitly says that xm �Ω= xn. Since {cn}∞
n=1 is decreasing, we obtain

d(xm, xm+1) = cm ≤ cN <
δ′

3
≤ ε

3
< ε. (7)

For j with m < j ≤ n, we also have

d(xm, xj+1) ≤ d(xm, xj) + d(xj, xj+1). (8)

We want to show that j with m < j ≤ n exists, such that xm �Ω= xj and

ε +
2δ′

3
< d(xm, xj) < ε + δ′. (9)

Let γj = d(xm, xj) for j = m + 1, · · · , n. Then (6) and (7) say that

γm+1 < ε and γn > ε + δ′. (10)

Let j0 be an index satisfying

j0 = max
{

j ∈ [m + 1, n] : γj ≤ ε +
2δ′

3

}
.

Using (10), we have m + 1 ≤ j0 < n. This says that j0 is well-defined. The definition of j0 also says that

j0 + 1 ≤ n and γj0+1 > ε + 2δ′
3 . Therefore, we obtain xm �Ω= xj0+1, which says that the expression (9)

will be sound if we can show that

ε +
2δ′

3
< γj0+1 < ε + δ′.

Suppose that this is not true; i.e., γj0+1 ≥ ε + δ′. Using (8), we obtain

δ′

3
> cN ≥ cj0 = d(xj0 , xj0+1) ≥ γj0+1 − γj0 ≥ ε + δ′ − ε− 2δ′

3
=

δ′

3
,

which contradicts the fact that (9) is sound. Since xm �Ω= xj, forms (5), we see that (9) implies

d(xm+1, xj+1) = d(T(xm), T(xj)) < ε. (11)

Therefore, we obtain

d(xm, xj) ≤ d(xm, xm+1) + d(xm+1, xj+1) + d(xj+1, xj)

< cm + ε + cj (by (11))

<
δ′

3
+ ε +

δ′

3
= ε +

2δ′

3
,

which contradicts (9). Therefore, every sequence {Tn(x)}∞
n=1 = {xn}∞

n=1 is a Cauchy sequence.
This completes the proof.
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Abstract: We propose a refinement in the interpolative approach in fixed-point theory. In particular,
using this method, we prove the existence of fixed points and common fixed points for Kannan-type
contractions and provide examples to support our results.

Keywords: interpolative contraction; contraction; fixed point

1. Preliminaries

Kannan fixed-point theorem is the first significant variant of the outstanding result of Banach
on the metric fixed-point theory [1,2]. Kannan’s theorem has been generalized in different ways.
In the present note, we zoom in on one of the recent generalizations that was proposed by Karapınar [3]
as interpolative Kannan-type contraction. It was indicated in [3] that each interpolative Kannan-type
contraction in a complete metric space admits a fixed point (see also e.g., [4–7]). More precisely,
we have:

Theorem 1 ([3], Theorem 2.2). Let (X, d) be a complete metric space and T : X → X an interpolative
Kannan-type contraction, i.e., T is a self-map such that there exist λ ∈ [0, 1), α ∈ (0, 1) with

d(Tx, Ty) ≤ λd(x, Tx)αd(y, Ty)1−α (1)

for all x, y ∈ X\Fix(T), where Fix(T) := {x ∈ X : Tx = x}.
Then T has a fixed point in X.

Our contribution in the present manuscript aims at sharpening the inequality (1) by increasing
the degree of freedom of the powers appearing in the right-hand side in the framework of standard
metric spaces. We also indicate the novelty of our results by expressing some examples.

2. Main Results

We start with the following definition.

Definition 1. Let (X, d) a metric space and T : X → X a self-map. We shall call T a (λ, α, β)-interpolative
Kannan contraction, if there exist λ ∈ [0, 1), α, β ∈ (0, 1) with α + β < 1 such that

d(Tx, Ty) ≤ λd(x, Tx)αd(y, Ty)β (2)

for all x, y ∈ X with x �= Tx, y �= Ty.

Axioms 2019, 8, 110; doi:10.3390/axioms8040110 www.mdpi.com/journal/axioms59
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We are now ready to state the main result of this paper.

Theorem 2. Let (X, d) a complete metric space and T : X → X be a (λ, α, β)-interpolative Kannan contraction
with λ ∈ [0, 1), α, β ∈ (0, 1) so that α + β < 1. Then T has a fixed point in X.

Proof. Following the steps of the proof of ([3], Theorem 2.2), we construct the sequence (xn)n≥1 by
iterating xn = Tnx0 where x0 ∈ X is an arbitrary starting point. Then, we observe that

d(xn, xn+1) = d(Txn−1, Txn) ≤ λd(xn−1, xn)
αd(xn, xn+1)

β,

i.e.,
d(xn, xn+1)

1−β ≤ λd(xn−1, xn)
α ≤ λd(xn−1, xn)

1−β

since α < 1− β.
As already elaborated in the proof of ([3], Theorem 2.2), the classical procedure leads to the

existence of a unique fixed point x∗ ∈ X.

We conclude this section by presenting an example explaining why our approach is more general.

Example 1 (Compare ([3], Example 2.3)). Take X = {x, y, z, w} and endow it with the following metric:

x y z w
x 0 5/2 4 5/2
y 5/2 0 3/2 1
z 4 3/2 0 3/2
w 5/2 1 3/2 0

We also define the self-map T on X as

Tx = x; Ty = w; Tz = x; Tw = y.

We observe that the inequality:

d(Tx, Ty) ≤ λd(x, Tx)αd(y, Ty)β

is satisfied for:

α =
1
8

, β =
3
4

, λ =
8
9
≤ 9

10
;

α =
1
9

, β =
3
4

, λ =
8
9
≤ 9

10
;

α =
1
8

, β =
4
5

, λ =
8
9
≤ 9

10
.

In all these cases, α + β < 1 i.e., β < 1− α and the map obviously has a unique fixed point.
In other words, the inequality

d(Tx, Ty) ≤ λd(x, Tx)αd(y, Ty)1−α

could just be replaced by the existence of two reals α, β such that α + β < 1,

d(Tx, Ty) ≤ λd(x, Tx)αd(y, Ty)β.

Inspired by the above question, we introduce the idea of “optimal interpolative triplet (α, β, λ)”
for a (λ, α, β)-interpolative Kannan contraction.
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Definition 2. Let (X, d) be a metric space and T : X → X be a self-map. We shall call T a relaxed
(λ, α, β)-interpolative Kannan contraction, if there exist 0 ≤ λ, α, β such that

d(Tx, Ty) ≤ λd(x, Tx)αd(y, Ty)β. (3)

Definition 3. Let (X, d) be a metric space and T : X → X be a relaxed (λ, α, β)-interpolative Kannan
contraction. The triplet (λ, α, β) will be called “optimal interpolative triplet” if for any ε > 0, the inequality (3)
fails for at least one of the triplet

(λ− ε, α, β), (λ, α− ε, β), (λ, α, β− ε).

Therefore, we formulate the following conjecture for which we currently do not have any proof.

Theorem 3. Let (X, d) be a complete metric space. Let T : X → X be a map such that for any n ≥ 0, Tn

admits an optimal interpolative triplet (λn, αn, βn). If ∑ λn < ∞ and ∑ αn + βn < ∞, then T has a unique
fixed point. Moreover, this fixed point can be obtained via the Picard iteration.

Theorem 2 can easily be generalized to the case of two maps. More precisely:

Definition 4. Let (X, d) be a metric space and R, T : X → X be two self-maps. We shall call (R, T) a
(λ, α, β)-interpolative Kannan contraction pair, if there exist λ ∈ [0, 1), α, β ∈ (0, 1) with α + β < 1 such that

d(Rx, Ty) ≤ λd(x, Rx)αd(y, Ty)β (4)

for all x, y ∈ X with x �= Rx, y �= Ty.

Our result then goes as follows:

Theorem 4. Let (X, d) be a complete metric space and (R, T) be a (λ, α, β)-interpolative Kannan contraction
pair. Then R and T have a common fixed point in X, i.e., there exists x∗ ∈ X such that Rx∗ = x∗ = Tx∗.

Proof. We construct the sequence (xn)n≥1 by iterating

x2n+1 = Rx2n, x2n+2 = Tx2n+1

where x0 ∈ X is an arbitrary starting point.

d(x2n+1, x2n+2) ≤ λd(x2n, x2n+1)
αd(x2n+1, x2n+2)

β ≤ λd(x2n, x2n+1)
αd(x2n+1, x2n+2)

1−α.

The proof then follows the same steps as ([8], Theorem 2.1). As already elaborated in the proof
of ([8], Theorem 2.1), the classical procedure leads to the existence of a unique fixed point x∗ ∈ X.

Example 2. We use the metric defined in Example 1. We also define on X the self-maps T as

Tx = x; Ty = y; Tz = w; Tw = w

and R as
Rx = x; Ry = w; Rz = z; Rw = w.

We observe that the inequality:

d(Rx, Ty) ≤ λd(x, Rx)αd(y, Ty)β
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is satisfied for:

α =
1
8

, β =
3
4

, λ =
8
9

;

α =
1
9

, β =
5
6

, λ =
9

10
;

α =
10
11

, β =
1
2

, λ =
5
7

.

R and T have two common fixed points x and w.

The above conjecture (Theorem 3) motives us in the investigation of interpolative Kannan
contraction for a family of maps. Indeed Noorwali [8] used interpolation to obtain a common
fixed-point result for a Kannan-type contraction mapping. We aim at generalizing ([8], Theorem 2.1)
and Theorem 4 with the use of a (λ, α, β)-interpolative Kannan contraction for a family of maps.
More precisely:

Problem 1. Let (X, d) be a complete metric space. Let Tn : X → X, n ≥ 1 be a family of self-maps such for
any x, y ∈ X

d(Tix, Tjy) ≤ λi,j d(x, Tix)αi d(y, Tjy)
β j .

What are the conditions on λi,j, αiβ j for Tn to have a (unique)common fixed point.
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1. Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Beograd, Serbia, 2003.
2. Todorcević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics; Springer Nature Switzerland

AG: Cham, Switzerland, 2019.
3. Karapınar, E. Revisiting the Kannan Type Contractions via Interpolation. Adv. Theory Nonlinear Anal. Appl.

2018, 2, 85–87. [CrossRef]
4. Aydi, H.; Karapınar, E.; Roldán López de Hierro, A.F. ω-Interpolative Ćirić-Reich-Rus-Type Contractions.
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Abstract: In this paper, we establish some results on coincidence point and common fixed point
theorems for a hybrid pair of single valued and multivalued mappings in complete C∗-algebra
valued fuzzy soft metric spaces. In addition, we provided some coupled fixed point theorems. Finally,
we have given examples which support our main results.
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1. Introduction and Preliminaries

We know that the fixed points that can be discussed are divided into two types. The first type deals
with contraction and is referred to as Banach fixed point theorems, the second type deals with compact
mappings and more involved. Metric fixed point theorems plays very important role, many authors
proved fixed point theorems in various spaces (see e.g., [1–36]).

The study of fixed points for multivalued mappings using the Hausdorff metric was initiated
by Nadler ([14]. The theory of multivalued mappings has a wide range of applications, it has been
applied in control theory, convex optimization, differential inclusions, economics, etc. The existence of
fixed points for various multivalued contractive mappings has been studied by many authors under
different conditions (see [15–30]).

In the year 2014, Ma et al. [7] introduced the concept of C∗-algebra valued metric space
and established some fixed point results. Later, Alsulami et al. [32] suggested some remarks on
C∗-algebras and proved Banach type contraction result, this line of research was continued in
(see [8,10–12,31,34,35]).

Fuzzy set theory was introduced by Zadeh [36] and the theory of soft sets initiated by
Molodstov [37] which helps to solve problems in all areas. Maji et al. [38,39] introduced several
operations in soft sets and as also coined fuzzy soft sets. In [1] Thangaraj Beaula et al. defined fuzzy
soft metric space in terms of fuzzy soft points and proved some results. On the other hand several
authors proved smany results in fuzzy soft sets and fuzzy soft metric spaces (see [1,2,5,6,40–44]).

Axioms 2019, 8, 99; doi:10.3390/axioms8030099 www.mdpi.com/journal/axioms63
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Recently, R.P.Agarwal et al. [25] introduced the concept of C∗-algebra valued fuzzy soft metric
space based on C∗-algebras and fuzzy soft elements and described the convergence and completeness
properties in this space also they provided some fixed point theorems (see [25,26]).

The main aim of this paper is to introduce the concept of multi-valued mappings in C∗-algebra
valued fuzzy soft metric spaces and proved some coincidence and common fixed point theorems
for a two-pair of multi-valued and single-valued maps satisfying new type of contractive conditions.
Also we provided some coupled fixed point theorems and finally we are initiate some examples which
supports our main results.

Throughout this paper, we use the following notations as in C∗-algebras:
U refers to an initial universe, E the set of all parameters for U and P(Ũ) the set of all fuzzy set of

U. (U, E)means the universal set U and parameter set E, C̃ refer to C∗-algebras. Details on C∗-algebras
are available in [27]. An algebra ‘C̃’together with a conjugate linear involution map ∗∶ C̃ → C̃, defined
by ã → ã∗ such that for all ã, b̃ ∈ C̃, we have (ãb̃)∗ = b̃∗ ã∗ and (ã∗)∗ = ã, is called a ⋆-algebra. Moreover,
if C̃ an identity element ĨC̃, then the pair (C̃,⋆) is called a unital ⋆-algebra. A unital ⋆-algebra (C̃,⋆)
together with a complete sub multiplicative norm satisfying ã = ã∗ for all ã ∈ C̃ is called a Banach
⋆-algebra. A C∗-algebra is a Banach ⋆-algebra (C̃,⋆) such that ã∗ ã = ã2 for all ã ∈ C̃, An element ã ∈ C̃is
called a positive element if ã = ã∗ and σ(ã) ⊂ R(C)∗ is set of non-negative fuzzy soft real numbers,
where σ(ã) = {λ ∈ R(C)∗ ∶ λ Ĩ − ã, is non-invertible}. If ã ∈ C̃ is positive, we write it as ã ≥ 0̃C̃. Using
positive elements, one can define partial ordering on C̃ as follows; ã ⪯ b̃ if and only if 0̃C̃ ⪯ b̃ − ã.
Each positive element ‘ã’of a C∗-algebra C̃ has a unique positive square root. Subsequently, C̃ will
denote a unital C∗-algebra with the identity element ĨC̃. Furthermore, C̃+ and C̃′ will denote the set
{ã ∈ C̃ ∶ 0̃C̃ ⪯ ã} and set {ã ∈ C̃ ∶ ãb̃ = b̃ã}, respectively.

Definition 1 ([37]). A Fuzzy set A in U is characterized by a function with domain as U and values in [0, 1].
The collection of all fuzzy set U is P(Ũ).
Definition 2 ([38]). A pair (F, E) is called a soft set over U if and only if F∶E → P(U)is mapping from E into
P(U) the set of all sub set of U.

Definition 3 ([43]). Let C ⊆ E then the mapping FE∶C → P(Ũ), defined by FE(e) = μeFE (a fuzzy sub set of
U), is called fuzzy soft set over (U, E) where, μeFE = 0̃ if e ∈ E −C and μeFE ≠ 0̃ if e ∈ C. The set of all fuzzy
soft set over (U, E) is denoted by FS(U, E).
Definition 4 ([43]). Let FE ∈ FS(U, E) and FE(e) = 1̃ for all e ∈ E. Then FE is called absolute fuzzy soft set.
It is denoted by Ẽ.

Now we recall some basic definitions and properties of C∗-algebra-valued Fuzzy soft
metric spaces.

Definition 5 ([25]). Let C ⊆ E and Ẽ be the absolute fuzzy soft set that is FE(e) = 1̃ for all e ∈ E. Let C̃
denote the C∗-algebra. The C∗-algebra valued fuzzy soft metric using fuzzy soft points is defined as a mapping

˜dc∗ ∶ Ẽ × Ẽ → C̃ satisfying the following conditions.

(M0) 0̃C̃ ⪯ d̃(Fe1 , Fe2) for all Fe1 , Fe2 ∈ Ẽ.(M1) ˜dc∗(Fe1 , Fe2) = 0̃C̃ ⇔ Fe1 = Fe2(M2) ˜dc∗(Fe1 , Fe2) = ˜dc∗(Fe2 , Fe1)(M3) ˜dc∗(Fe1 , Fe3) ⪯ ˜dc∗(Fe1 , Fe2) + ˜dc∗(Fe2 , Fe3) ∀ Fe1 , Fe2 , Fe3 ∈ Ẽ.

The fuzzy soft set Ẽ with the C∗-algebra valued fuzzy soft metric ˜dc∗ is called the C∗-algebra valued fuzzy
soft metric space. It is denoted by (Ẽ, C̃, ˜dc∗).
Definition 6 ([25]). A sequence {Fen} in a C∗-algebra valued fuzzy soft metric space (Ẽ, C̃, ˜dc∗) is said to
converges to Fe∣ in Ẽ with respect to C̃. If ∣∣ ˜dc∗(Fen , Fe∣)∣∣C̃ → 0̃C̃issaidtoconvergesto as n → ∞ that is for every
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0̃C̃ ≺ ε̃ there exists 0̃C̃ ≺ δ̃ and a positive integer N = N(ε̃), such that ∣∣ ˜dc∗(Fen , Fe∣)∣∣ < δ̃ implies that
∣∣μa

Fen
(s) − μa

Fe∣(s)∣∣ < ε̃, whenever n ≥ N. It is usually denoted as limn→∞ Fen = Fe∣ .

Definition 7 ([25]). A sequence {Fen} in a C∗-algebra valued fuzzy soft metric space (Ẽ, C̃, ˜dc∗) is said
to be Cauchy sequence. If to every 0̃C̃ ≺ ε̃ there exist 0̃C̃ ≺ δ̃ and a positive integer N = N(ε̃) such that
∣∣ ˜dc∗(Fen , Fem)∣∣ < δ̃ implies that ∣∣μa

Fen
(s) − μa

Fem
(s)∣∣ < ε̃ whenever n, m ≥ N. That is ∣∣ ˜dc∗(Fen , Fem)∣∣C̃ →

0̃C̃as n, m →∞.

Definition 8 ([25]). A C∗-algebra valued fuzzy soft metric space (Ẽ, C̃, ˜dc∗) is said to be complete. If every
Cauchy sequence in Ẽ converges to some fuzzy soft point of Ẽ.

Example 1 ([25]). Let C ⊆ R and E ⊆ R, let Ẽ be an absolute fuzzy soft set that is Ẽ(e) = 1̃ for all e ∈ E,
and C̃ = M2(R(C)∗), define ˜dc∗ ∶ Ẽ × Ẽ → C̃ by

˜dc∗(Fe1 , Fe2) = [ i 0
0 i

] ,

where i = inf{∣μa
Fe1
(s) − μa

Fe2
(s)∣/s ∈ C} and Fe1 , Fe2 ∈ Ẽ. Then ˜dc∗ is a C∗-algebra valued fuzzy soft metric and

(Ẽ, C̃, ˜dc∗) is a complete C∗-algebra valued fuzzy soft metric space by the completeness of R(C)∗.

Lemma 1 ([25]). Let C̃ be a C∗-algebra with the identity element ĨC̃ and x̃ be a positive element of C̃. If ã ∈ C̃
is such that ∣∣ã∣∣ < 1 then for m < n, we have

lim
n→∞

n∑
k=m

(ã⋆)k x̃(ã)k = ĨC̃ ∣∣ ˜(x) 1
2 ∣∣2 ( ∣∣ã∣∣m

1− ∣∣ã∣∣ ) (1)

and
n∑

k=m
(ã⋆)k x̃(ã)k → 0̃C̃ as m →∞. (2)

Lemma 2 ([25]). Suppose that C̃ is a unital C∗-algebra with unit 1̃.

(i) If ã ∈ C̃+ with ∣∣ã∣∣ < 1
2 then Ĩ − ã is invertible and ∣∣ã( Ĩ − ã)−1∣∣ < 1

(ii) suppose that ã, b̃ ∈ C̃ with ã, b̃ ⪰ 0̃C̃ and ãb̃ = b̃ã then ãb̃ ⪰ 0̃C̃
(iii) C̃′ we denote the set {ã ∈ C̃/ãb̃ = b̃ã ∀ b̃ ∈ C̃}. Let ã ∈ C̃′, if b̃, c̃ ∈ C̃ with b̃ ⪰ c̃ ⪰ 0̃ and Ĩ − ã ∈ C̃′+ is an

invertible operator, then ( Ĩ − ã)−1b̃ ⪰ ( Ĩ − ã)−1 c̃, where C̃+
′ = C̃+ ∩ C̃′.

Notice that in c∗-algebra, if 0̃ ⪯ ã, b̃, one cannot conclude that 0̃ ⪯ ãb̃. Indeed, consider the c∗-algebra
M2(R(C)∗) and set

ã = [ Fe1(a) Fe2(a)
Fe2(a) Fe1(b) ] = [ 0.3 0.1

0.1 0.2
]

andb̃ = [ Fe1(c) Fe2(c)
Fe2(c) Fe1(d) ] = [ 0.4 0.5

0.5 0.6
]

then clearly ã ⪰ 0̃ and b̃ ⪰ 0̃ but ã, b̃ ∈ M2(R(C)∗)+ while ãb̃ ∉ M2(R(C)∗)+.

2. Main Results

In this section, first we give the notion of Hausdorff metric in C∗-algebra valued fuzzy soft
metric spaces.

Let (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space. We denote by CB(Ẽ) be a class
of all nonempty closed and bounded subsets of Ẽ. For a points Fe1 , Fe2 ∈ Ẽ and X̃, Ỹ ∈ CB(Ẽ),
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define D̃c∗(Fe1 , Ỹ) = infGe1∈Ỹ
˜dc∗(Fe1 , Ge1). Let H̃c∗ be the Hausdorff C∗-algebra valued fuzzy soft

metric induced by the C∗-algebra valued fuzzy soft metric ˜dc∗ on Ẽ that is

H̃c∗(X̃, Ỹ) = max
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup
Fe1∈X̃

D̃c∗(Fe1 , Ỹ), sup
Ge1∈Ỹ

D̃c∗(X̃, Ge1)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

for every X̃, Ỹ ∈ CB(Ẽ). It is well known that (CB(Ẽ), C̃, H̃c∗) is a complete C∗-algebra valued fuzzy
soft metric space, whenever (Ẽ, C̃, ˜dc∗) is a complete C∗-algebra valued fuzzy soft metric space.

Definition 9. Let T ∶ Ẽ → CB(Ẽ) be a multivalued map. An element Fe1 ∈ Ẽ is fixed point of F if Fe1 ∈ TFe1 .

Definition 10. Let T ∶ Ẽ → CB(Ẽ) and f ∶ Ẽ → Ẽ be a multivalued map and single valued maps. An element
Fe1 ∈ Ẽ is coincidence point of F and f if f Fe1 ∈ TFe1 . We denote

C { f , T} = {Fe1 ∈ Ẽ/ f Fe1 ∈ TFe1}
Definition 11. The mappings T ∶ Ẽ → CB(Ẽ) and f ∶ Ẽ → Ẽ are weakly compatible if they commute at their
coincidence points, i.e., if f TFe1 = T f Fe1 , whenever f Fe1 ∈ TFe1 .

Definition 12. Let T ∶ Ẽ → CB(Ẽ) and f ∶ Ẽ → Ẽ be a multivalued map and single valued maps. The map f is
said to be T-weakly commuting at Fe1 ∈ Ẽ if f f Fe1 ∈ T f Fe1 .

Definition 13. An element Fe1 ∈ Ẽ is a common fixed point of T, S ∶ Ẽ → CB(Ẽ) and f ∶ Ẽ → Ẽ if Fe1 = f Fe1 ∈
TFe1 ∩ SFe1 .

Example 2. Let U = R+ and E = C = [0, 4], let Ẽ be an absolute fuzzy soft set that is Ẽ(e) = 1̃ for all e ∈ E,

and C̃ = M2(R(C)∗), define d̃c∗ ∶ Ẽ × Ẽ → C̃ by d̃c∗(Fe1(a), Fe2(a))(s) = [ i 0
0 i

] where i = inf{∣μa
Fe1
(s) −

μa
Fe2
(s)∣/s ∈ C} then (Ẽ, C̃, d̃c∗) is a C∗-algebra valued fuzzy soft metric space and define f ∶ Ẽ → Ẽ and

T ∶ Ẽ → CB(Ẽ)

f Fe(a) = ⎧⎪⎪⎨⎪⎪⎩
0̃ i f Fe(a) ∈ [0, 1

2 ]
Fe(a)

2 i f Fe(a) ∈ ( 1
2 , 1] , TFe(a) = ⎧⎪⎪⎨⎪⎪⎩

{Fe(a)} i f Fe(a) ∈ [0, 1
2 ][0, 1̃− Fe(a)

4 ] i f Fe(a) ∈ ( 1
2 , 1]

We have

● f 1̃ = 1
2 ∈ [0, 3

4 ] = T1̃ that is, Fe(a) = 1̃ is a coincidence point of f and T;● f T1̃ = [0, 1
2 ] ≠ [0, 7

8 ] = T f 1̃ that is, f and T are not weakly compatible mappings;● f f 1̃ = 1
4 ∈ [0, 7

8 ] = T f 1̃ that is, f is T -weakly commuting at 1̃.

Theorem 1. Let (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy soft metric space, and T∶ Ẽ → CB(Ẽ) be a
multivalued map satisfying

H̃c∗ (TFe1 , TFe2) ⪯ ã⋆ ˜dc∗(Fe1 , Fe2)ã (3)

for all Fe1 , Fe2 ∈ Ẽ, where ã ∈ C̃ with ∣∣ã∣∣ < 1. Then T has a unique fixed point in Ẽ.

Lemma 3. If X̃, Ỹ ∈ CB(Ẽ) and Fe1 ∈ X̃, then for any fixed b̃ ∈ C̃+
′ with ∣∣b̃∣∣ < 1, there exists Fe2 = Fe2(Fe1) ∈ Ỹ

such that

˜dc∗ (Fe1 , Fe2) ⪯ b̃H̃c∗(X̃, Ỹ). (4)
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Theorem 2. Let (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy soft metric space. Let S, T∶ Ẽ → CB(Ẽ) be a
pair of multivalued maps and f , g ∶ Ẽ → Ẽ be a single-valued maps. Suppose that

H̃c∗ (SFe1 , TFe2) ⪯ ã ˜dc∗( f Fe1 , gFe2) + ã (D̃c∗( f Fe1 , SFe1) + D̃c∗(gFe2 , TFe2))
+ã (D̃c∗( f Fe1 , TFe2) + D̃c∗(gFe2 , SFe1)) , (5)

for all Fe1 , Fe2 ∈ Ẽ, where ã ∈ C̃+
′ with ∣∣ã∣∣ < 1. Suppose that

(A1) SẼ ⊆ gẼ, TẼ ⊆ f Ẽ;(A2) f (Ẽ) and g(Ẽ) are closed.

Then, there exist points Fe′ , Ge′ ∈ Ẽ, such that f Fe′ ∈ SFe′ , gGe′ ∈ TGe′ and f Fe′ = gGe′ , SFe′ = TGe′ .

Proof. Let Fe0 ∈ Ẽ be an arbitrary. From (A1) and Lemma 3, there exist Fe1 , Fe2 ∈ Ẽ, such that gFe1 ∈ SFe0 ,
f Fe2 ∈ TFe1 and

˜dc∗ (gFe1 , f Fe2) ⪯ b̃H̃c∗(SFe0 , TFe1). (6)

From (5) and (6), we have

˜dc∗ (gFe1 , f Fe2) ⪯ b̃H̃c∗(SFe0 , TFe1)
⪯ b̃ã ˜dc∗( f Fe0 , gFe1) + b̃ã (D̃c∗( f Fe0 , SFe0) + D̃c∗(gFe1 , TFe1))

+b̃ã (D̃c∗( f Fe0 , TFe1) + D̃c∗(gFe1 , SFe0)) . (7)

In contrast, we have

D̃c∗( f Fe0 , SFe0) ⪯ ˜dc∗( f Fe0 , gFe1)
D̃c∗(gFe1 , TFe1) ⪯ ˜dc∗(gFe1 , f Fe2)
D̃c∗(gFe1 , SFe0) ⪯ ˜dc∗(gFe1 , gFe1) = 0

D̃c∗( f Fe0 , TFe1) ⪯ ˜dc∗( f Fe0 , f Fe2) ⪯ ˜dc∗( f Fe0 , gFe1) + ˜dc∗(gFe1 , f Fe2). (8)

From (7) and (8), we have

˜dc∗ (gFe1 , f Fe2) ⪯ b̃ã ˜dc∗( f Fe0 , gFe1) + b̃ã ( ˜dc∗( f Fe0 , gFe1) + ˜dc∗(gFe1 , f Fe2))
+b̃ã ( ˜dc∗( f Fe0 , gFe1) + ˜dc∗(gFe1 , f Fe2))
= 3b̃ã ˜dc∗( f Fe0 , gFe1) + 2b̃ã ˜dc∗(gFe1 , f Fe2). (9)

Therefore,
(1− 2b̃ã) ˜dc∗ (gFe1 , f Fe2) ⪯ 3b̃ã ˜dc∗( f Fe0 , gFe1).

Since ∣∣b̃∣∣∣∣ã∣∣ < 1
2 Then 1 − 2b̃ã is invertible, and can expressed as (1 − 2b̃ã)−1 = ∞∑

m=0
(2b̃ã)m,

which together with 2b̃ã ∈ C̃+
′

can yields (1− 2b̃ã)−1 ∈ C̃+
′
. By Lemma 2 (iii), we know

˜dc∗ (gFe1 , f Fe2) ⪯ κ̃ ˜dc∗( f Fe0 , gFe1),
where κ̃ = 3b̃ã(1− 2b̃ã)−1 ∈ C̃+

′
with ∣∣3b̃ã(1− 2b̃ã)−1∣∣ < 1. Again from (A1) and Lemma 3 with ∣∣b̃∣∣ < 1,

as f Fe2 ∈ TFe1 , there exists Fe3 ∈ Ẽ such that gFe3 ∈ SFe2 and

˜dc∗ ( f Fe2 , gFe3) ⪯ b̃H̃c∗(SFe2 , TFe1). (10)
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From (5) and (10), we get

˜dc∗ ( f Fe2 , gFe3) ⪯ b̃H̃c∗(SFe2 , TFe1)
⪯ b̃ã ˜dc∗( f Fe2 , gFe1) + b̃ã (D̃c∗( f Fe2 , SFe2) + D̃c∗(gFe1 , TFe1))

+b̃ã (D̃c∗( f Fe2 , TFe1) + D̃c∗(gFe1 , SFe2)) . (11)

In contrast, we have

D̃c∗( f Fe2 , SFe2) ⪯ ˜dc∗( f Fe2 , gFe3)
D̃c∗(gFe1 , TFe1) ⪯ ˜dc∗(gFe1 , f Fe2)
D̃c∗( f Fe2 , TFe1) ⪯ ˜dc∗( f Fe2 , f Fe2) = 0

D̃c∗(gFe1 , SFe2) ⪯ ˜dc∗(gFe1 , gFe3) ⪯ ˜dc∗(gFe1 , f Fe2) + ˜dc∗( f Fe2 , gFe3). (12)

Similarly as above, from (11) and (12), we get

˜dc∗ ( f Fe2 , gFe3) ⪯ κ̃ ˜dc∗(gFe1 , f Fe2).
Continuing this process, we can construct a sequence {Gen} in Ẽ, such that Ge0 = gFe1 and,

for each n ∈ N,

Ge2n = gFe2n+1 ∈ SFe2n Ge2n+1 = f Fe2n+2 ∈ TFe2n+1 (13)

and
˜dc∗ (Ge2n , Ge2n+1) = ˜dc∗(gFe2n+1 , f Fe2n+2) ⪯ κ̃ ˜dc∗(gFe2n+1 , f Fe2n)
˜dc∗ (Ge2n−1 , Ge2n) = ˜dc∗( f Fe2n , gFe2n+1) ⪯ κ̃ ˜dc∗(gFe2n−1 , f Fe2n).

Therefore, we have

˜dc∗ (Gen , Gen+1) ⪯ κ̃ ˜dc∗ (Gen−1 , Gen) for all n ≥ 1. (14)

From (14), by induction and Lemma 2 (iii), we get

˜dc∗ (Gen , Gen+1) ⪯ κ̃n ˜dc∗ (Ge0 , Ge1) for all n ∈ N. (15)

Now, we shall show that {Gen} is a Cauchy sequence in Ẽ.
For m > n, by using triangle inequality and (15), we have

˜dc∗ (Gen , Gem) ⪯ ˜dc∗ (Gen , Gen+1) + ˜dc∗ (Gen+1 , Gen+2) +⋯+ ˜dc∗ (Gem−1 , Gem)⪯ (κ̃n + κ̃n+1 + κ̃n+2 +⋯+ κ̃m−1) ˜dc∗ (Ge0 , Ge1)≤ ∣∣κ̃n + κ̃n+1 + κ̃n+2 +⋯+ κ̃m−1∣∣∣∣ ˜dc∗ (Ge0 , Ge1) ∣∣ ĨC̃≤ ∣∣κ̃n∣∣ + ∣∣κ̃n+1∣∣ +⋯+ ∣∣κ̃m−1∣∣∣∣ ˜dc∗ (Ge0 , Ge1) ∣∣ ĨC̃= ∣∣κ̃∣∣n
1−∣∣κ̃∣∣ ∣∣ ˜dc∗ (Ge0 , Ge1) ∣∣ ĨC̃ → 0 as n →∞.

Hence {Gen} is a Cauchy sequence. Now as, (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy
soft metric space, {Gen} converges to some Ge′ ∈ Ẽ. Therefore,

lim
n→∞Gen = lim

n→∞ gFe2n+1 = lim
n→∞ f Fe2n+2 = Ge′ . (16)

As Ge2n = gFe2n+1 , Ge2n+1 = f Fe2n+2 and f (Ẽ), g(Ẽ) are closed, then Ge′ ∈ f (Ẽ) and Ge′ ∈ g(Ẽ).
Therefore, there exist Fe′ , Fe′′ ∈ Ẽ, such that f Fe′ = Ge′ and gFe′′ = Ge′ . Thus, we have proved that

f Fe′ = gFe′′ . (17)
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From the contraction type condition (5) and (13), we obtain

D̃c∗ ( f Fe′ , SFe′) ⪯ ˜dc∗ ( f Fe′ , f Fe2n+2) + D̃c∗ ( f Fe2n+2 , SFe′)⪯ ˜dc∗ ( f Fe′ , f Fe2n+2) + H̃c∗ (SFe′ , TFe2n+1)⪯ ˜dc∗ ( f Fe′ , f Fe2n+2) + ã ˜dc∗ ( f Fe′ , gFe2n+1)+ã (D̃c∗ ( f Fe′ , SFe′) + D̃c∗ (gFe2n+1 , TFe2n+1))+ã (D̃c∗ ( f Fe′ , TFe2n+1) + D̃c∗ (gFe2n+1 , SFe′))⪯ ˜dc∗ ( f Fe′ , f Fe2n+2) + ã ˜dc∗ ( f Fe′ , gFe2n+1)+ã (D̃c∗ ( f Fe′ , SFe′) + D̃c∗ (gFe2n+1 , f Fe2n+2))+ã (D̃c∗ ( f Fe′ , f Fe2n+2) + D̃c∗ (gFe2n+1 , SFe′)) .

which implies

D̃c∗ ( f Fe′ , SFe′) ⪯ (1− ã)−1 ˜dc∗ ( f Fe′ , f Fe2n+2) + (1− ã)−1 ã ˜dc∗ ( f Fe′ , gFe2n+1 , )
+(1− ã)−1 ã (D̃c∗ (gFe2n+1 , f Fe2n+2))+(1− ã)−1 ã (D̃c∗ ( f Fe′ , f Fe2n+2) + D̃c∗ (gFe2n+1 , SFe′)) .

Letting n →∞ in the above inequality and using (16) and (17), we obtain

∣∣D̃c∗ ( f Fe′ , SFe′) ∣∣ ≤ ∣∣(1− ã)−1 ã∣∣∣∣D̃c∗ ( f Fe′ , SFe′) ∣∣.
Then D̃c∗ ( f Fe′ , SFe′) = 0. Hence, as SFe′ is closed,

f Fe′ ∈ SFe′ . (18)

Similarly, we can prove that

gFe′′ ∈ TFe′′ . (19)

Now, we have to prove that

SFe′ = TFe′′ . (20)

Using (5), (17)–(19), we get

H̃c∗ (SFe′ , TFe′′) ⪯ ã ˜dc∗ ( f Fe′ , gFe′′) + ã (D̃c∗ ( f Fe′ , SFe′) + D̃c∗ (gFe′′ , TFe′′))+ã (D̃c∗ ( f Fe′ , TFe′′) + D̃c∗ (gFe′′ , SFe′))⪯ ã (D̃c∗ (gFe′′ , TFe′′) + D̃c∗ ( f Fe′ , SFe′)) = 0̃C̃.

Hence, SFe′ = TFe′′ . Thus, by (17)–(20), we have proved that

f Fe′ ∈ SFe′ gFe′′ ∈ TFe′′ f Fe′ = gFe′′ SFe′ = TFe′′ .

Example 3. Let E = {e1, e2, e3}, U = {a, b, c, d} and C and D are two subset of E where C = {e1, e2, e3},
D = {e1, e2,}. Define fuzzy soft set as,
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(FE, C) = { e1 = {a0.1, b0.3, c0.4, d0.5}, e2 = {a0.3, b0.4, c0.6, d0.7},
e3 = {a0.6, b0.7, c0.8, d0.9} }

(GE, D) = {e1 = {a0.4, b0.5, c0.2, d0.6}, e2 = {a0.5, b0.6, c0.3, d0.7}}
Fe1 = μFe1

= {a0.1, b0.3, c0.4, d0.5}, Fe2 = μFe2
= {a0.3, b0.4, c0.6, d0.7}

Fe3 = μFe3
= {a0.6, b0.7, c0.8, d0.9}

Ge1 = μGe1
= {a0.4, b0.5, c0.2, d0.6}, Ge2 = μGe2

= {a0.5, b0.6, c0.3, d0.7}
and FSC(FE) = {Fe1 , Fe2 , Fe3 , Ge1 , Ge2}, let Ẽ be absolute fuzzy soft set that is Ẽ(e) = 1̃, for all e ∈ E,
and C̃ = M2(R(C)∗), be the C∗-algebra. Define d̃c∗ ∶ Ẽ × Ẽ → C̃ by d̃c∗(Fe1 , Fe2) = (inf{∣Fe1(a) − Fe2(a)∣/a ∈
C}, 0), then obviously (Ẽ, C̃, d̃c∗) is a complete C∗-algebra valued fuzzy soft metric space.

We define S∶ Ẽ → CB(Ẽ) by SFe1(a) = F2
e1
+ 1

4 , T∶ Ẽ → CB(Ẽ) by TFe1(a) = F3
e1
+ 1

4 , f ∶ Ẽ → Ẽ
by f Fe1 = 2F2

e1
and g∶ Ẽ → Ẽ by gFe1 = 2F3

e1
for all a ∈ U and Fe1 ∈ Ẽ. Notice that f Fe1 = 2F2

e1
=

{0.02, 0.18, 0.32, 0.50} and gFe2 = 2F3
e1
= {0.054, 0.128, 0.432, 0.686} . Thus, inf{∣μa

f Fe1
(s) − μa

gFe2
(s)∣/s ∈ C}

= inf{0.034, 0.052, 0.112, 0.186} = 0.034. Hence d̃c∗( f Fe1 , gFe2) = [ 0.034 0
0 0.034

] .

Also, we have

d̃c∗(SFe1 , TFe2)(a) = (inf{∣SFe1(a) − TFe2(a)∣/a ∈ C}, 0)
= (inf{0.017, 0.026, 0.056, 0.093}, 0) = [ 0.017 0

0 0.017
]

⪯ [ 0.027 0
0 0.027

]
⪯ [ 0.8 0

0 0.8
] [ 0.034 0

0 0.034
]

⪯ c̃d̃c∗( f Fe1 , gFe2).

Here c̃ = [ 0.8 0
0 0.8

] with ∣∣c̃∣∣ = 0.8 < 1.

Therefore, (5) holds for all Fe1 , Fe2 ∈ Ẽ. Also, the other Hypotheses (A1) and (A2) are satisfied. It is seen
that S(0.5) = f (0.5) = 0.5and T(0.63) = g(0.63) = 0.5. Therefore, S and f have the coincidence at the point
Fe′ = 0.5, T and g at the point Fe′′ = 0.63, and S(0.5) = T(0.63).
Theorem 3. Let (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy soft metric space. Let S, T∶ Ẽ → CB(Ẽ) be a
pair of multivalued maps and f ∶ Ẽ → Ẽ be a single-valued map. Suppose that

H̃c∗ (SFe1 , TFe2) ⪯ ã ˜dc∗( f Fe1 , f Fe2) + ã (D̃c∗( f Fe1 , SFe1) + D̃c∗( f Fe2 , TFe2))
+ã (D̃c∗( f Fe1 , TFe2) + D̃c∗( f Fe2 , SFe1)) (21)

for all Fe1 , Fe2 ∈ Ẽ, where ã ∈ C̃+
′ with ∣∣ã∣∣ < 1. Suppose that

(B1) SẼ ∪ TẼ ⊆ f Ẽ;(B2) f (Ẽ) is closed.

Then, f , T and S have a coincidence in Ẽ. Moreover, if f is both T -weakly commuting and S-weakly
commuting at each Fe′ ∈ C( f , T), and f f Fe′ = f Fe′ , then, f , T and S have a common fixed point in Ẽ.

Proof. If f = g in Theorem (2), we obtain that there exist points Fe′ , Ge′ ∈ Ẽ, such that f Fe′ ∈ SFe′ ,
f Ge′ ∈ TGe′ and f Fe′ = f Ge′ , SFe′ = TGe′ . As Fe′ ∈ C( f , T), f is T-weakly commuting at Fe′ and
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f f Fe′ = f Fe′ . Set Ge′ = f Fe′ . Then, we have f Ge′ = Ge′ and Ge′ = f f Fe′ ∈ T( f Fe′) = TGe′ . Now, since also
Fe′ ∈ C( f , S), then f is S-weakly commuting at Fe′ , and so we obtain Ge′ = f Ge′ = f f Fe′ ∈ S( f Fe′) = SGe′ .
Thus, we have proved that Ge′ = f Ge′ ∈ TGe′ ∩ SGe′ , that is, Ge′ is a common fixed point of f , T
and S.

Corollary 1. Let (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy soft metric space. Let S, T∶ Ẽ → CB(Ẽ) be
a pair of multivalued maps. Suppose that

H̃c∗ (SFe1 , TFe2) ⪯ ã ˜dc∗(Fe1 , Fe2) + ã (D̃c∗(Fe1 , SFe1) + D̃c∗(Fe2 , TFe2))
+ã (D̃c∗(Fe1 , TFe2) + D̃c∗(Fe2 , SFe1)) (22)

for all Fe1 , Fe2 ∈ Ẽ, where ã ∈ C̃+
′ with ∣∣ã∣∣ < 1. Then there exist a point Fe′ ∈ Ẽ such that Fe′ ∈ SFe′ ∩ TFe′ and

SFe′ = TFe′ .

Proof. If f = g = ĨC̃ ( ĨC̃ being the identity map on Ẽ) in Theorem 2, then, we obtain the common
fixed-point result.

Corollary 2. Let (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy soft metric space. Let S∶ Ẽ → CB(Ẽ) be a
pair of multivalued map. Suppose that

H̃c∗ (SFe1 , SFe2) ⪯ ã ˜dc∗(Fe1 , Fe2) + ã (D̃c∗(Fe1 , SFe1) + D̃c∗(Fe2 , SFe2))
+ã (D̃c∗(Fe1 , SFe2) + D̃c∗(Fe2 , SFe1)) (23)

for all Fe1 , Fe2 ∈ Ẽ, where ã ∈ C̃+
′ with ∣∣ã∣∣ < 1. Then there exist a point Fe′ ∈ Ẽ such that Fe′ ∈ SFe′ .

3. Coupled Fixed Point Results

In this section, we shall prove some coupled fixed point theorems in C∗-algebra valued fuzzy soft
metric spaces by using different contractive conditions.

Definition 14. (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space. Let S ∶ Ẽ × Ẽ → Ẽ be a mapping,
an element (Fe1 , Ge1) ∈ Ẽ × Ẽ is called coupled fixed point of S if S(Fe1 , Ge1) = Fe1 and S(Ge1 , Fe1) = Ge1 .

Definition 15. Ẽ be an absolute fuzzy soft set. An element (Fe1 , Ge1) ∈ Ẽ × Ẽ is called

(i) a coupled coincidence point of mappings S ∶ Ẽ × Ẽ → Ẽ and f ∶ Ẽ → Ẽ if f Fe1 = S(Fe1 , Ge1) and
f Ge1 = S(Ge1 , Fe1)

(ii) a common coupled fixed point of mappings S ∶ Ẽ × Ẽ → Ẽ and f ∶ Ẽ → Ẽ if Fe1 = f Fe1 = S(Fe1 , Ge1) and
Ge1 = f Ge1 = S(Ge1 , Fe1).

Definition 16. Let Ẽ be an absolute fuzzy soft set and S ∶ Ẽ × Ẽ → Ẽ and f ∶ Ẽ → Ẽ. Then {S, f} is said to be
ω-compatible pairs if f (S(Fe1 , Ge1)) = S( f Fe1 , f Ge1) and f (S(Ge1 , Fe1)) = S( f Ge1 , f Fe1).
Theorem 4. Let (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space. Suppose S, T∶ Ẽ × Ẽ → Ẽ and
f , g∶ Ẽ → Ẽ be satisfying

(1) S(Ẽ × Ẽ) ⊆ g(Ẽ) and T(Ẽ × Ẽ) ⊆ f (Ẽ)
(2) {S, f} and {T, g} are ω-compatible pairs.
(3) one of f (Ẽ) or g(Ẽ) is complete C∗-algebra valued fuzzy soft metric of Ẽ
(4) ˜dc∗ (S(Fe1 , Ge1), T(Fe2 , Ge2)) ⪯ ã⋆ ˜dc∗( f Fe1 , gFe2)ã + ã⋆ ˜dc∗( f Ge1 , gGe2)ã

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,

where ã ∈ C̃ with ∣∣√2ã∣∣ < 1. Then S, T, f and g have a unique common coupled fixed point in Ẽ × Ẽ.
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Proof. Let Fe0 , Ge0 ∈ Ẽ. From (Theorem 4 (1)), we can construct the sequences {Fe2n}∞2n=1, {Ge2n}∞2n=1,
{Ie2n}∞2n=1, {Je2n}∞2n=1 such that

S(Fe2n , Ge2n) = gFe2n+1 = Ie2n T(Fe2n+1 , Ge2n+1) = f Fe2n+2 = Ie2n+1

S(Ge2n , Fe2n) = gGe2n+1 = Je2n T(Ge2n+1 , Fe2n+1) = f Ge2n+2 = Je2n+1 ,

for n = 0, 1, 2,⋯
Notices that in C∗-algebra, if ã, b̃ ∈ C̃+ and ã ⪯ b̃, then for any x̃ ∈ C̃+ both x̃⋆ ãx̃ and x̃⋆b̃x̃ are

positive elements and x̃⋆ ãx̃ ⪯ x̃⋆b̃x̃.
From (Theorem 4 (4)), we get

˜dc∗(Ie2n+1 , Ie2n+2) = ˜dc∗ (S(Fe2n+1 , Ge2n+1), T(Fe2n+2 , Ge2n+2))
⪯ ã⋆ ˜dc∗( f Fe2n+1 , gFe2n+2)ã + ã⋆ ˜dc∗( f Ge2n+1 , gGe2n+2)ã

⪯ ã⋆ ( ˜dc∗(Ie2n , Ie2n+1) + ˜dc∗(Je2n , Je2n+1)) ã. (24)

Similarly,

˜dc∗(Je2n+1 , Je2n+2) ⪯ ã⋆ ( ˜dc∗(Je2n , Je2n+1) + ˜dc∗(Ie2n , Ie2n+1)) ã. (25)

Let α2n+1 = ˜dc∗(Ie2n+1 , Ie2n+2) + ˜dc∗(Je2n+1 , Je2n+2).
Now from (24) and (25), we have

α2n+1 = ˜dc∗(Ie2n+1 , Ie2n+2) + ˜dc∗(Je2n+1 , Je2n+2)⪯ ã⋆ ( ˜dc∗(Ie2n , Ie2n+1) + ˜dc∗(Je2n , Je2n+1)) ã
+ã⋆ ( ˜dc∗(Je2n , Je2n+1) + ˜dc∗(Ie2n , Ie2n+1)) ã

⪯ (√2ã)⋆α2n(√2ã)
⋮
⪯ [(√2ã)⋆]2n+1

α0(√2ã)2n+1.

Now, we can obtain for any n ∈ N

αn = ˜dc∗(Ien , Ien+1) + ˜dc∗(Jen , Jen+1)⪯ (√2ã)⋆αn−1(√2ã)
⋮
⪯ [(√2ã)⋆]n

α0(√2ã)n.

If α0 = 0̃C̃, then from Definition-1 of S2 we know (Iα0 , Jα0) is a coupled fixed point of S, T, f and g.
Now letting 0̃C̃ ⪯ α0, we get for any n ∈ N, for any p ∈ N and using triangle inequality

˜dc∗(Ie2n+p , Ie2n) ⪯ ˜dc∗(Ie2n+p , Ie2n+p−1)+ ˜dc∗(Ie2n+p−1 , Ie2n+p−2) +⋯+ ˜dc∗(Ie2n+1 ,e2n ).
˜dc∗(Je2n+p , Je2n) ⪯ ˜dc∗(Je2n+p , Je2n+p−1)+ ˜dc∗(Je2n+p−1 , Je2n+p−2) +⋯+ ˜dc∗(Je2n+1 , Je2n).

Consequently,

˜dc∗(Ie2n+p , Ie2n) + ˜dc∗(Je2n+p , Je2n) ⪯ α2n+p−1 + α2n+p−2 +⋯+ α2n

⪯ 2n+p−1∑
m=2n

[(√2ã)⋆]m
α0(√2ã)m
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and then ∣∣ ˜dc∗(Ie2n+p , Ie2n) + ˜dc∗(Je2n+p , Je2n)∣∣ ≤ α2n+p−1 + α2n+p−2 +⋯+ α2n

≤ 2n+p−1∑
m=2n

∣∣√2ã∣∣2mα0

≤ ∞∑
m=n

∣∣√2ã∣∣2mα0

= ∣∣√2ã∣∣2n

1−∣∣√2ã∣∣2 α0 → 0 as n →∞,

which together with ˜dc∗(Ie2n+p , Ie2n) ⪯ ˜dc∗(Ie2n+p , Ie2n) + ˜dc∗(Je2n+p , Je2n) and ˜dc∗(Je2n+p , Je2n) ⪯
˜dc∗(Ie2n+p , Ie2n) + ˜dc∗(Je2n+p , Je2n) implies {Ie2n} and {Je2n} are Cauchy sequences in Ẽ with respect to C̃.

It follows that {Ie2n+1} and {Je2n+1} are also Cauchy sequences in Ẽ with respect to C̃. Thus, {Ien} and
{Jen} are Cauchy sequences in (Ẽ, C̃, ˜dc∗).

