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Królczyk and Navneet Khanna

Synthesis, Characterization, Corrosion Resistance and In-Vitro Bioactivity Behavior of
Biodegradable Mg–Zn–Mn–(Si–HA) Composite for Orthopaedic Applications
Reprinted from: Materials 2018, 11, 1602, doi:10.3390/ma11091602 . . . . . . . . . . . . . . . . . . 17

Lei Guo, Xinrong Zhang, Shibin Chen and Jizhuang Hui

An Experimental Study on the Precision Abrasive Machining Process of Hard and Brittle
Materials with Ultraviolet-Resin Bond Diamond Abrasive Tools
Reprinted from: Materials 2019, 12, 125, doi:10.3390/ma12010125 . . . . . . . . . . . . . . . . . . . 37

Chander Prakash, Sunpreet Singh, Catalin Iulian Pruncu, Vinod Mishra, Grzegorz Królczyk,
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Abstract: The rapid growth of a modern industry results in a growing demand for construction
materials with excellent operational properties. However, the improved features of these materials
can significantly hinder their manufacturing, therefore they can be defined as hard–to–cut. The main
difficulties during the manufacturing/processing of hard–to–cut materials are attributed to their
high hardness and abrasion resistance, high strength at room or elevated temperatures, increased
thermal conductivity, as well as their resistance to oxidation and corrosion. Nowadays the group
of hard–to–cut materials includes the metallic materials, composites, as well as ceramics. This
special issue, “Advances in Hard–to–Cut Materials: Manufacturing, Properties, Process Mechanics
and Evaluation of Surface Integrity” provides a collection of research papers regarding the various
problems correlated with hard–to–cut materials. The analysis of these studies reveals primary
directions regarding the developments in manufacturing methods, and the characterization and
optimization of hard–to–cut materials.

Keywords: hard–to–cut materials; machining; additive manufacturing; mechanics; surface integrity

Nowadays, in many industrial branches, the growing demand for construction materials with
excellent operational and mechanical properties is observed. Especially in the aerospace, biomedical,
electronic and automotive industries, construction materials with high hardness, abrasion resistance, a
high strength in a range of various temperatures, increased thermal conductivity, as well as resistance
to oxidation and corrosion, are very often employed. Unfortunately, these unique features significantly
deteriorate the machinability of these materials, and thus they are defined as hard–to–cut.

The major problems occurring during the machining of hard–to–cut materials include the high
values of cutting forces, high levels of vibrations in machining systems, the concentration of heat, the
growth of cutting temperature, rapid tool wear and the risk of catastrophic tool failure, as well as
frequent stability loss and a significant deterioration in surface finish.

The group of hard–to–cut materials is extensive and still expanding, attributed to the development
of novel manufacturing techniques (e.g., additive technologies). Currently, the group of hard–to–cut
materials includes hardened and stainless steels, titanium, cobalt and nickel alloys, composites and
ceramics, as well as the hard clads fabricated by additive techniques.

This special issue, “Advances in Hard–to–Cut Materials: Manufacturing, Properties, Process
Mechanics and Evaluation of Surface Integrity” provides the collection of thirteen research articles
presenting recent activity and developments in this field. Studying these works reveals the current

Materials 2020, 13, 612; doi:10.3390/ma13030612 www.mdpi.com/journal/materials1
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problems and research directions concerning hard–to–cut materials. Among these, the novel production
and machining techniques and the production/machining optimization methods, as well as the novel
measurement/characterization techniques, can be identified (Figure 1).

 
Figure 1. Current major problems and directions concerning the hard–to–cut materials.

The problems regarding the application of novel manufacturing techniques for hard–to–cut
materials are presented in four papers. Kluczyński et al. [1], investigated the porosity and the
microhardness of 316L austenitic steel, manufactured with the application of selective laser melting
(SLM) additive technology. The authors have revealed that microstructure porosity is affected by
the hatching distance and exposure velocity. As the hatching distance increases, the microstructure
porosity of this element increases, and the decrease in exposure velocity causes a decline in porosity
level. Moreover, an increase in microhardness with an increase in the exposure energy density was
observed. This observation can be connected with the combined effect of grain refinement strengthening
(Hall–Petch relation) and grain boundary strengthening. Prakash et al. [2] developed a method for the
production of porous Mg–based biodegradable structures, based on the hybridization of elemental
alloying and spark plasma sintering technology. The authors employed suitable proportions of silicon
(Si) and hydroxyapatite (HA) to enhance the mechanical, chemical, and geometrical features. They
found that the addition of HA and Si elements affects the improvement of structural porosity, with a low
elastic modulus and hardness of the Mg–Zn–Mn matrix, respectively. Moreover, the addition of both HA
and Si elements refined the grain structure and improved the hardness of the as–fabricated structures.
Authors have also detected the formation of various biocompatible phases, whose appearance enhances
the corrosion performance and biomechanical integrity of manufactured structures. Guo et al. [3]
proposed ultraviolet–curable resin bonding for a precision abrasive machining tool, aiming to deliver
a rapid, flexible, economical, and environment–friendly additive manufacturing process to replace
the hot press and sintering process. Authors have employed a customized ultraviolet curing system
based on the Machine UV–100, and the Dymax 5000 flood ultraviolet curing system used for the
initial material properties test of the cured ultraviolet–curable resin composites. The manufactured
precision abrasive machining tool consisted of an ultraviolet–curable epoxy resin 425 as a bond and
monocrystalline diamond grains as abrasives. Authors have proved that the application of an abrasive
machining tool equipped with the ultraviolet–curable resin bonding during lapping process enabled an
approximately 10% lower surface roughness parameter Ra and 25% less weight loss of the workpiece
than those obtained in the iron plate lapping process. Prakash et al. [4], in their study, employed
two methods (electric discharge coating (EDC) and electric discharge machining processes (EDM))
to coat a composite layer TiO2–TiC–NbO–NbC on the Ti–64 alloy. The conducted research revealed
that the application of the EDC process with a high peak current and high Nb–powder concentration
enabled the formation of a crack–free thick layer (215 μm) on the workpiece surface. Moreover, further
inspections have shown that the obtained coating has a high hardness and adhesion strength, which
enables it to enhance the wear resistance of the Ti–64 alloy.

This collection of papers also presents that—apart from the novel manufacturing technologies—the
current research direction of hard–to–cut materials involves novel machining techniques. This scientific
problem matter is covered in three papers. Khanna et al. [5] employed the ultrasonic–assisted turning
(UAT) process of the Nimonic–90 superalloy in order to replace the conventional cutting and obtain
improved technological effects. The results showed that the ultrasonic–assisted turning process affects
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the reduction in surface roughness and power consumption values as compared with the conventional
turning process. This is correlated with the micro–chipping effect induced by UAT process kinematics.
Besides, the chips formed during the ultrasonic–assisted turning were regular and fragmented when
compared to those obtained from the conventional turning process. The ultrasonic–assisted machining
has been also applied by Tan et al. [6] to the micro–groove manufacturing in the Ti–6Al–4V alloy.
The application of this kind of machining process aims to minimize the level of material swelling and
springback and improve the machining quality. The experimental results proved that the material
swelling and springback were significantly reduced and the surface integrity was substantially
improved during the ultrasonic elliptical vibration–assisted cutting process in comparison to the
conventional cutting process. Apart from vibration–assisted cutting, the novel methods of machining
related to hard–to–cut materials involve also the application of nano–cutting fluids. Gupta et al. [7]
employed different nano–cutting fluids (aluminum oxide (Al2O3), molybdenum disulfide (MoS2), and
graphite) during the turning of the Inconel 800 alloy under the minimum quantity lubrication (MQL)
conditions. The obtained results reveal that the MoS2– and graphite–based nanofluids can affect the
improvement in cutting effects, especially at the high cutting speed values. Moreover, the overall
performance of graphite–based nanofluids is better in terms of good lubrication and cooling properties.
The presence of small quantities of graphite in vegetable oil significantly improves the machining
characteristics of Inconel–800 alloy as compared with the two other nanofluids.

The next important research direction regarding the hard–to–cut materials includes the
production/machining optimization methods. These problems are covered in four research papers.
Singh et al. [8] applied the Vashy–Buckingham π–theorem for the selection of input parameters of the
fused deposition modeling assisted by the investment casting process, enabling the obtainment of
optimal hardness, dimensional accuracy, and surface roughness of manufactured aluminum matrix
composite (AMC). The validation of the proposed models, conducted on the basis of the ANOVA
method, proves their applicability to the optimization of aluminum matrix composite manufacturing
during the fused deposition modeling assisted by the investment casting. Buj–Corral et al. [9] employed
a central composite design to model the behavior of surface roughness during ball end milling of hot
work–hardened tool steel W–Nr, consisting of a two level factorial design with four factors (24 = 16
experiments), and four central points. The conducted studies have shown that the radial depth of the
cut was the most relevant factor on Ra and Rt for both climb and conventional milling. However, the
axial depth of cut, cutting speed and feed per tooth have a slight influence on surface roughness within
the investigated range. Mia et al. [10] proposed the application of evolutionary–based algorithms
(teaching–learning–based optimization and bacterial foraging optimization) for the optimization of the
hardened high–carbon steel AISI 1060 turning process. It was found that teaching–learning–based
optimization (TLBO) was found to be superior to the bacteria foraging optimization (BFO) in terms
of better convergence and a shorter time of computation—hence, the TLBO is recommended during
the optimization of hard turning processes. The hardened steel optimization problems were also
investigated by Twardowski and Wiciak–Pikuła [11]. They predicted the tool wear during turning
of hardened 100Cr6 steel with the application of multilayer perceptron (MLP)–based artificial neural
networks. The obtained results show that selection of the number of neurons in the hidden layer
and activation function in the hidden and initial layers significantly affect the reliability of tool wear
prediction. Alterations in the model structure at the beginning of its formulation help to achieve the
assessments at a satisfactory level. Therefore, the artificial neural network with a multilayer perceptron
is an effective method for predicting tool condition during the machining of hard–to–cut materials.

Ultimately, the developments in production, machining and optimization techniques regarding the
hard–to–cut materials also entail advancements in metrological description and characterization. As part
of this subject, the two research papers were published. Uddin et al. [12] applied a multi–dimensional
evaluation of hole quality in an Al6061 alloy after drilling. Authors have employed the novel
octagonal–ellipse load cell set–up for measurements of feed force and torque. Moreover, the tests also
involved SEM analyses of a drill–bits after cutting and measurements of hole diameter errors with the

3



Materials 2020, 13, 612

application of a machine tool probe. Bartkowiak and Brown [13] proposed the novel multiscale method
for calculating curvature tensors on measured surface topographies of a 6061 T6 alloy. The curvature
tensors were calculated as functions of scale, i.e., size, and position from a regular, orthogonal array of
measured heights. Moreover, in the derivations, vectors normal to the measured surface were calculated
first, then the eigenvalue problem was solved for the curvature tensor. The validity of these methods
has been proven by the high consistency of the results with expectations of manufactured surfaces.
These expectations included the nature of the curvature and their orientations relative to manufactured
features on the surfaces.

The knowledge contained in papers covered in this special issue can be helpful for the efficient
selection of manufacturing and characterization methods, as well as the conditions, strategies and
types of tools used during the machining of hard–to–cut materials, allowing the improvement of
manufacturing performance and economics.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Selective laser melting (SLM) is an additive manufacturing technique. It allows elements
with very complex geometry to be produced using metallic powders. A geometry of manufacturing
elements is based only on 3D computer-aided design (CAD) data. The metal powder is melted
selectively layer by layer using an ytterbium laser. This paper contains the results of porosity and
microhardness analysis made on specimens manufactured during a specially prepared process.
Final analysis helped to discover connections between changing hatching distance, exposure speed
and porosity. There were no significant differences in microhardness and porosity measurement
results in the planes perpendicular and parallel to the machine building platform surface.

Keywords: additive manufacturing; SLM technology; porosity research; microhardness research

1. Introduction

In recent years an intensive development of additive manufacturing technology (AM) has been
observed. This innovative technology is often called “3D printing”. It became one of the leading
automated production technologies and it seems to be as important as subtractive manufacturing,
plastic forming or casting [1]. Selective laser melting (SLM) is one of the most popular additive
manufacturing techniques. It is based on selective fusion of metallic powders using an ytterbium
laser, where the manufacturing process is based on a “powder bed”. During the last 10 years it has
become one of the most developed AM technologies [2–9]. Regarding other additive manufacturing
techniques, selective laser melting is characterized by:

• High-dimensional accuracy of the manufactured elements;
• Relatively low anisotropy of mechanical properties;
• A significant number of available materials;
• Low porosity of the manufactured elements.

The SLM process is based on low granulation powder (15–45 μm). The building job can be
modified by changing different parameters which indirectly and/or directly affect the quality of the
melted area. The possibilities to modify the manufacturing process in the SLM technique has created
the possibility to conduct scientific research at many scientific and industry facilities [10–19]. One of
the most common topics is the analysis of the process parameters which influence on the mechanical
properties of manufactured elements [20–30]. In this paper, the influence of manufacturing process
parameters on the porosity and microhardness of the additive manufactured elements was determined.

The modified parameters were:

Materials 2018, 11, 2304; doi:10.3390/ma11112304 www.mdpi.com/journal/materials7
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• Laser power;
• Exposure velocity;
• Hatching distance.

Based on the research conducted, final conclusions were formulated and further research
directions were defined.

2. Material

In this study, grade 316L austenitic steel (1.4404) was used. The material has been sourced by
the SLM Solutions Group AG, Estlandring 4, 23560 Lübeck, Germany. Its density was 7.92 g/cm3.
The chemical composition of the analyzed steel is shown in Table 1.

Table 1. Chemical composition of 316L steel.

C Mn Si P S N Cr Mo Ni

wt.%

max.
0.03

max.
2.00

max.
0.75

max.
0.04

max.
0.03

max.
0.10 16.00–18.00 2.00–3.00 10.00–14.00

The material was manufactured using an argon atomization process. The powder particles (shown
on Figure 1) have spherical or nearly spherical shapes with a particle size range between 15 μm to
45 μm. Also, satellite particles could be observed.

  
(a) (b) 

Figure 1. 316L powder scanning electron microscope (SEM) micrographs with (a) 50 μm scale and
(b) 10 μm scale.

3. Experiments

Porosity and microhardness tests were carried out on specimens with the same geometry.
Specimens had the form of cubes with a side length of 10 mm. These test parts were designed
in such a way as to assure analysis of the distribution of mechanical properties in two different
planes. The first was a plane parallel to the building platform surface, and the second one was a plane
perpendicular to the platform surface.

The aforementioned planes are showed in Figure 2. As “xy” was named the plane parallel to the
building platform surface, which is also normal to the direction of element growth (Z axis). The plane
perpendicular to the building platform surface, which is also tangent to the direction of element growth
(Z axis), is marked with “yz”.
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Figure 2. 3D model of a cubic sample, where: x—plane parallel to the building platform surface,
y—plane perpendicular to the building platform surface, hd (hatching distance)—distance between the
exposure vectors, Z—direction of growth (element building).

For each sample, different sets of process parameters were used, which are summarized in Table 2.
Modified parameters were components of Equation (1) which affects the additive manufacturing
energy density.

ρE

[
J

mm3

]
=

LP[W]

ev
[mm

s
]·hd[mm]·lt[mm]

(1)

where:

• LP—laser power [W];
• ev—exposure velocity [mm/s];
• hd—hatching distance [mm];
• lt—layer thickness [mm].

The modified parameters were the laser power, the exposure velocity, and the hatching distance.
These specific components had been determined by the optical system and the energy source. It was
caused by the possibility of analyzing the impact of modified parameters in a small range of its changes.
One of the modified parameters was exposure velocity, also known as scanning speed. This determines
the time of the laser exposure on each scanning line. Analysis of the influence of layer thickness on
porosity and microhardness would be difficult to verify in this case for many reasons:

• Proper calibration of the powder reservoir (recouter);
• Inert gas flow speed;
• Clearance in the worm gear in the building platform leveling mechanism.

The manufacturing process parameters were changed within ±10% of the recommended value
(item 1 in Table 2). The selected range of parameters modification was reached after consultion with
specialists from the SLM Solutions company. In addition, parameters 28–30 (Table 2) differ significantly
from the SLM System manufacturer’s data. The reason for testing these parameters was the good
mechanical property of specimens tested and described in [31]. The specimens (Figure 3) were created
during a single process. The manufacturing file for the machine was prepared using the SLM Metal
Build Processor module in the Magics software (version 19.0). All specimens were manufactured using
316L austenitic steel powder.
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Table 2. Sets of analyzed production parameters.

Parameters Set LP [W] ev [mm/s] hd [mm] ρE [J/mm3]

1 190 900 0.12 58.64
2 190 990 0.12 53.31
3 190 810 0.12 65.16
4 200 900 0.12 61.73
5 200 990 0.12 56.12
6 200 810 0.12 68.59
7 180 900 0.12 55.56
8 180 990 0.12 50.51
9 180 810 0.12 61.73
10 190 900 0.13 54.13
11 190 990 0.13 49.21
12 190 810 0.13 60.15
13 200 900 0.13 56.98
14 200 990 0.13 51.80
15 200 810 0.13 63.31
16 180 900 0.13 51.28
17 180 990 0.13 46.62
18 180 810 0.13 56.98
19 190 900 0.11 63.97
20 190 990 0.11 58.16
21 190 810 0.11 71.08
22 200 900 0.11 67.34
23 200 990 0.11 61.22
24 200 810 0.11 74.82
25 180 900 0.11 60.61
26 180 990 0.11 55.10
27 180 810 0.11 67.34
28 150 400 0.08 156.25
29 150 700 0.06 119.05
30 120 300 0.08 166.67

 

Figure 3. SLM 125HLs’ building platform with manufactured specimens.

4. Porosity Analysis Results and Discussion

For each specimen the porosity was analyzed in the central part of the metallographic section.
All visible pores were marked in both analyzed planes. The porosity was determined by images
analyzed using a scanning electron microscope (SEM) (Figure 4).
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P

(a) (b) 

Figure 4. Image of visible pores in the plane parallel (a) and perpendicular (b) to building platform
surface (areas of pores marked with the letter “P”).

Porosity quantitative analysis were based on the microstructure images. It was carried out using
a histogram check in GIMP software (version 2.0). The determination of porosity was based on the
calculation of the Equation (2):

ρ[%] =
Lp

Lc
·100% (2)

where:

Lp—number of pixels in the contoured pores;
Lc—number of pixels of the image entire area.

The porosity analysis allowed to determine the influence of used laser power, hatching distance
and exposure velocity (Figure 5). The analysis includes the groups of parameters in which only one
was different from the parameters tested.

1 4 7

 
(a) (b) (c) 

Figure 5. The influence of power (a), exposure velocity (b) and hatching distance (c) on porosity in the
parallel (xy) and perpendicular plane (yz) to the building platform surface.

Based on the conducted analysis of the laser power influence graphs, the exposure velocity and
the hatching distance (Figure 5), it can be noted that the power modification has no direct effect on the
porosity changes. However, the influence of the other two parameters is noticeable. During changes to
the exposure velocity in the range of ±10%, the porosity changes slightly—0.02%. A significant impact
on the porosity can be seen when the hatching distance changes.

To emphasize the representation of the porosity changes, depending on the exposure velocity and
hatching distance, proper diagrams were plotted (Figures 6 and 7).
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Figure 6. Variations of the average porosity in four ranges referenced to modified hatching distance in
particular parameters group.
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Figure 7. Porosity changes related to modified exposure velocity in particular parameters group.

This allows changes in the porosity in all specimens to be noticed and also the highest porosity
peaks in the specimens to be noted. It was also observed that the exposure velocity and the hatching
distance increase enhance the porosity growth (specimens 16 and 17 in Figure 7).

The hatching distance directly affects the porosity of the elements produced using SLM.
The parameter increasing by 10% results in a nearly twice an increase in the proportion of
pores. This phenomenon is caused by an increase in the distance between subsequent melt paths.
This determines a reduction of the number of molten metallic powder particles. It can be observed in
the parallel (xy) and perpendicular (yz) planes to the building platform surface.

A similar case can be observed when analyzing the influence of the exposure velocity, where
porosity increasing with this parameter growth. It was noticed in both analyzed planes. This parameter
does not affect the porosity as much as the change of the hatching distance, but with 10% change in the
exposure velocity it is noticeable. Figures 6 and 7 show changes in porosity related to the modification
of the hatching distance and the exposure velocity for all specimens. Noteworthy are the porosity
peaks for specimens 16 and 17, where both the exposure velocity and the hatching distance have
been increased.

Specimens manufactured using the unusual parameters proposed in [31] did not reveal better
porosity and microhardness. These settings (marked in Section 4 in Figure 7) gave very similar
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properties to the rest of the manufactured elements. The main feature of the settings from the study [31]
was the significantly smaller hatching. Lowering this value negatively affects the process’s efficiency.

5. Microhardness Analysis Results and Discussion

The microhardness analysis was carried out on the same specimens used in porosity research.
For each of the planes, a different configuration of the distribution of measurement points was adopted.

In the plane parallel to the building platform (“xy” in Figure 2), the influence of the linear exposure
method on microhardness changes in five parallel rows was checked (Figure 8).

 

 

 

 

Figure 8. Distribution of the measurement points on a plane parallel to the building platform surface.

In the plane perpendicular to the building platform surface (“yz” in Figure 2), the effect of layers
solidification (along Z axis) on microhardness changes in three parallel rows was checked (Figure 9).
Similar to the porosity research, the influence of the laser power, the exposure velocity and the hatching
distance (Figure 10) on the microhardness distribution in the specimens was determined. Also, in the
case of microhardness analysis, the groups of parameters in which only one of the tested parameters
changed were the laser power, the exposure velocity, and the hatching distance.

  

Figure 9. Distribution of the measurement points on a plane perpendicular to the building
platform surface.

Proper preparation of the microhardness research allowed the lack of direct impact of parameter
changes to be observed. The only observed dependence is the effect of the exposure velocity on
microhardness, where microhardness decreases with the increase of the exposure velocity. However,
it is insignificant and fits within the limits of measurement error. The lack of direct dependence between
microhardness and one of the modified parameters was the reason for further analysis. The diagram
of exposure energy density affect on microhardness was prepared. In sets where the parameters are
changing in the range of ±10% from the recommended value, there is a noticeable relationship between
the exposure energy density and the microhardness change (Figure 11).
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Figure 10. The influence of power (a), exposure velocity (b) and hatching distance (c) on microhardness
in the parallel (xy) and perpendicular plane (yz) to the building platform surface.
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Figure 11. The influence of exposure energy density on microhardness in particular groups
of parameters.

Microhardness distribution on both of the measured planes helped reveal that in a range of
modification of parameters by ±10% of the nominal value, microhardness slightly increases with
the growth of the exposure energy density. Those changes could be connected only with exposure
velocity. As recorded in Figure 11, microhardness changes are related only to the change in the
exposure speed—which affects the exposure energy density. This statement is valid for the range of
parameter changes within ±10% of the nominal value of the parameters only. It can be concluded
that the influence of modifying manufacturing parameters on microhardness is not as important as
in the case of porosity. The main reason that there are no significant changes of microhardness when
parameters change is too low a range of changed laser power. In [16] a dependence between laser
power, hardness (HV0.5) and exposure time could be noticed.

6. Final Conclusions

Analysis of changes in the laser power, exposure velocity and hatching distance allowed
identification of the influence of these parameters on porosity and microhardness of specimens
additive manufactured using the SLM technique. The research allowed the following conclusions to
be drawn:

• There are no significant differences in microhardness and porosity measurement results in the
planes perpendicular and parallel to the machine building platform surface. The main reason
for the lack of visible changes of microhardness is to the low range of the changed parameters:
laser power and exposure velocity;
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• The hatching distance has a significant influence on the porosity of the manufactured elements.
As the hatching distance increases, the microstructure porosity of this element increases;

• Exposure velocity changes affect the additive manufactured element’s porosity. Lowering the
exposure velocity cause the porosity to decrease;

• The relationship between exposure energy density changes and microhardness was identified.
In the range of ±10% of the nominal value of the parameters, an increase of microhardness
with an increase of the exposure energy density was observed. The microhardness increase is
connected with the combined effect of grain refinement strengthening (Hall–Petch relation) and
grain boundary strengthening [22];

• Conducted analyses of porosity and microhardness allowed for the selection of 5 groups of
parameters which will be used to produce specimens for further research.
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Abstract: Recently, magnesium (Mg) has gained attention as a potential material for orthopedics
devices, owing to the combination of its biodegradability and similar mechanical characteristics to
those of bones. However, the rapid decay rate of Mg alloy is one of the critical barriers amongst
its widespread applications that have provided numerous research scopes to the scientists. In this
present, porous Mg-based biodegradable structures have been fabricated through the hybridization
of elemental alloying and spark plasma sintering technology. As key alloying elements, the suitable
proportions of silicon (Si) and hydroxyapatite (HA) are used to enhance the mechanical, chemical,
and geometrical features. It has been found that the addition of HA and Si element results in higher
degree of structural porosity with low elastic modulus and hardness of the Mg–Zn–Mn matrix,
respectively. Further, addition of both HA and Si elements has refined the grain structure and
improved the hardness of the as-fabricated structures. Moreover, the characterization results validate
the formation of various biocompatible phases, which enhances the corrosion performance and
biomechanical integrity. Moreover, the fabricated composites show an excellent bioactivity and offer a
channel/interface to MG-63 cells for attachment, proliferation and differentiation. The overall results
of the present study advocate the usefulness of developed structures for orthopedics applications.

Keywords: magnesium; alloying; spark plasma sintering; elastic modulus; corrosion resistance;
bioactivity

1. Introduction

The demand of artificial organs and other biomedical devices has increased drastically during
the recent decades. Commonly used and successful implant materials are stainless steel (SS),
cobalt–chromium (Co–Cr), titanium (Ti) and their alloys/composites [1]. However, they may have
exceeded their full potential because of their drawbacks. Firstly, the Young’s modulus of the
aforementioned materials (110–200 GPa) is higher than that of the bone (7–25 GPa), which causes stress
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shielding [2]. As a result, the bone resorption occurs, which causes implant loosening and failure.
Secondly, the implants made up of these biomaterials are unbiodegradable and after bone healing,
the implants should be taken out from the body by performing a second surgery [3]. Due to adverse
repercussions of non-degradable materials, feasibility of developing biodegradable materials has
attracted the greatest interest. Recently, magnesium (Mg) and its alloys have gained a great deal of
attention as a promising and potential biodegradable material for the fabrication of bone fixation
accessories, because of their high biological properties [4]. However, the poor corrosion resistance of
Mg is one of the most critical barriers, owing to which it degrades very rapidly after implantation [5,6].
Over the years, several methodologies were used to control the degradation rate of Mg and its
alloys [7–9]. Elemental alloying has been reported as the most effective technique to improve corrosion
resistance and mechanical properties of Mg alloys [10].

Elemental alloying is a powder metallurgical process, in which metallic powder particles are
mechanically alloyed and subsequently sintered by appropriate techniques. In the past, alloying of safe
elements, such as zinc (Zn), aluminium (Al), silver (Ag), yttrium (Y), zirconium (Zr), neodymium (Nd),
silicon (Si), manganese (Mn), titanium dioxide (TiO2), and calcium (Ca), were selected in response
to increase the corrosion resistance and biological function of Mg [11–17]. Although the element Al
in Mg composites improves mechanical properties, released Al+ ions cause Alzheimer’s disease and
muscle fiber damage [18–20]. It was reported that Zr causes very serious diseases, such as liver, lung,
and breast cancer [21]. Zhang et al. [22] reported that alloying Nd and Y in Mg alloys disrupt the growth
of tissues around the implant. Li et al. [23] observed that the alloying of Ca reduces the degradation
rate and improves biomechanical integrity in a corrosive medium. Moreover, Ca is a base element
of human bone, which stimulates the new tissue growth and accelerates the bone healing process.
The alloying of Zn and Mn in the Mg matrix enhances both elasticity and corrosion resistance [10].
Recently, Ben-Hamu et al. [24] reported that Si has proved to be an essential element being alloyed to
develop tissues and immune systems. The developed Mg–Si composites possess required mechanical
properties, low ductility, and high strength. Moreover, polygonal-shape Mg2Si intermetallics inhibit
the corrosion more effectively compared to the Chinese script.

Recently, the application of spark plasma sintering (SPS) technique for the synthesis of Mg-based
alloys and composites with improved mechano-biological, antibacterial and corrosion performance has
been reported. Sunil et al. [25] developed biodegradable Mg–hydroxyapatute (HA) composites
by the SPS technique and studied the consequence of HA weight % on corrosion resistance of the
developed composites. The Mg–10%HA composite exhibits best corrosion resistance and high hardness.
Zheng et al. [26] synthesized a Mg–Al–Zn alloy by SPS, which possesses a maximum microhardness
of 140 HV, a compressive yield strength of 442.3 MPa, and an ultimate strength of 546 MPa, which
are comparatively higher than those values of conventional Mg alloys. Zhang et al. [27] studied the
effect of Ca and Zn on a Mg–Si composite, and it was found that the addition of Ca and Zn to the
Mg–Si alloy improved the bio-corrosion resistance and shows very good biocompatibility. In vitro
analysis revealed that excellent adhesion and growth of osteoblastic cell has been observed and in vivo
results suggested that the alloy has good biocompatibility. The Mg–Zn–Mn–Ca alloy developed by
the elemental alloying and SPS technique exhibits high yield strength (58–69 MPa), strong tensile
strength (177–205 MPa), and strong hardness (49–53 Hv) [28]. The effect of HA along with Zn and Mn
on the microstructure, corrosion performance and mechanical properties of Mg alloy was reported.
The alloying of HA (5 wt %) improves the corrosion resistance of Mg [29,30]. Further, Prakash et al. [31]
investigated the effect of mechanical alloying-assisted SPS process (MA-SPS) parameters on structural
porosity, elastic modulus, and hardness of the composite. Multi-objective particle swarm optimization
(MO-PSO) has been utilized to determine the optimal setting of MA-SPS to sinter mechanically tuned
biocompatible composites with improved corrosion properties.

It is clear that many studies, in the past, reported on design, development and synthesis of Mg
alloy alloyed with Mn, and Zn using various fabrication techniques, with the aim of controlling the
degradation rate. However, to the best of authors’ knowledge, limited work is available on hybrid
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alloying of Si and HA and their effects on mechanical, corrosion properties, degradation and bioactivity
analysis of Mg–Zn–Mn alloys. This paper is aimed at studying the synthesis, characterization, corrosion
and cell response of Mg–Zn–Mn–(Si–HA) composites fabricated via the MA-SPS technique. The key
expectation is that the fabricated porous composite will exhibit an improved biomechanical integrity
while offering increased corrosion resistance to delay the degradation and improved bioactivity for
orthopedic applications.

2. Materials and Methods

2.1. Mechanical Alloying and Consolidation of Spark Plasma Sintering

In this work, high-purity (~99.9%) elemental powders of Mg, Mn, Zn, Si, and HA were used to
synthesize Mg–Zn–Mn–Si–HA composites. The chemical composition of the proposed bio-composites
in wt % is listed in Table 1. The required powders were weighed and MA has been carried out
using planetary ball mill (Fritsch Pulverisette 7, M/s. Fritsch, Germany.) with SS vial and SS balls
with a diameter of 5 mm. The powder mixture was mechanically alloyed for about 12 h at 300 rpm
with a ball/powder ratio of 10/1. Stearic acid (0.1 gm) was used to prevent agglomeration and
excessive cold welding of powders. The blended powders were preheated at 100 ◦C for 1 h, in the
argon atmosphere, in order to remove the moisture. Then, the blended powder was consolidated by
the SPS process (SPS-5000 machine; model: Dr. Sinter SPS-625, Fuji Electronic Industrial Co. Ltd.,
Tsurugashima, Japan). The SPS was carried out at a heating rate of 50 ◦C /min (for a holding time of
5 min), under vacuum, and at different sintering temperatures and pressure conditions as illustrated
in Table 2, as per the procedure reported elsewhere [29–31]. Figure 1 presents the fabrication route for
the synthesis of Mg–Zn–Mn–(HA–Si) alloy. A graphite die was used for the sintering and the solid
compacts of 20 mm in diameter and 4 mm in thickness were synthesized. The objective of changing
the temperature and pressure level is to investigate their effect on the porosity, relative density, elastic
modulus, and micro-hardness.

Table 1. Composition of alloying elements in wt % as-proposed for bio-composites.

Composite Composition
Alloying Element Composition, wt %

Zn Mn Si HA Mg

Type-I Mg–Zn–Mn–HA 1 5 10 Bal.
Type-II Mg–Zn–Mn–Si 1 5 10 Bal.
Type-III Mg–Zn–Mn–HA–Si 1 5 10 10 Bal.

Table 2. Process parameters of the mechanical alloying assisted SPS and their levels.

Process Parameters Symbol Units Levels

Type of alloying element Ae HA, Si, Si–HA
Milling time, h Tm h 4, 8, 12

Sintering pressure Ps MPa 30, 40, 50
Sintering temperature Ts

◦C 350, 400, 450
Heating rate ◦C/min 50
Holding time Min 5
Atmosphere Argon

2.2. Metallurgical and Mechanical Characteristics

The grain size and the lattice-strain of mechanically alloyed powder were determined by the
Williamson–Hall method, as expressed in Equation (1):

BCosθ =
Kλ

D
2εSinθ (1)
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where D is the crystal size, K is the shape factor (assume to be 0.9), λ is the wavelength of X-ray, B is
the full width at half maximum, ε is the lattice strain, and θ is the Bragg angle [32,33].

The samples for microstructure examination were cut from the sintered compacts by low-speed
diamond cutter, and then samples were well polished using emery paper, diamond paste,
and napped cloth. The microstructure and morphology of composite were investigated by FE-SEM
(Field-Emission Scanning Electron Microscope). The elemental composition was determined with
an EDS (Energy Dispersive Spectrometer) detector coupled with the FE-SEM. The phases present
in the synthesized composites were studied by X-ray diffraction (XRD) with CuKα radiation at an
incident angle range of 20–80◦. The elastic modulus and hardness of the as-developed composites were
determined via a nano-indentation technique (model: Hyistron TI-950 indentation system, Bruker’s,
Minneapolis, MN, USA) via the Oliver–Pharr approach by using the Berkovich tip at 1000 μN [34].

Figure 1. Fabrication route for synthesis of the Mg–Zn–Mn–(HA–Si) alloy.

2.3. Potentiodynamic Corrosion and Degradation Test

The corrosion characteristics of the as-synthesized composites were analysed by the potentiodynamic
polarization test through an electrochemical system (Gamry 1000E, Potentiostat/Galvanostat,
Gamry Instruments, Warminster, PA, USA) in simulated body fluids (9 g/L NaCl, 0.24 g/L CaCl2,
0.43 g/L KCl, and 0.2 g/L NaHCO3 at pH 7.2). The as-synthesized specimens, graphite rode,
and saturated-carmol-electrode (SCE) were treated as the test electrode, the counter, and the reference
electrode, respectively. The tests were performed at 37 ◦C to simulate the physiological environment.
The corrosion characteristics were determined according to the approach reported in previous
studies [35,36]. The simulated body fluid (SBF) test was conducted to find out the degradation rate
of the specimens after 3, 7, and 14 days. The samples were well polished and dipped into the SBF solution
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in sterilized vials as per the ASTM-G31-72 standard, as reported in [31,37]. After a predetermined time
period of immersion, the samples were retrieved from the glass vial, cleaned by water, and dehydrated
into the desiccators for 24 h. The degradation rate was determined by the weight loss due to Mg2+ ion
release in the SBF solution. The degraded surface was investigated by the FE-SEM and ESD techniques.
The degradation behavior of as-synthesized composites was also measured and determined by the
released concentration of Mg2+ molecules/ions in physiological environment during the immersion test,
as per the procedure adopted elsewhere [38].

2.4. In Vitro Bioactivity Test

The cell culture, MTT, and differentiation assays were performed to examine the bioactivity
and biocompatibility of the as-sintered porous composites using human MG-63 osteoblasts cell lines.
The samples were sliced into 5 mm in diameter and 3 mm in thickness according to the geometry of a
96-well culture plat. The cells were cultured in a flask containing Dulbecco's Modified Eagle Medium
supplemented with 10% bovine serum Sigma-Aldrich, (SIGMA, St. Louis, MO, USA) and 1 vol %
penicillin (Invitrogen, Thermo Fisher Scientific corporation, Waltham, MA, USA) in an incubator
at 37 ◦C and 5% CO2 until confluent. The confluent cells were seeded on the Mg composites
at a cell density of 1 × 105 cells/cm2. The cell proliferation was evaluated using MTT assay
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) based on the conversion of MTT
substrate to formazan by viable cells. At given time points, the culture medium was removed,
and the MTT reagent (50 mL per well, thiazolyl blue tetrazolium bromide (M2128, Sigma-Aldrich,
SIGMA, St. Louis, MO, USA) was added to the culture plate and incubated at 37 ◦C for 4 h. Then,
the MTT reagent was removed and dimethyl sulfoxide (50 mL) was added to each well to dissolve
the formazan crystals. The results of the MTT assay were expressed as a measure of optical density
that was determined at a wavelength of 570 nm. Cell proliferation was also evaluated by determining
the DNA content [39]. For staining the live cells, acetoxymethyl (AM) ester (Calcein, Molecular
Probes, Crailsheim, Germany) was used, which is a fluorescent indicator. The cell distribution growth
on the sample surface was analyzed using a florescent microscope (FM, Scope. A1, Carl Zeiss,
Thornwood, NY, USA). After the cultivation period of 48 h, the adherent cells were fixed with 3.7 vol
% paraformaldehyde for 10 min and permeabilized with 0.1 vol % Triton X-100 (in PBS) for 10 min
at room temperature [40]. At incubation periods of 1, 3 and 7 days, the cultured-specimens were
withdrawn from the physicological environment and subjected to fixation using the glutaraldehyde
solution and then dehydrated using a series of ethanol. Cell differentiation was evaluated using
cellular alkaline phosphatase-specific activity [orthophosphoric monoester phosphohydrolase, alkaline;
E.C. 3.1.3.1] as an early differentiation marker and osteocalcin content in the conditioned media
as a late differentiation marker. Alkaline phosphatase activity was assayed from the release of
p-nitrophenol from p-nitrophenylphosphate at pH 10.2, as previously described. Activity values were
normalized to the protein content, which was detected as colorimetric cuprous cations in biuret reaction
(BCA Protein Assay Kit, Pierce Biotechnology Inc., Rockford, IL, USA) at 570 nm (Microplate reader,
BioRad Laboratories Inc., Hercules, CA, USA) [41]. All experiments were repeated three times to
ensure validity of the observations. Analysis of variance (ANOVA) and the significant difference
between groups was determined using the Student’s t test at a 95% confidence interval. A p value of
less than 0.05 was considered as statistically significant.

3. Results and Discussion

3.1. Powder Morphology

Figure 2 presents the SEM micrograph and associated EDS spectrum of powder particles before
MA. The HA powder particles used were of 0.5 μm (irregular), whereas others exhibited spherical
morphology with an average size of 25 μm. It has been found that there was no powder loss incurring
during the alloying process as the sample size before and after the alloying was recorded to be
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10 gm. However, the size of the grains and lattice strain of alloyed powder were determined by the
Williamson–Hall method [33]. The size and morphology of powder particles were changed with
milling time. Figure 3 presents the variation in the grain size of powder particles during MA and
morphology of powder particles after MA of 12 h. Figure 3a shows how the grain size and lattice strain
varied with the milling time. As the milling time increased, the powder particle size was reduced.
The particle size decreased to 250 nm and the lattice strain was about 0.22%, after milling for 4 h.
On the other hand, after milling of 12 h, the powder size was reduced notably to 75 nm and the lattice
strain was 0.14%. The lattice strain increased, as the milling time increased. The increase in lattice
strain is attributed to the increase in the lattice imperfections, such as grain boundaries and dislocation
density. The morphology of the mixture observed by FE-SEM (JEOL 7600F, Tokyo, Japan) showed that
no diffusion occurred at higher localized temperatures over the processing span. Figure 3b–d show
the morphology of alloyed powder after 12 h of milling and it can be clearly seen that the powder size
was significantly reduced to <75 nm.

 

Figure 2. SEM micrographs and EDS spectra of raw powders: (a) magnesium; (b) manganese; (c) zinc;
(d) silicon and (e) hydroxyapatite.
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Figure 3. (a) Evaluation of grain size and lattice strain as a function of time; powder morphology and
size after ball milling for 12 h: (b) Mg–Zn–Mn–Si; (c) Mg–Zn–Mn–HA; (d) Mg–Zn–Mn–Si–HA.

3.2. Microstructure

The structural morphology of the synthesized composites was directly dependent on the
sintering temperature and applied pressure. As the sintering temperature and pressure increased,
the densification of sintered green compact was increased. The high value of sintering pressure
induces the high driving force, which helps in densifying or compacting the powder particles.
Reportedly elevated sintering temperature assists the coalescence of the powder and reduces the
porosity [30,31]. Figure 4a presents the sintering of powder particles during the SPS process. During the
SPS process, thermal energy was generated due to electrical sparks between the powder particles and
the contact area caused partial melting of the grain boundary of powder while uniaxially applied
pressure densified the powder mixture (Figure 4b). The process of densification and solidification
formed the final sintered compact. Figure 4c shows the mass transformation during the SPS
process and the phenomena of partial diffusion and welding of powder particles as presented by
Zheng et al. [32]. Three types of Mg-based composites, Mg–Zn–Mn–HA (Type-I), Mg–Zn–Mn–Si
(Type-II), and Mg–Zn–Mn–Si–HA(Type-III) were synthesized. Figure 5 presents the microstructures
and EDS spectra of all type of composites at a sintering pressure and a temperature of 40 MPa
and 400 ◦C, respectively. Evidently, all three composites were completely densified and exhibited
a low degree of structural porosity. With the change in element alloying composition (Si and HA),
a distinct morphology can be observed in the composites. A thin and sharp needle-like laminar
structure was observed as-distributed along the grain boundaries in Type-I composite (Figure 5a).
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Sunil et al. reported similar observations on HA addition in Mg composite, which enhances corrosion
resistance [25]. This is attributed to the fact that the individual Mg flakes bonded together with HA
and formed the layer-by-layer laminar structure in the form of needle (MgCaO).

Figure 4. (a) Schematic representation of SPS technique and (b,c) mechanism of sintering of powder
particles during the SPS process.
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Figure 5. SEM micrographs and associated EDS spectra of as-fabricated composites sintered at a
pressure of 50 MPa and a sintering temperature of 400 ◦C: (a,b) Mg–Zn–Mn–Si; (c,d) Mg–Zn–Mn–HA;
and (e,f) Mg–Zn–Mn–Si–HA.
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EDS analysis indicated the element composition of Type-I composite and Fe, Ca, P, and O elements
appeared with other elements (Mg, Zn, and Mn), as can be observed in Figure 5b. The peak intensities
of Ca, P, and O elements confirmed the uniform distribution of HA in the composite. The SPS does
not allow the oxidation during the sintering process. This is because the finer powder particle reacts
quickly at room temperature. Therefore, the possible reaction behind the appearance of O element in
the as-fabricated alloys resulted from handling of powder sample after milling and before sintering.
The uniformly distributed HA in the composite leads to increase in the corrosion resistance [29–31].
On the other hand, when Si was used as an alloying element instead of HA, the typical change in the
structure has been witnessed. When Si was used instead of HA, a mixture of discontinuous laminar
and eutectic structure was observed. The microstructure of Type-II composite mainly comprised
α–Mg, MgZn2, MnSi, and Mg2Si stages, as shown in Figure 5c. The Zn and MgZn2 existed as
a hexagonally packed structure and a secondary phase, respectively. The MgZn2 phases were observed
as an agglomeration of the compact fleck. The intermetallics Mn5Si3 and Mg2Si phases appeared
in polygonal shape and can be clearly identified at the high magnification (×300). Ben-Hamu et al.
observed the similar microstructure [24]. The associated EDS spectra confirmed the appearance of Si
with other elements (Mg, Zn, Mn, Fe, and O), as illustrated in Figure 5d. When Si and HA were added
in the Mg–Zn–Mn composite, the microstructure showed different morphologies (refer to Figure 5e).
When HA and Si were used jointly as alloying elements, the appearance of needle-like structure can
be clearly seen. Dark, gray and bright phases were identified as Mg matrix, CaMgSi, and Mg2Si
phase. The typical eutectic structure disappeared and needle-like MgCaO phases formed. EDS analysis
indicates the element composition of Type-III composite and Fe, Si, Ca, P, and O elements appeared
with other elements (Mg, Zn, and Mn), as can be observed in Figure 5f.

The XRD patterns of all types of sintered composites are presented in Figure 6. It can be observed
that all sintered composites had the same XRD pattern; however, their respective peak intensities
changed with the weight percentages of Si and HA. Biocompatible and biomimitic phases were
identified in the sintered composites. MgCaO, Mn–CaO, and CaMgZn phases were observed in the
Type-I composite. The Type-II composite comprised Mg2Si, Mg0.97Zn0.03, and Mn5Si3 phases. Mg2Si
was expected to enhance the corrosion resistance. The Type-III composite showed CaMgSi, Mg2Si,
Mn5Si3, Mn–CaO, and CaMgZn phases, which are beneficial to form the apatite growth and improve
the bioactivity.

Figure 6. X-ray diffraction patterns of all types of as-fabricated Mg composites.
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3.3. Mechanical Properties

Figure 7 shows the distinctive loading/unloading plots for all types of sintered composites.
Table 3 presents mechanical properties of all three composite composites. The Type-I composite
(Mg–Zn–Mn–HA) showed low elastic modulus and hardness, which were estimated to be 32 GPa and
0.54 GPA, respectively. The Type-I composite exhibited low hardness due to high degree of structural
porosity. The high degree of porosity in structure causes the reduction in mechanical properties of
the bulk material. When Si was used as an alloying element instead of HA, the densification of bulk
increased and the mechanical properties of compact were improved in terms of hardness and elastic
modulus. The Type-II composite (Mg–Zn–Mn–Si) offered high values of elastic modulus and hardness,
which were estimated to be about 45 GPa and 1.97 GPa, respectively. When Si and HA were used
jointly as alloying elements, the degree level of porosity increased again, which led to the reduction
in hardness and elastic modulus again. The hardness of as-synthesized alloys was higher than the
pure Mg. The increase in the hardness of bulk material is due to cold hardening of Mg as well as due
to the presence of HA and MgO at inter-laminar sites. Notably, the elastic modulus and hardness for
the Type-III composite were 39 GPa and 1.18 GPa, which were smaller than the Type-II composite
but higher than the Type-I composite, as seen in Table 3.

Figure 7. Load–depth curves of as-fabricated all types of Mg composites.

Table 3. Elastic modulus and hardness of the sintered biocomposites.

