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Abstract: Earth Observation Data Cubes (EODC) have emerged as a promising solution to efficiently
and effectively handle Big Earth Observation (EO) Data generated by satellites and made freely and
openly available from different data repositories. The aim of this Special Issue, “Earth Observation
Data Cube”, in Data, is to present the latest advances in EODC development and implementation,
including innovative approaches for the exploitation of satellite EO data using multi-dimensional (e.g.,
spatial, temporal, spectral) approaches. This Special Issue contains 14 articles covering a wide range of
topics such as Synthetic Aperture Radar (SAR), Analysis Ready Data (ARD), interoperability, thematic
applications (e.g., land cover, snow cover mapping), capacity development, semantics, processing
techniques, as well as national implementations and best practices. These papers made significant
contributions to the advancement of a more Open and Reproducible Earth Observation Science,
reducing the gap between users’ expectations for decision-ready products and current Big Data
analytical capabilities, and ultimately unlocking the information power of EO data by transforming
them into actionable knowledge.

Keywords: open science; reproducibility; earth observations; data cube; analysis ready data; remote
sensing; satellite imagery

Planet Earth is currently on an unsustainable pathway. Increasing pressures on natural resources
induced by human activities are globally affecting the environment. Regular and continuous monitoring
is necessary to assess, understand, and mitigate these environmental changes [1–3]. Consequently,
timely and reliable access to data describing physical, chemical, biological, and socio-economic
conditions can provide the basis for reliable and accountable scientific understanding and knowledge
about the limits of our planet. This access to data can support informed decisions and evidence-based
policies for the efficient use of our planet’s resources [4,5].

To facilitate environmental monitoring, our planet has been under continuous observations
from satellites since 1972 [6,7]. Today, remotely sensed Earth Observations (EO) data have already
exceeded the petabyte-scale and increasingly are freely and openly available from different data
repositories [8]. This poses a number of issues in terms of Volume (e.g., data volumes have increased
by 10 in the last 5 years); Velocity (e.g., Sentinel-2 is capturing a new image of a given place every
5 days); and Variety (e.g., different type of sensors, spatial/spectral resolutions). Traditional approaches
to the acquisition, management, distribution, and analysis of satellite EO data have limitations (e.g.,
data size, heterogeneity and complexity) that impede the massive use and analysis of Big Earth Data.

Data 2019, 4, 147; doi:10.3390/data4040147 www.mdpi.com/journal/data1
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The fact that the full information potential of EO data has not yet been realized and therefore
remains still underutilized is explained by various reasons: (1) it requires scientific knowledge to
understand what data is needed—optical (which resolution?)—radar (which type?); (2) it is difficult
to access and download the increasing volumes of data generated by satellites; (3) there is a lack of
expertise and computing resources to efficiently prepare and utilize EO data; (4) the particular structure
of EO data and (5) the significant effort and cost required to store and process data limit its effective use.

Addressing Big Data challenges such as Volume, Velocity and Variety, requires a change of
paradigm and a move away from traditional data-centric approaches (e.g., local processing and data
distribution methods to lower the barriers caused by data size and related complications in data
management [9,10]. In particular, data volume and velocity will continue to grow as the demands
increase for decision-support information derived from these data [11]. Using the cloud, it is now
possible to move algorithms and tools to data, making large volumes of EO data available to a wide
range of users, enabling them to handle and visualize data they are interested in without having to
download them and consequently avoiding large-scale data transfers that can impede the efficient and
effective use of EO data [12,13].

To tackle these issues and bridge the gap between users’ expectations and current Big Data
analytical capabilities, EO Data Cubes (EODC) have emerged as a new paradigm revolutionizing the
way users can interact with EO data and providing a promising solution for the storage, organization,
management, and analysis of Big EO data [14]. The main objective of EODC is to facilitate EO data
usage by addressing Volume, Velocity, Variety challenges and providing access to large spatio-temporal
data in an analysis-ready format [15].

Different EODC implementations are currently operational, such as Digital Earth Australia [16],
the Swiss Data Cube [17], the EarthServer [18], the E-sensing platform [19] the Copernicus Data and
Information Access Services (DIAS) [20] or the Google Earth Engine [21]. These initiatives are paving
the way for broadening the use of EO data to larger communities of users, supporting decision-makers
with timely and actionable information converted into meaningful geophysical variables and ultimately
unlocking the information power of EO data.

All these developments would not have been possible without Free and Open Data policies to
facilitate access to data and Open Source code to efficiently develop software solutions [22]. Open
Science is a new approach to research and educational processes, which seeks to make scientific research
more collaborative and transparent and to make knowledge accessible by using digital technologies
and new collaborative tools [23]. Achieving reproducible knowledge requires exposing all parts of an
application (e.g., code, data, executable) [24]. Therefore, Open Science is considered as an umbrella
term encompassing all practices that aim to remove barriers to sharing any type of output (e.g., research
data), resources (e.g., scientific publications), methods (e.g., lab notes) or tools (e.g., software). This is a
practice of science to achieve more openness and to enable others to collaborate and contribute under
terms that enable the reuse, redistribution and reproduction of research and its underlying data and
methods [25]. In particular, with the advent of cloud computing, knowledge is easier to share [11].
Open Science is fundamental in a 21st Century where Science is embedded in societal decision-making.
Increased openness and transparency are effective means to fight fake news and post-truth [26].

Despite the fact that in the EO domain various open science practices are already adopted,
such as the Open Standards provided by the Open Geospatial Consortium (OGC) [27], Open Source
software [28], Open Code Library (e.g., Open remote sensing http://openremotesensing.net) or the
IEEE Remote Sensing Code Library (http://www.grss-ieee.org/publication-category/rscl/), data sets
and algorithm evaluation standards (http://dase.grss-ieee.org), or Open Data licenses for Landsat and
Sentinel data [29], EO Open Science remains underestimated and various socio-cultural, technological,
political, organizational, economic and legal challenges (e.g., lack of recognition and rewards, overload
for opening data, changing working procedure, missing political endorsements–strategies–policies,
unclear legal frameworks) need to be addressed to adequately realize its full potential.
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This Special Issue (https://www.mdpi.com/journal/data/special_issues/EODC) presents some of
the most recent advancements in the use and implementation of EODC. They significantly contribute
to the advancement of a more Open and Reproducible EO Science and help to reduce the gap between
data and knowledge.

Most of the Open Science facets (https://www.fosteropenscience.eu/content/what-open-science-
introduction) are covered by the contributions of this Special Issue. First of all, the 14 papers are
accessible in Open Access under the terms and conditions of the Creative Commons Attribution (CCBY)
license. This means that these research outputs are distributed online and freely available, removing
the barriers to copying or reuse by applying an open license copyright. Together with FAIR guiding
principles, this allows sharing of findings and streamlining of the creation of new data products by
making them Findable, Accessible, Interoperable and Reusable [30,31].

With the different innovative solutions that are available to implement EODC, one of the major
challenges is to prevent them from becoming silos of information. Interoperability is consequently
an important aspect to consider. Giuliani et al. [32] demonstrated how widely adopted geospatial
standards can be used to enhance the interoperability of EODC and can help in delivering and
leveraging the power of EO data building, efficient discovery, access and processing services. However,
to harness the information potential of satellite EO data, syntactic interoperability is not sufficient.
As numerical sensory data have no semantic meaning, EO data lack semantics. Augustin et al. [33] clarify
and share their definition of semantic EODC, demonstrating how they enable different possibilities
for data retrieval, semantic queries based on EO data content, and semantically enabled analysis.
Semantic EODC are the foundation of the EO data expert system and can facilitate deriving knowledge,
as presented by Plag and Jules Plag [34].

Regarding Open Data, one of the main topics concerns the development of Analysis Ready
Data (ARD) for Synthetic Aperture Radar (SAR) imagery. Indeed, if the provision of optical ARD is
becoming common, the complexity of SAR data makes them challenging to developed procedures
for the regular provision of SAR ARD. Truckenbrodt et al. [35] and Ticehurst et al. [36] assessed
the feasibility of automatically producing analysis-ready radiometrically terrain-corrected (RTC)
Synthetic Aperture Radar (SAR) gamma nought backscatter data from Sentinel-1. Both studies
concluded that the European Space Agency (ESA) Sentinel Application Platform (SNAP) toolbox
(https://step.esa.int/main/toolboxes/snap/) is a valid solution for producing Sentinel-1 ARD products.
One important reward in publishing open data is the possibility to be cited. Providing a reference to
data similar to scientific journal articles or conference papers is increasingly recognized as an essential
practice leading to the recognition of data as important research outputs. Data citation supports
(1) attribution and credit; (2) collaboration and reuse of data; (3) enables reproducibility of findings;
(4) faster and efficient research progress, and (5) provides means to share data with (future) researchers.
Schubert et al. [37] presented a solution for an operational service on dynamic data citation to enable
the effective reuse of EO data in a collaborative and reproducible manner.

To benefit from the large volume of EO data made available with Data Cubes, recent Open Source
developments were allowed to implement solutions in open source geoinformation and statistical
software. Gebbert et al. [38] have developed spatio-temporal topological operators in the GRASS
GIS software to enable the effective use of heterogenous (e.g., extent, granularity) spatio-temporal
EO data. Similarly, Appel et al. [39] introduced an open source C++ library and R package for the
construction and processing of on-demand data cubes from satellite image collections, and showed
how it supports interactive method development workflows where data users can initially try methods
on small subsamples before running analyses on high resolution and/or large areas. Finally, Open
Standards such as the OGC Web Map Service (WMS), together with modern web browser capabilities,
has enabled time-series analysis directly within a web-based application [40].

To reach the objective of facilitated and reproducible analysis of EO data, as well as empowering
a large community of users to benefit from satellite EO data, Open Notebooks appear as promising
solutions. They help to document research developments as reproducible experiments and facilitate
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the sharing of scientific data analysis. Electronic Lab Notebooks (ELN), such as Jupyter Notebooks,
are replacing paper lab notebooks with digital versions. Kopp et al. [41] showed that such notebooks
simplify access and use for end-users, enabling a wide variety of web and desktop applications.
Poussin et al. [42] demonstrated the benefits of Open and Reproducible Science using a snow detection
algorithm, developed in Switzerland and shared as an open notebook, to monitor snow cover evolution
for the last three decades in the Gran Paradiso National Park in Italy. Furthermore, Lucas et al. [43]
developed a conceptual framework to implement a Land Cover Change model, providing Australia
and other countries using the Open Data Cube (ODC) environment with the opportunity to routinely
generate land cover maps from Landsat or Sentinel-1/2 data, at least annually and using a consistent
and internationally recognized taxonomy.

Finally, an important aspect related to any new technology lies in developing new capacities
to reach large adoption, acceptance and commitment. Asmaryan et al. [44] presented how effective
knowledge transfer, using Open Educational resources, has been achieved between Switzerland and
Armenia for developing and implementing the first version of an Armenian Data Cube. This ultimately
can support National Open Data Cubes to contribute to country-level development policies and
practices [45].

To conclude, we believe that EODC have the potential to achieve the vision of transforming data
into actionable knowledge by lowering the entry barrier to massive-use Big Earth Data analysis and
therefore act as an information technology enabler. Ultimately, it can provide an effective mean to
build socially robust, replicable, and reusable knowledge, to generate decision-ready products based
on Open Science.

Author Contributions: G.G.: conceptualization, writing—original draft preparation; G.C.: writing—review and
editing; B.K.: writing—review and editing; S.M.: writing—review and editing.
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Abstract: Earth observations data cubes (EODCs) are a paradigm transforming the way users
interact with large spatio-temporal Earth observation (EO) data. It enhances connections between
data, applications and users facilitating management, access and use of analysis ready data (ARD).
The ambition is allowing users to harness big EO data at a minimum cost and effort. This significant
interest is illustrated by various implementations that exist. The novelty of the approach results in
different innovative solutions and the lack of commonly agreed definition of EODC. Consequently,
their interoperability has been recognized as a major challenge for the global change and Earth system
science domains. The objective of this paper is preventing EODC from becoming silos of information;
to present how interoperability can be enabled using widely-adopted geospatial standards; and
to contribute to the debate of enhanced interoperability of EODC. We demonstrate how standards
can be used, profiled and enriched to pave the way to increased interoperability of EODC and
can help delivering and leveraging the power of EO data building, efficient discovery, access and
processing services.

Keywords: Open Data Cube; remote sensing; geospatial standards; landsat; sentinel; analysis
ready data

1. Introduction

The planet Earth is currently on an unsustainable pathway. Increasing pressures on natural
resources induced by human activities are affecting the global environment. Regular and continuous
monitoring is necessary to assess, understand, and mitigate these environmental changes [1–3].
Consequently, timely and reliable access to data describing physical, chemical, biological and
socio-economic conditions can provide the basis for reliable and accountable scientific understanding
and knowledge supporting informed decisions and evidence-based policies [4,5]. This can be done by
applying the data-information-knowledge-wisdom (DIKW) paradigm [6,7]. In DIKW, information is
an added-value product resulting from the comprehension of available data and their relations with
physical and/or social phenomena. In turn, knowledge is generated by understanding information and
elaborating on valuable patterns.