Suppose f (Ẽ) is complete subspace of (Ẽ, C̃, ˜dc∗). Then the sequences {Ien} and {Jen} are converge
to Ie′ , Je′ respectively in f (Ẽ). Thus, there exist Fe′ , Ge′ in f (Ẽ) Such that

lim
n→∞ Ien = Ie′ = f Fe′ and lim

n→∞ Jen = Je′ = f Ge′ . (26)

We now claim that S(Fe′ , Ge′) = Ie′ and S(Ge′ , Fe′) = Je′ .
From (Theorem 4 (4)) and using the triangular inequality

0̃C̃ ⪯ ˜dc∗(S(Fe′ , Ge′), Ie′)⪯ ˜dc∗(S(Fe′ , Ge′), Ie2n+1) + ˜dc∗(Ie2n+1 , Ie′)⪯ ˜dc∗(S(Fe′ , Ge′), T(Fe2n+1 , Ge2n+1)) + ˜dc∗(Ie2n+1 , Ie′)⪯ ã⋆ ˜dc∗( f Fe′ , gFe2n+1)ã + ã⋆ ˜dc∗( f Ge′ , gGe2n+1)ã + ˜dc∗(Ie2n+1 , Ie′)⪯ ã⋆ ˜dc∗(Ie′ , Ie2n)ã + ã⋆ ˜dc∗(Je′ , Je2n)ã + ˜dc∗(Ie2n+1 , Ie′).
Taking the limit as n → ∞ in the above relation, we obtain ˜dc∗(S(Fe′ , Ge′), Ie′) = 0̃C̃ and hence

S(Fe′ , Ge′) = Ie′ . Similarly, we prove S(Ge′ , Fe′) = Je′ . Therefore, it follows S(Fe′ , Ge′) = Ie′ = f Ie′ and
S(Ge′ , Fe′) = Je′ = f Je′ . Since {S, f} is ω-compatible pair, we have S(Ie′ , Je′) = f Ie′ and S(Je′ , Ie′) = f Je′ .
Now to prove that f Ie′ = Ie′ and f Je′ = Je′ .

0̃C̃ ⪯ ˜dc∗( f Ie′ , Ie2n+1) ⪯ ˜dc∗(S(Ie′ , Je′), T(Fe2n+1 , Ge2n+1))⪯ ã⋆ ˜dc∗( f Ie′ , gFe2n+1)ã + ã⋆ ˜dc∗( f Je′ , gGe2n+1)ã
⪯ ã⋆ ˜dc∗( f Ie′ , Ie2n)ã + ã⋆ ˜dc∗( f Je′ , Je2n)ã.

Taking the limit as n → ∞ in the above relation, we obtain ˜dc∗( f Ie′ , Ie′) = 0C̃ which implies
f Ie′ = Ie′ . Similarly we can prove f Je′ = Je′ . Therefore, S(Ie′ , Je′) = f Ie′ = Ie′ and S(Je′ , Ie′) = f Je′ = Je′ .
Thus, (Ie′ , Je′) is common coupled fixed point of S and f . Since S(Ẽ × Ẽ) ⊆ g(Ẽ). So there exist Ke′ ,
Le′ ∈ Ẽ such that S(Ie′ , Je′) = Ie′ = gKe′ and S(Je′ , Ie′) = Je′ = gLe′ . Now from (Theorem 4 (4)) and using
the triangular inequality

0̃C̃ ⪯ ˜dc∗(Ie′ , T(Ke′ , Le′)) ⪯ ˜dc∗(S((Ie′ , Je′)), T(Ke′ , Le′))⪯ ã⋆ ˜dc∗( f Ie′ , gKe′)ã + ã⋆ ˜dc∗( f Je′ , gLe′)ã
⪯ ã⋆ ˜dc∗(Ie′ , Ie′)ã + ã⋆ ˜dc∗(Je′ , Je′)ã.

We have ˜dc∗(Ie′ , T(Ke′ , Le′)) = 0, which means Ie′ = T(Ke′ , Le′). Similarly, we can prove
T(Le′ , Ke′) = Je′ . Since {T, g} is ω-compatible pair, we have T(Ie′ , Je′) = gIe′ and T(Je′ , Ie′) = gJe′ .
Now we prove that gIe′ = Ie′ and gJe′ = Je′ .
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0̃C̃ ⪯ ˜dc∗(Ie′ , gIe′) ⪯ ˜dc∗(S((Ie′ , Je′)), T(Ie′ , Je′))
⪯ ã⋆ ˜dc∗( f Ie′ , gIe′)ã + ã⋆ ˜dc∗( f Je′ , gJe′)ã

⪯ ã⋆ ˜dc∗(Ie′ , gIe′)ã + ã⋆ ˜dc∗(Je′ , gJe′)ã (27)

and

0̃C̃ ⪯ ˜dc∗(Je′ , gJe′) ⪯ ˜dc∗(S((Je′ , Ie′)), T(Je′ , Ie′))
⪯ ã⋆ ˜dc∗( f Je′ , gJe′)ã + ã⋆ ˜dc∗( f Ie′ , gIe′)ã

⪯ ã⋆ ˜dc∗(Je′ , gJe′)ã + ã⋆ ˜dc∗(Ie′ , gIe′)ã. (28)

From (27) and (28)

0̃C̃ ⪯ ˜dc∗(Ie′ , gIe′) + ˜dc∗(Je′ , gJe′) ⪯ (√2ã⋆) ( ˜dc∗(Ie′ , gIe′) + ˜dc∗(Je′ , gJe′)) (√2ã).
Therefore,

0̃ ≤ ∣∣ ˜dc∗(Ie′ , gIe′) + ˜dc∗(Je′ , gJe′)∣∣≤ ∣∣(√2ã⋆) ( ˜dc∗(Ie′ , gIe′) + ˜dc∗(Je′ , gJe′)) (√2ã)∣∣
≤ ∣∣(√2ã)∣∣2∣∣ ˜dc∗(Ie′ , gIe′) + ˜dc∗(Je′ , gJe′)∣∣.

Since ∣∣(√2ã)∣∣ < 1, then∣∣ ˜dc∗(Ie′ , gIe′) + ˜dc∗(Je′ , gJe′)∣∣ = 0. Hence gIe′ = Ie′ and gJe′ = Je′ .
Therefore, we have T(Ie′ , Je′) = gIe′ = Ie′ and T(Je′ , Ie′) = gJe′ = Je′ . Thus, (Ie′ , Je′) is common

coupled fixed point of S, T, f and g. In the following we will show the uniqueness of common coupled
fixed point in Ẽ. For this purpose, assume that there is another coupled fixed point (Ie′′ , Je′′) of S, T, f
and g. Then

˜dc∗(Ie′ , Ie′′) ⪯ ˜dc∗(S(Ie′ , Je′), T(Ie′′ , Je′′))
⪯ ã⋆ ˜dc∗( f Ie′ , gIe′′)ã + ã⋆ ˜dc∗(gJe′ , gJe′′)ã

⪯ ã⋆ ˜dc∗(Ie′ , Ie′′)ã + ã⋆ ˜dc∗(Je′ , Je′′)ã (29)

and

˜dc∗(Je′ , Je′′) ⪯ ˜dc∗(S(Je′ , Ie′), T(Je′′ , Ie′′))
⪯ ã⋆ ˜dc∗( f Je′ , gJe′′)ã + ã⋆ ˜dc∗(gIe′ , gIe′′)ã

⪯ ã⋆ ˜dc∗(Je′ , Je′′)ã + ã⋆ ˜dc∗(Ie′ , Ie′′)ã. (30)

From (29) and (30), we have that

˜dc∗(Ie′ , Ie′′) + ˜dc∗(Je′ , Je′′) ⪯ (√2ã)⋆ ( ˜dc∗(Ie′ , Ie′′) + ˜dc∗(Je′ , Je′′)) (√2ã),
which further induces that

∣∣ ˜dc∗(Ie′ , Ie′′) + ˜dc∗(Je′ , Je′′)∣∣ ≤ ∣∣√2ã∣∣2∣∣ ˜dc∗(Ie′ , Ie′′) + ˜dc∗(Je′ , Je′′)∣∣.
Since ∣∣√2ã∣∣ < 1 then ∣∣ ˜dc∗(Ie′ , Ie′′) + ˜dc∗(Je′ , Je′′)∣∣ = 0. Hence we get (Ie′ , Je′) = (Ie′′ , Je′′) which

means the coupled fixed point is unique.
To prove that S, T, f and g have a unique fixed point, we only have to prove Ie′ = Je′ .
Now

˜dc∗(Ie′ , Je′) = ˜dc∗(S(Ie′ , Je′), T(Je′ , Ie′))⪯ ã⋆ ˜dc∗( f Ie′ , gJe′)ã + ã⋆ ˜dc∗( f Je′ , gIe′)ã
⪯ ã⋆ ˜dc∗(Ie′ , Je′)ã + ã⋆ ˜dc∗(Je′ , Ie′)ã,
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then ∣∣ ˜dc∗(Ie′ , Je′)∣∣ ≤ ∣∣ã∣∣2∣∣ ˜dc∗(Ie′ , Je′)∣∣ + ∣∣ã∣∣2∣∣ ˜dc∗(Je′ , Ie′)∣∣≤ 2∣∣ã∣∣2∣∣ ˜dc∗(Ie′ , Je′)∣∣.
It follows from the fact ∣∣a∣∣ < 1√

2
that ∣∣ ˜dc∗(Ie′ , Je′)∣∣ = 0, thus Ie′ = Je′ . Which means that S, T, f and

g have a unique common fixed point.

Corollary 3. Let (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space. Suppose S∶ Ẽ × Ẽ → Ẽ and
f , g∶ Ẽ → Ẽ be satisfying

(1) S(Ẽ × Ẽ) ⊆ f (Ẽ) and S(Ẽ × Ẽ) ⊆ g(Ẽ)
(2) {S, f} and {S, g} are ω-compatible pairs.
(3) one of f (Ẽ) or g(Ẽ) is complete C∗-algebra valued fuzzy soft metric of Ẽ
(4) ˜dc∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) ⪯ ã⋆ ˜dc∗( f Fe1 , gFe2)ã + ã⋆ ˜dc∗( f Ge1 , gGe2)ã

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,

where ã ∈ C̃ with ∣∣√2ã∣∣ < 1. Then S and f , g have a unique common fixed point in Ẽ.

Corollary 4. Let (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space.Suppose S∶ Ẽ× Ẽ → Ẽ and f ∶ Ẽ → Ẽ
be satisfying

(1) S(Ẽ × Ẽ) ⊆ f (Ẽ)
(2) {S, f} is ω-compatible pairs.
(3) f (Ẽ) is complete C∗-algebra valued fuzzy soft metric of Ẽ
(4) ˜dc∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) ⪯ ã⋆ ˜dc∗( f Fe1 , f Fe2)ã + ã⋆ ˜dc∗( f Ge1 , f Ge2)ã

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,

where ã ∈ C̃ with ∣∣√2ã∣∣ < 1. Then S and f have a unique common fixed point in Ẽ.

Corollary 5. Let (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy soft metric space.Suppose S, T∶ Ẽ × Ẽ →
Ẽ satisfies

(1) ˜dc∗ (S(Fe1 , Ge1), T(Fe2 , Ge2)) ⪯ ã⋆ ˜dc∗(Fe1 , Fe2)ã + ã⋆ ˜dc∗(Ge1 , Ge2)ã

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ, where ã ∈ C̃ with ∣∣√2ã∣∣ < 1. Then S and T have a unique fixed point in Ẽ.

Corollary 6. Let (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy soft metric space.Suppose S∶ Ẽ × Ẽ →
Ẽ satisfies

(1) ˜dc∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) ⪯ ã⋆ ˜dc∗(Fe1 , Fe2)ã + ã⋆ ˜dc∗(Ge1 , Ge2)ã

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ, where ã ∈ C̃ with ∣∣√2ã∣∣ < 1. Then S has a unique fixed point in Ẽ.

Example 4. Let E = {e1, e2, e3}, U = {p, q, r, s} and C and D are two subset of E where C = {e1, e2, e3},
D = {e1, e2}. Define fuzzy soft set as,

(FE, C) = { e1 = {p0.1, q0.3, r0.4, s0.5}, e2 = {p0.3, q0.4, r0.6, s0.8},
e3 = {p0.6, q0.7, r0.8, s0.9} }

(GE, D) = {e1 = {p0.4, q0.5, r0.2, s0.6}, e2 = {p0.5, q0.6, r0.3, s0.7}}
Fe1 = μFe1

= {p0.1, q0.3, r0.4, s0.5}, Fe2 = μFe2
= {p0.3, q0.4, r0.6, s0.8}

Fe3 = μFe3
= {p0.6, q0.7, r0.8, s0.9}

Ge1 = μGe1
= {p0.4, q0.5, r0.2, s0.6}, Ge2 = μGe2

= {p0.5, q0.6, r0.3, s0.7}
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and FSC(FE) = {Fe1 , Fe2 , Fe3 , Ge1 , Ge2}, let for all e ∈ E, Ẽ(e) = 1̃ be absolute fuzzy soft set,
and C̃ = M2(R(C)∗), be the C∗-algebra. Define d̃c∗ ∶ Ẽ × Ẽ → C̃ by d̃c∗(Ge1 , Ge2) = (inf{∣Ge1(p) −Ge2(p)∣/p ∈
C}, 0), then obviously (Ẽ, C̃, d̃c∗) is a complete C∗-algebra valued fuzzy soft metric space.

We define S∶ Ẽ × Ẽ → Ẽ by S(Fe1 , Ge1)(p) = F2
e1
+G2

e1
5 , T∶ Ẽ × Ẽ → Ẽ by T(Fe1 , Ge1)(p) = F2

e1
+G2

e1
3 ,

f ∶ Ẽ → Ẽ by f Fe1 = Fe1
2 and g∶ Ẽ → Ẽ by gFe1 = Fe1 for all p ∈ U and Fe1 , Ge1 ∈ Ẽ. Notice that

f Fe1 = Fe1
2 = {0.05, 0.15, 0.20, 0.25} and gFe2 = Fe2 = {0.3, 0.4, 0.6, 0.8} . Thus, inf{∣μp

f Fe1
(t) − μ

p
gFe2

(t)∣/t ∈
C} = inf{0.25, 0.25, 0.4, 0.55} = 0.25.

Hence d̃c∗( f Fe1 , gFe2) = [ 0.25 0
0 0.25

] .

Also, f Ge1 = Ge1
2 = {0.2, 0.25, 0.10, 0.30} and gGe2 = Ge2 = {0.5, 0.6, 0.3, 0.7} . Thus, inf{∣μp

f Ge1
(t) −

μ
p
gGe2

(t)∣/t ∈ C} = inf{0.3, 0.35, 0.2, 0.4} = 0.20 and d̃c∗( f Ge1 , gGe2) = [ 0.20 0
0 0.20

].

Moreover, S(Fe1 , Ge1)(p) = F2
e1
+G2

e1
5 = {0.034, 0.068, 0.040, 0.122} and T(Fe2 , Ge2)(p) = F2

e2
+G2

e2
3 =

{0.11, 0.17, 0.15, 0.37}. Then

d̃c∗(S(Fe1 , Ge1), T(Fe2 , Ge2)) = [ 0.08 0
0 0.08

]
⪯
⎡⎢⎢⎢⎢⎣
√

3
3 0

0
√

3
3

⎤⎥⎥⎥⎥⎦
[ 0.45 0

0 0.45
]
⎡⎢⎢⎢⎢⎣
√

3
3 0

0
√

3
3

⎤⎥⎥⎥⎥⎦
⪯
⎡⎢⎢⎢⎢⎣
√

3
3 0

0
√

3
3

⎤⎥⎥⎥⎥⎦
([ 0.25 0

0 0.25
] + [ 0.20 0

0 0.20
])
⎡⎢⎢⎢⎢⎣
√

3
3 0

0
√

3
3

⎤⎥⎥⎥⎥⎦⪯ c̃∗ (d̃c∗( f Fe1 , gFe2) + d̃c∗( f Ge1 , gGe2)) c̃.

Here c̃ =
⎡⎢⎢⎢⎢⎣
√

3
3 0

0
√

3
3

⎤⎥⎥⎥⎥⎦
with ∣∣c̃∣∣ = 1√

3
< 1√

2
Therefore, all the conditions of Theorem 4 satisfied.

Hence S, T, f and g have a unique coupled fixed point.

Theorem 5. Let (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space. Suppose S, T∶ Ẽ × Ẽ → Ẽ
be satisfying

(1) S(Ẽ × Ẽ) ⊆ T(Ẽ × Ẽ)
(2) {S, T} is ω-compatible pairs.
(3) one of S(Ẽ × Ẽ) or T(Ẽ × Ẽ) is complete.
(4) ˜dc∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) ⪯ ã⋆ ˜dc∗(T(Fe1 , Ge1), T(Fe2 , Ge2))ã

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,

where ã ∈ C̃ with ∣∣ã∣∣ < 1. Then S and T have a unique common coupled fixed point in Ẽ× Ẽ. Moreover, S and T
have a unique common fixed point in Ẽ.

Proof. Similar to Theorem 4.

Theorem 6. Let (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space. Suppose S, T∶ Ẽ × Ẽ → Ẽ and
f , g∶ Ẽ → Ẽ be satisfying

(1) S(Ẽ × Ẽ) ⊆ g(Ẽ) and T(Ẽ × Ẽ) ⊆ f (Ẽ)
(2) {S, f} and {T, g} are ω-compatible pairs.
(3) one of f (Ẽ) or g(Ẽ) is complete C∗-algebra valued fuzzy soft metric of Ẽ
(4) ˜dc∗ (S(Fe1 , Ge1), T(Fe2 , Ge2)) ⪯ ã ˜dc∗(S(Fe1 , Ge1), f Fe1) + ã ˜dc∗(T(Fe2 , Ge2), gFe2)

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,
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where ã ∈ C̃ with ∣∣ã∣∣ < 1
2 . Then S, T, f and g have a unique common coupled fixed point in Ẽ × Ẽ. Moreover,

S, T, f and g have a unique common fixed point in Ẽ.

Proof. Similar to Theorem 4.

Corollary 7. Let (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space.Suppose S∶ Ẽ × Ẽ → Ẽ and
f , g∶ Ẽ → Ẽ be satisfying

(1) S(Ẽ × Ẽ) ⊆ f (Ẽ) and S(Ẽ × Ẽ) ⊆ g(Ẽ)
(2) {S, f} and {S, g} are ω-compatible pairs.
(3) one of f (Ẽ) or g(Ẽ) is complete C∗-algebra valued fuzzy soft metric of Ẽ
(4) ˜dc∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) ⪯ ã ˜dc∗(S(Fe1 , Ge1), f Fe1) + ã ˜dc∗(S(Fe2 , Ge2), gFe2)

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,

where ã ∈ C̃ with ∣∣ã∣∣ < 1
2 . Then S and f , g have a unique common fixed point in Ẽ.

Corollary 8. Let (Ẽ, C̃, ˜dc∗) be a C∗-algebra valued fuzzy soft metric space.Suppose S∶ Ẽ× Ẽ → Ẽ and f ∶ Ẽ → Ẽ
be satisfying

(1) S(Ẽ × Ẽ) ⊆ f (Ẽ)
(2) {S, f} is ω-compatible pairs.
(3) f (Ẽ) is complete C∗-algebra valued fuzzy soft metric of Ẽ
(4) ˜dc∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) ⪯ ã ˜dc∗(S(Fe1 , Ge1), f Fe1) + ã ˜dc∗(S(Fe2 , Ge2), f Fe2)

for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ,

where ã ∈ C̃ with ∣∣ã∣∣ < 1
2 . Then S and f have a unique common fixed point in Ẽ.

Corollary 9. Let (Ẽ, C̃, ˜dc∗) be a complete C∗-algebra valued fuzzy soft metric space.Suppose S∶ Ẽ × Ẽ → Ẽ
satisfies

(1) ˜dc∗ (S(Fe1 , Ge1), S(Fe2 , Ge2)) ⪯ ã ˜dc∗(S(Fe1 , Ge1), Fe1) + ã ˜dc∗(GS(Fe2 , Ge2), Fe2)
for all Fe1 , Fe2 , Ge1 , Ge2 ∈ Ẽ, where ã ∈ C̃ with ∣∣ã∣∣ < 1

2 . Then S has a unique fixed point in Ẽ.

4. Applications to Integral Equations

Theorem 7. Let us Consider the integral equation

Fe1(x) = ∫
C

(T1(x, y, Fe1(y)) + T1(x, y, Fe1(y))) dy, x ∈ C

Fe1(x) = ∫
C

(I1(x, y, Fe1(y)) + I2(x, y, Fe1(y))) dy, x ∈ C.

where C is a Lebesgue measurable set. Suppose that

(i) T1, T2 ∶ C ×C × R(C)∗ → R(C)∗ and I1, I2 ∶ C ×C × R(C)∗ → R(C)∗.
(ii) there exist two continuous function φ, ϕ ∶ C × C → R(C)∗ and r ∈ (0, 1) such that for u, v ∈ C and

Fe1(v), Fe2(v) ∈ R(C)∗
inf{∣T1(u, v, Fe1(v)) − I1(u, v, Fe2(v))∣} ≤ r inf{∣φ(u, v)∣}. inf{∣(Fe1(v) − Fe2(v))∣},
inf{∣T2(u, v, Fe1(v)) − I2(u, v, Fe2(v))∣} ≤ r inf{∣ϕ(u, v)∣}. inf{∣(Fe1(v) − Fe2(v))∣}

(iii) sup
x∈C

∫
C

inf{∣φ(u, v)∣}dv ≤ 1 and sup
x∈C

∫
C

inf{∣ϕ(u, v)∣}dv ≤ 1

then the integral equation has a unique solutions in L∞(C).
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Proof. Let E = C = [0, 1] and Ẽ = L∞(C) be the set of essential bounded measurable function on C
and H = L2(C). The set of bounded linear operators on Hilbert space H denoted by L(H). Consider

˜dc∗ ∶ Ẽ× Ẽ → L(H) by ˜dc∗(Fe1 , Fe2) = Minf{∣μp
Fe1
(y)−μ

p
Fe2
(y)∣/y∈C} for all Fe1 , Fe2 ∈ Ẽ, where Mh ∶ H → H is the

multiplication operator defined by Mh(φ) = h ⋅ φ for φ ∈ H. Then ˜dc∗ is a C∗-algebra valued fuzzy soft
metric and (Ẽ, L(H), ˜dc∗) is a complete C∗-algebra valued fuzzy soft metric space. Define two self
mappings S, T ∶ Ẽ × Ẽ → Ẽ by

S(Fe1 , Ge1)(x) = ∫
C

(T1(x, y, Fe1(y)) + T2(x, y, Ge1(y))) dy, x ∈ C,

T(Fe2 , Ge2)(x) = ∫
C

(I1(x, y, Fe2(y)) + I2(x, y, Ge2(y))) dy, x ∈ C.

Notice that
˜dc∗(S(Fe1 , Ge1), T(Fe2 , Ge2)) = Minf{∣μp

S(Fe1 ,Ge1 )
(y)−μ

p
T(Fe2 ,Ge2 )

(y)∣/y∈C}

∣∣ ˜dc∗(S(Fe1 , Ge1), T(Fe2 , Ge2))∣∣
= sup

∣∣h∣∣=1
(Minf{∣μp

S(Fe1 ,Ge1 )
(y)−μ

p
T(Fe2 ,Ge2 )

(y)∣/y∈C}h, h)

= sup
∣∣h∣∣=1

∫
C

[inf{∣μp
S(Fe1 ,Ge1)

(y) − μ
p
T(Fe2 ,Ge2)

(y)∣/y ∈ C}]h(x)h(x)dx

≤ sup
∣∣h∣∣=1

∫
C

⎡⎢⎢⎢⎢⎣∫C
inf{∣T1(x, y, Fe1(y)) − I1(x, y, Fe2(y))∣}dy

⎤⎥⎥⎥⎥⎦
∣h(x)∣2dx

+ sup
∣∣h∣∣=1

∫
C

⎡⎢⎢⎢⎢⎣∫C
inf{∣T2(x, y, Ge1(y)) − I2(x, y, Ge2(y))∣}dy

⎤⎥⎥⎥⎥⎦
∣h(x)∣2dx

≤ sup
∣∣h∣∣=1

∫
C

⎡⎢⎢⎢⎢⎣∫C
r inf{∣φ(x, y)(Fe1(y) − Fe2(y))∣}dy

⎤⎥⎥⎥⎥⎦
∣h(x)∣2dx

+ sup
∣∣h∣∣=1

∫
C

⎡⎢⎢⎢⎢⎣∫C
r inf{∣ϕ(x, y)(Ge1(y) −Ge2(y))∣}dy

⎤⎥⎥⎥⎥⎦
∣h(x)∣2dx

≤ r sup
∣∣h∣∣=1

∫
C

⎡⎢⎢⎢⎢⎣∫C
inf{∣φ(x, y)∣} inf{∣Fe1(y) − Fe2(y)∣}dy

⎤⎥⎥⎥⎥⎦
∣h(x)∣2dx

+r sup
∣∣h∣∣=1

∫
C

⎡⎢⎢⎢⎢⎣∫C
inf{∣ϕ(x, y)∣} inf{∣Ge1(y) −Ge2(y)∣}dy

⎤⎥⎥⎥⎥⎦
∣h(x)∣2dx

≤ r sup
∣∣h∣∣=1

∫
C

⎡⎢⎢⎢⎢⎣∫C
inf{∣φ(x, y)∣}dy

⎤⎥⎥⎥⎥⎦
∣h(x)∣2dx.∣∣ inf{∣Fe1(y) − Fe2(y)∣}∣∣∞

+r sup
∣∣h∣∣=1

∫
C

⎡⎢⎢⎢⎢⎣∫C
inf{∣ϕ(x, y)∣}dy

⎤⎥⎥⎥⎥⎦
∣h(x)∣2dx.∣∣ inf{∣Ge1(y) −Ge2(y)∣}∣∣∞

≤ r sup
∣∣h∣∣=1

∫
C

inf{∣φ(x, y)∣}dy. sup
∣∣h∣∣=1

∫
C

∣h(x)∣2dx.∣∣ inf{∣Fe1(y) − Fe2(y)∣}∣∣∞
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+r sup
∣∣h∣∣=1

∫
C

inf{∣ϕ(x, y)∣}dy. sup
∣∣h∣∣=1

∫
C

∣h(x)∣2dx.∣∣ inf{∣Ge1(y) −Ge2(y)∣}∣∣∞

≤ r.∣∣ inf{∣Fe1(y) − Fe2(y)∣}∣∣∞ + r.∣∣ inf{∣Ge1(y) −Ge2(y)∣}∣∣∞.

Set ã = √r1L(H), then ã ∈ L(H) and ∣∣ã∣∣ = √r < 1√
2
. Hence, applying our Corollary 5, we get the

desired result.

5. Conclusions

In the present work, we proved some existing and uniqueness fixed point results for these new
type of contractive mappings in complete C∗-algebra valued fuzzy soft metric spaces. Furthermore,
the examples illustrate the validity of the obtained results. We hope that the results of this paper will
support researchers and promote future study on C∗-algebra valued fuzzy soft metric spaces.
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Abstract: Our main goal of this research is to present the theory of points for relatively cyclic and
relatively relatively noncyclic p-contractions in complete locally K-convex spaces by providing basic
conditions to ensure the existence and uniqueness of fixed points and best proximity points of the
relatively cyclic and relatively noncyclic p-contractions map in locally K-convex spaces. The result of this
paper is the extension and generalization of the main results of Kirk and A. Abkar.

Keywords: fixed point; locally K-convex spaces; relatively cyclic and relatively noncyclic p-contractions;
best proximity point

1. Introduction

Let K be a non-archimedean valued field, i.e., K is neither R nor C, endowed with an absolute valued
function |.| such that

|x + y| ≤ max {|x| , |y|} (x, y ∈ K)

Let X be a topological vector space over K. A seminorm on the K-vector space X is a map p : X →
[0.∞) satisfies

(i) p (λx) = |λ| p (x), x ∈ X and λ ∈ K.
(ii) p (x + y) ≤ max {p (x) , p (y)}, x, y ∈ X

For a seminorm p we have p(0) = 0 but p(x) is allowed to be 0 for non-zero x. Note that each norm
is a seminorm that vanishes only at 0.

Recall that a topological vector space (X, τ) over K is called a (non-archimedean) locally K-convex
space if τ has a basis of absolutely convex neighborhoods (a subset A ⊂ X is called absolutely K-convex
if 0 ∈ A and ax + by ∈ A for all x, y ∈ X and a, b ∈ BK where BK = {a ∈ K : |a| ≤ 1}). Every locally
K-convex topology can be generated in a natural way by some system of non-archimedean seminorms
Γ = {pα}. A locally K-convex space X is Hausdorff if and only if for each non-zero x ∈ X there is a
continuous seminorm p on X such that p (x) �= 0. A sequence {a1, a2, . . .} in X is called Cauchy net if and
only if limn p (an+1 − an) = 0 for any seminorm p. This follows from

p (am − an) ≤ max {p (am − am−1) , ..., p (an+1 − an)} , m > n.

Axioms 2019, 8, 96; doi:10.3390/axioms8030096 www.mdpi.com/journal/axioms
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A subset S of a Hausdorff locally K-convex space is called complete if each Cauchy net in S converges
to a limit that lies in S.For details, see [1–4].

On the other hand, the most fundamental fixed point theorem is the so-called Banach contraction
principle (BCP for short), this result played an important role in various fields in mathematics. Due to its
importance and simplicity, several authors have obtained many interesting extensions and generalizations
of the Banach contraction principle. Ciric [5] introduced quasi-contraction map, which allowed him to
generalize the Banach contraction principle.

In the absence of a fixed point, i.e., the equation Tx = x has no solution, it is interesting to ask whether
it is possible to find (a, b) ∈ A× B such that

p(a− Ta) = p(b− Tb) = Dp(A, B). (1)

A point
(

a, b
)
∈ A× B is said to be a best proximity pair for the mapping T : A ∪ B → A ∪ B if it is

solution to the problem (1). Another interesting subject of the fixed point theory is the concept of cyclic
contractions maps and the best points of proximity provided by Kirk et al. [6,7].

(A; B) a nonempty pair of subsets of a locally K-convex space (X, Γ), we say that a mapping T :
A ∪ B → A ∪ B is cyclic (resp. noncyclic) provided that T (A) ⊂ B and T (B) ⊂ A (resp. T (A) ⊂ A and
T (B) ⊂ B).

There are many results in this area see [8–12].

2. Fixed Point Results for Relatively Cyclic P-Contractions

In this section, we derive some fixed point theorems of certain relatively cyclic-type p-contractions in
a complete locally K-convex space.

Definition 1. Let A and B be non empty subsets of locally K-convex space (X, Γ). A relatively cyclic map
T : A ∪ B → A ∪ B is said to be relatively cyclic p-contraction if there exists 0 ≤ γp < 1 such that for all p ∈ Γ
and a ∈ A and b ∈ B we have

p (Ta− Tb) ≤ γp p (a− b) . (2)

Theorem 1. Let (X, Γ) be a complete Hausdorff locally K-convex space, A and B be non empty closed subsets of X
and T : A ∪ B → A ∪ B a relatively cyclic p-contraction map. Then T has a unique fixed point in A ∩ B.

Proof. Taking a point a ∈ A since T is p-contraction, we have

p
(

T2a− Ta
)
= p (T (Ta)− Ta) ≤ γp p (Ta− a)

and
p
(
T3a− T2a

)
= p

(
T
(
T2a

)
− T (Ta)

)
≤ γp

(
T2a− Ta

)
≤ γ2

p p (Ta− a)

Inductively, using this process for all n ∈ N we have

p
(

Tn+1a− Tna
)
≤ γn

p p (Ta− a)

Let n ≤ m
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p (Tma− Tna) ≤ max
{

p
(
Tma− Tm−1a

)
, p
(
Tm−1a− Tm−2a

)
, ..., p

(
Tn+1a− Tna

)}
≤ max

{
γm−1

p p (Ta− a) , γm−2
p p (Ta− a) , .., γn

p p (Ta− a)
}

≤ γn
p p (Ta− a)

Since 0 ≤ γp < 1, γn
p → 0 as n → ∞, we get p (Tma− Tna)→ 0, thus {Tna} is a p-Cauchy sequence.

Since (X, Γ) is complete, we have {Tna} → a ∈ X. We note, that
{

T2na
}

is a sequence in A and
{

T2n−1a
}

is a sequence in B in a way that both sequences tend to same limit a. Since A and B are closed, we have
that a ∈ A ∩ B. Hence A ∩ B �= ∅.

We claim that Ta = a. Considering the condition relatively cyclic p-contraction we have

p
(
T2na− Ta

)
= p

(
TT2n−1a− Ta

)
≤ γp p

(
T2n−1a− a

)
Taking limit as n → ∞ in above inequality, we have

p (a− Ta) ≤ γp p (a− Ta) < p (a− Ta)

This implies that p (a− Ta) = 0. Since X is Hausdorff, Ta = a.
We shall prove that a is the existence of a unique fixed point of T. Clearly from (2) if a and b be two

fixed points of T we have
p
(

a− b
)
= p

(
Ta− Tb

)
≤ γp p

(
a− b

)
Since 0 ≤ γp < 1 this implies a = b. Hence the proof is completed.

Corollary 1. Let A and B be two non-empty closed subsets of a complete Hausdorff locally K-convex space X. Let
T1 : A → B and T2 : B → A be two functions such that

p (T1 (a)− T2 (b)) ≤ γp p (a− b) (3)

for all p ∈ Γ, a ∈ A and b ∈ B where 0 ≤ γp < 1. Then there exists a unique a ∈ A ∩ B such that

T1 (a) = T2 (a) = a

Proof. Apply Theorem 1 to the mapping T : A ∪ B → A ∪ B defined by:

T (a) =

{
T1 (a) if a ∈ A
T2 (a) if a ∈ B.

Observe that condition (3) is reduced to condition (2). Then T has a unique fixed a ∈ A ∩ B such that

T1 (a) = T2 (a) = a.

Theorem 2. Let (X, Γ) be a complete Hausdorff locally K-convex space, A and B two non empty closed subsets of
X and T : A ∪ B → A ∪ B be a relatively cyclic mapping that satisfies the condition

p (Ta− Tb) ≤ γpmax {p (a− b) , p (a− Ta) , p (b− Tb)} (4)
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for all p ∈ Γ, a ∈ A and b ∈ B and 0 ≤ γp < 1. Then, T has a unique fixed point in A ∩ B.

Proof. Let a ∈ A. By condition (4), we have

p
(
T2a− Ta

)
= p (T (Ta)− Ta)
≤ γpmax

{
p (Ta− a) , p

(
Ta− T2a

)}
≤ γp p (Ta− a) .

Similarly, we get p
(
T3a− T2a

)
≤ γ2

p p (Ta− a).
Inductively, using this process for all n ∈ N we have

p
(

Tn+1a− Tna
)
≤ γpmax

{
p (Ta− a) , p

(
Ta− T2a

)}
thus

p (Tma− Tna) ≤ max
{

p
(
Tma− Tm−1a

)
, p
(
Tm−1a− Tm−2a

)
, ..., p

(
Tn+1a− Tna

)}
≤ max

{
γm−1

p p (Ta− a) , γm−2
p p (Ta− a) , .., γn

p p (Ta− a)
}

≤ γn
p p (Ta− a)

Since 0 ≤ γp < 1, γn
p �→ 0 as n �→ ∞, we get p (Tma− Tna) → 0. Hence {Tna} is a p-Cauchy

sequence. As (X, Γ) is complete, we have {Tna} → a ∈ X. We note, that
{

T2na
}

is a sequence in A and{
T2n−1a

}
is a sequence in B so that the two sequences tend to the same limit a. Since A and B are closed,

we have that a ∈ A ∩ B that is A ∩ B �= ∅.
Considering the condition (4) we have:

p
(
T2na− Ta

)
= p

(
TT2n−1a− Ta

)
≤ γpmax

{
p
(
T2n−1a− a

)
, p
(
T2n−1a− T2na

)
, p (a− Ta)

}
Taking limit as n → ∞ in above inequality, we have

p (z− Tz) ≤ γp p (z− Tz) < p (z− Tz)

which implies that p (a− Ta) = 0, since X is Hausdorff, Ta = a.
Clearly from (4) if u and v be fixed points of T we have

p (u− v) = p (Tu− Tv)
≤ γpmax {p (u− v) , p (u− Tu) , p (v− Tv)}
≤ γp p (u− v)

Since 0 ≤ γp < 1 this implies u = v.

Corollary 2. Let A and B be two non-empty closed subsets of a complete Hausdorff locally K-convex space X. let
T1 : A → B and T2 : B → A be two functions such that

p (T1 (a)− T2 (b)) ≤ γpmax {p (a− b) , p (a− T1 (a)) , p (b− T2 (b))} (5)

for all p ∈ Γand a ∈ A and b ∈ B where 0 < γp < 1. Then there exists a unique a ∈ A ∩ B such that

T1 (a) = T2 (a) = a
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Proof. Let T : A ∪ B → A ∪ B defined by

T (a) =

{
T1 (a) if a ∈ A
T2 (a) if a ∈ B

Then T satisfies condition (4), we can now apply Theorem 2 to deduce that T has a unique fixed point
a ∈ A ∩ B such that

T1 (a) = T2 (a) = a

3. Fixed Points of Relatively Noncyclic Mappings

In this section motivated by Theorem 3.1 [13], we prove the existence of a best proximity point
of relatively noncyclic mappings and studied the existence of solution of problem (1) for relatively
p-nonexpansive mappings in locally K-convex.

Definition 2. Let (X, Γ) be a complete Hausdorff locally K-convex space, A, B ⊂ X, we set

Ap
0 = {a ∈ A : p (a− b) = Dp (A, B) , for some b ∈ B}

Bp
0 = {a ∈ B : p (a− b) = Dp (A, B) , for some a ∈ A}

We extend the well known notion of p-property introduced in [5] for metric spaces to the case of
locally K-convex spaces.

Definition 3. Let (A, B) be a pair of nonempty subsets of a locally convex space (X, Γ) with Ap
0 �= ∅. The pair

(A, B) is said to have p-property iff{
p (a1 − b1) = Dp (A, B)
p (a2 − b2) = Dp (A, B)

=⇒ p (a1 − a2) = p (b1 − b2) (∀p ∈ Γ).

where a1, a2 ∈ Ap
0 and b1, b2 ∈ Bp

0

Definition 4. Let (A, B) be a pair of nonempty subsets of a locally convex space (X, Γ). A mapping
T : A ∪ B → A ∪ B is called relatively p-nonexpansive iff p (Ta− Tb) ≤ p (a− b) for all p ∈ Γ and (a, b) ∈ A
×B. If A = B, we say that T is p-nonexpansive.

Lemma 1. [14] Let (X, Γ) be a complete Hausdorff locally K-convex space if T : X → X is a p-contraction mapping
then T has a unique fixed point x̄ in X, and Tkx →x̄ for every x ∈ X.

Proof. Let y ∈ X and k ≥ 1 we have

p
(

Tky− y
)

≤ max
{

p
(

Tky− Tk−1y
)

, p
(

Tk−1y− Tk−2y
)

, .., p (Ty− y)
}

≤ max
{

γk p (Ty− y) , γk−1 p (Ty− y) , .., p (Ty− y)
}

then max
{

γk p (Ty− y) , γk−1 p (Ty− y) , .., p (Ty− y)
}
= p (Ty− y), which implies that for all x ∈ X and

k ≥ 1
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p
(

Tkx− x
)
≤ p (Tx− x) .

For every p ∈ Γ and k ≥ 1, Choose n sufficiently large. Then for y = Tnx, we have

p
(

Tn+kx− Tnx
)

≤ p
(
Tn+1x− Tnx

)
≤ γn

p p (Tx− x)

Since 0 ≤ γp < 1, γn
p → 0 as n → ∞, we get p

(
Tn+kx− Tnx

)
→ 0. Thus

{
Tkx

}
is a p-Cauchy

sequence and so it converges to a point x in X. Clearly Tx = x and uniqueness of the fixed point follows
as usual since X is Hausdorff.

Theorem 3. Let (X, Γ) be a complete Hausdorff locally K-convex space and (A, B) be two nonempty closed subsets
of X. Assume that T : A ∪ B → A ∪ B is a relatively noncyclic mapping such that for some γp ∈ (0, 1)

p (Tx− Ty) ≤ γp p (a− b)

for all p ∈ Γ and (a, b) ∈ A ×B then Dp (A, B) = 0. Moreover, the mapping T has a fixed point in A ∪ B if and
only if A ∩ B �= ∅.

Proof. Let {an} and {bn} be two sequences in A and B respectively such that p (an − bn) → Dp (A, B).
Then

Dp (A, B) ≤ p (Tan − Tbn) ≤ γp p (an − bn) .

Taking limit when n tends to infinity, we see that necessarily Dp (A, B) = 0. Suppose first that
A ∩ B �= ∅. If we apply the Theorem 1 in A ∩ B, there exists a fixed point of T that in fact is unique
in A ∩ B.

On the other hand, suppose that T has a fixed point b in A∪ B. Without loss of generality, suppose that
b ∈ B. Then, given a point a0 ∈ A, if we denote an = Tna0 we have

p
(

an − b
)
≤ γp p

(
an−1 − b

)
≤ γ2

p p
(

an−2 − b
)
≤ · · · ≤ γn

p p
(

a0 − b
)

Since 0 ≤ γp < 1, γn
p → 0 as n → ∞, we get that {an} converges to b. Since A is closed, a ∈ A ∩ B

and the result follows.

Theorem 4. Let (X, Γ) be a complete Hausdorff locally K-convex space and (A, B) be two nonempty closed subsets
of X such that Ap

0 �= ∅. Assume that (A, B) satisfies the p-property. Let T : A ∪ B → A ∪ B be a relatively
relatively noncyclic mapping that satisfies the conditions

(i) T|A is p-contraction,
(ii) T is relatively p-nonexpansive.

Then the minimization problem (1) has a solution

Proof. Let a ∈ Ap
0 then exists b ∈ B such that p (a− b) = Dp (A, B) . Since T is relatively

p-nonexpansive; so
p (Ta− Tb) ≤ p (a− b) = Dp (A, B)
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Hence, Ta ∈ Ap
0 ,therefore T

(
Ap

0

)
⊆ Ap

0 . Now let a0 ∈ Ap
0 . By Lemma 1 if an+1 = Tan, then an → a

where a is a fixed point of T in A. Since a0 ∈ Ap
0 , then exists b0 ∈ B such that p (a0 − b0) = Dp (A, B) .

Again, since a1 = Ta0 ∈ Ap
0 , then there exists b1 ∈ B such that p (a1 − b1) = Dp (A, B).

Inductively, using this process for all n ∈ N ∪ {0} we have a sequence {bn} in B such that

p (an − bn) = Dp (A, B) .

Since (A, B) has the p-property, we get that for all n, m ∈ N ∪ {0}

p (an − bm) = p (an − bm) .

This implies that {bn} is a Cauchy sequence, and hence there exists b ∈ B such that an → b.
We now have

p
(

a− b
)
= lim

n→∞
p (an − bn) = Dp (A, B)

We know that T is relatively nonexpansive, so that

p
(

Ta− Tb
)
≤ p

(
a− b

)
= Dp (A, B)

Thus p
(

a− Tb
)
= p

(
a− Tb

)
, since (A,B) has property P. Hence

(
a− b

)
∈ A× B is a solution of (1).
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Abstract: In [Fixed Point Theory Appl., 2015 (2015):185], the authors introduced a new concept of
modified contractive mappings, generalizing Ćirić, Chatterjea, Kannan, and Reich type contractions.
They applied the condition (θ4) (see page 3, Section 2 of the above paper). Later, in [Fixed Point
Theory Appl., 2016 (2016):62], Jiang et al. claimed that the results in [Fixed Point Theory Appl., 2015
(2015):185] are not real generalizations. In this paper, by restricting the conditions of the control
functions, we obtain a real generalization of the Banach contraction principle (BCP). At the end,
we introduce a weakly JS-contractive condition generalizing the JS-contractive condition.

Keywords: metric space; fixed point; weakly JS-contraction

1. Introduction

The Banach contraction principle (BCP) [1] is one of the famous results in fixed point theory which
has attracted many authors. Many extensions and generalizations have been appeared in literature by
weakening the topology itself of the space or by considering different contractive conditions (for single
and valued mappings). For more details, see ([2–23]).

Definition 1. Given a mapping Υ : X → X on a metric space (X, d).

(a) Such Υ is a C-contraction if there is μ ∈
(

0, 1
2

)
such that for all Ω, ω ∈ X, [24]

d(ΥΩ, Υω) ≤ μ (d(Ω, Υω) + d(ω, ΥΩ)) .

(b) Such Υ is a K-contraction if there is μ ∈
(

0, 1
2

)
such that for all ΥΩ ∈ X, [25]

d(ΥΩ, Υω) ≤ μ (d(Ω, ΥΩ) + d(ω, Υω)) .

(c) Such Υ is a Reich contraction if there are q, r and s ≥ 0 with q + r + s < 1 such that for all Ω, ω ∈ X,

d(ΥΩ, Υω) < q · d(Ω, ω) + r · d(Ω, ΥΩ) + s · d(ω, Υω).

Denote by Θ the set of functions θ : (0, ∞)→ (1, ∞) satisfying the following assertions:

(θ1) θ is non-decreasing;

Axioms 2019, 8, 84; doi:10.3390/axioms8030084 www.mdpi.com/journal/axioms89
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(θ2) for each {hk} ⊆ (0, ∞), lim
k→∞

θ(hk) = 1 if and only if lim
k→∞

hk = 0;

(θ3) there are m ∈ (0, 1) and τ ∈ (0, ∞] so that

lim
u→0+

θ(u)− 1
um = τ;

(θ4) θ(i + j) ≤ θ(i)θ(j) for all i, j > 0.

By Δ we denote the class of functions θ ∈ Θ without condition (θ4).

Theorem 1. ([26, Corollary 2.1]) Let Υ : X → X be a self-mapping on a complete metric space (X, d). Suppose
there are θ ∈ Δ and μ ∈ (0, 1) so that

Ω, ω ∈ X, d(ΥΩ, Υω) �= 0 implies θ (d(ΥΩ, Υω)) ≤ (θ (d(Ω, ω)))μ .

Then T has a unique fixed point.

Note that the BCP comes immediately from Theorem 1. Motivated by [26], Hussain et al. [27] gave
sufficient conditions for the existence of a fixed point of a class of generalized contractive mappings
via a control function θ ∈ Θ in the setting of complete metric spaces and b-complete b-metric spaces.
Denote by Λ the set of functions θ : (0, ∞)→ (1, ∞) verifying (θ1), (θ2) and (θ4). On the other hand,
when considering (X, d) as a metric space and θ ∈ Λ (that is, the condition (θ3) is omitted from Θ),
Jiang et al. [28] proved that D(x, y) = ln(θ(d(x, y))) defines itself a metric on X (see Lemma 1 in [28])
and proved that the results in [27] are not generalizations of Ćirić, Chatterjea, Kannan, and Reich results.

In this paper, we more restrict the conditions on the control function θ. For this, denote by Θ′ the
set of functions θ : (0, ∞)→ (1, ∞) so that

(θ1) θ is continuous and strictly increasing;
(θ2) for each {hk} ⊆ (0, ∞), lim

k→∞
θ(hk) = 1 if and only if lim

k→∞
hk = 0.

Let (X, d) be a metric space. For θ ∈ Θ′ (that is, without the condition (θ4)), note that D(x, y) =
ln(θ(d(x, y))) does not define a metric on X (we can not ensure the triangular inequality for a metric).
Consequently, we are not in same direction as Jiang et al. [28]. Even for such restricted control function
θ, we also obtain a real generalization of the Banach contraction principle. In fact, we will complete the
work of Hussain et al. [27]. We refer the readers to Theorem 3 of [16].

2. Main Results

Definition 2. Let Υ : X → X be a self-mapping on a metric space (X, d). Such Υ is said to be a P-contraction,
whenever there are θ ∈ Θ′ and τ1, τ2, τ3, τ4 ≥ 0 with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

θ (d(ΥΩ, Υω)) ≤ (θ (d(Ω, ω)))τ1 (θ (d(Ω, ΥΩ)))τ2 (θ (d(ω, Υω)))τ3
(

θ
(

d(Ω,Υω)+d(ω,ΥΩ)
2

))τ4
, (1)

for all Ω, ω ∈ X.

As a new generalization of the BCP, we have

Theorem 2. Each P-contraction mapping on a complete metric space has a unique fixed point.

Proof. Let Ω0 ∈ X be arbitrary. Define {Ωn} by Ωn = ΥΩn−1, n ≥ 1. If there is ΩN = ΩN+1 for
some N, nothing is to prove. We assume that Ωn �= Ωn+1 for each n ≥ 0.

We claim that
lim

n→∞
d(Ωn, Ωn+1) = 0.

90



Axioms 2019, 8, 84

In view of (1), we have

θ (d(Ωn+1, Ωn)) = θ (d(ΥΩn, ΥΩn−1)) (2)

≤ (θ (d(Ωn, Ωn−1)))
τ1 (θ (d(Ωn, ΥΩn)))

τ2

(θ (d(Ωn−1, ΥΩn−1)))
τ3

(
θ

(
d(Ωn, ΥΩn−1) + d(Ωn−1, ΥΩn)

2

))τ4

≤ (θ (d(Ωn, Ωn−1)))
τ1 (θ (d(Ωn, Ωn+1)))

τ2

(θ (d(Ωn−1, Ωn)))
τ3

(
θ

(
d(Ωn−1, Ωn+1)

2

))τ4

≤ (θ (d(Ωn, Ωn−1)))
τ1+τ3 (θ (d(Ωn, Ωn+1)))

τ2 (θ (max{d(Ωn−1, Ωn), d(Ωn, Ωn+1)}))τ4 .

If for some N, we have
d(ΩN−1, ΩN) < d(ΩN , ΩN+1),

then in view of (θ1), we get that

θ(d(ΩN−1, ΩN)) < θ(d(ΩN , ΩN+1)). (3)

Using (2), we have

θ (d(ΩN+1, ΩN)) ≤ (θ (d(ΩN , ΩN−1)))
τ1+τ3 (θ (d(ΩN , ΩN+1)))

τ2+τ4 . (4)

Therefore,

θ (d(ΩN+1, ΩN)) ≤ (θ (d(ΩN , ΩN−1)))
τ1+τ3

1−τ2−τ4 ≤ θ (d(ΩN , ΩN−1)) ,

which is a contradiction with respect to (3).
Consequently, for all n ≥ 1,

max
{

d(Ωn−1, Ωn), d(Ωn, Ωn+1)

}
= d(Ωn−1, Ωn),

which yields that

1 < θ(d(Ωn+1, Ωn)) ≤ (θ(d(Ω1, Ω0)))
[

τ1+τ3+τ4
1−τ2

]n .

At the limit, we have
lim

n→∞
θ(d(Ωn, Ωn+1)) = 1.