Mg Alloys

Mechanical Properties

Elastic Modulus, E (GPa) Hardness, H (GPa)

Mean of Sample Group
Standard
Deviation

Mean of Sample Group
Standard
Deviation

Mg–Zn–Mn–HA 32 1.58 0.54 0.02
Mg–Zn–Mn–Si 45 2.64 1.97 0.03

Mg–Zn–Mn–Si–HA 39 1.98 1.18 0.02
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3.4. In Vitro Corrosion and Degradation Analysis

In vitro corrosion characteristics and degradation behavior of the as-fabricated composites were
assessed by a Tafel extrapolation method and an immersion test. Figure 8 presents the corrosion
characteristics and degradation behavior of as-fabricated composites. Figure 8a illustrates a comparison
of corrosion Tafel polarization curves of all synthesized composites. Table 4 presents the determined
corrosion characteristics, such as the corrosion potential (Ecorr), corrosion current density (Icorr),
polarization resistance (Rp), and corrosion rate (CR) for all types of materials. From the investigation, it
can be seen that cathodic and anodic reactions obtained were same for all types of specimens, which are
the typical characteristics of passive behavior. The corrosion parameters for Mg–Zn–Mn, such as
Icorr and Ecorr, were measured to be 19.5 μA/cm2 and −1.2 mV, respectively. The corrosion current
density was very low as compared to all specimens; the samples had least corrosion resistance and the
increased degradation was 1.98 mm/year. When the Si was alloyed in Mg–Zn–Mn, the corresponding
current density and corrosion potential were measured around 7.7 μA/cm2 and −1.27 mV, respectively.
The Type-II composite possessed higher corrosion resistance as compared to Mg–Zn–Mn and the
corrosion rate was measured to be around 1.45 mm/year. However, the Type-II alloy still had low
corrosion resistance and the alloying of Si element was less preventive from corrosion. When HA was
used as an alloying element, the hyperbolic curve was shifted slightly towards the lower current density,
and the corresponding current density and corrosion potential were measured to be around 3.5 μA/cm2

and −1.13 mV, respectively. The Type-I composite possessed better corrosion resistance as compared to
Mg–Zn–Mn and the Type-II composite. The corresponding corrosion rate was measured to be around
0.97 mm/year. The alloying of HA element in Mg–Zn–Mn increased the corrosion resistance. This is
attributed to the formation of corrosion barrier phases (CaMg and Mg0.97Zn0.03) in the composite that
promoted the apatite layer growth on the composite surface, which resisted the degradation/corrosion
of composite in the SBF medium. The corrosion morphology of Mg–Zn–Mn–HA composite samples
was found less corroded as compared to the Mg–Zn–Mn–Si composite (Figure 8b). On the other hand,
when both HA and Si were used as alloying elements, excellent corrosion resistance was offered by
the specimen, and the corresponding current density and corrosion potential were measured to be
around 0.98 μA/cm2 and −1.17 mV, respectively. The Mg–Zn–Mn–Si–HA composite possessed better
corrosion resistance as compared to all other types of as-sintered composites, and the corrosion rate
was measured to be around 0.15 mm/year. The above observed finding suggested that the Type-III
composite can hold up the degradation rate at a pace that matches the period of bone healing, which is
the prime objective of the current study.

Table 4. Corrosion parameters determined by the Tafel extrapolation method.

Parameters
Mg Alloys

Mg–Zn–Mn Mg–Zn–Mn–Si Mg–Zn–Mn–HA Mg–Zn–Mn–Si–HA

Icorr (μA/cm2) 22.7 7.7 3.3 0.98
Ecorr (mV ) −1.27 −1.27 −1.13 −1.17

CR (mm/year) 1.98 1.45 0.97 0.15

Figure 8b represents the degradation behavior of the as-fabricated Mg composite specimens
in SBF. It has been found that during the initial period, the degradation rate of all-sintered alloys
was high, but no further effects were seen after 28 days. Comparatively, the degradation rate of
Type-II alloy was high as compared to the Type-I and Type-III composites. When 10% HA and Si
were used as a reinforcement, the rate of mass deposition of apatite layer was high as compared to
the Type-I and Type-II composite samples. Figure 8c illustrates the Mg2+ concentration in the SBF
solution. In the early phase of immersion test (up to 7 days), the release of Mg2+ was higher, but after
7 days, the release rate of Mg2+ began reducing as a result of deposition of a thick apatite layer on the
surface of specimens. The Mg2+ dissolution was found larger for Mg–Zn–Mn–Si specimens among
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all types of composites, presenting high degradation, which showed a similar trend as found in the
degradation rate (Figure 8b). Furthermore, when Si and HA elements were used as alloying elements,
a very significant and drastic reduction in the dissolution of Mg2+ ion was found, as can be seen from
Figure 8c.

Figure 8. (a) Potential dynamic polarization curves of Mg–Zn–Mn, Mg–Zn–Mn–Si, Mg–Zn–Mn–HA,
and Mg–Zn–Mn–Si–HA alloys at (37 ± 1) ◦C; (b) degradation rate of composites as a function of time,
and (c) concentrations of Mg2+ of composites in the simulated body fluid (SBF) medium.

Figure 9 shows the corroded morphologies and EDS spectra of the all types of samples after 28 days
of immersion in the SBF solution. The Type-II alloy surface was found to be highly corroded. This is
because the developed apatite layer on the composite surface was weaker and therefore degraded
rapidly in the SBF medium. The apatite layer was shredded due to its highly porous nature and
degradation took place in the form of pulverized fine particles, as can be seen in Figure 9a. Open holes,
cracks, and shredded layers were clearly seen on the corroded surface due to release of H2 gas and
Mg2+ ions. The shredding of apatite and traces of pulverized Ca and P particles can be easily identified
as holes/cracks. The growth of apatite layer formation was confirmed by EDS-analysis, as can be seen
in Figure 9b. When HA was used as an alloying element, the composite sample was less corroded as
compared to the Mg–Zn–Mn–Si composite. The apatite layer growth on the composite (Type-I) surface
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was high as compared to the Type-II composite, which resisted the degradation/corrosion of composite
in the SBF medium. This is attributed to the formation of corrosion barrier phases (CaMg and Mg0.97
Zn0.03) in the composite. The corrosion morphology of Mg–Zn–Mn–HA composite sample was seen
in Figure 9c. Still, open holes, shredding of apatite layer and traces of pulverised materials were found
and high peaks of Ca and P in the associated EDS spectrum confirmed the formation of the thick
layer of apatite growth, as can be seen in Figure 9d. Samples with hybrid and proportionate filling
of HA and Si elements showed better corrosion resistance. The Mg–Zn–Mn–Si–HA composite had
the least corrosion rate as compared to Mg–Zn–Mn–Si and Mg–Zn–Mn–HA composites, as can be
seen in Figure 9e. This is because a very thick apatite layer was developed on the composites’ surface,
which resisted it from degradation and the presence of CaMgSi, Mg2Si, Mn5Si3, Mn–CaO, CaMgZn,
and MnSi phases fortified the mechano-corrosion and biological properties. Figure 9f presents the
corroded surface morphology of the Mg–Zn–Mn–Si–HA composite and a pulverized surface with
comparatively less holes was observed.

 

Figure 9. SEM micrographs and EDS spectra of the degraded morphology of composites after 28 days
in the SBF immersion.
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3.5. In Vitro Biocompatibility Assessment

The structural morphology and elemental composition of implant played a very important role in
establishing the bio-mechanical bonding between the implant surface and surrounding tissues. A number
of studies reported that HA has significant influence on the adhesion and growth of cells [29,35,38].
Recently, the alloying of Si and HA elements is found favourable for the enhancement of bioactivity of Mg
alloys and composites [29–31]. Figure 10 presents the fluorescent fluorescence staining, cell attachment,
proliferation activities and differentiation activities of osetoblatic cell (MG-63) on the as-synthesized
Mg–Zn–Mn–(HA–Si) composites. With the increase in incubation time, the adhesion and proliferation of
MG-63 cells increased significantly.

 

Figure 10. MG-63 cell adhesion after 24 h: (a) Mg–Zn–Si; (b) Mg–Zn–Mn–HA and
(c) Mg–Zn–Mn–Si–HA surface and cell proliferation and differentiation: (d) MTT assay; (e) DNA
content and (f) alkaline phosphatase-specific (ALP) activity of MG-63 cells determined on Days 1, 3,
and 7 (individual group was statistically highly significant (p < 0.001)).
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Figure 10a–c present the attached cell morphology and fluorescent staining on the Type-I, Type-II,
and type-III composites, respectively. Fluorescent staining is generally used to indicate intracellular
esterase activity present in viable cells. Dense and evenly dispersed multi-layered cells with large nuclei
were observed for all samples; however, in the case of Mg–Zn–Mn–(HA–Si) samples, there were larger
numbers of living cells. Compositionally, the reinforcement of HA had very significant impact on the
apatite-inducing ability and bioactivity of implant. Moreover, spontaneous formation of bio-compatible
phases of composition CaMgSi, Mg2Si, Mn5Si3, Mn–CaO, CaMgZn, and MnSi, provided a biomimetic
inert layer on the alloy surface, which accelerated the bone adhesion, proliferation, growth and
differentiation of MG-63 cell line. Moreover, porous structure leads to the formation of hydrophilic
surface and provides a vehicle and mechanical anchoring sites to interact with cells. In the current study,
the as-sintered porous Mg–Zn–Mn–(Si–HA) alloys possessed micro-scale pore structures ranging from
20–50 μm mimicking human bone, which met the requirement of osseiointergation. After coming in
the contact with the composite surface, the MG-63 cells started adhering on the surface, and after 24 h,
cells started spreading. The shape of cells mainly elongated and polygonal which indicated that cells
were well adhered, spread and proliferated. Polygonal-shape cells represented the excellent adhesion
and growth on the as-synthesized composites surface. A number of activities, such as filopodias,
lamellipodia, and peripheral ruffles, were seen. Figure 9d–f present the cell proliferation, DNA content,
and alkaline phosphatase-specific (ALP) differentiation activities. All observed data was statically
analyzed at a 95% confidence level using ANOVA, and individual group was statistically highly
significant (p < 0.001) for each treatment (different alloy compositions) at different time intervals (days).
Higher numbers of cells were grown on the Type-III composite surface. The optical density showed the
proliferation of MG-63 cells on the composite test specimens, as presented in Figure 9d. The Type-III
composite surface possessed a higher cell proliferation rate. This is attributed to the presence of Si
and HA elements, which enhanced the bone formation process. Moreover, the structural porosities
escalated the surface energy, which promoted protein absorption and cell growth. The DNA content
on the specimen’s surface increased with the increase in the proliferation rate, as can be seen that the
Type-III composite specimens had a higher proportion of DNA content (Figure 9e). The ALP-type
differentiation activities of MG-63 cells were presented in Figure 9f. The serum level of ALP activity
was found significantly higher in the Type-III composite specimens, compared with the Type-II and
Type-I composite specimens.

4. Conclusions

Biomimetic, biodegradable, low elastic and mechanically tuned Mg–Zn–Mn–(Si–HA) composites
were fabricated by the element alloying and SPS technique. The investigation revealed that pore
characteristics of size ranging from 25–50 μm, and 20–30% porosity has been achieved by adding
HA and Si from 5 wt %. The Mg–Zn–Mn–(Si–HA) alloys possessed not only porous structure, but
also possessed low elastic modulus ranging from 15 to 30 GPa that helped in reducing the stress
shielding effect. Further, the developed alloys attained reasonable hardness ranging from 86–200 HV.
The alloying of HA and Si elements led to the formation of biomimetic and biocompatible phases, such
as CaMg, MgSi2, Mg–Zn, Mn–Si, Mn–CaO, Mn–P, Ca–Mn–O, and CaMgSi in the porous layers, which
enhanced the corrosion characteristics of the alloys. Moreover, the appearance of Ca, P and O elements
in the EDS spectrum conferred the bioactivity of the as-synthesized alloys. The in vitro bioactivity
results indicated that the Mg–Zn–Mn–HA–Si alloy had excellent biocompatibility and promoted cell
adhesion, growth, proliferation, and differentiation.
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Abstract: Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process
of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical,
and environment-friendly additive manufacturing process to replace the hot press and sintering
process with thermal-curable resin. A laboratory manufacturing process was established to develop
an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the
ceramic workpiece was examined through a series of comparative experiments with slurry-based iron
plate lapping. The machined surface roughness and weight loss of the workpieces were periodically
recorded to evaluate the surface finish quality and the material removal rate. The promising results
in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate
were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized
hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive
machining process integrated both the two-body and three-body abrasion mode.

Keywords: abrasive machining; sapphire substrate; resin bond

1. Introduction

Hard and brittle materials in the forms of silicon, sapphire, glass, and different types of ceramics
have gradually become one of the most broadly used materials in the modern industry. Thanks to their
superior material properties in chemical, physical, optical, and electronic characteristics, hard and
brittle materials can be utilized in various fields from the screen of cell phones to the optics cavity of
laser gyros. However, the machining of this material is still challenging due to their extreme hardness,
brittleness, and chemical stability. According to the specific application, the aim of hard and brittle
material machining is not just to remove the material efficiently, but also to ensure a desirable surface
quality in terms of surface flatness, surface roughness, and surface integrity. These characteristics are
mainly determined by the material removal mechanism of the precision machining processes, like
lapping and polishing, thereby the role of the machining tools that directly contact the materials in
these machining processes significantly affect the output quality of the process.

Lapping plates fabricated with metals, such as cast iron (Fe) and copper (Cu), have been broadly
used for semiconductor material abrasive machining processes. These metal plates are capable of
providing a relatively higher material removal rate, and they are also easily manufactured economically.
After lapping with these hard plates, a softer tool, like a tin (Sn)/lead (Pb) plate or metal-resin composite
plate, is utilized in the polishing process to perform atomic-level material removal, and a high-quality
surface finish can be obtained meanwhile as a result [1]. However, in addition to the machining tool as
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introduced, lapping and polishing processes are also primarily affected by the involved abrasive slurry,
which is a mixture of the abrasive grains and liquid carrier that can be either oil-based or water-based.
During the machining process, the abrasive grains from the slurry are rolling between the workpiece
and base plate and the material is mainly removed in three-body abrasion mode. On the other hand,
in some case of the lapping process, the abrasive grains are fixed on the plate through the fabrication
process, so the material is mostly removed from the workpiece in two-body abrasion. According to
Kim et al. [2], a relatively higher material removal rate can be obtained through two-body abrasion
lapping, while a dense abrasive slurry is needed for three-body abrasion to achieve the same rate.
As a result, both the process waste and cost increased significantly in the slurry-based lapping process,
and environmental pollution could be another potential issue.

Recently, researchers focused their attention toward the two-body abrasion mode in the fixed
abrasive lapping plate [3]. However, considering the surface finish quality, the two-body abrasion
produces a rougher surface than three-body abrasion. For this reason, researchers around the world
started to study the possibility of combining the two-body and three-body abrasion modes to integrate
their advantages in machining efficiency and surface finish. Luo et al. [4] tried to develop a so-called
semi-fixed abrasive tool with sol-gel technology to form a softer bond between the abrasive grains and
bonding agent. During the machining process, the fall-off semi-fixed abrasive grains could work in
three-body abrasion mode with the fixed grains working in two-body abrasion mode. The fabrication
process was based on the cross-linking reaction of the sodium alginate (AGS) at certain conditions.
Therefore, the reaction completion and process parameter control could potentially limit the application
of this technology. Based on the conventional thermal press and sintering process, Pyun et al. [5]
fabricated a high-performance copper-resin plate for sapphire machining to combine the two-body
and three-body abrasion mode, and examined the influence of different amounts of curing agent as
a function of resin weight. The interface between the Cu and resin and the hardness of the lapping
plate were found to be the primary factor affecting the material removal, and thereby caused the
temporary two-body abrasive transformed to three-body abrasive. All the investigations introduced
above have shown promising results in terms of the material removal rate and nanoscale surface
roughness on the machining of hard and brittle materials.

In this paper, we proposed a new abrasive machining tool fabricated with ultraviolet-curable
resin and diamond abrasive grains. Resin bond is one of the most widely used bonding agents in the
manufacturing of abrasive tools including grinding wheel, lapping plate and polishing pad. For the
past few decades, the thermal-curable resin has been primarily selected as the bonding agent in the
industry. However, the high-energy consumption, byproduct, and environmental issues stimulated
the research in developing a more efficient manufacturing process. The advantages of prototyping
technology attracted the attempts from researchers to testify to the feasibility of utilizing light-curable
resin in the fabrication of abrasive tools [6,7]. The creative idea of the present research was based on
the application of ultraviolet-curable resin prototyping technology, which helps us easily developed
an abrasive tool with the capability of generating a hybrid material removal mode of two-body and
three-body abrasion during the machining process. Compared with the conventional sintering process
with thermal-curable resin, this novel technique significantly reduces the curing time and energy cost.
Moreover, In order to verify the practical machining performance of this unique ultraviolet-curable
resin bond abrasive tool, we conducted a group of comparative experiments on the technical ceramic
workpiece, between the conventional iron plate lapping process and the ultraviolet-curable resin bond
lapping plate. It is hoped that this study could be undertaken to help guide a new direction of the
precision machining technology of hard and brittle materials.
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2. Materials and Methods

2.1. Ultraviolet-Curable Resin

The ultraviolet-curable epoxy resin prepared for this study was supplied by Dymax Corporation
(Torrington, CT, USA), labeled as light weld 425 optically clear structural adhesive. From our previous
research on the feasibility of using ultraviolet-curable resin as a bonding agent in the manufacturing
of abrasive tools [8], we compared the material properties of the cured resin from different vendors.
The 425 resin mentioned above showed some favorable advantages over the others. The technical
specification of the cured pure 425 resin is listed in Table 1.

Table 1. Technical specification of the ultraviolet-curable resin used.

Material
Properties

Density
(g/mL)

Viscosity cP
(20 rpm)

Hardness
(Durometer)

Tensile (psi)
Elongation

(%)
Modulus of

Elasticity (psi)

Dymax 425 1.07 4000 D80 6200 7.3 500,000

2.2. Diamond Abrasive Grain

The abrasive machining tools involved in the machining process of hard and brittle materials
mainly utilized with super abrasives as cubic boron nitride (CBN) and artificial synthetic diamond.
The CBN tool is mainly used in the machining of the hard metallic material since the diamond is
reactive to the ferrous metal at high temperature. Diamond abrasive is superior in hardness, strength,
thermal conductivity, and expansion coefficient. It is primarily employed in the machining of hard
and brittle material including ceramic, optical glass, and semiconductor material. The abrasive grains
selected in this research are the surface textured monocrystalline diamond grains average sized in
15 μm, provided by Engis. Compared with the standard monocrystalline diamond grains, the grain
surface of the ones above was textured through a specific etching process, in which the monocrystalline
diamond was eroded by oxygen, oxygen compounds, molten metals, and hydrogen at an elevated
temperature. As a result, some material on the surface layer of the diamond grains was removed by the
erosion and a rough surface was generated. According to our previous study [9,10], the rougher surface
of the diamond grain increased the contact surface area between the grains and the bonding agent
and consequently improved the bond retention of the abrasive tools. Scanning electronic micrograph
comparison of the regular diamond grains and surface textured ones are shown in the figures below,
where the surface patterns and pits can be seen in Figure 1b.

  
(a) (b) 

Figure 1. Scanning electronic micrographs of (a) the regular monocrystalline diamond grains and
(b) the surface textured monocrystalline diamond grains.

2.3. Ultraviolet Curing Systems

The ultraviolet curing system for laboratory use mainly consists of an ultraviolet lamp with
focalization setup and a power supply. In this study, a customized ultraviolet curing system based
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on the Innovative Machine UV-100 was primarily employed in the manufacturing experiments of
the ultraviolet-curable resin bond abrasive tool, and the Dymax 5000 flood ultraviolet curing system
from DYMAX was also used for initial material properties test of the cured ultraviolet-curable resin
composites. The curing systems mentioned above are shown in Figure 2. According to the supplier of
the resin used in this series of experiments, the recommended wavelengths of the ultraviolet light to
initiate the photoreaction is around 365 nm. Hence, the ultraviolet light source of the curing system
was professionally optimized to the range shown in Figure 2c. Meanwhile, the detailed technical
specification of the curing system is provided in Table 2 below.

(a) (b) (c)

Figure 2. (a) Innovative Machine UV-100 ultraviolet curing system; (b) Dymax 5000 flood ultraviolet
curing system; and (c) wavelength distribution of the curing system after optimization.

Table 2. Technique specifications of the ultraviolet curing system.

Output
Power

Ultraviolet Light
Source

Typical Intensity (320–390 nm,
7.62 cm from the Bottom)

Illumination
Area

400 Watts UVA 1 flood 225 mW/cm2 161.29 cm2

1 Wavelengths of the ultraviolet are classified as UVA, UVB, or UVC, with UVA at 320–400 nm.

2.4. Experimental Fabrication Method

In the experimental fabrication of the ultraviolet-curable resin bond abrasive tool, we developed
various laboratory methods to realize the manufacturing. Firstly, the ultraviolet-curable resin and
diamond abrasives were uniformly mixed through a stirring machine in the darkroom to prevent
any unexpected photoreaction. The composite mixture stood in vacuum conditions for 30 min to
release the air bubbles generated in the stirring step. After that, the mixture in liquid form can be
either spin-coated on top of the base plate or injected into the separated fan-shape mold for the curing
process. For the latter method, the cured fan-shaped pieces were going to be arranged and adhered
to the base plate to assemble the desired tool. The schematic diagram of the curing processes of the
ultraviolet-curable resin bond abrasive tool is illustrated in Figure 3. The spin-coating method was
efficient in curing time and it also ensured the integrity of the cured resin plate. However, since
the spin-coated layer of resin and abrasives on top of the base plate was dimensionally large, it was
difficult to set up an evenly-distributed ultraviolet exposure in practice. As a result, the photosensitive
reaction completion differed by the distance from the light source to the surface of the layer, therefore,
the cure depth of the layer could be varied to generate a waviness in the resin plate. The dimensional
accuracy and machining efficiency can be principally influenced by this fabrication failure. Hence,
the fan-shape molding fabrication method was utilized in the curing process in order to assure the
ultraviolet energy absorbed and the corresponding photoreaction within a small area is uniform.
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(a) (b)

Figure 3. Schematic diagram of the curing processes of the ultraviolet-curable resin bond abrasive tool
through (a) spin-coating method; and (b) fan-shaped pieces assembly method.

In the manufacturing industry of diamond abrasive tools, the diamond concentration is
particularly used as a standard to evaluate the weight of diamond in a unit volume of the tool
matrix, and it is defined that where each cubic centimeter contains 0.88 g of diamond, the concentration
is 100%. In precision machining of hard and brittle materials, a relatively lower abrasive concentration
is preferred. On the other hand, the amount of ultraviolet energy passing through the resin and
diamond composite strongly depends on the abrasive grain size and concentration, the increase in
diamond concentration would decrease the energy absorbed by the sub-surface and bottom layer of
the resin composite, and thereby decrease the cure depth of the resin plate [11,12]. For this reason,
the diamond abrasive concentration selected in this study is 12.5% to satisfy the requirement of the
cure depth, which indicates that each cubic centimeter of the cured resin matrix contains 0.11 g of
diamond grains.

2.5. Experimental Machining Test

A group of comparative machining performance test was conducted between the conventional
slurry-involved lapping process and the process with the ultraviolet-curable resin bond abrasive tool.
Technical ceramic ring-shaped samples from Nanjing Co-Energy Optical Crystal Co. Ltd. (Nanjing,
Jiangsu, China). were selected as the workpiece with an initial surface roughness of 0.45 μm, some of
the material properties of the workpieces can be found in Table 3 below.

Table 3. Material properties of the ceramic workpiece.

Chemical Formula Density Hardness Tensile Strength Modulus of Elasticity Poisson’s Ratio

96% Al2O3 3.65 g/cm3 85 HRA 160 MPa 300 GPa 0.20

Each of the workpieces was cleaned through ultrasonic washing and left until dry, the weight of
each workpiece was examined by an electronic balance. A photograph with the schematic diagram of
the machining test setup is shown in Figure 4, on which six ceramic workpieces were machined at one
time. During the machining test, the workpieces were removed and ultrasonically cleaned in acetone
every 10 min to record the surface roughness and weight loss. The surface roughness was measured
by a Zygo optical profiler, where a 10× magnification Mirau interference objective was equipped.
In the surface roughness measurement, filtering is used to highlight the roughness (high-frequency,
short-wavelength component) or waviness (low-frequency, long-wavelength component) of a test
part. The filtering method in the Zygo optical profiler employed in this series of measurements
was set to low pass with a specified wavelength of the higher cutoff point at 5.47 μm. The surface
topography was examined with an atomic force microscope. To maintain the consistency of the
experiments, the roughness parameter Ra was measured from three randomly-selected areas of
0.70 mm by 0.52 mm on the surface of the machined workpiece. The parameter was based on
a pre-positioned straight line that crossed the selected area in each measurement. An average was
taken on the roughness parameter Ra from the six workpieces periodically, and the weight loss of
each workpiece was evaluated on an electronic balance to study the material removal efficiency of the
respective machining process. The process parameters of the machining test on the ceramic workpiece
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are listed in Table 4. The 15 μm diamond grain slurry used in the iron plate lapping was purchased
from Engis in standard concentration, that is, 400 g of diamond abrasive per 750 mL, according to their
technical specifications.

  
(a) (b) 

Figure 4. (a) The experimental setup and (b) schematic diagram of the machining performance test on
ceramic workpieces.

Table 4. Process parameters of machining tests on the ceramic workpiece.

Lapping
Machine

Diameter of
Lapping

Plate

Diameter of
Workpiece

Carrier

Minimum
Rotation

Speed

Maximum
Rotation

Speed

Round
Count

Precision

Lapping
Pressure

Lapping
Period

Lap
Master 12 30.5 cm 10.8 cm 5 RPM 50 RPM ±0.5◦ 1.77 KPa 10 min

3. Results and Discussion

Figure 5 shows the average roughness parameters periodically recorded from both the machining
process of conventional lapping on an iron plate and fixed abrasive lapping on the ultraviolet- curable
resin bond tool. The lowest roughness parameter Ra achieved by iron plate lapping and ultraviolet-
curable resin plate lapping is 0.201 μm and 0.182 μm, respectively. In most cases, the machined surface
roughness is mainly influenced by the grain size of the abrasives. However, considering that the
diamond abrasives employed either in the fabrication of resin plate or the slurry mixture were from
the same batch in this study, the differences between those two machining processes could be possibly
explained with their abrasive wear mechanisms in material removal.

Figure 5. The surface roughness of the ceramic workpiece machined with iron plate lapping and
ultraviolet-curable resin tool.
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In the beginning 10 min of the machining process, the surface roughness measured from the
ceramic workpiece machined with the iron plate is 0.26 μm, which is about 12% lower than 0.29 μm in
resin plate lapping. This phenomenon could be explained by the different material properties of the
plates. In the case of iron plate lapping, the diamond abrasive grains immediately started to work as
long as they were introduced by the slurry and spread in the working zone between workpieces and
the iron plate. Slurry-based loose abrasive lapping is a typical process of the three-body abrasion mode,
and it is usually considered as a lower-efficiency process to remove material than two-body abrasion
lapping. According to Rabinowicz et al. [13], the abrasive grains in three-body abrasion spend 90%
of their working time rolling and performing low material removal rate, that can be ten times higher
in two-body abrasion [5]. In our ultraviolet-curable resin bond lapping plate, the diamond grains
were uniformly distributed and fixed within the tool. Ideally, they should work in two-body abrasion
mode as the other fixed abrasive lapping plate, and thereby produced a higher material removal rate.
However, because of the gravity settling of the diamond grains in the resin during the curing process,
most of the abrasives were buried within the cured resin matrix. At the beginning of the machining
process, only a small number of initial protruding diamond grains worked in two-body abrasion mode
to remove material from the workpiece. Therefore, the removal rate is relatively lower than that in iron
plate lapping. Hence, the volume of material removed is not enough to degrade the surface roughness
parameter Ra to the level achieved in iron plate lapping. This assumption also matches the periodical
weight loss of the workpieces in the first 10 min, shown in Figure 6.

Figure 6. Periodical weight loss of the workpieces.

After 10 min in Figure 5, the surface roughness downward trend is gradually becoming weaker
in both processes. The parameter Ra from ultraviolet resin tool lapping surpasses that in iron plate
slurry lapping between 10 to 20 min by achieving 0.198 μm. Until the end of the machining test,
the periodical measured surface roughness of the resin tool lapping remains at the lower state than
the iron plate lapping. As is known, the bonding agent of cured ultraviolet-curable resin is weaker in
material properties in terms of hardness, strength, and wear resistance, especially when compared to
the metallic or vitrified bond. As a result, some of the protruding grains or fall off grains might be
pressed into the resin matrix due to its plastic deformation under the lapping load. This phenomenon
would effectively decrease the abrasive grain size and thereby cause disadvantages in machining
efficiency. However, from another point of view, the decreased abrasive size and soft bonding matrix
would also decrease the machined surface roughness and cause less surface damage. Additionally,
the featured viscoelasticity of the resin matrix is considered to help to reduce the surface damage
of the workpiece, and improve the process consistency and stability [14]. Thus, in this experiment,
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a better surface quality could be obtained through the ultraviolet-curable resin plate than the iron
plate. This hypothesis reasonably explains the surface roughness difference in Figure 5 and the surface
topographies comparison in Figure 7. The relatively rougher surface profile in Figure 7a is a small area
of 78.6 μm by 79.3 μm from one of the machined workpieces after 60 min lapping with the iron plate,
and the smoother one in Figure 7b is from the resin plate lapping after 60 min.

  
(a) (b) 

Figure 7. Surface topographies of a ceramic workpiece machined with (a) iron plate slurry lapping;
and (b) ultraviolet-curable resin bond tool lapping.

It is noted that, in Figure 6, the material removed in the iron plate slurry lapping is 185.28 mg
in total after 60 min, while the number in ultraviolet-curable resin tool lapping is 122.43 mg. It is
nearly a 51.34% dropdown in machining efficiency. Additionally, the weight loss trend of the two
processes is also quite different. Due to the delivering of lapping slurry, fresh and sharp diamond
grains were continuously introduced to the working zone. Hence, the slope rate of the iron plate
slurry lapping is constant and varies within a reasonable range. In the case of the resin bond plate, it is
assumed that all the diamond grains were embedded in the cured resin matrix of the abrasive tool and
worked as a fixed abrasive grain at the beginning. As the machining process continues, the resin matrix
started to wear out due to the low hardness and wear resistance. According to the studies in diamond
retention of abrasive tools [15,16], the abrasive grains are largely held within the bonding matrix by
the mechanical compression generated during the manufacturing process. Therefore, the retention
force is predominately determined by the material properties of the solidified bonding agent, which
is the ultraviolet-curable resin in this case, considering the disadvantages of cured resin in material
properties regarding strength and hardness, within which the diamond abrasive grains tend to be
pulled out from the bonding matrix with ease than metallic or vitrified bonding.

Hence, some of the initially-fixed abrasive grains began to fall off from the bonding matrix and
turned into loose abrasive grains working in three-body abrasion. Meanwhile, the abrasive grains
buried in the underlayer of the resin matrix was continuously revealed and worked as fixed abrasive
grain renewedly. This unique mechanism provides the resin tool lapping with fresh diamond grains
like the slurry does in iron plate lapping. Additionally, the probability of the falling off diamond grains
being pressed into the resin plate exists and converts the loose abrasive grains into fixed ones. Because
of this, the lapping process of the ultraviolet-resin bond plate can be summarized as a hybrid process in
which the two-body abrasion and three-body abrasion material removal mode corporately contribute
to the machining process, while the interconversion between fixed grains and loose grains could be
dynamically balanced at a certain period of the process. This presumption explains the stabilization of
surface roughness in the resin tool lapping process after 40 min.
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According to the data in Figure 6, the weight loss of the machined workpiece in resin tool lapping
also becomes stable after 40 min. That means the material removed from the workpiece after 40 min is
rapidly reduced. The weight loss of the workpiece in the first 40 min is 103.32 mg, while the number
in the period from 40 to 60 min is 19.11 mg. Since the ultraviolet-curable resin bond lapping plate
was fabricated in the laboratory, the manufacturing process flaws would cause some of the failures
in machining performance. For instance, the absence of diamond grains at certain layers of the tool
due to the non-uniform distribution of abrasives, the unstable hardness of the fabricated resin plate
because of the incomplete photoreaction during the curing process, and the glazing issue caused by
the dull grain and porosity stuck.

An optical image observation on the worn surface of the ultraviolet-curable resin plate after the
lapping process is shown in Figure 8. As we presumed, the number of the pull-out holes, which
are marked with white circles in Figure 8a, indicate the weaker strength and retention force of the
resin matrix to hold the diamond grains from being pulled out. The protruding diamond grains
marked in red circles are the fixed abrasives that are primarily employed to remove the materials in the
two-body wear mode during machining, while the three-body working abrasives were rolling between
the workpiece and the tool and continuously carried away with the machining coolant. Moreover,
the nonuniform distribution of the fixed diamond grains and pull-out holes on the worn surface of the
tool in Figure 8a reflects the fabrication disadvantage in the laboratory. A 400× magnification on the
worn surface in Figure 8b clearly shows the diamond grains that are embedded within the resin matrix
after lapping, and it refers to the fact that, as the machining process continues, the fresh diamond
grains are not ensured to reveal with the resin matrix wear. In practice, all these potential defects
mentioned above possibly lead to the failure of the tool’s machining capability. Thus, the improvement
in manufacturing process optimization and material selection could be directions for future work.

(a) (b) 

Figure 8. Worn surface of the ultraviolet-curable resin plate after lapping process: (a) the diamond
grains working condition at 200× magnification with the active protruding diamond grains circled in
red and pull-out holes circled in white, and (b) the diamond grains embedded within the resin matrix
at various underneath heights circled and labelled as a and b.

4. Conclusions

This study proposed a new type of fixed abrasive lapping plate for precision machining on hard
and brittle materials, in which the ultraviolet-curable resin was selected as the bonding agent in the
fabrication of the abrasive tool to deliver a rapid, flexible, economical, and environment-friendly
manufacturing process. The performance of the ultraviolet-resin bond diamond lapping plate was
examined through the comparative experiments with slurry-based iron plate lapping. The conclusions
can be summarized as follows:
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• The fabrication process of the ultraviolet-curable resin bond plate was completed within
a minute light exposure, saving energy costs and labor effort, which occurs in the conventional
sintering process.

• In the ceramic workpiece lapping process, the ultraviolet-curable resin bond lapping plate was
enabled to achieve an approximately 10% lower surface roughness parameter Ra than that in the
iron plate lapping process.

• In the study of the material removal rate evaluated by weight loss of the workpiece, the resin
plate lapping showed about 25% less material removed per minute in the stable machining state.

• The machining performance of the resin plate can be explained by the hypothesized discussion
that an integrated abrasion mode of two-body and three-body wear was established.

However, the study on the control of the fabrication process parameters that affect the material
properties of the cured resin matrix, the methodology to obtain a uniform distribution of the abrasive
grains within the bonding agent, and the appropriate technique to evaluate the working condition
of the tool is still limited in this research. The effort on these directions should be taken in the future
studies regarding related works. It is hoped that this experimental study could inspire the application
of the ultraviolet-curable resin bond abrasive tool, and ultimately integrate the two-step precision
flattening process of lapping and polishing into one.
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Abstract: In the present research, a composite layer of TiO2-TiC-NbO-NbC was coated on the Ti-64
alloy using two different methods (i.e., the electric discharge coating (EDC) and electric discharge
machining processes) while the Nb powder were mixed in dielectric fluid. The effect produced on
the machined surfaces by both processes was reported. The influence of Nb-concentration along with
the EDC key parameters (Ip and Ton) on the coated surface integrity such as surface topography,
micro-cracks, coating layer thickness, coating deposition, micro-hardness has been evaluated as
well. It has been noticed that in the EDC process the high peak current and high Nb-powder
concentration allow improvement in the material migration, and a crack-free thick layer (215 μm) on
the workpiece surface is deposited. The presence of various oxides and carbides on the coated surface
further enhanced the mechanical properties, especially, the wear resistance, corrosion resistance
and bioactivity. The surface hardness of the coated layer is increased from 365 HV to 1465 HV.
Furthermore, the coated layer reveals a higher adhesion strength (~118 N), which permits to enhance
the wear resistance of the Ti-64 alloy. This proposed technology allows modification of the mechanical
properties and surface characteristics according to an orthopedic implant’s requirements.

Keywords: Ti-6Al-4V; alloy; EDC; microcracks; microhardness; adhesion strength

1. Introduction

Among all metallic biomaterials, Ti-6Al-4V (Ti-64) alloy is most widely used material for
biomedical applications to fabricate implants and surgical instruments due to its unique feature of great
mechanical properties and excellent biocompatibility [1,2]. The Ti-64 alloy has a Ti-oxide bio-inert layer,
which has low hardness and poor wear resistance [3]. In order to improve its surface properties and
characteristics, a number of surface treatment/modification processes were reported [4]. In the current
research scenario, the electrical discharge machining (EDM) process is the only non-conventional
machining process, which permits effective manufacturing of Ti-64 alloy that is hard to cut [5].
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Moreover, EDM produce a bio-compatible layer on the surface, which promotes a higher surface
hardness and better corrosion resistance of Ti-64 alloy [6]. Peng et al. used EDM to machine the
Ti-64 alloy and tuned the surface characteristics as required for the osseiointegration process [7].
The nanoporous layer has been synthesized by EDM, which promotes cell adhesion and growth [8].
Bin et al. investigated the effect of EDM to improve the surface hardness, wear resistance, corrosion
resistance, and bioactivity of Ti-64 alloy [9]. The application of EDM for coating/deposition/alloying
has been extended by altering the tool electrode polarity [10,11], powder metallurgical (P/M) prepared
from green compact tool electrode [12–15], and powder mixed dielectric [16,17]. Most researchers
use powder mixed dielectric to make deposition into a workpiece surface [18,19]. Prakash et al.
investigated the effect of Si-mixed EDM to alter the surface characteristics that allows improving the
bio-compatibility, corrosion, and wear resistance properties of a specially designed Ti-35Nb-7Ta-5Zr
(β-phase) for orthopaedic applications [20]. Furthermore, multi-objective optimization of Si-mixed
EDM by the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) were used to synthesize the
bio-mimetic surface [21]. The powder mixed electric discharge machining (PMEDM) was also utilized
to enhance the fatigue performance and bone-implant interface [22,23]. Xie et al. reported that
the surface hardness of 45-C steel has been increased from 415 to 1420 HV using graphite-mixed
EDM [24]. Arun et al. synthesized a hard-layer of Ni-W coating on tool-steel by Ni &W—mixed EDM
in order to improve the tribological performance [25]. Ekmekci et al. reported that a hydroxyapatite
(HA) enriched bioceramic layer can be successfully deposited on Ti-64 surface using HA-mixed EDM
process [26]. Ou and Wang used EDC to deposit a HA-enriched layer on Ti alloy in order to enhance the
biocompatibility of base material [27]. Prakash et al. deposited HA-enriched biomimetic porous layer
on the Ti-35Nb-7Ta-5Zr (β-phase) surface to enhance the bio-mechanical and corrosion integrity [28].
Recently, Prakash et al. uncovered the ability of HA-mixed EDM process to enhance the mechanical,
corrosion, bioactivity of Mg-based biodegradable implants [29,30]. The EDM/PMEDM was utilized
for surface modification of biomedical implants [31–33].

There is wide scope in additive mixed EDM process to deposit a bio-compatible layer for
orthopaedic applications using a different type of additive mixed in dielectric fluid. To date, no research
study has reported the application of niobium (Nb) powder mixed EDM for surface modification
of Ti-alloy. As such, the present research investigates the effect of a multi-composite layer (i.e., of
TiO2-TiC-NbC-NbO) deposited on the Ti-64 alloy surface using EDC process. The results gathered
in this work prove that the surface of Ti-64 treated by Nb was enhanced in terms of bio-mechanical
integrity and wear resistance.

2. Materials and Methods

2.1. Characterization of Sintered Ti-Nb Alloy and Machined Surface by Electric Discharge Coating
(EDC) Process

Ti-6Al-4V extra low interstitials alloy (Ti-64 ELI) was used as the workpiece material, provided
by Titanium-India, Mumbai. The samples of 10 mm width, 10 mm length, and 5 mm thickness were
cut from the as-received cast ingot. The surfaces of the cut samples were polished up to Ra ~ 0.5 μm.
The surface modification of Ti64-ELI alloy was carried out by depositing a thin coating layer by
the electric discharge coating process while the Nb-powder particles were mixed in a dielectric
fluid. Here, were used a commercially pure-Ti tool electrode. Table 1 shows details of experimental
conditions. Figure 1a schematically shows the experimental set-up of the EDC process whereas
Figure 1b schematically presents the main mechanism of deposition that includes the coating layer
of oxides and carbides in the EDC process. A partially sintered tool electrode was used for the
coating process.

50



Materials 2019, 12, 1006

Table 1. Experimental condition of electric discharge coating (EDC).

Name of Parameter Range of Parameter

Workpiece Ti-6Al-4V alloy
Tool electrode CP-Ti alloy

Polarity Reverse (−Ve) for EDC and Straight (+Ve) for electrical discharge machining (EDM)
Peak current 5, 10, 15, 20, 25 A
Pulse-on time 50, 100, 200, 400, 800 μs

Duty Cycle 8%
Dielectric medium Hydrocarbon oil

Machining time 15 min
Powder Concentration 5, 10, 15, 20 g/L

 

Figure 1. (a) Experimental set-up of EDC process and (b) schematic representation of EDC process.

2.2. Development of Partially Sintered Tool Electrode for EDC Process

The partially sintered Ti-Nb tool electrode was developed by spark plasma sintering process.
Titanium (>99.9% purity, 45μm) and niobium (99.9% purity, 45 μm) were procured from N.B.
enterprises, Bilaspur, India. Here we present the main steps followed for the fabrication of Ti-Nb
alloy: (i) Ti and Nb were mixed 50:50 weight percentages. The mixture of Ti-Nb was developed
in a planetary ball mill with tungsten balls (ball to powder ration kept 5:1) at a rotational speed of
200 rpm for 8 h. Figure 2 shows the shape and size of Ti and Nb powders. (ii) The as-blended powder
mixture was consolidated via the spark plasma sintering (SPS) method in a graphite die at 800 ◦C
sintering temperature using a heating rate of 100 ◦C (holding time 15 min) [34]. This was performed
under vacuum conditions while the uniaxial pressure was kept constant at 50 MPa. Figure 3 shows a
photograph of the SPS machine available at the Indian Institute of Technology, Roorkee, and the red
hot sample under vacuum condition during the process.

2.3. Characterization of Sintered Ti-Nb Alloy and Machined Surface by EDC Process

The topology and morphology of coated surface were analyzed with a field emission scanning
electron microscopy (FE-SEM; JEOL 7600F; JEOL Inc., Peabody, MA, USA). The phase and element
constituents in the as-synthesized composites were determined by the X-ray diffraction (XRD)
technique (XRD; X’pert-PRO, PANalytical, Almelo Inc., Almelo, Netherlands) and energy dispersive
spectroscopy (EDS) (FE-SEM; JEOL 7600F; JEOL Inc., Peabody, MA, USA), respectively. XRD pattern
peaks were analyzed according to the database of the Joint Committee on Powder Diffraction Standards
(JCPDS), to identify the phases formed in the coated surface. The thickness of the coating layer (CLT)
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was measured by investigating the cross-section of the modified specimens [19,20]. For the CLT
measurements, the test surfaces were well polished and prepared using adequate grinding and
polishing methods according to the ASTM standard (ASTM-E384-11) [19]. The surface hardness of the
coated layer was measured with a Shimadzu HMV-G21 (Vickers) micro-hardness tester (HMV-G21ST,
SHIMADZU, Japan), using an indenting load of 0.49 N during 15 s dwell time. The cross-sectional
surface of the samples was used to measure the microhardness values. The adhesive strength between
the coating and the substrate was measured with a scratch tester (TR-102, DUCOM, Bengaluru, India).
The loading force was increased up to 150 N by using a loading rate of 25 N/mm and the scratch
length was 4 mm.

  
(a) (b) 

  
(c) (d) 

Figure 2. (a,b) Scanning electron microscope (SEM) micrograph showing the morphology of titanium
and niobium powders; (c) high energy planetary ball mill; and (d) spark plasma sintering (SPS) machine.

3. Results and Discussion

This section is divided into two subsections. The first section provides a concise and precise
description of the results from the fabrication of Ti-Nb alloy using the SPS method. The second section
provides the experimental results obtained by EDC technique, their interpretation as well as the
experimental conclusions formulated from the analysis.
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3.1. Microstructure, Morphology, and Chemical Composition of Sintered Ti-Nb Electrode

Figure 3 shows details of the sample produced, its microstructure and phase composition of a
partially sintered Ti-Nb alloy obtained with the SPS technique, which was further used in the EDC
process. Figure 3a shows the photograph of sintered Ti-Nb alloy that is a compacted sample of 20 mm
diameter and thickness of 6 mm. Figure 3b shows the SEM micrographs of the sintered sample
obtained at a sintered temperature of 700 ◦C. These micrograph indicates the presence of porosities in
the sample which is a sign of a sample partially sintered. The percentage of porosities in the sintred
Ti-Nb alloy is was found ~25%. The porosities are uniformly distributed having the pore size of
5–15 μm. Furthermore, the chemical reaction between the alloy elements generated large amounts
of gases that leads to the creation of porosity in the structure. At higher magnification (5000×), the
presence of α-Ti and β-Nb phases can be identified clearly; the α-Ti is a dark phase and β-Nb is
the brighter phase. The dissolution of Nb is incomplete, and the equiaxed microstructure of β-Nb
uniformly distributed and surrounded by α-Ti matrix. Figure 3c shows the associated EDS spectrum of
the sintered Ti-Nb alloy. The EDS spectrum confirms the presence of Ti and Nb elements. Apart from
the presence of base metal elements, the element O (possible oxides) was noticed as well on the surface,
which is a common observation in the SPS-treated surface [35–40]. Figure 3d shows the associated XRD
pattern of the sintered Ti-Nb alloy and endorses the phase composition of the sample at the different
sintering temperature. The XRD pattern of sintered Ti-Nb alloy revealed the presence of α’ phase (Ti),
together with β bcc phase (Nb) weak peaks, partially overlapped on α’ peaks. It can be seen that the
β-phase is the major phase in the sintered samples and the intensity of peaks of β-phase increases
as the sintering temperature increases. This is because at lower sintering temperature the sample
consists alpha phase, whereas, at higher sintering temperature only the beta phase is produced with a
minor amount of alpha phase. Therefore, the peaks of sintered sample are high at higher temperatures
associated with the presence of the beta phase. The partially sintered porous Ti-Nb alloy was further
utilized as an electrode material for the surface modification of the Ti-6Al-4V alloy by depositing a
layer of Ti-Nb by electric discharge coating process to enhance its surface and mechanical properties.
The results of the EDC using partially sintered porous Ti-Nb alloy were reported in detail within the
next section. The surface topography, elemental composition, coating thickness, material deposition,
surface microhardness and adhesion of the coated surface has been simulated with the use of partially
sintered porous Ti-Nb alloy as the tool electrode.

