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Preface to “Fixed Point Theory and Related Topics”

This book contains the successful submissions to a Special Issue of Axioms on the subject area
of “Fixed Point Theory and Related Topics”. Fixed point theory arose from the Banach contraction
principle and has been studied for a long time. Its application mostly relies on the existence of
solutions to mathematical problems that are formulated from economics and engineering. Fixed
points of functions depend heavily on the considered spaces that are defined using the intuitive
axioms. Different spaces will result in different types of fixed point theorems. The articles in this
Special Issue are summarized below.

Three articles study the best proximity point under different settings. H. Isik, H. Aydi, N. Mlaiki,
and S. Radenovic study the best proximity point for Geraghty-type z-proximal contractions.
N. Souayah, H. Aydi, T. Abdeljawad, and N. Mlaiki study the best proximity point on rectangular
metric spaces endowed with a graph. T.Sabar, A. Bassou, and M. Aamri also study the best proximity
point in the framework of newly introduced metric space.

Two articles study the fixed point in fuzzy metric space. D. Ram Prasad, G. Kishore, G,
H. Isik, B. Srinuvasa Rao, and G. Adi Lakshmi study the fixed point in c*-algebra valued fuzzy
soft metric spaces. B. Rome, M. Sarwar, and P. Kumam study the fixed point theorems considering
fuzzy contraction.

Two articles study the common fixed points. A. Ghanifard, H. Masiha, M. De La Sen, and
M. Ramezani study the common fixed points for nonexpansive multi-valued mappings in convex
metric spaces. A. Perveen, I. Khan, and M. Imdad also study the common fixed points for generalized
weak nonlinear contractions.

E. Mohamed, A. Mohamed, and L. Samih study the fixed point theorems for relatively
cyclic and noncyclic p-contractions in locally k-convex space. V. Parvaneh, N. Hussain, A.
Mukheimer, and H. Aydi study the fixed points for modified JS-contractions. H. Faraji, D. Savic,
and S. Radenovic study the fixed point theorems for Geraghty-type contraction type mappings in
b-complete b-metric spaces.

Y. Gaba and E. Karapinar study the common fixed points for Kannan-type contractions.
E. Karapinar also provides a short survey for the non-unique fixed point results in various
abstract spaces.

T. Shanmugam, M. Muthiah, and S. Radenovic study the existence of positive solutions for the
eighth-order boundary value problem using a classical version of Leray-Schauder alternative fixed
point theorem.

M. Farid, K. Chaira, E. Marhrani, and M. Aamri study the fixed point theorems in Banach
algebras. H.-C. Wu studies the fixed point theorem in a newly proposed informal complete metric
space. Y. Sugimoto studies the square roots of diffeomorphisms.

Hsien-Chung Wu
Special Issue Editor
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Abstract: In this paper, we prove convergence theorems for viscosity approximation processes
involving *—nonexpansive multi-valued mappings in complete convex metric spaces. We also
consider finite and infinite families of such mappings and prove convergence of the proposed
iteration schemes to common fixed points of them. Our results improve and extend some
corresponding results.

Keywords: *—nonexpansive multi-valued mapping; viscosity approximation methods; fixed point;
convex metric space

MSC: 47H10; 26 A51

1. Introduction

Many of the real world known problems that scientists are looking to solve are nonlinear.
Therefore, translating linear version of such problems into their equivalent nonlinear version has a
great importance. Mathematicians have tried to transfer the structure of covexity to spaces that are
not linear spaces. Takahashi [1], Kirk [2,3], and Penot [4], for example, presented this notion in metric
spaces. Takahashi [1] introduced the following notion of convexity in metric spaces:

Definition 1. ([1]) Let (X, d) be a metric space and I = [0,1]. A mapping W : X x X x I — X is said to be a
convex structure on X if for each x,y,u € Xandall t € I,

du, W(x,y,t)) < td(u,x)+ (1 —1t)d(u,y).

A metric space (X, d) together with a convex structure W is called a convex metric space and is denoted by
(X, W,d).
A subset C of X is called convex if W(x,y,t) € C, forall x,y € Cand all t € I.

Example 1. Let X = My(R). Forany A = M B = bi by
a3 ay b3 by

and t € I = [0,1], we define the mapping W : X x X x I — X by

W(A,B,t) =

ta; + (1 — t)bl tar, + (1 — t)bz
taz+ (1 —t)bs  tag+ (1 —t)by

Axioms 2020, 9, 10; d0i:10.3390/axioms9010010 1 www.mdpi.com/journal /axioms
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and the metricd : X x X — [0, +o0) by
d(A,B) =Tt |a; — b|.
Then (X, W, d) is a convex metric space.

Example 2. Let X = R? with the metric

d((x1,x2), (y1,¥2)) = max{|x; — y1, [x2 — y2|},

for any (x1,x2), (y1,y2) € X and define the mapping W : X x X x [0,1] — X by

W((x1,x2), (y1,y2),8) = (bx1+ (1= yr, o + (1= £)y2),
for each (x1,%2), (y1,y2) € Xand t € [0,1]. Then (X, W, d)is a convex metric space.

Example 3. Let X = C([0,1]) be the metric space with the metric d(f,g) = fol |f(x) — g(x)|dx and define
W:XxXx[0,1] = XbyW(f,gt)=tf+(1—1t)g forall f,g € Xandt € [0,1]. Then (X,W,d) isa
convex metric space.

This notion of convex structure is a generalization of convexity in normed spaces and allows us
to obtain results that seem to be possible only in linear spaces. One of its useful applications is the
iterative approximation of fixed points in metric spaces. All of the sequences that are used in fixed
point problems require linearity or convexity of the space. So, this concept of convexity helps us to
define various iteration schemes and to solve fixed point problems in metric spaces. In recent years,
many authors have established several results on the covergence of some iterative schemes using
different contractive conditions in convex metric spaces. For more details, refer to [5-14].

Now, let us recall some definitions and concepts that will be needed to state our results:

Definition 2. ([15]) Let (X, d) be a metric. A subset D is called proximinal if for each x € X there exists an
element y € D such that d(x,y) = d(x, D), where d(x, D) = inf{d(x,z) : z € D}.

We denote the family nonempty proximinal and bounded subsets of D by P(D) and the family of
all nonempty closed and bounded subsets of X by CB(X).

For two bounded subsets A and B of a metric space (X, d), the Pompeiu-Hausdorff metric
between A and B is defined by

H(A,B) = max{supd(x, B),supd(A,y)}.
xeA yEB

Definition 3. ([16]) Let (X, d) be a metric space. A multi-valued mapping T : X — CB(X) is said to be

nonexpansive if H(Tx, Ty) < d(x,y), forall x,y € X.
An element p € X is called a fixed point of T if p € T(p). The set of all fixed points of T are denoted by F(T).

Definition 4. ([17]) Let (X, d) be a metric space and D be a nonempty subset of X. A multi-valued mapping
T : D — CB(D) is called x—nonexpansive if for all x,y € D and u, € T(x) with d(x,uy) = inf{d(x,z) :
z € T(x)}, there exists u, € T(y) with d(y, u,) = inf{d(y,w) : w € T(y)} such that

d(ux,uy) <d(x,y).

It is clear that if T is a *—nonexpansive map, then Pr is a nonexpansive map, where Pr for T : D — P(D) is
defined by
Pr(x) ={y € T(x) :d(x,y) = d(x, T(x))},
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forall x € D.

Definition 5. ([16]) Let (X, d) be a metric space. A multi-valued mapping T : X — CB(X) is said to satisfy
condition (1) if there is a nondecreasing function f : [0,00) — [0,00) with f(0) =0, f(r) > 0 forr € (0, 00)
such that d(x, T(x)) > f(d(x,F(T))), forall x € X.

First of all, Moudafi [18] introduced the viscosity approximation method for approximating the
fixed point of nonexpansive mappings in Hilbert spaces. Since then, many authors have been extending
and generalizing this result by using different contractive conditions on several spaces. For some new
works in these fields, we can refer to [19-27]. Inspired and motivated by the research work going on in
these fields, in this paper we investigate the convergence of some viscosity approximation processes
for *—nonexpansive multi-valued mappings in a complete convex metric spaces. The convergence
theorems for finite and infinite family of such mappings are also presented. Our results can improve
and extend the corresponding main theorems in the literature.

2. Main Results

At first, we present two lemmas that are used to prove our main result. Since the idea is similar to
the one given in Lemmas 2.1 and 2.2 in [28], we only state the results without the proof:

Lemma 1. Let {u,} and {v,} be sequences in a convex metric space (X, W, d) and {a,, } be a sequence in [0, 1]
such that limsup,, a, < 1. Set

d =limsupd(uy,v,) or d=1liminfd(u,,v,).
n—oo n—eo

Let uy1 = W(vp, tty, an) for all n € N. Suppose that

limsup(d(vy41,0n) — d(ttp41,1n)) <0,

n—oo

and d < c0.Then
h};g%gf [d(0nptin) = (T +an +ap1 +.. .+ ay,-1)d] =0,

forallk € N.

Lemma 2. Let {u, } and {v,} be bounded sequences in a convex metric space (X, W,d) and {a, } be a sequence
in [0,1] with 0 < liminf, a,, < limsup,, a, < 1. Suppose that u, 1 = W(vy, un, an) and

lim sup(d(vy41,0n) — d(Up41,un)) < 0.

n—oo
Then limy—co d(0y, uy) =0
Now, we state and prove the main theorem of this paper:

Theorem 1. Let D be a nonempty, closed and convex subset of a complete convex metric space (X, W, d) and
T : D — P(D) be a x—nonexpansive multi-valued mapping with F(T) # @, such that T satisfies condition
(1). Suppose that a, € [0,1] such that 0 < liminf, a, < limsup,a, < 1and ¢, € (0,+00) such that
limy, 00 ¢4 = 0. Let {x,, } be the Mann type iterative scheme defined by

Xn+1 = W(an Xn, un)r 1)

where d(zy41,2zn) < H(Pr(xy+1), Pr(xn)) + ¢ for zy € Pr(xy). Then {x,} converges to a fixed point of T.
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Proof. Take p € F(T). Then p € Pr(p) = {p} and we have

d(xn+lr P) = d(W(zn/ Xn, aVl)/ P)
< and(zn, p) + (1 —an)d(xn, p)
< anH(Pr(xn), Pr(p)) + (1 — an)d(xn, p)
< and(xn, p) + (1 — an)d(xn, p) = d(xn, p).

Hence, {d(x,, p)} is a decreasing and bounded below sequence and thus lim,, .., d(x,, p) exists for
any p € F(T). Therefore {x,} is bounded and so {z,} is bounded. On the other hand,

d(zny1,2n) < H(Pr(xu41), Pr(xa)) +cn < d(xny1,%0) + cne

Thus
limsup(d(zy41,2n) — d(Xp41,%n)) < 0.
n—oo
Applying Lemma 2, we get
lim d(zp, xu) = 0.
n—oo
Hence, we have limy_cod(xy, T(x,)) = 0. Since T satisfies condition (I), we conclude that

limy,—c0 d(x, F(T)) = 0. Next, we show that {x, } is a Cauchy sequence. Since lim,, oo d(x,,, F(T)) = 0,
thus for &1 > 0, there exists n; € N such that for all n > ny

d(xn, F(T)) < %1

Thus, there exists p; € F(T) such that for all n > ny,

&
d(xn, p1) < 51

It follows that

d(xn+m/ xn) < d(xn+m/ pl) + d(PL xn) < d(xn/ pl) + d(Plr xn)

&g &a
< —4+==¢,
<513 1
for all m,n > ny. Therefore {x,} is a Cauchy sequence and hence it is convergent. Let lim,, 0o X, = p*.
We will show that p* is a fixed point of T.
Since lim; e X = p*, thus for given €5 > 0, there exists 7, € N such that for all n > n5,

N €
d(xy, p*) < T
Moreover, lim,, o0 d(x,, F(T)) = 0 implies that there exists a natural number n3 > 1, such that for all
n 2 ns,
d(xn, F(T)) < 2,
12
and thus there exists p, € F(T) such that forall n > n3,

o

d(xn, p2) < 5
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Therefore
d(T(p*),p*) <d(T(p*), p2) +d(p2, T(xny)) +d(T(xny), p2) +d(p2, Xny) + d(xny, p)
< H(Pr(p*), Pr(p2)) + 2H(Pr(p2), Pr(xn;)) + d(p2, Xny) + d (X, p*)
< d(p*, p2) +2d(p2, xny) + d(p2, Xn) + d(xny, p*)
< d(p*, xny) +d(xXny, p2) +2d(p2, Xny) + d(p2, Xuy) + d(Xus, p*)
=2d(xp,, p*) +4d(xn,, p2) < 2182,

2 2
Thus, p* € T(p*) and therefore p* is a fixed point of T. [

As a result of Theorem 1, Corollaries 1 and 2 are obtained:

Corollary 1. Let D be a nonempty, closed and convex subset of a complete convex metric space (X, W,d),
T : D — P(D) be x—nonexpansive multi-valued mapping with F(T) # @ such that T satisfies condition (I)
and f : D — D be a contractive mapping with a contractive constant k € (0,1). Then the iterative sequence
{xn} defined by

X1 = W(zn, f(xn), an)

where z,, € Pr(x,) and 0 < liminf, a, < lim sup,, a, < 1, converges to a fixed point of T.

Corollary 2. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
T : D — P(D) be x—nonexpansive multi-valued mapping with F(T) # @. Let {xy} be the Ishikawa type
iterative scheme defined by

!
Xpy1 = W(zp, X, an)

Yn = W(Zm Xn, bn)

where z, € Pr(yn), zn € Pr(xy), and {a}, {by} € [0,1]. Then {x,} converges to a fixed point of T if and
only if imy, 00 d(x,, F(T)) = 0.

The above result can be generalized to the finite and infinite family of *—nonexpansive
multi-valued mappings:

Theorem 2. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
{T; : D — P(D) : i =1,...,k} bea finite family of *—nonexpansive multi-valued mappings such that
F:= ¥ F(T;) # . Consider the iterative process defined by

Yin = W(Zln/xn/aln)z
Yon = W(Zan Xn, ﬂZn)r

Y1 = W(EZE—1)n X, Ak—1)n),

X1 = W(anr Xn, akn),

where a;y € [0,1] and z;, € Pr,(Y(i—1)s) (Yon = Xu), foralln € Nandi=1,2,... k. Then {x,} converges
to a point in F if and only if limy e d(x, F) = 0.
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Proof. The necessity of conditions is obvious and we will only prove the sufficiency. Let p € F.
we have

d(yln/ P) = d(w(zln/xnruln)/ P)
< a1ud(210, p) + (1 — a1,)d(xn, p)
< a1 H(Pry (xn), Pry (p)) + (1 = a1,)d (xn, p)
S ulnd(xﬂ/ P) + (1 - aln)d(xﬂ/ P) = d(xnr P)r
d(yan P) = d(W(Zan Xn, a2n)/ P)
S a2nd(22nr P) + (1 - a2n)d(xrlr P)
< ”ZHH(PTz (yln)rPTz(P)) + (1 —az,)d(xu, p)
< azud(y1n, p) + (1 — a2n)d(xn, p)
< agud(xn, p) + (1 — a2,)d(xn, p) = d(xu, p),

E

Z(k—1)ns X, A(k—1)n )0 P)
nd( (k=1)ns P) + (1 —a k*l)n)d(xﬂr P)
nH(PTk W20, Pri_y (p)) + (1= a1y, )d (xn, p)
n (yk 2)ns P )+(1_a(k 1)n) (xn/P)
d(xn, ) (1= age—1yn)d(xn, p) = d(xn, p)-

d(y(k—l)nl P)

IAIAINIA
S 2 2 8

k—=1)n

Thus

d(xni1, p) = AW (zin, Xn, k), p)

< g d(2k, p) + (1 — ay)d(xn, p)

< g H(Pr (Y(k—1)n), P (p)) + (1 — g )d (xn, p)
A d (Y (k—1)n, P) + (1 — agy)d(xn, p)
Agnd (X, p) + (1 — ag,)d(xn, p) = d(xn, p).

IN

IN

Therefore, {d(x,, p)} is a decreasing sequence and so d (X, p) < d(x,,p), forall n,m € N. As in
the proof of Theorem 1, {x,} is a Cauchy sequence and thus lim,_.« ¥, exists and equals to some
p* € D. Again, with a similar process as in the proof of Theorem 1, we conclude that p* € Pr,(q) for
alli=1,...,k. Hence p* € F and this completes the proof of theorem. [

Theorem 3. Let D be a nonempty, closed, and convex subset of a complete convex metric space (X, W, d) and
{T; : D — P(D) : i =1,...} be an infinite family of *—nonexpansive multi-valued mappings such that
F:= N2, F(T;) # @. Consider the iterative process defined by

’
Xp41 = W(Zn/ Xn, un)

Yn = W(an Xn, bn)

where 7, € Pr,(yn), zn € Pr,(xn) and {ay}, {by} € [0,1]. Then {x,} converges to a point in F if and only if
limy 00 d(xy, F) = 0.
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1. Introduction

Integral equations are involved in various scientific problems such as transport theory, the theory
of radiative transfer, biomathematics, etc (see [1-6]). The use of these equations dates back to 1730
with Bernoulli in the study of oscillatory problems. With the development of functional analysis, more
general results were obtained by L. Schwartz, H. Poincaré, I. Fredholm, and others.

The problems of the existence of solutions for an integral equation can then be resolved by
searching fixed points for nonlinear operators in a Banach algebra. For this, many researchers have
been interested in the case where the Banach algebra is endowed with its strong topology; however,
few of them were interested to the existence of a fixed point for mappings acting on a Banach algebra
equipped with its weak topology [7-11]; such a topology allows obtaining some generalizations of
these results.

The history of fixed point theory in Banach algebra started in 1977 with R.-W. Legget [12],
who considered the existence of solutions for the equation:

x=2x0+x-Bx, (x0,x) € X xQ 1)

where () is a nonempty, bounded, closed, and convex subset of a Banach algebra X and B is a compact
operator from () into X. Many authors [10,11,13,14] generalized Equation (1) to the equation:

x=Ax-Bx+Cx, x e, )

where () is a nonempty, bounded, closed, and convex subset of a Banach algebra and A,C : X — X,
B : (O — X are nonlinear operators. Most of these authors have obtained the desired results through

—1
the study of the operator (%) B.
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This study was based mainly on the properties of operators A, B, C, and % (cf. condensing,
relatively weakly compact, etc.).

The study of nonlinear integral equations in Banach algebra via fixed point theory was in initiated
by B.C. Dhage [15]. In 2005, B.C. Dhage [14] studied the existence of solutions for the equation:

x = Ax - Bx

The results were obtained in the case of the norm topology on Banach algebra. In 2014,
Banas et al. [8] proved some existence results of operator equations under the weak topology using
the measure of weak noncompactness. In 2015, Ben Amar et al. used the De Blasi measure of
non-compactness to obtain some generalizations of these results. In 2019, A.B. Amar et al. [16]
established new fixed point theorems for the sum of two mappings in Banach space and showed that
the condition «weakly condensing»can by relaxed by the assumption «countably weakly condensing».

In this paper, we use the measure of noncompactness to prove some fixed point results for a
nonlinear operator of type AB + C in a Banach algebra. We note that the condition «relatively weakly
compact », which is not easy to verify, is not required in most results in [16]. Our results are formulated
using the operator [ — % under the weak topology in a Banach algebra.

As an application, we discuss the existence of solutions for an abstract nonlinear integral equation
in the Banach algebra C([0,1], X); and an example of a nonlinear integral equation in the Banach
algebra C([0,1], R).

2. Preliminaries

Let (X, || ||) be a Banach space with zero element 6. We denote respectively P(X), Pey(X), Py (X)
and P, (X) the family of all nonempty subsets, nonempty and convex subsets, nonempty and
bounded subsets, nonempty closed and convex subsets of X.

For any € > 0, we denote B, the closed ball of X centered at origin with radius e. Moreover, we write
x; — x and x; — x respectively to denote the strong convergence and the weak convergence of a
sequence {x, }, to x.

For a subset K of X, we write K, Kw, convK, and convK, to denote the closure, the weak closure,
the convex hull, and the closed convex hull of the subset K, respectively; and by R(T), the range of the
operator T.

Definition 1. Let Q) be a nonempty subset of X. We say that a multivalued map H : QO — P(Q) has a weakly
closed graph if the following property holds: if for every net {x;}s, with x5, x € Q such that x; — x and {ys}s
such that ys € Hxg, ys — y, then Hx N S(x,y) # @; here, S(x,y) := {Ay+ (1 = A)x; A € [0,1]}.

We say that a map H : Q — P(Q)) has a w-weakly closed graph in () x X if it has a weakly closed
graph in () x X with respect to the weak topology.

Definition 2 ([9]). Let X be a Banach space. An operator T : X — X is said to be weakly sequentially
continuous on X if for every sequence {x, }, with x, — x, we have Tx, — Tx.

Note that T is weakly sequentially continuous if and only if I — T is weakly
sequentially continuous.

Definition 3. Let X be a Banach space. An operator T : X — X is said to be weakly compact if T(M) is
relatively weakly compact for every bounded subset M C X.

Definition 4 ([17]). Let Q) be a nonempty weakly closed set of a Banach space X and T : Q0 — X a weakly
sequentially continuous operator. T is said to be a weakly semi-closed operator at 0 if the conditions {x, }, C Q,
xp — Txy — 0 imply that there exists x € Q) such that Tx = x.
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We recall that a function w : Pyy(X) — [0, +00) is said to be a measure of weak noncompactness
(MWNOC) on X if it satisfies the following properties.

1. For any bounded subsets ()q, () of X, we have )1 C ) implies w(Q1) < w(y).
2. w(cono(Q)) = w(Q)), for all bounded subsets ) C X.
3. w(QuU{a})=w(Q)foralla € X, Q € Pyy(X).
4. w(Q) = 0if and only if Q) is relatively weakly compact in X.
The MWNC w is said to be:
1. Positive homogeneous, if w(AQ) = Aw(Q)), forall A > 0 and Q) € Pyy(X).
2 Subadditive, if w(Ql + Qz) < w(Ql) + w(Qz), forall O, () € Pbd(X)~

As an example of MWNC, we have the De Blasi measure of weak noncompactness [18], defined
on Py;(X) by:

u(M) = inf{e > 0; there exists K weakly compact such that: M C K+ B},
it is well known that y is homogenous, subadditive, and satisfies the set additivity property:
u(MUN) = max{u(M),u(N)}, forall M,N € Pp(X).

For more properties of the MWNC, we refer to [19].
Let us formulate some other definitions needed in this paper.

Definition 5. Let Q) be a subset of a Banach space X, w be an MWNC on X, and 0 < k < 1. Let T bea
mapping from Q) into X; we say that:

T is k-w-contractive if w(T(M)) < kw (M) for any bounded set M C ();

T is w-condensing if w(T(M)) < w(M) for any bounded set M C Q with w(M) > 0;

T is countably k-w-contractive, if w(T(M)) < kw (M) for any countable bounded set M C C);

T is countably w-condensing if w(T(M)) < w(M) for any countable bounded set M C Q) with
w(M) > 0;

5. T is weakly countable one-set-contractive if w(T(M)) < w(M) for any bounded set M C Q).

W=

Clearly, every k-w-contractive is countably k-w-contractive, but the converse is not always true.

Definition 6. A mapping T : O C X — X is said to be:

1. Lipschitzian with the Lipschitz constant k > 0:
ITx — Ty|| < k|lx —y||, forallx,y € Q.

Ifk =1, T is called nonexpansive, and if k € [0,1[, T is called a contraction.
2. Pseudocontractive if for each r > 0, we have:

=yl < [r(Ty = Tx) + (A + 1) (x = y)||, forallx,y € Q.
3. Accretive if for each A > 0, we have:
lx =yl < |lx —y+A(Tx—Ty)||, forall x,y € Q.
In addition, if R(I+ AT) = X for every A > 0, then T is called m-accretive.

Note that T is pseudocontractive if and only if I — T is accretive.

11
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Definition 7. An operator T : O C X — X is called D-Lipschitzian if there exists a continuous and
nondecreasing function ®r : [0, +00) — [0, +00) with ®7(0) = 0 such that:

ITx — Ty|| < @r(||lx —yll), forallx,y € Q.

Sometimes, O is called a D-function of T on X. Moreover, if ®1(r) < r for all ¥ > 0, then the operator T
is called a nonlinear contraction with a contraction function ®r.

Definition 8. An operator T : Q0 C X — X is said to be -expansive if there exists a function
P :[0,00) — [0, 00) such that (0) = 0, y(r) > r for any r > 0,  is either continuous or nondecreasing, and
ITx = Tyl = ¢(llx = yll) for all x,y € O.

Definition 9. We say that H : O C X — P(X) is countably w-condensing if H(QY) is bounded on X and
w(H(M)) < w(M) for all countable bounded subsets M of Q) with w(M) > 0.

The following result is crucial:

Theorem 1 ([20]). Let X be a Banach space.

(i) Let H be a bounded subset of C([0, T|, X). Then:

sup u(H(t)) < p(H),
t€[0,T)

where H(t) = {x(t); x € H}.
(i) Let H C C([0, T], X) be bounded and equicontinuous. Then:

p(H) = sup u(H(t)) = u(H([0,T])),
te[0,T]

where H([0, T]) = Uyejo 1 H(1).

Here, y is the De Blasi measure of weak noncompactness.

Lemma 1 ([21]). Let X be a Banach space and T : X — X a k-Lipschitzian map and weakly sequentially
continuous. Then, for each bounded subset S of X, we have:

u(T(S)) < ku(S), forallx,y € X;
here, y is the De Blasi measure of weak noncompactness.

We recall that an algebra X is a vector space endowed with an internal composition law denoted
by «», which is associative and bilinear. A normed algebra is an algebra endowed with a norm ||.||
satisfying the following property:

-yl < lIxllllyll, forallx,y € X.

A complete normed algebra is called a Banach algebra. For basic properties of Banach algebra,
refer to [22].

In general, the product of two weakly sequentially continuous mappings on a Banach algebra is
not necessarily weakly sequentially continuous.

12
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Definition 10 ([9]). We will say that the Banach algebra X satisfies condition (P) if:

P {For any sequences {x, }, and {y, }, in X such thatx, — xand y, — y,

we have x,,1, — xy.

Note that, every finite dimensional Banach algebra satisfies condition (P). If X satisfies condition
(P), then the space C(K; X) of all continuous functions from a compact Hausdorff space K into X is
also a Banach algebra satisfying condition (P) (see [9]).

Definition 11. Let X be a Banach algebra. An operator T : X — X is called regular on X if it maps X into the
set of all invertible elements of X.

In [16] (Theorem 3.1), Afif Ben Amar et al. proved the following result:

Theorem 2 ([16], Theorem 3.1). Let ) be a nonempty closed convex subset of a Banach space X and w be
an MWNC on X. Assume that T : Q0 — Q) is a weakly sequentially continuous and countably w-condensing
mapping with a bounded range. Then, T has a fixed point.

Theorem 3 ([16], Theorem 3.3). Let Q) be a nonempty closed convex subset of a Banach space X, w be a
positive homogeneous MWNC on X, and T : Q3 — Q be weakly sequentially continuous, weakly countably
one-set-contractive. In addition, assume that T is weakly semi-closed at 6 with a bounded range. Then, T has a
fixed point.

Theorem 4 ([16], Theorem 3.2). Let () be a nonempty convex closed subset of a Banach space E, U C E be a
weakly open subset of Q with 6 € U, and w be a subadditive MWNC on E. Assume T : U — X is a weakly
sequentially continuous countably w-condensing map with T(U" ) bounded. Then, either T has a fixed point
or there exists u € dqU and A €)0, 1[ such that u = AT (u) ( dqU denotes the weak boundary of U in Q).

The following lemma is useful for the sequel.

Lemma 2. Let X be a Banach algebra satisfying condition (P). Then, for any bounded subset M of X and
relatively weakly compact subset K of X, we have w(MK) < ||K|[w(M).

3. Results
Our first main result is a new version of Theorem 3.2 proven by Jeribi et al. in [23].
Theorem 5. Let Q) be a nonempty, bounded, closed, and convex subset of a Banach algebra X and w be a

subadditive MWNC on X. Let A,C : X — X, and B : QO — X be three operators that satisfy the
following conditions:

-1
(i) Aisregular on X, and (%) exists on B(Q)),

(i) B and =€ are weakly sequentially continuous,
(iii) I — % is countably a-w-contractive on Q),

(iv) B is countably B-w-contractive,

(v) x = Ax-By+Cx, forally € Q implies x € Q).

Then, there exists x € Q) such that x = Ax - Bx + Cx, whenever % <1

Proof. Note that x = Ax-Bx + Cx, x € Q if and only if x is a fixed point for the operator
-1
— (1=C
T= () B

13
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Lety € O); from Assumption (i), there is a unique x, € X such that:

I-C
(5

xy = Axy - By + Cxy;

then:

by Condition (v), we have xy € Q, and then, T is well defined on Q.

By Theorem 2, it suffices to prove that the map T is weakly sequentially continuous and
countably w-condensing.

Let {x, }» be a sequence in Q) such that x,, — x; the set {x,, : n € N} is relatively weakly compact;
and since B is weakly sequentially continuous, the set { Bx, : n € N} is relatively weakly compact.
Assume that w({Tx, : n € N}) > 0. Since:

I-C
T_B+<IfT>T,

and | — % is countably a-w-contractive, we obtain:

w({Tx, :neN}) < w({Bx,:neN})+w ((17 %) ({Txp:n € N}))
< aw ({Tx, :neN})
< w({Tx, :neN}),

which is absurd. It follows that {Tx, : n € N} is weakly relatively compact; hence, there exists

a subsequence {X,(,)}n of {xu}n such that Tx,(,) — y for some y € Q. Moreover, =€ is weakly

sequentially continuous; then, I — % is weakly sequentially continuous, and then:

I-C I-C
(155 = (-15)x

As we have <I - %) T = —B+Tand —Bx,(;) + Tx,(;) = —Bx +y, we obtain:

I-C
*BHy:y*(T )y

which gives Tx = y, and therefore, Tx,(,) — Tx.

We claim that Tx,, — Tx. Assume that there exists a subsequence {xy, () }» of {xn} and a weak
neighborhood V¥ of Tx such that Tx,, (,) ¢ V¥ for all n € N. Since {x,, () }» converge weakly to x,
we may extract a subsequence { Xy, o, () }n Of {Xy, () }n such that Tx,, () = Tx and Txg g, () € V¥,
which is absurd. Hence, Tx, — Tx; it follows that T is weakly sequentially continuous.

T is countably w-condensing. Indeed, let M be a countably subset of Q) with w(M) > 0; we have:

w(B(M)) + w ((1 - %) (T(M))>

pw (M) + aw(T(M)),

w(T(M))

IN

IN

then w(T(M)) < %w(M) < w(M), which ends the proof. [
Corollary 1. Let Q) be a nonempty, bounded, closed, and convex subset of a Banach algebra X and w be

a subadditive MWNC on X. Let C : X — X and B : QO — X be two operators that satisfy the
following conditions:

14
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(i)
(ii)
(iii)
(iv)
(v)

(I —C) Y exists on B(QY),

B and I — C are weakly sequentially continuous,
C is countably a-w-contractive on Q),

B is countably B-w-contractive,

x = By + Cx, forall y € Qyimplies x € Q.

Then, there exists x € Q) such that x = Bx + Cx, whenever % < 1.

Remark 1.

1. Note that Hypothesis (ii) in Theorem 5 may be replaced by “A, B, and C are weakly sequentially
continuous”, but the Banach algebra X must satisfy condition (P).

2. In Theorem 5, we do not require the conditions “A satisfies condition (H1)” and “A(QY) is relatively
weakly compact”, but in Theorem 3.2 in [23], these conditions are necessary.

3. In Theorem 5, Condition (i) may be replaced by

(ii) A is regular on X and, A and C are nonlinear contractions on X with contraction functions ® » and
D, respectively, and L® 4(r) + Pc(r) < 1, forr > 0and L = || B(Q)].

In the following result, we will use the notion of D-Lipschitzian operators.

Theorem 6. Let () be a nonempty, bounded, closed, and convex subset of a Banach algebra X satisfying
condition (P) and w a subadditive MWNC on X. Let A,C : X — X, and B : O — X be three weakly
sequentially continuous operators with the following conditions:

(i)

(ii)
(iii)
(iv)

(v)

A is regular on X,

I— % is countably a-w-contractive on (),

B is countably B-w-contractive,

A and C are D-Lipschitzian with the D-function ¢ 4 and ¢c, respectively, and L (r) + ¢c(r) < r for
r>0and L = ||B(QY)||,

x = Ax - By + Cx, forally € Q implies x € Q.

Then, there exists x € Q) such that x = Ax - Bx + Cx, whenever i <1

I—a

Proof. Lety € Qand F, : X — X by F(x) = Ax- By + Cx.

Foreach v,z € X, (iv) gives:

IFy(x) = By (2) |Ax - By — Az - Byl| +[|Cx — Cz||
[[Ax — Azll[|By]| +||Cx — Cz]|

Loa(llx —z[l) + ¢c(llx —z[)).

ININ N

By the Boyd-Wong fixed point theorem ([24]), the mapping F, has a unique fixed point x,. Hence,

-1
the operator T = (1;C> B: () — X is well defined; and by (v), we have T(Q)) C Q.

Let {x, } be a sequence in ) such that x,, — x; as seen in the proof of Theorem 5, there exists a

subsequence {X, () }n Of {xn}n such that Tx,, (,) — y for some y € Q. Since:

T = AT -B+CT,

and A, B, and C are weakly sequentially continuous, we obtain:

Tx, = A(Tx4,(n)) - Bxgy(n) + C(Txgy (n)) =y = Ay Bx +Cy

o1(n)

Thus, y = Tx, and then, Tyl(n) — Tx. As above, we can prove that Tx, — Tx; and then, T is weakly
sequentially continuous. By Theorems 2 and 5, T is countably w-condensing. [
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Remark 2. Note that the hypothesis “A and C are weakly sequentially continuous” in Theorem 6 can be

replaced by “% is weakly sequentially continuous”, and in this case, the condition (P) is not required.

Theorem 7. Let Q) be a nonempty, closed, convex, and bounded subset of a Banach algebra X and w be
a subadditive MWNC on X. Let A,C : X — X, and B : QQ — X be three operators satisfying the
following conditions:

(1) Aisregular on X, and B is weakly sequentially continuous,
(ii) % is -expansive, accretive, and continuous,

(iii) I — % is countably a-w-contractive on Q),

(iv) B is countably B-w-contractive,

(v) x = Ax-By+Cx, forally € Q implies x € Q0.

Then, there exists x € Q) such that x = Ax - Bx + Cx, whenever % <1

Proof. Fory € (), we define the mapping F, : X — X by:

Fy(x) = <17 %) x+ By

Since % is continuous and accretive, I — % is continuous and pseudocontractive, and F,is

continuous and pseudocontractive.
Moreover, we have:

=R - =Rzl =1 () x = (555 ) =

for all x,z € O, and % is -expansive. Then, I — F, is -expansive, continuous, and accretive.
It follows that I — Fy is m-accretive (see [25], Corollary 3.2). By [26], Theorem 8, we deduce that [ — F,
is surjective. Then, there exists an x € X such that § = (I — F,)x. It follows that:

I-C
x = Fy(x) = (I—T)x—i-By

which implies By = (%) x € (%) (X). We conclude by Theorem 5. 0J

In the following result, we present a nonlinear alternative of the Leary-Schauder type in
Banach algebra.

Theorem 8. Let Q) be a nonempty, bounded, closed, and convex subset of a Banach algebra X, U be a weakly
open subset of Q with § € U, and w be a subadditive MWNC on X. Let A,C: X — X, and B: U" — X
be three operators satisfying the following conditions:

-1
(i) Aisregular on X, and (%) exists on B(Q)),

(i) B and 1=C are weakly sequentially continuous,
(iii) I — ’%CAis countably a-w-contractive on Q),

(iv) B is countably B-w-contractive,

(v) x=Ax-By+Cx, forally € U" implies x € Q.

Then, either:

(i)  there exists x € U such that x = Ax - Bx + Cx, or
(ii)  there exists u € doU and A €]0,1[ such that u = AA (%) - Bu+ AC (%),

where 0 U denotes the weak boundary of U in Q) and ﬁ <1
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-1 _
Proof. Let T := <%> B; Condition (vi) implies T(U") C Q, and T is weakly sequentially
continuous and countably w-condensing. Theorem 4 implies that T has a fixed point in U, or there exists
u € 0qU and A €]0,1[ such that u = AT (u), then either there exists x € U such that x = Ax - Bx + Cx,

or there exists u € doU and A €]0,1[ such that u = AA (§) - Bu+AC(%). O

Corollary 2. Let Q) be a nonempty, bounded, closed, and convex subset of a Banach algebra X, U be a weakly
open subset of Q with 0 € U, and w be a subadditive MWNC on X. Let C: X — Xand B: U" — X be
two operators that satisfy the following conditions:

(i) (I —C) ! exists on B(QY),

(ii)  Band I — C are weakly sequentially continuous,

(iii)  C is countably a-w-contractive on Q),

(iv) B is countably B-w-contractive,

(v)  x=By+Cx, forally e U" implies x € Q.

Then,

(i) either there exists x € U such that x = Bx + Cx, or
(i) thereexists u € doU and A €]0,1 such that u = ABu + AC (%),

where doU denotes the weak boundary of U in O, and ﬁ <1

Remark 3. In Theorem 8, Condition (i) may be replaced by
) % is -expansive and Bx € <%) (X), forall x € Q).

Theorem 9. Let () be a nonempty, closed, convex, and bounded subset of a Banach algebra X, U be a weakly
open subset of Q with 0 € U and w be a subadditive MWNC on X. Let A,C: X — X, and B: U" — X be
three operators satisfying the following conditions:

(i) A is regular on X,

(ii)  Band % are weakly sequentially continuous,

(iii) % is -expansive, accretive, and continuous,

(iv) I-— % is countably a-w-contractive on Q),
(v)  Bis countably B-w-contractive,
(vi) x= Ax-By+Cx, forally € U" implies x € Q.

Then, either:

(i) there exists x € Q) such that x = Ax - Bx + Cx, or
(i) there exists u € dgU and A €]0,1[ such that u = AA (%u) -Bu+C (%u)

where doU denotes the weak boundary of U in O, and ﬁ <1

-1
Proof. Define T: Q) — Qby Tx = (%) Bx. As seen in the proof of Theorem 7, the operator T is
well defined; moreover, T is weakly sequentially continuous and countably w-condensing, and by (vi),

we have T(U") c Q; we conclude by Theorem 4. [

Remark 4. If we take A is the unit element in the Banach algebra X, we obtain Theorem 3.9 in [16].

In the following result, the operator % is not invertible.

Theorem 10. Let Q) be a nonempty, bounded, closed, and convex subset of a Banach algebra X and w be
a subadditive MWNC on X. Let A,C : X — X, and B : O — X be three operators that satisfy the
following conditions:

17
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(i)  Adis regular,
I-¢

(ii) I — =5~ is countably «-cw-contractive on (),

(iii) B is countably B-w-contractive,

(iv)  for every net {xs}s, x5 € Q, if x5 — x, x € Q, then, Bxs — Bx and <%) X5 — <%) X,

(v)  forevery net {xs}s, x5 € Q, if (%) x5 = Y,y € Q, then there exists a weakly convergent subset of
{xs}s,

(vi) (%) " Bxis convex, for all x € ();

(vii) Bx € (%) (X) forall x € Qand x = Ax - By + Cx, forally € Q) implies x € Q.
Then, there exists x € Q) such that x = Ax - Bx + Cx, whenever % <1

Proof. By (vii), the multivalued mapping:

H: QO — P(Q)
I-C

-1
X —> Hx:<T> Bx,

is well defined.
Step 1. H has a w-weakly closed graph in () x Q).
Let {xs}s and {ys}s be nets in Q such that xs — x € O, y; = y € Qand y; € Hx;.
Since (%) Ys; = Bx; we obtain (%) Ys — <%) y and Bxs; — Buy; it follows

that (%) y = Bx and then y € Hx; which gives:
yeSxy)={Ay+(1-MN)x: Ae]0,1]}

then, Hx N S(x,y) # @, and H has a w-weakly closed graph.

Step 2. By Step 1, Hx is closed, for all x € O, and by (vi), H(Q) C Py, (Q).

Step 3. H maps weakly compact sets into relatively weakly compact sets.

Let K be a weakly compact set in O, and let {y, }, be a sequence in H(K); choose {x;,}, in K
such thaty, € Hxy, foralln € Nand {x,, (4) }» a subsequence of {x, }, such that x,, ;) — x. By (iv),

(%) Yoy(n) = BXgy(n) — Bx, and (v) implies that {y, }, has a weakly convergent subsequence. Then,

by the Eberlein-Smulian theorem [27], H(K) is relatively weakly compact.
Step 4. H is countably w-condensing.
Let M be a countable subset of Q) with w(M) > 0; we have:

<I;C> (Hx) = {Bx}, forall x € M,

then, for all y € Hx we have:
I-C — By
A )y=rr

hence: I
y = Bx+ <I—T)y;
consequently:
Hx C Bx + (1 - %) (Hx), forallx € M,
then: [
H(M) C B(M) + (1 - %) (H(M)),

18
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and:

w(H(M))

A IA
=
Eg
S
+ =
= ¥
£ e
I —
o
|
:>‘|
O
N———
=
£
N

It follows that w((H(M)) < %w(M) < w(M); and then, H is countably w-condensing.
By Theorem 3.18 in [16], we conclude that H has a fixed pointin Q. O

The following result requires the condition “relatively weakly compact” and where % <1

Theorem 11. Let Q) be a nonempty, bounded, closed, and convex subset of a Banach algebra X and w be a
positive homogenous MWNC on X. Let A,C : X — X, and B : Q) — X be three operators that satisfy the
following conditions:

(1) A is regular on X, and (%) B exists on B(Q)),

(i)  Band % are weakly sequentially continuous,

(iii) <I - %) (Q) is relatively weakly compact,

(iv) B is countably B-w-contractive,

(v)  If{xn}n is a sequence in Q) such that (I — B)x,, — x, then {xy }, has a weakly convergent subsequence,

(vi) 1-— % is countably a-w-contractive on Q),
(vii) x = Ax-By+Cx, forally € O implies x € Q).

Then, there exists x € Q) such that x = Ax - Bx + Cx, whenever % <1
Proof. Let x € (), and consider:

T:0 — Q
-1
X > Tx:<IAC> Bx;

by (i) and (vii), it is clear that T is well defined.

We will show that T satisfies the conditions of Theorem 3. From the proof of Theorem 5, we can
see that T is weakly sequentially continuous, and then, it suffices to prove that T is weakly countably
one-set-contractive and semi-closed at 6.

Let M be a countably subset of (); we have:

I-C
LB+<1— . )T,

then:

W) < (B +o (1= 156 ) ()
Beo(M) + o T(M)),

IN

and so:

w(T(M)) < fa < w(M);

therefore, T is weakly countably one-set-contractive.
Now, let {x, }, be a sequence in Q) such that (I — T)x, — 6.
1-C

yn:(IfT)xn:xnfonf(IfT>Txn
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By (iii), there exists a subsequence {x,, () }n of {Xn}, such that (I - %) Ty (n) — ¥; and then,
(I = B)Xgy () = Yoy (n) + (I - —) Txg, (ny — Y- By (v), we conclude that there exists a subsequence

{Xo,05(n) 1 Of {Xg, () }n, which converges to some element x. Since (I — T)Xg,q,(»y — 6 and T is weakly
sequentlally contlnuous, we obtain Tx = x, and then, T is weakly semi-closed at 6. [

Let Q) be a nonempty closed and convex subset of a Banach algebra X, andlet A,C : X — X,
and B : () — X be three operators. For any D C (), we set (see [28]):

F(ACBD)={xcX :x=Ax-By+Cx,y€ D}.
If A=1xand C = 0, we obtain F (1x,0, B, D) = B(D).

Theorem 12. Let X be a Banach algebra satisfying condition (P) and Q be a nonempty, closed, convex,
and bounded subset of X; w is an MWNC on X. Let A,C : X — X, and B : QO — X be three operators
satisfying the following conditions:

(i) A is regular on X, and B is weakly sequentially continuous,

(ii) I— % is a contraction on Q,

(iii)  w (F (A,C,B,D)) < w(D), for any countably subset D of Q) with w(D) > 0,

(iv) F(ACBQ)CQ,

() If{x,} C F(A,C,B,Q), then {Axy}, and {Cx, }, have weakly convergent subsequences (converging
respectively to y and z), and if x, — x, we have y = Ax and z = Cx.

Then, there exists x € Q) such that x = Ax - Bx + Cx.
Proof. Fory € (2, we define the mapping;:
F:X — X

¥ — F(x)= (I—%)x—i—By,

(ii) implies that F, is a contraction; then, F, has a unique fixed point 7(y) € X; we
have t(y) = <I - %) 7(y) + By or equivalently 7(y) = At(y) - By + Ct(y); which shows that

T(y) € F(A,C, B, Q). It follows that T(Q) C Q.
Let M be a countable subset of Q such that w(M) > 0; we have:

(M) = {t(x) :xe M}
= {tlx) = (()) Bx +C(t(x)) : x € M}
= {7(x) : t(x) € F(A,C,B,M)}
- .7-'(A,C M),

Hence, w(t(M)) < w (F (A,C,B,M)) < w(M); then, T is countably w-condensing.

Moreover, T is weakly sequentially continuous. Indeed, let {x,}, be a sequence in O
such that x, — x; since B is weakly sequentially continuous, we have Bx, — Bx, and since
{t(xn)}n C F (A,C,B,Q), there exists a subsequence {T(xg, (4)) }n and {T(xg,(s)) }n of {T(xn)}n such
that AT (x,, (sy) — y and CT(x,,(y)) — z. It follows that:

T(X(T1172(n)) = AT(xmaz(n)) . szmrz(n) + CT(xmaz(n)) -y Bx +z.

With (v), we obtain A(y-Bx +z) = y and C(y - Bx +2z) = z and then,
y-Bx+z=A(y-Bx+z)-Bx+C(y-Bx+z).
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The uniqueness of the fixed point implies that 7(x) = y - Bx +z; and therefore, T(Xy, ¢, (1)) — T(X)-
We claim that 7(x,) — T(x). For this, assume that there exists a weak neighborhood V of 7(x) and
a subsequence {x,, () }n Of {xn}n such that x, ,) ¢ V forall n € N. Since x,,(,) — x, we can
extract a subsequence {x, ¢, (s }n Of {x4 () }n such that T(x,, ,(n)) — T(x). This is not possible,
since Xy, g,(n) € V foralln € N. We conclude that 7 is weakly sequentially continuous. By Theorem 2,
there exists x € Qsuch thatx = 7(x) = Ax-Bx+ Cx. O

If A = 1x in Theorem 12, we obtain Theorem 3.11 in [16].

Theorem 13. Let () be a nonempty, closed, convex, and bounded subset of a Banach algebra X; w is an MWNC
on X. Let A,C : X — X, and B : QO — X be three operators that satisfy the following conditions:

(1) Ais regular on X, and 15€ is one-to-one,

(ii) I— TC is nonexpanszve,

(i)  Band I C are weakly sequentially continuous,
(iv) w (]—'(A C,B,D)) < w(D), for any countably subset D of Q) with w(D) > 0,

(v) (I—ﬂ>x+ByGQforallxy€Q,

(i) If {xy}n C Q such that { ( ) xn} is weakly convergent, then the sequence {x,}, has a weakly
convergent subsequence.

Then, there exists x € Q) such that x = Ax - Bx + Cx.

Proof. Lety € ), and define F, : O — X by:

Fy(x) = (I— %) x + By

By (ii), F, is nonexpansive, and by (v), we have F(Q)) C Q. Then, by ([29], Theorem 2.15),
there exists a sequence {x,}, in Q such that ||x, — F,(x,)|| — 0, and then, ( AC) X, —> By.

Using (vi), we can extract a subsequence {Xy, () }n Of {Xu}, such that X, (,) — x € Q, and then,

(%) Yoy () — (l C) x; then:

which implies B(Q2) € (15€) ().
Define T : QO — Q by Tx = <% Br.let D C Qand x € D; the equality
Tx = A(Tx) - Bx 4+ C(Tx) implies that Tx € F (A, C, B, D) ; then:
T(D) C F(A,C,B,D)

for any subset D of Q).
The assumption (iv) implies that T is countably w-condensing. Moreover, T is weakly sequentially
continuous. Indeed, let {x,}, be a sequence such that x, — x; we have Bx, — Bx; then,

(%) Tx, — Bx. By (vi), there exists a subsequence {x,,(,) }n such that Tx,,,) — y € (; thus,

(%) Txgy(n) = ( )y, which leads to < = )y = Bx, and so, Tx,,(,) — Tx. As in the proof of
Theorem 5, we can prove that Tx,, — Tx, and we apply Theorem 2 to end the proof. [

Remark 5. If we take A = 1x in Theorem 13, we obtain Theorem 3.13 in [16].
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4. Application

Let X be a real Banach algebra satisfying condition (P); we denote E = C([0,1],X) the
Banach space of all X-valued continuous functions defined on [0,1], endowed with the norm
[xllec = sup;eoq) IX(£)[|. In this section, we discuss the following abstract nonlinear quadratic
integral equation ((FIE)) (see [30]):

o
x(0) = k(e x(@0) + 750 (900 + [ gto,x0)as) €7 = 0,1),

wheregq: ] — X, g, K: JxX — X,¢,0,n:] — J,and T : E — E. Note that E is a Banach
algebra satisfying condition (P) and the integral in (FIE) is the Pettis integral, while the solutions of
(FIE) are in E. Make the following assumptions for (FIE):

Hypothesis 1 (H1).

(i) The functions §, 0,1 : ] — | are continuous, and ¢ is nondecreasing,
(ii)  the function q : | — X is continuous,

Hypothesis 2 (H2).

(i) forallt € [0,1], K(t,.) : X — X is weakly sequentially continuous,

(ii)  foreachu € X, K(.,u) : ] — X is continuous,

(iii)  there is a continuous function 6 : ] — [0,+00) with bound A = sup.;|6(t)| such that
IK(t, x()) = K(ty() || < o) [|x(8) = y(B)| for all x,y € Eand t € [0,1],

Hypothesis 3 (H3). The operator T : E — E satisfies:

(i) there is a continuous function y : ] — [0,400) with bound T = sup,;|y(t)| such that
ITx(t) = Ty(8) | < 7(B)x(t) = y(D)| forall x,y € Eand t € [0,1],

(ii) T is weakly sequentially continuous on E,

(iii) T is reqular on E; 1% is well defined on E; l% is weakly compact; and there exists mg € [0,1) such that

Sup., g Hl E— % < my, where 1g represents the unit element in the Banach algebra E,

_—

Hypothesis 4 (H4).
(i) for each continuous x : [0,1) — X, the function s — g(s, x(s)) is weakly measurable on [0, 1], and for
almost every t € [0,1], the map u — g(t, u) is weakly sequentially continuous on X,
(i) there are a function ¢ € LY([0,1],R") and a continuous nondecreasing function
9 : [0, +00) —> [0, +00) such that:
llg(s, )|l < @(s)0(||ul|) aeforalls € [0,1], andall u € X,
(iii)  there is a constant 0 < B < 1 such that:
(g ([0,1] x W)) < pu(W),
for any countably bounded subset W of X,

Hypothesis 5 (H5). There is a constant r > 0 such that Q' + A < 1, where:

1
Q=Qi+0(n [ g(s)ds  with Q1 = sup,ey (1)
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Now, we are in a position to state our main result of this section:

Theorem 14. Assume that Hypotheses (H1)-(H5) hold and ry = % < r with

T-A—Q

L =sup,c(oy ||K(t,0)||; then (FIE) has a solution in C([0,1],X) whenever m +A(1 +mg) <1 and

1—(mo+A(1+mg

i) <L

Proof. The integral equation (FIE) may be written in the form:

where:

x(t) = Ax(t) - Bx(t) + Cx(t),

Bx(t) +/ 5)))ds,
Ax(t) Tx( ),
Cx(t) = K(t,x(&(t))).

Let QO = {x € C([0,1], X) : || x|l < ro}; note that Q) is a closed, convex, and bounded subset of E.
We will show that the mappings A, B, and C verify all the conditions of Theorem 6.

Step 1.

Step 2.

We show that A and C are Lipschitzian. First, we verify that the mapping C is well defined.
Let x € E, and let {t, }, be a sequence in | such that t, — t € J. We have:

ICx(tn) = Cx(t)|| = [[K(tn, x(5(ta))) — K (2, x(E(£)))l

(K (£, (8 (8))) = K(tn, x(G(0)))[| + [[K(bn, 2(E(£))) = K(£, x((£)))
S(0)1x(&(tn)) — x(E(O) | + 1K (£n, x(E(£)) — K(t, x(E(1))]
Allx(@(tn)) = 2O + [1K(En, x(§(8)) — K(t, x(E (D).

Since K(., x) is continuous and ¢ is continuous, then ||Cx(¢,) — Cx(t)|| — 0; we conclude that
Cx € E. Now, letx,y € Eand f € |; we have:

ININ N

[Cx(t) = Cy(B)I| < 6(B)[x(5(£)) — w(E(E)Il,

then:
[Cx = Cylloo < Allx = yl|oo,

and we have:

[Ax(t) — Ay(O)Il = [ITx(t) — Ty()]|
YO [x(E) —y(Bll,

IN

then:
[Ax — Aylleo < T[|x = yl|eo-

Thus, A and C are Lipschitzians with the Lipschitz constants A and T, respectively.

From the assumption (H3)(i7), the mapping A is weakly sequentially continuous on E. Now, we
show that C is weakly sequentially continuous on E; for this, let {x,}, in E such that
Xy — x € E, then {x,}, is bounded on E; from Dobrokov’s theorem ([31], p. 36) , we get
forall t € [0,1], x, () — x(t). Since K(t,.) is weakly sequentially continuous for all ¢ € [0,1],
we get Cx, (t) — Cx(t). Again, from Dobrokov’s theorem, we deduce that Cx,, — Cx, then C is
weakly sequentially continuous on E. Now, we prove that B is weakly sequentially continuous.
Firstly, we verify that if x € ), then Bx € E. Letx € Q and ¢, = [0,1], such that t < t;
without loss of generality, we may assume that Bx(t) — Bx(t') # 0. Using the Hahn-Banach
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Step 3.

theorem, we get that there exists x* € X* such that x*(Bx(t) — Bx(t')) = ||Bx(t) — Bx(t)]|
and ||x*||. = 1; hence:

x*(Bx(t) — Bx(t))
= x*(q(t)—q(t’))+/ x*(g(s,x(11(s))))ds

o(t)

|[Bx(t) — Bx(t')]

/ a(t)
< supllg(t) = a()|+8(xll) [ 9(s)ds
te] o(t)
: o)
< supllg(t) —q(t)]| +8(r0) [ 9(s)as
te] o(t)

consequently, Bx € E. As g and ¢ are uniformly continuous on the compact [0, 1], we get that
B(Q)) is an equicontinuous family of functions. Now, we show that B is weakly sequentially
continuous on Q). Let {x,}, be a sequence in Q) such that x, — x € ), then we get for all
t €10,1], x4 (t) — x(t). Furthermore, for n € Nand x* € X*:

x*(Bxp(t)) = x* +/ g(s,xu(n(s))))ds, forallte ],

From (H1)(i) and (H4)(i), we have x*(g(s, xx(7(s)))) — x*(g(s,x(n(s)))) for all s € [0,1].
The Lebesgue dominated convergence theorem yields:

/()U(t) x*(g(s,xu(1(s))))ds — /:w x*(g(s, x(n(s))))ds,

then Bx,(t) — Bx(t); by Dobrokov’s theorem ([31], p. 36), we get Bx,, — Bx.

B i countably B-w-contractive. First, we show that B(Q)) is bounded. Let x € Q and ¢ € [0, 1].
Without loss of generality, we may assume that Bx(t) # 0. Using the Hahn—Banach theorem,
we deduce that there exists x* € X* such that x*(Bx(t)) = ||Bx(¢)| and ||x*||« = 1. Hence,

1Bl = (Bx(t)
- )+ / 7(s))))ds
< i‘;lf“"“)”*./o (s, x(n(s))) s
1
< Qo) [ o =0

then B(Q)) is bounded.
Now, let V be a countably bounded subset of (); for each t € [0, 1], we have by ([32], Theorem 3):

w({ [ satmonas: xev))

u(o(t)co{g(s,x(y(s))) : x€V,se[0,1]})
1 (g([0,1] x V([0,1])))

1 (V([0,1]))
ﬁstlelllau(V(t))

< Bu(v),

#BV)(#))

IN

ININCIN A
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Step 4.

Step 5.

because V is bounded, then we can apply Theorem 1.
Since V(B) is bounded and equicontinuous, again, by Theorem 1, we get:

#(B(V)) < pu(V).