According to (θ2), we get
lim

n→∞
d(Ωn, Ωn+1) = 0. (5)

In order to show that {Ωn} is a Cauchy sequence, suppose the contrary, i.e., there is ε > 0 for
which we can find mi and ni so that

ni > mi > i, d(Ωmi , Ωni ) ≥ ε. (6)

That is,
d(Ωmi , Ωni−1) < ε. (7)

From (6), one writes

d(Ωmi−1, Ωni−1) ≤ d(Ωmi−1, Ωmi ) + d(Ωmi , Ωni−1).
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In view of (5) and (7), we get

lim sup
i→∞

d(Ωmi−1, Ωni−1) ≤ ε. (8)

Analogously,
lim sup

i→∞
d(Ωmi−1, Ωni ) ≤ ε. (9)

On the other hand, we have

θ (d(Ωmi , Ωni )) = θ
(
d(ΥΩmi−1, ΥΩni−1)

)
≤
(
θ
(
d(Ωmi−1, Ωni−1)

))τ1
(
θ
(
d(Ωmi−1, ΥΩmi−1)

))τ2

(
θ
(
d(Ωni−1, ΥΩni−1)

))τ3

(
θ

(
d(Ωmi−1, ΥΩni−1) + d(Ωni−1, ΥΩmi−1)

2

))τ4

≤
(
θ
(
d(Ωmi−1, Ωni−1)

))τ1
(
θ
(
d(Ωmi−1, Ωmi )

))τ2

(
θ
(
d(Ωni−1, Ωni )

))τ3

(
θ

(
d(Ωmi−1, Ωni ) + d(Ωni−1, Ωmi )

2

))τ4

.

Using now (θ1) and (5)–(8), we have

θ (ε) ≤ θ

(
lim sup

i→∞
d(Ωmi , Ωni )

)

≤
(

θ

(
lim sup

i→∞
d(Ωmi−1, Ωni−1)

))τ1
(

θ

(
lim sup

i→∞
d(Ωmi−1, Ωmi )

))τ2

(
θ

(
lim sup

i→∞
d(Ωni−1, Ωni )

))τ3
(

θ

(
lim sup

i→∞

d(Ωmi−1, Ωni ) + d(Ωni−1, Ωmi )

2

))τ4

≤ (θ (ε))τ1 (θ (ε))τ4 .

This implies that
1 < θ (ε) ≤ (θ (ε))τ1+τ4 ,

which is a contradiction. Thus, {Ωn} is a Cauchy sequence. The completeness of X implies that there
is Ω ∈ X so that Ωn → Ω as n → ∞. On the other hand,

θ (d(Ωn, ΥΩ)) = θ (d(ΥΩn−1, ΥΩ))

≤ (θ (d(Ωn−1, Ω)))τ1 (θ (d(Ωn−1, ΥΩn−1)))
τ2

(θ (d(Ω, ΥΩ)))τ3

(
θ

(
d(ΥΩ, Ωn−1) + d(Ω, ΥΩn−1)

2

))τ4

≤ (θ (d(Ωn−1, Ω)))τ1 (θ (d(Ωn−1, Ωn)))
τ2

(θ (d(Ω, ΥΩ)))τ3

(
θ

(
d(ΥΩ, Ωn−1) + d(Ω, Ωn)

2

))τ4

.

Taking n → ∞ and using (θ1) and (5), we have

θ (d(Ω, ΥΩ)) ≤ (θ (d(Ω, Ω)))τ1 (θ (d(Ω, Ω)))τ2

(θ (d(Ω, ΥΩ)))τ3 (θ (d(Ω, ΥΩ)))τ4

= (θ (d(Ω, ΥΩ)))τ3+τ4 .

We deduce that Ω = ΥΩ, so Ω is a fixed point.
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Let there are two points Ω, ω which are two different fixed points of Υ. So,

θ (d(ΥΩ, Υω)) ≤ (θ (d(Ω, ω)))τ1 (θ (d(Ω, ΥΩ)))τ2

(θ (d(ω, Υω)))τ3 (θ (d(Ω, ΥΩ)))τ4

= (θ (d(Ω, ΥΩ)))τ3+τ4 .

We deduce that Ω = ΥΩ, so Ω is a fixed point.
Let Ω, ω be two distinct fixed points of Υ. We have

θ (d(Ω, ω)) = θ (d(ΥΩ, Υω)) ≤ (θ (d(Ω, ω)))τ1 (θ (d(Ω, Ω)))τ2

(θ (d(ω, ω)))τ3 (θ (d(Ω, ω)))τ4

= (θ (d(Ω, ω)))τ1+τ4 < θ (d(Ω, ω)) ,

which is a contradiction. So, Ω has a unique fixed point.

Remark 1. In Theorem 2, we can substitute the continuity of θ by the continuity of Υ.

By setting θ(t) = e
√

t, we have

Corollary 1. Let Υ : X → X be a mapping on a complete metric space (X, d) such that the following holds:

√
d (ΥΩ, Υω) ≤ τ1

√
d (Ω, ω) + τ2

√
d (Ω, ΥΩ) + τ3

√
d (ω, Υω) + τ4

√
d (Ω, Υω) + d (ω, ΥΩ)

2
,

for all Ω, y ∈ X, where θ ∈ P and τ1, τ2, τ3, τ4 ≥ 0 so that τ1 + τ2 + τ3 + τ4 < 1. Then Υ has a unique
fixed point.

Remark 2. Taking τ1 = τ4 = 0 in the Corollary 1, we get Theorem 2.6 of [27].
Taking τ4 = 0 in Theorem 1, we get Theorem 2.8 of [27].

Setting θ (t) = e
n√t in Theorem 2, we have

Corollary 2. Let (Ω, d) be a complete metric space and let Υ : X → X be such that the following holds:

n
√

d (ΥΩ, Υω) ≤ τ1
n
√

d (Ω, ω) + τ2
n
√

d (Ω, ΥΩ) + τ3
n
√

d (ω, Υω) + τ4
n

√
d (Ω, Υω) + d (ω, ΥΩ)

2
,

for all Ω, ω ∈ X, where θ ∈ P and τ1, τ2, τ3, τ4 ≥ 0 such that τ1 + τ2 + τ3 + τ3 < 1. Then Υ has a unique
fixed point.

Remark 3 ([12]). Other examples of functions in the set P are

f (t) = cosh t,

f (t) = 2 cosh t
1+cosh t ,

f (t) = 1 + ln (1 + t) ,

f (t) = 2+2 ln(1+t)
2+ln(1+t) ,

f (t) = etet
,

f (t) = 2etet

1+etet ,

f (t) = e
√

tet ,

f (t) = 2e
√

tet

1+e
√

tet ,

f (t) = e
√

te
√

t
,

f (t) = 2e
√

te
√

t

1+e
√

te
√

t ,
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for all t > 0.

By setting θ(t) = etet
, we have

Corollary 3. Let Υ : X → X be a continuous mapping on a complete metric space (X, d). Suppose that there
are τ1, τ2, τ3, τ4 ≥ 0 with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

d (ΥΩ, Υω) ed(ΥΩ,Υω) ≤ τ1d (Ω, ω) ed(Ω,ω) + τ2d (Ω, ΥΩ) ed(Ω,ΥΩ)

+ τ3d (ω, Υω) ed(ω,Υω) + τ4d (ω, ΥΩ) e
d(Ω,Υω)+d(ω,ΥΩ)

2 ,

for all Ω, ω ∈ X. Then there is a unique fixed point of Υ.

Corollary 4. Let Υ : X → X be a continuous mapping on a complete metric space (X, d). Suppose that there
are τ1, τ2, τ3, τ4 ≥ 0 with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

2ed(ΥΩ,Υω)ed(ΥΩ,Υω)

1 + ed(ΥΩ,Υω)ed(ΥΩ,Υω)
≤
[

2ed(Ω,ω)ed(Ω,ω)

1 + ed(Ω,ω)ed(Ω,ω)

]τ1
[

2ed(Ω,ΥΩ)ed(Ω,ΥΩ)

1 + ed(Ω,ΥΩ)ed(Ω,ΥΩ)

]τ2

[
2ed(ω,Υω)ed(ω,Υω)

1 + ed(ω,Υω)ed(ω,Υω)

]τ3
⎡⎣ 2e

d(Ω,Υω)+d(ω,ΥΩ)
2 e

d(Ω,Υω)+d(ω,ΥΩ)
2

1 + e
d(Ω,Υω)+d(ω,ΥΩ)

2 e
d(Ω,Υω)+d(ω,ΥΩ)

2

⎤⎦τ4

,

for all Ω, ω ∈ X. Then there is a unique fixed point of Υ.

Corollary 5. Let Υ : X → X be a continuous mapping on a complete metric space (X, d). Suppose that there
are τ1, τ2, τ3, τ4 ≥ 0 with τ1 + τ2 + τ3 + τ4 < 1 such that the following holds:

1 + ln (1 + d (ΥΩ, Υω)) ≤ [1 + ln (1 + d (Ω, ω))]τ1 [1 + ln (1 + d (Ω, ΥΩ))]τ2

[1 + ln (1 + d (ω, Υω))]τ3

[
1 + ln

(
1 +

d (Ω, Υω) + d (ω, ΥΩ)

2

)]τ4

,

for all Ω, ω ∈ X. Then Υ has a unique fixed point.

Example 1. Let X = [0, 5] be endowed with the metric d(Ω, ω) = |Ω−ω| for all Ω, ω ∈ X. Define
Υ : X → X and θ : (0, ∞)→ (1, ∞) by

ΥΩ =

⎧⎪⎨⎪⎩
2

3π Ω arctan Ω, if Ω ∈ [0, α] ,

1
3 sinh−1 Ω if Ω ∈ [α,+5] ,

where α (� 2.06) is the positive solution of the equation

2
3π

Ω arctan Ω =
1
3

sinh−1 Ω.

Take θ(t) = etet
. Choose τ1 = 37

100 and τi =
1
5 for i = 2, 3, 4.

Let Ω, ω ∈ X = [0, 5]. We have the following cases:
Case 1: Ω, ω ∈ [0, α]. According to the mean value Theorem for t �−→ g(t) := 2

3π t arctan t on the
interval J = (min(ω, Ω), max(ω, Ω)) ⊂ [0, α], there is some c ∈ J such that

d(ΥΩ, Υω) =
∣∣ 2

3π Ω arctan Ω− 2
3π ω arctan ω

∣∣ ≤ g′(c)d(Ω, ω),
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where
g′(c) =

2
3π

arctan c +
2

3π

c
1 + c2 ≤

2
3π

6
5
+

2
3π

1
2
≤ 17

15π
≤ 37

100
,

because that arctan c ≤ 6
5 , for each c ∈ [0, α], and c

1+c2 ≤ 1
2 , for each c ≥ 0.

Therefore,

θ (d(ΥΩ, Υω)) = ed(ΥΩ,Υω)ed(ΥΩ,Υω)

= ed( 2
3π Ω arctan Ω, 2

3π ω arctan ω)ed( 2
3π Ω arctan Ω, 2

3π ω arctan ω)

≤
[
ed(Ω,ω)ed(Ω,ω)

] 37
100

≤
[
ed(Ω,ω)ed(Ω,ω)

] 37
100 ·

[
ed(Ω,ΥΩ)ed(Ω,ΥΩ)

] 20
100 ·

[
ed(ω,Υω)ed(ω,Υω)

] 20
100 ·

[
e

d(Ω,Υω)+d(ω,ΥΩ)
2 e

d(Ω,Υω)+d(ω,ΥΩ)
2

] 20
100

.

Case 2: Ω ∈ [0, α] and ω ∈ [α, 5]. Here,

2
3π

ω arctan ω ≥ 1
3

sinh−1 ω

for all ω ∈ [α, 5]. Using the mean value Theorem on the function t → 2
3π t arctan t on the interval [Ω, ω],

we have

d (ΥΩ, Υω) =

∣∣∣∣ 2
3π

Ω arctan Ω− 1
3

sinh−1 ω

∣∣∣∣ = 1
3

sinh−1 ω− 2
3π

Ω arctan Ω

≤ 2
3π

ω arctan ω− 2
3π

Ω arctan Ω

≤ 37
100

d(Ω, ω),

Therefore, as in case 1,

θ (d(ΥΩ, Υω)) = ed(ΥΩ,Υω)ed(ΥΩ,Υω)

≤
[
ed(Ω,ω)ed(Ω,ω)

] 37
100 ·

[
ed(Ω,ΥΩ)ed(Ω,ΥΩ)

] 20
100 ·

[
ed(ω,Υω)ed(ω,Υω)

] 20
100 ·

[
e

d(Ω,Υω)+d(ω,ΥΩ)
2 e

d(Ω,Υω)+d(ω,ΥΩ)
2

] 20
100

.

Case 3: ω ∈ [0, α] and Ω ∈ [α, 5]. It is similar to case 2.

Case 4: Ω, ω ∈ [α, 5]. Here, one writes

d(ΥΩ, Υω) =
∣∣∣ 1

3 sinh−1 Ω− 1
3 sinh−1 ω

∣∣∣ ≤ 37
100 d(Ω, ω).

Similarly,

θ (d(ΥΩ, Υω)) ≤
[
ed(Ω,ω)ed(Ω,ω)

] 37
100 ·

[
ed(Ω,ΥΩ)ed(Ω,ΥΩ)

] 20
100 ·

[
ed(ω,Υω)ed(ω,Υω)

] 20
100 ·

[
e

d(Ω,Υω)+d(ω,ΥΩ)
2 e

d(Ω,Υω)+d(ω,ΥΩ)
2

] 20
100

.
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Hence, Υ is a P-contraction. Thus all the conditions of Theorem 2 hold and Υ has a fixed point (Ω = 0).

3. Weak-JS Contractive Conditions

Let Φ be the class of functions φ : [1, ∞)→ [0, ∞) satisfying the following properties:

(φ1) φ is continuous;
(φ2) φ(1) = 0;
(φ3) or each {bn} ⊆ (1, ∞), lim

n→∞
φ(bn) = 0 iff lim

n→∞
bn = 1.

Remark 4. It is clear that Υ(t) = t− n
√

t (n ≥ 1) belongs to Φ. Other examples are Υ(t) = et−1 − 1 and
Υ(t) = ln t.

Definition 3. Let (X, d) be a metric space and let Υ be a self-mapping on X.
We say that Υ is a weakly JS-contraction if for all Ω, ω ∈ X with d(ΥΩ, Υω) > 0, we have

θ
(
d(ΥΩ, Υω)

)
≤ θ

(
d(Ω, ω)

)
− φ

(
θ(d(Ω, ω))

)
(10)

where φ ∈ Φ and θ ∈ Θ′.

Theorem 3. Let (X, d) be a complete metric space. Let Υ be a self-mapping on X so that

(i) Υ is a weakly JS-contraction;
(ii) Υ is continuous.

Then Υ has a unique fixed point.

Proof. Let Ω0 ∈ X be arbitrary. Define {Ωn} by Ωn = ΥnΩ0 = ΥΩn−1. Without loss of generality,
assume that Ωn �= Ωn+1 for each n ≥ 0. Since Υ is a weakly JS-contraction, we derive

θ
(
d(Ωn, Ωn+1)

)
= θ

(
d(ΥΩn−1, ΥΩn)

)
≤ θ

(
d(Ωn−1, Ωn)

)
− φ

(
θ(d(Ωn−1, Ωn))

)
. (11)

So, we deduce that {θ
(
d(Ωn, Ωn+1)

)
} is decreasing, and so there is r ≥ 1 so such

lim
n→∞

θ
(
d(Ωn, Ωn+1)

)
= r. We will prove that r = 1.

Taking n → ∞, we have

r− φ(r) = r. (12)

So,

lim
n→∞

φ
(
θ(d(Ωn−1, Ωn))

)
= 0. (13)

That is,

lim
n→∞

θ(d(Ωn−1, Ωn)) = 1, (14)

i.e.,

lim
n→∞

d(Ωn−1, Ωn) = 0. (15)

We claim that {Ωn} is a Cauchy sequence.
We argue by contradiction, i.e., there is ε > 0 for which there are {Ωmi} and {Ωni} of {Ωn} so that

ni > mi > i and d(Ωmi , Ωni ) ≥ ε. (16)
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From (16) and using the triangular inequality, we get

ε ≤ d(Ωmi , Ωni )

≤ d(Ωmi , Ωmi+1) + d(Ωmi+1, Ωni )

≤ d(Ωmi , Ωmi+1) + d(Ωmi+1, Ωni+1) + d(Ωni+1, Ωni ).

Taking i → ∞, and using (15), we get

ε ≤ lim sup
i→∞

d(Ωmi+1, Ωni+1). (17)

Also,

d(Ωni , Ωmi ) ≤ d(Ωni , Ωni−1) + d(Ωni−1, Ωmi ).

Then, from (15),
lim sup

i→∞
d(Ωni , Ωmi ) ≤ ε. (18)

As d(ΥΩmi , ΥΩni ) > 0, we may apply (10) to get that

θ(d(Ωmi+1, Ωni+1)) = θ(d(ΥΩmi , ΥΩni ))

≤ θ(d(Ωmi , Ωni ))− φ(θ(d(Ωmi , Ωni ))).

Now, taking i → ∞ and using (θ1), (17) and (18), we have

θ(ε) ≤ θ(lim sup
i→∞

d(Ωmi+1, Ωni+1))

≤ θ(lim sup
i→∞

d(Ωmi , Ωni ))− lim inf
i→∞

φ(θ(d(Ωmi , Ωni )))

≤ θ(ε)− lim inf
i→∞

φ(θ(d(Ωmi , Ωni ))).

This implies that
lim inf

i→∞
d(Ωmi , Ωni ) = 0,

which is a contradiction with respect to (16).
Thus, {Ωn} is a Cauchy sequence in the complete metric space (Ω, d), so there is some Ω ∈ X

such that lim
n→∞

d(Ωn, Ω) = 0.

Now, since Υ is continuous, we get that Ωn+1 = ΥΩn → ΥΩ as n → ∞. That is, Ω = ΥΩ. Thus,
Υ has a fixed point.

Let Ω, ω ∈ Fix(T) so that Ω �= ω. Consider

θ(d(Ω, ω)) = θ(d(ΥΩ, Υω)) ≤ θ(d(Ω, y))− φ(θ(d(Ω, ω))).

Thus,
φ(θ(d(Ω, ω))) = 0.

which is a contradiction. Hence, Ω = ω.

One can obtain many other contractive conditions by substituting suitable values of θ and φ

in (10).
Taking φ(t) = t− tα for all t ≥ 1 and α ∈ [0, 1), we obtain the JS-contractive condition.
Without the continuity assumption of Υ, we have
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Theorem 4. Let (X, d) be a complete metric space. Let Υ : X → X be a mapping. Suppose that

θ(d(ΥΩ, Υω)) ≤ θ(d(Ω, ω))− φ(θ(d(Ω, ω))), (19)

for all Ω, ω ∈ X, where θ ∈ Θ′ and φ ∈ Φ. Then Υ has a unique fixed point.

Proof. For Ω0 ∈ X, let {Ωn} be defined by Ωn+1 = ΥΩn for n ≥ 0. Note that there is Ω ∈ X such that

lim
n→∞

d(Ωn, Ω) = 0.

We also have
d(Ω, ΥΩ) ≤ d(Ω, ΥΩn) + d(ΥΩn, ΥΩ). (20)

From (19),
1 ≤ θ(d(ΥΩn, ΥΩ)) ≤ θ(d(Ωn, Ω))− φ(θ(d(Ωn, Ω))), (21)

Hence, we get that lim
n→∞

θ(d(ΥΩn, ΥΩ)) = 1. Thus, we have lim
n→∞

d(ΥΩn, ΥΩ) = 0 which by (20),

implies that ΥΩ = Ω.

Example 2. Let Ω = [2, ∞). Take the metric

d(ρ, �) = |ρ− �|

for all ρ, � ∈ Ω. Define Υ : Ω → Ω, ϕ : [1, ∞)→ [0, ∞) and θ : [0, ∞)→ [1, ∞) by

Υρ = ln(100 + ρ),

ϕ(ρ) = ln(ρ),

and θ(t) = et. Note that for all x ≥ 0, one has e
x

100 ≤ ex − x. Now, for all ρ, � ∈ Ω, we have

θ(d(Υρ, Υ�)) = ed(Υρ,Υ�)

= e(| ln(100+ρ)−ln(100+�))|

≤ e
|ρ−�|
100

≤ e|ρ−�| − |ρ− �|
= ed(ρ,�) − d(ρ, �)

= θ(d(ρ, �))− ϕ(θ(d(ρ, �))).

Thus, Υ is a weakly JS-contraction. All hypotheses of Theorem 3 are verified, so Υ has a unique fixed point,
which is, u � 4651

1000 .

4. Application to Nonlinear Integral Equations

Consider the following nonlinear integral equation

Ω(t) = φ(t) +
∫ b

a
χ(t, s, Ω(s))ds, (22)

where a, b ∈ R, Ω ∈ C[a, b] (the set of continuous functions from [a, b] to R), φ : [a, b] → R and
χ : [a, b]× [a, b]×R→ R are given functions.
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Theorem 5. Assume that

(i) χ : [a, b]× [a, b]×R → R is continuous and there is θ ∈ θ so that θ( sup
t∈[a,b]

f (t)) ≤ sup
t∈[a,b]

θ( f (t)) for

arbitrary function f with

θ(
∫ b

a
|(χ(t, s, Ω(s))ds− χ(t, s, ω(s))|ds) ≤

∫ b

a
θ(|χ(t, s, Ω(s))− χ(t, s, ω(s))|)ds;

(ii) there is τi ∈ (0, 1) so that

θ(|χ(t, s, Ω(s))− χ(t, s, ω(s))|)

≤ [θ(|Ω(t)− y(t)|)]τ1 [θ(|Ω(t)−
∫ b

a χ(t, s, Ω(s)ds)|)]τ2 [θ(|ω(t)−
∫ b

a χ(t, s, ω(s))ds|)]τ3

b− a

[θ(|ω(t)−
∫ b

a
χ(t, s, Ω(s))ds|)]τ4

for all Ω, ω ∈ C[a, b] and t, s ∈ [a, b].

Then (22) has a unique solution.

Proof. Let X = C[a, b]. Define the metric d on X by d(Ω, ω) = sup
t∈[a,b]

|Ω(t)− ω(t)|. Then (X, d) is a

complete metric space. Consider Υ : X → X by ΥΩ(t) = φ(t) +
∫ t

a χ(t, s, Ω(s))ds. Let Ω, ω ∈ X and
t ∈ [a, b]. We have

θ(|ΥΩ(t)− Υω(t)|)

= θ(|
∫ t

a
χ(t, s, Ω(s))ds−

∫ t

a
χ(t, s, ω(s))ds|)

≤
∫ b

a
θ(|χ(t, s, Ω(s))− χ(t, s, ω(s))|)ds

≤
∫ b

a

[θ(|Ω(t)−ω(t)|)]τ1 [θ(|Ω(t)−
∫ b

a χ(t, s, Ω(s)ds)|)]τ2 [θ(|ω(t)−
∫ b

a χ(t, s, ω(s))ds|)]τ3

b− a

[θ(|ω(t)−
∫ b

a
χ(t, s, Ω(s))ds|)]τ4 ds

≤ 1
b− a

∫ b

a
[θ(d(Ω, ω))]τ1 [θ(d(Ω, ΥΩ))]τ2 [θ(d(ω, Υω))]τ3 [θ(d(ω, ΥΩ))]τ4 ds

= [θ(d(Ω, ω))]τ1 [θ(d(Ω, ΥΩ))]τ2 [θ(d(ω, Υω))]τ3 [θ(d(ω, ΥΩ))]τ4 .

Thus Υ is a P-contraction. All the conditions of Theorem 2 hold, and so Υ has a unique fixed
point, that is, (22) has a unique solution.

5. Conclusions

In this paper, we restricted the conditions on the control function θ (with respect to the ones given
in [27,28]) and we obtained a real generalization of the Banach contraction principle (BCP). We also
initiated a weakly JS-contractive condition that generalizes its corresponding of Jleli and Samet [26],
and we provided some related fixed point results.
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Abstract: In this study, we establish the existence and uniqueness theorems of the best proximity
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1. Introduction

Numerous problems in science and engineering defined by nonlinear functional equations can be
solved by reducing them to an equivalent fixed-point problem. In fact, an operator equation

Gx = 0 (1)

may be expressed as a fixed-point equation T x = x. Accordingly, the Equation (1) has a solution if the
self-mapping T has a fixed point. However, for a non-self mapping T : P → Q, the equation T x = x
does not necessarily admit a solution. Here, it is quite natural to find an approximate solution x∗ such
that the distance d(x∗, T x∗) is minimum, in which case x∗ and T x∗ are in close proximity to each
other. Herein, the optimal approximate solution x∗, for which d(x∗, T x∗) = d(P, Q), is called a best
proximity point of T . The main aim of the best proximity point theory is to give sufficient conditions
for finding the existence of a solution to the nonlinear programming problem,

min
ξ∈P

d(ξ, T ξ). (2)

Moreover, a best proximity point generates to a fixed point if the mapping under consideration is
a self-mapping. For more details on this research subject, see [1–15].

In 2015, Khojasteh et al. [16] presented the notion of Z-contraction involving a new class of
mappings—namely, simulation functions, and proved new fixed-point theorems via different methods
to others in the literature. For more details, see [17–20].
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Definition 1 ([16]). A simulation function is a mapping ζ : [0, ∞)× [0, ∞)→ R so that:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(μ, η) < η − μ for all μ, η > 0;
(ζ3) If (μn), (ηn) are sequences in (0, ∞) so that lim

n→∞
μn = lim

n→∞
ηn > 0, then

lim sup
n→∞

ζ(μn, ηn) < 0. (3)

Theorem 1 ([16]). Let (M, d) be a complete metric space and T : M → M be a Z-contraction with respect to
ζ ∈ Z—that is,

ζ(d(T ξ, T ω), d(ξ, ω)) ≥ 0, for all ξ, ω ∈ M.

Then, T admits a unique fixed point (say τ ∈ X) and, for each ξ0 ∈ M, the Picard sequence {T nξ0} is
convergent to τ.

In this study, we will consider simulation functions satisfying only the condition (ζ2). For the
sake of convenience, we identify the set of all simulation functions satisfying only the condition (ζ2)

by Z .
The main concern of the paper is to establish theorems on the existence and uniqueness of best

proximity points for Geraghty type Z-proximal contractions in complete metric spaces. The obtained
results complement and extend some known results from the literature. An example, as well as an
application to a variational inequality problem, is also given in order to illustrate the effectiveness of
our generalizations.

2. Preliminaries

Let P and Q be two non-empty subsets of a metric space, (M, d). Consider:

d(P, Q) := inf {d(ρ, ν) : ρ ∈ P, ν ∈ Q} ;

P0 := {ρ ∈ P : d(ρ, ν) = d(P, Q) for some ν ∈ Q} ;

Q0 := {ν ∈ Q : d(ρ, ν) = d(P, Q) for some ρ ∈ P} .

Denote by
Best(T ) = {u ∈ P : d(u, T u) = d(P, Q)} ,

the set of all best proximity points of a non-self-mapping T : P → Q. In the study [5], Caballero et al.
familiarized the notion of Geraghty contraction for non-self-mappings as follows:

Definition 2 ([5]). Let P, Q be two non-empty subsets of a metric space, (M, d). A mapping T : P → Q is
called a Geraghty contraction if there is β ∈ Σ, so that for all ξ, ω ∈ P

d(T ξ, T ω) ≤ β(d(ξ, ω)) · d(ξ, ω), (4)

where the class Σ is the set of functions β : [0, ∞)→ [0, 1), satisfying

β(tn)→ 1 =⇒ tn → 0.

In the paper [10], Jleli and Samet initiated the concepts of α-ψ-proximal contractive
and α-proximal admissible mappings. They provided related best-proximity-point results.
Subsequently, Hussain et al. [7] modified the aforesaid notions and substantiated certain
best-proximity-point theorems.
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Definition 3 ([10]). Let T : P → Q and α : P× P → [0, ∞) be given mappings. Then, T is called α-proximal
admissible if

α(u1, u2) ≥ 1
d(p1, T u1) = d(P, Q)

d(p2, T u2) = d(P, Q)

⎫⎪⎬⎪⎭ =⇒ α(p1, p2) ≥ 1,

for all u1, u2, p1, p2 ∈ P.

Definition 4 ([7]). Let T : P → Q and α, η : P× P → [0, ∞) be given mappings. Such T is said to be
(α, η)-proximal admissible if

α(u1, u2) ≥ η(u1, u2)

d(p1, T u1) = d(P, Q)

d(p2, T u2) = d(P, Q)

⎫⎪⎬⎪⎭ =⇒ α(p1, p2) ≥ η(p1, p2),

for all u1, u2, p1, p2 ∈ P.

Note that if η(u, v) = 1 for all u, v ∈ P, then Definition 4 corresponds to Definition 3.
Very recently, Tchier et al. in [14] initiated the concept of Z-proximal contractions.

Definition 5 ([14]). Let P and Q be two non-empty subsets of a metric space, (M, d). A non-self-mapping
T : P → Q is called a Z-proximal contraction if there is a simulation function ζ so that

d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

}
=⇒ ζ(d(ρ, ν), d(u, v)) ≥ 0, (5)

for all ρ, ν, u, v ∈ P.

Now, we introduce a new concept which will be efficiently used in our results.

Definition 6. Let T : P → Q and α, η : P× P → [0, ∞) be given mappings. Then, T is said to be triangular
(α, η)-proximal admissible, if

(1) T is (α, η)-proximal admissible;
(2) α(u, v) ≥ η(u, v) and α(v, z) ≥ η(v, z) implies that α(u, z) ≥ η(u, z), for all u, v, z ∈ P.

Now, we describe a new class of contractions for non-self-mappings which generalize the concept
of Geraghty-contractions.

Definition 7. Let P and Q be two non-empty subsets of a metric space (M, d), ζ ∈ Z and α, η : P× P →
[0, ∞) and β ∈ Σ. A non-self-mapping T : P → Q is said to be a Geraghty type Z-proximal contraction, if for
all u, v, ρ, ν ∈ P, the following implication holds:

α(u, v) ≥ η(u, v)
d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

⎫⎪⎬⎪⎭ =⇒ ζ(d(ρ, ν), β(d(u, v))d(u, v)) ≥ 0. (6)

Remark 1. If T : P → Q is a Geraghty type Z-proximal contraction, then by (ζ2) and Definition 7,
the following implication holds for all u, v, ρ, ν ∈ P with u �= v:

α(u, v) ≥ η(u, v)
d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

⎫⎪⎬⎪⎭ =⇒ d(ρ, ν) < β(d(u, v))d(u, v). (7)
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3. Main Results

Our first result is as follows.

Theorem 2. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that P0 is non-empty,
T : P → Q and α, η : P× P → [0, ∞) be given mappings. Suppose that:

(i) P is closed and T (P0) ⊆ Q0;
(ii) T is triangular (α, η)-proximal admissible;
(iii) There are u0, u1 ∈ P0 so that d(u1, T u0) = d(P, Q) and α (u0, u1) ≥ η (u0, u1);
(iv) T is a continuous Geraghty type Z-proximal contraction.

Then, T has a best proximity point in P. If α(u, v) ≥ η(u, v) for all u, v ∈ Best(T ), then T has a unique best
proximity point u∗ ∈ P. Moreover, for every u ∈ P, limn→∞ T nu = u∗.

Proof. From the condition (iii), there are u0, u1 ∈ P0 so that

d(u1, T u0) = d(P, Q) and α (u0, u1) ≥ η (u0, u1) .

Since T (P0) ⊆ Q0, there is u2 ∈ P0 so that

d(u2, T u1) = d(P, Q).

Thus, we get
α(u0, u1) ≥ η(u0, u1),
d(u1, T u0) = d(P, Q),
d(u2, T u1) = d(P, Q).

Since T is (α, η)-proximal admissible, we get α (u1, u2) ≥ η (u1, u2) . Now, we have

d(u2, T u1) = d(P, Q) and α (u1, u2) ≥ η (u1, u2) .

Again, since T (P0) ⊆ Q0, there exists u3 ∈ P0 such that

d(u3, T u2) = d(P, Q),

and thus,
α(u1, u2) ≥ η(u1, u2),
d(u2, T u1) = d(P, Q),
d(u3, T u2) = d(P, Q).

Since T is (α, η)-proximal admissible, this implies that α (u2, u3) ≥ η (u2, u3) . Thus, we have

d(u3, T u2) = d(P, Q) and α (u2, u3) ≥ η (u2, u3) .

By repeating this process, we build a sequence {un} in P0 ⊆ P so that

d(un+1, T un) = d(P, Q) and α (un, un+1) ≥ η (un, un+1) , (8)

for all n ∈ N∪ {0} . If there is n0 so that un0 = un0+1, then

d(un0 , T un0) = d(un0+1, T un0) = d(P, Q).

That is, un0 is a best proximity point of T . We should suppose that un �= un+1, for all n.
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From (8), for all n ∈ N, we get

α (un−1, un) ≥ η (un−1, un) ,
d(un, T un−1) = d(P, Q),
d(un+1, T un) = d(P, Q).

On the grounds that T is a Geraghty type Z-proximal contraction, by utilizing Remark 1,
we deduce that

d(un, un+1) < β(d(un−1, un))d(un−1, un), (9)

which requires that d(un, un+1) < d(un−1, un), for all n. Therefore, the sequence {d(un, un+1)} is
decreasing, and so there is λ ≥ 0 so that limn→∞ d (un, un+1) = λ. Now, we shall show that λ = 0.
On the contrary, assume that λ > 0. Then, taking into account (9), for any n ∈ N,

d(un, un+1) < β(d(un−1, un))d(un−1, un) < d(un−1, un).

This yields, for any n ∈ N,

0 <
d(un, un+1)

d(un−1, un)
< β(d(un−1, un)) < 1.

Taking n → ∞, we find that

lim
n→∞

β(d(un−1, un)) = 1,

and since β ∈ Σ, limn→∞ d(un−1, un) = 0. This contradicts our assumption limn→∞ d(un−1, un) =

λ > 0. Therefore, we get
lim

n→∞
d(un−1, un) = 0, for all n ∈ N. (10)

We shall prove that {un} is Cauchy in P. By contradiction, suppose that {un} is not a Cauchy
sequence, so there is an ε > 0 for which we can find

{
umk

}
and

{
unk

}
of {un} such that nk is the

smallest index for which nk > mk > k and

d
(
umk , unk

)
≥ ε and d

(
umk , unk−1

)
< ε. (11)

We have

ε ≤ d
(
umk , unk

)
≤ d

(
umk , unk−1

)
+ d

(
unk−1, unk

)
< ε + d

(
unk−1, unk

)
.

Taking k → ∞, by (10), we get
lim
k→∞

d
(
umk , unk

)
= ε. (12)

By triangular inequality,∣∣d (umk+1, unk+1
)
− d

(
umk , unk

)∣∣ ≤ d
(
umk+1, umk

)
+ d

(
unk , unk+1

)
,

which yields that
lim
k→∞

d
(

xmk+1, xnk+1
)
= ε. (13)

Since T is triangular (α, η)-proximal admissible, by using (8), we infer

α(um, un) ≥ η(um, un), for all n, m ∈ N with m < n. (14)
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Combining (8) and (14), for all k ∈ N, we have

α(umk , unk ) ≥ η(umk , unk ),
d(umk+1, T umk ) = d(P, Q),
d(unk+1, T unk ) = d(P, Q).

Regarding the fact that T is a Geraghty type Z-proximal contraction, from Remark 1,
we deduce that

d(umk+1, unk+1) < β(d(umk , unk ))d(umk , unk ) < d(umk , unk ).

Taking the limit as k tends to ∞ on both sides of the last inequality, and using the Equations (12)
and (13), we get

ε ≤ lim
k→∞

β(d(umk , unk ))ε ≤ ε,

which implies that limk→∞ β(d(umk , unk )) = 1, and so limk→∞ d(umk , unk ) = 0 which contradicts ε > 0.
Hence, {un} is a Cauchy sequence in P. Since P is a closed subset of the complete metric space (M, d),
there is p ∈ P so that

lim
n→∞

d(un, p) = 0. (15)

Since T is continuous, we have

lim
n→∞

d(T un, T p) = 0. (16)

Combining (8), (15), and (16), we get

d(P, Q) = lim
n→∞

d(un+1, T un) = d(p, T p).

Therefore, u ∈ P is a best proximity point of T . Finally, we shall show that the set Best(T ) is a
singleton. Suppose that r is another best proximity point of T , that is, d(r, T r) = d(P, Q). Then, by the
hypothesis, we have α(p, r) ≥ η(p, r)—that is,

α(p, r) ≥ η(p, r),
d(p, T p) = d(P, Q),
d(r, T r) = d(P, Q).

Then, from Remark 1, we deduce

d(p, r) < β(d(p, r))d(p, r) < d(p, r),

which is a contradiction. Hence, we have a unique best proximity point of T .

Let us consider the following assertion in order to remove the continuity on the operator T in the
next theorem.

(C) If a sequence {un} in P is convergent to u ∈ P so that α (un, un+1) ≥
η (un, un+1), then α (un, u) ≥ η (un, u) for all n ∈ N.

Theorem 3. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that P0 is non-empty,
T : P → Q and α, η : P× P → [0, ∞) be given mappings. Suppose that:

(i) P is closed and T (P0) ⊆ Q0;
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(ii) T is triangular (α, η)-proximal admissible;
(iii) there are u0, u1 ∈ P0 so that d(u1, T u0) = d(P, Q) and α (u0, u1) ≥ η (u0, u1);
(iv) the condition (C) holds and T is a Geraghty type Z-proximal contraction.

Then, T has a best proximity point in P. If α(u, v) ≥ η(u, v) for all u, v ∈ Best(T ), then T has a unique best
proximity point u∗ ∈ P. Moreover, for each u ∈ P, we have limn→∞ T nu = u∗.

Proof. Following the proof of Theorem 2, there exists a Cauchy sequence {un} ⊂ P0 satisfying (8) and
un → p. On account of (i), P0 is closed, and so p ∈ P0. Also, since T (P0) ⊆ Q0, there is z ∈ P0 so that

d(z, T p) = d(P, Q). (17)

Taking (C) and (8) into account, we infer

α (un, p) ≥ η (un, p) , for all n ∈ N.

Since T is (α, η)-proximal admissible and

α(un, p) ≥ η(un, p),
d(un+1, T un) = d(P, Q),
d(z, T p) = d(P, Q),

(18)

so, we conclude that

α(un+1, z) ≥ η(un+1, z), for all n ∈ N. (19)

Considering (18), (19) and Remark 1, we have

d(un+1, z) < β(d(un, p))d(un, p) < d(un, p),

which implies that limn→∞ d(un+1, z) = 0. By the uniqueness of the limit, we obtain z = p. Thus,
by (17), we deduce that d(p, T p) = d(P, Q). Uniqueness of the best proximity point follows from the
proof of Theorem 2.

Example 1. Let M = R2 be endowed with the Euclidian metric,
P = {(0, u) : u ≥ 0} and Q = {(1, u) : u ≥ 0}. Note that d(P, Q) = 1, P0 = P and Q0 = Q. Let{

β(t) = 1
1+t , if t > 0

β(t) = 1
2 , otherwise .

Then, β ∈ Σ. Define T : P → Q and α : P× P → [0, ∞) by

T (0, u) =

{
(1, u

9 ), if 0 ≤ u ≤ 1,

(1, u2), if u > 1,

and

α((0, u), (0, v)) =

{
2η((0, u), (0, v)), if u, v ∈ [0, 1], or u = v

0, otherwise.
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Choose ζ(t, s) = 2
3 s− t for all t, s ∈ [0, ∞). Let u, v, p, q ≥ 0 be such that⎧⎪⎪⎨⎪⎪⎩

α((0, u), (0, v)) ≥ η((0, u), (0, v))

d((0, p), T (0, u)) = d(P, Q) = 1

d((0, q), T (0, v)) = d(P, Q) = 1.

Then, u, v ∈ [0, 1] or u = v.

u, v ∈ [0, 1]. Here, T (0, u) = (1, u
9 ) and T (0, v) = (1, v

9 ). Also,√
1 + (p− u

9
)2 =

√
1 + (q− v

9
)2 = 1,

that is, p = u
9 and q = v

9 . So, α((0, p), (0, q)) ≥ d((0, p), (0, q)). Moreover,

ζ(d((0, p), (0, q)), β(d((0, u), (0, v)))d((0, u), (0, v)))

=
2
3

β(d((0, u), (0, v)))d((0, u), (0, v))− d((0,
u
9
), (0,

v
9
))

=
2
3

β(|u− v|)|u− v| − |u− v|
9

.

If u = v, then β(|u− v|) = 1
2 and the right-hand side of the above inequality is equal to 0.

If u �= v, we have

ζ(d((0, p), (0, q)), β(d((0, u), (0, v)))d((0, u), (0, v)))

=
2
3

|u− v|
1 + |u− v| −

|u− v|
9

≥ 0.

u = v > 1. Here, T (0, u) = (1, u2) and T (0, v) = (1, v2). Similarly, we get that p = q = u2 = v2. So,
α((0, p), (0, q)) = 0 = η((0, p), (0, q)).

Also, ζ(d((0, p), (0, q)), β(d((0, u), (0, v)))d((0, u), (0, v))) ≥ 0.
In each case, we get that T is an (α, η)-proximal admissible. It is also easy to see that T is triangular

(α, η)-proximal admissible. Also, T is a Geraghty type Z-proximal contraction. Also, if {un = (0, pn)} is a
sequence in P such that α (un, un+1) ≥ η (un, un+1) for all n and un = (0, pn) → u = (0, p) as n → ∞,
then pn → p. We have pn, pn+1 ∈ [0, 1] or pn = pn+1. We get that p ∈ [0, 1] or pn = p. This implies that
α (un, u) ≥ η (un, u) for all n.

Moreover, there is (u0, u1) = ((0, 1), (0, 1
9 )) ∈ P0 × P0 so that

d(u1, T u0) = 1 = d(P, Q) and α (u0, u1) ≥ d (u0, u1) .

Consequently, all conditions of Theorem 3 are satisfied. Therefore, T has a unique best proximity point in P,
which is (0, 0). On the other side, we indicate that (4) is not satisfied. In fact, for u = (0, 2), v = (0, 3), we have

d(T u, T v) = d(T (0, 2), T (0, 3)) = d((0, 4), (0, 9))

= 5 >
1
2
= β(d((0, 2), (0, 3)))d((0, 2), (0, 3))

= β(d(u, v))d(u, v).
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Corollary 1. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d), such that P0 is
non-empty. Suppose that T : P → Q is a Geraghty-proximal contraction—that is, the following implication
holds for all u, v, ρ, ν ∈ P:

d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

}
=⇒ ζ(d(ρ, ν), β(d(u, v))d(u, v)) ≥ 0.

Also, assume that P is closed and T (P0) ⊆ Q0. Then, T has a unique best proximity point u∗ ∈ P. Moreover,
for each u ∈ P, we have limn→∞ T nu = u∗.

Proof. We take α(σ, ς) = η(σ, ς) = 1 in the proof of Theorem 2 (resp. Theorem 3).

4. Some Consequences

In this section we give new fixed-point results on a metric space endowed with a partial
ordering/graph by using the results provided in the previous section. Define

α, η : M×M → [0, ∞), α (u, v) =

{
η(u, v), if u � v,

0, otherwise.

Definition 8. Let (M,�, d) be a partially ordered metric space, (P, Q) be a pair of non-empty subsets of M,
and T : P → Q be a given mapping. Such T is said to be �-proximal increasing if

u1 � u2

d(p1, T u1) = d(P, Q)

d(p2, T u2) = d(P, Q)

⎫⎪⎬⎪⎭ =⇒ p1 � p2,

for all u1, u2, p1, p2 ∈ P.

Then, the following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 4. Let (P, Q) be a pair of non-empty subsets of a complete ordered metric space (M,�, d) so that P0

is non-empty and T : P → Q be a given non-self-mapping. Suppose that:

(i) P is closed and T (P0) ⊆ Q0;
(ii) T is �-proximal increasing;
(iii) There are u0, u1 ∈ P0 so that d(u1, T u0) = d(P, Q) and u0 � u1;
(iv) T is continuous or, for every sequence {un} in P is convergent to u ∈ P so that un � un+1, we have

un � u for all n ∈ N;
(v) There exist ζ ∈ Z and β ∈ Σ, such that for all u, v, ρ, ν ∈ P,

u � v
d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

⎫⎪⎬⎪⎭ =⇒ ζ(d(ρ, ν), β(d(u, v))d(u, v)) ≥ 0. (20)

Then, T has a best proximity point in P. If u � v for all u, v ∈ Best(T ), then T has a unique best proximity
point u∗ ∈ P. Moreover, for every u ∈ P, limn→∞ T nu = u∗.

Now, we present the existence of the best proximity point for non-self mappings from a metric
space M, endowed with a graph, into the space of non-empty closed and bounded subsets of the
metric space. Consider a graph G, such that the set V (G) of its vertices coincides with M and the set
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E (G) of its edges contains all loops; that is, E (G) ⊇ Δ, where Δ = {(u, u) : u ∈ M}. We assume G has
no parallel edges, so we can identify G with the pair (V (G) , E (G)).

Define

α, η : M×M → [0,+∞), α (u, v) =

{
η(u, v), if (u, v) ∈ E (G) ,

0, otherwise.

Definition 9. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty
subsets of M and T : P → Q be a given mapping. Such T is said to be triangular G-proximal, if

(1) for all u1, u2, p1, p2 ∈ P,

(u1, u2) ∈ E(G)

d(p1, T u1) = d(P, Q)

d(p2, T u2) = d(P, Q)

⎫⎪⎬⎪⎭ =⇒ (p1, p2) ∈ E(G);

(2) (u, v) ∈ E(G) and (v, z) ∈ E(G) implies that (u, z) ∈ E(G), for all u, v, z ∈ P.

for all u1, u2, p1, p2 ∈ P.

The following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 5. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty
subsets of M so that P0 is non-empty and T : P → Q be a given non-self mapping. Suppose that:

(i) P is closed and T (P0) ⊆ Q0;
(ii) T is triangular G-proximal;
(iii) There are u0, u1 ∈ P0 so that d(u1, T u0) = d(P, Q) and (u0, u1) ∈ E(G);
(iv) T is continuous or, for every sequence {un} in P is convergent to u ∈ P so that (un, un+1) ∈ E(G),

we have (un, u) ∈ E(G) for all n ∈ N;
(v) There exist ζ ∈ Z and β ∈ Σ such that for all u, v, ρ, ν ∈ P,

(u, v) ∈ E(G)

d(ρ, T u) = d(P, Q)

d(ν, T v) = d(P, Q)

⎫⎪⎬⎪⎭ =⇒ ζ(d(ρ, ν), β(d(u, v))d(u, v)) ≥ 0. (21)

Then, T has a best proximity point in P. If (u, v) ∈ E(G) for all u, v ∈ Best(T ), then T has a unique best
proximity point u∗ ∈ P. Moreover, for every u ∈ P, limn→∞ T nu = u∗.

5. A Variational Inequality Problem

Let C be a non-empty, closed, and convex subset of a real Hilbert space H, with inner product
〈·, ·〉 and a norm ‖ · ‖. A variational inequality problem is given in the following:

Find u ∈ C so that 〈Su, v− u〉 ≥ 0 for all v ∈ C, (22)

where S : H → H is a given operator. The above problem can be seen in operations research, economics,
and mathematical physics, especially in calculus of variations associated with the minimization of
infinite-dimensional functionals. See [21] and the references therein. It appears in variant problems of
nonlinear analysis, such as complementarity and equilibrium problems, optimization, and finding
fixed points; see [21–23]. To solve problem (22), we define the metric projection operator PC : H → C.
Note that for every u ∈ H, there is a unique nearest point PCu ∈ C so that

‖u− PCu‖ ≤ ‖u− v‖, for all v ∈ C.
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The two lemmas below correlate the solvability of a variational inequality problem to the
solvability of a special fixed-point problem.

Lemma 1 ([24]). Let z ∈ H. Then, u ∈ C is such that 〈u− z, y− u〉 ≥ 0, for all y ∈ C iff u = PCz.

Lemma 2 ([24]). Let S : H → H. Then, u ∈ C is a solution of 〈Su, v − u〉 ≥ 0, for all v ∈ C, if
u = PC(u− λSu), with λ > 0.

The main theorem of this section is:

Theorem 6. Let C be a non-empty, closed, and convex subset of a real Hilbert space H. Assume that S : H → H
is such that PC(I − λS) : C → C is a Geraghty-proximal contraction. Then, there is a unique element
u∗ ∈ C, such that 〈Su∗, v − u∗〉 ≥ 0 for all v ∈ C. Also, for any u0 ∈ C, the sequence {un} given as
un+1 = PC(un − λSun) where λ > 0 and n ∈ N∪ {0}, is convergent to u∗.

Proof. We consider the operator T : C → C defined by T x = PC(x− λSx) for all x ∈ C. By Lemma 2,
u ∈ C is a solution of 〈Su, v− u〉 ≥ 0 for all v ∈ C, if u = T u. Now, T verifies all the hypotheses of
Corollary 1 with P = Q = C. Now, from Corollary 1, the fixed-point problem u = T u possesses a
unique solution u∗ ∈ C.
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1. Introduction

It is very common to consider to existing a fixed point of a certain mapping while presuming
it is unique. This is true, considering a solution of a fixed point problem G(x) = Fx − x = 0 is
unique. On the other hand, in the real world, in particular in nonlinear systems, the solution need
to be unique. In such case, non-unique or periodic solutions also have worth for understanding the
corresponding phenomena.

The first known result for finding nonunique fixed points for certain operators was proposed by
Ćirić [1]. In this well-known paper, Ćirić [1] emphasized the worth and importance of the notion of
the non-unique fixed points (also, the periodic fixed points)in the setting of complete metric spaces.
Inspired by this initial report of Ćirić [1], several significant results has been released on nonunique
fixed point theorems for various fixed point problems, see e.g., [1–12].

This survey can be considered as a continuation of the recent paper [13].

2. Preliminaries

This section is devoted to collecting and recalling the basic notions and fundamental results
without considering the proofs. On the other hand, in the following sections, we show how to derive
these basic results from the upcoming theorems that we state.

From now on, we preserve the letters R
+
0 , to denote the set of non-negative real numbers.

In addition, N0 present the set of positive integer numbers with zero.

The first definition is orbitally continuous, and has a key role in the non-unique fixed point results.

Definition 1. (see [1]) Let F be a self-map on a metric space (S, δ).

(i) F is said to be an orbitally continuous mapping if

lim
i→∞

Fni x = z (1)

Axioms 2019, 8, 72; doi:10.3390/axioms8020072 www.mdpi.com/journal/axioms115
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implies
lim
i→∞

FFni x = Fz (2)

for each x ∈ S .
(ii) If every Cauchy (fundamental) sequence of type {Fni x}i∈N converges, then metric space (S, δ) is

orbitally complete

Throughout this section, the letter F is reserved for presenting a self-mapping on a non-empty
set which is endowed a standard metric δ. Moreover, the pair (S, δ) represents standard metric space.
We presume also that (S, δ) is orbitally complete in all upcoming theorems, corollaries, lemmas and
propositions. A point z is called a periodic point of a function F of period m if Fm(z) = z, where
F0(x) = x and Fm(x) is iteratively defined by Fm(x) = T(Fm−1(x)). The set FixS(F) indicate the set of
all fixed point of F on S.

Theorem 1. [Non-unique fixed point theorem of Ćirić [1]] If there is k ∈ [0, 1) such that

min{δ(Fx, Fy), δ(x, Fx), δ(y, Fy)} −min{δ(x, Fy), δ(Fx, y)} ≤ kδ(x, y),

for all x, y ∈ S , then the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point x0 ∈ S
the recursive sequence {Fnx0}n∈N converges to a fixed point of F.