Earth Observations (EO) data, acquired remotely by satellite or in-situ by sensors, is a valid and
globally consistent source of information and knowledge for monitoring the state of the planet and
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increasing our understanding of Earth processes [8]. EO data are essential to allow long-term global
coverage and to monitor land cover changes over large areas through time [9]. With the increased
number of spaceborne sensors, the planet is virtually under continuous monitoring, with satellites
providing global coverage at medium-to-high spatial and spectral resolutions on a daily basis [10–12].
Furthermore, open data policies have greatly facilitated the access to satellite data, such as the United
States Geological Survey (USGS) Landsat, National Aeronautics and Space Administration (NASA)’s
Moderate Resolution Imaging Spectroradiometer (MODIS), the Japan Aerospace Exploration Agency
(JAXA), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), or European
Sapce Agency (ESA) Sentinels [13,14]. However, handling such large volumes (e.g., tera to petabytes),
variety (e.g., radar, optical), and velocity (e.g., new data available daily), as well as the efforts and
costs required to transform EO data into meaningful information have restricted systematic analysis to
monitor environmental changes [15]. Consequently, the development of large-scale analytical tools
allowing effective and efficient information retrieval based on scientific questions, as well as generating
decision-ready products remains a major challenge for the EO community [16].

Earth Observations Data Cubes (EODC) have recently emerged as a paradigm transforming the
way users interact with large spatio-temporal EO data [17,18]. It enhances connections between data,
applications, and users facilitating management, access and use of analysis ready data (ARD) [19,20].
The ambition is to allow scientists, researchers, and different businesses to harness big EO data at a
minimum cost and effort [21]. This significant interest is exemplified by various implementations
of platforms capable of analyzing EO data that exist, such as the Open Data Cube (ODC) [19],
the EarthServer [22], the e-sensing platform [23], the JRC Earth Observation Data and Processing
Platform (JEODPP) [24], the Copernicus Data and Information Access Services (DIAS) [25] or the
Google Earth Engine (GEE) [26]. The novelty of the approach results in different innovative solutions
and, among them, some can be considered some sort of data cube (even if there is a lack of commonly
agreed definition of the EODC term), leading to interoperability issues among them precluding effective
discovery, common data access and sharing processes on data stored in EODC [20,27]. Consequently,
EODC interoperability has been recognized as a major challenge for the Global Change and Earth
System science domains [27].

Therefore, the objectives of this paper are: (1) To better characterize EODC (e.g., differentiate
between data cube and cloud-based processing facilities, such as DIAS or Google Earth Engine); (2) issue
recommendations to prevent EODC from becoming silos of information; and (3) present/demonstrate
how existing geospatial standards can be profiled and enriched to pave the way to increased syntactic
and semantic interoperability, as well as addressing use and orchestration of EODC and can help
the delivering and leveraging the power of EO data in building efficient discovery, access and
processing services.

2. Earth Observation Data Cube and Analysis Ready Data Infrastructures

To better characterize EODC, six different aspects have been identified covering respective
well-established data science domains, allowing to describe EODC into meaningful and manageable
parts with the ultimate objective to ensure compatibility and consistency for efficient data discovery,
view, access and processing [20,27].

The “faces” concept was then further elaborated, leading to the definition of six viewpoints [27]
characterizing a data cube infrastructure: (1) The semantic view, covering the information stored
in the content and their semantics; (2) the geometric view, covering the content in geometrical
representation, in particular their discretization and digital structuring aspects; (3) the encoding
view, dealing with the multi-dimension aspects, including pre-processing and analytical processing
aspects; (4) the interaction/interface view, dealing with the analytical functionalities provided by
the infrastructure and their accessibility via web-based Application Programming Interfaces (APIs).
(5) Interconnection/platform view, dealing with the software components and services necessary to
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realize the cybernetics framework; (6) the composition/ecosystem view, concerning the infrastructure
composability with analogous systems and governance aspects.

To enable and facilitate full interoperability of EODC, as well as leveraging the rich legacy of
Business Intelligence, it is important to make sure all the views are adequately addressed and kept
technology-neutral [27]. To achieve this, a crucial action consists of the identification of existing and
mature models and patterns promoting the adoption of standard approaches.

To better characterize EODC, it is important to differentiate them from cloud-based processing
facilities, such as DIAS, GEE or Earth on Amazon Web Services (AWS). Cloud-based EO platforms
commonly provide (free and open) access to global EO datasets (available datasets are growing daily)
along with powerful space and time analysis tools supporting different programming languages
(e.g., JavaScript, Python and R). Recently, these online platforms have transformed the user community
working with satellite EO data. They removed most of the burden for data preparation, yielding
rapid results and fostering a community of contributors, which is growing fast. However, they
lock users into a platform (sort of commercial) dependency, with well-known challenges. Potential
identified concerns are: (1) Users do not know whether a given platform will be sustained and/or
evolved in the future; (2) the provision of limited time and spatial scale for analyses; (3) the provision
of cloud-based computing only (i.e., no options for hubs or local computing solutions); (4) users
are requested to upload their analytical processing and even local data, while data download is
discouraged or not even allowed; (5) platform providers require the right to “own” all the data utilized
on the platform; (6) users get only those datasets that providers offer, limiting data interoperability
(e.g., Landsat 8 or Sentinel 1 data can be missing); (7) data are often not ready to be analyzed
(e.g., top-of-the-atmosphere—TOA—reflectance data).

Most of these potential drawbacks can be tackled by utilizing EODC. For example, users can
install on their own computing infrastructure an open source software solution (such as the ODC), that
allows for storing different type of data (e.g., Landsat, Sentinel, SPOT, MODIS, aerial and/or drone
imagery, etc.). This solution provides improved control, more flexibility and scalability, both in terms of
usage, and a further sense of ownership. EODC support an efficient and joint use of multiple datasets,
enhancing their interoperability and complementarity. This facilitates not only data sharing but also
the sharing of code, tools and algorithms. Finally, it grants the possibility to develop local and/or
regional solutions that avoid commercial and internet dependence. For these reasons, more and more
cloud-based EO data infrastructures are considering offering EODC services to their potential users.

3. Current Interoperability Levels of EODC

3.1. Software Systems Interoperability

Interoperability was first defined by the Institute of Electrical and Electronics Engineers (IEEE) as
“the ability of two or more systems or components to exchange information and to use the information
that has been exchanged” [28]. In the present digital transformation era, interoperability is a critical
software system attribute, since it enables different systems interaction to support the society daily
activities. The emerging technologies composing systems-of-systems have increased their importance
and scope. Interoperability can be thought as the ability of software systems to interact for a specific
purpose, once their differences (development platforms, data formats, culture, and legal issues)
have been overcome [29]. Interoperability is not a clear-cut characteristic of a system; there exist
different levels (or types) of interoperability, spanning from system integrability (including technical
and syntactic interoperability levels) to system composability (including semantic, dynamic and
conceptual interoperability levels). Commonly, system interoperability is achieved by pushing open
standards—either de-facto or de-jure.

For the scope of this manuscript, interoperability may be defined as the ability of different data
cube infrastructures to connect and communicate in a coordinated way, providing a rich experience to
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users. For example, interoperable data cubes should provide the necessary functions to allow users to
access and analyze data with (virtually) no effort, regardless of data origin, structure and encoding.

3.2. Interoperability Contexts for EODC Software Systems

Earth Observation Data Cubes are an infrastructure managing (long) time series of observations
referring to the Earth; i.e., characterized by a spatial reference system. To provide users with a
rich experience, EODC interoperability must be considered in respect of the context where their use
is planned. For a given EODC, it is possible to consider three different and increasing (from the
composability point of view) levels of interoperability:

1. Interoperability among EODCs.
2. Interoperability of EODCs with other types of geospatial data cubes.
3. Interoperability of EODCs with general-purpose data cube infrastructures.

All the three interoperability contexts are facilitated by the past and present activities on the
harmonization and mediation of EO information; i.e., the standardization process.

3.2.1. Interoperability among EODCs

For the geometric view, when characterizing an EODC [27], spatio-temporal coverages (ISO 19123,
2005) are largely recognized as the referential representation for observation of physical phenomena.
Therefore, it is the general consensus on building cubes with a spatio-temporal domain. Indeed, this is
an effective cube geometry for fast generation of a time-series, which is one of the most commonly used
cases. However, it is worth noting that there is still heterogeneity in a number of domain dimensions
(2D, 2D+T, 3D, 3D+T, and 3D+T). Besides, some commonly used cases, such as simulations, would
actually need more than one temporal dimension as part of the domain. Therefore, at this level,
a major challenge in EODCs interoperability concerns the harmonization of domain dimensions among
different data cube implementations. Another relevant geometrical aspect is related to the metrics
that is superimposed to a given data cube. In particular, this includes the coordinate reference system
adopted. Harmonization of data from data cubes with significantly different spatio-temporal reference
systems would require a lot of computation. This might void the processing assets stemming from the
use of data cube infrastructures in respect to other (more traditional) data services.

Concerning the EODC semantic view, interoperability can leverage the on-going activities by the
communities of practice, in the EO and Earth science domain, to define a set of essential variables [30–32]
and variable name conventions [33]. However, semantic interoperability must be seen as ancillary to
the more important pragmatic interoperability, which is the real requirement from users. data cubes are
designed for efficient processing in support of specific cases of use, thus, pragmatic aspects (e.g., data
resolution and fitness-for-purpose) should be considered as relevant as semantic ones. The (long)
ingestion time required for efficient computation of time series may be frustrated by a time-consuming
pre-processing to make data usable for a specific use-case. To work out pragmatic interoperability,
the aspects related to moving from a data to an ARD system should be considered; e.g., pixel alignment,
atmospheric correction.

3.2.2. Interoperability of EODCs with Other Types of Geospatial Data Cubes

Moving interoperability to the more general level of geospatial data cubes, interoperability issues
increase. With the term “geospatial data cube,” we consider data cubes that encode information,
characterized by a spatio-temporal content, which may be represented as not making use of the
coverage model. Actually, this is a common situation, in particular when socio-economic information
is provided as aggregated at local, regional and national level—or with reference to any administrative
boundary, in general. For example, a data cube may report a set of parameters (e.g., GDP, school
enrollment, and life expectancy) by country. In this case, at least one of the dimensions (i.e., the country)
has a spatial content, but it is expressed as a geographical feature and not as a coverage function.
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There are also more complex cases where the geographical feature is not a dimension, such as features
changing over time; e.g. the area affected by a flood, the set of protected areas in Europe, or the set of
countries that are members of the United Nations. In these cases, interoperability from the geometry
point of view can become very complex. Of course, the semantic viewpoint also highlights a higher
complexity, since providing common semantics for different domains is still an open issue—one of
multi-disciplinary interoperability.

3.2.3. Interoperability of EODCs with General-Purpose Data Cubes

Interoperability with general-purpose data cubes, where information has no explicit geographical
content is even more complex. This is also a common situation in socio-economic contexts, where data
(in particular statistical data) are aggregated according to non-spatio-temporal dimensions–e.g., life
expectancy by job category, wealth and income by age category, etc.

In principle, most of the interoperability issues that interest data cubes have been already
recognized and largely addressed by the science studying the interoperability of geospatial information
systems. For that reason, some of these issues can be solved by adopting the existing standards or
mediation tools.

However, from an engineering point of view, it useful to reflect on the peculiarity aspects of
ARD and data cube systems: Their diversity in respect to a traditional data/information system. In
particular, it is important to consider that making data cubes interoperable does not mean building a
virtual data cube—like we commonly do implementing data systems federation. By simply making
data cubes interoperable, it would build an information system that accesses data cubes, but that it
is not necessarily a data cube itself. Data cubes are intended as systems tailored to (optimized for)
specific-use cases. They were conceived to implement ARD systems. Therefore, they are required to
implement interoperability at the pragmatic level. Different data cubes may be “ready” for different
uses, and putting them together would likely result in a system that is not necessarily ready for a
commonly defined purpose.

4. Enhancing Interoperability Using Standards

4.1. Stakeholders and Patterns

To cover all the six interoperability views, defined by Nativi et al. [27], different stakeholders
must be engaged, including disciplinary experts (e.g., experts on Earth system, geospatial
information, multidimensional data management, online analytical processing, HPC, and ecosystems),
standardization organizations, and the users (e.g., business intelligence association, and policy makers)
who must provide the use cases to be addressed by data cubes.

In developing interoperability solutions, well-accepted and innovative patterns must be considered.
For example:

• Semantic interoperability:

� Data and information typing specifications.
� Semantic and ontological languages to be used along to enrich and disambiguate

content metadata.
� Co-design patterns.

• Geometry interoperability:

� Geospatial information models.
� Business intelligence and the online analytical processing multidimensional modeling.

• Encoding interoperability:

� Well accepted file systems and formats patterns.
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� Multidimensional DB.
� Big data tiling strategies.

• Interaction/interface interoperability:

� Web APIs.
� Online analytical processing (OLAP) APIs.
� Web Notebook tools.
� Well-adopted interoperability protocols (e.g. OGC, W3C, IET).

• Interconnection/platform interoperability:

� System-of-Systems (SoS) patterns.
� Software design patterns.
� Cloud computing interoperability patterns.

• Composition/ecosystems interoperability:

� Software Ecosystem (SECO) patterns.
� SoS virtual/collaborative architectures.
� SoS governance styles (e.g., directed, collaborative, acknowledged, virtual).

4.2. Documenting Data and Data Discovery

In the DIKW paradigm, the first step in the data value chain (e.g., a set of actions from data
capture to decision-ready products) is known as data discovery [34]. It allows users to search, find,
and evaluate suitable data that will be further used in models or other analytical workflows. Data
discovery is realized through catalogs containing relevant information describing datasets (e.g., spatial
resolution, spatial extent, temporal resolution) [35]. These detailed descriptions are commonly referred
to as metadata [36–38]. To contribute to initiatives such as the Global Earth Observation System of
Systems (GEOSS), it is required to use data description specifications (i.e., metadata standards) to
document datasets and store metadata in interoperable catalogs to facilitate exchange and use by
various systems [39].