Consequently, B is Countably B-p-contractive.
Now, we prove that I — € is countably a’-‘u-contractive where &' = mg + A(1+ myg). Firstly,
for all x € E by Step l we have Cx € E, and by (H3)(iii), we have % € E; hence,

(1 - %) x € E. Now, let x € (); we have:

0-55), = -
1E 1p
< - oo — )
< e 2|t | ] _nex
< moro+ (14mp)(Arg+ L),

then (I — %) (Q)) is bounded. Now, let V be a bounded subset of Q) such that u(V) > 0;
note that for all x € V, we have:

I_IfC P x_xfo
A B Ax

_ 1 1
= <1E E) x+—x Cx,

then:

(=% e (e ay) v+ Ay <0

because 1A is weakly compact; then, by the assumption (H3)(iii), we get:

(-7 w) = w (e a) ) o o)
< e s | ro+ | s | men.

because C is A-Lipschitzian and weakly sequentially continuous; by Lemma 1, we get
u(C(V)) < Ap(V), then

(-5 )

I R vy L

then:

mop (V) + (1 +mo)Au(V)

’

< au(Vv),

7N
I/~
—
|
—
Sk
(@]
~——
=
~——
IA

where &' = mq + A(1+4mp) < 1; then, I — % is countably tx’—y—contractive.
We show that for all x € Eand y € Q, if x = Ax - By + Cx, then x € (). We have for all
telo,1]:

x(t) = Ax(t) - By(t) + Cx(t),
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then,
x()) < [[Cx(t)]| +[|Ax(t) - By(t)]]
< ICx®)l + [[Ax(E) ||| By ()]
< Allx®I+L+Q@x()ll + [1A0]),
then,
L A0
It < EE2APA
hence,
[[x]leo < 7o,

consequently, x € Q).
Applying Theorem 6, we get a fixed point for A - B 4 C and hence a solution to (FIE) in E. O

5. Example

Consider the Banach algebra E = C([0, 1], R) of all continuous real-valued functions on | = [0,1],
with norm [|x]|e = SUP;c(o,1] |x(t)]. In this case, X = R, and E is a Banach algebra satisfying
condition (P) and reflexive. Let b : [0,1] — X be a continuous and nonnegative function such that
supc; [b(H)] = 1. We consider the following nonlinear integral equation:

i o ) (40 [ 500) 0o

To show that (3) has a solution in E, we will verify that all conditions of Theorem 14 are satisfied.
Define K : [0,1] x R — R, by K(t,x(t)) = 13x(% ) (in this case &(t) = %) Forall t € [0,1],
the function K(¢,.) : X — X is continuous (then weakly sequentially continuous, because X = R),
and for all x € X, the function K(.,x) : ] — X is continuous. Now, let x,y € E and t € [0, 1]; we have:

[K(,x()) = K(t,y(1)] < 6(8)[x(t) — y(t)]

where the function d : t — %tS is continuous with bound A = sup,. J [6(t)] = %

Next, we introduce the function T : E — E such that Tx(¢t) = 1+ fo 1+|X s)‘ ds forall t € J.
As seen in Step 2 in the proof of Theorem 14, the operator T is weakly sequentially continuous, regular
on E, and 1TE is well defined on E. Let x € E and t € [0, 1]; we have:

_bls)

1 ’7 I T (5] 45 </1b(s) gs < L.
o) o Y
1+f0 s 70 4

thus, sup,..x [[1g — %Hw < my, where m, = .

Moreover, - is weakly compact on E; indeed, let x € E, and let ¢, = ] such that
t < t'. Without loss of generality, we may assume that (%) x(t) — (%E) x(t") # 0. Using the
Hahn-Banach theorem, we deduce that there exists x* € X* such that x* <(1—5) x(t) — (l—h> x(tl)) =

T T
‘(%) x(t) — (%) x(tl)‘ and ||x*||« = 1, hence,

()= (3) <ot
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then (TE) (E) is weakly equicontinuous. Now, let {x, }, be a sequence in E, and fix ¢ € J; we have:

(%) 0] -

therefore, 1—5 xn(t)}, is weakly equi-bounded. Let t € |; since X = R is reflexive, then by [33],
yeq y

;
1—&—f01+ Hds

the set { ( ) xu(t) : n € N} is weakly relatively sequentially compact. The Arzela—Ascoli theorem
implies that there exists a subsequence {(%E) Xg(n) }n such that ( ) Xon) — (175) x € E; then,

(%) (E) is relatively weakly compact. Therefore, TE is weakly compact.
Letx,y € Eand t € [0,1]; we have:

[ 561 0x66) — yts) s
< 20—yl

| Tx(t) = Ty(t)|

IN

A

where 7y : t — ﬁ is continuous with bound I' = Supye; [v(®)| = %.

Finally, we define g : [0,1] x X — X, by g(s,x(s)) = 23 Ms‘)l(x(s) For each u € X, the function
g(,u) : [0,1] — X is weakly measurable on [0,1], and for almost every t € [0,1], the function
g(t,.) : X — X is continuous (then weakly sequentially continuous). Furthermore, we have:

lg(s,u)] < O(Ju|)p(s) a.eforalls €[0,1], andallu € X,

where ¢(s) = s> and 8(v) = & for all v € [0, 4+c0) since elfl > |z| forallz € X.
Moreover, if W is a countably bounded subset of X, we have:

w01 x W) = u({glsu) suc Wands € [0,1]})

< y<{<21—0528|‘u7‘>u :ueWandsG[O,l]})
< w(0gw)
< W),

Then: 1
#(g((0,1] x W)) < pu(W), where p = .

We set g : [0,1] —> [0,+c0), such that q(t) = +/t; we have that g is continuous and
Q1 =sup,¢; |q(t)] = 1.

If we take r = 4, we get Q = Q; + 9¥(4 fo s)ds = %g and QT + A = 2} < 1 (then, for all s € R,
Qpa(s) + ¢c(s) = QT's + As < s where <PA( ) _FS and ¢c(s) = As).
Now, we have ||T0||oo = sup,E[\l—i-fO s)ds| < Sandry = % < 8, thenry < 7,

m0+(1+m0) A— 16 <1andm:g <1
Theorem 14 proves the existence of a solution to Equation (3).

6. Conclusions

In this paper, we proved some fixed point theorems for the nonlinear operator A - B 4- C in a Banach
algebra under a weak topology and with the help of the measure of weak noncompactness. Our results
improved and generalized some interesting fixed point theorems in the literature. Our examples
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showed that the results in this paper can be applied to prove the existence of the solution of a nonlinear
integral equation in Banach algebra.
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Abstract: In this work, we investigate the existence of solutions for the particular type of the eighth-order
boundary value problem. We prove our results using classical version of Leray-Schauder nonlinear
alternative fixed point theorem. Also we produce a few examples to illustrate our results.

Keywords: eighth-order boundary value problem; Green’s function; Leray-Schauder nonlinear
alternative; nontrivial solution; fixed points

PACS: 34B10; 34B15; 34K10

1. Introduction

Eighth-order differential equations govern the physics of some hydrodynamic stability problems.
Chandrasekhar [1] proved that when an infinite horizontal layer of fluid is heated from below and under
the action of rotation, instability sets in. When the instability sets in as overstability, the problem is
modeled by an eighth-order ordinary differential equation for which the existence and uniqueness of
the solution can be found in the book [2]. Many authors used different numerical methods to study
higher order boundary value problems. For example, Reddy [3] presented a finite element method
involving the Petrov—Galerkin method with quintic B-splines as basis functions and septic B-splines
as weight functions to solve a general eighth-order boundary value problem with a particular case of
boundary conditions. Prorshoubhi et al. [4] presented a variational iteration method for the solution of
a special case of eighth- order boundary value problems. Ballem and Kasi Viswanadham [5] presented
a simple finite element method which involves the Galerkin approach with septic B-splines as basis
functions to solve the eighth- order two-point boundary value problems. Graef et al. [6] applied the
Guo—Krasnosel’skii fixed point theorem to solve the higher-order nonlinear boundary value problem.
Graef et al. [7] used various fixed point theorems to give some existence results for a nonlinear nth-order
boundary value problem with nonlocal conditions. Hussin and Mandangan [8] solved linear and nonlinear
eighth-order boundary value problems using a differential transformation method. Kasi Viswanadham
and Ballem [9] presented a finite element method involving the Galerkin method with quintic B-splines as
basis functions to solve a general eighth-order two-point boundary value problem. Liu et al. [10] used the
Leggett—Williams fixed point theorem to establish existence results for solutions to the m-point boundary
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value problem for a second- order differential equation under multipoint boundary conditions. Napoli
and Abd-Elhameed [11] analyzed a numerical algorithm for the solution of eighth-order boundary value
problems. Noor and Mohyud-Din [12] implemented a relatively new analytical technique—the variational
iteration decomposition method for solving the eighth-order boundary value problems. Xiaoyong and
Fengying [13] used the collocation method based on the second kind Chebyshev wavelets to find the
numerical solutions for the eighth-order initial and boundary value problems. Some basic fixed point
theorems on altering distance functions and on G-metric spaces were discussed in [14], and also some
fixed point results in cone metric spaces were collectively given in [15]. Metric fixed point theory and
metrical fixed point theory results were discussed in [16,17]. Deng et al. [18] generalized some results
using measure of noncompactness. Omid et al. [19] studied differential equations with the conformable
derivatives. Todor¢evié¢ [20] presented harmonic quasiconformal mappings and hyperbolic type metrics
defined on planar and multidimensional domains. Recently Zouaoui Bekri [21] studied sixth-order
nonlinear boundary value problem using the Leray-Schauder alternative theorem. Ma [22] has given the
existence and uniqueness theorems based on the Leray-Schauder fixed point theorem for some fourth-order
nonlinear boundary value problems. Zvyagin and Baranovskii [23] have constructed a topological
characteristic to investigate a class of controllable systems. Ahmad and Ntouyas [24] conferred some
existence results based on some standard fixed point theorems and Leray-Schauder degree theory for an
nth-order nonlinear differential equation with four-point nonlocal integral boundary conditions. Motivated
by these study, we investigate the existence of solutions for the eighth-order boundary value problem.

y® () = ¢(xy(x),y"(x)), 0<x<1, O

y(0) =y'(0) =y"(0) = y"(0) =y (1) =y (1) =y (1) =y (1) =0,

where ¢ € C([0,1] x R xR, R) and R = (—o0, ).

2. Preliminaries

We consider the following eighth-order boundary value problem under the assumption that
¢ € C([0,1] x R x R,R). E = C([0,1]) with the norm

Iyl = max{ s, [yl } where [ylos = max [y(x)| for any y € E.
The following Lemma is used to prove our main theorem.

Lemma 1. (By Lemma 1 in [25]) Let f € C[0,1]. Then the following eighth-order boundary value problem

y®(x)=f(x), 0<x<1
/ 7z 1" 4 (5) 6 7 2
y(0) =y'(0) =y"(0) = y"(0) = y¥ (1) = y® (1) =y© (1) =y (1) =0,
has the integral formulation
1
v(x) = [ Glx,s)f(s)ds
0
where G : [0,1] x [0,1] — [0, 00) is the Green’s function given by
4(s — )3 _ )2 2(35 — < <
Glx,s) = 1 x5 —x) P +4s(s —x)* +10s°(3s —x)], 0<x<s<], 3
5040 | s*[(x — )3 +4x(x —5)2+10x>(3x —s)], 0<s<x <1,
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Proof. Consider y(® (x) = 0for0 < x < 1. Then,
y(x) = A+ Bx + Cx? + Dx® + Ex* + Fx® + Gx® + Hy,
so that the Green’s function is of the form

a1 4 wox + a3x? + wgx3 + asxt + agt® +azt® fagt’, 0<x<s<1,
G(x,5) = 5550 4 1 + B2l = ) + Ba(1 — )% + Ba(1 = ¥)° + Bs(1 - x)* @
+ Be(1—x)% 4 B7(1 — x)° + Bg(1 — x)7, 0<s<x<1

where «; and B; are continuous functions fori =1, ....., 8.
From the boundary conditions we have,

_9G(0,s) _ 9*G(0,5) _ &°G(0,5)

G =0
(0,5) ox ox? ox3
ie.,

vy =0y =a3 =04 =0
and

9'G(1,s) 9°G(Ls) 9°G(Ls) 9G(ls) 0
oxt ad b a7

ie.,

Bs = Ps = B7 = Ps = 0.
We deduce the Green’s function for the problem is,

1 zx5x4 + DC6X5 + a7x6 + ngx7, 0<x<s<1,
G(x,s) = —— ®)
5040 | B+ B2(1—x) + B3(1 —x)2+B4(1—x)3, 0<s<x<1

Since G satisfied continuity conditions up to the sixth-order and jump discontinuity at the seventh-order
by —1, we get,

B1+ B2(1—s) + B3(1—5)% + Ba(1 — 5)3 — ass* — ags® — ays® — ags” =0,
—Ba —2B(1 —s) — 3B(1 — 5)? — dass® — Sags? — 6a7s® — Tags® =0,

283 + 6B4(1 — 5) — 12a552 — 20m45° — 30a7s* — 42ags° = 0,

—6B4 — 24as5 — 60ags? — 120a7s° — 210ags* = 0,

) 3 (6)
—2405 — 120045 — 360075~ — 840ags® = 0,
—1200ts — 720a7s — 2520ags2 = 0,
—72007 — 5040ags = 0,
—5040ng = 1.
By solving the above system, we can find the coefficients 81, B2, B3, Ba, a5, &6, a7, g,
U S P A S A S A S S S Y
T PLT 5040 U720 240 1447 P27 720 120 48° 7% T 240 48t PY T 4w
. s 52 s 1
5= =

144’ %07 T240" T 720" “8 T 040"
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And finally, substituting these coefficients in Equation (5) we arrive to the expression of a
Green'’s function

G(x,s) = (7)

1 [x*(s—x)3+4s(s—x)2+10s>(3s —x)], 0<x<s<1,
5040 | s*[(x —s)3 +4x(x —s)2 +10x*(3x —s)], 0<s<x<1.

|
Lemma 2. Forall (x,s) € [0,1] x [0,1], we have
0 < G(x,8) < G(s,s).

Proof. The proof is obvious, so we leave it. [

Define the integral operator T : E — E by
T(y(x 5040fs x —5)% +4x(x — 5)% + 10x2(3x — )] f(s) ds +

m f x*[(s — x)% +4s(s — x)% +10s%(3s — x)|f(s) ds

x

By Lemma 1, the boundary value problem (Equation (1)) has a solution iff the operator T has a fixed
point in E. Hence to find the solution of a given boundary value problem, it is enough to find the fixed

point for the operator T in E. Since T is compact and hence T is completely continuous.

Theorem 1. [26,27] Let (E, ||.||) be a Banach space, U C E be an open bounded subset such that 0 € U and
T : U — E be a completely continuous operator. Then

(1) either T has a fixed point in U, or

(2) there exist an element x € U and a real number A > 1 such that Ax = T(x).

3. Main Results

In this section, we prove some important results which will help to prove the existence of a nontrivial
solution for the eighth-order boundary value problem in Equation (1). Consider ¢ € C([0,1] x R x R, R)

Theorem 2. Suppose that ¢(x,0,0) # 0 and there exist nonnegative functions p,q,r € L'[0,1] such that

9(x,y,2)| < p(x)lyl +g(x)|z[ +7(x), ae (x,y,2) € [0 xRXR,

and 1
%0 /[557 +5°+55%[p(s) +q(s)] ds < 1.
0
Then the boundary value problem (Equation (1)) has at least one nontrivial solution y* € C([0,1]).
Proof. Let

1
= 75 57 + 5+ 5541 [p(s) +q(s)] ds,
0

B= 720/[55 + 5 1 5s4r(s) ds
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By hypothesis, we have A < 1. Since ¢(x,0,0) # 0, there exists an interval [a,b] C [0,1] such that
r<ni£1b [¢(x,0,0)] > 0and asr(x) > [¢(x,0,0)| a.e. x € [0,1]. Hence B > 0.
a<x<

LetL=B(1-A)landU = {y € E : |ly|| < L}. Assume that y € oU and A > 1 are such that

Ty = Ay.
Then

AL

IN

IN

IN

IN

IN

IN

Myl = 1Tyl
(max |(Ty)(x)]

ﬁ /54[(x — )3 4+ 4x(x — )2 +10x%(3x — 5)]|¢(s,y(s),y"(s))| ds
0

1
+agg [ X1 =X 4450 = 02 4108235 — V)][(5,¥(5),y" ()] ds

1 X
5040 (X 0/ (=5 + dx(x = 52 + 102235 = 9] [p(s,y(), " (5))] ds

1
1 4(s— x) _ _
+5040 fax /x [(s — x)> + 4s(s — x)? 4+ 10s2(3s — x)]| (s, y(s),y" (s))| ds

X

1
o O/ (1) +4(1 )2 +10(3 = 5)]lg(5,y(5), (5))| ds

1
+501% 54[53 + 45(5)2 + 1052(35)} \4>(S,y(5),y”(s))\ ds

[34s7 + 75° — 215° 4 35s*]|p(s, y(s),y" (s)) | ds

1
5040
% (3557 + 755 + 355*] (s, y (s), " (5)) | ds

/
j

“\

0
1
25 155+ 5 p(E) )| + )y ()] + r(5)] ds
0
- / 557 456+ 5" [p(s) max.Iy(s)| +q(s) ma [/(5)| +r(s)] ds
J n n

1
oo [ 1557+ 4555 lylo + 4(6) o + ) s
0
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IN

1
A 1557 458 4 558 p(s) ] + q(8) Iy + (6)] s
0

1 1
_ 1 ri7 6 4 1 (7 6 4
= 70 O/[Ss + 5%+ 555 [p(s) + q)]llyll + 70 J [5s” +5° +5s%|r(s) ds

= Aly||+B=AL+B.

Hence, AL < AL+ B

B B
r<avP oy P Aia-a)=1
SATp =AY g - AT oA=L

which is a contradiction, since A > 1, hence by Theorem 1, T has a fixed point y* € U. Since ¢(x,0,0) #0,
the boundary value problem (Equation (1)) has a nontrivial solution y* € E. [

Theorem 3. Let ¢(x,0,0) # 0 and there exist nonnegative functions p, q, r € L'[0,1] such that
9(x,y,2)| < p()lyl+q()[z[+7(x) ae (x,y,2) € [0,1] xR xR,

Assume that one of the conditions given below is satisfied
(1) There exists a constant k > —5 such that

_70B+K)(7+RGE+K) 4

e 0<s<

PE)+A0) < o g a5 o e 0SssL
, 7208+ K)(7+ k) (5+K) 4

H{Se[o’l]‘p(s)+q(s)< 14 148k + 495 ° f 70

where p = measure.
(2) There exists a constant k > —1 such that

8
6 TT(k+1)
< i=1 —s)k e 0<s<
PE)+Ha6) S miona risak g soa L S #e 0SssT

6]§[(k+i)
i=1

1— k
<P iskgsoal %) (>0

uese(0,1]:p(s)+4(s)

where p = measure.
(3) There exists a constant a > 1 such that

| 1 1 1
[ip(s) +a(s))7 ds < ,(7+E:Q.
0

1 1 1
1 1 \°? 1 1 \°? 1 1 \°?
14 (7b+1> + 7m0 (6b+1) + 1 (4b+1)

Then the boundary value problem (1) has at least one nontrivial solution y* € E.

36



Axioms 2019, 8,129

Proof. To prove this theorem it is enough to prove A < 1.

Let

(1) Consider,

1
A= 157+ 55196+l 4

1
= 7;70 /[557 +5° +5S4][p(s) +4q(s)] ds
0

B 1
7208 +K)(7+K)(5+k) | 1 s e g
< T11K2 1 148k 1 495 20/ (57 457+ 557)s" ds
. 1
_ 7208 +k)(7+k)(5+k) 1/ 7ok | 64k | modtk
T 11K2 + 148k + 495 200(55 45T ds
0B +KT KGR [1 (5 1,5
N 11k2 + 148k +495  |720 \8+k 7+k 5+k

7208 + k) (74 k)(5+k) [ 11k> + 148k + 495
11k% + 148k +495 | 720(8 + k) (7 + k) (5 + k)

Thus, A < 1.
(2) In this case, we have

A

1

1
70 / [5s7 +s° + 55 [p(s) + q(s)] ds
0

1
%0 /(557 + 5 4 55%) (1 — )k ds}
0

8
6 T1(k + i)
i=1
k3 + 21k% + 152k + 594

8
6 T1(k+1)
i=1
1%+ 21K2 4 152k + 594

1 1 1
[7;0/557(1 —s)k ds+/56(1 —s)F ds+/554(1—s)k ds:|
0 0 0

6ﬁw+n

1| 120 70 72035
K121k + 152k +594]720 | 5 7 T E
[ ] (k+1)  TI(k+i) TI(k+1i)
i=1 i=1 i=1
6 11 (k
L Ge+) K + 21K2 + 152k + 594

13 1 21K2 + 152k + 594 5
el rer 6 T1(k+i)
i=1
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Therefore, A < 1.
(3) By Holder inequality, we have

1 : e (#) L[ (+) L[ (#)
A < 0/(p(s) +q(s))? ds] |1 (0/(57)de> + 720 (!(sé)bds) + 14 (0/(54)de)

o1 1 \?
+m(4b+l>

O

4. Examples

Here we have given some examples to verify the above results.

Example 1. Consider,

5

y®(x) = Fysin y+ Gy cosy” —5+e¥, 0<x<1,

y(0) =y'(0) =y"(0) =y"'(0) =0,
y® (1) =y 1) =49 1) =y? (1) =0.
Set 5
P(x,y,2) = %ysin\/?nL gzcosz —54¢%,
5
p(x) = x? q(x) = g r(x) =5+ .

One can easily verify that p,q,r € L'[0,1] are nonnegative functions, and

5
lp(x,y,2)] = %ysin\/y+ ?ZCOSZ—S—&—EZ’C
< p(@)|yl+q(x)|z| +r(x), ae (x,yz)€[0,1] xRxR.
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Also,

|~

557 4 s° + 55 [p(s) + q(s)] ds

5 1
452
[55 +s +55](2 3)ds

N
N
(=]

O O—

|
N[ —

- i/ Sz, Syp S 5P 5 Sl
- 720 ) 2 3 2 3 2 3
899251

~ 630115200

Thus, by Theorem 2, the boundary value problem (Equation (1)) has at least one nontrivial solution y* € E.

Example 2. Consider the problem,

y(8>(x yifcosy—t-zw P—&-%—cos x, 0<x<1,

Set
y 2z
Pz = WC°Sy+7f+7‘C°Sf
plx) = ﬁ/ q(x) = % + %, r(x) = cos Vx.

One can easily verify that p,q,r € L[0,1] are nonnegative functions, and

4

_ y
lp(x,y,2)| = Wcoser%erchos\/’
< p)|y[+q(x)|z| +7(x), ae (x,yz) €01 xRxR

Let k = —% > —b5. Then,
72084+ k)(7 +k)(5+k) _ 631800

11k2 + 148k +495 1695
hence,
(5) 4 4(65) = gz + o+ e = st < BN
PO =5 s T s T A B 1695
, 7208+ k)(7 + K)(5 +K)
p{s 01 pe) + g0 < 2T - 0

where y = measure. Thus by the Theorem 3 assumption (1), the boundary value problem (Equation (2)) has at least
one nontrivial solution y* € E.
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Example 3. Consider the problem,

3 . 11\2 x .
y(g)(x) 4)2/ smy+ (5+y//()-‘/%/>(14)2 +eX 4sin3y, 0<x<1,
y(0) :y( ) y"(0 ) y"(0) =0,
yW(1) =y (1) =y©1) =y (1) =0.
Set
U iny + z +6¥ +5in3
Y, sin e sin 3x
Por) = e rava o

r(x) = e** +sin3x.

1
X) =, X) = ———,
p(x) PRV gumrar 100 =3 T
Here we can easily prove that p,q,r € L'[0, 1] are nonnegative functions, and
3 2
Y siny + = + ¢ + sin3x
AB+yH V(1 —x) (5+2)v/(1-x)
P +a(x)[zl +7(0), e (x,9,2) € 01 xRXR

9p(x,y,2)|

IN

Take k = —% > —1. Then

8
.
6 I (k+1) 24344320
K +21k2 + 152k + 594 548613
Therefore,
1 1
s)+qg(s) = +
p(s) +4(s) PR s
9 _2
= %(175) 3
_ 24344320 (-
548613 )
6Hw+0 i
s €I p(s) +als) < k3+21k2+152k+594(1 7> 0

where i = measure. Therefore, by Theorem 3 assumption (2), the boundary value problem (Equation (3)) has at
least one nontrivial solution y* € E.

Example 4. Consider the problem,

y®(x) = ii_—;xy sinx 4 (53+ (;_)x) cosy” +e*cosx —sin2x, 0<x<1,
y(0) = y( ) y"(0 ) y"'(0) =0,
yW (1) =y (1) =y (1) =y (1) = 0.
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Set
V2 + XyESi“" N 3V2+x
1+y? (5+22)

p(x) =v2+x, q(x)=3V2+x r(x)=e “cosx+sin2x.

Here we can easily prove that p,q,r € L'[0,1] are nonnegative functions, and

cosz + e ¥ cosx — sin2x

P(x,y,2) =

4/2 . 4/2
lp(x,y,2)] = 1 ++yzxyes‘“x + 325 +;L2;C cosz+ e ¥ cosx — sin2x

IN

p(x) |yl +q(x)|z| +r(x), ae (x,y,z) €[0,1] xRxR.

Leta=4>b= % > 1. Wehavethat%jL%:l.Then
1 1 .
/ (p(s) +q(s))" ds = / 4275 ds = 640,
0 0
Also, we have
1 1

1 1 1 3 3
1 1 b 1 1 b 1 1 b 1 3\1 1 1)\% 1 3 )3
m(7+1> +m<e+1) +m<4+1) 11 (31) +m(§) + 1 (4o

9406732117.3529.

Q2

Therefore,

/ (p(s) +q(s))" ds < 9406732117.3529
0

Further, by Theorem 3 assumption (3), the boundary value problem (Equation (4)) has at least one nontrivial solution
y* €E.
5. Conclusions

In this paper, we obtain the results to prove the existence of positive solution for the eighth-order
boundary value problem with the help of the classical version of Leray-Schauder alternative fixed point
theorem. By applying these results, one can easily verify that whether the given boundary value problem
is solvable or not.
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Abstract: The concept of informal vector space is introduced in this paper. In informal vector space,
the additive inverse element does not necessarily exist. The reason is that an element in informal
vector space which subtracts itself cannot be a zero element. An informal vector space can also be
endowed with a metric to define a so-called informal metric space. The completeness of informal
metric space can be defined according to the similar concept of a Cauchy sequence. A new concept of
fixed point and the related results are studied in informal complete metric space.

Keywords: Cauchy sequence; near fixed point; informal metric space; informal vector space; null set

MSC: 47H10; 54H25

1. Introduction

The basic operations in (conventional) vector space are vector addition and scalar multiplication.
Based on these two operations, the vector space should satisfy some required conditions (eight axioms
in total) by referring to [1-5]. However, some spaces cannot comply with all of the axioms given in
vector space. For example, the space consisting of all subsets of R cannot satisfy all of the axioms in
vector space (Wu [6]). Also, the space consisting of all fuzzy numbers in R cannot satisfy all of the
axioms in vector space, where the addition and scalar multiplication of fuzzy sets are considered (Wu
[7]). The main reason is that the additive inverse element does not exist.

Let S and T be two subsets of R. The addition and scalar multiplication for the subsets of R are
defined by

S+T={s+t:scSandte T} andkS = {ks:s € S} forany k € R.

Let X denote the family of all subsets of R. Given any S € X, the subtraction S — S by itself is
given by
S—-S= {51752251,52 € S},

which cannot be the zero element in X'. Therefore, in this paper, we propose the concept of null set
for the purpose of playing the role of a zero element in the so-called informal vector space. Since the
informal metric space is a completely new concept, there are no available, relevant references for this
topic. The readers may instead refer to the monographs [1-5] on topological vector spaces and the
monographs [8-10] on functional analysis.

In this paper, we propose the concept of informal vector space that can include the space consisting
of all bounded and closed intervals in R and the space consisting of all fuzzy numbers in R. We also
introduce the concept of null set that can be regarded as a kind of "zero element" of informal vector
space. When the null set is degenerated as a singleton set {6}, an informal vector space will turn
into a conventional vector space with the zero element 6. In other words, the results obtained in

Axioms 2019, 8, 126; d0i:10.3390/axioms8040126 45 www.mdpi.com/journal /axioms
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this paper can be reduced to the results in conventional vector space when the null set is taken to be
a singleton set.

Based on the concept of null set, we can define the concept of almost identical elements in informal
vector space. We can also endow a metric to the informal vector space defining the so-called informal
metric space. This kind of metric is completely different from the conventional metric defined in
vector space, since it involves the null set and almost identical concept. The most important triangle
inequality is still included in an informal metric space. Based on this metric, the concepts of limit
and class limit of a sequence in informal metric space are defined herein. Under this setting, we can
similarly define the concept of a Cauchy sequence, which can be used to define the completeness of
informal metric space. The main aim of this paper was to establish the so-called near-fixed point in
informal, complete metric space, where the near fixed point is based on the almost identical concept.
We shall also claim that if the null set is degenerated as a singleton set, then the concept of near a fixed
point is identical to the concept of a (conventional) fixed point.

In Sections 2 and 3, the concept of informal vector space and informal metric space are proposed.
The interesting properties are derived in order to study the new type of fixed point theorems.
In Section 4, according to the informal metric, the concept of a Cauchy sequence is similarly defined.
The completeness of informal metric space is also defined according to the concept of Cauchy sequences.
In Section 5, we present many new types of fixed point theorems that are established using the almost
identical concept in informal metric space.

2. Informal Vector Spaces

Let X be a universal set, and let F be a scalar field. We assume that X is endowed with the
vector addition x @ y and scalar multiplication ax for any x,y € X and & € FF. In this case, we call
X a universal set over F. In the conventional vector space over F, the additive inverse element of x
is denoted by —x, and it can also be shown that —x = —1x. In this paper, we shall not consider the
concept of inverse elements. However, for convenience, we still adopt —x = —1x.

For x,y € X, the substraction x © y is defined by x © y = x @ (—y), where —y means the scalar
multiplication (—1)y. For any x € X and a € F, we have to mention that (—a)x # —ax and
a(—x) # —ax in general, unless a(Bx) = (af)x for any a, B € F. In this paper, this law will not always
be assumed to be true.

Example 1. Let C be a subset of complex plane C defined by
C={a+bi:abecRsatisfyinga < b}.
The usual addition and scalar multiplication in C are defined by
(a+bi)+ (c+di) = (a+c)+ (b+d)iand k(a + bi) = ka + kbi for k € R.
Given any z = a + bi € C, its additive inverse in C denoted by —z is
—z=(-1)z=—a—bi.

We see that —z ¢ C. Therefore, the subset C is not closed under the above scalar multiplication. In other
words, the subset C cannot form a vector space. However, if the scalar multiplication in the subset C is defined by

ka+kbi ifk >0

k(”b’)_{ Kb+ kai ifk < 0.

then the subset C is closed under the above addition and this new scalar multiplication. In this case, we shall
consider the subset C as an informal vector space that will be defined below.
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Example 2. Let 7 be the set of all closed intervals in R. The addition is given by
[a,b]® [c,d] = [a+c,b+d]

and the scalar multiplication is given by

| [ka,kb] k>0
Kla, b] = { [kb,ka] if k < 0.

We see that T cannot be a (conventional) vector space, since the inverse element cannot exist for any
non-degenerated closed interval. On the other hand, the distributive law for scalar addition does not hold true in
Z; that is, the equality (a + B)x = ax & px cannot hold true for any x € T and «, p € R. This shows another
reason why Z cannot be a (conventional) vector space.

Definition 1. Let X be a universal set over the scalar field IF. We define the null set of X as follows
QO={xox:xe€ X}

We say that the null set () satisfies the neutral condition if and only if w € Q) implies —w € Q.

Example 3. Continued from Example 1, for any z = a + bi € C, we have
z26z=z+(-1)z=(a+bi)+ (-b—ai)=(a—b)+ (b—a)ieC.
Therefore, the null set Q) is given by
Q={-k+ki:keRandk >0} ={-k+ki:keR,.}.
Now we are in a position to define the concept of informal vector space.

Definition 2. Let X be a universal set over F. We say that X is an informal vector space over F if and only if
the following conditions are satisfied:

o lx=xforanyx e X;

o x=yimpliesx®z=ydzand ax = ay forany x,y,z € Xand « € F;

o The commutative and associative laws for vector addition hold true in X; that is, x &y = y ® x and
(xey)@z=x® (y®z)forany x,y,z € X.

Definition 3. Let X be an informal vector space over IF with the null set Q). Given any x,y € X, we say that x
and y are almost identical if and only if any one of the following conditions is satisfied:

x=y
There exists w € Q suchthat x =y S worx Bw =y;
There exists wy, wy € Q) such that x © w1 =y © wy.

. . Q
In this case, we write x = Y.

Remark 1. Suppose that the informal vector space X over IF with the null set () contains the zero element 6;
thatis, x = x ® 60 = 0 @ x for any x € X. Then, we can simply say that x 2 yifand only if wy, wy € Q) exists,
such that x © wy = y © wy (i.e., only the third condition is satisfied), since the first and second conditions can
be rewritten as the third condition by adding the zero element 0. We also remark that if we want to discuss some
properties based on x g y, it suffices to consider the third condition x © wy = y @ wo, even though X does not
contain the zero element 0. The reason is that the same arguments are still applicable for the first and second
conditions.

47



Axioms 2019, 8, 126

According to the binary relation 2, for any x € X, we define the class

[x]:{yeX:xgy}. )]

The family of all classes [x] for x € X is denoted by [X]. For y € [x], it is not necessarily that the
class [y] is equal to the class [x], unless the binary relation Zisan equivalence relation.

Proposition 1. Let X be an informal vector space over F with the null set Q). If Q is closed under the vector

addition, then the binary relation 2 is an equivalence relation.

Proof. Forany x € X, x = x implies x a x, which shows the reflexivity. According to the definition
of the binary relation g, the symmetry is obvious. Regarding the transitivity, for x Q yand y Q z,

we want to claim x 2 z. From Remark 1, it suffices to just consider the cases of
XPw=yPwrandy B w3 =z P wy

for some w; € O fori = 1,---,4. By the associative and commutative laws for vector addition,
we have
XPw Gwz=yDwsDwy =zDwysdws,

which shows x Q z, since () is closed under the vector addition. This completes the proof. [J

Let X be an informal vector space over IF with the null set () such that Q is closed under the
vector addition. Proposition 1 says that the classes defined in (1) form the equivalence classes. It is
clear to see that y € [x] implies [x] = [y]. In other words, the family of all equivalence classes form
a partition of the whole set X.

We also need to remark that the space [X] is still not a (conventional) vector space. The reason is
that not all of the axioms taken in the vector space will be satisfied in [X], since the original space X
does not satisfy all of the axioms in the vector space. For example, we consider the informal vector
space Z over R from Example 2. The quotient set [Z] cannot be a real vector space, since

(a+ B)[x] # alx] + Blx]
for af < 0. The reason is that (« + p)x # ax + Bx for x € Z and aff < 0.
3. Informal Metric Spaces

Now, we are in a position to introduce the concept of the so-called informal metric space.

Definition 4. Let X be an informal vector space over F with the null set Q). For the non-negative, real-valued
function d defined on X x X, we consider the following conditions:

(i) d(x,y):Oifundonlyifxgyforullx,yeX;
(') d(x,y) =0ifandonly if x = y forall x,y € X;
(i) d(x,y) =d(y,x) forallx,y € X;

(iii) d(x,y) <d(x,z) +d(z,y) forall x,y,z € X.

Different kinds of metric spaces are defined below.

o The pair (X, d) is called a pseudo-metric space if and only if d satisfies conditions (ii) and (iii).
The pair (X, d) is called a metric space if and only if d satisfies conditions (i'), (ii), and (iii).
The pair (X, d) is called a informal metric space if and only if d satisfies conditions (i), (ii), and (iii).
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(iv) We say that d satisfies the null super-inequality if and only if, for any wy,wr € Qand x,y,z € X,
we have

Ax B wy,y®wy) >d(x,y), dx®wy,y)>d(x,y)andd(x,y®wr) > d(x,y).

(iv') We say that d satisfies the null sub-inequality if and only if, for any w1, w, € Qand x,y € X, we have
Adx @ w,y®wy) <d(x,y), dxdwyy) <d(x,y)andd(x,y®wy) <d(x,y).

(iv"') We say that d satisfies the null equality if and only if, for any wy,ws € Qand x,y € X, we have

Adx®wy,y®wy) =d(x,y), dxdw,y)=d(x,y) and d(x,y&wy) =d(x,y).

Example 4. Continued from Example 2, we take X = I that consists of all bounded and closed intervals, which
is not a vector space. For I = [a},al!] and I, = [a%, al!] in T, we define a nonnegative real-valued function d
for T x I by

d(L, L) = ‘a%-l—ulll—aé—ag‘.

Suppose that
d(h, L) = ‘a%Jra%]faé 71112"‘ =0.

We cannot obtain Iy = Ip. Therefore, condition (i') in Definition 4 is not satisfied, which says that (Z,d)

cannot be a (standard) metric space. However, using the basic arithmetics, we can obtain I a I,. For any
Iy, I, Iz in Z, it is not difficult to show that

d(ll,lz) = d(]z, 11) and d(ll,lz) < d(ll, 13) + d(lg,,[z).

Therefore (Z,d) is indeed an informal metric space. Moreover, we are going to claim that d also satisfies the
null equality. We first note that the null set () in T is given by

Q= {[~kk :k>0}.
Forany ki, ky € Ry, e, wy = [—ky, k1], wp = [—ka, ka] € Q, we have

d(h&w, Low)=d ([a%,alf’] & [~k k1], [a%,aé’] ® [~k ko) )
—d ({alL —ky,all +k1] , {ag —kz,a§’+k2])
- )(ulL—kl +a%’+k1) - (ag—k2+u§’+k2)‘
= | (af +alf) = (af +a¥)]
(k] o) “a 1,1,

which shows that d indeed satisfies the null equality.

4. Cauchy Sequences

In this section, we are going to introduce the concepts of Cauchy sequences and completeness in
the informal metric space. We first introduce the concept of limit in the informal metric space.

Definition 5. Let X be an informal vector space over F with the null set Q), and let (X, d) be a pseudo-metric
space. The sequence {x, }5°_ 1 in X is said to be convergent if and only if

nlgromo (xn,x) = 0 for some x € X.
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The element x is called the limit of the sequence {x,}$ .

The sense of uniqueness of limit will be different for the metric space and informal metric space.
Let {x,}7? ; be a sequence in (X, d). If there exists x,y € X such that

nlgrolo d(xy,x) =0= nlgrolo d(xn,y),

then, by the triangle inequality (iii) in Definition 4, we have
0<d(x,y) <d(x,x;)+d(xp,y) >0+0=0asn — oo, )

which says that d(x, y) = 0.

e Suppose that (X, d) is a metric space. By condition (i') in Definition 4, we see that x = y. This shows
the uniqueness.

e  Suppose that (X, d) is an informal metric space. By condition (i) in Definition 4, we see that x a Y.
Recall that if Q) is closed under the vector addition, then we can consider the equivalence classes.
In this case, we also see that y is in the equivalence class [x].

On the other hand, we further assume that d satisfies the null equality. If {x,,}7_; is a sequence in
X such that d(x,,x) — 0 as n — oo, then, for any y € [x], ie, x ® w1 = y ® w;, for some wq,wy € Q,
we also have d(x,,y) — 0 as n — oo, as shown below:

0 <d(xn,y) =d(xn,wr®y) =d(xp, w1 ®x) =d(xy,x) — 0asn — oco.
Therefore, we propose the following definition.

Definition 6. Let (X, d) be an informal pseudo-metric space with the null set Q. If {x,, }5r_, is a sequence in
X such that

nlglolod(xn,x) =0

for some x € X, then the class [x] is called the class limit of {x,, }$°_,. We also write

lim x, = [x] or x,, — [x].

n—oo
Proposition 2. Let (X, d) be an informal pseudo-metric space with the null set Q) such that Q) is closed under
the vector addition. Then, the class limit in the informal metric space is unique.

Proof. Let {x,}%_; be a convergent sequence in X with the class limits [x] and [y]. According to the
definition, we have
lim d(x,,x) = 0and liln d(xn,y) = 0.
n—o00

n—oo

Using (2) , it follows that d(x,y) = 0, which also implies y € [x], i.e., [x] = [y]. This shows the
uniqueness in the sense of class limit. [

Definition 7. Let (X,d) be an informal metric space.

o Asequence {x,}5 4 in X is called a Cauchy sequence if and only if, given any € > 0, N € N exists,
such that d(x,, x,) < € foralln > N and m > N.

o Asubset M of X is said to be complete if and only if every Cauchy sequence in M is convergent to some
element in M.

Proposition 3. Every convergent sequence in an informal metric space is a Cauchy sequence.
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Example 5. Continued from Example 4, we see that (Z,d) is an informal metric space such that d satisfies the
null equality. We are going to claim that (Z,d) is complete. Given a sequence {1, }5_, in the informal metric
space (Z,d) by I, = [ak,aY] forn = 1,2, - -, suppose that {I,}*°_, is a Cauchy sequence. Then, given any
€ > 0, for sufficiently large n and m, we have

e>d (I, Ly)=d Qaﬁ,aﬂ , [aﬁl,a%]) = ‘(ﬂ% +anu) - (11,%1 +a%> ’ (3)

Let ay = al +all. Then, the expression (3) shows that {a,}** | is a Cauchy sequence in R.
The completeness of R says that a € R exists, satisfying |a, — a| < € for sufficiently large n. Now we
define a bounded closed interval [a*, aY] satisfying a* + a¥ = a. Then

d ({a,ﬁ,aﬂ , [aL,uuD = ‘(aﬁwtul}f) — <aL+au)’ =|a,—al<e

for a sufficiently large n, which says that the sequence {I,}%_, converges to [a", al]. Therefore, we conclude
that the space (Z,d) is complete.

5. Near Fixed Point Theorems

Let X be a universal set, and let T : X — X be a function from X into itself. We say that x € X
is a fixed point if and only if T(x) = x. The well-known Banach contraction principle presents the
fixed point of function T when X is taken to be a complete metric space. We shall study the Banach
contraction principle when X is taken to be an informal complete metric space.

Definition 8. Let X be an informal vector space over F with a null set O, and let T : X — X be a function
defined on X into itself. A point x € X is called a near fixed point of T if and only if T (x) 2y

Example 6. Continued from Example 5, we see that the null set Q) in (Z,d) is given by
Q= {[-kk]:k>0},

which is closed under the vector addition. Let T : (Z,d) — (Z,d) be a function from T into itself. Suppose that
[ak,a¥) is a near fixed point of T, i.e., T([aL,a!]) Q [aL, aY]. By definition, nonnegative numbers ki and ky
exist such that one of the following equalities is satisfied:

o T(lah,a") & [~ky, ky] = [at,a"T];

o T([at,a")) = [a", "] & [k, Ku];

o T([a"a"]) @ [~ki k1] = [a" a"] & [~k2, ko],

where [—ky, k] and [—ky, k| are in the null set Q).

Remark 2. We have the following observations.

e By definition, we see that T (x) 2y if and only if wy, wy € Qexist, such that T(x) = x, T(x) ® wy = x,
or T(x) =x @ wyor T(x) ®wy =x wy.

o Ifthe informal vector space X owns a zero element 0, then the (conventional) fixed point is also a near fixed
point.

o If the informal vector space X turns into a (conventional) vector space over IF, then the concepts of near
fixed point and (conventional) fixed point are equivalent.

Definition 9. Let (X, d) be an informal metric space. A function T : (X,d) — (X, d) is called a contraction
of X if and only if there is a real number 0 < a < 1 such that

d(T(x), T(y)) < ad(x,y)
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forany x,y € X.

Example 7. Continued from Example 4, suppose that T is a contraction of T. Then, a real number 0 < o < 1
exists, such that

d(T([ay, at')), T(az, a3])) < a-d([ar, at'], [a3, a3'])
for any [at, a¥l], [a}, a¥] € T. In particular, we take Z to be a collection of all subintervals of [0,1]. Now, we take
T:Z—Zby
4 = g[”

1 1
=3 [min {uLaL ata¥,alq u},max{aLaL alaY,aYq u}] =3 {uLaL auau]

T([a*,a L ¥ @ [aF,aY]

where a®,a" € [0,1]. From Example 4, we have

d(T([&ﬁL,ﬂy])/ (a%,alzj})) =d (% [u%u%,all’laﬂ ,% [ﬂ%a%/alzlﬂg])
% abal +atat *ﬂ%“%*”g”g‘
= 2 (ak + ob) (ak —af) + (ol + o) (aif—a%f)!
< 310k 8) (o )| e .k < 0,1
—= %d([’ﬁ/”l ],[ﬂzzﬂlzl])/

which says that T is a contraction of Z.

Given any initial element xg € X, we define the iterative sequence {x, }° ; using the function T
as follows:
x; = T(xp), x=T(x1)=T*(x0), - ,%n = T"(x0)- 4)

Under some suitable conditions, we are going to show that the sequence {x, }?* ; can converge to
a near fixed point.

Theorem 1. Let (X, d) be an informal complete metric space with the null set Q) such that d satisfies the null
equality. Suppose that Q) is closed under the vector addition, and that the function T : (X,d) — (X, d) is

a contraction of X. Then T has a near fixed point x € X satisfying T(x) 2 x. More precisely, the near fixed
point x can be obtained by the following limit

d(xy,x) — 0asn — oo,

where the sequence {x,, }5_ is generated by the iteration (4). Moreover, we have the following properties.

o There is a unique equivalence class [x] satisfying that if X & [x], then X cannot be a near fixed point, which
shows the sense of uniqueness.
Suppose that % € [x]. Then % is also a near fixed point of T satisfying T(X) 2 tand [x] = [x].
Suppose that % is a near fixed point of T. Then % € [x|; i.e., [X] = [x]. In other words, if x and X are the
. . Q.
near fixed points of T, then x = X.
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Proof. Proposition 1 says that the family of all classes [x] for x € X forms the equivalence classes.
Given any initial element xy € X, we can generate the iterative sequence {x, }%_; using (4). We want
to claim that {x, }1:0:1 is a Cauchy sequence. Since T is a contraction of X, we have

d(xmi1, Xm) = d(T(xm), T(xm-1)) < ad(Xm, Xp-1)

= ad(T(xp—1), T(xm—2)) < ‘J‘Zd(xm—lr Xm—2)
< - < ad(xq, x0).

For n < m, using the triangle inequality, we obtain

d(xm/xn) d(xm/xm 1)+d(xm 17 Xm— 2)+"'+d(x71+1/xn)
( P 1+Dém 2 '+Dén> 'd(xl,xo)

1_D‘WI n
=a"- BT d(x1,xo)-

Since 0 < & < 1, we have 1 — a™~" < 1 in the numerator, which says that

n
d(xm, xn) < 1”:

. -d(x1,x9) = 0asn — oo.

This shows that {x, }?° ; is indeed a Cauchy sequence. The completeness says that x € X exists,
satisfying d(x,, x) — 0,1i.e., x, — [x] from Definition 6 and Proposition 2.
Now, we want to claim that any point X € [x] is a near fixed point. We first have ¥ ® wy = x ® wy

for some wy, wy € Q. According to the triangle inequality and using the fact of contraction of X,
we obtain

d(x ® wy, T (%)) (since d satisfies the null equality)
d(x Xm) + d(xm, T(%))
d(x @ wy, xm) +d(T(xp-1), T(%))
< d(x @D wy, xm) + ad(xy_1,%)
A(% B wy, xm) + ad(xy,_1, % S w) (since d satisfies the null equality)
d(x ® wy, xm) + ad(xy_1,x D wy)
d(x

, Xm) + ad(xy,_1,x) (since d satisfies the null equality),

which implies d(%, T(xX)) = 0 as m — co. We conclude that T () 2 % for any point ¥ € [x].

Now, we assume that there is another near fixed point ¥ of T satisfying ¥ ¢ [x], i.e., X
Then

2 7(z).

T@w; =T(X)Dwrand x D ws = T(x) ®wy
for some w; € (), i =1,---,4. Since T is a contraction of X and d satisfies the null equality, we obtain
d(x,x) =d(X @ w,x D ws) =d(T(%) ®wy, T(x) Bws) =d(T(x), T(x)) < ad(x,x),
which implies d(%,x) = 0, since 0 < a < 1. Therefore, we obtain ¥ 2 x, which contradicts ¥ & [x].

This says that any & ¢ [x] cannot be a near fixed point. Equivalently, if ¥ is a near fixed point of T, then
% € [x]. This completes the proof. [
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Example 8. Continued from Example 5, we see that (I,d) is a complete informal metric space, such that d
satisfies the null equality. Suppose that T is a contraction of Z. Then, there exists a real number 0 < « < 1 such
that

d(T([af, a1']), T(az,a5])) < a - d([af, a{'], [a3,a5'])
for any [a%,a'f’], [a%, 11121] € Z. Given any initial element Iy = [ué,a(%[] € Z, we can generate the iterative
sequence {1, }%_, using the function T, where I, = [ak,a{], as follows:

L=T(), L=Th)=Tk), -, I, =T"(h)
that is,
laf,a{'] = T([ag,ag']), [a3,a5'] = T([af,ai']) = T*([ag, ag']), - -, [ag, a5 ] = T"([ag, ag']).-

Using Theorem 1, the near fixed point I = [a®,a!] is obtained by the limit

d(I,, I) = d([ak,a], [a%,a¥]) — 0as n — co.

Definition 10. Let (X, d) be an informal metric space with the null set Q), and let Q) be closed under the vector
addition. A function T : (X,d) — (X, d) is called a weakly strict contraction of X if and only if the following
conditions are satisfied:

o x2 y, e, [x] = [y] implies d(T(x), T(y)) = 0;
o x % y, e, [x] # [y] implies d(T(x), T(y)) < d(x,y).

We see that if T is a contraction of X, then it is also a weakly strict contraction of X.

Theorem 2. Let (X, d) be an informal, complete metric space with the null set O, and let Q) be closed under
the vector addition. Suppose that the function T : (X,d) — (X,d) is a weakly strict contraction of X.
If {T"(x0) }32_ 4 forms a Cauchy sequence for some xo € X, then T has a near fixed point x € X satisfying

T(x) 2 x. More precisely, the near fixed point x can be obtained by the following limit
d(T"(xp),x) = 0asn — co.

Assume further that d satisfies the null equality. Then, we also have the following properties.

o There is a unique equivalence class [x| satisfying that if X & [x] then X cannot be a near fixed point,
which shows the sense of uniqueness.
Suppose that & € [x]. Then % is also a near fixed point of T, satisfying T (X) 2 % and [x] = [x].
Suppose that % is a near fixed point of T. Then % € [x]; i.e., [¥] = [x]. In other words, if x and X are the

near fixed points of T, then x 2z

Proof. The assumption says that {T"(xg)}5_ is a Cauchy sequence. Since X is complete, it follows

that x € X exists, such that d(T"(xp),x) — 0. From Definition 6 and Proposition 2, we see that
T"(x9) — [x]. Now, given any € > 0, there exists an integer N, such that d(T"(xp),x) < € forn > N.
Two cases will be considered.

e Suppose that T"(xg) 2 1 Since Tisa weakly strict contraction of X, it follows that

d(T" Y (xg), T(x)) =0 < e.

Q
e Suppose that T"(xg) # x. Since T is a weakly strict contraction of X, we have

AT (x0), T(x)) < d(T" (x0), %) < € forn > N.
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Therefore, we conclude that d(T"*1(xp), T(x)) — 0. The triangle inequality says that

d(T(x),x) <d (T(x), T”+1(x0)) +d (T’H—I(X()),X) —0asn — 0.

Therefore, we obtain d(T(x),x) =0, i.e., T(x) £ Y. This shows that x is a near fixed point.
Now, we assume further that d satisfies the null equality. We want to show that each point % € [x]

is a near fixed point of T. Since ¥ Q x, we have ¥ @ w1 = x ® w, for some wy,wy € Q. The null
equality says that

d(T"(xp),x) = d(T"(x0), X ® wy) = d(T"(x0),x ® wy) = d(T"(xp),x) — 0asn — oo.

Therefore, we can also obtain d(T"+1(xg), T(¥)) — 0 as n — oo by using the above argument.
On the other hand, the triangle inequality also says that

(%, T(%)) < d(z, T (x0)) + d(T"(x0), T(%)) — Oas 1 — o,

which implies d(x, T(x)) = 0. Therefore, we obtain T(%) 2 % for any point ¥ € [x].

Suppose that X ¢ [x] and & is another near fixed point of T. Then, we have T (%) 2 tand [x] # [x],
ie., x % %. We also have T(x) ® w; = x @ wp and T(%) ® w3z = ¥ @ wy, where w; € Q fori=1,2,3,4.
Now, we obtain

d(x,%) = d(x & wy, ¥ ® wy) (using the concept of null equality)
=d(T(x) ®wy, T(%) ®ws) =d(T(x), T(x)) (using the concept of null equality)
< d(x,x) (since T is a weakly strict contraction and x % X).
Therefore we led to a contradiction, which says that ¥ cannot be a near fixed point of T. In other
words, if ¥ is a near fixed point of T, then € [x]. This completes the proof. [J

Meir and Keeler [11] studied the fixed point theorem for the weakly-uniformly strict contraction.
Therefore, under the informal metric space (X, d), we propose the following definition by considering

the fact d(x,y) = 0 for x g V.

Definition 11. Let (X, d) be an informal metric space with the null set Q, and let Q) be closed under the vector
addition. A function T : (X,d) — (X, d) is called a weakly uniformly strict contraction of X if and only if
the following conditions are satisfied:

o 22 y, ie., [x] = [y] implies d(T(x), T(y)) = 0;
o givenanye > 0,0 > 0 exists, such that € < d(x,y) < e + & implies d(T(x), T(y)) < € for any x 7(2 v,
ie. [x] # [y

Remark 3. It is clear to see that if T is a weakly uniformly strict contraction of X, then it is also a weakly strict
contraction of X.

Lemma 1. Let (X, d) be an informal metric space with the null set Q), and let Q) be closed under the vector
addition. Let T : (X,d) — (X,d) be a weakly uniformly strict contraction of X. Then the sequence
{d(T"(x), T"*1(x))}e_, is decreasing to zero for any x € X.

Proof. For convenience, we write T"(x) = x, for all n. Let ¢, = d(xp, X;41)-

e Suppose that [x,,_1] # [x,]. By Remark 3, we have

en = d(xn, Xyp1) = d(T"(x), T (x)) < d(T"H(x), T"(x)) = d(Xn—1,%n) = 1.
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e Suppose that [x,,_1] = [x,]. Then, by the first condition of Definition 11,

en = d(T"(x), T" (x)) = d(T(x-1), T(xn)) = 0 < 1.

Therefore, we conclude that the sequence {C,,};’f:l is decreasing. Now, we also consider the
following two cases.

e Let m be the first index in the sequence {x,}? ; such that [x,,_1] = [x,]. Then, we can show
thatc,,—1 = ¢y = 1 = - - - = 0. Since x,,,_1 Q Xm, we have ¢;;—1 = d(x;;-1, x,) = 0. The first
condition of Definition 11 says that

0=d(T(xy-1), T(xm)) = d(T"’(x),T'”“(x)) =d(Xm, Xm+1) = Cm,

which implies x,, Q Xpt1; 1€, [Xm] = [X41]. We can similarly obtain ¢, 1 = 0 and [x,,,41] =
[*112]. Therefore, the sequence {c, }$_; is decreasing to zero.

e Suppose that [x,,;1] # [x,] forall m > 1. Since the sequence {c,; }$_, is decreasing, we can assume
thatc, | € > 0,i.e., ¢, > € > 0 for all n, which says that § > 0 exists, such thate < ¢;; < € + ¢ for

some m, i.e., € < d(Xp, Xp41) < €+ 6. The second condition of Definition 11 says that
Cmy1 = d(xm-H/ xm+2) = d(Tm+1 (x), T"Hz(x)) = d(T(xm)f T(xrrz+1)) <e

which contradicts ¢, 11 > €.

This completes the proof. []

Theorem 3. Let (X, d) be an informal complete metric space with the null set ), and let Q) be closed under the
vector addition. Let T : (X,d) — (X, d) be a weakly uniformly strict contraction of X. Then T has a near fixed

point satisfying T (x) 2 x. More precisely, the near fixed point x is obtained by the following limit
d(T"(xo),x) — 0as n — oo for some xo.

Assume further that d satisfies the null equality. Then we also have the following properties.

o There is a unique equivalence class [x] satisfying that if X ¢ [x|, then % cannot be a near fixed point,
which shows the sense of uniqueness.
Suppose that % € [x]. Then X is also a near fixed point of T satisfying T(X) 2 tand [x] = [x].
Suppose that % is a near fixed point of T. Then % € [x|; i.e., [X] = [x]. In other words, if x and X are the
near fixed points of T, then x 2z
Proof. From Theorem 2 and Remark 3, we just need to show that if T is a weakly uniformly strict
contraction, then {T"(x9)}5_; = {x,}i_; is a Cauchy sequence for xy € X. Suppose that {x,}? ;
is not a Cauchy sequence. By definition, 2e > 0 exists, such that, given any N, m,n > N exists,

satisfying d(x,, x,) > 2¢. The assumption says that T is a weakly uniformly strict contraction on X.
Therefore, 5 > 0 exists, such that

€ <d(x,y) < e+dimplies d(T(x), T(y)) < € for any x Q v
Let ¢’ = min{J, e}. We want to show that
€ <d(x,y) < e+ implies d(T(x), T(y)) < € for any x 7(2 V. 5)

Tt is clear to see thatif ' = €,i.e., e < J,thene+6' =e+e < e+J.
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Let ¢; = d(xp, x,41). Lemma 1 says that the sequence {c, }{y_; is decreasing to zero. Therefore,
we can find N such that cy < §’/3. For n > m > N, we have

d(xm, xn) >2e>e+6, (6)

which implicitly says that x,, % xp. Since {c, }5°_; is decreasing, we obtain

(s/
A(Xm, Xp1) = cm < oN < 3= g <e. 7)
For j with m < j < n, we also have
d(xm, xj1) < d(xm, x;) +d(xj,xj41)- (8)

We want to show that j with m < j < n exists, such that x,, % X; and

!