  
(a) (b) 

Figure 3. Cont.
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Figure 3. (a) Sintered Ti-Nb alloy; (b) SEM micrograph showing the morphology; (c) EDS spectrum;
(d) X-ray diffraction (XRD) pattern of Ti-Nb alloy.

3.2. Morphology, Chemical Composition, and Microhardness of EDC-Treated Surface

The effect of process parameters on the Nb deposition, micro-cracks, coating thickness and surface
chemistry has been investigated by varying the key parameters of the EDC process (Ip, Ton, and
Pc). The amount of Nb deposition on the workpiece surface was measured by EDS analysis. In the
present study, the effect of input process parameters on the deposition of weight percentage of Nb
powder has been evaluated. Figure 4 shows the variation of process parameters on the deposition
of weight percentage of Nb powder in EDM and EDC. As the peak current increases the weight
percentage of Nb powder deposition on the workpiece surface first increases up to 20 A. If the peak
current increases further, the weight percentage of Nb powder deposition on the workpiece surface
start decreases (Figure 4a). The trend for the variation of deposition of Nb on the Ti-64 surface with
respect to peak current is the same in both cases, but much less Nb has been deposited on Ti-64
surface as compared to EDC. The maximum Nb (0.42 gm) was deposited at 25A peak current. This is
attributed to the increases of peak current and the discharge energy generated which resulted in large
exploratory pressure on the dielectric fluid causing migration and deposition of Nb powder towards
workpiece surface. Figure 4b shows the variation of weight percentage of Nb powder deposition on
the workpiece surface in respect to the pulse duration. The weight percentage of Nb deposition on the
workpiece surface first increases with pulse-duration (up to 400 μs) and then start decreasing once
the pulse-duration increases further. The explanation agrees with the peak current one, because with
the increase in pulse duration the duration of discharge energy in the machining area increases which
maintains pressure on the dielectric fluid for the continuous migration and deposition of Nb powder
on the workpiece surface. On the other hand, at high pulse duration, the discharge energy generated in
a very large exploratory pressure results in a spattering of the molten pool; thus less weight percentage
of Nb powder deposition on the workpiece surface. The trend for the variation of deposition of Nb
on the Ti-64 surface with respect to pulse duration is the same for both cases, but much less Nb has
been deposited compared to EDC. The maximum Nb was deposited such as 0.22 gm at 400 μs of
pulse duration. Figure 4c shows the variation of weight percentage of Nb powder deposition on the
workpiece surface in respect to Nb powder concentration. As the Nb powder concentration increases,
the weight percentage of Nb powder deposition on the workpiece surface increases. This is because,
with the increase in Nb-concentration, the Nb-powder particles and eroded-debris are unable to flush
out, and are charged due to the ionization of dielectric fluid. As a result, these spark products migrate
toward the workpiece surface. The weight percentage of Nb powder deposition on the workpiece
surface increases with the increases of the coating thickness. The maximum Nb was deposited 0.34 gm
at 20 g/L of Nb powder concentration.
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(a) (b) 

 
(c) 

Figure 4. Variation of Nb deposition coating with (a) peak current, (b) pulse duration, and (c) Nb
Powder concentration.

Figure 5 shows the surface morphology of the Ti-6Al-4V alloy surface after EDM (tool electrode
positive polarity) and EDC (tool electrode negative polarity) setting the peak current = 10 A, pulse
duration = 100 μs, duty cycle = 8%, and machining time = 15 min. Many craters resulted from electoral
sparks were found on EDM-and EDC-treated surface, but both surfaces have different morphology,
which can be observed in Figure 5a,c, respectively. At higher magnification (1700×), a higher density
of surface micro-cracks along with high ridges of redeposited molten metal, globules, and pock marks
have been identified on the EDM-treated surface, which results in poor surface quality (Figure 5b).
On the other hand, the EDC-treated surface shows the micro-cracks but smooth surface as compared to
the EDM-treated surface. This is because, in the EDM process, the heat energy is high at the workpiece
surface which leads to the removal of workpiece material in the form of deep and wide craters and
results in high ridges of redeposited material [18,22,23]. On the other hand, in the case of EDC, the
heat energy is high at tool electrode side and low at workpiece side. As a consequence less melting
of the workpiece material as compared to the EDM process and results in flat ridges of redeposited
material. The results agree with the findings of the previous results reported [25,26]. The EDC-treated
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surface has less intensity of crack, free from pock marks, globules and Ti and Nb particles in the form
of a coated layer can be clearly seen (Figure 5d). This is because during the EDC process, the tool
electrode material and degraded carbon form the dielectric fluid, and fill the spaces of micro-cracks,
micro-sized craters, and voids. As a result, a layer of oxides and carbides on the machined surface is
produced that allows the elimination of micro-cracks.

 

Figure 5. SEM morphology of Ti-6Al-4V alloy after (a,b) EDM-treatment and (c,d) EDC-treatment.

Figure 6 shows the surface morphology of the Ti-6Al-4V alloy surface after EDC treatment
setting the machining condition of peak current = 10 A, pulse duration = 400 μs, duty cycle = 8%, and
machining time = 15 min with Nb powder concentration of 10, 15 g/L and 20 g/L, respectively. Relative
to the EDM-treated surface, a very flat and smooth surface is observed but only few micro-cracks and
micro-pits still exist on the surface at 10 g/L Nb powder concentration, as can be seen in Figure 6a,b.
When Nb concentration increased to 15 g/L, a crack and pit-free smooth surface was observed.
Apart from this, a layer of oxides and carbides in a higher proportion has been identified, as can be
seen in Figure 6c,d. When Nb concentration increased to 20 g/L, a crack and pit-free surface together
with a layer of oxides and carbides in a higher proportion was identified that is depicted in Figure 6e,f.
This is because, the Nb powder concentration increases the formation of compacted surface cracks
while a layer of oxides and carbides (Ti-C, Ti-O, Nb-C, and Nb-O) is formed. Janmanee et al. reported
the similar findings in their research for the reduction of micro-cracks on the EDC-treated surface
and demonstrated how a layer of WC-Co and Ti-C formed on the machined surface allows the cracks
and voids to be filled; causing a reduction in surface cracks [10]. In previous studies, it has been
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reported that the powder addition in the dielectric fluid significantly reduced the formation of surface
cracks [17–20].

 

Figure 6. SEM morphology of Ti-6Al-4V alloy after EDC treatment at Nb concentration of (a,b) 10 g/L;
(c,d) 15 g/L and (e,f) 20 g/L.

Figure 7 shows the cross section of a micrograph of the coating layer on Ti-6Al-4V alloy after
EDM and EDC treatment setting the condition of peak current = 10 A, long pulse duration = 400 μs,
duty cycle = 8%, and machining time = 15 min. It can be observed that the thickness of recast
layer on Ti-6Al-4V alloy after being EDM-treated was about 149 μm with many surface defects.
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Surface micro-cracks and resolidified drops of the molten material can be seen on the EDM-treated
surface. The re-solidified material has poor bonding and loosely connected thus there is a risk of their
loosening and particles may cause considerable danger since they can penetrate between articulating
parts of the joint and damage them. On the other hand, a very smooth and thick layer of coating was
observed on the EDC-treated surface when Nb concentration was 10 g/L. The thickness of the coated
layer was measured ~195 μm which was thicker than that of the EDM-treated surface, but was defect
free. When Nb concentration is 20 g/L. The thickness of the coated layer was measured ~215 μm
which was thicker than that of the EDM-treated surface, but still defect free. The loose surface particles
are not observed on the EDC-treated surface and excellent metallurgical bonding of re-solidified
material with base material were seen, which permits the properties of the modified surface to be
enhanced. The deposition of the resolidified material on the workpiece surface has a direct relation
with peak current, pulse duration, and powder concentration. The higher peak current and pulse
duration generates higher discharge energy which results in repelled both debris and suspended
powder particles towards the workpiece surface.

 

Figure 7. Cross section morphology of coating layer on Ti-6Al-4V alloy: (a) 149 μm thickness
after EDM-treatment, (b) 195 μm thickness after EDC-treatment, and (c) 215 μm thickness
after EDC-treatment.

Figure 8 shows the EDS spectrum of EDM-treated and EDC-treated of Ti-6Al-4V alloy setting the
working condition of peak current = 20 A, pulse duration = 250 μs, duty cycle = 8%, and machining
time = 15 min with Nb powder concentration of 0, 10, 15 and 20 g/L. The EDS results show that the
EDM-treated surface has no significant presence of Nb powder particles (Figure 8a). On the other hand,
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the EDC-treated surface has found a significant amount of Nb powder with the weight percentages of
5.98%, 14.87%, and 21.47% as shown in Figure 8b–d. Furthermore, in addition to the presence of Nb,
other elements like Ti, Al and, V along with O and C were also present on the EDC-treated surface.
The micro-level mapping of the EDC-treated surface at the working condition of peak current = 20 A,
pulse duration = 250 μs, duty cycle = 8%, and machining time = 60 min with Nb powder concentration
of 20 g/L at a magnification of 250× is shown in Figure 9. The area selected for mapping is shown in
Figure 9a. Figure 9b shows the maps of element Nb, Ti, O, and C, changes the surface composition
and formed various oxides and carbides, which further increased the surface hardness of the coated
layer. Figure 9c shows the composition of the coated surface with carbon of 12.97%, oxygen of 6.97%,
niobium 21.67%, and titanium of 52.84%, respectively. The presence of elements O and C indicates the
possible formation of oxides and carbides (Ti-C, Ti-O, Nb-C, and Nb-O). The peaks of the coated surface
were allocated JCPDS reference nos: 03-065-5714 (TiO2), 00-002-0943 (TiC), JCPDS: 00-002-1031 (NbC),
00-017-0127 (NbC). Figure 9d shows the XRD pattern of un-treated, EDM-treated, and EDC-treated
Ti-64 alloy.

Figure 8. Energy dispersive X-ray spectra of EDM-treated (a), EDC-treated Nb coated surface at Nb
concentration of (b) 10 g/L, (c) 15 g/L and (d) 20 g/L.
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Figure 9. Mapping of EDC-treated Ti-6Al-4V alloy at peak current = 20 A, pulse duration = 250 μs,
Duty cycle = 8%, and machining time = 60 min with Nb powder concentration of 20 g/L. (a) Spectrum
area (b) Mapping of Ti, Nb, O and C (c) Weight Percentage of elements present in coated layer (d) XRD
pattern of un-treated, EDM-teraed, and EDC-treated Ti-64.

Figure 10 shows the distribution of micro-hardness along the cross section of ED-coated and
EDM-treated surface. The micro-hardness decreases gradually from the top surface to the base surface.
The highest micro-hardness of 1465 HV appears at few microns away from the top surface in the
case of EDC. The improvement in the microhardness is mainly attributed to the reinforcement effect
of Nb/Ti-based oxides and carbides during the manufacturing process, which is transferred to the
electrode and dielectric fluid. In the EDC process the resolidification of molten pool is very rapid and
changes in the microstructure are evident. The EDC-modified layer exhibited various types of oxides
and carbides (Ti-O, TiC, Nb-C, and Nb-O) with excellent metallurgical bond, which enhances the
microhardness of the surface. Whereas, the highest microhardness of 1175 HV appears at few microns
away from the top surface in the case of EDM. The microhardness of the EDM-treated surface is low as
compared to the EDC-treated surface. This is because, during the EDM process at positive polarity,
the high temperature leads to the phase transformation being impeded, producing a structure with
micro-cracks with the low metallurgical bond. As a result of this, the mechanical properties weaken
and the hardness value drops. The metallurgical bond establishes the adhesion strength. A stronger
metallurgical bond promote a higher adhesion strength. Figure 10b shows the adhesion strength of the
coating. It is clear that, the coated layer has excellent metallurgical bonding to the substrate surface.
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Therefore, no delamination of the coated layer was observed in both cases, but the EDM-treated
surface is slightly affected in respect to the EDC-treated surface that perform well even at higher load.
Figure 10c,d shows the EDM-treated and EDC-treated surfaces, respectively. The Nb-deposited surface
possessed high surface hardness and offered excellent mechanical interlocking with the substrate.
Benefitting from this mechanical interlocking, the critical adhesion failure of EDM-treated surface
and Nb-deposited surface was detected at 82 N and 118 N respectively, as can be seen in Figure 10.
This observation permits us to indicate the EDC-treated surface as suitable candidate counterpart for
tribological properties.

  

(a) (b) 

  

(c) (d) 

Figure 10. (a) Distribution of micro-hardness along the cross section, (b) adhesion strength of
electric. discharge (ED)-coated and EDM-treated surface, and (c,d) scratch images on EDM-treated and
EDC-treated surfaces.

4. Conclusions

This study focused on the application of spark plasma sintered Ti-Nb alloy under electric discharge
coating in order to improve the surface charctristics of Ti-6Al-4V alloy using the Nb powder mixed
dielectric and permits us to drawn the following conclusions:
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1. A partially sintered Ti-Nb alloy has been successfully fabricated by mechanical alloying of Ti and
Nb from powders, alloy modified later by spark plasma sintering technique, which was further
used as tool electrode for the EDC process.

2. The surface of Ti-6Al-4V alloy has been modified by EDM (positive Polarity) and EDC (negative
Polarity). The EDC-treated surface contains only few cracks and smooth geometry as compared
to the EDM-treated surface.

3. A coating layer of Ti-O, TiC, Nb-C, and Nb-O have been successfully prepared by using partially
sintered Ti-Nb alloy and Nb powder mixed in the dielectric fluid of electric discharge machine.
The mass deposition of coating layer have almost linear relation and is significantly affected by
the concentration of peak current, pulse duration, and Nb powder concentration.

4. The thickness of coating layer was significantly affected by the concentration of peak current,
pulse duration, and Nb powder concentration. Using the 0 g/L Nb concentration (EDM), the
coating layer thickness ~ 149 μm was obtained for a longer pulse duration (400 μs). On the other
hand, when the concentration of Nb was increased to 10 g/L and 20 g/L, the thickness of the
recast layer increased to 195 μm and 215 μm, respectively, in the same working conditions.

5. The EDS elemental map and XRD pattern analysis of the EDC-treated surface confirm the process
in which the material migrate from the tool electrode to workpiece surface. Here, the suspended
powder particles generated in the dielectric fluid which promote adhesion to the workpiece
surface are playing the main role in the improvement of surface properties by generating favorable
surface chemistry of oxides and carbides. When a higher concentration of Nb powder (20 g/L) is
used, the EDC-treated surface is expected to form the Ti-O, Nb-O, Ti-C, and Nb-C like phases.

6. The surface coating layer permits an increase in the microhardness of the workpiece surface from
365 HV to 1465 HV and demonstrates an excellent metallurgical bonding with the base workpiece
surface. The adhesion strength is as high as 118 N for the EDC-treated surface when compared to
EDM treated surface at 82 N, respectively; thus indicating that the EDC-treated surface may have
good tribological properties.

7. In summary, the EDC can be considered a great technique in order to improve surface
characteristics and surface properties. The coating obtained by EDC process is more reliable and
suitable for its purposes because the surfaces produced by this process demonstrated higher
surface hardness that can be associated with better wear resistance of the implant. The Nb
content in the coated layer provides superior corrosion resistance and allows improvements in
the bioactivity of the implant substrate.
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Abstract: These days, power consumption and energy related issues are very hot topics of research
especially for machine tooling process industries because of the strict environmental regulations and
policies. Hence, the present paper discusses the application of such an advanced machining process
i.e., ultrasonic assisted turning (UAT) process with the collaboration of nature inspired algorithms to
determine the ideal solution. The cutting speed, feed rate, depth of cut and frequency of cutting tool
were considered as input variables and the machining performance of Nimonic-90 alloy in terms of
surface roughness and power consumption has been investigated. Then, the experimentation was
conducted as per the Taguchi L9 orthogonal array and the mono as well as bi-objective optimizations
were performed with standard particle swarm and hybrid particle swarm with simplex methods
(PSO-SM). Further, the statistical analysis was performed with well-known analysis of variance
(ANOVA) test. After that, the regression equation along with selected boundary conditions was
used for creation of fitness function in the subjected algorithms. The results showed that the UAT
process was more preferable for the Nimconic-90 alloy as compared with conventional turning
process. In addition, the hybrid PSO-SM gave the best results for obtaining the minimized values of
selected responses.

Keywords: ultrasonically assisted turning; Nimonic-90; surface roughness; power consumption;
optimization; nature inspired hybrid algorithm

1. Introduction

In this growing industrial world, the trend of modern materials, especially nickel based alloys,
are prevalent in various sectors such as automobile, aerospace, marine etc. [1]. They are altogether
expected in these manufacturing sectors because of their eminent characteristics such as high resistance
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to corrosion and excellent mechanical properties etc. [2]. These characteristics, however, result in
enormous challenges in terms of high tool wear, low finishing, excessive forces etc. in machining
of advanced materials [2,3]. Furthermore, the strict environmental policies and concerns are other
challenges which must be addressed during the machining of advanced materials. For instance,
Japan has established the basic “Energy Policy” which primarily focuses on energy related issues in
manufacturing sectors. Similarly, the USA have introduced the special program on “Superior Energy
Performance (SEP)” that provides a track in the field of sustainability development for manufacturing
sectors. Likewise, the European countries have developed the ISO standards i.e., 5001 for regularization
of energy standards in manufacturing sectors [4].

In order to follow the environmental concerns and ISO 5001 standards, the new technologies
i.e., hybrid machining processes are considered as main drivers to support the working aspects
of sustainability i.e., social, economic and environmental [5,6]. In a hybrid machining process,
the material removal mechanism is totally different as compared with conventional machining
processes. For instance, in the hybrid machining process, the material is removed with the main
machining process while a secondary technique “assists” the material removal by improving the
conditions of machining. In recent years, the ultrasonic assisted turning (UAT) process has been termed
as one such hybrid process that uses ultrasonic vibrations for the cutting action [5]. In this hybrid
process, the interaction of the cutting tool and the workpiece directly takes place and the material is
removed under the action of micro chipping [6]. Furthermore, the vibrations of the tool produce some
surface texturing effect on the workpiece [7] and thereby good surface finishing, dimensional accuracy
and low tool wear are obtained during machining [8]. The efficiency of UAT has been noted by various
former researchers. Some of their works are presented here. In the first study of Maurotto et al., it has
been seen that the cutting forces produced in the UAT process are significantly less as compared with
the conventional dry turning (CT) of Ti-15333 and Ni-625 alloys [9]. In another similar work, the cutting
forces were analyzed by Ahmed et al. during machining of Inconel-718 [10]. It was found that the
cutting forces induced during CT were 130–140 N whereas; in UAT process were 60–95 N. In the same
work, Maurotto et al. showed that the tangential as well as radial cutting forces were reduced up to
70%–80% while machining of Ti-15333 and Ni-625 which was claimed to be possibly due to ultrasonic
softening in the base alloys in UAT [11]. It was also determined by the same authors that the cutting
speed is the major factor in UAT process that effects the cutting forces when compared to CT [12].
Silberschmidt et al. analyzed the surface roughness values in machining of Inconel-718 and Ti-15333.
The comparison was also made between UAT and CT process [13]. Similarly, Zhong and Lin found
that the surface roughness improves by 15% with high amplitude as compared to lower amplitude
with UAT because of the ironing effect in aluminum metal matrix composites [14]. Moreover, Nath and
Rahman [15] studied the effect of frequencies, amplitude and cutting speed on cutting forces values.
They concluded that the cutting force generated during the UAT is dependent on tool–workpiece
contact ratio (TWCR). In the same context, Vivekananda et al. [16] implemented the Taguchi design of
experiment process to optimize the cutting force and surface roughness values in the UAT process.

From the comprehensive state of art review, it has been interestingly noticed that UAT is a very
tremendous technology in the modern arena of manufacturing sectors. However, its application
is only limited to the cutting forces and tool life while machining of other nickel-based alloys i.e.,
Inconel 718, whilst surface roughness and power consumption are overlooked. Moreover, the study
of UAT of Nimonic-90 has never been performed to the best of the authors’ knowledge. Although
previous investigations have shown that UAT improves the machinability of Inconel 718 alloy, these
results cannot be directly extended to Nimonic-90 alloy. Thus, to bridge this gap, a series of UAT
experiments were conducted and the surface roughness and power consumption were investigated
and analyzed for Nimonic-90 alloy. In addition, the literature reveals that the performance of UAT
is highly dependent upon its process parameters because a large number of process parameters are
involved in the ultrasonic assisted turning process. Therefore, the best parameters settings are required
to enhance the machining performance of the UAT process. Various types of optimization methods
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i.e., conventional and advanced methods, are currently available in the literature that improve the
process efficiency by changing the input and output settings [17–19]. In the conventional methods
Taguchi, signal to noise (S/N) ratio, analysis of variance, regression, desirability analysis etc. have
been introduced to solve the optimization issues [20–22]. However, the conventional methods are
subjected to some issues, such as the lack of targeting the global optimal solution with these methods,
which may result in low accuracy and non-robustness of the results. With these limitations, they are
still used in the machining of different materials. For instance, Shokrani et al. [23] used the Taguchi
method to optimize the process parameter in cryogenic milling of Ti64 titanium alloy. Islam et al. [24]
compared the traditional and Taguchi method in terms of efficiency to analyze the surface roughness
values. Ezilarasan et al. [25] used the Taguchi method to discuss the effect of input variables on surface
roughness values while machining Nimonic C-263 alloy. Makadia and Ashvin [26] minimized the
surface roughness values in machining AISI 410 steel by using the response surface methodology (RSM)
method. Bhushan [27] optimized the parameters for minimum power consumption and improve
the tool life during machining of 7075 Al alloy SiC particle composites with the help of response
surface methodology.

Apart from these optimization methods, the various types of advanced methods such as
evolutionary algorithms, nature inspired hybrid algorithms and intelligent methods are well
implemented in literature to solve optimization problems [17–19]. The major benefits of these
advanced methods are that they accurately achieve the global optimal solution with a small interval of
time [17,28]. They are generally presented in the MATLAB code and the objective or fitness function is
required to run the program. Moreover, the single or multi-objective problems can be easily tackled
with these advanced optimization methods. Numerous studies have been available in the literature
that clearly represent the application of advanced optimization algorithms in the machining sector.
In the first study, Singh et al. used the two algorithms i.e., particle swarm and bacterial foraging
for optimization of cutting parameters in minimum quantity lubrication (MQL) assisted milling of
commercially available Inconel-718 alloy [19]. Likewise, Sahu and Andhare used the three advanced
algorithms i.e., teaching learning based optimization (TLBO), Jaya algorithm and genetic algorithm
(GA) and one conventional method (RSM) to solve the optimization problem of Ti–6Al–4V alloy [29].
They suggested that the performance of the TLBO and Jaya algorithms is better than GA. In another
optimization study, Sathish applied the hybrid bee colony cuckoo search (BCCS) and RSM approach in
non-conventional machining of Nimonic-263 alloy [30]. In similar work, Gupta et al. implemented the
particle swarm optimization (PSO) and bacterial foraging optimization (BFO) while turning titanium
(grade-2) alloy under nano-fluid cutting conditions [17]. The performance was also compared with
the traditional optimization method i.e., RSM. It has been noted that the PSO and BFO work more
efficiently than the RSM methods and significantly enhance the process performance. Furthermore,
Rao and Venkaiah used the PSO and RSM to optimize the machining parameters of Nimonic-263
alloy [2].

Thus, as per the availability of current research survey, it has been clearly noted that the machining
performance of any material is highly improved with the implementation of advanced algorithms.
For instance, Sahu and Andhare, Sathish, Singh et al. and Gupta et al also presented similar findings
in machining of Inconel, titanium and Nimonic-based alloys [15,16,26,27]. Still, with all these hard
efforts, no research work is available in the literature which shows the application of advanced
algorithms in ultrasonic assisted turning of Nimonic-90 alloy for power optimization. Therefore,
this research work firstly reported the application of nature inspired hybrid algorithm i.e., particle
swarm optimization (PSO) method hybridized with the simplex method (SM) during ultrasonic
assisted turning of Nimonic-90 alloy. The input parameters considered were cutting speed, feed
rate, depth-of-cut and frequency of the cutting tool used. A Taguchi L9 orthogonal array with three
repetitions were used as an experimental design and the power consumption and surface roughness
values were optimized with these implemented algorithms. The complete detail of this experimental
work complemented with the optimization details are presented in the subsequent sections.
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2. Materials and Methods

2.1. Ultrasonic Assisted Turning (UAT) Process

The simplified view of the UAT process is exhibited in Figure 1. The main components of the UAT
machine were the frequency generator, piezoelectric transducer and the horn. The frequency generator
created the electrical signal which was then converted into a mechanical signal by a piezoelectric
transducer. Then, these mechanical signals propagated through the ultrasonic horn to the cutting tool.

 
Figure 1. Schematic of ultrasonically assisted turning set-up.

The major aim of this ultrasonic horn was to amplify the vibrations to reasonable magnitudes.
Well-known analytical relations exist which are used to facilitate the horn design. For example, the
length of stepped horn (L) is determined using L = c

2 f . Here, f is frequency and c is the speed of sound
in the medium (horn material) which depends on the modulus of elasticity (E) and density (ρ) of

the material as shown in c =
√

E
ρ . Titanium, aluminum, mild-steel etc. are popular choices for horn

material. In our study, mild steel was used to manufacture the horn [31].

2.2. Workpiece and Tool Material

The workpiece materials used were Nimonic-90 alloy. They were precipitation strengthened
nickel base super alloys of extra high mechanical properties with corrosion resistance. Nimonic-90
is typically used in extreme stress applications such as turbine blades, hot working tools, exhaust
re-heater, disc and high-temperature springs. The chemical composition of Nimonic-90 alloy is shown
in Table 1.

Table 1. Chemical composition of Nimonic-90.

Elements C Si Mg Cr Ni Ti Al Co Fe

% Weight 0.08 0.13 0.018 18.1 58 2.4 1.09 18.5 0.82

Similarly, for performing the turning experiments, chemical vapour deposition (CVD) coated
carbide inserts with a layer of TiC, Al2O3 and TiN were used. The technical specification of the tool is
presented in Table 2. Note that the length of cut used was 50 mm and for each cut a fresh cutting edge
was used.
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Table 2. Cutting insert specifications.

Insert Part Number CNMG 120408CQ

Rake angle 5◦
Relief angle 0◦
Nose radius 0.8 mm
Lead angle 45◦
Point angle 80◦

2.3. Process Parameters

The selection of input parameters was based on the experience of local small and medium-sized
enterprises (SMEs), specially involved in machining of Nimonic-90. The selected reposes i.e., cutting
speed (V), feed rate (F), depth of cut (DOC) and frequencies ( f ) chosen for the experimental study are
shown in Table 3. Note that for the UAT process, Vc = 2πa f > V = πDN should be satisfied where a is
amplitude, f is frequency, D is diameter of the workpiece, and N is rotating speed (rpm) of the spindle.
If the cutting velocity V, exceeds the critical cutting velocity, Vc, the UAT process effectively reduces to
a conventional machining process.

Table 3. Range and levels of process parameters.

Parameters
Range

Level 1 Level 2 Level 3

Cutting speed (m/min) 27.14 40.77 61.14
Feed rate (mm/rev) 0.11 0.22 0.33
Depth of cut (mm) 0.1 0.2 0.3
Frequency (kHz) 20 18 0 (conventional)
Amplitude (μm) 10

2.4. Design of Experiment

The turning tests were carried out by considering a Taguchi L9 orthogonal array (as presented in
Table 4). According to this design, a total of nine experiments with three repetitions were conducted.
Then after, the analysis of variance (ANOVA) test (using the Minitab 18 software, State College, PA,
USA) was implemented on the experimental results. The experimental procedure with complete details
is exhibited in Figure 2.

Table 4. Design and experimental results of the L9 orthogonal array.

Sr. No.
Control Variables Average Responses

V (m/min) F (mm/rev) DOC (mm) f (kHz) Ra (μm) P (W)

1 27.14 0.11 0.1 20 0.37 288.67
2 27.14 0.22 0.2 18 1.56 337.33
3 27.14 0.33 0.3 0 2.21 308.33
4 40.77 0.11 0.2 0 1.06 302.67
5 40.77 0.22 0.3 20 0.9 335.67
6 40.77 0.33 0.1 18 1.14 312.67
7 61.14 0.11 0.3 18 0.64 413.67
8 61.14 0.22 0.1 0 0.67 349.67
9 61.14 0.33 0.2 20 1.26 335.00
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Figure 2. Experimental procedure with complete details.

2.5. Measurement of Responses

In this study, two important machining indices i.e., the average surface roughness (Ra) and
power consumption (P) were measured after each experiment. For measurement of surface roughness
values, the Taylor Hobson Surface roughness tester (AMETEK, Leicester, UK) was used. The power
consumption (P) after each cut was measured with fluke power analyzer 435 series.

3. Nature-Inspired Algorithms

This section describes the overview of implemented algorithms i.e., particle swarm optimization,
simplex method and hybrid PSO-SM, respectively. The working principle and procedure are discussed
as per the following.

3.1. Particle Swarm Optimization (PSO)

PSO is categorized as the nature inspired-optimization algorithm in which the problem of linear
and non-linear programming has been successfully solved [32]. Two paramount terms i.e., particles
position as well as velocity has been recognized in the status of PSO method [18]. The ith particle
position and its velocity in the d-dimensional search space are well described with the following
Equations (1) and (2), respectively.

Xi =
[
xi,1,xi,2, . . . . . . . . . xi,d

]
, (1)

Vi =
[
vi,1,vi,2, . . . . . . . . . vi,d

]
, (2)

where, Xi and xi up to the dth terms are integral values related to the position of particles, Vi, vi,1, . . .
vi,d are the velocity values of particles.
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In the PSO method, every particle consists of an ideal position (pbest) also known as location with
respect to the individual ideal values at particle interval of time, t. The pbest (Pbi) is calculated with the
help of Equation (3).

Pbi =
[
pbi,1,pbi,2, . . . . . . . . . pbi,d

]
. (3)

Similarly, the global ideal value (gbest) of each particle is termed by Pbg that generally shows the
best or ideal particle at time, t. After that, the Equation (4) is used to evaluate the updated velocity of
every particle [33,34].

vi, j(t + 1) = wvi, j(t) + c1r1
(
pbi, j − xi, j(t)

)
+ c2r2

(
pbg,i − xi, j(t)

)
, j = 1, 2, . . . d, (4)

where, vi,j(t + 1), xi,j(t) are function values, c1 and c2 represent coefficient values, inertia factor is
denoted by w, r1 and r2 are termed as random variables having values of (0, 1). Therefore, Equation (5)
is used to update the position of every particle.

xi, j(t + 1) = xi, j(t) + vi, j(t + 1), j = 1, 2, . . . d. (5)

In general, the vi, j in the Equation (4) of every component is expressed in terms of −vmax to vmax.
These values are used to control the tremendous routing of external particles during the search space.
Then, the particles follow Equation (5) and the positions of particles are updated towards a newer
position [35]. Hence, the process is worked again and again until a global optimal solution is achieved.

3.2. Simplex Method (SM)

In this paper, the simplex method modified by Nelder and Mead, in 1965, was used to tackle the
constrained and unconstrained optimization problems [35]. In this method, firstly the n input values at
the polyhedron phase is considered and further the n + 1 points with Rn series are applied to establish
the mathematical model. After that, the initial simplex changes its position i.e., moves, contracts and
expands because of their series of primary geometric transformations, respectively. Then, the lower
which also knows as the worst point (Xw) at every iteration is calculated by ordering and classifying
the vertices values as X1, X2, . . . , Xn, Xn+1, so that the solution is f (X1) < f (X2) < . . . f (Xn) < f (Xn+1).

The value of objective function in the simplex method is decided as per the user requirements
i.e., whether to minimize it or maximize it. For minimization, the variable with the largest objective
value is used for a new reflection and the ideal point value has been placed approximately in the
negative gradient direction [36]. For instance, X1 represents the ideal point, Xn+1 is termed as the
worst or lowest point, Xn describes another worst point and so on. Moreover, the centroid point
(Xc) of the n ideal solutions excluding Xn+1 is calculated. In the end, the lowest or worst point is
reflected in Equation (6) and latest point (Xr) is obtained. In addition, at this point, if the function i.e.,
f (X1) ≤ f (Xr) < f (Xn) and boundary conditions are not desecrated, then the reflection takes place at
an ideal region of search space and the replacement of the lower or worst point Xn+1 is made with (Xr),
hence the iteration stops working. Similarly, the other behavior i.e., expansion, contraction, shrinkage,
movement of variables are calculated by Equations (7)–(10). Note that, the objective or fitness function
is computed at each point of the method and the complete process is processed again and again until
the final solution has been achieved.

Xr = Xc + ρ(Xc −Xn+1), (6)

Xe = Xc + γ(Xr −Xc), (7)

Xcont1 = Xc − γ(Xc −Xn+1), (8)

Xcont2 = Xc + γ(Xr −Xc), (9)
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Pi = X1 + σ(Xi −X1), i = 2, . . . , n + 1, (10)

where, (Xi, Pi, . . . , Pn+1) reflects the new vertices, Xe, Xr, Xcont1 and Xcont2 shows the behavior at
expansion, contraction and stretching.

3.3. Hybrid PSO-SM

PSO is known as the nature inspired algorithm, whereas the simplex method is referred to as an
intelligent strategy that is effectively used to solve linear and non-linear problems [36,37]. The main aim
of hybridization is to merge the advantages of both methods [38,39]. In addition, the searching of PSO
is performed as per the Equations (1) and (2) and integrating PSO with simplex method may enhance
the capacity to search the space towards the global optimal solution [36,37]. For instance, Equations
(6)–(10) are used to show the behavior i.e., Xe, Xr, Xcont1 and Xcont2 and they are further divided by the
swarm characteristics with their vector values i.e., Xi(Ni, xi, C1i, C2i), upto i = 1, . . . , n + 1, where n
is referred to the PSO parameters and Ni is an integer value.

The hybridization is performed in two ways: (1) the staged pipelining type in which each
population size of PSO is processed by the stochastic optimization method and the simplex search is
used for the improvement. Similarly, (2) the additional-operator type hybrid method in which the
simplex search is directly applied to the population values and the probability of improvement is
targeted by the user [36,37]. Therefore, in the paper, the hybridization of both methods is made by the
staged pipelining method. The complete process is described below:

1. Initialization Step: The ideal positions of initials particles, generations of random N particles are
selected and evaluated.

2. Repairing Step: The particles have been repaired that affects the boundary conditions by expressing
the worst solution towards the ideal solutions. Moreover, terminate the damaged particles.

3. Searching Step: Equation (2) is used to search the individual position of each particle. The step is
to select the better or ideal position and evaluate them.

4. Ranking: The obtained solution has been ranked according to their best fitness values, from the
Equations (1) and (2).

5. Selection Step: Equation (2) is used to select the better position of each particle and the generation
of ideal solution has been obtained.

6. Generation Step: Further, the D + 1 points have been selected from the population based ranking
solution and the initial simplex is well generated.

7. Simplex Method: It is applied on the highest N + 1 particles and (N + 1)th has been updated.
8. Step 6 is replaced with Step 7 i.e., simplex method, so the best solution has been memorized, until

the final solution has been achieved.

4. Results and Discussion

This section represents the prominent part of the paper. The statistical analysis was performed
with the ANOVA test followed by influence of process parameters and estimation of optimum quality
characteristics. The details of these analyses are discussed below:

4.1. Statistical Testing

In this analysis, the relationship between input variables and responses were made from the
experimental results. The individual results of selected responses are shown in Table 4. The present
statistical analysis was performed at 95% confidence interval (CI), which means at α = 0.05 significance
level. Further, the F-tests and p-value tests (less than 0.05) at 95% CI were performed on experimental
values and are displayed in Tables 5 and 6, respectively. These tests were used to represent the effect of
process parameters on responses. For instance, if the F-tests had high values, the more an effect was
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shown on the process variable. Moreover, the total effect was calculated by the percentage contribution
values in respective tables.

Table 5. Analysis of variance of means for surface roughness.

Source DF Adj SS Adj MS F-Value p-Value %C

Cutting speed 2 1.26423 0.63211 134.6 0.001 17.051
Feed 2 3.26703 1.63351 347.83 0.002 44.065

Depth of cut 2 1.79147 0.89574 190.73 0.002 24.163
Frequency 2 1.00732 0.50366 107.25 0.000 13.586

Error 18 0.08453 0.0047
Total 26 7.41459

Table 6. Analysis of variance of means for and power consumption.

Source DF Adj SS Adj MS F-Value p-Value %C

Cutting speed 2 15,407 7703.4 20.86 0.000 39.798
Feed 2 2733 1366.3 3.7 0.045 7.0596

Depth of cut 2 6445 3222.3 8.73 0.002 16.648
Frequency 2 7483 3741.6 10.13 0.001 19.32

Error 18 6646 369.2
Total 26 38,713

Further, Table 5 shows the experimental results during ultra-sonic assisted turning of Nimonic-90
alloy under different cutting conditions. From the surface roughness analysis, i.e., the F-test showed
that the maximum value i.e., 347.83 was for feed rate which meant the feed rate had the highest effect or
highest contribution of 44.065% on surface roughness values followed by depth of cut (24.163%), cutting
speed (17.051%) and frequency values (13.586%). A similar trend is observed by Reference [15] in
machining of titanium alloy. Similarly, from power consumption analysis, the cutting speed (39.798%)
had highest effect on power consumption followed by frequency (19.32%), depth of cut (16.648%) and
feed rate (7.05%), respectively. In addition, the p-value test showed that the developed models were
statistically significant for selected responses.

4.2. Influence of Process Parameters

Surface roughness: The contour effect plots were drawn to demonstrate the influence of different
machining conditions on surface roughness values. From the previous statistical analysis, it was clearly
noticed that the feed rate highly affected the surface roughness values. This statement is purely justified
with the following Equation (11) which shows that the surface roughness is directly proportional to the
square of feed rate as per the basic relation.

Ra =
f 2

8r
(11)

where, Ra is arithmetic roughness, f defines as a feed rate in mm/rev, r represents the nose radius in mm.
Therefore, the contour effect plots showing maximum effect of feed rate on surface roughness

values were used in this work (as depicted in Figure 3a–c). Figure 3a claims that the surface roughness
was minimum at lower values of cutting speed and feed rate. However, it swelled with the rise in feed
rate, whereas it dwindled with the change in cutting speed values. The trends of these results were
verified with the mechanism given in the Equation (11). Further, the increase in cutting speed lowered
the formation of built-up edges at the tool surface. As a consequence, the low surface roughness values
were achieved at higher values of cutting speed. Practically, these results may not fulfill the favorable
conditions because high surface roughness values are not recommended to achieve the sound machining
characteristics. The similar findings were reported by Reference [6]. Similarly, Figure 3b demonstrates
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the contour effect plot of depth of cut vs. feed rate. The observation results of these plots claim that
the lower values of surface roughness were achieved at low depth of cut values and once the depth
of cut was changed i.e., from minimum to maximum, undesirable machining surface characteristics
were achieved. This is a very interesting fact as the tool area had a higher amount of contact with the
subjected workpiece at higher depth of cut values and thereby more frictional heat was produced at
the cutting zone. Besides, the heat was not dissipated in the proper manner from the cutting zone
because of the intrinsic characteristics i.e., poor thermal conductivity of Nimonic-90 alloy. This high
temperature resulted in high affinity to tool materials which may cause the welding of micro-particles of
the workpiece to the cutting tool and consequently, reduces the surface finishing values [5].
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Figure 3. Influence of machining parameters on surface roughness values (a) Cutting speed vs. feed
rate, (b) depth of cut vs. feed rate, and (c) frequency vs. feed rate.
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Lastly, Figure 3c depicts the contour effect plot of frequency vs. feed rate. This plot exhibits that
the lower value of surface roughness was achieved at the higher frequency of cutting tool i.e., at 20 kHz
frequency. Moreover, this plot shows that the conventional machining process produced a higher value
of surface roughness and it decreased with the change in frequency of cutting tool i.e., 20 < 18 < 0,
respectively. This is generally related with the fact that the chips produced in the UAT process are
smooth, thinner and shorter when compared to those obtained from conventional turning process
(as shown in Figure 4). These smooth and short chips do not stick to the workpiece material and hence
reduce the surface roughness values. Moreover, in the conventional turning process, longer chips are
produced and these longer chips are undesirable which lead to entanglement of chips with the cutting
tool and produces the rough surface. Further, the concept of smooth, thinner and shorter chips are
directly related with shear angle and in the case of UAT it is increased. Hence, this increase in shear
angle resulted in the decrease in chip thickness and as a consequence a good surface was produced with
the increase in frequency of cutting tool (see Figure 5). In addition, the micrographs of chips during
UAT and CT processes are presented in Figure 4. From this micro-graph analysis, it was interestingly
seen that chips produced during the UAT process were regular while those produced from CT showed
irregularities which manifested the poor surface quality of the machined surface. This is subjected to
reason that when high frequency vibrations are exposed on cutting tool inserts, the removal of chips
takes place because of the effect of vibrations and impact [40]. Moreover, the velocity of the stress
wave, because of vibration of the cutting tool, produced a great impact on cutting velocity and hence,
the inner stress broke the chips into small segments, and as a result soft, small and smooth chips were
produced in the UAT process. Further, the tool work contact ratio was decreased with the increase
in frequency of the tool. As a result, the temperature was reduced in the cutting zone because of the
aerodynamic lubrication effect and hence the surface finishing was improved in the UAT process [5].

(a) Vc = 27.14 m/min,  = 0.11 mm/rev,  = 0.1 mm,  = 20 kHz 

 
(b) Vc = 27.14 m/min,  = 0.33 mm/rev,  = 0.3 mm,  = 0 (conventional) 

Figure 4. Macrographs and chip formed during machining of Nimonic-90 alloy under different
conditions, (a) smooth and short chips, (b) longer chips.
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Figure 5. Effect of small (Ø1) and large (Ø2 ) shear angle on chip thickness (tc ) and length of shear
plane for a given tool and un-deformed chip thickness (t ) [26].

Power consumption: The power consumption is a very prominent aspect, especially during
machining of hard-to-machine materials. It is also more important from a sustainable or environment
point of view as it is directly related to the cutting forces, machine deformation and efficiency etc.
Theoretically, it is a multiplication of main cutting force with the cutting speed values. Equation (12) is
used to calculate the power consumption during each cut.

p =
Fc ×Vc

60000
, (12)

where, p = power consumption in watts, Fc = kc × ae × f is main cutting force in Newton and Vc is the
cutting speed in m/min, ae is the depth of cut in mm, f is the feed rate in mm/rev and kc represents
as a specific cutting energy coefficient, respectively. Therefore, the power consumption is modified
with the following Equation (13). This combination directly states that the power consumption has the
direct effect on cutting speed, feed rate and depth of cut. Hence, all these subjected parameters were
considered during the power consumption analysis [40].

p =
kc × ae × f ×Vc

60000
. (13)

Figure 6a–c depict the contour effect plots (a) cutting speed vs. feed rate, (b) cutting speed vs.
depth of cut and (c) cutting speed vs. frequency. Figure 6a states that the combination of high cutting
speed and low feed rate values are responsible for the high-power consumption. Equation (12) already
justifies this statement.

This is a true fact that describes the enhancement of power consumption values with the increase
in cutting speed because the values of power consumptions were totally dependent on the spindle’s
rotation per minute (RPM) and the increased in spindle speed consumed more power from the motor.
Similarly, the increase in the feed rate value demonstrated the lower power consumption values. This
is the general machining fact that high feed rate values lead to low machining time and with this
low machining time the tool engagement time is reduced with the workpiece. Hence, low power is
consumed during higher feed rates as compared with lower feed rate values.

After that the effect of depth of cut along with the cutting speed is presented in Figure 6b. From
this analysis, it has been interestingly noted that the values of power consumption were slightly
increased with the depth of cut. In addition, the value of power consumption decreased with the
increase in frequency of cutting tool, as depicted in Figure 6c. In the UAT process, as the frequency
increased the tool vibration period decreased and tool vibration period for the higher frequency was
lower than tool vibration period for lower frequency. Consequently, the tool workpiece contact ratio
for higher frequency was lower than tool workpiece contact ratio for lower frequencies and with this a
low tool workpiece contact ratio the tool engagement time was reduced with the workpiece. Hence,
the slightly low power was consumed during higher frequency as compared with lower frequency
values. Another possible reason for this behavior was the increase in shear angle during machining
with higher frequency which led to a decrease in cutting forces and consequently power consumption.
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Figure 6. Influence of machining parameters on power consumption values (a) Feed rate vs. cutting
speed, (b) depth of cut vs. cutting speed and (c) frequency vs. cutting speed.

4.3. Estimation of Optimum Quality Characteristics for Mono and Bi-Objective Optimization

The implemented algorithms were applied in two ways: (1) mono-objective (2) bi-objective.
In mono-objective optimization, the process variables area was individually optimized in terms of
input variables as well as responses. For this, the regression equations were directly used in the fitness
function of algorithms. Whereas, in bi-objective optimization, one compromised or combined solution
was derived for optimization of process parameters. The details of parameters initialization step
followed by mono, bi-objective and algorithms confirmation are discussed below:
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4.3.1. Basic Parameters: Learning Parametric Setting for PSO and hybrid particle
swarm-simplex (HPSO-SM)

The nature-inspired algorithms have some specific parameters i.e., maximum and minimum
weight, constants (Wmax, Wmin, C1, C2 and H) that explore its performance up to certain extent.
In general, the role of these algorithm parameters is to decide the effectiveness of algorithm. The basic
parameters used for PSO algorithm are shown in Tables 7 and 8. These parameters are selected based
upon the user’s experience and literature survey. For instance, in previously published work [41],
the value of x is introduced in the range of 0–1.4, C1 and C2 are 2 and H is in the range of 5–10.
Therefore, to effectively preserve the balance between local and global solution, the value of H is
selected as 5. Besides, we have noticed that the selected parameters worked in a very efficient manner
and significantly improved the efficiency of PSO. Moreover, the simplex method was also coupled
with the PSO method and with this integration the performance characteristics with respect to the
searching capability of these initial parameters were improved.

Table 7. Initial parameters of PSO.

Input Parameters Value of Parameters

S, number of agent particles 50
Number of iterations 100
Maximum permissible inertia weight 1.4
Minimum permissible inertia weight 0.5
Maximum defined learning rate, C1max = C2max 2
Minimum defined learning rate, C1min = C2min 1.5
H 5

Table 8. Initial parameters of HPSO-SM.