Different open standard schemas have been developed to describe geospatial data [40].
The most widely used standards are developed by the International Organization for Standardization
(ISO)/Technical Committee (TC), 211 Geographic Information/Geomatics, and the Open Geospatial
Consortium (OGC). They concern data and service description (ISO19115-1 and ISO19119), their
respective schema implementation (ISO19139-1), and the Catalog Service for the Web Interface
(OGC CSW) [41,42]. With this suite of standards, users can adequately document data and provide
standardized search, discovery, and query capabilities over the internet [43].

Currently, the vast majority of metadata catalogs relate to geographical data (e.g., map agency’s
products) and only a few of them concern EO data [44]. EO products are normally distributed by the
data producers as scenes or granules (a spatial fragment of a satellite path) of data with a metadata
document for each scene. In this partition of a product in space and time, most of the metadata content
is identical and is repeated in each scene. That is the reason why a catalogue interface holding these
metadata records will generate hundreds or thousands of hits for a thematic query. A hierarchical
structure of metadata describing a product as a single unit that has multiple scenes needs to be
adopted to make the catalogues useful [45]. Moreover, among the various data cube implementations,
the Open Data Cube and RasDaMan/EarthServer are the most widely adopted solutions [19,22]. They
arrange data in a hierarchical way, and expose data at the product level, making it visible as a single
entity, but they lack metadata description and catalog interfaces impeding efficient and effective
discovery mechanism.
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To tackle this issue and store relevant metadata information about satellite data (e.g., acquisition,
sensing, and bands) in a online metadata catalog, the XML schema ISO 19139-2 extends the original
metadata schema to support additional aspects more significant for the gridded and imagery information
defined in ISO19115-2, and offers an interesting possible solution [44]. Additionally, the SpatioTemporal
Asset Catalog (STAC, https://stacspec.org) is under substantial development. It is an emerging metadata
standard, primarily designed for remote sensing imagery, aiming at standardizing the way geospatial
assets are exposed online and queried. Interestingly, there are preliminary efforts to extend ODC to use
STAC files as a source of information to index data (https://github.com/radiantearth/stac-spec/tree/
master/extensions/datacube).

4.3. Data Quality and Uncertainty

Nowadays, data cubes barely have data quality information in their metadata records. A couple
of complimentary approaches to populate this lack of information have to be considered.

First of all, the uncertainty associated to each image can be estimated by several means. On one
hand, several papers (such as [46–49]) assess the general accuracy for certain instruments, based mainly
on Calibration and Validation (Cal/Val) campaigns or invariant areas. These approaches give a general
uncertainty value associated to each sensor and band so that can be applied to a single product for the
product-level metadata. Another refinement that can be done in this direction is to consider that this
error is modulated according to the incidence angle, as the bigger this angle, the more specular effects
in reflectance, and thus the higher the errors expected. Considering that effect, a different uncertainty
value can be associated to each pixel of the scene; i.e. obtaining an image describing the uncertainty
for each pixel of a certain image. Once this information is available, the uncertainty in any analytical
operation using the imagery can be computed by propagating the original uncertainties to the final
product using classical error propagation formulas and map algebra. For example, as the Normalized
Difference Vegetation Index (NDVI) is computed as:

NDVI =
IR + R
IR−R

=
M
N

(added and subtracted variables, and then divided). The uncertainty of each pixel can be computed
using the two following formulas:

SNDVI =
√
(S2

M ×N2 + S2
N ×M2)

SM and N (IR±R) =
√
(S2

IR + S2
R)

As this uncertainty propagation can be computed with map algebra, Open Data Cubes should be
able to include these calculations in their routines, and thus, automatically generate the final products
as well as their uncertainty.

The second approach is to assess the quality of the final product not by error propagation but by
comparing the product to a known ground truth, thus validating its thematic accuracy. This is the most
common approach for final products where uncertainty propagation is not directly applicable, such as
land use land cover, or leaf area index (LAI) area, in which the product is validated against known
values obtained by field work or other means. In this approach, the obtained quality assessment is
generally documented at the dataset level (not at pixel level).

Regarding how to include data quality (both product and pixel level) in metadata, the widely
selected standard is the ISO19157. ISO19157 identifies the conceptual model for describing quality
elements in a geographic dataset and defines several quality elements describing different quality
aspects in a dataset: Completeness, logical consistency, positional accuracy, thematic accuracy,
temporal quality, usability and metaquality. Besides ISO19157, the Quality Mark-up Language
(http://www.qualityml.org) is both a vocabulary and an encoding for data quality that was originally
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developed in GeoViQua FP7 project and extended in OGC TestBed12. This vocabulary proposes a clear
encoding of quality elements (using standardized quality measures) in XML metadata documents,
and can be used for describing the quality of the original products, as well as to define further quality
evaluations carried out over the datasets [50].

4.4. Data Visualization and Download

Data cubes are essentially analytical frameworks. The multidimensional nature of the data cube
makes it difficult to visualize, but a standard solution can be found, allowing time series to be stored in
a data cube for efficient analysis, while at the same time being able to be easily visualized. Moreover,
the benefit of using the data cube as the origin to create data visualizations, is that it allows creating
visualizations with any combination of the data cube dimensions; for example, it can be applied to
extract 2D imagery at low resolution for WMS visualization of a time series evolution, as well as 1D
time profile diagrams, or x/t time slices with WCS ready to visualize. Most data cubes have data
organized in ways that are optimal for these kind of operations, allowing on the fly fast visualization.

The most common way of doing optimizing as such, is by reducing the number of dimensions to
less than three. Standard data visualization is generally achieved using geospatial web services, as they
are particularly suitable for this purpose [51]. In that sense, OGC Web Map Service (WMS) and Web Map
Tiled Service (WMTS) are common interoperable solutions to show maps from different origins together
in a single image [52]. WMS and WMTS are particularly fit for accommodating multidimensional
data cubes, due to their capability to define extra dimensions (on top of a two-dimensional CRS).
A time parameter is defined in the WMS standards, and can be added as an extra dimension in WMTS.
An additional, band parameter, can also be defined by the server to select among several bands of
a EO product. This could be very convenient for an optical product (e.g., Sentinel 2), since it can be
represented as a single layer and the band parameter is used to select the spectral band, while the time
parameter can be used to extract a time slice of the time series. In both solutions, the server executes an
internal algorithm that reduces the dimensions to the two spatial ones (on a certain CRS) and creates a
2D portrayal by applying a color palette, or by combining bands into RGB combinations. Both are
characterized by requesting a simplification of the original data at a particular scale, time slice, and in a
format that is easy to display. Depending on the scale requested (also known as zoom level), a small
portion of the data are requested at near full resolution, or a large piece of information is requested at
low resolution. Normally the client is not receiving the actual values of the datasets (e.g., EO data),
only naive visualization where only colors are encoded in JPEG or PNG formats. In WMS, in trying
to make the time parameter flexible, the authors introduced some variants (such as the possibility of
indicating time intervals, or the nearest values) that are a bit vague and complex to implement. In
that sense, the precision of the time values may introduce uncertainties in requests and responses. To
prevent that, we recommend that the service enumerates the time values available in the capabilities
document, and the client use them as literals and only indicated time instants in the time parameter
(this recommendation coincides with the only possible use for a time extra dimension in WMTS).
Another fundamental problem in WMS is that the semantics of the time parameter is unclear and could
refer to the acquisition time, processing time, publication time, etc. The OGC WMS Earth Observation
profile recommends using the time parameter only for the acquisition time [53]. It is always possible
to create other time dimensions with other semantics if needed. We believe that by following these
recommendations, the WMS time dimension is usable and modern clients are capable to overcome these
restrictions by offering smarter user interfaces that, e.g., present time arrows or combine individual
WMS requests in animations. A couple of previous attempts to improve the situation have been
developed. On one side, ncWMS introduced several extensions in GetFeatureInfo, symbolization and
vertical and temporal dimensions [54]. On the other side, a simple extension of WMS adding a binary
raw data format and the move of some of the portrayal capabilities from the server to the client has
also been proposed [55]. The latter option is used in the Catalan Data Cube, adding to the client much
more than simple data visualization (including time profiles that take advantage of the having the data
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cube as the origin of the visualization), such as simple statistical calculations or pixel-based operations
among layers from different sources [56].

Is it possible to build a middleware that interprets a WMS or a WMTS request, extracts the extra
dimensions and translates it into specific data cube operations for cutting a re-sampling. If the response
needs to be produced on the fly, it shall be fast in both extreme circumstances. Generally, fast extracting
fragments from data cubes are achieved by saving the data, pre-sampled on different scales.

Regarding data download, the Web Coverage Service (WCS) standard is the right way to go.
WCS 2.0 is based on the Coverage Implementation Schema (CIS) that describes the data dimensions as
well as the thematic bands offered by the service in a standard language. With WCS, we can easily
filter the data and extract a fragment of it, in the same number of dimensions (sub-setting) or in a
reduced number (slicing). The response can be one or more common data formats (e.g., a GeoTIFF
or a NetCDF). Actually, the approach could be used as standard way of exchanging products among
data cubes. A data cube could act as a WCS client and progressively request the data from another
data cube that implements WCS services. Moreover, a data cube that has been updated with new data
could use WCS-T (transactional WCS) to automatically update other data cubes that have the same
product with new time slices or completely new products.

The Web Coverage Service (WCS) standard can also be used for visualization. With the help of a
modern JavaScript library (e.g., https://geotiffjs.github.io/) GeoTIFF images can also be seen in the map
browser directly. Another interesting application of WCS is the extraction of a temporal profile of a
point by reducing the number dimensions to one—the time. By doing so, a GetCoverage request is
capable of responding to a time series (e.g., timeseriesML) that can be presented in a map client as
a diagram.

4.5. Data Processing

Data cubes being analytical frameworks, computing and IT infrastructures are significant elements
to enhance data flow, data transformation to information, as well as analysis and processing of the
ever-increasing volume of EO data that exceed the current capacities of existing computers [12,16,57,58].

To deal with these issues of processing algorithms, sharing, and computing power, the OGC Web
Processing Service (WPS) [59] and Web Coverage Processing Service (WCPS) [60], together with the
high-performance and distributed computing paradigm, can be beneficial [61–63].

The WPS standard specification defines how to invoke input and output data as a web-based
processing service. It provided rules on how a user/client can ask for a process execution, how a
provider should publish a given processing algorithm as a service, and how inputs and outputs are
managed [64]. This standard facilitates algorithms sharing in an interoperable fashion. However,
it is not well adapted for raster analysis [60]. Consequently, the Web Coverage Processing Service
(WCPS) specification has emerged defining a query language for processing multi-dimensional raster
coverages [65]. Those two standards provide effective foundations to enhance interoperability of
EO data cubes and ensure that when a user send the same request and processing algorithm can be
executed on different data cubes.

Finally, to efficiently turn EO data into information and knowledge, effective processing solutions
are necessary. Distributed and high-performance computing (HPC) infrastructure like clusters, grids,
or clouds are adequate solutions [62,66,67]. It is now possible to benefit from the computing power of
these infrastructures while using interoperable processing services in a transparent manner, hiding the
complexity of these infrastructure to users [68–70]. Such integration can help leveraging the capabilities
of these infrastructures and support model-as-a-Service approaches, such as the GEO Model Web [71]
or data cubes [18].

4.6. Data Reproducibility

Provenance also includes the description of the algorithms used, their inputs and outputs,
the computing environment where the process runs, the organization/person responsible for the
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product, etc. [72]. A provenance record consists of a format list of processes and data sources used
to create a derived product. By documenting provenance in the metadata, traceability of scientific
results is possible, and the same result can be reproduced in the same or in another environment.
The new revision of 19115-2 proposes a model to record all inputs necessary to execute an analytic
processes, as well as to describe the process itself. This approach is fully compatible with the WPS
standard proposed in the previous section [73]. At the moment, to execute any process in the data cube,
the executing environment knows everything about the job requested, and it is in the perfect position
to save this information in the metadata. The data cube environment should facilitate this recording
task and integrate it in the processing operations without any user intervention. If data cubes record
provenance information in the same way, it could be possible use the provenance information of a
result produced in one environment and reproduce the same result in another environment.

4.7. Data Integration, Semantics and Value Chains

The analysis ready data updated in real time can be the basis for elaborating Essential Climate
Variables (ECV) [74]. The generalization of the essential variable concept to other areas, such us
biodiversity (EBV), offers new opportunities to monitor the biodiversity, the ecosystems, and other
sectors; and opens the door to generate policy related indicators (e.g., Aichi targets or the Sustainable
Development Goals (SDG)) [4,32]. Many of the essential variables that can be extracted from remote
sensing as high processing level products are indeed describing ECVs [75] or EBVs [76]. A semantic
view is necessary for an effective usability and interoperability of data cube products [27]. Connecting
data cube high level products to structured keyword dictionaries and formal ontologies is necessary.
Tagging the data cube products with the essential variables concept provides a degree of formal
semantics to a well-defined and accepted set of measurable class names. The adoption of a formal
and common vocabulary of essential variables (EVs) can facilitate the discovery of the relevant data
for a particular application. Additional metadata can make the data usable by providing concrete
information on spatial resolution, periodicity, and units of measure. This information should be
included in the product description of the data cube in the form of ISO 19115 keywords, or by linking
to formal ontologies encoded in RDF or OWL in the Internet.