24
e+?<d(xm,xj)<e+5’. )
Let yj = d(xm, x;) for j=m+1,--- ,n. Then (6) and (7) say that
Ymi1 < e€and v, > €+ 5. (10)

Let jp be an index satisfying

. . 26
jo = max ]G[m+1,n}:’yj§e+? .

Using (10), we have m 41 < jo < n. This says that jj is well-defined. The definition of jj also says that

jo+1<mand 1 >e€+ 27"/ Therefore, we obtain x,, % Xj,+1, which says that the expression (9)
will be sound if we can show that

26 ,
e+? < Yjor1 <€+

Suppose that this is not true; i.e., 7j 41 > € + ¢'. Using (8), we obtain

& , 20§
3 > N 2 o = Ay, Xjg41) 2 Vjor1 — T 2 €+ —e— = ==,

which contradicts the fact that (9) is sound. Since x,, % xj, forms (5), we see that (9) implies
d(xnz+1rx/'+l) =d(T(xm), T(xj)) <E€. 11)
Therefore, we obtain

A(xm, x;) < d(om, 1) + d (X1, K1) + d(xj11, ;)
< cm +€+cj(by (11)

< 5—/ +€+ 5—/ =€+ 275/
3 3 3’
which contradicts (9). Therefore, every sequence {T"(x)}5; = {xx}o—; is a Cauchy sequence.

This completes the proof. [

57



Axioms 2019, 8, 126

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1.

O X NG LN

—_ =
=]

Adasch, N.; Ernst, B.; Keim, D. Topological Vector Spaces: The Theory without Convexity Conditions;
Springer-Verlag: Berlin/Heidelberg, Germany, 1978.

Khaleelulla, S.M. Counterexamples in Topological Vector Spaces; Springer-Verlag: Berlin/Heidelberg, Germany, 1982.
Schaefer, H.H. Topological Vector Spaces; Springer-Verlag: Berlin/Heidelberg, Germany, 1966.

Peressini, A.L. Ordered Topological Vector Spaces; Harper and Row: New York, NY, USA, 1967.

Wong, Y.-C.; Ng, K.-F. Partially Ordered Topological Vector Spaces; Oxford University Press: Oxford, UK, 1973.
Wu, H.-C. Near Fixed Point Theorems in Hyperspaces. Mathematics 2018, 6, 90. [CrossRef]

Wu, H.-C. Near Fixed Point Theorems in the Space of Fuzzy Numbers. Mathematics 2018, 6, 108. [CrossRef]
Aubin, J.-P. Applied Functional Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2000.

Conway, J.B. A Course in Functional Analysis, 2nd ed.; Springer-Verlag: Berlin/Heidelberg, Germany, 1990.
Riesz, E; Sz.-Nagy, B. Functional Analysis; Dover Publications, Inc.: New York, NY, USA, 1955.

Meir, A.; Keeler, E. A Theorem on Contraction Mappings. J. Math. Anal. Appl. 1969, 28, 326-329. [CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

58



@ axioms ﬁw\n\l’y

Article

A New Approach to the Interpolative Contractions

Yaé Ulrich Gaba *** and Erdal Karapinar 3**

1 Institut de Mathématiques et de Sciences Physiques (IMSP)/UAC, BP 613, Porto-Novo, Benin

2 African Center for Advanced Studies, PO Box 4477, Yaounde, Cameroon

3 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

*  Correspondence: yaeulrich.gaba@gmail.com (Y.U.G.); karapinar@mail.cmuh.org.tw (E.K.)

1t These authors contributed equally to this work.

check for
Received: 17 September 2019; Accepted: 2 October 2019; Published: 10 October 2019 updates

Abstract: We propose a refinement in the interpolative approach in fixed-point theory. In particular,
using this method, we prove the existence of fixed points and common fixed points for Kannan-type
contractions and provide examples to support our results.

Keywords: interpolative contraction; contraction; fixed point

1. Preliminaries

Kannan fixed-point theorem is the first significant variant of the outstanding result of Banach
on the metric fixed-point theory [1,2]. Kannan’s theorem has been generalized in different ways.
In the present note, we zoom in on one of the recent generalizations that was proposed by Karapimnar [3]
as interpolative Kannan-type contraction. It was indicated in [3] that each interpolative Kannan-type
contraction in a complete metric space admits a fixed point (see also e.g., [4-7]). More precisely,
we have:

Theorem 1 ([3], Theorem 2.2). Let (X, d) be a complete metric space and T : X — X an interpolative
Kannan-type contraction, i.e., T is a self-map such that there exist A € [0,1), a € (0,1) with

d(Tx, Ty) < Ad(x, Tx)%d(y, Ty)'~* 1)

forall x,y € X\Fix(T), where Fix(T) := {x € X : Tx = x}.
Then T has a fixed point in X.

Our contribution in the present manuscript aims at sharpening the inequality (1) by increasing
the degree of freedom of the powers appearing in the right-hand side in the framework of standard
metric spaces. We also indicate the novelty of our results by expressing some examples.

2. Main Results

We start with the following definition.

Definition 1. Let (X, d) a metric space and T : X — X a self-map. We shall call T a (A, «, B)-interpolative
Kannan contraction, if there exist A € [0,1),a, p € (0,1) with a + p < 1 such that

d(Tx, Ty) < Ad(x, Tx)%d(y, Ty)P @

forall x,y € X with x # Tx,y # Ty.

Axioms 2019, 8, 110; d0i:10.3390/axioms8040110 59 www.mdpi.com/journal /axioms
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We are now ready to state the main result of this paper.

Theorem 2. Let (X, d) a complete metric space and T : X — X be a (A, a, B)-interpolative Kannan contraction
with A € [0,1),a, B € (0,1) so that « + B < 1. Then T has a fixed point in X.

Proof. Following the steps of the proof of ([3], Theorem 2.2), we construct the sequence (xy),>1 by
iterating x, = T"xg where xy € X is an arbitrary starting point. Then, we observe that

d(xn, Xp1) = d(Txp—1, Txn) < Ad(x_q, x0)"d(xp, xn+1)ﬁ/

ie.,
(%, Xn1) P < Ad(xp-1,x0)" < Ad(x5-1,%0) 7P

sincea <1—B.
As already elaborated in the proof of ([3], Theorem 2.2), the classical procedure leads to the
existence of a unique fixed point x* € X. O

We conclude this section by presenting an example explaining why our approach is more general.

Example 1 (Compare ([3], Example 2.3)). Tuke X = {x,y,z, w} and endow it with the following metric:

x y z w
0 | 52| 4 |52

52| 0 |32 1
4 | 32| 0 | 3R

52 |1 |32 0

SN =R

We also define the self-map T on X as
Tx=x;Ty=w; Tz=x; Tw =y.
We observe that the inequality:

d(Tx, Ty) < Ad(x, Tx)*d(y, Ty)P

is satisfied for:
1 3 8 _ 9
S U TR R I
1 3 8 _ 9
Sy by TSy
1 4 8 _9
== = A=< —.
e S U

In all these cases, « + B < 1i.e., p < 1 — a and the map obviously has a unique fixed point.
In other words, the inequality

d(Tx, Ty) < Ad(x, Tx)*d(y, Ty)'~*
could just be replaced by the existence of two reals «,  such that « + p < 1,
d(Tx, Ty) < Ad(x, Tx)d(y, Ty)P.

Inspired by the above question, we introduce the idea of “optimal interpolative triplet («, 8, A)”
for a (A, a, B)-interpolative Kannan contraction.
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Definition 2. Let (X,d) be a metric space and T : X — X be a self-map. We shall call T a relaxed
(A, «, B)-interpolative Kannan contraction, if there exist 0 < A, w, B such that

d(Tx, Ty) < Ad(x, Tx)*d(y, Ty)P. (3)

Definition 3. Let (X,d) be a metric space and T : X — X be a relaxed (A, a, B)-interpolative Kannan
contraction. The triplet (A, «, B) will be called “optimal interpolative triplet” if for any € > 0, the inequality (3)
fails for at least one of the triplet

A—ea,p), (Aa—gP), (Ao B—c¢).

Therefore, we formulate the following conjecture for which we currently do not have any proof.
Theorem 3. Let (X, d) be a complete metric space. Let T : X — X be a map such that for any n > 0, T"
admits an optimal interpolative triplet (An, &, Pn). If Y Ay < 00 and Y_ay + Bu < oo, then T has a unique
fixed point. Moreover, this fixed point can be obtained via the Picard iteration.

Theorem 2 can easily be generalized to the case of two maps. More precisely:

Definition 4. Let (X, d) be a metric space and R, T : X — X be two self-maps. We shall call (R,T) a
(A, &, B)-interpolative Kannan contraction pair, if there exist A € [0,1),a, B € (0,1) with « + B < 1 such that

d(Rx, Ty) < Ad(x, Rx)*d(y, Ty)P 4)
forall x,y € X with x # Rx,y # Ty.
Our result then goes as follows:

Theorem 4. Let (X, d) be a complete metric space and (R, T) be a (A, a, B)-interpolative Kannan contraction
pair. Then R and T have a common fixed point in X, i.e., there exists x* € X such that Rx* = x* = Tx*.

Proof. We construct the sequence (x,),>1 by iterating
Xon41 = RXon, Xony2 = Th2ns1
where xg € X is an arbitrary starting point.
d(x2n41, %an42) < A (X2, X2041)"d (%2011, X2 12)P < Ad(X20, X2041) A (X2n 1, X212)

The proof then follows the same steps as ([8], Theorem 2.1). As already elaborated in the proof
of ([8], Theorem 2.1), the classical procedure leads to the existence of a unique fixed point x* € X. [

Example 2. We use the metric defined in Example 1. We also define on X the self-maps T as

Tx=x;Ty=y;, Tz=w; Tw =w

and R as
Rx =x; Ry = w; Rz =z; Rw = w.

We observe that the inequality:

d(Rx, Ty) < Ad(x, Rx)*d(y, Ty)P
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is satisfied for:
1 3 8
=, B=", A=
a=c b=y 5
1 5 9
=g b= A=
_0 10

R and T have two common fixed points x and w.

The above conjecture (Theorem 3) motives us in the investigation of interpolative Kannan
contraction for a family of maps. Indeed Noorwali [8] used interpolation to obtain a common
fixed-point result for a Kannan-type contraction mapping. We aim at generalizing ([8], Theorem 2.1)
and Theorem 4 with the use of a (A, a, B)-interpolative Kannan contraction for a family of maps.
More precisely:

Problem 1. Let (X, d) be a complete metric space. Let T, : X — X, n > 1 be a family of self-maps such for
any x,y € X
d(Tix, Tiy) < Ajjd(x, Tix)"d(y, T]-y)/ji.

What are the conditions on A; j, a;B; for Ty to have a (unique)common fixed point.
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1. Introduction and Preliminaries

We know that the fixed points that can be discussed are divided into two types. The first type deals
with contraction and is referred to as Banach fixed point theorems, the second type deals with compact
mappings and more involved. Metric fixed point theorems plays very important role, many authors
proved fixed point theorems in various spaces (see e.g., [1-36]).

The study of fixed points for multivalued mappings using the Hausdorff metric was initiated
by Nadler ([14]. The theory of multivalued mappings has a wide range of applications, it has been
applied in control theory, convex optimization, differential inclusions, economics, etc. The existence of
fixed points for various multivalued contractive mappings has been studied by many authors under
different conditions (see [15-30]).

In the year 2014, Ma et al. [7] introduced the concept of C*-algebra valued metric space
and established some fixed point results. Later, Alsulami et al. [32] suggested some remarks on
C*-algebras and proved Banach type contraction result, this line of research was continued in
(see [8,10-12,31,34,35]).

Fuzzy set theory was introduced by Zadeh [36] and the theory of soft sets initiated by
Molodstov [37] which helps to solve problems in all areas. Maji et al. [38,39] introduced several
operations in soft sets and as also coined fuzzy soft sets. In [1] Thangaraj Beaula et al. defined fuzzy
soft metric space in terms of fuzzy soft points and proved some results. On the other hand several
authors proved smany results in fuzzy soft sets and fuzzy soft metric spaces (see [1,2,5,6,40—-44]).

Axioms 2019, 8, 99; d0i:10.3390/axioms8030099 63 www.mdpi.com/journal /axioms
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Recently, R.P.Agarwal et al. [25] introduced the concept of C*-algebra valued fuzzy soft metric
space based on C*-algebras and fuzzy soft elements and described the convergence and completeness
properties in this space also they provided some fixed point theorems (see [25,26]).

The main aim of this paper is to introduce the concept of multi-valued mappings in C*-algebra
valued fuzzy soft metric spaces and proved some coincidence and common fixed point theorems
for a two-pair of multi-valued and single-valued maps satisfying new type of contractive conditions.
Also we provided some coupled fixed point theorems and finally we are initiate some examples which
supports our main results.

Throughout this paper, we use the following notations as in C*-algebras:

U refers to an initial universe, E the set of all parameters for U and P({I) the set of all fuzzy set of
U. (U, E) means the universal set U and parameter set E, C refer to C*-algebras. Details on C*-algebras
are available in [27]. An algebra ‘C’together with a conjugate linear involution map *:C — C, defined
by & — &* such that for all 4, € C, we have (ab)* = b*a* and (a*)* = 4, is called a *-algebra. Moreover,
if C an identity element I, then the pair (C, ») is called a unital «-algebra. A unital «-algebra (C, »)
together with a complete sub multiplicative norm satisfying @ = @* for all 7 € C is called a Banach
x-algebra. A C*-algebra is a Banach x-algebra (C, +) such that 4% = 42 for all @ € C, An element 4 ¢ Cis
called a positive element if @ = 4* and (i) c R(C)* is set of non-negative fuzzy soft real numbers,
where ¢(7) = {A € R(C)* : A - 4, is non-invertible}. If 7 € C is positive, we write it as 7 > 0z. Using
positive elements, one can define partial ordering on C as follows; 4 < b if and only if OC <bh-a.
Each positive element ‘4’of a C*-algebra C has a unique positive square root. Subsequently, C will
denote a unital C*-algebra with the identity element TC-. Furthermore, C. and C’ will denote the set
{aeC:0s<a}and set {a e C:ab = b}, respectively.

Definition 1 ([37]). A Fuzzy set A in U is characterized by a function with domain as U and values in [0,1].
The collection of all fuzzy set U is P(U).

Definition 2 ([38]). A pair (F,E) is called a soft set over U if and only if F: E — P(U)is mapping from E into
P(U) the set of all sub set of U.

Definition 3 ([43]). Let C C E then the mapping Fg:C — P(U), defined by Fg(e) = u°Fr (a fuzzy sub set of
U), is called fuzzy soft set over (U, E) where, u®Fr =0ife € E~C and u°Fg # 0 if e € C. The set of all fuzzy
soft set over (U, E) is denoted by FS(U, E).

Definition 4 ([43]). Let Fg € FS(U, E) and Fr(e) = 1 for all e € E. Then Fg, is called absolute fuzzy soft set.
It is denoted by E.

Now we recall some basic definitions and properties of C*-algebra-valued Fuzzy soft
metric spaces.

Definition 5 ([25]). Let C ¢ E and E be the absolute fuzzy soft set that is Fg(e) = 1 for all e € E. Let C
denote the C*-algebra. The C*-algebra valued fuzzy soft metric using fuzzy soft points is defined as a mapping
dy+: E x E — C satisfying the following conditions.

(Mo) Og < d(Fe,, Fe,) for all Fe,, Fe, < E.

(My) de(F,, Fy) =0p < F = F,

(M) dg*(Feerz):dg*(Ffszﬁ) N N
(M3) dps(Fey, Foy) < des (Fey, Foy) + dox (Fop, Fey) ¥ Foy, Fey By € E.

The fuzzy soft set E with the C*-algebra valued fuzzy soft metric dg+ is called the C*-algebra valued fuzzy
soft metric space. Tt is denoted by (E,C,de).

Definition 6 ([25]). A sequence {F,,} in a C*-algebra valued fuzzy soft metric space (E,C,dy+) is said to

converges to F,1 in E with respect to C. If ||dex (Fe,, Fot )||c Ocissuidmwnmgesw as n — oo that is for every
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0z < & there exists 0 < & and a positive integer N = N(&), such that ldex (F,, Eo || < & implies that
llug, (s)-pg, (S)|| < & whenever n > N. It is usually denoted as lim;, oo Fe,, = F,1.

Definition 7 ([25]). A sequence {F.,} in a C*-algebra valued fuzzy soft metric space (E,C,d,+) is said
to be Cauchy sequence. If to every Oz < & there exist Oz < & and a positive integer N = N(€) such that
ldex (e, Eo,)|| < & implies that HV“FM (s) 7;4”5"1 (s)|| < & whenever n,m > N. That is ||dex (Fs,, Eoy )l —
0pas n,m — oo.

Definition 8 ([25]). A C*-algebra valued fuzzy soft metric space (E,C,d.+) is said to be complete. If every
Cauchy sequence in E converges to some fuzzy soft point of E.

Example 1 ([25]). Let C € R and E < R, let E be an absolute fuzzy soft set that is E(e) = 1 forall e € E,
and C = My(R(C)*), define d«:Ex E — C by

~ i 0
dc*(lelFez):[ 0 i :|/

where i = inf{\y‘l’:c1 (s)- y‘}ﬁz (s)|/s € C}and F,,, F,, € E. Then d+ is a C*-algebra valued fuzzy soft metric and
(E,C,d.+) is a complete C*-algebra valued fuzzy soft metric space by the completeness of R(C)*.

Lemma 1 ([25]). Let C be a C*-algebra with the identity element I= and % be a positive element of C. If i € C
is such that ||d|| < 1 then for m < n, we have

i 30 )s(@) - 1l (2 )
E ¢ L[l
and .,
3 (@) x(a)k - 0z as m — oo )
k=m
Lemma 2 ([25]). Suppose that C is a unital C*-algebra with unit 1.
(i) IfdeC, with llall < then I —ais invertible and ||a(I - a)~!|| < 1
(i) suppose that d,b e C wzth a,b > 0p and b = ba then ab > OC
(iii)  C" we denote the set {a e C/ab=baV beC}. LetaeC’, lf Cwithb>¢>0and [-deC) isan

Ce
invertible operator, then (I —a)~'b = (I - a)~'¢, where G =C.nC.

Notice that in c*-algebra, if 0 < @,b, one cannot conclude that 0 < @b. Indeed, consider the c*-algebra
M,(R(C)*) and set
(a) FE,(a) 03 0.1
a) Fgl(b) 01 0.2
e (c)  Fey(c) 04 05
andb = [ E,(c) F(d) 05 0.6
then clearly a > 0 and b > 0 but a,b € My(R(C)* )4 while ab ¢ My(R(C)* ).
2. Main Results

In this section, first we give the notion of Hausdorff metric in C*-algebra valued fuzzy soft
metric spaces.

Let (E,C,d,+) be a C*-algebra valued fuzzy soft metric space. We denote by CB(E) be a class
of all nonempty closed and bounded subsets of E. For a points F.,,F, € E and X,Y ¢ CB(E),
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define D+ (F,,,Y) = infg, oy de+(Fe,, Ge,). Let Hp+ be the Hausdorff C*-algebra valued fuzzy soft

metric induced by the C*-algebra valued fuzzy soft metric d.+ on E that is

H+(X,Y) = max? sup De+(F.,,Y), sup Dex (X, Ge,)
Fe, eX Gelsf’

for every X,Y e CB(E). It is well known that (CB(E), C, H,+ ) is a complete C*-algebra valued fuzzy
soft metric space, whenever (E,C,d.+) is a complete C*-algebra valued fuzzy soft metric space.

Definition 9. Let T : E — CB(E) be a multivalued map. An element F,, € E is fixed point of F if F,, € TE,,.

Definition 10. Let T: E - CB(E) and f : E — E be a multivalued map and single valued maps. An element
F,, € E is coincidence point of F and f if fF,, € TL,,. We denote

C{f, T} ={F, <E[fF, €TE,}

Definition 11. The mappings T : E — CB(E) and f : E — E are weakly compatible if they commute at their
coincidence points, i.e., if fTF, = TfF,, whenever fF, ¢ TF,,.

Definition 12. Let T: E — CB(E) and f : E — E be a multivalued map and single valued maps. The map f is
said to be T-weakly commuting at Fp, € E if ffF,, € TfF,,.

Definition 13. An element F,, € E is a common fixed point of T,S : E - CB(E) and f : E -~ Eif F,, = fF,, €
TF., nSE,,.

Example 2. Let U = R* and E = C = [0,4], let E be an absolute fuzzy soft set that is E(e) =1 forall e € E,
and C = Ma(R(C)*), define ds:Ex E — C by dex (Fe, (a), Fuy (2))(s) = [

(Z) where i = inf{|u} (s) -
‘1
1% (s)|/s € C} then (E,C,d,+) is a C*-algebra valued fuzzy soft metric space and define f : E — E and
€
T:E - CB(E)

0 if Fe(a) [0, 3] {Fe(a)} if Fe(a) € [0, 3]
fFR(a) =1 F(@) f. ‘ 17, TF(a) = - R f. : 1
7 szE(u)e(i,l] [0,1—T] szg(a)e(i,l]
We have
o fi= % [0, %] = T1 that is, F.(a) = 1 is a coincidence point of f and T;
e fTi=10, %] [0, %] = Tf1 that is, f and T are not weakly compatible mappings;
o ffi=1e[0,5]=Tf1thatis, fis T -weakly commuting at 1.

Theorem 1. Let (E,C,d.+) be a complete C*-algebra valued fuzzy soft metric space, and T:E — CB(E) bea
multivalued map satisfying

He« (TF,,, TF.,) < d*des (F,y, Foy)d 3)
forall F,, F., € E, where & € C with ||a|| < 1. Then T has a unique fixed point in E.

Lemma3. If X, Y e CB(E) and F,, € X, then for any fixed b e C.” with ||b|| < 1, there exists Fs, = Fp,(Fs,) € Y
such that

dex (Fey, Fep ) < BH (X, Y). (4)
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Theorem 2. Let (E,C,d.+) be a complete C*-algebra valued fuzzy soft metric space. Let S, T:E — CB(E) bea
pair of multivalued maps and f, g : E — E be a single-valued maps. Suppose that

He« (S, TE,) = @des(fFey, §Fey) +8(Des (fFey, SFey) + Dex (§Fey, TE,))
+0 (D (fFey, TE:,) + Des (§Fey, SEe, ) ), )
for all F,,, F., € E, where d ¢ C,." with ||| < 1. Suppose that

(A1) SEcgE, TEc fE;
(A2) f(E)and g(E) are closed.

Then, there exist points Fyi, Gy € E, such that fFy € SFy, §Gor € TGy and fE, = gGyr, SFyr = TGy

Proof. Let I, ¢ E be an arbitrary. From (A;) and Lemma 3, there exist F,, F,, € E, such that gF,, € SF,,
fFe, € TF,, and

dex (§F.y, fFe,) < bHex (SE,, TF,,). (6)
From (5) and (6), we have

der (§Fy, fFe,) = bH(SE,, TF,)
bade (fFey, §Fe,) + bl (Dex (fEey, SFey) + Dex (8Fey, TE,,))
+bd (Der (fFey, TE,y) + D (§F2,, SEyy) ) - )

A

IA

In contrast, we have

D~c* (fFeofSFeo) < d;*(fFfongel)

D+ (gF.,, TF,,) < dp+ (gF.,, fFz,)

D~c* (gFFVSFeo) = d;* (gPellgFel) =0

D+ (fFey, TFey) < dee (fFeg, fFey) < dex (fFoq, 8Fey) + dex (gFey, fFey)- ®)

From (7) and (8), we have
des (8Fey, fFe,) < bides (fFey, gFey ) + b (dex (fFey, §Fey) +der (8, fFey))

+bi (d;* (fFeongel ) *d;* (gFLﬁ/fFEZ))
3bad s (fFey, gFe,) + 2badex (gF.,, fFoy)- )

Therefore,
(1-2ba)des (§F.,, fFe,) < 3bades (fFey, 8y )-

Since ||b]|||a]| < % Then 1 - 2ba is invertible, and can expressed as (1 - 2ba)! = § (2ba)™,
m=0
which together with 25 ¢ ¢, can yields (1-2ba)"! e ¢, By Lemma 2 (iii), we know
dex (§Fey, fFe,) < Ko (fFey, 8Fey),

where & = 3bi(1 - 2ba) ! e C,” with |13ba(1 - 2ba)~!|| < 1. Again from (A;) and Lemma 3 with ||| < 1,
as fF., € TF,,, there exists F,, ¢ E such that gF,, € SF., and

dex (fFey, §Fe;) < bHs (SFoy, TEy)). (10)
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From (5) and (10), we get

d;*(fpezrgFes) = BH;*(SFez'Tpel)

A

IA

+bi (D¢ (fFe,, TE:, ) + Do (§F.,, SE,) ) -
In contrast, we have

D+ (fFe,,SFe,) < dex (fFey, §Fes)
Des (gFe,, TF.,) < des (8, fF2y)
Do+ (fFep, TFey) < dox (fFey, fFey) = 0

bade (fFe,, gF, ) + b (Dex (fEey, SFe,) + Dex (8Fey, TE,,))

De+ (§Fey, SFey) < des (§Fey, 8Fe;) < des (§Fey, fFoy) +dex (fFey, §Fey)-

Similarly as above, from (11) and (12), we get

dex (fFey, §Fe;) < Rdex (§Fey, fFey)-

)

(12)

Continuing this process, we can construct a sequence {Ge,} in E, such that G,, = gF., and,

foreachn e N,

Geyy = 8Feyi1 € SFeyy Geyppy = fFeypiy € They iy

and

d;* (Gl’zw Gﬁ’2n+1 ) = d;* (8F32n+1'fFL’2n+2) < ’éd;* (gFﬂ’znﬂ/fFC’Zn )
de (GEZn-l ’ GFZn) =dc- (fFFZn'gF82n+1 ) < Reler (gFQZn-lffFf?z;x )

Therefore, we have

dex (Gey, Gey,y ) < Rdex (Ge, 4, Ge, ) foralln>1.
From (14), by induction and Lemma 2 (iii), we get

dex (Gey, Geyyy ) < ®'des (Gey, Gey ) forallme N.

Now, we shall show that {G, } is a Cauchy sequence in E.
For m > n, by using triangle inequality and (15), we have

dc+ (Ge,, Ge,,)

2
ot

—
A

ks

n
+

n +K7H1 +kn+2+m+km—1””d‘c‘* (GforG(’l

[+ IR R lder (Geyy G )

‘ I Hdc* (GF()/ Gel) HIC —0asn — oo.

IN N A A

=

[y

[k

* (Genl Gl’n+1) + d;* (Gfrwl’ Gen-v-z) toet d;* (Gg””ll Ggm)
R4 7142 4+ @) doe (Gey, Gey )

)l
I~

(13)

(14)

(15)

Hence {G,, } is a Cauchy sequence. Now as, (E,C,d.+) be a complete C*-algebra valued fuzzy

soft metric space, {G,, } converges to some G, € E. Therefore,

lim G, = lim gF, = lim fF, = Ggr.
it en n—»oog €2n+1 n—»oof €2n+2 e

(16)

As Gey, = §Feryi1s Geayiy = fFesnin and f(E), g(E) are closed, then G, ¢ f(E) and G, € g(E).

Therefore, there exist F,, F,» € E, such that fF, = G, and gF,» = Gor. Thus, we have proved that

fFEr = gFeu.
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From the contraction type condition (5) and (13), we obtain

Dex (fFer, SEy) - < d;* (fEer, fFepa) + D:C* (fFepn.zs SFer)
< df* (fFE’rfF€2n+2) + Hﬂj (SFE" TFez;x+1)
< de (fF'-”/fFL’Zn+2) +ad (ng',gF@,,H )

+i (D~C* (fFer, SFer) + Des (gF€2n+1f TF€2n+1))
(DN‘C* (fFf" TF€2»1+1) + D (gFEZrHl’SFe’))
< dex (fFE’rfF62n+z) + dd;* (fFE’IgF82n+1)
+a (DNC* (fFe,SFer) + DNC* (gFonﬂ/fF(’sz))
+a (D~C* (fFB’ffF82n+2) + Do (gF52n+1'SFL”)) :

+
U

which implies
De: (fFr,SFe) < (1=2)'des (fFo, fFey,.p) + (1= 2) ' adex (fFe, §Fes, i)
+(1- ﬁ)_lﬁ (Df* (gFez,,+1,fFeZn+2))~
+(1- ﬁ)ilﬁ (DC* (fFe’rfF62»1+2) + Dex (gFEz:z+1'SPE’)) :
Letting n — oo in the above inequality and using (16) and (17), we obtain

[IDes (fEer, SE) || < 11 = @)~ alll| Dex (fFer, SFer) |l

Then D¢+ (fFy,SF./) = 0. Hence, as SF, is closed,

fFer € SF. (18)
Similarly, we can prove that

gFen € TFon. (19)
Now, we have to prove that

SFr = TFon. (20)

Using (5), (17)-(19), we get
Hex (SE,, TEw) < o g fFo,gFn) +d (DE* (fFyr,SFyr) + D+ (Fon, TFur))
+i (1?5* (fFer, TEr) + Des (gFn,SE)) )
< (D (§F, TFn) + Dex (fFur, SFr)) = 0.
Hence, SF,s = TE,». Thus, by (17)—(20), we have proved that
fFe’ € SFFI gFeu € TFEH fFEr = gFeu SFEI = TFEN.
|

Example 3. Let E = {e1,e5,e3},U = {a,b,c,d} and C and D are two subset of E where C = {e1,es,e3},
D = {ey, e2, }. Define fuzzy soft set as,
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_ | e1={a01,b03,c04,d05},e2 = {a0.3,bo.4, c0.6,d0.7},
(Fe,C) = -
e3 = {ag6,bo7,co8,doo}

(Ge, D) = {ey = {ag4,bos,co2,do6}, €2 = {ao5,bos, co3,dor}}
Fe, = pr,, ={a01,003,c04,d05}, Fe, = pir,, = {a0.3,bo.4, co.6,do7}
Fey = pr,, ={a06,bo7, cos,doo}

Ge, = pa,, = {a04,b05, 02,406}, Ge, = G, = {805, Do, 03, d0.7}
and FSC(Fg) = {F,,Fe,, Fey, Ge,, Ge, }, let E be absolute fuzzy soft set that is E(e) =1, forall e € E,
and C = Ma(R(C)*), be the C*-algebra. Define dex:E x E - C by dex (Fey, Fe,) = (inf{|F,, (a) - Fe,(a)|/a €
C},0), then obviously (E,C,d.+) is a complete C*-algebra valued fuzzy soft metric space.

We define S:E — CB(E) by SF,,(a) = F2 +%, T:E - CB(E) by TF,(a) = F3 +%, fiE - E
by fF, = ZFEZ1 and g:E — E by g, = 2F331 forall a € U and F,, e E. Notice that fF, = 2[7821 =
{0.02,0.18,0.32,0.50} and gF,, = 2F; = {0.054,0.128,0.432,0.686} . Thus, inf{|y;H1 (s)- ‘u;Ffz (s)|/seC}
0.034 0 ]

:inf{0.034,0.052,0.112,0.186}:0.034.Hencelfc*(fFfngfz):[ 0 0034

Also, we have

de+(SF,, TF,)(a) = (inf{|SF, (a) - TF,(a)|/a € C},0)
= (inf{0.017,0.026,0.056,0.093},0) = [

<[ 0.027 0 ]

N 0 0.027

([ 08 0 ][ 0034 0 ]
| 0 08 0 0.034

<&d (fF,, 8F,)-

0017 0
0 0.017

. |08 0
Here ¢ = [ 0 08

Therefore, (5) holds for all F,,, F., € E. Also, the other Hypotheses (A1) and (Ay) are satisfied. It is seen
that 5(0.5) = f(0.5) = 0.5and T(0.63) = g(0.63) = 0.5. Therefore, S and f have the coincidence at the point
F,» = 0.5, T and g at the point Fon = 0.63, and S(0.5) = T(0.63).

] with ||¢]| = 0.8 < 1.

Theorem 3. Let (E,C,d.+) be a complete C*-algebra valued fuzzy soft metric space. Let S, T:E - CB(E) bea
pair of multivalued maps and f : E — E be a single-valued map. Suppose that
He« (SE,,TF,) = dds(fF,, fF;)+a(Des(fFe, SFey) + Do (fFey, TE,,))
4 (Do (fFey, TFey) + Do (fFey, SFey)) 1)

forall F,,,F, € E, where i € CZ’ with ||d|| < 1. Suppose that

(B1) SEUTE < fE;
(By) f(E) is closed.

Then, f, T and S have a coincidence in E. Moreover, if f is both T -weakly commuting and S-weakly
commuting at each Fy € C(f,T), and ffF, = fF, then, f, T and S have a common fixed point in E.

Proof. If f = ¢ in Theorem (2), we obtain that there exist points F,,, Gy ¢ E, such that fF,; € SE.,
fGe € TGy and fFyr = fGyr, SEy = TGy As Fy € C(f,T), f is T-weakly commuting at F and
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ffFer = fEs. Set G = fF,. Then, we have fGy = G and Gy = ffFy € T(fFy) = TG,. Now, since also
F. € C(f,S), then f is S-weakly commuting at F,/, and so we obtain G,» = fG,r = f fFyr € S(fFpr) = SGyr.
Thus, we have proved that G, = fGy € TGy N SG,, that is, G, is a common fixed point of f,T
and 5. O

Corollary 1. Let (E,C,d.+) be a complete C*-algebra valued fuzzy soft metric space. Let S, T:E — CB(E) be
a pair of multivalued maps. Suppose that
H. (SFel, TFEZ) < ddes (Fe,, Fey) +d (D}* (Fey, SEzy) + Dex (Foy, TFEZ))
+ (Dgx (Fey, TFe,) + D+ (Eey, SEy)) (22)

forall F,, F., € E, where i € C. with ||a|| < 1. Then there exist a point F.r € E such that F, € SF, 0 TF,r and
SE, = TF,..

Proof. If f = g = I~ (Iz being the identity map on E) in Theorem 2, then, we obtain the common
fixed-point result. [

Corollary 2. Let (E,C,d.+) be a complete C*-algebra valued fuzzy soft metric space. Let S:E — CB(E) be a
pair of multivalued map. Suppose that
He+ (SFey,SFe,) < ades(Fey, Fey) + @ (Dex (Fey, SFey) + Des (Fey, SFey))
+0 (Dgx (Foy, SFe,) + Dex (Fey, SEe, ) (23)

forall ., F., € E, where d € C. with |1a|| < 1. Then there exist a point Fr € E such that F, € SF,.

3. Coupled Fixed Point Results

In this section, we shall prove some coupled fixed point theorems in C*-algebra valued fuzzy soft
metric spaces by using different contractive conditions.

Definition 14. (E,C,d.+) be a C*-algebra valued fuzzy soft metric space. Let S : E x E — E be a mapping,
an element (F,;, Ge,) € E x E is called coupled fixed point of S if S(Fe;, Ge,) = Fo and S(Ge,, Fe;) = Ge, .

Definition 15. E be an absolute fuzzy soft set. An element (F,,, Ge,) € E x E is called

(i) a coupled coincidence point of mappings S : ExE - Eand f : E - E if fF., = S(F.,,Ge,) and
fGel 25(681/1:@1) L. - - -

(ii)  a common coupled fixed point of mappings S: ExE -~ Eand f : E - Eif F, = fF, = S(F,G,,) and
Ge, = fGe, = 5(Ge,, Fry).

Definition 16. Let E be an absolute fuzzy soft set and S : Ex E — E and f : E — E. Then {S, f} is said to be
w-compatible pairs if f (S(Fe,, Ge,)) = S(fFey, fGey) and f (S(Gey, Fey)) = S(fGey, fFey)-

Theorem 4. Let (E,C,d.+) be a C*-algebra valued fuzzy soft metric space. Suppose S, T:E x E — E and
f, ¢ E — E be satisfying

(1) S(ExE)cg(E)and T(ExE)c f(E)

(2)  {S,f}and {T, g} are w-compatible pairs.

(3)  oneof f(E) or g(E) is complete C*-algebra valued fuzzy soft metric of E

(4)  des (S(Fey, Gey), T(Fey, Gey)) < @*des (fFey, §Fe, )i+ @ dex (fGey, §Ge, )i
forall F,,, Foy, Ge,, Ge, € E,

where i € C with ||\/2d|| < 1. Then S, T, f and g have a unique common coupled fixed point in E x E.
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Proof. Let F,, G, € E. From (Theorem 4 (1)), we can construct the sequences {F,, }5°_1, {Gey, 1501,
{Lez, }3n=1 {Jes 13521 such that

S(Fﬁzw Gt’z,l) = 8Fey 1 = Loy, T(Ft’znu' G32n+1) = fF'32n+2 = Iy
5(Gey,r Foy,) = 8Gen = Jer, T(Geypins F92n+1) = fGeyyr = Jeruins

forn=0,1,2,-

Notices that in C*-algebra, if 4,0 e C, and d < D, then for any ¥ € C, both #*a% and #*b¥ are
positive elements and #*4% < ¥*bx.

From (Theorem 4 (4)), we get

d;* (Ifznuf I€2n+2) = d;* (S(Fﬂznﬂ' Gﬁ’2n+1 )' T(F€2n+2' G£’2n+2))

= ﬁ*d;* (fF€2n+1/gF92n+z )ﬁ + ﬁ*d;* (fGEZn+1 ngEZn+z )d
< 8 (der Loy Legyy) + e (Jeg s Jer ) B (24)
Similarly,
d;" (]€2n+1' ]€2u+2) < a (d;* Uﬁzw ]82n+1) + d;* (It‘zn' 182n+1 )) a. (25)

Let a1 = do» Uepprr engn) + des Uezwsar Jerusa)-
Now from (24) and (25), we have

Qope1 = dex (I§2n+1' 192n+2) + d;* g]ez;u-l’ ]92n+z)
<a* (dC* (Ifznf I'32n+1 ) +der (lﬁzw ](’2n+1 )) a
+" (d;* (]eznf ]92n+1) +de (IFZn' IeZn+1 )) a
= (\/iﬁ)*‘xbl(\/iﬁ)

'5 [(ﬁﬁ)*]z’“l o (v/27) 211,

Now, we can obtain for any n € N

Ay = d;* (Ie;,r Iey,ﬂ) + d;* (]L’nl ]e,,H)
< (V22) "y 1(v/20)
<[(v2a)*]" wo(v20)".
Ifag = GC/ then from Definition-1 of S, we know (Iy,, J«,) is a coupled fixed point of S, T, f and g.

Now letting 0= < ag, we get for any n € N, for any p € N and using triangle inequality

dex (Ifz;1+p' Ley,) = dC*~(11’2n+p/ If2n+pfl) -
+d5* (IL’Znﬂv—] ’ I€2n+p—2) toeet dC* (IEZVH»] 7€2p )

d;* (]L’zn+p']fz,z) = d;*_(]ﬁ?mp/ ](’2n+p71) ~
+df* (]€2n+p—l’ ]"2n+p—2) toeet dC* (]EZnH’ ]EZn )
Consequently,

dex (Iez,Hp/ Iez,,) +dex (]L’z,l_,,p/]L’Zn) S Wp4p-1t A2ptp2 t ot Aoy

2n+p-1 m
Xy [(V22)*]" ao(v22)"

IA
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and then B B
[|d e+ (Ifzn+p' If’zn) +dex (]L’z;z+p/]ez,,)|| S Kpap-1 + Kopsp—2 + 0+ Aoy

2n+

p-1
< 3 IvV2a"a

m=2n

7Wa0%0asnﬂoo,

which together with dx Ueypipr Ien) = dye ey pr ley,) + dox (Jesysps Jer,) and dox UesniprJer) =
e (Leyy, s Loy, ) + e (Jey, s Jen, ) implies {Ie,, } and {J,, } are Cauchy sequences in E with respect to C.
It follows that {I,, , } and {Je,,,, } are also Cauchy sequences in E with respect to C. Thus, {I,} and
{Je, } are Cauchy sequences in (E,C,do+).

Suppose f(E) is complete subspace of (E,C,d;+ ). Then the sequences {I,, } and {J,, } are converge
to Is, J respectively in f(E). Thus, there exist F.r, G in f(E) Such that

lim I,, = I = fFs and lim Je, = Jo = fG,r. (26)
n—00 n—oo

We now claim that S(F,r, Ger) = I,r and S(G,r, For) = Jor.
From (Theorem 4 (4)) and using the triangular inequality

()C < d;« (S(Fgr,cgl),lel) ~
< dg* (8(Fer, Gor), ey, ) +dex (Tey, s Ie:)
<de (~S(F@/, Ger), T(Fey, s Gf;’2n+1 )) +des (Lo, IL”Z
2 ’j*df* (fFer, §Fey0 ) + a*de- (fGE"gCEEZnﬂ )+ dex (L, Ler)
<0 dex (L, Loy, VA + 3 Aex (Jor, Jop, )0+ Aex (Lo, 10 Ler).-

Taking the limit as n — oo in the above relation, we obtain dc«(S(Ey, G), I) = 0z and hence
S(F.r,Ggr) = I Similarly, we prove S(G., Fyr) = J. Therefore, it follows S(F.s,Gy) = Is = fI and
S(Ger,Eyr) = Jor = f]r. Since {S, f} is w-compatible pair, we have S(I, Jor) = fl and S(Jor, L) = f]er.
Now to prove that fI = Is and f ] = Jor.

Oc' = d;* (fLr, Loy, ) d;* (~S(Ie’/ Jer), T(F(’2”+1/ Gezj,ﬂ )
a c* (fler, §Fey,,1 )A + ‘z*dC* (fJers 8Geyyy1 )@
T dex (flor, Loy, )+ @ dex (f et Jey, )

<
=<
<

Taking the limit as n — oo in the above relation, we obtain dg+(fI, Is) = 0z which implies
fIs = Is. Similarly we can prove f], = Jor. Therefore, S(I/, J/) = flor = I and S(Jor, Ipr) = f]or = Jer-
Thus, (I, J,/) is common coupled fixed point of S and f. Since S(E x E) ¢ g(E). So there exist K,r,
Ly € E such that S(Iy, Jor) = I = gKor and S(Jr, Ipr) = Jor = gL Now from (Theorem 4 (4)) and using
the triangular inequality

O¢ = dee (I, T(Ker, Ler)) - = des (S((Ler, Jor)), T(Ker, Ler))
< ﬁ*ds* (fLy, gKer )i+ ﬂ:l*dc* (fJer, gLer)a
<@ dex (Ir, I )a+a*des (Jor, Jor ).

We have de+ (I, T(Ky, L)) = 0, which means Iy = T(Ky,Ly). Similarly, we can prove

T(Le,Ker) = Jor. Since {T,g} is w-compatible pair, we have T(I,,].) = gl and T(Jor, Ipr) = gJer-
Now we prove that gl,s = I» and gJ, = Jor.

73



Axioms 2019, 8,99

0p <dex (Ir, 8lor) < des(S((Ier, Jo)), T(Le, Jor))
< ﬁ*d;* (fle’rgle’)ﬁ + ﬁ*d;* (f]e’/g]e’)ﬁ
< @t (L, gl )a+ @ dps (Jor, g )i (27)
and
OC = d;* et 8Jer) < d;* (5(Uer 1)), T(Jer, Ler))
< @ (flo, 8o )i+ de (flo,gl)d
< @ de(Jor,8Je)a+ @ dps (Ir, g1 )d. (28)

From (27) and (28)

0 < doe (I, §Lor) + dex (Jor, §Jer) < (V28%) (dee (I, 1) + dex (Jor, §Jer) ) (V/28).

Therefore, B 5
0 < ||dC*(Ie’rgIe~’) +dex (]e’rg]el)u
<1(V2a*) (des (Ier, g1er) + dex (Jer, 8er) ) (V20)|
< ”(ﬁﬁ)HZHdC*(IE’rgIe’) +dc* (]e’rg]e’)H'

Since ||(ﬁﬁ)\| <1, thean;* (Ie’rgle’) + d;* (]e’rg](”)H =0. Hence gIE’ = I and g]e’ = Jer.

Therefore, we have T(Iy, Jor) = gl = Iy and T(Jor,Ipr) = §Jer = Jor. Thus, (I, Jor) is common
coupled fixed point of S, T, f and g. In the following we will show the uniqueness of common coupled
fixed point in E. For this purpose, assume that there is another coupled fixed point (I, Jov) of S, T, f
and g. Then

dc*(le’/ Ie”) < d;*(s(le’r]e’)/T(Ie”/ e”))
< G (flor, Lo )+ 3% dps ()er, Jer )i
< @ dp (It I )a+ @ dex (Jor, Jor ) (29)
and
d;* (]G’/ ]E”) = d;* (S(]G’/ Ie’)r T(]e”/ Ie”))
< @ (flor, 8o )i+ a" dor (g1, glon )
< d*d;*(]elljeu)ﬁ+ﬁ*d;*(le/,leu)ﬁ. (30)

From (29) and (30), we have that
des (L, Ior) + des (Jor, Jer) = (V28)" (dx (L, L) + dlx (Je, Jer)) (V/28),
which further induces that
lldes (Ler, o) + des (Jer, Je)l|- < 1281 Pldcs (Ler, o) + des (Jer, o) -

Since ||v/24]| < 1 then ||dex (s, L) + des (Jur, Jor)|| = 0. Hence we get (Ior, Jor) = (I, Jor) which
means the coupled fixed point is unique.
To prove that S, T, f and g have a unique fixed point, we only have to prove I/ = J,r.
Now ~ ~
dex (IE’/ ]e’) =dex (~S(Ie’r Jer )r T(]e’/ L 2)
=< ﬁ*dg* (fler,gler)d+ ﬁjdc* (fler gler)
< dex (Ie’r ]c’)ﬁ +a%des (]B’/ Ie’)ﬁ/
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then - B -
llde (Ter, Jel - < 1P ldes (Ter, Jer )|+ 1alPlldes (Jer, Ler)l
< 2/[a|P|ldzs (L, Jer)||-

It follows from the fact ||a|| < % that ||dex (L, Jor)|| = O, thus I/ = J,~. Which means that S, T, f and

¢ have a unique common fixed point. [J

Corollary 3. Let (E,C,d.+) be a C*-algebra valued fuzzy soft metric space. Suppose S:E x E — E and
f,¢:E — E be satisfying

(1) S(ExE)c f(E)and S(E x E) < g(E)

(2)  {S,f}and {S, g} are w-compatible pairs.

(3)  oneof f(E) or g(E) is complete C*-algebra valued fuzzy soft metric of E

(4)  des (S(Fey, Gey), S(Fey, Gey)) < 8% dex (fFey, §F2y )i + @ dys (£ Gey, §Gey )l
forall Fo,, Fo,, Ge,, Ge, € E,

where i € C with ||\/2d|| < 1. Then S and f, g have a unique common fixed point in E.

Corollary 4. Let (E,C,d;+) be a C*-algebra valued fuzzy soft metric space.Suppose S:E x E - E and f:E — E
be satisfying
(1) S(ExE)cf(E)
(2)  {S, f} is w-compatible pairs.
(3)  f(E) is complete C*-algebra valued fuzzy soft metric of E
(4) e (S(Fey, Gey), S (Fey, Gey)) < " e (fFey, fFey )+ 87 dix (G, f Gy )
forall Fo,, Fo,, Ge,, Ge, € E,

where i € C with ||\/24d|| < 1. Then S and f have a unique common fixed point in E.

Corollary 5. Let (E,C,d,+) be a complete C*-algebra valued fuzzy soft metric space.Suppose S, T:E x E —
E satisfies
(1) des (S(Fey, Gey), T(Fey, Gey)) < @*des (Fey, By )+ 3% dex (Gey, Gey )i

forall F; , Fe,, G, Ge, € E, where i € C with HﬂﬁH < 1. Then S and T have a unique fixed point in E.

Corollary 6. Let (E,C,d.+) be a complete C*-algebra valued fuzzy soft metric space.Suppose S:E x E —
E satisfies

(1) des (S(Fey, Gey), S(Fey, Gey)) < % dex (Foy, Fop )i+ @ dye (Gey, Gey )l

forall F,,, F.,, Ge,, Ge, € E, where & e C with ||\/2d|| < 1. Then S has a unique fixed point in E.

Example 4. Let E = {ej,ep,e3},U = {p,q,7,5} and C and D are two subset of E where C = {ej,ez,¢€3},
D = {ey,e2}. Define fuzzy soft set as,

_ | e1={po1,903, 704,505}, €2 = {P03,90.4,70.6,508},
(FE/ C) = _
e3 = {Ppo.s 907,708,509}

(Ge, D) ={e1 = {po4, 905,702,506}, €2 = {P05, 906,703,507} }

Fey = pg, ={P01,903, 704,505}, Fe, = ik, = {P03,90.4,70.6:50.8}
Fey = iR, = {Po6, 907,708,509}

Ge, =G, ={P04,905,702,506}, Ge, = 1G,, = {P05, 06,703,507}
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and FSC(Fg) {F.,Fe,, Eoy,Gey, Gy}, let for all e € E, E(e) = 1 be absolute fuzzy soft set,
and C = MZ(R(C) ), be the C*-algebra. Define dy: E x E — C by d+ (G, Ge,) = (inf{|Ge, (p) - Ge, (p)|/p €
C},0), then obviously (E,C,d.+) is a complete C*-algebra valued fuzzy soft metric space.

We define S:E x E — E by S(F.,,Ge,)(p) = F G‘gl , T:ExE - E by T(F,,Ge)(p) = ﬂ
fiE - E by fF, = Fc—l and g:E — E by gF, = 1—}1 forall p e U and F,,G,, € E. Notice that
fE, = ” = {0.05,0.15,0.20,0.25} and gF,, = F,, = {0.3,0.4,0.6,0.8} . Thus, 1nf{\yfF (t) - ygFL D)/t €
C}:1nf{025 0.25,0.4,0.55} = 0.25.

- 025 0
Hence do+(fFe,, gFe,) = [ 0 025 ]

Also, fG,, = % = {0.2,0.25,0.10,0.30} and G, = G, = {0.5,0.6,0.3,0.7} . Thus, inf{\y?c (t) -
el

020 0 ]

My, (Dl/t € C} = inf{0.3,035,02,04) = 0.20 and e+ (G, §Gey) = [ 0 o0
F2 +G? F2 +G2
Moreover, S(Fey,Ge,)(p) = —5—+ = {0.034,0.068,0.040,0.122} and T(F,,,G.,)(p) = —252 =

{0.11,0.17,0.15,0.37}. Then

- [ 008 0

dc*(S(Fgl,Gel),T(FEZ,ng)) = 0 0.08
% o d[oss o[£ o
| o @ 0 045 0 @
%o 0.25 020 0 VAR
o § 0 o 25 0 020 0 g
<& (dex (fFey, 8F2y) +dex (fGey, 8Gey) ) €

VAR
Here ¢ = 3 N with ||¢]| = 7 f Therefore, all the conditions of Theorem 4 satisfied.

3
Hence S, T, f and g have a unique coupled fixed point.

Theorem 5. Let (E,C,d.+) be a C*-algebra valued fuzzy soft metric space. Suppose S, T:Ex E — E
be satisfying

(1) S(ExE)cT(ExE)

(2)  {S, T} is w-compatible pairs.

(3)  oneof S(E x E) or T(E x E) is complete.

(4)  des (S(Fey,Gey), S(Fep, Gey)) < @*des (T(Eey, Gey ), T(Fey, Gey ) )i
forall F,,, Foy, Ge,, Ge, € E,

where i € C with ||| < 1. Then S and T have a unique common coupled fixed point in E x E. Moreover, S and T
have a unique common fixed point in E.

Proof. Similar to Theorem 4. []

Theorem 6. Let (E,C,d.+) be a C*-algebra valued fuzzy soft metric space. Suppose S, T:E x E — E and
f,¢: E — E be satisfying

(1) S(ExE)cg(E)and T(E x E) € f(E)

(2)  {S,f}and {T,g} are w-compatible pairs.

(3)  oneof f(E) or g(E) is complete C*-algebra valued fuzzy soft metric of E

4 d;* (S(FEV Ge,), T(Fey, Gez)) = dd;* (8(Fe;,Gey), fFe) + ades (T(Fey, Ge,), gFe,)
forall F,,,E.,, G, Ge, € E,
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where & e C with ||d]| < % Then S, T, f and g have a unique common coupled fixed point in E x E. Moreover,
S, T, f and g have a unique common fixed point in E.

Proof. Similar to Theorem 4. [J
Corollary 7. Let (E,C,d.+) be a C*-algebra valued fuzzy soft metric space.Suppose S:E x E — E and
f,¢E — E be satisfying

(1)  S(ExE)c f(E)and S(ExE) c g(E)

(2)  {S,f}and {S, g} are w-compatible pairs.

(3)  oneof f(E) or g(E) is complete C*-algebra valued fuzzy soft metric of E

(4)  des (S(Fey, Gey), S(Fey, Gey)) < des (S(Fey, Gey ), fFey) + s (S(Fey, Ge, ), §Fe,)
forall F,, Foy, Ge,, Ge, € E,

where i € C with ||a|| < 1. Then S and £, g have a unique common fixed point in E.

Corollary 8. Let (E,C,d.+) be a C*-algebra valued fuzzy soft metric space.Suppose S:E x E — E and f:E - E
be satisfying

(1) S(ExE)cf(E)

(2)  {S,f} is w-compatible pairs.

(3)  f(E) is complete C*-algebra valued fuzzy soft metric of E

(4)  des (S(Fey, Gey), S(Fep, Gey)) < dde (S(Fey, Gey ), fEey ) + idex (S(Fey, Gey ), fFe,)
forall F,,, Foy, Ge,, Ge, € E,

where d e C with ||d]] < % Then S and f have a unique common fixed point in E.

Corollary 9. Let (E,C,d.+) be a complete C*-algebra valued fuzzy soft metric space.Suppose S:Ex E — E
satisfies

(1) des (S(Fey, Gey), S(Fey, Gey)) < ides (S(Foy, Gey ), Fey ) + des (GS(Fey, Gey ), Fey)
forall Fo,, Fe,, Ge,, Ge, € E, where i e C with ||| < % Then S has a unique fixed point in E.
4. Applications to Integral Equations

Theorem 7. Let us Consider the integral equation

B () = [ (Ti(ew, B (1)) + Ti (0, B (v)) dy, x < C
C

Fu ()= [ (v, Fey () + (0, Fey (1)) dy, € C.
C

where C is a Lebesgue measurable set. Suppose that

(1) T, T,:CxCxR(C)* > R(C)*and I,I;: CxCx R(C)* - R(C)*.
(ii) there exist two continuous function ¢, : C x C - R(C)* and r € (0,1) such that for u,v e C and
Fe,(v), Fey (v) € R(C)*

inf{|Ty (u, v, F, (v)) = (1,0, e, (0))|} < rinf{|¢p(u, )|} inf{|(F, (v) - Fe, (0))1]},
inf{|Ta (1,0, F, (v)) — I (1,0, Fey (0))|} < rinf{|e(u, v)[}.inf{|(Fe, (v) - Fe, ()|}

(iii) sup [ inf{|¢(u,v)|}dv < 1 and sup [ inf{|e(u,v)|}dv <1

xeC C xeC C

then the integral equation has a unique solutions in L*°(C).
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Proof. Let E=C =

dp:ExE - L(H) by due (F,,, Fy) =M

multiplication operator defined by My,(¢) =

[0,1] and E = L*°(C) be the set of essential bounded measurable function on C
and H = L?(C). The set of bounded linear operators on Hilbert space H denoted by L(H). Consider
forall F, , Fe, € E, where M, : H — H is the

inf{luf, (y)*ﬂﬁ,z(y)l/yec}

mappings S, T: E x E — E by

Notice that

d;* (S(Few GEl ) T(FBZ/GEZ)) M,

IN

IN

IN

IN

IN

S(FelzGel)(x):/(Tl(x/y/P€1(y))+T2(xry'GL’1(y)))dy' xeC,

C

T(Feyy Ge)(x) = [ (15,0, Fes(4)) + (3,3, Ges (v))) Ay, x<C.