Input Parameters Value of Parameters

S, number of agent particles 50
Number of iterations 100
Maximum permissible inertia weight 1.156
Minimum permissible inertia weight 1.143
Maximum defined learning rate, C1max = C2max 1.345
Minimum defined learning rate, C1min = C2min 1.845
H 5

4.3.2. Mono-Objective Optimization

In this section, the main aim was to determine the individual optimum parametric setting which
showed the minimum values of responses. For this, initially the regression equations for individual
parameter in terms of variables were developed and these equations were further used as a fitness
function in the MATLAB code of algorithms. The boundary conditions (ranges of input parameters)
and objective functions (in terms of regression equations) used in the MATLAB code are discussed
below. Boundary conditions: cutting speed: 27.14 ≤ Vc ≤ 61.14, feed rate: 0.11 ≤ f ≤ 0.33, depth of cut:
0.1 ≤ ae ≤ 0.3 and frequency: 0 ≤ frequency ≤ 20.

Objective functions:

Ra = 0.595 − 0.01487 Vc + 3.85 f + 2.62 ae − 0.0186 f requency (14)

P = 231.0 + 1.671 Vc − 74 f + 178 ae + 0.74 f requency (15)

Based upon these boundary conditions and objective functions, the optimization by using the
general PSO and hybrid PSO-SM method have been performed. The optimized values selected for
surface roughness and power consumption are presented in Table 9. Similarly, the convergence
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characteristics graph of each factor is shown in Figure 7. From the generated results, the selected values
were: V61.14, F0.11, DOC0.1 and f20 for minimum surface roughness values (0.35 μm) and V27.14 , F0.33,
DOC0.1 and f20 for minimum power consumption values (270 Watt), where the subscript represents
the value of the respective cutting parameter, respectively.

(a) 

 
(b) 

Figure 7. Convergence characteristics graphs for mono-objective optimization (a) minimum surface
roughness value, (b) minimum power consumption value.

Table 9. Control variables and their selected values (for optimal response variables).

Control Variables

Optimal Values for Response Variables

Surface Roughness
(μm)

Power Consumption
(Watts)

Combined Values

PSO HPSO-SM PSO HPSO-SM PSO HPSO-SM

Cutting speed (m/min) 61.14 61.14 27.14 27.14 40.77 40.77
Feed (mm/rev) 0.11 0.11 0.33 0.33 0.11 0.11

Depth of cut (mm) 0.1 0.1 0.1 0.1 0.2 0.2
Frequency (kHz) 20 20 20 20 20 20

Best solution <0.35 >0.35 <270 >270 <0.8452 >0.8452
Mean solution 0.353 0.350 272.33 270.52 0.8572 0.8456

Standard deviation 0.458 0.352 0.583 0.383 0.522 0.324
Average time (s) 15 6 15 6 15 6

Success rate 80 90 80 90 80 80
Percentage error 5.34 1.24 6.3 1.5 6.34 1.4
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4.3.3. Bi-Objective Optimization

In this section, the multi-objective optimization (in which more than a single factor is involved)
with respect to the subjected process parameters was performed. The bi-objective optimization
was performed in three manners: (1) maximization of responses, (2) minimization of responses and
(3) grouping of minimization and maximization. In this work, the objective was to minimize the
surface roughness and power consumption values. Hence, the minimization function was used
as a fitness function in this work. The fitness function is initially developed by converting the all
responses into single function and then the optimization is performed on this single objective function.
The conversions of responses are made by using Equation (16):

Xmin =
W1 ×X1

X1min
+

W2 ×X2

X2min
(16)

where, X1min =minimum value of surface roughness, X2min is minimum value of power consumption,
W1 and W2 are the weights assigned to the responses, i.e., 0.50 for each response. This combined
function Xmin was used as an objective function in MATLAB program and the optimization was
performed by considering the same boundary conditions and initial learning parameters, respectively.
From the generated results in Table 9, the optimum values selected were: V40.77 , F0.11, DOC0.2 and
f 20 for simultaneously minimizing (i.e., 0.8452) both the responses i.e., surface roughness and power
consumption values. The convergence characteristics graph is shown in Figure 8.

Figure 8. Convergence characteristics graphs for bi-objective optimization of combined objective.

4.3.4. Algorithms Confirmation

To ensure the efficiency of PSO and the hybrid PSO-SM method, comparative analysis in terms of
percentage error, standard deviation, success rate and running time etc. was performed. The success
rate, ideal values and running time were directly achieved from the MATLAB code, whereas the
percentage error and standard deviation were calculated by Equations (17) and (18):

%error =

∣∣∣∣∣∣#Experimental − #Thoeretical

#Thoeretical

∣∣∣∣∣∣× 100 (17)

s =

√∑N
i=1 (xi − x)2

N − 1
(18)

where, {x1, x2, . . . , xn} are the observed values, x is the mean value of these observations, N is the
number of observations.

80



Materials 2019, 12, 3418

After that, the 100 iterations were run at optimal conditions and the average data were calculated.
From the given optimized results and comparative analysis (Table 9), it was noticed that the hybrid
PSO-SM method performed better than the standard PSO method in mono as well as bi-objective
optimization of the UAT process parameters. The success rate was 90% and running time wass
only 6 s in the case of hybrid PSO-SM algorithm. Besides, the low values of percentage error and
standard deviation of hybrid PSO-SM proved the high reliability and stability of algorithm towards
the global optimal solution. Similarly, the results of the standard PSO showed that the success rate
was 80%, running time was 15 s, percentage error and standard deviation were high for achieving
the optimal solution. The performance of the hybrid PSO-SM method was high because the initial
learning parameters of PSO were improved with the simplex method which was not in the case
of the standard PSO. Another relevant aspect is that the independent swarm of PSO method i.e.,
vector Xi (Ni, xi, C1i, C2i) i = 1, . . . , n + 1, where n is the number of PSO parameters and Ni is an
integer number computed with the steps of simplex method i.e., reflection, contraction, expansion
and shrinkage and with these integration steps the searching capability of swarms are increased, and
as a result swarms rapidly move towards the global optimal solution. Lastly, it is worth noting that
the high stability, reliability and confidence of the hybrid PSO-SM method confirmed its effectiveness
during optimization of the UAT process.

5. Conclusions

In this work, a robust technique in determining the optimal control parameters in UAT of
Nimonic-90 alloy was presented with the goal of obtaining the lowest surface roughness and power
consumption values. The optimization was performed in two ways: (1) mono-objective and (2)
bi-objective by using a standard PSO and a hybrid PSO-SM, respectively. Further, in-depth analysis of
the process mechanism by using contour plots was performed in the Results and Discussion section.
From this work, the following conclusions may be drawn:

1. The performance of the hybrid PSO-SM was better in terms of lowering the running time, error
and standard deviation as compared with the standard PSO method. The fact is that the initial
learning parameters of PSO were improved with the simplex method and they may have increased
the performance as compared with the standard PSO.

2. The results of the mono-objective optimization method showed that the cutting speed of
61.14 m/min, feed rate of 0.11 mm/rev, depth of cut of 0.1 mm and frequency of 20 kHz were ideal
parameters for surface roughness values. Similarly, the cutting speed of 27.14 m/min, a higher
value of feed rate of 0.33 mm/rev, lower value of depth of cut of 0.1 mm and frequency of 20 kHz
were the optimum parameters for lowering the power consumption.

3. Likewise, the results of bi-objective optimization show that the medium value of cutting speed of
40.77 m/min, a lower feed rate of 0.11 mm/rev, a medium depth of cut of 0.2 mm and frequency of
20 kHz were the best settings for simultaneously lowering the responses.

4. From the statistical analysis, it has been noticed that the feed rate was the major factor affecting
the surface roughness values, whereas the cutting speed claimed the most significant terms for
power consumption.

5. The contour effect plots showed that the ultrasonic assisted turning process reduced the surface
roughness and power consumption values as compared with the conventional turning process.
This was due to the basic reason that the ultrasonic vibration produced the micro-chipping effect
and thereby resulted in low surface roughness as well as power consumption values. Besides, the
chips formed during the UAT processes were regular and fragmented when compared to those
obtained from the CT process.

6. With the ultrasonic assisted machining, the surface roughness was improved by 5%–10%
and the power consumption was reduced from 8%–10% when we compared the results with
ordinary turning.
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Abstract: The micro-groove structure on the planar surface has been widely used in the tribology
field for improving the lubrication performance, thereby reducing the friction coefficient and wear.
However, in the conventional cutting (CC) process, the high-quality, high-precision machining of
the micro-groove on titanium alloy has always been a challenge, because considerable problems
including poor surface integrity and a high level of the material swelling and springback remain
unresolved. In this study, the ultrasonic elliptical vibration assisted cutting (UEVC) technology
was employed, which aimed to minimize the level of the material swelling and springback and
improve the machining quality. A series of comparative investigations on the surface defect, surface
roughness, and material swelling and springback under the CC and UEVC processes were performed.
The experimental results certified that the material swelling and springback significantly reduced
and the surface integrity obviously improved in the UEVC process in comparison to that in the CC
process. Furthermore, for all the predetermined depths of the cut, when the TSR (the ratio of the
nominal cutting speed to the peak horizontal vibration speed) was equal to one of twenty four or one
of forty eight, the accuracy of the machined micro-groove depth, width and the profile radius reached
satisfactorily to 98%, and the roughness values were approximately 0.1 μm. The experimental results
demonstrate that the UEVC technology is a feasible method for the high-quality and high-precision
processing of the micro-groove on Ti-6Al-4V alloy.

Keywords: micro-groove; titanium alloy; surface integrity; material swelling and springback;
ultrasonic elliptical vibration assisted cutting

1. Introduction

Titanium alloys have been increasingly used in aerospace, aviation, shipbuilding and biomedical
fields because of their excellent properties such as high yield stress, high toughness, high strength to
weight ratio, high creep and corrosion resistivity and good biocompatibility [1]. However, the surface
hardness of titanium alloy is not usually high (approximately 30 HRC), which leads to a poor wear
resistance of the titanium alloy part [2,3]. In practical application, the failure of titanium alloy part
is often caused by its poor wear resistance [4,5]. Therefore, the studies on the improvement of the
wear resistance of titanium alloy hold great significance for improving its reliability and service life.
The micro-groove structure has been proven to be useful for improving the lubrication performance
during the wet sliding contact condition, thereby reducing the friction coefficient and wear [6].
Numerous fabrication technologies have been proposed for the machining of the micro-groove,
including lithographic machining [7], micro electrical discharge machining [8], micro electrochemical
machining [9] and micro mechanical machining [10–12]. The lithographic machining technology was
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more suitable for processing tiny nano-scale structures with a straight sidewall and high aspect ratio
due to its high resolution and low removal rate [7]. The micro electrical discharge machining only
could be used for the conductive material, and the feature structure was limited by the geometry size
of the electrode tool. In addition, the micro electrochemical machining was difficult to obtain the high
quality finished surface [9]. Notably, a considerable amount of investigations show that the micro
mechanical machining is the most widely used, because it has a large dimension span and allows a
high degree of freedom for the structural design as compared with other methods [11,13].

Titanium alloys have been considered to be typical hard-to-cut materials owing to their inherent
properties such as the high chemical reactivity, high strain hardening (work hardening), low thermal
conductivity and small deformation coefficient [14]. Hence, the high-quality and high-precision
machining of the micro-groove on titanium alloy has always been a challenge with the conventional
cutting (CC) process [15–17]. During the processing of a micro-groove on titanium alloy using the
CC process, the generated cutting heat could not be effectively dissipated through the workpiece
or chips because of the low thermal conductivity. Furthermore, the effect of the coolant was greatly
limited because the coolant was vaporized before reaching the cutting zone [17]. Thus, the high
cutting temperature and thermal stress exist in the narrow cutting area, which are sufficiently high to
induce the plastic side flow of melted materials, and leaving the materials behind the cutting edge.
Yip et al. [16] reported that the materials expand and their volume increases when the melted materials
solidify again, especially at the bottom and side location of cutting edge. Therefore, there is an obvious
deviation between the profile shape of the generated micro-groove and the ideal case due to the effect
of the material swelling and springback, as shown in Figure 1.

Figure 1. Schematic view of the material swelling and springback in the machining of micro-groove.

More remarkably, the effect of the material swelling and springback of titanium alloy was enhanced
due to its low elastic modulus and thermal conductivity [16]. Furthermore, during the CC process,
many surface defects such as adhered particles, a welded built-up edge (BUE) and plastic flow grooves
appeared on the finished surface [15,18]. Previous studies have suggested that the high cutting
temperature was the main factor that caused the formation of surface defect and the serious material
swelling and springback [16,19]. Therefore, some coolant technologies, such as the coolant pressurized
jet [20], cryogenic cooling [21], minimum quantity lubrication (MQL) [22] have been developed to
reduce the cutting temperature. Further high-pressures increased the momentum of the coolant,
which led to better heat transfers [17]. However, the environmental pollution and hazards to the
operator occurred due to the high use of cutting fluids [23]. In the cryogenic cutting environment,
the form accuracy of the machined part was difficult to guarantee and the hardness of workpiece
was growing [24]. In MQL machining, a small amount of cooling/lubricating agents, as in the form
of an aerosol, enter in the cutting zone for the advantage of effective cooling and lubrication at the
tool–chip interface [22]. Krolczyk et al. [25] highlighted that this technology was a practical alternative
to drying as well as flood cutting, which could reduce the use of cutting fluid and the manufacturing
cost, thus achieving the eco-benign cutting environment. Maruda et al. [26,27] claimed that the MQL
technology was performed better when the extreme pressure and anti-wear additives were added,
which provided a significant improvement in the cutting tool wear rate. The MQL technology has
been applied in many machining techniques, as well as in the wide range of workpieces (especially
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for Inconel alloys and titanium alloys) [28,29]. Nevertheless, the setup of MQL was complicated
and troublesome [25]. Moreover, MQL technology required advanced equipment and caused a
higher manufacturing cost, which limited its development [18]. Hence, a better machining method
should be adopted to improve the machining performance of titanium alloy and reduce the level of
material swelling and springback, thereby resulting in the high-quality and high-precision processing
of micro-grooves on titanium alloy.

The ultrasonic elliptical vibration assisted cutting (UEVC) is a promising cutting technique
which shows particular advantages over CC, like lower machining forces, higher machining stability,
less tool wear and a better surface finish [30–32]. Furthermore, the investigations of the fabrication of
micro-groove structures assisted by the UEVC technology have gained more attention from researchers
in recent years. Kim et al. [33,34] investigated the machining characteristics of micro-grooves on
aluminum and brass by using the UEVC technology. Their results indicated that, in the UEVC
process, the machining quality of micro-grooves was improved and the cutting forces were significantly
decreased compared with the CC process. Suzuki et al [35,36] performed the micro-groove machining
experiments on brittle materials by using the UEVC technology. The results showed that, due to the
influence of the UEVC technology, the cutting forces reduced, the critical cutting depth increased
and the machining accuracy of the micro-groove improved. Moreover, Zhang et al [11,12] compared
and analyzed the machining characteristics of micro-grooves on the stainless steel (0Cr18Ni9) and
brass by using the UEVC and CC processes. Their results demonstrated that the machining quality
of micro-grooves improved and the cutting forces were reduced in the UEVC process, especially for
stainless steel. Similarly, the experimental results obtained by Kurniawan et al. [37] indicated that the
UEVC process has shown many advantages in the machining of micro-grooves on steel alloy compared
to the CC process.

Therefore, as discussed above, the UEVC process is effective to reduce the cutting forces, lower
the surface roughness and attain better machining accuracy in micro-groove machining of easy-to-cut
materials (such as copper, brass, and aluminum), brittle materials as well as steel materials. However,
the UEVC technology is yet to be used in the machining of micro-grooves on titanium alloy. Moreover,
a few studies have been conducted to assess the effect of material swelling and springback in
micro-groove machining, which is the dominant factor to deteriorate the form accuracy and surface
integrity of micro-grooves, especially for titanium alloy with the high level of material swelling and
springback [16,38]. In this work, the UEVC technology is employed to investigate the machining
characteristics of micro-grooves on Ti-6Al-4V alloy. In order to clarify the effective mechanisms
of the UEVC technology in micro-groove machining of titanium alloy, comparative investigations
on the surface defect, surface roughness, and material swelling and springback under the CC and
UEVC processes are carried out. Moreover, the effects of different machining parameters on the
machining quality of micro-grooves are compared with particular emphasis on the material swelling
and springback. It is hoped that this work can provide a feasible method for high-quality and
high-precision machining of micro-groove on titanium alloy.

2. Materials and Methods

2.1. The UEVC Principle

Figure 2a shows the schematic illustration of the UEVC process, and Figure 2b presents the
schematic diagram of the UEVC device used in this study. The UEVC device worked at the 3rd
longitudinal resonant mode and the 6th bending resonant mode. Four groups of longitudinal and
bending piezoelectric (PZT) ceramics were stacked between metal blocks. When the excitation signals
applied to the longitudinal PZT ceramics and the bending PZT ceramics, the 3rd longitudinal and 6th
bending resonant modes of the device were inspired, respectively. An elliptical vibration trajectory was
obtained at the tool tip by combining the two resonant vibrations with some phase shift. The detailed
working principle of the UEVC device was given in our previous work [39].
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As shown in Figure 2a, the cutting tool elliptically vibrates in the xoz plane, which is formed
by the nominal cutting direction (i.e., x-axis) and the chip flow direction (i.e., z-axis). Relative to the
workpiece, the transient position of the cutting tool can be described as follows:

x(t) = a sin(2π f t) −VCt, (1)

z(t) = b sin(2π f t + θ). (2)

Thus, the tool velocity relative to workpiece can be written as:

x′(t) = 2π f a cos(2π f t) −VC, (3)

z′(t) = 2π f b cos(2π f t + θ). (4)

where a and b are the vibration amplitudes in x-direction and z-direction, respectively. θ is the phase
shift of the 3rd longitudinal resonant and 6th bending resonant, VC is the nominal cutting speed and f
is the vibration frequency. In addition, it should be noted that the ratio of the nominal cutting speed to
the peak horizontal vibration speed is an important parameter in the UEVC process. In this study,
this ratio is named as TSR. And TSR can be written as:

TSR =
VC

2π f a
. (5)

It should be noted that the intermittent cutting only occurs when TSR < 1. Nath et al. have
demonstrated that the machined surface quality improved with the decrease of the value of TSR,
and the TSR was usually set to be less than one-twelfth in the ultra-precision machining process [40].
Hence, three different values of TSR, namely one of twelfth, one of twenty-four and one of forty eight,
are selected by varying the normal cutting speed for studying the influence of TSR on the machining
quality of micro-grooves on titanium alloy. It should be noted that different TSR values in the UEVC
process can be implemented by adjusting the radius of the machining area.

Figure 2. (a) Illustration of the ultrasonic elliptical vibration assisted cutting (UEVC) process,
(b) Schematic diagram of the UEVC device.

In the UEVC process, the three most important features are the intermittent cutting, the reduced
instantaneous uncut chip thickness and the reversal of friction force between the tool and the chip [13].
As shown in Figure 2a, the cutting motion starts at time t0, and the cutting tool separates from
workpiece at time t4. Thus, in each cycle of vibration, the contact time between the tool and workpiece
is only (t4–t0). The cooling medium was more likely to enter the cutting area, and the cooling effect
was enhanced [41]. As a result, the cutting temperature was reduced. As presented in Figure 2a,
the instantaneous uncut chip thickness continuously varies, and is maximal at time t2. The maximal
instantaneous uncut chip thickness (aimax) is also smaller than the nominal one (ap). This means that
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the cutting forces and cutting temperature during the UEVC process are smaller than in CC process.
At time t3, the velocity of the cutting tool in the z direction is equal to the velocity of the chip flow.
This can be represented by the following equation:

z′(t3) = 2π f b cos(2π f t3 + θ) = Vp. (6)

where Vp is the velocity of the chip flow and is considered as a constant. According to the vibration
equations of the tool (Equations (3) and (4)), the velocity of the tool in the z direction is increased in
time period (t4–t3). Therefore, during the time period of (t4–t3), the friction force between the chip
and tool is reversed. That means the friction force and the velocity of the chip flow have the same
direction, which is conducive to break the chip and pull the chip away from the workpiece, and the
results in a remarkable decrease in the cutting force, the suppression of the tool chatter, and an increase
in the nominal shear angle [40,42]. In the UEVC process, the cutting forces and cutting temperature
are reduced, the tool chatter is suppressed, and the chips are smoothly removed. Thus, the UEVC
technology maybe a promising machining method to improve the machining performance of titanium
alloy and reduce the level of material swelling and springback, thereby resulting in the high-quality
processing of micro-grooves on titanium alloy.

2.2. Experimental Setup

In the experimental setup, a typical titanium alloy Ti-6Al-4V alloy, was chosen. The physical
properties of Ti-6Al-4V alloy are listed in Table 1. The workpiece is held by the vacuum chuck attached
on the spindle of the home-made ultra-precision machine tool, as shown in Figure 3. The machine tool
mainly consists of an aerostatic spindle and two horizontal hydrostatic slideways. The UEVC device
was positioned on the z-axis, and the high-precision adjustment platform was used to achieve the
height adjustment of the UEVC device. It should be noted that the UEVC device could be considered
as a traditional tool holder when it was not powered. The samples were round pie with the diameter of
50 mm and the height of 20 mm. The pre-turning was first completed with the CC process. Following
this, a series of micro-groove machining experiments under different machining conditions were
carried out. The experimental conditions and cutting parameters are listed in Table 2.

Figure 3. Diagram and picture of experimental setup.

Figure 4 displays the schematic view of the UEVC process in the machining of the micro-groove
and the enlarged view of the generated micro-groove. In this study, the cutting tool with a round nose
was used. In the ideal situation, the profile shape of the generated micro-groove is anticipated as same
as the tool profile. The theoretical value of the micro-groove depth (Ld) is equal to the predetermined
depth of cut. The theoretical value of the micro-groove width is Lw, and it can be expressed as:

Lw = 2
√

R2 − (R− Ld)
2 (7)
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where R is the nose radius of the tool, and Ld is the theoretical value of the micro-groove depth. Thus,
the theoretical value of the micro-groove width can be obtained from Equation (7).

Figure 4. (a) Schematic view of the UEVC process in the machining of the micro-groove; (b) Enlarged
view of the machined micro-groove.

Table 1. Physical properties of Ti-6Al-4V alloy.

Tensile Strength
(MPa)

Elastic Modulus
(GPa)

Hardness
(HRC)

Density
kg/m3

Specific Heat
Capacity

(J·kg−1·◦C−1)

Thermal
Conductivity
(W·m−1·◦C−1)

902 16 32 4500 610 7.6

Table 2. Experimental parameters.

Processing Method
CC

Process
UEVC
Process

Vibration parameters

Frequency (kHz) - 29.75
Amplitude in cutting direction (μm) - 6

Amplitude in cutting depth direction (μm) - 4
Phase shift (◦) - 150

Cutting parameters
Spindle speed (r/min) 480 20

Feed rate (μm/r) 500 500
Depth of cut (μm) 2, 4, 6, 8 2, 4, 6, 8

Cutting Tool

Material Carbide
Rake angle (◦) 0

Clearance angle (◦) 11
Nose radius (mm) 1.698

Workpiece Material Ti-6Al-4V alloy
Dimension (mm) Φ50 × L20

Cutting fluid No

3. Results and Discussion

3.1. Material Swelling and Springback

In the micro-groove machining of titanium alloy, the suppression of material swelling and
springback is crucial. To evaluate whether the UEVC technology, especially at different TSR, meets to
suppress the material swelling and springback, the machining quality assessment of the machined
micro-grooves is respectively performed by ultra-depth 3D microscopy system (VHX 1000E; Keyence,
Osaka, Japan) and a white light interferometer (NewView 5000; Zygo, Middlefield, CT, USA).
The machining quality of the micro-grooves with the predetermined depth of cut of 8 μm produced by
different processing methods was first analyzed. Figure 5 shows the micrographs of the generated
micro-grooves. As shown in Figure 5a, the clear, obvious and straight swelling marks appeared on
the bottom and the side of the micro-groove produced by the CC process. Numerous surface defects
were randomly distributed on the finished surface. On the contrary, the machined surfaces of the
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micro-grooves were clear and smooth, with no surface defect and swelling marks under the UEVC
process with different TSR, as shown in Figure 5b–d. These facts implied that the material swelling
and springback effect was very obvious in the generated micro-groove produced by CC, and the
material swelling and springback effect was obviously suppressed by using the UEVC technology.
The underlying reasons could be explained by analyzing the basic function mechanisms of the UEVC
technology. As discussed in Section 2.1, the intermittent cutting and the reduction of instantaneous
cutting thickness existed in the UEVC process, which caused small cutting forces and resulted in little
cutting heat. Furthermore, the reversed friction force led to the increase of the nominal shear angle, so
the cutting forces and friction force could be further reduced. On the other hand, the intermittent cutting
mechanism provided a more favorable heat dissipation condition. Thus, the cutting temperature in the
UEVC process was far lower than the CC process, which resulted in the prominent reduction in the
level of material swelling and springback during the processing of micro-grooves on titanium alloy.

 
Figure 5. Micrographs of machined micro-groove (the predetermined depth of cut was 8 μm):
(a) processed by CC, (b) processed by UEVC (TSR = 1/12), (c) processed by UEVC (TSR = 1/24) and
(d) processed by UEVC (TSR = 1/48).

The reduction in the level of material swelling and springback was directly reflected in the
dimensional parameters of the generated micro-groove. As displayed in Figure 5, the width of the
micro-groove machined by the CC process was 305.8 μm, while the width of the micro-grooves
machined by the UEVC process with different TSR were 324.9 μm (TSR = 1/12), 324.1 μm (TSR = 1/24)
and 327 μm (TSR = 1/48), respectively. These implied that, during the processing of the micro-groove
on titanium alloy using the CC process, the side swelling and springback effect was obvious and it
introduced the larger volume of the material at the groove side, therefore, the width of generated
micro-groove was smaller than the designed one (329.3 μm). During the processing of the micro-groove
on titanium alloy using the UEVC process with different TSR values, the deviation values in the
micro-groove width were small. The experimental results were all closed to the designed value. In order
to further study the details of the generated micro-grooves, the cutting profiles were analyzed, as shown
in Figure 6. Due to the effect of material swelling and springback, the ragged profile with wavy and
vibration characteristics was obtained, as shown in Figure 6a. The depth of the micro-groove produced
by the CC process was 6.4 μm, and it was much less than the designed value (8 μm), which indicated
that a significant bottom swelling and springback appeared on the bottom surface of the generated
micro-groove. Furthermore, the shape of the cutting profile was even distorted, and deviated largely
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from the tool shape. Thus, in the CC process, the actual parameters of the generated micro-groove
greatly strayed from the designed parameters. In contrast, as shown in Figure 6b–d, the cutting profiles
of the generated micro-grooves produced by UEVC process with different TSR displayed a smooth
radius curve, and the depths were all close to 8 μm. It is worth noting that as the TSR value decreases,
the cutting profile appears smoother. The cutting profile of micro-groove machined by the UEVC
process with TSR = 1/48 has a few ripples and vibration marks.

 
Figure 6. The cutting profiles of machined micro-groove (the predetermined depth of cut was 8 μm):
(a) processed by CC, (b) processed by UEVC (TSR = 1/12), (c) processed by UEVC (TSR = 1/24) and
(d) processed by UEVC (TSR = 1/48).

Table 3. The designed parameters and experimental results of the machined micro-grooves.

Test
No.

Parameters of the
Micro-Groove

Designed
Values

Results of CC
Process

Results of
UEVC
Process

(TSR = 1/12)

Results of
UEVC
Process

(TSR = 1/24)

Results of
UEVC
Process

(TSR = 1/48)

1
Micro-groove depth 2 1.74 1.91 1.96 1.96
Micro-groove width 164.8 152.2 158.9 162.3 163.5

Profile radius 1698 1709 1653.4 1681 1704.9

2
Micro-groove depth 4 3.32 3.89 3.91 3.94
Micro-groove width 233 214.9 228.3 229 232.3

Profile radius 1698 1740.4 1676.8 1678.5 1712.5

3
Micro-groove depth 6 4.91 5.89 5.91 5.97
Micro-groove width 285.2 264.7 279.6 284.7 284.1

Profile radius 1698 1786.2 1662 1717.3 1693

4
Micro-groove depth 8 6.4 7.92 7.91 7.98
Micro-groove width 329.3 305.8 324.9 324.1 327

Profile radius 1698 1829.7 1670 1663.9 1678.9

For further investigating the effect of the predetermined depth of cut on material swelling
and springback under different machining conditions, a series of experiments about micro-groove
machining of titanium alloy were carried out. The measured parameters of the generated micro-grooves
are presented in Table 3. In addition, according to the experimental data in Table 3, the deviations
between the actual parameters of the generated micro-grooves and the theoretical values were analyzed.
During the processing of the micro-groove on titanium alloy using the CC process, the deviations of
the micro-groove width did not change significantly with the increase of the predetermined depth of
cut, as shown in Figure 7a. Noting that, for all the predetermined depths of the cut, the deviations of
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the micro-groove width in the CC process were almost 7–8%, while the deviations of the micro-groove
width in the UEVC process were smaller than 4%. In particular for the UEVC process with TSR = 1/48
and TSR = 1/24, the deviations of the micro-groove width were smaller than 2%. These facts indicate
that the UEVC technology can effectively suppress the side swelling and springback during the
micro-groove machining of titanium alloy, and in the UEVC process, TSR = 1/24 is recommended
because the smaller TSR value means lower processing efficiency.

Figure 7. (a) Deviation of the micro-groove width, (b) deviation of the micro-groove depth,
and (c) deviation of the profile radius of micro-groove.

Figure 7b presents the deviations of the micro-groove depth under the different processing
conditions. In the CC process, the deviation value gradually increases with the increase of the
predetermined depth of the cut. The deviation value reached 20%, when the predetermined depth of
the cut was 8 μm. This can be explained by the fact that the increase of the predetermined depth of the
cut led to an obvious increase in cutting forces and the friction force, thus, the cutting temperature was
higher, which greatly increased the level of material swelling and springback. Conversely, the deviations
of the micro-groove depth in the UEVC process were smaller than 5% for all predetermined depths
of the cut, and were smaller than 2% when TSR = 1/48 or TSR = 1/24. Moreover, the deviations of
the micro-groove depth were smaller with the decrease of TSR. This is because the decrease of TSR
could further promote the superiority of the UEVC technology, that is, smaller cutting forces and a
better heat dissipation condition could be obtained with smaller TSR. Moreover, it is worth noting that,
with the increase of the predetermined depth of the cut, the suppression effect of the UEVC technology
on material swelling and springback was more obvious. This happened maybe due to the following
reasons. In the CC process, the larger depth of the cut means larger cutting forces and a higher cutting
temperature. Thus, with the increase of the predetermined depth of the cut, the material swelling
and springback becomes the dominant factor in the deviation of the micro-groove depth. However,
as discussed above, the effect of material swelling and springback was effectively suppressed by using
the UEVC technology. This means the dominant factor in the deviation of the micro-groove depth was
eliminated. Therefore, the deviation of the micro-groove depth gradually decreased with the increase
of the predetermined depth of the cut.
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As can be seen from Figure 7c, it is clear that, in the CC process, the deviation of the profile radius
of the machined micro-groove rapidly increased with the increase of the predetermined depth of the
cut. However, since the UEVC technology has a good suppression effect on the material swelling
and springback in both of the side and bottom during the micro-groove machining of titanium alloy,
the deviations of the profile radius of the micro-groove were small for all predetermined depths of the
cut. It is worth noting that, for the UEVC process with TSR = 1/48 or TSR = 1/24, the deviations of
the profile radius of the micro-groove were smaller than 2%. This indicated that the accuracy of the
machined micro-groove could be ensured during the processing of the micro-groove on titanium alloy
by using the UEVC process.

3.2. Surface Integrity

Surface integrity is an important indicator for evaluating the machined surface quality and has
a large impact on the reliability and service life of the part. Figure 8 shows the surface topography
views of the machined micro-grooves with the predetermined depth of cut of 8 μm. It can be observed
from Figure 8a,b, that a series of surface defects including irregular ridges, cavities and tearing marks
appeared on the micro-groove machined by using the CC process. This can be attributed to the
following reasons. During the processing of the micro-groove on titanium alloy using the CC process,
the high cutting temperature, large cutting forces and the existence of friction force, which elevated
the softening degree of the workpiece material, induced the ruleless vibration of the cutting tool and
promoted the formation of the built-up edge (BUE) [18]. The ruleless vibration of the cutting tool and
the generated BUE promoted the formation of cavities and tearing marks. In addition, as discussed in
Section 3.1, the level of material swelling and springback was very high in the CC process. The irregular
ridges were generated by the combined effect of the high level of material swelling and springback
and the ruleless vibration of the cutting tool. It should be noted that these defects vastly degraded the
surface integrity and the accuracy of the generated micro-groove.

 

Figure 8. Cont.
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Figure 8. The views of machined micro-grooves (the predetermined depth of cut was 8 μm): (a) surface
topography of machined micro-groove during CC; (b) surface roughness of analyzed area I; (c) surface
topography of machined micro-groove during UEVC (TSR = 1/12); (d) surface roughness of analyzed
area II; (e) surface topography of machined micro-groove during UEVC (TSR = 1/24); (f) surface
roughness of analyzed area III; (g) surface topography of machined micro-groove during UEVC
(TSR = 1/48); (h) surface roughness of analyzed area IV.

In contrast, the machined micro-grooves produced by the UEVC process displayed nearly no
surface defects on the bottom and side surfaces, as shown in Figure 8c–h. This can be attributed to the
following two reasons. The first reason is that, compared to the CC process, the cutting forces and
friction force were small due to the features of the UEVC technology such as the intermittent cutting,
the reduction of instantaneous cutting thickness and the reversal of the friction force. Additionally,
in the UEVC process, a favorable heat dissipation condition was provided because of its intermittent
cutting nature. Consequently, the cutting temperature in the UEVC process was far lower than in the CC
process, thereby resulting in the effective suppression for the ruleless vibration of the cutting tool and
the formation of BUE. The second reason is that, the material swelling and springback was successfully
suppressed during the processing of the micro-groove on titanium alloy using the UEVC process,
as discussed in Section 3.1. Hence, there were almost no surface defects on the machined surface,
as shown in Figure 8d,f,h. Simultaneously, it can be seen that some small and straight ridges also
appeared on the machined micro-grooves produced by the UEVC process, especially for TSR = 1/12.
This may be caused by the micro notches appearing on the cutting edge of the tool. The effect of the
micro notches on the machined surface quality decreased with the decrease of TSR. The reason is that
the smaller TSR means the smaller cutting forces and instantaneous uncut chip thickness. As shown in
Figure 8f,h, the bottom surface roughness of the machined micro-groove produced by the UEVC process
with TSR = 1/24 and TSR = 1/48 were 0.114 μm and 0.109 μm, respectively. It should be noted that the
size of the analysis area is approximately 100 μm × 180 μm. However, the bottom surface roughness of
the machined micro-groove produced by the CC process was 0.247 μm, which was more than two times
than the roughness in the UEVC process with TSR = 1/24 or TSR = 1/48. Therefore, the application
of the UEVC technology led to an obvious improvement of the machined micro-groove in surface
integrity, which was consistent with the experimental result from the research literature [33–37].
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Figure 9 presents the bottom surface roughness values of the machined micro-grooves produced
by different processing conditions. For each generated micro-groove, the bottom surface roughness
was tested five times and the recorded surface roughness was the average value. The measurement area
size was approximately 100 μm × 180 μm. It can be seen that the surface roughness value increased
quickly with the increase of the predetermined depth of the cut during the CC process. As discussed
above, many surface defects including irregular ridges, cavities and tearing marks appeared on the
machined micro-groove under the CC process. It is obvious that a bigger depth of the cut means larger
cutting forces and friction force, thereby resulting in the higher cutting temperature. The higher cutting
temperature caused more serious ruleless vibration of the tool and the material swelling and springback.
Thus, it can be inferred that more machining defects appeared on the generated micro-groove with the
increase of the predetermined depth of the cut. The appearance of above-observed machining defects
lower the surface quality of the generated micro-groove. However, the surface roughness values did
not obviously change with the increase of the predetermined depth of the cut during the UEVC process
with TSR = 1/24 or TSR = 1/48. The roughness values were approximately 0.1 μm. These results were
consistent with the previous discussion which stated that a significant suppression of the formation of
the surface defect was due to the use of the UEVC technology. The experimental results certified that
the reduction of material swelling and springback and the improvement of surface integrity could be
achieved simultaneously by using the UEVC technology.

Figure 9. Influence of the predetermined depth of cut on the bottom surfaces roughness of the machined
micro-grooves produced by different processing conditions.

4. Conclusions

In this work, the UEVC technology is firstly introduced into the micro-groove machining of
Ti-6Al-4V alloy to improve the machining performance and reduce the level of material swelling and
springback, thereby realizing the high-quality and high-precision processing of micro-groove. Based
on the theoretical analysis and the experiment results, the main conclusions can be drawn as follows:

1. During the processing of the micro-groove on titanium alloy using the CC process, the clear,
obvious and straight swelling marks appeared on the bottom and the side of the generated
micro-groove. These facts implied that the material swelling and springback effect was very
obvious. Further, with the increase of the predetermined depth of the cut, the deviation of the
micro-groove width did not change significantly, while the deviation of the micro-groove depth
gradually increased. Moreover, the deviation of the profile radius of the micro-groove rapidly
increased with the increase of the predetermined depth of the cut. Remarkably, the profile shape
of the generated micro-groove was distorted, and deviated largely from the tool shape. Thus,
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the actual parameters of the micro-groove machined by the CC process greatly strayed from the
designed parameters.

2. During the processing of the micro-groove on titanium alloy using the UEVC process, no surface
defect and no swelling mark appeared on the machined surfaces of the generated micro-grooves.
The profile shape of the generated micro-grooves was smooth, and the profile became smoother
with the decrease of TSR. This indicated that the material swelling and springback effect was
obviously suppressed. As the predetermined depth of the cut increased, the deviations between
the designed parameters and experimental results of the micro-groove width, depth and the
profile radius did not significantly change. It is noticeable that, for all TSR, the percentage errors
of the generated micro-groove parameters were smaller than 5%, and were smaller than 2%
when TSR = 1/48 or TSR = 1/24. This indicated that the accuracy of the machined micro-groove
improved significantly by using the UEVC technology.

3. A series of surface defects including irregular ridges, cavities and tearing marks appeared on
the micro-groove machined by using the CC process, and these defects vastly degraded the
surface integrity and the accuracy of the generated micro-groove. In contrast, the generated
micro-grooves produced by the UEVC process displayed nearly no surface defects. Moreover, the
bottom surface roughness of the machined micro-grooves increased quickly with the increase of the
predetermined depth of the cut during the CC process. However, the bottom surfaces roughness
of the machined micro-grooves did not obviously change with the increase of the predetermined
depth of the cut during the UEVC process. The roughness values were approximately 0.1 μm,
when TSR = 1/48 or TSR = 1/24. Therefore, the application of the UEVC technology led to an
obvious improvement of the machined micro-groove in surface integrity.

4. The experimental results certified that the reduction of the material swelling and springback
and the improvement of surface integrity can be achieved simultaneously by using the UEVC
technology. The value of TSR has an obvious effect on the action mechanism of the UEVC
technology, and the decrease of TSR can further promote the superiority of the UEVC technology.
In this study, TSR = 1/24 is recommended. Further investigation should be made to obtain the
preferable machined surface by optimizing the combination of processing parameters with the
consideration of tool wear.
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Nomenclature

UEVC ultrasonic elliptical vibration assisted cutting
TSR the ratio of the nominal cutting speed to the peak horizontal vibration speed
a the vibration amplitudes in x-direction
b the vibration amplitudes in z-direction
aimax the maximal instantaneous uncut chip thickness
Vp the velocity of the chip flow
Lw the theoretical value of the micro-groove width
CC conventional cutting
PZT piezoelectric
Θ the phase shift of the 3rd longitudinal resonant and 6th bending resonant
VC the nominal cutting speed
F the vibration frequency
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ap the nominal instantaneous uncut chip thickness
Ld the theoretical value of the micro-groove depth
R the nose radius of the tool
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Abstract: Recently, the application of nano-cutting fluids has gained much attention in the machining of
nickel-based super alloys due their good lubricating/cooling properties including thermal conductivity,
viscosity, and tribological characteristics. In this study, a set of turning experiments on new
nickel-based alloy i.e., Inconel-800 alloy, was performed to explore the characteristics of different
nano-cutting fluids (aluminum oxide (Al2O3), molybdenum disulfide (MoS2), and graphite) under
minimum quantity lubrication (MQL) conditions. The performance of each nano-cutting fluid was
deliberated in terms of machining characteristics such as surface roughness, cutting forces, and tool
wear. Further, the data generated through experiments were statistically examined through Box Cox
transformation, normal probability plots, and analysis of variance (ANOVA) tests. Then, an in-depth
analysis of each process parameter was conducted through line plots and the results were compared
with the existing literature. In the end, the composite desirability approach (CDA) was successfully
implemented to determine the ideal machining parameters under different nano-cutting cooling
conditions. The results demonstrate that the MoS2 and graphite-based nanofluids give promising
results at high cutting speed values, but the overall performance of graphite-based nanofluids is
better in terms of good lubrication and cooling properties. It is worth mentioning that the presence of
small quantities of graphite in vegetable oil significantly improves the machining characteristics of
Inconel-800 alloy as compared with the two other nanofluids.

Keywords: environmentally friendly; nano-cutting fluids; nickel-based alloys; turning; optimization

1. Introduction

Nickel (Ni)-based alloys have become widely accepted materials for the manufacture of critical
parts owing to their exceptional characteristics such as high creep, good rupture strength, and resistance
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to corrosion and oxidation [1]. Due to excellent fatigue strength and possession of yield strength at high
temperature and pressure (600 ◦C, 1000 MPa), Ni alloys are used in the manufacturing of aero-engines,
turbine blades, nuclear reactors, and in chemical industries, where there is a requirement for use of cyclic
loads and high temperatures. Thakur and Gangopadhyay have examined an aero-engine consisting of
50% Ni alloy in weight, due its high thermal stability in severe environments [2]. In addition, Ni alloys
are ductile materials under cryogenic temperature because of their face-centered cubic (FCC) structure,
which is why they are used in cryogenic tanks, as superconducting materials, and in rocket motor
casings [3]. Nowadays, Ni-based alloys have several grades, such as Inconel-718, FGH-95, ME-16,
IN-100, Inconel-800, and Inconel-825. Among numerous Inconel grades, Inconel-800 is a Fe–Ni–Cr
alloy that offers adequate resistance to oxidation, and carburization even at elevated temperatures with
moderate strength [4]. It is highly desirable for the manufacturing of high temperature equipment
which is resistant to chloride stress corrosion cracking and shows high creep and stress rupture
characteristics in the temperature range of 594–983 ◦C.

Despite all its advantages and applications, machining of such difficult-to-cut materials is also a
great challenge due to their poor thermal conductivity, hot hardness, and chemical reaction with tool
materials [5]. Such limitations have compelled the manufacturing industries to revise tool failure criteria
for turning (ISO-3685) to attain adequate surface quality and tool life. Therefore, considerable attention
has been dedicated to researching the manufacture aerospace components without compromising
surface quality, in addition to tool edge damage. In the turning process, shearing and friction due
to rubbing of chip at the tool rake face produces an elevated temperature in primary and secondary
machining zones. This generated heat strongly effects the tool wear and surface quality because, above
a certain temperature, tool binding may start losing its strength and accelerate wear.

In order to reduce the temperature and acceleration of tool wear and to improve the surface
quality, several lubri-cooling techniques have been practiced in industry. These coolants and lubricants
remove chips and reduce temperature and friction due to the rubbing of chip and tool. Water-soluble
oils and minerals oils are frequently applied in industry. However, due to their adverse effects on
ecology, operator heath, and some restrictions from the EPA (Environmental Protection Agency),
advanced industries have started accepting some sustainable cooling/lubrication techniques [6], such as
minimum quantity lubrication (MQL) machining [7], cryogenic machining [8], and nanofluid-assisted
MQL machining [9] in order to enhance the machinability of Inconel-800 alloy. In MQL machining,
small quantities (microlubrication) of pure oil (vegetable oil) are mixed with compressed air to impinge
a fine mist (10~100 mL) to attain the advantage of effective cooling and lubrication at the tool–chip
interface. Most of research studies have shown better surface quality and tool life under MQL
machining compared with dry or flood cooling [10,11]. Similarly, Gurraj et al. have investigated the
machining of difficult-to-cut material under MQL to enhance machinability. Turning tests under the
MQL lubri-cooling technique were carried out to improve the machinability in terms of surface quality,
tool wear, and cutting forces. Findings have depicted a 15% improvement in all the responses under
the MQL cooling technique [12]. Also, Joshi et al. [13] have investigated the turning of Incoloy-800
under dry, flood (600 L/h) and MQL (150 mL/h, 230 mL/h) cutting conditions from the perspective
of surface quality and flank wear. The findings have depicted less wear and better surface quality
under MQL conditions. However, MQL (230 mL/h) provided favorable results compared to MQL
(150 mL/h) under all conditions. Maruda et al. [14,15] also studied MQL conditions. They claimed
that MQL performs very well during the machining of different materials. From the above findings, it
can be understood that although lower flow rates of MQL achieved better performance, they were
nevertheless not suitable for machining due to the material being difficult to cut. The key reason
behind this problem is due to the lower oil flow rate which fails to limit heat generation at primary and
secondary cutting zones and evaporates immediately in the machining of difficult-to-cut materials.

In order to enhance the machinability performance of MQL, specifically for difficult-to-cut
materials, several advancements in MQL have been applied in research, i.e., nanofluid-assisted
MQL [16,17], hybrid nanofluid MQL [18], Ranque–Hilsch vortex tube [12], ionic liquid-assisted MQL
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(IL-MQL) [19], electrostatic MQL [20], vegetable oil-based solid lubricant MQL [21], and time-controlled
MQL pulse [22]. Among these advancements of the MQL system, nanofluid-assisted machining of
difficult-to-cut materials is a widely accepted alternative. In order to enhance the thermal characteristics
of heat transfer in machining, different types nanoparticles are used with vegetable base oil, such
as alumina (Al2O3), graphite, aluminum nitride (AlN), and molybdenum disulfide. The mentioned
nanoparticles provide superior heat transfer, thermal conductivity, surface area, and Brownian motion.
Considering the sustainable machining of difficult-to-cut materials, Khan et al. [23] carried out
machining under conventional MQL and Al2O3 nanofluid-assisted MQL (NFMQL) from the viewpoint
of temperature, surface roughness, and energy consumption. Findings have depicted the superiority of
NFMQL with a 16%.2~34.5% reduction in temperature and 11.3%~12% reduction in surface roughness
for all cutting conditions. It is mentioned that nanoadditives (size < 100 nm) have a biodegradable
base oil-enhanced tribological behavior, owing to an amending effect, polishing, tribo-film formation,
and ball bearing effect. The existence of nanoadditives in nanofluids enhance thermal conductivity, the
heat transfer rate, and the nanoparticles deposited on the machining region behave as small bearings
and fins, leading to heat dissipation and lubrication. This was proposed for industrial applications,
where nanofluids have provided stability at the tool–chip interface for better surface quality due to a
ball bearing effect. Padmni et al. [24] have applied molybdenum disulfide (MoS2) nanoparticle-based
vegetable oil in conventional machining in order to improve the machinability from the perspective of
surface roughness and tool wear. Results have underscored a maximum of a 37% reduction in tool wear
and 44% reduction in surface roughness with 0.5 vol% nanoparticles in comparison with dry turning.
Khan et al. [25] applied copper nano-additives (Cu-np)-based MQL in the conventional machining
to improve the surface quality and machinability. Findings have depicted superior surface quality
under nanofluid-assisted machining. They reported that the application of Cu-nps in biodegradable oil
extended tribological film formation as well as thermal properties. Hence, Cu-np-assisted machining
has minimized surface roughness and lowered the environmental impact.