Theorem 2. [Nonunique fixed point of Achari [2]] If there exists k ∈ [0, 1) such that for all x, y ∈ S ,

P(x,y)−Q(x,y)
R(x,y) ≤ kδ(x, y), (3)

where
P(x, y) = min{δ(Fx, Fy)δ(x, y), δ(x, Fx)δ(y, Fy)},
Q(x, y) = min{δ(x, Fx)δ(x, Fy), δ(y, Fy)δ(Fx, y)},
R(x, y) = min{δ(x, Fx), δ(y, Fy)}.

with R(x, y) �= 0. Then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point x0 ∈ S
the recursive sequence {Fnx0}n∈N converges to a fixed point of F.

Theorem 3. [Nonunique fixed point of Pachpatte [11]] Suppose that there exists k ∈ [0, 1) such that

m(x, y)− n(x, y) ≤ kδ(x, Fx)δ(y, Fy), (4)

for all x, y ∈ S , where

m(x, y) = min{[δ(Fx, Fy)]2, δ(x, y)δ(Fx, Fy), [δ(y, Fy)]2},
n(x, y) = min{δ(x, Fx)δ(y, Fy), δ(x, Fy)δ(y, Fx)}.

Then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point x0 ∈ S the recursive
sequence {Fnx0}n∈N converges to a fixed point of F.

Theorem 4. [Nonunique fixed point of Ćirić-Jotić [14]] If there exists k ∈ [0, 1) and a ≥ 0 such that

J(x, y)− aI(x, y) ≤ kL(x, y), (5)
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for all distinct x, y ∈ S where

J(x, y) = min

⎧⎨⎩ δ(Fx, Fy), δ(x, y), δ(x, Fx), δ(y, Fy), δ(x,Fx)[1+δ(y,Fy)]
1+δ(x,y) ,

δ(y,Fy)[1+δ(x,Fx)]
1+δ(x,y) , min{d2(Fx,Fy),d2(x,Fx),d2(y,Fy)}

δ(x,y)

⎫⎬⎭ ,

I(x, y) = min{δ(x, Fy), δ(y, Fx)},

L(x, y) = max{δ(x, y), δ(x, Fx)}.

Then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point x0 ∈ S the recursive
sequence {Fnx0}n∈N converges to a fixed point of F.

Theorem 5. [Nonunique fixed point of Karapınar [15]] If there exist real numbers a1, a2, a3, a4, a5 and a
self mapping F : S → S satisfies the conditions

0 ≤ a4 − a2

a1 + a2
< 1, a1 + a2 �= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5 (6)

E(x, y) ≤ a4δ(x, y) + a5δ(x, F2x) (7)

where
E(x, y) := a1δ(Fx, Fy) + a2

[
δ(x, Fx) + δ(y, Fy)

]
+ a3[δ(y, Fx) + δ(x, Fy)],

hold for all x, y ∈ S . Then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point
x0 ∈ S the recursive sequence {Fnx0}n∈N converges to a fixed point of F.

Our aim is mainly to get the corresponding nonunique fixed point theorems in the setting of
various abstract spaces, such as, partial metric spaces, Branciari distance.

In what follows, we express the definition of a comparison function. This notion was considered
first by Browder [16] and later by Rus [17] and many others. We say that a function ϕ : [0, ∞)→ [0, ∞)

is a comparison function [16,17] if it is not only nondecreasing but also ϕn(t)→ 0 as n → ∞ for every
t ∈ [0, ∞), where ϕn is the n-th iterate of ϕ. A simple example of such mappings is ψ(t) = kt

n where
k ∈ [0, 1) and n ∈ {2, 3, · · · }.

Let Ψ denote the set of all functions ψ : [0, ∞)→ [0, ∞) such that

(Ψ1) ψ is nondecreasing;

(Ψ2)
+∞

∑
n=1

ψn(t) < ∞ for all t > 0.

A function ψ ∈ Ψ is named as (c)-comparison.
For more details and examples of both comparison and (c)-comparison functions, we refer to

e.g., [17].

Lemma 1 ([17]). Suppose that φ : [0, ∞)→ [0, ∞) is a comparison function. Then, we have

1. φ is continuous at 0;
2. each iterate φk of φ, k ≥ 1, is also a comparison function;
3. φ(t) < t for all t > 0.

It is clear that if φ is a (c)-comparison function is a comparison function. Hence, the properties
above are also valid for (c)-comparison functions.

Definition 2. A function ζ : [0, ∞)× [0, ∞)→ R is named simulation if

(ζ1) ζ(t, s) < s− t for all t, s > 0;
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(ζ2) if {tn}, {sn} are sequences in (0, ∞) such that lim
n→∞

tn = lim
n→∞

sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0. (8)

In the original definition, given in [18], there is a condition, ζ(0, 0) = 0. This condition is superfluous
and hence it was dropped, see e.g., Argoubi et al. [19]. Let Z denote the family of all simulation functions
ζ : [0, ∞)× [0, ∞)→ R, i.e., verifying (ζ1) and (ζ2).

Due to (ζ1), we deduce
ζ(t, t) < 0 for all t > 0. (9)

The following example is derived from [18,20,21].

Example 1. Let μi : R+
0 → R

+
0 be continuous functions such that μi(t) = 0 if and only if, t = 0. For i =

1, 2, 3, 4, 5, 6, we define the mappings ζi : R+
0 ×R

+
0 → R, as follows

(i) ζ1(t, s) = μ1(s)− μ2(t) for all t, s ∈ [0, ∞), where μ1, μ2 : R+
0 → R

+
0 are two continuous functions

such that μ1(t) = μ2(t) = 0 if and only if t = 0 and μ1(t) < t ≤ μ2(t) for all t > 0.

(ii) ζ2(t, s) = s− f (t, s)
g(t, s)

t for all t, s ∈ [0, ∞), where f , g : [0, ∞)2 → (0, ∞) are two continuous functions

with respect to each variable such that f (t, s) > g(t, s) for all t, s > 0.
(iii) ζ3(t, s) = s− μ3(s)− t for all t, s ∈ [0, ∞).
(iv) ζ4(t, s) = sϕ(s)− t for all s, t ∈ [0, ∞), where ϕ : [0, ∞)→ [0, 1) is a function such that lim sup

t→r+
ϕ(t) <

1 for all r > 0.
(v) ζ5(t, s) = η(s)− t for all s, t ∈ [0, ∞), where η : R+

0 → R
+
0 is an upper semi-continuous mapping such

that η(t) < t for all t > 0 and η(0) = 0.
(vi) ζ6(t, s) = s −

∫ t
0 μ(u)du for all s, t ∈ [0, ∞), where μ : [0, ∞) → [0, ∞) is a function such that∫ ε

0 μ(u)du exists and
∫ ε

0 μ(u)du > ε, for each ε > 0.

It is clear that each function ζi (i = 1, 2, 3, 4, 5, 6) forms a simulation function.

3. Nonunique Fixed Point Results in Partial Metric Space

In this section, we start with recollecting the definition of a partial metric that is one of the most
significant generalization of a metric concept. The main difference between a partial metric from
the standard metric is on the self-distance axiom. Despite a standard distance function in partial
metric, offered by Matthews [22], self-distance is not necessarily equal to zero. From the mathematical
point of view, it seems that the definition of a partial metric is inconsistent, even if it seems fallacious.
By contrast with the expectations and knowledge, zero self-distance is quite logical and rational the
framework of computer sciences. Indeed, we put the notion of partial across to reader by examining
the following classical example:

Let S be the union of the set of all finite sequence (SF) with the set of all infinite sequence (Si).
We shall propose a distance function in the following way:

δ : S × S → [0, ∞) such that δ(x, y) = 2− sup{n|∀i<n such that xi=yi}. (10)

It is easy to check that all metric axioms are fulfilled on the restriction of the domain of δ to SI .
On the other hand, in case of the restriction of the domain S to SF, the function δ fails to self-distance
axioms. More precisely, taking finite sequences into account, in particular, for the finite sequence

x = (x1, x2, · · · , xm), for some positive integer m, the self-distance ρ(x, y) =
1

2m �= 0. This simple
example indicate that the idea of non-zero distance has a logic and worthy. In computer science
programming, usage of the finite sequences are more reasonable and affective in case of taking the
termination of the program into account. Roughly speaking, one can declare that programming with
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infinite sequence may leads to infinite loops in running and has a problem of termination and hence
getting an output.

Another simple but effective example [22,23]) can be given by using the maximum operator. To
put a finer point on it, consider set of all non-negative real numbers with maximum operator, i.e.,

ρ : [0, ∞)× [0, ∞)→ [0, ∞) such that ρ(r1, r2) = max{r1, r2}. (11)

In particular, ρ(3, 3) = 3 �= 0.
After the intuitive introduction of partial metric, now, we shall state the formal definition of it

as follows:

Definition 3. (See e.g., [22,23]) A function ρ : S× S → R
+
0 on a (non-empty) set S is named as a partial

metric if the following axioms are fulfilled

(P1) z = w ⇔ ρ(z, z) = ρ(w, w) = ρ(z, w),
(P2) ρ(z, z) ≤ ρ(z, w),
(P3) ρ(z, w) = ρ(w, z),
(P4) ρ(z, w) ≤ ρ(z, v) + ρ(v, w)− ρ(v, v),

for all z, w, v ∈ S . Here, the coupled letter (S, ρ) is said to be a partial metric space.

Despite the fact that the self-distance is not necessarily zero, we derive, from (P1) and (P2), that
ρ(x, y) = 0 yields the reflexivity x = y.

Hereafter, the pair (S, δ) present a standard metric space and the pair (S, ρ) indicate a partial
metric space. For avoiding so many repetitions, we shall not put these presumes in all statements in
the upcoming definitions, theorems and corollaries.

Example 2. (See e.g., [24,25]) Functions σi : S× S → R
+
0 (i ∈ {1, 2, 3}) are defined by

σ1(z, w) = δ(z, w) + C,

σ2(z, w) = δ(z, w) + max{γ(z), γ(w)},

σ3(z, w) = δ(z, w) + ρ(z, w).

It clear that all three functions, defined above, form partial metrics on S, where γ : S → R
+
0 is an arbitrary

function and C ≥ 0.

Example 3. (See [22,23]) Let S = {[q, r] : q, b ∈ R, q ≤ r} and define ρ([q, r], [s, t]) = max{r, t} −
min{q, s}. Then (S, ρ) forms a partial metric space.

Example 4. (See [22]) Let ρ : S× S → R
+
0 , where S = [0, 1] ∪ [2, 3].

Define ρ(q, r) =

{
max{q, r} if {q, r} ∩ [2, 3] �= ∅,

|q− r| if {q, r} ⊂ [0, 1].
Then (S, ρ) is a partial metric space.

The topology τρ, induced by a partial metric ρ defined on a non-empty set S, is classified as T0

with a base of the family of open ρ-balls
{

Oρ(x, ε) : q ∈ S , ε > 0
}

where

Oρ(q, ε) = {r ∈ S : ρ(q, r) < ρ(r, r) + ε}

for all q ∈ S and ε > 0.
A sequence {xn}n∈N in a partial metric space (S, ρ) converges to a point x ∈ S (in brief, xn → x, )

if and only if ρ(x, x) = limn→∞ ρ(x, xn).
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Regarding the following example, we shall underline the fact that the limit of a sequence is not
necessarily unique in partial metric space. It can be easily observed an example by regarding the partial
metric space considered in Example 11. If we take the sequence { 1

n3+1}n∈N into account, we derive that

ρ(1, 1) = lim
n→∞

ρ(1,
1

n3 + 1
) and ρ(2, 2) = lim

n→∞
ρ(2,

1
n3 + 1

).

On the other hand, the limit of a sequence is unique, under certain additional conditions.
In particular, the following lemma was proposed for the uniqueness of the limit.

Lemma 2. (See e.g., [24,25]) Consider a sequence {xn}n∈N in (S, ρ) with xn → x and xn → y. If

lim
n→∞

ρ(xn, xn) = ρ(x, x) = ρ(y, y),

then x = y.

It is quite natural to expect a close connection between the notions of the standard metric and
partial metric. Indeed, a function δρ : S× S → R

+
0 defined as

δρ(x, y) = 2ρ(x, y)− ρ(x, x)− ρ(y, y), (12)

forms a standard metric on S, see e.g., [23]. In addition, the functions δ0, δ
ρ
m : S× S → [0, ∞) defined by

δ0(x, y) =

{
0 if x = y

ρ(x, y) otherwise.
and
δ

ρ
m(x, y) = ρ(x, y)−min{ρ(x, x), ρ(y, y)}

= max{ρ(x, y)− ρ(x, x), ρ(x, y)− ρ(y, y)}

(13)

form metrics on S (see e.g., [26], respectively). Moreover, we have τp ⊆ τδρ
= τδm

ρ
⊆ τδ0 . In particular,

both δρ and δm
ρ are the Euclidean metric on S which are based on the partial metric space (S, ρ) of

Example 11.

In what follows we give the definition of fundamental topological concepts as follows:

Definition 4. (See e.g., [6,22,23,27]) Let (S, ρ) be a partial metric space.

1. A sequence {xn}n∈N in S converges to x∗ ∈ S if

lim
n→∞

δρ(x∗, xn) = 0 ⇔ ρ(x∗, x∗) = lim
n→∞

ρ(x∗, xn) = lim
n,m→∞

ρ(xn, xm). (14)

2. A sequence {xn}n∈N in S is called a fundamental (or, Cauchy) sequence in (S, ρ) if limn,m→∞ ρ(xn, xm)

exists and is finite, that is,
(∗) for each ε > 0 there is n0 ∈ N such that ρ(xn, xm)− ρ(xn, xn) < ε whenever n0 ≤ n ≤ m.

3. (S, ρ) is called complete if every Cauchy sequence {xn}n∈N converges to a point x∗ ∈ S such that
ρ(x∗, x∗) = limn,m→∞ ρ(xn, xm).

In the sequel, the following characterizations of topological concepts shall be used efficiently.

Lemma 3. (See [23])

1. A partial metric space (S, ρ) is complete if and only if the corresponding metric space (S, δρ) is complete.
2. A sequence {xn}n∈N in (S, ρ) is a fundamental if and only if it forms a fundamental sequence in the

corresponding metric space (S, δρ).
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We underline that the partial metric spaces considered in Example 11, Example 3 and Example 4
are complete.

Lemma 4. Let (S, ρ) be a partial metric space and let {xn}n∈N and {yn}n∈N be sequences in S such that
xn → x∗ and yn → y∗ with respect to τδρ

. Then

lim
n→∞

ρ(xn, yn) = ρ(x∗, y∗).

For our purposes, we need to recall the following notion which is an adaptation of Definition 1 in
the context of partial metric spaces.

Definition 5. (cf. [1])

1. A self-mapping F, defined on a partial metric space (S, ρ), is said to be an orbitally continuous if

lim
i,j→∞

ρ(Fni x, Fnj x) = lim
i→∞

ρ(Fni x, x∗) = ρ(x∗, x∗), (15)

implies
lim

i,j→∞
ρ(FFni x, FFnj x) = lim

i→∞
ρ(FFni x, Fx∗) = ρ(Fx∗, Fx∗), (16)

for each x ∈ S .

Equivalently, F is orbitally continuous provided that if Fni x → z with respect to τδρ
, then Fni+1x → Fz

with respect to τδρ
, for each x ∈ S .

2. A partial metric space (S, ρ) is said to be an orbitally complete if each fundamental sequence of type
{Fni x}i∈N converges with respect to τδρ

, that is, if there is z ∈ S such that

lim
i,j→∞

ρ(Fni x, Fnj x) = lim
i→∞

ρ(Fni x, z) = ρ(z, z). (17)

In the following lines in this section, we focus on non-unique fixed points of certain mappings
in the framework of partial metric spaces that are successors results in the direction of a renowned
Ćirić [1] result. The presented results in this section not only extend but also enrich several earlier
results on the topic in the literature, in particular the pioneer works [1,2,11,28]). We also present
examples to emphasize the advantages of the usage of partial metric spaces rather than standard
metric spaces.

Throughout this section, we presume that F is an orbitally continuous self-map of an orbitally
complete partial metric space (S, ρ).

3.1. Ćirić Type Non-Unique Fixed Points on Partial Metric Spaces

The first result is the following one.

Theorem 6. If φ ∈ Φ such that
C(x, y) ≤ φ(ρ(x, y)), (18)

where
C(x, y) := min{ρ(Fx, Fy), ρ(x, Fx), ρ(y, Fy)} −min{δ

ρ
m(x, Fy), δ

ρ
m(Fx, y)}, (19)

for all x, y ∈ S , then, for each x0 ∈ S , the sequence {Fnx0}n∈N0 converges with respect to τδρ
to a fixed point

of F.

Proof. We construct an iterative sequence {xn}n∈N0 , by starting an arbitrary initial point x0 ∈ S ,
as follows:

xn+1 = Fxn, n ∈ N0.
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If there exists n0 ∈ N0 such that xn0 = xn0+1, then xn0 forms a fixed point of F and hence the proof
is completed trivially. Accordingly, by avoiding the simplicity case, we assume then that xn �= xn+1 for
each n ∈ N0.

Substituting x = xn and y = xn+1 in (18) we find the inequality

C(xn, xn+1) ≤ φ(ρ(xn, xn+1),

which is equal to
min{ρ(xn+1, xn+2), ρ(xn, xn+1), ρ(xn+1, xn+2)}

−min{δ
ρ
m(xn, xn+2), δ

ρ
m(xn+1, xn+1)}

≤ φ(ρ(xn, xn+1)).

Attendantly, we observe that

min{ρ(xn, xn+1), ρ(xn+1, xn+2)} ≤ φ(ρ(xn, xn+1)). (20)

Suppose ρ(xn0 , xn0+1) ≤ ρ(xn0+1, xn0+2) for some n0 ∈ N0. Then, from the preceding inequalities
we observe that

ρ(xn0 , xn0+1) ≤ φ(ρ(xn, xn+1)) < ρ(xn0 , xn0+1),

which is a contradiction.
Therefore ρ(xn, xn+1) > ρ(xn+1, xn+2) for all n ∈ N0.

Hence, by (20) we get

ρ(xn+1, xn+2) ≤ φ(ρ(xn, xn+1)) ≤ · · · ≤ φn+1(ρ(x0, x1)), (21)

for all n ∈ N0.

In what follows, we indicate that the constructed sequence {xn}n∈N is fundamental (Cauchy) in
(S, ρ). For this goal, take n, m ∈ N0 with n < m and employ (21) and (P4), as follows:

ρ(xn, xm) ≤ ρ(xn, xn+1) + · · ·+ ρ(xm−1, xm)−
m−1

∑
k=n

ρ(xk, xk)

≤ φn(ρ(x0, x1)) · · ·+ φm−1(ρ(x0, x1))

≤
m−1

∑
k=n

φk(ρ(x0, x1))→ 0 as n → ∞.

Consequently, {xn}n∈N0 is a fundamental sequence in (S, ρ). Since xn = Fnx0 for all n, and (S, ρ)

is F-orbitally complete, there is x∗ ∈ S such that xn → x∗ with respect to τδρ
. Moreover, we have

ρ(x∗, x∗) = lim
n→∞

ρ(x∗, xn) = lim
n,m→∞

ρ(xn, xm) = 0.

By the orbital continuity of F, we deduce that xn → Fx∗ with respect to τδρ
. Hence x∗ = Fx∗.

Definition 6. The self-mapping F : S → S is called Ćirić type simulated if there exists k ∈ (0, 1) and ζ ∈ Z
such that

ζ(mF(x, y), cF(x, y)) ≥ 0 (22)

for all x, y ∈ S , where

mF(x, y) := min{ρ(Fx, Fy), ρ(x, Fx), ρ(y, Fy)} −min{δ
ρ
m((x, Fy), δ

ρ
m((Fx, y)}.
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cF(x, y) := k(ρ(x, y)− ρ(x, x)) + ρ(y, y),

Theorem 7. If F is a Ćirić type simulated mapping, then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges
to a fixed point of F.

Proof. We construct a recursive sequence {xn}n∈N0 , by taking an arbitrary point x0 ∈ S , as follows:

xn+1 = Fxn, n ∈ N0.

We presume that xn �= xn+1 for each n ∈ N0. Indeed, if there exists non-negative integer n0 such
that xn0 = xn0+1, then xn0 forms a fixed point of F that terminate the proof.

Substituting x = xn and y = xn+1 in (22) we obtain

0 ≤ ζ(mF(xn, y), cF(xn, y)) < cF(xn, y)−mF(xn, y)

where
mF(xn, xn+1) = min{ρ(Fxn, Fxn+1), ρ(xn, Fxn), ρ(xn+1, Fxn+1)}

−min{δ
ρ
m((xn, Fxn+1), δ

ρ
m((Fxn, xn+1)}.

and
cF(xn, xn+1) = k(ρ(xn, xn+1)− ρ(xn, xn)) + ρ(xn+1, xn+1),

A simple evaluation yields that

min{ρ(xn+1, xn+2), ρ(xn, xn+1), ρ(xn+1, xn+2)}
−min{δ

ρ
m(xn, xn+2), δ

ρ
m(xn+1, xn+1)}

≤ k(ρ(xn, xn+1)− ρ(xn, xn)) + ρ(xn+1, xn+1).

Consequently, we get that

min{ρ(xn, xn+1), ρ(xn+1, xn+2)}
≤ k(ρ(xn, xn+1)− ρ(xn, xn)) + ρ(xn+1, xn+1),

(23)

Substituting x = xn+1 and y = xn, with a revising order, in (22), we get

0 ≤ ζ(mF(xn+1xn), cF(xn+1xn)) < cF(xn+1xn)−mF(xn+1xn)

where
mF(xn+1xn) = min{ρ(Fxn+1Fxn), ρ(xn+1Fxn+1), ρ(xn, Fxn)}

−min{δ
ρ
m((xn+1Fxn), δ

ρ
m((Fxn+1xn)}.

and
cF(xn+1xn) := k(ρ(xn+1xn)− ρ(xn+1xn+1)) + ρ(xn, xn),

By a simple calculation, we derive that

min{ρ(xn+2, xn+1), ρ(xn+1, xn+2), ρ(xn, xn+1)}
−min{δ

ρ
m(xn+1, xn+1), δ

ρ
m(xn+2, xn)}

≤ k(ρ(xn+1, xn)− ρ(xn+1, xn+1)) + ρ(xn, xn),

which imply that

min{ρ(xn, xn+1), ρ(xn+1, xn+2)}
≤ k(ρ(xn, xn+1)− ρ(xn+1, xn+1)) + ρ(xn, xn).

(24)
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Suppose ρ(xn0 , xn0+1) ≤ ρ(xn0+1, xn0+2) for some n0 ∈ N0. Then, on account of two inequalities
(23) and (24), we obtain that

(1− k)ρ(xn0 , xn0+1) ≤ min{ρ(xn0+1, xn0+1)− kp(xn0 , xn0),

ρ(xn0 , xn0)− kp(xn0+1, xn0+1)}.

If, for instance, ρ(xn0+1, xn0+1) ≤ ρ(xn0 , xn0), we have

(1− k)ρ(xn0 , xn0+1) ≤ ρ(xn0+1, xn0+1)− kp(xn0 , xn0)

≤ (1− k)ρ(xn0+1, xn0+1)

≤ (1− k)ρ(xn0 , xn0),

so, by using (P2), ρ(xn0 , xn0+1) = ρ(xn0 , xn0) = ρ(xn0+1, xn0+1), and hence xn0 = xn0+1,
a contradiction.

Therefore ρ(xn, xn+1) > ρ(xn+1, xn+2) for all n ∈ N0.

Hence, by (23) we get

ρ(xn+1, xn+2)− ρ(xn+1, xn+1) ≤ k(ρ(xn, xn+1)− ρ(xn, xn))

≤ k2(ρ(xn−1, xn)− ρ(xn−1, xn−1))

≤ ... ≤ kn+1((ρ(x0, x1)− ρ(x0, x0)),
(25)

for all n ∈ N0.

As a next step, we indicate that the sequence {xn}n∈N is fundamental in (S, ρ). For this aim, we let
n, m ∈ N0 with n < m and by using (25) and (P4), we find

ρ(xn, xm)− ρ(xn, xn) ≤ ρ(xn, xn+1) + · · ·+ ρ(xm−1, xm)−
m−1

∑
k=n

ρ(xk, xk)

≤ (kn + · · ·+ km−1)ρ(x0, x1).

Attendantly, the sequence {xn}n∈N0 fulfills the condition (∗) of Definition 4 and hence {xn}n∈N0

is a fundamental sequence in (S, ρ). On account of that (S, ρ) is F-orbitally complete and keeping
xn = Fnx0 for all n, in mind, we deduce that there is x∗ ∈ S such that xn → x∗. By the orbital continuity
of F, we conclude that xn → Fx∗. Accordingly, we have x∗ = Fx∗ which concludes the proof.

Regarding Example 1 (i), we conclude the following result from Theorem 7.

Theorem 8. If there is k ∈ (0, 1) such that

min{ρ(Fx, Fy), ρ(x, Fx), ρ(y, Fy)} −min{δ
ρ
m(x, Fy), δ

ρ
m(Fx, y)}

≤ k(ρ(x, y)− ρ(x, x)) + ρ(y, y),
(26)

for all x, y ∈ S , then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point x0 ∈ S
the recursive sequence {Fnx0}n∈N converges to a fixed point of F.

Regarding that the class of metric functions are contained in the class of partial metric, we deduce
the renowned result of Ćirić [1].

Corollary 1. [1] Theorem 1. Let F be an orbitally continuous self-map of a F-orbitally complete metric space
(S, δ). If there is k ∈ (0, 1) such that

min{δ(Fx, Fy), δ(x, Fx), δ(y, Fy)} −min{δ(x, Fy), δ(Fx, y)}
≤ kδ(x, y),

(27)
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for all x, y ∈ S , then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges to a fixed point of F.

In what follows we put two illustrative examples to show that Theorem 8 is a genuine extension
of Corollary 1 for the metrics δρ and δ

ρ
m, and δ0, respectively.

Example 5 ([6]). Consider the set S = {0, 1, 2} equipped with a partial metric ρ : S × S → R
+
0 with a

definition ρ(x, y) = max{x, y} for all x, y ∈ S . We set a self-mapping F : S → S in a way that F0 = F1 = 0
and F2 = 1. Notice that the completeness of a partial metric space (S, ρ) yields that it is also F-orbitally complete.
Note also that F is orbitally continuous. An elementary evaluation yields that

min{ρ(Fx, Fy), ρ(x, Fx), ρ(y, Fy)} −min{δ
ρ
m(x, Fy), δ

ρ
m(Fx, y)}

≤ 1
2 (ρ(x, y)− ρ(x, x)) + ρ(y, y),

for all x, y ∈ S . Thus, we conclude that all hypotheses of Theorem 8 are fulfilled. On the other hand,

min{δρ(T1, T2), δρ(1, T1), δρ(2, T2)} −min{δρ(1, T2), δρ(T1, 2)}
= 1− 0 = 1 > k = kdp(1, 2),

for any k ∈ (0, 1). As a result, Corollary 1 cannot be applied to the complete metric space (S, δρ). In fact,
it cannot be applied to (X, δ

ρ
m), because δ

ρ
m = δρ, in this case.

Example 6 ([6]). Consider the set S = [1, ∞) equipped with a partial metric ρ : S× S → R
+
0 with a definition

ρ(x, y) = max{x, y} for all x, y ∈ S . We set a self-mapping F : S → S in a way that Fx = (x + 1)/2 for all
x ∈ S . As it is mentioned in Example 5, (S, ρ) is F-orbitally complete since it is already complete. In addition,
F is continuous with respect to τδρ

, and hence it is orbitally continuous.
In what follows we shall prove that F fulfills the contraction condition (55) for any k ∈ (0, 1). We consider

two distinct cases for x, y ∈ S as follows:
Case 1. If x = y then

min{ρ(Fx, Fy), ρ(x, Fx), ρ(y, Fy)} −min{δ
ρ
m(x, Fy), δ

ρ
m(Fx, y)}

= min{ x + 1
2

, x, x} − (x− x + 1
2

) = 1

≤ x = ρ(x, x) = k((ρ(x, y)− ρ(x, x)) + ρ(y, y).

Case 2. Suppose now x �= y. Regarding the analogy, we presume only x > y. (Please note that the case
x < y is observed by verbatim.) We shall examine this case in two steps.

Step 1. If Fx ≥ y, then

min{ρ(Fx, Fy), ρ(x, Fx), ρ(y, Fy)} −min{δ
ρ
m(x, Fy), δ

ρ
m(Fx, y)}

= min{ x + 1
2

, x, y} −min{x− y + 1
2

,
x + 1

2
− y}

= y− (
x + 1

2
− y) = 2y− x + 1

2
≤ y = ρ(y, y) = k((ρ(x, y)− ρ(x, x)) + ρ(y, y).

Step 2. If Fx < y, we have

min{ρ(Fx, Fy), ρ(x, Fx), ρ(y, Fy)} −min{δ
ρ
m(x, Fy), δ

ρ
m(Fx, y)}

= min{ x + 1
2

, x, y} −min{x− y + 1
2

, y− x + 1
2
}

=
x + 1

2
− (y− x + 1

2
) = x + 1− y

< y = ρ(y, y) = k((ρ(x, y)− ρ(x, x)) + ρ(y, y).
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Consequently, all hypotheses of Theorem 8 are satisfied. In fact F possesses a (unique) fixed point, namely,
x = 1.

Now, we shall indicate that Corollary 1 cannot be applied to the self-map F and the complete metric space
(S, δ0). Indeed, given k ∈ (0, 1), choose x > 1 such that x + 1 > 2kx, and let y = Fx. Then

min{δ0(Fx, Fy), δ0(x, Fx), δ0(y, Fy)} −min{δ0(x, Fy), δ0(Fx, y)}

= min{ x + 1
2

, x} −min{x, 0} = x + 1
2

> kx = kp0(x, y).

As a result, the contraction condition (27) is not fulfilled.

The following theorem characterize Theorem 3 [1] in the setting of partial metric spaces.

Theorem 9. Suppose that F satisfies the inequality

min{ρ(Fx, Fy), ρ(x, Fx), ρ(y, Fy)} −min{δ
ρ
m(x, Fy), δ

ρ
m(Fx, y)}

< ρ(x, y)− ρ(x, x) + ρ(y, y),
(28)

for all x, y ∈ S with x �= y. If for some x0 ∈ S the sequence {Fnx0}n∈N0 has a cluster point z ∈ S with respect
to τδρ

, then z is a fixed point of F.

Proof. We shall construct a sequence by starting with an point x0 ∈ S so that the sequence {xn+1 =:
Fnx0}n∈N0 has a cluster point x∗ ∈ S with respect to τδρ

.
If there is a non-negative integer n0 so that xn0 = xn0+1, then xn0 forms a fixed point of F. Thus,

we presume then that xn �= xn+1 for each n ∈ N0.
By verbatim in the corresponding lines in Theorem 8, by substituting x = xn and y = xn+1 in (28)

we derive

min{ρ(xn, xn+1), ρ(xn+1, xn+2)} < ρ(xn, xn+1)− ρ(xn, xn) + ρ(xn+1, xn+1),

and substituting x = xn+1 and y = xn in (28), we obtain

min{ρ(xn, xn+1), ρ(xn+1, xn+2)} < ρ(xn, xn+1)− ρ(xn+1, xn+1) + ρ(xn, xn).

If ρ(xn0 , xn0+1) ≤ ρ(xn0+1, xn0+2) for some n0 ∈ N0, then, on account of the preceding two
inequalities we get ρ(xn0 , xn0) < ρ(xn0+1, xn0+1) and ρ(xn0+1, xn0+1) < ρ(xn0 , xn0), respectively. It is
a contradiction.

Consequently ρ(xn, xn+1) > ρ(xn+1, xn+2) for all n ∈ N0, and thus the sequence
{ρ(Fnx0, Fn+1x0)}n∈N0 is convergent. Since {Fnx0}n∈N0 has a cluster point x∗ ∈ X with respect
to τδρ

, then there is a subsequence {Fni x0}i∈N0 of {Fnx0}n∈N0 which converges to x∗. By the orbital
continuity of F we have Fni+1x0 → Fx∗, so by Lemma 4,

lim
i→∞

ρ(Fni x0, Fni+1x0) = ρ(x∗, Fx∗). (29)

Therefore
lim

n→∞
ρ(Fnx0, Fn+1x0) = ρ(x∗, Fx∗). (30)

Again, by the orbital continuity of F we have Fni+2x0 → F2z with respect to τδρ
and hence

lim
n→∞

ρ(Fn+1x0, Fn+2x0) = ρ(Fx∗, F2x∗),

so
ρ(Fx∗, F2x∗) = ρ(x∗, Fx∗). (31)
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Assume Fx∗ �= x∗, i.e., ρ(x∗, Fx∗) > 0. So, one can substitute x and y with x∗ and Fx∗, respectively,
in (28) to deduce that

min{ρ(x∗, Fx∗), ρ(Fx∗, F2x∗)} < ρ(x∗, Fx∗),

which yields that ρ(Fx∗, F2x∗) < ρ(x∗, Fx∗). This contradicts the equality (31). Consequently we have
Fx∗ = x∗.

3.2. Pachpatte Type Non-Unique Fixed Points on Partial Metric Spaces

Inspired from the renowned Ćirić’s theorems [1], Pachpatte proved in Theorem 1 [11] that if a
self-mapping F is an orbitally continuous on a F-orbitally complete metric space (S, δ) such that there
is k ∈ (0, 1) with

min{[δ(Fx, Fx)]2, δ(x, y)δ(Fx, Fy), [δ(Fy, y)]2}
−min{δ(x, Fx)δ(y, Fy), δ(x, Fy)δ(y, Fx)} ≤ kδ(x, Fx)δ(Fy, y)

(32)

for all x, y ∈ S , then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges to a fixed point of F.

On the other hand, Pachpatte’s theorem does not yield a good framework for a possible application.
Indeed, under its conditions, if we denote a fixed point of F by x∗, it follows that for each y ∈ S ,
we have either Ty = x∗ or Ty = y. Indeed, let y �= x∗ and suppose Ty �= x∗. Then from

min{[δ(Fx∗, Fy)]2, δ(x∗, y)δ(Fx∗, Fy), [δ(y, Fy)]2}
−min{δ(x∗, Fx∗)δ(y, Fy), δ(x∗, Fy)δ(y, Fx∗)}

≤ kδ(x∗, Fx∗)δ(y, Fy),

it follows
min{[δ(x∗, Fy)]2, δ(x∗, y)δ(x∗, Fy), [δ(y, Fy)]2} = 0.

Hence δ(y, Fy) = 0, i.e., y = Ty.

In what follows, we repair the contraction condition (32) so that the inconvenient case, pointed
above, is removed.

The function ρ′ defined on S× S by ρ′(x, y) = ρ(x, y)− ρ(x, x) for all x, y ∈ S, where ρ is a partial
metric on a set S. Please note that ρ′ = ρ, whenever ρ is a metric on S.

Definition 7. Let (S , ρ) be a partial metric space. The self-mapping F : S → S is called Pachpatte type
simulated if there exists k ∈ (0, 1) and ζ ∈ Z such that

ζ(JF(x, y)− IF(x, y), KF(x, y)) ≥ 0 (33)

for all x, y ∈ S , where

JF(x, y) = min{[ρ′(x, Fx)]2, ρ′(x, y)ρ′(Fx, Fy), [p′(y, Fy)]2}
IF(x, y) = {δ

ρ
m(x, Fx)δρ

m(y, Fy), δ
ρ
m(x, Fy)δρ

m(y, Fx)}
KF(x, y) = k min{ρ′(x, Fx)ρ′(y, Fy), [p′(x, y)]2},

Theorem 10. If F is a Pachpatte type simulated mapping, then for each x0 ∈ S the sequence {Fnx0}n∈N0

converges with respect to τδρ
to a fixed point of F.

Proof. As usual, we fix an arbitrary initial point x0 ∈ S and construct an recursive sequence {xn}n∈ω

as xn+1 = Fxn, n ∈ N0.
If there exists n0 ∈ N0 such that xn0 = xn0+1, then xn0 is a fixed point of F. Assume then that

xn �= xn+1 for each n ∈ N0.
Substituting x = xn and y = xn+1 in (33) we find the inequality

127



Axioms 2019, 8, 72

0 ≤ ζ(JF(xn, xn+1)− IF(xn, xn+1), KF(xn, xn+1))

< KF(xn, xn+1) − [JF(xn, xn+1)− IF(xn, xn+1)],

where

JF(xn, xn+1) = min{[ρ′(xn, Fxn)]2, ρ′(xn, xn+1)ρ
′(Fxn, Fxn+1), [p′(xn+1, Fxn+1)]

2}
IF(xn, xn+1) = {δ

ρ
m(xn, Fxn)δ

ρ
m(xn+1, Fxn+1), δ

ρ
m(xn, Fxn+1)δ

ρ
m(xn+1, Fxn)}

KF(xn, xn+1) = k min{ρ′(xnFxn)ρ′(xn+1, Fxn+1), [p′(xn, xn+1)]
2},

By a simple evaluation, we find that

min{[ρ′(xn, xn+1)]
2, ρ′(xn, xn+1)p′(xn+1, xn+2), [ρ′(xn+1, xn+2)]

2}
≤ k min{ρ′(xn, xn+1)p′(xn+1, xn+2), [ρ′(xn, xn+1)]

2}.
(34)

By (34) we deduce that

min{[ρ′(xn, xn+1)]
2, p′(xn, xn+1)ρ

′(xn+1, xn+2), [p′(xn+1, xn+2)]
2}

= [ρ′(xn+1, xn+2)]
2,

and hence
ρ′(xn+1, xn+2) ≤ kρ′(xn, xn+1),

for all n ∈ N0. Accordingly, we find

ρ(xn, xn+1)− ρ(xn, xn) ≤ kn(ρ(x0, x1)− ρ(x0, x0)),

for all n ∈ N. By verbatim of Theorem 8, we conclude that {xn}n∈N0 is a fundamental sequence in
(S, ρ). Since (S, ρ) is F-orbitally complete and xn = Fnx0 for all n, there is x∗ ∈ S such that xn → x∗

with respect to τδρ
. On account of the orbital continuity of F, we derive that xn → Fx∗. As a result

x∗ = Fx∗ which concludes the proof.

Regarding Example 1 (i), we conclude the following result from Theorem 10.

Theorem 11. If there is k ∈ (0, 1) such that

JF(x, y)− IF(x, y) ≤ KF(x, y) (35)

for all x, y ∈ S , where

JF(x, y) = min{[ρ′(x, Fx)]2, ρ′(x, y)ρ′(Fx, Fy), [p′(y, Fy)]2}
IF(x, y) = {δ

ρ
m(x, Fx)δρ

m(y, Fy), δ
ρ
m(x, Fy)δρ

m(y, Fx)}
KF(x, y) = k min{ρ′(x, Fx)ρ′(y, Fy), [p′(x, y)]2},

then for each x0 ∈ S the sequence {Fnx0}n∈N0 converges with respect to τδρ
to a fixed point of F.

Corollary 2. If there is k ∈ (0, 1) such that

min{[δ(x, Fx)]2, δ(x, y)δ(Fx, Fy), [δ(y, Fy)]2}
−min{δ(x, Fx)δ(y, Fy), δ(x, Fy)δ(y, Fx)}
≤ k min{δ(x, Fx)δ(y, Fy), [δ(x, y)]2},

(36)

for all x, y ∈ S , then the iterative sequence {Fnx0}n∈N0 , initiated by an arbitrary point x0 ∈ S , converges to a
fixed point of F.
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Remark 1. Consider an orbitally continuous self-map F defined on a complete partial metric space (S = R
+
0 , ρ)

with ρ(x, y) := max{x, y}. If Fx ≤ x for all x ∈ S , then it possesses a fixed point Notice that a mapping F with
Fx ≤ x yields ρ′(x, Fx) = 0 for all x ∈ S . Accordingly, the condition (35) in Theorem 11, is fulfilled trivially.

In what follows we state an illustrative example where Theorem 11 can be applied but not
Corollary 2 for any of the metrics δρ, δ

ρ
m and δ0.

Example 7. Suppose that F is an orbitally continuous self-map defined on a complete partial metric space
(S = R

+
0 , ρ) with ρ(x, y) := max{x, y}. Consider F : S → S by Fx = 0 if x < 2 and Fx = x− 1 if x ≥ 2.

Please note that F is orbitally continuous. Indeed, for each x ∈ S , the sequence Fnx → 0 with respect to τδρ
,

and F0 = 0. In addition, on account of Remark 1 the inequality (35) is fulfilled. Consequently, all hypotheses of
Theorem 11 are held.

Consider x ≥ 3 and y = Fx. Thus, we have x− y = 1, and y ≥ 2. Accordingly we find

min{[δρ(x, Fx)]2, δρ(x, y)δρ(Fx, Fy), [δρ(y, Fy)]2}
−min{δρ(x, Fx)δρ(y, Fy), δρ(x, Fy)δρ(y, Fx)}
= min{1, (x− y)2, 1} − 0 = 1
= min{δρ(x, Fx)δρ(y, Fy), [δρ(x, y)]2}.

As a result, condition (36) is not held for any k ∈ (0, 1), so we cannot apply Corollary 2 to (S, δρ) (and
thus to (X, δ

ρ
m) and the self-map F.

As a final step, for k ∈ (0, 1), choose x ≥ 3 with x > 1/(1− k), and y = Fx. Then

min{[δ0(x, Fx)]2, δ0(x, y)δ0(Fx, Fy), [δ0(y, Fy)]2}
−min{δ0(x, Fx)δ0(y, Fy), δ0(x, Fy)δ0(y, Fx)}
= min{x2, x(x− 1), (x− 1)2} − 0 = (x− 1)2

> kx(x− 1)
= k min{δ0(x, Fx)δ0(y, Fy), [δ0(x, y)]2}.

Consequently, we cannot apply Corollary 2 to (S, δ0) and the self-map F (note that, in fact, F is orbitally
continuous for (X, δ0)).

4. Non Unique Fixed Points on b-Branciari Distance Space

In this section, we shall consider a distance function which is not a generalization of a metric.
Indeed, when Branciari [29] suggested a new distance function by replacing the axiom of the triangle
inequality in a standard metric definition with another variant, the axiom of the quadrilateral inequality,
he aimed at getting an extension of a standard metric. As it can be seen in the upcoming lines, Branciari
distance is completely different and incomparable with metric.

For the sake of completeness, we recollect the definition of a Branciari distance here.

Definition 8. (See e.g., [30]) For a nonempty set S we define a function b : S × S −→ [0, ∞)

(b1) b(z, w) = 0 if and only if z = w(selfdistance/indistancy)
(b2) b(z, w) = b(w, z)(symmetry)
(b3) b(z, w) ≤ b(z, u) + b(u, v) + b(v, w) (quadrilateral inequality),

(37)

for all z, w ∈ S and all distinct u, v ∈ S \ {x, y}. We say that b is a Branciari distance (or rectangular metric,
or generalized metric, or Branciari metric). The pair (S , b) is called a Branciari distance space and abbreviated
as “BDS”.

Notice that in some publication, Branciari distance space was named as “generalized metric
space”. However the phrase “generalized metric” was used to identify several extensions of the
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standard metric (see e.g., [29,31–44]). Based on this discussion, we shall use “Branciari distance” to
avoid the confusion.

In what follows we recollect the basic topological concepts in the framework of Branciari
distance spaces.

Definition 9. (See e.g., [30])

1. A sequence {xn} in a Branciari distance space (S , b) converges to a limit x∗ if and only if b(xn, x∗)→ 0
as n → ∞.

2. we say that a sequence {xn}, in a Branciari distance space (S , b), is fundamental if and only if for any
given ε > 0 there exists positive integer N(ε) such that b(xn, xm) < ε for all n > m > N(ε).

3. We say that a Branciari distance space (S , b) is complete whenever each fundamental sequence in S
is convergent.

4. A mapping H : (X, b)→ (X, b) is continuous if for any sequence {xn} in S such that b(xn, x)→ 0 as
n → ∞, we have b(Hxn, Hx)→ 0 as n → ∞.

We underline the fact that despite the high similarity in the definitions of the basic topological
in the framework of Branciari distance space, the topology of Branciari distance space is not
compatible with topology of the standard metric space. These difference shall be indicated in the
following example.

Example 8. (cf. [37,45]) Let z1, z2, z3 be distinct real numbers such that z1, z2, z3 > 2. Set S = Y ∪ Z where
Z = {0, z1, z2, z3} and Y = { 1

n2+1 : n ∈ N}. We investigate the function b : S × S → [0, ∞) which is
defined by

b(x, y) =

⎧⎪⎨⎪⎩
0, if x = y,
1, if x �= y and [{x, y} ⊂ Y or {x, y} ⊂ Z],
y, if x ∈ Y, y ∈ Z.

We have b(y, z) = b(z, y) = z whenever y ∈ Y and z ∈ Z. and (S , b) is a complete Branciari distance
space. Notice that the statements (P1)–(P4) are fulfilled:

(p1) Since lim
n→∞

1
n2 + 1

= 0, we have lim
n→∞

b(
1

n2 + 1
,

1
5
) �= b(0,

1
5
). Thus, the function b is not continuous:

(p2) There is no r > 0 such that Br(0) ∩ Br(zi) = ∅ for i = 1, 2, 3 and hence it is not Hausdorff.
(p3) It is clear that the ball B 3

5
( 1

5 ) = {0, 1
5 , z1, z2, z3} since there is no r > 0 such that Br(0) ⊂ B 3

5
( 1

5 ), i.e.,
open balls may not be an open set.

(p4) The sequence { 1
n2+1 : n ∈ N} converges to 0, z1, z2, z3 and hence not fundamental.

It is easily concluded that the differences between quadrilateral inequality and the triangle
inequality lead to these significant differences between the topologies of the standard metric space and
Branciari distance space. In brief, the following statements express the weakness of the structure of
Branciari distance topology:

(p1) Branciari distance is not continuous, (see e.g., Example 8)
(p2) The limit in a Branciari distance space is not necessarily unique (i.e., it is not a Haussdorf, see

e.g., Example 8)
(p3) open ball need not to open set, (see e.g., Example 8)
(p4) a convergent sequence in Branciari distance space needs not to be fundamental.

(see e.g., Example 8)
(p5) the mentioned topologies are incompatible (see e.g., Example 7 in [44]).

Lemma 5. (See e.g., [36,37]) Let {xn} be a fundamental sequence in a Branciari distance space (S , b). If xm �=
xn whenever m �= n, then the sequence {xn} converges to at most one point.
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Later, regarding the well-known b-metric, defined by Czerwik [46] the notion of Branciari distance
is refined as b-Branciari distance (See e.g., [47]).

Definition 10. For a nonempty set S , we consider a function σ : S × S −→ [0, ∞) so that

(b1) σ(x, y) = 0 if and only if x = y(indistancy)
(b2) σ(x, y) = σ(y, x)(symmetry)
(b3) σ(x, y) ≤ s[σ(x, u) + σ(u, v) + σ(v, y)] (modified quadrilateral inequality),

(38)

for all x, y ∈ S and all distinct u, v ∈ S \ {x, y}. Then, we say that σ is a b-Branciari distance (or b-rectangular
metric, or b-Branciari metric, or b-generalized metric). In addition, the pair (S , σ) is named as a b-Branciari
distance space and abbreviated as "b-BDS".

In what follows, we derive the characterization of fundamental topological notions (that we need
in the sequel) in context of b-Branciari distance spaces (See e.g., [8]).

Definition 11.

1. A sequence {xn} in a b-Branciari distance space (S , σ) is convergent to a limit x if and only if σ(xn, x)→
0 as n → ∞.

2. A sequence {xn} in a b-Branciari distance space (S , σ) is fundamental (or, Cauchy) if and only if for
every ε > 0 there exists positive integer N(ε) such that σ(xn, xm) < ε for all n > m > N(ε).

3. A b-Branciari distance space (S , σ) is called complete if every fundamental sequence in S is b-Branciari
distance space convergent.

4. A mapping H : (X, σ)→ (X, σ) is continuous if for any sequence {xn} in S such that σ(xn, x)→ 0 as
n → ∞, we have σ(Hxn, Hx)→ 0 as n → ∞.

As is mentioned above, the topology of Branciari distance space has difficulties (p1)–(p5), and these
weakness are hereditarily valid for the topology of b-Branciari distance space. It is easy to see that
Example 8 can be modified for b-Branciari distance space to indicate that the same problems holds for
the topology of b-Branciari distance space (see e.g., [47]).

Now, we propose the following proposition that helps to simplify the upcoming proofs.

Lemma 6 ([8]). If a sequence {xn} in (S , σ) is Cauchy with xm �= xn whenever m �= n, then the sequence
{xn} can converge to at most one point.

We consider the characterization of some basic but crucial topological notions in the context of
b-BDS.

Definition 12. Let (S , σ) be a b-Branciari distance space and H be a self-map of S.

1. H is called orbitally continuous if
lim
i→∞

Hni x = z (39)

implies
lim
i→∞

HHni x = Hz (40)

for each x ∈ S .
2. (S , σ) is called orbitally complete if every Cauchy sequence of type {Hni x}i∈N converges with respect

to τσ.

We say that x∗ is a periodic point of a function H of period m if Hm(x∗) = x∗, where Hm(x) =
H(Hm−1(x)) for m ∈ N and H0(x) = x.
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In the following lines, we examine some non-unique fixed point results in the context of b-BDS.
The presented results not only improve, extend several results in the corresponding literature, but also
enrich them.

Henceforward, the couple (S , σ) represent b-Branciari metric space. The letter H be an orbitally
continuous self-map on b-Branciari metric space- (S , σ) with s ≥ 1. In all upcoming result, we assume
that b-Branciari metric space- (S , σ) is orbitally complete. Avoiding from the repetitions, we shall not
indicate the above assumptions to all theorems, corollaries and lemmas.

4.1. Ćirić Type Non-Unique Fixed Point Results

Definition 13. A self-mapping H : S → S is called ψ-Ćirić type simulated if there exist ζ ∈ Z and ψ ∈ Ψ
such that

PH(x, y) ≤ ψ(σ(x, y)), (41)

for all x, y ∈ S , where

PH(x, y) := min{σ(Hx, Hy), σ(x, Hx), σ(y, Hy)} −min{σ(x, Hy), σ(Hx, y)}

Theorem 12. If a mappings H is ψ-Ćirić type simulated, then for each x0 ∈ S the sequence {Hnx0}n∈N
converges to a fixed point of H.

Proof. Starting from an arbitrary point x ∈ S , we shall built an iterative sequence {xn} in the
following way:

x0 := x and xn = Hxn−1 for all n ∈ N. (42)

We suppose that
xn �= xn−1 for all n ∈ N. (43)

Indeed, if for some n ∈ N we have the inequality xn = Hxn−1 = xn−1, then, the proof
is completed.

By substituting x = xn−1 and y = xn in the inequality (44), we derive that

PH(xn−1, xn) ≤ ψ(σ(xn−1, xn)), (44)

where
PH(xn−1, xn) = min{σ(Hxn−1, Hxn), σ(xn−1, Hxn−1), σ(xn, Hxn)}

−min{σ(xn−1, Hxn), σ(Hxn−1, xn)}
After an elementary calculation, we find that

min{σ(Hxn−1, Hxn), σ(xn−1, Hxn−1), σ(xn, Hxn)}
−min{σ(xn−1, Hxn), σ(Hxn−1, xn)}

≤ ψ(σ(xn−1, xn)).
(45)

It implies that
min{σ(xn, xn+1), σ(xn, xn−1)} ≤ ψ(σ(xn−1, xn)). (46)

Due to property of ψ(t) < t for all t > 0, we find that the case σ(xn, xn−1) ≤ ψ(σ(xn−1, xn)) is not
possible. Accordingly, we get

σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)) < σ(xn−1, xn). (47)

Iteratively, we find that

σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)) ≤ ψ2(σ(xn−2, xn−1)) ≤ · · · ≤ ψn(σ(x0, x1)). (48)
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Taking (47) into account, we find that the sequence {σ(xn, xn+1)} is non-increasing.
Since, for any t ∈ [0, ∞), lim

n→∞
ψn(t) = 0, and ψ(t) < t for t > 0, the Archimedean property

implies thar there exist a q ∈ [0, 1) and a M ∈ N such that

ψk(t) ≤ qk · t and s · qk < 1 for each n > M. (49)

In what follows we prove that the sequence {xn} has no periodic point, i.e.,

xn �= xn+k for all (k, n) ∈ N×N0. (50)

Actually, if xn = xn+k for some n ∈ N0 and k ∈ N, we find

xn+1 = Hxn = Hxn+k = xn+k+1.