C
mf{lus(& Gep W)™ }‘rm Gey) WIIYECH

Hd;*(S(FL’VGﬁ )r T(ng, sz))“

sup (M
lI1l=1

sup [, 6,y )~ Hhir, ) @y < ©) (oG
= C

bl o Ot o @liyecy )
1 1 2 2

sup [ [ [ inf(ITi v, E <y>>h(x,y,az(y))}dy]m(x)de

lIkl=1¢

+sup [ [ [ (1T, G, () - (., ce2<y>>|}dy]|h<x>|2dx
C

[Inj=1 2

sup [ [ [ rinf(lgCen)(Fe () - P62<y)>|}dy]|h<x>|2dx

lIkl=1¢

+ sup f [ [ rin{lp(x,y) (G, (1) - ng(y))|}dy]|h(x)|2dx

[[r[=1
rsup [ [ [ inf{lgCx, )l inf(IF, (y)—Fm(y)udy]mu)Fdx
e C

wrsup [ [ [ infllg(e )l inf{|Ge, (1) —GEZ(yn}dy]h(x)Fdx
C

lIl=1 2

rsup [ [ / inf{|¢<x,y>}dy]h(x)zdxwhnf{wﬁ )~ Fo )
e C

[[]1=1

+7 sup f [ [ inf{la( xy)}dy]m( )P de[inf{|Ge, (1) = Gy (1) oo

"o [ intligt p)lidy. sup f GOl Fe, () = Feu ()
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Axioms 2019, 8,99

+rsup [ inf{lo(x,y)[}dy. sup [ [h(x)Pdx.[|inf{|Ge, (y) = Ge, (y)[}lloo
lll=1 & lInll=1 ¢

< rflinf{|Fe; (¥) = Foy ()[Hloo + 7l Inf{|Ge, () = Gey (¥) [} ]oo-

Setd = /11 (), thend e L(H) and ||l = /7 < % Hence, applying our Corollary 5, we get the
desired result. [J

5. Conclusions

In the present work, we proved some existing and uniqueness fixed point results for these new
type of contractive mappings in complete C*-algebra valued fuzzy soft metric spaces. Furthermore,
the examples illustrate the validity of the obtained results. We hope that the results of this paper will
support researchers and promote future study on C*-algebra valued fuzzy soft metric spaces.
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1. Introduction

Let K be a non-archimedean valued field, i.e., K is neither R nor C, endowed with an absolute valued
function |.| such that

¥ +y| < max{lx[, |y[} (vyeK)

Let X be a topological vector space over K. A seminorm on the K-vector space Xisamap p : X —
[0.00) satisfies

@ pAx)=Alp(x),x € Xand A € K.
(i) p(x+y) <max{p(x),p()} xyeX

For a seminorm p we have p(0) = 0 but p(x) is allowed to be 0 for non-zero x. Note that each norm
is a seminorm that vanishes only at 0.

Recall that a topological vector space (X, T) over K is called a (non-archimedean) locally K-convex
space if T has a basis of absolutely convex neighborhoods (a subset A C X is called absolutely K-convex
if0 € Aand ax +by € Aforall x,y € X and a,b € Bg where By = {a € K : [a| < 1}). Every locally
K-convex topology can be generated in a natural way by some system of non-archimedean seminorms
I' = {pa}. Alocally K-convex space X is Hausdorff if and only if for each non-zero x € X there is a
continuous seminorm p on X such that p (x) # 0. A sequence {ay,a, ...} in X is called Cauchy net if and
only if lim,, p (4,41 — a,) = 0 for any seminorm p. This follows from

p(am —an) <max{p(am — ay-1),.., p(Aps1 —an)}, m>n.

Axioms 2019, 8, 96; d0i:10.3390/ axioms8030096 www.mdpi.com/journal/axioms
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A subset S of a Hausdorff locally K-convex space is called complete if each Cauchy net in S converges
to a limit that lies in S.For details, see [1-4].

On the other hand, the most fundamental fixed point theorem is the so-called Banach contraction
principle (BCP for short), this result played an important role in various fields in mathematics. Due to its
importance and simplicity, several authors have obtained many interesting extensions and generalizations
of the Banach contraction principle. Ciric [5] introduced quasi-contraction map, which allowed him to
generalize the Banach contraction principle.

In the absence of a fixed point, i.e., the equation Tx = x has no solution, it is interesting to ask whether
it is possible to find (a,b) € A x B such that

p(a—Ta) = p(b— Tb) = Dy(A, B). @

A point (E, E) € A x Bis said to be a best proximity pair for the mapping T: AUB — AU B ifitis
solution to the problem (1). Another interesting subject of the fixed point theory is the concept of cyclic
contractions maps and the best points of proximity provided by Kirk et al. [6,7].

(A; B) a nonempty pair of subsets of a locally K-convex space (X,T), we say that a mapping T :
AUB — AU B is cyclic (resp. noncyclic) provided that T (A) C Band T (B) C A (resp. T (A) C A and
T (B) C B).

There are many results in this area see [8-12].

2. Fixed Point Results for Relatively Cyclic P-Contractions
In this section, we derive some fixed point theorems of certain relatively cyclic-type p-contractions in

a complete locally K-convex space.

Definition 1. Let A and B be non empty subsets of locally K-convex space (X,T). A relatively cyclic map
T: AUB — AU B is said to be relatively cyclic p-contraction if there exists 0 < v, < 1such that forall p € T
anda € Aand b € B we have

p(Ta—Th) < ypp(a—b). @)

Theorem 1. Let (X,T') be a complete Hausdorff locally K-convex space, A and B be non empty closed subsets of X
and T : AUB — AU B arelatively cyclic p-contraction map. Then T has a unique fixed point in A N B.

Proof. Taking a pointa € A since T is p-contraction, we have

P (Tza - Ta) =p(T(Ta) — Ta) < ypp (Ta —a)

and
p(T%a—T2%) = p(T(T%)—T(Ta))
< 7, (T?a—Ta)
< -

Inductively, using this process for all n € N we have
p (T”“a - T”u) < pp(Ta—a)

Letn <m
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p(T"a — T"a) max {p (T"a—T" ta),p (T" ta—T" 2a),..,p (T" a—T"a)}

<
< max {’yg’*lp (Ta —a) ,’yZ”Zp (Ta—a),.,vpp (Ta— a)}
< ip(Ta—a)

Since 0 < 7p < 1,7, — 0asn — oo, we get p (T"a — T"a) — 0, thus {T"a} is a p-Cauchy sequence.
Since (X, T) is complete, we have {T"a} — 7 € X. We note, that {T?"a} is a sequence in A and {T*'~!a}
is a sequence in B in a way that both sequences tend to same limit . Since A and B are closed, we have
thata € AN B. Hence AN B # @.

We claim that Ta = a. Considering the condition relatively cyclic p-contraction we have

p (T?"a — Ta) p (TT?>"~la — Ta)

< pp (T 'a—0)

Taking limit as n — oo in above inequality, we have

p(@—Ta) <vypp(@a—Ta) <p(a—Ta)

This implies that p (@ — Ta) = 0. Since X is Hausdorff, Ta = a.
We shall prove that @ is the existence of a unique fixed point of T. Clearly from (2) if 7 and b be two
fixed points of T we have

p <E—E) =p (TE—TE) < pp (E—E)
Since 0 < 7y, < 1 this implies 7 = b. Hence the proof is completed. []

Corollary 1. Let A and B be two non-empty closed subsets of a complete Hausdorff locally K-convex space X. Let
Ty:A— Band T, : B— A be two functions such that

p(Ti(a) = T2 (b)) < ypp(a—b) @)
orallp €T, a € Aand b € B where 0 < < 1. Then there exists a unique a € A N B such that
P Tp q
T,(@a)=Ty(a)=a

Proof. Apply Theorem 1 to the mapping T: AUB — AU B defined by:

) Ti(a)ifac A
T(u)_{ T;(u) ifa € B.

Observe that condition (3) is reduced to condition (2). Then T has a unique fixed @ € A N B such that
Ty (a) =Tp (a) =a.
|

Theorem 2. Let (X,T') be a complete Hausdorff locally K-convex space, A and B two non empty closed subsets of
Xand T : AUB — AU B be a relatively cyclic mapping that satisfies the condition

p(Ta—Tb) < ypmax {p(a—b),p(a—Ta),p (b — Tb)} @
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forallp €T,a€ Aandb € Band 0 < v, < 1. Then, T has a unique fixed point in AN B.

Proof. Leta € A. By condition (4), we have

p (T?a — Ta) p (T (Ta) — Ta)
ypmax {p(Ta—a),p (Ta — T?a) }

Ypp (Ta —a).

ININA

Similarly, we get p (T?a — T?a) < v3p (Ta —a).
Inductively, using this process for all # € N we have

p (T"“u - T”u) < ypmax {p (Ta—a),p (Tﬂ - T2”> }

thus

p(T"a—Tra) < max{p(T"a—T" ta),p(T" ta—T"2a),.,p(T"a—T"a)}
< max {’yg’*lp (Ta —a) ,’yg’*zp (Ta—a),.,vpp (Ta— a)}
< 1pp(Ta—a)

Since 0 < 7p < 1, 75 = Oasn — oo, we get p(T"a—T"a) — 0. Hence {T"a} is a p-Cauchy
sequence. As (X,T) is complete, we have {T"a} — @ € X. We note, that { T*"a} is a sequence in A and
{T?"~1a} is a sequence in B so that the two sequences tend to the same limit 7. Since A and B are closed,
we have thata € AN B thatis ANB # @.

Considering the condition (4) we have:

p(T*a—Ta) = p(TT* 'a—Ta)
< ypmax {p (T*"la—a),p (T 'a—T?a),p(@a—Ta)}

Taking limit as n — oo in above inequality, we have
p(z—=Tz) <ypp(z—=Tz) <p(z—Tz)

which implies that p (@ — Ta) = 0, since X is Hausdorff, Ta = a.
Clearly from (4) if u and v be fixed points of T we have

p (Tu—To)

ypmax{p (u—0v),p(u—Tu),p(v—To)}
Tpp (4 —0)

p(u—0)

INIA

Since 0 < 7, < 1 this implies u = 0. O

Corollary 2. Let A and B be two non-empty closed subsets of a complete Hausdorff locally K-convex space X. let
Ty:A— Band T, : B— A be two functions such that

p(Ti(a) = T2 (b)) < ypmax{p(a—b),p(a—Ti(a)),p(b—T> (b))} ®)
forallp € Tanda € Aandb € B where 0 < 7y, < 1. Then there exists a unique a € A N B such that

T,(@) =Ty (a)=a

84



Axioms 2019, 8, 96

Proof. LetT: AUB — AU B defined by

) Ti(a)ifac A
T(”){ le(a) ifacB

Then T satisfies condition (4), we can now apply Theorem 2 to deduce that T has a unique fixed point
a € AN Bsuch that
Ty(@a)=Ty(a)=a

O

3. Fixed Points of Relatively Noncyclic Mappings

In this section motivated by Theorem 3.1 [13], we prove the existence of a best proximity point
of relatively noncyclic mappings and studied the existence of solution of problem (1) for relatively
p-nonexpansive mappings in locally K-convex.

Definition 2. Let (X,T) be a complete Hausdorff locally K-convex space, A, B C X, we set

Al = {a€A:p(a—b)=D,(A,B), forsomeb € B}
B = {a€B:p(a—b)=Dy(AB), forsomeac A}

We extend the well known notion of p-property introduced in [5] for metric spaces to the case of
locally K-convex spaces.

Definition 3. Let (A, B) be a pair of nonempty subsets of a locally convex space (X,T) with Al # @. The pair
(A, B) is said to have p-property iff

{ Pla—b) =Dp(AB) )= p(br—by) (vpeT).

p (llz — bz) = Dp (A, B)
where a1,a; € Ag and by, by € Bg
Definition 4. Let (A,B) be a pair of nonempty subsets of a locally convex space (X,T). A mapping
T: AUB — AU Bis called relatively p-nonexpansive iff p (Ta — Tb) < p (a —b) forall p € T and (a,b) € A
xB.If A = B, we say that T is p-nonexpansive.

Lemma 1. [14] Let (X, T) be a complete Hausdorff locally K-convex space if T : X — X is a p-contraction mapping
then T has a unique fixed point % in X, and TFx —% for every x € X.

Proof. Lety € X and k > 1 we have

p(Ty—y)

IN

max < p (Tky - Tk_ly) P (Tk‘ly - Tk‘zy) P (Ty = y)}
max {75 (Ty = y), ¥ p (Ty = y)., -, p (Ty =) }

IN

then max {'ykp (Ty —y), Y 'p(Ty —y),..p(Ty — y)} = p(Ty — y), which implies that for all x € X and
k>1
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p(Tkx—x) <p(Tx—x).

For every p € I'and k > 1, Choose # sufficiently large. Then for y = T"x, we have

p (T"H1x — Tx)

P <Tn+kx _ T”x) <
< 7pp(Tx—x)

Since 0 < 7 < 1, 'yg — 0asn — oo, we get p (TnJrkx _ T”x) 0. Thus { T*x Vs a p-Cauchy
sequence and so it converges to a point ¥ in X. Clearly Tx = X and uniqueness of the fixed point follows
as usual since X is Hausdorff. [J

Theorem 3. Let (X, T) be a complete Hausdorff locally K-convex space and (A, B) be two nonempty closed subsets
of X. Assume that T : AUB — AU B is a relatively noncyclic mapping such that for some v, € (0,1)

p(Tx —Ty) < ypp(a—Db)

orall p € T and (a,b) € A xB then D, (A, B) = 0. Moreover, the mapping T has a fixed point in A U B if and
p P pping p
onlyif ANB # @.

Proof. Let {a,} and {b,} be two sequences in A and B respectively such that p (a, — b,) — Dy (A, B).
Then
Dy (A,B) < p(Tay — Tby) < ypp (an — by).

Taking limit when 7 tends to infinity, we see that necessarily D;, (A, B) = 0. Suppose first that
ANB # @.If we apply the Theorem 1 in A N B, there exists a fixed point of T that in fact is unique
in ANB.

On the other hand, suppose that T has a fixed point b in A U B. Without loss of generality, suppose that
b € B. Then, given a point ag € A, if we denote a, = T"ay we have

p (an 75) <p (an—] 75) <7pp (an—z 75) <<y (ao 75)

Since 0 < 7, <1, ’yZ — 0asn — oo, we get that {a, } converges to b.Since A is closed, 7 € ANB
and the result follows. [J

Theorem 4. Let (X, T) be a complete Hausdorff locally K-convex space and (A, B) be two nonempty closed subsets
of X such that Ag # @. Assume that (A, B) satisfies the p-property. Let T : AUB — AU B be a relatively
relatively noncyclic mapping that satisfies the conditions

(i) T, is p-contraction,
(ii) T is relatively p-nonexpansive.

Then the minimization problem (1) has a solution
Proof. Let a € Al then exists b € B such that p(a—b) = D,(A,B). Since T is relatively

p-nonexpansive; so
p(Ta—Tb) < p(a—b)=Dy(A,B)
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Hence, Ta € Af therefore T (Ag) C Ag. Now let ag € Ag. By Lemma 1 if 4,1 = Ta,, thena, —a

where 7 is a fixed point of T in A. Since ay € A}, then exists by € B such that p (a9 — by) = Dy, (A,B).
Again, since a1 = Tag € A}, then there exists by € B such that p (a1 — by) = D, (A, B).

Inductively, using this process for all n € N U {0} we have a sequence {b,} in B such that

p(ay —by) = Dy (A, B).

Since (A, B) has the p-property, we get that for all n,m € NU {0}

p(an —bm) = p(an —bm).

This implies that {b,} is a Cauchy sequence, and hence there exists b € B such that a, — b.

We now have

p(afE) = lim p (ay — bs) = D, (A, B)

n—oo

We know that T is relatively nonexpansive, so that

p(Tﬁ—TE) gp(a—E) =D, (A,B)

Thus p (ﬁ — TE) =p (E — TE) , since (A,B) has property P. Hence (ﬁ - E) € A x Bisasolutionof (1). [
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Abstract: In [Fixed Point Theory Appl., 2015 (2015):185], the authors introduced a new concept of
modified contractive mappings, generalizing Ciri¢, Chatterjea, Kannan, and Reich type contractions.
They applied the condition (64) (see page 3, Section 2 of the above paper). Later, in [Fixed Point
Theory Appl., 2016 (2016):62], Jiang et al. claimed that the results in [Fixed Point Theory Appl., 2015
(2015):185] are not real generalizations. In this paper, by restricting the conditions of the control
functions, we obtain a real generalization of the Banach contraction principle (BCP). At the end,
we introduce a weakly JS-contractive condition generalizing the JS-contractive condition.

Keywords: metric space; fixed point; weakly JS-contraction

1. Introduction

The Banach contraction principle (BCP) [1] is one of the famous results in fixed point theory which
has attracted many authors. Many extensions and generalizations have been appeared in literature by
weakening the topology itself of the space or by considering different contractive conditions (for single
and valued mappings). For more details, see ([2-23]).

Definition 1. Given a mapping Y : X — X on a metric space (X, d).

(a)  Such'Y is a C-contraction if there is y € (0, %) such that for all O, w € X, [24]
dYQ, Yw) < p (d(Q, Yw) +d(w,YQ)) .
(b)  Such'Y is a K-contraction if there is y (0, %) such that for all YQ € X, [25]
dYQ, Yw) < p (d(Q,YQ) +d(w, Yw)) .
(c) SuchY is a Reich contraction if there are q, v and s > 0 with q 4 v +s < 1 such that for all O, w € X,

dYQ, Yw) < q-d(Q,w) +7-d(Q,YQ) +5-d(w, Yw).

Denote by O the set of functions 6 : (0,00) — (1, 00) satisfying the following assertions:

(61) 6 is non-decreasing;

Axioms 2019, 8, 84; d0i:10.3390/axioms8030084 89 www.mdpi.com/journal /axioms
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(62) for each {I} C (0,00), klim 0(hg) = 1if and only if klim hy =0;
— 00 —00

(03) there are m € (0,1) and T € (0, 0] so that

O(u) —1
lim o) =1 =1
u—0t  u™

(64) 6(i + ) < 6(i)6(j) for all i,j > 0.

By A we denote the class of functions § € ® without condition ().

Theorem 1. ([26, Corollary 2.1]) Let Y : X — X be a self-mapping on a complete metric space (X, d). Suppose
thereare © € A and p € (0,1) so that

QweX, dYQYw)#0 implies 6(d(YQ,Yw)) < (0(d(Q,w)))F.
Then T has a unique fixed point.

Note that the BCP comes immediately from Theorem 1. Motivated by [26], Hussain et al. [27] gave
sufficient conditions for the existence of a fixed point of a class of generalized contractive mappings
via a control function 6 € © in the setting of complete metric spaces and b-complete b-metric spaces.
Denote by A the set of functions 6 : (0,00) — (1, 00) verifying (61), (62) and (64). On the other hand,
when considering (X, d) as a metric space and 6 € A (that is, the condition (63) is omitted from ®),
Jiang et al. [28] proved that D(x,y) = In(0(d(x,y))) defines itself a metric on X (see Lemma 1 in [28])
and proved that the results in [27] are not generalizations of Ciri¢, Chatterjea, Kannan, and Reich results.

In this paper, we more restrict the conditions on the control function 6. For this, denote by @’ the
set of functions 6 : (0,00) — (1, 00) so that

(61) 6 is continuous and strictly increasing;

(62) for each {h;} C (0,00), klim 6(hy) = 11if and only if klim h =0.
—00 —00

Let (X, d) be a metric space. For § € ©' (that is, without the condition (64)), note that D(x,y) =
In(6(d(x,y))) does not define a metric on X (we can not ensure the triangular inequality for a metric).
Consequently, we are not in same direction as Jiang et al. [28]. Even for such restricted control function
6, we also obtain a real generalization of the Banach contraction principle. In fact, we will complete the
work of Hussain et al. [27]. We refer the readers to Theorem 3 of [16].

2. Main Results

Definition 2. Let Y : X — X be a self-mapping on a metric space (X, d). Such Y is said to be a P-contraction,
whenever there are 6 € @' and 1, T, 13, T4 > 0 with T + T + T3 + T4 < 1 such that the following holds:

0 (Y0, Yw)) < (0.((€2,)))™ (6 (A(2, YO)))™ (6 (d(w, Ye)))™ (o (AOXLAXD) )" - 1)
forall O, w € X.
As a new generalization of the BCP, we have
Theorem 2. Each P-contraction mapping on a complete metric space has a unique fixed point.
Proof. Let () € X be arbitrary. Define {Q),} by Q, = YQ,,_1, n > 1. If there is Qy = Q1 for
some N, nothing is to prove. We assume that (), # (),,11 for each n > 0.

We claim that
lim d(Qn, Qyy1) = 0.

n—oo
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In view of (1), we have

6 (d(Qyy 1, Q) = 6 (d(YQ, YO, 1)) @
< (0(A(Qn, Qu-1))™ (0 (d(Q, YO)))®
(0 (O, X)) (9 <d(0n,mm) ; d(Qy1, YQ) ) ) 5
< (0.(A(Q, 0 1)) (6 (d(Q, O41)))®
(6(d(Qy_1,00)))" <9 <M>>T

< (8(d(Qn, Q1)) ™ (8 (A(Qy Q1)) ™ (6 (max{d(Qu—1, ), d(, Q1) 1)) ™ -

If for some N, we have
d(Qn-1,Qn) < d(Qn, On11),

then in view of (6 ), we get that
0(d(Qn-1,Qn)) < 0(d(QN, On41))- €)
Using (2), we have
6 (d(Qn41,QN)) < (0(d(QN, On-1)))" T (6 (d(Qn, On11))) ™ “

Therefore,

Tt

0 (d(Qnt1,ON)) < (0 (A(QN, Unv-1))) 278 <0 (d(QN, On-1)),
which is a contradiction with respect to (3).
Consequently, forall n > 1,

max {d(nnfl,nn),d(on,nm)} — d(0,1,00),

which yields that

i s I

1< 0(d(Qyy1, Q) < (B(A(Q, Q) T 0

At the limit, we have
lim 6(d(Qn, Q1)) = 1.

n—o0

According to (62), we get
rzlglgo d(an Q11+l) =0. ®)

In order to show that {Q),,} is a Cauchy sequence, suppose the contrary, i.e., there is ¢ > 0 for
which we can find m; and n; so that

n;>m; > i, A(Qu;, Q) > €. (6)

That is,
d(Qmir Qn,-—l) <e. ()

From (6), one writes

d(Qmi—lr Qni—l) < d(Qmi—lr Qmi) + d(Qm,v Qnifl)-

91



Axioms 2019, 8, 84

In view of (5) and (7), we get

limsup d(Qy;;—1, Q1) <& (8)
i—00
Analogously,
limsup d(Qyy,—1, Qp;) < e )
i—00

On the other hand, we have

0 (d(le,in)) =0 (d(YQm, 1:YQn, ))
< (9 (d(Qm,vfl/ n; 71 ))Tl (9( mi— 1/YQm, )))Tz

1,YOQ, A1, YO, K
(0 (d(Qn —I/YQn . )‘L’3< < m;—1 n; 1)42’ ( n;—1 m; 1)))

)
< (0 (d( Q-1 Q,-1))) ™ (0 (1, 0my)))

A(Qpy—1, ;) + d(Qnﬁl,Qm;))>q

O O, o)) (0( -

Using now (6) and (5)—(8), we have

0(e) <0 <limsup d(Qm,-,Qn,-)>

i—o0

T -
limsup d(Qyy,—1, Q1) 6 ( limsup d(Qy, 1, Q)
i—00 i—y00
3 7
A( =1, Q) + (-1, Qi
limsup d(Qy, -1, ;) 6 ( lim sup (Qun—1, Q) + d(Qu;—1, Q)
i—»o0 i—s00 2
< (6( .

This implies that

1<6(e) < (0(e))T™,

which is a contradiction. Thus, {Q),,} is a Cauchy sequence. The completeness of X implies that there
is Q) € X so that ), — () as n — co. On the other hand,

0 (d(Q, YQ)) = 0 (d(YQy_1,YOQ))
< (0 (d(Qy—1,2)))" (

(o @@, Y (o
< (01, (

(o @@, Y (o

(d(Qn-1, YO, 1)))"

d(YQ, Q1) +d(Q,YQ, ) ) > “
2

(d(Qu1, Q)™

d(YQ, Q1) +d(Q, Q) \ ) *
)

—~ D —

Taking n — o0 and using (6;) and (5), we have

0 (d(Q,YQ)) < (6 (d(Q,0))" (6(d(0, 1))
(6 (d(Q,Y)))™ (0 (d(Q, Y)))™
= (0 (d(Q,YQ)))? ™,

We deduce that Q) = Y(), so Q) is a fixed point.
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Let there are two points (), w which are two different fixed points of Y. So,

0 (d(YQ, Yw)) < (6(d(Q,w)))™ (0(d(Q,YQ)))™
(0 (d(w, Yw)))™ (6 (d(Q, YQ)))™
= (0(d(Q,YQ)))B1H,

We deduce that Q) = Y(), so Q) is a fixed point.
Let Q), w be two distinct fixed points of Y. We have

6 (d(Q,w)) = 0 (d(YQ, Yw)) < (8 (d(0,)))" (6 (d(Q, )"
(6 (d(c,)))™ (6 (d(Q, )™
= (0, w))) " < 0(d(0,w)),

which is a contradiction. So, () has a unique fixed point. [
Remark 1. In Theorem 2, we can substitute the continuity of 6 by the continuity of Y.
By setting 6(t) = eV?, we have

Corollary 1. Let Y : X — X be a mapping on a complete metric space (X, d) such that the following holds:

Vi (Y, Yo) gTl\/d(Q,w)JrTz\/d(Q,YQ)+T3m+r4\/d(Q,Yw)zd(w,YQ),

forall O,y € X, where 0 € P and 71,7, 73, T4 > 050 that 71 + T + 13+ 1w < 1. Then Y has a unique
fixed point.

Remark 2. Taking 71 = 14 = 0 in the Corollary 1, we get Theorem 2.6 of [27].
Taking 4 = 0 in Theorem 1, we get Theorem 2.8 of [27].

Setting 6 () = e YVt in Theorem 2, we have

Corollary 2. Let (Q), d) be a complete metric space and let Y : X — X be such that the following holds:

1/d(YQ, Yw) < 1 3/d (Q,0) + 13/d (Q,YQ) +53{/d (w, Yo) + 14 (/d (@ Yw) ;d (w,¥Q)

forall Q,w € X, where § € P and 7,1, 13, Ta > 0 such that Ty + 1o + 13 + 1 < 1. Then Y has a unique
fixed point.

Remark 3 ([12]). Other examples of functions in the set P are

NG
F(t) = cosht, f(t) = ete', ft)= VeV
VE
S 2 tel _ Ze‘ﬁ‘
6 = 25 fO =3 0=

fH)=1+In(1+1¢), f(t)ze‘/g,

_242In(1+h) o
) = 57—+, _ eVle
f®) 2+In(1+7) ft)= LoV
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forall t > 0.
By setting 0(t) = ef¢’, we have

Corollary 3. Let Y : X — X be a continuous mapping on a complete metric space (X, d). Suppose that there
are Ty, T, 13, T4 > 0 with Ty + 1 + 13 + T4 < 1 such that the following holds:

d (YQ, Yw) e YOY9) < 11d (Q, w) e" ) 4 1 (0, YQ) 4 (DYD)
+ 13d (w, Yw) e Y9) 4 14d (w,YQ) PO i X ,
ora ,w € X. Then there is a unique fixed point of Y.
Ixe) X. Then there i ique fixed poi Y

Corollary 4. Let Y : X — X be a continuous mapping on a complete metric space (X, d). Suppose that there
are Ty, o, 13, Ta > 0 with T + T + 13 + 1 < 1 such that the following holds:

264(YQ, Yew) e (YY)

ZEd(Q,w)edmrw) T
1 4 A (YO, Y)ed VO Yw) = :

2€d(Q,YQ)ed(Q'Yn> T~
1+ ed(O,w)ed(Qf“’

1 ed(QYQ)e !X

2e

2ed(w/Yw)ed(“"Y“’) :| 3

1+ (@, Yw)ed(@Yw)

d(Q,Yw) +d(w,YQ)
-z

dOYw) pdfw0) HOY)FA YD) ™
2
A(OYw) +d(w,YQ) ’
e 2

1+e
forall O, w € X. Then there is a unique fixed point of Y.

Corollary 5. Let Y : X — X be a continuous mapping on a complete metric space (X, d). Suppose that there
are Ty, T, 13, T4 > 0 with Ty + 1 + 13 + T4 < 1 such that the following holds:

14+In(14+d (YO, Ye0)) < [1+1In(1+d (Q @)™ [1+1In(1+4d(Q,YQ))?
d(Q,Yw) +d (w,YQ))T“

1+In(1+d(w,Yw))® {1+ln <1+ 5

forall O, w € X. Then'Y has a unique fixed point.

Example 1. Let X = [0,5] be endowed with the metric d(Q,w) = |Q — w| for all Q,w € X. Define
Y:X — Xand 0 : (0,00) — (1,00) by

ZQarctanQ, f Q€ [0,a],
YO =
lsinh 1) ifQ € [a,+5],

where o (=~ 2.06) is the positive solution of the equation
iQ arctan () = 1 sinh 1 Q.
37 3

Take 0(t) = et . Choose T, = % and T; = %fori =234
Let Q,w € X = [0,5]. We have the following cases:
Case 1: Q,w € [0,&]. According to the mean value Theorem for t —s g(t) := Z=tarctant on the

interval | = (min(w, QO), max(w, Q))) C [0, ], there is some ¢ € | such that

d(YQ,Yw) = |AQarctan Q) — Zwarctanw| < g'(c)d(Q, w),
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where

'(c) = iarctanc+i ¢ < 26,21 < 17 < 37
8§19 =37 3t1+c2 — 375 32 157 — 1007
because that arctanc < g, foreach ¢ € [0, «], and HLCZ < %, foreach ¢ > 0.

Therefore,

0 (d(YQ, Yaw)) = (YO Y)Y

2 2 )
_ ed(s%garctanﬂ/%twarctanw)ed(ﬁﬂarctanﬂ,ﬁwarctana)

d

< |e

37
Q,w)et n’“’)] 100
Qw)

e
et
e

IN

(
37 20
ed(O,m)] 100 {ed(g’ymed(n,m) 00
(

20
A w,m)] e . |:ed(n,w)+d(m,m)ed(n'y‘“)zd(w’m):| 10

Case 2: Q) € [0,a] and w € [a,5]. Here,

2 1 _
—warctanw > = sinh Tw
3 3

forall w € [,5]. Using the mean value Theorem on the function t — = tarctant on the interval [Q), w],
we have

d(YQ,Yw) = %Q arctan () — %sinh71 w| = %sinh71 w— %Q arctan ()

IN

io.i arctan w — iﬂ arctan ()
3 3

37
—d

1007 (@),

Therefore, as in case 1,

0(d(YQ Yw)) = YO, Yw)ed (YY)
= [Edm""”dm’“)] il {gd(Q,YQ)ed(n,m)} fi

20
20 d(0,Yew)+d(w,Y0) ] T00
[ed(w,Yw)gd(w/YW)] 00 {ed(“‘(‘“);d(“"m)g*ﬁ}

Case 3: w € [0,a] and Q € [, 5]. It is similar to case 2.
Case 4: O, w € [, 5]. Here, one writes
dYQ, Yw) = ‘% sinh ' Q — Lsinh ™ w‘ < 3d(Q,w).
Similarly,
37 20
A0, Ya) < [t ] oot
[ed(w,Yw)gd(w:Yw)] o ) |:ed(ofyw)§‘i(“”Yﬂ)e

20
d(QYw)+d(w,YQ) :| 100
4OYw) 4w, YD)
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Hence, Y is a P-contraction. Thus all the conditions of Theorem 2 hold and Y has a fixed point () = 0).
3. Weak-JS Contractive Conditions
Let @ be the class of functions ¢ : [1,00) — [0, o) satisfying the following properties:

(¢1) ¢ is continuous;

(¢2) #(1) = 0;
(¢3) or each {b,} C (1,00), nlgrgoqﬁ(hn) = 0iff nli_r}r;obn =1

Remark 4. It is clear that Y(t) = t — {/t (n > 1) belongs to ®. Other examples are Y(t) = ¢!~' — 1 and

Y(t) =Int.

Definition 3. Let (X, d) be a metric space and let Y be a self-mapping on X.
We say that Y is a weakly JS-contraction if for all Q, w € X with d(YQ, Yw) > 0, we have

0(d(YO, Yw)) < 0(d(Q, w)) — ¢(0(d(Q,w))) (10)
where ¢ € P and 6 € O'.

Theorem 3. Let (X, d) be a complete metric space. Let Y be a self-mapping on X so that

(i) Y is a weakly |S-contraction;
(ii) Y is continuous.

Then Y has a unique fixed point.

Proof. Let O € X be arbitrary. Define {Q,} by Q, = Y"Qy = Y(Q,_1. Without loss of generality,
assume that ), # ),,41 for each n > 0. Since Y is a weakly JS-contraction, we derive

0(d(On, Q1)) = 0(A(YOQ 1, Y)) < 0(d(Q1,Q)) — @(0(d(Q1,0n))). 11)

So, we deduce that {Q(d(Qn,QnH))} is decreasing, and so there is ¥ > 1 so such
1211 6(d(Qn, Qy11)) = r. We will prove that r = 1.
n (o]

Taking n — co, we have

r—o(r)=r. (12)
So,
lim ¢(6(d(Q-1,Q))) = 0. (13)
That is,
lim (-1, ) =1, (14)
ie.,
Tim d(Q 1, Q) = 0. (15)

We claim that {Q),,} is a Cauchy sequence.
We argue by contradiction, i.e., there is € > 0 for which there are { Q) } and {Q;, } of {Q),} so that

n; > m; > iand d(Qp,, Qn,) > e. (16)
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From (16) and using the triangular inequality, we get

e < d(Qm,‘/ Qm)
d(Qmi’ Qm,-%—l) + d(QmH—lr Qni)
d

<
< (Qmi/ Qmi+1) + d(Qmi+1/ Qn,+1) + d(Qﬂi+1/ Qn;)~

Taking i — oo, and using (15), we get

e < lim sup d(Qp41, Qpy41)- 17)

1—00

Also,
d(Qn,-/ le) S d(Qn,-/ Qnifl) + d(infll me‘)'
Then, from (15),
lim sup d(Qy,, Q) < e (18)
i—00

As d(YQy,, YOu,) > 0, we may apply (10) to get that

e(d(Qm,-+1/Qn,-+1)) (d(YQmi'YQni))

=0
< 6(d (O, Q) — ¢(0(d( iy, Ony)))-
Now, taking i — oo and using (61), (17) and (18), we have

0(e) < 6(lim sup d(Qp,+1, Qp;+1))

1—00
< O(limsup d(Qp,, Qy,)) — Hminf @ (0(d(Qumy, Qy)))
i—00 i—00

<0(e) - lin;inf¢(9(d(0mi, Qu;)))-

This implies that
liminf d(Qy,, Q) =0,

1—00

which is a contradiction with respect to (16).

Thus, {Q,} is a Cauchy sequence in the complete metric space (0, d), so there is some Q) € X
such that nlgl;lo A(Q,, Q) =0.

Now, since Y is continuous, we get that (2,11 = Y, = YQ as n — 0. That is, ) = YQ). Thus,
Y has a fixed point.

Let ), w € Fix(T) so that QO # w. Consider

0(d(Q, w)) = 6(d(YQ, Yw)) < 0(d(Q,y)) — ¢(6(d(Q, w))).

Thus,
P(0(d(Q, w))) = 0.

which is a contradiction. Hence, ) = w. [

One can obtain many other contractive conditions by substituting suitable values of 6§ and ¢
in (10).

Taking ¢(t) =t — t* forall t > 1 and « € [0, 1), we obtain the JS-contractive condition.

Without the continuity assumption of Y, we have

97



Axioms 2019, 8, 84

Theorem 4. Let (X, d) be a complete metric space. Let Y : X — X be a mapping. Suppose that
0(d(YQ, Yw)) < 0(d(Q,w)) — ¢(6(d(Q, w))), (19)
forall O, w € X, where 0 € @ and ¢ € ®. Then Y has a unique fixed point.
Proof. For O € X, let {Q),} be defined by Q0,11 = YQ, for n > 0. Note that there is Q) € X such that
Jijrgod(ﬂn,ﬂ) =0.

We also have
d(Q,YQ) < d(Q,YQ,) +d(YQ,, YQ). (20)

From (19),
1<0(d(YQ, YQ)) < 6(d(Qn, Q) — 9(6(d(Qn, Q))), (21)
Hence, we get that lijn 0(d(YQ),, YQ)) = 1. Thus, we have ILm d(YQy, YQ) = 0 which by (20),
n—o00 n—o0
implies that YO = Q). [0

Example 2. Let Q) = [2,00). Take the metric

d(p,0) = lp — ol
forall p,0 € Q. DefineY : Q — Q, ¢ : [1,00) — [0,00) and 6 : [0,00) — [1,00) by

Yo = In(100 + p),

¢(p) =In(p),
and 0(t) = et. Note that for all x > 0, one has 100 < e* —x. Now, forall p, 0 € Q, we have
6(d(Yp, Yq)) = 0 X0)
— o(/In(100+p)~1n(100+0))|
< e%
< el —Jo—of
=P _d(p,0)
=0(d(p,0)) — ¢(8(d(p, 0)))-

Thus, Y is a weakly JS-contraction. All hypotheses of Theorem 3 are verified, so Y has a unique fixed point,

e~ 4651
which is, u ~ 1000°

4. Application to Nonlinear Integral Equations

Consider the following nonlinear integral equation

Q) = ¢(t) + ./ab)((t,s,Q(s))ds, 22)

where a,b € R, O € Cla,b] (the set of continuous functions from [a,b] to R), ¢ : [2,b] — R and
X @ [a,b] x [a,b] x R — R are given functions.
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Theorem 5. Assume that
(i) x:[ab] x[a,b] x R — Ris continuous and there is 0 € 0 so that 6( sup f(t)) < sup 0(f(t)) for

telab) tefa,b]
arbitrary function f with

b b
9(/a | (x(t,5,Q(s))ds — x(t,5,(s)) |ds) S/a 0(x(t;s,Q(s)) = x(t,s,w(s))[)ds;
(i) there is T; € (0,1) so that

0(1x(ts,Q(s)) = x(t,5,w(s))])

< 1600 —y®ONI™ [6(Q() — Sy x(t,5,Q(s)ds) )2 [0(|w(t) — [ x(t,5,w(s))ds|)] ™
- b—a

01t ~ [ x50

forall ), w € Cla, bl and t,s € [a,b].

Then (22) has a unique solution.

Proof. Let X = C[a, ]. Define the metric d on X by d(Q,w) = sup |Q(t) — w(t)|. Then (X, d) is a
te(a,b)

complete metric space. Consider Y : X — X by YQ(t) = ¢(t) + f;)((t, s,Q(s))ds. Let O, w € X and
t € [a,b]. We have

0(YQH) — Yoo (1))
=6 _/;X(t,s,o(s))ds - /;x(t,s,w(s))ds\)
< [ 01x(t5,006)) ~ x(t 5,051 i

- /b [0(12(t) — w(HDI B = [2 x(t,5,Q(s)ds) )] 2[8(|w(t) = [ x(t,5,w(s))ds )] ™
~Ja b—a

b
[f?(lw(f)j/Lz x(t,5,Q(s))ds|)|“ds

b i p _/ab [0(d(Q, )] [0(d(Q, YOQ))]2[0(d(w, Yw))|[0(d(w, YQ))] ™ ds

= [0(d(Q, )] [0(d(Q, YQ))[2[6(d(w, Yew))]P[0(d(w, YO))]™.

<

Thus Y is a P-contraction. All the conditions of Theorem 2 hold, and so Y has a unique fixed
point, that is, (22) has a unique solution. [

5. Conclusions

In this paper, we restricted the conditions on the control function 6 (with respect to the ones given
in [27,28]) and we obtained a real generalization of the Banach contraction principle (BCP). We also
initiated a weakly JS-contractive condition that generalizes its corresponding of Jleli and Samet [26],
and we provided some related fixed point results.
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1. Introduction

Numerous problems in science and engineering defined by nonlinear functional equations can be
solved by reducing them to an equivalent fixed-point problem. In fact, an operator equation

Gx =0 1)

may be expressed as a fixed-point equation 7 x = x. Accordingly, the Equation (1) has a solution if the
self-mapping 7 has a fixed point. However, for a non-self mapping 7 : P — Q, the equation 7x = x
does not necessarily admit a solution. Here, it is quite natural to find an approximate solution x* such
that the distance d(x*, 7x*) is minimum, in which case x* and 7 x* are in close proximity to each
other. Herein, the optimal approximate solution x*, for which d(x*, Tx*) = d(P,Q), is called a best
proximity point of 7. The main aim of the best proximity point theory is to give sufficient conditions
for finding the existence of a solution to the nonlinear programming problem,

mind(8, 7). @

Moreover, a best proximity point generates to a fixed point if the mapping under consideration is
a self-mapping. For more details on this research subject, see [1-15].

In 2015, Khojasteh et al. [16] presented the notion of Z-contraction involving a new class of
mappings—namely, simulation functions, and proved new fixed-point theorems via different methods
to others in the literature. For more details, see [17-20].
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Definition 1 ([16]). A simulation function is a mapping { : [0,00) x [0,00) — R so that:

(¢1) 2(0,0)=0;
(G2)  &lpn) <y —p forall p,n>0;
(C3)  If (un), (yn) are sequences in (0, c0) so that nlgrc}o Un = nlgx;) 1y > 0, then

limsup ¢ (pn, f1n) < 0. 3)
n—oo

Theorem 1 ([16]). Let (M, d) be a complete metric space and T : M — M be a Z-contraction with respect to
{ € Z—that is,
C(d(T¢, Tw),d(E,w)) >0, forall§w e M.

Then, T admits a unique fixed point (say T € X) and, for each &y € M, the Picard sequence {T"o} is
convergent to T.

In this study, we will consider simulation functions satisfying only the condition ({3 ). For the
sake of convenience, we identify the set of all simulation functions satisfying only the condition ({>)
by Z.

The main concern of the paper is to establish theorems on the existence and uniqueness of best
proximity points for Geraghty type Z-proximal contractions in complete metric spaces. The obtained
results complement and extend some known results from the literature. An example, as well as an
application to a variational inequality problem, is also given in order to illustrate the effectiveness of
our generalizations.

2. Preliminaries
Let P and Q be two non-empty subsets of a metric space, (M, d). Consider:
d(P,Q) :=inf{d(p,v) : p € P,v € Q};
Py:={peP:d(p,v) =d(P,Q)forsomev € Q};
Qo:={veQ:d(p,v) =d(P,Q) for some p € P}.

Denote by
Best(T) ={u € P:d(u,Tu)=d(P,Q)},

the set of all best proximity points of a non-self-mapping 7 : P — Q. In the study [5], Caballero et al.
familiarized the notion of Geraghty contraction for non-self-mappings as follows:

Definition 2 ([5]). Let P, Q be two non-empty subsets of a metric space, (M, d). A mapping T : P — Q is
called a Geraghty contraction if there is p € X, so that for all {,w € P

d(T¢, Tw) < pld(G,w))-d(&, w), 4)
where the class X is the set of functions B : [0,00) — [0, 1), satisfying
B(ty) -1 = t, — 0.
In the paper [10], Jleli and Samet initiated the concepts of a-ip-proximal contractive
and a-proximal admissible mappings. They provided related best-proximity-point results.

Subsequently, Hussain et al. [7] modified the aforesaid notions and substantiated certain
best-proximity-point theorems.
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Definition 3 ([10]). Let 7 : P — Qand a : P x P — [0, 00) be given mappings. Then, T is called a-proximal
admissible if

a(ug,up) > 1

d(p1, Tur) =d(P,Q) ¢ = a(pr,p2) 21,

d(p2, Tuz) = d(P,Q)

forall uy,uz, p1,p2 € P.

Definition 4 ([7]). Let T : P — Qand a, 7 : P x P — [0, 00) be given mappings. Such T is said to be
(e, )-proximal admissible if

a(uy, up) > n(uy, uy)
d(p1, Tur) =d(P,Q) p = a(p1,p2) = 1(p1,p2),
d(p2, Tuz) = d(P,Q)

forall uy,up, p1,p2 € P.

Note that if #7(u,v) = 1 for all u,v € P, then Definition 4 corresponds to Definition 3.
Very recently, Tchier et al. in [14] initiated the concept of Z-proximal contractions.

Definition 5 ([14]). Let P and Q be two non-empty subsets of a metric space, (M, d). A non-self-mapping
T : P — Qs called a Z-proximal contraction if there is a simulation function  so that

d(p, Tu) =d(P,Q)

T = d(p.0) }:»@(d(p,v),d(u,v)) >0, 6)

forall p,v,u,v € P.
Now, we introduce a new concept which will be efficiently used in our results.

Definition 6. Let 7 : P — Qand a, 17 : P x P — [0, 00) be given mappings. Then, T is said to be triangular
(e, )-proximal admissible, if

(1) T is (a,1)-proximal admissible;
(2)  a(u,v) > n(u,v)and a(v,z) > 5 (v, z) implies that «(u,z) > n(u,z), forall u,v,z € P.

Now, we describe a new class of contractions for non-self-mappings which generalize the concept
of Geraghty-contractions.

Definition 7. Let P and Q be two non-empty subsets of a metric space (M,d), { € Z and a,1 : P X P —
[0,00) and B € X.. A non-self-mapping T : P — Q is said to be a Geraghty type Z-proximal contraction, if for
all u,v,p,v € P, the following implication holds:

a(u,v) > n(u,v)
d(p, Tu) =d(P,Q) » == {(d(p,v),B(d(u,v))d(u,v)) > 0. (6)
d(v, Tv) =d(P,Q)

Remark 1. If T : P — Q is a Geraghty type Z-proximal contraction, then by ({») and Definition 7,
the following implication holds for all u,v,p,v € P with u # v:

a(u,v) > n(u,v)

d(p, Tu) =d(P,Q) » ==d(p,v) < B(d(u,v))d(u,v). @)
d(v,Tv) =d(P,Q)
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3. Main Results
Our first result is as follows.

Theorem 2. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that Py is non-empty,
T:P— Qanda,n: P x P —[0,00) be given mappings. Suppose that:

(i) Pis closed and T (Py) C Qo;

(ii) T is triangular (a, )-proximal admissible;
(iii) There are ug, uy € Py so that d(uq, Tug) = d(P, Q) and a (ug, u1) > 1 (ug, u1);
(iv) T is a continuous Geraghty type Z-proximal contraction.

Then, T has a best proximity point in P. If a(u,v) > 17(u,v) for all u, v € Best(T ), then T has a unique best
proximity point u* € P. Moreover, for every u € P, limy, 0o T"u = u*.

Proof. From the condition (iii), there are 1, u; € Dy so that
d(uy, Tug) =d(P,Q) and a (ug,u1) > 1 (1o, u1) -
Since T (Py) C Q, there is up € Py so that
d(uz, Tur) = d(P, Q).

Thus, we get
a(ug, ur) > 1(up, uq)
d(uy, Tug) =d(P,Q),
d(uz, Tur) = d(P,Q)

Since T is («, 17)-proximal admissible, we get a (uy,up) > 1 (11, 12) . Now, we have

d(uy, Tuy) =d(P,Q) and a (uy,uz) > 1 (uq,u2).
Again, since T (Py) C Q, there exists u3 € Py such that
d(uz, Tuz) = d(P,Q),
and thus,
a(uy,uz) > 1 (uy, u2)

d(uz, Tup) =d(P,Q),
d(us, Tup) = d(P, Q).

Since T is («, 17)-proximal admissible, this implies that a (13, 13) > # (12, u3) . Thus, we have
d(us, Tup) =d(P,Q) and a (up,uz) > 1 (uz,u3).
By repeating this process, we build a sequence {u,,} in Py C P so that
d(tyy1, Tun) =d(P,Q) and & (up, 1) > 1 (Un, tny1), )
for alln € NU {0} . If there is 19 so that 1, = 1,41, then
d(ttny, Tting) = d(tpg i1, Titny) = d(P, Q).

That is, 1y, is a best proximity point of 7. We should suppose that u, # u,1, for all n.
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From (8), for all n € N, we get

& (1, un) > 1 (U1, Un),
d(un, Tuy—1) =d(P,Q),
d(ups1, Tuy) =d(P,Q).

On the grounds that 7 is a Geraghty type Z-proximal contraction, by utilizing Remark 1,
we deduce that

A(tn, 1) < B(A(y—1,tn))d(ty—1,un), ©)

which requires that d(uy, u,41) < d(u,_1,u,), for all n. Therefore, the sequence {d(uy, uy41)} is
decreasing, and so there is A > 0 so that lim, o d (14, 1,+1) = A. Now, we shall show that A = 0.
On the contrary, assume that A > 0. Then, taking into account (9), for any n € N,

d(tn, tiyg1) < BA(uyp—1,tn))d(uy_1,up) < d(ty—1,un)-
This yields, for any n € N,

0< d(un, tty41)

d(“n—l, Mn) < ﬁ(d(unflrun)) < 1.

Taking n — oo, we find that
nlglolo ﬁ(d(un—I/ un)) =1,

and since B € ¥, limy—eo d(4y—1,1n) = 0. This contradicts our assumption limy,eo d(1ty_1, Uty) =
A > 0. Therefore, we get
lim d(u,_1,u,) =0, forallneN. (10)

n—o0

We shall prove that {u,} is Cauchy in P. By contradiction, suppose that {u,} is not a Cauchy
sequence, so there is an ¢ > 0 for which we can find {umk} and {unk} of {u,} such that ny is the
smallest index for which ny > my > k and

d (g, i) > € and d (1, ty, 1) <& (11)

We have

e < d (tmy, ) < d (g, 1) +d (U1, 1m,)
<e4d (up_1,un,)-
Taking k — oo, by (10), we get
Limd (tp,, 1) = €. (12)

k—o0

By triangular inequality,

|d (umk+1'u"k+1) —d (umk’u”k)| <d (umk+1' umk) +d (u"k' u"k+1) ’

which yields that

kli_lg;)d (xmk+1/ xnk+1) =& (13)
Since 7 is triangular (, 77)-proximal admissible, by using (8), we infer

a(Um, tty) > n(um, un), foralln,m € Nwithm < n. (14)
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Combining (8) and (14), for all k € N, we have

lX(Mmk’ unk) Z ﬂ(umk, unk);
d(umk-Hr Tumk) =d(P,Q),
d(iy 1, Tin,) = d(P, Q).

Regarding the fact that 7 is a Geraghty type Z-proximal contraction, from Remark 1,
we deduce that

d(umk+1runk+l) < ﬁ(d(umk' u”k))d(umk’ u"k) < d(umk’unk)-

Taking the limit as k tends to co on both sides of the last inequality, and using the Equations (12)
and (13), we get

e< klg{}o ,B(d(umkr ”nk))e <eg
which implies that limy_,e, B(d (14, , 11y, )) = 1, and so limy_,c d(ti,, tn, ) = 0 which contradicts ¢ > 0.
Hence, {u,} is a Cauchy sequence in P. Since P is a closed subset of the complete metric space (M, d),
there is p € P so that

nlgrgo d(un, p) =0. (15)
Since 7T is continuous, we have
Jim d(Tun, Tp) =0. (16)

Combining (8), (15), and (16), we get
d(P,Q) = lim d(uy 1, Tuy) = d(p, Tp).

Therefore, u € P is a best proximity point of 7. Finally, we shall show that the set Bs;(7) is a
singleton. Suppose that r is another best proximity point of 7, that is, d(r, 7r) = d(P, Q). Then, by the
hypothesis, we have a(p,r) > 1(p,r)—that is,

a(p,r) = n(p,7),
d(p, Tp) =d(P,Q),
d(r,Tr)=4d(P,Q).

Then, from Remark 1, we deduce

d(p,r) < Bld(p,r)d(p,r) <d(p,1),

which is a contradiction. Hence, we have a unique best proximity point of 7.

Let us consider the following assertion in order to remove the continuity on the operator 7 in the
next theorem.

(C) If a sequence {u,} in P is convergent to u € P so that a(uyu,11) >
7 (ttn, ttyy1), then a (1, u) > 15 (uy,u) foralln € N.

Theorem 3. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d) so that Py is non-empty,
T:P— Qanda,i: P x P — [0,00) be given mappings. Suppose that:

(i) Pis closed and T (Py) C Qo;
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(ii) T is triangular (a,n)-proximal admissible;
(iii) there are ug, uy € Py so that d(uy, Tug) = d(P, Q) and a (19, 11) > 1 (up, t11);
(iv) the condition (C) holds and T is a Geraghty type Z-proximal contraction.

Then, T has a best proximity point in P. If a(u,v) > #(u,v) for all u,v € Best(T), then T has a unique best
proximity point u* € P. Moreover, for each u € P, we have limy, oo T "1t = .

Proof. Following the proof of Theorem 2, there exists a Cauchy sequence {u,} C Py satisfying (8) and
uy — p. On account of (i), Py is closed, and so p € Py. Also, since T (Py) C Qo, thereis z € Py so that

d(z,Tp) =d(P,Q). 17)
Taking (C) and (8) into account, we infer
« (uy,p) > 1 (g, p), foralln € N.

Since T is (&, 17)-proximal admissible and

a(ttn, p) > 17(tn, p),
d(un+lr Tun) = d( ’ Q)r (18)
d(z, Tp) =d(P,Q),

so, we conclude that
a(uys1,2z) > n(uys1,z), foralln € N. (19)

Considering (18), (19) and Remark 1, we have

d(un11,2) < Bld(un, p))d(un, p) < d(un, p),

which implies that lim, e d(u,11,2z) = 0. By the uniqueness of the limit, we obtain z = p. Thus,
by (17), we deduce that d(p, T p) = d(P, Q). Uniqueness of the best proximity point follows from the
proof of Theorem 2. [

Example 1. Let M = R?  be endowed with the  Euclidian  metric,
P={(0,u):u>0}and Q= {(1,u):u>0}. Note that d(P,Q) =1, Py = Pand Qp = Q. Let

{ﬁ(t) = ift>0

T
B(t) =13, otherwise .
Then, B € X. Define T : P — Qand a : P x P — [0,00) by

T(0,u) = {( ), if0<u<i,

(1,142), ifu>1,

and
257((0,u),(0,0)), if u,ve0,1],oru=0o

0, otherwise.

a((0,u),(0,0)) = {
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Choose {(t,s) = %s —tforallt,s € [0,00). Let u,v,p,q > 0 be such that

Then, u,v € [0,1] or u = v.

u,v € [0,1]. Here, T(0,u) = (1, §) and T(0,v) = (1, §). Also,

Jro-pr=1va-r =1

thatis, p = g and g = §. So, a((0, p), (0,9)) > d((0, p), (0,9)). Moreover,

£(@((0,p), 0,9)), BLd((0,u), (0,2)))d((0,), 0,0))
= 2B((0,),(0,9)d((0,1),0,2)) ~ d((0, ), 0, 5))

2 |u — |
= 2B o —o - 10

Ifu =v, then B(|u —v|) = % and the right-hand side of the above inequality is equal to 0.
If u # v, we have

¢(d((0,p), (0,9)), (d((0, 1), (0,0)))d((0,u), (0,0)))
ju—o| _|u—o
T+Ju—o 9

2

u=ov>1 Here, T(0,u) = (1,u?) and T(0,v) = (1,0%). Similarly, we get that p = q = u®> = v2. So,
«((0,p), (0,4)) =0 =1((0,p), (0,4))-

Also, £(d((0, ), (0,9)), B(d((0,u), (0,0)))d((0,u),(0,v))) = 0.

In each case, we get that T is an («,1)-proximal admissible. It is also easy to see that T is triangular
(&, 7)-proximal admissible. Also, T is a Geraghty type Z-proximal contraction. Also, if {uy, = (0,pn)} isa
sequence in P such that o (uy, uy1) > 1 (Un, thyy1) for all nand u, = (0,pn) — u = (0,p) asn — oo,
then p, — p. We have py, pp+1 € [0,1] or py = pyr1. We get that p € [0,1] or p,, = p. This implies that
o (ty, 1) > 1 (U, u) forall n.

Moreover, there is (ug,u1) = ((0,1),(0, %)) € Py x Py so that

d(uy, Tug) =1=d(P,Q) and a (up,u1) > d (ug, uz).

Consequently, all conditions of Theorem 3 are satisfied. Therefore, T has a unique best proximity point in P,
which is (0,0). On the other side, we indicate that (4) is not satisfied. In fact, for u = (0,2),v = (0,3), we have

d(Tu, Tv) =4d(T(0,2),7(0,3)) =d((0,4),(0,9))
= 5> 3 = B(d((0,2), (0,3))d((0,2), (0,3))
= B(d(u,v))d(u,v).
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Corollary 1. Let (P, Q) be a pair of non-empty subsets of a complete metric space (M, d), such that Py is
non-empty. Suppose that T : P — Q is a Geraghty-proximal contraction—that is, the following implication
holds for all u,v,p,v € P:

e } = §ld(p,v), Bld(,0))d(1,0)) > 0.

Also, assume that P is closed and T (Py) C Qo. Then, T has a unique best proximity point u* € P. Moreover,
for each u € P, we have limy,_y00o T"u = u*.

Proof. We take a(c,¢) = 17(c,¢) = 1 in the proof of Theorem 2 (resp. Theorem 3). [

4. Some Consequences
In this section we give new fixed-point results on a metric space endowed with a partial

ordering/graph by using the results provided in the previous section. Define

,0), ifu =0,
a,: Mx M —[0,00), «(u,v)= n(u,v), Huzo
0, otherwise.

Definition 8. Let (M, =,d) be a partially ordered metric space, (P, Q) be a pair of non-empty subsets of M,
and T : P — Q be a given mapping. Such T is said to be <-proximal increasing if

12U
d(pr, Tur) = (P Q) r=mrm=p
d(p2, Tuz) = d(P,Q)

forall uq,uy, p1,p2 € P.
Then, the following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 4. Let (P, Q) be a pair of non-empty subsets of a complete ordered metric space (M, <, d) so that Py
is non-empty and T : P — Q be a given non-self-mapping. Suppose that:

(i) Pis closed and T (Py) C Qo;
(ii) T is =-proximal increasing;
(iii) There are ug, uy € Py so that d(uy, Tug) = d(P, Q) and ug < uy;
(iv) T is continuous or, for every sequence {u,} in P is convergent to u € P so that u, < uy,q, we have

uy 2 uforallneN;
(v) Thereexist { € Z and B € ¥, such that for all u,v,p,v € P,

u=v
d(p, Tu) =d(P,Q) ;= ¢(d(p,v),B(d(u,v))d(u,v)) > 0. (20)
d(v,Tv) =d(P,Q)

Then, T has a best proximity point in P. If u < v for all u,v € Bes(T ), then T has a unique best proximity
point u* € P. Moreover, for every u € P, limy, 00 T"u = u*.