According to the aforementioned state-of-art review, it is worth mentioning that the MQL system
along with the nanofluid cooling conditions have been considered as a good alternative and help to
significantly improve the machining performance in terms of lower cutting forces, surface roughness,
tool wear, etc. Therefore, with this aim, the three type of nanofluids i.e., aluminum oxide (Al2O3),
molybdenum disulfide (MoS2), and graphite with MQL system have been firstly implemented in the
turning of new Inconel-800 alloy and various important characteristics such as cutting force, tool wear,
and surface roughness were evaluated. Further, the process parameters were tested for their statistical
significance levels using Box Cox transformation, normally distributed plots, and analysis of variance
(ANOVA) methods, respectively. In the end, the optimized parameters were obtained using composite
desirability approach (CDA). The paper is organized into the following sections (1) Introduction and
Literature Review followed by (2) Materials and Methods, (3) results are presented in the Results and
Discussion section and (4) the findings of complete paper are presented here.

2. Materials and Methods

This section discusses the experimental setup used for machining of Inconel-800 alloy under
nanofluid-enriched MQL conditions. The complete details of workpiece materials, mechanical
properties, tool materials, and equipment used for machinability study are discussed below:

2.1. Workpiece, Cutting tool, and Machine Tool Details

In this work, the turning experiments were performed on new nickel-based alloy, i.e., Inconel-800.
This alloy is mainly used in the aerospace, nuclear, and marine sectors. This alloy is used under
heat-treated conditions. The chemical composition and heat treatment conditions of Inconel-800
alloy are presented in Tables 1 and 2. The diameter and length of subjected material used was
50 mm × 120 mm, respectively. Further, the cutting tool used for machining the Inconel-800 alloy
is cubic boron nitride (CBN) having model no. CCGW 09T304-2 tips and with rhombic shape. The
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insert was rigidly fixed on the tool holder of lathe tool dynamometer. The details of dynamometer are
given in the following sections. Note that no separate tool holder is used for experimentation. This
insert contains 50% of CBN content having a grain size of 2 μm, titanium carbide binder, and titanium
nitride coating. Moreover, it is highly recommended to use interrupted cutting and heavy operations
on high-strength temperature-resistant alloys, i.e., Inconel-800. The complete specifications of cutting
tool are presented in Table 3. Further, the CNC lathe is used for performing the turning experiments
on Inconel-800 alloy. This machine tool consists of two concurrently controlled axes, namely, Z axis
(movement of carriage parallel to spindle axis (longitudinal)), and X-axis (movement of turret slide at
right angle to spindle axis (cross)), and equipped with a Siemens control system.

Table 1. Chemical composition of Inconel-800 alloy.

Ni Cr Fe C Al Ti Al + Ti

30.0–35.0 19.0–23.0 39.5 min 0.10 max 0.15–0.60 0.15–0.60 0.30–1.20

Table 2. Heat treatment conditions of Inconel-800 super alloy.

Heat Treatment Intermediate Treatment Final Treatment Rockwell Hardness

1050 ◦C for 2 h, air-cooling 850 ◦C for 6 h, air-cooling 700 ◦C for 2 h, air-cooling RC

Table 3. Tool geometry of cutting tool.

Inclination Angle −6◦

Orthogonal rake angle 6◦
Orthogonal clearance angle 80◦

Auxiliary cutting-edge angle 15◦
Principal cutting-edge angle 90◦

Nose radius 0.4 mm
Shape Rhombic

2.2. Cooling-Lubrication Conditions

Environmentally friendly cooling conditions, i.e., the minimum quantity lubrication system, have
been implemented in this work. The MQL system used in this work was “NOGA mini cool system’.
The main parts of this system are two pipes, nozzles, control valve, syphon line, and powerful on/off
Popeye magnet system. The coolant flow rate, air flow rate and air pressure used in this work were
30 mL/h, 6 L/min, and 5 bar, respectively.

2.3. Preparation of Nanofluids

The current work involves the application of three types of commercially available nanoparticles
having an average size of 40 nm. These nanoparticles are aluminum oxide (Al2O3), molybdenum
disulfide (MoS2), and graphite respectively. The 3 wt. % nanoparticles were mixed in vegetable base
oil as additives, i.e., in sunflower oil having the following physical properties: kinematic viscosity 40
1C (cSt): 40.05; viscosity index: 206; flashpoint (0 ◦C): 252; and pour point (0 ◦C): –12.00. For proper
mixing of nanoparticles with base oil, the two-step method was adopted. In this method, sonication
was carried out with the help of an ultra-sonication bath for about one hour followed by hot magnetic
stirring of half an hour. In order to enhance the dispersion, reduce surface tension, and improve
wettability and oxidation resistance, sodium lauryl sulfate and the natural antioxidant tocopherol
(vitamin E) were used as surfactant at a ratio of 1:10. The properties of different nanofluids are shown
in Table 4.
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Table 4. Properties of different nanofluids [26].

Properties Vegetable Base Oil Al2O3 Nanofluid MoS2 Nanofluid Graphite Nanofluid

Appearance Bright and clear White Black Grayish Black
Viscosity (CP) (at 20 ◦C) 68.16 120.23 100.56 83.12

Thermal Conductivity (W/mK) 0.1432 0.2085 0.2362 0.2663

2.4. Machining Characteristic Measurements

In this work, three prominent machining indices, namely main cutting forces (Fc), tool wear
(VBmax), and surface roughness values (Ra) were evaluated under three different nanofluid cutting
conditions. The main cutting forces were measured using online mode and the tool wear as well as
surface roughness measured using offline mode. For the measurement of cutting forces, the TeLC
made lathe tool dynamometer associated with XKM 2000 software was used. In same context, the tool
flank wear measurements for the finish turning operation were recorded using a standard Mitutoyo’s
make toolmaker’s microscope (i.e., VBmax ≥ 0.60 mm, as per the ISO 3685 standard). Similarly, the
arithmetic roughness values have been measured with the Mitutoyo make SJ301 surface roughness
tester. Moreover, these conditions were considered for evaluation of surface roughness values, i.e.,
standard ISO 1999 profile R cut off length of 0.8 mm, range—auto, and speed of 0.25 mm/s. In the end,
the tool wear was analyzed with the help of scanning electron microscopy (SEM).

2.5. Process Parameters and Design Methodology

The three types of machining parameters with three different levels, namely cutting speed, feed
rate, and depth of cut have been used in this work. The complete details of parameters and their used
levels are detailed in Table 5. The selection of these parameters was based purely on pilot experiments,
literature review, and tool manufacturer recommendations. The machining time of 1 min was fixed
in all set of turning experiments. Moreover, these experiments were performed by following the
Box-Behnken response surface methodology (RSM) design. In this, the machining parameters are
considered as a continuous factor and different cooling conditions are termed as a categorical factor.
Note that the total 29 experiments was suggested by RSM and for each set of experiments, a fresh cutting
edge of CBN tool has been used to accurately study the effect of process parameters on machining
responses. In the end, the given parameters were optimized by composite desirability approach (CDA).
The main aim of the implementation of CDA is to achieve the most accurate predictions and results in
the minimum possible time. The complete methodology of this scientific work is shown in Figure 1.

Table 5. Machining parameters and their levels.

Parameters Coded Value Units Low Level (−1) Middle Level (0) High Level (+1)

Cutting Speed (Vc) A m/min 200 250 300
Feed Rate (f) B mm/rev 0.1 0.15 0.20

Depth of cut (ap) C mm 0.25 0.50 0.75
Cooling condition D - Al2O3 MoS2 Graphite
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Figure 1. Research methodology of current work.

3. Results and Discussion

This section is divided into three phases: (1) Statistical Analysis, (2) Experimental Investigation
of Process Parameters and (3) Optimization Studies. The complete details are given in the
following sections.

3.1. Statistical Analysis

Statistical relevance was determined for the tested parameters. Therefore, the Box Cox
transformation was developed to train the predictive models. It can help to build a family of
transformations that can contains normalized data. They are normally unevenly distributed and linked
to an appropriate exponent (lambda, l). By using the lambda value, it is possible to easily control the
power in order to modify these data. Initially, the Box and Cox were applied to simultaneously correct
the normality, linearity, and homogeneity.

The Box Cox plots associated with the cutting forces, surface roughness, and tool wear was
presented in Figure 2a–c. In all responses, the blue line obtained from the cutting forces and surface
roughness shows a value for lambda residuals equal to 1, having values outside of the 95% confidence
limits. As per the green line observation, the lambda is approx. 0.5. The square root transformation is
applied to the responses, which allows for the generation of normally distributed residuals. The Box
Cox transformation results for the normal distribution plot of residuals are depicted in Figure 3a–c.
We can note that the residuals fall over the straight line conveying the evolution of residuals were
distributed as normal. Finally, the ANOVA was introduced for verification.
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Figure 3. Normal distribution plots. (a) Cutting forces; (b) Tool wear; (c) Surface roughness.

The values of manual elimination procedure for the cutting force, surface roughness, and tool
wear determined by ANOVA were introduced. The data from these tables demonstrates that the
simulated models for all the responses are significant. There were noted the value of “Probability>
F’” that is associated with lack of fit ~0.0124 (cutting forces), 0.0431 (tool wear), and 0.0173 (surface
roughness). As it is larger than 0.05, the lack of fit is considered insignificant. The R2 values are
0.918 (cutting forces), 0.742 (tool wear), and 0.7173 (surface roughness). The measure of proportion
for the entire variability, R2, helps to explain the model and was found to equal or be close to 1, as
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per recommendations [27]. Further, the adjusted R2 value was found good agreement that aided in
comparing the models if they had a different number of terms. Our simulation indicates a close match
between the adjusted and predicted R2 value. Finally, the Equations (1) to (3) were used to determine
the final regression model used to determine the output parameters (i.e., cutting forces, tool wear, and
surface roughness) when used different nano-cutting fluids as coded factors:

Main Cutting Force

Cutting Fluid 1 :
Cutting Force = −58.33 + 0.645× Cutting Speed + 521.66× Feed Rate + 0.356×Depth of Cut

(1a)

Cutting Fluid 2 :
Cutting Force = −70.28 + 0.983×Cutting Speed + 324.61× Feed Rate + 0.74×Depth of Cut

(1b)

Cutting Fluid 3 :
Cutting Force = −79.66 + 0.85×Cutting Speed + 642.74× Feed Rate + 0.42×Depth of Cut

(1c)

Tool Wear-

Cutting Fluid 1 :
Tool Wear = 73.33 + 0.485×Cutting Speed + 291.66× Feed Rate− 0.144×Depth of Cut

(2a)

Cutting Fluid 2 :
Tool Wear = 67.36 + 0.647×Cutting Speed + 472.34× Feed Rate− 0.248×Depth of Cut

(2b)

Cutting Fluid 3 :
Tool Wear = 59 + 0.32× Cutting Speed + 542.62× Feed Rate− 0.376×Depth of Cut

(2c)

Surface Roughness

Cutting Fluid 1 :
Surface Roughness = 0.5 + 1.82×10−3×Cutting Speed + 2.466× Feed Rate−1.94× 10−3× Depth of Cut

(3a)

Cutting Fluid 2 :
Surface Roughness = 0.42578+1.2354× 10−3× Cutting Speed + 5.42367× Feed Rate−1.424× 10−3× Depth of Cut

(3b)

Cutting Fluid 3 :
Surface Roughness = 0.45 + 1.897× 10−3× Cutting Speed + 7.336× Feed Rate− 1.798×10−3×Depth of Cut

(3c)

3.2. Experimental Investigation

3.2.1. Cutting Forces

The cutting forces play an important role in the deformation of machine tool structure. However,
they are directly associated with the machine tool dynamics, and the main factors which affect the cutting
forces are cutting speed, feed rate, and depth of cut. Moreover, the application of cooling conditions
significantly helps to reduce the cutting forces during turning operation, and this phenomenon becomes
more prominent when the nanofluids are used along with the MQL system. Therefore, the main
cutting force is considered as the important machining index in this experimental work. The effect
of machining parameters and cooling conditions on main cutting force is shown in Figure 4a–c. It
is clearly noted that the cutting forces are increased with the increase in cutting speed and feed rate
values. However, the change in depth of cut produces very little variations in the main cutting force
values. The increase in cutting speed may have increased the temperature which caused local work
hardening. Consequently, a higher force is required for material deformation. The increase of force in
cutting with increased feed rate is due to an increase in the chip cross-section, i.e., more friction [28].
In other words, the cutting speed and feed rate are the most significant factors that contribute in
increasing the main cutting force values as compared with the depth of cut. The same results are also
calculated using the ANOVA tests. Similarly, the trend of cutting environment are described in these
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figures. It is highly visible that the cutting forces are significantly reduced with the application of
change in cutting fluid from Al2O3-based nanofluids to graphite-based nanofluids and MoS2-based
nano-cutting fluid shows a moderate effect on the main cutting force values. This is justified with
the two properties of cutting fluids presented in Table 4: (1) viscosity and (2) thermal conductivity.
It should be stated that using graphite-based nanofluid enhances the heat transfer and tribological
performance of the cutting process. The applied nano-mist with compressed air shows capabilities in
penetrating into the tool–workpiece interface area, and reduces the severity of the induced heat during
machining operation. In addition, the employed nano-mist acts like rollers and causes a noticeable
effect in the frictional behavior of the cutting operation, as has been discussed in the literature [29–31].

 
(a) 

 
(b) 

Figure 4. Cont.
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(c) 

Figure 4. Effect of cutting parameters on main cutting forces. (a) Cutting Speed, where f = 0.15 mm/rev
& ap = 0.50 mm; (b) Feed Rate, where Vc = 250 mm/rev and ap = 0.50 mm; (c) Depth of Cut, where
Vc = 250 mm/rev and f = 0.15 mm/rev.

3.2.2. Tool Wear

The optimum machining cost and minimum energy is achieved with the tool having longer
life because the tool wear and tool life are critically damaged with the direct values of machining
parameters. Therefore, the careful selection of cutting speed, feed rate, and depth of cut values are
required to achieve the maximum tool life values. In addition, the presence of coolant/lubricant has
cemented their potential to improve the tool life values. Therefore, in this work, the maximum flank
wear criteria according to the ISO 3685 (i.e., VBmax ≥ 400 μm) has been selected to evaluate the results.
The influence of cutting speed, feed rate, and depth of cut under the different nanofluids conditions
are presented in Figure 5a–c. It is noted that for cutting speed and feed rate values, the tool flank
wear follows an increasing pattern. However, the depth of cut shows the opposite trend and very
little effect on tool flank wear values as compared with the cutting speed followed by the feed rate
values. As mentioned earlier, the increased chip contact area and the hardening effect at local zone
may have caused the difficulty in cutting. As such, the wear of tool increased. Furthermore, it is
observable that the values of tool flank wear were reduced with the different cutting fluids values and
the graphite-based nano-cutting fluids shows promising results. In terms of the tool performance,
the nano-mist from all nano-additives showed promising performance in reducing the severity of the
tool wear, and this is mainly due to the enhancement in the rubbing level (i.e., at the tool–workpiece
interface zone). As mentioned earlier, the nano-mist acts as rollers, and that reduces the induced
coefficient of friction. As can be seen in Figure 5, graphite-based nano-mist offers less flank wear
than Al2O3 and MoS2 nano-mist. This can be due to the higher thermal conductivity (see Table 4),
which means better heat transfer and less rubbing effects. In addition, the giant covalent structure
in graphite atomic structure can lead to a better rolling effect, especially when it is compared to the
alumina atomic structure (see Figure 6). That can be reflected in the results obtained in Figure 5 as
the graphite and MoS2 nano-mist offer almost the same performance with a slight advantage over
the graphite nanofluid. Furthermore, noticeable effects of both graphite and MoS2 nano-mist clearly
appeared at high cutting speeds (see Figure 5a) which mean that a high heat was generated at the
cutting zone. Moreover, the SEM images in Figure 7 confirmed the same findings in Figure 5 as all
used nano-additives offered better tool performance; however, greater advantages have been observed
for both graphite and MoS2 nano-mist, especially in crater wear.
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(a) 

(b) 

 
(c) 

Figure 5. Effect of cutting parameters on tool wear. (a) Cutting Speed, where f = 0.15 mm/rev &
ap = 0.50 mm; (b) Feed Rate, where Vc = 250 mm/rev and ap = 0.50 mm; (c) Depth of Cut, where
Vc = 250 mm/rev and f = 0.15 mm/rev.
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(a)                        (b)                      (c) 

Figure 6. Atomic structure of the used nanoadditives. (a) Alumina structure; (b) MoS2 structure;
(c) Graphite structure.

 

(a) 

 

(b) 

 

(c) 

Flank Wear 

Chipping 

Minimum Wear 

Figure 7. Tool wear images at different working conditions at Vc = 300 m/min, f = 0.15 mm/rev,
ap = 0.50 mm. (a) Al2O3 nanofluid; (b) MoS2 nanofluid; (c) Graphite nanofluid.

3.3. Surface Roughness

In order to evaluate the quality of any product, arithmetic surface roughness (Ra) is considered as
a valuable parameter. As evident from Figure 8, the increase in the cutting speed caused an increment
in surface roughness. This can be attributed to the increased chatter of the machine tool at such a
high cutting speed (300 m/min) used for a superalloy. Similarly, the increase in feed rate caused an
increase in the area of tool travel; in other words, more friction was endured. As a result, the tool wear
increased. Higher friction and tool wear may have caused the surface roughness to be increased at
such a higher feed rate. However, the increase in depth of cut has caused the surface roughness to be
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lower. Here, it is to be noted that the impingement of cooling agent with nanofluid have caused the
surface to be smoother and a lower roughness value was found. It can be noted that the performance
of the three used nanoadditives were nearly the same; however, both graphite and MoS2 nano-mist
showed better results at the highest cutting speed (see Figure 8). As mentioned earlier, this can be
due to the higher thermal conductivity compared to Al2O3 nanofluid. This enhancement results from
the promising heat transfer and tribological performance of such nanoadditives, which improve the
interactional effect between the tool and workpiece, and reduce the induced coefficient of friction as
well as the high generated temperature in the cutting zone. Therefore, better tool performance and
surface quality can be clearly observed compared to the classical technique, as previously discussed in
some previous studies [32,33].

 
(a) 

 
(b) 

Figure 8. Cont.
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(c) 

Figure 8. Effect of cutting parameters on surface roughness. (a) Cutting Speed, where f = 0.15 mm/rev
& ap = 0.50 mm; (b) Feed Rate, where Vc = 250 mm/rev and ap = 0.50 mm; (c) Depth of Cut, where
Vc = 250 mm/rev and f = 0.15 mm/rev.

In order to physically understand the provided results, the nano-mist mechanism during cutting
processes should be discussed in terms of the tribological and heat transfer aspects. Due to the effect of
the MQL compressed air along with the nanofluids, a very thin layer is formed at the cutting zone as
described in the literature [34,35]. This layer includes two main advantages to the overall performance
of the cutting process. The first advantage is to absorb the high heat generated during the process as it
has a high heat transfer coefficient because of the employed nanoadditives [36]. The second aspect is
related to the friction behavior. The applied nano-mist at cutting zone plays as rollers which reduce
the induced rubbing between the tool and workpiece [37]. Therefore, lower cutting forces and tool
wear can be observed for the cutting tests performed with MQL nanofluid.

3.4. Optimization of Process Parameters: Composite Desirability Approach (CDA)

The main objective was to identify the best possible process parameters that lead to sustainable
machining of Inconel-800 alloy. Table 6 presents the results obtained using the typical desirability
strategy. This approach is very common and provides an efficient solution with a friendly interface [8,9].
It is developed to adjust the characteristic weight and their importance. Through this approach, it is
possible to combine all assigned goals to a unique desirable function in the range 0 ≤ di ≤ 1. Details of
this approach were presented elsewhere [38]. The outputs responses determined through this approach
are classified as (1) higher-the-better, (2) smaller-the-better, and (3) nominal-the-better. To ensure
the goal of this research, here, we implemented ‘smaller-the-better’ responses that were evaluated
numerically through Equation (4).

di =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 xi ≤ x”

1[
x∗i−xi

x∗1−x”
1

]r
x”

1 < xi < x∗i
0, xi ≥ x∗i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭ (4)
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Table 6. Optimum results using composite desirability approach (CDA).

Sr. No.
Cutting
Speed

Feed
Rate

Depth of
Cut

Cutting
Fluid

Cutting
Force

Tool
Wear

Surface
Roughness

Desirability

1 200 0.10 0.70 3 143 181 0.87 1.00
2 202 0.10 0.64 3 141 183 0.88 0.88
3 201 0.10 0.63 3 140 183 0.88 0.74
4 201 0.10 0.70 3 145 182 0.87 0.72
5 200 0.10 0.62 2 141 182 0.88 0.65

Here, x”
1 represents the smallest value associated to xi, x∗1 is the largest value associated to xi while

r denotes the shape function.
Further, the cutting speed, feed rate, and depth of cut were selected within the range parameters.

Table 6 presents the optimum five solutions determined by applying the CDA. The best solution
was considered as the one having the maximum desirability value. Similarly, Figure 9 shows the
histogram determined for the ideal solution with following parameters: 200 m/min for the cutting
speed, 0.10 mm/rev of feed rate, 0.70 mm of depth of cut, and graphite-based nano-cutting fluids
having the maximum desirability value.

 
Figure 9. Histogram plot represent the optimum values.

4. Conclusions

This work primarily focuses on the performance of three different nano-cutting fluids during the
turning of new nickel-based alloy, i.e., Inconel-800. In the literature, major efforts have been focused
on the Inconel-718 alloy. That is why this new alloy has been selected as a subject material in this
experimental work. The major conclusions drawn from these experiments are given below:

• Statistical analysis results: The results determined through experiments were statistically
significant in terms of Box Cox transformation, R2 values, and ANOVA tests. Therefore,
the prediction models are useful for researchers and academics to determine the values for
their reference.

• Experimental investigation: The trend of almost all parameters were found to be the same, i.e.,
the cutting forces, tool wear, and surface roughness values were significantly affected with small
changes in any one of these machining parameters.

• Comparison results: When the comparison was made between all cutting fluids, the overall
performance of graphite-based nanofluids was found to be better in improving the machining
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characteristics. This is because of the good tribological and cooling properties of graphite-based
nano-cutting fluids. Moreover, the chemical structure of graphite is more covalent and this
drastically affects its performance as compared to other nanofluids.

• Optimization results: CDA is also a very efficient optimization method for determining the
optimal solution, i.e., 200 m/min for the cutting speed, 0.10 mm/rev of feed rate, 0.70 mm of depth
of cut, and graphite-based nano-cutting fluids.

• Future recommendations: Even though the results obtained from this study were highly useful
for practical applications, some future avenues are still pending to improve the machining
performance of Inconel-800 alloy. For instance, the high-pressure cooling (HPC) approach could
be integrated with the nano-cutting fluids and the results compared with the MQL technique.
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Abstract: The aluminium matrix composites (AMCs) have become a tough competitor for various
categories of metallic alloys, especially ferrous materials, owing to their tremendous servicing in the
diversified application. In this work, additional efforts have been made to formulate a mathematical
model, by using dimensionless analysis, able to predict the mechanical characteristics of the AMCs
that have already been optimized and characterized by the authors. Here, the experimental and
statistical data obtained from the Taguchi L18 orthogonal array and analysis of variance (ANOVA)
have been used. They permit collection of the output responses and allow the identification of
significant process parameters, respectively, which thereafter were used to design the mathematical
model. Second order polynomial equations have been obtained from the specific output response and
the relevant input parameter were incorporated with the highest level of contribution. The obtained
quadratic equations indicate the regression values (R2) equal to unity, hence, proving the performances
of the fit. The results demonstrate that the developed mathematical models present very high accuracy
for predicting the output responses.

Keywords: fused deposition modelling; investment casting; mathematical modelling; aluminium
matrix composite

1. Introduction

In the last two decades, the rapid advancement of technology has contributed to large modification
in the manufacturing sector. During this period, the demand for materials that can sustain the
extreme level of service conditions increased globally. Specifically, in aerospace and automobile
sectors, the requirement of materials having high strength, toughness, hardness, and prolonged
service life was always a challenge. Apart from these properties, one of the major requirements is
‘light weight’. Different studies have reported the needs of lighter material as one of the motivations
behind the invention of reinforced materials, commonly, referred to as metal matrix composites [1–3].
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Amongst various categories of metal matric composites, the one based on the aluminium (Al) matrix
is in high demand, owing to its excellent thermal, mechanical, tribological, chemical, and structural
characteristics [4–6]. Further, there exists a wide range of manufacturing processes, which can be used
for the fabrication of the tailor-made composites with desirable properties [7]. Specifically, aluminium
matrix composites (AMCs) are basically popular because of the low weight/density ratio, high wear
resistance, cost effectiveness, high elastic modulus, and excellent strength [8–11]. Further, Sajjadi et al.
reveal Al-Al2O3 as the most popular type of AMCs because it contains micro Al2O3 particles within the
matrix of Al [12]. Such as, the Al-Al2O3 based composites have continually extended their applicability
within industrial applications [13,14].

Traditionally, the reinforcements are introduced to the metallic matrix via an ex-situ method [15,16],
wherein the matrix and reinforcements are mixed with each other outside the mould cavity or die.
This method of reinforcement results in poor wettability between the reinforcement and the matrix due
to the increased surface area and presence of surface contamination on the reinforcements [17]. In order
to overcome the interface issue, recent trends have been shifted towards the use of reinforcements
within the cavity or mould itself [18]. As defined in the literature, there are various routes, commercially
available, for the preparation of AMC. The most widely used commercial routes are the stir casting
and powder metallurgy [19–21]. There, the machinability of AMCs is very poor, in contrast to pure
Al, due to the brittle reinforcements in the matrix. The investment casting (IC) process has shown
its superiority, over the other solutions; in-terms of producing highly complex and near-net shaped
parts with very fine surface finish [22]. Additionally, this process is simple, cost effective, and allows
manufacturing a wide range of materials; however, the stretched production cycles represents one
of the critical challenges for the IC [23,24]. As continuum improvement, the hybridization of IC
and stir casting process has become the most popular methods to develop superior metal matrix
composites (MMCs) [25,26]. The intrinsic weaknesses of IC process (such as: low strength of wax
pattern, un-economical injection moulding cost, high die design cost, and longer production runs)
can be eliminated by using fused deposition modelling (FDM) process for pattern making [27–30].
FDM works on the same principle as the Additive Manufacture (AD), wherein the thin plastic slices
are deposited at a defined distance. The interface, therefore, can result in poor surface finish due to
an integral stair-casing. Boschetto and Veniali suggested the barrel finishing of formed FDM parts as
an efficient method to enhance their surface finish [31].

The collaboration of FDM and IC has been extensively researched in the literature, which duly
cited the myriads of merits [32–36]. In the recent years, the authors have investigated a novel method
for the production of the in-situ based AMCs, through the use of FDM assisted by the IC process.
In this respect, the authors developed in-house composite polymeric composites that were used for
the production of sacrificial patterns for the IC process. As observed in [1,2,37], the manufactured Al
castings consist of Al2O3 distributions, which permit the validation of the authenticity of the adopted
methodology. Further, the input process parameters; refer to Appendix A (i.e., Table A1), have been
optimized by using Taguchi L18 orthogonal array-based design of experimentation techniques in
response of dimensional accuracy [1], surface hardness [2], and surface roughness [3]. In this work,
mathematical models, based on the obtained results of [1–3], for all the aforementioned output
responses have been developed by using dimensionless modelling, Buckingham’s π-approach. Further,
regression equations have been implemented against the best features of the input process parameters,
as per analysis of variance (ANOVA).

2. Materials and Methods

Figure 1 presents the methodology adopted in this research. By using a Fish bone diagram (see
details on Figure 2), we highlight the main process parameters associated to the IC which can affect the
quality features of the IC components. The number of IC slurry layer (NSL) has been judicially selected
as an input parameter due to its significance highlighted in the literature [38–40]. The following are
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the procedural steps followed to obtain AMCs, which refer to the original Taguchi L18 orthogonal
array (Table A1), as given in the Appendix A:

• The alternative feedstock filaments (FP) have been prepared using PA, Al2O3, and Al in different
%wt. proportions with the help of single screw extrusion process.

• The formed filaments were used for the development of sacrificial patterns of cubical shape with
three different volumes (VP), such as 17,576 mm3, 27,000 mm3, and 39,304 mm3. They were
produced at low, high, and solid density of FDM process (DP) by using uPrint-SE system of
Stratasys Inc. (Edina, MN, USA). In the works, reported previously, it has been seen that the
change in the in-fill density affects the mechanical and tribological performances of the developed
AMCs [1–3]. The prime reason behind the selection of FDM technology is due to its affordability
and suitability for hybridization within the IC process [23,24,41]. Further, the selection of
the process parametric levels from previous studies has been judicially selected, based on the
pilot studies.

• Prior to shell moulding, the barrel finishing (BF) process was performed on the samples, for the
refurbishment of resulted surface finish [31]. Here, barrel finishing time (BFT) and barrel finishing
media weight (BFW) have been selected as input process parameters.

• Then, the IC moulds were prepared by coating the trees (consisting of riser, pouring basin, gating,
and also the FDM printed sacrificial pattern) with refractory layers of silica. The number of IC
slurry layers (NSL) has also varied in accordance to Table A1 in the Appendix A.

• Autoclaving and baking were performed in one step at 1150 ◦C (by maintaining the pouring
sprue in a vertical up position so that the Al2O3 filler particles could be arrested within the cavity
only). At this range of temperature, the matrix of the sacrificial patterns evaporates, immediately,
without causing mould cracks.

• Finally, pouring of molten Al-6063 has been carried out.

Figure 1. Step by step procedure of aluminium matrix composites (AMC) development.
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Figure 2. Fish bone diagram for prepared castings.

The castings manufactured were tested for surface hardness, dimensional accuracy and surface
roughness by using HVS-1000BVM hardness tester (HV0.01 scale; ASTM-E384, Laizhou, China),
Vernier Caliper (Mitutoyo: least count 0.01mm, Takatsu-ku, Kawasaki, Japan) and Mitutoyo SJ-210
(Japan, ISO: 1997) surface roughness tester, respectively. For microstructural evaluation, the Scanning
Electron Microscopy (SEM, JEOL, Peabody, MA, USA) analysis has been performed on the casting
manufactured in the experiment #16, #17 and #18 associated to Table A1. It has been seen that the Al2O3

particles presented in Al matrix allow to enhance the quality characteristics of the castings, especially
the hardness on the surface. Figure 3 shows the SEM micrographs and their associated Energy
Dispersive Spectroscopy (EDS) spectrums (JEOL, USA). The measurements indicate the presence of Al,
O, Si, Fe, and C-peaks, which confirm the existence of alumina. These elements identified on the EDS
measurements (i.e., Al, O, and C) are the common sign of alumina surface [42]. They were noted as
well as the presence of elements Fe and Si, which denote some small impurity.

  
#16 

  
#17 

Figure 3. Cont.

124



Materials 2019, 12, 1907

  
#18 

Figure 3. SEM micrograph and EDS spectrum of experiment #16, #17, and #18.

3. Dimensionless modelling: Buckingham Pi Approach

Dimensionless modelling of the experimental data is considered an efficient method in order
to formulate analytic mathematical functions that are out of a highly complex experimental system
associated to numerous process parameters [43]. The concept of dimensionless analysis helps to reduce
the influence of variables by means of physical equations [44–46]. To date, dimensionless modelling with
the help of Buckingham Pi approach has been extensively investigated for a wide range of scientific and
engineering applications including fluid dynamics [47], energy [48], electronics [49], heat transfer [50]
and others. According to the Buckingham approach, any practical problem containing “n” factor sand
further “m” dimensions, then the subtraction of n and m will result the counts of independent factors,
which could be assumed. Presently, “n” and “m” are 7 and 3, respectively. Therefore, the problem
will consist of π1, π2, π3 and π4 that are the dimensional magnitudes. Furthermore, the mathematical
formulae derived for the assumed independent parameters help to develop the dimensional relationships
by following a set of standard steps [51,52]. Standard quantities of the same physical nature (mass,
length, and time) are used based on fundamental units. Consequently, it can be said that these systems
belong to the same class. To generalize, a set of systems of units that differ only in the magnitude
(but not in the physical nature) of the fundamental units are called a class of systems of units [53].
Unlike other statistical approaches, the mathematical modelling in the case of Buckingham’ Pi approach
could be very tedious if a proper set of producers is not considered. Based on [53], following are the
step-by-step descriptions of the modelling process adopted in the present work:

i. First of all, the units of the input and the output process parameters have been unified and
converted into physical quantities (such as M, L, and T). Further, it is of utmost importance to
highlight that any kind of categorical parameter, either input or output, is not suitable for the
modelling. Moreover, upon such conversions, it should be considered that the replacement could
be represented in-terms of M, L, and T formats. Therefore, in present work, the original Table A1
in the Appendix A has been modified in order to balance the units, as well as to convert the
qualitative parameters into quantitative. For instance, the parameter “filament proportion” has
been quantified in-terms of its tensile strength; density of the FDM pattern has been considered in
terms of mass and volume; mould wall thickness has been converted from a number of layers to
thickness of the wall, etc. Table 1 is the final prepared modified version of Table A1.
The obtained dimensions of input and output parameters would be:
Hardness (H) as ML−1T−2, Dimensional accuracy as L,
Surface roughness as L,
Filament proportion (P) in-terms of tensile strength of filament as MLT−2,
Volume of FDM reinforced pattern (V) as L3,
Density of FDM pattern (�) as ML−3,
BF cycle time (t) as T,
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BF media weight (W) as M and the Number of IC slurry layers (l) resulting into mould wall
thickness as L.

ii. Then, it is mandatory to find out the significance level of the input process parameters for the
measured outcomes. In the present case, ANOVA has been implemented with the help of
MINITAB-17 based statistical software in order to identify the significance and contribution of
input parameters. Table 2 shows the contribution percentage of input process parameters for
surface hardness, dimensional accuracy, and surface roughness.

iii. Before starting to formulate the π equations (let us say ‘x’), it is necessary to identify the ‘x −
1’ top performing input parameters. For instance, in the case of surface hardness, when ‘x’ is
equal to 4 that allows to develop 4 π-equations, three top performing input parameters have to
be identified.

iv. Now, the top performing input parameters and the output parameters being analyzed represent
the π equations.

v. After calculating the π equations, the π1 (related to the output parameter) is solved as a function
of other πs (π2, π3, and π4, consisted of input parameters).

vi. Once the step-v is completed, a constant ‘K’ has been considered whose value has been driven
from a second order quadratic equation of the fitness curve that connect the output response
and the most contributing input parameter.

vii. Further, the fitness curve should be plotted between the measured output values and the
corresponding values of the most significant input parameter, while keeping the rest of the
parameters constant. Alternatively, in the present case, the plots have been drawn between
the three levels of the input process parameters and the average of the corresponding output
result. For instance, in case of Figure 4, the average of hardness for experiment #1, #4, #7, #10,
#13, and #16 has been plotted against first level of FD (5.12 × 10−6 N/mm3) and the average of
hardness for experiment #2, #5, #8, #11, #14, and #17 has been plotted against second level of
FD (7.63 × 10−6 N/mm3). Similar procedure has been adopted for the third level of the FD.

viii. Noticeably, the regression (R2) ~ 1 indicates the best fitness of the data.

3.1. Hardness

In the present study, hardness is considered a function of all input process parameters that is
expressed by Equation (1).

So,

H = f(P, V, �, t, W, l) (1)

Based on the Table 2; the least significant parameters for this particular parameter are BF cycle
time, BF media filament proportion, and weight that will directly go in “π” groups. The “π” eqns. for
hardness can be written as:

π1 = H (F)a1 (t)b1 (W) c1 (2)

π2 = � (F)a2 (t)b2 (W)c2 (3)

π3= l (F)a3 (t)b3 (W)c3 (4)

π4 = V (F)a4 (t)b4 (W)c4 (5)

After substituting the decided dimensions in the “π” groups, Equations (6), (8), (10), and (12) are
formed. Now, in order to solve these further, the resulted equations are equated to zero. For instance,
the π1 will be solved as follows:

π1 =ML−1T−2 (ML−1T−2)a1 (T)b1 (M) c1 (6)
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Equating the basic dimensions to zero:
M: 1 + a1 + c1 = 0
L: −1 − a1 = 0
T: −2 −2a1 + b1 = 0
We get,
a1 = −1, b1 = 0 and c1 = 0
So, Equation (2) can be re-written as:

π1 = H/F (7)

Similarly, on solving π2;

π2 =ML−3 (ML−1T−2)a2 (T)b2 (M)c2 (8)

Similarly, equating the basic dimensions to zero:
M: 1 + a2 + c2 = 0
L: −3 − a2 = 0
T: −2a2 + b2 = 0
We get,
a2 = −3, b2 = −6 and c2 = 2
So, Equation (3) can be re-written as;

π2 = �/F3t6 (9)

On solving π3;

π3 = L (ML−1T−2)a3 (T)b3 (M)c3 (10)

Equating the basic dimensions to zero:
M: a3 + b3 = 0
L: 1 − a3= 0
T: −2a3 + b3 = 0
We get,
a3 = 1, b3 = 2 and c3 = −1
The Equation (4) for π3 can be re-written as;

π3 = lFT2/W (11)

Solving π4;

π4 = L3 (ML−1T−2)a4 (T)b4 (M)c4 (12)

Equating the basic dimensions to zero:
M: a4 + c4 = 0
L: 3 – a4 = 0
T: 0 – 2a4 + b4 = 0
We get,
a4 = 3, b4 = 6 and c4 = −3
The Equation (5) for π4 can be re-written as;

π4 = VF3t6/W3 (13)

The final relationship between all four Equations of “π” can be assumed as;
π1 = f(π2,π3 and π4)
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Table 2. Percentage contribution of input process parameters.

Source Surface Hardness (H) Dimensional Accuracy (Δd) Surface Roughness (Ra)

FP 7.69% 0.76% 4.16%
VP 8.85% 16.95% 43.84% *

DP 65.75% * 19.83% 3.03%
BFT 1.03% 3.30% 6.45%
BFW 0.8 % 31.71% * 2.94%
NSL 14.14% 8.97% 5.72%

Residual Error 1.74% 18% 33.86%
Total 100% 100% 100%

* Highly contributing factor.

Or
H/F =

(
ρ

F3t6 , lFt2

W and VF3t6/W3
)

The above expression can be written as:

H = K·�·F2·l·t2·V/W4 (14)

Here, “K” is the proportionality constant.
Experimentally, it has been found that a correlation between the hardness and “�” exists (refer

Table 2). Hence, it was taken as representative factors to develop the mathematical model. The average
values of the hardness obtained at different levels of “ρ” (throughout the Table 1) has been plotted
(see details in Figure 4). In this case, a regression equation (R2 = 1) with a second order has been
determined. Based on the obtained linear equation, the final mathematical model that includes the
hardness is given:

H = [(2E + 13� 2 - 3E + 8� + 1607.5)]F2·L·t2·V/w4 (15)

Figure 4. Hardness versus density of fused deposition modelling (FDM) pattern plot.

3.2. Dimensional Accuracy

In a similar way, dimensional accuracy is considered as a function of all input process parameters
that is expressed by Equation (16).

Δd = f (F, V, ρ, t, W, l) (16)
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From Table 2, the least significant parameters are BF cycle time, number of IC slurry layers,
and filament proportion, that will directly go in “π” groups. The “π” equation for dimensional accuracy
can be written as:

π1 = Δd (F) a1 (t) b1 (L) c1 (17)

π2 =W (F) a2 (t) b2 (L) c2 (18)

π3 = � (F) a3 (t) b3 (L)c3 (19)

π4 = V (F) a4 (t) b4 (L) c4 (20)

The same set of mathematical iterations has been repeated for dimensional accuracy and the
relationship between the all four “π” equations is given in Equation (21) as below:

Δd/l = f
(

W
Ft2l

,
ρl2

Ft2 and
V

l3

)
(21)

On solving the above expression, we get:

Δd = K·�·W·V/F2·l·t4 (22)

BF media weight, which is the most significant parameter (refer to Table 2) with regards to
dimensional accuracy, of the casted composites, has been taken as the representative parameter to
develop the mathematical model. For this, the average values of the dimensional accuracy obtained at
different levels of “BFW” (throughout the Table 1) has been plotted; refer to Figure 5. Then, a regression
equation (R2 = 1) with a second order has been determined. Based on the obtained linear equation,
the final mathematical model for dimensional accuracy is given as:

Δd = [(−5E − 06W2 + 0.0014W − 0.0345] �·V/F2·l·t4 (23)

Figure 5. Dimensional accuracy versus barrel finishing (BF) media weight plot.

3.3. Surface Roughness

Further, Equation (24) represents the surface roughness, as a function of all input process variable:

Ra = f (F, V, ρ, t, W, l) (24)
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Based on the Table 2; density of FDM pattern, filament proportion, and BF media weight are the
least significant parameters for surface roughness that will directly go in “π” groups. The “π” equation
for dimensional accuracy can be written as:

π1 = Ra (W) a1 (�) b1 (F) c1 (25)

π2 = V (W) a2 (�) b2 (F) c2 (26)

π3 = t (W) a3 (�) b3 (F) c3 (27)

π4 = l (W) a4 (�) b4 (F) c4 (28)

Now, repeating the same set of mathematical operations the final expression that describes the
relationship between all the four “π” is given as Equation (29):

Ra(ρ/W)1/3 = f

⎛⎜⎜⎜⎜⎜⎝Vρ

W
,

t

(ρ)
1
6 (FW)

1
3

and l(
W
ρ
)

1/3
⎞⎟⎟⎟⎟⎟⎠ (29)

Equation (29) can be written as:

Ra = K·(V·t·l·�ˆ(1/6))/F1/3·W2/3, (30)

Similar to the dimensional accuracy, volume of FDM reinforced pattern which is the most
significant parameter (refer to Table 2) with regard to surface roughness, of the casted composites,
has been taken as the representative parameter to develop the mathematical model. For this, the average
values of the surface roughness obtained at different levels of “VP” (throughout Table 1) has been
plotted; refer to Figure 6. Then, a regression equation (R2 = 1) with a second order has been determined.
From the obtained linear equation, the final mathematical model for surface roughness is given as:

Ra =
[(
−2E − 6V2 + 0.2101V + 1846.5

)]
·
(
t·l·ρ 1

6

)
/F1/3·W2/3 (31)

These results obtained in the present work are found to be in-line with the observations presented
in the literature [42,45].

Figure 6. Surface roughness versus volume of FDM pattern plot.
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4. Conclusions

In this work, Vashy-Buckingham’s π-theorem was employed successfully for the development
of the mathematical models related to the hardness, dimensional accuracy, and surface roughness of
AMCs; material that was produced through FDM assisted by the IC process. The ANOVA simulation
were embedded in the present methodology in order to generate a standard database and to recognize
the significance process parameters, respectively. Further, all three mathematical models developed are
of second order polynomial equations, with a regression value equal to 1, which prove the reliability of
the models.
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Appendix A

Table A1. Design of experimentation as per original Taguchi L18 orthogonal array.

Exp.
No.

FP VP (mm3) DP BFT BFW NSL
Ra

(μm)
S/N ratio

(dB)
Δd

(mm)
S/N ratio

(dB)
HV

S/N ratio
(dB)

1 C1 26 × 26 × 26 Low density 20 10 7 4.762 −13.55 0.026 31.34 89.5 39.01
2 C1 26 × 26 × 26 High density 40 15 8 5.151 −14.27 0.03 29.45 91.8 39.18
3 C1 26 × 26 × 26 Solid 60 20 9 4.778 −13.58 0.02 33.30 115 41.18
4 C1 30 × 30 × 30 Low density 20 15 8 4.371 −12.82 0.06 23.37 80.3 38.06
5 C1 30 × 30 × 30 High density 40 20 9 5.582 −14.93 0.063 23.80 86.5 38.72
6 C1 30 × 30 × 30 Solid 60 10 7 6.094 −15.69 0.053 25.32 115 41.22
7 C1 34 × 34 × 34 Low density 40 10 9 5.368 −14.59 0.043 27.06 77.1 37.73
8 C1 34 × 34 × 34 High density 60 15 7 5.658 −15.05 0.08 21.89 91.9 39.25
9 C1 34 × 34 × 34 Solid 20 20 8 6.404 −16.13 0.016 35.22 100.4 39.92
10 C2 26 × 26 × 26 Low density 60 20 8 4.709 −13.45 0.016 35.22 93.4 39.38
11 C2 26 × 26 × 26 High density 20 10 9 4.573 −13.20 0.076 22.29 95.9 39.62
12 C2 26 × 26 × 26 Solid 40 15 7 4.658 −13.36 0.056 24.72 134.3 42.60
13 C2 30 × 30 × 30 Low density 40 20 7 5.297 −14.48 0.033 29.45 95.3 39.56
14 C2 30 × 30 × 30 High density 60 10 8 5.889 −15.40 0.050 25.90 93.8 39.41
15 C2 30 × 30 × 30 Solid 20 15 9 6.845 −16.70 0.060 24.35 104.5 40.37
16 C2 34 × 34 × 34 Low density 60 15 9 8.564 −18.65 0.033 29.20 84.1 38.29
17 C2 34 × 34 × 34 High density 20 20 7 5.721 −15.15 0.043 27.06 102.4 40.20
18 C2 34 × 34 × 34 Solid 40 10 8 5.894 −15.40 0.046 26.44 106.2 40.48

Where, FP, VP, DP, BFT, BFW, NSL, Ra, Δd, HV, and S/N represent the filament proportion, volume of the pattern,
density of the pattern, barrel finishing time, barrel finishing media weight, number of IC slurry layers, surface
roughness, dimensional accuracy/deviation, Vickers hardness, signal/noise, respectively. Further, C1 and C2 are the
compositions of PAx/Al2O3y/Alz (where x is 60% by wt.; y is 10% and 12% by wt., respectively; and z: 28% and 30%
by wt., respectively).
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Abstract: In the present study, the groups of cutting conditions that minimize surface roughness and
its variability are determined, in ball-end milling operations. Design of experiments is used to define
experimental tests performed. Semi-cylindrical specimens are employed in order to study surfaces
with different slopes. Roughness was measured at different slopes, corresponding to inclination
angles of 15◦, 45◦, 75◦, 90◦, 105◦, 135◦ and 165◦ for both climb and conventional milling. By means of
regression analysis, second order models are obtained for average roughness Ra and total height of
profile Rt for both climb and conventional milling. Considered variables were axial depth of cut ap,
radial depth of cut ae, feed per tooth fz, cutting speed vc, and inclination angle Ang. The parameter
ae was the most significant parameter for both Ra and Rt in regression models. Artificial neural
networks (ANN) are used to obtain models for both Ra and Rt as a function of the same variables.
ANN models provided high correlation values. Finally, the optimal machining strategy is selected
from the experimental results of both average and standard deviation of roughness. As a general trend,
climb milling is recommended in descendant trajectories and conventional milling is recommended
in ascendant trajectories. This study will allow the selection of appropriate cutting conditions and
machining strategies in the ball-end milling process.