4.8. Data Ingestion from Data Cubes and from Data Providers

Currently, each remote sensing data provider is serving data in a different way. Assuming that
the product we want to download is made available for free, commonly, we face an ingestion process
that has two phases: Discovery of new scenes by formulating a spatiotemporal query and retrieving
the individual scenes. Most data providers offer a visual interface to find the relevant data, which is
good for retrieving some samples, but it is not useful to make the data ingestion process in a data cube
fully automatic. Some providers offer a Web API to discover and retrieve the data. In the discovery
phase, an HTTP GET or a POST request containing a spatiotemporal query and some extra parameters
(e.g., the maximum cloud coverage allowed) is submitted to the server. Often the result is a file with a
list of hits that includes the names of the scenes that comply with the requested constraints. The client
needs to explore this file and formulate more requests; one for each scene to finally get the wanted
product subset. To make the situation more complicated, the number of hits of the discovery response
might be limited to a maximum number and download will only be possible once authenticated in
the system. An ad-hoc script will be necessary to make the requests automatic. Assuming that we
were able to get the required data, that is only the start, because there are significant differences among
the composition of the scenes that a single data provider offers in terms of metadata content and data
formats. There is a need for a more standardized way to document the structure of a remote sensing
product and to agree on a standardized format for scene distribution that can be used to ingest the
data automatically. Since this is not the case today, every product will require metadata transpositions
and format transformations.
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The combination of WCS and the CIS standards could open the door to define a standard profile
to discover and retrieve the necessary scenes. CIS 2.0 incorporates an extended model that allows for a
partition data structure that complies with the requirements of a classical remote sensing distribution in
scenes or granules. WCS can incorporate security to authenticate users and will allow for formulating
a single request to discover the necessary partitions that will be downloaded in a second phase.

Such approaches could be adopted not only by the remote sensing data providers but also by the
data cubes, opening the door for having a protocol that a data cube could apply to harvest any other
data cube has implemented the standard approach, something that is not currently possible forcing
people to having to develop adaptors.

5. Examples of Enhanced Interoperability from the Swiss Data Cube and the Catalan Data Cube

5.1. Swiss Data Cube Discovery, View, Download and Process Services

To fully benefit from freely and openly available Landsat and Copernicus data archives for
national environmental monitoring purposes, the Swiss Federal Office for the Environment (FOEN) is
supporting the development of the Swiss Data Cube (SDC—http://www.swissdatacube.ch). The SDC
is currently being developed, implemented and operated by the United Nations Environment Program
(UNEP)/GRID-Geneva in partnership with the University of Geneva (UNIGE), the University of Zurich
(UZH) and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL). The objectives
of the SDC are twofold. First, to support the Swiss government for environmental monitoring and
reporting; and second, to enable Swiss scientific institutions to take advantage of satellite EO data for
research and innovation.

The SDC is built on the Open Data Cube software suite [19], and currently holds 35 years of
Landsat 5, 7, and 8 (1984–2019), 5 years of Sentinel-1 (2014–2019), and 4 years of Sentinel-2 (2015–2019)
of ARD over Switzerland [77,78]. This archive is updated on a daily basis with the most recent data
and contains approximately 10,000 scenes, accounting for a total volume of 6 TB, and more than 200
billion observations nationwide.

Currently, one of the key challenges that SDC has to tackle to ensure its scalability, is enhancing the
interoperability. Indeed, making data, metadata, and algorithms interoperable will: (1) Facilitate the
interaction with the SDC from an increasing number of users; (2) allow connecting results of analysis
with other datasets; (3) enhance the data value chain; and (4) ease contributions to major regional
and/or international data sharing efforts, such as GEOSS.

Initial interoperability arrangements are currently under development. In the SDC, we decided to
distinguish between upstream and downstream services [79,80]. The upstream tier relates to services
to interact with the infrastructure (e.g., processing, view, download) while the downstream tier allows
users interacting with decision-ready/value-added products. Both tiers are implementing widely
adopted open standards for modeling and implementing geospatial information interoperability
advanced by the OGC and ISO/TC211.

Regarding the upstream tier, the following strategy for implementing standards is being adopted:

• Discovery: SDC description is being done using the ISO19115-2 and ISO19139-2 standards to
support gridded and imagery information. The XML schema has been deployed and exposed
using the GeoNetwork metadata catalog to store all relevant information to adequately describe
the SDC content (e.g., sensors, spatial resolution, temporal resolution, spectral bands). The schema
plugin has been downloaded from the GeoNetwork GitHub repository: https://github.com/
geonetwork/schema-plugins. Moreover, the GeoNetwork catalog allows exposing an OGC CSW
interface for publishing metadata records and allowing users to query the catalog content.

• View and Download: To leverage the content of the SDC for visualization and download, respectively
OGC WMS and WCS are under implementation. The datacube-ows component (available at:
https://github.com/opendatacube/datacube-ows) implements the WMS and WCS standards
allowing an interoperable access to Landsat and Sentinels data.
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• Process: To expose analytical functionalities (e.g., algorithms) developed in the SDC using the
ODC Python Application Programming Interface (API), it has been decided as using a PyWPS
implementation (https://pywps.org). The main advantage is that it is also written in Python,
and allows easy to expose, dedicated Python scripts as interoperable WPS services. That approach
is currently under implementation and testing.

Concerning the downstream tier, it has been separated from the SDC for the reason that only
final products (e.g., validated analysis results) are concerned. That facilitates the publication and
sharing of good quality results through value-added/decision-ready products, while at the same time
separating the usage of the Swiss Data Cube between scientific/data analysts end-users and more
general end-users.

To that, a specific GeoServer instance with dedicated EO extensions and time support has been
implemented. It allows users to efficiently interact with multi-dimensional (e.g., space and time),
gridded, and image products generated with the SDC. It currently supports:

Discovery services

• CSW 2.0.2.
• OpeanSearch EO 1.0.

View services

• Web Map Service (WMS) with EO extension 1.1.1/1.3.0.
• Web Map Tile Service (WMTS) 1.0.0.
• Tile Map Service (TMS) 1.0.0.
• Web Map Tile Cached (WMS-C) 1.1.1.

Download services

• Web Coverage Service (WCS) with EO extension 1.0.0/1.1.0/1.1/1.1.1/2.0.1.
• Web Feature Service (WFS) 1.0.0/1.1.0/2.0.0.

To further ease user’s interaction with SDC products, a web-based application called the Swiss
Data Cube Viewer (http://www.swissdatacube.org/viewer/) has been developed (Figure 1). It allows
visualizing, querying, and downloading time-series data generated with the SDC. This JavaScript
application provides a simple, responsive template for building web mapping applications with
Bootstrap, Leaflet, and typeahead.js. It provides the following functionalities:

• Visualizing and Downloading single raster product layers;
• Visualizing and Downloading time-series raster product layers;
• Generating a graph for a given pixel of a time-series raster product layer;
• Access data products in users ‘client with WMS and WCS standards;
• Metadata support.

The application is entirely open-source, and the code can be download at: https://github.com/
GRIDgva/SwissDataCube/tree/master/viewer

The use of OGC and ISO standards can enhance syntactic interoperability of the SDC and can help
delivering and leveraging the power of EO data building efficient discovery, access and processing
services provided by the SDC.
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Figure 1. The Swiss Data Cube; viewer showing snow cover change over Switzerland between 1995
and 2017.

5.2. The Catalan Data Cube View Service with Analytical Features

The Department of Environment of the Catalan Government and Centre de Recerca Ecològica i
Aplicacions Forestal (CREAF) created the SatCat data portal (http://www.opengis.uab.cat/wms/satcat)
that organized the historical Landsat archive (from years 1972 to 2017) over Catalonia in a single portal,
providing visualization and download functionalities based on OGC international standards [81].
The initiative is still up and running, plus continuously and manually updated; but a considerable
amount of processing work is needed to keep the portal up-to-date, and to incorporate the increasing
flow of the new imagery. The use of an instance of the Open Data Cube can help to automate some of the
processes, thus the Catalan Data Cube (CDC) was created as a regional data cube with easily managed,
modest resource requirements in mind. The CDC is currently being implemented and operated by
GRUMETS research group (http://www.grumets.uab.cat/index_eng.htm—mainly composed by CREAF
and Autonomous University of Barcelona), as well as the SatCat.

The CDC (http://datacube.uab.cat) is being developed, collecting the same kind of optical imagery
aimed by the SatCat, but only if it is available under the ARD paradigm over Catalonia (Spain), thus it
is limited to Sentinel-2 level 2A data flows coming from ESA at the moment. The CDC is built on the
Open Data Cube software suite [19], with some additional Python scripts and currently holds more
than 1 year of Sentinel-2 (March 2018, April 2019). The archive is updated on a monthly basis with
the most recent data, and contains at the time of writing these lines, 1562 granules, forming 132 daily
slides, accounting for a total volume of 1.18 TB over Catalonia.

Following the tier separation introduced in the Swiss Data Cube section, in the Catalan Data
Cube we also distinguish between “upstream tier” and the “downstream tier”. The upstream tier is
composed of the Sentinel 2 imagery Level 2A and the downstream tier; they are elaborated on-the-fly
by the web client. Regarding the upstream tier, the following strategy for implementing standards is
being adopted:

• Discovery: Since the number of products is limited, we are using the WMS GetCapabilities response
as the document that acts as a catalogue, and provides links to ISO19115-2 and ISO19139-2
metadata documents.
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• View and Download: To leverage the content of the CDC for visualization, OGC WMS has been
implemented, and for download a Web Coverage Service (WCS) is under consideration.

• Process: The CDC relies on the ODC processing API, but currently it is not exposing processing
services at the moment. Instead, it relies on what is possible to do in the MiraMon Map Browser
client side.

These services are possible as part of the MiraMon Map Server CGI suite that is encoded in C and
developed on top of libraries coming from the MiraMon software.

To further ease a user’s interaction with CDC products, a web-based application called the “SatCat
2.0: Catalan Data Cube” (http://datacube.uab.cat/cdc) has been developed. It allows visualizing imagery
and time-series data generated with the CDC. As briefly mentioned before, this web-based application
is based in the MiraMon Map Browser (https://github.com/joanma747/MiraMonMapBrowser, open
source web map client), which uses an extension of OGC WMS that allows querying/retrieving data in
a raw binary array format. This solution allows the client to save in memory, the actual values of each
band, and then use JavaScript code to operate with the data, providing some analytical tools to the
user. The SatCat 2.0 provides the following functionalities to the user (some of them are only possible
by the binary arrays approach):

• Visualizing single raster product layers.
• Generating histograms or pie charts for single raster product layers.
• Modifying raster visualization by describing enhancing contrast parameters or by changing

colour palettes.
• Visualizing time-series raster product layers as animations.
• Generating a graph for a given point in space of a time-series raster product layer.
• Applying spatial filters (by setting a condition in another layer; e.g., representing normalized

difference vegetation index (NDVI) values only if the elevation is lower a certain value, or only for
a certain land use category).

• Creating new dynamic layers by complex calculations among the bands of the different
available datasets.

• Accessing products in your own client server with WMS standards.
• Accessing metadata and reading or contributing geospatial user feedback.

Figure 2 shows the list of bands made available by the Sentinel 2 sensor followed by a list of colour
combinations and band indices dynamically computed by the client side. As an example, a normalized
difference vegetation index (NDVI) that is dynamically computed by the client while rendering it in
the view (using the values of the necessary bands of each Sentinel-2 image). Moreover, a histogram
showing the frequency of the NDVI values on the image is obtained. The dynamic calculation of layers
can be as simple as this vegetation index, or a complex model using several bands and layers.

The generation of animations is possible in classic WMS services (TIME parameter), but thanks to
the binary arrays approach, it is possible to present plots of the temporal evolution of one or more
points in the animated area and eventually detect anomalies by comparing them with the mean and
variance of the visible values in the bounding box (Figure 3). For both histograms and temporal
profiles, data can be copied and pasted into a spreadsheet for further analysis.
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Figure 2. The Catalan Data Cube. Dynamic normalized difference vegetation index (NDVI) values and
a histogram are over the view area, computed by the client using original Sentinel-2A red and infrared
bands retrieved as binary arrays (centered in Barcelona and surroundings).

 
Figure 3. The Catalan Data Cube. Dynamic NDVI layer animation including, a temporal profile for
sand (black) and crop (red) areas (centered in the Ebre river delta area).

6. Discussion and Perspectives

EODCs are becoming increasingly important to support Earth system science studies, enabling
new global change applications. They can provide the long baseline required to determine trends,
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define the present, and inform the future; they can deliver a unique capability to process, interrogate,
and present EO satellite data in response to environmental issues; and allow tracking changes across a
given area in unprecedented details.

However, the wider use and future success of EODC will largely depend on features such as:
Usability and flexibility to address various users’ needs and interoperability for contributing to the
digital industry revolution [27]. Consequently, interoperability can be considered as a key factor
for successful and wide adoption of EODC technology and is an absolute necessity to develop and
implement regional and global data cube ecosystems.

Based on the present work, we think that the following three elements need to be carefully
considered:

(1) Understanding the differences between traditional data system’s interoperability (e.g., for
discovery and download) and data cube system’s interoperability for data analytics.

(2) Investigation of the significance of analysis ready data for specific applications.
(3) Explore the non-technological interoperability dimensions, such as governance and policy.

6.1. Interoperability Paradigms

In the EO domain, data interoperability has traditionally applied the “Discovery and Access”
paradigm, which consists of discovering a remote dataset, downloading it to a local server, and using
it locally; e.g., visualizing it or processing it to generate new data or information. In extreme synthesis,
datasets have been moved though the network to be ingested in local data management platforms that
support independent and monolithic applications.

With the advent of large datasets (i.e., data collected over a long-term or massive spatial data
series) and the raise of virtual computing capacities, a new (and more efficient) IT paradigm emerged:
The “Distributed Application” paradigm. The new approach aims at using the web as the analytics
platform for building (distributed) applications, and makes use of microservices and container-based
technologies. This time, datasets are not moved around, but application algorithms are deployed
around (using the containerization technology) to be run where datasets are, working out a virtual
collection of independent services that work together. For the EO Community, data cubes may be an
important instrument to implement this paradigm—by facilitating remote data analytics. To achieve
that, it is important to understand the best level of interoperability to be pursued by data cubes and
which are the most effective instruments.