Now, we present the existence of the best proximity point for non-self mappings from a metric

space M, endowed with a graph, into the space of non-empty closed and bounded subsets of the
metric space. Consider a graph G, such that the set V (G) of its vertices coincides with M and the set
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E (G) of its edges contains all loops; that is, E (G) 2 A, where A = {(u,u) : u € M}. We assume G has
no parallel edges, so we can identify G with the pair (V (G), E (G)).

Define
n(u,v), if (u,v) € E(G),

a,n: MxM— [0,+OO), pg(u,z)) =
0, otherwise.

Definition 9. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty
subsets of Mand T : P — Q be a given mapping. Such T is said to be triangular G-proximal, if
(1) foralluy,uz, p1,p2 € P,

(u1,uz) € E(G)
d(p1, Tur) =d(P,Q) ¢ = (p1,p2) € E(G);
d(p2, Tuz) = d(P,Q)

(2)  (u,v) € E(G)and (v,z) € E(G) implies that (u,z) € E(G), forall u,v,z € P.

forall uy, up, p1,p2 € P.
The following result is a direct consequence of Theorem 2 (resp. Theorem 3).

Theorem 5. Let (M, d) be a complete metric space endowed with a graph G and (P, Q) be a pair of non-empty
subsets of M so that Py is non-empty and T : P — Q be a given non-self mapping. Suppose that:

(i) Pis closed and T (Py) C Qo;
(ii) T is triangular G-proximal;
(iii) There are ug, uy € Py so that d(uy, Tug) = d(P, Q) and (ug,uq) € E(G);
(iv) T is continuous or, for every sequence {u,} in P is convergent to u € P so that (uy,u,+1) € E(G),

we have (uy,u) € E(G) foralln € N;
(v) Thereexist { € Z and B € X such that for all u,v,p,v € P,

(u,v) € E(G)
d(p, Tu) =d(P,Q) = {(d(p,v),B(d(u,v))d(u,v)) > 0. 1)
d(v,Tv) =d(P,Q)

Then, T has a best proximity point in P. If (u,v) € E(G) for all u,v € Best(T ), then T has a unique best
proximity point u* € P. Moreover, for every u € P, limy, 0o T"u = u*.

5. A Variational Inequality Problem

Let C be a non-empty, closed, and convex subset of a real Hilbert space H, with inner product
(,-) and anorm || - ||. A variational inequality problem is given in the following:

Find u € C so that (Su,v —u) > Oforallv € C, (22)

where S : H — H is a given operator. The above problem can be seen in operations research, economics,
and mathematical physics, especially in calculus of variations associated with the minimization of
infinite-dimensional functionals. See [21] and the references therein. It appears in variant problems of
nonlinear analysis, such as complementarity and equilibrium problems, optimization, and finding
fixed points; see [21-23]. To solve problem (22), we define the metric projection operator Pc : H — C.
Note that for every u € H, there is a unique nearest point Pcu € C so that

[l — Pcul| < ||u—o||, forallveC.
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The two lemmas below correlate the solvability of a variational inequality problem to the
solvability of a special fixed-point problem.

Lemma 1 ([24]). Let z € H. Then, u € C is such that (u —z,y —u) > 0, forall y € Ciffu = Pcz.

Lemma 2 ([24]). Let S : H — H. Then, u € C is a solution of (Su,v —u) > 0, forall v € C, if
u = Pc(u — ASu), with A > 0.

The main theorem of this section is:

Theorem 6. Let C be a non-empty, closed, and convex subset of a real Hilbert space H. Assume that S : H — H
is such that Pc(I — AS) : C — C is a Geraghty-proximal contraction. Then, there is a unique element
u* € C, such that (Su*,v —u*) > 0 forall v € C. Also, for any ug € C, the sequence {u,} given as
U1 = Po(uty — ASuy) where A > 0and n € NU {0}, is convergent to u*.

Proof. We consider the operator 7 : C — C defined by 7x = Pc(x — ASx) for all x € C. By Lemma 2,
u € Cis a solution of (Su,v —u) > 0forallv € C, if u = Tu. Now, T verifies all the hypotheses of
Corollary 1 with P = Q = C. Now, from Corollary 1, the fixed-point problem u = T u possesses a
unique solution u* € C. O
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1. Introduction

It is very common to consider to existing a fixed point of a certain mapping while presuming
it is unique. This is true, considering a solution of a fixed point problem G(x) = Fx —x = 0 is
unique. On the other hand, in the real world, in particular in nonlinear systems, the solution need
to be unique. In such case, non-unique or periodic solutions also have worth for understanding the
corresponding phenomena.

The first known result for finding nonunique fixed points for certain operators was proposed by
Ciri¢ [1]. In this well-known paper, Ciri¢ [1] emphasized the worth and importance of the notion of
the non-unique fixed points (also, the periodic fixed points)in the setting of complete metric spaces.
Inspired by this initial report of Ciri¢ [1], several significant results has been released on nonunique
fixed point theorems for various fixed point problems, see e.g., [1-12].

This survey can be considered as a continuation of the recent paper [13].

2. Preliminaries

This section is devoted to collecting and recalling the basic notions and fundamental results
without considering the proofs. On the other hand, in the following sections, we show how to derive
these basic results from the upcoming theorems that we state.

From now on, we preserve the letters Ra' , to denote the set of non-negative real numbers.
In addition, Ny present the set of positive integer numbers with zero.

The first definition is orbitally continuous, and has a key role in the non-unique fixed point results.

Definition 1. (see [1]) Let F be a self-map on a metric space (S, 6).
() F is said to be an orbitally continuous mapping if
lim F'ix = z M

i—o00
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implies
lim FF'x = Fz (2)
1—»00
foreach x € S.
(ii) If every Cauchy (fundamental) sequence of type {F"ix};cn converges, then metric space (S,0) is
orbitally complete

Throughout this section, the letter F is reserved for presenting a self-mapping on a non-empty
set which is endowed a standard metric §. Moreover, the pair (S, §) represents standard metric space.
We presume also that (S, §) is orbitally complete in all upcoming theorems, corollaries, lemmas and
propositions. A point z is called a periodic point of a function F of period m if F"(z) = z, where
F9(x) = x and F"(x) is iteratively defined by F"(x) = T(F"~1(x)). The set Fixs(F) indicate the set of
all fixed point of F on S.

Theorem 1. [Non-unique fixed point theorem of Cirié [1]] If there is k € [0,1) such that
min{d(Fx, Fy),d(x, Fx),6(y, Fy)} — min{d(x, Fy),5(Fx,y)} < ké(x,y),

forall x,y € S, then the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point xo € S
the recursive sequence { F"xo} e converges to a fixed point of F.

Theorem 2. [Nonunique fixed point of Achari [2]] If there exists k € [0,1) such that for all x,y € S,

PO (), ®

where
P(x,y) =min{d(Fx, Fy)é(x,y),d(x,Fx)é(y, Fy)},
Q(x,y) = min{d(x, Fx)d(x, Fy),o(y, Fy)é(Fx,y)},
R(x,y) = min{é(x,Fx),6(y, Fy)}.

with R(x,y) # 0. Then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point xg € S
the recursive sequence { F"xq },cn converges to a fixed point of F.

Theorem 3. [Nonunique fixed point of Pachpatte [11]] Suppose that there exists k € [0,1) such that
m(x,y) —n(x,y) < ké(x, Fx)d(y, Fy), 4)
forall x,y € S, where

m(x,y) = min{[§(Fx, Fy)I?,6(x,y)d(Fx, Fy), [6(y, Fy)]*},
n(x,y) = min{d(x, Fx)é(y, Fy),o(x, Fy)d(y, Fx)}.

Then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point xy € S the recursive
sequence { F"xo } e converges to a fixed point of F.

Theorem 4. [Nonunique fixed point of Cirié-Joti¢ [14]] If there exists k € [0,1) and a > 0 such that

](xly) —al(x,y) SkL(x/y)/ (5)
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for all distinct x,y € S where

. T+0(x,
Jxy) = mm{ 5(y,Fy)[146(x,Fx)] mm{dz(Fx,Fy),dz(x,Fx),dz(y(;yy))}
1+6(x,y) ! 3(xy)

6(Fx,Fy),6(x,y),6(x,Fx),6(y, Fy), M, }

I(x,y) =min{é(x, Fy),d(y, Fx)},
L(x,y) = max{d(x,y),4é(x,Fx)}.

Then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point xy € S the recursive
sequence { F"xq } e converges to a fixed point of F.

Theorem 5. [Nonunique fixed point of Karapinar [15]] If there exist real numbers ay, ay, a3, as,as and a
self mapping F : S — S satisfies the conditions
aq

0§J<1, a1 +ay #0,ay+ay+az >0and0 < az —as (6)
ay; +ap

E(x,y) < a6(x,y) +asd(x, Fx) @)

where
E(x,y) := a16(Fx,Fy) + a3 [5(x, Fx) +4(y, Fy)} +a3[6(y, Fx) 4+ 6(x, Fy)],

hold for all x,y € S. Then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point
X € S the recursive sequence {F"xo},cn converges to a fixed point of F.

Our aim is mainly to get the corresponding nonunique fixed point theorems in the setting of
various abstract spaces, such as, partial metric spaces, Branciari distance.

In what follows, we express the definition of a comparison function. This notion was considered
first by Browder [16] and later by Rus [17] and many others. We say that a function ¢ : [0, 00) — [0, )
is a comparison function [16,17] if it is not only nondecreasing but also ¢" (t) — 0 as n — oo for every
t € [0,00), where ¢" is the n-th iterate of ¢. A simple example of such mappings is ¢(t) = % where
ke0,1)andn € {2,3,--- }.

Let ¥ denote the set of all functions ¢ : [0,00) — [0, c0) such that

(Y1) ¢ isnondecreasing;
—+o0

(¥2) Y ¢"(t) <ooforallt > 0.
n=1

A function 1 € ¥ is named as (c)-comparison.

For more details and examples of both comparison and (c)-comparison functions, we refer to
e.g., [17].
Lemma 1 ([17]). Suppose that ¢ : [0,00) — [0, 00) is a comparison function. Then, we have

1. ¢ is continuous at 0;
2. each iterate ¢* of ¢, k > 1, is also a comparison function;
3. ¢(t) < tforallt>0.

It is clear that if ¢ is a (c)-comparison function is a comparison function. Hence, the properties
above are also valid for (c)-comparison functions.

Definition 2. A function { : [0,00) x [0,00) — R is named simulation if

(C1) C(t,s) <s—tforallt,s > 0;

117



Axioms 2019, 8,72

(C2) if {tu}, {sn} are sequences in (0, c0) such that lim #; = lim s, > 0, then

limsup {(ty, sn) < O. (8)

n—oo

In the original definition, given in [18], there is a condition, {(0,0) = 0. This condition is superfluous
and hence it was dropped, see e.g., Argoubi et al. [19]. Let Z denote the family of all simulation functions
¢ :[0,00) x [0,00) = R, i.e., verifying ({1) and ({2).

Due to ({1), we deduce

¢(t,t) <Oforallt > 0. )

The following example is derived from [18,20,21].

Example 1. Let y; : Ry — R be continuous functions such that y;(t) = 0 if and only if, t = 0. For i =
1,2,3,4,5,6, we define the mappings {; : R} x Ry — R, as follows

(i) C1(t,s) = u1(s) — pa(t) forall t,s € [0,00), where yy, 1z : RY — Ry are two continuous functions
such that py(t) = po(t) = 0ifand only if t = 0 and p1(t) < t < pp(t) forall t > 0.

.. e t,s
(”) gz(tls) - g(t,S)

with respect to each variable such that f(t,s) > g(t,s) forall t,s > 0.

(iii) {3(t,s) =s—usz(s) —tforall t,s € [0, c0).

(iv) Ca(t,s) =s(s) —tforalls,t € [0,00), where ¢ : [0,00) — [0,1) is a function such that limsup ¢(t) <

t—rt

1 forallr > 0. -

(0) T5(t,s) =n(s) —tforalls,t € [0,00), where 1y : Ry — Ry is an upper semi-continuous mapping such
that y(t) < t forall t > 0 and n(0) = 0.

(vi) Co(t,s) = s— foty(u)du forall s,t € [0,00), where y : [0,00) — [0,00) is a function such that
Jo m(u)du exists and [ p(u)du > e, for each e > 0.

t forall t,5 € [0,00), where f,g : [0,00)% — (0, 00) are two continuous functions

It is clear that each function {; (i = 1,2,3,4,5,6) forms a simulation function.

3. Nonunique Fixed Point Results in Partial Metric Space

In this section, we start with recollecting the definition of a partial metric that is one of the most
significant generalization of a metric concept. The main difference between a partial metric from
the standard metric is on the self-distance axiom. Despite a standard distance function in partial
metric, offered by Matthews [22], self-distance is not necessarily equal to zero. From the mathematical
point of view, it seems that the definition of a partial metric is inconsistent, even if it seems fallacious.
By contrast with the expectations and knowledge, zero self-distance is quite logical and rational the
framework of computer sciences. Indeed, we put the notion of partial across to reader by examining
the following classical example:

Let S be the union of the set of all finite sequence (Sr) with the set of all infinite sequence (S;).
We shall propose a distance function in the following way:

5:8 xS = [0,00) such that §(x,y) = 2~ sup{n|¥i<nsuch that xi=y;} (10)

It is easy to check that all metric axioms are fulfilled on the restriction of the domain of ¢ to ;.
On the other hand, in case of the restriction of the domain S to S, the function ¢ fails to self-distance
axioms. More precisely, taking finite sequences into account, in particular, for the finite sequence
2im # 0. This simple
example indicate that the idea of non-zero distance has a logic and worthy. In computer science
programming, usage of the finite sequences are more reasonable and affective in case of taking the
termination of the program into account. Roughly speaking, one can declare that programming with

x = (x1,x2,- -+, xm), for some positive integer m, the self-distance p(x,y) =
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infinite sequence may leads to infinite loops in running and has a problem of termination and hence
getting an output.

Another simple but effective example [22,23]) can be given by using the maximum operator. To
put a finer point on it, consider set of all non-negative real numbers with maximum operator, i.e.,

0 :]0,00) x [0,00) — [0, 00) such that p(r,72) = max{ry, 72} (11)

In particular, p(3,3) = 3 # 0.
After the intuitive introduction of partial metric, now, we shall state the formal definition of it
as follows:

Definition 3. (See e.g., [22,23]) A function p : S x S — Ry on a (non-empty) set S is named as a partial
metric if the following axioms are fulfilled

(P1) 2= w & p(z,2) = plw,w) = p(z,w),
(P2) p(z,2) < plz,w),

(P3) p(z,w) = p(w,z),

(P4) p(z,w) < pl(z,0) + p(0,w) ~ p(0,0),

forall z,w,v € S. Here, the coupled letter (S, p) is said to be a partial metric space.

Despite the fact that the self-distance is not necessarily zero, we derive, from (P1) and (P2), that
p(x,y) = 0 yields the reflexivity x = y.

Hereafter, the pair (S, d) present a standard metric space and the pair (S, p) indicate a partial
metric space. For avoiding so many repetitions, we shall not put these presumes in all statements in
the upcoming definitions, theorems and corollaries.

Example 2. (See e.g., [24,25]) Functions 0; : S x S — Ry (i € {1,2,3}) are defined by

r(z,w) = 8(z,w)+C,
o(z,w) = d(z,w) +max{y(z),7(w)},
a3(z,w) = 6(z,w) +p(z,w).

It clear that all three functions, defined above, form partial metrics on S, where <y : S — R{ is an arbitrary
function and C > 0.

Example 3. (See [22,23]) Let S = {[q,7] : q,b € R, q < r} and define p([q,7],[s,t]) = max{r,t} —
min{q,s}. Then (S, p) forms a partial metric space.

Example 4. (See [22]) Let p : S x S — R, where S = [0,1] U [2,3].

. { max{g,r} (g n[23] £ 0,
Define p(q,7) = { gl if{a.r} < 0,1].

Then (S, p) is a partial metric space.

The topology T,, induced by a partial metric p defined on a non-empty set S, is classified as Ty
with a base of the family of open p-balls {O,(x,€) : g € S,e > 0} where

Op(q,6) ={reS:plqr) <p(rr)+e}

forallg € Sand e > 0.
A sequence {x, },c in a partial metric space (S, p) converges to a point x € S (in brief, x, — x, )
if and only if p(x, x) = limy e p(X, Xp).
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Regarding the following example, we shall underline the fact that the limit of a sequence is not
necessarily unique in partial metric space. It can be easily observed an example by regarding the partial
metric space considered in Example 11. If we take the sequence {n%ﬂ }nen into account, we derive that

. 1 L 1
p(L,1) = nlg{}op(lrm) and  p(2,2) = ;}%P(Zrm)-

On the other hand, the limit of a sequence is unique, under certain additional conditions.
In particular, the following lemma was proposed for the uniqueness of the limit.

Lemma 2. (See e.g., [24,25]) Consider a sequence {x, }nen in (S, p) with x, — x and x, — y. If

lim o (xn, 2n) = p(x, %) = p(y,y),

n

then x = y.

It is quite natural to expect a close connection between the notions of the standard metric and
partial metric. Indeed, a function 6, : S x S — Rar defined as

So(x,y) =20(x,y) — p(x,x) — (v, ), (12)

forms a standard metric on S, see e.g., [23]. In addition, the functions Jy, 5','; 15 xS — [0,00) defined by

0 ifx=
Solxy) = { o(x,y) otherv;jise.
and (13)
Su(xy) = p(x,y) —min{p(x,x),0(y,y)}
=max{p(x,y) — p(x,x),0(x,y) — p(y,y)}

form metrics on S (see e.g., [26], respectively). Moreover, we have 7, C T, = T C 15,- In particular,
both d, and 4} are the Euclidean metric on S which are based on the partial metric space (S, p) of
Example 11.

In what follows we give the definition of fundamental topological concepts as follows:
Definition 4. (Seee.g., [6,22,23,27]) Let (S, p) be a partial metric space.

1. A sequence {xy},en in S converges to x* € S if

nlgro\o Sp(x*,xp) =0 & p(x*,x*) = r}grgop(x*,x,,) = n}nigmoop(xn,xm). (14)

2. Asequence {x, }pen in S is called a fundamental (or, Cauchy) sequence in (S, p) if iy, m—co 0(Xn, Xm)
exists and is finite, that is,
(%) foreach e > 0 there is ng € N such that p(xn, Xm) — p(xn, xn) < € whenever ng < n < m.

3. (S,p) is called complete if every Cauchy sequence {x,}nen converges to a point x* € S such that
p(x*, x*) = limy, m—o0 (X0, X ).

In the sequel, the following characterizations of topological concepts shall be used efficiently.

Lemma 3. (See [23])

1. A partial metric space (S, p) is complete if and only if the corresponding metric space (S, d,) is complete.
2. A sequence {x, }nen in (S,p) is a fundamental if and only if it forms a fundamental sequence in the
corresponding metric space (S, ).
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We underline that the partial metric spaces considered in Example 11, Example 3 and Example 4
are complete.

Lemma 4. Let (S, p) be a partial metric space and let {xy },en and {yn}nen be sequences in S such that
Xy — X" and y, — y* with respect to T5,. Then

,}E{}op(xnryn) =p(x",y").

For our purposes, we need to recall the following notion which is an adaptation of Definition 1 in
the context of partial metric spaces.

Definition 5. (cf. [1])
1. A self-mapping F, defined on a partial metric space (S, p), is said to be an orbitally continuous if

lim p(F"x, F'x) = lim p(F"x,x*) = p(x*,x*), (15)
i,j—o0 i—o0
implies
lim p(FF"x, FF"ix) = lim p(FF"x, Fx*) = p(Fx*, Fx*), (16)
i,j—r00 i—o0

foreach x € S.

Equivalently, F is orbitally continuous provided that if F"ix — z with respect to Ty, then F"i Hx — Fz
with respect to Ty foreachx € S.

2. A partial metric space (S, p) is said to be an orbitally complete if each fundamental sequence of type
{F"x}icn converges with respect to Ts,, that is, if there is z € S such that

lim p(F"x, F'ix) = lim p(F"ix,z) = p(z,2). (17)

i,j—0c0 i—00

In the following lines in this section, we focus on non-unique fixed points of certain mappings
in the framework of partial metric spaces that are successors results in the direction of a renowned
Ciri¢ [1] result. The presented results in this section not only extend but also enrich several earlier
results on the topic in the literature, in particular the pioneer works [1,2,11,28]). We also present
examples to emphasize the advantages of the usage of partial metric spaces rather than standard
metric spaces.

Throughout this section, we presume that F is an orbitally continuous self-map of an orbitally
complete partial metric space (S, p).

3.1. Ciri¢ Type Non-Unique Fixed Points on Partial Metric Spaces
The first result is the following one.
Theorem 6. If ¢ € D such that
Clxy) < ¢lp(xy)), (18)
where
C(x,y) = min{p(Fx, Fy),p(x, Fx), p(y, Fy)} — min{&f, (x, Fy), &} (Fx,y)}, (19)
forall x,y € S, then, for each xo € S, the sequence {F"xo} e, converges with respect to Ts, to a fixed point

of F.

Proof. We construct an iterative sequence {x,},cn,, by starting an arbitrary initial point xg € S,
as follows:
X1 = Fxn, n € Np.
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If there exists 19 € No such that x;;; = x,,, 11, then x;,, forms a fixed point of F and hence the proof
is completed trivially. Accordingly, by avoiding the simplicity case, we assume then that x;,, 7# x,,11 for
each n € Ny.

Substituting x = x, and y = x,,41 in (18) we find the inequality

C(xm xn+1) < (P(P(xnr xn+1),

which is equal to
min{p(Xy11, ¥n+2), 0(¥n, Xun41), 0(Xn41, Xn+2)
— min{&}, (xXn, Xu12), O (Xng1, Xns1) }

< (P(p(xﬂr Xn+1))'
Attendantly, we observe that

min{p(xy, Xy41), 0(Xnt1, Xn+2) } < P(0(Xn, X11))- (20)

Suppose p(Xig, Xpy41) < 0(Xng+1, Xng+2) for some ng € Ny. Then, from the preceding inequalities
we observe that

0 (Xng, Xng+1) < P(0(xn, X 11)) < p(Xng, Xng11),
which is a contradiction.
Therefore p(xp, X;41) > p(Xp41, Xn42) for all n € Ny.
Hence, by (20) we get

p(xns1, Xny2) < @(p(xn, x11)) < -+ < 9" (p(x0,x1)), (1)

forall n € Ny.

In what follows, we indicate that the constructed sequence {x, },cn is fundamental (Cauchy) in
(S, p). For this goal, take 1, m € Ny with n < m and employ (21) and (P4), as follows:

m—1
p(xn,xm) < p(xn, Xps1) + o+ (X1, Xm) — Y (x5, k)
k=n

< ¢"(p(x0,x1)) -+ 0" (p(x0, 1))
m—1

< ¢*(o(x0,x1)) = Oasn — co.
n

=~
Il

Consequently, {xy },cn, is a fundamental sequence in (S, p). Since x, = F"xg for all n, and (S, p)
is F-orbitally complete, there is x* € S such that x, — x* with respect to T, Moreover, we have

p(x",x") = lim p(x*,xn) = lim_o(xn, Xm) = 0.

By the orbital continuity of F, we deduce that x, — Fx* with respect to T, Hence x* = Fx*. O

Definition 6. The self-mapping F : S — S is called Ciri¢ type simulated if there exists k € (0,1) and { € Z
such that

¢lme(x,y), cr(x,y)) 20 (22)
forall x,y € S, where

mg(x,y) := min{p(Fx, Fy), p(x, Fx), p(y, Fy)} — min{&}, ((x, Fy), &4 ((Fx,y)}.
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cr(x,y) = k(p(x,y) —p(x,x)) + oy, y),

Theorem 7. If F is a Ciri¢ type simulated mapping, then for each xo € S the sequence {F"x0}nen, converges
to a fixed point of F.

Proof. We construct a recursive sequence {x, },cn,, by taking an arbitrary point xg € S, as follows:
Xp+1 = Fx,, n €Ny

We presume that x, # x,,41 for each n € Ny. Indeed, if there exists non-negative integer 1y such
that x, = xp, 41, then x,;, forms a fixed point of F that terminate the proof.
Substituting x = x,; and y = x,,41 in (22) we obtain

0 < Z(mp(xn,y),cp(xn,y)) < cp(xXn,y) — mp(xa,y)

where
M (X, Xpp1) = min{p(Fxy, Fx,q1),0(Xn, Fxn), 0(Xn 1, FXui1) }
—min{d5, ((xn, Fxpi1), 8 (Fxn, Xp31) }-

and
cr(xn, Xn1) = k(o (Xn, Xn11) — p(%n, Xn)) + p(Xnt1, Xur1),
A simple evaluation yields that
min{p (X 41, Xn42), 0 (X, Xn41), 0 (Xn-41, Xny2)

- min{éz (%n, Xny2), 5fn (Xp1, Xp1) }
< k(o(xn, xuy1) — p(xn, X)) + (%11, Xns1)-

Consequently, we get that

min{p(xﬂr Xn41), 0 (Xnt1, Xni2)}

23
< kPt xn41) — p(n, 10)) + P (g1, %), @

Substituting x = x,,11 and y = x,,, with a revising order, in (22), we get

0 S g(mF(anrlxn)/ CF(x71+1xn)) < CF(anrlxn) - mF(xn+1xn)

where
mp(xXpp1xn) = min{o(Fxnp1Fxn), (X0 41FX041), 0(Xn, FXn) }
—min{dh, ((x,11Fxn), O ((Fxuy1xa)}.

and
cr(xn412n) = k(p(Xnr1%n) — p(Xns1Xn41)) + p(xu, xu),
By a simple calculation, we derive that
min{p (42, Xn11), 0(Xnt1, Xn+2), 0(Xn, 1)}

- min{éfn (Xn41, Xn41), 5fn (Xn42,20) }
< k(o(xns1,%n) — P(Xu41, Xns1)) + (%, Xn),

which imply that

min{P(xm Xnt1), p(xut1, Xni2)}

24
< k(P Xnen) — (st Xnen)) + (s ). @9
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Suppose p(Xu, Xng+1) < P(Xng4+1, Xny+2) for some 1y € Np. Then, on account of two inequalities
(23) and (24), we obtain that

(1 - k)p(x"o/ xﬂo+1) < min{p(xnoﬂ, xn0+1) - kp(xnor x"o)/

P (Xng, Xng) — kP(xn0+1, Xng+1 )}

If, for instance, 0 (X141, ¥ng+1) < P(Xng, Xny ), We have

(I =K)p(xng Xng+1) < p(Xnga1, Xng1) = kp(Xng, Xng)
< (1 ) (xﬂ0+1’xn0+1)
< (1 k) (xﬂo/xno)/
so, by using (P2), p(Xuy%ups1) = P(XnyX) = P(fmpst, Xays1), and hence Xy, = Tapar,

a contradiction.
Therefore p(x,, xp41) > p(Xp11, Xpy2) forall n € No.
Hence, by (23) we get

o(Xns1, %nt2) = 0(X¥ni1, Xnt1) k(o(xn, xn11) — p(Xn, X))
2( (xnfllxn) _P(xnflrxnfl)) (25)

<
<
< <K ((p(x0,x1) — p(x0,%0)),

forall n € Ny.

As a next step, we indicate that the sequence {x, },cn is fundamental in (S, p). For this aim, we let
n,m € Ny with n < m and by using (25) and (P4), we find

p(xn, Xm) —p(xn, xn) < (0, Xpg1) + -+ + (X1, Xm) Z p(xk, xx)

IN

K+ -+ K" p(xo, 1),

Attendantly, the sequence {x; },en, fulfills the condition (*) of Definition 4 and hence {xy } ,en,
is a fundamental sequence in (S, p). On account of that (S, p) is F-orbitally complete and keeping
xn = F'x for all n, in mind, we deduce that there is x* € S such that x,, — x*. By the orbital continuity
of F, we conclude that x, — Fx*. Accordingly, we have x* = Fx* which concludes the proof. [

Regarding Example 1 (i), we conclude the following result from Theorem 7.
Theorem 8. If there is k € (0,1) such that

min{o(Fx, Fy), o(x, Fx), 0(y, Fy)} — min{&},(x, Fy), &, (Fx,y)} (26)
< k(p(x,y) —p(x,x)) +p(y, ),

forall x,y € S, then, the mapping F possesses a fixed point in S. Indeed, for an arbitrary initial point xo € S
the recursive sequence { F"xq },cn converges to a fixed point of F.

Regarding that the class of metric functions are contained in the class of partial metric, we deduce
the renowned result of Ciri¢ [1].

Corollary 1. [1] Theorem 1. Let F be an orbitally continuous self-map of a F-orbitally complete metric space
(S,6). If thereis k € (0,1) such that

min{d(Fx, Fy),8(x, Fx),6(y, Fy)} — min{d(x, Fy), 5(Fx,y)}

< ké(x,y), o
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forall x,y € S, then for each xo € S the sequence {F""xo } ,cn, converges to a fixed point of F.

In what follows we put two illustrative examples to show that Theorem 8 is a genuine extension
of Corollary 1 for the metrics J, and b, and &, respectively.

Example 5 ([6]). Consider the set S = {0,1,2} equipped with a partial metric p : S x S — Rf with a
definition p(x,y) = max{x,y} forall x,y € S. We set a self-mapping F : S — S in a way that FO = F1 =0
and F2 = 1. Notice that the completeness of a partial metric space (S, p) yields that it is also F-orbitally complete.
Note also that F is orbitally continuous. An elementary evaluation yields that

min{p(Fx, Fy), p(x, Fx), p(y, Fy)} — min{&}, (x, Fy), &}, (Fx,y)}
< Hp(xy) —p(x,x)) +p(v,y),

forall x,y € S. Thus, we conclude that all hypotheses of Theorem 8 are fulfilled. On the other hand,

min{8,(T1, T2),8,(1, T1),6,(2, T2)} — min{6,(1,T2),6,(T1,2)}
=1-0=1>k=kdy(1,2),

for any k € (0,1). As a result, Corollary 1 cannot be applied to the complete metric space (S,8,). In fact,
it cannot be applied to (X, 8),), because 8y, = 8y, in this case.

Example 6 ([6]). Consider the set S = [1,00) equipped with a partial metric p : S x S — R with a definition
o(x,y) = max{x,y} forall x,y € S. We set a self-mapping F : S — S in a way that Fx = (x 4+ 1) /2 for all
x € S. As it is mentioned in Example 5, (S, p) is F-orbitally complete since it is already complete. In addition,
F is continuous with respect to T5,, and hence it is orbitally continuous.

In what follows we shall prove that F fulfills the contraction condition (55) for any k € (0,1). We consider
two distinct cases for x,y € S as follows:

Case 1. If x =y then

min{p(Fx Fy),p(x, Fx),0(y, Fy)} — min{d,(x, Fy), &) (Fx,y)}
x+1
)=1

< x:p(, x) =k((o(x,y) —p(x,x)) + 0y, y)

:mln{ x} (x—

Case 2. Suppose now x # y. Regarding the analogy, we presume only x > y. (Please note that the case
x < y is observed by verbatim.) We shall examine this case in two steps.
Step 1. If Fx > y, then

min{p(Fx, Fy), p(x, Fx), p(y, Fy)} — min{&},(x, Fy), o (Fx, y)}

= min{xT—i_l,x,y}—min{x—y—;1 el y}
x+1 x+1
= y-C5v=-—

< y=py) =k((e(xy) —p(x,x)) +py,y)-

Step 2. If Fx <y, we have

min{p(Fx,Fy) p(x, Fx),p(y, Fy)} — min{d},(x, Fy), 8h (Fx,y)}

= mm{ ,x,y} mm{xfyTH,yfx—gl}
x+1 x+1

= *(y* ) =x+l-y

< y=py) =k((p(xy) —p(x,x)) +p(y,y)-
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Consequently, all hypotheses of Theorem 8 are satisfied. In fact F possesses a (unique) fixed point, namely,
x=1

Now, we shall indicate that Corollary 1 cannot be applied to the self-map F and the complete metric space
(S,00). Indeed, given k € (0,1), choose x > 1 such that x +1 > 2kx, and let y = Fx. Then

min{é(Fx, Fy),do(x, Fx),é(y, Fy)} — min{dy(x, Fy), éo(Fx,y)}
x+1
2

= min{xTH,x} —min{x,0} = > kx = kpo(x,y).

As a result, the contraction condition (27) is not fulfilled.
The following theorem characterize Theorem 3 [1] in the setting of partial metric spaces.

Theorem 9. Suppose that F satisfies the inequality

min{p(Fx, Fy), p(x, Fx), p(y, Fy)} — min{&},(x, Fy), &}, (Fx,y)} 28)
<p(xy) —p(xx) +p(y,y),

forall x,y € S with x # y. If for some xo € S the sequence { F"xq} ,cw, has a cluster point z € S with respect
to Ty, then z is a fixed point of F.

Proof. We shall construct a sequence by starting with an point xg € S so that the sequence {x, 1 =:
F"xo}yen, has a cluster point x* € S with respect to 1,

If there is a non-negative integer g so that x,, = x;,,41, then x;,, forms a fixed point of F. Thus,
we presume then that x,, # x,,11 for each n € Ny.

By verbatim in the corresponding lines in Theorem 8, by substituting x = x,, and y = x,,41 in (28)
we derive

min{p(xy, Xu41), 0(Xnt1, Xns2) b < p(Xn, Xug1) — (%n, Xn) + p(X0 41, Xn11),

and substituting x = x,41 and y = x; in (28), we obtain

min{p(xy, Xu41),0(Xnt1, Xu42) b < (%, Xug1) — (Xnt1, Xnt1) + 0 (Xn, Xn)-

If p(x,,o,x,,oﬂ) < p(xnoﬂ,x,,OH) for some 1y € Ny, then, on account of the preceding two
inequalities we get p(Xg, Xny) < P(Xng41, Xngt1) and (X1, Xng11) < P(Xng, Xy ), respectively. It is
a contradiction.

Consequently p(xp, x,41) >  p(xy41,%442) for all n € Ny, and thus the sequence
{p(F"xo, F"x0) }nen, is convergent. Since {F"xq},en, has a cluster point x* € X with respect
to 75,, then there is a subsequence {F"ixo};cn, of {F"xo},en, which converges to x*. By the orbital
continuity of F we have F nitlyy — Fx*, so by Lemma 4,

lim p(F"xg, F*1xg) = p(x*, Fx*). (29)
1—»00

Therefore
lim o(F"xo, F"xg) = p(x*, Fx*). (30)
n—oo

Again, by the orbital continuity of F we have F"i*2xy — F2z with respect to 75, and hence

: n+1 n+2 _ * 2,0k
Jim p(F""xo, F""x0) = p(Fx", F*x"),

so
o(Fx*, F2x*) = p(x*, Fx*). (31)
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Assume Fx* # x*,ie., p(x*, Fx*) > 0. So, one can substitute x and y with x* and Fx*, respectively,
in (28) to deduce that
min{p(x*, Fx*), o(Fx*, F2x*)} < p(x*,Fx*),
which yields that p(Fx*, F2x*) < p(x*, Fx*). This contradicts the equality (31). Consequently we have
Fx*=x*. 0O

3.2. Pachpatte Type Non-Unique Fixed Points on Partial Metric Spaces

Inspired from the renowned Ciri¢’s theorems [1], Pachpatte proved in Theorem 1 [11] that if a
self-mapping F is an orbitally continuous on a F-orbitally complete metric space (S, §) such that there
is k € (0,1) with

min{[8(Fx, Fx)]?, 6(x,y)é(Fx, Fy), [6(Fy, y)|*}

— min{8(x, Fx)a(y, Fy), 8(x, Fy)d(y, Fx)} < ko(x, Fx)3(Fy, y) ¢2)

forall x,y € S, then for each xg € S the sequence {F"xg },cn, converges to a fixed point of F.

On the other hand, Pachpatte’s theorem does not yield a good framework for a possible application.
Indeed, under its conditions, if we denote a fixed point of F by x*, it follows that for eachy € S,
we have either Ty = x* or Ty = y. Indeed, let y # x* and suppose Ty # x*. Then from

min{[d(Fx*, Fy)|?, 6(x", y)6(Fx*, Fy), [6(y, Fy)|*}
—min{é(x*, Fx*)é(y, Fy),d(x*, Fy)d(y, Fx*)}
< ké(x*,Fx*)é(y, Fy),

it follows
min{[6(x", Fy)I?, 8(x*,y)3(x*, Fy), [6(y, Fy)]*} = 0.
Hence 6(y, Fy) =0, 1e.,y = Ty.
In what follows, we repair the contraction condition (32) so that the inconvenient case, pointed
above, is removed.
The function p’ defined on S x Sby p'(x,y) = p(x,y) — p(x,x) forall x,y € S, where p is a partial
metric on a set S. Please note that p’ = p, whenever p is a metric on S.

Definition 7. Let (S, p) be a partial metric space. The self-mapping F : S — S is called Pachpatte type
simulated if there exists k € (0,1) and { € Z such that

CUr(xy) = Ir(x,y), Ke(x,y)) > 0 (33)

forall x,y € S, where

Je(x,y) = min{[o’(x, Fx)]?, 0 (x,y)p ’(Fx Fy), [p' (v, Fy))*}
Ir(x,y) = {oh(x, Fx)d}, (%Fy) 5P( x, Fy) o (y, Fx)}
Ke(x,y) = kmin{o(x, Fx)o'(y, Fy), [p'(x,)]*},

Theorem 10. If F is a Pachpatte type simulated mapping, then for each xo € S the sequence {F"xo}nen,
converges with respect to T, to a fixed point of F.

Proof. As usual, we fix an arbitrary initial point xg € S and construct an recursive sequence {x, }new
as x,4+1 = Fx,, n €N

If there exists 19 € Ny such that x,, = x,,, 41, then xp, is a fixed point of F. Assume then that
Xp 7 X4 for each n € Np.

Substituting x = x, and y = x,,41 in (33) we find the inequality
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0 < CUr(xn Xuy1) — Ie(xn, Xni1), Kp(%n, Xp11))
< KF(xn/an) = [T (n, Xn41) — Ir(xn, X041,

where

Je(xn, xn11) = min{[p’ (xu, Fxu)]?, 0" (X, %n11)p" (F2n, Fxui), [p (1, Fn 1))}
IF(xn/ xn+1) = {5f1)1(xnr Fxn)5frr(xn+1/ Fxn+1)/ éﬁt(xn/ Fxn+1)‘sr€1(xn+1/ Fxn)}
Kp(xn, xp11) = kmin{p' (xnFxn)0 (X 11, Fxni1), [P (n, Xn41)1},

By a simple evaluation, we find that
min [ (e %110 (o 3000 (ot %2, [0 G, 22 o
< kmin{p’ (x, Xy 41) P’ (Xni1, Xn12), [0 (X, X 1))}
By (34) we deduce that
min{[p’ (xn, %n+1)1% P’ (0, 210 (n1, Xn2), [P (X1, Xus2) ]2}
= [0 (xns1, %012) ]2,

and hence
p/(xn+1/ xn+2) < kp/(xn/ xn+1)/

for all n € Ny. Accordingly, we find
0 (X, Xp1) — p(xn, x0) < K" (p(x0, x1) — p(x0,%0)),

for all n € N. By verbatim of Theorem 8, we conclude that {xn}neNo is a fundamental sequence in
(S, p). Since (S, p) is F-orbitally complete and x, = F"xq for all n, there is x* € S such that x,, — x*
with respect to 7;,. On account of the orbital continuity of F, we derive that x, — Fx*. As a result
x* = Fx* which concludes the proof. 0O

Regarding Example 1 (i), we conclude the following result from Theorem 10.
Theorem 11. If there is k € (0,1) such that
Jr(x,y) — Ir(x,y) < Kp(x,y) (35)
forall x,y € S, where

Je(x,y) = min{[o’(x, Fx)]%, 0'(x,y)0' (Fx, Fy), [p' (v, Fy)]*}
Ir(x,y) = {0 (x, Fx)8h(y, Fy), S (x, Fy) S (y, Fx)}
Kr(x,y) = kmin{p'(x, Fx)p'(y, Fy), [p'(x,y)]*},

then for each xo € S the sequence {F"xo},en, converges with respect to T, to a fixed point of F.
Corollary 2. If there is k € (0,1) such that
min{[8(x, Fx)I%, 6(x,y)8(Fx, Fy), [8(y, Fy)*}
—min{é(x, Fx)é(y, Fy), 6(x, Fy)é(y, Fx)} (36)
< kmin{5(x, Fx)(y, Fy), [0(x )12},

orall x,y € S, then the iterative sequence { F"xy },en,, initiated by an arbitrary point xy € S, converges to a
y q 0 Y Ty p 8
fixed point of F.
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Remark 1. Consider an orbitally continuous self-map F defined on a complete partial metric space (S = R, p)
with p(x,y) := max{x,y}. If Fx < xforall x € S, then it possesses a fixed point Notice that a mapping F with
Fx < xyields p’(x, Fx) = 0 for all x € S. Accordingly, the condition (35) in Theorem 11, is fulfilled trivially.

In what follows we state an illustrative example where Theorem 11 can be applied but not
Corollary 2 for any of the metrics d,, b, and 8.

Example 7. Suppose that F is an orbitally continuous self-map defined on a complete partial metric space
(S =Rg, p) with p(x,y) := max{x,y}. Consider F : S — Sby Fx = 0ifx < 2and Fx =x —1ifx > 2.
Please note that F is orbitally continuous. Indeed, for each x € S, the sequence F"'x — 0 with respect to Ty,
and FO = 0. In addition, on account of Remark 1 the inequality (35) is fulfilled. Consequently, all hypotheses of
Theorem 11 are held.

Consider x > 3 and y = Fx. Thus, we have x —y = 1, and y > 2. Accordingly we find

min{[ép(x, Fx)}zr zSP(x,y)(SP(Fx, Fy), [(5p(y, F]/)}z}
—min{d,(x, Fx)d,(y, Fy), 6p(x, Fy)dp (v, Fx)}
=min{1,(x —y)%,1} -0=1
= min{0,(x, Fx)3p (v, Fy), [0, (x, )12}

As a result, condition (36) is not held for any k € (0,1), so we cannot apply Corollary 2 to (S, d,) (and
thus to (X, 05,) and the self-map F.
As a final step, for k € (0,1), choose x > 3 with x > 1/(1 — k), and y = Fx. Then

min{ [o(x, Fx)]2, 6 (x, y)do(Fx, Fy), [6o(y, Fy)]*}
—min{do(x, Fx)do(y, Fy), do(x, Fy)do(y, Fx)}
= min{x?,x(x — 1), (x = 1)2} =0 = (x — 1)?
> kx(x—1)
= kmin{dy(x, Fx)d(y, Fy), [60(x, y)]*}.

Consequently, we cannot apply Corollary 2 to (S, 8y) and the self-map F (note that, in fact, F is orbitally
continuous for (X, p)).

4. Non Unique Fixed Points on b-Branciari Distance Space

In this section, we shall consider a distance function which is not a generalization of a metric.
Indeed, when Branciari [29] suggested a new distance function by replacing the axiom of the triangle
inequality in a standard metric definition with another variant, the axiom of the quadrilateral inequality,
he aimed at getting an extension of a standard metric. As it can be seen in the upcoming lines, Branciari
distance is completely different and incomparable with metric.

For the sake of completeness, we recollect the definition of a Branciari distance here.

Definition 8. (See e.g., [30]) For a nonempty set S we define a functionb : S x S — [0, c0)

(b1)  b(z,w) = 0if and only if z = w(selfdistance/indistancy)

(02) b(z,w) = b(w, z)(symmetry) (37)
(b3)  b(z,w) < b(z,u) +b(u,v) + b(v, w) (quadrilateral inequality),

forall z,w € S and all distinct u,v € S\ {x,y}. We say that b is a Branciari distance (or rectangular metric,
or generalized metric, or Branciari metric). The pair (S, b) is called a Branciari distance space and abbreviated
as “BDS”.

Notice that in some publication, Branciari distance space was named as “generalized metric
space”. However the phrase “generalized metric” was used to identify several extensions of the
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standard metric (see e.g., [29,31—44]). Based on this discussion, we shall use “Branciari distance” to
avoid the confusion.

In what follows we recollect the basic topological concepts in the framework of Branciari
distance spaces.

Definition 9. (See e.g., [30])

1. A sequence {x,} in a Branciari distance space (S, b) converges to a limit x* if and only if b(x,, x*) — 0
as n — oo,

2. we say that a sequence {x, }, in a Branciari distance space (S, b), is fundamental if and only if for any
given € > 0 there exists positive integer N (e) such that b(xy, xm) < € forall n > m > N(e).

3. We say that a Branciari distance space (S, b) is complete whenever each fundamental sequence in S
is convergent.

4. Amapping H : (X,b) — (X, ) is continuous if for any sequence {x, } in S such that b(x,,x) — 0 as
n — oo, we have b(Hxy,, Hx) — 0as n — oo.

We underline the fact that despite the high similarity in the definitions of the basic topological
in the framework of Branciari distance space, the topology of Branciari distance space is not
compatible with topology of the standard metric space. These difference shall be indicated in the
following example.

Example 8. (cf. [37,45]) Let z1, 23, z3 be distinct real numbers such that z1,zp,z3 > 2. Set S =Y U Z where
Z ={0,z1,2z3,z3} and Y = {n%ﬂ : n € N}. We investigate the function b : S x S — [0,00) which is
defined by
0, ifx=y,
b(x,y) =< 1, ifx#yand [{xy} CYor{xy}CZ,
y, ifxeY,yeZ

We have b(y,z) = b(z,y) = z whenever y € Y and z € Z. and (S, b) is a complete Branciari distance
space. Notice that the statements (P1)—(P4) are fulfilled:

1 1 1 1
1= 0, we have nlglgo h(m, 5) #b(0, E)' Thus, the function b is not continuous:

(p1) Since 1211 "
n—oo
(p2) Thereis nor > 0 such that B,(0) N B,(z;) = @ for i = 1,2,3 and hence it is not Hausdorff.
(p3) It is clear that the ball B% (1) =10,%,21,25, 23} since there is no r > 0 such that B,(0) C B% (1), ie.,
open balls may not be an open set.

(p4) The sequence {nzl+1 :n € N} converges to 0, z1, zp, z3 and hence not fundamental.

It is easily concluded that the differences between quadrilateral inequality and the triangle
inequality lead to these significant differences between the topologies of the standard metric space and
Branciari distance space. In brief, the following statements express the weakness of the structure of
Branciari distance topology:

(p1) Branciari distance is not continuous, (see e.g., Example 8)

(p2) The limit in a Branciari distance space is not necessarily unique (i.e., it is not a Haussdorf, see
e.g., Example 8)

(p3) open ball need not to open set, (see e.g., Example 8)

(p4) a convergent sequence in Branciari distance space needs not to be fundamental.
(see e.g., Example 8)

(p5) the mentioned topologies are incompatible (see e.g., Example 7 in [44]).

Lemma 5. (Seee.g., [36,37]) Let {x, } be a fundamental sequence in a Branciari distance space (S, b). If x,, #
Xy whenever m # n, then the sequence {x, } converges to at most one point.
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Later, regarding the well-known b-metric, defined by Czerwik [46] the notion of Branciari distance
is refined as b-Branciari distance (See e.g., [47]).

Definition 10. For a nonempty set S, we consider a function o : S x S — [0, 00) so that

(b1) o(x,y) = 0ifand only if x = y(indistancy)
(b2) o(x,y) = o(y, x)(symmetry) (38)
(b3) o(x,y) <slo(x,u) +o(u,v)+o(v,y)] (modified quadrilateral inequality),

forall x,y € S and all distinct u,v € S\ {x,y}. Then, we say that o is a b-Branciari distance (or b-rectangular
metric, or b-Branciari metric, or b-generalized metric). In addition, the pair (S, 0) is named as a b-Branciari
distance space and abbreviated as "b-BDS”.

In what follows, we derive the characterization of fundamental topological notions (that we need
in the sequel) in context of b-Branciari distance spaces (See e.g., [8]).

Definition 11.

1. Asequence {xy} in a b-Branciari distance space (S, o) is convergent to a limit x if and only if o (x,, x) —
O0asn — co.

2. A sequence {x,} in a b-Branciari distance space (S, o) is fundamental (or, Cauchy) if and only if for
every € > 0 there exists positive integer N(€) such that o (x,, x,,) < € foralln > m > N(e).

3. A b-Branciari distance space (S, ) is called complete if every fundamental sequence in S is b-Branciari
distance space convergent.

4. Amapping H : (X,0) — (X, 0) is continuous if for any sequence {x, } in S such that o(x,,x) — 0as
n — oo, we have o(Hxy,, Hx) — 0as n — oo.

As is mentioned above, the topology of Branciari distance space has difficulties (p1)-(p5), and these
weakness are hereditarily valid for the topology of b-Branciari distance space. It is easy to see that
Example 8 can be modified for b-Branciari distance space to indicate that the same problems holds for
the topology of b-Branciari distance space (see e.g., [47]).

Now, we propose the following proposition that helps to simplify the upcoming proofs.

Lemma 6 ([8]). Ifa sequence {x,} in (S,0) is Cauchy with x,, # x, whenever m # n, then the sequence
{xn} can converge to at most one point.

We consider the characterization of some basic but crucial topological notions in the context of
b-BDS.

Definition 12. Let (S, ) be a b-Branciari distance space and H be a self-map of S.

1. H is called orbitally continuous if

lim H"x =z 39)
1—00
implies
lim HH"ix = Hz (40)
1—00

foreach x € S.

2. (8,0) is called orbitally complete if every Cauchy sequence of type { H" x};cn converges with respect
to 1.

We say that x* is a periodic point of a function H of period m if H" (x*) = x*, where H" (x) =
H(H"(x)) form € Nand H(x) = x.
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In the following lines, we examine some non-unique fixed point results in the context of b-BDS.
The presented results not only improve, extend several results in the corresponding literature, but also
enrich them.

Henceforward, the couple (S, o) represent b-Branciari metric space. The letter H be an orbitally
continuous self-map on b-Branciari metric space- (S, ¢) with s > 1. In all upcoming result, we assume
that b-Branciari metric space- (S, 0) is orbitally complete. Avoiding from the repetitions, we shall not
indicate the above assumptions to all theorems, corollaries and lemmas.

4.1. Ciri¢ Type Non-Unique Fixed Point Results

Definition 13. A self-mapping H : S — S is called -Ciri¢ type simulated if there exist { € Z and ¢ € ¥
such that

Pu(x,y) < ¢(o(x,y)), (41)
forall x,y € S, where

P (x,y) := min{o(Hx, Hy),o(x, Hx),o(y, Hy) } — min{c(x, Hy), c(Hx,y)}

Theorem 12. If a mappings H is -Cirié type simulated, then for each xo € S the sequence {H"xo}nen
converges to a fixed point of H.

Proof. Starting from an arbitrary point x € S, we shall built an iterative sequence {x,} in the
following way:

xo:=xand x, = Hx,,_4 foralln € N. (42)

We suppose that
Xp # X1 foralln € N. (43)
Indeed, if for some n € N we have the inequality x, = Hx,_; = x,_1, then, the proof

is completed.
By substituting x = x,,_1 and y = x; in the inequality (44), we derive that

Prr(x—1,%n) < (0 (Xn—1,%n)), (44)

where
PH(xn—l/ xn) = mm{U(Hxn—ll Hxn)/ U(xnfl/ Hxnfl)/ U(xn/ Hxn)}
—min{o(x,_1, Hxy),0(Hx,_1,%4)}

After an elementary calculation, we find that

min{o(Hx,_1, Hxy), 0 (x,—1, Hxy—1),0(xn, Hxy) }
—min{o(x,_1, Hxy), 0 (Hx,_1,xn)} (45)
< (o (xn-1,%n))-

It implies that
min{o(xu, Xy11), 0 (X, Xy—1)} < P(0(xp—1, %)) (46)

Due to property of ¢(t) < t for all t > 0, we find that the case o (x,, x,—1) < (0 (x;—1,x,)) is nOt
possible. Accordingly, we get

a(xn, xp11) < P(o(x0-1,%0)) < 0(xp-1,%n)- (47)

Iteratively, we find that

(X0, Xpi1) < P(o(xXu—1,%0)) < ¢2(‘7(xn72/ Xp-1)) <o <YM (o(x0,%1))- (48)
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Taking (47) into account, we find that the sequence {c(x, X, +1)} is non-increasing.
Since, for any t € [0,00), ILm Y"(t) = 0, and ¢(t) < t fort > 0, the Archimedean property
n—oo
implies thar there exista g € [0,1) and a M € N such that

¢*(t) <" -tands-gF < 1foreachn > M. (49)
In what follows we prove that the sequence {x, } has no periodic point, i.e.,
Xn # Xyap forall (k,n) € N x No. (50)
Actually, if x,, = x,,x for some n € Ny and k € N, we find
X1 = Hoxy = HXppf = X1
Regarding (47) and (55), we find that

0 (xn, xp41) = min{o(Hx,_1, Hxy),0(xy-1, HXy—1),0(xn, Hxy) }
—min{o(x,_1,Hxy),0(Hx,_1,%n)}

= min{o(Hx, k1, Xy k), 0 (X k1, Hxp 1), 0 (en, Hxyy)
—min{o(x, k-1, H¥p k), 0(HXp k-1, Xn k) } (61)

S Yo (k-1 X))
< 1/Jk71 (0(xn, Xn41)) < 0(Xn, Xny1),
a contradiction. Based on the discussion above, we presume that
Xn # Xy for all distinct n,m € N. (52)

Observe that x,, 4 7# X4 for all distinct n,m € Nand x,,1, X1k € S\ {Xn, X }-
Now, we assert that the sequence {x,} is fundamental. The modified quadrilateral inequality
together with (48) and (49) yields that

U'(xmr xn) <s [U'(xm/ xm+k) + ‘T(xm+kr x71+k) + U(x11+k’ xﬂ)]
< sy (0 (x0, x¢)) + sY* (0 (X, xu)) + 59" (7 (xk, X0)) (53)

< sp™(0(x0, X)) + 54" - 0 (Xm, xu) + 59" (0(xk, X0)).-

After a routine calculation, we get that

(9" (e (x0, i) + 9" (0 (x, %0))]- (54)

(X, xn) < oo
Since nlgrc}o P"(t) =0, for any t € [0,00), (54) implies that o (x,,, x,) — 0as n,m — co. As a result,
{xn} is a fundamental sequence in b-Branciari distance space (S, o).
Here, H-orbitally completeness implies that there is x* € S such that x, — x*. On account of the
orbital continuity of H, we find that x, — Fx*. On the other hand, Lemma 6 leads to x* = Fx* which
terminates the proof. [J

Regarding Example 1 (i), we conclude the following result from Theorem 12.
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Theorem 13 ([8]). If thereis ¢ € Y such that
min{o(Hx, Hy), o(x, Hx),o(y, Hy)} — min{o(x, Hy), o(Hx,0)} < p(o(x,),  (55)
forall x,y € S, then for each xg € S the sequence { H"xq } ;e converges to a fixed point of H.
Corollary 3. If there is q € [0,1) such that
min{c(Hx, Hy),o(x, Hx),o(y, Hy) } —min{c(x, Hy),oc(Hx,y)} < qo(x,y), (56)
forall x,y € S, then for each xg € S the sequence { H"x } ;e converges to a fixed point of H.
Proof. Employing Theorem 13 for ¢(t) = qt, where g € [0, 1), yields the desired result. [

Example 9 ([8]). Let S = AU B where A = {ay,ay,a3,a4} and B = [1,2] with AN B = @ and each a;
distinct from a;, whenever i # j. Define d : S x S — [0,00) such that o(x,y) = o(y, x) forallx € S,

1

o(ay,a3) =1, o(ay,a2) = o(az,a3) = 7
1

o(ay,a5) = 0(ap,a5) = (a3, a3) = Y
1
16"

o(x,y) = |x — y|* for any other case.

o(a,b) = foralla € A,b € B, and,

Here, (S, o) forms a complete b-Branciari distance space (S, ) with s = 2. However, o is not a Branciari
distance. In addition, o is neither a metric, nor b-metric. Define a mapping H : X — X as

f(a1) = f(az) = a; and f(a3) = f(ay) = agand f(b) = a; forallb € B.

Thus H fulfills all hypotheses of Theorem 13 for any choice of . Please note that H has two distinct fixed
points, namely, ay and az.

4.2. Cirié-Joti¢ Type Non-Unique Fixed Point Results

Definition 14. A self-mapping H : S — S is called -Cirié-Joti¢ type simulated if there exist { € Z and
¢ € ¥ such that

{(Pr(x,y) —aQu(x,y), ¥(Ru(x,y))) 20, (57)
forall x,y € S,, where
_J o(Hx, Hy),o(x,y),0(x, Hx),o(y, Hy), %W
PH(X, ]/) = min o(y,Hy)[1+0(x,Hx)] min{o?(Hx,Hy),0?(x,Hx),0>(y,Hy)} 4
T+o(xy) ! Po(xy))

Qu(xy) =min{o(x,Hy),o(y, Hx)},
R(x,y) =max{c(x,y),o(x,Hx)}.