Keywords: surface finish; high speed milling (HSM); roughness; modeling

1. Introduction

In order to increase productivity and reduce costs, it is important to choose appropriate cutting
conditions in high speed milling (HSM) processes because they will influence surface roughness and
the dimensional precision obtained. For example, the tool inclination angle significantly influences the
surface roughness obtained. When the tool is perpendicular to the workpiece’s surface, cutting speed
is zero at the tool tip [1,2]. This implies that the tool tends to crush the material instead of cutting it.

In mathematical modeling of machining processes several methods can be used, such as
statistical regression techniques, artificial neural network modeling techniques (ANN), and fuzzy
set theory-based modeling [3]. Neural networks provide a relationship between input and output
variables by means of mathematical functions, to which different weights are applied. A training
algorithm is defined that consists of adjusting the weights of a network that minimize error between
actual and desired outputs [4]. In recent times, neural networks have been used for modeling and
predicting surface roughness in different machining operations. For example, Feng et al. modeled
roughness parameters related to the Abbott–Firestone curve by means of ANN in honing operations [5]
and in turning processes [6]. Özel et al. [7] and Sonar et al. [8] also employed ANN for modeling
average roughness Ra, in turning processes. Moreover, simulations of machined surfaces have also
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been extensively investigated. Among many other studies, T. Gao et al. [9] developed a new method
for the prediction of the machined surface topography in the milling process and Honeycutt and
Schmitz [10] employed time domain simulation and experimental results for surface location error and
surface roughness prediction. Vallejo and Morales-Menendez [11] used neural networks for modeling
Ra in peripheral milling, with different input variables, such as feed per tooth, cutting tool diameter,
radial depth of cut, and Brinell hardness. Zain et al. [12] modeled surface roughness with cutting
speed, feed rate and radial rake angle as input variables in peripheral milling, and Quintana et al. [13]
employed neural networks for studying average roughness in vertical milling. Regarding ball-end
milling processes, Zhou et al. [14] used grey relational analysis (GRA) with neural network and particle
swarm (PSO) algorithm to model 3D root mean square deviation of height value Sq, and compressive
residual stresses, with tilt angle, cutting speed and feed as variables.

With regard to the modeling of milling processes by conventional regression models, several
models have been developed, but most studies do not consider the variability which occurs as a
consequence of the slope variations and which is developed in this study. Vivancos et al. [15] obtained
mathematical models for arithmetic average roughness in ball-end milling operations by means of
design of experiments, while Dhokia et al. [16] used design of experiments in ball-end milling to
obtain models as a function of speed, feed and depth of cut. Oktem et al. [17] searched for minimum
values in end milling taking into account cutting speed, feed rate, axial and radial depth of cut,
and machining tolerance as input variables. In addition, they compared a response surface model
with a neural network model [18]. It was observed that ANN lead to more accurate models than
response surface methodology (RSM). Karkalos et al. [19] also compared regression models with
ANN models in ball-end milling, with cutting speed, feed and depth of cut as variables and surface
roughness as response. They found a higher correlation coefficient for ANN models than for RSM
models. Vakondios et al. [20] obtained third order regression models for average maximum height
of the profile Rz, as a function of axial depth of cut, radial depth of cut, feed rate and inclination
angle, taking into account different manufacturing strategies. Wojciechowski and et al. [21] obtained
a model for determining cutter displacements in ball-end milling. They took into account cutting
conditions, surface inclination angle, run out, and the tool’s deflection. They found that both the
cutter’s runout and surface inclination strongly influence cutter displacement. Wojciechowski and
Mrozek optimized cutting forces and efficiency of the ball-end milling as a function of cutting speed
and surface inclination angle [22]. Regarding Taguchi design of experiments, Pillai et al. [23] optimized
machining time and surface roughness as a function of tool path strategic, spindle speed and feed rate
in end milling with a single flute tool.

The main purpose of this study is to select an optimal machining strategy between climb
and conventional milling in ball-end milling processes. For doing this, first mathematical models
for roughness as a function of main process parameters were found. Unlike other works, in the
present paper inclination angle of the surface to be machined is taken into account. Specifically,
regression models and neural network models were obtained for parameters average roughness Ra,
and total height of profile Rt. Finally, an optimal machining strategy was selected between climb and
conventional milling for the different inclination angles considered. This will help molds and dies
manufacturers to select appropriate strategies and cutting conditions in finish operations of surfaces
with different inclination angles.

2. Experimental Procedure

2.1. Milling Tests

In the present study a factorial design of experiments was used for selecting experimental
conditions in the ball-end milling process. The purpose of experimental tests is to analyze variability
in the machining process of parts for injection molds, by means of several measurements performed on
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different areas of the machined workpieces with different inclinations. Two strategies were considered:
climb milling and conventional milling.

The workpieces were manufactured in an HSM center with vertical-spindle Deckel Maho DMU
50 Evolution (DMG Mori Seiki Co, Nakamura-ku, Nagoya, Japan) with Heidenhain control TNC 430
(Dr. Johannes Heidenhain GmbH, Traunreut, Germany), as shown in Figure 1, and tool holder MST
Ref. DN40AD-CTH20-75. Tool details are presented in Table 1.

 

Figure 1. Manufactured part and high-speed machining center employed.

Table 1. Tool details.

Tool Type
End Mill VC2SBR0300 KOBELCO Series

MIRACLE (Kobe Steel, Chūō-ku, Kobe, Japan)

Tool material (Al, Ti)N coated micro grain carbide
Number of flutes 2
Diameter (mm) 6

Tools employed were new or had little wear (average flank wear VB < 0.1 mm), in order to avoid
influence of wear on surface roughness. Only three axes (X-Y-Z) were used.

Semi-cylindrical workpieces were machined in order to assess the effect of slope on surface
roughness (Figure 2a). The material used for manufacturing the parts was a hot work tool steel W-Nr.
1.2344, hardened steel (50-54 HRC), with an approximate composition of 0.39% C, 1.10% Si, 0.40% Mn,
5.20% Cr, 1.40% Mo and 0.95% V.

  
(a) (b) 

Figure 2. Schematic drawing of (a) machined workpiece (units in mm), (b) measured position angles.

A central composite design was chosen for modeling the behavior of both Ra and Rt, consisting of
a two level factorial design with 4 factors (24 = 16 experiments), with 4 central points. Since first-order
models turned out to be inadequate for modeling both behavior of Ra and Rt, 8 star points were added,
thus providing an orthogonal design with star points located at an axial distance of 1.60717. Selected
factors were feed per tooth (fz), axial depth (ap), cutting speed (vc), and radial depth (ae). The study
was developed for finish machining. Low and high levels for the different factors are shown in Table 2.
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Table 2. Low and high levels for factors ae, ap, fz and vc.

Levels ap ae fz vc

Low 0.100 0.100 0.020 150.0
High 0.300 0.300 0.060 250.0

For each experiment, roughness was measured at different angular positions corresponding to
different inclination angles of the workpiece’s surface, as explained in Section 2.2 (Figure 2).

2.2. Roughness Measurement

Roughness was measured along different generatrices of the semi-cylindrical part in Figure 2a,
corresponding to different angular positions (15◦, 45◦, 75◦, 90◦, 105◦, 135◦ and 165◦) in Figure 2b.
Moreover, influence of milling strategy, either climb (down) milling (Figure 3a) or conventional (up)
milling (Figure 3b), on surface roughness was also analyzed (Figure 3).

(a) (b) 

Figure 3. Schematic drawing of milling strategies. (a) climb (down) milling; (b) conventional
(up) milling.

Roughness parameters Ra and Rt were measured using a Taylor-Hobson Form Taylsurf Series
2 profile roughness tester (as Figure 4b shows). An evaluation length of 4.8 mm (6 × 0.8 mm) was
used, and a 2 μm radius stylus tip was used in conjunction with a 0.8 Gaussian cut-off filter and a
bandwidth ratio of 320:1 to evaluate the Ra and Rt parameters. A stylus speed of 0.5 mm/s was used
in conjunction with a 0.8 mN static stylus force and the stylus cone angle used was 90◦.

 
(a) 

 
(b) 

Figure 4. (a) Example of roughness profile; (b) Taylor-Hobson Form Taylsurf Series 2 profile
roughness tester.

Figure 4a shows an example of a roughness profile. A quite regular profile with higher peaks than
valleys was observed, which corresponds to ball-end milling. Although a high number of roughness
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parameters were measured, as shown in Figure 4a, parameters Ra and Rt were selected in order
to obtain results related to a high averaging parameter (Ra) and a low averaging parameter (Rt).
In addition, both roughness parameters are commonly used in roughness characterization [13,24].

2.3. Photographs

A Leica S8AP0 binocular magnifier (Leica Camera AG, Wetzlar, Germany) was used to obtain
photographs of the workpiece’s surface at 80× magnification.

3. Surface Roughness Results

In Table 3, as an example, roughness values of experiment 16 are compared, considering both A
and B manufacturing strategies, respectively, at different angles which correspond to ascendant and
descendant trajectories. Experiment 16 was chosen because it corresponds to high ap, ae, fz, and vc

values (cutting conditions shown in Table 2), which lead to higher roughness values. In the images,
changes of surface topography can be observed as a function of machining strategy (conventional or
climb milling), position angle of the machined surface, and whether the tool displacement along fz
trajectory is ascendant or descendant. According to the methodology explained in Section 2, different
slopes of the machined semi-cylindrical workpieces were considered. For 15◦, 45◦ and 75◦ in climb
milling (Figure 3a), corresponding to 165◦, 135◦ and 105◦ in conventional milling (Figure 3b), the tool
displacement is ascendant. For 105◦, 135◦ and 165◦ in climb milling, corresponding to 75◦, 45◦ and 15◦

in conventional milling, the tool displacement is descendant.

Table 3. Ra and Rt values using climb milling (Figure 3a) and conventional milling (Figure 3b) for
experiment 16 in different angular positions.

Parameter
Climb Milling (Figure 3a) Conventional Milling (Figure 3b)

15◦ 45◦ 75◦ 90◦ 105◦ 135◦ 165◦ 15◦ 45◦ 75◦ 90◦ 105◦ 135◦ 165◦

Ra (μm) 1.56 1.68 0.88 1.23 0.80 0.73 0.75 1.22 1.06 0.70 1.05 0.83 0.83 1.15
Rt (μm) 7.04 7.05 3.82 6.54 4.17 3.08 3.65 5.41 4.72 4.52 7.05 6.00 5.18 5.25

In climb milling, roughness values remain almost constant between 15◦ and 45◦ and decrease
significantly from 45◦ to 75◦ in the ascendant trajectory. Values increase at 90◦ because of a lack of
cutting speed and decrease at 105◦. In the descendant trajectory, values decrease slightly between
105◦ and 135◦ and remain almost constant between 105◦ and 165◦. In conventional milling, similar
results were obtained. As a general trend, lower roughness values were obtained for conventional
milling than for climb milling in the ascendant trajectory, and higher roughness values were obtained
for conventional milling than for climb milling in the descendant trajectory.

In Figure 5, machined surfaces of experiment 16 are presented.
In experiment 16, for each angle considered, surface topography obtained in climb milling is

similar to that obtained in conventional milling. However, Table 3 shows that in general, when fz
trajectory is ascendant, roughness is lower for conventional milling (165◦ to 135◦) than for climb
milling (15◦ to 45◦). On the other hand, when fz trajectory is descendant, roughness is lower for climb
milling (135◦ to 165◦) than for conventional milling (45◦ to 15◦). At 90◦, instead of straight cutting
marks, semicircular cutting marks are observed, suggesting that the tool does not cut properly because
of zero cutting speed [1,2].
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Climb Milling (80×) Angle Conventional Milling (80×) Angle 
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45° 

 

165° 

 

15° 

Figure 5. Machined surfaces corresponding to experiment 16.

4. Models for Surface Roughness

In this study, first the main cutting conditions that minimize Ra and Rt roughness parameters
and their variability were selected. In addition to strategies and cutting conditions, inclination of the
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machined surface was considered, as there seems to be a lack of knowledge on the attained roughness
in the manufacturing process of molds when different slopes have to be machined. Within the range of
ae and fz values studied, surface topography is mainly determined by roughness in the transversal
direction, which is perpendicular to tool marks in the feed fz direction. Along tool marks the roughness
level is remarkably low, since fz < ae [24,25]. For this reason, 2D roughness was studied along the
transversal direction (perpendicular to tool marks).

Vivancos et al. [15] previously analyzed this behavior by considering four factors (ap, ae, fz and vc)
in regression models and by taking into account average roughness values in the whole workpiece
without considering influence of each position angle separately. In order to obtain a more accurate
analysis, it is necessary to consider the effect of each surface slope on obtained roughness, which is
one of the core points of this work. Vakondios et al. [20] considered surface inclination in regression
models for average maximum height of the profile, Rz. In the present study, regression analysis
was carried out considering not only cutting conditions but also position angle of the surface on
two different roughness parameters, Ra and Rt. Both regression and neural networks models were
obtained. All regression analyses were carried out using Statgraphics®Centurion XVI. Regarding
neural network models, the results found in this study were obtained by using the Neural Network
ToolboxTM (São Paulo, Brazil) of MatlabTM (Mathworks, Natick, MA, USA). In addition, the optimal
cutting strategy between climb and conventional milling was selected for different cutting conditions
and inclination angles.

4.1. Regression Models and Analysis of Arithmetic Average Roughness, Ra

Ra was modeled by means of regression analysis, taking into account variability due to cylindrical
geometry of the workpiece studied in this present work. In order to model the behavior of Ra for
both manufacturing strategies (climb milling and conventional milling), second-order models were
selected after analyzing p-values obtained from the lack-of-fit test performed with the first order
modeling (3.0 × 10−12 and 3.04 × 10−4, respectively). Since these p-values for the lack-of-fit are less
than 0.05, there is a statistically significant lack-of-fit at the 95.0% confidence level, which means that
first order models do not adequately represent the data. R2 and adjusted-R2 were 68.43% and 67.25%
for climb milling, respectively, while R2 and adjusted-R2 were 69.40% and 68.26% for conventional
milling, respectively.

Since there is lack of fit with the first order model, second order models were considered. For Ra
in climb milling, the R2 and adjusted-R2 are 79.48% and 77.64%, respectively, and equations were
obtained so that adjusted- R2 is maximized. Four main effects (ae, Ang, vc and fz) turned out to be
relevant in the model in order to obtain the highest adjusted-R2. Parameters ae and ae

2 turned out to
be the most significant for a confidence level of 95% (α = 0.05) (p-values ≤ 0.01). As can be observed
in Figure 6, surface roughness remains almost constant with respect to ap, vc and fz. Moreover, it can
be shown that Ra has a quadratic tendency with regard to ae, where ae is the parameter that most
influences Ra. Therefore, minimization of ae will lead to a reduction in roughness values. This can be
attributed to the fact that ae determines width of machining marks, and in addition fz values are low.
In the study the rest of the factors are kept at their central values. Moreover, it can be shown that Ra
has a quadratic tendency with regard to Ang.

Equations (1) and (2) show the proposed modeling for Ra using both climb and conventional
milling. For Ra in conventional milling, R2 and adjusted-R2 are 76.52% and 73.84%, respectively.
Four main effects (ae, vc, Ang and ap,) turned out to be relevant in the model in order to obtain
the highest adjusted-R2. Similar to the results obtained in climb milling, ae and ae

2 were the most
significant factors at a confidence level of 95% (α = 0.05) (p-values ≤ 0.01).

As can be observed in Figure 6, surface roughness has a quadratic tendency with regard to ae,
and a slight slope with respect to both ap and vc. In this case, factor fz was not significant in the model
that provides the highest adjusted-R2. Moreover, a quadratic tendency with regard to the angle was
observed. Conventional milling (Figure 6b) follows a similar tendency to climb milling (Figure 6a)
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regarding ae, which is the most significant parameter. However, this influence is smaller than that
obtained in climb milling.

Ra_Climb = 0.379019 − 1.42452 × ap − 0.661785 × ae − 0.194863 × fz − 0.00189356 × vc

+0.00239249 × Ang − 0.269701 × a2
p − 1.87232 × ap × ae

+1.01875 × ap × fz + 0.00672571 × ap × vc + 0.00594601 × ap × Ang
+14.563 × a2

e − 17.0402 × ae × fz + 0.00579143 × ae × vc − 0.01599
×ae × Ang + 50.1135 × f 2

z + 0.0134214 × fz × vc − 0.030112 × fz × Ang
+0.00000135074 × v2

c − 0.0000158617 × vc × Ang + 0.0000152557 × Ang2

R2 = 79.48% Adj − R2 = 77.14%

(1)

Ra_Convent = 0.344666 + 0.376502 × ap + 0.060028 × ae − 9.41584 × fz + 0.00130472 × vc

−0.0054896 × Ang + 1.19437 × a2
p − 2.68455 × ap × ae − 0.828125 × ap × fz

−0.000939821 × ap × vc + 0.00201332 × ap × Ang + 9.38685 × a2
e

−22.5379 × ae × fz + 0.00357411 × ae × vc + 0.00083119 × ae × Ang
+80.4796 × f 2

z + 0.0369991 × fz × vc + 0.00481444 × fz × Ang
−0.00000658429 × v2

c + 6.90684 × 10−7 × vc × Ang + 0.0000217804 × Ang2

R2 = 76.53% Adj − R2 = 73.84%

(2)

  
(a) (b) 

Figure 6. Main effects plot for Ra (considering the position angle) in (a) climb milling and (b)
conventional milling.

4.2. Regression Models and Analysis of Maximum Peak-to-Valley Roughness Rt

Similar to the results obtained for Ra, the behavior of Rt was modeled, taking into account
variability due to cylindrical geometry of the workpiece studied. In order to model the behavior of Rt
in both manufacturing strategies (climb and conventional milling), second-order models were selected
after analyzing p-values obtained from the lack-of-fit test performed with the first order modeling
(5.52 × 10−5 and 1.14 × 10−26, respectively). In all cases, obtained equations were simplified in order
to obtain models with the highest adjusted-R2.

For Rt, in climb milling the R2 and adjusted-R2 are 78.04% and 75.53%, respectively. Four main
effects (ae, Ang, fz and ap,) were present in the model in order to obtain the highest adjusted-R2.
The parameters ae and ae

2 were the most important parameters at a confidence level of 95% (α =
0.05) (p-values ≤ 0.01) (Figure 7a). For Rt, in conventional milling R2 and adjusted-R2 were 63.03%
and 58.80%, respectively. Three main effects (ae, ap, and Ang) were present in the model in order
to obtain the highest adjusted-R2. Similar to the result obtained for climb milling, ae and ae

2 were
the most important parameters at a confidence level of 95% (α = 0.05) (p-values ≤ 0.01) (Figure 7b).
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Equations (3) and (4) show the regression analysis for Rt, taking the angle into account and considering
both climb milling and conventional milling.

Rt_Climb = 1.812 − 1.27897 × ap − 1.59259 × ae + 11.4864 × fz − 0.0153509 × vc

+0.0158467 × Ang − 4.28786 × a2
p − 2.19768 × ap × ae + 23.8839 × ap × fz

+0.00801286 × ap × vc + 0.0177314 × ap × Ang + 64.6309 × a2
e

−114.621 × ae × fz + 0.0180725 × ae × vc − 0.0715339 × ae × Ang
+390.288 × f2

z − 0.0134036 × fz × vc − 0.197239 × fz × Ang
+0.0000386847 × v2

c − 0.0000518305 × vc × Ang + 0.0000505297 × Ang2

R2 = 78.04% Adj − R2 = 75.53%

(3)

Rt_Convent = 4.04698 + 4.45254 × ap + 0.0118769 × ae − 100.633 × fz − 0.00524991 × vc

−0.021916 × Ang + 2.41174 × a2
p − 7.9592 × ap × ae − 38.4004 × ap × fz

−0.00523589 × ap ×+0.0158633 × ap × Ang + 46.2882 × a2
e − 155.4 × ae × fz

+0.00680554 × ae × vc + 0.0256059 × ae × Ang + 1002.59 × f2
z

+0.263647 × fz × vc + 0.0953535 × fz × Ang − 0.00000371912 × v2
c

−0.0000202955 × vc × Ang + 0.0000517796 × Ang2

R2 = 63.02% Adj − R2 = 58.8%

(4)

  
(a) (b) 

Figure 7. Main effects plot for Rt (considering the position angle) in (a) climb milling and (b)
conventional milling.

As can be observed in Figure 6, ae is the most influential parameter on Rt in both climb and
conventional milling, which is similar to the results obtained for Ra in the present paper and for Rz
parameter in other works [19,20]. Surface roughness has a quadratic behavior with respect to ae in
climb and conventional milling, and a slight slope with both ap and vc in conventional milling. In climb
milling, surface roughness remains almost constant with respect to ap, fz and vc. The fact that ae has a
greater influence on roughness than fz in ball-end milling processes can be explained by the fact that
at low radial depth of cut ae, the influence of feed per tooth fz is minimized by the tool performing
very close successive passes in the ae direction. Very close parallel grooves will be obtained. Thus, very
similar roughness values will be achieved regardless of fz employed for the same ae value [24].

4.3. ANN Modeling for Ra and Rt

An artificial neural network (ANN) was also employed in this present study for modeling both
Ra and Rt. This ANN was made up of an input layer, a hidden layer, and an output layer. The neural
network considered in this work has a 5-1-4 configuration, which corresponds with five inputs (the four
cutting conditions uses in regression analysis (ae, ap, fz, and vc) and the position angle of the surface
(Ang), which is related to the slope of the surface to be machined. The network has one neuron in the
hidden layer, and four outputs, one for each of the roughness parameters and machining strategies
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considered. Equation (5) shows the roughness parameters Ra and Rt for both machining strategies as a
function of ap, ae, fz, vc, and Ang.

⎡
⎢⎢⎢⎣

RaClimb.
RaConv.
RtClimb.
RtConv.

⎤
⎥⎥⎥⎦= 1

1+e−(−0.0449×ap−1.90361×ae+0.0855×fz−0.111×vc+0.266 × Ang+1.899)

⎡
⎢⎢⎢⎣

−2.3137
−2.6528
−1.9889
−1.9144

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

1.3164
1.8037
1.0583
1.1065

⎤
⎥⎥⎥⎦ (5)

where Climb. corresponds to climb milling and Conv. Corresponds to conventional milling.
The design of experiments, previously shown in Table 2, was used to train the ANN. It was

decided to choose one neural network with four outputs, since the results obtained were similar to
those obtained for independent networks for each output. With this ANN a correlation value of 0.914
was obtained. This value is similar to that obtained by other authors with ANN models [19]. Hence,
ANN 5-1-4 provides a relatively simple model with high precision, which in a compact way allows
approximation of Ra and Rt roughness parameters in both machining strategies studied. This might be
attributed to the fact that roughness parameters are related and they show similar variability.

4.4. Optimal Manufacturing Strategy Selection

In order to compare both machining strategies, a diagram of both average roughness values and
standard deviations of roughness values obtained at different inclination angles for the 28 experiments
considered is shown in Figures 7 and 8, for Ra and Rt, respectively. From these figures it is possible to
determine which machining strategy is more appropriate for the cutting conditions selected in this
present work.

(a) 

 
(b) 

Figure 8. Experimental deviation plots for Ra considering both manufacturing strategies: (a) Mean,
(b) standard deviation.

Figure 8a shows that average Ra values are very similar for both climb milling and conventional
milling, if the same experiment is taken into consideration. However, in surfaces with variable
inclinations, such as those found in injection molds, it is interesting not only to minimize roughness
average values, but also its variability for different inclination angles. This will lead to a more uniform
surface roughness. Then, in order to minimize variability (Figure 8b), the use of conventional milling
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is recommended in experiments 3, 4, 7, 8, 11, 12, 15, 16, and 24. Those experiments have a general
tendency to exhibit high ae values (ae = 0.3 mm). Using climb milling is recommended in experiments
2, 5, 6, 9, 10, 14, 17, 18, 20, 21, 25, and 27, which in general correspond with low and medium ae values
(ae = 0.1 mm and ae = 0.2 mm, respectively).

For the remainder of experiments, similar values were obtained for both conventional and climb
milling. Figure 9a also shows that average Rt values are similar for both machining strategies. However,
variability (Figure 9b) determines that conventional milling is recommended in experiments 7, 11, 12,
13, 15, 16, and 24. As a general trend, those experiments correspond to high ae values (ae = 0.3 mm),
with high vc values (vc = 250 m/min). Climb milling is recommended in experiments 2, 3, 4, 5, 6, 10,
14, 17, 18, 19, 20, 21, 22, 25, and 26, which correspond to maximum ae with minimum vc, minimum
ae with maximum vc, or medium ae with medium vc values. For the rest of experiments, the values
obtained are similar.

 
(a) 

(b) 

Figure 9. Experimental deviation plots for Rt considering both manufacturing strategies: (a) Mean,
(b) standard deviation.

Ra and Rt average values do not vary significantly between climb and conventional milling. Given
that mold manufacturers require roughness uniformity at different inclination angles of the machined
surface, the most appropriate process will be chosen between conventional and climb milling, taking
variability into account in the experiments studied (Table 4). Therefore, a manufacturing strategy will
be selected that minimizes variability of roughness values in different angular positions. If Ra and Rt
show opposite tendencies, a manufacturing strategy will be preferred that minimizes Rt, since Ra is a
high-averaging parameter and, therefore, tends to mask errors on the machined surface. This does
not happen with Rt. In the case where both strategies lead to the same Rt variability, then the strategy
minimizing Ra variability will be chosen.

Table 4 summarizes the type of machining strategy that is recommended for each cutting condition
and for each cutting strategy. The table shows that in 17 of 28 cutting conditions tested, climb milling is
preferred. Conventional milling is only preferred in 8 cutting conditions, which in general corresponds
with high ae with high vc. For the rest of the experiments, it makes no difference whether one or the
other machining strategy is used. As was stated earlier, minimization of Rt has priority with respect to
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minimization of Ra. Std means standard deviation of roughness values for the different inclination
angles. Conv. Milling stands for conventional milling.

Table 4. Optimal machining strategy selection.

ap (mm) ae (mm) fz (mm) vc (m/min) Minimum (Std Ra) Minimum (Std Rt)

0.1 0.1 0.02 150 Conv./Climb Conv./Climb
0.3 0.1 0.02 150 Climb Milling Climb Milling
0.1 0.3 0.02 150 Conv. Milling Climb Milling
0.3 0.3 0.02 150 Conv. Milling Climb Milling
0.1 0.1 0.06 150 Climb Milling Climb Milling
0.3 0.1 0.06 150 Climb Milling Climb Milling
0.1 0.3 0.06 150 Conv. Milling Conv. Milling
0.3 0.3 0.06 150 Conv. Milling Conv. / Climb
0.1 0.1 0.02 250 Climb Milling Conv./Climb
0.3 0.1 0.02 250 Climb Milling Climb Milling
0.1 0.3 0.02 250 Conv. Milling Conv. Milling
0.3 0.3 0.02 250 Conv. Milling Conv. Milling
0.1 0.1 0.06 250 Conv./Climb Conv. Milling
0.3 0.1 0.06 250 Climb Milling Climb Milling
0.1 0.3 0.06 250 Conv. Milling Conv. Milling
0.3 0.3 0.06 250 Conv. Milling Conv. Milling
0.2 0.2 0.04 200 Climb Milling Conv./Climb
0.2 0.2 0.04 200 Climb Milling Climb Milling
0.2 0.2 0.04 200 Conv./Climb Climb Milling
0.2 0.2 0.04 200 Climb Milling Climb Milling

0.039 0.2 0.04 200 Climb Milling Climb Milling
0.361 0.2 0.04 200 Conv./Climb Climb Milling

0.2 0.039 0.04 200 Conv./Climb Conv./Climb
0.2 0.361 0.04 200 Conv. Milling Conv. Milling
0.2 0.2 0.008 200 Climb Milling Climb Milling
0.2 0.2 0.072 200 Conv./Climb Climb Milling
0.2 0.2 0.04 119.641 Climb Milling Conv./Climb
0.2 0.2 0.04 280.359 Conv./Climb Conv./Climb

Regarding influence of angle, for both strategies (climb and conventional milling), when angle
increases roughness decreases. However, it should be taken into account that high angles in
climb milling (descendant trajectory) correspond to low angles in conventional milling (descendant
trajectory), and low angles in climb milling (ascendant trajectory) correspond to high angles in
conventional milling (ascendant trajectory). With all this, it is recommended to use climb milling in
descendant trajectories and conventional milling in ascendant trajectories.

5. Conclusions

In the present study, as a general tendency climb milling is preferred to conventional milling.
In general, conventional milling is only recommended at a high radial depth of cut with high cutting
speed values. In order to reduce roughness values, in ascendant trajectories conventional milling is
preferred and in descendant trajectories climb milling is recommended.

From the results obtained, it was determined that radial depth of cut was the most relevant factor
on Ra and Rt for both climb and conventional milling. Axial depth of cut, cutting speed and feed
per tooth have a slight influence on roughness within the range studied in this study. Regression
models for average roughness showed high adjusted-R2 values (above 73%) in all cases. Moreover, a
correlation value of 0.914 was obtained with the neural network model employed.

Experimental roughness values obtained with both strategies (climb and conventional milling)
were similar. However, in complex surfaces with variable inclination, such as those of injection molds,
it is recommended not only to minimize roughness average values, but also its variability for different
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inclination angles. This will lead to more uniform surfaces. In the present study, it was found that the
standard deviation of roughness parameters varies depending on the machining strategy chosen, for
the different experiments carried out.
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Abstract: Recently, the concept of smart manufacturing systems urges for intelligent optimization
of process parameters to eliminate wastage of resources, especially materials and energy. In this
context, the current study deals with optimization of hard-turning parameters using evolutionary
algorithms. Though the complex programming, parameters selection, and ability to obtain the
global optimal solution are major concerns of evolutionary based algorithms, in the present
paper, the optimization was performed by using efficient algorithms i.e., teaching–learning-based
optimization and bacterial foraging optimization. Furthermore, the weighted sum method was used
to transform the diverse responses into a single response, and then multi-objective optimization
was performed using the teaching–learning-based optimization method and the standard bacterial
foraging optimization method. Finally, the optimum results reported by these methods are
compared to choose the best method. In fact, owing to better convergence within shortest time,
the teaching–learning-based optimization approach is recommended. It is expected that the outcome
of this research would help to efficiently and intelligently perform the hard-turning process under
automatic and optimized environment.

Keywords: intelligent optimization; hard turning; surface roughness; cutting temperature;
evolutionary algorithm

1. Introduction

Smart manufacturing (SM) is regarded as the next generation manufacturing revolution—Industry
4.0 [1,2]. In this technology, the manufacturing system is optimized to the highest level to extract the
highest benefits in terms of production economics, quality, and time. Use of advanced technologies
such as sensors, smart materials, production and process planning, cloud systems etc., and their
interaction with humans determines the success of a smart manufacturing unit [3]. In a nutshell, SM
is a technology that allows the process improvement via optimization and exploitation of advanced
technologies that establish it as a next generation manufacturing model.

Intelligent optimization of real-life manufacturing systems is key factor to smart manufacturing.
The implementation of an intelligent optimization technique in the soft part of manufacturing units
facilitates an effective production control. Among prevailing optimization techniques (statistical,
neural, evolutionary, machine learning, etc.) the evolutionary methods have recently been employed
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successfully in various engineering sectors. Traditionally, the effectiveness and efficiency of selecting
parameters of machining processes are determined by the trial-and-run method or by the experience
of the machine operators [4,5]. As per the requirements of smart manufacturing as in ‘turning’
systems, the cutting parameters i.e., cutting speed, feed rate, and depth-of-cut need to be optimized.
This information can be synchronized with the database of the manufacturing unit. In fact, as an
upgrade based on instantaneous requirements, the control factors can be optimized in real-time. In this
particular segment, the learning capability of modeling methods (i.e., artificial intelligence, machine
learning) possesses the potential to enhance requirement-based manufacturing to reduce human
intervention [6].

Successful implementation of intelligent/evolutionary methods in the manufacturing realm
can be found in literature. For instance, Rao et al. [7] applied the novel teaching–learning-based
optimization (TLBO) method to optimize multiple mechanical design problems. In studying the
welding of Cr–Mo–V steel, Rao and Kalyankar [8] applied TLBO alongside the Taguchi-based
optimization. In another study, Pawar and Rao [9] applied TLBO in abrasive water jet machining,
milling, and grinding to optimize the machining parameters. They compared the results of TLBO
with other methods of optimization and found better results of TLBO. In another paper, Rao and
Kalyankar [10] optimized the parameters of modern machining processes namely the Ultra Sound
Machining (USM), Abrasive Jet Machining (AJM), and Wire Electrical Discharge Machining (WEDM)
using TLBO. Gupta et al. [11] employed one statistical method (i.e., Response Surface Methodology
(RSM)) and one evolutionary method (i.e., Particle Swarm Optimization (PSO)) to optimize the
machining parameters. Mukhopadhyay et al. [12] employed an artificial neural network and genetic
algorithm for the modeling and optimization of the wire electrical discharge machining process.
In addition, they have implemented the hybrid modeling to extract better machining optimization
results. Kim and Lee [13] optimized the induction-assisted milling process using finite element analysis,
signal-to-noise ratio, and analysis of variance. The optimized responses were surface roughness, tool
wear, and surface roughness in selected machining environment.

In high-performance precision engineering application, the quality of products produced by
turning process is evaluated by the roughness parameters of machined surface [14]. The increased
pressure from the industries to produce parts with very low surface-roughness values forces researchers
to find ways of reducing surface roughness. Among many alternatives, optimization of process
parameters can refine the surface roughness value. This means the appropriate parameter settings of
control factors can generate surfaces with a surface roughness value that is lower than the roughness
found in conventional processes and/or hard machining. Hybridization of PSO–bacteria foraging
optimization (BFO) was reported in the optimization of additive manufacturing parameters for the
fused deposition modeling Raju et al. [15]. As can be seen, the advanced computational methods for
optimization have been reported in multifarious sectors such as welding, additive manufacturing,
machining, modern machining processes, etc. However, very few articles reported the adoption of
evolutionary algorithms for hard turning.

Besides the surface roughness parameter, the overall machining outcomes are largely influenced
by the cutting temperature. The intensive friction induced by the plastic deformation during the
chip generation cause the mechanical energy to be transformed into heat energy. As such, the
chip–tool interface and work–tool interface temperature rises. An increase in temperature results in
the expedited wear rate of tool; hence, the machining economy is compromised. Also, the premature
failure or sudden breakage of the tool can result in the adherence of tool broken debris onside the
machine surface—rejection of the product. In that perspective, controlling of cutting zone temperature
is inevitable.

Use of cooling/lubricating agents during cutting is widely accepted as a temperature-controlling
system and surface-quality improver. However, the practice of coolant/lubricant is costly, and it causes
serious harm to the environment and to human health. In that respect, the clean and sustainable
manufacturing system that must be a smart manufacturing system too can be attained by the intelligent
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optimization of process parameters so that the benefits of using coolant/lubricant are alternatively
achieved by the adoption of optimum control factor settings.

In the current paper, the control factors of hard-turning operation are optimized using intelligent
evolutionary algorithms. The optimization is performed using two methods: (i) teaching–learning-
based optimization and (ii) bacterial foraging optimization. Finally, these two methods are compared
between themselves to select the best method for the further implementation. The key expected
outcomes are optimum cutting speed, feed rate, and depth-of-cut for the lowest surface roughness
parameters and cutting temperature.

2. Materials and Method

The hard-turning operation was conducted by machining of hardened high-carbon steel i.e.,
AISI 1060 in a center lathe (Origin: SJR Machinery Co., Ltd., Nantong, China, Max. W/P length:
1 m). The material stock had dimensions of length 300 mm and diameter 100 mm. The cutting tool
used was coated tungsten carbide (WC) insert with Chemical Vapor Deposition (CVD) coating with
TiCN/Al2O3/TiN. The insert’s ISO designation was SNMM 120408. When the insert was used with
the tool holder PSBNR 2525M12 (Sandvik Coromant, Sandviken, Sweden), the tool cutting edge was
75◦, the clearance angle was 6◦, and orthogonal rake angle was −6◦. The hardening of work material
was performed by austenizing followed by oil quenching and, lastly, tempering. The temperatures
for the respective stages were 900 ◦C, 30 ◦C, and 370 ◦C. After the heat treatment, the hardness of the
workpiece was 40 ± 2 Rockwell C.

The machining runs were varied according to the variations made in machining parameters.
Investigated machining parameters were cutting speed, feed rate, and depth-of-cut. The Taguchi L8
orthogonal array was used for the design of experiment (DOE) to reveal 8 experiments (Table 1) based
on 4 levels of cutting speed, and 2 levels of feed and cutting depth. This DOE reduced the number of
experiments by 50% compared to full factorial DOE—thus, a step towards conservation of resources.
The selection of machining parameters values are based on the knowledge of literature and current
industrial practice.

The representative indices of surface quality, two surface roughness parameters, were recorded
after each machining run. Those parameters were (i) arithmetic mean deviation of surface roughness,
Ra, and (ii) maximum height of profile of surface roughness, Rz. Their measurement was conducted
by using SRG 4500 roughness tester (cut-off length 0.8 mm, Thread Check Inc., New York, NY, USA).
The cutting temperature was measured by using a tool–work thermocouple. Initially, the mili-volt
reading of the thermocouple was recorded, and after that the mili-volt value was converted into
temperature in Celsius scale. Proper calibration was done before using the thermocouple. For details on
temperature measurement by tool–work thermocouple, refer to authors’ other work [16]. The measured
responses are listed in Table 1.

Table 1. Taguchi L8 orthogonal array and values of responses found from machining runs.

Experiment
Number

Cutting Speed,
vc (m/min)

Feed Rate, f
(mm/rev)

Depth of Cut,
ap (mm)

Surface
Roughness,

Ra (μm)

Surface
Roughness,

Rz (μm)

Cutting
Temperature,

θ (◦C)

1 45 0.1 1.0 2.60 14.36 404
2 45 0.2 1.5 4.21 21.75 543
3 60 0.1 1.0 3.87 22.20 488
4 60 0.2 1.5 2.78 12.35 622
5 75 0.1 1.5 3.51 16.48 585
6 75 0.2 1.0 2.41 11.85 638
7 90 0.1 1.5 1.70 10.26 674
8 90 0.2 1.0 2.73 15.45 699
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3. Intelligent Optimization Algorithms

3.1. Teaching–Learning-Based Optimization (TLBO)

The TLBO, reported by Rao et al. [7], is a population-based optimization method that mimics
the behavior of teachers and learners by which process the teachers teach and the learners learn.
This algorithm considers the teachers and learners as two fundamental components. Herein, the
learning is accomplished in two forms: (i) learning from teachers and (ii) learning from other learners.
The first one is called the teacher phase while the second one is named the learner phase. Evidently, the
performance of the algorithm was evaluated by the grades of the learners which in turn is dependent
on the quality of the teachers. Note that the learners are regarded as population and the subjects offered
by the teachers are design parameters and the achieved grades are the ‘fitness’ value. Both phases are
discussed below.

Teacher phase: In this section, the learners learn from the teachers only. Here, the quality of
teachers influences the learning outcomes. As to be noted, the best quality learners are assigned as the
teachers. The objective of teachers is to increase the mean results of the class. For instance, consider
that in iteration “i” the numbers of subjects taught are “m”, size of learners is “n” numbers, for specific
subject “j” the mean of the result is Mj,i. Now the result of best learner kbest can be considered as the
overall best result Xtotal-kbest-i. In deciding this best result, the whole subject spectrum is accounted.
The learner with this best result is usually considered as teacher. The difference of the mean of the
learners of a subject and the best learner (i.e., teacher) can be presented by Equation (1) [7].

Di f f _Meanj,k,i = ri

(
Xj,kbest,i − TF Mj,i

)
(1)

where 0 ≤ ri ≤ 1 is random number and the TF indicates the teaching factor that to be determined by
Equation (2) [7].

TF = round[1 + rand(0, 1)2 − 1] (2)

where the distribution TF follows equal probability distribution and it is not considered as parameter
of TLBO.

The current solution is updated by the Equation (3) [7].

X′
j,k,i = Xj,k,i + Di f f _Meanj,k,i (3)

In this manner, the updated result is accepted if it is better. At the last stage of teacher phase, the
updated results are saved and used as the input to the learner phase.

Learner phase: In this stage, the learners enhance the learning by the effective interaction among
the other learners. In a random manner, one learner learns from another learner only if that learner
has better knowledge than him/her as defined in Equations (4) and (5) [7]. As mentioned, the two
random learners are P and Q, who had results Xtotal−P,i and Xtotal−Q,i, have updated results X′

total−P,i
and X′

total−Q,i at the end of the teacher phase. However, the X′
total−P,i �= X′

total−Q,i.

X′′
j,P,i = X′

j,P,i + ri

(
X′

j,P,i − X′
j,Q,i

)
If X′

total−P,i < X′
total−Q,i (4)

X′′
j,P,i = X′

j,P,i + ri

(
X′

j,Q,i − X′
j,P,i

)
If X′

total−Q,i < X′
total−P,i (5)

where the X′′
total−P,i is accepted when it has better result. After the learner stage, all the better results

are saved and afterward used as inputs to the next iteration of teacher phase. The flow chart of TLBO
is demonstrated in Figure 1.
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Figure 1. Flowchart for teaching—learning-based optimization (TLBO).

3.2. Bacteria Foraging Optimization (BFO)

In recent times, the adaptation of the bacteria foraging optimization method [17], primarily
inspired from the attitudes of E. Coli’s, is notably reported with significant success. This method is
considered as an intelligent method that is meta-heuristic in nature. The nature of response of the
bacteria with respect to changes in the surrounding environment, especially in the chemical gradient,
stands out as the backbone of this method. In concept, the movement of the bacteria cells i.e., agents is
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driven by the awareness for food in the environment. In this manner, the cells are moved towards the
optimal condition. For ease of understanding, the procedure of BFO is listed here.

Chemotaxis: The representative step for the behaviors like swimming as well as tumbling. In this
step, the basic mechanism is to search the nutrients in any random directions. At any point, when the
nutrient gradient is run into, the behavior of bacteria is dominated as the swim rather than tumble.
Henceforth, the chemotaxis can be expressed as:

Function θi(j, k, l) represents the position of ith bacterium that possesses the jth chemotaxis having
kth reproduction and lth elimination and dispersal. Also, mathematically the directional adjustment is
modified according to Equation (6) [17].

θ(j + 1, k, l) = θ(j, k, l) + C(i)· φ(i)√
φT(i)·φ(i) (6)

Here, the success of the optimization is largely dependent on the traits of foraging process of bacteria.
Swarming: In this stage, the randomly moved bacteria are organized in sophisticated uniformity

as colonies. This altogether swarming is caused by the signals given by the cell, and it is mathematically
presented by Equation (7) [17].

JCC(θ, P(j, k, l)) =
S
∑

i=1
JCC

i(θ, θ(j, k, l))

=
s
∑

i=1

[
−dattractexp

(
−ωattract

P
∑

n=1

(
θn − θi

n
)2
)]

+
s
∑

i=1

[
−drepellentexp

(
−ωrepellent

p
∑

n=1

(
θm − θi

n
)2
)] (7)

In Equation (2), the value of cost function is denoted by Jcc(θ, P(j, k, l)). Note that the addition
of varying cost function to the value of cost function results in actual cost function—that needs to
be minimized. Furthermore, the S and P represent the numbers of total bacteria and parameters for
optimization respectively. The parameters such as dattract, wattract, drepellent, wrepellent need to be selected
correctly for each bacterium.

Reproduction: The health condition of the bacteria is defined by Equation (8) [17]. This phase is
characterized by the reproduction of comparatively better-fitted bacteria into two bacteria. Note that
the least-fitted bacteria die; as such, the overall population remains constant.

Ji
health =

Nc+1

∑
j=1

J(j, k, l) (8)

Elimination and dispersion: In case of scarcity of bacteria in any place, the bacteria of other places may
face dispersal. This is due to the changing nature of habitable environment of the bacteria. In fact, such
dispersal may cause destruction of chemotactic process. It is also possible that the dispersal causes the
chemotaxis process to be assisted by adequate nutrient sources in proximity.

In the above fashion, the bacteria is never satisfied with the nutrients they get, and thereby they
keep searching—it indicates the continuous nature of the chemotaxis, swarming, reproduction, and
elimination and dispersal steps. The flow chart of BFO is shown in Figure 2.

4. Results and Discussion

Initially, the effects of the control factors i.e., cutting speed, feed rate, and depth-of-cut on the
responses are portrayed graphically and discussed to understand the role of factors on the responses.
Then, the surface-roughness parameters and cutting temperature found in hard turning were optimized
by using the teaching–learning-based optimization and bacteria foraging optimization separately. Later,
the optimum results are compared with respect to common parameters of interest. Eventually, the best
optimization method is selected.
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Figure 2. Flowchart for bacteria foraging optimization.

4.1. Results

The hard-turning operation is controlled by three factors—namely the cutting speed, feed rate, and
depth-of-cut. Hence, these parameters mostly influence the eventual outcomes of machining. For that
reason, the mean behaviors of the surface-roughness parameters as well as the cutting temperature
are plotted in Figure 3. It is evident from Figure 3a that the increase in cutting speed is reflected by
a decrease in the surface roughness, Ra. This is due to the fact the lower cutting speed is associated
with increased chatter of machine tool. Moreover, the higher cutting speed is associated with lower
coefficient of friction. In addition, the increased cutting speed causes the temperature to rise (Figure 3c),
which, in turn, softens the material. As such, an ease of cutting is experienced [18]. A similar movement
of surface roughness Rz with respect to cutting speed is also noticeable in Figure 3b. Note that the
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increase in cutting temperature with the increase in cutting speed is due to the conversion of mechanical
energy (rotation of job in spindle) into heat energy.