Advanced data cubes can be seen as databases able to organize and retrieve data on demand,
and present it in the form of data structures, but also as processing facilities on top of data structures.
In a data cube, data and processing are close together. Depending on the emphasis, data cubes can
be used as traditional interoperability instruments (e.g., standard protocols for data discovery and
access) to discover and download selections of remote sensing data, or the data cube systems can go
beyond the “traditional” data systems—moving away of the “Discovery and Access” paradigm by
becoming processing facilities, allowing data processing algorithms to be sent to the data cube engine
and executed where the data is. Therefore, for EO data cubes, advanced interoperability tools were
recently developed, such as coverage processing and query languages. Indeed, they can be used to
implement system integrability. However, they are not sufficient to achieve semantic and pragmatic
interoperability, which are important to achieve the “Distributed Application” paradigm that can
process and use resources of more than one data cube. This interoperability shortcoming may push
data cube systems to become monolithic platforms that operate in isolation only as clients of other
interoperable services, but not offering interoperable interfaces by themselves.

6.2. Analysis Ready Data and Data Cubes

In general, data cubes can be seen as an analytical technological solution for taking advantage
of ARD, defined by CEOS as “data that have been processed to a minimum set of requirements and
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organized into a form that allows immediate analysis, with a minimum of additional user effort and
interoperability, both through time and with other datasets” [82]. Despite this generic definition, CEOS
came up with three specifications for surface reflectance, surface temperature, and radar backscatter
(http://ceos.org/ard/). Focusing on the surface reflectance products, the general concept of data
readiness entails common content pre-processing, such as: Atmospheric correction, and cloud coverage
masking—this may be called radiometric readiness. There is no way to create a three-dimensional
(i.e., x, y, t) data product if the radiometry of the values are not homogeneous over the time dimension.
The most obvious advantage for the users of remote sensing data is that when they wish to undertake
large area and long-time series analyses, they no longer need to invest in computationally expensive
atmospheric correction processing chains to pre-process data. ARD saves time by providing a standard
solution for data preparation that should be valid for most common applications. ARD products help
with saving money, because expensive processing time is only executed once by the data producer.
Another kind of data readiness (at least its lower level) is the geometrical readiness, by implementing
data resampling and re-projection on a common grid environment. It is not possible to build a
multidimensional data cube with scenes that are not organized in a way that they become geometrically
co-registered. In principle, ARD does not assume a particular application; e.g., land cover studies.
For example, ARD does not assume that cloud’s shadows and snow shall be removed. Instead,
producers apply state of the art algorithms to detect clouds and the shadows that they create, haze,
and snow; and provide an extra band that tells which pixels are clouds, which are hazy, which are
shadowed, and which contain snow. With these masks, the users can filter the values that they
consider unusable by themselves in the data cube. For all these reasons, it can be considered that
ARD allows working at the “pragmatic-level” of interoperability. Some specific usages of remote
sensing data might require a more careful consideration for preparing the product for analysis. In the
H2020 ECOPOTENTIAL project, we have experienced the need for applying shadow compensation
techniques for steep mountain areas that provide better results than the ones coming from ARD directly
generated by the data provider. However, there is another important benefit on using ARD: Users who
wish to share and compare scientific and application results can still prefer to use ARD to reduce the
potential discrepancies in results, due to differences in pre-processing, incrementing interoperability
and comparability of higher-level products [78]. Nevertheless, ARD procedures can also create silos:
For example, Landsat collection 1 and Sentinel 2 Level 2A were created as two independent ARD
products, and they cannot be used together directly. The creation of a harmonized virtual product
required to define a different ARD protocol and that forces, preserving the unique features of each
data source, and some compromises must be made, such as adjusting Sentinel-2 (S2)/MSI radiometry
to replicate the spectral bandpasses of Landsat 8/OLI, adopt a common 30 m resolution or adopt the
Sentinel 2 UTM projection and tiling system [83].

Indeed, when populating data cubes, we are forced to satisfy a set of requirements that takes
into account the actual use of the data, managed by them. The choice of an EO data cube array of
dimensions, coordinate reference system, or data resolution are largely optimized for a limited set
of relevant uses (e.g., time series analysis or changes detection using optical data). The data cube
might still be useful for other kinds of applications, but performances would be suboptimal. As a
consequence, application-driven optimization affects the different aspects and levels of data cubes’
interoperability. In building distributed applications, the use of heterogeneous data cubes (i.e., differing
for coordinate reference system, resolutions, etc.) would provide minimal or no benefit in comparison
with using general purpose (or traditional) data systems. While a set of integrable data systems is
still a data system, a set of integrable (i.e., technically and syntactically interoperable) data cubes
is not necessarily a data cube itself. That defining of a data Cube is such by the virtue of relevant
semantic/pragmatic decisions.

23



Data 2019, 4, 113

6.3. Non-Technological Interoperability Dimensions

Besides all technological aspects required enabling effective interoperability of EODC, we need also
to consider non-technological aspects such as governance and policy. These elements mostly relate on
human and organizational aspects that are equally important from an interoperability perspective [84].
From our point of view, the following three are essential for enhancing EODC interoperability:

(1) Currently, a commonly agreed definition and taxonomy of EODC is lacking. To our knowledge,
the Data Cube Manifesto [85] is the only attempt to give a general and holistic definition, defining
six requirements that must be met, in order to be considered as an EODC. This manifesto can
be a good starting point to be further refined, looking at the various existing implementations,
and embedding the effort in standardization processes, such as those supported by the OGC
and ISO.

(2) Efforts should be persued to support Open Data and Sharing policies. Indeed, since 2008 the
entire Landsat archive has been made freely and publicly available, followed by a tremendous
increase in usage, investigations, and applications [86,87]. The Landsat Open Data policy is an
excellent example of how to maximize the return on large investments in satellite missions [13,86].
Withtout such a policy, develing EODC technology would not have been possible. Togerther with
FAIR (Findable, Accessible, Interoperable, Re-usable) data principles [88,89], EODC can enable
moving towards effective and efficient EO Open Science.

(3) Finally, a fundamental aspect that needs to be considered is the governance. Without effective
governance mechanisms and structures, it will prevent a successful implementation of EODC
at national levels. Further, that will be even more important when one thinks about federated
data cubes at regional and/or global levels. Governance will be the first challenge to tackle in
this context. For example, in the case of the Swiss Data Cube, an incremental strategy has been
developed. During the initial phase of the SDC, only one organization was involved taking
care to test the data cube technology, deploy the software, ingest data, and developed initial
demonstration applications. That helps fast movement and agility to closely collaborate under
the mandate of the Swiss government. Now that the SDC is reaching some mature levels, new
key partners in the field of EO in the country have been added to project bringing their respective
expertise, and allowing consolidating the network across the country. This resulted in the
signature of a Memorandum of Understanding (MoU) in June 2019 between UNEP/GRID-Geneva,
the University of Geneva (UNIGE), the University of Zurich (UZH), and the Federal Institute for
Forest, Snow and Landscape research (WSL). This cooperation agreement aims at fostering the
use of Earth observation data for environmental monitoring on a national scale. The MoU is a
pivotal instrument to clarify and implement a suitable governance structure commonly agreed by
the different parties.

7. Conclusions

Addressing the interoperability challenge of EODC is essential to prevent the various EODC
implementations becoming silos of information. Currently, not many efforts have been made to
enhance interoperability of data cubes.

In this paper, we discuss and demonstrate how interoperability can be enabled using
widely-adopted OGC and ISO geospatial standards, and how these standards can help delivering and
leveraging the power of EO data building efficient discovery, access, and processing services. These
standards are applied in different ways in current data cube implementations, such as the Swiss Data
Cube and the Catalan Data Cube were, we have identified that OGC services mainly improve the
“Discovery and Access” paradigm. An opposite paradigm of moving the processing code close to the
data is facilitated by current containerization technology and rich query languages such as WCPS.
The real challenge is to realize the “Distributed Application” paradigm, wherein data cubes can work
together to produce analytical results.
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Realizing the objective of providing EO-based information services and decision-ready products
responding to users’ needs requires effective and efficient mechanisms along the data value chain. EO
data are essential to monitor and understand environmental changes. Consequently, it is necessary
to make data and information products not in the form that it is collected, but in the form that is
being used by the largest number of users possible. One step in this direction is the implantation of
analysis ready data products by data providers. Being able to easily and efficiently combine EO-based
data with other data sources is a crucial prerequisite to enable multi-disciplinary scientific analysis on
our changing environment. Interoperable data cube services can significantly contribute to effective
knowledge generation towards a more sustainable world, supporting decision and policy-makers
making decisions based on evidence, and the best scientific knowledge.
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Abstract: There is an increasing amount of free and open Earth observation (EO) data, yet more
information is not necessarily being generated from them at the same rate despite high information
potential. The main challenge in the big EO analysis domain is producing information from EO
data, because numerical, sensory data have no semantic meaning; they lack semantics. We are
introducing the concept of a semantic EO data cube as an advancement of state-of-the-art EO data
cubes. We define a semantic EO data cube as a spatio-temporal data cube containing EO data,
where for each observation at least one nominal (i.e., categorical) interpretation is available and can
be queried in the same instance. Here we clarify and share our definition of semantic EO data cubes,
demonstrating how they enable different possibilities for data retrieval, semantic queries based on
EO data content and semantically enabled analysis. Semantic EO data cubes are the foundation for
EO data expert systems, where new information can be inferred automatically in a machine-based
way using semantic queries that humans understand. We argue that semantic EO data cubes are
better positioned to handle current and upcoming big EO data challenges than non-semantic EO data
cubes, while facilitating an ever-diversifying user-base to produce their own information and harness
the immense potential of big EO data.

Keywords: remote sensing; big Earth data; big EO data; information extraction; semantic enrichment;
time-series

1. Introduction

The current Earth observation (EO) data pool is vastly different than a mere decade ago, but the
main challenge remains: to produce information from data to generate knowledge [1,2]. We are
surrounded by a growing ocean of EO data, but sensory data are not information and have no inherent
meaning (i.e., lacking semantics) without some form of interpretation. At a minimum, this data pool
is characterised by a rapidly growing data volume, accelerating data velocity (i.e., increasing data
acquisition and processing speeds) and an increasingly diverse variety of sensors and products [3].
The term “data cube” is broadly understood as a multi-dimensional array organising data in a way that
simplifies data storage, access and analysis compared to file-based storage and access [4]. Applying
data cube technology to EO datasets attempts to address some of the challenges and opportunities
rooted in these big data characteristics.

There is a growing number of implementations currently referred to as EO data cubes with
the goal of lowering the barrier to store, manage, provide access to and analyse EO data in a more
convenient manner. Data cubes of EO imagery typically are organised in three dimensions: latitude,
longitude and time. The definitions or specifications of EO data cubes will not be discussed here but
can be understood as a way of organising EO data using a logical view on them, either based on an
existing archive (i.e., “indexing”) or a specific, application-optimised, multi-dimensional data structure
(i.e., “ingestion”). The logical view refers to the way of accessing EO data by using spatio-temporal
coordinates either in an application programming interface (API) or a query language instead of file
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names. The main advantage of ingesting data is that the data can be stored in a query-optimised
way, and specific access patterns can be realised more efficiently, such as time series analysis or
spatial analysis.

Various technical solutions to create these logical views on EO data have rapidly gained traction
over the past few years. The first national scale EO data cube was established in Australia [5],
whose technology is now the basis of Digital Earth Australia [6] and the Open Data Cube (ODC) [7].
The free and open source ODC technology is also behind other operational EO data cubes, such as
in Switzerland [8], Colombia [9], Vietnam [10], the Africa Regional Data Cube [11] and at least nine
other national or regional initiatives under development [7]. Rasdaman [12], an array database system
that has been around since the mid-1990s, is another leading technology behind initiatives such as
EarthServer [13] and the Copernicus Data and Exploitation platform for Germany (CODE-DE, [14]).
Other software implementations exist, such as the Earth System Data Cube from the European Space
Agency [15] and SciDB [16].

State-of-the-art EO data cubes simplify data provision to users by facilitating data uptake and
aiming to provide analysis-ready data (ARD) [4]. While there is still an ongoing discussion about
how ARD are defined and specified, it is usually understood as calibrated data, and in the case of
CARD4L (Committee on EO Satellites ARD for Land), even contains masks as a target requirement
specification, such as for cloud and water [17,18]. The intention is to shift the burden of pre-processing
from users to data providers, who are often better equipped to consistently and reliably process large
volumes of high-velocity data [6,17,19]. Processing steps with a high potential level of automation can
be conducted centrally where they only must be conducted once and are then available to all users.
This contrasts with requiring every user to pre-process the data they would like to use on their own
and improves comparability of initial data conditions between users and applications.

Web-based access to these EO data cube implementations brings users closer to the data and
implements a computation platform at the data location [20]. This is a different strategy than providing
EO data to users as individual, downloadable images of a pre-determined spatial extent. Data cubes
make data access much more efficient and effective by providing users with data tailored more
specifically to their needs, reducing unnecessary data transfer [20]. Pairing data access from EO
data cubes with computational environments, (e.g., processing resources accessible using Jupyter
notebooks) moves in the direction of other existing Web-based geospatial computation platforms, such
as Google Earth Engine [21]. While these platforms are powerful, analyses sometimes have limited
transferability to different geographic locations or points in time, or a low level of results or inferential
reproducibility [22].