Theorem 14. Ifa mappings H is y-Cirié-Joti¢ type simulated, then for each xg € S the sequence {H"xo }nen
converges to a fixed point of H.
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Proof. By verbatim of the proof of Theorem 12, we shall built an recursive sequence {x, = Hx,_1 },eN
by starting from an arbitrary initial value xp := x € S. Recalling the discussion in the proof of
Theorem 12, we presume that any adjacent terms are distinct from each other, i.e.,

Xy # X, foralln € N.
Letting x = x,,_1 and y = Hx,,_; = x;, in the inequality (57), we derive that

0< Z(P(xy—1,%n) —aQ(xy—1,%n), P(R(xn—1,%u)))
< P(R(xp-1,%n)) = [P(xn—1,Xn) — aQ(xn—1,Xn)],

which yields that
P(xnfl/ xn) - aQ(xn—l/ xn) < lIJ(R(xnfl/ xn))r (58)

where

Q(xy—1,xn) = min{o(xy—1, %p41), 0(Xn, x4)} =0,

R(xy-1,%n) = max{o(x,_1,%n),0(Xy_1, %)} = 0(Xy_1,%n).
and

0 (X, X0 11), 0 (Xn—1,Xn), 0 (X1, Xn), 0 (X, Xpi1),
a(xp-1, %) [1+ 0 (xXn, X 11)]
1+ 0(xy-1,Xu) ’
P(x,_1,x%,) = min

U(xn/ xn+1)[1 + U(Xn,l, xn)]
1+ 0 (xp-1,%n)

’

min{o?(xy, Xp41), 02 (X1, %n), 02 (X, Xpi1) }

(o (xn—1,%n))

0 (Xn, Xp41),0(Xp—1,%n),

0 (xp—1,X0)[1 4+ 0(xn, Xp41)]
= min 1+ U(xn—lr x?l)

’

o (X s Xn41 )
$(o (X1, %))
We examine the inequality (58) regarding the possible cases in P(x,_1,X,). On the other hand,
the case P(x,_1,%,) = 0(x,_1,x,) is impossible. Indeed, if it would be the case the inequality (58)

turns into

o(xn—1,2n) < P(o(xn_1,%n)) < o (xp—1,%n),
since i(t) < t for all t > 0. Thus, we observe that
0 (Xn, Xn41) < 0(Xn—1,Xn)-

Consequently, the inequality (58) yields the following three cases:
02 (%, Xns1)

, then the inequality (58) turns into
9@ 1,%) uality 8)

If P(xn—l/xn) = U(xn/anrl) or P(xn—lzxn) =

U(Xn, xn+1) < lp(”(xn—lx xn)) (59)
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If P(xy_1,%y) = a(xn,ll, J-:’¢)7[(1x+ ‘I(Z')xnﬂ )l , then the inequality (58) becomes
n—1r

T (xn-1,%n)[1+0(xn, % 1)) < P(0 (01, %0)) [1 + 0 (-1, %n)]
= (o (xn1,%n)) + (0 (Xn—1,%0))0 (Xn1,%n) -
<O (xn-1, %) + Y(0 (01, %0)) 0 (Xn -1, %n)

The required simplification implies the (59). Consequently, for any choice of P(x,_1,xy),
the inequality (58) yields (59). Iteratively, we find that

o(xp41,Xn) < P(0(xn, Xp-1)) < 0 (xn, Xn-1),

and hence
o(Xnt1,20) < P"(0(x1,%0)),

foralln € N.
Thus, the sequence {o(x,, x,+1)} is non-increasing. As a next step, we claim that the sequence
{xn} has no periodic point, i.e.,

Xn # Xyax forall (k,n) € N x Ny. (60)
Indeed, if x;, = x,,, for some n € Ny and k € N, we find
Xp41 = Hxpy = Hxp g = Xyppp1-

Based on the discussion above, we have P(x,_1,x,) = 0(xy, X,,4+1). Thus, by taking the inequality
(47) and (55) into account, we find that

U(xn/xn+l) = P(xn,l,xn) - aQ(xnflxxn) < ¢(R(xn71/xn))/

< PR k-1, Xnrk)),s

(61)
< (o (k-1 Xn4k))
< Yo (en, Xng1)) < 0 (n, Xn 1),
a contradiction. Attendantly, we have
Xn # X for all distinct n,m € N. (62)

By following the related lines in the proof of Theorem 12, one can complete the proof.

Regarding Example 1 (i), we conclude the following result from Theorem 14.

Theorem 15 ([8]). Assume that there exist € ¥ and a > 0 such that

P(x,y) —aQ(x,y) < p(R(x,y)),
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for all distinct x,y € S where
o(Hx, Hy),o(x,y),0(x, Hx),o(y, Hy),

o(x, Hx)[1+o(y, Hy)| o(y, Hy)[1 + o(x, Hx)]
P(x,y) =min 1+0(x,y) ’

’

1+0(x,y) ,

min{c?(Hx, Hy),o?(x, Hx),o?(y, Hy) }
p(o(x,y))

Q(xy) = min{e(x, Hy), oy, Hx)},
R(x,y) =max{c(x,y),c(x, Hx)}.
Then, for each xo € S the sequence { H" xo } ;e converges to a fixed point of H.
Corollary 4. Assume that there exist q € [0,1) and a > 0 such that
P(x,y) —aQ(x,y) < qR(x,y),

for all distinct x,y € S where P(x,y), Q(x,y), R(x,y) are defined as in Theorem 15 Then, for each xy € S the
sequence { H"xg } ,en converges to a fixed point of H.

Corollary 5. Assume that there exist q € [0,1) and a > 0 such that
min{c(Hx, Hy),0(x,y),0(x, Hx), 0 (y, Hy)} — aQ(x,y) < qR(x,y),

forx,y € Swhere Q(x,y), R(x,y) are defined as in Theorem 15 Then, for each xo € S the sequence { H"x¢ }pen
converges to a fixed point of H.

Corollary 6. If there exists k, p € [0,1) withk+ p < 1and a > 0 such that
min{o(Hx, Hy),o(x,), o(x, Hx), o(y, Hy)} — aQ(x,y) < ko(x,y) + porx, H)

for x,y € S where Q(x,y),R(x,y) are defined as in Theorem 15, then, for each xo € S, the sequence
{H"x0},en converges to a fixed point of H.

Definition 15. A self-mapping H : S — S is called weakly-p-Cirié-Jotié type simulated if there exist { € Z
and ¢ € ¥ such that

{(P(x,y) —aQ(x,y), p(R(x,y))) 2 0, (63)
forall x,y € S, where

oc(Hx, Hy),o(x,y),0(x, Hx),o(y, Hy),

o(x, Hx)[1+o(y, Hy)] o(y, Hy)[1+ o(x, Hx)]
PH(x, y) = min 1+ U'(x,y) ’

’

1+0(xy) ,

min{c?(Hx, Hy),o?(x, Hx),o?(y, Hy)}
P(o(x,y))

Qu(x,y) = min{o(x, Hy),o(y, Hx)},

R(x,y) =max{c(x,y)0(x,Hx)},
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with R(x,y) # 0.

Theorem 16. If a mappings H is weakly-y-Cirié-Jotié type simulated, then for each xo € S the sequence
{H"x0},en converges to a fixed point of H.

Proof. We use the same construction as in Theorem 12 to get an iterative sequence {x, = Hx,_1 },en,
with an arbitrary initial value xp := x € S. Repeating the same arguments in the proof of Theorem 12,
we derive that adjacent terms of the sequence {x, } are distinct, i.e.,

Xpn # X, foralln € N.
For x = x,,_1 and y = x;, the inequality (80) infer that

0 < g(K(xn—l/xn)) - IlQ(anl,xn), lp(s(xnflrxn)))

64
< P(S(Xam1,20)) = (a1, %)) — 0Q (1, %) ©
It yields that
K(xnfl/ xn)) - uQ(xnflrxﬂ) < 1/J(S(x,,,1,xn)), (65)
where
K(xy—1,x4) = min{o(Hx,_1, Hxy),0(xn, Hxy)} = 0(xXn, X541),
Q(xp—1,x1) = min{o(x,_1, Hxy)o(xy, Hx,_1)} =0,
S(xnflrxn) :min{a(xn 1/xn) (xn—erxn—l)/U(xn/Hxn)}
= min{o(x,_1,%xn),0(xn, Xp41) }-

Since Y(t) < t for all t > 0, the case S(x,,_1,x,) = 0(xp, x,11) is impossible. More precisely, it is
the case, the inequality (65) turns into

0 (Xn, Xng1) < Yo (X, Xpp1) < (X, Xnt1),
a contradiction. Hence, the inequality (65) yields that
(xn, xp11) < Po(xy-1,x0) < 0(xy-1, %) and o (xy, xp41) < P"0(x0,x1)

foralln € N.
Hence, we conclude that the sequence {¢(x, x,,+1)} is non-increasing. On what follows that we
show that the iterative sequence {x; } has no periodic point, i.e.,

Xn # X4 forallk € Nand for all n € Np. (66)
Indeed, if x,, = x,,. for some n € Ny and k € N, we have x,,,1 = Hx, = Hx;, x = X, 1. Based
on the observations above, we obtain that K(x;,,_1, x,) = 0(xy, x,,4+1). Consequently, the inequality (66)
and (80) implied that
U(x;1/ xn+1) = K(xn—l/ xn) - ”Q(xn—lr xn) < lp(s(xn—ll xn))/
< lP(S(anrk,l, xn+k) )/
(67)

S P(o(Xppk—1, Xntk))

< l/’k71 (0(xn, Xu41)) < 0(Xn, Xny1),
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which is a contradiction. Hence, we assume that
Xn 7 Xy for all distinct n, m € N. (68)
A verbatim repetition of the related lines in the proof of Theorem 12 completes the proof. [
On account of Example 1 (i), we conclude the following result from Theorem 16.
Theorem 17 ([8]). Suppose that there exists i € ¥ and a > 0 such that
K(x,y) — aQ(x,y) < ¥(S(x,y)), (69)
for all distinct x,y € S where
K(x,y) =min{c(Hx, Hy),o(y, Hy)},
Q(xy) = min{c(x, Hy),o(y, Hx)},
S(x,y) =max{c(x,y),o(x,Hx),0o(y,Hy)}.
Then, for each xg € S the sequence {H"x( } ,eny converges to a fixed point of H.
Corollary 7. If there exists q € [0,1) and a > 0 such that
K(x,y) =aQ(x,y) < 45(xy),

for all distinct x,y € S where K(x,y), Q(x,y), S(x,y) are defined as in Theorem 17, then, for each xo € S the
sequence { H"xq } ,en converges to a fixed point of H.

Corollary 8. Suppose that there exists k, p,r € [0,1) withk + p +r < 1and a > 0 such that
K(x,y) —aQ(x,y) < ko(x,y) + po(x, Hx) 4+ ro(x, Hx)

for x,y € S where K(x,y), Q(x,y) are defined as in Theorem 17 Then, for each xo € S the sequence { H"xo } yen
converges to a fixed point of H.

4.3. Achari Type Non-Unique Fixed Point Results
Definition 16. A self-mapping H : S — S is called y-Achari type simulated if there exists { € Z and p € ¥

such that A B
(ALY () >0 70

orall x,y € S, where
y

A(x,y) =min{oc(Hx, Hy)o(x,y),0(x, Hx)o(y, Hy)},
B(x,y) =min{o(x,Hx)o(x,Hy),o(y, Hy)o(Hx,y)},
C(x,y) = min{c(x,Hx),c(y, Hy)},

with C(x,y) # 0.

Theorem 18. If a mappings H is y-Achari type simulated, then for each xoy € S the sequence {H"xo},en
converges to a fixed point of H.
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Proof. By following line by line the proof of Theorem 12, we construct an iterative sequence {x, =
Hxy_1}yen, starting from an arbitrary initial value xp := x € S. Regarding the discussion in the proof
of Theorem 12, we know that the terms of the sequence {x,} are distinct, i.e.,

Xy # X, foralln € N.
Taking the inequality (79) into account, by letting x = x,,_1 and y = x, in, we attain that

A(xn—lr xn) - B(xn—]/ xrl)

<
0 < g( C(xnflrxn) /4’(0(x11—1/xn)))
1)
A(xu-1,%n) = B(xn—1,%n)
<p(o(xp_1,%1)) — ,
l/J( ( n—1 rt)) C(Xn_1,xn)
which implies that
A(xnfl/ xn) - B(xn—l/ xn)
< P(o(xy—1,%n)),
C(xn—llxn) _l[i( ( n—1 n))
where
A(xnfll xn) = min{g(Hxn—l/ Hxn)U Xn—1, xn)/ ‘T(xn—ll Hxn—l)g(xn/ Hxn)}/
B(xy—1,%;) = min{o(x,_1, Hx,—1)o(xy_1, Hxn), 0 (xn, Hxy)o(Hx,—1,x0)},
C(xp—1,xn) =min{o(x,_1, Hx,_1),0(xy, Hxy)}.
On account of b-BDS, we simplify the above the inequality as
o (xn, Xn41)0 (Xn—1,Xn)
. < P(o(xy-1,Xn)). 72
(e (61, )0 o, )] = ) 7

Notice that for the case min{c(x,_1, ), 0(xn, X44+1) } = 0(xn, X;111), the inequality (72) turns into
o(xp-1,Xn) < P(0(x4-1,%n)) < 0(xp-1,Xn),
a contraction (since () < t for all t > 0). Accordingly, we conclude that
0 (xn, Xnp1) < P(0(X0-1,%0)).
Recursively, we get
o (xtn, Xn 1) < P(0(Xn1,2n)) < Y0 (X2, x0-1)) < -+ < P7(0(x0, 21))- (73)
Due to definition of comparison function, we have
74liﬁngo<7(xﬂ+1,x,,) =0.
Furthermore, one can easily show that the sequence {x,} has no periodic point, i.e.,

Xn # Xya forallk € Nand for all n € Ny. (74)

Indeed, if x;, = x, 44 for some n € Ny and k € N, we get x,,4.1 = Hx, = Hx,pp = Xpph41-
On account of (73), we derive that

7 (xn, Xn1) = O (s Xnkr1) < Y0 Con, K1) < C(n, Xs1), (75)
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a contradiction. Accordingly, we suppose that
Xn 7 Xy for all distinct n, m € N. (76)

A verbatim repetition of the related lines in the proof of Theorem 12 completes the proof. [

On account of Example 1 (i), we conclude the following result from Theorem 18.
Theorem 19 ([8]). Suppose that there exists i € ¥ such that

Alxy) = Bxy) _

Ly Y <vloty), )

forall x,y € S, where

A(x,y) =min{oc(Hx, Hy)o(x,y),0(x, Hx)o(y, Hy)},
B(x,y) =min{o(x, Hx)o(x,Hy),o(y, Hy)o(Hx,y)},
C(x,y) = min{o(x,Hx),o(y, Hy)}.

with C(x,y) # 0. Then, for each xo € S the sequence { H"xo },cn converges to a fixed point of H.

Corollary 9. Suppose that there exists p € ¥ such that

AL ZEEN) < p(o(x,y)), (78)

forall x,y € S, where A(x,y),B(x,y),C(x,y) are defined as in Theorem 19. Then, for each xy € S the
sequence { H"xg } nen converges to a fixed point of H.

The following is an immediate consequence of Theorem 19 by letting ¢(t) = gt, where g € [0,1).
Corollary 10. Suppose that there exists q € [0,1) such that

Al < go(x,y), 79)

forall x,y € S, where A(x,y),B(x,y),C(x,y) are defined as in Theorem 19. Then, for each xy € S the
sequence { H"xo } ey converges to a fixed point of H.

4.4. Pachpatte Type Non-Unique Fixed Point Results

Definition 17. A self-mapping H : S — & is called p-Pachpatte type simulated if there exists { € Z and
Y € Y such that

C(m(x,y) —n(x,y), ¢(o(x,y))) =0, (80)
forall x,y € S, where

m(x,y) = min{[d(Tx, Ty)|%, d(x,y)d(Tx, Ty), [d(y, Ty)]*},
n(x,y) = min{d(x, Tx)d(y, Ty),d(x, Ty)d(y, Tx)}

Theorem 20. If a mappings H is {-Pachpatte type simulated, then for each xo € S the sequence { H"xq }pen
converges to a fixed point of H.

Proof. Again by following line by line the proof of Theorem 12, we construct an iterative sequence

{xn = Hx,_1},en wWhose terms are distinct from each other, by starting from an arbitrary initial value
xp:=x€S.
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Taking the inequality (87) into consideration by letting x = x,,_1 and y = x,,, we find that

0 < Z(m(xy—1,x0) —n(xy—1,xn), P(o(xy_1, Hxy_1)o(xn, Hxy)))
< (o (xp—1, Hxy-1)0 (xn, Hxn)) — m(xp—1, Xn) — n(xy-1, %),

which yields that
m(xpy—1,%n) — 1(xXp—1,xn) < (0 (xy-1, HXy—1)0(x0, Hxy)), (81)
where
m(xp_1,%,) = min{[o(Hx,_1, Hx,)]?, o(xy_1, xn)0(Hx,_1, Hxy), [0(xn, Hxn)]?},
n(xp-1,%n) = min{o(x,—1, Hxy_1)0(xn, Hxy), o (xp-1, Hxn)o (xn, Hxy-1)}-

By simplifying the inequality above inequality, we find that
m(xn-1,%n) < P(0(Xn—1,%n)0(Xn, Xn 1)), (82)

where
m(xnflz xn) = min{ [U(xn/ Xp+1 )]2/ U(xn—lz Xn )a(xn/ Xn41 ) }
It is clear that the case

m(xp—1,%n) = 0 (Xn—1,Xn)0(Xn, Xp+1)
is not possible. If it would be the case, the inequality (83) turns into
o (xn—1,%0)0 (X, Xn41) < P(0(xp—1, %) 0 (Xn, Xn4+1)) < T(Xn-1, X0 )0 (Xn, Xp41), (83)

a contraction (since () < t for all t > 0). Consequently, we derive

[o(xn, xn+1)}2 S P(o(xn—1, %) 0 (X, Xpy1)) < 0 (X1, %) 0 (Xn, Xp11), (84)

which yields
(X, Xnp1) < 0(Xn—1,%n)- (85)

Regarding the fact that ¢ is nondecreasing, and combining the inequalities (84) and (85), we
obtain that

[o-(en, 20 41)1 < (0 (n1, 20) 0 (n, Xn1)) < P[0 (xn-1, 20) 1), (86)
Iteratively, we get that
(oo, 2n1)? < ([0 (1, 20)]?) < 92 ([0 (Xn-2,x0-1)7) < -+ < Y"([o(x0,x1) ).

Hence, we have

J%[U(xn+1,x,1)]2 =0 < }grgoa(xn+1,xn) =0.

The rest of the proof is a verbatim repetition of the related lines in the proof of Theorem 12.
|

Due to Example 1 (i), Theorem 22 yields the next result.
Theorem 21 ([8]). Suppose that there exists 1 € ¥ such that

m(x,y) —n(x,y) < ¢(o(x, Hx)o(y, Hy)), (87)
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forall x,y € S, where

m(x,y) = min{[oc(Hx, Hy)]?,o(x,y)o(Hx, Hy), [0 (y, Hy)]*},
n(x,y) = min{o(x, Hx)o(y, Hy),o(x, Hy)o(y, Hx)}.

Then, for each xo € S the sequence { H" xo } e converges to a fixed point of H.
If we take () = qt, then Theorem 21 implies the following result.
Corollary 11. If there exists q € [0,1) such that
m(x,y) —n(x,y) < qo(x, Hx)o(y, Hy), (89)

forall x,y € S, where m(x,y) and n(x,y) are defined as in Theorem 21, then, for each xy € S the sequence
{H"x0},en converges to a fixed point of H.

4.5. Karapinar Type Non-Unique Fixed Point Results

Definition 18. A self-mapping H : S — & is called -Karapinar type simulated if there exist { € Z and
¢ € Y such that

0<IZ4*112
T a1 +ap

<1, a1+a, #0, a1 +ay+az >0and0 < a3 —as (89)
C(L(x,y), R(x,y)) (90)
forall x,y € S, where

mo(Hx, Hy) + az [o(x, Hx) + o (y, Hy)| + a3[o(y, Hx) 4+ o(x, Hy)],
ago(x,y) + aso(x, F2x).

L(x,y)
Rix,y)

Theorem 22. If a mappings H is -Karapinar type simulated, then for each xo € S the sequence { H"x¢ }pen
converges to a fixed point of H.

Proof. For an arbitrary xo € S, we shall built a construct a sequence {x, } as follows:
Xp+1:=Hx, n=0,12,.. 1)
Utilizing the inequality by taking x = x,, and y = x,41 we find that

0 < &(L(xy) R(x,y)) < R(x,y) = L(x,y),

which infer to

a0 (Hxy, Hxpiq) + a2 [0(xn, Hxy) 4 0 (X041, Hxyp1)] + a3[o(Xps1, Hxn) + 0(x0, Hxp11)]

< 030 (o, 3 11) + a0 (3, Fox) o
for all a1, ay, as, ag, a5 which fulfils (89). On account of (91), the statement (92) becomes
M0 (X1, Xpg2) + a2 [0 (X, Xp1) + 0 (X1, Xns2)] + a3[0 (%41, 1) + 0 (X0, X 42)] 93)
< 240 (Xn, Xp41) + a50 (Xn, Xpy2)-
By a simple computation, we derive
(a1 + a2)0 (X1, Xnt2) + (a3 — a5)0 (xXn, Xnt2) < (a5 — a2)0 (Xn, Xp41)- (94)
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So, the inequality above yields that

(%11, Xn42) < qo(xXn, Xpt1) (95)

a4 —az
ay+ay

where g = . Due to (89), we have 0 < g < 1. Regarding (95), we recursively obtain

O'(Xn, xn+1) < qU(an, xn) < ng(xn—Z/ xnfl) <. < an(XOr xl)- (96)

Thus, the sequence {o(xy, X,,41)} is non-increasing.
On what follows that we shall prove that the sequence {x,} has no periodic point, i.e.,

Xn # Xyax forallk € Nand forall n € Ny. 97)

Actually, if x, = x,,4 for some n € Ny and k € N, we find x,41 = Hx, = Hx, o = X411
Keeping the inequality (95) in the mind, we derive that

(%, Xnt1) = O (Xniks Xnkr1) < 410 (X, Xnp1), (98)
which is a contradiction. Consequently, we suppose that
Xy # Xy, for all distinct n, m € N. (99)

One can easily discover that x,,, 7# x4 for all distinct n,m € Nand x,, 1, X1k € S\ {xXn, X }
There exists a natural number M such that

0< g's < 1forallk > M,

since k € [0,1) and hence lim,,_, k" = 0.
As a next step, we shall indicate that {x,} is a Cauchy sequence. By regarding the modified
quadrilateral inequality, we find

o(xXm,xn) <5 [U(xm/ Xmgk) + 0Kk Xnsk) + 0 (Xnpks xn)}

(100)
< s q"a(xg, ;) + 5650 (X, Xn) + g™ (x5, X0)
By rearranging the term in the inequality above, we attain that
U(xmr xn) < s(a"+q") U(xk/ xO) (101)

1—qks

Consequently, we derive that {x,},c is a Cauchy sequence.
The rest of the proof is deduced by following the corresponding lines in the proof of
Theorem 12. [

We deduce the following results, by employing Example 1 (i) on Theorem 22.

Theorem 23 ([8]). Let H be an orbitally continuous self-map on the H-orbitally complete b-Branciari distance
space (S,0). Suppose there exist real numbers ay,az,a3,a4, a5 and a self mapping H : S — S satisfies
the conditions

ag —a
0<4 2

< <1, a1+a,#0, a1 +ay+az >0and 0 < a3 —as (102)
ay + ap

L(x,y) < R(x,y) (109)
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forall x,y € S, where

L(x,y) :=mo(Hx, Hy)+ay[o(x, Hx) + o(y, Hy)] + as|o(y, Hx) + o(x, Hy)],
R(x,y) = a40(x,y) +as0(x, sz)_

Then, H has at least one fixed point.

It is clear that all results in these section can be stated in the context of Branciari distance space by
letting s = 1. For avoiding the repetition, we skip to list these immediate consequences of Chapter 4.
In addition, one can also get several more consequences by modifying the contraction inequality.

5. Conclusions

One of the most attractive research topic of nonlinear functional analysis is metric fixed point
theory [1-129]. In this paper, we aim to underline the importance of the existence of a fixed point
rather than uniqueness. Such non-unique fixed point theorems can be more applicable not only in
nonlinear analysis, but also, in several qualitative sciences. It seems that the analog of the presented
results can be derived in some other abstract spaces, such as in the setting of modular metric spaces.
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Abstract: Some well known results from the existing literature are extended and generalized via new
contractive type mappings in fuzzy metric spaces. A non trivial supporting example is also provided
to demonstrate the validity of the obtained results.

Keywords: fuzzy metric space; a-g-fuzzy contraction; M-cauchy sequence; G-cauchy sequence

1. Introduction

The Banach contraction principle [1] plays an important role in the study of nonlinear equations
and is one of the most useful mathematical tools for establishing the existence and uniqueness of
a solution of an operator equation Tx = x. Many researchers have extended and generalized this
principle in different spaces such as b-metric spaces, vector valued metric spaces, G-metric spaces,
partially ordered complete metric spaces, cone metric spaces etc. Zadeh [2] introduced the notions
of fuzzy logic and fuzzy sets. With this introduction, fuzzy mathematics began to evolve. Kramosil
and Michalek [3] initiated the concept of fuzzy metric space as a generalization of the probabilistic
metric space.

Fixed point theory in fuzzy metric space has been an attractive area for researchers. Heilpern [4]
introduced fuzzy mappings and proved the fixed point theorem for such mappings. Grabiec [5]
defined complete fuzzy metric space ( G-complete fuzzy metric space) and extended the Banach fixed
point theorem to fuzzy metric space (in the sense of Kramosil and Michalek). Besides the extension of
the illustrious Banach contraction principle, several results concerning fixed point were established in
G-complete fuzzy metric spaces (see, e.g, [6]). Gregori and Sapena [6] defined fuzzy contraction and
established a fixed point result in fuzzy metric space in the sense of George and Veeramani. Afterwards
many fixed point results were established for complete fuzzy metric spaces introduced by George and
Veeramani [7], called M-complete fuzzy metric.

Gopal et al. [8] proposed the notion of a-¢-fuzzy contractive mapping and proved some fixed
point results in G-complete fuzzy metric spaces in the sense of Grabiec. In this paper, we propose the
notion of a-g-fuzzy contractive mapping and establish some fixed point results for such mappings.
Our work generalizes several corresponding results given in the literature, in particular, the Grabiec
fixed point theorem is extended. A supporting example is also given.

2. Preliminaries

In this section we recall some basic definitions which will be needed in the sequel.
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Definition 1 ([9]). A binary operation = : [0,1] x [0,1] — [0,1] satisfying conditions (1)—(4) is called
continuous t-norm:

* is associative and commutative,

* s continuous,

1sr=rforallr € [0,1],

ifr <sandw < zthenrxw <sxzforallr,s,w,z € [0,1].

LN

axp, B =max{a+ p—1,0}, called Lukasievicz t-norm,

«*p B = ap, called product t-norm, and

a #p B = min{a, B}, minimum f-norm are examples of continuous t-norms.
Michalek and Kramosil [3] defined fuzzy metric space in the following way.

Definition 2. Having a nonempty set S, let ¢ be a fuzzy set on S? x [0, 00) and * be a continuous t-norm. Then
the triplet (S, g, *) is said to be fuzzy metric space if the following conditions are satisfied:

(K1) ¢(r,5,0) =0;

(K2) ¢(r,s,0) =1iffr=sforallr,s € Sand { > 0;

(K3) ¢(r,s,¢) =¢(s,r, L) forall £ >0;

(K4) ¢(r,s,0) xg(s,w,t) <g(r,w,l+t) forallv,s,w € Sand {,t > 0;

(K5) ¢(r,s,€) :[0,00) — [0,1] is left continuous and non-decreasing function of ¢;
(K6) limy e 6(r,s,0) =1, forallr,s,w € S.

The value of ¢(r, s, {) represents the degree of closeness between r and s with respect to ¢ > 0.
Veeramani and George modified Kramosil’s definition of fuzzy metric space in the following way.

Definition 3 ([10]). The triplet (S, ¢, *) is called fuzzy metric space, if S is a nonempty set, * is a continuous

t-norm and ¢ is a fuzzy set on S% x [0,00) such that for all r,s,w € S and £,t > 0 the following assertions

are satisfied.
(G1) ¢(r,s,£) >0

r,s,0) =1iffr=s,

r,s,0) =¢(s,r,0),

r,8,0) xg(s,w,t) < ¢g(r,w,l+1),

r,s,.) : (0,00) — [0,1] is continuous.

A~~~

Remark 1 ([11]). It should be noted that 0 < ¢(r,s,£) < 1ifr #sand £ > 0.
Lemma 1 ([6]). ¢(r,s,.) is nondecreasing for all r,s € S.

Example 1 ([10]). For a metric space (S,d), let M : S* x (0,00) — [0, 1] be defined as

ket

m; Y r,s € Sand £ > 0. wherek,m,n € RT,

g(r,s,0) =

where * is product t-norm (also true for minimum t-norm). Then ¢ is a fuzzy metric on S and is referred to as a
fuzzy metric induced by the metric d.

If we take k = m = n = 1, then the above fuzzy metric reduces to the well known standard fuzzy
metric. For further examples of fuzzy metrics see [12].

Definition 4 ([7]). In a fuzzy metric space (S, ¢, *):

1. Asequence {ry} will converge tor € S if limy 00 G(rn, 7, 0) =1, ¥V £ > 0.
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2. {rn}nen is said to be an M-cauchy sequence if for every positive real number € € (0,1) and £ > 0 there
exists ne € N. such that (rn, rm, ) >1—¢€, ¥ m,n > ne.
3. {rutnen is called G-cauchy sequence if limy oo G(¥yy 1k, 7n, £) = 1, for all £ > 0 and each k € N.

If every M-Cauchy sequence converges to some point of a fuzzy metric space (S, ¢, *), then (S, ¢, *)
is called M-complete. Similarly (S, ¢, *) will be G-complete if every G-Cauchy sequence converges in
it. It is worth mentioning that G-completeness implies M-completeness.

3. Main Results

Definition 5. Let (S, ¢, *) be a fuzzy metric space and Q) be the class of all mappings o : [0,1] — [1,00) such
that for any sequence {r,} C [0,1], of positive real numbers r, — 1 = o(r,) — 1. Then a self mapping
F: S — Sis said to be a-o-fuzzy contraction if there exists two functions o : S? x (0,00) — [0,00) and ¢ € Q
such that

(c(Fr, Fs, b)) FrONEESE > o(g(r,5,0))g(r,5, 1), (1)
forallr,s €S, £ >0andx € (0,1).
Now we have proved our first result.

Theorem 1. Let (S, ¢, %) be a G-complete fuzzy metric space, F : S — S be a-o-fuzzy contraction where
a: 5% x (0,00) — [0, c0) is such that a(r, Fr,£) > 1, forallr € S € > 0.
Then F has a unique fixed point.

Proof. Define sequence {r,} by r,+1 = Fry, n € NU {0} where r( is an arbitrary but fixed element in
S. Then by the hypothesis it follows that a(r,,, Fry, £) > 1, forn € NU{0}.If .41 = r, forany n € N,
then r,, is a fixed point of F. Therefore we assume that r,, 1 # r, for all n € N, i.e., that no consecutive
terms of the sequence {r,,} are equal.

Further, if r, = ry, for some n < m, then as no consecutive terms of the sequence {r, } are equal
from (1), we have

¢(rps1,tni2,) = ¢(Frp, Fryq,0)
(g(Frn, Frn+1, Ke))tX(r,l,Fr,,,Z)lx(7,,+1,Frn+1,Z)

>
2 Q(g(r"/rn+1/ e))g(rﬂ/ l’n+1,€) = g(rnlrn+1/ f),
ie., ¢(rn, tni1,£) < ¢(rn+1,ru+2, £). Similarly one can show that
g(rn,rnﬂ,é) < g(rn+1,rn+2,€) << G(rm,rm+1,€)-

Now r, = ry implies that r,.1 = Fr, = Fry, = ry41, and so, the above inequality yields a
contradiction. Thus we can suppose r;, # 1y, for all distinct m, n € N. Using (1), we get

c(rny us1,x0) > (c(Frp_1, Fry, x€))*Un-1Fra-1)alrFrut)

> 0(6(rn-1,m,0))6(ru—1,7u,£) = ¢(ru_1,7n,£).
Therefore

Q(”nz”n-%—lr"g) > Q(”n—lrrnré)' @
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Continuing in this manner, one can conclude by simple induction that
?
6(rnsrur1,%0) = g(ro, 11, F) ©)
Let g be a positive integer, then using (K4), we have

l 0 —— l
‘5(711/7’;1+qr 0) > 6(rn, Tnt1, 6) #G(rus1, Tnta, 6) Horooee * Q(”n+q71/7'n+qr 5)

Using (3), we have

l l | —— l
6(rn rutq €)= ¢(ro,m1, q?) #g(ro,m1, W) Koo *#6(ro,m1, W)-
For n — oo, the above inequality becomes
nh_{lc}o 6(rn, Tn+q, 0) =1
Hence {r,} is G-cauchy. Therefore there will be some w € S such that r, — w as n — oo, that is

limy 00 (7, w, £) = 1 for each £ > 0.
Now using (K4) and (1) we have

14
5)

! .
6(Fw, Fryy, )X OF0 0K Ent) s (1, w

¢(Fw,w,l) > g(Pw,Frn,g)*g(rnH,w

\Y

2
l
) * g(7n+1/ w, E)

N~

Y4
> Q(Q(w,rn,i))g(w,rn,

2) *Q(”n+1,w£) —1x1=1.

> g(w,ry, 5

Thus Fw = w. To show uniqueness, let w and z be two distinct fixed points of F. Thatis w = Fw #
Fz =z. Thenforall/ > 0,0 < ¢(w,z,¢) = ¢(Fw, Fz,¢) < 1. Therefore using (1), we have

1>c(wzl) = ¢(Fw,Fz,l) > (¢(Fw, Fz, 0)) @FoazFl)
= 9<€(w,z,§))g<w,z,§) > g(w,z,g),

Applying (1) repeatedly, we have 1 > ¢(w, z,¢) > ¢(w, z, %) > g(w,z, K—[z) > >g(w,z, ﬁ)
Letting n — co, we have 1 < ¢(w, z,£) < 1. Which is a contradiction. Hence w = z. O

Theorem 2. Let(S, g, ) be a G-complete fuzzy metric space , F : S — S be a mapping. If there exists two
mappings a : 5% x (0,00) — [0,00) and ¢ € Q such that a(r,Fr,£) > 1, forallr € S,¢ > 0 and

28(ErESKO) > (w(r, Fr, £)a(s, Fs, €) + 1)2(6trs0)(rs0) )
forallr,s € S,0 < x < land { > 0, then F has a unique fixed point.

Proof. Let rg be an arbitrary element in S. Set r,1 = Fry, n € N. Then by the hypothesis of the
theorem it follows that a(ry, Fry,£) > 1, where n € NU{0}. If ;1 = r, forany n € N, thenr, isa
fixed point of F. Therefore we assume that r,, 11 # r, for all n € N, i.e., that no consecutive terms of
the sequence {r, } are equal.
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Further, if r,, = 1y, for some n < m, then as no consecutive terms of the sequence {r, } are equal
from (4), we have

262 l)  —  o6(FraFrysl)
> 25(F”n,F7n +1,K0)
> (a(rn, Ppg1, O (rpi1, tusn, £) + 1)1 0)e(rnrn1,l)
> 2§("n/”n+1/€),

ie., ¢(rn, i1, 0) < ¢(rus1,n+2, £). Similarly one can show that
6(rn, rus1,€) < (rus1, rnga, €) <o+ < g(rm, s, 0).

Now r, = ry implies that r,.1 = Fr, = Fry, = ry,41, and so, the above inequality yields a
contradiction. Thus we can suppose r,, # 1y, for all distinct m, n € N. Using (4), we get
2€(’nrrn+lr’([) — z(g(Frn—lrF’anZ))

(a1, D o, )+ D el
ZQ(Q(’n—lr’nr[))q"n—lr"nr[).

AV

Therefore

g(rn/rn+1/K[) > Q(Q(rnfl/rnrf))(g(rnfllrn/E)) (5)
= ¢(rn, rus1,60) > ¢(ru_1,7n, £).

Continuing in this manner one can conclude, by simple induction, that
l
6(rn,rnr1, %) = g(ro, 11, F)' (6)

Using (K4), we have for any positive integer g,

¢ b —r—o 4
Q(rnl Tntq, Z) > Q(T’n/ Tn+41, a) * Q(Vn+1z Tn+2, g) Koeeeee * g(rn+q—l/ Tn+q, a)

Using (6), we have

¢ / [P —
Q(rn/ T'ntq, f) > 5(7’0/ r, q?) * G(TO/ 1, W) Koewone * g(i’o, 1, W)
For n — oo the above inequality gives
}glgog(rn,rnﬂ,é) =1.

Hence {r,} is G-cauchy. As S is complete, there will be w € S such that r, — w as n — oo, that is
limy 00 (7, w, ¢) = 1 for each £ > 0.
Using (4) we have

p6(Fwrnakt)  — (e(Fobrurl)) > (n(w, Fw, 0)a(ry, Fry, £) + 1)0Us@m0) (@ rmt)
20((c(@rn ) (c(wrn,f)

\Y
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This implies
Q(Fw/rrH»l/Kg) 2 Q((g(w,rn,f))(g(w,rn,f). (7)

Using (K4) and (7) we get

(P, wkl) 2 elF, it ) #6(0 i, )
> (6w, 5))s(a0,ra, ) # 6,71, K5
> g(w,ry, g) *g(w, rﬂH,Kg).
For n — oo the above inequality gives
lim ¢(Fw,w,xl) =1 = Fw = w.

n—o0

To prove uniqueness of the fixed point, assume w and z be two distinct fixed points of F. That is
w = Fw # Fz =z. Thenforall ¢ > 0,0 < ¢(w,z,{) = ¢(Fw, Fz,{) < 1. Therefore using (4), we have

2> zg(w,z,é) _ 2g(Fw,Fz,Z)
> (a(w,Fw,%) (z, Fz, Z) +1)ele (wz§)s(wz)
> ez p))c(way)
> 2g(w,z,§).

which implies 1 > ¢(w,z,£) > ¢(w, z, %) With repeated use of (4), it turns out that

/ V4 /
1>¢(w,z0) > g(w,z,E) > g(w,z,K—z) > 2 g(w,z,K—n).

For n — oo, we get 1 < ¢(w,z,£) < 1. Which is a contradiction. Therefore w = z. [
Theorem 3. Let(S, ¢, *) be a G-complete fuzzy metric space, F : S — S be a mapping. If there exist two
mappings a : S* x (0,00) — [0,00) and o € Q such that a(r, Fr,£) > 1, forall v € S,¢ > 0 and

S = alelr5 )5, 1) ®

forallr,s € 5,0 < x < land { > 0, then F has a unique fixed point.

Proof. Setr, 1 = Fry,n=0,1,- -, for a fixed element ry € S. By hypothesis of the theorem we have
a(ry, Frp, 0) = a(ry, rp1,€) > 1 where n € NU {0}. Let r,41 # ry, for n > 0. Otherwise ry, is fixed
point of F and hence the result is proved. Further, if r,, = r,, for some n < m, then as no consecutive
terms of the sequence {r,, } are equal from (8), we have

Q(rn+1r7’n+2:£) = g(Franrn+1/’€)
6(Fry, Frpyq,x0)
R S S Y (e P o)
> 0(6(rn us1,0))6(rn, rnr1, 0)
(

> 6(ru, g1, L),
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ie., ¢(rn, 41, 0) < 6(rus1,ns2, €). Similarly it can be proved that

61, g1, 0) < G(rus1, g2, £) <+ < 6(Tm, rugr, £).

Now r, = ry implies that r,.y = Fry, = Fry = ry41, and so, the above inequality yields a
contradiction. Thus we can suppose r,; # r, for all distinct m,n € N. Using (8), we have

Q(Frn—lr Fry, Kg)
a(ry—1,7n)&(rn, Ty, €)
Q(g(rnfl/ Tn, K))Q(rn—lr Tn, f)~

c(rn g1, 6l) = G(Fry_q, Fry,xl) >

%

Therefore

g(l’n,i’n+1,Kf) Z Q(g(r,,,l,rn,E))(g(rn,Lrn,f)) (9)
= Q(Vn,rnJrHKg) > g(rnfl/rn/ Z)'

Following the related arguments in the proof of Theorem (1), we conclude that {r,} is a G-cauchy
sequence. Due to the completeness of S, there will be w € S such that 7, — wasn — oo, that is
limy o0 ¢(rn, w, £) = 1 for each ¢ > 0.

Then using (K4) and (8) we have

l l
¢(Fw,w,xl) > ¢(Fw, rn+1,;c§) xg(w, 7’,,+1,K§)
! 14
= ¢(Fw, Frn,KE) *g(w,rnH,KE)
g(Fw,Frn,Kg) ¢
> —
= a(w, Fw, O)a(ry, rmq1, ) *6(w, r"H'KZ)

14 J4 J4
> Q((Q(wr”nri))(g(wrrnrE)*Q(wzrnH,KE)
14 l
= oW 5) *6(w rni1, K5).

For n — oo the above inequality gives
lim ¢(Fw,w,xl) =1 = Fw = w.
n—yo0

For uniqueness, assume w and z be two distinct fixed points of F. Thatis w = Fw # Fz = z. Then for
all £ > 0,0 < g(w,z,0) = g(Fw, Fz,£) < 1. Therefore using (8), we have

1>¢(w,z,l) = ¢(Fw, Fz/)
¢(Fw, Fz, ()
~  a(w, Fw,0)a(z,Fz, ()

> olewz ez 1) > clawz, o)

Using (8), it can be shown that 1 > ¢(w, z, {) > g(w,z,f) > g(w,z,KLz) > > g(w,z,%).
Letting n — oo, we get 1 < ¢(w, z,¢) < 1, a contradiction. Hence w = z. [

By taking a(r,s,¢) = 1 and ¢(t) = 1 in Theorems (1), (2) and (3) , we have the following corollary
which is actually the fixed point result established by Grabiec [5].

157



Axioms 2019, 8, 69

Corollary 1. Let (S, ¢, *) be a G-complete fuzzy metric space and F : S — S be be a self mapping such that
¢(Fr,Fs,xl) > ¢(r,s,0) (10)

forallr,s €S, £ >0andx € (0,1).
Then F has a unique fixed point.
4. Example

In this section we present a supporting example to demonstrate the validity of our results.

Example 2. Let S = [0,00), r s = rs forall r,s € [0,1] and ¢(r,s,{) = e forallr,s € Sand t > 0.
Then (S, g, *) is a complete fuzzy metric space. Let F : S — S be defined as

Fu:{g, ifreo,1],
Vi ifre (1,00).

Further, define a : S* x (0,00) — [0, c0) as

V2 ifr,s € 0,1],
a(r,s,0) = ¢ (3)°%  ifr,s € (1,00),

0 otherwise.

Also forall r,s € S and £ > 0, we have a(r, Fr,£) > 1, and

—|u—v|

(Q(F},,Fv,g))a(r,Fr,l)a(s,Fs,Z) > e a
= (clrs,0) Fe(r,s,0).

That is F is a-o-fuzzy contraction with o(t) = =3, where t € [0,1].
Thus all conditions of Theorem (1) are fulfilled. Obviously 0 is a unique fixed point of F.

Similarly supporting examples for other results do exist and can be constructed easily.

5. Conclusions

We proposed the concept of the a-¢-Fuzzy Contraction and some new types of fuzzy contractive
mappings. We proved three theorems which ensure the existence and uniqueness of fixed points of
these new types of contractive mappings. The new concepts may lead to further investigation and
applications. For example, using the recent ideas in the literature, it is possible to extend our results to
the case of coupled fixed points in fuzzy metric spaces.
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Abstract: We first provide a best proximity point result for quasi-noncyclic relatively nonexpansive
mappings in the setting of dualistic partial metric spaces. Then, those spaces will be endowed
with convexity and a result for a cyclic mapping will be obtained. Afterwards, we prove a best
proximity point result for tricyclic mappings in the framework of the newly introduced extended
partial S;-metric spaces. In this way, we obtain extensions of some results in the literature.

Keywords: best proximity point; dualistic partial metric space; tricyclic mappings; extended partial
Sp-metric space

1. Introduction

Whether a self mapping has fixed points or not is a problem that has been exhaustively studied
ever since Banach stated his contraction principle. In the beginning of the current century, an issue of
equivalent importance to that of the fixed point problem appeared: Let T be a cyclic (resp. noncyclic)
mapping on A U B where A and B are nonempty subsets of a metric space (X, d), thatis, T(A) C B
and T (B) € Aresp. T(A) C Aand T (B) C B). The equation Tx = x may not possess a soltution,
in this case, we wish to determine an element (resp. a pair) which is as close to its image as possible,
i.e.,, an element x € AU B such that d (x, Tx) = dist (A, B) (resp. a pair (x,y) € A X B of fixed
points such that d (x,y) = dist (A, B)). Such a point (resp. pair) is called a best proximity point (resp.
pair). The problem of best approximation for cyclic and noncyclic mappings attracted a good many
authors and many pertinent results were obtained in different frameworks [1-7].

In 2011, the notion of P-property was introduced in [8] and best proximity point results for weakly
contractive non-self-mappings were obtained. Two years later, using the aforementioned property,
Abkar and Gabaleh [9] proved that some existence and uniqueness results in best proximity point
theory can be acquired from existing results in the fixed point theory. In the same year, Almeida,
Karapinar and Sadarangani [10] showed that best proximity point results can be obtained from fixed
point results using only the weaker condition of weak P-property. In 2016, Ref. [11] presented a new
approach to best proximity point results by means of the so-called simulation functions.

In 2017, Sabar, Aamri and Bassou [12] introduced the class of tricyclic mappings and best proximity
points thereof. Let A, B and C be nonempty subsets of a metric space (X,d). A mapping T : AU
BUC — AUBUC is said to be tricyclic if T(A) € B, T(B) € Cand T(C) C A, and a best
proximity point for T is an element x € AU B U C such that D (x, Tx, sz) = dist (A, B,C) where
D(x,y,z) =d(x,y)+d(y,z) +d(z,x) and

dist (A,B,C) =inf{D (x,y,z):x € A, y€ Bandz € C}.

Axioms 2019, 8, 67; d0i:10.3390/ axioms8020067 161 www.mdpi.com/journal /axioms
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This paper aims to establish best proximity point results for subclasses of cyclic, noncyclic and
tricylic mappings in the framework of partial dualistic metric spaces and the lately introduced extended
partial S;-metric spaces [13].

2. Best Proximity Point Results in Dualistic Partial Metric Spaces

This section deals with cyclic and noncyclic mappings in dualistic partial metric spaces; these
spaces were first introduced as follows.

Definition 1 ([14]). Let X be a nonempty set. A function D : X x X — R is called a dualistic partial
metric if

(D1) x = yifand only if D (x,x) = D (y,y) = D (x,y),
(D2) D (x,x) <D (x,y),

(D3) D (x,y) =D (y,x),

(Dg) D (x,y) <D(x,2) +D(z,y) —D(z2),

forall x,y,z € X.

Complying with [14], D generates a Ty topology on X, denoted by 7 (D) in which the open balls are
{Bp(x,e):x € X, e >0} where Bp(x,e) ={yeX:D(xy) <e+D(x,x)}.

Now, we are able to introduce the notions of convergence and Cauchy sequences in the setting of
dualistic partial metric spaces.

Definition 2 ([15]). A sequence (x,) in (X, D) converges to a point x if and only if D (x,x) =
limy, 00 D (xyy, x) and it is a Cauchy sequence if lim, o D (X5, Xy ) exists and it is finite.

To present our results, we need to mention some basic concepts related to noncyclic mappings.
In this section, unless stated otherwise, A and B are nonempty subsets of a dualistic partial metric
space (X,D)and T : AUB — A U B is a noncyclic mapping:

Fy(T) = {x€A:Tx=x}andF(T)={ye€B:Ty=y},
dist (A, B) inf{D(x,y):x€A yeB},
Ao {x € A:D(x,y) = dist (A,B) forsomey € B},
By {y € B:D(x,y) = dist (A,B) for some x € A}.

Definition 3. The mapping T is said to be relatively nonexpansive if
D (Tx, Ty) <D (x,y) forallx € Aand y € B.
In addition, a pair (x,y) € A X B is said to be a best proximity pair if
x €Fs(T), y€ Fp(T) and D (x,y) = dist (A, B).

In [16], Gabeleh and Otafudu introduced the class of quasi-noncyclic relatively nonexpansive
mappings as follows.

Definition 4. Suppose Ay # ©. The mapping T is said to be quasi-noncyclic relatively nonexpansive mapping
provided that (Fa, (T), Fg, (T)) # @ and, for all (a,b) € Fa, (T) x Fg, (T) , we have

D (Tx,b) < D(x,b) forall x € A,
D(a,Ty) <D (a,y) forally € B.
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The class of quasi-noncyclic relatively nonexpansive mappings is not a subclass of noncyclic
relatively nonexpansive mappings. To check that out and for more constructions on quasi-noncyclic
relatively nonexpansive mappings, we refer the reader to [17,18].

Definition 5. A is said to be approximatively compact with respect to B if and only if every sequence (x,) in A
such that D(y, x,) — D(y, A) for some y € B has a convergent subsequence.

Remark 1.

o If Aisacompact set, then it is approximatively compact with respect to B.

e IfANB # @, then A is approximatively compact with respect to A N B. Indeed, let (x,,) in A such that
D(y,xn) — D(y, A) for somey € AN B. Since D(y,y) < D(y,x) forall x € X, D(y,A) = D(y,y)
and that means (x,,) converges to y.

Definition 6 ([19]). The pair (A, B) is called sharp (resp. semi-sharp) proximal if and only if, for each x in A
and y in B, there exist a unique (resp. at most one) element x' in B and a unique element y' in A such that

D (x,x') =D (y,y) =dist (A, B).
Now, we're entitled to state our first main result.

Theorem 1. Let (X, D) be a dualistic partial metric space such that D is continuous and let A, B be nonempty
subsets of X such that Ay # @, B is approximatively compact with respect to A and the pair (A, B) is
semi-sharp proximal. Then,, each quasi-noncyclic relatively nonexpansive mapping defined on A U B possesses a
best proximity pair.

Proof. Let (x,) be a sequence of elements of Ay which converges to some x € Fa, (T) . ( The fact that
Fa, (T) is nonempty guarantees the existence of such a sequence ). Choose a point y;, in By such that

D (xn,yn) = dist (A,B) foralln € N.
Now, we get

D(x,yn) < D(x,xn)+D(xn,yn) — D (xn,xn)
= D (x,xn)+dist (A,B) — D (xn, xn)
< D (x,x,) +dist (x,B) — D (xn,xn) .

Taking into account that D is a continuous mapping on X x X, we get
D (xn,xn) —> D (x,x) asn — oo.

Therefore, letting 1 — o0, we obtain D (x,y,) — dist (x, B) . The hypothesis that B is approximatively
compact with respect to A implies the existence of a subsequence (yy,) of (y,) and ay € B such that
Yn, — Y as k —» co. Hence, dist (A, B) = D (xy,, Yn,) — D (x,y), which means

D (x,y) = dist (A, B).
Since T is quasi-noncyclic relatively nonexpansive,
D (x,Ty) < D(x,y) =dist (A, B).
Now, we use the assumption that the pair (A, B) is semi-sharp proximal to conclude that y is a fixed

point and therefore (x, y) is a best proximity pair. [
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Example 1. Let X = R? with the dualistic partial metric D ((x,y),(x,y")) = max{x,x'} +
max{y,y'}. Let A = {0} x [0,00) and B = {1} x [0,00). Then, Ay = {(0,0)} and
dist (A,B) = 1. Moreover, the pair (A, B) is semi-sharp proximal. Let T : AUB — AUB be a

noncyclic mapping such that T (0,x) = (0,x/2) and T (1,x) = (1,x/2) for all x € [0, 00) . Clearly, T is a
quasi-noncyclic relatively nonexpansive and its best proximity pair is ((0,0),(1,0)).

As a special case of the previous theorem, we obtain the following result which was proven in [20].

Corollary 1. (Theorem 1 of [20]) Let (X, d) be a complete metric space and A, B be nonempty subsets of X such
that A is closed and Ao # @. Suppose that B is approximatively compact with respect to A and that T : AU B
— AU B is a quasi-noncyclic mapping such that T| A is a contraction in the sense of Banach, T(Ag) C Ay
and the pair (A, B) is semi-sharp proximal. Then, T has a best proximity pair.

The notion of convexity in metric spaces was firstly introduced in [21] and the exact same notion
can be given in dualistic partial metric spaces.

Definition 7. A mapping W : X x X x [0,1] — X is said to be a convex structure on X if, for each
(x,y) € Xx Xand A € [0,1],

D (u,W(x,y,A)) <AD (u,x) + (1 —A) D (u,y) forallu € X.
In addition, (X, D, W) is said to be a convex dualistic partial metric space.

Definition 8. A subset K of a convex dualistic partial metric space (X, D, W) is said to be convex if
W (x,y,A) € Kforall x,y € Kand A € [0,1].

The following propositions are immedjiate.

Proposition 1 ([21]). Let {Ky},c 4 be a family of convex subsets of the convex dualistic partial metric space X;
then, Nye oKy is also a convex subset of X.

Proposition 2. The closed ball centered at a € X with radius r € R is a convex subset of X.
Proof. Letx,y € B(a,r)and A € [0,1],

D(a,W(x,y,A)) < AD(a,x)+(1—A)D(ay)
< A(r+D(a,a)+(1—-A)(r+D(aa))
<

r+D(aa).
In addition, this means that the closed ball is convex. [

Definition 9. A convex dualistic partial metric space (X, D, W) is said to verify property (C) if every bounded
increasing net of nonempty, closed and convex subsets of X is of nonempty intersection.

A weakly compact convex subset of a Banach space has property (C) for instance. For more
examples, we allude to [22].
Let A and B be nonempty subsets of a convex dualistic partial metric space (X, D, W). We set

6(A,B) = sup{D(x,y):x€Aandy € B},
drxy (B)

sup{D (x,y) :y € B} forall x € A.
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By co7i (A), we denote the closed and convex hull of A and it is defined by
con (A) = N{C: Cisaclosed and convex subset of X such thatC D A}.
The following lemma is used in the proof of our second main result of this section.

Lemma 1. Let (A, B) be a nonempty, bounded, closed, and convex pair in a convex dualistic partial metric
space (X, D, W). Suppose that T : AU B — AU B is a cyclic mapping. If X has the property (C), then there
exists a pair (Ky,Ka) C (A, B) which is maximal with respect to being nonempty, closed and convex such that
T is cyclic on Ky U Ky. Furthermore,

E(T(K])) =K m’ld@(T(Kz)) = Kj.

Proof. The set of all nonempty, closed, and convex pairs (C, D) C (A, B) such that T is cyclicon CU D
is partially ordered by reverse inclusion, i.e.,

(Cl,D1) < (Cz, Dz) = (Cz, Dz) - (C1,D1) .

For each increasing chain {(Cy, Dy)},, we set C := NC, and D := ND,. Since X has the property (C)
and from the fact that every intersection of convex subsets is a convex subset, (C, D) is a nonempty,
closed and convex pair. In addition,

T(C) C T(NCy) € NT (Cy) € ND, = D.

Similarly, T (D) C C, which means that T is cyclic on C U D. Therefore, every increasing chain is
bounded above and Zorn’s Lemma assures the existence of the maximal pair (K3, Kz) . Now, we note
that the pair (¢o (T (Kz)),c0 (T (K1))) C (Kj,Kz) is nonempty, closed and convex. We also have

T(co(T(Kz))) € T(Ky) Sco(T(Ky))-

Similarly, T (co (T (K7))) € co (T (Ky)), thatis, T is cycliconco (T (Ky)) Uco (T (K7)) . The maximality
of (K3, K3) finishes the proof. [

Theorem 2. Let (A, B) be a nonempty, bounded, closed, and convex pair in a convex dualistic partial metric
space (X, D, W) such that D is continuous and D (x,x) < 0 forall x € AU B. Let (Ky,Ky) C (A,B) bea
maximal pair with respect to being nonempty, closed and convex such that T is cyclic on Ky U Ky. Suppose that
T: AUB — AUBisacyclic. Suppose that, for all x € Ky and y € Ky,

D (Tx, Ty) < A := {ké (Ky,Kz) + (1 — k) dist (A,B)} + min{D (Tx,Tx),D (Ty, Ty)}.
If X has the property (C), then T has a best proximity pair.

Proof. Let x € Kj and y € Ky; from the inequality fulfilled by the mapping T, we get Ty € B (Tx, A)
and then
T (Ky) € B(Tx,A);

thus,
Ky =vco (T (Kz)) € B(Tx,A),

which means,
D(Tx,z) <A+D(Tx,Tx), forallz € Ky,
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thatis, o7y (K1) < A+ D (Tx, Tx) and similarly we get o1y, (K2) < A+ D (Ty, Ty) - Put
Li:={x €Ky :6c(K2) <A+D(x,x)} and L := {y € Kr: 6, (K1) < A+D(y,y)}.

Clearly, (L, Lp) is a pair of nonempty, closed and convex subsets such that T is cyclic on L; U Ly.
We take account of the maximilaty of (Ky,K») to conclude that L = Kj and Ly = Ky—from which
we get

Oy (K) <18 (Ky,Kp) + (1 —r)dist (A, B) + D (x,x) forall x € Kj.