Regarding (47) and (55), we find that

σ(xn, xn+1) = min{σ(Hxn−1, Hxn), σ(xn−1, Hxn−1), σ(xn, Hxn)}
−min{σ(xn−1, Hxn), σ(Hxn−1, xn)}

= min{σ(Hxn+k−1, Hxn+k), σ(xn+k−1, Hxn+k−1), σ(xn, Hxn+k)}
−min{σ(xn+k−1, Hxn+k), σ(Hxn+k−1, xn+k)}

≤ ψ(σ(xn+k−1, xn+k))

≤ ψk−1(σ(xn, xn+1)) < σ(xn, xn+1),

(51)

a contradiction. Based on the discussion above, we presume that

xn �= xm for all distinct n, m ∈ N. (52)

Observe that xn+k �= xm+k for all distinct n, m ∈ N and xn+k, xm+k ∈ S \ {xn, xm}.
Now, we assert that the sequence {xn} is fundamental. The modified quadrilateral inequality

together with (48) and (49) yields that

σ(xm, xn) ≤ s
[
σ(xm, xm+k) + σ(xm+k, xn+k) + σ(xn+k, xn)

]
≤ sψm(σ(x0, xk)) + sψk(σ(xm, xn)) + sψn(σ(xk, x0))

≤ sψm(σ(x0, xk)) + sqk · σ(xm, xn) + sψn(σ(xk, x0)).

(53)

After a routine calculation, we get that

σ(xm, xn) ≤
s

1− sqk [ψ
m(σ(x0, xk)) + ψn(σ(xk, x0))]. (54)

Since lim
n→∞

ψn(t) = 0, for any t ∈ [0, ∞), (54) implies that σ(xm, xn)→ 0 as n, m → ∞. As a result,

{xn} is a fundamental sequence in b-Branciari distance space (S , σ).
Here, H-orbitally completeness implies that there is x∗ ∈ S such that xn → x∗. On account of the

orbital continuity of H, we find that xn → Fx∗. On the other hand, Lemma 6 leads to x∗ = Fx∗ which
terminates the proof.

Regarding Example 1 (i), we conclude the following result from Theorem 12.

133



Axioms 2019, 8, 72

Theorem 13 ([8]). If there is ψ ∈ Ψ such that

min{σ(Hx, Hy), σ(x, Hx), σ(y, Hy)} −min{σ(x, Hy), σ(Hx, y)} ≤ ψ(σ(x, y)), (55)

for all x, y ∈ S , then for each x0 ∈ S the sequence {Hnx0}n∈N converges to a fixed point of H.

Corollary 3. If there is q ∈ [0, 1) such that

min{σ(Hx, Hy), σ(x, Hx), σ(y, Hy)} −min{σ(x, Hy), σ(Hx, y)} ≤ qσ(x, y), (56)

for all x, y ∈ S , then for each x0 ∈ S the sequence {Hnx0}n∈N converges to a fixed point of H.

Proof. Employing Theorem 13 for ψ(t) = qt, where q ∈ [0, 1), yields the desired result.

Example 9 ([8]). Let S = A ∪ B where A = {a1, a2, a3, a4} and B = [1, 2] with A ∩ B = ∅ and each ai
distinct from aj, whenever i �= j. Define δ : S × S → [0, ∞) such that σ(x, y) = σ(y, x) for all x ∈ S ,

σ(a1, a3) = 1, σ(a1, a2) = σ(a2, a3) =
1
4

,

σ(a1, a4) = σ(a2, a4) = σ(a3, a4) =
1
8

,

σ(a, b) =
1
16

, for all a ∈ A, b ∈ B, and,

σ(x, y) = |x− y|2 for any other case.

Here, (S , σ) forms a complete b-Branciari distance space (S , σ) with s = 2. However, σ is not a Branciari
distance. In addition, σ is neither a metric, nor b-metric. Define a mapping H : X → X as

f (a1) = f (a2) = a1 and f (a3) = f (a4) = a4 and f (b) = a1 for all b ∈ B.

Thus H fulfills all hypotheses of Theorem 13 for any choice of ψ. Please note that H has two distinct fixed
points, namely, a1 and a3.

4.2. Ćirić-Jotić Type Non-Unique Fixed Point Results

Definition 14. A self-mapping H : S → S is called ψ-Ćirić-Jotić type simulated if there exist ζ ∈ Z and
ψ ∈ Ψ such that

ζ(PH(x, y)− aQH(x, y), ψ(RH(x, y))) ≥ 0, (57)

for all x, y ∈ S ,, where

PH(x, y) = min

⎧⎨⎩ σ(Hx, Hy), σ(x, y), σ(x, Hx), σ(y, Hy), σ(x,Hx)[1+σ(y,Hy)]
1+σ(x,y) ,

σ(y,Hy)[1+σ(x,Hx)]
1+σ(x,y) , min{σ2(Hx,Hy),σ2(x,Hx),σ2(y,Hy)}

ψ(σ(x,y))

⎫⎬⎭ ,

QH(x, y) = min{σ(x, Hy), σ(y, Hx)},

R(x, y) = max{σ(x, y), σ(x, Hx)}.

Theorem 14. If a mappings H is ψ-Ćirić-Jotić type simulated, then for each x0 ∈ S the sequence {Hnx0}n∈N
converges to a fixed point of H.
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Proof. By verbatim of the proof of Theorem 12, we shall built an recursive sequence {xn = Hxn−1}n∈N
by starting from an arbitrary initial value x0 := x ∈ S . Recalling the discussion in the proof of
Theorem 12, we presume that any adjacent terms are distinct from each other, i.e.,

xn �= xn−1 for all n ∈ N.

Letting x = xn−1 and y = Hxn−1 = xn in the inequality (57), we derive that

0 ≤ ζ(P(xn−1, xn)− aQ(xn−1, xn), ψ(R(xn−1, xn)))

< ψ(R(xn−1, xn))− [P(xn−1, xn)− aQ(xn−1, xn)],

which yields that
P(xn−1, xn)− aQ(xn−1, xn) ≤ ψ(R(xn−1, xn)), (58)

where
Q(xn−1, xn) = min{σ(xn−1, xn+1), σ(xn, xn)} = 0,

R(xn−1, xn) = max{σ(xn−1, xn), σ(xn−1, xn)} = σ(xn−1, xn).

and

P(xn−1, xn) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(xn, xn+1), σ(xn−1, xn), σ(xn−1, xn), σ(xn, xn+1),

σ(xn−1, xn)[1 + σ(xn, xn+1)]

1 + σ(xn−1, xn)
,

σ(xn, xn+1)[1 + σ(xn−1, xn)]

1 + σ(xn−1, xn)
,

min{σ2(xn, xn+1), σ2(xn−1, xn), σ2(xn, xn+1)}
ψ(σ(xn−1, xn))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(xn, xn+1), σ(xn−1, xn),

σ(xn−1, xn)[1 + σ(xn, xn+1)]

1 + σ(xn−1, xn)
,

σ2(xn, xn+1)

ψ(σ(xn−1, xn))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
We examine the inequality (58) regarding the possible cases in P(xn−1, xn). On the other hand,

the case P(xn−1, xn) = σ(xn−1, xn) is impossible. Indeed, if it would be the case the inequality (58)
turns into

σ(xn−1, xn) ≤ ψ(σ(xn−1, xn)) < σ(xn−1, xn),

since ψ(t) < t for all t > 0. Thus, we observe that

σ(xn, xn+1) ≤ σ(xn−1, xn).

Consequently, the inequality (58) yields the following three cases:

If P(xn−1, xn) = σ(xn, xn+1) or P(xn−1, xn) =
σ2(xn, xn+1)

ψ(σ(xn−1, xn))
, then the inequality (58) turns into

σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)) (59)
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If P(xn−1, xn) =
σ(xn−1, xn)[1 + σ(xn, xn+1)]

1 + σ(xn−1, xn)
, then the inequality (58) becomes

σ(xn−1, xn)[1 + σ(xn, xn+1)] ≤ ψ(σ(xn−1, xn))[1 + σ(xn−1, xn)]

= ψ(σ(xn−1, xn)) + ψ(σ(xn−1, xn))σ(xn−1, xn)

< σ(xn−1, xn) + ψ(σ(xn−1, xn))σ(xn−1, xn)

.

The required simplification implies the (59). Consequently, for any choice of P(xn−1, xn),
the inequality (58) yields (59). Iteratively, we find that

σ(xn+1, xn) ≤ ψ(σ(xn, xn−1)) < σ(xn, xn−1),

and hence
σ(xn+1, xn) < ψn(σ(x1, x0)),

for all n ∈ N.
Thus, the sequence {σ(xn, xn+1)} is non-increasing. As a next step, we claim that the sequence

{xn} has no periodic point, i.e.,

xn �= xn+k for all (k, n) ∈ N×N0. (60)

Indeed, if xn = xn+k for some n ∈ N0 and k ∈ N, we find

xn+1 = Hxn = Hxn+k = xn+k+1.

Based on the discussion above, we have P(xn−1, xn) = σ(xn, xn+1). Thus, by taking the inequality
(47) and (55) into account, we find that

σ(xn, xn+1) = P(xn−1, xn)− aQ(xn−1, xn) ≤ ψ(R(xn−1, xn)),

≤ ψ(R(xn+k−1, xn+k)),

≤ ψ(σ(xn+k−1, xn+k))

≤ ψk−1(σ(xn, xn+1)) < σ(xn, xn+1),

(61)

a contradiction. Attendantly, we have

xn �= xm for all distinct n, m ∈ N. (62)

By following the related lines in the proof of Theorem 12, one can complete the proof.

Regarding Example 1 (i), we conclude the following result from Theorem 14.

Theorem 15 ([8]). Assume that there exist ψ ∈ Ψ and a ≥ 0 such that

P(x, y)− aQ(x, y) ≤ ψ(R(x, y)),
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for all distinct x, y ∈ S where

P(x, y) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(Hx, Hy), σ(x, y), σ(x, Hx), σ(y, Hy),

σ(x, Hx)[1 + σ(y, Hy)]
1 + σ(x, y)

,
σ(y, Hy)[1 + σ(x, Hx)]

1 + σ(x, y)
,

min{σ2(Hx, Hy), σ2(x, Hx), σ2(y, Hy)}
ψ(σ(x, y))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

Q(x, y) = min{σ(x, Hy), σ(y, Hx)},

R(x, y) = max{σ(x, y), σ(x, Hx)}.

Then, for each x0 ∈ S the sequence {Hnx0}n∈N converges to a fixed point of H.

Corollary 4. Assume that there exist q ∈ [0, 1) and a ≥ 0 such that

P(x, y)− aQ(x, y) ≤ qR(x, y),

for all distinct x, y ∈ S where P(x, y), Q(x, y), R(x, y) are defined as in Theorem 15 Then, for each x0 ∈ S the
sequence {Hnx0}n∈N converges to a fixed point of H.

Corollary 5. Assume that there exist q ∈ [0, 1) and a ≥ 0 such that

min{σ(Hx, Hy), σ(x, y), σ(x, Hx), σ(y, Hy)} − aQ(x, y) ≤ qR(x, y),

for x, y ∈ S where Q(x, y), R(x, y) are defined as in Theorem 15 Then, for each x0 ∈ S the sequence {Hnx0}n∈N
converges to a fixed point of H.

Corollary 6. If there exists k, p ∈ [0, 1) with k + p < 1 and a ≥ 0 such that

min{σ(Hx, Hy), σ(x, y), σ(x, Hx), σ(y, Hy)} − aQ(x, y) ≤ kσ(x, y) + pσ(x, Hx)

for x, y ∈ S where Q(x, y), R(x, y) are defined as in Theorem 15, then, for each x0 ∈ S , the sequence
{Hnx0}n∈N converges to a fixed point of H.

Definition 15. A self-mapping H : S → S is called weakly-ψ-Ćirić-Jotić type simulated if there exist ζ ∈ Z
and ψ ∈ Ψ such that

ζ(P(x, y)− aQ(x, y), ψ(R(x, y))) ≥ 0, (63)

for all x, y ∈ S , where

PH(x, y) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(Hx, Hy), σ(x, y), σ(x, Hx), σ(y, Hy),

σ(x, Hx)[1 + σ(y, Hy)]
1 + σ(x, y)

,
σ(y, Hy)[1 + σ(x, Hx)]

1 + σ(x, y)
,

min{σ2(Hx, Hy), σ2(x, Hx), σ2(y, Hy)}
ψ(σ(x, y))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

QH(x, y) = min{σ(x, Hy), σ(y, Hx)},

R(x, y) = max{σ(x, y), σ(x, Hx)},
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with R(x, y) �= 0.

Theorem 16. If a mappings H is weakly-ψ-Ćirić-Jotić type simulated, then for each x0 ∈ S the sequence
{Hnx0}n∈N converges to a fixed point of H.

Proof. We use the same construction as in Theorem 12 to get an iterative sequence {xn = Hxn−1}n∈N,
with an arbitrary initial value x0 := x ∈ S . Repeating the same arguments in the proof of Theorem 12,
we derive that adjacent terms of the sequence {xn} are distinct, i.e.,

xn �= xn−1 for all n ∈ N.

For x = xn−1 and y = xn, the inequality (80) infer that

0 ≤ ζ(K(xn−1, xn))− aQ(xn−1, xn), ψ(S(xn−1, xn)))

< ψ(S(xn−1, xn))− K(xn−1, xn))− aQ(xn−1, xn)
(64)

It yields that
K(xn−1, xn))− aQ(xn−1, xn) ≤ ψ(S(xn−1, xn)), (65)

where
K(xn−1, xn) = min{σ(Hxn−1, Hxn), σ(xn, Hxn)} = σ(xn, xn+1),
Q(xn−1, xn) = min{σ(xn−1, Hxn)σ(xn, Hxn−1)} = 0,
S(xn−1, xn) = min{σ(xn−1, xn), σ(xn−1, Hxn−1), σ(xn, Hxn)}

= min{σ(xn−1, xn), σ(xn, xn+1)}.

Since ψ(t) < t for all t > 0, the case S(xn−1, xn) = σ(xn, xn+1) is impossible. More precisely, it is
the case, the inequality (65) turns into

σ(xn, xn+1) ≤ ψσ(xn, xn+1) < σ(xn, xn+1),

a contradiction. Hence, the inequality (65) yields that

σ(xn, xn+1) ≤ ψσ(xn−1, xn) < σ(xn−1, xn) and σ(xn, xn+1) ≤ ψnσ(x0, x1)

for all n ∈ N.
Hence, we conclude that the sequence {σ(xn, xn+1)} is non-increasing. On what follows that we

show that the iterative sequence {xn} has no periodic point, i.e.,

xn �= xn+k for all k ∈ N and for all n ∈ N0. (66)

Indeed, if xn = xn+k for some n ∈ N0 and k ∈ N, we have xn+1 = Hxn = Hxn+k = xn+k+1. Based
on the observations above, we obtain that K(xn−1, xn) = σ(xn, xn+1). Consequently, the inequality (66)
and (80) implied that

σ(xn, xn+1) = K(xn−1, xn)− aQ(xn−1, xn) ≤ ψ(S(xn−1, xn)),

≤ ψ(S(xn+k−1, xn+k)),

≤ ψ(σ(xn+k−1, xn+k))

≤ ψk−1(σ(xn, xn+1)) < σ(xn, xn+1),

(67)
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which is a contradiction. Hence, we assume that

xn �= xm for all distinct n, m ∈ N. (68)

A verbatim repetition of the related lines in the proof of Theorem 12 completes the proof.

On account of Example 1 (i), we conclude the following result from Theorem 16.

Theorem 17 ([8]). Suppose that there exists ψ ∈ Ψ and a ≥ 0 such that

K(x, y)− aQ(x, y) ≤ ψ(S(x, y)), (69)

for all distinct x, y ∈ S where

K(x, y) = min {σ(Hx, Hy), σ(y, Hy)} ,

Q(x, y) = min{σ(x, Hy), σ(y, Hx)},

S(x, y) = max{σ(x, y), σ(x, Hx), σ(y, Hy)}.

Then, for each x0 ∈ S the sequence {Hnx0}n∈N converges to a fixed point of H.

Corollary 7. If there exists q ∈ [0, 1) and a ≥ 0 such that

K(x, y)− aQ(x, y) ≤ qS(x, y),

for all distinct x, y ∈ S where K(x, y), Q(x, y), S(x, y) are defined as in Theorem 17, then, for each x0 ∈ S the
sequence {Hnx0}n∈N converges to a fixed point of H.

Corollary 8. Suppose that there exists k, p, r ∈ [0, 1) with k + p + r < 1 and a ≥ 0 such that

K(x, y)− aQ(x, y) ≤ kσ(x, y) + pσ(x, Hx) + rσ(x, Hx)

for x, y ∈ S where K(x, y), Q(x, y) are defined as in Theorem 17 Then, for each x0 ∈ S the sequence {Hnx0}n∈N
converges to a fixed point of H.

4.3. Achari Type Non-Unique Fixed Point Results

Definition 16. A self-mapping H : S → S is called ψ-Achari type simulated if there exists ζ ∈ Z and ψ ∈ Ψ
such that

ζ(
A(x, y)− B(x, y)

C(x, y)
, ψ(σ(x, y))) ≥ 0, (70)

for all x, y ∈ S , where

A(x, y) = min{σ(Hx, Hy)σ(x, y), σ(x, Hx)σ(y, Hy)},
B(x, y) = min{σ(x, Hx)σ(x, Hy), σ(y, Hy)σ(Hx, y)},
C(x, y) = min{σ(x, Hx), σ(y, Hy)},

with C(x, y) �= 0.

Theorem 18. If a mappings H is ψ-Achari type simulated, then for each x0 ∈ S the sequence {Hnx0}n∈N
converges to a fixed point of H.
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Proof. By following line by line the proof of Theorem 12, we construct an iterative sequence {xn =

Hxn−1}n∈N, starting from an arbitrary initial value x0 := x ∈ S . Regarding the discussion in the proof
of Theorem 12, we know that the terms of the sequence {xn} are distinct, i.e.,

xn �= xn−1 for all n ∈ N.

Taking the inequality (79) into account, by letting x = xn−1 and y = xn in, we attain that

0 ≤ ζ(
A(xn−1, xn)− B(xn−1, xn)

C(xn−1, xn)
, ψ(σ(xn−1, xn)))

< ψ(σ(xn−1, xn))−
A(xn−1, xn)− B(xn−1, xn)

C(xn−1, xn)
,

(71)

which implies that
A(xn−1, xn)− B(xn−1, xn)

C(xn−1, xn)
≤ ψ(σ(xn−1, xn)),

where

A(xn−1, xn) = min{σ(Hxn−1, Hxn)σ(xn−1, xn), σ(xn−1, Hxn−1)σ(xn, Hxn)},
B(xn−1, xn) = min{σ(xn−1, Hxn−1)σ(xn−1, Hxn), σ(xn, Hxn)σ(Hxn−1, xn)},
C(xn−1, xn) = min{σ(xn−1, Hxn−1), σ(xn, Hxn)}.

On account of b-BDS, we simplify the above the inequality as

σ(xn, xn+1)σ(xn−1, xn)

min{σ(xn−1, xn), σ(xn, xn+1)}
≤ ψ(σ(xn−1, xn)). (72)

Notice that for the case min{σ(xn−1, xn), σ(xn, xn+1)} = σ(xn, xn+1), the inequality (72) turns into

σ(xn−1, xn) ≤ ψ(σ(xn−1, xn)) < σ(xn−1, xn),

a contraction (since ψ(t) < t for all t > 0). Accordingly, we conclude that

σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)).

Recursively, we get

σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)) ≤ ψ2(σ(xn−2, xn−1)) ≤ · · · ≤ ψn(σ(x0, x1)). (73)

Due to definition of comparison function, we have

lim
n→∞

σ(xn+1, xn) = 0.

Furthermore, one can easily show that the sequence {xn} has no periodic point, i.e.,

xn �= xn+k for all k ∈ N and for all n ∈ N0. (74)

Indeed, if xn = xn+k for some n ∈ N0 and k ∈ N, we get xn+1 = Hxn = Hxn+k = xn+k+1.
On account of (73), we derive that

σ(xn, xn+1) = σ(xn+k, xn+k+1) ≤ ψk(σ(xn, xn+1) < σ(xn, xn+1), (75)
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a contradiction. Accordingly, we suppose that

xn �= xm for all distinct n, m ∈ N. (76)

A verbatim repetition of the related lines in the proof of Theorem 12 completes the proof.

On account of Example 1 (i), we conclude the following result from Theorem 18.

Theorem 19 ([8]). Suppose that there exists ψ ∈ Ψ such that

A(x, y)− B(x, y)
C(x, y)

≤ ψ(σ(x, y)), (77)

for all x, y ∈ S , where

A(x, y) = min{σ(Hx, Hy)σ(x, y), σ(x, Hx)σ(y, Hy)},
B(x, y) = min{σ(x, Hx)σ(x, Hy), σ(y, Hy)σ(Hx, y)},
C(x, y) = min{σ(x, Hx), σ(y, Hy)}.

with C(x, y) �= 0. Then, for each x0 ∈ S the sequence {Hnx0}n∈N converges to a fixed point of H.

Corollary 9. Suppose that there exists ψ ∈ Ψ such that

A(x,y)−B(x,y)
C(x,y) ≤ ψ(σ(x, y)), (78)

for all x, y ∈ S , where A(x, y), B(x, y), C(x, y) are defined as in Theorem 19. Then, for each x0 ∈ S the
sequence {Hnx0}n∈N converges to a fixed point of H.

The following is an immediate consequence of Theorem 19 by letting ψ(t) = qt, where q ∈ [0, 1).

Corollary 10. Suppose that there exists q ∈ [0, 1) such that

A(x,y)−B(x,y)
C(x,y) ≤ qσ(x, y), (79)

for all x, y ∈ S , where A(x, y), B(x, y), C(x, y) are defined as in Theorem 19. Then, for each x0 ∈ S the
sequence {Hnx0}n∈N converges to a fixed point of H.

4.4. Pachpatte Type Non-Unique Fixed Point Results

Definition 17. A self-mapping H : S → S is called ψ-Pachpatte type simulated if there exists ζ ∈ Z and
ψ ∈ Ψ such that

ζ(m(x, y)− n(x, y), ψ(σ(x, y))) ≥ 0, (80)

for all x, y ∈ S , where

m(x, y) = min{[d(Tx, Ty)]2, d(x, y)d(Tx, Ty), [d(y, Ty)]2},
n(x, y) = min{d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)}

Theorem 20. If a mappings H is ψ-Pachpatte type simulated, then for each x0 ∈ S the sequence {Hnx0}n∈N
converges to a fixed point of H.

Proof. Again by following line by line the proof of Theorem 12, we construct an iterative sequence
{xn = Hxn−1}n∈N whose terms are distinct from each other, by starting from an arbitrary initial value
x0 := x ∈ S .
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Taking the inequality (87) into consideration by letting x = xn−1 and y = xn, we find that

0 ≤ ζ(m(xn−1, xn)− n(xn−1, xn), ψ(σ(xn−1, Hxn−1)σ(xn, Hxn)))

< ψ(σ(xn−1, Hxn−1)σ(xn, Hxn))−m(xn−1, xn)− n(xn−1, xn),

which yields that

m(xn−1, xn)− n(xn−1, xn) ≤ ψ(σ(xn−1, Hxn−1)σ(xn, Hxn)), (81)

where

m(xn−1, xn) = min{[σ(Hxn−1, Hxn)]2, σ(xn−1, xn)σ(Hxn−1, Hxn), [σ(xn, Hxn)]2},
n(xn−1, xn) = min{σ(xn−1, Hxn−1)σ(xn, Hxn), σ(xn−1, Hxn)σ(xn, Hxn−1)}.

By simplifying the inequality above inequality, we find that

m(xn−1, xn) ≤ ψ(σ(xn−1, xn)σ(xn, xn+1)), (82)

where
m(xn−1, xn) = min{[σ(xn, xn+1)]

2, σ(xn−1, xn)σ(xn, xn+1)}.

It is clear that the case
m(xn−1, xn) = σ(xn−1, xn)σ(xn, xn+1)

is not possible. If it would be the case, the inequality (83) turns into

σ(xn−1, xn)σ(xn, xn+1) ≤ ψ(σ(xn−1, xn)σ(xn, xn+1)) < σ(xn−1, xn)σ(xn, xn+1), (83)

a contraction (since ψ(t) < t for all t > 0). Consequently, we derive

[σ(xn, xn+1)]
2 ≤ ψ(σ(xn−1, xn)σ(xn, xn+1)) < σ(xn−1, xn)σ(xn, xn+1), (84)

which yields
σ(xn, xn+1) < σ(xn−1, xn). (85)

Regarding the fact that ψ is nondecreasing, and combining the inequalities (84) and (85), we
obtain that

[σ(xn, xn+1)]
2 ≤ ψ(σ(xn−1, xn)σ(xn, xn+1)) < ψ([σ(xn−1, xn)]2), (86)

Iteratively, we get that

[σ(xn, xn+1)]
2 ≤ ψ([σ(xn−1, xn)]2) ≤ ψ2([σ(xn−2, xn−1)]

2) ≤ · · · ≤ ψn([σ(x0, x1)]
2).

Hence, we have
lim

n→∞
[σ(xn+1, xn)]

2 = 0 ⇐⇒ lim
n→∞

σ(xn+1, xn) = 0.

The rest of the proof is a verbatim repetition of the related lines in the proof of Theorem 12.

Due to Example 1 (i), Theorem 22 yields the next result.

Theorem 21 ([8]). Suppose that there exists ψ ∈ Ψ such that

m(x, y)− n(x, y) ≤ ψ(σ(x, Hx)σ(y, Hy)), (87)
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for all x, y ∈ S , where

m(x, y) = min{[σ(Hx, Hy)]2, σ(x, y)σ(Hx, Hy), [σ(y, Hy)]2},
n(x, y) = min{σ(x, Hx)σ(y, Hy), σ(x, Hy)σ(y, Hx)}.

Then, for each x0 ∈ S the sequence {Hnx0}n∈N converges to a fixed point of H.

If we take ψ(t) = qt, then Theorem 21 implies the following result.

Corollary 11. If there exists q ∈ [0, 1) such that

m(x, y)− n(x, y) ≤ qσ(x, Hx)σ(y, Hy), (88)

for all x, y ∈ S , where m(x, y) and n(x, y) are defined as in Theorem 21, then, for each x0 ∈ S the sequence
{Hnx0}n∈N converges to a fixed point of H.

4.5. Karapınar Type Non-Unique Fixed Point Results

Definition 18. A self-mapping H : S → S is called ψ-Karapınar type simulated if there exist ζ ∈ Z and
ψ ∈ Ψ such that

0 ≤ a4 − a2

a1 + a2
< 1, a1 + a2 �= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5 (89)

ζ(L(x, y), R(x, y)) (90)

for all x, y ∈ S , where

L(x, y) := a1σ(Hx, Hy) + a2
[
σ(x, Hx) + σ(y, Hy)

]
+ a3[σ(y, Hx) + σ(x, Hy)],

R(x, y) := a4σ(x, y) + a5σ(x, F2x).

Theorem 22. If a mappings H is ψ-Karapınar type simulated, then for each x0 ∈ S the sequence {Hnx0}n∈N
converges to a fixed point of H.

Proof. For an arbitrary x0 ∈ S , we shall built a construct a sequence {xn} as follows:

xn+1 := Hxn n = 0, 1, 2, ... (91)

Utilizing the inequality by taking x = xn and y = xn+1 we find that

0 ≤ ζ(L(x, y), R(x, y)) < R(x, y)− L(x, y),

which infer to

a1σ(Hxn, Hxn+1) + a2
[
σ(xn, Hxn) + σ(xn+1, Hxn+1)

]
+ a3[σ(xn+1, Hxn) + σ(xn, Hxn+1)]

≤ a4σ(xn, xn+1) + a5σ(xn, F2xn)
(92)

for all a1, a2, a3, a4, a5 which fulfils (89). On account of (91), the statement (92) becomes

a1σ(xn+1, xn+2) + a2
[
σ(xn, xn+1) + σ(xn+1, xn+2)

]
+ a3[σ(xn+1, xn+1) + σ(xn, xn+2)]

≤ a4σ(xn, xn+1) + a5σ(xn, xn+2).
(93)

By a simple computation, we derive

(a1 + a2)σ(xn+1, xn+2) + (a3 − a5)σ(xn, xn+2) ≤ (a4 − a2)σ(xn, xn+1). (94)
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So, the inequality above yields that

σ(xn+1, xn+2) ≤ qσ(xn, xn+1) (95)

where q = a4−a2
a1+a2

. Due to (89), we have 0 ≤ q < 1. Regarding (95), we recursively obtain

σ(xn, xn+1) ≤ qσ(xn−1, xn) ≤ q2σ(xn−2, xn−1) ≤ · · · ≤ qnσ(x0, x1). (96)

Thus, the sequence {σ(xn, xn+1)} is non-increasing.
On what follows that we shall prove that the sequence {xn} has no periodic point, i.e.,

xn �= xn+k for all k ∈ N and for all n ∈ N0. (97)

Actually, if xn = xn+k for some n ∈ N0 and k ∈ N, we find xn+1 = Hxn = Hxn+k = xn+k+1.
Keeping the inequality (95) in the mind, we derive that

σ(xn, xn+1) = σ(xn+k, xn+k+1) ≤ qkσ(xn, xn+1), (98)

which is a contradiction. Consequently, we suppose that

xn �= xm for all distinct n, m ∈ N. (99)

One can easily discover that xn+k �= xm+k for all distinct n, m ∈ N and xn+k, xm+k ∈ S \ {xn, xm}.
There exists a natural number M such that

0 < qks < 1 for all k ≥ M,

since k ∈ [0, 1) and hence limn→∞ kn = 0.
As a next step, we shall indicate that {xn} is a Cauchy sequence. By regarding the modified

quadrilateral inequality, we find

σ(xm, xn) ≤ s
[
σ(xm, xm+k) + σ(xm+k, xn+k) + σ(xn+k, xn)

]
≤ s qmσ(x0, xk) + sqkσ(xm, xn) + sqnσ(xk, x0)

(100)

By rearranging the term in the inequality above, we attain that

σ(xm, xn) ≤ s(qm+qn)
1−qks σ(xk, x0) (101)

Consequently, we derive that {xn}n∈N is a Cauchy sequence.
The rest of the proof is deduced by following the corresponding lines in the proof of

Theorem 12.

We deduce the following results, by employing Example 1 (i) on Theorem 22.

Theorem 23 ([8]). Let H be an orbitally continuous self-map on the H-orbitally complete b-Branciari distance
space (S , σ). Suppose there exist real numbers a1, a2, a3, a4, a5 and a self mapping H : S → S satisfies
the conditions

0 ≤ a4 − a2

a1 + a2
< 1, a1 + a2 �= 0, a1 + a2 + a3 > 0 and 0 ≤ a3 − a5 (102)

L(x, y) ≤ R(x, y) (103)
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for all x, y ∈ S , where

L(x, y) := a1σ(Hx, Hy) + a2
[
σ(x, Hx) + σ(y, Hy)

]
+ a3[σ(y, Hx) + σ(x, Hy)],

R(x, y) := a4σ(x, y) + a5σ(x, F2x).

Then, H has at least one fixed point.

It is clear that all results in these section can be stated in the context of Branciari distance space by
letting s = 1. For avoiding the repetition, we skip to list these immediate consequences of Chapter 4.
In addition, one can also get several more consequences by modifying the contraction inequality.

5. Conclusions

One of the most attractive research topic of nonlinear functional analysis is metric fixed point
theory [1–129]. In this paper, we aim to underline the importance of the existence of a fixed point
rather than uniqueness. Such non-unique fixed point theorems can be more applicable not only in
nonlinear analysis, but also, in several qualitative sciences. It seems that the analog of the presented
results can be derived in some other abstract spaces, such as in the setting of modular metric spaces.
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11. Pachpatte, B.G. On Ćirić type maps with a non-unique fixed point. Indian J. Pure Appl. Math. 1979,

10, 1039–1043.
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76. Berinde, V. Contracţii Generalizate şi Aplicaţii; Editura Cub Press: Baie Mare, Romania, 1997; Volume 2.
77. Boriceanu, M. Strict fixed point theorems for multivalued operators in b-metric spaces. Int. J. Mod. Math.

2009, 4, 285–301.
78. Boriceanu, M. Fixed point theory for multivalued generalized contraction on a set with two b-metrics.

Mathematica 2009, 54, 3–14.
79. Boriceanu, M.; Sel, A.P.; Rus, I.A. Fixed point theorems for some multivalued generalized contractions in

b-metric spaces. Int. J. Math. Stat. 2010, 6, 65–76.
80. Bota, M. Dynamical Aspects in the Theory of Multivalued Operators; Cluj University Press: Cluj-Napoka,

Romania, 2010.
81. Bota, M.; Molnár, A.; Varga, C. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory

2011, 12, 21–28.
82. Bota, M.; Karapınar, E. A note on “Some results on multi-valued weakly Jungck mappings in b-metric space”.

Cent. Eur. J. Math. 2013, 11, 1711–1712. [CrossRef]
83. Karapınar, M.B.E.; Te, O.M.S. Ulam-Hyers stability for fixed point problems via α− φ-contractive mapping

in b-metric spaces. Abstr. Appl. Anal. 2013, 2013, 855293.
84. Bota, M.; Chifu, C.; Karapınar, E. Fixed point theorems for generalized (alpha-psi)-Ciric-type contractive

multivalued operators in b-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 1165–1177. [CrossRef]
85. Bourbaki, N. Topologie Générale; Herman: Paris, France, 1974.
86. Caristi, J. Fixed point theorems for mapping satisfying inwardness conditions. Trans. Am. Math. Soc. 1976,

215, 241–251. [CrossRef]
87. Chen, C.M.; Abkar, A.; Ghods, S.; Karapınar, E. Fixed Point Theory for the α-Admissible Meir-Keeler Type

Set Contractions Having KKM* Property on Almost Convex Sets. Appl. Math. Inf. Sci. 2017, 11, 171–176.
[CrossRef]

88. Ding, H.S.; Li, L. Coupled fixed point theorems in partially ordered cone metric spaces. Filomat 2011,
25, 137–149. [CrossRef]

89. Gulyaz, S.; Karapınar, E.; Erhan, I.M. Generalized α-Meir-Keeler Contraction Mappings on Branciari b-metric
Spaces. Filomat 2017, 31, 5445–5456. [CrossRef]

90. Gulyaz, S.; Karapınar, E. Coupled fixed point result in partially ordered partial metric spaces through implicit
function. Hacet. J. Math. Stat. 2013, 42, 347–357.

91. Gulyaz, S.; Karapınar, E.; Rakocevic, V.; Salimi, P. Existence of a solution of integral equations via fixed point
theorem. J. Inequal. Appl. 2013, 2013, 529. [CrossRef]

92. Gulyaz, S.; Karapınar, E.; Yuce, I.S. A coupled coincidence point theorem in partially ordered metric spaces
with an implicit relation. Fixed Point Theory Appl. 2013, 2013, 38. [CrossRef]
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Abstract: Some well known results from the existing literature are extended and generalized via new
contractive type mappings in fuzzy metric spaces. A non trivial supporting example is also provided
to demonstrate the validity of the obtained results.
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1. Introduction

The Banach contraction principle [1] plays an important role in the study of nonlinear equations
and is one of the most useful mathematical tools for establishing the existence and uniqueness of
a solution of an operator equation Tx = x. Many researchers have extended and generalized this
principle in different spaces such as b-metric spaces, vector valued metric spaces, G-metric spaces,
partially ordered complete metric spaces, cone metric spaces etc. Zadeh [2] introduced the notions
of fuzzy logic and fuzzy sets. With this introduction, fuzzy mathematics began to evolve. Kramosil
and Michalek [3] initiated the concept of fuzzy metric space as a generalization of the probabilistic
metric space.

Fixed point theory in fuzzy metric space has been an attractive area for researchers. Heilpern [4]
introduced fuzzy mappings and proved the fixed point theorem for such mappings. Grabiec [5]
defined complete fuzzy metric space ( G-complete fuzzy metric space) and extended the Banach fixed
point theorem to fuzzy metric space (in the sense of Kramosil and Michalek). Besides the extension of
the illustrious Banach contraction principle, several results concerning fixed point were established in
G-complete fuzzy metric spaces (see, e.g, [6]). Gregori and Sapena [6] defined fuzzy contraction and
established a fixed point result in fuzzy metric space in the sense of George and Veeramani. Afterwards
many fixed point results were established for complete fuzzy metric spaces introduced by George and
Veeramani [7], called M-complete fuzzy metric.

Gopal et al. [8] proposed the notion of α-φ-fuzzy contractive mapping and proved some fixed
point results in G-complete fuzzy metric spaces in the sense of Grabiec. In this paper, we propose the
notion of α-�-fuzzy contractive mapping and establish some fixed point results for such mappings.
Our work generalizes several corresponding results given in the literature, in particular, the Grabiec
fixed point theorem is extended. A supporting example is also given.

2. Preliminaries

In this section we recall some basic definitions which will be needed in the sequel.
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Definition 1 ([9]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] satisfying conditions (1)–(4) is called
continuous t-norm:

1. ∗ is associative and commutative,
2. ∗ is continuous,
3. 1 ∗ r = r for all r ∈ [0, 1],
4. if r ≤ s and w ≤ z then r ∗ w ≤ s ∗ z for all r, s, w, z ∈ [0, 1].

α ∗L β = max{α + β− 1, 0}, called Lukasievicz t-norm,
α ∗P β = αβ, called product t-norm, and
α ∗M β = min{α, β}, minimum t-norm are examples of continuous t-norms.
Michalek and Kramosil [3] defined fuzzy metric space in the following way.

Definition 2. Having a nonempty set S, let ς be a fuzzy set on S2× [0, ∞) and * be a continuous t-norm. Then
the triplet (S, ς, ∗) is said to be fuzzy metric space if the following conditions are satisfied:

(K1) ς(r, s, 0) = 0;
(K2) ς(r, s, �) = 1 iff r = s for all r, s ∈ S and � > 0;
(K3) ς(r, s, �) = ς(s, r, �) for all � > 0;
(K4) ς(r, s, �) ∗ ς(s, w, t) ≤ ς(r, w, �+ t) for all r, s, w ∈ S and �, t > 0;
(K5) ς(r, s, �) : [0, ∞)→ [0, 1] is left continuous and non-decreasing function of �;
(K6) lim�→∞ ς(r, s, �) = 1, for all r, s, w ∈ S.

The value of ς(r, s, �) represents the degree of closeness between r and s with respect to � ≥ 0 .
Veeramani and George modified Kramosil’s definition of fuzzy metric space in the following way.

Definition 3 ([10]). The triplet (S, ς, ∗) is called fuzzy metric space, if S is a nonempty set, * is a continuous
t-norm and ς is a fuzzy set on S2 × [0, ∞) such that for all r, s, w ∈ S and �, t > 0 the following assertions
are satisfied.

(G1) ς(r, s, �) > 0,
(G2) ς(r, s, �) = 1 iff r = s,
(G3) ς(r, s, �) = ς(s, r, �),
(G4) ς(r, s, �) ∗ ς(s, w, t) ≤ ς(r, w, �+ t),
(G5) ς(r, s, .) : (0, ∞)→ [0, 1] is continuous.

Remark 1 ([11]). It should be noted that 0 < ς(r, s, �) < 1 if r �= s and � > 0.

Lemma 1 ([6]). ς(r, s, .) is nondecreasing for all r, s ∈ S.

Example 1 ([10]). For a metric space (S, d), let M : S2 × (0, ∞)→ [0, 1] be defined as

ς(r, s, �) =
k�n

k�n + md(r, s)
; ∀ r, s ∈ S and � > 0. where k, m, n ∈ R

+,

where ∗ is product t-norm (also true for minimum t-norm). Then ς is a fuzzy metric on S and is referred to as a
fuzzy metric induced by the metric d.

If we take k = m = n = 1, then the above fuzzy metric reduces to the well known standard fuzzy
metric. For further examples of fuzzy metrics see [12].

Definition 4 ([7]). In a fuzzy metric space (S, ς, ∗):

1. A sequence {rn} will converge to r ∈ S if limn→∞ ς(rn, r, �) = 1, ∀ � > 0.
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2. {rn}n∈N is said to be an M-cauchy sequence if for every positive real number ε ∈ (0, 1) and � > 0 there
exists nε ∈ N. such that ς(rn, rm, �) > 1− ε, ∀ m, n ≥ nε.

3. {rn}n∈N is called G-cauchy sequence if limn→∞ ς(rn+k, rn, �) = 1, for all � > 0 and each k ∈ N.

If every M-Cauchy sequence converges to some point of a fuzzy metric space (S, ς, ∗), then (S, ς, ∗)
is called M-complete. Similarly (S, ς, ∗) will be G-complete if every G-Cauchy sequence converges in
it. It is worth mentioning that G-completeness implies M-completeness.

3. Main Results

Definition 5. Let (S, ς, ∗) be a fuzzy metric space and Ω be the class of all mappings � : [0, 1]→ [1, ∞) such
that for any sequence {rn} ⊂ [0, 1], of positive real numbers rn → 1 ⇒ �(rn) → 1. Then a self mapping
F : S → S is said to be α-�-fuzzy contraction if there exists two functions α : S2 × (0, ∞)→ [0, ∞) and � ∈ Ω
such that

(ς(Fr, Fs, κ�))α(r,Fr,�)α(s,Fs,�) ≥ �(ς(r, s, �))ς(r, s, �), (1)

for all r, s ∈ S, � > 0 and κ ∈ (0, 1).

Now we have proved our first result.

Theorem 1. Let (S, ς, ∗) be a G-complete fuzzy metric space, F : S → S be α-�-fuzzy contraction where
α : S2 × (0, ∞)→ [0, ∞) is such that α(r, Fr, �) ≥ 1, for all r ∈ S � > 0.

Then F has a unique fixed point.

Proof. Define sequence {rn} by rn+1 = Frn, n ∈ N∪ {0} where r0 is an arbitrary but fixed element in
S. Then by the hypothesis it follows that α(rn, Frn, �) ≥ 1, for n ∈ N∪ {0}. If rn+1 = rn for any n ∈ N,
then rn is a fixed point of F. Therefore we assume that rn+1 �= rn for all n ∈ N, i.e., that no consecutive
terms of the sequence {rn} are equal.

Further, if rn = rm for some n < m, then as no consecutive terms of the sequence {rn} are equal
from (1), we have

ς(rn+1, rn+2, �) = ς(Frn, Frn+1, �)

> (ς(Frn, Frn+1, κ�))α(rn ,Frn ,�)α(rn+1,Frn+1,�)

≥ �(ς(rn, rn+1, �))ς(rn, rn+1, �) ≥ ς(rn, rn+1, �),

i.e., ς(rn, rn+1, �) < ς(rn+1, rn+2, �). Similarly one can show that

ς(rn, rn+1, �) < ς(rn+1, rn+2, �) < · · · < ς(rm, rm+1, �).

Now rn = rm implies that rn+1 = Frn = Frm = rm+1, and so, the above inequality yields a
contradiction. Thus we can suppose rn �= rm for all distinct m, n ∈ N. Using (1), we get

ς(rn, rn+1, κ�) ≥ (ς(Frn−1, Frn, κ�))α(rn−1,Frn−1,�)α(rn ,Frn ,�)

≥ �(ς(rn−1, rn, �))ς(rn−1, rn, �) ≥ ς(rn−1, rn, �).

Therefore

ς(rn, rn+1, κ�) ≥ ς(rn−1, rn, �). (2)
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Continuing in this manner, one can conclude by simple induction that

ς(rn, rn+1, κ�) ≥ ς(r0, r1,
�

κn−1 ). (3)

Let q be a positive integer, then using (K4), we have

ς(rn, rn+q, �) ≥ ς(rn, rn+1,
�

q
) ∗ ς(rn+1, rn+2,

�

q
)

q︷ ︸︸ ︷∗ · · · · · · ∗ ς(rn+q−1, rn+q,
�

q
).

Using (3), we have

ς(rn, rn+q, �) ≥ ς(r0, r1,
�

qκn ) ∗ ς(r0, r1,
�

qκn+1 )

q︷ ︸︸ ︷∗ · · · · · · ∗ ς(r0, r1,
�

qκn+q−1 ).

For n → ∞, the above inequality becomes

lim
n→∞

ς(rn, rn+q, �) = 1.

Hence {rn} is G-cauchy. Therefore there will be some w ∈ S such that rn → w as n → ∞, that is
limn→∞ ς(rn, w, �) = 1 for each � > 0.
Now using (K4) and (1) we have

ς(Fw, w, �) ≥ ς(Fw, Frn,
�

2
) ∗ ς(rn+1, w,

�

2
)

≥ ς(Fw, Frn,
�

2
)α(w,Fw,�)α(rn ,Frn ,�) ∗ ς(rn+1, w,

�

2
)

≥ �(ς(w, rn,
�

2
))ς(w, rn,

�

2
) ∗ ς(rn+1, w,

�

2
)

≥ ς(w, rn,
�

2
) ∗ ς(rn+1, w,

�

2
)→ 1 ∗ 1 = 1.

Thus Fw = w. To show uniqueness, let w and z be two distinct fixed points of F. That is w = Fw �=
Fz = z. Then for all � > 0, 0 < ς(w, z, �) = ς(Fw, Fz, �) < 1. Therefore using (1), we have

1 > ς(w, z, �) = ς(Fw, Fz, �) ≥ (ς(Fw, Fz, �))α(w,Fw,�)α(z,Fz,�)

≥ �(ς(w, z,
�

κ
))ς(w, z,

�

κ
) ≥ ς(w, z,

�

κ
).

Applying (1) repeatedly, we have 1 > ς(w, z, �) ≥ ς(w, z, �
κ ) ≥ ς(w, z, �

κ2 ) ≥ · · · ≥ ς(w, z, �
κn ).

Letting n → ∞, we have 1 ≤ ς(w, z, �) < 1. Which is a contradiction. Hence w = z.

Theorem 2. Let(S, ς, ∗) be a G-complete fuzzy metric space , F : S → S be a mapping. If there exists two
mappings α : S2 × (0, ∞)→ [0, ∞) and � ∈ Ω such that α(r, Fr, �) ≥ 1, for all r ∈ S,� > 0 and

2ς(Fr,Fs,κ�) ≥ (α(r, Fr, �)α(s, Fs, �) + 1)�(ς(r,s,�))ς(r,s,�) (4)

for all r, s ∈ S, 0 < κ < 1 and � > 0, then F has a unique fixed point.

Proof. Let r0 be an arbitrary element in S. Set rn+1 = Frn, n ∈ N. Then by the hypothesis of the
theorem it follows that α(rn, Frn, �) ≥ 1, where n ∈ N ∪ {0}. If rn+1 = rn for any n ∈ N, then rn is a
fixed point of F. Therefore we assume that rn+1 �= rn for all n ∈ N, i.e., that no consecutive terms of
the sequence {rn} are equal.
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Further, if rn = rm for some n < m, then as no consecutive terms of the sequence {rn} are equal
from (4), we have

2ς(rn+1,rn+2,�) = 2ς(Frn ,Frn+1,�)

> 2ς(Frn ,Frn+1,κ�)

≥ (α(rn, rn+1, �)α(rn+1, rn+2, �) + 1)�((ς(rn ,rn+1,�))ς(rn ,rn+1,�)

> 2ς(rn ,rn+1,�),

i.e., ς(rn, rn+1, �) < ς(rn+1, rn+2, �). Similarly one can show that

ς(rn, rn+1, �) < ς(rn+1, rn+2, �) < · · · < ς(rm, rm+1, �).

Now rn = rm implies that rn+1 = Frn = Frm = rm+1, and so, the above inequality yields a
contradiction. Thus we can suppose rn �= rm for all distinct m, n ∈ N. Using (4), we get

2ς(rn ,rn+1,κ�) = 2(ς(Frn−1,Frn ,κ�))

≥ (α(rn−1, rn, �)α(rn, rn+1, �) + 1)�((ς(rn−1,rn ,�))ς(rn−1,rn ,�)

≥ 2�(ς(rn−1,rn ,�))ς(rn−1,rn ,�).

Therefore

ς(rn, rn+1, κ�) ≥ �(ς(rn−1, rn, �))(ς(rn−1, rn, �)) (5)

⇒ ς(rn, rn+1, κ�) ≥ ς(rn−1, rn, �).

Continuing in this manner one can conclude, by simple induction, that

ς(rn, rn+1, κ�) ≥ ς(r0, r1,
�

κn−1 ). (6)

Using (K4), we have for any positive integer q,

ς(rn, rn+q, �) ≥ ς(rn, rn+1,
�

q
) ∗ ς(rn+1, rn+2,

�

q
)

q︷ ︸︸ ︷∗ · · · · · · ∗ ς(rn+q−1, rn+q,
�

q
).

Using (6), we have

ς(rn, rn+q, �) ≥ ς(r0, r1,
�

qκn ) ∗ ς(r0, r1,
�

qκn+1 )

q︷ ︸︸ ︷∗ · · · · · · ∗ ς(r0, r1,
�

qκn+q−1 ).

For n → ∞ the above inequality gives

lim
n→∞

ς(rn, rn+q, �) = 1.

Hence {rn} is G-cauchy. As S is complete, there will be w ∈ S such that rn → w as n → ∞, that is
limn→∞ ς(rn, w, �) = 1 for each � > 0.
Using (4) we have

2ς(Fw,rn+1,κ�) = 2(ς(Fw,Frn ,κ�)) ≥ (α(w, Fw, �)α(rn, Frn, �) + 1)�((ς(w,rn ,�))(ς(w,rn ,�)

≥ 2�((ς(w,rn ,�))(ς(w,rn ,�).
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This implies

ς(Fw, rn+1, κ�) ≥ �((ς(w, rn, �))(ς(w, rn, �). (7)

Using (K4) and (7) we get

ς(Fw, w, κ�) ≥ ς(Fw, rn+1, κ
�

2
) ∗ ς(w, rn+1, κ

�

2
)

≥ �(ς(w, rn,
�

2
))ς(w, rn,

�

2
) ∗ ς(w, rn+1, κ

�

2
)

≥ ς(w, rn,
�

2
) ∗ ς(w, rn+1, κ

�

2
).

For n → ∞ the above inequality gives

lim
n→∞

ς(Fw, w, κ�) = 1 ⇒ Fw = w.