Even with tailored ARD access and Web-based processing capabilities, users of EO are still
confronted with tons of data rather than information and the ill-posed challenge of reconstructing a
scene from one or more images [23]. In this case, a scene is understood as the content of an image,
whereby the result of this challenge is some form of interpretation or classification map of an image.
Images suffer from data dimensionality reduction and a semantic information gap. An image is a 2D
snapshot of the 4D world (i.e., three spatial and one temporal dimension), whereby all the information
required to reconstruct a comprehensive and complete descriptive scene is not available from one or
multiple images over time [24].

Information production from EO images still generally relies on unstructured, application-specific
algorithms or increasingly popular machine learning procedures. This often results in low to no
semantic interoperability between workflows, sensors or images based on the findable, accessible,
interoperable and reusable (FAIR) principles [25]. The FAIR principles refer to data, and the algorithms,
tools and workflows that produce them. If data-derived information is linked to the images used to
generate them, provenance is maintained and accessible to users. Combining EO images with symbolic
image-derived information in a collaborative, analytics environment effectively facilitates increased
semantic interoperability between workflows and analyses while extending machine-actionability [26].
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If the image-derived information is semantically interoperable and consistent between locations and
acquisitions, semantic interoperability is established at least at the starting point of further analysis.

We are introducing the concept of a semantic EO data cube as an advancement of state-of-the-art
EO data cubes. Semantic EO data cubes move beyond data storage and provision by offering basic,
interoperable building blocks of image-derived information within a data cube. This enables semantic
analyses that can be incorporated into simple rule-sets in domain language, and users are able to
develop increasingly expressive, comprehensive rule-sets and queries. Given semantic enrichment
that includes clouds, vegetation, water and “other” categories, certain semantic content-based queries
covering a user-defined area of interest (AOI) in a given temporal extent are possible, such as for
the most recent observations excluding clouds (e.g., user-defined cloud-free mosaic), or an observed
moment in time with the maximum vegetation extent. These queries of the interpreted content of
available images are independent of imposed spatial image extents and are made possible by including
semantic enrichment. However, since the information is still tied to the EO images it is based on,
it is also possible to search for and retrieve images based on their semantic content rather than only
metadata (e.g., where and when each image was acquired). We argue that EO data cubes have the
potential to offer much more than data and information product storage and access. They move
towards reproducible analytical environments for user-driven information production based on EO
images and allow non-expert users to use EO data in their specific context.

This paper focuses on the concept of a semantic EO data cube, assuming the basis is an EO data cube
containing EO data together with a nominal interpretation for each observation. Multiple discussions
and standardisation processes are currently underway to clarify what constitutes ARD and what
minimum requirements constitute a data cube. However, this has little bearing on the base concepts
presented here, which have implications for data access, data retrieval, semantic queries of data,
semantic interoperability of different methods and results and more. We argue that semantic EO data
cubes are better positioned to handle current and upcoming big EO data challenges than non-semantic
EO data cubes, while facilitating an ever-diversifying user-base to produce their own information and
harness the immense potential of big EO data.

2. Theoretical Framework

Concepts under the same name sometimes differ between domains. The concepts essential for
our understanding of semantic EO data cubes are described for clarity, and our definition of what
constitutes a semantic EO data cube is explained.

2.1. Clarifying Concepts

Data are not the same as information, and we find ourselves increasingly collecting data, yet not
producing more information from them at the same rate. Information can be understood at least in
two different ways: as a quantifiable measure in the sense of the information content of a message
or an image (e.g., bits and bytes representing something informative [27]), or as a subjective concept,
an interpretation (i.e., knowledge produced from a process) [28,29]. Information is used to generate
knowledge and understanding, which might lead to wisdom [1,2].

Two terms ought to be clarified before moving forward because they are not interchangeable from
our perspective, nor in the domain of computer vision: images and scenes. An EO image is broadly
understood as a pixel-discretised field representing measurements of reflected radiations from Earth in
different wavelengths (e.g., temperature, visible light, microwave). EO data are delivered as images or
single measurements, depending on the design of a sensor. Here we refer to numerical observations
represented by pixels and delivered as images. A scene, however, refers to the represented content of
an image, meaning that which was observed [30].

The goal of most EO analysis is to produce actionable information to support decision-making
processes. This requires transforming EO data into information, or digital numbers into subjective
concepts that describe a scene. An EO image is a 2D representation of a 3D scene on Earth at a fixed
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moment in time, and multiple 2D images of the same 3D scene acquired over time move towards
representing a snapshot of the 4D world (i.e., 3D space through time). In this context, what an image
or set of images can tell you about a scene is information.

The challenge of reconstructing scenes or generating information about a scene from a
mono-temporal 2D image or set of images through time underpins any classification of remotely-sensed
imagery and is inherently ill-posed. It is ill-posed in the Hadamard sense because a single,
unique solution may not exist, or the solution does not depend continuously on data [31,32]. The last
criterion of data-dependence refers to stability, where small changes in the equation or conditions
result in small changes in the solution. An ill-posed problem does not meet one or more of these
criteria (e.g., there are a huge number of possible solutions when classifying imagery).

The ill-posed problem of reconstructing scenes from images stems primarily from what is known
as the sensory gap [33]. For optical EO images, this gap exists between the 2D image that has been
sensed (e.g., digital numbers) and the 4D world (e.g., objects, states, events, processes). This gap
introduces uncertainty that inherently complicates the interpretation of images and reliable, consistent
information production. One aspect of the sensory gap is the sensor transfer function, which relates
to the resolvability of phenomena by the given sensor (e.g., spatial, temporal, spectral, radiometric
resolution). Another aspect relates to the reduction of dimensionality inherent to images (i.e., 4D to 2D;
reducing a flood event to a snapshot in time). These aspects together allow for multiple interpretations
of the same or similar representations (e.g., a green pixel in a true-colour image might represent a
vegetated rooftop, forest, pasture, football field or something else entirely).

In the context of EO image classification, multiple classifications are possible for any given EO
image or collection of images, and many current classification methods are very sensitive to changes
in input parameters or starting conditions. Certain methods even produce similar but non-identical
results each time they are run on the same initial data. In the case of well-established approaches of
supervised classification, different users generally use different sets of samples even if using the same
data and being interested in the same categories, which consequently produces different results.

What is known as the semantic gap also contributes to difficulties in producing information
from images, and it refers to the gap between something that exists and what it means, regardless
of how it is observed or represented [33]. Semantics more broadly refers to a multi-domain study
of meaning but influences research in many domains, such as philosophy, linguistics, technology
(e.g., the semantic Web [34,35], ontology-based data access [36]) and interoperability (e.g., sharing
geographic information [37], processing EO data [26]).

When we speak of semantics in EO, this refers to what an EO image represents in terms of how
it is interpreted, usually by an expert. An image can be described using an unbelievable number of
words and concepts, yet images do not have intrinsic meaning. Each person has their own definition
or understanding of different concepts or symbols, not to mention what they find to be important
in a given image or scene [38]. Images gain meaning through relations to other images and the
interpretation by a viewer, which is influenced by cultural and social conventions, not to mention the
viewer’s intention. In the context of image databases, how users search for and interact with images
creates additional meaning, especially if given an exploratory user interface [39].

Using the term semantic in relation to EO data cubes refers to how an existing EO data cube is
semantically-enabled, meaning a user can interact with it using semantic concepts rather than digital
numbers or reflectance values. The ability to search for and retrieve EO data using spatially-explicit
semantic content-based information rather than metadata, keywords, tags, or other linked data has
strong implications for changing the way EO data is queried, accessed and analysed. However,
to semantically-enable an EO data cube, some level of semantics needs to be available for every
observation. In the case of EO imagery, this means semantics need to be available for each representation
in space and time (i.e., pixel).
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2.2. Our Definition of a Semantic EO Data Cube

A semantic EO data cube or a semantics-enabled EO data cube is a data cube, where for each
observation at least one nominal (i.e., categorical) interpretation is available and can be queried in
the same instance. Interpreting an EO image (i.e., mapping data to symbols that represent stable
concepts) results in semantic enrichment [23]. This data interpretation used in creating a semantic
EO data cube may differ depending on the user and the intended purpose. Semantic variables are
non-ordinal, categorical variables, but subsets of these variables may be ordinal (e.g., vegetation with
sub-categories of increasing greenness or intensity) [40]. See Figure 1 (left) for a schematic illustration
of a semantic EO data cube.

Figure 1. Schematic illustration of a semantic Earth observation (EO) data cube (left) used for an
exemplary semantic content-based image retrieval (SCBIR) query. Here, a query searches for images
with low cloud and low snow cover within a user-defined area of interest (AOI)-based on the associated
semantic information. It retrieves images that match the semantic content-based criteria for the AOI
instead of the entire image’s extent. In a classic image wide query such AOI specific semantic queries
are not possible.

Semantic enrichment included in a semantic EO data cube may be at a relatively low or higher
semantic level. A lower semantic level means that symbols may be associated with or represent
multiple semantic concepts requiring further analysis or interpretation to align with more specific
concepts. The concepts in a lower level semantic enrichment can be considered semi-symbolic in
that they are a first step to connecting sensory data to symbolic, semantic classes [41]. This could
include information such as colour, or other ways of characterising the spatio-temporal context of each
observation. A relatively high semantic level refers to explicit expert knowledge or existing ontologies.
In the context of optical EO, one example of relatively high level semantic information would be land
cover, such as the land cover classification system (LCCS) developed by the Food and Agriculture
Organisation of the United Nations [42].

Other data and information may be combined with a semantic EO data cube to extend possible
analysis, but what makes it semantically-enabled is that each observation in space over time has an
interpretation. An interpretation that can be generated in an automated way with no user interaction
is ideal for handling big EO data. It is also extremely beneficial if the resulting interpreted categories
are transferable between different geographic locations, moments in time, images or sensors.

Only including well-known, data-derived indices for each observation (e.g., normalised difference
vegetation index (NDVI)) is not sufficient to semantically-enable an EO data cube. Most of these
indices are not inherently semantic, in that they still need to be interpreted to have symbolic meaning
(e.g., at what NDVI is a pixel considered to contain vegetation or some other interpreted category?).
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Indices can, however, contribute different quantitative insights to existing interpretations of an image
in a stratified analysis (e.g., this collection of pixels is interpreted as being vegetation, but what was
the average NDVI in June 2018 compared to June 2019 within this area?). While the indices can be
calculated on the fly since the EO data are also present in a semantic EO data cube, it is up to the
user as to whether calculating and incorporating such data-derived indices in a data cube reduces
computational resources or has other benefits for further analyses.

Including additional data or information that is not directly derived from EO data does not
semantically enable an EO data cube but might enable new query possibilities of EO data in space
and time. Such data or information could concern the geographic area (e.g., digital elevation model
(DEM)), socio-economic data, or masks of various kinds (e.g., urban area or forest mask). All of these
data and information sources are not derived directly from the EO data such that they: (1) do not
add information about each EO image’s content, but rather the scene content or other characteristics
pertaining to the time they were acquired; and (2) may no longer be true for the moment in time an EO
image was captured (e.g., a DEM acquired before an earthquake). A DEM, for example, could be used
as a spatial selection criterion, even if not specifically related to the semantic content of each image
(e.g., selecting observations above a given elevation for alpine areas). Another example would be
including an annual forest mask used by environmental regulatory bodies, but that annual mask may
not be true even for the EO data available for that given year contained in the data cube.

In semantic EO data cubes it is crucial that EO data be stored with data-derived information
for each acquisition. A data cube containing only data-derived interpretations could be considered
semantic, but EO data have too much potential to be constrained to a single interpretation, especially
since there is no single correct interpretation of image content. World ontologies are infinite. Multiple
different perspectives and interpretations need to be possible to close the semantic gap [38], and users
should be allowed to generate their own interpretations within a semantic EO data cube should those
available not be suitable for their needs. The loss of connection to original EO data constrains semantics
to the available interpretation, eliminates access to the source of the data-derived information important
for provenance and limits further analysis. Some users might benefit from incorporating reflectance
values from specific bands (e.g., calculating an index), using the semantic information to generate
composite images through time, or generating different information based on the data to augment
existing semantic enrichment.

The focus of semantic EO data cubes is to facilitate ad hoc, flexible information generation from
data, that might have potential to lead to knowledge. Semantic EO data cubes combine concepts
from EO, image processing, geoinformatics, computer vision, image retrieval and understanding,
semantics, ontologies and more. Similar to how the semantic Web can be considered an extension of the
Web [34], semantic EO data cubes offer a solution to combining EO data with meaning. This ultimately
better enables people and computers to work together to access, retrieve and analyse EO data and
data-derived information in a semantically-enabled and machine-readable way.

3. Examples from Existing Semantic EO Data Cubes

Three applied examples of semantic EO data cubes are presented, and each of them uses the same
relatively low-level, generic, data-derived semantic enrichment as the basis for each of the semantic EO
data cubes. This general-purpose semantic enrichment is application- and user-independent and thus
can support multiple application domains. The semantic enrichment used in the following examples
is automatically generated (i.e., without any user-defined parameterisation or training data) by the
Satellite Image Automatic Mapper™ (SIAM™). This software is an expert system that employs a
per-pixel physical spectral model-based decision-tree to images calibrated to at least top-of-atmosphere
reflectance in order to accomplish automatic, near real-time multi-spectral discretisation based on
a priori knowledge [43]. The decision tree maps each observation located within a multi-spectral
reflectance hypercube to one multi-spectral colour name, which is stable and sensor agnostic. It is
sensor-agnostic in that data calibrated to at least top-of-atmosphere reflectance by optical sensors
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can be used to generate semantic enrichment comparable between sensors (e.g., Sentinel-2, Landsat).
SIAM™’s output has been independently validated at a continental scale by [44].