Hence,
0 (Kq,Ky) = dist (A, B).

Consequently,
dist (A,B) <D (p,Tp),D(Tq,q) < (Ky,Ky) =dist (A,B), forall (p,q) € K3 x Ky.
In addition, that is the desired result. [

The next corollary follows immediately.

Corollary 2 ([1]). Let (A, B) be a nonempty, bounded, closed, and convex pair in a convex metric space
(X, d,W). Suppose that T : AU B — AU B is a generalized cyclic contraction. If X has the (C) property, then
T has a best proximity pair.

3. Tricyclic Mappings in Convex Extended Partial S, Metric Spaces

Lately, extended partial S,-metric spaces were introduced as comes

Definition 10 ([7]). Let X bea nonempty subset andlet 0 : X> — [1,00) . Ifamapping S, : X°> — [0, 00) satisfies
l.x=y=zifandonlyif S, (x,y,z) =S, (x,x,x) =S, (v, y,y) = S, (z,2,2),
2.5, (x,x,x) < S, (x,y,2),

3.5, (x,y,2) <0 (x,y,2) [S, (X, x,t) + S, (y,y, 1) + S, (2,2, 1)],
forall x,y,z,t € X. Then, (X, S,) is called an extended partial S,-metric space.

Next, we introduce the notion of convexity in extended partial S,-metric spaces.

Definition 11. Let (X, S,) be an extended partial Sy-metric space. A mapping W : X x X x [0,1] — X is
said to be a convex structure on X if, for each (x,y) € X x X and A € [0,1],

Sy (u,0, W (x,y,A)) <AS, (u,v,x) + (1= A) S, (u,v,y) forall u,v € X.
In addition, (X, S o7 W) is said to be a convex extended partial S,-metric space.

It is easy to see that every convex metric space in the sense of [15] is a convex extended partial
Sp-metric space. Now, we present a yet stronger version of convexity.

Definition 12. Retaining the same notations as in the previous definition, W is said to be a double convex
structure on X if it is a convex structure and if, for each (x1,y1), (x2,y2) € X x X, A € [0,1] and u € X,

Sy (u, W (x1,y1,A) , W (x2,42,A)) < AS, (u,x1,x2) + (1 = A) S, (1, y1,2) -

Example 2. Let (X, |\.||) be a normed linear space and S, : X3 — [0,00) be defined as S, (x,y,z) =
lx =yl + ly — z|| + ||z — x|| . Then, (X, S,) is an extended partial Sy-metric space and the mapping W :
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X x X x [0,1] — X defined by W (x,y,A) = Ax + (1 — A) y is a convex structure on X. Moreover, W is a
double convex structure. Indeed, fix (x1,y1), (x2,¥2) € X x X, A € [0,1] and u € X, we have

Sy (1, W (x1,51,A) , W (x2,y2,4)) = [lu—Ax; = (1=A)]

+ = Axe = (1= A) v2|

+ A1+ (1 =A)y1 —Axp — (1= A) yo|
Al = x|+ (1= A) Jlu =yl

FA =22l + (1= A) [lu— 2|

+A [[x1 = xol[ + (1= A) |ly1 — v2|

= AS, (u,x1,x2) + (1 —=A)S, (u,y1,¥2) -

IN

From now on, (X, S,, W) will denote a convex extended partial S,-metric space.
Definition 13. A subset K of X is said to be convex if W (x,y,A) € K forall x,y € Xand A € [0,1].
Definition 14. Forall x,y € X and & > 0, the ball of foci x and y, and of ray € is given by

B(x,y,e) ={z€ X:5,(x,y,z) <e}.

The following propositions follow from the aforementioned definitions immediately.

Proposition 3 ([21]). Let {Ky}, be a family of convex subsets of the convex extended partial Sy-metric space
X, then NK, is a convex subset of X as well.

Proposition 4. The balls B (x,y, €) are convex subsets of X. Moreover, they are closed subsets whenever S, is a
continuous mapping.

Proof. Leta,b € B(x,y,e)and A € [0,1].

S, (6 y,W(a,bA)) < AS,(xy,a)+(1-A)S, (xyb)

Ae+(1-A)e=e.

ININ

Furthermore, B (x,y,¢) = T~! ([0,¢]) where T (z) = S, (x,y,z) for all z € X. The balls B (x,y,¢) are
closed subsets if S, is continuous. [

Before getting to our main result of this section, we fix some notations. Let A, B and C be nonempty
subsets of (X, S,, W) :

dist (A,B,C) = inf{S (x,y,z):x€ A, yeBandze C},
0(A,B,C) = sup{S,(x,y,z):x€ A, yeBandze C},
Oy (C) = sup{S,(x,y,z):z€C} forallx € Aandy € B.

Take note that extended partial S;-metric spaces are, sort of, three-dimensional metric spaces and,
since a tricyclic mapping is defined on the union of three subsets, the definition of a best proximity
point for a tricylic mapping is naturally given by:

Definition 15. Let T : AUBUC — AUBUC be a tricyclic mapping where A, B and C are nonempty
subsets of (X, S,) . A point x € AU B U C is said to be a best proximity point for T provided that

S, (x, Tx, sz) = dist (A, B,C).
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Lemma 2. Let (A, B, C) be a nonempty, bounded, closed, and convex triad in X. Suppose that T : AU BU
C — AUBUC is a tricyclic mapping. If X has the property (C), then there exists a triad (K;, Ky, K3) C
(A, B) which is maximal with respect to being nonempty, closed and convex such that T is tricyclic on Ky U Ka.
Furthermore,

o (T (Ky)) = Ky, co (T (Kz)) = Kz and o (T (K3)) = K.

Proof. Let I denote the set of all nonempty, closed, and convex triads (I, ], H) C (A, B,C) such that T
is tricyclic on I U ] U H. Note that I' is partially ordered by reverse inclusion, that is,

(Il/hrHl) < (12/]2/ HZ) — (12’]21 HZ) c (IllhrHl) .

Let {(Iy, Ja, Hx)}, be an increasing chain of T. Since X has the property (C) and from the fact that every
intersection of convex subsets is a convex subset, (NI, NJx, NHy) is a nonempty, closed and convex
triad. In addition, the maximal triad (K3, Ky, K3) is obtained as Zorn’s Lemma states. Now, the triad
(o (T (K3)), co (T (Ky)), co (T (Kz))) C (K3, Ky, K3) is nonempty, closed and convex. We also have

T (@ (T (Ks))) € T (Ky) S0 (T (K)).

Similarly, we see that T is tricyclicon co (T (K3)) Uco (T (K1)) Uco (T (K3)) . The desired result follows
from the maximality of (K3, Ky, K3). O

Theorem 3. Let (A, B, C) be a nonempty, bounded, closed, and convex triad in X such that S o 18 continuous and
W is a double convex strusture. Let (K, Ko, K3) C (A, B, C) be a maximal triad with respect to being nonempty,
closed and convex such that T is tricyclic on Ky U Ky U K3. Suppose that T: AUBUC — AUBUCisa
tricyclic mapping such that

Sy (Tx, Ty, Tz) < A :=ké (K1, Ky, K3) + (1 — k) dist (A, B,C)
forall (x,y,z) € Ky x Ky x K. If X has the property (C) then T has a best proximity triad.

Proof. Let x € Ky, y € Ky; the inequality satisfied by the mapping T implies that Tz € B (Tx, Ty, A)
for all z € K3 and that means
T (K3) € B(Tx, Ty, A\).

Since S, is continuous, B (Tx, Ty, A) is closed. Thus,

Ky =0 (T (Ks)) € B(Tx, Ty, A).

Thus,
O(ra,1y) (K1) < A
Put
L : = {(x,y) € Ky x Kz 1 9y (K3) < A}/
Lot = {2 ekax Ks by (K) < A,
Ly : = {(z,x) € K3 x Ky : 8 ) (Kp) < A}-

Clearly, (L1, Ly, L) is a triad of nonempty, closed and convex subsets. Define

T:(AxB)U(BxC)U(CxA)— (AxB)U(BxC)U(CxA)

(x,y) — T (x,y) = (Tx, Ty).
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Since T is tricyclic on A UBUC, Tis tricyclicon (A x B)U (B x C)U(C x A).Forall (x,y) € Kj x Ky,

T (x,y) = (Tx,Ty) € Ly, then T (Ky x Kp) C Ly. Thus, T is tricyclic on Ly U L, U L. Furthermore,
(Kl X Kz, Kz X K3, K3 X Kl) is maximal in

N (Ix]),(Jx H),(Hx1I)) S ((AxB),(BxC),(CxA))/
= (Ix]),(JxH) and (H x I) are non-empty, bounded, closed ,
and convex with T is tricyclicon (I x J)U (J x H)U (H x I)

which is partially ordered by
(L x 1), (i x Hi), (Hy x 1)) < ((I2 X J2), (Ja X Ha), (Ha X p)) <=

(2% J2),(Ja x H2),(H2 x I2)) € ((lh x 1), (J1 x H1), (H1 x I)).

Therefore,
Ly =Ky x Ky, L2=K2><K3andL3:K3><K1.

Consequently, for all (x,y) € K; x Ky,
Sy (Ks) — k8 (K1, Ky, K3) < (1K) dist (A,B,C).

That is,
0 (Kl,Kz,Kg,) < dist (A, B,C) .

Now, for all (p,q,r) € K1 x Ky x K3, we get

dist (A, B,C)

IN

Se (P/ Tp, TZP) ,Sp (q, Tq, T2q> ,Sp <r, Tr, Tzr)
6 (K1, Ky, K3) < dist (A, B,C).

A

In addition, this is a best proximity triad. [

As a particular case of the previous theorem, we get the following result.

Corollary 3 ([12]). Let A, B and C be nonempty, closed, bounded and convex subsets of reflexive Banach space
X, letT: AUBUC — AUBUC bea tricyclic contraction map i.e.,

D(Tx, Ty, Tz) < kD (x,y,z) + (1 — k) dist (A, B,C) forall (x,y,z) € Ax B xC,
where D (x,y,z) = ||x —y|| + |ly — z|| + ||z — x|| . Then, T has a best proximity triad.

4. Conclusions

In this work, we have provided two best approximation result for cyclic mappings in thesetting
of dualistic partial and convex, metric spaces. Next, we have provided best proximity point existence
result for a new class of tricyclic mappings. Our three results extend and improve some results in
the literature.
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1. Introduction

With a view to enhance the domain of applicability, Matthews [1] initiated the idea of a partial
metric space by weakening the metric conditions and also proved an analogue of Banach contraction
principle in such spaces. Thereafter, many well-known results of metric fixed point theory were
extended to partial metric spaces (see [2-16] and references therein).

On the other hand, Turinici [17] initiated the idea of order theoretic metric fixed point results,
which was put in more natural and systematic forms by Ran and Reurings [18], Nieto and
Rodriguez-Lépez [19,20], and some others. Very recently, Alam and Imdad [21] extended the Banach
contraction principle to complete metric space endowed with an arbitrary binary relation. This idea
has inspired intense activity in this theme, and by now, there exists considerable literature around this
result (e.g., [6,21-25]).

Proving new results in metric fixed point theory by replacing contraction conditions with a
generalized one continues to be the natural approach. In recent years, several well-known contraction
conditions such as Kannan type, Chatterjee type, Ciric type, phi-contractions, and some others were
introduced in this direction.

In this paper, we introduce some useful notions, namely, R-precompleteness, R-g-continuity and
R-compatibility, and utilize the same to establish common fixed point results for generalized weak
¢-contraction mappings in partial metric spaces endowed with an arbitrary binary relation R. We also
derive several useful corollaries which are either new results in their own right or sharpened versions
of some known results. Finally, an application is provided to validate the utility of our result.

2. Preliminaries

Matthews [1] defined partial metric space as follows:
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Definition 1. [1] Let M be a non-empty set. A mapping p : M x M — [0, c0) is said to be a partial metric if
(forall zy, 22,23 € M):

(@)  z1 =2 <= p(z1,21) = p(21,22) = p(22,22);
() p(z1,21) < p(z1,22);
(e p(z1,22) = p(z2,21);

0
(d)  p(z1,22) < p(z1,23) + p(z3,22) — p(23,23)-

The pair (M, p) is called a partial metric space.

Notice that in partial metric, the self-distance of any point need not be zero. A metric on a
non-empty set M is a partial metric with the condition that for all z € M, p(z,z) = 0.

A partial metric p generates a Ty-topology, say 7, on M, with base the family of open balls B,(z, €)
(z € M and € > 0) defined as:

By(z,€) = {w e M:p(z,w) < p(z,z) +e}.
If p is a partial metric on M, then the function d, : M x M — [0, c) defined by:
dp(21,22) = 20(21,22) — p(21,21) — p(22,22),
is a metric on M.

Definition 2. [1] Let (M, p) be a partial metric space. Then:

(a)  Asequence {z,} is said to be convergent to a point z € M if lim, 00 p(2n,2) = p(2, 2).

(b) A sequence {zy,} is said to be Cauchy if imy, n—co 0(2n, 2m) exists and is finite.

(c) (M, p) is said to be complete if every Cauchy sequence {z, } in M converges (with respect to T,) to a point
aze Mand p(z,z) = limy—e0 0(Zn, Zm)-

Remark 1. In a complete partial metric space, every closed subset is complete.
The following lemmas are needed in the sequel.

Lemma 1. [1] Let (M, p) be a partial metric space. Then:
(a)  Asequence {z,} is Cauchy in (M, p) if and only if it is Cauchy in (M, d,).
(b) (M, p) is complete if and only if the metric space (M, d,) is complete. In addition:

)Egodp(zn,z) =0 <= p(z2)= Jiirgop(zn,z) = lm p(zn, zm)-

1,1—00

Lemma 2. [2] Let (M, p) be a partial metric space and {z, } a sequence in M such that {z,} — w, for some
w € Mwith p(w, w) = 0. Then, for any z € M, we have limy, 0 p(2z1,2) = p(w, z).
Definition 3. Let S and g be two self-mappings on a non-empty set M.

(a)  Anelement z € M is said to be a coincidence point of S and g if Sz = gz.
(b)  Anelement z* € M is said to be a point of coincidence if z* = Sz = gz, for some z € M.
(c) Ifz € Misa point of coincidence of S and g such that z = Sz = gz, then z is called a common fixed point.

3. Relation Theoretic Notions and Auxiliary Results

Let M be a non-empty set. A binary relation R on M is a subset of M x M. For z1,z, € M, we write
(z1,22) € R if z1 is related to z; under R. Sometimes, we denote it as z; Rz, instead of (z1,z;) € R.
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Further, if (z1,22) € R such that z; and z, are distinct, then we write (z1,2;) € R7 (sometimes as
z1R723). It is observed that R# C R is also a binary relation on M. M x M and @ are trivial binary
relations on M, specifically called a universal relation and empty relation, respectively. The inverse,
transpose or dual relation of R is denoted by R~! and is defined as R™! = {(z1,220) € M x M :
(z2,71) € R}. We denote by R* the symmetric closure of R, which is defined as R* = RUR .

Throughout this manuscript, M is a non-empty set, R stands for a binary relation on M and I
denotes an identity mapping, and S and g are self-mappings on M.

Definition 4. [26] For a binary relation R:

(a)  Two elements z1,zy € M are said to be R-comparative if (z1,2z2) € R or (z2,2z1) € R. We denote it by
[z1,22] € R.
(b) R is said to be complete if [z1,zp] € R, forall 21,2 € M.

Proposition 1. [21] For a binary relation R on M, we have (for all z1,zy € M):
(Z1,Zz) ER® — [21,22} € R.
Definition 5. [21] A sequence {z,} C M is said to be R-preserving if (zu,zn+1) € R, forall n € N.

Here, we follow the notion (of R-preserving) as used by Alam and Imdad [21]. Notice that Roldén
and Shahzad [27] and Shahzad et al. [28] used the term “R-nondecreasing” instead of “R-preserving”.

Definition 6. [29] Let N C M. If for each z1,z5 € N, there exists a point z3 € M such that (z1,z3) € R and
(z2,23) € R, then N is said to be R-directed.

Definition 7. [30] For z1,z0 € M, a path of length | € N in R from z; to zp is a finite sequence
{po, p1,, p1} C M such that pg = z1, p; = zp and (p;, piy1) € R, foreach 0 <i <I1—1.

Definition 8. [31] Let N C M. If for each z1,z, € N, there exists a path in R from z; to zo, then N is said to
be R-connected.

Definition 9. [21] R is said to be S-closed if (z1,zp) € R implies that (Szq,5z2) € R, for all z1,z, € M.

Definition 10. [31] R is said to be (S, g)-closed if ($z1,8z2) € R implies that (Sz1,5z,) € R, for all
71,22 € M.

Observe that on setting ¢ = I, Definition 10 reduces to Definition 9.
Proposition 2. [31] If R is (S, g)-closed, then R is also (S, g)-closed.

Definition 11. [23] R is said to be locally S-transitive if for each R-preserving sequence {z,} C S(M) with
range E = {z, : n € Ny}, the binary relation R|g is transitive.

Motivated by Alam and Imdad [31], we introduce the notion of R-continuity and R-g-continuity
in the context of partial metric space as follows:

Definition 12. Let (M, p) be a partial metric space endowed with a binary relation R. A self-mapping S on M

is said to be R-continuous at a point z € M if for any R-preserving sequence {z,} € M such that {z,} — z,
we have {Sz,} — Sz. S is R-continuous if it is R-continuous at each point of M.
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Definition 13. Let (M, p) be a partial metric space endowed with a binary relation R. A self mapping S is
said to be (g, R)-continuous at a point z € M if for any sequence {z,} C M with {gz,} R-preserving and
{gzn} — gz, we have {Sz,} — Sz. S is R-g-continuous if it is R-g-continuous at each point of M.

Remark 2. Notice that for g = Iy, Definition 13 reduces to Definition 12.
In the next definition, we introduce R-compatibility.

Definition 14. Let (M, p) be a partial metric space endowed with binary relation R and S,g : M — M.
S and g are said to be R-compatible if for any sequence {z,, } such that {Sz, } and {gz,} are R-preserving and
limy 0 Szy = limy,—c0 g2, we have:

lim d,(8(Szn),S(gzn)) = 0.

n—o00

Inspired by Imdad et al. [24], we introduce the following notions in the setting of partial metric
spaces in the similar way.

Definition 15. Let (M, p) be a partial metric space endowed with a binary relation R. A subset N C M is
said to be R-precomplete if each R-preserving Cauchy sequence {z,} C N converges to some z € M.

Remark 3. Every R-complete subset of M is R-precomplete.
Proposition 3. Every R-closed subspace of an R-complete partial metric space is R-complete.
Proposition 4. An R-complete subspace of a partial metric space is R-closed.

Next, we introduce the notion of p-self closedness in the setting of partial metric spaces.

Definition 16. Let (M, p) be a partial metric space endowed with binary relation R. Then R is said to be p-self
closed if for each R-preserving sequence {z,} C M with {z,} — z, there exists a subsequence {z,, } of {z, }
such that [z,,,z] € R, for all k € Np.

We now state the following lemma needed in our subsequent discussion.

Lemma 3. Let M be a non-empty set and g : M — M. Then there exists a subset N C M with g(N) = g(M)
and g : N — M is one—one.

We use the following notations in our subsequent discussions:
Coin(S, g): Set of all coincidence points of S and g;
M(g, S, R): The collection of all points z € M such that [gz, Sz] € R.

4. Main Results

Let @ denote the set of all mappings ¢ : [0,00) — [0, o) satisfying the following:

(@1) ¢ is non-decreasing;
(P2)  ¢(8) = 0iff 6 = 0 and liminf, e p(5,) > 0if limy—y00 8y > 0.

Notice that Reference [32] used the condition that ¢ is continuous. Inspired by Reference [33], we
replace their condition by a more weaker condition (®2). In fact, this condition is also weaker than
that ¢ is lower semi-continuous. Indeed, if ¢ is a lower semi-continuous function, then for a sequence
{6n} with limy e 6 = 6 > 0, we have liminfy, 0 ¢(6,) > ¢(5) > 0.

Before presenting our main result, we define the following.
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Definition 17. Let M be a non-empty set endowed with an arbitrary binary relation R and N C M. Then, N
is said to be (S, g, R)-directed if for each z1,z, € N, there exists a point zz € M such that (gz;,gz3) € R, for
i=1,2and (3z3,Sz3) € R.

Definition 18. Let M be a non-empty set endowed with an arbitrary binary relation R and N C M. Then, N
is said to be (S, g, R)-connected if for each z1,z5 € N, there exists a path {gpo, gp1,....gp1} € g(M) between
21 and zp such that (gp;, Spi) € R, for1 <i<I—1.

Remark 4. For ¢ = Iy, Definitions 17 and 18 reduce to (S, R)-directed and (S, R)-connected.
Now, we state and prove our first main result, which runs as follows:

Theorem 1. Let (M, p) be a partial metric space equipped with a binary relation R, N C M, an
R#-precomplete subspace in M and S, g : M — M. Assume that the following conditions are satisfied:

() M(g,SR)#0;
(b)  Ris (S, g)-closed;

() S(M)Cg(M)NN;

(d) R islocally S-transitive;

(e) S satisfies generalized Cirié-type weak (g, R)-contraction, i.e.,

p(S2,50) < Myg(z,w) — 9(p(S2, Sw)), M

forall z,w € M with (gz,gw) € R and ¢ € ®, where:

z,Sw) + p(gw, Sz
Mog(z,w) = max {P(gz, gw),p(gz, Sz), p(gw, Sw), P8 ) 3 p(s ) };

(f)  (f1) S and g are R#-compatible;
(f2) S and g are R* -continuous;
or alternatively:

(f) (fFHNCg(M);
(f*2) either S is (g, R7)-continuous or S and g are continuous or R7 |y is p-self closed.

Then, S and g have a coincidence point.
Proof. Choose zp € M as in (a) and construct a sequence {gz, } in M as follows:
9zn = Szy—1 = S"zp, Vn € Ny.

If there is some mg € Ng such that ¢z, = ¢zyy11, then zy, is the coincidence point of the pair
(S, g) and we are done. Henceforth, assume that gz,, # gz,,41, for all n € Ny. In view of condition (b),
we have (gz, §zy4+1) € R, for all n € Ny. Employing condition (e), we have:

0(8z,-1,52n) < My g(zn—1,20) — $(0(Szn-1,5zn)), (2)

which implies:
0(82zn, 8Zn+1) = p(Szn—1,5zn) < Mpg(zn—1,2n), 3)
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where:

Mye(Zn—1,20) = maX{p(ng,gzn),p(gznfl,Sznfl),p(gzn,Szn),

0(82n-1,Szn) + (821, Szu—1) }
2

= maX{p(gznfl,gzn),p(gznflfgzn),p(gzn,gznﬂ),

0(82n-1,8%n+1) + (820, §2n)
2

n—1r n + nrs n
< maX{P(gznfl,gzn),p(gzn,gzn+1)/p(gz %) 2 e H)}

= max{p(gzu-1,82n), (821, §2n+1)}-
Now, if My ¢(z4—1,2un) = 0(82n, §Zn41), then Equation (2) becomes:
P(82n 82n41) < 0(82n,82n41) — P(0(821, 8Zn11)),
a contradiction. Hence, we have M ¢(z,-1,21) = p(82n—1,82zs) and Equation (3) implies that
{p(g2n,gzn+1)} is non-decreasing (also bounded below by 0). Thus, there exists » > 0 such that

limy,—c0 0(§2n, §2n+1) = r. Next, we show that r = 0. Suppose, by contrast, that it is not so, i.e., r > 0.
Passing the limit 7 — oo in Equation (2), we get:

r < r—liminf @(o(gzn §2n11))

which is a contradiction. Hence:
Jim (821, 82n41) = 0. “4)

We also have:

do(82n,82u+1) = 20(82n, §2n 1) — (821, 82n) — 0(8Zn 11, 82u+1)
< 20(8zn, §Zn+1),

which, on letting n — oo and applying Equation (4), yields that:
nlg{}a dp(82n,§zn+1) = 0.

Now, our claim is that {gz,} is a Cauchy sequence in (N,d,). Otherwise, there exist two
subsequences {gzy;, } and {gzy, } of {gz,} such that 1 is the smallest integer for which:

g > my > k and dp(82zmy, §2n,) > €. (5)
Since d,(z,w) < 2p(z,w), for all z,w € M, Equation (5) gives:
€ €
g > myg >k, 0(82my, §2n,) = 3 and p(gzm,, §2n,) < 5

Now, using triangular inequality, we have:

< 0(82my, 82n,) < P(8Zmys §Zn—1) + 0(82Zn,—1, 8Zn;)

N @™

€
< 5 +0(82n,—1,82n;)-
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Letting k — oo in the above inequality, we obtain:
. €
Jim p(8zm, §2n) = 5- (6)
Again, the triangle inequality yields the following:

0(82ms 8Zn—1) < 0(8Zmyr §2ny) + (82 §Zn—1)

and:
0(82my, 82n,) < P(8Zmys §Zne—1) + P(82Zu,—1,82n,)

which together give rise to:
lo(82m 82m—1) — (82ms §2m )| < (82,1, 82my)-
Now, on taking k — oo, the above inequality gives:
. €
Jim p(gzm, §2n-1) = 5-
In a similar manner, one can show that:
. . €
Jim p(8z—1,82Zn—1) = Hm p(82m—1,82m) = 5

Thus, we get:
. €
Jlim Mo g (2 —1,2m—1) = 5. @

Using (d), we have (8zy,—1,8Zn,—1) € R and hence, Equation (1) implies:
0(8Zms §2m.) < Mpg(zmy—1,2m—1)) — P(0(82m,, §2m,))-
Using Equations (6) and (7) and letting k — oo in the above inequality, we get:
¢ < - liminf ¢(0(8zm,, §2n,)),
272 k—co
a contradiction. Hence, {gz,} is Cauchy in (N,d,) (as {gz,} € S(M) C N) which is also

R7-preserving. Lemma 1 ensures that it is also Cauchy in (N, p). Thus, the R#-precompleteness of N
in M ensures the existence of a point Z € M such that:

nlgrt}o 9z = Z. (8)
Thus, we also have:
Jlim dy(gzy,2) = 0. )

Now, by Equation (9) and Lemma 1, we get:
p(zz) = lm p(gzy,z) = lim o(gzm gzn) = 0. (10)

Further, by the definition of {gz,} and Equation (8), we have:

lim Sz, = z. 11)
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Finally, to prove the existence of coincidence point of S and g, we make use of conditions (f)
and (f*). Firstly, assume that (f) holds. Now, as (gzu, 8z, 11) € R7, so using assumption (f2) and
Equation (8), we obtain:

lim ¢(gz,) = g(lim gz,) = gz. (12)

n—oo

By the definition of {gz,}, we have {Sz,} is also R*-preserving (i.e., (Szu, Sz,41) € R¥, for all
1), so using assumption (f2) and Equation (11), we get:

lim ¢(Szn) = g(lim Sz,) = gZ. 13)
By using Equation (8) and R#-continuity of S, we obtain:
nliﬁl’l’oloS(gZ,,) = 5(7}2{1082;1) =S5z (14)

As {Sz,} and {gz,} are R#-preserving and lim, e Sz; = limy, 00 §2n = Z, by the condition
(f1), we have:
y}ijrgodp(g(Szn),S(gzn)) =0. (15)

Now, from Equations (13)—(15) and continuity of d,, it follows that:
dp(g2,52) = dy(lim g(Sz,), lim S(2,))
= lim d, (g(521), S(g21)
=0,

i.e., gZ = Sz and we are done. Secondly, suppose that (f*) is satisfied. Then, by (f*1), there exists
some z € M such that Z = gz. Hence, Equations (8) and (11) respectively reduce to:

lim ¢z, = gz, (16)
and:
nlgtgo Sz, = gz. 17)

Next, to accomplish that z is a coincidence point of S and g, we utilize (f*2). Thus, suppose that
S is R7#-g-continuous, then using Equation (16), we obtain:
lim Sz, = Sz. (18)

n—o00

Now, by virtue of uniqueness of limit, Equations (17) and (18) give Sz = gz.

Next, assume that S and g are continuous. Then owing to Lemma 3, there exists D C M such that
g(D) = g(M) and g : D — M is injective. Now, define a mapping S : ¢(D) — g(M) by:

S(gt) = St, Vgt € g(D). (19)

As ¢: D — M is injective and S(M) C g(M), § is well-defined. Further, due to the continuity of
Sand g, S is continuous. The fact that g¢(D) = g(M), assumptions (c) and (f*1) imply that:

S(M) C g(D)NNand N C g(D).
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Thus, without loss of generality, we can construct {z,} C D, satisfying Equation (16) with z € D.
On using Equations (16), (17), and (19) with continuity of 5, we obtain:

Sz =35(gz) = S_(nli_lgogzn) = nlglgog(gzn) = lim Sz, =gz,
and we are done. Alternatively, if R7 |y is p-self closed, then for any R -preserving sequence {gz, }

in N with {gz,} — gz, there exists a subsequence {gz,, } of {gz,} such that [gz,,,gz] € R, for all
k € Ny. Suppose p(gz, Sz) > 0, then we have:

Zn,, Sz) + p(gz, Sz,
Mp,g(an,Z) = max {p(gznk,gz),p(gznk,Sznk),p(gz, 5z), plgzn, 52) > plg ) }

Letting k — co and using Equation (8), we get:
klgIolo Mp,g(zn,,2) = p(82,52). (20)
Now, applying z = z,, and w = z, condition (e) gives:

p(Szn,, Sz) < Mpg(zn,z) — ¢(p(Szny, S2)),

which, on letting n — oo and using Equations (8) and (20) and Lemma 2, yields that:
p(8z 52) < p(gz, Sz) — liminf ¢ (p(g2s,+1,52)),

a contradiction. Hence p(gz, Sz) = 0, i.e., gz = Sz. This completes the proof. [

Now, we present a corresponding uniqueness result.

Theorem 2. In addition to the assumptions of Theorem 1, if we assume that the following condition is satisfied:
() S(M)is(S,g, R°)-connected,

then S and g have a unique point of coincidence. Moreover, if:

(h) S and g are weakly compatible,

then S and g have a unique common fixed point.

Proof. Firstly, Theorem 1 ensures that Coin(S,g) # @. Let z,@ € Coin(S,g). Then, there exists
z,w € MsuchthatZ = Sz = gzand @ = Sw = gw. Our claim is that Z = @. Now, owing to hypothesis

(g), there exists a path, say {gpo, gp1,8p2,-.,gP1} € M of some finite length [ in R|§(M> from Sz to
Sw with:

gpo = Sz, gp; = Swand [gp;, gpi+1] € R, foreach 0 <i<1—1 (21)

and:
[gpi,Spil € R, foreach1 <i<[1—1. (22)

Define constant sequences {p) = z} and {p}, :‘w}, then we have gp? = Spd = Sz = zand
gpiHrl = Spl, = Sw = w, for all n € Ny. Further, set p}) = p;, for each 0 < i < I and define sequences
{ri}, {pi}, - {pi '} by:

gpﬁHl = Spl,, Vn € Npand foreach1 < i <[—1.

Hence: _ _
8Phs1 = Spy, YV € Ngand for each 0 <7 < 1.
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By mathematical induction, we will prove that:
[gri, gpit] € R, Vn € Ny and foreach 0 < i <1 —1.
In view of Equation (21), the result holds for n = 0. Now, suppose it holds for n = k > 0, i.e.:
[gpi P € R, foreach 0 < i <[—1.
By (S, g)-closedness of R and Proposition 2, we have:
i+1

[Spi, Spi™) = [8Pky1,8PiLL] € R, foreach 0 <i<1-1,

i.e., the result holds for n = k + 1 and hence, it holds for all n € Ny. Also from Equation (22), we have
[gpf), gpﬂ € R and R is (S, g)-closed, so by Proposition 2 and Equation (4), we have:

lim p(gp}, 8P 1) = 0. (23)
Now, for all n € Ny and for each 0 < i <[ — 1, define f,’l = p(gpﬁ;,gpi,‘*'l). Our claim is that:
: i _
S =0
i

Suppose, by contrast, that lim, .« fi = f > 0. Since [gp}, gpit] € R, (gpl, gpi!) € R or
(gpi, gpl) € R, forall n € Np and for each 0 < i < I — 1. Making use of Equation (1), we have:

PSPl Spi™) < Mpg(ph, pi™) — ¢(p(Sph, Spi™))

or.
(8P 1, SPL) < Mg (Pl i) — @(0(8Ph 11, 8P4, (24)

where:

Mopg(phpit) = maX{p(gPL,gPL“),p(gpL,Spi;),p(gpffl,sp

p(gpi, SPL™) + p(gpi™, Sph) }
2

iﬁrl)/

= maX{p(gpi;fgv%“)fp(gpiugpigl)fp(gp%“,gpﬁffl),

o(gph, gpith) + p(gph™, gphe) }
2

< max{p(gpi;/gpi;“),p(gpi;,gp"nﬂ),p(gpff Leptih),

0(8Ph 8Pl 1) + 08P, 1 8Pl +p(gpl!

2

/8P%) + (8P 8P1s1) }
Now, letting n — oo and using Equation (23), we obtain:
nlgrolo Mp,g(P;r Piz“) =f
which, on applying Equation (24) after taking limit, yields that:

f < f = liminfg(p(pha, i),
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a contradiction. Therefore, lim; .« f;, = 0.
Next, we have:

k—1
p(z,@) = p(gph gph) < Y p(gph gri™) — Z (8P &Pt
i=0
k*l 1
(8P &P )
1:0
k—1

fi = 0(asn — ).
0

Hence, Z = w, i.e.,, Sz = Sw. Thus, S and g have a unique point of coincidence.

Secondly, to justify the existence of a unique common fixed point, we consider z € Coin(S, g), i.e.,
Sz = gz = z, for some z € M. By the condition (%), S and g commute at their coincidence points, i.e.,

S(gz) = g(5z) = g(gz), (25)

thereby yielding Sz = gz, i.e., Z € Coin(S,g). Thus, by the uniqueness of point of the coincidence
point, we have:
Z=gz=_5z

The uniqueness of the common fixed point is a direct consequence of the uniqueness of the
coincidence point. This finishes the proof. [I

We present the following example to support our result.
Example 1. Let M = [0, 00) with partial metric p : M x M — [0, 00) defined by:

p(z1,22) = max{zy,z2}.

Define a binary relation R = {(z1,2z2) € M x M : z1 > zy}. Clearly, (M, p) is a complete partial metric
space. Define S, g : M — M by:
Sz:gandgz:g,VzeM.

It is clear that R is (S, g)-closed and S and g are continuous. Next, define ¢ : [0,00) — [0, c0) by:

o(t) = é Vi € [0,c0).

Clearly, ¢ € . Observe that all the conditions of Theorems 1 and 2 are fulfilled (with N = M). Hence, S
and g have a unique common fixed point (namely 0).

Next, we present the following corollaries.

Corollary 1. The conclusion of Theorem 2 remains valid if we replace the condition (g) by any one of
the following:

(81)  Rlg(m) is complete;
(g2)  S(M)is (S, g, R?)-directed.

Proof. If (g¢1) holds true, then for any z3,z; € S(M), we have z; = gw; and z; = gw,, for some
wy,wy € M (as S(M) C g(M)). In view of (g1), we have [gw, gwa] € Rlgm), ie, {gw1, w2} is a
path of length 1 in ’R\; M) from z; to zp. Hence, condition (g) of Theorem 2 is fulfilled and the result is
concluded by Theorem 2.
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On the other hand, if condition (g2) holds, then for each z1,z; € S(M) (such that z; = gw;
and z = gwy, for wy, wy € M), there exists w3 € M such that [gwy, gws], [gwa, gws] € Rlg(ny), i,
{gwn, gws, gw>} is a path of length 2 in R@(M) from z; to zp and [gws3, Sws] € R|g(u)- Hence, condition
(g) of Theorem 2 is fulfilled and again by Theorem 2, the conclusion follows. [

Corollary 2. The conclusions of Theorems 1 and 2 remain true if we replace assumption (e) by the following one:

(el) S satisfies
p(Sz, Sw) < p(gz,8w) — ¢(p(Sz, Sw)), (26)

for all z,w € M with (gz,gw) € R¥ and € .
Proof. As p(gz,gw) < M,¢(z,w), we have:
p(5z,5w) < p(gz,gw) — p(p(Sz,Sw)) = p(Sz,Sw) < Mpg(z,w) — ¢(p(Sz, Sw)),

for all z,w € M with (gz,gw) € R#. Thus, all the assumptions of Theorems 1 and 2 are satisfied and
the conclusions hold. [

Following Reference [32], it can be easily seen that in a partial metric space (M, p), for all
(gz,gw) € R7, the conditions:

p(5z,5w) < p(gz,gw) — ¢(p(Sz,Sw)), (27)
and:
p(5z,Sw) < Mpe(z,w) — P(p(Sz, Sw)), (28)
are more weaker than:
0(5z, 5w) < p(gz,gw) — ¢(p(gz, gw)), (29)
and:
p(Sz,Sw) < Mpo(z,w) — p(Mpe(z,w)), (30)

respectively. However, the converse need not be true in general (even the above assertion is true for
any z,w € M). This leads us to our next corollary.

Corollary 3. The conclusions of Theorems 1 and 2 remain true if we replace assumption (e) by the following one:
(e2) S satisfies:
p(5z,5w) < p(gz,gw) — ¢(0(8z,gw)), 31)

or:

0(Sz, Sw) < Moz, w) — cp(./\/lp,g(z, w)), (32)
forall z,w € M with (gz,gw) € R7 and ¢ € .

By setting ¢(t) = (1 —k)t, with k € [0,1) and ¢ € [0,00) in Corollary 3, we deduce the
following corollaries:

Corollary 4. The conclusions of Theorems 1 and 2 remain true if we replace assumption (e) with the
following one:

(e3)  thereexists k € [0,1) such that:
p(Sz, Sw) < kp(gz gw),

forall z,w € M with (gz,gw) € R and ¢ € ©.
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We see that the above corollary is a relatively new and somewhat refined version of Alam and
Imdad [31] type result in partial metric space with some refinement, e.g.:

e We use R¥-precompleteness of subspace N C M in place of R-completeness.
o We use R#—analogous of compatibility, continuity, closedness and p-self closedness instead of
their R-analogous.

Corollary 5. The conclusions of Theorems 1 and 2 remain true if we replace assumption (e) with the
following one:

(e4) S satisfies:
p(Sz, Sw) < kMpe(z,w), (33)

forall z,w € M with (gz,gw) € R7 and ¢ € ©.

By considering ¢ = Iy, the following fixed point result can be deduced easily from
Theorems 1 and 2.

Corollary 6. Let (M, p) be a partial metric space equipped with a binary relation R, N C M an
R7-precomplete subspace in M and S : M — M. Assume that the following assumptions are satisfied:

(a)  There exists zg € M such that (zo, Sz9) € R;

(b) R is S-closed;

(c) S(M)CN;

(d)  Rislocally S-transitive;

(e) S satisfies generalized Cirié-type weak (¢, R)-contraction, i.e.:

0(Sz, Sw) < M(z,w) — ¢(p(Sz, Sw)),

forall z,w € M with (z,w) € R* and ¢ € O, where:

’

M(z,w) = max {p(z, w),p(z,Sz), p(w, Sw), W}

(f)  either S is R7-continuous or R7 |y is p-self closed.
Then, S has a fixed point. In addition, if:
(g) Nis (S, R®)-connected,

then the fixed point is unique.

In place of R7-precomplete of N, if we use the R7 -completeness of the whole space M, then we
find a particular version of Theorem 1.

Corollary 7. Let (M,p,R) be an R¥-complete partial metric space and S,g : M — M satisfy the
following assumptions:

(@) M(g,S,R)#2;

(b) Ris (S, g)-closed;

(€)  S(M)cg(M);

(d) R islocally S-transitive;

(e) S satisfies generalized Cirié-type weak (¢g, R)-contraction, i.e.,:

p(5z,5w) < Mpg(z,w) — ¢(o(Sz,Sw)), (34)
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forall z,w € M with (gz,gw) € R* and ¢ € @, where:

7

Mpg(z,w) = max {p(gzrgw),p(gzr 52), p(gw, Sw), P80 ; Pl Sz) }
(f)  (f1) S and g are R*-compatible;
(f2) S and g are R* -continuous;
or alternatively:
(f*)  (f*1) there exists an R7-closed subspace N of M such that S(M) C N C g(M);
(f*2) either S is R7-g-continuous or S and g are continuous or R7 |y is p-self closed.

Then, S and g have a coincidence point.

Proof. The result follows by Proposition 3 and Remark 3.

Moreover, in Corollary 7, if we assume g to be surjective, then assumption (c) as well as
assumption (f*1) can be removed trivially since N = g¢(M) = M.

5. Consequences

5.1. Results in Abstract Spaces

By considering R to be the universal relation, i.e., R = M x M, we deduce the following results
from Theorems 1 and 2.

Corollary 8. Let (M, p) be a partial metric space and S, g : M — M. Assume that the following conditions
are satisfied:

(a)  S(M)Cg(M)NN;
(b) S satisfies:
p(82,50) < Mg (z,w) - 9(p(Sz, Sw)),
forall z,w € M with gz # gw and ¢ € &;
(¢)  (c1) Sand g are compatible;
(c2) S and g are continuous;
or alternatively:

(€)  NCg(M)

Then, S and g have a coincidence point.
Corollary 9. Moreover, if S and g are weakly compatible, then S and g have a unique common fixed point.

In view of Corollary 4 under R = M x M, it can be easily seen that Corollary 8 is a more
generalized and sharpened version of Goebel and Jungck type results in partial metric spaces.

5.2. Results in Ordered Partial Metric Spaces via Increasing Mappings

The idea under consideration was initiated by Turinici [17], which was later generalized by
several authors, e.g., Ran and Reurings [18], Nieto and Rodriguez-Lépez [19], and some others, e.g.,
the authors of [34-37]. In this section, from now on, < denotes a partial order on a non-empty set
M, (M, <) denotes a partially ordered set, and (M, p, <) stands for a partial metric space with partial
order <, which we call ordered partial metric space.

Now, we recall the following notions which are needed in the sequel.

Definition 19. [38] A mapping S : M — M is said to be g-increasing if Szq = Szy, for any z1,z, € M with
821 =X §22.
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Remark 5. Notice that S is g-increasing and the notion < is (S, g)-closed in our sense coincide with each other.
Definition 20. [39] Let {z,,} be a sequence in an ordered set (M, <). Then:
(@) {zu} is said to be increasing if for all m,n € Ny:
m<n — zy =X zy.
(b)  {zu} is said to be decreasing if for all m,n € No:
m<n — zp X zZpy.

(c)  {zn} is said to be monotone if it is either increasing or decreasing.

Now, we introduce the notion of increasing-convergence-upper bound (ICU) property in the setting of
ordered partial metric spaces.

Definition 21. Let (M,p, <) be an ordered partial metric space. We say that (M,p, =) has ICU
(increasing-convergence-upper bound) property if every increasing sequence {z, } € M such that {z,} — z is
bounded above by limit, i.e., z, = z, foralln € N.

Remark 6. It is observed that (M, p, <) has ICU property is equivalent to < is p-self closed.

Notice that Alam et al. [40] defined ICU property in the setting of ordered metric spaces.

Definition 22. In an ordered partial metric space (M, p, <), we define the following:

(@) (M,p,=) is said to be O-complete (resp. O-complete, O-complete) if every increasing (resp. decreasing,
monotone) Cauchy sequence in M converges in M.

(b)  aself-mapping S on M is said to be (g, O)-continuous (resp. (g, O)-continuous, (g, O)-continuous) at
z € M, if for any increasing (resp. decreasing, monotone) sequence {z, } € M such that {z,} — z, we
have {Sz,} — Sz.

S is (g, O)-continuous (resp. (g,0)-continuous, (g, O)-continuous) on M if it is (g, O)-continuous
(resp. (g, O)-continuous, (g, O)-continuous) at every z € M.

(c)  two self-mappings S and g are said to be O-compatible (resp. O-compatible, O-compatible) if for any
sequence {z, } and z € M such that {Sz, } and {gz,} are increasing (resp. decreasing and monotone)
and limy, 00 Szy = limy 00§20 = 2z, we have:

lim p(S(gzn),8(Szn)) = 0.

n—oo

Remark 7. Notice that for g = 1, (g, O)-continuity reduces to O-continuity, and the same happens to the others.

The above notions were defined by Kutbi et al. [41] in the setting of ordered metric spaces. Now,
we introduce the following notion.

Definition 23. A subset N of an ordered partial metric space (M, p, =) is said to be O-precomplete (resp.
O-precomplete, O-precomplete) if every increasing (resp. decreasing, monotone) Cauchy sequence in N converges
to a point of M.

Under consideration of Remarks 5 and 6 and R ==, we obtained the below result from Theorem 1,
which is new for the existing literature.
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Corollary 10. Let (M, p, =) be an ordered partial metric space, N C M an O-precomplete subspace in M and
S,g: M — M. Assume that the following assumptions are satisfied:

(a)  There exists zop € M such that gzg < Sz,

(b)  Sis g-increasing;

() S(M)Cg(M)NN;

(d) S satisfies generalized Ciri¢-type weak (g, <)-contraction, i.c.,

0(5z,5w) < Myq(z,w) — ¢(p(Sz, Sw)), (35)

forall z,w € M with gz < gw and ¢ € P, where:

’

p(gz,Sw) + p(gw, Sz) }

My 0) = max {plg, ), (g2, 53)plgrw, Sw), !

(e)  (el) Sand g are O-compatible;
(€2) S and g are O-continuous;
or alternatively:
(e*) (e*1) N C g(M);
(e*2) either S is (g, O)-continuous or S and g are continuous or (N, p, <) has ICU property.

Then, S and g have a coincidence point.

5.3. Results in Ordered Partial Metric Spaces via Comparable Mappings

Definition 24. [42] For S,g : M — M, S is said to be g-comparable if for all z1,zo € M such that gz <> gz,
we have Sz1 <> Szj.

Remark 8. Observe that the notion S is g-comparable is equivalent to saying that <> is (S, g)-closed.

Definition 25. [43] Let (M, <) be an ordered set and {z, } a sequence in M. Then:

(a)  {zn} is said to be termwise bounded if there is an element z € M such that each term of {z,} is
comparable with z, i.e., zy <> z, for all n € Ny and z is a c-bound of {z, }.

(b)  {zu} is said to be termwise monotone if consecutive terms of {z,, } are comparable, i.e., zy <> z,.1, for
all n € Ny.

Now, we introduce TCC property in the setting of ordered partial metric spaces.
Definition 26. We say that an ordered partial metric space (M, p, <) has TCC property if every termwise
monotone convergent sequence {zy } in M has a subsequence, which is termwise bounded by the limit (of the
sequence) as a c-bound, i.e.:
2y § 2z = there exists a subsequence {zy, } of {zy ywith z,, <> z, Yk € Ny.

Remark 9. It is observed that (M, p, <) has TCC property which is equivalent to <-, which is p-self closed.

In view of Remarks 8 and 9 and using R ==~ in Theorem 1, we again obtained a new result for
the existing literature.

Corollary 11. Let (M, p, =) be an ordered partial metric space, N C M, an O-precomplete subspace in M and
S, : M — M. Assume that the following assumptions are satisfied:

(a)  There exists zg € M such that gz <> Szop;
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(b)  Sis g-increasing;
() S(M)cgM)NN;
(d) S satisfies generalized Ciric-type weak (g, R)-contraction, i.e.:

0(5z,5w) < Mpg(z,w) — ¢(p(Sz, Sw)), (36)

forall z,w € M with gz <> gy and ¢ € P, where;

z,Sw) + w, Sz
Mp,g(z,w) = max {p(gzlgzv),p(gz,SZ)/p(gw, SW),p(g ) > Pl )};

(e)  (el) Sand g are O-compatible;
(e2) S and g are O-continuous;
or alternatively:
(e*) (1) N C g(M);
(e*2) either S is (g, O)-continuous or S and g are continuous or (N, p, =) has TCC property.

Then, S and g have a coincidence point.

6. Application

Let us consider the following system of equations:

{z(t) = fOTKl(t,T,z(T))dT+u(t); 37)

2(t) = [ Ka(t,7,2(7))dT +a(t),

forallt € O =1[0,T], T >0, where Kj,Kz : O x QO x R" - R"and a : QO — R"™.

Our aim is to provide an existence theorem in order to find the solution of the above system of
integral equations using Theorem 1.

Let R be an arbitrary transitive binary relation on R” and M = C(Q,R"), set of all continuous
mappings from Q) — R”, with sup norm ||z ;s = max;eq [|z(t)]|, z € M. Consider a binary relation
Ry on M as:

(21,22) ERM — (Zl(t),ZZ(t)) ER, Vte Q.

For any R yj-preserving sequence {z, } in M converging to z € M, we have (z,(t),z(t)) € R, for
all t € Q. Further, define S, : M — M by:

T T
Sz(t) :/ Ki(t7,2(7))dT + a(t) andgz(t):/ Ka(t, 7, 2(7))dT + a(t),
0 0
for all t € (), where g is surjective.

Theorem 3. Suppose the following conditions are satisfied:

(A) K, K :QxQxR"— R"and a : QO — R" are continuous;
(B)  There exists some zg € M such that:

T T
</0 Kz(t,T,Zo(T))dT—‘ru(i’),/o Kl(t,'r,zo(r))d‘r+a(t)> ER, Ve

(C)  (gz(t),gw(t)) € R = (Sz(t),Sw(t)) € R, Vt €
(D)  Foreachz,w € M such that (z,w) € R7 and t,T € Q, there exists a number A € o, %] such that:

1K1 (£, 7,2(7)) = Ka (8, 7, w(0))[| < Algz(t) — gw(B)].
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Then, Equation (37) has a solution in M.
Proof. Define p : M x M — [0,0) as:
o(z,w) = ||z —w||m, Vz,w € M.

Now, for (z,w) € R#, we have:

[ w07, 20) ~ Kt ()i

Sz,Sw) =
p(Sz, Sw) = max

T
< max/ Ky (E 7, 2(7)) — K (£ 7, (7)) |ldT
teQ Jo

T
< —
< Amax|lga(t) — gw()] [ dr
= ATlgz = gwlm
= Mip(gz gw),

where A1 = AT. Now, define ¢ : [0,00) — [0,00) as ¢(t) = (1 — Aq)t, A1 € [0,1). It can be easily seen
that ¢ € &. Applying it in the above inequality, we obtain:

p(Sz, Sw) < p(gz,gw) — P(p(gz, gw))
< p(8z,8w) — ¢(p(Sz, Sw))
< Mp,g(zr w) — ¢(p(Sz, Sw)),

where M, ¢ is as defined in Theorem 1. By choosing N = M, it s also clear that S(M) C M = g(M).
Hence, by fulfilling all the necessary requirements of Theorem 1, S and g have a coincidence point.
Hence, the system (Equation (37)) has a solution. This completes the proof. [

7. Conclusions

Essentially, inspired by Alam and Imdad [21] and Zhiqun Xue [32], we introduced a new
contraction condition and used the same to prove some new fixed point results in the setting of
partial metric space. To establish our claim, we deduced some corollaries which are still new and
refined versions of earlier known results in literature. Finally, by presenting an application, we
exhibited the usability of our main result.
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Abstract: In this paper, we prove that on any contact manifold (M, ¢) there exists an arbitrary
C*-small contactomorphism which does not admit a square root. In particular, there exists an
arbitrary C*-small contactomorphism which is not “autonomous”. This paper is the first step to
study the topology of Conto(M, ¢)\Aut(M, ¢). As an application, we also prove a similar result for
the diffeomorphism group Diff(M) for any smooth manifold M.

Keywords: diffeomorphism; contactomorphism; symplectomorphism

1. Introduction

For any closed manifold M, the set of diffeomorphisms Diff(M) forms a group and any
one-parameter subgroup f : R — Diff(M) can be written in the following form

f(t) = exp(tX).

Here, X € T(TM) is a vector field and exp : T (TM) — Diff(M) is the time 1 flow of vector fields.
From the inverse function theorem, one might expect that there exists an open neighborhood of the
zero section Y C T'(TM) such that

exp : U — Diff(M)

is a diffeomorphism onto an open neighborhood of Id € Diff(M). However, this is far from true ([1],
Warning 1.6). So one might expect that the set of “autonomous” diffeomorphisms

Aut(M) = exp(T'(TM))

is a small subset of Diff(M).
For a symplectic manifold (M, w), the set of Hamiltonian diffeomorphisms Ham®(M, w) contains
“autonomous” subset Aut(M, w) which is defined by
Aut(M, w) {exp (X) X is a time-independent He.amiltonian vector ﬁeld}_
whose supportis compact

In [2], Albers and Frauenfelder proved that on any symplectic manifold there exists an arbitrary
C*-small Hamiltonian diffeomorphism not admitting a square root. In particular, there exists an
arbitrary C*-small Hamiltonian diffeomorphism in Ham®(M, w)\Aut(M, w).

Polterovich and Shelukhin used spectral spread of Floer homology and Conley conjecture to prove
that Ham®(M, w)\Aut(M, w) C Ham®(M, w) is C*-dense and dense in the topology induced from
Hofer’s metric if (M, w) is closed symplectically aspherical manifold ([3]). The author generalized this
theorem to arbitrary closed symplectic manifolds and convex symplectic manifolds ([4]).

One might expect that “contact manifold” version of these theorems hold. In this paper, we prove
that there exists an arbitrary C*-small contactomorphism not admitting a square root. In particular,
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there exists an arbitrary C®-small contactomorphism in Cont§(M, ¢)\Aut(M, &). So, this paper is a
contact manifold version of [2]. As an application, we prove that there exists an arbitrary C*-small
diffeomorphism in Diffj (M) not admitting a square root. This also implies that there exists an arbitrary
C®-small diffeomorphism in Diff(M)\ Aut(M).

2. Main Result

Let M be a smooth (21 + 1)-dimensional manifold without boundary. A 1-form a« on M is called
contact if (¢ A (da)")(p) # 0 holds on any p € M. A codimension 1 tangent distribution ¢ on M is
called contact structure if it is locally defined by ker(«) for some (locally defined) contact form .
A diffeomorphism ¢ € Diff(M) is called contactomorphism if ¢.& = & holds (i.e., ¢ preserves the
contact structure ¢). Let Contj(M, ¢) be the set of compactly supported contactomorphisms which
are isotopic to Id through compactly supported contactomorphisms. In other words, Contj(M, ¢) is a
connected component of compactly supported contactomorphisms (Cont(M, ¢)) which contains Id.

Cm@M@:{%V”

t € [0,1])is an isotopy of contactomorphisms}
$o = 1d, Ucjg1jsupp(¢r) is compact

Let X € T°(TM) be a compactly supported vector field on M. X is called contact vector field if
the flow of X preserves the contact structure ¢ (i.e., exp(X).¢ = ¢ holds). Let l"g (TM) be the set of
compactly supported contact vector fields on M and let Aut(M, ) be their images

Aut(M,§) = {exp(X) | X € TZ(TM)}.
We prove the following theorem.

Theorem 1. Let (M, () be a contact manifold without boundary. Let VW be any C*®-open neighborhood of
Id € Conty(M, &). Then, there exists ¢ € W such that

¢+ v
holds for any ¢ € Conty(M, ). In particular, W\Aut(M, ) is not empty.
Remark 1. If ¢ is autonomous (¢ = exp(X)), ¢ has a square root = exp(3X).
Corollary 1. The exponential map exp : T¢(TM) — Contj(M, &) is not surjective.

We also consider the diffeomorphism version of this theorem and corollary. Let M be a smooth
manifold without boundary and let Diff(M) be the set of compactly supported diffeomorhisms

Diff‘(M) = {¢ € Diff(M) | supp(¢) is compact}.

Let Diffy(M) be the connected component of Diff’(M) (i.e., any element of Diffy(M) is isotopic
to Id). We define the set of autonomous diffeomorphisms by

Aut(M) = {exp(X) | X e T(TM)}.
By combining the arguments in this paper and in [2], we can prove the following theorem.

Theorem 2. Let M be a smooth manifold without boundary. Let W be any C*®-open neighborhood of
Id € Diffg(M). Then, there exists ¢ € VW such that

¢ #y?
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holds for any v € Diff*(M). In particular, W\ Aut(M) is not empty.
Corollary 2. The exponential map exp : I°(TM) — Diffy (M) is not surjective.

3. Milnor’s Criterion

In [1], Milnor gave a criterion for the existence of a square root of a diffeomorphism. We use this
criterion later. We fix I € N> and a diffeomorphism ¢ € Diff(M). Let P!(¢) be the set of “I-periodic
orbits” which is defined by

PHp) = {(xr, -, x) | xi # xj(i # ), xp = ¢ (x), v = plag) }/ ~ .
This equivalence relation ~ is given by the natural Z/IZ-action
(x1,x) = (XX, 0,x01).

Proposition 1 (Milnor [1], Albers-Frauenfelder [2]). Assume that ¢ € Diff(M) has a square root (i.e.,
there exists € Diff(M) such that ¢ = 1 holds). Then, there exists a free Z./2Z-action on P*(¢) (k € N).
In particular, §P?(¢) is even if t P2 (¢) is finite.

4. Proof of Theorem 1

Proof. Before stating the proof of Theorem 1, we introduce the notion of a contact Hamiltonian
function. Let M be a smooth manifold without boundary and let « € Q!(M) be a contact form on M
(¢ = ker(a)). A Reeb vector field R, € I'(TM) is the unique vector field which satisfies

a(Ry) =1
da(Ry,-) = 0.