 
(a) 

 
(b) 

 
(c) 

Figure 3. Effects of control factors on (a) mean of surface roughness, Ra, (b) mean of surface roughness,
Rz, and (c) mean of cutting temperature.
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The effects of feed rate on the surface-roughness parameters were opposing in nature (Figure 3a,b).
For instance, an increase in feed rate caused a slight increase in Ra (this is according to the theoretical
relation of f and Ra) while causing a slight decrease in Rz. Similarly, when the depth of cut was
increased, the Ra increased by a slight amount but the Rz deceased by a small amount. This opposing
nature can be interpreted by the fact that Ra is the average parameter of roughness while the Rz is the
maximum height of roughness. As such, it is possible to get lower Rz when the Ra is increasing. Lastly,
the increase in all three factors caused an increase in the cutting temperature. This is expected by the
fact that the material removal rate (MRR) = vc·f ·ap. This means an increase in speed, feed, and depth
causes an increase in the amount of materials removed per unit of time. When the MRR increases,
more energy is required to deform such increased material. Consequently, the thermal state of cutting
zone experiences higher temperature.

It is also appreciable that the cutting speed has the highest contribution on both the
surface-roughness parameters and cutting temperature. Compared to cutting speed, the feed rate
and depth-of-cut have minor roles in defining the value of roughness and temperature. Hence,
during optimization, the change in cutting speed is most significant to favorably align the value of
the responses.

4.2. Optimization by TLBO and BFO

Before optimization, the two roughness parameters and the cutting temperature were converted
into a single function (normalized) as shown in Equation (9).

Min Z = W1(Ra/Ramin) + W2(Rz/Rzmin) + W3(θ/θmin) (9)

where the W1, W2, and W3 are weight factors for average surface roughness parameter, maximum
height surface-roughness parameter, and cutting temperature, respectively. However, their summation
should be 1.0. Also, the Ramin and Rzmin are the minimum values of the average surface roughness
parameter and maximum height surface roughness parameter respectively found in hard turning. For
this current study, all three responses were considered to possess equal weight (W1 = W2 = W3 = 1/3)
as all of them are valuable to the manufacturers as they largely influence the machining outcomes.

The software used for performing the optimization was Matlab 2018b (The MathWorks, Natick,
MA, USA) with intel i5 Processesor and 4 GB RAM. By nature, TLBO depends on the population size
and the generation numbers which makes this algorithm parameter-less. To make the solution, the
trials runs are conducted that eventually caused the population size to be 50 and generation to be 100.
On the other hand, in the BFO method, the optimization was started with the initial parameters listed
in Table 2. Initially, the 50 bacterial elements were taken into account to run the algorithm.

Table 2. Input parameters in the bacteria foraging optimization (BFO) algorithm.

Parameters Values

Number of bacterial elements considered, S 50
Max defined chemotactic steps, Nc 50

Max defined reproduction steps, Nre 4
Total elimination–dispersal event, Ned 2

Max allowed swim steps, Ns 4
Elimination–dispersal probability, Ped 0.1

The optimum results by the TLBO and BFO methods are listed in Table 3. It is visible that the
cutting speed of 80 m/min was fixed as the optimum cutting speed. Interestingly, from Figure 3,
it is observable that the highest cutting speed (90 m/min) was responsible for the lowest surface
roughness; however, at the same time, it caused the temperature to be highest. At this point, a trade-off
is required to make the system congenial for both the surface roughness and the cutting temperature.
And, because of this reason, the TLBO reported 80 m/min as the optimum cutting speed. For the
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same opposing nature (discussed earlier in Figure 3), the feed rate of 0.13 mm/rev was found as the
optimum feed rate. However, the highest value of depth of cut (1.5 mm) was the optimum depth-of-cut.
On other side, the BFO approach, within 16 s, revealed the optimum run. The optimum parameters by
BFO are a cutting speed of 75 m/min, a feed rate of 0.10 mm/rev, and a depth-of-cut of 1.3 mm.

Table 3. Comparison of TLBO and BFO.

Parameters TLBO BFO

Cutting speed (m/min) 80 75
Feed rate (mm/rev) 0.13 0.10
Depth of cut (mm) 1.5 1.3

Best solution (minimum of Z) 0.54326 0.55262
Worst solution 0.56592 0.57854

Average time (s) 4 s 16 s

A comparison of TLBO and BFO revealed that the best solution was given by the TLBO method
(Z is minimum = 0.54326). Further, this solution was found within the lowest time—for TLBO the time
was 4 s while that for BFO was 16 s—and four times faster than the BFO. The convergence of the TLBO
and BFO is illustrated in Figure 4. With the number of iterations, the overall fitness function of the
TLBO aligns better to the optimum fitness function value. Hence, between the TLBO and BFO, the
TLBO is recommended.

Figure 4. Convergence of bacteria foraging optimization (BFO) and teaching–learning-based
optimization (TLBO).

5. Conclusions

In this study, two intelligent optimization algorithms were employed for the optimization of
hard-turning parameters. Adoption of evolutionary optimization methods, with the assistance of
high-level computing, can convert the conventional machining processes to be more effective, efficient,
and cost-economic. From this study, the following conclusions can be drawn:

• Intelligent optimization is an important ingredient of smart manufacturing in which the
learning capability of the method is required—which is present in both teaching–learning-based
optimization and bacteria foraging optimization. Lack of implementation of these methods in
hard turning motivated the current study, and eventually their successful implementation is
shown here.
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• The influences of cutting speed, feed rate, and cutting depth on the arithmetic mean deviation
of surface roughness Ra, the maximum height of the profile of surface roughness Rz, and
cutting temperature are investigated by portraying the main effects plot. It was found that
the cutting speed played the most dominant role in defining the roughness parameter as well as
the temperature. Moreover, an increase in cutting speed resulted in a decrease in the roughness
values but an increase in the cutting temperature. This outcome necessitated a trade-off of
factor values.

• Trade-off of the responses/factors was accomplished by employing the intelligent optimization
method i.e., TLBO and BFO. Optimum results by the TLBO approach were a cutting speed of
80 m/min, feed rate of 0.13 mm/rev, and depth-of-cut of 1.5 mm; optimum parameter settings by
BFO were a cutting speed of 70 m/min, feed rate of 0.10 mm/rev and depth-of-cut of 1.3 mm.

• The TLBO was found to be superior to the BFO in terms of better convergence and shorter time of
computation—hence, the TLBO is recommended.

• Future research direction can be the adoption of evolutionary methods in the parametric
optimization of additive manufacturing processes. Also, further research attention can be given
to the integration of optimization methods with the real-time parameter optimization.
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Abstract: The ability to effectively predict tool wear during machining is an extremely important
part of diagnostics that results in changing the tool at the relevant time. Effective assessment of
the rate of tool wear increases the efficiency of the process and makes it possible to replace the tool
before catastrophic wear occurs. In this context, the value of the effectiveness of predicting tool wear
during turning of hardened steel using artificial neural networks, multilayer perceptron (MLP), was
checked. Cutting forces and acceleration of mechanical vibrations were used to monitor the tool
wear process. As a result of the analysis using artificial neural networks, the suitability of individual
physical phenomena to the monitoring process was assessed.

Keywords: artificial neural network; prediction; tool wear

1. Introduction

Currently, many methods are used to evaluate tool wear in real time. The cutting process
monitoring system is a tool used to eliminate catastrophic tool failure (CTF). Assessment of the
condition of the tool wear based on physical quantities that are associated with the cutting process
is possible on the basis of many different methods. Research has been conducted over the years,
which compares the effectiveness of assessing tool wear condition based on diagnostic inference
methods. Regression models and pattern recognition are among the basic methods. Monitoring of the
manufacturing processes is an issue that still requires improvement, despite the use of many modern
systems in industry. One of the newer methods used to monitor the condition of the cutting edge is
the empirical method, empirical mode decomposition (EMD), which is based on the decomposition
of signals in the time domain. As reported in Olufayo et al. [1] paper, it was used to detect the
cracking of the tool based on the measurement of cutting forces. The researchers presented an online
industrial monitoring system that reliably obtained precise information on tool wear. On the basis
of the coefficient of friction and average power, two forms of wear, i.e., tool edge chipping and tool
edge wear, were detected in real time using the CUSUM algorithm (cumulative sum control chart),
which gave satisfactory results as compared to an offline method. Wide usage in machining also has
indirect monitoring of cutting wear based on cutting forces, evaluation of chip morphology, mechanical
vibrations, and acoustic emission. An internet system for measuring and monitoring tool wear based
on machine vision was designed and developed in line with the characteristics of a ball-end cutter.
The validation of the experiment showed an error of only 2.5% in relation to the actual tool wear.
In Wang et al. [2] investigations, acoustic emission signals were used to diagnose ceramic inserts
during milling at high cutting speeds, where a multisensor system for classifying the used cutting
wedge was additionally employed. The research used spectral analysis observation and wavelet
feature extraction to evaluate tool wear. On the basis of the data obtained, the researchers developed
a feed-forward backpropagation neural network (BPNN) model to predict tool wear. Learning the
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neural network gave a low error value of 0.00523 to classify the state of the tool. This is a very low
average square error relative to actual consumption values, which confirms the effectiveness of the
prediction based on acoustic emissions. Very often, cutting forces are used to diagnose the condition of
the tool, and neural networks are used for diagnostic inference [3,4]. In addition to neural networks,
the wavelet transformation and spectral grouping algorithms are also used for diagnostic inference
such as in Aghazadeh et al. [5] paper. This experiment presented a tool conditioning monitoring (TCM)
system using deep convolutional neural networks (CNNs) as an effective method of deep learning.
Force and vibration signals from the experimental ETS (Emissions Trading System) dataset were used,
which were independently selected to develop a monitoring system. In contrast to other learning
models, these data-driven models were able to learn discriminative nonlinear feature representations.
In this way, they could provide an efficient prediction model for error detection by learning feature
representations directly from the input signals. Different methods of machine learning algorithms
with force and vibration signals were compared and the smallest root mean square error (RMSE)
was obtained for the CNN (0.0709 for force signals and 0.086 for vibration). Another example is the
research of Kong et al. [6] paper that presented an effective model of wear width prediction using the
Gaussian model with the radial basis function kernel principal component analysis (KPCA_IRBF).
In this technique, the Gaussian noises can be modeled quantitatively in the GPR (Gaussian Process
Regression) model. Many studies confirm that cutting forces are the most sensitive to changes in
tool wear. However, their industrial application involves interference in the construction of machine
tools or causes restrictions in the working space. Vibration sensors do not have such limitations,
and therefore they are easy to assemble and do not interfere with the machine’s construction. Therefore,
diagnostic methods based on vibration measurements are constantly developed. One of the solutions
is the use of multisensors because different sensors correlate better with subsequent stages of tool wear.
This solution gives a full view of potential wear. After receiving the raw signal, signal processing
and feature extraction methods are used, i.e., time domain analysis using autoregressive models (AR),
moving average models (MA) or autoregressive moving average (ARMA) mixed models, and methods
based on frequency domain analysis, wavelet transformation or empirical mode decomposition (EMD)
method. Methods based on multiple monitoring models such as in Zhou et al. [7] paper are created
based on multisensory systems. In addition, the rapid development of artificial intelligence (AI) and
advanced methods of inference enable more and more effective application of these methods to predict
tool condition [8,9].

Hassan et al. [10] proposed a monitoring system for online prediction and prevention of
tool chipping during intermittent turning. A correlation between the chipping size and cutting
parameters was designed to protect the machined surfaces. The work presented an integrated system
based on acoustic emission (AE) signal processing in order to detect the tool pre-failure before tool
chipping, and focused on cracks due to mechanical loads during an intermittent turning operation.
The TKEO-HHT (Teager Kaiser Energy Operator-Hilbert–Huang Transform) technique was used
which has the ability to deal with the nonstationary and nonlinearly AERMS signal in the pre-failure
phase. This method successfully predicted tool chipping before failure with a processing time of 2 ms.
The determined parameter, ΨBW, showed an exponential relationship with chipping, which made
it possible to determine the threshold depending on the allowable chipping. The algorithm was
optimized to provide sufficient time to stop the machine from damaging the workpiece. A new
method of tool wear modeling is the application of a dedicated tribometer, which is able to simulate
tribological conditions between the tool and workpiece. Rech et al. [11] investigated a contact pressure
and sliding velocities (sn, Vs) during turning. Tribological conditions were used to identify a wear
model with a new tool geometry. The modeling method was based on an orthogonal cutting simulation
(ALE) developed with Abaqus Implicit. In this work, the researchers reported that using the contact
temperature as a parameter in the wear model was not a good idea. Instead, they decided to identify a
wear model based on the contact pressure, sn, and sliding velocity, Vs. Currently, this is in accordance
with a trend in the field of tribology. They found that this model was very good to predict crater
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wear. This wear model has been implemented in numerical cutting model which is able to simulate
cutting operations.

Currently, there is a lot of work that deals with monitoring wear during hard machining. One such
work is Scheffer et al. [12] paper, where the researchers developed an accurate and flexible system
for monitoring tool wear during hard turning. They designed an artificial intelligence (AI) model
for monitoring crater and flank wear during hard turning. The purpose of developing the model
was to obtain an intelligent and dynamic method. This modern approach to monitoring was based
on parameters correlated directly with tool wear such as cutting force, vibration, and AE signals.
In connection with this assumption, eight experiments were carried out with simultaneous measurement
of cutting force, vibrations, AE, and temperature. An additional advantage of the chosen method was
the ability to identify and isolate disturbances generated during the process, which was important
because it was difficult to determine if the change in the sensor signal was due to wear or interference
from the process. Additionally, they analyzed a self-organizing map (SOM) to identify interference
that occurred during the process and they applied the method to achieve more efficient prediction
of wear during hard machining. Another example of monitoring tool wear during hard turning is
Ozel et al. [13], in which a neural network model was created for predicting tool wear and surface
roughness. It demonstrates that the trend in process monitoring focuses not only on tool wear, but also
on the evaluation of the machined surface to allow the best machining efficiency. This study utilized
neural network modeling as compared with regression models. A neural network was obtained
with the following seven inputs: workpiece hardness in Rockwell-C, cutting speed (m/min), feed
rate (mm/rev), axial cutting length (mm), and mean values of three force components Fx, Fy, Fz (N).
The small flank wear and surface roughness root mean square (RMS) errors on the test data showed
the reliability of the method. The validation using neural networks gave better results than the use of
regression models. The developed forecasting system was able to accurately predict surface wear and
roughness. The wide range of use of aviation alloys contributed to the development of work in which
tool wear is tested during machining of Inconel. One of the works is Capassoa et al. [14] investigation,
in which the characteristics of tool wear during Inconel DA 718 turning with inserts with different
coatings were examined. Tool wear was developed using three-dimensional (3D) volumetric wear
progression. A predictive model was created based on both 3D and flank wear patterns. The model of
tool wear with TiAlCrN/TiCrAl52Si8N PVD coating and AlTiN at different cutting speeds reached a
value of the fitting factor R of over 93%, which meant that the method produced very good results.
In addition to the new predictive models, they found that the tool with a PVD nanocomposite coating
exhibited a substantial reduction in chipping, which confirmed superior wear resistance. In summary,
the applied methodology proved that the volumetric wear prediction method was reliable.

There is a lack of studies comparing the use of different measured quantities as input data
during the cutting process. If they already appear, it does not interfere with the network structure
such as by changing the activation function or the number of neurons in the layer. In particular little
information relates to the processing of hard materials, where the most advantageous information
is about predicting tool wear. Therefore, studies have focused on comparing the effectiveness of
predicting neural network models with different structures and with different input data.

In this paper, artificial neural networks are presented to predict tool wear based on various input
data such as cutting forces and mechanical vibrations. Measurements of selected physical quantities
were carried out during turning of hardened steel with constant cutting parameters.

2. Materials and Method

The turning of hardened bearing steel 100Cr6 with a hardness of 61 ± 1 HRC was conducted.
The tool material was oxide ceramics (Al2O3 + TiN). Mechanically fixed inserts SNGN120408 MC2
(Kennametal, Latrobe, PA, USA) were used for testing. The research was carried out on a universal
lathe TUR560E (FAT, Wroclaw, Poland) with constant cutting parameters:
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• cutting speed vc = 180 m/min;
• rotational speed n = 1400 rev/min;
• feed f = 0.08 mm/rev;
• depth of cut ap = 0.1 mm.

After each pass (length of the shaft L = 150 mm and cutting time of a single pass ts = 1.34 min) the
value of flank wear, VBc, was measured (VBc, flank wear of the tool corner), by means of a workshop
microscope with a resolution of 0.01 mm.

During the turning operation, the following cutting force components were measured:

• Fx, Ff for feed direction;
• Fy, Fp for radial direction;
• Fz, Fc for main direction,

In addition, the acceleration of vibration was measured in the following different directions:

• Ax, Af for feed direction;
• Ay, Ap for radial direction;
• Az, Ac for main direction.

Figure 1 presents a simplified diagram of the measurement setup, which considers the location of
sensors and additional components necessary for signal processing and analysis. Piezoelectric sensors
were used to measure cutting forces and mechanical vibrations.

Figure 1. Scheme of measurement line used during the tests.

The maximum, minimum, and mean square values of cutting forces and vibration accelerations
were selected as diagnostic measures. The mechanical vibrations were measured by a piezoelectric
three-axis acceleration sensor fixed to the toolholder using a thread, while the cutting forces were
measured using a piezoelectric measuring platform.

On the basis of digital signals sent to the computer, the mean square RMS values (Equation (1))
were evaluated:

MRMS =

√√√√√√√ 1
T2 − T1

T2∫
T1

[x(t)]2dt (1)

where MRMS is the mean square value for arbitrary diagnostic measure.
The time interval for determining the maximum, minimum, and RMS value was 4 s and the

obtained measures were correlated with the corresponding tool wear values.
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Under the same conditions, the wear process was carried out for 15 tool tips (15 tests). For each
corner, the test was continued until the wear value VBc ≈ 0.4 mm was reached. The conventional tool
life criterium that was adopted was VBc = 0.3 mm.

3. Results

3.1. Tool Wear Analysis

Figure 2 shows the relationship between the flank wear, VBc, and the cutting time, ts, for all
15 tool corners. To determine the relation, VBc = ats

3 + bts
2 + cts, a third degree polynomial function

was selected as the most representative for the tool wear process. This function reflects the results
obtained in the best way, and the coefficient R2 = 0.98, which indicates a high adjustment to the selected
mathematical function.

Figure 2. Tool wear, VBc, as a function of cutting time, ts, including all tests carried out.

The graph shows that the assumed tool life criterion, VBc = 0.3 mm, is reached for ts = 25 min.
This criterion was selected based on previous experience related to the machining of hardened steels.
Above this value, the probability of chipping of ceramic tool increased significantly, due to an increase
in the level of mechanical vibration amplitudes.

The next step was to recognize the relationship between the tool wear and designated measures
of diagnostic signals. Figure 3 depicts an example of the relation between the maximum value of
the feed force, Ff_max, and tool wear, VBc. This relationship was described by the linear function
Ff_max = a · VBc + b and the coefficient R2 = 0.78. For all other diagnostic measures, based on force
measurements (i.e., Fi_max, Fi_min, and Fi_RMS), the best results were also obtained for the linear function.

However, there are different dependencies of the type, Fi = a · VBc + b, when the data will be
divided into individual tool corners. The R2 coefficient indicates correct matching of the assumed
mathematical function to the experimental results. Figure 4a,b shows the individual R2 coefficient for
all analyzed tool tips and for two exemplary measures, Ff_max and Fp_max.

For example, for the Fp_max measure, the extreme waveforms were selected, i.e., for the extreme
values of R2, in order to illustrate changes in the amplitudes of the diagnostic measure as a function of
tool wear (Figure 5). The analyzed changes of the Fp_max measures are described by a linear function
with similar coefficients but with different dispersion of results. The larger the spread of results (the
smaller the R2), the more difficult it is to build a correct diagnostic model, although in the case of
cutting forces the best results were obtained (the highest R2 coefficient).
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Figure 3. Feed force, Ff_max, as a function of flank wear, VBc, for all 15 cutting wedges.

 
(a) (b) 

Figure 4. Matching coefficient, R2, for the: (a) Ff_max measure and (b) Fp_max.

(a) (b) 

Figure 5. Cutting force, Fp_max, as a function of the tool wear, VBc, for tool tip (a) No. 4 and (b) No. 6.

The dependencies based on accelerations of vibrations look different and the dispersions of
results are much larger. Figure 6 shows R2 values for all tool tips and for exemplary measures, Af
and Ap. In comparison to cutting forces, extreme values are much higher and equal to ΔR2 = 0.545
for Af and ΔR2 = 0.49 for Ap, respectively. These differences are illustrated in Figure 7. In the
worst case, for Ap − R2 = 0.34. The matching of the mathematical function to the actual results is
unsatisfactory. The same analysis was carried out for all measures (in the X, Y, and Z directions),
obtaining similar relationships.

168



Materials 2019, 12, 3091

(a) (b) 

Figure 6. Matching coefficient R2 for (a) the Af measure and (b) the Ap measure

(a) (b) 

Figure 7. Acceleration of vibrations in feed direction, Af, as a function of the tool wear, VBc, for tool
tips (a) No. 1 and (b) No. 4.

3.2. Diagnostic Model in the Form of a Regression Model

Section 3.1 describes the changes in diagnostic measures (for cutting forces and acceleration of
vibrations) as a function of tool wear. The main purpose of the diagnosis of the cutting tool’s condition
is to recognize its degree of wear precisely based on the measured values of forces and vibrations.
Nevertheless, a different approach to this issue can be applied. In industrial practice, very often two
states are recognized, acceptable and unacceptable, i.e., when the tool tip should be replaced with a
new one. For this purpose, the permissible tool wear value must be defined, i.e., tool life criterion.
This work assumes: VBc < 0.3 mm (a tool tip capable of machining) and VBc ≥ 0.3 mm (a blunt tool tip).

Figure 8 shows the two tool conditions (for all 15 tool corners) for two measures of cutting forces,
Fp_max and Ff_max. Separation of the two areas, a tool tip capable of machining and a blunt tool tip, is
the task of the monitoring system, which works based on various mathematical algorithms.

Such an analysis can be carried out because of several diagnostic measures that were selected
in this work. The task is not complicated and in the diagnostic systems it is called the classification.
However, a two-step evaluation of the tool condition is not always enough. Usually, recognition of the
tool condition in the next cycle is the relevant information to withdraw the tool before exceeding the
allowable wear. In this situation, we are dealing with prediction, and therefore a valid mathematical
model for prediction that can assess the tool condition at any time. The simplest model is the
one-variable regression equation shown in Figure 9.
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Figure 8. Two tool conditions for Fp_max and Ff_max measures (for 15 tool corners).

 
Figure 9. Diagnostic model in the form of a regression model for 15 tool tips.

For cutting forces components, the linear relationship of the type y = a · x + b (i.e., VBc = a · Fi + b)
is best suited for assessing tool wear. In this context, it is enough to substitute the appropriate value
of the cutting force component and read the value of the tool wear indicator. A similar procedure is
applied when using diagnostic measures based on mechanical vibration signals. The only difference is
that for vibrations the best-suited dependence is the logarithmic function of the type, y = a · ln(x) + b
(i.e., VBc = a · ln (Ai) + b, Figure 10). The basic disadvantage of the one-variable regression model
is low precision. Figure 10b shows an example, where the coefficient of determination, R2 = 0.34,
and dispersions of test results are very large. Therefore, it is difficult to carry out the correct verification
process. The natural dispersion of experimental results means that the predicted values are not precise
and are sometimes burdened with error. Hence it is better to use multivariable models or artificial
intelligence algorithms, such as artificial neural networks.
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(a) (b) 

Figure 10. Exemplary one-variable regression model for Af: (a) tool corner No. 1 and (b) tool corner
No. 4.

3.3. Diagnostic Verification Based on Artificial Neural Networks

After the analysis of individual diagnostic measures, neural network models were developed to
recognize tool wear using multilayer perceptron (MLP) feedforward networks. The input data were
diagnostic measures based on the analysis of vibration accelerations and the components of the cutting
force. The structure of the used networks, on the entry of two or four neurons, in the hidden layer
the number of neurons, varied from four to 20, while in the initial layer it was one neuron. The first
step was focused on learning the neural networks using the Broyden—Fletcher—Goldfarb—Shanno
algorithm (BFGS), which is considered one of the most effective. Input data were results for 13 tool tips
working with identical cutting parameters. However, the results from the next two cutting edges were
used to validate the developed neural networks. In order to select the best network, the activation
functions were changed in the hidden and the initial layer: linear, logistic, hyperbolic, and exponential.
The functions used are listed in Table 1.

Table 1. Activation functions applied at the network learning stage.

Function Equation

Linear x

Logistics
1

1 − e−1

Hyperbolic (Tanh)
ex − e−x

ex + e−x

Exponential e−x

3.3.1. Models of Neural Networks Used to Recognize the VBc Tool Wear Based on Accelerations
of Vibrations

In the first place, the results of vibration accelerations were analyzed starting from the network
learning stage. The networks created with different configuration of the activation functions in the
hidden layer and the output layer. Among the 130 models developed, three models with the best
learning and testing efficiency were selected. Table 2 shows the MLP neural networks together with
a list of all parameters generated in the Statistica program. After entering data into the program,
the number of random samples was assumed at the level of 70% for the training set, 15% for the test
set, and 15% for the validation set.
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Table 2. Selected neural networks based on vibration acceleration analysis (generated in Statistica).

No.
Network

Name
Quality

(Learning)
Quality

(Testing)
Quality

(Validation)

Activation
Function

(Hidden Layer)

Activation
Function

(Output Layer)

23 MLP 2-12-1 0.8826 0.8336 0.9119 Logistic Exponential
72 MLP 2-15-1 0.8818 0.8449 0.9249 Exponential Exponential
126 MLP 2-20-1 0.8797 0.8518 0.9188 Tanh Exponential

No.
Network

name
Learning
algorithm

Error
(learning)

Error
(testing)

Error
(validation)

Error function
Esos

23 MLP 2-12-1 BFGS 55 0.0012 0.0010 0.0007 SOS
72 MLP 2-15-1 BFGS 84 0.0008 0.0007 0.0007 SOS

126 MLP 2-20-1 BFGS 68 0.0007 0.0007 0.0007 SOS

The network number 126 has the best quality of testing around 85%, while the network number 23
has the best learning efficiency of approximately 88%. The number of neurons in the hidden
layer, the number of cycles of the BFGS algorithm (Broyden–Fletcher–Goldfarb–Shanno algorithm,
MLP network learning algorithm), and the function of the hidden layer and the initial layer affect
the effectiveness.

The SOS error function, ESOS (sum of squares), was used to determine the error during learning,
testing, and validation. The error function determines the correspondence between calculated values
and actual values. In Statistica, the error function is calculated as the sum of squared differences based
on the Equation (2):

ESOS =
n∑

i=2

(yi − ti)
2 (2)

where n is the number of examples (input and output pairs) used for learning, yi is the network
prediction (network output), and ti is the “real” value (output according to data) for ith value.

The effectiveness of selected neural networks was evaluated based on the root mean square error
(RMSE). After learning the network, new data was introduced and the effectiveness of the prediction
of the tool wear, VBc, was checked. A comparison of the effectiveness of individual networks based on
new data is presented in Table 3.

Table 3. Root mean square error (RMSE) values for three MLP neural network (based on acceleration
of vibrations).

Network Name RMSE

MLP 2-12-1 0.051
MLP 2-15-1 0.050
MLP 2-20-1 0.049

The smallest error was obtained for a network with 20 neurons in the hidden layer (MLP 2-20-1).
The mean square error using this network was 0.049. Figure 11 graphically illustrates the correlation
between experimental data and the predicted data for the MLP 2-20-1 networks.
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Figure 11. Comparison of predicted values, VBc_t, with experimental data, VBc_r, at the validation
stage (MLP 2-20-1).

3.3.2. Models of Neural Networks Used to Recognize the VBc Tool Wear Based on the Cutting
Force Components

The next step in checking the effectiveness of tool wear prediction value was the development of
an ANN model with input values of the components of cutting forces. Two diagnostic measures were
selected for the creation of the model, Fp_max and Ff_max. The 95 different models of neural networks
were created corresponding to models based on vibration accelerations. Table 4 presents selected
models for analyzing the effectiveness of tool wear prediction.

Table 4. Selected neural networks based on the cutting force components (generated in Statistica).

No.
Network

Name
Quality

(Learning)
Quality

(Testing)
Learning

Algorithm

Activation
Function

(Hidden Layer)

Activation
Function

(Output Layer)

4 MLP 2-10-1 0.8787 0.9245 BFGS 4 Linear Linear
7 MLP 2-10-1 0.9228 0.9502 BFGS 149 Tanh Linear
94 MLP 2-20-1 0.9259 0.9510 BFGS 140 Tanh Logistic

The best learning quality was obtained for a network with twenty neurons in the hidden
layer (No. 94), approximately 93%. Similarly, the same network achieved the best testing efficiency,
approximately 95%. Noteably, by increasing the number of neurons in the hidden layer, the performance
of the model was improved. It is obvious that for the networks with the best training and testing
quality, the smallest RMS error was obtained. Table 5 presents the comparison of the obtained RSM
errors for individual models.

Table 5. The RMSE values for three MLP neural network (based on the cutting force components).

Network Name RMSE

MLP 2-10-1 (4) 0.048
MLP 2-10-1 (7) 0.046

MLP 2-20-1 0.045
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However, Figure 12 shows the dispersion of predicted and experimental values for the best
performing model.

 

Figure 12. Comparison of predicted values, VBc_t, with experimental data, VBc_r, at validation stage
(MLP 2-20-1).

3.3.3. Models of Neural Networks Used to Recognize the VBc Tool Wear Based on Four Variables

The final stage of the analysis was the creation of a model of neural networks based on four
different variables. Diagnostic measures with the best correlation coefficient R2 were selected as input
data. Two measures of the cutting forces component were selected, Fp_max and Ff_max, and two measures
of vibration acceleration, Af and Ap. Thirty different models of neural networks were created. Table 6
presents three models selected for analyzing the effectiveness of tool wear prediction.

Table 6. Selected neural networks based on four different variables (generated in Statistica).

No.
Network

Name
Quality

(Learning)
Quality

(Testing)
Learning

Algorithm

Activation
Function

(Hidden Layer)

Activation
Function

(Output Layer)

5 MLP 4-4-1 0.9711 0.9766 BFGS 90 Tanh Exponential
21 MLP 4-6-1 0.9697 0.9817 BFGS 60 Tanh Linear
26 MLP 4-6-1 0.9706 0.9807 BFGS 62 Tanh Tanh

Table 7 lists the root mean square error RMSE for three selected networks. However, Figure 13
presents the spread of results between the predicted and experimental values of tool wear based on the
MLP 4-6-1 model (No.21).

Table 7. The RMSE values for three MLP neural network (based on four variables).

Network Name RMSE

MLP 4-4-1 0.043
MLP 4-6-1 (21) 0.040

MLP 4-6-1 (26) 0.050
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Figure 13. Comparison of predicted values, VBc_t, with experimental data, VBc_r, at the validation
stage MLP 4-6-1 (based on Fp_max, Ff_max, Af, and Ap variables).

The best learning quality, approximately 97%, was obtained for the network No. 5, while the best
test efficiency was a network with six neurons in the hidden layer of about 98% (No. 21). Similar to the
previous analysis, after selecting the best quality models, new data were introduced to determine the
effectiveness of the neural networks at the validation stage. The smallest RMS error was obtained for a
network with six neurons in the hidden layer and a linear function of activation in the hidden layer
of 0.040 (No.21). In this analysis, a significant impact of the activation function used on the network
performance was noticed. The error values from all analyzed models are summarized in Figure 14.

 

Figure 14. Comparison of RMS errors of the neural networks used in the validation stage.

On the basis of all the developed models of neural networks, the best network performance for
four different variables was determined (for diagnostic measures based on vibration and cutting force
signals). This solution has a practical drawback because it requires measurement of two physical
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quantities, vibration and forces. In practice, systems based on measurements of several physical
quantities are problematic and cost intensive. Therefore, sometimes a better compromise is the use
of simple measuring methods (as in the case of vibrations) in exchange for greater effectiveness in
recognizing the condition of the cutting tool. There are some limits of compromise, but this should be
checked in practical applications.

4. Conclusions

This paper presents a neural network model to predict tool wear based on cutting forces and
mechanical vibrations. From this study, the following conclusions can be drawn:

1. The correlation coefficient between tool wear, VBc, and the diagnostic measure assumes different
values depending on the direction of vibration or force measurement. The best correlation
coefficient was obtained for the radial cutting forces Fp_max. The coefficient value R2 = 0.87
indicates a good correlation with the power mathematical function. On the basis of the coefficient,
the input data for creating the network was also selected.

2. Proper selection of the number of neurons in the hidden layer and activation function in the hidden
and initial layers significantly affect the effectiveness of predicting the tool wear value. Changes
in the structure of the model at the beginning of its creation by the user help to achieve prediction
at a satisfactory level. The artificial neural network, MLP, is an effective model for predicting tool
condition during machining difficult-to-cut materials. The use of various diagnostic measures
increases the efficiency of prediction.

3. The correlation coefficient obtained in the analysis of vibration accelerations was definitely lower
than in the analysis of cutting forces. Nevertheless, the tool wear model, ANN, based on the
measures of acceleration of vibrations Ap and Af obtained the ability to forecast tool wear with
the efficiency loaded by the mean square error RMSE = 0.049.

4. Wear prediction based on measurements of cutting force components Fp_max and Ff_max
obtained slightly better results than at vibration accelerations. The error accomplished was
RMSE = 0.045 mm. This means that both cutting forces and vibration acceleration are equally
good for assessing tool wear during machining difficult-to-cut materials.

5. By creating different structures of the ANN model, the most effective prediction possibility for the
model with the four input measures was obtained: Fp_max, Ff_max, Ap and Af. The use of various
diagnostic measures produced the best prediction results, RMSE error = 0.040 mm. In this case,
the tangent activation function in the hidden layer and the linear activation function in the output
value accomplished the best effects.
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Abstract: Hole quality in drilling is considered a precursor for reliable and secure component
assembly, ensuring product integrity and functioning service life. This paper aims to evaluate the
influence of the key process parameters on drilling performance. A series of drilling tests with new
TiN-coated high speed steel (HSS) bits are performed, while thrust force and torque are measured
with the aid of an in-house built force dynamometer. The effect of process mechanics on hole quality,
e.g., dimensional accuracy, burr formation, surface finish, is evaluated in relation to drill-bit wear and
chip formation mechanism. Experimental results indicate that the feedrate which dictates the uncut
chip thickness and material removal rate is the most dominant factor, significantly impacting force and
hole quality. For a given spindle speed range, maximum increase of axial force and torque is 44.94%
and 47.65%, respectively, when feedrate increases from 0.04 mm/rev to 0.08 mm/rev. Stable, jerk-free
cutting at feedrate of as low as 0.04 mm/rev is shown to result in hole dimensional error of less
than 2%. A low feedrate along with high spindle speed may be preferred. The underlying tool wear
mechanism and progression needs to be taken into account when drilling a large number of holes.
The findings of the paper clearly signify the importance and choice of drilling parameters and provide
guidelines for manufacturing industries to enhance a part’s dimensional integrity and productivity.

Keywords: drilling; dynamometer; hole quality; forces; roundness; roughness; wear; chips; burr

1. Introduction

In manufacturing industries, hole drilling has been a signature process employed to create
various geometric features as well as to ensure secure assembly with other components for enhanced
product integrity, reliability, and life cycle [1,2]. In particular, the process has been one of the major
fabrication processes in automotive and aerospace industries, when machining of lightweight metals
and composites are concerned [3,4]. Tool-based and laser-assisted drilling are adopted to fabricate the
holes with the desired hole quality [5]. While laser drilling is shown to create holes with high geometric
precision, often high process temperature may potentially deteriorate the structural integrity of the
part. Such a phenomenon has unanimously been touted as a major issue in drilling of the composites.
For instance, high temperature causes melting and swelling around the hole area, thus leading to
damage to the drilled part [6].
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In particular, burr formation and poor surface quality in drilling negatively affect the dimensional
accuracy, and cause additional difficulty, reworking, cost, and even damage, e.g., fatigue, in the
assembly. Therefore, the drilled holes are often deburred to retain a component’s functional reliability.
It is reported that the deburring simply accounts for about 30% of total fabrication cost in an aircraft’s
fuselage assembly [7]. As such, the importance of minimization of burr formation and comprehensive
techniques to achieve this have been stressed out, with an aim of developing a more robust process
modelling and database.

Regardless of materials and techniques, the important process parameters, such as spindle speed
and feedrate, significantly affect the drilling performance, in terms of material removal rate, thrust force,
and torque. The effect of these parameters on the process mechanics and their optimization in the
drilling of different types of materials has been studied [8]. It is shown that the thrust force and torque
dictates the final outcome of the drilling. A singled-out consensus, though, is that high thrust force
and torque result in poor hole quality and deterioration of tool life. It is, therefore, very important to
assess and understand further the process mechanics in a drilling process.

Commercial piezoelectric force sensors, such as Kistler’s dynamometer, are used to measure the
cutting dynamics in terms of the thrust force and the torque. While they are highly accurate and reliable,
they are very expensive for small–medium-sized manufacturing shop floors to afford. Also, as the
sensor’s dynamic response is affected by workpiece mass and geometry, the sensors measure static
forces with potential drifting, causing erroneous force measurements. However, as an inexpensive
option, strain-gauge-based mechanical force sensors are becoming a potential candidate, which can
still offer reasonably accurate and reliable force measurements. In this case, elastic deformation of
a mechanical element is sensed by a series of strain gauges, which are interfaced with an electrical
instrumentation, and under loading, the force is measured and estimated as an equivalent electrical
voltage output. The gauge sensors are highly sensitive to strain and can be easily attached to
the mechanical structure. Recently, the current authors designed and developed an innovative
octagonal-elliptical strain gauge-based sensor for measuring milling force data, and demonstrated its
working functions [9]. As a simple and robust tool, the designed sensor is found to have a potential to
adapt in drilling and evaluate its underlying performance.

With the aid of appropriate sensing and assessment tools, in the past, numerous analytical,
numerical, and experimental approaches have been employed to characterize the drilling process,
i.e., estimating the thrust force, torque, assessing hole quality, of aluminum alloy and composite
materials. In drilling of the fiber-reinforced plastic, Wei et al. [10] reported that the thrust force and
hole quality are strongly influenced by the feedrate while the effect of the cutting speed is relatively
less. In drilling of Ti6Al4V, Glaa et al. [11] proposed and studied a numerical model in estimating force
and torque by taking regenerative chatter and process damping into account, and evaluated the effect
of process parameters.

Ko et al. [12,13] studied the effect of drill-bit geometry, suggesting a larger point angle and step drill
to enhance the hole quality, i.e., reduced burr size. Similar observations are reported elsewhere in the
work by Lauderbaugh [14]. Nauri et al. [15] has investigated tool wear in dry drilling via experimental
analysis and optimization, stressing that abrasive and adhesion wear causes tool bluntness and
consequently, breakage, thus resulting in the hole’s dimensional inaccuracy. Kurt et al. [16] recommended
a low cutting speed and feedrate for enhanced hole quality in the drilling of aluminum alloys.

The effect of the coolant, such as MQL (minimum quantity lubrication) liquid nitrogen,
was studied, and it is found that while the coolant reduces the thrust force and tool wear, and improves
the hole quality, the use of coolant may cause environmental hazards [17,18]. Along with by a
sustainable manufacturing manifesto, the machining process is expected to be less hazardous for the
operators, users, and environment. As such, drilling in dry conditions can often be preferred. In an
extensive work, Ramulu et al. [19] observed that, in drilling with HSS drill bits, the temperature at the
cutting zone increases with the increase of spindle speed and the decrease of feedrate. Increasing the
spindle speed leads to increased tool wear, larger entrance and exit burrs, while an increased feedrate
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leads to an increased thrust force and torque, but smaller entrance and exit burrs. Such observation is
somewhat contradictory to earlier findings by Chen and Elhman [20]. It is therefore apparent that the
relationships between the drilling parameters and the thrust force, tool wear, and burr formation may
vary with the underlying workpiece and drill-bit material. In other words, while the process mechanics,
i.e., material removal and chip generation, seems to be generic, the process outcome can still change
with the effective parameters and conditions employed [21]. This warrants further investigation to
explore and validate such perspective in drilling.

Given the observed discrepancies, with the aid of an in-house designed and built affordable
and accurate force dynamometer, the objective of the current study is to recap the drilling mechanics
with an aim of comprehensively investigating the effect of the key process parameters—the spindle
speed and the feedrate—on the thrust force and torque. As a final outcome, the drilled hole quality,
in terms of hole diameter, roundness, surface roughness, and burr formation, is assessed and discussed
in relation to the tool wear mechanism and chip formation characteristics. To observe a sustained
evolution of tool wear, a series of holes are drilled out of an aluminum 6061 alloy workpiece.

2. Materials and Methods

Axial force (i.e., thrust force) and torque are two major indicators for the assessment of drilling
dynamics. It has been demonstrated that compared to a circular ring, an octagonal structure with an
internal elliptical hole generates high strain under loading, thus improving the sensitivity of strain
gauge-based load cells [9]. In this study, we have designed and fabricated in-house an octagonal-ellipse
shape force dynamometer to measure the thrust force and the torque in drilling. Figure 1 depicts
a schematic diagram of the dynamometer structure along with strain gauge arrangement on it.
The tangential force data is used to estimate the drilling torque. Top and bottom plates shown
are attached to hold the workpiece to be drilled out. The details of the electronics including the bridge
circuits and signal processing unit are not shown here for simplicity. The force dynamometer was
statically calibrated on an Instron machine (Model: 5567, Norwood MA, USA). A linear relationship
between the applied force and the output voltage is found with a fitting accuracy of 98%. To capture
the dynamic behavior in drilling, the dynamometer is calibrated in a real drilling test. Figure 2 shows
a representative dynamic axial force (Fa) and torque (T) while drilling a hole. Torque is estimated
using the relationship of T = Ft ∗ r [22], where r = the radius of the drill bit and Ft = tangential force
measured by the dynamometer. It is seen that the force and torque vary with time. In particular,
torque increases with time as the depth of drilling increases, i.e., when the full contact between the
drill bit and the hole surface reaches. This indicates that the force dynamometer used in this study can
detect and measuring the dynamic and transient cutting force information.

 

Octagonal-
ellipse load cell

Axial force

Tangential 
force

Top plate

Bottom plate

workpiece

Axial force

Tangential force

Bridge 
circuit & 
amplifier 

Unit

Figure 1. Arrangement of an octagonal-ellipse load cell and the connections of strain gauges to measure
axial and tangential forces.
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Figure 2. Representative dynamic axial force and torque measurement in drilling of a hole at spindle
speed N = 2000× rpm and feedrate f = 0.08 mm/rev.

To assess hole quality, a series of drilling experiments was conducted on a 3-axis mill-drill machine
(MetalMaster’s MB-52VE, HAFCO, New South Wales, Australia). Drilling tests were performed in
a dry condition. Parameters considered are shown in Table 1. These levels of parameters are often
found to be used in conventional cutting of aluminum alloys in various manufacturing industries [23].
Figure 3 shows an experimental setup including an in-house built force dynamometer along with a data
acquisition system. For a given set of process parameters, ten (10) holes are drilled out to investigate
the effect of tool wear on hole quality. Therefore, there are six (6) sets of parameter combination
made between the spindle speed and the feedrate (see Table 1). For each set of 10 holes, a new and
sharp edge drill bit is used. As seen in Figure 3 (see inset image) a dedicated workpiece of 125 mm
× 125 mm × 8 mm with pre-drilled holes of 10 mm is made and mounted onto the top plate so
that, during drilling of each hole, the axial force is always pointed towards the central axis of the
dynamometer. Workpiece is made of aluminum 6061 alloys, whose mechanical properties are shown
in Table 2. and the drill bits used are two fluted, TiN-coated A002 high speed steel of 8 mm in diameter
along with a cutting angle/drill point = 118◦, cutting direction = right-hand. The depth of the hole
drilled is 16 mm.

Table 1. Drilling parameters.

Parameters Values

Spindle speed N (rpm) 1000, 1500, 2000
Feedrate f (mm/rev) 0.04, 0.08

For each hole, the transient forces are measured and recorded using the designed force
dynamometer. The transient data with the drilling time are averaged out to determine the final
force and torque. Drill-bit cutting edges and chips are observed and analyzed by an optical microscope
(Leica’s DVM500) and scanning electron microscope (SEM) (Merlin, Carl Zeiss, Oberkochen, Germany)
to investigate tool wear and cutting mechanism as the number of drilled holes increases.

Table 2. Mechanical properties of workpiece material (Al 6061 alloys) used.

Parameters Values

Young’s modulus (GPa) 68.9
Poisson’s ratio 0.33

Tensile strength (MPa) 124–290
Density (g/cm3) 2.7

Thermal conductivity (W/m.K) 151–202
Specific heat capacity (J/Kg·K) 897
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Hole diameter and roundness are measured by a coordinate measuring machine (CMM) (Brown &
Sharpe’s MicroXcel 7.6.5) manufactured by Hexagon Metrology (Melbourne, Australia). The machine
is connected to measurement software PC-DMIS (Version 3.7), which is used to collect the measurement
data for further processing. For each hole, 8 horizontal planes perpendicular to the depth direction
from the top of the hole at an interval of 2 mm are chosen, where the CMM probe touches at least
10 points on the inner surface at approximately an equal angle of interval at each depth and measures
the diameter on the plane by using the least square circle (LSC) method. CMM Measurement includes
entry and exit sides of the hole. Average of the diameter measured at 8 planes is the final diameter.
Hole roundness is defined as the radial distance between the minimum circumscribing circle and the
maximum inscribing circle, which possesses the profile of the inner surface at a section perpendicular
to the axis of rotation. Using the same CMM data obtained for diameter measurement, the final
roundness is recorded as the average of roundness measured at 8 depth sections. Drilled surface
roughness is measured using a Mitutoyo’s Surftester (Model: SJ 211), where a cut-off length of 2 mm
is considered. Roughness (Ra) measurement is taken on at least five locations along the hole depth
direction and their average is recorded as the final value. Burr formation appears to be common in
drilling, which affects the hole quality in terms of dimensional accuracy and performance of drilling.
In drilling, burrs are generated at the entry and exit side of the hole. In this study, exit burr thickness
and height has been measured by the optical microscope (Leica’s DVM 500). Measurements are
conducted at four locations equally distant to each other on the hole, and their average is considered
the final recorded value.

Load cell

Workpiece 

Drill bit 
Amplifier

NI DAQ

Laptop with LabVIEW

Machine table

Spindle head

Top support 
plate

Load cell

Bottom plate

Top plate

workpiece

Axial force

Torque

Figure 3. Experimental setup for drilling tests.