This colour naming results in a discrete and finite vocabulary referring to hyper-polyhedra within a
multi-spectral feature space, whereby the colour names create a vocabulary that is a mutually exclusive
and totally exhaustive partitioning of the multi-spectral reflectance hypercube. These colour names
have semantic associations using a knowledge-based approach and thus are considered semi-symbolic
(i.e., semi-concepts). More broadly, this vocabulary of colour names can be thought of as stable,
sensor-agnostic visual “letters” that can be used to build “words” (i.e., symbolic concepts) that have
a higher semantic level using knowledge-based rules. The output may be considered sufficient for
generating CARD4L masks as specified in the product family specification [18], but also offers building
blocks for a complete scene classification map.

In the following examples, these data-derived information building blocks (i.e., semi-concepts)
are based on Landsat 8 or Sentinel-2 images and are stored using either Open Data Cube or
rasdaman technology to create semantic EO data cubes. While the semi-concepts themselves are
inferior in semantics to land cover classes, they are reproducible, transferable between images and
geographic locations, and each colour has a semantic association. These implementations serve as
the foundation for semantic content-based image retrieval (SCBIR) (Section 3.1) or other semantic
queries (Sections 3.2 and 3.3). Spectral-based semi-concepts can serve as the basis for more expressive,
automated scene classification, queries and analysis within each of these prototypical semantic EO
data cubes using knowledge-based rules (see Section 4.4).

3.1. Semantic Content-Based Image Retrieval

The example of operational SCBIR has been prototypically implemented within a semantic EO
data cube based on Landsat 8 data and the rasdaman array database system as an underlying data cube
technology [45]. While this prototypical implementation (see Figure 1) did not cover a large database,
it is designed for scalability by relying on parameter free, fully automated and multisensory enabled
semantic enrichment, as well as on a data cube technology proven to be scalable to PB sizes [13].

Unlike a traditional content-based image retrieval system, a SCBIR system is expected to cope
with spatially-explicit (i.e., area of interest (AOI)-based), temporal, semantic queries (e.g., “retrieve all
images in the database where the AOI does not contain clouds or snow”). Very few SCBIR system
prototypes targeting EO images have been presented in the literature [46,47]. None of them is available
in operating mode to date.

The implementation of SCBIR is urgently needed in today’s big EO archives to overcome
the limitations of currently implemented image data retrieval methods using image metadata
(e.g., acquisition date, sensor, pre-processing level) and image wide statistics like average cloud
cover. The latter is especially a problem because the average cloud cover statistic is one of the most
used pre-selection criteria for image retrieval of big EO data but is an average over an entire image.
Spatially-explicit AOI-based querying that makes use of the semantic information of each pixel in a
data cube could help in making use of hidden or “dark” data in big EO databases. This could, for
example, lead to retrieving more cloud-free time series or improving cloud free mosaic composition,
utilising data contained in images with low average cloud cover.

A SCBIR query is visualised in Figure 1 based on the prototypical implementation. A query based
on the semantic information for low cloud cover combined with low snow cover in the selected AOI
would only retrieve 2 of the 4 sample images in this example, making query results better posed for
following analyses. While our definition of a semantic EO data cube does not prescribe any particular
level of semantic enrichment, SCBIR queries beyond cloud/snow cover are possible depending on the
available image interpretation, e.g., searches for images where flooding occurred, containing a low
tidal range, or where a peak in vegetation coverage occurs.
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3.2. Flood Extent in Somalia Based on Landsat 8 Imagery

One of the first implementations of a semantic data cube was a study to extract surface water
dynamics and the maximum flood extent as an indicator for flood risk using a dense temporal stack of
78 Landsat 8 images [48]. By using water observations of three years, areas are delineated that are
prone to being flooded, as illustrated in Figure 2. In this study, the array database system rasdaman
was used to instantiate a semantic EO data cube with pre-processed Landsat imagery and semantic
enrichment generated with SIAM™, which can be accessed by using a self-programmed Web frontend,
visually supporting the design of semantic queries. In this system the analyses are automatically
translated database queries, which increase reproducibility, readability and comprehensibility for
a human operator and can be conducted within a few minutes. The study showed how a generic
semantic EO data cube can be used for on-the-fly information production using a very simple ruleset.

y p

Figure 2. A flood mask generated from 78 semantically enriched Landsat 8 images over 9 months in
Somalia (left) as an indicator for flood risk is compared to a single event analysis following a reported
flood event in the year before (right). Both maps are the result of basic user queries using the semantic
information only, without the use of additional parameters or calculations on the original data sets.
Originally published as CC-BY-ND by [48], modified.

3.3. Semantic EO Data Cube along the Turkish/Syrian Border

The potential of semantic EO data cubes is demonstrated here using a proof-of-concept
implementation based on ODC technology, described in detail by [49]. In this case EO refers to
satellite-based remote sensing data produced by the Copernicus programme’s Sentinel-2 satellites.
All available Sentinel-2 data (i.e., ca. 1000 images to date) covering over 30,000 km2 along the
north-western Syrian border to Turkey (latitudes 36.01◦–37.05◦N; longitudes 35.67◦–39.11◦E) are
continuously incorporated in an automated way including being mapped into semi-symbolic
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colour names by SIAM™. The example output generated here demonstrates that traditional
statistical model-based algorithms may be replaced by querying symbolic information, starting
from semi-symbolic colour names with semantic associations that are not bound to a specific theme or
application within a semantic EO data cube.

In March 2019 flash flooding was reported in various parts of Syria [50]. The worst flooding was
reported in Idlib province, which is just south of the western most part of the study area (see Figure 3).
While optical imagery is often hindered by cloud cover in rain events, a query for water-like pixels
around the time of intense precipitation shows that certain flooded areas have been observed by
Sentinel-2 satellites. A normalised observed surface water occurrence (SWO) over time is calculated for
two spatio-temporal extents of interest, namely 15 March to 15 April for the entire study area in 2018 and
2019 (see Figure 4). The calculation of the result for each spatio-temporal extent took around 10 minutes
to complete using the same hardware and software as described by [49]. The algorithm, described in
pseudocode in Figure 5, can be applied to any semantic concept that exists in the semantic EO data cube.
This is demonstrated in Figure 6 where the same algorithm was applied to the semantic EO data cube,
but for vegetation-like pixels rather than water-like pixels for the same two spatio-temporal extents.

Figure 3. The spatial extent of the semantic EO data cube comprises three Sentinel-2 granules.
(a) displays the true colour Sentinel-2 images as processed by the European Space Agency (ESA);
(b) shows the area as represented in OpenStreetMap.
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Figure 4. This figure displays the results of the semantic query for water-like observations for two
spatio-temporal extents of interest. (a) Query for water-like observations from 15 March to 15 April
2018. (b) Query for water-like observations from 15 March to 15 April 2019. (c) Close-up of an area
where water-like observations were present in 2019 but not in 2018.
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Figure 5. Pseudocode describing how the normalised observed surface water occurrence (SWO) over
time is calculated based on semi-concepts, in addition to two other outputs necessary for its calculation.
The array of “total clean observations” provides the number of observations over time per-pixel
after excluding cloud-like, snow-like and unknown pixels in the spatio-temporal extent of interest.
Snow-like are excluded in this case based on the knowledge that there is generally no snow within the
spatio-temporal extent of interest. “Total water observations” refers to the number of observations over
time per-pixel that water-like spectral profiles were observed. It is the ratio between these two outputs
(i.e., total divided by clean observations per-pixel) that results in the normalised observed SWO.
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Figure 6. This figure displays the results of a different semantic query for the same two spatio-temporal
extents of interest used in the query of water-like observations seen in Figure 5. (a) Normalised observed
vegetation occurrence from 15 March to 15 April 2018. (b) Normalised observed vegetation occurrence
from 15 March to 15 April 2019. (c) Normalised observed SWO from 15 March to 15 April 2019 overlaid
above normalised observed vegetation occurrence as represented in (b).

4. Discussion and Outlook

Semantic EO data cubes are interdisciplinary in their conceptualisation, combining concepts
related to image retrieval, computer vision, human cognition, semantics, world ontologies, remote
sensing and more. The applied examples presented in Section 3 are brought into context of semantic
EO data cubes, according to the definition and concepts provided in Section 2. Semantic EO data
cubes also have the potential to be a foundational element in image understanding systems, which is
discussed briefly in Section 4.4 and is a focus of on-going research.

4.1. Improvements to Data and Image Retrieval

Combining semantic enrichment with EO images has implications for EO archives, databases
and the ways in which users can search for and select images [45,51]. EO data cubes already enable
users to retrieve data independent of the image’s spatial extent. The best-case scenario is when images
processed to ARD specifications are used as the basis of an EO data cube and not just any images or
quality indicators. Semantic EO data cubes enable users to search for and retrieve EO data in their
spatio-temporal extent of interest based on their content, rather than image-wide statistics.

Since data and semantic enrichment are both available, SCBIR can improve ARD provision to
users by expanding the possibilities that users have to retrieve images that meet their requirements.
Currently a user may be interested in an area that occupies only 10% of an image. If this section of the
image is cloud-free but the rest of the image is not, this image will not be returned when searching for
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low average image-wide cloud coverage statistics (Figure 1). Semantic EO data cubes can provide
average cloud coverage information about a user-defined AOI that could be used for data retrieval
instead of aggregated image-wide metadata or statistics. Not only can users retrieve data for a given
spatio-temporal extent that has low cloud cover, but based on any other category available. This means
that such queries theoretically could also include searches for images containing a certain percentage
of water, snow or vegetation given reliable semantic enrichment at that semantic level.

Including semantic enrichment with EO data can also serve to improve automated user-defined
image composites or mosaics. The classic example is creating a cloud-free composite for a given
spatio-temporal extent. As long as the semantic enrichment offers some information about cloud cover,
users can retrieve cloud-free pixels for their spatio-temporal extent of interest without having to run a
complex algorithm or rely on pixel-based statistics over time. A user could search for the most recent
cloud-free pixels within a given spatio-temporal extent (e.g., May 2019) based on semantics instead of
statistics, whereby the result could look something like Figure 3a.

SCBIR and semantically-enabled best pixel selection is even more important in the big EO era so
that the data best suited for the analysis can be efficiently and effectively retrieved from huge archives
in an automated way. An overview of different capabilities between file-based hubs or archives
(e.g., Copernicus Open Access Hub), non-semantic EO data cubes and semantic EO data cubes is
provided in Table 1.

Table 1. Feature matrix for different approaches of storing and analysing EO images.

Feature
File-Based EO
Image Hubs

Non-Semantic
Data Cubes

Semantic EO
Data Cubes

• Image download X X X
• Metadata-based search X X X
• Image-wide processing X X X
• AOI-based processing - X X
• Fast access to imagery - X X
• Time series analysis (statistical) - X X
• Time series analysis (semantic) - - X
• SCBIR - - X
• Content-based best pixel selection

for cloud-free composites - - X1

• Generic approach with re-usable
and sharable tools - - X1

1 Depending on the implementation level.

4.2. Semantic Content-Based Queries

The presence of a categorical interpretation for each observation allows users to pose semantic
queries in EO data cubes. Semantic queries are queries about the world that exist and “make sense”
regardless of whether images or data exist. They move beyond answering questions related to image
retrieval (e.g., “Which data in my area of interest have less than 10% cloud cover?”) towards queries
about the world (e.g., “Where and when have glaciers in the Alps grown over the last decade?”).
These queries may or may not be able to be answered based on available EO data. The query space is
only limited by the semantic level of enrichment and any additional information or knowledge that is
available (e.g., DEM, image-derived indices).

Semantic EO data cubes enable information retrieval and semantically-enabled analysis while
allowing users to better explore what is possible with available EO data in an ad hoc way beyond
the confines of specific applications. There is a difference between requiring a user to know what
application-specific information they want to produce from EO data, and trying to answer the question,
“what is possible with these data?” [52]. For example, flooding in Turkey and Syria was known
to have occurred in the spatio-temporal extent in 2019 used in queries shown in Figures 5 and 6,
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but it was unclear whether optical Sentinel-2 imagery was able to capture any of it, and if so, where.
Applying a query for water or water-like pixels aggregated over time, such as shown in Figure 2,
is a spatially-explicit way to help answer that question. Additionally, such a query might be even
more powerful if the user has limited spatially-explicit precipitation or temperature information and is
unaware of any flooding that may or may not have occurred in a given area at any point in time.

It is important to emphasise that any analysis of EO data is only relevant for the snapshots in
time that are available. Information derived from them may also not necessarily be valid for much of
the time between acquisitions. For example, just because flooding is not observed or detected using
Sentinel-2 data does not mean that flooding did not occur in a given spatio-temporal extent. Even big
EO data with a high temporal sampling rate must always be interpreted keeping this in mind and is
best when combined with additional information or domain knowledge.

Including semantic enrichment for each image enables semantic queries to be applied to EO data
and derived information without requiring complex algorithms to process all data for a geographic
area or given timespan. Even though the semantic level of the interpretations may vary amongst
implementations, algorithms can access the reflectance values already associated with an interpretation
that can be referenced later in the workflow, if necessary. Data-derived content-based information is
available for each existing observation and can be read in a machine-based way using categories that
users understand.

Working with symbolic categories instead of reflectance values means that users can work with
queries that are readily understandable if the vocabulary of a community is being used, or a standard set
of classes such as LCCS or similar. However, using categories means an unfortunately non-reversible
data reduction, or reduction of the feature space in comparison to a multitude of bands with a higher
bit depth (e.g., 48 categories stored as 8-bit data in comparison to 13 bands of 12-bit data, such as for
Sentinel-2). This data reduction benefits query performance, in particular, but needs to be taken into
account for every analysis. Based on our definition of a semantic EO data cube, the original data is
available and accessible should users require them.