To prove uniqueness of the fixed point, assume w and z be two distinct fixed points of F. That is
w = Fw �= Fz = z. Then for all � > 0, 0 < ς(w, z, �) = ς(Fw, Fz, �) < 1. Therefore using (4), we have

2 > 2ς(w,z,�) = 2ς(Fw,Fz,�)

≥ (α(w, Fw,
�

κ
)α(z, Fz,

�

κ
) + 1)�(ς(w,z, �κ ))ς(w,z, �κ )

≥ 2�(ς(w,z, �κ ))ς(w,z, �κ )

≥ 2ς(w,z, �κ ).

which implies 1 > ς(w, z, �) ≥ ς(w, z, �
κ ). With repeated use of (4), it turns out that

1 > ς(w, z, �) ≥ ς(w, z,
�

κ
) ≥ ς(w, z,

�

κ2 ) ≥ · · · ≥ ς(w, z,
�

κn ).

For n → ∞, we get 1 ≤ ς(w, z, �) < 1. Which is a contradiction. Therefore w = z.

Theorem 3. Let(S, ς, ∗) be a G-complete fuzzy metric space, F : S → S be a mapping. If there exist two
mappings α : S2 × (0, ∞)→ [0, ∞) and � ∈ Ω such that α(r, Fr, �) ≥ 1, for all r ∈ S,� > 0 and

ς(Fr, Fs, κ�)

α(r, Fr, �)α(s, Fs, �)
≥ �(ς(r, s, �))ς(r, s, �) (8)

for all r, s ∈ S, 0 < κ < 1 and � > 0, then F has a unique fixed point.

Proof. Set rn+1 = Frn, n = 0, 1, · · · , for a fixed element r0 ∈ S. By hypothesis of the theorem we have
α(rn, Frn, �) = α(rn, rn+1, �) ≥ 1 where n ∈ N ∪ {0}. Let rn+1 �= rn, for n ≥ 0. Otherwise rn is fixed
point of F and hence the result is proved. Further, if rn = rm for some n < m, then as no consecutive
terms of the sequence {rn} are equal from (8), we have

ς(rn+1, rn+2, �) = ς(Frn, Frn+1, �)

> ς(Frn, Frn+1, κ�) ≥ ς(Frn, Frn+1, κ�)

α((rn, rn+1)α(rn+1, rn+2, �)
≥ �(ς(rn, rn+1, �))ς(rn, rn+1, �)

> ς(rn, rn+1, �),
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i.e., ς(rn, rn+1, �) < ς(rn+1, rn+2, �). Similarly it can be proved that

ς(rn, rn+1, �) < ς(rn+1, rn+2, �) < · · · < ς(rm, rm+1, �).

Now rn = rm implies that rn+1 = Frn = Frm = rm+1, and so, the above inequality yields a
contradiction. Thus we can suppose rn �= rm for all distinct m, n ∈ N. Using (8), we have

ς(rn, rn+1, κ�) = ς(Frn−1, Frn, κ�) ≥ ς(Frn−1, Frn, κ�)

α(rn−1, rn)α(rn, rn+1, �)
≥ �(ς(rn−1, rn, �))ς(rn−1, rn, �).

Therefore

ς(rn, rn+1, κ�) ≥ �(ς(rn−1, rn, �))(ς(rn−1, rn, �)) (9)

⇒ ς(rn, rn+1, κ�) ≥ ς(rn−1, rn, �).

Following the related arguments in the proof of Theorem (1), we conclude that {rn} is a G-cauchy
sequence. Due to the completeness of S, there will be w ∈ S such that rn → w as n → ∞, that is
limn→∞ ς(rn, w, �) = 1 for each � > 0.

Then using (K4) and (8) we have

ς(Fw, w, κ�) ≥ ς(Fw, rn+1, κ
�

2
) ∗ ς(w, rn+1, κ

�

2
)

= ς(Fw, Frn, κ
�

2
) ∗ ς(w, rn+1, κ

�

2
)

≥ ς(Fw, Frn, κ �
2 )

α(w, Fw, �)α(rn, rn+1, �)
∗ ς(w, rn+1, κ

�

2
)

≥ �((ς(w, rn,
�

2
))(ς(w, rn,

�

2
) ∗ ς(w, rn+1, κ

�

2
)

≥ ς(w, rn,
�

2
) ∗ ς(w, rn+1, κ

�

2
).

For n → ∞ the above inequality gives

lim
n→∞

ς(Fw, w, κ�) = 1 ⇒ Fw = w.

For uniqueness, assume w and z be two distinct fixed points of F. That is w = Fw �= Fz = z. Then for
all � > 0, 0 < ς(w, z, �) = ς(Fw, Fz, �) < 1. Therefore using (8), we have

1 > ς(w, z, �) = ς(Fw, Fz, �)

≥ ς(Fw, Fz, �)
α(w, Fw, �)α(z, Fz, �)

≥ �(ς(w, z,
�

κ
))ς(w, z,

�

κ
)) ≥ ς(w, z,

�

κ
).

Using (8), it can be shown that 1 > ς(w, z, �) ≥ ς(w, z, �
κ ) ≥ ς(w, z, �

κ2 ) ≥ · · · ≥ ς(w, z, �
κn ).

Letting n → ∞, we get 1 ≤ ς(w, z, �) < 1, a contradiction. Hence w = z.

By taking α(r, s, �) = 1 and �(t) = 1 in Theorems (1), (2) and (3) , we have the following corollary
which is actually the fixed point result established by Grabiec [5].
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Corollary 1. Let (S, ς, ∗) be a G-complete fuzzy metric space and F : S → S be be a self mapping such that

ς(Fr, Fs, κ�) ≥ ς(r, s, �) (10)

for all r, s ∈ S, � > 0 and κ ∈ (0, 1).
Then F has a unique fixed point.

4. Example

In this section we present a supporting example to demonstrate the validity of our results.

Example 2. Let S = [0, ∞), r ∗ s = rs for all r, s ∈ [0, 1] and ς(r, s, �) = e
−|u−v|

� for all r, s ∈ S and t > 0.
Then (S, ς, ∗) is a complete fuzzy metric space. Let F : S → S be defined as

Fu =

{
u
9 , if r ∈ [0, 1],
√

u if r ∈ (1, ∞).

Further, define α : S2 × (0, ∞)→ [0, ∞) as

α(r, s, �) =

⎧⎪⎪⎨⎪⎪⎩
√

2 if r, s ∈ [0, 1],

( 3
2 )

0.25 if r, s ∈ (1, ∞),

0 otherwise.

Also for all r, s ∈ S and � > 0, we have α(r, Fr, �) ≥ 1, and

(ς(Fr, Fv, �))α(r,Fr,�)α(s,Fs,�) ≥ e
−|u−v|

4�

= (ς(r, s, �))−
3
4 ς(r, s, �).

That is F is α-�-fuzzy contraction with �(t) = t−
3
4 , where t ∈ [0, 1].

Thus all conditions of Theorem (1) are fulfilled. Obviously 0 is a unique fixed point of F.

Similarly supporting examples for other results do exist and can be constructed easily.

5. Conclusions

We proposed the concept of the α-�-Fuzzy Contraction and some new types of fuzzy contractive
mappings. We proved three theorems which ensure the existence and uniqueness of fixed points of
these new types of contractive mappings. The new concepts may lead to further investigation and
applications. For example, using the recent ideas in the literature, it is possible to extend our results to
the case of coupled fixed points in fuzzy metric spaces.
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Abstract: We first provide a best proximity point result for quasi-noncyclic relatively nonexpansive
mappings in the setting of dualistic partial metric spaces. Then, those spaces will be endowed
with convexity and a result for a cyclic mapping will be obtained. Afterwards, we prove a best
proximity point result for tricyclic mappings in the framework of the newly introduced extended
partial Sb-metric spaces. In this way, we obtain extensions of some results in the literature.

Keywords: best proximity point; dualistic partial metric space; tricyclic mappings; extended partial
Sb-metric space

1. Introduction

Whether a self mapping has fixed points or not is a problem that has been exhaustively studied
ever since Banach stated his contraction principle. In the beginning of the current century, an issue of
equivalent importance to that of the fixed point problem appeared: Let T be a cyclic (resp. noncyclic)
mapping on A ∪ B where A and B are nonempty subsets of a metric space (X, d) , that is, T (A) ⊆ B
and T (B) ⊆ A resp. T (A) ⊆ A and T (B) ⊆ B). The equation Tx = x may not possess a soltution,
in this case, we wish to determine an element (resp. a pair) which is as close to its image as possible,
i.e., an element x ∈ A ∪ B such that d (x, Tx) = dist (A, B) (resp. a pair (x, y) ∈ A × B of fixed
points such that d (x, y) = dist (A, B)). Such a point (resp. pair) is called a best proximity point (resp.
pair). The problem of best approximation for cyclic and noncyclic mappings attracted a good many
authors and many pertinent results were obtained in different frameworks [1–7].

In 2011, the notion of P-property was introduced in [8] and best proximity point results for weakly
contractive non-self-mappings were obtained. Two years later, using the aforementioned property,
Abkar and Gabaleh [9] proved that some existence and uniqueness results in best proximity point
theory can be acquired from existing results in the fixed point theory. In the same year, Almeida,
Karapinar and Sadarangani [10] showed that best proximity point results can be obtained from fixed
point results using only the weaker condition of weak P-property. In 2016, Ref. [11] presented a new
approach to best proximity point results by means of the so-called simulation functions.

In 2017, Sabar, Aamri and Bassou [12] introduced the class of tricyclic mappings and best proximity
points thereof. Let A, B and C be nonempty subsets of a metric space (X, d) . A mapping T : A ∪
B ∪ C −→ A ∪ B ∪ C is said to be tricyclic if T (A) ⊆ B, T (B) ⊆ C and T (C) ⊆ A, and a best
proximity point for T is an element x ∈ A ∪ B ∪ C such that D

(
x, Tx, T2x

)
= dist (A, B, C) where

D (x, y, z) = d (x, y) + d (y, z) + d (z, x) and

dist (A, B, C) = inf {D (x, y, z) : x ∈ A, y ∈ B and z ∈ C} .
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This paper aims to establish best proximity point results for subclasses of cyclic, noncyclic and
tricylic mappings in the framework of partial dualistic metric spaces and the lately introduced extended
partial Sb-metric spaces [13].

2. Best Proximity Point Results in Dualistic Partial Metric Spaces

This section deals with cyclic and noncyclic mappings in dualistic partial metric spaces; these
spaces were first introduced as follows.

Definition 1 ([14]). Let X be a nonempty set. A function D : X × X −→ R is called a dualistic partial
metric if

(D1) x = y if and only if D (x, x) = D (y, y) = D (x, y) ,
(D2) D (x, x) ≤ D (x, y) ,
(D3) D (x, y) = D (y, x) ,
(D4) D (x, y) ≤ D (x, z) +D (z, y)−D (z, z) ,
for all x, y, z ∈ X.

Complying with [14],D generates a T0 topology on X, denoted by τ (D) in which the open balls are

{BD (x, ε) : x ∈ X, ε > 0} where BD (x, ε) = {y ∈ X : D (x, y) < ε +D (x, x)} .

Now, we are able to introduce the notions of convergence and Cauchy sequences in the setting of
dualistic partial metric spaces.

Definition 2 ([15]). A sequence (xn) in (X,D) converges to a point x if and only if D (x, x) =

limn−→∞D (xn, x) and it is a Cauchy sequence if limn−→∞D (xn, xm) exists and it is finite.

To present our results, we need to mention some basic concepts related to noncyclic mappings.
In this section, unless stated otherwise, A and B are nonempty subsets of a dualistic partial metric
space (X,D) and T : A ∪ B −→ A ∪ B is a noncyclic mapping:

FA (T) = {x ∈ A : Tx = x} and FB (T) = {y ∈ B : Ty = y} ,

dist (A, B) = inf {D (x, y) : x ∈ A, y ∈ B } ,

A0 = {x ∈ A : D (x, y) = dist (A, B) for some y ∈ B} ,

B0 = {y ∈ B : D (x, y) = dist (A, B) for some x ∈ A} .

Definition 3. The mapping T is said to be relatively nonexpansive if

D (Tx, Ty) ≤ D (x, y) for all x ∈ A and y ∈ B.

In addition, a pair (x, y) ∈ A× B is said to be a best proximity pair if

x ∈ FA (T) , y ∈ FB (T) and D (x, y) = dist (A, B) .

In [16], Gabeleh and Otafudu introduced the class of quasi-noncyclic relatively nonexpansive
mappings as follows.

Definition 4. Suppose A0 �= ∅. The mapping T is said to be quasi-noncyclic relatively nonexpansive mapping
provided that

(
FA0 (T) , FB0 (T)

)
�= ∅ and, for all (a, b) ∈ FA0 (T)× FB0 (T) , we have{
D (Tx, b) ≤ D (x, b) for all x ∈ A,
D (a, Ty) ≤ D (a, y) for all y ∈ B.
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The class of quasi-noncyclic relatively nonexpansive mappings is not a subclass of noncyclic
relatively nonexpansive mappings. To check that out and for more constructions on quasi-noncyclic
relatively nonexpansive mappings, we refer the reader to [17,18].

Definition 5. A is said to be approximatively compact with respect to B if and only if every sequence (xn) in A
such that D(y, xn) −→ D(y, A) for some y ∈ B has a convergent subsequence.

Remark 1.

• If A is a compact set, then it is approximatively compact with respect to B.
• If A ∩ B �= ∅, then A is approximatively compact with respect to A ∩ B. Indeed, let (xn) in A such that

D(y, xn) −→ D(y, A) for some y ∈ A ∩ B. Since D(y, y) ≤ D(y, x) for all x ∈ X, D(y, A) = D(y, y)
and that means (xn) converges to y.

Definition 6 ([19]). The pair (A, B) is called sharp (resp. semi-sharp) proximal if and only if, for each x in A
and y in B, there exist a unique (resp. at most one) element x′ in B and a unique element y′ in A such that

D
(
x, x′

)
= D

(
y′, y

)
=dist (A, B) .

Now, we’re entitled to state our first main result.

Theorem 1. Let (X,D) be a dualistic partial metric space such that D is continuous and let A, B be nonempty
subsets of X such that A0 �= ∅, B is approximatively compact with respect to A and the pair (A, B) is
semi-sharp proximal. Then„ each quasi-noncyclic relatively nonexpansive mapping defined on A ∪ B possesses a
best proximity pair.

Proof. Let (xn) be a sequence of elements of A0 which converges to some x ∈ FA0 (T) . ( The fact that
FA0 (T) is nonempty guarantees the existence of such a sequence ). Choose a point yn in B0 such that

D (xn, yn) = dist (A, B) for all n ∈ N.

Now, we get

D (x, yn) ≤ D (x, xn) +D (xn, yn)−D (xn, xn)

= D (x, xn) + dist (A, B)−D (xn, xn)

≤ D (x, xn) + dist (x, B)−D (xn, xn) .

Taking into account that D is a continuous mapping on X× X, we get

D (xn, xn) −→ D (x, x) as n −→ ∞.

Therefore, letting n −→ ∞, we obtain D (x, yn) −→ dist (x, B) . The hypothesis that B is approximatively
compact with respect to A implies the existence of a subsequence

(
ynk

)
of (yn) and a y ∈ B such that

ynk −→ y as k −→ ∞. Hence, dist (A, B) = D
(
xnk , ynk

)
−→ D (x, y) , which means

D (x, y) = dist (A, B) .

Since T is quasi-noncyclic relatively nonexpansive,

D (x, Ty) ≤ D (x, y) = dist (A, B) .

Now, we use the assumption that the pair (A, B) is semi-sharp proximal to conclude that y is a fixed
point and therefore (x, y) is a best proximity pair.
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Example 1. Let X = R2 with the dualistic partial metric D ((x, y) , (x′, y′)) = max {x, x′} +

max {y, y′} . Let A = {0} × [0, ∞) and B = {1} × [0, ∞) . Then, A0 = {(0, 0)} and
dist (A, B) = 1. Moreover, the pair (A, B) is semi-sharp proximal. Let T : A ∪ B −→ A ∪ B be a
noncyclic mapping such that T (0, x) = (0, x/2) and T (1, x) = (1, x/2) for all x ∈ [0, ∞) . Clearly, T is a
quasi-noncyclic relatively nonexpansive and its best proximity pair is ((0, 0) , (1, 0)) .

As a special case of the previous theorem, we obtain the following result which was proven in [20].

Corollary 1. (Theorem 1 of [20]) Let (X, d) be a complete metric space and A, B be nonempty subsets of X such
that A is closed and A0 �= ∅. Suppose that B is approximatively compact with respect to A and that T : A ∪ B
−→ A ∪ B is a quasi-noncyclic mapping such that T| A is a contraction in the sense of Banach, T(A0) ⊆ A0

and the pair (A, B) is semi-sharp proximal. Then, T has a best proximity pair.

The notion of convexity in metric spaces was firstly introduced in [21] and the exact same notion
can be given in dualistic partial metric spaces.

Definition 7. A mapping W : X × X × [0, 1] −→ X is said to be a convex structure on X if, for each
(x, y) ∈ X× X and λ ∈ [0, 1] ,

D (u, W (x, y, λ)) ≤ λD (u, x) + (1− λ)D (u, y) for all u ∈ X.

In addition, (X,D, W) is said to be a convex dualistic partial metric space.

Definition 8. A subset K of a convex dualistic partial metric space (X,D, W) is said to be convex if
W (x, y, λ) ∈ K for all x, y ∈ K and λ ∈ [0, 1] .

The following propositions are immediate.

Proposition 1 ([21]). Let {Kα}α∈A be a family of convex subsets of the convex dualistic partial metric space X;
then, ∩α∈AKα is also a convex subset of X.

Proposition 2. The closed ball centered at a ∈ X with radius r ∈ R is a convex subset of X.

Proof. Let x, y ∈ B (a, r) and λ ∈ [0, 1] ,

D (a, W (x, y, λ)) ≤ λD (a, x) + (1− λ)D (a, y)

≤ λ (r +D (a, a)) + (1− λ) (r +D (a, a))

≤ r +D (a, a) .

In addition, this means that the closed ball is convex.

Definition 9. A convex dualistic partial metric space (X,D, W) is said to verify property (C) if every bounded
increasing net of nonempty, closed and convex subsets of X is of nonempty intersection.

A weakly compact convex subset of a Banach space has property (C) for instance. For more
examples, we allude to [22].

Let A and B be nonempty subsets of a convex dualistic partial metric space (X,D, W). We set

δ (A, B) = sup {D (x, y) : x ∈ A and y ∈ B } ,

δ(x) (B) = sup {D (x, y) : y ∈ B} for all x ∈ A.
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By con (A), we denote the closed and convex hull of A and it is defined by

con (A) = ∩ {C : C is a closed and convex subset of X such that C ⊇ A} .

The following lemma is used in the proof of our second main result of this section.

Lemma 1. Let (A, B) be a nonempty, bounded, closed, and convex pair in a convex dualistic partial metric
space (X,D, W). Suppose that T : A ∪ B → A ∪ B is a cyclic mapping. If X has the property (C), then there
exists a pair (K1, K2) ⊆ (A, B) which is maximal with respect to being nonempty, closed and convex such that
T is cyclic on K1 ∪ K2. Furthermore,

co (T (K1)) = K2 and co (T (K2)) = K1.

Proof. The set of all nonempty, closed, and convex pairs (C, D) ⊆ (A, B) such that T is cyclic on C ∪D
is partially ordered by reverse inclusion, i.e.,

(C1, D1) ≤ (C2, D2)⇐⇒ (C2, D2) ⊆ (C1, D1) .

For each increasing chain {(Cα, Dα)}α, we set C := ∩Cα and D := ∩Dα. Since X has the property (C)
and from the fact that every intersection of convex subsets is a convex subset, (C, D) is a nonempty,
closed and convex pair. In addition,

T (C) ⊆ T (∩Cα) ⊆ ∩T (Cα) ⊆ ∩Dα = D.

Similarly, T (D) ⊆ C, which means that T is cyclic on C ∪ D. Therefore, every increasing chain is
bounded above and Zorn’s Lemma assures the existence of the maximal pair (K1, K2) . Now, we note
that the pair (co (T (K2)) , co (T (K1))) ⊆ (K1, K2) is nonempty, closed and convex. We also have

T (co (T (K2))) ⊆ T (K1) ⊆ co (T (K1)) .

Similarly, T (co (T (K1))) ⊆ co (T (K2)) , that is, T is cyclic on co (T (K2))∪ co (T (K1)) . The maximality
of (K1, K2) finishes the proof.

Theorem 2. Let (A, B) be a nonempty, bounded, closed, and convex pair in a convex dualistic partial metric
space (X,D, W) such that D is continuous and D (x, x) ≤ 0 for all x ∈ A ∪ B. Let (K1, K2) ⊆ (A, B) be a
maximal pair with respect to being nonempty, closed and convex such that T is cyclic on K1 ∪ K2. Suppose that
T : A ∪ B → A ∪ B is a cyclic. Suppose that, for all x ∈ K1 and y ∈ K2,

D (Tx, Ty) ≤ Λ := {kδ (K1, K2) + (1− k) dist (A, B)}+ min {D (Tx, Tx) ,D (Ty, Ty)} .

If X has the property (C), then T has a best proximity pair.

Proof. Let x ∈ K1 and y ∈ K2; from the inequality fulfilled by the mapping T, we get Ty ∈ B (Tx, Λ)

and then
T (K2) ⊆ B (Tx, Λ) ;

thus,
K1 = co (T (K2)) ⊆ B (Tx, Λ) ,

which means,
D (Tx, z) ≤ Λ +D (Tx, Tx) , for all z ∈ K1,
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that is, δTx (K1) ≤ Λ +D (Tx, Tx) and similarly we get δTy (K2) ≤ Λ +D (Ty, Ty) . Put

L1 := {x ∈ K1 : δx (K2) ≤ Λ +D (x, x)} and L2 :=
{

y ∈ K2 : δy (K1) ≤ Λ +D (y, y)
}

.

Clearly, (L1, L2) is a pair of nonempty, closed and convex subsets such that T is cyclic on L1 ∪ L2.
We take account of the maximilaty of (K1, K2) to conclude that L1 = K1 and L2 = K2—from which
we get

δx (K2) ≤ rδ (K1, K2) + (1− r) dist (A, B) +D (x, x) for all x ∈ K1.

Hence,
δ (K1, K2) = dist (A, B) .

Consequently,

dist (A, B) ≤ D (p, Tp) ,D (Tq, q) ≤ δ (K1, K2) = dist (A, B) , for all (p, q) ∈ K1 × K2.

In addition, that is the desired result.

The next corollary follows immediately.

Corollary 2 ([1]). Let (A, B) be a nonempty, bounded, closed, and convex pair in a convex metric space
(X, d, W). Suppose that T : A ∪ B → A ∪ B is a generalized cyclic contraction. If X has the (C) property, then
T has a best proximity pair.

3. Tricyclic Mappings in Convex Extended Partial Sb Metric Spaces

Lately, extended partial Sb-metric spaces were introduced as comes

Definition 10 ([7]). Let X be a nonempty subset and let θ : X3 −→ [1, ∞) . If a mapping S
θ

: X3 −→ [0, ∞) satisfies
1. x = y = z if and only if S

θ
(x, y, z) = S

θ
(x, x, x) = S

θ
(y, y, y) = S

θ
(z, z, z) ,

2. S
θ
(x, x, x) ≤ S

θ
(x, y, z) ,

3. S
θ
(x, y, z) ≤ θ (x, y, z) [S

θ
(x, x, t) + S

θ
(y, y, t) + S

θ
(z, z, t)] ,

for all x, y, z, t ∈ X. Then, (X, S
θ
) is called an extended partial Sb-metric space.

Next, we introduce the notion of convexity in extended partial Sb-metric spaces.

Definition 11. Let (X, S
θ
) be an extended partial Sb-metric space. A mapping W : X× X× [0, 1] −→ X is

said to be a convex structure on X if, for each (x, y) ∈ X× X and λ ∈ [0, 1] ,

S
θ
(u, v, W (x, y, λ)) ≤ λS

θ
(u, v, x) + (1− λ) S

θ
(u, v, y) for all u, v ∈ X.

In addition, (X, S
θ
, W) is said to be a convex extended partial Sb-metric space.

It is easy to see that every convex metric space in the sense of [15] is a convex extended partial
Sb-metric space. Now, we present a yet stronger version of convexity.

Definition 12. Retaining the same notations as in the previous definition, W is said to be a double convex
structure on X if it is a convex structure and if, for each (x1, y1) , (x2, y2) ∈ X× X , λ ∈ [0, 1] and u ∈ X,

S
θ
(u, W (x1, y1, λ) , W (x2, y2, λ)) ≤ λS

θ
(u, x1, x2) + (1− λ) S

θ
(u, y1, y2) .

Example 2. Let (X, ‖.‖) be a normed linear space and S
θ

: X3 −→ [0, ∞) be defined as S
θ
(x, y, z) =

‖x− y‖ + ‖y− z‖ + ‖z− x‖ . Then, (X, S
θ
) is an extended partial Sb-metric space and the mapping W :
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X× X× [0, 1] −→ X defined by W (x, y, λ) = λx + (1− λ) y is a convex structure on X. Moreover, W is a
double convex structure. Indeed, fix (x1, y1) , (x2, y2) ∈ X× X, λ ∈ [0, 1] and u ∈ X, we have

S
θ
(u, W (x1, y1, λ) , W (x2, y2, λ)) = ‖u− λx1 − (1− λ) y1‖

+ ‖u− λx2 − (1− λ) y2‖
+ ‖λx1 + (1− λ) y1 − λx2 − (1− λ) y2‖

≤ λ ‖u− x1‖+ (1− λ) ‖u− y1‖
+λ ‖u− x2‖+ (1− λ) ‖u− y2‖
+λ ‖x1 − x2‖+ (1− λ) ‖y1 − y2‖

= λS
θ
(u, x1, x2) + (1− λ) S

θ
(u, y1, y2) .

From now on, (X, S
θ
, W) will denote a convex extended partial Sb-metric space.

Definition 13. A subset K of X is said to be convex if W (x, y, λ) ∈ K for all x, y ∈ X and λ ∈ [0, 1] .

Definition 14. For all x, y ∈ X and ε > 0, the ball of foci x and y, and of ray ε is given by

B (x, y, ε) = {z ∈ X : S
θ
(x, y, z) ≤ ε} .

The following propositions follow from the aforementioned definitions immediately.

Proposition 3 ([21]). Let {Kα}α be a family of convex subsets of the convex extended partial Sb-metric space
X, then ∩Kα is a convex subset of X as well.

Proposition 4. The balls B (x, y, ε) are convex subsets of X. Moreover, they are closed subsets whenever S
θ

is a
continuous mapping.

Proof. Let a, b ∈ B (x, y, ε) and λ ∈ [0, 1] .

S
θ
(x, y, W (a, b, λ)) ≤ λS

θ
(x, y, a) + (1− λ) S

θ
(x, y, b)

≤ λε + (1− λ) ε = ε.

Furthermore, B (x, y, ε) = T−1 ([0, ε]) where T (z) = S
θ
(x, y, z) for all z ∈ X. The balls B (x, y, ε) are

closed subsets if S
θ

is continuous.

Before getting to our main result of this section, we fix some notations. Let A, B and C be nonempty
subsets of (X, S

θ
, W) :

dist (A, B, C) = inf {S
θ
(x, y, z) : x ∈ A, y ∈ B and z ∈ C} ,

δ (A, B, C) = sup {S
θ
(x, y, z) : x ∈ A, y ∈ B and z ∈ C} ,

δ(x,y) (C) = sup {S
θ
(x, y, z) : z ∈ C} for all x ∈ A and y ∈ B.

Take note that extended partial Sb-metric spaces are, sort of, three-dimensional metric spaces and,
since a tricyclic mapping is defined on the union of three subsets, the definition of a best proximity
point for a tricylic mapping is naturally given by:

Definition 15. Let T : A ∪ B ∪ C −→ A ∪ B ∪ C be a tricyclic mapping where A, B and C are nonempty
subsets of (X, S

θ
) . A point x ∈ A ∪ B ∪ C is said to be a best proximity point for T provided that

S
θ

(
x, Tx, T2x

)
= dist (A, B, C) .
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Lemma 2. Let (A, B, C) be a nonempty, bounded, closed, and convex triad in X. Suppose that T : A ∪ B ∪
C −→ A ∪ B ∪ C is a tricyclic mapping. If X has the property (C), then there exists a triad (K1, K2, K3) ⊆
(A, B) which is maximal with respect to being nonempty, closed and convex such that T is tricyclic on K1 ∪ K2.
Furthermore,

co (T (K1)) = K2, co (T (K2)) = K3 and co (T (K3)) = K1.

Proof. Let Γ denote the set of all nonempty, closed, and convex triads (I, J, H) ⊆ (A, B, C) such that T
is tricyclic on I ∪ J ∪ H. Note that Γ is partially ordered by reverse inclusion, that is,

(I1, J1, H1) ≤ (I2, J2, H2)⇐⇒ (I2, J2, H2) ⊆ (I1, J1, H1) .

Let {(Iα, Jα, Hα)}α be an increasing chain of Γ. Since X has the property (C) and from the fact that every
intersection of convex subsets is a convex subset, (∩Iα,∩Jα,∩Hα) is a nonempty, closed and convex
triad. In addition, the maximal triad (K1, K2, K3) is obtained as Zorn’s Lemma states. Now, the triad
(co (T (K3)) , co (T (K1)) , co (T (K2))) ⊆ (K1, K2, K3) is nonempty, closed and convex. We also have

T (co (T (K3))) ⊆ T (K1) ⊆ co (T (K1)) .

Similarly, we see that T is tricyclic on co (T (K3))∪ co (T (K1))∪ co (T (K3)) . The desired result follows
from the maximality of (K1, K2, K3).

Theorem 3. Let (A, B, C) be a nonempty, bounded, closed, and convex triad in X such that S
θ

is continuous and
W is a double convex strusture. Let (K1, K2, K3) ⊆ (A, B, C) be a maximal triad with respect to being nonempty,
closed and convex such that T is tricyclic on K1 ∪ K2 ∪ K3. Suppose that T : A ∪ B ∪ C −→ A ∪ B ∪ C is a
tricyclic mapping such that

S
θ
(Tx, Ty, Tz) ≤ Λ := kδ (K1, K2, K3) + (1− k) dist (A, B, C)

for all (x, y, z) ∈ K1 × K2 × K3. If X has the property (C) then T has a best proximity triad.

Proof. Let x ∈ K1, y ∈ K2; the inequality satisfied by the mapping T implies that Tz ∈ B (Tx, Ty, Λ)

for all z ∈ K3 and that means
T (K3) ⊆ B (Tx, Ty, Λ) .

Since S
θ

is continuous, B (Tx, Ty, Λ) is closed. Thus,

K1 = co (T (K3)) ⊆ B (Tx, Ty, Λ) .

Thus,
δ(Tx,Ty) (K1) ≤ Λ.

Put

L1 : =
{
(x, y) ∈ K1 × K2 : δ(x,y) (K3) ≤ Λ

}
,

L2 : =
{
(y, z) ∈ K2 × K3 : δ(y,z) (K1) ≤ Λ

}
,

L3 : =
{
(z, x) ∈ K3 × K1 : δ(z,x) (K2) ≤ Λ

}
.

Clearly, (L1, L2, L3) is a triad of nonempty, closed and convex subsets. Define

T̃ : (A× B) ∪ (B× C) ∪ (C× A) −→ (A× B) ∪ (B× C) ∪ (C× A)

(x, y) �−→ T̃ (x, y) = (Tx, Ty) .
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Since T is tricyclic on A∪ B∪C, T̃ is tricyclic on (A× B)∪ (B× C)∪ (C× A) . For all (x, y) ∈ K1× K2,
T̃ (x, y) = (Tx, Ty) ∈ L2, then T̃ (K1 × K2) ⊆ L2. Thus, T̃ is tricyclic on L1 ∪ L2 ∪ L3. Furthermore,
(K1 × K2, K2 × K3, K3 × K1) is maximal in

Γ̃ =

⎧⎪⎨⎪⎩
((I × J) , (J × H) , (H × I)) ⊆ ((A× B) , (B× C) , (C× A)) /
(I × J) , (J × H) and (H × I) are non-empty, bounded, closed
and convex with T̃ is tricyclic on (I × J) ∪ (J × H) ∪ (H × I)

⎫⎪⎬⎪⎭ ,

which is partially ordered by

((I1 × J1) , (J1 × H1) , (H1 × I1)) ≤̃ ((I2 × J2) , (J2 × H2) , (H2 × I2))⇐⇒

((I2 × J2) , (J2 × H2) , (H2 × I2)) ⊆ ((I1 × J1) , (J1 × H1) , (H1 × I1)) .

Therefore,
L1 = K1 × K2, L2 = K2 × K3 and L3 = K3 × K1.

Consequently, for all (x, y) ∈ K1 × K2,

δ(x,y) (K3)− kδ (K1, K2, K3) ≤ (1− k) dist (A, B, C) .

That is,
δ (K1, K2, K3) ≤ dist (A, B, C) .

Now, for all (p, q, r) ∈ K1 × K2 × K3, we get

dist (A, B, C) ≤ Sθ

(
p, Tp, T2 p

)
, Sθ

(
q, Tq, T2q

)
, Sθ

(
r, Tr, T2r

)
≤ δ (K1, K2, K3) ≤ dist (A, B, C) .

In addition, this is a best proximity triad.

As a particular case of the previous theorem, we get the following result.

Corollary 3 ([12]). Let A, B and C be nonempty, closed, bounded and convex subsets of reflexive Banach space
X, let T : A ∪ B ∪ C −→ A ∪ B ∪ C be a tricyclic contraction map i.e.,

D (Tx, Ty, Tz) ≤ kD (x, y, z) + (1− k) dist (A, B, C) for all (x, y, z) ∈ A× B× C,

where D (x, y, z) = ‖x− y‖+ ‖y− z‖+ ‖z− x‖ . Then, T has a best proximity triad.

4. Conclusions

In this work, we have provided two best approximation result for cyclic mappings in thesetting
of dualistic partial and convex, metric spaces. Next, we have provided best proximity point existence
result for a new class of tricyclic mappings. Our three results extend and improve some results in
the literature.
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Abstract: In this paper, by introducing the concept of generalized Ćirić-type weak (φg,R)-contraction,
we prove some common fixed point results in partial metric spaces endowed with binary relationR.
We also deduce some useful consequences showing the usability of our results. Finally, we present an
application to establish the solution of a system of integral equations.

Keywords: common fixed point; binary relation; preserving mapping; (φg,R)-contraction;
partial ordering

MSC: 54H25; 47H10

1. Introduction

With a view to enhance the domain of applicability, Matthews [1] initiated the idea of a partial
metric space by weakening the metric conditions and also proved an analogue of Banach contraction
principle in such spaces. Thereafter, many well-known results of metric fixed point theory were
extended to partial metric spaces (see [2–16] and references therein).

On the other hand, Turinici [17] initiated the idea of order theoretic metric fixed point results,
which was put in more natural and systematic forms by Ran and Reurings [18], Nieto and
Rodríguez-López [19,20], and some others. Very recently, Alam and Imdad [21] extended the Banach
contraction principle to complete metric space endowed with an arbitrary binary relation. This idea
has inspired intense activity in this theme, and by now, there exists considerable literature around this
result (e.g., [6,21–25]).

Proving new results in metric fixed point theory by replacing contraction conditions with a
generalized one continues to be the natural approach. In recent years, several well-known contraction
conditions such as Kannan type, Chatterjee type, Ciric type, phi-contractions, and some others were
introduced in this direction.

In this paper, we introduce some useful notions, namely,R-precompleteness,R-g-continuity and
R-compatibility, and utilize the same to establish common fixed point results for generalized weak
φ-contraction mappings in partial metric spaces endowed with an arbitrary binary relationR. We also
derive several useful corollaries which are either new results in their own right or sharpened versions
of some known results. Finally, an application is provided to validate the utility of our result.

2. Preliminaries

Matthews [1] defined partial metric space as follows:

Axioms 2019, 8, 49; doi:10.3390/axioms8020049 www.mdpi.com/journal/axioms171
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Definition 1. [1] Let M be a non-empty set. A mapping ρ : M×M → [0, ∞) is said to be a partial metric if
(for all z1, z2, z3 ∈ M):

(a) z1 = z2 ⇐⇒ ρ(z1, z1) = ρ(z1, z2) = ρ(z2, z2);
(b) ρ(z1, z1) ≤ ρ(z1, z2);
(c) ρ(z1, z2) = ρ(z2, z1);
(d) ρ(z1, z2) ≤ ρ(z1, z3) + ρ(z3, z2)− ρ(z3, z3).

The pair (M, ρ) is called a partial metric space.

Notice that in partial metric, the self-distance of any point need not be zero. A metric on a
non-empty set M is a partial metric with the condition that for all z ∈ M, ρ(z, z) = 0.

A partial metric ρ generates a T0-topology, say τρ on M, with base the family of open balls Bρ(z, ε)

(z ∈ M and ε > 0) defined as:

Bρ(z, ε) = {w ∈ M : ρ(z, w) ≤ ρ(z, z) + ε}.

If ρ is a partial metric on M, then the function dρ : M×M → [0, ∞) defined by:

dρ(z1, z2) = 2ρ(z1, z2)− ρ(z1, z1)− ρ(z2, z2),

is a metric on M.

Definition 2. [1] Let (M, ρ) be a partial metric space. Then:

(a) A sequence {zn} is said to be convergent to a point z ∈ M if limn→∞ ρ(zn, z) = ρ(z, z).
(b) A sequence {zn} is said to be Cauchy if limm,n→∞ ρ(zn, zm) exists and is finite.
(c) (M, ρ) is said to be complete if every Cauchy sequence {zn} in M converges (with respect to τρ) to a point

a z ∈ M and ρ(z, z) = limn→∞ ρ(zn, zm).

Remark 1. In a complete partial metric space, every closed subset is complete.

The following lemmas are needed in the sequel.

Lemma 1. [1] Let (M, ρ) be a partial metric space. Then:

(a) A sequence {zn} is Cauchy in (M, ρ) if and only if it is Cauchy in (M, dρ).
(b) (M, ρ) is complete if and only if the metric space (M, dρ) is complete. In addition:

lim
n→∞

dρ(zn, z) = 0 ⇐⇒ ρ(z, z) = lim
n→∞

ρ(zn, z) = lim
m,n→∞

ρ(zn, zm).

Lemma 2. [2] Let (M, ρ) be a partial metric space and {zn} a sequence in M such that {zn} → w, for some
w ∈ M with ρ(w, w) = 0. Then, for any z ∈ M, we have limn→∞ ρ(zn, z) = ρ(w, z).

Definition 3. Let S and g be two self-mappings on a non-empty set M.

(a) An element z ∈ M is said to be a coincidence point of S and g if Sz = gz.
(b) An element z∗ ∈ M is said to be a point of coincidence if z∗ = Sz = gz, for some z ∈ M.
(c) If z ∈ M is a point of coincidence of S and g such that z = Sz = gz, then z is called a common fixed point.

3. Relation Theoretic Notions and Auxiliary Results

Let M be a non-empty set. A binary relationR on M is a subset of M×M. For z1, z2 ∈ M, we write
(z1, z2) ∈ R if z1 is related to z2 under R. Sometimes, we denote it as z1Rz2 instead of (z1, z2) ∈ R.
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Further, if (z1, z2) ∈ R such that z1 and z2 are distinct, then we write (z1, z2) ∈ R�= (sometimes as
z1R�=z2). It is observed thatR�= ⊆ R is also a binary relation on M. M×M and ∅ are trivial binary
relations on M, specifically called a universal relation and empty relation, respectively. The inverse,
transpose or dual relation of R is denoted by R−1 and is defined as R−1 = {(z1, z2) ∈ M × M :
(z2, z1) ∈ R}. We denote byRs the symmetric closure ofR, which is defined asRs = R∪R−1.

Throughout this manuscript, M is a non-empty set,R stands for a binary relation on M and IM
denotes an identity mapping, and S and g are self-mappings on M.

Definition 4. [26] For a binary relationR:

(a) Two elements z1, z2 ∈ M are said to beR-comparative if (z1, z2) ∈ R or (z2, z1) ∈ R. We denote it by
[z1, z2] ∈ R.

(b) R is said to be complete if [z1, z2] ∈ R, for all z1, z2 ∈ M.

Proposition 1. [21] For a binary relationR on M, we have (for all z1, z2 ∈ M):

(z1, z2) ∈ Rs ⇐⇒ [z1, z2] ∈ R.

Definition 5. [21] A sequence {zn} ⊆ M is said to beR-preserving if (zn, zn+1) ∈ R, for all n ∈ N0.

Here, we follow the notion (ofR-preserving) as used by Alam and Imdad [21]. Notice that Roldán
and Shahzad [27] and Shahzad et al. [28] used the term “R-nondecreasing” instead of “R-preserving”.

Definition 6. [29] Let N ⊆ M. If for each z1, z2 ∈ N, there exists a point z3 ∈ M such that (z1, z3) ∈ R and
(z2, z3) ∈ R, then N is said to beR-directed.

Definition 7. [30] For z1, z2 ∈ M, a path of length l ∈ N in R from z1 to z2 is a finite sequence
{p0, p1, ..., pl} ⊆ M such that p0 = z1, pl = z2 and (pi, pi+1) ∈ R, for each 0 ≤ i ≤ l − 1.

Definition 8. [31] Let N ⊆ M. If for each z1, z2 ∈ N, there exists a path inR from z1 to z2, then N is said to
beR-connected.

Definition 9. [21]R is said to be S-closed if (z1, z2) ∈ R implies that (Sz1, Sz2) ∈ R, for all z1, z2 ∈ M.

Definition 10. [31] R is said to be (S, g)-closed if (gz1, gz2) ∈ R implies that (Sz1, Sz2) ∈ R, for all
z1, z2 ∈ M.

Observe that on setting g = IM, Definition 10 reduces to Definition 9.

Proposition 2. [31] IfR is (S, g)-closed, thenRs is also (S, g)-closed.

Definition 11. [23]R is said to be locally S-transitive if for eachR-preserving sequence {zn} ⊆ S(M) with
range E = {zn : n ∈ N0}, the binary relationR|E is transitive.

Motivated by Alam and Imdad [31], we introduce the notion ofR-continuity andR-g-continuity
in the context of partial metric space as follows:

Definition 12. Let (M, ρ) be a partial metric space endowed with a binary relationR. A self-mapping S on M
is said to beR-continuous at a point z ∈ M if for anyR-preserving sequence {zn} ⊆ M such that {zn} → z,
we have {Szn} → Sz. S isR-continuous if it isR-continuous at each point of M.
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Definition 13. Let (M, ρ) be a partial metric space endowed with a binary relation R. A self mapping S is
said to be (g,R)-continuous at a point z ∈ M if for any sequence {zn} ⊆ M with {gzn} R-preserving and
{gzn} → gz, we have {Szn} → Sz. S isR-g-continuous if it isR-g-continuous at each point of M.

Remark 2. Notice that for g = IM, Definition 13 reduces to Definition 12.

In the next definition, we introduceR-compatibility.

Definition 14. Let (M, ρ) be a partial metric space endowed with binary relation R and S, g : M → M.
S and g are said to beR-compatible if for any sequence {zn} such that {Szn} and {gzn} areR-preserving and
limn→∞ Szn = limn→∞ gzn, we have:

lim
n→∞

dρ(g(Szn), S(gzn)) = 0.

Inspired by Imdad et al. [24], we introduce the following notions in the setting of partial metric
spaces in the similar way.

Definition 15. Let (M, ρ) be a partial metric space endowed with a binary relation R. A subset N ⊆ M is
said to beR-precomplete if eachR-preserving Cauchy sequence {zn} ⊆ N converges to some z ∈ M.

Remark 3. EveryR-complete subset of M isR-precomplete.

Proposition 3. EveryR-closed subspace of anR-complete partial metric space isR-complete.

Proposition 4. AnR-complete subspace of a partial metric space isR-closed.

Next, we introduce the notion of ρ-self closedness in the setting of partial metric spaces.

Definition 16. Let (M, ρ) be a partial metric space endowed with binary relationR. ThenR is said to be ρ-self
closed if for eachR-preserving sequence {zn} ⊆ M with {zn} → z, there exists a subsequence {znk} of {zn}
such that [znk , z] ∈ R, for all k ∈ N0.

We now state the following lemma needed in our subsequent discussion.

Lemma 3. Let M be a non-empty set and g : M → M. Then there exists a subset N ⊆ M with g(N) = g(M)

and g : N → M is one–one.

We use the following notations in our subsequent discussions:
Coin(S, g): Set of all coincidence points of S and g;
M(g, S,R): The collection of all points z ∈ M such that [gz, Sz] ∈ R.

4. Main Results

Let Φ denote the set of all mappings φ : [0, ∞)→ [0, ∞) satisfying the following:

(Φ1) φ is non-decreasing;
(Φ2) φ(δ) = 0 iff δ = 0 and lim infn→∞ φ(δn) > 0 if limn→∞ δn > 0.

Notice that Reference [32] used the condition that φ is continuous. Inspired by Reference [33], we
replace their condition by a more weaker condition (Φ2). In fact, this condition is also weaker than
that φ is lower semi-continuous. Indeed, if φ is a lower semi-continuous function, then for a sequence
{δn} with limn→∞ δn = δ > 0, we have lim infn→∞ φ(δn) ≥ φ(δ) > 0.

Before presenting our main result, we define the following.
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Definition 17. Let M be a non-empty set endowed with an arbitrary binary relationR and N ⊆ M. Then, N
is said to be (S, g,R)-directed if for each z1, z2 ∈ N, there exists a point z3 ∈ M such that (gzi, gz3) ∈ R, for
i = 1, 2 and (gz3, Sz3) ∈ R.

Definition 18. Let M be a non-empty set endowed with an arbitrary binary relationR and N ⊆ M. Then, N
is said to be (S, g,R)-connected if for each z1, z2 ∈ N, there exists a path {gp0, gp1, ..., gpl} ⊆ g(M) between
z1 and z2 such that (gpi, Spi) ∈ R, for 1 ≤ i ≤ l − 1.

Remark 4. For g = IM, Definitions 17 and 18 reduce to (S,R)-directed and (S,R)-connected.

Now, we state and prove our first main result, which runs as follows:

Theorem 1. Let (M, ρ) be a partial metric space equipped with a binary relation R, N ⊆ M, an
R�=-precomplete subspace in M and S, g : M → M. Assume that the following conditions are satisfied:

(a) M(g, S,R) �= ∅;
(b) R is (S, g)-closed;
(c) S(M) ⊆ g(M) ∩ N;
(d) R is locally S-transitive;
(e) S satisfies generalized Ćirić-type weak (φg,R)-contraction, i.e.,

ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(ρ(Sz, Sw)), (1)

for all z, w ∈ M with (gz, gw) ∈ R�= and φ ∈ Φ, where:

Mρ,g(z, w) = max
{

ρ(gz, gw), ρ(gz, Sz), ρ(gw, Sw),
ρ(gz, Sw) + ρ(gw, Sz)

2

}
;

( f ) ( f 1) S and g areR�=-compatible;
( f 2) S and g areR�=-continuous;

or alternatively:
( f ∗) ( f ∗1) N ⊆ g(M);

( f ∗2) either S is (g,R�=)-continuous or S and g are continuous orR�=|N is ρ-self closed.

Then, S and g have a coincidence point.

Proof. Choose z0 ∈ M as in (a) and construct a sequence {gzn} in M as follows:

gzn = Szn−1 = Snz0, ∀n ∈ N0.

If there is some m0 ∈ N0 such that gzm0 = gzm0+1, then zm0 is the coincidence point of the pair
(S, g) and we are done. Henceforth, assume that gzn �= gzn+1, for all n ∈ N0. In view of condition (b),
we have (gzn, gzn+1) ∈ R, for all n ∈ N0. Employing condition (e), we have:

ρ(Szn−1, Szn) ≤Mρ,g(zn−1, zn)− φ(ρ(Szn−1, Szn)), (2)

which implies:
ρ(gzn, gzn+1) = ρ(Szn−1, Szn) ≤Mρ,g(zn−1, zn), (3)
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where:

Mρ,g(zn−1, zn) = max
{

ρ(gzn−1, gzn), ρ(gzn−1, Szn−1), ρ(gzn, Szn),

ρ(gzn−1, Szn) + ρ(gzn, Szn−1)

2

}
= max

{
ρ(gzn−1, gzn), ρ(gzn−1, gzn), ρ(gzn, gzn+1),

ρ(gzn−1, gzn+1) + ρ(gzn, gzn)

2

}
≤ max

{
ρ(gzn−1, gzn), ρ(gzn, gzn+1),

ρ(gzn−1, gzn) + ρ(gzn, gzn+1)

2

}
= max{ρ(gzn−1, gzn), ρ(gzn, gzn+1)}.

Now, ifMρ,g(zn−1, zn) = ρ(gzn, gzn+1), then Equation (2) becomes:

ρ(gzn, gzn+1) ≤ ρ(gzn, gzn+1)− φ(ρ(gzn, gzn+1)),

a contradiction. Hence, we have Mρ,g(zn−1, zn) = ρ(gzn−1, gzn) and Equation (3) implies that
{ρ(gzn, gzn+1)} is non-decreasing (also bounded below by 0). Thus, there exists r ≥ 0 such that
limn→∞ ρ(gzn, gzn+1) = r. Next, we show that r = 0. Suppose, by contrast, that it is not so, i.e., r > 0.
Passing the limit n → ∞ in Equation (2), we get:

r ≤ r− lim inf
n→∞

φ(ρ(gzn, gzn+1))

which is a contradiction. Hence:
lim

n→∞
ρ(gzn, gzn+1) = 0. (4)

We also have:

dρ(gzn, gzn+1) = 2ρ(gzn, gzn+1)− ρ(gzn, gzn)− ρ(gzn+1, gzn+1)

≤ 2ρ(gzn, gzn+1),

which, on letting n → ∞ and applying Equation (4), yields that:

lim
n→∞

dρ(gzn, gzn+1) = 0.

Now, our claim is that {gzn} is a Cauchy sequence in (N, dρ). Otherwise, there exist two
subsequences {gzmk} and {gznk} of {gzn} such that nk is the smallest integer for which:

nk > mk > k and dρ(gzmk , gznk ) ≥ ε. (5)

Since dρ(z, w) ≤ 2ρ(z, w), for all z, w ∈ M, Equation (5) gives:

nk > mk > k, ρ(gzmk , gznk ) ≥
ε

2
and ρ(gzmk , gznk ) <

ε

2
.

Now, using triangular inequality, we have:

ε

2
≤ ρ(gzmk , gznk ) ≤ ρ(gzmk , gznk−1) + ρ(gznk−1, gznk )

<
ε

2
+ ρ(gznk−1, gznk ).

176



Axioms 2019, 8, 49

Letting k → ∞ in the above inequality, we obtain:

lim
k→∞

ρ(gzmk , gznk ) =
ε

2
. (6)

Again, the triangle inequality yields the following:

ρ(gzmk , gznk−1) ≤ ρ(gzmk , gznk ) + ρ(gznk , gznk−1)

and:
ρ(gzmk , gznk ) ≤ ρ(gzmk , gznk−1) + ρ(gznk−1, gznk )

which together give rise to:

|ρ(gzmk , gznk−1)− ρ(gzmk , gznk )| ≤ ρ(gznk−1, gznk ).

Now, on taking k → ∞, the above inequality gives:

lim
k→∞

ρ(gzmk , gznk−1) =
ε

2
.

In a similar manner, one can show that:

lim
k→∞

ρ(gzmk−1, gznk−1) = lim
k→∞

ρ(gzmk−1, gznk ) =
ε

2
.