For any smooth function 1 € CZ°(M), there exists only one contact vector field X, € T¢(TM)
which satisfies

Xp=h-Ry+Z where Z €¢.
In fact, X}, is a contact vector field if and only if L, («)|z = 0 holds (£ is the Lie derivative). So,
Lx, (2)(Y) = dh(Y) +da(X,Y) = dh(Y) +da(Z,Y) =0

holds for any Y € ¢. Because da is non-degenerate on &, above equation determines Z € ¢ uniquely.
X}, is the contact vector field associated to the contact Hamiltonian function . We denote the time f
flow of X, by ¢!, and time 1 flow of X, by ¢,.

Let (M,¢) be a contact manifold without boundary. We fix a point p € (M,¢) and a
sufficiently small open neighborhood U C M of p. Let (x1,y1,- - -, Xn, Yn, 2) be a coordinate of R2Z+1,
Let ag € Q(R?"+1) be a contact form

Ky = Z (x,dy,- — y,-dxi) +dz

1<i<n

N =

on R?"*1 By using the famous Moser’s arguments, we can assume that there exists an open
neighborhood of the origin V C R?'*! and a diffeomorphism

F:V—U 1
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which satisfies
&lu = ker((F™")*ap).

So, we first prove the theorem for (V, ker(np)) and apply this to (M, ¢).
We fix k € N>j and R > 0 so that

{(euyr,2) €RP[(xy, -, yw)| <R,|z <R} CV

holds. Let f € CZ°(V) be a contact Hamiltonian function. Then its contact Hamiltonian vector field X¢
can be written in the following form

Xf(x],--~ ,z) = 2 (7ﬂ+ ﬁg)i

152, 9y 20z 0x;
of |, yidf\ 9
vy ghudh s
Kén dx; 2 9z’ dy;
x; of yi of | 9
+- p 2oy udh 2
19294 20% G2, 20yi00z
Lete : R?” — R be a quadric function
2, .2 4y
E(xlryl/"'/xn/]/n):xl +yi+ Z T
2<i<n

We define a contact Hamiltonian function /2 on V by

h(x1, 91, X0 yn,z) = B(2)p(e(x1, y1, -+ Xn, Yn))-

Here, p:R — [0,1] and p:R>p — R>( are smooth functions which satisfy the following
five conditions.

—_

2
supp(p) C [0, %]
p(r) = p'(r) -1, =g <p'(r) <
3. There exists an unique a € [0,

]
RN

NS

| which satisfies the following conditions

{ﬂ(r)-ﬁ@r—a
p@) = &-a

~

supp(B) € [ 5, 4]
BO)=1,671(1) =0

Then, we can prove the following lemma.

o

Lemma 1. Let h € C& (V) be a contact Hamiltonian function as above. Then,

@, ¢n(q), -, ¢ 1 (q)] € P ()

holds if and only if

def.
ge{(x1,y,0,---,00 eV |2+t =a} =S,

holds.
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Proof of Lemma 1. In order to prove this lemma, we first calculate the behavior of the function
z(¢! (q)) for a fixed q € V (Here, z is the (21 + 1)-th coordinate of R*'+1).

d x; oh . ol
— Xi d Vi 9
= B(z){p(e) - 1£n EBTCZ-(P(E)) - 151271 ET%(P(e))}

=B(2){p(e) —p'(e) -e} =0
In the last inequality, we used the condition 2. So, this inequality implies that
2k d oot
¢ (9) = 9= 7 (z(¢(9))) =0
holds.
Next, we study the behavior of x; (¢}, (7)) and y;(¢!,(9)). Let 71; be the projection
s R2H 5 R2,
(xl,yl, te /x‘l’lryrlrz) = (xi/yi)

Then, Y;; = 71;(X},) can be decomposed into the angular component Y,i’e and the radius component
YiT as follows
h

oh 9 oh 9
w3 ooy,
10h d d
Eg)(xiafxi +yi87y,-)'

Y (x, 1, 2) =
Yi,r( _
Wy z) = (

Let w; be the complex coordinate of (x;,y;) (w; = x; + v/ —1y;). Then, the angular component
causes the following rotation on wj, if we ignore the z-coordinate,

arg(w;) — arg(w;) + 20’ (e(x1, -, yn)) B(2)Cit

1 i=1
Ci=19, .
;3 2<i<n

By conditions 2, 3, and 5 in the definition of g and p, [20/(e(x1, - -+ ,¥))B(2)C;| is at most Z¥ and

the equality holds if and only if (x1, 41, -+, Xu,¥n,2) € Sa holds. On the circle S;, ¢y, is the zz—f—rotation
of the circle S,. This implies that Lemma 1 holds. [

Next, we perturb the contactomorphism ¢;. Let (r,6) be a coordinate of (x1,y;) € R?\(0,0)
as follows
X1 =rcost, y; =rsind.

We fix e, > 0. Then e (1 — cos(kf)) is a contact Hamiltonian function on R?\ (0,0) x R?*~! and
its contact Hamiltonian vector field can be written in the following form

exk . ) 0
X e, (1—cos(ko)) = f% sm(k@)a +er(1— cos(kﬂ))g.

S0 Pe, (1—cos(ke)) ONly changes the r of (x1,y1)-coordinate and z-coordinate as follows

(r,0,x2,¥2, "+ , Xn, Yn,z) — (/72 — 2exksin(kB),0,x2, - -, yn, z + €x(1 — cos(k0))).
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We fix two small open neighborhoods of the circle S, as follows

S C Wy C Wy € R2\(0,0) x R?1
Xh(P) -',é 0 on pE Wz.

We also fix a cut-off function 7 : R?**1 — [0, 1] which satisfies the following conditions

U((xll'ulz))zl ((xlr"'rz)ewl)
n((x1,--,2) =0 ((x1,---,2) € R\ W)

¢} (R 1\ Wp) Nsupp(n) =@ (1 <j < 2K).

We will use the last condition in the proof of Lemma 2. Then, 1(x1.- - ,z) - €(1 — cos(kf))
is defined on R**l. We denote this contact Hamiltonian function by g.,. We define
Pe, € Cont§(R?"+1 ker(ap)) by the composition Pge, © Pi-

Lemma 2. We take e > 0 sufficiently small. We define 2k points {a;}1<i<ox by

a; = (\/ﬁcos(%),\/ﬁsin(%),o,' -+,0)) € S,.

Then P?*(¢e, ) has only one point [ay,az, - - -, ax).

Proof of Lemma 2. The proof of this lemma is as follows. On W1, ¢¢. only changes the r-coordinate

of (x1,y1) and z-coordinate. So, ¢¢, increases the angle of each (x;, y;) coordinate at most 2 and
the equality holds on only S;. On the circle S,, the fixed points of ¢g are 2k points {a;}. From the
arguments in the proof of Lemma 1, this implies that

[a1,az,- -, ax] € P*(ge,)

holds and this is the only element of P?*(¢¢, ) on Wj. So, it suffices to prove that this is the only
element in P% (¢, ) if € > 0 is sufficiently small. We prove this by contradiction. Let { e]((] ) > 0} jen be

a sequence which satisfies e,(f ) 5 0. We assume that there exists a sequence

o, b € P )\an ]
We may assume without loss of generality that bgj ) ¢ Wi holds because

(bgl),. » ,béfk)) ¢ lek

holds. We may assume that bgj ) converges to a point b ¢ Wy. Then, $?(b) = b holds. If X, (b) # 0,
¢y, increases the angle of every (x;,y;) coordinate less than 2F and this contradicts ¢7*(b) = b.
Thus Xj,(b) = 0 holds. Because we assumed Xj,(p) # 0 on p € Wy, X;,(b) = 0 implies that b ¢ W,
holds. Let N € N be a large integer so that bim ¢ W, holds. Then, ¢ (R*1\W,) Nsupp(y) = @
(1 < j < 2k) implies that 4’Jg§”> M) = ¢ (b)) holds for 1 < j < 2k and [B\V), .., b{] € PZ(g,)
holds. This contradicts Lemma 1 because biN) ¢ Sq. So, we proved Lemma 2. [

We assume that €, > 0 is sufficiently small so that the conclusion of Lemma 2 holds and we define
¢ bY P = ¢, - Thus, we have constructed ¢ € Contf(V, Ker(ap)) which does not admit a square root
for each k € N. Without loss of generality, we may assume that €, — 0 holds. Then ¢ converges to Id.
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Finally, we prove Theorem 1. We define ¢ € Contj(M, ¢) for k € N as follows. Recall that F is a
diffeomorphism which was defined in Equation (1).

_ [FogyoF l(x) xeu
Pielx) = {x x e M\U

Lemma 2 implies that

P*(gr) = {[F(a1), -, Flay)]}

holds. Proposition 1 implies that 1, does not admit a square root. Because p € M is any point and U is
any small open neighborhood of p, we proved Theorem 1. [

5. Proof of Theorem 2

Proof. Let M be a m-dimensional smooth manifold without boundary. We fix a point p € M. Let U
be an open neighborhood of p and let V' C R™ be an open neighborhood of the origin such that there
is a diffeomorphism

F:V —U.

In order to prove Theorem 2, it suffices to prove that there exists a sequence ;. (k € N) so that

e 1 does not admit a square root
e supp(p) c U
o Y —Idask — +co

hold.
First, assume that m is odd (m = 2n 4 1). In this case, ag is a contact form on V. Let ¢ be a
contactomorphism which we constructed in the proof of Theorem 1
o ¢ € Cont,(V, ker(ag))
o #P*(g)=1.

We define ¢y € Diffy(M) by

_ [FogroF(x) xeu
vilx) = {x xeM\U'

Then, £P?*(1p;) = 1 holds and this implies that g, does not admit a square root and satisfies the
above conditions. So, we proved Theorem 2 if m is odd.

Next, assume that m is even (m =2n). Let wy be a standard symplectic form on
(x¥1, Y1, -+, %n,Yu) € R?" which is defined by

wp = Z dx,-/\dyi.

1<i<n

By using the arguments in [2], we can construct a sequence ¢, € Ham®(V, wy) for k € N which
satisfies the following conditions

o #P¥(pr) =1
o ¢ —Idask — 4.

We define g € Diffy(M) by

FO(PkOF71 xelu
Pp = .
x x e M\U
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Then $P?*(1p;) = 1 holds and this implies that g, does not admit a square root and satisfies the
above conditions. Hence, we have proved Theorem 2. 0O
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Abstract: In this paper, some new results are given on fixed and common fixed points of Geraghty
type contractive mappings defined in b-complete b-metric spaces. Moreover, two examples are
represented to show the compatibility of our results. Some applications for nonlinear integral
equations are also given.
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1. Introduction

In 1989, Bakhtin [1] introduced b-metric spaces as a generalization of metric spaces. Since then,
several papers have been published on the fixed point theory in such spaces. For further works and
results in b-metric spaces, we refer readers to References [2-22].

Definition 1. Let X be a (nonempty) set and s > 1 be a given real number. A function d : X x X — [0,00) is
called a b-metric on X if the following conditions hold for all x,y,z € X:

@) d(x,y) =0ifand only if x =y,
(i) d(x,y) = d(y, x),
(il) d(x,y) <sld(x,z) +d(z,y)] (b-triangular inequality).

Then, the pair (X, d) is called a b-metric space with parameter s.

Example 1. [14] Let (X, d) be a metric space and let B > 1,A > 0and p > 0. For x,y € X, set p(x,y) =
A (x,y) + ud(x,y)P. Then (X,p) is a b-metric space with the parameter s = 2P~ and not a metric space
on X.

In 1973, Geraghty [23] introduced a class of functions to generalize the Banach contraction
principle. Let S be the family of all functions « : [0,00) — [0, 1) satisfying the property:

,1151;, a(ty) =1 implies nlgrolo t, = 0.
Theorem 1. [23] Let (X, d) be a complete metric space. Let T : X — X be given mapping satisfying:
d(Tx, Ty) < a(d(x,y))d(x,y), xy€X,

where o € S. Then T has a unique fixed point.

Axioms 2019, 8, 34; d0i:10.3390/axioms8010034 199 www.mdpi.com/journal /axioms
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In 2011, Dukic et al. [24] reconsidered Theorem 1 in the framework of b-metric spaces (see also
Reference [25]).

Let (X,d) be a b-metric space with parameter s > 1 and S denote the set of all functions
a:[0,00) — [0, 1), satisfing the following condition:

1
lim a(t,) = = = lim t, = 0.
n—co s n—oo

Theorem 2. [24] Let (X, d) be a b-complete b-metric space with parameter s > 1 and let T : X — X be a
self-map. Suppose that there exists p € S such that:

d(Tx, Ty) < B(d(x,y))d(x,y),

holds for all x,y € X. Then T has a unique fixed point x* € X.

In recent years, many researchers have extended the result of Geraghty in the context of various
metric spaces (e.g., see References [26-29]). In the present paper, we extended some fixed point
theorems for Geraghty contractive mappings in b-metric spaces.

2. Results

Let B denote the set of all functions f : [0,00) — [O,%) which satisfies the condition
limsup,,_,, B(ty) = ! implies that t,, — 0 as n — oo [25].

Theorem 3. Let (X,d) be a b-complete b-metric space with parameter s > 1. Let T : X — X be a
self-mapping satisfying:

d(Tx, Ty) < (M(x,y))M(x,y), xy€X, (1)

where: 1
M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty), 5 (d(x, Ty) +d(y, Tx)) },

and B € B. Then T has a unique fixed point.
Proof of Theorem 3. Let xy € X be arbitrary. Consider the sequence {x, } where:
xp=Tx, 1 =T'xg, neN.

If there exists n € N such that x,,.1 = x;, then x,, is a fixed point of T and the proof is finished.
Otherwise, we have d(x,,1,x,) > 0 for all n € N. By Condition (1), for all n € N we have:

d(xp, xy11) = d(Txp—1, Txn) < B(M(xy—1,%n) ) M(xy-1, 1), (2)
where:
Moyt 50) = mar{d(,, o), (6, Ty ) d(, Try), At T+ A0 Tinca)
= max{d(xi, %) A %), A, ), D) )y
< max{d(xn_1,%n),d(Xn, Xns1), s(d(x—1,%n) +d(xn, Xn11)) }

2s
= max{d(x,_1,xn),d(xn, Xp1)}-
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If d(xy—1,xn) < d(xn, xy41), then M(x,_1,x,) = d(xn, x;+1). From Condition (2), we have:

a(xn, xps1) < B(M(xp—1, %)) M(X—1, Xn)
1
S

IN

d(xy,xp41) n €N,
This is a contradiction. Thus, we have:

M(xy—1,%n) = d(xn, Xy 1)

Then, from Condition (2), we get:

d(xn/xn+1) < ,B(M(xnflrxn))d(xnfllxn) (3)
< d(xy_1,xn), neN

So {d(x,—1,%,)} is a decreasing sequence of non-negative reals. Hence, there exists » > 0 such
that d(x,_1,x,) — r as n — oo. We claimed that r = 0. Suppose on the contrary that r > 0, then from
Condition (3), we have:

r < limsup B(M(x,_1,Xn))r-

n—oo

Then,
<1 <limsup B(M(x,_1,x,)) <

n—o0o

1
E

[

Since B € B, then limy—co M (X1, xn) = 0. So limy,—ye0 d(x,—1, x4 ) = 0, which is a contradiction,
thatis, » = 0. Now we show that {x,} is a b-Cauchy sequence. Suppose on the contrary that {x,}
is not a b-Cauchy sequence. Then there exists ¢ > 0 for which we can find subsequences {x,,(}
and{x, ) } of {x,} such that n(k) is the smallest index for which n(k) > m(k) >k,

A(Xy(k)r Xn(r)) = & )
and
A (k) Xy 1) < & @)
From Condition (5) and using the b-triangular inequality, we have:
e < d(xp) Xuky) < 5@ Xy Xmpy+1) + (X 41 Xnr)))-

Then, we get:

©® | m

< limsup d (X, (k) 41, Xu (k) )- (6)

k—o0
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Therefore,

liI);nsupM(xm(k)rxn(k)fl) = lirknsupmax{d(xm(k)/xn(k)fl)/d(xm(k)/Txm(k))/
—00 —00
(X (k) -1) + X ge)-1, TXm(r))
d(xp(y—1, Txp(k)—1), (k)7 ) % i i }

= hrknsupmux{d(xm(k)/xn(k)fl)/d(xm(k)/xm(k)Jrl)/
— 00
d(xm k)7 Xn(k ) +d(xn k)—17 Xm(k 1)
(1)1, X)) —— LAl 55 ) 0Oy

IN

1ifkn sup max{d (X, (), Xn(k)—1)> A (X (k) Xm(i)+1)r A X (k) =1 X (k) )
—00
84 (X (1), X (k)—1) T 54 (X (k) Xpa(k)—1)
2s
8A(Xyy(0) -1, Xm(k)) 54X (k)r Xm(i)+1)
+ 2s }

< e

From Condition (6) and Condition (1), we have:

IN

lim sup d (k) +1, (k)

< limsup BIM Xty Xn(r)~1)) M (X (k) ¥n(i)—1)

k—ro0

P
AN

< elimsup B(M (X, (), Xp(k)—1))-

k—ro0

Then% < limsupy o, BIM (X (k) Xn(r)=1)) < % Since B € B, s0 M(xy(), Xp(x)—1) — 0, as a
result, d(x,, (), X, (k)—1) — 0. From Condition (4) and using the b-triangular inequality, we have:

€ < d (X, Xnk)) < S(A(X(k)r Xn(e)—1) + (X )—1, Xne))-

Therefore, limy_, e d(X(x), X4(r)) = 0. This contradicts with Condition (4). Hence, {x,} is a
b-Cauchy sequence. The completeness of X implies that there exists u € X such that x, — u.
We showed that u is a fixed point of T. By b-triangular inequality and Condition (1), we have:

d(u, Tu) s(d(u, Txy) + d(Txy, Tu))

<
< sd(u, Txy) +sB(M(xp, 1)) M(xy, u).

Letting n — oo in the above inequality, we obtain:

d(u, Tu) < slimsupd(u,x,41) (7)
n—oo
+slimsup B(M(xp, 1)) limsup M(x,, u),
n—o00 n—oo

where:

limsup,,_, ., max{d(x,, u),d(xy, Tx,),d(u, Tu), %(d(xn, Tu) +d(u, Txy))}
limsup,, _,, max{d(x,, u),d(xn, X,11),d(u, Tu), %(sd(xn, u) +sd(u, Tu) +d(u, x,41)) }
d(u, Tu).

limsup,, . M(x,,u)

INIA I

Hence, from Condition (7), we have:

d(u, Tu) < slimsup B(M(xy, u))d(u, Tu).
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Consequently, % < limsup,,_, B(M(xn,u)) < 1 Since B € B, we concluded limy,—,c0 M (xp, 1) = 0.
Therefore, Tu = u. To see that the fixed point # € X is unique, suppose there is v # u in X such
that To = v. From Condition (1), we get:
d(u,v) = d(Tu, Tv) < B(M(u,v))M(u,v),

where:

M(u,0) = max{d(u,v),d(u,Tu),d(v,Tv),zl—s(d(u,TU)+d(v,Tu))}
< d(u,v).

Therefore, we have d(u,v) < Ld(u,v). Then u = v, which is a contradiction. [

Example 2. Let X = {1,2,3} and d : X x X — [0, co) be defined as follows:

() d(1,2) =d(2,1) =1,
(i) d(1,3) =d(3,1) =3,
(i) d(2,3) =d(3,2) =
(iv) d(1,1) = d(2,2

It is easy to check that (X,d) is a b-metric space with constant s = % Set Tl = T3 = 1,T2 = 3 and
)

d(T2,T3) = d(3,1) =

Therefore, the conditions of Theorem 3 are satisfied.

Theorem 4. Let (X, d) be a b-complete b-metric space with parameter s > 1. Let T, S be self-mappings on X
which satisfy:

sd(Tx, Sy) < B(M(x,y))M(x,y), xy€X, ®)

where M(x,y) = max{d(x,y),d(x, Tx),d(y,Sy)} and B € B. If T or S are continuous, then T and S have a
unique common fixed point.

Proof of Theorem 4. Let x be arbitrary. Define the sequence {x, } in X by x3,+1 = Tx2, and x2,42 =
Sxp,41 forallm =0,1,.... From Condition (8), foralln = 0,1, 2, ..., we have:

sd(Xouq1, ¥ant2) = SA(Tx2u,Sx2441) )
< IS(M(xZWrx2n+1))M(x2nrx2n+1)r
where:
M(xon, Xouy1) = max{d(xan, X2011),d(x2n, Tx2n),d(X2n 41, SX2n11) }

= max{d(xou, Xon41),d(X2n41,X2n42)}, n=0,1,2,....

If M(x20, Xp41) = d(X2n41, X201 12), then:
1
sd (X241, X2n+2) < BIM (X2, X2n41))d(X2n41, X2n42) < gd(xznﬂlxzmz),
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which is a contradiction. Hence, we have M(x2;, X2,+1) = d(X24, X241+1). From Condition (9), we have:

d(xonq1, Xon42) < B(M(x20, X2n41))d(X2n, X2 41) (10)

1
gd(xm Xont1)-

IN

Then, we get d(x2n+1,x2n+2) < d(xZW,xan). Similarly, d(x2n+3, XZ”+2) < d(x2n+2, X2n+1). SO,
we have d(xp, x,41) < d(x,_1,x,). Thus {d(x,, x,,+1)} is a nonincreasing sequence, hence there exists
7 > 0 such that d(x,, x,11) — ras n — co. We showed that r = 0. Suppose on the contrary that r > 0.
Letting n — co in (10), we obtain:

r < limsup B(M(x2,, X2y 41))7-
n—o0

Then, we have:
% <1 < limsup B(M(x2p, X2p+1)) <

n—oo

m\H

Since p € B, we have:

nlgn M(x24, X2 41) = 0.

Hence,
r= nlglgo d(x2nl x2n+1) =0,

which is a contradiction. Now, we show that {xy,} is a b-Cauchy sequence. Suppose that {x;,} is
not a b-Cauchy sequence. Then there exists ¢ > 0 for which we can find subsequences {x,,,()} and
{x2n(k) } of {x2n} such that n(k) is the smallest index for which n(k) > m(k) > k,

d(xZn(k)rXZm(k)) ¢ (11)
and
A(X0u (k) Xom(k)—2) < & (12)
From Condition (8) and Condition (11) and the b-triangular inequality, we have:
e < d(Xou(k) Xom))
< sd(Xon(k), Xon()+1) 4 (X2n(k) 117 X2m(k))
= Sd(x2n 7 Xop k)+1) Sd(TXZn (k)~ Sme(k)fl)
< Sd(xZH 7 X2n(k)+1 )
+B(M (x2n » Xom(k)~1)) M(X2n(k), X2m(k)-1) (13)
where:

M (X (k) Xom()—1) = max{d(Xon(k), Xom(k) 1) A(X2n(k)r TX2(k) ) A (X2 (k) =1, SXom(k)—1) }-

Letting k — oo, we have:
Lim sup M(X2,,(k), X2 (k) 1) = Hmsup d(xX,, k), X2 (k) -1)-
k—o0 k—o0

From the b-triangular inequality, we have:

A% (k) Xam(k)-1) < $(A(Xn(ky ¥2m()—2) + A(X2m(k) -2, X2m(k)-1))-
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Letting again k — o in the above inequality, we get:

limsup d(xZn(k),me(k),l) < se. (14)
k—o0

From Condition (13) and Condition (14), we obtain:

e < lilglsup(,B(M(xm(k)/x2m(k)71))M(x2n(k)rx2m(k)71))
—»00
= hmsup.B(M(x2n(k)/x2m(k)fl))limsupd(XZW(k)’xzm(k)fl)
k—o0 k—o0
< sslimsup,B(M(xzy,(k),sz(k)fl))
k—o00
Therefore,
1 1
3 < limsup ,B(M(Xzy,(k);xzm(k)—l)) < S

k—o0

Since B € B, it follows that:

B M (1), Xom(t)-1) = 0.

Consequently,

lim d (X (), X2 (k)—1) = 0 (15)

k—o00

From Condition (11) and using the b-triangular inequality, we get:

& < d (X000, Xomr)) < 8(A(X2(k)r X2m(k)—1) T A X2m (k) -1, Xom()))-

Letting k — oo in the above inequality and using Condition (15), we obtain:
8 q y &

lim sup d (X2, k), X2m(k)) = O-

k—o0

This contradicts Condition (11). This implies that {xp, } is a b-Cauchy sequence and so is {x; }.
There exists x* € X such that lim;_,« x, = x*. If T is continuous, we have:

Tx* = nlgl(}o Txyy = nlglc}o Xop+1 = x*.
From Condition (8), we have:
sd(x*,Sx*) = sd(Tx*, Sx™*) < B(M(x*,x*))M(x*, x¥),

where:

M(x*, x*) max{d(x*,x*),d(x*, Tx*),d(x*, Sx*)}

= d(x*,Sx").

Since § € B, we have,

sd(x*, Sx*) < B(M(x*,x*))d(x*, Sx*) < %d(x*,Sx*).
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Hence, Sx* = x*. If S is continuous, then, by a similar argument to that of above, one can show
that T, S have a common fixed point. Now, we prove the uniqueness of the common fixed point.
Let y = Ty = Sy, is another common fixed point for T and S. From Condition (8), we obtain:

sd(x*,y) = sd(Tx",Sy) < B(M(x",y))M(x",y),

where:
M(x*,y) = max{d(x*,y),d(x*, Tx*),d(y, Sy)} = d(x",y).

Therefore, x* = y and the common fixed point T and f is unique. [

In Theorem 4, if T = S, we get the following result.

Corollary 1. Let (X, d) be a b-complete b-metric space with parameter s > 1 and T be self-mapping on X
which satisfy:

sd(Tx, Ty) < B(M(x,y))M(x,y), xye€X, (16)
where M(x,y) = max{d(x,y),d(x, Tx),d(y, Ty) } and T is continuous. Then T has a unique fixed point.
Example 3. Let X = [0,1] and d : X x X — [0, 0) be defined by d(x,y) = |x — y|?, forall x,y € [0,1]. It
is easy to check that (X, d) is a b-metric space with parameter s = 2. Set Tx = % for all x € X and p(t) = 1

forall t > 0. Then,

24(Tx, Ty) = 2|£f%|2

IN

1 2
1|x7y|
B(M(x,y))M(x,y).

IN

Then, the conditions of Corollary 1 are satisfied.

3. Applications to Nonlinear Integral Equations

In this section, we studied the existence of solutions for nonlinear integral equations, as an
application to the fixed point theorems proved in the previous section.

Let X = CJ[0,1] be the set of all real continuous functions on [0,/] and d : X x X — [0,c0) be
defined by:

d(u,v) = maxg<s<g|u(t) — o(t)?, u,v € X.

Obviously, (X,d) is a complete b-metric space with parameter s = 2. First, consider the
integral equation:

u(t) = h(t) + /0Z G(t,s)k(t, s, u(s)) ds, (17)

where I > Oand h : [0,/]] — R,G : [0,]] x[0,]] - Rand k : [0,]] x[0,]] x R — R are
continuous functions.

Theorem 5. Suppose that the following hypotheses hold:
(1) forall t,s € [0,1] and u,v € X, we have:

—M(u,0)
|k(t,s,u(s)) —k(t,s,0(s))| < @

5 ,
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(2) forall t,s € [0,1], we have:
1
max/ G(t,5)%ds < %
0
Then, the integral equation (see Condition (17)) has a unique solution u € X.
Proof of Theorem 5. Let T : X — X be a mapping defined by:
1
Tu(t) = h(t) + / G(t,s)k(t,s,u(s))ds, ue X,tse]l0l].
Jo
From Condition (1) and Condition (2), we can write:
d(Tu,Tv) = max;cpoy|Tu(t) — To(t)[?
I 'l
= max;con{|h(t) +/ G(t,s)k(t,s,u(s))ds —h(t) — / G(t,8)k(t,s,0(s)) ds|*}
’ 0 0
!
= maxcpnl /0 G(t,s)(k(t,s,u(s)) —k(t,s,0(s))) ds|*}

max,gm{/ol G(t,s)2ds /Ol Ik(t,s,u(s)) — k(t,s, 0(s))[2 ds}

1 /e Mu2) M(u,0)
1 Jo 2

IN

IN
|

2 ds

IN
=
£

2

So, we get:

d(Tu, Tv) < B(M(u,v))M(u,v).
Thus, all conditions in Theorem 3 for B(t) = ezi,t > 0and B(0) € [0, 1) are satisfied and hence T
has a fixed point. [

Let X = C[a,b] be the set of all real continuous functions on [a,b] and X equipped with the
b-metric below,
d(u,v) = max,<p<p{(Ju(t) —o(H))’}, p>LuveX

Then (X,d) is a complete b-metric space with parameter s = 2~!. Now, consider the
integral equations:

b
u(t) = [ Gt s)klt,s,u(s)) ds, (18)
a
and
b
u(t) = / G(t,s)ka(t,s,u(s))ds, (19)
Ja
where G : [a,b] X [a,b] — Rand ky,k; : [a,b] x [a,b] x R — R are continuous functions.

Theorem 6. Suppose that:
(1) Forall t,s € [a,b] and u,v € X, we have:

In(1+ (Ju(s) —o(s)])7)
22p—1

lk1(t,s,u(s)) —ka(t,5,0(s))| < ( 2

207



Axioms 2019, 8, 34

(2) Forall t,s € [a,b], we have:

1 1 1
—, St+o=1

b
mﬂxagtgb_/g G(t,s)Tds < @ )ﬂ PR
—a)?

Then the integral equations (Condition (18) and Condition (19)) have a unique common solution.

Proof of Theorem 6. Let T, S : X — X be mappings defined by:

Tu(t) = /b G(t,s)ks(t, 5, u(s)) ds, (20)

and
b
Su(t) = / G(t,s)ka(t s, u(s)) ds. 1)

From Condition (1) and Condition (2), we have:

d(Tu, To) = maxeerp{(|Tu(t) — So(t)])"}

< marecrs{(| [ Gt s u)ds — [ Gt alt s 0(6))dsl))
b

< mﬂxagtgb{(/ﬂ G(t, )| (k1 (t,s,u(s)) — ka(t,5,0(s))|) ds)P}
b 1 b i

< maxagtgb{((/u \G(t,s)‘7|ds)q(/ﬂ (Jk1(t,s,u(s)) — ka(t,s,0(s))|)P ds) )P}
b p b

< maxggtgb{(/a ‘G(t,s)ﬂds)ﬁ([z ([k1(t,s,u(s)) —ka(t,s,v(s))|)F ds)}

< mux”<t<b{((bl)f,)g(/,;b(ln(l+W;(zi)—: Z’(S)|)”))ds)}

1 b In(14d(u,
S (b*ﬂ)(./a ( n( ;p,(;/l v)))ds
In(1+ M(u,v))
S T

Therefore, we get the following result:

M(u,v)
27
< B(M(u,0))M(u, 0).

IN

2P=1d(Tu, To)

Hence, all of the hypotheses of Theorem 4 for s = 2P~ and B(t) = Zip are satisfied. Then T and S
have a common fixed pointu € X. [
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Abstract: In this paper, we ensure the existence and uniqueness of a best proximity point in
rectangular metric spaces endowed with a graph structure.

Keywords: proximity point; rectangular metric; G-contraction; graph

1. Introduction

Over the last decades, many researchers have focused on fixed point theory since it plays a very
important role in the resolution of several mathematical models in various fields, see References [1-14].
One of the tools used is the well-known Banach contraction principle, which states that if (X, d) is a
complete metric space and f : X — X is a contraction self-mapping, then f has a unique fixed point in
X. On the other hand, if f is a non-self mapping, thatis, f : A — B, where A and B are two subsets of
X, then f might not necessary have a fixed point, which leads one to think of an approximate solution
x of fx = x such that x is closet to fx: thereby, best proximity point theory appeared. We recall the
definition of a best proximity point.

Definition 1. Let (X, d) be a metric space, A and B two subsets of X and a mapping f : A — B. We denote
by d(A, B) the distance between A and B as follows

d(A,B) = min{d(x,y) :x € A, b€ B}.
An element u € A is called a best proximity point of the mapping f if
d(u, fu) = d(A,B). (€]

There are many variants and extensions of results for the existence of a best proximity point.
For more details, we refer to References [15-29].

One of the generalized metric spaces is the rectangular metric space introduced first by
Branciari [30]. Metric spaces endowed with a graph were introduced by Jachymski [31], which
is an extension of metric spaces with partial order structures. In this paper, we consider rectangular
metric spaces with the additional structure of a graph. Our contribution is that of proving the existence
of a unique best proximity point for mappings satisfying different contractive conditions.

Axioms 2019, 8, 17; d0i:10.3390/axioms8010017 211 www.mdpi.com/journal /axioms
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2. Preliminaries

In this section, we present some useful preliminary definitions and results related to our study.
First, we remind the reader of the definition of rectangular metric spaces along with the topology.

Definition 2. [30] Let X be a nonempty set. If the function d : X> — [0, o) satisfies the following conditions
forallx,y,z € X:

(r1) x=yifandonlyifd(x,y) =0;
(ro) d(x,y) =d(y,x);
(r3) d(x,y) <d(x,u)+d(u,0)+d(v,y) forall different u,v € X \ {x,y},

then the pair (X, d) is called a rectangular metric space.

Definition 3. [30] Let (X, d) be a rectangular metric space. Then,

a sequence {x, } in X converges to a point x if and only ’f}% d(xy,x) =0.

a sequence {x, } in X is called Cauchy ifn}nirgood(xn, xm) = 0.

(X, d) is said to be complete if every Cauchy sequence {x, } in X converges to a point x € X.

Let B,(x0,6) = {y € X such that d(xo,y) < 6} be an open ball in (X,d). A mapping f : X — X'is
continuous at xg € X if for each € > 0, there exists 6 > 0 so that f(B,(xo,6)) C Br(fxo,€).

W=

Now, we present the definition of a best proximity point in the rectangular metric spaces (X, d).

Definition 4. Let A, B be nonempty subsets of (X,d) and f : A — B be a given mapping. We denote by
d(A,B) =inf{d(a,b) :a € A, b € B}. Anelement u € A is called a best proximity point for the mapping f if
d(u, fu) = d(A, B). We denote by Ay and By the following sets:

Ag={x e A:d(x,y) =d(A,B) for somey € B} ()
By ={y € B:d(x,y) = d(A, B) for some x € A}. 3)

The concept of P-property was defined by Raj in Reference [32].

Definition 5. [32] Let (A, B) be a pair of non-empty subsets of (X,d) such that Ay # ©@. We say that the

d(x1,y1) =d(A,B) }

air (A, B) has the P-property if and only if for x1,x, € Agand y1,y> € B
pair (A, B) property if yifforxi,xz € Aoandyi,y2 €Bo i "N aiap)

d(x1,x2) = d(y1,y2)-

Here, let us recall some preliminaries from graph theory. Let X be a nonempty set and A =
{(x,x) € X x X,x € X}. A graph G is a pair (V,E) where V = V(G) is a set of vertices coinciding
with X and E = E(G) the set of its edges such that A C E(G). Furthermore, throughout this paper, we
assume that the graph G has no parallel edges, that is, we do not allow it to get two or more edges
that are incident to the same two vertices. By reversing the direction of edges in G, we get the graph
denoted G~! where its set of edges and vertices are defined as follows:

E(G Y ={(xy) € X?: (y,x) €E(G)}and V(G 1) = V(G).
Consider the graph G consisting of all vertices and edges of G and G~1, that is,
E(G) = E(G)UE(G™Y). @
We denote by G the undirected graph obtained by ignoring the direction of edges of G.

Definition 6. [31] A subgraph is a graph which consists of a subset of a graph’s edges and associated vertices.
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Definition 7. [31] Let x and y be two vertices in a graph G. A path in G from x to y of length n (n € NU{0}) is
a sequence (x;)_, of n + 1 distinct vertices such that xo = x, x, = y and (x;, Xi11) € E(G) fori =1,2,..,n.

Definition 8. [31] A graph G is said to be connected if there is a path between any two vertices of G and it is
weakly connected if G is connected.

Definition 9. [31] A path is called elementary if no vertices appear more than once in it. For more details see
Figures 1 and 2.

Let (X, d) be a rectangular metric space. The graph G may be converted to a weighted graph
by assigning to each edge the distance given by the rectangular metric between its vertices. In order
to later apply the rectangular inequality to the vertices of the graph, we need to consider a graph of
length bigger than 2, which means that between two vertices, we can find a path through at least two

other vertices.

Figure 1. Elementary path.

ﬁ

Figure 2. Non Elementary path.

3. Main Results

First, let (X, d) be a rectangular metric space and G be a directed graph without parallel edges
such that V(G) = X.

Definition 10. Let A and B be two nonempty subsets of (X,d). A mapping f : A — B is said to be a G-
contraction mapping if for all x,y € A, x # y with (x,y) € E(G):

(i) d(fx, fy) < ad(x,y), for some a € [0,1),
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} —— (xl,yl) S E(G), Vxl,yl c A.

Our first main result is as follows:

Theorem 1. Let (X, d) be a complete rectangular metric space, A and B be two nonempty closed subsets of
(X, d) such that (A, B) has the P-property. Let f : A — B be a continuous G-contractive mapping such that
f(Ao) C By and Ay # . Assume that d is continuous and the following condition (Cy) holds: there exist xg
and x1 in Ag such that there is an elementary path in Ao between them and d(x1, fxg) = d(A, B).

Then, there exists a sequence {xp } yeny with d(x,11, fxn) = d(A, B) for n € N. Moreover, if there exists
a path (y")f.:0 C Ag in G between any two elements x and y, then f has a unique best proximity point.

Proof. From the condition (Cy), there exist two points xg and x7 in Ag such that d(x1, fxg) = d(A, B)
and a path (#)X, in G between them such that the sequence {}}¥, containing points of Ay.
Consequently, tJ = xo, t) = x; and (#}, té*l) € E(G)Y0<i<N.

Given that t} € Ay, f(Ag) € By and from the definition of Ay, there exists t} € Ag such that
d(t], ft}) = d(A, B). Similarly, for i = 2, ..., N, there exists | € A such thatd(t}, ft) = d(A, B).

As ()N is a path in G then (£J,#}) = (xo,t}) € E(G). From the above, we have d(xy, fxo) =
d(A,B) and d(H, ft}) = d(A, B). Therefore, as f is a G-contraction, it follows that (x1,t}) € E(G).Ina
similar manner, it follows that

(#71,#)) € E(G) fori =2,.., N. )

Let x; = . Then, (ta)f\io is a path from x; = #{ to x = t)V. Foreachi = 2,...,N, as ta € Agand
ft € f(Ap) C By, then by the definition of By, there exists th € Ag such that d(t, ft}) = d(A, B). In
addition, we have d(xp, fx1) = d(A, B). As above mentioned, we obtain

(x2,8)) € E(G) and (51, 15) € E(G)Vi=1,2,...,N. (6)

Let x3 = t}'. Then, (té)f\io is a path from £J = x, and t)Y = x3.
Continuing in this process, for all n € N, we generate a path (#,)Y, from x, = £ and x,,41 = .
As a consequence, we build a sequence {x,},en where x,41 € [x;]N and d(x,41, fx,) = d(A, B)
such that
d(t,,q, fti,) =d(A,B) ¥ i=0,.. N. @)

From the P-property of (A, B) and (7), it follows for each n € N,
At 6) =d(fe, Y, fth )Vi=1,.,N. ®)

Next, we claim that d(x;,, x,,41) < «”"C, where C is a constant. To prove the claim, we need to
consider the following two cases where (#,);—g, N is a path from x, to x;,11.

(t) is elementary. Then, we can apply the triangular inequality (r3).

Case 1: N = 2k + 1 (N is odd).
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For any positive integer n, we get

d(xp, xpi1) = d(, ) =d(9, 2+
< d(, ) (8, 2) + d(£3, 2K
< A0, th) +d(th, ) + .+ d(£, 24T
2k+1
< Y d )
i=1
= detn 1' n l)' (9)

i=1

Knowing that (%, # ) € E(G) forall n € N, and f is a G-contraction, we obtain from (9)

d(tE ) vneN. (10)

n—1/

[V]z

d(x,,, xn+1) <

Il
-

i

By induction, it follows that for all n € N

n

d(th L, th) = Ca” (11)

e

Il
—

d(xn, xp1) < a
1

N . .
whereC =) d(th L, £h).
i-1

Case 2: N = 2k (N is even).

Ay, xpp1) = d(9,tN) =d(19, 25
< d(th, ty) +d(ty, ) +d(8, 65
< A0, L)+ d(th, £2) 4+ d(12F73, 2572) a2k, 2
2k
= 261& LE) — (885 — a3k 8 + d(85 2, )
. 2k—2 2k
< V() +d(E
i1
< Zd FHEL ) +d (83572, 126,
2k N
By the same arguments used in Case 1, we deduce that Zd t;l 11, ;1 1) <w Z ifZ 1 t‘0
i=1 i=1

On the other hand, d(t%2, £2F) < tx"d(tékfz, £25). Indeed, from (7), we have d(t2F~2 ftZk 2) d(A,B)
and d(1%, f12* |) = d(A, B) and using the P-property, we get

(6261 = AR fR)
ad (22,128 )

ad(132, 125, (12)

A

IN

Then, we conclude that d(x;,, x,41) < a”"C where C = Z d(EL H) 4 d(tzk 2,126,

Let us prove that {x,,} is a Cauchy sequence. Let 1, m 6 N such that m > n. We suppose wlo.g
that m is odd (m = 2k + 1) since the case m = 2k is similar. Note that x, = £, x,41 = tN and ty # tN
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for all n since the path (tfq),-:owN is elementary. Then, using the triangular inequality of the rectangular
metric, we obtain

d(xn, xm) < d(xn, Xp11) +d (g1, Xp02) + o+ d (X1, Xm)
< d(xn, Xpg) Fd(Xp1, Xng2) o+ d (X1, Xm)
< Ca"+Ca™tl 4. 4 Ca™!

= Ca"(1+a+..+am "1
an

1—a

Asa < 1, then ; ﬂl}g . d(xn, xm) = 0. Therefore, {x, },cn is a Cauchy sequence and there exists
u € Asuchthatx, — uasn — oo.

Using the continuity of f, we get fx, — fu as n — oco. Now, using the continuity of the
rectangular metric function, we obtain d(x,1, fx,) converges to d(u, fu) as n — oco.

Since d(xy,11, fxn) = d(A, B), the sequence {d(x,+1, fX,) } is constant. Consequently, d(u, fu) =
d(A, B). Then, u is a best proximity point of f.

In order to prove the uniqueness of the best proximity point 1, we assume that there exist u and
u' such that

d(u, fu) d(A,B) (13)
d', fu'y = d(A,B). (14)

Knowing that the pair (4, B) has the P-property, from (13) and (14), we get d(u, u’") = d(fu, fu’).
Since f is a G-contraction, we obtain d(u,u’) = d(fu, fu’) < ad(u,u’"), which holds unless

d(u,u’) =0, thenu = u’.
O
Definition 11. Let f : A — B be a mapping. Define X;(Ga,) as
Xf(Gay) := {x € Ag: Jy € Ag for which d(y, fx) = dist(A, B) and (x,y) € E(G)}. (15)

Definition 12. Let A and B be two non-empty subsets of (X,d). A mapping f : A — B is said to be a
G-weakly contractive mapping if for all x,y € A, x # y with (x,y) € E(G):

(i) d(fx, fy) < d(x,y) —p(d(x,y)), where p : [0,00) — [0,0c0) is a continuous and nondecreasing

function such that ¥ is positive on (0, 00), (0) = 0 and tlim P(t) = oo. If A is bounded, then the infinity
—00

condition can be omitted.

d(xy, fx) =d(A,B)

Wy fy) = d(4,B)

} - (X1,y1) (S E(G), Vxl,yl € A.

Our second main result is as follows:

Theorem 2. Let (X, d) be a complete rectangular metric space endowed with a directed graph, A and B be
two nonempty closed subsets of (X, d) such that (A, B) has the P-property. Let f : A — B be a continuous
G-weakly contractive mapping such that f(Ag) C By. Assume that d is continuous and Ay is a closed nonempty
set. Then, there exists a sequence {x, },en in Ag such that d(x,1, fx,) = d(A, B) for n € N. Moreover,
f has a unique best proximity point.
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Proof. It follows from the definition of A and By that for every x € Ay, there exists y € By such that
d(x,y) = dist(A, B). Conversely, for every iy’ € By there exists X’ € Ag such thatd(x',y") = dist(A, B).
Since f(Ap) C By, for every x € Ap there exists y € Ag such thatd(y, fx) = dist(A, B).

Let xo € X;(Ga,), then there exists x; € Ag such that (xo,x1) € E(G) and d(x1, fxo) = dist(A, B).
On the other hand, since x; € Agand f(Ag) C By, there exists x, € Ag such thatd(xy, fx1) = dist(A, B)
and because f is a G-weakly contractive mapping, we get (x1,x2) € E(G). We repeat this process in a
similar way, we build a sequence {x,} in Ay such that

(xn,x4+1) € E(G) (16)
d(xy41, fxn) = dist(A,B)Vn e N. 17)

Since the pair (A, B) has the P-property, we conclude that d(x,,, x,+1) = d(fx,_1, fx,) for all
n € N. Then, for any positive integer n

d(xn, xp11) = d(fxu_1, fxn)
d(xn—ll xn) - 1)b(d(xnfl/ Xn))
d(x,—1,%y)- (18)

ININ

If we denote by v, = d(x, X, 41), from (18), {v,} is a nonnegative decreasing sequence. Hence,
{vn} converges to some real number v > 0. Suppose that v > 0. As ¢ is increasing, for any positive
integer 1, we have

N

Un = d(xﬂrxn-H) > d(xn—lr xn) - l/’(d(xn—lr xn))
U1 — P(v—1)
< v = P(0).

At the limit, v < v — ¢(v) < v, which is a contradiction, so v = 0, that is,
d(xp, xy11) — 0asn — co. (19)

Similarly, we find that
d(xp, Xp12) — 0asn — co. (20)

Now, let us prove that {x,} is a Cauchy sequence.
For any € > 0, choose N such that

. € €
d(xn,xn+1) < min{g, ¢(g)} @1
. € €
d(xn,xn+2) < min{g, ¢(g)} (22)
Let Blxn, €] := {x € X : d(xn,x) < €} be a closed ball with center xy and radius €. We claim that

f(Blxn,€]) € B[fxn-1,€].
Using the P-property, we obtain

d(xn, fxn_1) = dist(A,B) }
d(xny1, fxn) = dist(A,B)

d(xn, xn+1) = d(fxn-1, fxn). (23)

Consider x € Blxy, €], 1.e., d(xy, x) < e. We distinguish two cases d(xy, x) < gand d(xn,x) >

N @

Case 1: d(xp, x) <

N m
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Using the rectangular inequality, we distinguish the following two subcases:

o If fxny_1 = fxn+1, fXN+2 = fxand fxniq # fXN42, we have

d(fxn-1, fx)

d(fxni1, frng2)
d(xn+1,XN+2) — P(d(xN+1,¥N+2))

(
(
(XN11,XN+2)
(
(

INIA
Y

Il
U

fxn, fxn+1)

XN, XN41)

IA
2

IN
x| m

In the case where fxn11 = fxny12, we obtain d(fxn_1, fx) = 0.

o If fany_1 # fnt1, fXNy2 # fxand fxny1 # fxni2, we have

d(fan-1,fx) < d(fxn-1 fxne1) +A(fang fange) +d(fxnge, fx)

d( ) )
= d(xn, ¥n+2) +A(fxni1, fani2) +d(fxnq2, fx)
< d(xn,xn2) Hd(xn aNc2) — P(d(xnr1 Xn+2)) +d(xnr2, x) — P(d (N2, X))
< d(xn, xne2) +d(enr1, ¥ne2) +d (XN, X)
< d(xn, xnt2) +d(xnrr ¥ne2) +d(xnga, av) + d(xnen xn) +d(x, x)
< d(xn, xN+2) +2d(xN11, XN+2) + d(XN41,xN) +d(xN, X)
< d(xn, xn+2) +2d(xn, xn1) = 29(d(xn, xn41)) + d (x4, Xn) +d (3, x)
< d(erxNJrz) +3d(xN/ xN+1) +d(xn, X)
< ; +3 X § + 5

which implies that fx € B[fxny_1,€].

Case 2: g <d(xn,x) <e.

° IffXN,l :fo+1,fo :fx andfoH :fXN, we get

d(fxn-1,fx) d(fxni1, fxn)
d(xnt1,2n) — P(d(¥n41,XN))
d(xN11,XN)

INIA A

IN
ol m

o If fxny_1 # fxnt1, fanN # fxand fxni1 # fxn, we have

d(fxn-1,fx) d(fxn—1, fxni1) +d(fxni1, fan) +d(fxn, fx)

d(xn, xn+2) +d(xn11,28) — P(d(xng1,2N)) +d(xn, x) — P(d(xn, x))
d(xn, xn42) +d(xn1, xn) +d(xn, x) — p(d(xn, x))

€ € €

st te Vi)

€ €

1T€™ 1/’(5)

€ €
5te- 4’(5)

INCINCIA

IN I IA

IN

l,li(g) +e€— (=) = e.(since ¢ is increasing ).
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Then, d(fxn-1, fx) < €, which gives that fx € B[fxy_1,€]. Thus, we obtain that
f(Blxn,€]) € B[fxn-1,€]. (24)

Claim: If y € B[fxn_1, €] with d(x,y) = dist(A, B) for some x € Ay, then x € Blxy, €].

Lety € B[fxn_1,€]. Then,
d(fxn-1,y) <e. (25)

Assume that there exists x € Ag such that d(x,y) = dist(A, B). From (17), we get d(xn, fxn_1) =
dist(A, B) which gives us using the P-property,

d(x,xn) = d(y, fxn-1)- (26)

From (25) and (26), we obtain that d(x, xy) < €, i.e., x € B[xy, €] and the claim is proved.
From (21) and (23), we have xn1 € B[xy, €]. Then, using (24), we get fxn11 € B[fxy_1,€], i€,

d(fxnt1, fxn-1) <€ (27)

Since d(xn42, fXN+1) = dist(A, B), by the precedent claim d(xn42, fxn) < €. Again, from (24),
d(xN42, fxn—1) < € and from the claim d(xn+3, fxn) < €. In this way, we obtain

d(xNym, xN) <€ Vm € N. (28)

Thus, the sequence {x, } is Cauchy. Since A is a closed subset of the complete rectangular metric
space, there exists x* € A such that

lim xy = x*. (29)
n—oo
From the continuity of f, we obtain
Jim fon = fx*. (30)

Then, using the continuity of the rectangular metric, we obtain
d(xN+1/fo) — d(x*/fx*) as N — oo. (31)

From (17), d(xn41,xN) = dist(A, B), we conclude that {d(xn41,xN)} N is a constant sequence
equal to dist(A, B). Therefore, from (31), d(x*, fx*) = dist(A, B). Thereby, x* is a best proximity point
of f.

Let us prove the uniqueness of the best proximity point. Consider xq,x; two different best
proximity points. Then, d(xq, fx1) = d(xp, fxp) = dist(A,B). From the P-property, we obtain
d(x1,x2) = d(fx1, fxp). Using that f is weakly G-contractive, we get

0< d(xl,xz) = d(fxl,fo) < d(xl,xz) — l/l(d(xl,XZ)) < d(xl,JQ), (32)
which is a contradiction. Therefore, x; = x;. [

Definition 13. Let (X, d) be a rectangular metric space and G be a directed graph. Let A, B be two nonempty
subsets of X. A non-self mapping T : A — B is said to be

e a G- proximal Kannan mapping if for x,y, u,v € A, there exists b € [0, %) such that
(x, ) € E(G)
d(u,Tx) =d(A,B) = d(u,v) < bld(x,v) +d(y,u)].
d(v,Ty) =d(A,B)
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o proximally G-edge preserving if for each x,y,u,v € A
(xvy)  €EG)
d(u, Tx) =d(A,B) ; = (u,v) € E(G).
d(o,Ty) =d(A,B)

Our third main result is as follows:

Theorem 3. Let (X, d) be a rectangular metric space and G a directed graph. Let A, B be two nonempty closed
subsets of X. Assume that A is nonempty and d is continuous. Let T : A — B be a continuous non-self
mapping satisfying the following properties:

T is proximal G-edge preserving and a G-proximal Kannan mapping such that T(Aq) C Bo.
There exist xg, x1 € Ag such that

d(x1, Txg) = d(A, B) and (xo,x1) € E(G). (33)

Then, T has a best proximity point x* in A. Furthermore, the sequence {x,} defined by d(x,, Tx,_1) =
d(A, B) forall n € N converges to x*. Moreover, if there exists a path in G between any two points of A,
then the best proximity point is unique.

Proof. From (33), there exist xg, x1 € Ag such that
d(xq,Txg) = d(A, B) and (xo, x1) € E(G). (34)
Since T(Ag) C By, we have Tx; € By and there exists x; € Ag such that
d(xp, Tx1) = d(A, B). (35)

Using the proximally G-edge preserving of T, (34) and (35), we get (x1,x2) € E(G). By continuing
this process, we obtain the sequence {x,} in Ag such that

d(xy, Tx,—1) = d(A,B) (36)

with (x,, Tx,—1) € E(G) Vn € N. (37)

Now, let us prove that {x, } is a Cauchy sequence in A. Note that if there exists 1y € N such that
Xuy = Xpy+1, from (36), we get that x,, is a best proximity point of T. Therefore, we may assume that
X1 # xp foralln € N.

Since T is a G-proximal Kannan mapping for each n € N, we obtain (x,_1,x,) € E(G),
d(xn, Txy—1) = d(A,B) and d(x,+1, Tx,) = d(A, B) which imply that

d(xn/ xn+1) < b[d(xn—lz xn+l) + d(xn/ xn)] < bd(xnflf xn+1)-
By induction, we obtain

d(xy, xp11) < b"d(xg,x2) =0"C Vn € N. (38)

1
Asb < 5 then d(xy, x,41) —> 0asn —> oo. Let p > 1.
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Case 1:
A(xXn, Xy pr1)) = A X)) +d(Xns1, Xng2) + o+ d(Xnt2p, Xns2pt1)
< VICHVTICH .+ D"TC
= "+ 4. 4 D"FH)C — Oasn,p — . (39)
Case 2:
d(xp, xn+(2p)) = d(xn, Xp41) +d(Xp11, Xng2) + o+ d(xn+2p—2/ xn+2p)
< d(xn, Xn41) + (X1, Xng2) + o+ d(xn+2p721 xn+2p—1) + d(xn+2p—1r xn+2p)
+ d(xn+2p—2/ xn+2p)
n+2p—1
< Y CV e d(xniap 2 xuiap) (40)
k=n
n+2p—1

Knowing that Z Cb* —s 0 asn, p — oo, we shall prove that d(x,,Jrzp,z,x,Hzp) — O as
k=n
n, p — o0. From (36), we can conclude that

d(xni2p-2, Txuy2p1) = d(AB (41)
d(xn+2prTxn+2p+1) = d(AB). (42)

=

On the other hand, from (37) we get (x,12p—1, Xut2p) € E(G) and (xp12p, Xn12p+1) € E(G). Then,
since G is a connected graph, there exists a path between x;, 15, 1 and x, 12,41 in G. Therefore,

(xn+2p71/xn+2p+l) € E(G). (43)

Knowing that T is a G-proximal Kannan mapping and from (41)—(43), we obtain

IN

d(xw+2p72rxn+2p) h[d(xn+2pflrxn+2p) +d(xn+2p+1rxn+2p72)] (44)

IN

bld(xni2p—1, Xnt2p) +d(Xnt2p—2, Xnt2p-1) + d(Xnt2p-1, ¥nt2p) + d(Xny2p, Xn2p41)]
= b[Zd(aner—l/ xn+2p) + d(xn+2p72/ xn+2p—1) + d(xn+2p/ xn+2p+1)]

b[2CH" 21 4 Cp" P2 4 C"P] — 0 as n, p — oo

IN

Therefore, from (40), we conclude that d(x,, x,42p) — 0 as n,p — 0. It follows that {x, } is
a Cauchy sequence in A. Since A is closed, there exists x* € A such that x, — x* as n — oo. By
the continuity of T, we obtain Tx, — Tx* as n — 0. Since d is assumed to be continuous, we get
d(xy41, Txy) — d(x*, Tx*) as n — oo. By (36), we conclude that

d(x*, Tx*) = d(A, B).

Thus, x* is a best proximity point of T and the sequence {x,} defined by d(x,+1, Tx,) = d(A, B)
converges to x* for all n € N.

Let us prove the uniqueness of the best proximity point x*. Suppose that x] and xJ are two best
proximity points. Then, we obtain d(xj, Txj) = d(A, B), d(x;, Tx;) = d(A, B) and (x],x3) € E(G),
which gives d(x7, x3) < b[d(x],x3) +d(x7,x3)] = 2bd(x}, x3). Therefore, we get (1 —2b)d(x},x3) <0,
which implies that 1 —2b < 0 = b > % It is a contradiction with respect to b < % Then,
d (xi‘, x5 ) =0, that is, x] = x5 and so the uniqueness of the best proximity point follows. [
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4. Conclusions and Perspectives

In Theorems 1-3, we assumed that the rectangular metric space is continuous, which is a strong
hypothesis and does not hold in general. To our knowledge, our work is the first attempt to prove best
proximity point results not only in the setting of rectangular metric spaces, but with the addition of a
graph theory structure. Finally, an open question, how does one prove the above three theorems when
omitting the continuity of the rectangular metric?
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