3. Results and Discussion

3.1. Axial Force and Torque

Figure 4 shows the variation of average axial (thrust) force and torque with respect to spindle
speed and feedrate. For each hole, the average value estimated as the average of transient force data
measured from the moment when the drill bit enters full into workpiece until the bit exits the hole
completely. Clearly, both axial force and torque increase significantly with the increase of feedrate.
For instance, when feedrate is increased from 0.04 mm/rev to 0.08 mm/rev, the increase of axial force
is 29.23%, 44.94% and 34.02% at spindle speed of 1000× rpm, 1500× rpm and 2000× rpm, respectively.
For the same change of feedrate, torque increases by 29.95%, 41.55% and 47.65%, at spindle speed of
1000× rpm, 1500× rpm and 2000× rpm, respectively. Larger feedrate means the drill bit experiences
faster penetration axially, thus resulting in larger chip thickness and material removal rate. As a result,
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thrust force and torque increase. On the other hand, at a given feedrate, spindle speed appears to
have insignificant influence on thrust force. For example, at a feedrate of 0.08 mm/rev, axial force
increases by 4.74% and 9.18% when the spindle speed changes from 1000× rpm to 1500× rpm, and to
2000× rpm, respectively. In drilling of homogenous titanium alloy stacks, Wei et al. [10] observed that
the change of thrust force with respect to spindle speed is minimum or negligible. Hence, this supports
our results for drilling of aluminum alloys. In other words, drilling of titanium and aluminum alloys
follow qualitatively the similar trend, and so is expected in terms of hole quality.

However, some moderate effect on torque is noticed. For instance, at a feedrate of 0.08 mm/rev,
torque increases by 59.19% when spindle speed increases from 1000× rpm to 1500× rpm, and then
remains nearly stable with a moderate increase of 10.95% as the spindle speed reaches to 2000× rpm.
As the spindle speed increases further, temperature generated at the cutting zone softens the material,
and hence, the drill bit requires less force for plastic deformation and shearing of material. As can be
seen in Figure 4a, a slight increase of axial force (and torque) with increase of spindle speed can be due
to the variation of degree of thermal softening and temperature rise because of actual spindle speed
variation (i.e., commanded spindle speed may not be constant during drilling). The results clearly
suggest that higher spindle speed and lower feedrate may be preferred; but tool wear effect, which will
be discussed in the following section, must be taken into consideration simultaneously.
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Figure 4. Effect of feedrate and spindle speed on (a) average axial force and (b) average torque. Error
bar indicates standard deviation of force data for drilling of 10 holes.

3.2. Tool Wear Mechanism

Figure 5 illustrates SEM photos of the drill bit’s cutting edges after 10th hole for each combination
of spindle speed and feedrate. As compared to the chisel edge, the cutting-edge wear is the dominant
factor impacting the drilling performance. Noticeable wear on the flank face includes adhesion due to
built-up edge, abrasive and chipping or fracture. These types of wear are very common for cutting
of soft material, such as, aluminum alloys. It can be seen from Figure 5 that, adhesion wear has
been the obvious wear mechanism, regardless of the spindle speed and the feedrate studied. As the
feedrate increases from 0.04 to 0.08 mm/rev, the abrasion wear takes place, causing the true flank wear
and weakens the strength of the cutting edge. Large feedrate means higher material removal rate,
causing larger thrust force onto the cutting edge. Consequently, the edge chipping along with plastic
deformation starts to occur, which may lead to the breakage of the drill bit. In particular, TiN coating on
the drill bit would be more vulnerable. This observation is consistent with the findings of drilling force

184



Materials 2018, 11, 2443

and torque. It can, therefore, be imperative to say that the moderate feedrate can be recommended to
avoid early initiation of the cutting-edge wear and failure. Though no significant measurable wear on
the flank face is observed even after the 10th hole, it is expected that the severity of the cutting-edge
wear will accelerate as the drilling time for producing more holes will increase. In addition to shear
straining in primary shear zone, the complex interaction and temperature rise at the interface between
the tool and chip rule the dominant adhesion wear evolution in drilling. Nuoari et al. [15] reported
adhesion occurs in two stages as built-up edge (BUE) and build-up layer (BUL) as the drilling of
more holes continues. Initial unstable BUE transforms into BUL due to pressure and temperature in
contact zone, leading to potential diffusion of aluminum towards the tool, and micro-welding forms
on tool surface. When BUL formation reaches tool edge and breaks due to dynamic non-continuous
cutting, the tool edge becomes irregular and weakens, which potential may result in catastrophic
fracture failure. SEM images shown in Figure 5 show clearly a change of BUE to BUL along with rough
tool edges. As such, our results on tool wear are consistent with literature. Therefore, along with
appropriate choice of spindle speed and feedrate, the use of highly wear resistant and low friction
coated drill bit (e.g., (Ti-Al)N or diamond coating via CVD/PVD on tungsten carbide (WC) tool [24])
along with an effective cooling mechanism can be considered to minimize the severity of tool wear,
and hence, improve drilling performance in terms of hole quality (which is discussed in the following
sections), tool life and manufacturing productivity [15].
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Figure 5. Scanning electron microscope (SEM) images of the drill-bit bottom and their magnified view
of the cutting edge after 10th hole for different spindle speed and feedrate.

3.3. Hole Diameter

Figure 6 shows the variation of average hole diameter and % of difference from its nominal size
with respect to spindle speed (N) and feedrate (f ). As is obvious, for the range of speed and feedrate
studied, hole size is always larger than the nominal and the maximum % of difference in diameter is
less than 2%, i.e., the hole is less than 150 μm large from its nominal dimension (of 8 mm in diameter).
Despite the diameter increase is relatively small, it appears that smaller feedrate is shown to reduce
the dimensional difference while the spindle speed has no noticeable effect, except for the condition
of N = 1000× rpm and f = 0.04 mm/rev, which indicates that low speed and low feedrate would be
preferred. Lower feedrate means slower penetration rate and the cutting edge removes material with
smaller chip thickness, allowing a stable and jerk-free drilling, and as a result, the hole diameter with
less dimensional error is achieved. It is reported that faster spindle speed causes temperature rise at
the cutting zone, and softens the material, thus facilitating a smoother drill surface with a good surface
quality with an improved dimensional accuracy. Though the difference is not statistically significant,
our results on hole diameter shown in Figure 6, indicate an improvement of dimensional accuracy
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as the spindle speed increases from 1000× rpm to 2000× rpm. The results are consistent to force and
torque data. At a low feedrate, shear cutting is the dominant mechanism, resulting in a continuous
chip generation and lower force, and as a result, hole deviation is minimum. Similar conclusions on
hole size in drilling of Al alloys are observed elsewhere in literature [2,23]. Therefore, it is safe to say
that, given a spindle speed, slower feedrate can suitably be selected to minimize the dimensional error.
Although a slower feedrate compromises productivity, the decision must be made by establishing a
fair balance between the productivity and the dimensional accuracy required.
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3.4. Burr Formation

Figure 7 shows an example drilled hole with burrs at the exit side, and the geometric definition.
Burr size at the entry side is found to be smaller than the exit side. Therefore, burr at the exit side
is measured for drilling of ten holes at each combination of process parameters and presented for
analysis. Figure 8 shows the change of the exit burr thickness and height with respect to spindle speed
and feedrate. It can be seen that higher spindle speed and feedrate increase the burr size. In particular,
the increase of burr size with the feedrate is higher when the spindle speed is larger. For instance,
the change of burr thickness between feedrate of 0.04 mm/rev and 0.08 mm/rev increases from 18% to
50% when the spindle speed increases from 1000× rpm to 2000× rpm, respectively. On the other hand,
for the same condition, the burr height jumps from 19.56% to 28%. As explained in earlier section,
higher feedrate rate introduces higher thrust force, which causes larger and faster chip generation, and,
as a result, the burr geometry becomes larger. Overall, spindle speed influences the burr thickness
the most than the burr height. Figure 9 shows a representative topography of the exit side burr with
respect to spindle speed and feedrate. It is to be noted that burr formation and its increase can be
carefully observed when drilling with larger diameter. In other words, larger diameter tool increases
cutting speed and dynamic rake angle, which cause plastic deformation in machining hardening
layer and residual stress depth on the hole wall, hence resulting in increase of burr thickness and
height [25]. The above suggests that lower spindle speed and feedrate must be chosen to minimize
burr generation, thus saving cost for further rework in removing burrs. Past computational modelling
and experimental investigation on drilling of aerospace aluminum and composite materials have
reiterated the severity of burr formation, and made similar recommendations to ensure superior hole

186



Materials 2018, 11, 2443

quality [26]. For instance, Sorrentino et al. [22] reported a reduction of push-out delamination factor
(i.e., exit burr geometry) by 37% for drilling of CFRP (carbon fiber-reinforced polymer) when feedrate
is changed from 0.3 mm/rev to 0.1 mm/rev.

Burr at exit sideBurrs
Burrs at exit side

Burrs at entry side

Exit side of hole

(a) (b)

Figure 7. (a) Representative hole with burrs at the exit side of a hole (b) definition of burr geometry.
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Figure 8. Effect of spindle speed and feedrate on (a) thickness and (b) height of exit burr. Error bar
indicates standard deviation of burr size for drilling of 10 holes

3.5. Roundness and Roughness

Figure 10a show the roundness error with respect to spindle speed and feedrate. The roundness
error increases significantly with the feedrate. For instance, when the feedrate is increased from
0.04 mm/rev to 0.08 mm/rev, the roundness increases by 78.78% at a spindle speed of 1000× rpm.
The roundness error could primarily be because of burrs generated at the entry and the exit sides of the
hole, the abrupt thrust force, and the dynamic instability of the drill bit. Higher thrust force due to a
larger feedrate would be the dominant reason for an increased roundness error. For all ten holes drilled
out, the roundness error is less than 60 μm, which is reasonably acceptable for small to medium size
holes (of 8 mm diameter). On the other hand, the roundness error is less impacted by the spindle speed,
but reduces at a large feedrate of 0.08 mm/rev. This is surprisingly interesting observation though,
and conflicts with the trend of burr geometry with higher feedrate and spindle speed. Such variation
could be due to the errors in roundness measurements by CMM. In other words, as the CMM probe
touches the inner surface of the hole, the cutting debris potentially adhered to the surface affects the
measurement, and hence, the overall roundness error. Even though hole’s inner surface is cleaned by
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high speed air spray by an air gun, very minute debris may be stick to the surface. Effect of spindle
speed and feedrate on hole roughness Ra is shown in Figure 10b. It is seen that roughness varies
between 8.5 μm and 11.15 μm. Feedrate has no or minimum influence on roughness, while higher
spindle speed is shown to give lower roughness. These results imply that low to moderate spindle
speed and feedrate can safely be selected to achieve smooth hole surface finish. Clean and smooth hole
surface is expected to pull-out strength and mechanical integrity of the underlying assembly structure.
Observation of chip morphology which is shown in the next section further explains the mechanism
for improved surface finish.

f=0.04mm/rev
N=1500rpmN=1000rpm N=2000rpm

(a) (b) (c)

f=0.08mm/rev (d) (e) (f)

Burrs 

Burrs 
Burrs 

Burrs 

Smooth 
drilled 
surface

Figure 9. Representative topography of exit side of holes at parameter combination of (a) N = 1000 rpm
and f = 0.04 mm/rev, (b) N = 1500 rpm and f = 0.04 mm/rev, (c) N = 2000 rpm, f = 0.04 mm/rev, (d) N
= 1000 rpm, f = 0.08 mm/rev, (e) N = 1500 rpm, f = 0.08 mm/rev (d) N = 2000 rpm, f = 0.08 mm/rev.
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Figure 10. Effect of feedrate and spindle speed feedrate on (a) hole roundness and (b) surface roughness.
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3.6. Chips Formation

Figure 11 shows cutting chips after 10th hole at different combination of spindle speed and
feedrate. In most cases, the chips are continuous, entangled curly shape. It appears that the spindle
speed has less influence on the chip generation, while the feedrate affects the most. As the feedrate
increases from 0.04 to 0.08 mm/rev, the chips are not always continuous, but fractured and broken.
Reduced edge sharpness due to wear at high feedrate is responsible for the broken and segmented chips.
In other words, because of wear, the interaction between the rake face and the workpiece changes,
which may result in the segmented chip generation. Also, when feedrate increases, shearing section
becomes larger and chips become wider. Therefore, chips struggle to wind continuously due to large
stiffness, and hence start to break into small segmented and/or spiral pieces. Furthermore, high spindle
speed means high kinetic energy into chips, which may cause chip breakage at higher feedrate
(Figure 11). In other words, chips flow through the flutes experience tremendous resistance due to the
contact friction and break away. The similar finding is observed and reported via experimental and
computational studies on machining of aerospace aluminum alloys [10,27]. It is to be noted that while
segmented chips are favorable for easy evacuation and management of chips, the underlying process
often deteriorate the generated hole quality. Therefore, the selection of drilling process parameters must
be considered according to the desired hole-quality requirements, e.g., hole dimension, roundness,
and finish.

 

f = 0.08 mm/rev
N = 1000 rpm

N = 1500 rpm

N = 2000 rpm

f = 0.04 mm/rev

Figure 11. Cutting chips after drilling of 10th hole at different spindle speed and feedrate.
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4. Conclusions

This paper presents an experimental investigation on the evaluation of hole quality in drilling of
aluminum alloys. Compared to spindle speed, feedrate is the most dominant parameter, significantly
affecting drilling behavior. For given spindle speed range, maximum increase of axial force and torque
is 44.94% and 47.65%, respectively when feedrate increases from 0.04 mm/rev to 0.08 mm/rev. Stable,
jerk-free cutting at feedrate of as low as 0.04 mm/rev is shown to result in hole dimensional error
of less than 2%. Results of burr geometry and roundness follow the same trend, while roughness is
minimally influenced by both spindle speed and feedrate. Built-up edge followed by abrasion and
micro-chipping at the cutting edge produce noticeable wear mechanism, and their consequence may
accelerate as the number of drilled holes further increases. This result is supported by chip morphology
observation, i.e., more broken and segmented chips are noticed at a higher feedrate, as opposed to the
continuous entangled chips at a lower feedrate.

It should be noted that coolant [27] and change of tool geometry [28], which may affect the drilling
performance, is not taken into account in this study. While both may quantitatively change force and
hole-quality metrics presented, it is expected that the qualitative trend will remain the same, and,
as such, so do the conclusions of the paper.
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Abstract: The objectives of this paper are to demonstrate the viability, and to validate, in part,
a multiscale method for calculating curvature tensors on measured surface topographies with two
different methods of specifying the scale. The curvature tensors are calculated as functions of scale, i.e.,
size, and position from a regular, orthogonal array of measured heights. Multiscale characterization
of curvature is important because, like slope and area, it changes with the scale of observation,
or calculation, on irregular surfaces. Curvatures can be indicative of the topographically dependent
behavior of a surface and, in turn, curvatures are influenced by the processing and use of the surface.
Curvatures of surface topographies have not been well- characterized yet. Curvature has been used
for calculations in contact mechanics and for the evaluation of cutting edges. Manufactured surfaces
are studied for further validation of the calculation method because they provide certain expectations
for curvatures, which depend on scale and the degree of curvature. To study a range of curvatures
on manufactured surfaces, square edges are machined and honed, then rounded progressively by
mass finishing; additionally, a set of surfaces was made by turning with different feeds. Topographic
measurements are made with a scanning laser confocal microscope. The calculations use vectors,
normal to the measured surface, which are calculated first, then the eigenvalue problem is solved for
the curvature tensor. Plots of principal curvatures as a function of position and scale are presented.
Statistical analyses show expected interactions between curvature and these manufacturing processes.

Keywords: surface; texture; machining; multiscale; aluminum alloy 6061 T6

1. Introduction

The objectives of this paper are to demonstrate the viability, and to validate, in part, how
surface topographies can be characterized by curvature tensors calculated from areal topographic
measurements of manufactured surfaces. In addition, two methods for specifying the scale are studied.
The machined, honed, and mass finished surfaces have regular and irregular topographic components.
The second-order curvature tensors vary with scale, position, and orientation, i.e., direction. They are
calculated from regular arrays of measured surface heights, producing multiscale characterizations
that are both position- and orientation-specific. The validation is tested by comparing the results with
expectations, based on the machining, honing, and finishing processes.

Appropriate characterization of topographies is essential for discriminating with confidence
surfaces with topographies that were created differently or that behave differently, and for discovering
strong correlations between processing and topographies, or between topographies and behavior.
The value of surface metrology for product and process design, i.e., the measurement and analysis of
surface topographies, is largely founded on these abilities to discriminate and correlate [1,2].

Topographies can have components that are regular, like form, and components that are irregular,
i.e., roughness. Sometimes the term roughness is used simply to refer to fine-scale topographies,
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even if they are highly regular, e.g., certain engineered surfaces. Surfaces that are essentially regular
might be sufficiently characterized by a few measurements and parameters. Irregular surfaces can
require millions of height measurements, multiscale geometric analyses, and statistics for sufficient
characterizations [2].

Curvature is particularly attractive as a characterization method. Curvature is approximately
the spatial derivative of the slope. No datum is required for the characterization of curvature, unlike
heights or slopes. This aspect of curvature characterization can be especially valuable when the
datum is not obvious, such as in characterizing redundant surfaces or voids, which can be measured
with tomography.

Curvature is an essential parameter for characterizing edges and surfaces. The curvature of cutting
edges has been discussed in the literature [3–5]. Curvature of peaks as a geometric property of surfaces
is important in contact mechanics (e.g., [6–8]). Characterizing the valleys of topographies by their
curvature also could be important for understanding crack initiation, fluid retention, and adhesion.
Vulliez et al. presented a strong functional correlation (R2 = 0.96) at a specific scale (610 μm) between
the curvature of machined surfaces and their fatigue limit [9]. Logically, some kind of multiscale
characterizations of curvatures of topographies could be used for discrimination and for correlation
with processing and behavior, as has been done with area-scale analysis [10]. This characterization
could be useful for surface research and for product and process design.

It is important to understand how the many ways of implementing multiscale in the analyses
of characterization parameters can influence the results. Two methods are used here, and the results
are compared.

Curvature has previously been calculated from profile measurements as a function of scale and
position, where the height, z, as a function of position, x, such that z = z(x) [9]. One method uses Heron’s
formula to calculate the curvature, based on three points from the profile. The scale is represented by
the spacing in x of the three height measurements selected for the calculation. The curvature can vary
with position and with scale along the profile.

Here it is shown how curvature can be calculated from areal measurements, i.e., on regular
orthogonal arrays of heights, z, in x and y such that z = z(x,y). Curvature can be characterized as a
second-order tensor that can vary with position and scale. This is more complicated than calculating
curvature from a profile, and the results can be more valuable. The result of an eigenvalue calculation
gives the values and orientations of the maximum and minimum curvatures as a function of position
and scale. In addition to the curvatures themselves, these results can be used to characterize the
anisotropy, or directionality, of a surface, based on curvature orientation [11].

A study of the commonly used techniques for curvature estimation was presented by Petitjean [12].
Recent studies tend to concentrate on the triangular meshes because they are commonly used in
representations in many computer-assisted design (CAD) or graphics programs. Many [13–15] use
piecewise surface approximations, e.g., Bezier, quadratic, or polynomial. Thiesel et al. introduced a
robust method for calculating the curvature tensor, based on vectors normal to the surface, which does
not involve local surface interpolation [16]. That method calculates a curvature tensor with components
that are constant within a certain triangular region on the surface. Coeurjolly et al. described a novel
class of estimators of digital shapes, which are based on integral invariants [17]. They used a local
approximation to convert discrete height data into continuous functions. An interesting study was
presented recently by Foorginejad and Khalili, in which they introduced a method named umbrella
curvature [18], which involved normal vectors and vectors between the point of estimation and their
neighbors in order to estimate local curvature. Lai et al. described a method that connects profile and
surface curvature. They searched principal curvatures by calculating profile curvature in multiple
directions and looking for maximum and minimum values [19].

The physical determination of the height at a point on a real surface is problematic. During surface
measurements, discrete heights are determined over lateral, or spatial, sampling zones, rather than at
points. The height at a mathematical point, which is infinitesimally small, cannot be measured on a

194



Materials 2019, 12, 257

surface. Measured heights are determined at a certain lateral spacing, or sampling intervals, which
might or might not exceed the size of the sampling zone. Nonetheless, the measured heights over
zones are treated here, for the calculation, as an array of mathematical points, z = z(x,y).

The actual, measured, areal surface, although continuous by the general definition of a surface,
could represent an actual surface that is nowhere differentiable. However, digital representations
of measured surfaces are commonly approximated as smooth. This approximation facilitates
characterization by a series of curvatures that can vary with position and scale.

In the following development of the curvature calculation, a surface will be considered to consist
of a collection of heights at points on a regular, spatial grid. The surface will be considered differentiable
at the scales and locations required for the calculations of normal vectors to patches, or defined regions,
on the surface.

The approach here is to use a representation of areal surfaces based on heights used to calculate
vectors normal to the surface. The curvature tensor is considered constant over the size of the region
that represents the scale. This method for curvature estimation uses normal vectors at points that
represent the center of patches, over which the normal vectors are calculated.

Three ways to compute the normal vectors are given in [20]:

1. Covariance matrix, which computes the unit normal vectors from the neighboring points about a
central point.

2. Average areal gradient, which uses horizontal and vertical differences of neighboring points
around the central point.

3. Average depth change, which calculates horizontal and vertical differences from
averaged neighbors.

In this work, the first method, covariance matrix, is used, because of its small estimation error in
multiscale applications and the simplicity of implementation [21].

The characteristics of aluminum alloy 6061-T6, used in this study, may lead to the formation
of built-up edge (BUE) when cut. This phenomenon increases the mechanical load on the cutting
edge, making efficient chip flow difficult and the chip-removal process inefficient. Alloying elements
(in particular, silicon present in this aluminum alloy), and the treatment methods, influence the
machining properties [22,23]. The influence of machining parameters on the resulting surface texture
for hard-to-cut materials was analyzed by Krolczyk et al. [24] and Twardowski et al. [25].

2. Materials and Methods

2.1. Preparation and Measurement of the Surfaces

Two different sets of surfaces were manufactured from aluminum alloy (6061 T6), the surface
topographies were measured, and the measurements were analyzed. The topographies were
measured with an Olympus LEXT 4100 OLS laser scanning confocal microscope (Olympus Corporation
Shinjuku, Tokyo, Japan) with a 50× objective (NA 0.93). The measurement regions were cropped to
0.11 mm × 0.11 mm for the turned and 0.075 mm × 0.075 mm for the edge. The sampling interval is
about 250 nm.

One set of surfaces was manufactured by turning a rod, initially 25.45 mm in diameter, on a Haas
SL10 CNC lathe (Haas Automation, Inc., Oxnard, CA, USA), first to a diameter of 24.29 mm, then to
22.30 mm in a final pass, making final cutting depth, ap, equal to 0.995 mm. The feeds were 0.2, 0.1,
0.05, 0.01 mm/rev. The spindle speed was 1000 rpm. Kennametal carbide inserts (VNMG 160404ms,
KC5525, Kennametal Inc., Pittsburgh, PA, USA), with a tool nose radius of 0.4 mm, were used. The
following tool geometry was applied: lead angle of 93◦, both inclination angle and orthogonal rake
angle equal to 0◦.

Another set of surfaces was prepared by mass finishing a part with an edge that was milled and
honed. First, two sides were side-milled to create an edge at a corner, with an angle of approximately
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90◦. The two faces were then honed by hand, using emery paper to remove a burr left from milling.
The first measurement of the edge was taken after the honing. The part was subsequently placed in a
BelAir FMSL 8T series centrifugal disk mass-finisher (Bel Air Finishing Supply Corporation, North
Kingstown, RI, USA) and then measured after finishing for 2.5 and again after 7.5 min. The abrasive
media was R-1000, a polyester pyramid with a height of 6.4 mm, with zirconia particles embedded.

2.2. Analysis for Estimation of the 3D Curvature Based on Vectors Normal to Surface Patches

This analysis calculates curvature tensors at each scale in the data set and each location on the
surface where there are a sufficient number of measured heights for the calculation. The calculated
curvatures are considered to be constant over the triangular patches, which are the regions used for
the curvature calculations. The range of scales available in a measurement goes from the sampling
interval to the size of the measured region.

First, three unit normal vectors are calculated, one for each vertex on the triangular patch that is
used for the curvature tensor calculation (Figure 1). A covariance matrix method for computing unit
normal vectors is used. At each vertex, the closest 3 × 3 neighborhood of measured heights is used
for computing the normal vector. The edges of the measured region are excluded, due to insufficient
measured heights, 2 × 2 or 3 × 2 neighborhoods of heights, instead of 3 × 3.

 

Figure 1. Visualization of xu, xv, nu and nv on a triangular patch.

Next, using the Weingarten curvature tensor, T, a symmetric 3 × 3 matrix is calculated, assuming
that the surface is continuous and everywhere differentiable (within the patch) [26]. The resulting
eigenvalues are, κ1, κ2, 0, where the first two represent the principal curvatures. The resulting
eigenvectors include k1, k2, the corresponding principal directions for the principal curvatures, and n,
the unit normal vector for the triangular patch.

Note that new local and global coordinate systems are introduced here for these calculations.
Whereas measured, global heights were z(x,y), as is usual in the literature, these are represented below
as x(u,v). Normal vectors are calculated from these global heights. Curvatures are calculated in a
local coordinate system. This local coordinate system (u,v) is in the plane defined by the three points
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that constitute a single triangular patch. To calculate the curvature directions, transfers from the local
systems (u,v) to the global (x,y) system are necessary.

At each scale, the surfaces that are considered here are completely defined by their partial
directional derivatives and the partial directional derivatives of the unit normal vectors. Given the
surface x(u,v) and its partials xu and xv, a unit normal vector n and its partials can be computed by the
following formula:

n =
xu × xv

‖ xu × xv ‖ , nu =
∂n

∂u
, nv =

∂n

∂v
(1)

These four vectors have the following dependencies:

1. xu, xv, nu, nv are coplanar.
2. nuxv = nvxu.

The computation of T from xu, xv, nu, nv is a straightforward application of classical concepts of
differential geometry [26]. The coefficients of the first and second fundamental form, or shape, tensor
can be calculated as:

E = xu · xu, F = xu · xv, G = xv · xv, (2)

L = −nu · xu, M1 = −nu · xv, (3)

M2 = −nv · xu, N = −nv · xv. (4)

Then the Weingarten curvature matrix can be created,

W =

( LG−M1F
EG−F2

LG−M1F
EG−F2

LG−M1F
EG−F2

LG−M1F
EG−F2

)
(5)

with its eigenvalues κ1, κ2 and its corresponding eigenvectors:

w1 =

(
w11

w12

)
, w2 =

(
w21

w22

)
. (6)

The eigenvalues are used to calculate the Gaussian curvature, K, and the mean curvature, H; and
the eigenvectors are used to calculate the principal directions k1 and k2 as it follows:

K = κ1κ2, H =
1
2
(κ1 + κ2), (7)

k1 = w11xu + w12xv, k2 = w21xu + w22xv. (8)

Having all necessary components, curvature matrix T can be constructed:

T = PDP−1, (9)

where P = (k1, k2, n) and,

D =

⎛
⎜⎝ κ1 0 0

0 κ2 0
0 0 0

⎞
⎟⎠. (10)

Theisel et al. [16] presented a new technique for estimating curvature tensor T in a triangular
mesh. That method shows better error behavior than a cubic fitting [13] and is independent of rotations
of the mesh and does not involve any parameterization or fitting. The accuracy of Theisel’s method
depends primarily on the accuracy of the estimation of the unit normal vectors, which was the first
part of the curvature computations above.
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In that normal approach, only a single (non-degenerate) triangle, with the vertices x0, x1, x2 and
the corresponding normals n0, n1, n2, are considered (see Figure 1). A point and normal vector on the
triangle can be obtained by applying linear interpolation in local coordinates (u,v), with the origin x0

and the base vectors x1 − x0 and x2 – x0:

~
x =

~
x(u, v) = x0 + u(x1 − x0) + v(x2 − x0), (11)

~
n =

~
n(u, v) = n0 + u(n1 − n0) + v(n2 − n0), (12)

The idea that stands behind the introduction of interpolated
~
x and

~
n is to use them for calculating

vectors xu, xv, nu, nv and, subsequently, curvature matrix T. Unit normal vectors and their derivatives
can be computed following Theisel et al. [16]:

n(u, v) =
~
n

‖ ~
n ‖

, nu =
∂n

∂u
, nv =

∂n

∂v
(13)

For the partials of the surface, we can obtain:

~
xu(u, v) =

∂
~
x

∂u
= x1 − x0,

~
xv(u, v) =

∂
~
x

∂v
= x2 − x0 (14)

In order to assure that condition 1 (xu, xv, nu, nv are coplanar) is met,
~
xu and

~
xv are projected onto the

plane defined by nu and nv:

xu =
~
xu − (n

~
xu)n, xv =

~
xv − (n

~
xv)n. (15)

Now, the curvature matrix T can be computed, by applying Equations (13)–(15) into Equations (2)–(10).

2.3. Multiscale Curvature Characterization Analysis

Multiscale characterizations can be achieved in several ways [2]. Two different methods of
specifying the scale of the curvature analyses are described here. These two methods both apply to
the selection of the measured heights that are used for the estimation of the normal vectors and to the
selection of three points that form the triangular patches.

The first multiscale method here is down-sampling, shown in Figure 2. In this down-sampling,
more measured heights are skipped with each iteration of the multiscale calculations, in order to
achieve increasingly larger scales. At the finest, or nominal, scale, the spacing is the sampling interval.
At two times the nominal scale, the spacing it is twice the sampling interval, for which every other
measured height is used. At three times the sampling interval, every third measured height would be
used. The scale here is the length of the horizontal interval in x and y, between the measured heights
used in each analysis for determining the curvature.

The down-sampling is applied for both the selection of the measured heights for calculating
the normal vectors and for selecting the points that define the triangular patches for the eigenvalue
problem. To determine the position for calculating the curvature, even at the large scales, the iterations
are performed at each location. That is, the calculation is indexed horizontally, one sampling interval
for each locational calculation.

After heights are skipped in this down-sampling routine, just the nine, not-skipped, measured
heights are used to calculate the normal unit vectors at each scale. These are the eight heights closest
to the apexes of the triangular patches (Figure 2a) and the central point (apex) used for the eigenvalue
problem. The spacing between the heights is scale-dependent and increases with the scale (Figure 2b).
These triangles are always equilateral, right triangles in projection on a horizontal plane. The projected
length of the short sides are equal to the scale. More details of the method and its application for
multiscale analysis can be found in work by Bartkowiak and Brown [27]. The calculation of the
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curvature tensor is done for the next location distant from the previous, by using the original sampling
interval (Figure 2b).

Figure 2. Down-sampling, one method of the multiscale analysis: (a) at the nominal scale, which is
equal to the sampling interval, (b) at a two times the nominal scale. The colors of the squares, green,
yellow, and purple, correspond to the color of the points that center the vertices of the triangles. Edge
points are colored with red.

In the second, multiscale method considered here, no in-between heights are skipped in normal
estimation, while the values for the scales are determined identically to the first method (Figure 3).
In this way, each iteration by both methods includes the same measured regions, and they are signified
by the same scale. The second method uses all the measured heights in the neighborhood, instead of
just nine. The size of a neighborhood changes with scale. For the nominal scale, both methods use the
same measured heights for the calculation of the unit normal vectors. For larger scales, the number of
heights grows with the multiplication of the original sampling interval s, so that the neighborhood
consists of (1 + 2s) × (1 + 2s) points. For instance, for a scale equal to three times the sampling interval,
it is necessary to consider 7 × 7 heights, for calculating the unit normal vector for an apex that is
centrally placed inside the neighborhood.

 
(a) (b) 

Figure 3. The second method of the multiscale analysis: (a) at the nominal scale, which is equal to the
sampling interval, (b) at a two times the nominal scale.

In both methods, the normal unit vectors, and curvatures, are not estimated along the edges
of the measured region, where entire neighborhoods cannot be formed. This second method can be
time-consuming for the larger scales, because the covariance calculation includes more points.
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3. Results

In the following sections, renderings of the measurements of the studied surfaces are shown at
different scales. The calculated curvatures and Gaussian and mean curvatures are shown as a function
of position and are plotted versus scale, along with the standard deviations.

3.1. Prepared Edge, Honed and Mass-Finished

Renderings of topographic measurements with three downsized scales of the machined and
honed edge, as well as two finishing times, are presented in Figure 4. With the increasing scale,
surfaces appear smoother, because the fine-scale details are skipped in the down-sampling.

 
Figure 4. Renderings of topographic measurements of the edge machined and honed (0 min), and after
2.5 and 7.5 min of mass finishing, at three scales: 5× original sampling interval (1.25 μm), 10× (2.50 μm),
and 15× (3.75 μm).

The principal, κ1, curvatures, those with the largest magnitude, calculated by the down-sampling
method, are shown as a function of position on the surface and the scale of calculation in Figure 5.
Convex curvatures are negative and concave are positive, as usual.

At the largest scales, there is little variation in curvature. The magnitudes of the curvatures tend
to increase with decreasing scale. Many small regions of convexity at the smallest scales are evident in
Figure 5. The curvature of the prepared edges cannot be discriminated at the finest scales. At these fine
scales, a multitude of fine features, with large principal κ1 curvatures, masks the curvature of the edge.
The curvatures on the honed part are clearly visible at 10× nominal scale. The curvature of the part
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that was mass-finished for 2.5 min is relatively uniform at the largest scales (10× and 15×). Concave
features are clearly visible at 15×. The effect of mass-finishing is evident at all three scales.

The principal κ2 curvatures, minimum in magnitude, calculated by the down-sampling method,
are shown as a function of position on the surface and the scale of calculation in Figure 6. Similar to
κ1 at the large scales, there is little variation in curvature. The magnitudes of the curvatures tend to
increase with decreasing scale. A positive curvature region is evident around the manufactured edge
at 5× and 10× nominal scale. However, its value is significantly lower than the κ1 curvature. The
mass finishing process decreases the magnitude of κ2 curvature for all three scales shown.

 
Figure 5. Maximum principal curvature, κ1, on the prepared edge as a function of position, calculated
using the down-sampling method for three scales.

The principal κ1 and κ2 curvatures, calculated by the increasing neighborhood method, are shown
as a function of position on the surface and the scale of calculation in Figures 7 and 8, respectively.
These show the same trends as the down-sampling method. The variability of curvatures for finer scales
is higher for the increasing neighborhood method, when comparing the same scales. For the same
subregions, both minimal and maximal curvature take greater values. For larger scales, more points
are used in the calculation of the normal vectors, so artifacts and fine-scale features influence more
points in their normal vectors estimation, which make these results more sensitive to local variations.
The expected smoothing effect is less evident when compared to the down-sampling method.
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Figure 6. Minimum principal κ2 curvature, as on the prepared edges, a function of position calculated,
using the down-sampling method for three scales.

Figure 7. Maximum principal curvature, κ1, on the prepared edge, as a function of position calculated,
using the increasing neighborhood method, for three scales.
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Figure 8. Minimum principal curvature, κ2, on the prepared edge as a function of position calculated,
using the increasing neighborhood method for three various scales.

Mean and standard deviations of the principal curvatures on the prepared edges, calculated by
the down-sampling method, are shown, versus the log of the scale, in Figure 9a. The mean values of
principal curvatures change with the scale for all the surfaces. The standard deviation of principal
curvatures decreases regularly with increasing scale, i.e., the distribution of the curvatures is distinctly
varied at the finer scales. For larger scales, the dispersion measure decreases, as fewer fine-scale surface
features, characterized by high curvature, become evident, and mean values of principal curvature
tend to indicate the general shape of the edge. The curvatures of microfeatures are generally greater
than the overall form or waviness, which is quantified as larger values of standard deviations in
comparison with the mean. It appears that the mean κ1 discriminates the edges for scales greater than
4μm, with a sufficient sample size, because the variance is large. Mean values of κ1 are negative for
all calculated scales, which is consistent with the overall convexity of the surface perpendicular to
the prepared edge. Logically, the means of the minimum principal curvatures, κ2, are smaller. Their
proximity to zero, particularly at large scales, is consistent with the straightness of the surfaces parallel
to the prepared edge.

Statistics calculated by the method are presented in Figure 9b. It appears that the mean and
standard deviations of κ1 might be used to discriminate the prepared edges for some scales between
4 and 10 μm. The greatest differences between those two methods appears at the greatest scales.
Similar trends appear for κ2. Standard deviations of maximal curvatures take greater values when
calculated by increasing the neighborhood method, which supports the effect of microfeatures that is
evident with growing scales.
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Figure 9. Statistics on the prepared edge as a function of scale: (a) mean and standard deviation of
κ1 and κ2 principal curvatures, calculated for three scales by down-sampling, (b) mean and standard
deviation (std, in short) of κ1 and κ2 principal curvatures, calculated for three scales by increasing
the neighborhood.
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3.2. Cutting Tool Edge and Turned Surfaces

Renderings of measurements representing three downsized scales and feed rates of the prepared
surfaces and tool edge are presented in Figure 10. The figure presents surfaces for various scales. Both
the turned surfaces and the tool edges are examples of clearly anisotropic textures. With increasing
scales, fine-scale ridges and valleys tend to be smoothed. Both principal curvatures were calculated for
the prepared region of 700 × 700 heights.

Figure 10. Renderings of surfaces turned at four feed rates, at three scales.

The principal, κ1, curvatures, those with the largest magnitudes, calculated by the down-sampling
method, are shown as a function of position on the surface and the scale of calculation in Figure 11.
Similar to the mass finished surfaces, at the largest scales the variation in curvature decreases. The
magnitudes of the curvatures have a tendency to increase with decreasing scale. The three top ridges on
the surface, machined at 0.05 mm/rev, and the two ridges for the surface, machined at 0.1 mm/rev, are
evident as blue stripes at larger scales. At finer scales, the anisotropic character of all of the machined
surfaces becomes less visible. At finer scales, a multitude of fine features, with large principal κ1

curvatures, masks the directional features. The curvatures of the main valleys are more evident at
larger scales for surfaces machined at 0.05, 0.1 and 0.2 mm.
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Figure 11. Maximum principal curvature, κ1, as a function of position calculated for turned surfaces,
using the down-sampling method for three scales.

The principal κ2 curvatures, minimum in magnitude, calculated by the down-sampling method,
are shown as a function of position on the surface and of the scale of calculation in Figure 12. Similar
to κ1 at the large scales, there is little variation in curvature. The magnitudes of the curvatures tend
to increase with decreasing scale. At finer scales, the directional nature becomes more visible at the
ridges, appearing as lines of high-magnitude curvature. At larger scales, for all the measured surfaces,
the minimum curvature tends to zero, indicating that the surface is flat in one direction. The feed rate
influences the magnitude of the κ2 curvature at all three of the scales shown.

The principal κ1 and κ2 curvatures, calculated by the increasing neighborhood method, are shown
as a function of position on the surface and the scale of calculation in Figures 13 and 14, respectively.
These show the same trends as the down-sampling method. As in the previously studied surfaces,
at larger scales, more heights are used in the calculation of the normal vectors, which makes these
results more sensitive to artifacts and local variations. For the same subregions, principal curvatures
take greater values for the increasing neighborhood method, and the smoothing effect is less evident.

Mean and standard deviations of the principal curvatures on the prepared edges, calculated by
the down-sampling method, are shown versus the log of the scale in Figure 15a. The mean values
of the principal curvatures change with the scale for all the surfaces. The standard deviations of the
principal curvatures decrease regularly with increasing scale, i.e., the variance of the curvatures is
larger at the finer scales. The mass-finished edge shows the same tendency.
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Figure 12. Minimum magnitude of the principal curvatures, κ2, as a function of position for turned
surfaces calculated, using the down-sampling method, for three scales.

 
Figure 13. Maximum principal curvature, κ1, as a function of position for turned surfaces, using the
increasing neighborhood method for three scales.
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Figure 14. Minimum principal curvature, κ2, as a function of position for turned surfaces, using the
increasing neighborhood method for various scales.

The maximum curvatures decrease linearly (R2 > 0.93) with feed rate, for scales between
0.75 and 1.25 μm. Other scales show the same trend, although the correlations are weaker
(0.42 > R2 > 0.67). In addition, the mean κ1 discriminates the surfaces for scales between 0.75–1.25 μm,
where the variance is large.

The mean and standard deviations of the minimum principal curvatures, κ2, are smaller than for
maximum curvature, κ1. Their proximity to zero, particularly at large scales, is consistent with the
straightness of the surfaces that are parallel to the prepared edge.

Standard deviations of both principal curvatures show mediocre to poor correlation with feed
rate (R2 < 0.72 for maximum and R2 < 0.17 for minimum), suggesting that the variance of curvatures
is not influenced strongly by feed. The strongest correlations were observed between the feed rates
and the mean minimum curvatures (R2 > 0.8 for scales between 0.75 and 3.25 μm, with a maximum of
0.982 at 2.75 μm). This suggests that minimum curvature is feed-dependent.

Statistics calculated by the method are presented in Figure 15b. It appears that the mean and
standard deviations of κ1 might be used to discriminate the prepared edges for some scales between
2.25 and 4.75 μm. The coefficients of determination R2 for regression analysis for the same range take
values greater than 0.81. These means of minimum curvatures correlate more weakly than when they
are calculated using the down-sampling method (maximum R2 = 0.74). The greatest differences in the
statistical parameters between those two calculation methods appears at the largest scales. Similar
trends appear for κ2.

For both methods, the mean of principal curvatures of the tool edge take similar values for larger
scales. The variation of the curvatures for the tool edges is greater than in the resulting turned surfaces.
This suggests that large-scale features on the tool edge are transferred to the machined surface, whereas
fine-scale details on the tool are not.
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(a) 

(b) 

Figure 15. Statistics on the turned surfaces and tool as a function of scale: (a) mean and standard
deviation of κ1 and κ2 principal curvatures, calculated for three scales by down-sampling, (b) mean
and standard deviation of κ1 and κ2 principal curvatures calculated for three scales by increasing
the neighborhood.

4. Discussion

The viability of this method of calculation of unit normal vectors and applying eigenvalue analyses
to areal topographic measurements has been clearly demonstrated for all the variations studied. The
results are consistent with the expected curvatures and tendencies with scale, feed, and mass-finishing
times on the manufactured surfaces studied here. Curvatures in 3D can be calculated as a function
of position and scale directly from a regular spatial array of heights. The presented method requires
estimation of unit vectors normal to the surface prior to estimation of the curvature tensor. The method
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is sensitive to the quality of the estimation of the normal vectors. Two calculation methods present
similar results for multiple scales; however, they vary in the computational time. The smoothing
effect is less evident for the increasing neighborhood method, which can suggest its potential for
discrimination. The down-sampling method takes, on average, 1/10 of the time in comparison with
the increased-neighborhood method.

At the finer scales, the principle curvatures tend to increase with decreasing scale for all measured
surfaces, because fine-scale details have larger magnitude curvatures. The principal curvatures
calculated for particular scales tend to decrease with time in the mass finisher. The feed rate influences
the curvature of the resulting topographies. In the cases studied, the mean of values for the principal
curvatures are more appropriate for discrimination and correlation than standard deviations.

The important criterion for adding value with texture characterization methods is their ability
to correlate with some phenomena of interest, such as processing or performance. The inclusion
of multiscale methods in a characterization and analysis provides an important dimension for
improvement, as has been demonstrated many times previously [2,9,28,29]. Some surface topographies
cannot be well represented by smooth functions at all, or any, scales. Thus, a method of curvature
calculation that does not require fitting smooth geometries, like quadratic forms, might be appropriate.
The same can be said for the profiles.

The lengths of irregular profiles change with scale, as do the slopes [30]. Not surprisingly, then,
the curvature also changes with scale and, naturally, with position, also. As with the area-scale analysis,
correlations between curvature and topographically related behavior or processing might only be
found over a narrow range of scales. Determination of appropriate scales for strong correlations and
confident discriminations can follow the method previously reported for scale-based correlation, using
multiscale regression and discrimination tests [9]. Multiscale characterizations of curvature have the
potential to enable new, strong correlations and confident discriminations.

A recent study involving ENS-Cachan (Ecole normale supérieure de Cachan) and WPI (Worcester
Polytechnic Institute) showed that multiscale analysis of curvatures of profiles could be successful for
determining fatigue limits [9]. This is logical, because positive curvatures relate to stress concentrations
that increase the likelihood of crack initiation. In addition, curvature has appeal as an appropriate
geometric characterization for many kinds of contact mechanics. Because the curvature changes with
position, appropriate statistical characterizations must be used as well [2].

Whitehouse [31] discusses sensitivity to scale and notes that it should be four to five times
greater than the sampling interval. He also proposes that a better approximation can be found using
a seven-point average to determine the slopes for the first step of the double-difference method.
However, the sampling interval is often dictated by the measurement instrument, and it can be
somewhat arbitrary with regard to the scale of the topographically related interactions of interest.
A better approach could be to examine all the scales available in the measurement. Subsequently,
these can be compared for regression and discrimination tests as a function of scale. This can lead to
identification of the scales of interaction for the phenomena of interest.

The richness of the multiscale tensor curvature characterizations suggest that they have a strong
potential for many kinds of applications in engineering, forensics, paleontology, physical anthropology,
and archaeology.

5. Conclusions

The viability of these methods has been demonstrated for multiscale characterization of curvature
tensors on measured topographies (z = z(x,y)). The analyses are based on calculating unit-normal
vectors to the surface, at three proximal locations, and then using an eigenvalue approach to the
problem of calculating the curvature tensors. The curvature tensors of measured topographies can be
calculated and studied over a range of scales and positions. These methods are useful and feasible,
and they have been demonstrated successfully for a variety of surfaces.
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The validity of these methods has been furthered by the demonstrable consistency of the results
with expectations on manufactured surfaces. These expectations include the nature of the curvature
as shown by principal curvature values and their orientations relative to manufactured features
on the surfaces. Mean curvature values and variance provide further validation of these methods
by meeting expectations. The multiscale analyses and resulting multiscale characterization, using
curvature tensors on areal measurements of topographies, also meets with the expectations based on
the manufactured features.

The two methods studied here, for calculating the unit-normal vectors on the surface and
systematically adjusting the scale of calculation, show the expected differences. The increasing
neighborhood method, i.e., the second method, in contrast to the down-sampling method, has been
shown to lead to a decrease in the variation of the curvatures. This suggests that the neighborhood
method could be valuable when there is a concern that irregularity in the topographic data might be
masking interesting tendencies. This comparison, which is consistent with expectations, demonstrates
the viability and furthers the demonstration of the validity of both of these methods.

6. Patents

The multiscale curvature analysis in terms of outlier removal is the subject of patent application:
Measurement equipment with outlier filter, US20180038687A1.
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