Thus, we get:

lim
k→∞

Mρ,g(zmk−1, znk−1) =
ε

2
. (7)

Using (d), we have (gzmk−1, gznk−1) ∈ R and hence, Equation (1) implies:

ρ(gzmk , gznk ) ≤Mρ,g(zmk−1, znk−1))− φ(ρ(gzmk , gznk )).

Using Equations (6) and (7) and letting k → ∞ in the above inequality, we get:

ε

2
≤ ε

2
− lim inf

k→∞
φ(ρ(gzmk , gznk )),

a contradiction. Hence, {gzn} is Cauchy in (N, dρ) (as {gzn} ⊆ S(M) ⊆ N) which is also
R�=-preserving. Lemma 1 ensures that it is also Cauchy in (N, ρ). Thus, theR�=-precompleteness of N
in M ensures the existence of a point z̄ ∈ M such that:

lim
n→∞

gzn = z̄. (8)

Thus, we also have:
lim

n→∞
dρ(gzn, z̄) = 0. (9)

Now, by Equation (9) and Lemma 1, we get:

ρ(z̄, z̄) = lim
m,n→∞

ρ(gzn, z̄) = lim
m,n→∞

ρ(gzm, gzn) = 0. (10)

Further, by the definition of {gzn} and Equation (8), we have:

lim
n→∞

Szn = z̄. (11)
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Finally, to prove the existence of coincidence point of S and g, we make use of conditions ( f )
and ( f ∗). Firstly, assume that ( f ) holds. Now, as (gzn, gzn+1) ∈ R�=, so using assumption ( f 2) and
Equation (8), we obtain:

lim
n→∞

g(gzn) = g( lim
n→∞

gzn) = gz̄. (12)

By the definition of {gzn}, we have {Szn} is alsoR�=-preserving (i.e., (Szn, Szn+1) ∈ R�=, for all
n), so using assumption ( f 2) and Equation (11), we get:

lim
n→∞

g(Szn) = g( lim
n→∞

Szn) = gz̄. (13)

By using Equation (8) andR�=-continuity of S, we obtain:

lim
n→∞

S(gzn) = S( lim
n→∞

gzn) = Sz̄. (14)

As {Szn} and {gzn} are R�=-preserving and limn→∞ Szn = limn→∞ gzn = z̄, by the condition
( f 1), we have:

lim
n→∞

dρ(g(Szn), S(gzn)) = 0. (15)

Now, from Equations (13)–(15) and continuity of dρ, it follows that:

dρ(gz̄, Sz̄) = dρ( lim
n→∞

g(Szn), lim
n→∞

S(gzn))

= lim
n→∞

dρ(g(Szn), S(gzn))

= 0,

i.e., gz̄ = Sz̄ and we are done. Secondly, suppose that ( f ∗) is satisfied. Then, by ( f ∗1), there exists
some z ∈ M such that z̄ = gz. Hence, Equations (8) and (11) respectively reduce to:

lim
n→∞

gzn = gz, (16)

and:
lim

n→∞
Szn = gz. (17)

Next, to accomplish that z is a coincidence point of S and g, we utilize ( f ∗2). Thus, suppose that
S isR�=-g-continuous, then using Equation (16), we obtain:

lim
n→∞

Szn = Sz. (18)

Now, by virtue of uniqueness of limit, Equations (17) and (18) give Sz = gz.

Next, assume that S and g are continuous. Then owing to Lemma 3, there exists D ⊆ M such that
g(D) = g(M) and g : D → M is injective. Now, define a mapping S̄ : g(D)→ g(M) by:

S̄(gt) = St, ∀gt ∈ g(D). (19)

As g : D → M is injective and S(M) ⊆ g(M), S̄ is well-defined. Further, due to the continuity of
S and g, S̄ is continuous. The fact that g(D) = g(M), assumptions (c) and ( f ∗1) imply that:

S(M) ⊆ g(D) ∩ N and N ⊆ g(D).
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Thus, without loss of generality, we can construct {zn} ⊆ D, satisfying Equation (16) with z ∈ D.
On using Equations (16), (17), and (19) with continuity of S̄, we obtain:

Sz = S̄(gz) = S̄( lim
n→∞

gzn) = lim
n→∞

S̄(gzn) = lim
n→∞

Szn = gz,

and we are done. Alternatively, ifR�=|N is ρ-self closed, then for anyR�=-preserving sequence {gzn}
in N with {gzn} → gz, there exists a subsequence {gznk} of {gzn} such that [gznk , gz] ∈ R, for all
k ∈ N0. Suppose ρ(gz, Sz) > 0, then we have:

Mρ,g(znk , z) = max
{

ρ(gznk , gz), ρ(gznk , Sznk ), ρ(gz, Sz),
ρ(gznk , Sz) + ρ(gz, Sznk )

2

}
.

Letting k → ∞ and using Equation (8), we get:

lim
k→∞

Mρ,g(znk , z) = ρ(gz, Sz). (20)

Now, applying z = znk and w = z, condition (e) gives:

ρ(Sznk , Sz) ≤Mρ,g(znk , z)− φ(ρ(Sznk , Sz)),

which, on letting n → ∞ and using Equations (8) and (20) and Lemma 2, yields that:

ρ(gz, Sz) ≤ ρ(gz, Sz)− lim inf
k→∞

φ(ρ(gznk+1, Sz)),

a contradiction. Hence ρ(gz, Sz) = 0, i.e., gz = Sz. This completes the proof.

Now, we present a corresponding uniqueness result.

Theorem 2. In addition to the assumptions of Theorem 1, if we assume that the following condition is satisfied:

(g) S(M) is (S, g,Rs)-connected,

then S and g have a unique point of coincidence. Moreover, if:

(h) S and g are weakly compatible,

then S and g have a unique common fixed point.

Proof. Firstly, Theorem 1 ensures that Coin(S, g) �= ∅. Let z̄, w̄ ∈ Coin(S, g). Then, there exists
z, w ∈ M such that z̄ = Sz = gz and w̄ = Sw = gw. Our claim is that z̄ = w̄. Now, owing to hypothesis
(g), there exists a path, say {gp0, gp1, gp2, ..., gpl} ⊆ M of some finite length l in R|sg(M)

from Sz to
Sw with:

gp0 = Sz, gpl = Sw and [gpi, gpi+1] ∈ R, for each 0 ≤ i ≤ l − 1 (21)

and:
[gpi, Spi] ∈ R, for each 1 ≤ i ≤ l − 1. (22)

Define constant sequences {p0
n = z} and {pl

n = w}, then we have gp0
n+1 = Sp0

n = Sz = z̄ and
gpl

n+1 = Spl
n = Sw = w̄, for all n ∈ N0. Further, set pi

0 = pi, for each 0 ≤ i ≤ l and define sequences
{p1

n}, {p2
n}, ..., {pk−1

n } by:

gpi
n+1 = Spi

n, ∀n ∈ N0 and for each 1 ≤ i ≤ l − 1.

Hence:
gpi

n+1 = Spi
n, ∀n ∈ N0 and for each 0 ≤ i ≤ l.
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By mathematical induction, we will prove that:

[gpi
n, gpi+1

n ] ∈ R, ∀n ∈ N0 and for each 0 ≤ i ≤ l − 1.

In view of Equation (21), the result holds for n = 0. Now, suppose it holds for n = k > 0, i.e.:

[gpi
k, gpi+1

k ] ∈ R, for each 0 ≤ i ≤ l − 1.

By (S, g)-closedness ofR and Proposition 2, we have:

[Spi
k, Spi+1

k ] = [gpi
k+1, gpi+1

k+1] ∈ R, for each 0 ≤ i ≤ l − 1,

i.e., the result holds for n = k + 1 and hence, it holds for all n ∈ N0. Also from Equation (22), we have
[gpi

0, gpi
1] ∈ R andR is (S, g)-closed, so by Proposition 2 and Equation (4), we have:

lim
n→∞

ρ(gpi
n, gpi

n+1) = 0. (23)

Now, for all n ∈ N0 and for each 0 ≤ i ≤ l − 1, define f i
n = ρ(gpi

n, gpi+1
n ). Our claim is that:

lim
n→∞

f i
n = 0.

Suppose, by contrast, that limn→∞ f i
n = f > 0. Since [gpi

n, gpi+1
n ] ∈ R, (gpi

n, gpi+1
n ) ∈ R or

(gpi+1
n , gpi

n) ∈ R, for all n ∈ N0 and for each 0 ≤ i ≤ l − 1. Making use of Equation (1), we have:

ρ(Spi
n, Spi+1

n ) ≤Mρ,g(pi
n, pi+1

n )− φ(ρ(Spi
n, Spi+1

n ))

or:
ρ(gpi

n+1, Spi+1
n+1) ≤Mρ,g(pi

n, pi+1
n )− φ(ρ(gpi

n+1, gpi+1
n+1)), (24)

where:

Mρ,g(pi
n, pi+1

n ) = max
{

ρ(gpi
n, gpi+1

n ), ρ(gpi
n, Spi

n), ρ(gpi+1
n , Spi+1

n ),

ρ(gpi
n, Spi+1

n ) + ρ(gpi+1
n , Spi

n)

2

}
= max

{
ρ(gpi

n, gpi+1
n ), ρ(gpi

n, gpi
n+1), ρ(gpi+1

n , gpi+1
n+1),

ρ(gpi
n, gpi+1

n+1) + ρ(gpi+1
n , gpi

n+1)

2

}
≤ max

{
ρ(gpi

n, gpi+1
n ), ρ(gpi

n, gpi
n+1), ρ(gpi+1

n , gpi+1
n+1),

ρ(gpi
n, gpi

n+1) + ρ(gpi
n+1, gpi+1

n+1) + ρ(gpi+1
n , gpi

n) + ρ(gpi
n, gpi

n+1)

2

}
.

Now, letting n → ∞ and using Equation (23), we obtain:

lim
n→∞

Mρ,g(pi
n, pi+1

n ) = f ,

which, on applying Equation (24) after taking limit, yields that:

f ≤ f − lim inf
n→∞

φ(ρ(pi
n+1, pi+1

n+1)),
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a contradiction. Therefore, limn→∞ f i
n = 0.

Next, we have:

ρ(z̄, w̄) = ρ(gp0
n, gpl

n) ≤
k−1

∑
i=0

ρ(gpi
n, gpi+1

n )−
k−1

∑
i=1

ρ(gpi
n, gpi+1

n )

≤
k−1

∑
i=0

ρ(gpi
n, gpi+1

n )

=
k−1

∑
i=0

f i
n → 0 (as n → ∞).

Hence, z̄ = w̄, i.e., Sz = Sw. Thus, S and g have a unique point of coincidence.

Secondly, to justify the existence of a unique common fixed point, we consider z ∈ Coin(S, g), i.e.,
Sz = gz = z̄, for some z̄ ∈ M. By the condition (h), S and g commute at their coincidence points, i.e.,

S(gz) = g(Sz) = g(gz), (25)

thereby yielding Sz̄ = gz̄, i.e., z̄ ∈ Coin(S, g). Thus, by the uniqueness of point of the coincidence
point, we have:

z̄ = gz̄ = Sz̄.

The uniqueness of the common fixed point is a direct consequence of the uniqueness of the
coincidence point. This finishes the proof.

We present the following example to support our result.

Example 1. Let M = [0, ∞) with partial metric ρ : M×M → [0, ∞) defined by:

ρ(z1, z2) = max{z1, z2}.

Define a binary relationR = {(z1, z2) ∈ M×M : z1 ≥ z2}. Clearly, (M, ρ) is a complete partial metric
space. Define S, g : M → M by:

Sz =
z
3

and gz =
z
2

, ∀z ∈ M.

It is clear thatR is (S, g)-closed and S and g are continuous. Next, define φ : [0, ∞)→ [0, ∞) by:

φ(t) =
t
6

, ∀t ∈ [0, ∞).

Clearly, φ ∈ Φ. Observe that all the conditions of Theorems 1 and 2 are fulfilled (with N = M). Hence, S
and g have a unique common fixed point (namely 0).

Next, we present the following corollaries.

Corollary 1. The conclusion of Theorem 2 remains valid if we replace the condition (g) by any one of
the following:

(g1) R|g(M) is complete;
(g2) S(M) is (S, g,Rs)-directed.

Proof. If (g1) holds true, then for any z1, z2 ∈ S(M), we have z1 = gw1 and z2 = gw2, for some
w1, w2 ∈ M (as S(M) ⊆ g(M)). In view of (g1), we have [gw1, gw2] ∈ R|g(M), i.e., {gw1, gw2} is a
path of length 1 inR|sg(M)

from z1 to z2. Hence, condition (g) of Theorem 2 is fulfilled and the result is
concluded by Theorem 2.
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On the other hand, if condition (g2) holds, then for each z1, z2 ∈ S(M) (such that z1 = gw1

and z2 = gw2, for w1, w2 ∈ M), there exists w3 ∈ M such that [gw1, gw3], [gw2, gw3] ∈ R|g(M), i.e.,
{gw1, gw3, gw2} is a path of length 2 inR|sg(M)

from z1 to z2 and [gw3, Sw3] ∈ R|g(M). Hence, condition
(g) of Theorem 2 is fulfilled and again by Theorem 2, the conclusion follows.

Corollary 2. The conclusions of Theorems 1 and 2 remain true if we replace assumption (e) by the following one:

(e1) S satisfies
ρ(Sz, Sw) ≤ ρ(gz, gw)− φ(ρ(Sz, Sw)), (26)

for all z, w ∈ M with (gz, gw) ∈ R�= and φ ∈ Φ.

Proof. As ρ(gz, gw) ≤Mρ,g(z, w), we have:

ρ(Sz, Sw) ≤ ρ(gz, gw)− φ(ρ(Sz, Sw)) =⇒ ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(ρ(Sz, Sw)),

for all z, w ∈ M with (gz, gw) ∈ R�=. Thus, all the assumptions of Theorems 1 and 2 are satisfied and
the conclusions hold.

Following Reference [32], it can be easily seen that in a partial metric space (M, ρ), for all
(gz, gw) ∈ R�=, the conditions:

ρ(Sz, Sw) ≤ ρ(gz, gw)− φ(ρ(Sz, Sw)), (27)

and:
ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(ρ(Sz, Sw)), (28)

are more weaker than:
ρ(Sz, Sw) ≤ ρ(gz, gw)− φ(ρ(gz, gw)), (29)

and:
ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(Mρ,g(z, w)), (30)

respectively. However, the converse need not be true in general (even the above assertion is true for
any z, w ∈ M). This leads us to our next corollary.

Corollary 3. The conclusions of Theorems 1 and 2 remain true if we replace assumption (e) by the following one:

(e2) S satisfies:
ρ(Sz, Sw) ≤ ρ(gz, gw)− φ(ρ(gz, gw)), (31)

or:
ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(Mρ,g(z, w)), (32)

for all z, w ∈ M with (gz, gw) ∈ R�= and φ ∈ Φ.

By setting φ(t) = (1 − k)t, with k ∈ [0, 1) and t ∈ [0, ∞) in Corollary 3, we deduce the
following corollaries:

Corollary 4. The conclusions of Theorems 1 and 2 remain true if we replace assumption (e) with the
following one:

(e3) there exists k ∈ [0, 1) such that:
ρ(Sz, Sw) ≤ kρ(gz, gw),

for all z, w ∈ M with (gz, gw) ∈ R�= and φ ∈ Φ.
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We see that the above corollary is a relatively new and somewhat refined version of Alam and
Imdad [31] type result in partial metric space with some refinement, e.g.:

• We useR�=-precompleteness of subspace N ⊆ M in place ofR-completeness.
• We use R�=-analogous of compatibility, continuity, closedness and ρ-self closedness instead of

theirR-analogous.

Corollary 5. The conclusions of Theorems 1 and 2 remain true if we replace assumption (e) with the
following one:

(e4) S satisfies:
ρ(Sz, Sw) ≤ kMρ,g(z, w), (33)

for all z, w ∈ M with (gz, gw) ∈ R�= and φ ∈ Φ.

By considering g = IM, the following fixed point result can be deduced easily from
Theorems 1 and 2.

Corollary 6. Let (M, ρ) be a partial metric space equipped with a binary relation R, N ⊆ M an
R�=-precomplete subspace in M and S : M → M. Assume that the following assumptions are satisfied:

(a) There exists z0 ∈ M such that (z0, Sz0) ∈ R;
(b) R is S-closed;
(c) S(M) ⊆ N;
(d) R is locally S-transitive;
(e) S satisfies generalized Ćirić-type weak (φ,R)-contraction, i.e.:

ρ(Sz, Sw) ≤ M(z, w)− φ(ρ(Sz, Sw)),

for all z, w ∈ M with (z, w) ∈ R�= and φ ∈ Φ, where:

M(z, w) = max
{

ρ(z, w), ρ(z, Sz), ρ(w, Sw),
ρ(z, Sw) + ρ(w, Sz)

2

}
;

( f ) either S isR�=-continuous orR�=|N is ρ-self closed.

Then, S has a fixed point. In addition, if:

(g) N is (S,Rs)-connected,

then the fixed point is unique.

In place ofR�=-precomplete of N, if we use theR�=-completeness of the whole space M, then we
find a particular version of Theorem 1.

Corollary 7. Let (M, ρ,R) be an R�=-complete partial metric space and S, g : M → M satisfy the
following assumptions:

(a) M(g, S,R) �= ∅;
(b) R is (S, g)-closed;
(c) S(M) ⊆ g(M);
(d) R is locally S-transitive;
(e) S satisfies generalized Ćirić-type weak (φg,R)-contraction, i.e.,:

ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(ρ(Sz, Sw)), (34)
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for all z, w ∈ M with (gz, gw) ∈ R�= and φ ∈ Φ, where:

Mρ,g(z, w) = max
{

ρ(gz, gw), ρ(gz, Sz), ρ(gw, Sw),
ρ(gz, Sw) + ρ(gw, Sz)

2

}
;

( f ) ( f 1) S and g areR�=-compatible;
( f 2) S and g areR�=-continuous;

or alternatively:
( f ∗) ( f ∗1) there exists anR�=-closed subspace N of M such that S(M) ⊆ N ⊆ g(M);

( f ∗2) either S isR�=-g-continuous or S and g are continuous orR�=|N is ρ-self closed.

Then, S and g have a coincidence point.

Proof. The result follows by Proposition 3 and Remark 3.

Moreover, in Corollary 7, if we assume g to be surjective, then assumption (c) as well as
assumption ( f ∗1) can be removed trivially since N = g(M) = M.

5. Consequences

5.1. Results in Abstract Spaces

By consideringR to be the universal relation, i.e.,R = M×M, we deduce the following results
from Theorems 1 and 2.

Corollary 8. Let (M, ρ) be a partial metric space and S, g : M → M. Assume that the following conditions
are satisfied:

(a) S(M) ⊆ g(M) ∩ N;
(b) S satisfies:

ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(ρ(Sz, Sw)),

for all z, w ∈ M with gz �= gw and φ ∈ Φ;
(c) (c1) S and g are compatible;

(c2) S and g are continuous;
or alternatively:

(c∗) N ⊆ g(M).

Then, S and g have a coincidence point.

Corollary 9. Moreover, if S and g are weakly compatible, then S and g have a unique common fixed point.

In view of Corollary 4 under R = M × M, it can be easily seen that Corollary 8 is a more
generalized and sharpened version of Goebel and Jungck type results in partial metric spaces.

5.2. Results in Ordered Partial Metric Spaces via Increasing Mappings

The idea under consideration was initiated by Turinici [17], which was later generalized by
several authors, e.g., Ran and Reurings [18], Nieto and Rodríguez-López [19], and some others, e.g.,
the authors of [34–37]. In this section, from now on, � denotes a partial order on a non-empty set
M, (M,�) denotes a partially ordered set, and (M, ρ,�) stands for a partial metric space with partial
order �, which we call ordered partial metric space.

Now, we recall the following notions which are needed in the sequel.

Definition 19. [38] A mapping S : M → M is said to be g-increasing if Sz1 � Sz2, for any z1, z2 ∈ M with
gz1 � gz2.
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Remark 5. Notice that S is g-increasing and the notion � is (S, g)-closed in our sense coincide with each other.

Definition 20. [39] Let {zn} be a sequence in an ordered set (M,�). Then:

(a) {zn} is said to be increasing if for all m, n ∈ N0:

m ≤ n =⇒ zm � zn.

(b) {zn} is said to be decreasing if for all m, n ∈ N0:

m ≤ n =⇒ zn � zm.

(c) {zn} is said to be monotone if it is either increasing or decreasing.

Now, we introduce the notion of increasing-convergence-upper bound (ICU) property in the setting of
ordered partial metric spaces.

Definition 21. Let (M, ρ,�) be an ordered partial metric space. We say that (M, ρ,�) has ICU
(increasing-convergence-upper bound) property if every increasing sequence {zn} ⊆ M such that {zn} → z is
bounded above by limit, i.e., zn � z, for all n ∈ N.

Remark 6. It is observed that (M, ρ,�) has ICU property is equivalent to � is ρ-self closed.

Notice that Alam et al. [40] defined ICU property in the setting of ordered metric spaces.

Definition 22. In an ordered partial metric space (M, ρ,�), we define the following:

(a) (M, ρ,�) is said to be O-complete (resp. O-complete, O-complete) if every increasing (resp. decreasing,
monotone) Cauchy sequence in M converges in M.

(b) a self-mapping S on M is said to be (g, O)-continuous (resp. (g, O)-continuous, (g, O)-continuous) at
z ∈ M, if for any increasing (resp. decreasing, monotone) sequence {zn} ⊆ M such that {zn} → z, we
have {Szn} → Sz.
S is (g, O)-continuous (resp. (g, O)-continuous, (g, O)-continuous) on M if it is (g, O)-continuous
(resp. (g, O)-continuous, (g, O)-continuous) at every z ∈ M.

(c) two self-mappings S and g are said to be O-compatible (resp. O-compatible, O-compatible) if for any
sequence {zn} and z ∈ M such that {Szn} and {gzn} are increasing (resp. decreasing and monotone)
and limn→∞ Szn = limn→∞ gzn = z, we have:

lim
n→∞

ρ(S(gzn), g(Szn)) = 0.

Remark 7. Notice that for g = I, (g, O)-continuity reduces to O-continuity, and the same happens to the others.

The above notions were defined by Kutbi et al. [41] in the setting of ordered metric spaces. Now,
we introduce the following notion.

Definition 23. A subset N of an ordered partial metric space (M, ρ,�) is said to be O-precomplete (resp.
O-precomplete, O-precomplete) if every increasing (resp. decreasing, monotone) Cauchy sequence in N converges
to a point of M.

Under consideration of Remarks 5 and 6 andR =�, we obtained the below result from Theorem 1,
which is new for the existing literature.
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Corollary 10. Let (M, ρ,�) be an ordered partial metric space, N ⊆ M an Ō-precomplete subspace in M and
S, g : M → M. Assume that the following assumptions are satisfied:

(a) There exists z0 ∈ M such that gz0 � Sz0;
(b) S is g-increasing;
(c) S(M) ⊆ g(M) ∩ N;
(d) S satisfies generalized Ćirić-type weak (φg,�)-contraction, i.e.,

ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(ρ(Sz, Sw)), (35)

for all z, w ∈ M with gz � gw and φ ∈ Φ, where:

Mρ,g(z, w) = max
{

ρ(gz, gw), ρ(gz, Sx), ρ(gw, Sw),
ρ(gz, Sw) + ρ(gw, Sz)

2

}
;

(e) (e1) S and g are O-compatible;
(e2) S and g are O-continuous;

or alternatively:
(e∗) (e∗1) N ⊆ g(M);

(e∗2) either S is (g, O)-continuous or S and g are continuous or (N, ρ,�) has ICU property.

Then, S and g have a coincidence point.

5.3. Results in Ordered Partial Metric Spaces via Comparable Mappings

Definition 24. [42] For S, g : M → M, S is said to be g-comparable if for all z1, z2 ∈ M such that gz1 ≺ gz2,
we have Sz1 ≺ Sz2.

Remark 8. Observe that the notion S is g-comparable is equivalent to saying that ≺ is (S, g)-closed.

Definition 25. [43] Let (M,�) be an ordered set and {zn} a sequence in M. Then:

(a) {zn} is said to be termwise bounded if there is an element z ∈ M such that each term of {zn} is
comparable with z, i.e., zn ≺ z, for all n ∈ N0 and z is a c-bound of {zn}.

(b) {zn} is said to be termwise monotone if consecutive terms of {zn} are comparable, i.e., zn ≺ zn+1, for
all n ∈ N0.

Now, we introduce TCC property in the setting of ordered partial metric spaces.

Definition 26. We say that an ordered partial metric space (M, ρ,�) has TCC property if every termwise
monotone convergent sequence {zn} in M has a subsequence, which is termwise bounded by the limit (of the
sequence) as a c-bound, i.e.:

zn ! z =⇒ there exists a subsequence {znk} of {zn}with znk ≺ z, ∀k ∈ N0.

Remark 9. It is observed that (M, ρ,�) has TCC property which is equivalent to ≺ , which is ρ-self closed.

In view of Remarks 8 and 9 and usingR =≺ in Theorem 1, we again obtained a new result for
the existing literature.

Corollary 11. Let (M, ρ,�) be an ordered partial metric space, N ⊆ M, an O-precomplete subspace in M and
S, g : M → M. Assume that the following assumptions are satisfied:

(a) There exists z0 ∈ M such that gz0 ≺ Sz0;
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(b) S is g-increasing;
(c) S(M) ⊆ g(M) ∩ N;
(d) S satisfies generalized Ćirić-type weak (φg,R)-contraction, i.e.:

ρ(Sz, Sw) ≤Mρ,g(z, w)− φ(ρ(Sz, Sw)), (36)

for all z, w ∈ M with gz ≺ gy and φ ∈ Φ, where;

Mρ,g(z, w) = max
{

ρ(gz, gw), ρ(gz, Sz), ρ(gw, Sw),
ρ(gz, Sw) + ρ(gw, Sz)

2

}
;

(e) (e1) S and g are O-compatible;
(e2) S and g are O-continuous;

or alternatively:
(e∗) (e∗1) N ⊆ g(M);

(e∗2) either S is (g, O)-continuous or S and g are continuous or (N, ρ,�) has TCC property.

Then, S and g have a coincidence point.

6. Application

Let us consider the following system of equations:{
z(t) =

∫ T
0 K1(t, τ, z(τ))dτ + a(t);

z(t) =
∫ T

0 K2(t, τ, z(τ))dτ + a(t),
(37)

for all t ∈ Ω = [0, T], T > 0, where K1, K2 : Ω×Ω×Rn → Rn and a : Ω → Rn.
Our aim is to provide an existence theorem in order to find the solution of the above system of

integral equations using Theorem 1.
Let R be an arbitrary transitive binary relation on Rn and M = C(Ω,Rn), set of all continuous

mappings from Ω → Rn, with sup norm ‖z‖M = maxt∈Ω ‖z(t)‖, z ∈ M. Consider a binary relation
RM on M as:

(z1, z2) ∈ RM ⇐⇒ (z1(t), z2(t)) ∈ R, ∀t ∈ Ω.

For anyRM-preserving sequence {zn} in M converging to z ∈ M, we have (zn(t), z(t)) ∈ R, for
all t ∈ Ω. Further, define S, g : M → M by:

Sz(t) =
∫ T

0
K1(t, τ, z(τ))dτ + a(t) and gz(t) =

∫ T

0
K2(t, τ, z(τ))dτ + a(t),

for all t ∈ Ω, where g is surjective.

Theorem 3. Suppose the following conditions are satisfied:

(A) K1, K2 : Ω×Ω×Rn → Rn and a : Ω → Rn are continuous;
(B) There exists some z0 ∈ M such that:( ∫ T

0
K2(t, τ, z0(τ))dτ + a(t),

∫ T

0
K1(t, τ, z0(τ))dτ + a(t)

)
∈ R, ∀t ∈ Ω;

(C) (gz(t), gw(t)) ∈ R =⇒ (Sz(t), Sw(t)) ∈ R, ∀t ∈ Ω;
(D) For each z, w ∈ M such that (z, w) ∈ R�= and t, τ ∈ Ω, there exists a number λ ∈ [0, 1

T ] such that:

‖K1(t, τ, z(τ))− K1(t, τ, w(τ))‖ ≤ λ‖gz(t)− gw(t)‖.
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Then, Equation (37) has a solution in M.

Proof. Define ρ : M×M → [0, ∞) as:

ρ(z, w) = ‖z− w‖M, ∀z, w ∈ M.

Now, for (z, w) ∈ R�=, we have:

ρ(Sz, Sw) = max
t∈Ω

∥∥∥∥ ∫ T

0
(K1(t, τ, z(τ))− K1(t, τ, w(τ)))dτ

∥∥∥∥
≤ max

t∈Ω

∫ T

0
‖K1(t, τ, z(τ))− K1(t, τ, w(τ))‖dτ

≤ λ max
t∈Ω

‖gz(t)− gw(t)‖
∫ T

0
dτ

= λT‖gz− gw‖M

= λ1ρ(gz, gw),

where λ1 = λT. Now, define φ : [0, ∞)→ [0, ∞) as φ(t) = (1− λ1)t, λ1 ∈ [0, 1). It can be easily seen
that φ ∈ Φ. Applying it in the above inequality, we obtain:

ρ(Sz, Sw) ≤ ρ(gz, gw)− φ(ρ(gz, gw))

≤ ρ(gz, gw)− φ(ρ(Sz, Sw))

≤Mρ,g(z, w)− φ(ρ(Sz, Sw)),

whereMρ,g is as defined in Theorem 1. By choosing N = M, it is also clear that S(M) ⊆ M = g(M).
Hence, by fulfilling all the necessary requirements of Theorem 1, S and g have a coincidence point.
Hence, the system (Equation (37)) has a solution. This completes the proof.

7. Conclusions

Essentially, inspired by Alam and Imdad [21] and Zhiqun Xue [32], we introduced a new
contraction condition and used the same to prove some new fixed point results in the setting of
partial metric space. To establish our claim, we deduced some corollaries which are still new and
refined versions of earlier known results in literature. Finally, by presenting an application, we
exhibited the usability of our main result.
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Abstract: In this paper, we prove that on any contact manifold (M, ξ) there exists an arbitrary
C∞-small contactomorphism which does not admit a square root. In particular, there exists an
arbitrary C∞-small contactomorphism which is not “autonomous”. This paper is the first step to
study the topology of Cont0(M, ξ)\Aut(M, ξ). As an application, we also prove a similar result for
the diffeomorphism group Diff(M) for any smooth manifold M.

Keywords: diffeomorphism; contactomorphism; symplectomorphism

1. Introduction

For any closed manifold M, the set of diffeomorphisms Diff(M) forms a group and any
one-parameter subgroup f : R→ Diff(M) can be written in the following form

f (t) = exp(tX).

Here, X ∈ Γ(TM) is a vector field and exp : Γ(TM)→ Diff(M) is the time 1 flow of vector fields.
From the inverse function theorem, one might expect that there exists an open neighborhood of the
zero section U ⊂ Γ(TM) such that

exp : U −→ Diff(M)

is a diffeomorphism onto an open neighborhood of Id ∈ Diff(M). However, this is far from true ([1],
Warning 1.6). So one might expect that the set of “autonomous” diffeomorphisms

Aut(M) = exp(Γ(TM))

is a small subset of Diff(M).
For a symplectic manifold (M, ω), the set of Hamiltonian diffeomorphisms Hamc(M, ω) contains

“autonomous” subset Aut(M, ω) which is defined by

Aut(M, ω) =

{
exp(X)

∣∣∣∣ X is a time-independent Hamiltonian vector field
whose support is compact

}
.

In [2], Albers and Frauenfelder proved that on any symplectic manifold there exists an arbitrary
C∞-small Hamiltonian diffeomorphism not admitting a square root. In particular, there exists an
arbitrary C∞-small Hamiltonian diffeomorphism in Hamc(M, ω)\Aut(M, ω).

Polterovich and Shelukhin used spectral spread of Floer homology and Conley conjecture to prove
that Hamc(M, ω)\Aut(M, ω) ⊂ Hamc(M, ω) is C∞-dense and dense in the topology induced from
Hofer’s metric if (M, ω) is closed symplectically aspherical manifold ([3]). The author generalized this
theorem to arbitrary closed symplectic manifolds and convex symplectic manifolds ([4]).

One might expect that “contact manifold” version of these theorems hold. In this paper, we prove
that there exists an arbitrary C∞-small contactomorphism not admitting a square root. In particular,

Axioms 2019, 8, 43; doi:10.3390/axioms8020043 www.mdpi.com/journal/axioms191
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there exists an arbitrary C∞-small contactomorphism in Contc
0(M, ξ)\Aut(M, ξ). So, this paper is a

contact manifold version of [2]. As an application, we prove that there exists an arbitrary C∞-small
diffeomorphism in Diffc

0(M) not admitting a square root. This also implies that there exists an arbitrary
C∞-small diffeomorphism in Diffc

0(M)\Aut(M).

2. Main Result

Let M be a smooth (2n + 1)-dimensional manifold without boundary. A 1-form α on M is called
contact if (α ∧ (dα)n)(p) �= 0 holds on any p ∈ M. A codimension 1 tangent distribution ξ on M is
called contact structure if it is locally defined by ker(α) for some (locally defined) contact form α.
A diffeomorphism φ ∈ Diff(M) is called contactomorphism if φ∗ξ = ξ holds (i.e., φ preserves the
contact structure ξ). Let Contc

0(M, ξ) be the set of compactly supported contactomorphisms which
are isotopic to Id through compactly supported contactomorphisms. In other words, Contc

0(M, ξ) is a
connected component of compactly supported contactomorphisms (Contc(M, ξ)) which contains Id.

Contc
0(M, ξ) =

{
φ1

∣∣∣∣ φt (t ∈ [0, 1]) is an isotopy of contactomorphisms
φ0 = Id, ∪t∈[0,1]supp(φt) is compact

}
Let X ∈ Γc(TM) be a compactly supported vector field on M. X is called contact vector field if

the flow of X preserves the contact structure ξ (i.e., exp(X)∗ξ = ξ holds). Let Γc
ξ(TM) be the set of

compactly supported contact vector fields on M and let Aut(M, ξ) be their images

Aut(M, ξ) = {exp(X) | X ∈ Γc
ξ(TM)}.

We prove the following theorem.

Theorem 1. Let (M, ξ) be a contact manifold without boundary. Let W be any C∞-open neighborhood of
Id ∈ Contc

0(M, ξ). Then, there exists φ ∈ W such that

φ �= ψ2

holds for any ψ ∈ Contc
0(M, ξ). In particular,W\Aut(M, ξ) is not empty.

Remark 1. If φ is autonomous (φ = exp(X)), φ has a square root ψ = exp( 1
2 X).

Corollary 1. The exponential map exp : Γc
ξ(TM)→ Contc

0(M, ξ) is not surjective.

We also consider the diffeomorphism version of this theorem and corollary. Let M be a smooth
manifold without boundary and let Diffc(M) be the set of compactly supported diffeomorhisms

Diffc(M) = {φ ∈ Diff(M) | supp(φ) is compact}.

Let Diffc
0(M) be the connected component of Diffc(M) (i.e., any element of Diffc

0(M) is isotopic
to Id). We define the set of autonomous diffeomorphisms by

Aut(M) = {exp(X) | X ∈ Γc(TM)}.

By combining the arguments in this paper and in [2], we can prove the following theorem.

Theorem 2. Let M be a smooth manifold without boundary. Let W be any C∞-open neighborhood of
Id ∈ Diffc0(M). Then, there exists φ ∈ W such that

φ �= ψ2
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holds for any ψ ∈ Diffc(M). In particular,W\Aut(M) is not empty.

Corollary 2. The exponential map exp : Γc(TM)→ Diffc0(M) is not surjective.

3. Milnor’s Criterion

In [1], Milnor gave a criterion for the existence of a square root of a diffeomorphism. We use this
criterion later. We fix l ∈ N≥2 and a diffeomorphism φ ∈ Diff(M). Let Pl(φ) be the set of “l-periodic
orbits” which is defined by

Pl(φ) = {(x1, · · · , xl) | xi �= xj(i �= j), xj = φj−1(x1), x1 = φ(xl)}/ ∼ .

This equivalence relation ∼ is given by the natural Z/lZ-action

(x1, · · · , xl)→ (xl , x1, · · · , xl−1).

Proposition 1 (Milnor [1], Albers-Frauenfelder [2]). Assume that φ ∈ Diff(M) has a square root (i.e.,
there exists ψ ∈ Diff(M) such that φ = ψ2 holds). Then, there exists a free Z/2Z-action on P2k(φ) (k ∈ N).
In particular, �P2k(φ) is even if �P2k(φ) is finite.

4. Proof of Theorem 1

Proof. Before stating the proof of Theorem 1, we introduce the notion of a contact Hamiltonian
function. Let M be a smooth manifold without boundary and let α ∈ Ω1(M) be a contact form on M
(ξ = ker(α)). A Reeb vector field Rα ∈ Γ(TM) is the unique vector field which satisfies

α(Rα) = 1

dα(Rα, ·) = 0.

For any smooth function h ∈ C∞
c (M), there exists only one contact vector field Xh ∈ Γc

ξ(TM)

which satisfies

Xh = h · Rα + Z where Z ∈ ξ.

In fact, Xh is a contact vector field if and only if LXh(α)|ξ = 0 holds (L is the Lie derivative). So,

LXh(α)(Y) = dh(Y) + dα(Xh, Y) = dh(Y) + dα(Z, Y) = 0

holds for any Y ∈ ξ. Because dα is non-degenerate on ξ, above equation determines Z ∈ ξ uniquely.
Xh is the contact vector field associated to the contact Hamiltonian function h. We denote the time t
flow of Xh by φt

h and time 1 flow of Xh by φh.
Let (M, ξ) be a contact manifold without boundary. We fix a point p ∈ (M, ξ) and a

sufficiently small open neighborhood U ⊂ M of p. Let (x1, y1, · · · , xn, yn, z) be a coordinate of R2n+1.
Let α0 ∈ Ω1(R2n+1) be a contact form

α0 =
1
2 ∑

1≤i≤n
(xidyi − yidxi) + dz

on R2n+1. By using the famous Moser’s arguments, we can assume that there exists an open
neighborhood of the origin V ⊂ R2n+1 and a diffeomorphism

F : V −→ U (1)
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which satisfies
ξ|U = ker((F−1)∗α0).

So, we first prove the theorem for (V, ker(α0)) and apply this to (M, ξ).
We fix k ∈ N≥1 and R > 0 so that

{(x1, y1, · · · , z) ∈ R
2n+1 | |(x1, · · · , yn)| < R, |z| < R} ⊂ V

holds. Let f ∈ C∞
c (V) be a contact Hamiltonian function. Then its contact Hamiltonian vector field X f

can be written in the following form

X f (x1, · · · , z) = ∑
1≤i≤n

(− ∂ f
∂yi

+
xi
2

∂ f
∂z

)
∂

∂xi

+ ∑
1≤i≤n

(
∂ f
∂xi

+
yi
2

∂ f
∂z

)
∂

∂yi

+( f − ∑
1≤i≤n

xi
2

∂ f
∂xi

− ∑
1≤i≤n

yi
2

∂ f
∂yi

)
∂

∂z
.

Let e : R2n −→ R be a quadric function

e(x1, y1, · · · , xn, yn) = x2
1 + y2

1 + ∑
2≤i≤n

x2
i + y2

i
2

.

We define a contact Hamiltonian function h on V by

h(x1, y1, · · · , xn, yn, z) = β(z)ρ(e(x1, y1, · · · , xn, yn)).

Here, β : R→ [0, 1] and ρ : R≥0 → R≥0 are smooth functions which satisfy the following
five conditions.

1. supp(ρ) ⊂ [0, R2

2 ]

2. ρ(r) ≥ ρ′(r) · r, − π
2k < ρ′(r) ≤ π

2k

3. There exists an unique a ∈ [0, R2

2 ] which satisfies the following conditions{
ρ′(r) = π

2k ⇐⇒ r = a

ρ(a) = π
2k · a

.

4. supp(β) ⊂ [− R
2 , R

2 ]

5. β(0) = 1, β−1(1) = 0

Then, we can prove the following lemma.

Lemma 1. Let h ∈ C∞
c (V) be a contact Hamiltonian function as above. Then,

[q, φh(q), · · · , φ2k−1
h (q)] ∈ P2k(φh)

holds if and only if

q ∈ {(x1, y1, 0, · · · , 0) ∈ V | x2
1 + y2

1 = a} def.
= Sa

holds.
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Proof of Lemma 1. In order to prove this lemma, we first calculate the behavior of the function
z(φt

h(q)) for a fixed q ∈ V (Here, z is the (2n + 1)-th coordinate of R2n+1).

d
dt
(z(φt

h(q))) = h− ∑
1≤i≤n

xi
2

∂h
∂xi

− ∑
1≤i≤n

yi
2

∂h
∂yi

= β(z){ρ(e)− ∑
1≤i≤n

xi
2

∂

∂xi
(ρ(e))− ∑

1≤i≤n

yi
2

∂

∂yi
(ρ(e))}

= β(z){ρ(e)− ρ′(e) · e} ≥ 0

In the last inequality, we used the condition 2. So, this inequality implies that

φ2k
h (q) = q =⇒ d

dt
(z(φt

h(q))) = 0

holds.
Next, we study the behavior of xi(φ

t
h(q)) and yi(φ

t
h(q)). Let πi be the projection

πi : R2n+1 −→ R
2.

(x1, y1, · · · , xn, yn, z) �→ (xi, yi)

Then, Yi
h = πi(Xh) can be decomposed into the angular component Yi,θ

h and the radius component
Yi,r

h as follows

Yi,θ
h (x1, y1, · · · , z) = − ∂h

∂yi

∂

∂xi
+

∂h
∂xi

∂

∂yi

Yi,r
h (x1, y1, · · · , z) = (

1
2

∂h
∂z

)(xi
∂

∂xi
+ yi

∂

∂yi
).

Let wi be the complex coordinate of (xi, yi) (wi = xi +
√
−1yi). Then, the angular component

causes the following rotation on wi, if we ignore the z-coordinate,

arg(wi) −→ arg(wi) + 2ρ′(e(x1, · · · , yn))β(z)Cit

Ci =

{
1 i = 1
1
2 2 ≤ i ≤ n

.

By conditions 2, 3, and 5 in the definition of β and ρ, |2ρ′(e(x1, · · · , yn))β(z)Ci| is at most 2π
2k and

the equality holds if and only if (x1, y1, · · · , xn, yn, z) ∈ Sa holds. On the circle Sa, φh is the 2π
2k -rotation

of the circle Sa. This implies that Lemma 1 holds.

Next, we perturb the contactomorphism φh. Let (r, θ) be a coordinate of (x1, y1) ∈ R2\(0, 0)
as follows

x1 = r cos θ, y1 = r sin θ.

We fix εk > 0. Then εk(1− cos(kθ)) is a contact Hamiltonian function on R2\(0, 0)×R2n−1 and
its contact Hamiltonian vector field can be written in the following form

Xεk(1−cos(kθ)) = −
εkk
r

sin(kθ)
∂

∂r
+ εk(1− cos(kθ))

∂

∂z
.

So φεk(1−cos(kθ)) only changes the r of (x1, y1)-coordinate and z-coordinate as follows

(r, θ, x2, y2, · · · , xn, yn, z) �→ (
√

r2 − 2εkk sin(kθ), θ, x2, · · · , yn, z + εk(1− cos(kθ))).
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We fix two small open neighborhoods of the circle Sa as follows

Sa ⊂ W1 ⊂ W2 ⊂ R
2\(0, 0)×R

2n−1

Xh(p) �= 0 on p ∈ W2.

We also fix a cut-off function η : R2n+1 → [0, 1] which satisfies the following conditions

η((x1, · · · , z)) = 1 ((x1, · · · , z) ∈ W1)

η((x1, · · · , z)) = 0 ((x1, · · · , z) ∈ R
2n+1\W2)

φ
j
h(R

2n+1\W2) ∩ supp(η) = ∅ (1 ≤ j ≤ 2k).

We will use the last condition in the proof of Lemma 2. Then, η(x1. · · · , z) · εk(1− cos(kθ))

is defined on R2n+1. We denote this contact Hamiltonian function by gεk . We define
φεk ∈ Contc

0(R
2n+1, ker(α0)) by the composition φgεk

◦ φh.

Lemma 2. We take εk > 0 sufficiently small. We define 2k points {ai}1≤i≤2k by

ai = (
√

a cos(
iπ
k
),
√

a sin(
iπ
k
), 0, · · · , 0)) ∈ Sa.

Then P2k(φεk ) has only one point [a1, a2, · · · , a2k].

Proof of Lemma 2. The proof of this lemma is as follows. On W1, φgεk
only changes the r-coordinate

of (x1, y1) and z-coordinate. So, φεk increases the angle of each (xi, yi) coordinate at most 2π
2k and

the equality holds on only Sa. On the circle Sa, the fixed points of φgεk
are 2k points {ai}. From the

arguments in the proof of Lemma 1, this implies that

[a1, a2, · · · , a2k] ∈ P2k(φεk )

holds and this is the only element of P2k(φεk ) on W1. So, it suffices to prove that this is the only

element in P2k(φεk ) if εk > 0 is sufficiently small. We prove this by contradiction. Let {ε
(j)
k > 0}j∈N be

a sequence which satisfies ε
(j)
k → 0. We assume that there exists a sequence

[b(j)
1 , · · · , b(j)

2k ] ∈ P2k(φ
ε
(j)
k
)\[a1, a2, · · · , a2k].

We may assume without loss of generality that b(j)
1 /∈ W1 holds because

(b(j)
1 , · · · , b(j)

2k ) /∈ W2k
1

holds. We may assume that b(j)
1 converges to a point b /∈ W1. Then, φ2k

h (b) = b holds. If Xh(b) �= 0,
φh increases the angle of every (xi, yi) coordinate less than 2π

2k and this contradicts φ2k
h (b) = b.

Thus Xh(b) = 0 holds. Because we assumed Xh(p) �= 0 on p ∈ W2, Xh(b) = 0 implies that b /∈ W2

holds. Let N ∈ N be a large integer so that b(N)
1 /∈ W2 holds. Then, φ

j
h(R

2n+1\W2) ∩ supp(η) = ∅

(1 ≤ j ≤ 2k) implies that φ
j

ε
(N)
k

(b(N)
1 ) = φ

j
h(b

(N)
1 ) holds for 1 ≤ j ≤ 2k and [b(N)

1 , · · · , b(N)
2k ] ∈ P2k(φh)

holds. This contradicts Lemma 1 because b(N)
1 /∈ Sa. So, we proved Lemma 2.

We assume that εk > 0 is sufficiently small so that the conclusion of Lemma 2 holds and we define
φk by φk = φεk . Thus, we have constructed φk ∈ Contc

0(V, Ker(α0)) which does not admit a square root
for each k ∈ N. Without loss of generality, we may assume that εk → 0 holds. Then φk converges to Id.

196



Axioms 2019, 8, 43

Finally, we prove Theorem 1. We define ψk ∈ Contc
0(M, ξ) for k ∈ N as follows. Recall that F is a

diffeomorphism which was defined in Equation (1).

ψk(x) =

{
F ◦ φk ◦ F−1(x) x ∈ U

x x ∈ M\U

Lemma 2 implies that
P2k(ψk) = {[F(a1), · · · , F(a2k)]}

holds. Proposition 1 implies that ψk does not admit a square root. Because p ∈ M is any point and U is
any small open neighborhood of p, we proved Theorem 1.

5. Proof of Theorem 2

Proof. Let M be a m-dimensional smooth manifold without boundary. We fix a point p ∈ M. Let U
be an open neighborhood of p and let V ⊂ Rm be an open neighborhood of the origin such that there
is a diffeomorphism

F : V −→ U.

In order to prove Theorem 2, it suffices to prove that there exists a sequence ψk (k ∈ N) so that

• ψk does not admit a square root
• supp(ψk) ⊂ U
• ψk −→Id as k −→ +∞

hold.
First, assume that m is odd (m = 2n + 1). In this case, α0 is a contact form on V. Let φk be a

contactomorphism which we constructed in the proof of Theorem 1

• φk ∈ Contc
o(V, ker(α0))

• �P2k(φk) = 1 .

We define ψk ∈ Diffc
0(M) by

ψk(x) =

{
F ◦ φk ◦ F−1(x) x ∈ U

x x ∈ M\U
.

Then, �P2k(ψk) = 1 holds and this implies that ψk does not admit a square root and satisfies the
above conditions. So, we proved Theorem 2 if m is odd.

Next, assume that m is even (m = 2n). Let ω0 be a standard symplectic form on
(x1, y1, · · · , xn, yn) ∈ R2n which is defined by

ω0 = ∑
1≤i≤n

dxi ∧ dyi.

By using the arguments in [2], we can construct a sequence φk ∈ Hamc(V, ω0) for k ∈ N which
satisfies the following conditions

• �P2k(φk) = 1
• φk −→ Id as k −→ +∞ .

We define ψk ∈ Diffc
0(M) by

ψk =

{
F ◦ φk ◦ F−1 x ∈ U

x x ∈ M\U
.
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Then �P2k(ψk) = 1 holds and this implies that ψk does not admit a square root and satisfies the
above conditions. Hence, we have proved Theorem 2.
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Abstract: In this paper, some new results are given on fixed and common fixed points of Geraghty
type contractive mappings defined in b-complete b-metric spaces. Moreover, two examples are
represented to show the compatibility of our results. Some applications for nonlinear integral
equations are also given.

Keywords: fixed point; Geraghty; b-metric space

1. Introduction

In 1989, Bakhtin [1] introduced b-metric spaces as a generalization of metric spaces. Since then,
several papers have been published on the fixed point theory in such spaces. For further works and
results in b-metric spaces, we refer readers to References [2–22].

Definition 1. Let X be a (nonempty) set and s ≥ 1 be a given real number. A function d : X× X → [0, ∞) is
called a b-metric on X if the following conditions hold for all x, y, z ∈ X:

(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, y) ≤ s[d(x, z) + d(z, y)] (b-triangular inequality).

Then, the pair (X, d) is called a b-metric space with parameter s.

Example 1. [14] Let (X, d) be a metric space and let β > 1, λ ≥ 0 and μ > 0. For x, y ∈ X, set ρ(x, y) =
λd(x, y) + μd(x, y)β. Then (X, ρ) is a b-metric space with the parameter s = 2β−1 and not a metric space
on X.

In 1973, Geraghty [23] introduced a class of functions to generalize the Banach contraction
principle. Let S be the family of all functions α : [0, ∞)→ [0, 1) satisfying the property:

lim
n→∞

α(tn) = 1 implies lim
n→∞

tn = 0.

Theorem 1. [23] Let (X, d) be a complete metric space. Let T : X → X be given mapping satisfying:

d(Tx, Ty) ≤ α(d(x, y))d(x, y), x, y ∈ X,

where α ∈ S. Then T has a unique fixed point.

Axioms 2019, 8, 34; doi:10.3390/axioms8010034 www.mdpi.com/journal/axioms199



Axioms 2019, 8, 34

In 2011, Dukic et al. [24] reconsidered Theorem 1 in the framework of b-metric spaces (see also
Reference [25]).

Let (X, d) be a b-metric space with parameter s ≥ 1 and S denote the set of all functions
α : [0, ∞)→ [0, 1

s ), satisfing the following condition:

lim
n→∞

α(tn) =
1
s
⇒ lim

n→∞
tn = 0.

Theorem 2. [24] Let (X, d) be a b-complete b-metric space with parameter s ≥ 1 and let T : X → X be a
self-map. Suppose that there exists β ∈ S such that:

d(Tx, Ty) ≤ β(d(x, y))d(x, y),

holds for all x, y ∈ X. Then T has a unique fixed point x∗ ∈ X.

In recent years, many researchers have extended the result of Geraghty in the context of various
metric spaces (e.g., see References [26–29]). In the present paper, we extended some fixed point
theorems for Geraghty contractive mappings in b-metric spaces.

2. Results

Let B denote the set of all functions β : [0, ∞) → [0, 1
s ) which satisfies the condition

lim supn→∞ β(tn) =
1
s implies that tn → 0 as n → ∞ [25].

Theorem 3. Let (X, d) be a b-complete b-metric space with parameter s ≥ 1. Let T : X → X be a
self-mapping satisfying:

d(Tx, Ty) ≤ β
(

M(x, y)
)

M(x, y), x, y ∈ X, (1)

where:
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),

1
2s
(
d(x, Ty) + d(y, Tx)

)
},

and β ∈ B. Then T has a unique fixed point.

Proof of Theorem 3. Let x0 ∈ X be arbitrary. Consider the sequence {xn} where:

xn = Txn−1 = Tnx0, n ∈ N.

If there exists n ∈ N such that xn+1 = xn, then xn is a fixed point of T and the proof is finished.
Otherwise, we have d(xn+1, xn) > 0 for all n ∈ N. By Condition (1), for all n ∈ N we have:

d(xn, xn+1) = d(Txn−1, Txn) ≤ β(M(xn−1, xn))M(xn−1, xn), (2)

where:

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),
d(xn−1, Txn) + d(xn, Txn−1)

2s
}

= max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1),
d(xn−1, xn+1) + d(xn, xn)

2s
}

≤ max{d(xn−1, xn), d(xn, xn+1),
s(d(xn−1, xn) + d(xn, xn+1))

2s
}

= max{d(xn−1, xn), d(xn, xn+1)}.
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If d(xn−1, xn) ≤ d(xn, xn+1), then M(xn−1, xn) = d(xn, xn+1). From Condition (2), we have:

d(xn, xn+1) ≤ β(M(xn−1, xn))M(xn−1, xn)

≤ 1
s

d(xn, xn+1) n ∈ N.

This is a contradiction. Thus, we have:

M(xn−1, xn) = d(xn, xn−1)

.
Then, from Condition (2), we get:

d(xn, xn+1) ≤ β(M(xn−1, xn))d(xn−1, xn) (3)

< d(xn−1, xn), n ∈ N.

So {d(xn−1, xn)} is a decreasing sequence of non-negative reals. Hence, there exists r ≥ 0 such
that d(xn−1, xn)→ r as n → ∞. We claimed that r = 0. Suppose on the contrary that r > 0, then from
Condition (3), we have:

r ≤ lim sup
n→∞

β(M(xn−1, xn))r.

Then,
1
s
≤ 1 ≤ lim sup

n→∞
β(M(xn−1, xn)) ≤

1
s

.

Since β ∈ B, then limn→∞ M(xn−1, xn) = 0. So limn→∞ d(xn−1, xn) = 0, which is a contradiction,
that is, r = 0. Now we show that {xn} is a b-Cauchy sequence. Suppose on the contrary that {xn}
is not a b-Cauchy sequence. Then there exists ε > 0 for which we can find subsequences {xm(k)}
and{xn(k)} of {xn} such that n(k) is the smallest index for which n(k) > m(k) > k,

d(xm(k), xn(k)) ≥ ε, (4)

and

d(xm(k), xn(k)−1) < ε. (5)

From Condition (5) and using the b-triangular inequality, we have:

ε ≤ d(xm(k), xn(k)) ≤ s(d(xm(k), xm(k)+1) + d(xm(k)+1, xn(k))).

Then, we get:

ε

s
≤ lim sup

k→∞
d(xm(k)+1, xn(k)). (6)
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Therefore,

lim sup
k→∞

M(xm(k), xn(k)−1) = lim sup
k→∞

max{d(xm(k), xn(k)−1), d(xm(k), Txm(k)),

d(xn(k)−1, Txn(k)−1),
d(xm(k), Txn(k)−1) + d(xn(k)−1, Txm(k))

2s
}

= lim sup
k→∞

max{d(xm(k), xn(k)−1), d(xm(k), xm(k)+1),

d(xn(k)−1, xn(k)),
d(xm(k), xn(k)) + d(xn(k)−1, xm(k)+1)

2s
}

≤ lim sup
k→∞

max{d(xm(k), xn(k)−1), d(xm(k), xm(k)+1), d(xn(k)−1, xn(k)),

sd(xm(k), xn(k)−1) + sd(xn(k), xn(k)−1)

2s

+
sd(xn(k)−1, xm(k)) + sd(xm(k), xm(k)+1)

2s
}

≤ ε.

From Condition (6) and Condition (1), we have:

ε

s
≤ lim sup d(xm(k)+1, xn(k))

≤ lim sup
k→∞

β(M(xm(k), xn(k)−1))M(xm(k), xn(k)−1)

≤ ε lim sup
k→∞

β(M(xm(k), xn(k)−1)).

Then 1
s ≤ lim supk→∞ β(M(xm(k), xn(k)−1)) ≤ 1

s . Since β ∈ B, so M(xm(k), xn(k)−1) → 0, as a
result, d(xm(k), xn(k)−1)→ 0. From Condition (4) and using the b-triangular inequality, we have:

ε ≤ d(xm(k), xn(k)) ≤ s(d(xm(k), xn(k)−1) + d(xn(k)−1, xn(k))).

Therefore, limk→∞ d(xm(k), xn(k)) = 0. This contradicts with Condition (4). Hence, {xn} is a
b-Cauchy sequence. The completeness of X implies that there exists u ∈ X such that xn → u.
We showed that u is a fixed point of T. By b-triangular inequality and Condition (1), we have:

d(u, Tu) ≤ s(d(u, Txn) + d(Txn, Tu))

≤ sd(u, Txn) + sβ(M(xn, u))M(xn, u).

Letting n → ∞ in the above inequality, we obtain:

d(u, Tu) ≤ s lim sup
n→∞

d(u, xn+1) (7)

+s lim sup
n→∞

β(M(xn, u)) lim sup
n→∞

M(xn, u),

where:

lim supn→∞ M(xn, u) = lim supn→∞ max{d(xn, u), d(xn, Txn), d(u, Tu), 1
2s (d(xn, Tu) + d(u, Txn))}

≤ lim supn→∞ max{d(xn, u), d(xn, xn+1), d(u, Tu), 1
2s (sd(xn, u) + sd(u, Tu) + d(u, xn+1))}

≤ d(u, Tu).

Hence, from Condition (7), we have:

d(u, Tu) ≤ s lim sup β(M(xn, u))d(u, Tu).
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Consequently, 1
s ≤ lim supn→∞ β(M(xn, u)) ≤ 1

s . Since β ∈ B, we concluded limn→∞ M(xn, u) = 0.
Therefore, Tu = u. To see that the fixed point u ∈ X is unique, suppose there is v �= u in X such

that Tv = v. From Condition (1), we get:

d(u, v) = d(Tu, Tv) ≤ β(M(u, v))M(u, v),

where:

M(u, v) = max{d(u, v), d(u, Tu), d(v, Tv),
1
2s

(d(u, Tv) + d(v, Tu))}
≤ d(u, v).

Therefore, we have d(u, v) < 1
s d(u, v). Then u = v, which is a contradiction.

Example 2. Let X = {1, 2, 3} and d : X× X → [0, ∞) be defined as follows:

(i) d(1, 2) = d(2, 1) = 1,
(ii) d(1, 3) = d(3, 1) = 1

9 ,
(iii) d(2, 3) = d(3, 2) = 6

9 .
(iv) d(1, 1) = d(2, 2) = d(3, 3) = 0.

It is easy to check that (X, d) is a b-metric space with constant s = 3
2 . Set T1 = T3 = 1, T2 = 3 and

β(t) = 2
3 e−t, t > 0 and β(0) ∈ [0, 2

3 ). Then we have:

d(T1, T2) = d(1, 3) =
1
9
≤ 2

3
e−1 = β(M(1, 2))M(1, 2),

d(T1, T3) = d(1, 1) = 0 ≤ β(M(1, 3))M(1, 3),

d(T2, T3) = d(3, 1) =
1
9
≤ 2

3
e−

6
9 (

6
9
) = β(M(2, 3))M(2, 3).

Therefore, the conditions of Theorem 3 are satisfied.

Theorem 4. Let (X, d) be a b-complete b-metric space with parameter s ≥ 1. Let T, S be self-mappings on X
which satisfy:

sd(Tx, Sy) ≤ β(M(x, y))M(x, y), x, y ∈ X, (8)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy)} and β ∈ B. If T or S are continuous, then T and S have a
unique common fixed point.

Proof of Theorem 4. Let x0 be arbitrary. Define the sequence {xn} in X by x2n+1 = Tx2n and x2n+2 =

Sx2n+1 for all n = 0, 1, . . .. From Condition (8), for all n = 0, 1, 2, . . ., we have:

sd(x2n+1, x2n+2) = sd(Tx2n, Sx2n+1) (9)

≤ β(M(x2n, x2n+1))M(x2n, x2n+1),

where:

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1)}
= max{d(x2n, x2n+1), d(x2n+1, x2n+2)}, n = 0, 1, 2, . . . .

If M(x2n, x2n+1) = d(x2n+1, x2n+2), then:

sd(x2n+1, x2n+2) ≤ β(M(x2n, x2n+1))d(x2n+1, x2n+2) <
1
s

d(x2n+1, x2n+2),
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which is a contradiction. Hence, we have M(x2n, x2n+1) = d(x2n, x2n+1). From Condition (9), we have:

d(x2n+1, x2n+2) ≤ β(M(x2n, x2n+1))d(x2n, x2n+1) (10)

≤ 1
s

d(x2n, x2n+1).

Then, we get d(x2n+1, x2n+2) ≤ d(x2n, x2n+1). Similarly, d(x2n+3, x2n+2) ≤ d(x2n+2, x2n+1). So,
we have d(xn, xn+1) ≤ d(xn−1, xn). Thus {d(xn, xn+1)} is a nonincreasing sequence, hence there exists
r ≥ 0 such that d(xn, xn+1)→ r as n → ∞. We showed that r = 0. Suppose on the contrary that r > 0.
Letting n → ∞ in (10), we obtain:

r ≤ lim sup
n→∞

β(M(x2n, x2n+1))r.

Then, we have:
1
s
≤ 1 ≤ lim sup

n→∞
β(M(x2n, x2n+1)) ≤

1
s

.

Since β ∈ B, we have:
lim

n→∞
M(x2n, x2n+1) = 0.

Hence,
r = lim

n→∞
d(x2n, x2n+1) = 0,

which is a contradiction. Now, we show that {x2n} is a b-Cauchy sequence. Suppose that {x2n} is
not a b-Cauchy sequence. Then there exists ε > 0 for which we can find subsequences {x2m(k)} and
{x2n(k)} of {x2n} such that n(k) is the smallest index for which n(k) > m(k) > k,

d(x2n(k), x2m(k)) ≥ ε, (11)

and

d(x2n(k), x2m(k)−2) < ε. (12)

From Condition (8) and Condition (11) and the b-triangular inequality, we have:

ε ≤ d(x2n(k), x2m(k))

≤ sd(x2n(k), x2n(k)+1) + sd(x2n(k)+1, x2m(k))

= sd(x2n(k), x2n(k)+1) + sd(Tx2n(k), Sx2m(k)−1)

≤ sd(x2n(k), x2n(k)+1)

+β(M(x2n(k), x2m(k)−1))M(x2n(k), x2m(k)−1), (13)

where:

M(x2n(k), x2m(k)−1) = max{d(x2n(k), x2m(k)−1), d(x2n(k), Tx2n(k)), d(x2m(k)−1, Sx2m(k)−1)}.

Letting k → ∞, we have:

lim sup
k→∞

M(x2n(k), x2m(k)−1) = lim sup
k→∞

d(x2n(k), x2m(k)−1).

From the b-triangular inequality, we have:

d(x2n(k), x2m(k)−1) ≤ s(d(x2n(k), x2m(k)−2) + d(x2m(k)−2, x2m(k)−1)).
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Letting again k → ∞ in the above inequality, we get:

lim sup
k→∞

d(x2n(k), x2m(k)−1) ≤ sε. (14)

From Condition (13) and Condition (14), we obtain:

ε ≤ lim sup
k→∞

(
β(M(x2n(k), x2m(k)−1))M(x2n(k), x2m(k)−1)

)
= lim sup

k→∞
β(M(x2n(k), x2m(k)−1)) lim sup

k→∞
d(x2n(k), x2m(k)−1)

≤ sε lim sup
k→∞

β(M(x2n(k), x2m(k)−1)).

Therefore,
1
s
≤ lim sup

k→∞
β(M(x2n(k), x2m(k)−1)) ≤

1
s

.

Since β ∈ B, it follows that:

lim
k→∞

M(x2n(k), x2m(k)−1) = 0.

Consequently,

lim
k→∞

d(x2n(k), x2m(k)−1) = 0. (15)

From Condition (11) and using the b-triangular inequality, we get:

ε ≤ d(x2n(k), x2m(k)) ≤ s(d(x2n(k), x2m(k)−1) + d(x2m(k)−1, x2m(k))).

Letting k → ∞ in the above inequality and using Condition (15), we obtain:

lim sup
k→∞

d(x2n(k), x2m(k)) = 0.

This contradicts Condition (11). This implies that {x2n} is a b-Cauchy sequence and so is {xn}.
There exists x∗ ∈ X such that limn→∞ xn = x∗. If T is continuous, we have:

Tx∗ = lim
n→∞

Tx2n = lim
n→∞

x2n+1 = x∗.

From Condition (8), we have:

sd(x∗, Sx∗) = sd(Tx∗, Sx∗) ≤ β(M(x∗, x∗))M(x∗, x∗),

where:

M(x∗, x∗) = max{d(x∗, x∗), d(x∗, Tx∗), d(x∗, Sx∗)}
= d(x∗, Sx∗).

Since β ∈ B, we have,

sd(x∗, Sx∗) ≤ β(M(x∗, x∗))d(x∗, Sx∗) ≤ 1
s

d(x∗, Sx∗).
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Hence, Sx∗ = x∗. If S is continuous, then, by a similar argument to that of above, one can show
that T, S have a common fixed point. Now, we prove the uniqueness of the common fixed point.
Let y = Ty = Sy, is another common fixed point for T and S. From Condition (8), we obtain:

sd(x∗, y) = sd(Tx∗, Sy) ≤ β(M(x∗, y))M(x∗, y),

where:
M(x∗, y) = max{d(x∗, y), d(x∗, Tx∗), d(y, Sy)} = d(x∗, y).

Therefore, x∗ = y and the common fixed point T and f is unique.

In Theorem 4, if T = S, we get the following result.

Corollary 1. Let (X, d) be a b-complete b-metric space with parameter s ≥ 1 and T be self-mapping on X
which satisfy:

sd(Tx, Ty) ≤ β(M(x, y))M(x, y), x, y ∈ X, (16)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)} and T is continuous. Then T has a unique fixed point.

Example 3. Let X = [0, 1] and d : X × X → [0, ∞) be defined by d(x, y) = |x− y|2, for all x, y ∈ [0, 1]. It
is easy to check that (X, d) is a b-metric space with parameter s = 2. Set Tx = x

4 for all x ∈ X and β(t) = 1
4

for all t > 0. Then,

2d(Tx, Ty) = 2| x
4
− y

4
|2

≤ 1
4
|x− y|2

≤ β(M(x, y))M(x, y).

Then, the conditions of Corollary 1 are satisfied.

3. Applications to Nonlinear Integral Equations

In this section, we studied the existence of solutions for nonlinear integral equations, as an
application to the fixed point theorems proved in the previous section.

Let X = C[0, l] be the set of all real continuous functions on [0, l] and d : X × X → [0, ∞) be
defined by:

d(u, v) = max0≤t≤l |u(t)− v(t)|2, u, v ∈ X.

Obviously, (X, d) is a complete b-metric space with parameter s = 2. First, consider the
integral equation:

u(t) = h(t) +
∫ l

0
G(t, s)k(t, s, u(s)) ds, (17)

where l > 0 and h : [0, l] → R, G : [0, l] × [0, l] → R and k : [0, l] × [0, l] × R → R are
continuous functions.

Theorem 5. Suppose that the following hypotheses hold:
(1) for all t, s ∈ [0, l] and u, v ∈ X, we have:

|k(t, s, u(s))− k(t, s, v(s))| ≤

√
e−M(u,v)M(u, v)

2
,
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(2) for all t, s ∈ [0, l], we have:

max
∫ l

0
G(t, s)2 ds ≤ 1

l
.

Then, the integral equation (see Condition (17)) has a unique solution u ∈ X.

Proof of Theorem 5. Let T : X → X be a mapping defined by:

Tu(t) = h(t) +
∫ l

0
G(t, s)k(t, s, u(s)) ds, u ∈ X, t, s ∈ [0, l].

From Condition (1) and Condition (2), we can write:

d(Tu, Tv) = maxt∈[0,l]|Tu(t)− Tv(t)|2

= maxt∈[0,l]{|h(t) +
∫ l

0
G(t, s)k(t, s, u(s)) ds− h(t)−

∫ l

0
G(t, s)k(t, s, v(s)) ds|2}

= maxt∈[0,l]{|
∫ l

0
G(t, s)(k(t, s, u(s))− k(t, s, v(s))) ds|2}

≤ maxt∈[0,l]{
∫ l

0
G(t, s)2ds

∫ l

0
|k(t, s, u(s))− k(t, s, v(s))|2 ds}

≤ 1
l

∫ l

0
|

√
e−M(u,v)M(u, v)

2
|2 ds

≤ e−M(u,v)

2
M(u, v).

So, we get:

d(Tu, Tv) ≤ β(M(u, v))M(u, v).

Thus, all conditions in Theorem 3 for β(t) = e−t

2 , t > 0 and β(0) ∈ [0, 1
2 ) are satisfied and hence T

has a fixed point.

Let X = C[a, b] be the set of all real continuous functions on [a, b] and X equipped with the
b-metric below,

d(u, v) = maxa≤t≤b{(|u(t)− v(t)|)p}, p > 1, u, v ∈ X.

Then (X, d) is a complete b-metric space with parameter s = 2p−1. Now, consider the
integral equations:

u(t) =
∫ b

a
G(t, s)k1(t, s, u(s)) ds, (18)

and

u(t) =
∫ b

a
G(t, s)k2(t, s, u(s)) ds, (19)

where G : [a, b]× [a, b]→ R and k1, k2 : [a, b]× [a, b]×R→ R are continuous functions.

Theorem 6. Suppose that:
(1) For all t, s ∈ [a, b] and u, v ∈ X, we have:

|k1(t, s, u(s))− k2(t, s, v(s))| ≤ (
ln(1 + (|u(s)− v(s)|)p)

22p−1 )
1
p .
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(2) For all t, s ∈ [a, b], we have:

maxa≤t≤b

∫ b

a
G(t, s)q ds ≤ 1

(b− a)
q
p

,
1
p
+

1
q
= 1.

Then the integral equations (Condition (18) and Condition (19)) have a unique common solution.

Proof of Theorem 6. Let T, S : X → X be mappings defined by:

Tu(t) =
∫ b

a
G(t, s)k1(t, s, u(s)) ds, (20)

and

Su(t) =
∫ b

a
G(t, s)k2(t, s, u(s)) ds. (21)

From Condition (1) and Condition (2), we have:

d(Tu, Tv) = maxa≤t≤b{(|Tu(t)− Sv(t)|)p}

≤ maxa≤t≤b{
(
|
∫ b

a
G(t, s)k1(t, s, u(s)) ds−

∫ b

a
G(t, s)k2(t, s, v(s)) ds|

)p}

≤ maxa≤t≤b{(
∫ b

a
|G(t, s)|(|k1(t, s, u(s))− k2(t, s, v(s))|) ds)p}

≤ maxa≤t≤b{((
∫ b

a
|G(t, s)q| ds)

1
q (
∫ b

a
(|k1(t, s, u(s))− k2(t, s, v(s))|)p ds)

1
p )p}

≤ maxa≤t≤b{(
∫ b

a
|G(t, s)q| ds)

p
q (
∫ b

a
(|k1(t, s, u(s))− k2(t, s, v(s))|)p ds)}

≤ maxa≤t≤b{(
1

(b− a)
q
p
)

p
q (
∫ b

a
(

ln(1 + (|u(s)− v(s)|)p)

22p−1 ) ds)}

≤ 1
(b− a)

(
∫ b

a
(

ln(1 + d(u, v))
22p−1 )ds

≤ ln(1 + M(u, v))
22p−1 .

Therefore, we get the following result:

2p−1d(Tu, Tv) ≤ M(u, v)
2p .

≤ β(M(u, v))M(u, v).

Hence, all of the hypotheses of Theorem 4 for s = 2p−1 and β(t) = 1
2p are satisfied. Then T and S

have a common fixed point u ∈ X.
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Abstract: In this paper, we ensure the existence and uniqueness of a best proximity point in
rectangular metric spaces endowed with a graph structure.

Keywords: proximity point; rectangular metric; G-contraction; graph

1. Introduction

Over the last decades, many researchers have focused on fixed point theory since it plays a very
important role in the resolution of several mathematical models in various fields, see References [1–14].
One of the tools used is the well-known Banach contraction principle, which states that if (X, d) is a
complete metric space and f : X −→ X is a contraction self-mapping, then f has a unique fixed point in
X. On the other hand, if f is a non-self mapping, that is, f : A −→ B, where A and B are two subsets of
X, then f might not necessary have a fixed point, which leads one to think of an approximate solution
x of f x = x such that x is closet to f x: thereby, best proximity point theory appeared. We recall the
definition of a best proximity point.

Definition 1. Let (X, d) be a metric space, A and B two subsets of X and a mapping f : A −→ B. We denote
by d(A, B) the distance between A and B as follows

d(A, B) = min{d(x, y) : x ∈ A, b ∈ B}.

An element u ∈ A is called a best proximity point of the mapping f if

d(u, f u) = d(A, B). (1)

There are many variants and extensions of results for the existence of a best proximity point.
For more details, we refer to References [15–29].

One of the generalized metric spaces is the rectangular metric space introduced first by
Branciari [30]. Metric spaces endowed with a graph were introduced by Jachymski [31], which
is an extension of metric spaces with partial order structures. In this paper, we consider rectangular
metric spaces with the additional structure of a graph. Our contribution is that of proving the existence
of a unique best proximity point for mappings satisfying different contractive conditions.

Axioms 2019, 8, 17; doi:10.3390/axioms8010017 www.mdpi.com/journal/axioms211



Axioms 2019, 8, 17

2. Preliminaries

In this section, we present some useful preliminary definitions and results related to our study.
First, we remind the reader of the definition of rectangular metric spaces along with the topology.

Definition 2. [30] Let X be a nonempty set. If the function d : X2 −→ [0, ∞) satisfies the following conditions
for all x, y, z ∈ X:

(r1) x = y if and only if d(x, y) = 0;
(r2) d(x, y) = d(y, x);
(r3) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) for all different u, v ∈ X \ {x, y},

then the pair (X, d) is called a rectangular metric space.

Definition 3. [30] Let (X, d) be a rectangular metric space. Then,

1. a sequence {xn} in X converges to a point x if and only if lim
n→∞

d(xn, x) = 0.
2. a sequence {xn} in X is called Cauchy if lim

n,m→∞
d(xn, xm) = 0.

3. (X, d) is said to be complete if every Cauchy sequence {xn} in X converges to a point x ∈ X.
4. Let Br(x0, δ) = {y ∈ X such that d(x0, y) < δ} be an open ball in (X, d). A mapping f : X −→ X is

continuous at x0 ∈ X if for each ε > 0, there exists δ > 0 so that f (Br(x0, δ)) ⊂ Br( f x0, ε).

Now, we present the definition of a best proximity point in the rectangular metric spaces (X, d).

Definition 4. Let A, B be nonempty subsets of (X, d) and f : A −→ B be a given mapping. We denote by
d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}. An element u ∈ A is called a best proximity point for the mapping f if
d(u, f u) = d(A, B). We denote by A0 and B0 the following sets:

A0 = {x ∈ A : d(x, y) = d(A, B) for some y ∈ B} (2)

B0 = {y ∈ B : d(x, y) = d(A, B) for some x ∈ A}. (3)

The concept of P-property was defined by Raj in Reference [32].

Definition 5. [32] Let (A, B) be a pair of non-empty subsets of (X, d) such that A0 �= ∅. We say that the

pair (A, B) has the P-property if and only if for x1, x2 ∈ A0 and y1, y2 ∈ B0
d(x1, y1) = d(A, B)
d(x2, y2) = d(A, B)

}
=⇒

d(x1, x2) = d(y1, y2).

Here, let us recall some preliminaries from graph theory. Let X be a nonempty set and Δ =

{(x, x) ∈ X × X, x ∈ X}. A graph G is a pair (V, E) where V = V(G) is a set of vertices coinciding
with X and E = E(G) the set of its edges such that Δ ⊂ E(G). Furthermore, throughout this paper, we
assume that the graph G has no parallel edges, that is, we do not allow it to get two or more edges
that are incident to the same two vertices. By reversing the direction of edges in G, we get the graph
denoted G−1 where its set of edges and vertices are defined as follows:

E(G−1) = {(x, y) ∈ X2 : (y, x) ∈ E(G)} and V(G−1) = V(G).

Consider the graph G̃ consisting of all vertices and edges of G and G−1, that is,

E(G̃) = E(G) ∪ E(G−1). (4)

We denote by G̃ the undirected graph obtained by ignoring the direction of edges of G.

Definition 6. [31] A subgraph is a graph which consists of a subset of a graph’s edges and associated vertices.
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Definition 7. [31] Let x and y be two vertices in a graph G. A path in G from x to y of length n (n ∈ N∪{0}) is
a sequence (xi)

n
i=0 of n + 1 distinct vertices such that x0 = x, xn = y and (xi, xi+1) ∈ E(G) for i = 1, 2, ..., n.

Definition 8. [31] A graph G is said to be connected if there is a path between any two vertices of G and it is
weakly connected if G̃ is connected.

Definition 9. [31] A path is called elementary if no vertices appear more than once in it. For more details see
Figures 1 and 2.

Let (X, d) be a rectangular metric space. The graph G may be converted to a weighted graph
by assigning to each edge the distance given by the rectangular metric between its vertices. In order
to later apply the rectangular inequality to the vertices of the graph, we need to consider a graph of
length bigger than 2, which means that between two vertices, we can find a path through at least two
other vertices.

1 2

6

5
4

3

Figure 1. Elementary path.

1 2
7

5 4 3

6

Figure 2. Non Elementary path.

3. Main Results

First, let (X, d) be a rectangular metric space and G be a directed graph without parallel edges
such that V(G) = X.

Definition 10. Let A and B be two nonempty subsets of (X, d). A mapping f : A −→ B is said to be a G-
contraction mapping if for all x, y ∈ A, x �= y with (x, y) ∈ E(G):

(i) d( f x, f y) ≤ αd(x, y), for some α ∈ [0, 1),
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(ii)
d(x1, f x) = d(A, B)
d(y1, f y) = d(A, B)

}
=⇒ (x1, y1) ∈ E(G), ∀x1, y1 ∈ A.

Our first main result is as follows:

Theorem 1. Let (X, d) be a complete rectangular metric space, A and B be two nonempty closed subsets of
(X, d) such that (A, B) has the P-property. Let f : A −→ B be a continuous G-contractive mapping such that
f (A0) ⊆ B0 and A0 �= ∅. Assume that d is continuous and the following condition (C1) holds: there exist x0

and x1 in A0 such that there is an elementary path in A0 between them and d(x1, f x0) = d(A, B).
Then, there exists a sequence {xn}n∈N with d(xn+1, f xn) = d(A, B) for n ∈ N. Moreover, if there exists

a path (yi)s
i=0 ⊆ A0 in G between any two elements x and y, then f has a unique best proximity point.

Proof. From the condition (C1), there exist two points x0 and x1 in A0 such that d(x1, f x0) = d(A, B)
and a path (ti

0)
N
i=0 in G between them such that the sequence {ti

0}N
i=0 containing points of A0.

Consequently, t0
0 = x0, tN

0 = x1 and (ti
0, ti+1

0 ) ∈ E(G) ∀0 ≤ i ≤ N.
Given that t1

0 ∈ A0, f (A0) ⊆ B0 and from the definition of A0, there exists t1
1 ∈ A0 such that

d(t1
1, f t1

0) = d(A, B). Similarly, for i = 2, ..., N, there exists ti
1 ∈ A0 such that d(ti

1, f ti
0) = d(A, B).

As (ti
0)

N
i=0 is a path in G then (t0

0, t1
0) = (x0, t1

0) ∈ E(G). From the above, we have d(x1, f x0) =

d(A, B) and d(t1
1, f t1

0) = d(A, B). Therefore, as f is a G-contraction, it follows that (x1, t1
1) ∈ E(G). In a

similar manner, it follows that

(ti−1
1 , ti

1) ∈ E(G) for i = 2, ..., N. (5)

Let x2 = tN
1 . Then, (ti

1)
N
i=0 is a path from x1 = t0

1 to x2 = tN
1 . For each i = 2, ..., N, as ti

1 ∈ A0 and
f ti

1 ∈ f (A0) ⊆ B0, then by the definition of B0, there exists ti
2 ∈ A0 such that d(ti

2, f ti
1) = d(A, B). In

addition, we have d(x2, f x1) = d(A, B). As above mentioned, we obtain

(x2, t1
2) ∈ E(G) and (ti−1

2 , ti
2) ∈ E(G)∀i = 1, 2, ..., N. (6)

Let x3 = tN
2 . Then, (ti

2)
N
i=0 is a path from t0

2 = x2 and tN
2 = x3.

Continuing in this process, for all n ∈ N, we generate a path (ti
n)

N
i=0 from xn = t0

n and xn+1 = tN
n .

As a consequence, we build a sequence {xn}n∈N where xn+1 ∈ [xn]NG and d(xn+1, f xn) = d(A, B)
such that

d(ti
n+1, f ti

n) = d(A, B) ∀ i = 0, ..., N. (7)

From the P-property of (A, B) and (7), it follows for each n ∈ N,

d(ti−1
n , ti

n) = d( f ti−1
n−1, f ti

n−1)∀i = 1, ..., N. (8)

Next, we claim that d(xn, xn+1) ≤ αnC, where C is a constant. To prove the claim, we need to
consider the following two cases where (ti

n)i=0,...,N is a path from xn to xn+1.
Note that for all i = 0, ..., N, (ti

n)i=0,...,N are different owing to the fact that the considered path
(ti

n) is elementary. Then, we can apply the triangular inequality (r3).

Case 1: N = 2k + 1 (N is odd).

214



Axioms 2019, 8, 17

For any positive integer n, we get

d(xn, xn+1) = d(t0
n, tN

n ) = d(t0
n, t2k+1

n )

≤ d(t0
n, t1

n) + d(t1
n, t2

n) + d(t2
n, t2k+1

n )

≤ d(t0
n, t1

n) + d(t1
n, t2

n) + ... + d(t2k
n , t2k+1

n )

≤
2k+1

∑
i=1

d(ti−1
n , ti

n)

=
N

∑
i=1

d( f ti−1
n−1, f ti

n−1). (9)

Knowing that (ti−1
n−1, ti

n−1) ∈ E(G) for all n ∈ N, and f is a G-contraction, we obtain from (9)

d(xn, xn+1) ≤ α
N

∑
i=1

d(ti−1
n−1, ti

n−1) ∀n ∈ N. (10)

By induction, it follows that for all n ∈ N

d(xn, xn+1) ≤ αn
N

∑
i=1

d(ti−1
0 , ti

0) = Cαn (11)

where C =
N

∑
i=1

d(ti−1
0 , ti

0).

Case 2: N = 2k (N is even).

d(xn, xn+1) = d(t0
n, tN

n ) = d(t0
n, t2k

n )

≤ d(t0
n, t1

n) + d(t1
n, t2

n) + d(t2
n, t2k

n )

≤ d(t0
n, t1

n) + d(t1
n, t2

n) + ... + d(t2k−3
n , t2k−2

n ) + d(t2k−2
n , t2k

n )

=
2k

∑
i=1

d(ti−1
n , ti

n)− d(t2k−2
n , t2k−1

n )− d(t2k−1
n , t2k

n ) + d(t2k−2
n , t2k

n )

≤
2k

∑
i=1

d(ti−1
n , ti

n) + d(t2k−2
n , t2k

n )

≤
2k

∑
i=1

d( f ti−1
n−1, f ti

n−1) + d(t2k−2
n , t2k

n ).

By the same arguments used in Case 1, we deduce that
2k

∑
i=1

d( f ti−1
n−1, f ti

n−1) ≤ αn
N

∑
i=1

d(ti−1
0 , ti

0).

On the other hand, d(t2k−2
n , t2k

n ) ≤ αnd(t2k−2
0 , t2k

0 ). Indeed, from (7), we have d(t2k−2
n , f t2k−2

n−1 ) = d(A, B)
and d(t2k

n , f t2k
n−1) = d(A, B) and using the P-property, we get

d(t2k−2
n , t2k

n ) = d( f t2k−2
n−1 , f t2k

n−1)

≤ αd(t2k−2
n−1 , t2k

n−1)

≤ αnd(t2k−2
0 , t2k

0 ). (12)

Then, we conclude that d(xn, xn+1) ≤ αnC where C =
N

∑
i=1

d(ti−1
0 , ti

0) + d(t2k−2
0 , t2k

0 ).

Let us prove that {xn} is a Cauchy sequence. Let n, m ∈ N such that m ≥ n. We suppose w.l.o.g
that m is odd (m = 2k + 1) since the case m = 2k is similar. Note that xn = tn

0 , xn+1 = tN
n and tn

0 �= tN
n
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for all n since the path (ti
n)i=0,...,N is elementary. Then, using the triangular inequality of the rectangular

metric, we obtain

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xm−1, xm)

≤ Cαn + Cαn+1 + ... + Cαm−1

= Cαn(1 + α + ... + αm−n−1)

≤ C
αn

1− α
.

As α < 1, then lim
n,m−→∞

d(xn, xm) = 0. Therefore, {xn}n∈N is a Cauchy sequence and there exists

u ∈ A such that xn −→ u as n −→ ∞.
Using the continuity of f , we get f xn −→ f u as n −→ ∞. Now, using the continuity of the

rectangular metric function, we obtain d(xn+1, f xn) converges to d(u, f u) as n −→ ∞.
Since d(xn+1, f xn) = d(A, B), the sequence {d(xn+1, f xn)}n is constant. Consequently, d(u, f u) =

d(A, B). Then, u is a best proximity point of f .
In order to prove the uniqueness of the best proximity point u, we assume that there exist u and

u′ such that

d(u, f u) = d(A, B) (13)

d(u′, f u′) = d(A, B). (14)

Knowing that the pair (A, B) has the P-property, from (13) and (14), we get d(u, u′) = d( f u, f u′).
Since f is a G-contraction, we obtain d(u, u′) = d( f u, f u′) ≤ αd(u, u′), which holds unless

d(u, u′) = 0, then u = u′.

Definition 11. Let f : A −→ B be a mapping. Define X f (GA0) as

X f (GA0) := {x ∈ A0 : ∃y ∈ A0 for which d(y, f x) = dist(A, B) and (x, y) ∈ E(G)}. (15)

Definition 12. Let A and B be two non-empty subsets of (X, d). A mapping f : A −→ B is said to be a
G-weakly contractive mapping if for all x, y ∈ A, x �= y with (x, y) ∈ E(G):

(i) d( f x, f y) ≤ d(x, y) − ψ(d(x, y)), where ψ : [0, ∞) −→ [0, ∞) is a continuous and nondecreasing
function such that ψ is positive on (0, ∞), ψ(0) = 0 and lim

t→∞
ψ(t) = ∞. If A is bounded, then the infinity

condition can be omitted.

(ii)
d(x1, f x) = d(A, B)
d(y1, f y) = d(A, B)

}
=⇒ (x1, y1) ∈ E(G), ∀x1, y1 ∈ A.

Our second main result is as follows:

Theorem 2. Let (X, d) be a complete rectangular metric space endowed with a directed graph, A and B be
two nonempty closed subsets of (X, d) such that (A, B) has the P-property. Let f : A −→ B be a continuous
G-weakly contractive mapping such that f (A0) ⊆ B0. Assume that d is continuous and A0 is a closed nonempty
set. Then, there exists a sequence {xn}n∈N in A0 such that d(xn+1, f xn) = d(A, B) for n ∈ N. Moreover,
f has a unique best proximity point.
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Proof. It follows from the definition of A0 and B0 that for every x ∈ A0, there exists y ∈ B0 such that
d(x, y) = dist(A, B). Conversely, for every y′ ∈ B0 there exists x′ ∈ A0 such that d(x′, y′) = dist(A, B).
Since f (A0) ⊂ B0, for every x ∈ A0 there exists y ∈ A0 such that d(y, f x) = dist(A, B).

Let x0 ∈ X f (GA0), then there exists x1 ∈ A0 such that (x0, x1) ∈ E(G) and d(x1, f x0) = dist(A, B).
On the other hand, since x1 ∈ A0 and f (A0) ⊂ B0, there exists x2 ∈ A0 such that d(x2, f x1) = dist(A, B)
and because f is a G-weakly contractive mapping, we get (x1, x2) ∈ E(G). We repeat this process in a
similar way, we build a sequence {xn} in A0 such that

(xn, xn+1) ∈ E(G) (16)

d(xn+1, f xn) = dist(A, B)∀n ∈ N. (17)

Since the pair (A, B) has the P-property, we conclude that d(xn, xn+1) = d( f xn−1, f xn) for all
n ∈ N. Then, for any positive integer n

d(xn, xn+1) = d( f xn−1, f xn)

≤ d(xn−1, xn)− ψ(d(xn−1, xn))

≤ d(xn−1, xn). (18)

If we denote by vn = d(xn, xn+1), from (18), {vn} is a nonnegative decreasing sequence. Hence,
{vn} converges to some real number v ≥ 0. Suppose that v > 0. As ψ is increasing, for any positive
integer n, we have

vn = d(xn, xn+1) ≤ d(xn−1, xn)− ψ(d(xn−1, xn))

= vn−1 − ψ(vn−1)

≤ vn−1 − ψ(v).

At the limit, v ≤ v− ψ(v) < v, which is a contradiction, so v = 0, that is,

d(xn, xn+1) −→ 0 as n −→ ∞. (19)

Similarly, we find that
d(xn, xn+2) −→ 0 as n −→ ∞. (20)

Now, let us prove that {xn} is a Cauchy sequence.
For any ε > 0, choose N such that

d(xN , xN+1) < min{ ε

8
, ψ(

ε

8
)} (21)

d(xN , xN+2) < min{ ε

8
, ψ(

ε

8
)}. (22)

Let B[xN , ε] := {x ∈ X : d(xN , x) < ε} be a closed ball with center xN and radius ε. We claim that
f (B[xN , ε]) ⊆ B[ f xN−1, ε].

Using the P-property, we obtain
d(xN , f xN−1) = dist(A, B)
d(xN+1, f xN) = dist(A, B)

}
=⇒

d(xN , xN+1) = d( f xN−1, f xN). (23)

Consider x ∈ B[xN , ε], i.e., d(xN , x) ≤ ε. We distinguish two cases d(xN , x) ≤ ε

2
and d(xN , x) >

ε

2
.

Case 1: d(xN , x) ≤ ε

2
.
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Using the rectangular inequality, we distinguish the following two subcases:

• If f xN−1 = f xN+1, f xN+2 = f x and f xN+1 �= f xN+2, we have

d( f xN−1, f x) = d( f xN+1, f xN+2)

≤ d(xN+1, xN+2)− ψ(d(xN+1, xN+2))

≤ d(xN+1, xN+2)

= d( f xN , f xN+1)

≤ d(xN , xN+1)

≤ ε

8
.

In the case where f xN+1 = f xN+2, we obtain d( f xN−1, f x) = 0.

• If f xN−1 �= f xN+1, f xN+2 �= f x and f xN+1 �= f xN+2, we have

d( f xN−1, f x) ≤ d( f xN−1, f xN+1) + d( f xN+1, f xN+2) + d( f xN+2, f x)

= d(xN , xN+2) + d( f xN+1, f xN+2) + d( f xN+2, f x)

≤ d(xN , xN+2) + d(xN+1, xN+2)− ψ(d(xN+1, xN+2)) + d(xN+2, x)− ψ(d(xN+2, x))

≤ d(xN , xN+2) + d(xN+1, xN+2) + d(xN+2, x)

≤ d(xN , xN+2) + d(xN+1, xN+2) + d(xN+2, xN+1) + d(xN+1, xN) + d(xN , x)

≤ d(xN , xN+2) + 2d(xN+1, xN+2) + d(xN+1, xN) + d(xN , x)

≤ d(xN , xN+2) + 2d(xN , xN+1)− 2ψ(d(xN , xN+1)) + d(xN+1, xN) + d(xN , x)

≤ d(xN , xN+2) + 3d(xN , xN+1) + d(xN , x)

≤ ε

8
+ 3× ε

8
+

ε

2
= ε

which implies that f x ∈ B[ f xN−1, ε].

Case 2:
ε

2
< d(xN , x) ≤ ε.

• If f xN−1 = f xN+1, f xN = f x and f xN+1 = f xN , we get

d( f xN−1, f x) ≤ d( f xN+1, f xN)

≤ d(xN+1, xN)− ψ(d(xN+1, xN))

≤ d(xN+1, xN)

≤ ε

8
.

• If f xN−1 �= f xN+1, f xN �= f x and f xN+1 �= f xN , we have

d( f xN−1, f x) ≤ d( f xN−1, f xN+1) + d( f xN+1, f xN) + d( f xN , f x)

≤ d(xN , xN+2) + d(xN+1, xN)− ψ(d(xN+1, xN)) + d(xN , x)− ψ(d(xN , x))

≤ d(xN , xN+2) + d(xN+1, xN) + d(xN , x)− ψ(d(xN , x))

≤ ε

8
+

ε

8
+ ε− ψ(

ε

2
)

=
ε

4
+ ε− ψ(

ε

2
)

≤ ε

2
+ ε− ψ(

ε

2
)

≤ ψ(
ε

2
) + ε− ψ(

ε

2
) = ε.(since ψ is increasing ).
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Then, d( f xN−1, f x) ≤ ε, which gives that f x ∈ B[ f xN−1, ε]. Thus, we obtain that

f (B[xN , ε]) ⊆ B[ f xN−1, ε]. (24)

Claim: If y ∈ B[ f xN−1, ε] with d(x, y) = dist(A, B) for some x ∈ A0, then x ∈ B[xN , ε].

Let y ∈ B[ f xN−1, ε]. Then,
d( f xN−1, y) ≤ ε. (25)

Assume that there exists x ∈ A0 such that d(x, y) = dist(A, B). From (17), we get d(xN , f xN−1) =

dist(A, B) which gives us using the P-property,

d(x, xN) = d(y, f xN−1). (26)

From (25) and (26), we obtain that d(x, xN) ≤ ε, i.e., x ∈ B[xN , ε] and the claim is proved.
From (21) and (23), we have xN+1 ∈ B[xN , ε]. Then, using (24), we get f xN+1 ∈ B[ f xN−1, ε], i.e.,

d( f xN+1, f xN−1) ≤ ε. (27)

Since d(xN+2, f xN+1) = dist(A, B), by the precedent claim d(xN+2, f xN) ≤ ε. Again, from (24),
d(xN+2, f xN−1) ≤ ε and from the claim d(xN+3, f xN) ≤ ε. In this way, we obtain

d(xN+m, xN) ≤ ε ∀m ∈ N. (28)

Thus, the sequence {xn} is Cauchy. Since A is a closed subset of the complete rectangular metric
space, there exists x∗ ∈ A such that

lim
n→∞

xN = x∗. (29)

From the continuity of f , we obtain

lim
n→∞

f xN = f x∗. (30)

Then, using the continuity of the rectangular metric, we obtain

d(xN+1, f xN) −→ d(x∗, f x∗) as N −→ ∞. (31)

From (17), d(xN+1, xN) = dist(A, B), we conclude that {d(xN+1, xN)}N is a constant sequence
equal to dist(A, B). Therefore, from (31), d(x∗, f x∗) = dist(A, B). Thereby, x∗ is a best proximity point
of f .

Let us prove the uniqueness of the best proximity point. Consider x1, x2 two different best
proximity points. Then, d(x1, f x1) = d(x2, f x2) = dist(A, B). From the P-property, we obtain
d(x1, x2) = d( f x1, f x2). Using that f is weakly G-contractive, we get

0 < d(x1, x2) = d( f x1, f x2) ≤ d(x1, x2)− ψ(d(x1, x2)) < d(x1, x2), (32)

which is a contradiction. Therefore, x1 = x2.

Definition 13. Let (X, d) be a rectangular metric space and G be a directed graph. Let A, B be two nonempty
subsets of X. A non-self mapping T : A −→ B is said to be

• a G- proximal Kannan mapping if for x, y, u, v ∈ A, there exists b ∈ [0, 1
2 ) such that

(x, y) ∈ E(G)

d(u, Tx) = d(A, B)
d(v, Ty) = d(A, B)

⎫⎪⎬⎪⎭ =⇒ d(u, v) ≤ b[d(x, v) + d(y, u)].
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• proximally G-edge preserving if for each x, y, u, v ∈ A
(x, y) ∈ E(G)

d(u, Tx) = d(A, B)
d(v, Ty) = d(A, B)

⎫⎪⎬⎪⎭ =⇒ (u, v) ∈ E(G).

Our third main result is as follows:

Theorem 3. Let (X, d) be a rectangular metric space and G a directed graph. Let A, B be two nonempty closed
subsets of X. Assume that A0 is nonempty and d is continuous. Let T : A −→ B be a continuous non-self
mapping satisfying the following properties:

• T is proximal G-edge preserving and a G-proximal Kannan mapping such that T(A0) ⊆ B0.
• There exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A, B) and (x0, x1) ∈ E(G). (33)

Then, T has a best proximity point x∗ in A. Furthermore, the sequence {xn} defined by d(xn, Txn−1) =

d(A, B) for all n ∈ N converges to x∗. Moreover, if there exists a path in G between any two points of A,
then the best proximity point is unique.

Proof. From (33), there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A, B) and (x0, x1) ∈ E(G). (34)

Since T(A0) ⊆ B0, we have Tx1 ∈ B0 and there exists x2 ∈ A0 such that

d(x2, Tx1) = d(A, B). (35)

Using the proximally G-edge preserving of T, (34) and (35), we get (x1, x2) ∈ E(G). By continuing
this process, we obtain the sequence {xn} in A0 such that

d(xn, Txn−1) = d(A, B) (36)

with (xn, Txn−1) ∈ E(G) ∀n ∈ N. (37)

Now, let us prove that {xn} is a Cauchy sequence in A. Note that if there exists n0 ∈ N such that
xn0 = xn0+1, from (36), we get that xn0 is a best proximity point of T. Therefore, we may assume that
xn−1 �= xn for all n ∈ N.

Since T is a G-proximal Kannan mapping for each n ∈ N, we obtain (xn−1, xn) ∈ E(G),
d(xn, Txn−1) = d(A, B) and d(xn+1, Txn) = d(A, B) which imply that

d(xn, xn+1) ≤ b[d(xn−1, xn+1) + d(xn, xn)] ≤ bd(xn−1, xn+1).

By induction, we obtain

d(xn, xn+1) ≤ bnd(x0, x2) = bnC ∀n ∈ N. (38)

As b <
1
2

, then d(xn, xn+1) −→ 0 as n −→ ∞. Let p ≥ 1.
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Case 1:

d(xn, xn+(2p+1)) = d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xn+2p, xn+2p+1)

≤ bnC + bn+1C + ... + bn+2pC

= (bn + bn+1 + ... + bn+2p)C −→ 0 as n, p −→ ∞. (39)

Case 2:

d(xn, xn+(2p)) = d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xn+2p−2, xn+2p)

≤ d(xn, xn+1) + d(xn+1, xn+2) + ... + d(xn+2p−2, xn+2p−1) + d(xn+2p−1, xn+2p)

+ d(xn+2p−2, xn+2p)

≤
n+2p−1

∑
k=n

Cbk + d(xn+2p−2, xn+2p). (40)

Knowing that
n+2p−1

∑
k=n

Cbk −→ 0 as n, p −→ ∞, we shall prove that d(xn+2p−2, xn+2p) −→ 0 as

n, p −→ ∞. From (36), we can conclude that

d(xn+2p−2, Txn+2p−1) = d(A, B) (41)

d(xn+2p, Txn+2p+1) = d(A, B). (42)

On the other hand, from (37) we get (xn+2p−1, xn+2p) ∈ E(G) and (xn+2p, xn+2p+1) ∈ E(G). Then,
since G is a connected graph, there exists a path between xn+2p−1 and xn+2p+1 in G. Therefore,

(xn+2p−1, xn+2p+1) ∈ E(G). (43)

Knowing that T is a G-proximal Kannan mapping and from (41)–(43), we obtain

d(xn+2p−2, xn+2p) ≤ b[d(xn+2p−1, xn+2p) + d(xn+2p+1, xn+2p−2)] (44)

≤ b[d(xn+2p−1, xn+2p) + d(xn+2p−2, xn+2p−1) + d(xn+2p−1, xn+2p) + d(xn+2p, xn+2p+1)]

= b[2d(xn+2p−1, xn+2p) + d(xn+2p−2, xn+2p−1) + d(xn+2p, xn+2p+1)]

≤ b[2Cbn+2p−1 + Cbn+2p−2 + Cbn+2p] −→ 0 as n, p → ∞.

Therefore, from (40), we conclude that d(xn, xn+2p) −→ 0 as n, p −→ ∞. It follows that {xn} is
a Cauchy sequence in A. Since A is closed, there exists x∗ ∈ A such that xn −→ x∗ as n −→ ∞. By
the continuity of T, we obtain Txn −→ Tx∗ as n −→ ∞. Since d is assumed to be continuous, we get
d(xn+1, Txn) −→ d(x∗, Tx∗) as n −→ ∞. By (36), we conclude that

d(x∗, Tx∗) = d(A, B).

Thus, x∗ is a best proximity point of T and the sequence {xn} defined by d(xn+1, Txn) = d(A, B)
converges to x∗ for all n ∈ N.

Let us prove the uniqueness of the best proximity point x∗. Suppose that x∗1 and x∗2 are two best
proximity points. Then, we obtain d(x∗1, Tx∗1) = d(A, B), d(x∗2, Tx∗2) = d(A, B) and (x∗1, x∗2) ∈ E(G),
which gives d(x∗1 , x∗2) ≤ b[d(x∗1 , x∗2) + d(x∗1 , x∗2)] = 2bd(x∗1 , x∗2). Therefore, we get (1− 2b)d(x∗1 , x∗2) ≤ 0,

which implies that 1 − 2b ≤ 0 =⇒ b ≥ 1
2

. It is a contradiction with respect to b <
1
2

. Then,

d(x∗1 , x∗2) = 0, that is, x∗1 = x∗2 and so the uniqueness of the best proximity point follows.
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4. Conclusions and Perspectives

In Theorems 1–3, we assumed that the rectangular metric space is continuous, which is a strong
hypothesis and does not hold in general. To our knowledge, our work is the first attempt to prove best
proximity point results not only in the setting of rectangular metric spaces, but with the addition of a
graph theory structure. Finally, an open question, how does one prove the above three theorems when
omitting the continuity of the rectangular metric?
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