Having the original data available with categories also creates new possibilities for other
applications, such as stratifying data analysis based on semantic enrichment. This could be relevant for
improving sampling for machine-learning algorithms based on the frequency and distribution of certain
categories through space and time. For example, samples could be stratified based on the occurrence
of spectrally similar pixels by category within a study area in an attempt to mitigate sampling bias.
Other analysis can also benefit from stratification based on category, such as topographic correction
(e.g., certain categories will be darker in terrain shadow than others, and clouds are unaffected),
or calculating indices (e.g., first querying for vegetation before calculating NDVI to avoid having to set
a threshold to distinguish vegetation with the index alone).

4.3. Automated, Generic Semantic Enrichment for Big EO Data

Semantic EO data cubes are most powerful when combined with semantically rich yet generic
interpretations because semantics differ between domains, applications, users and the targeted purpose
of analysis. Closing the semantic gap when generating information from EO data is very difficult and
goes beyond the focus of this paper (refer to [44] as a starting point on this topic), but even the simplest
semantic enrichment better positions EO data cubes for analysis than ones containing no semantics
at all. Any data-derived semantic information can be used as the basis of a semantic EO data cube,
but generic semantic enrichment is highly extendible. It allows multiple domains to simultaneously
benefit from EO data and derived information without having to reprocess huge amounts of data
for every analysis. Workflows utilising the same generic, data-derived building blocks for analysis
also supports increased semantic interoperability. However, big EO data necessitates data-derived
interpretations that can be generated without user parameterisation (i.e., automated), are reliable and
acceptable in quality and with reasonable processing times [20].
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The semantic enrichment generated by SIAM™ and used in the applied examples was chosen
because it is fast, fully automated, scalable to handle big EO data, sensor-agnostic and comparable
between images captured at different locations and times. The limited semantic depth can be partly
compensated through the availability of the temporal dimension in dense time series because the
concepts are particularly stable (i.e., robust to changes in input data and imaging sensor specifications).
Semantic categories that are sensor agnostic means that users can compare the semantic content
of different images acquired by different sensors using the same semantic concepts. Higher level
semantics can improve information generation but are generally limited to a specific theme or
application. This may be beneficial in some cases and those interested in generating information can
decide what is necessary for them before processing massive amounts of EO data to create a semantic
EO data cube.

The examples presented in Sections 3.2 and 3.3 both queried water-like pixels based on the
low-level generic semantic enrichment available over time. Even with a semi-symbolic level of
semantic enrichment, queries for water-like observations could be conducted for a single acquisition or
aggregated over multiple acquisitions (Figures 2 and 5). Query results shown in Section 3.3 took an
additional step of excluding cloud-like and snow-like pixels and normalising the results over time for
increased comparability given spatio-temporal heterogeneity of available data. The same query for two
different spatio-temporal extents as shown in Figure 5 were generated within 10 minutes on relatively
limited computing resources as documented by [49]. Especially in situations where timely information
generation is critical, such generic implementations may be particularly useful. They can also serve
in finding spatio-temporal locations interesting for further analysis using available data. Figure 6
demonstrates two semantic queries on two spatio-temporal extents based on the same semantic EO
data cube, showcasing the benefit of being able to conduct various semantic queries using generic
semantic enrichment.

Many other surface water occurrence algorithms and analysis for EO data exist but cannot
necessarily be conducted ad hoc for user-defined spatio-temporal AOIs, are more computationally
expensive, and results are not necessarily able to be queried. For example, work conducted at the
European Commission’s Joint Research Centre by [53] has generated various high-resolution global
surface water information layers. These results provide valuable information based on EO data, but
cannot be queried for content, are separate from the data that they were derived from and are limited
to pre-defined temporal extents (e.g., annually). The surface water information generated by [54]
or [55] for each EO observation and used in their surface water dynamics analysis could be the basis
for a semantic EO data cube, but it would be semantically limited to the concept of water and does
not seem to be continuously updated with newly available data (i.e., images acquired up to now)
in an automated way. These implementations provide static layers, and are not currently posed to
provide more dynamic, near-real-time or continuously updated results such as information about the
maximum observed water extent in 2019 as it happens based on cloud-free/clean pixels.

In Figure 5 it is visible that large, permanent water bodies sometimes returned less than 100% of
normalised observed surface water occurrence. This has to do with the semantic query not taking
pixels associated with haze or very thin clouds into consideration, which are not necessarily water-like
nor cloud-like. Queries can be improved, and more complex knowledge-based rules implemented.
These proof-of-concept results demonstrate that even queries low in complexity based on low-level
semantic enrichment can produce higher-level information that might be useful in certain scenarios.

4.4. Towards an Image Understanding System

While our definition does not specify applications and implementations of semantic EO data
cubes, a prominent use-case is as part of an application-independent expert system, where the
semantic EO data cube serves as a fact base. In an expert system, users connect rules stored within
a knowledge base to a fact base to infer new information. In such a set-up, the knowledge base is
continuously-augmented with rules based in domain knowledge. This allows using already existing
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encoded expert knowledge or having users contribute their own knowledge. An overall architecture
such as proposed by [45] consists of an image understanding sub-system in addition to the semantic
EO data cube, which both makes use of already existing interpretations and feeds the fact base with
newly derived, true information.

A prototype of an expert-system-based architecture is currently under development for Austria,
where a semantic EO data cube serves as a backbone for user-generated semantic queries [56].
This system combines a fully automated semantic enrichment of Sentinel-2 images up to basic land
cover types with a semantic EO data cube and Web interface for human-like queries based on
semantic models of the spatio-temporal 4D physical-world domain. Although still under development,
first results are promising and show that users are able to formulate even complex queries using the
semantic pre-processing as simple building blocks to derive information at a higher semantic level
than the initial building blocks.

5. Conclusions

The aim of this paper was to define what a semantic EO data cube is and what they make
possible in terms of image retrieval, analysis and information production potential. Lots of EO data
are being collected, yet proportionally less are being used to produce information, many domains are
underserved in relation to what EO could offer, and users of EO data need to have a high level of
technical competence to produce information from EO data.

By combining EO data with an interpretation for each observation of a scene, semantic EO data
cubes allow users to run queries on big EO data and time-series that were not previously possible
and provide imaged-derived information building blocks for analysis that are more meaningful than
measured surface reflectance. Semantic enrichment enables semantic content-based image retrieval,
allowing users to retrieve specific observations based on what they contain rather than image-wide
statistics. Semantic queries (i.e., queries that exist independent of EO images) can be run on EO
data that are at least at the semantic level of enrichment or higher without having to necessarily run
complex, application-specific algorithms for each analysis. Including semantics in an EO data cube
also establishes a minimal level of semantic interoperability for different analyses conducted within
the same semantic EO data cube or a different implementation using the same semantic enrichment.
This has implications for improving reproducibility of methods and results, especially when applying
the same methods based on the same semantic enrichment to different spatio-temporal extents.

Semantic EO data cubes go beyond state-of-the art EO data cubes by managing image-derived
information together with data accessible for querying, and thus serve as initial building blocks for
semantic queries. Instead of attempting to answer a specific question using EO data, semantic EO data
cubes move towards exploring what questions can possibly be answered using the EO data available
for a given spatio-temporal extent of interest. Analysis is only limited by the semantic enrichment
included and can be extended using transparently coded rule-sets or additional information and
knowledge to produce information with a higher semantic level.

We believe that semantic EO data cubes are better positioned to serve big EO data than existing
EO data cube implementations, especially when containing ARD and generic, sensor-agnostic semantic
enrichment that can be automatically generated in a scalable way. The potential of semantic EO data
cubes is just beginning to be explored, but hopefully it is evident that there is plenty of potential
yet to be discovered. Semantic EO data cubes are the foundation for big EO data expert systems,
where new information can be inferred automatically in a machine-based way using semantic queries
that humans understand.
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Abstract: The exploitation of potential societal benefits of Earth observations is hampered by users
having to engage in often tedious processes to discover data and extract information and knowledge.
A concept is introduced for a transition from the current perception of data as passive objects (DPO)
to a new perception of data as active subjects (DAS). This transition would greatly increase data usage
and exploitation, and support the extraction of knowledge from data products. Enabling the data
subjects to actively reach out to potential users would revolutionize data dissemination and sharing
and facilitate collaboration in user communities. The three core elements of the transformative
DAS concept are: (1) “intelligent semantic data agents” (ISDAs) that have the capabilities to
communicate with their human and digital environment. Each ISDA provides a voice to the data
product it represents. It has comprehensive knowledge of the represented product including quality,
uncertainties, access conditions, previous uses, user feedbacks, etc., and it can engage in transactions
with users. (2) A knowledge base that constructs extensive graphs presenting a comprehensive
picture of communities of people, applications, models, tools, and resources and provides tools
for the analysis of these graphs. (3) An interaction platform that links the ISDAs to the human
environment and facilitates transaction including discovery of products, access to products and
derived knowledge, modifications and use of products, and the exchange of feedback on the usage.
This platform documents the transactions in a secure way maintaining full provenance.

Keywords: data discovery; metadata; knowledge base; graph data; intelligent semantic agents

1. Introduction

The current conceptual approach for discovery of Earth observation (EO) data and derived
products is to a large extent based on a perception of data as passive objects. Extracting information
and creating new knowledge from data often requires a high level of expertise. Users have to engage
in often tedious search processes to discover data. Missing metadata reduce the chance to match data
to requirements and determine applicability. Utilizing the data for research most often involves lengthy
processes to access products and translate them into a format suitable for the purpose. For decision
support, the high level of expertise required to extract information from data is a major obstacle.
Feedback on the usability of data for different applications is mostly not collected and not available
to users searching for data and knowledge. Semantic issues hamper discoverability and reduce
usability of the data and products. Users who would benefit from collaborations often discover
potential collaborators by chance. Linking of users with similar interests happens in social networks
disconnected from data discovery and access tools. As a result, exploitation of Earth observations (EOs)
in Earth sciences is at a level much lower than desirable and feasible. The use of products and
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knowledge derived from Earth observations (EOs) for decision and policy making is also hampered
by the level of expertise required to extract relevant information from data products and by the
limited discoverability.

Currently, the challenges to the discovery, access and use of the increasingly comprehensive
Earth observation (EO) data greatly limit the exploitation of the potential societal benefits of this
global resource. In fact, the value of Earth observation (EO) as a ‘public good’ depends mainly
of the conditions of access to that good [1]. At the same time, humanity is facing growing global
threats, see, e.g., [2,3]. Humanity’s quest for sustainable development expressed in the United Nations’
Agenda 2030 [4] is hampered by a lack of information on the biosphere and humansphere, and much
of this information could be extracted from Earth observations (EOs) [5]. Developing the interventions
that can facilitate progress towards the seventeen Sustainable Development Goals (SDGs) set in the
Agenda 2030 and monitoring progress toward the associated Targets requires comprehensive input
from Earth observation (EO) communities, see, e.g., [6,7]. Sustainable development as defined in the
Agenda 2030, as well as, developing sustainability in general requires a scientific paradigm shift
toward systems thinking [8] and this transition has to be informed by comprehensive integrated
Earth observation (EO) data. The current description of globally connected systemic and catastrophic
risks captures poorly the role of human-environment interactions [9], and this creates a bias towards
solutions that often ignore the new realities of the Anthropocene [10]. Understanding “Anthropocene
risks”, i.e., risks that emerge from human-driven processes, interact with global social-ecological
connectivity, and exhibit complex, cross-scale relationships [10], requires full and easy access to
information that can be derived from Earth observation (EO) data and tools for the extraction. The large
human-caused changes in the planetary physiology carry the risk of unexpected new phenomena
with potentially global consequences and threats [9]. Examples are the emerging threats of sargassum
blooms [11], the potential existence of a tipping points for a trajectory towards a “hothouse climate” [12],
the possibility of ocean anoxic events [9], and the potential overload of the ocean with carbon [13].

Assessments of risks in general and “Anthropocene risks” in particular very often show a tendency
to assume that the large risks are more likely in the far future [14]. For example, a potential state
shift in the biosphere [15], reaching tipping points for a hothouse trajectory [12], or the overload
of the ocean with carbon [13], etc., are all very often considered as a possibility in the far future,
thus ignoring that there are potential hidden risks that could trigger such catastrophic events in the
near future. Assessing risks, developing interventions to address the threats today and having early
warnings concerning hidden risks also need full access to comprehensive Earth observations (EOs) to
address the many knowledge gaps regarding catastrophic risks and to inform interdisciplinary and
transdisciplinary mapping and tracking of the multitude of factors that could contribute to global
catastrophic risks [16]. In the light of the challenges modern society is facing and the enormous value
easy access to comprehensive and integrated Earth observation (EO) data and derived information
would have for addressing these challenges, it seems imperative to transform the current relationship
between data and users [5]. Thus, the goal of utilizing the societal benefits of Earth observations (EOs)
has to be a major design criterion for systems that manage and provide access to such data.

1.1. Meeting Societal Data and Knowledge Needs

Over several decades, Earth observation (EO) communities have made efforts to increase the
realization of the societal benefits of Earth observation (EO). The Integrated Global Observing Strategy
(IGOS) initiated by the G7 in 1984 as a framework for Earth observations (EOs) was developed with the
goal to identify what was essential to be observed in order to document comprehensively the changes
that are happening on the planet [17]. The Integrated Global Observing Strategy Partnership (IGOS-P)
was established in 1998 with the mandate to ensure that Earth observations (EOs) would respond
to societal needs. This partnership brought together major organizations in the scientific and Earth
observation (EO) fields and engaged in efforts to first identify what needs to be monitored and then to
facilitate the implementation of corresponding observing systems. IGOS-P used a well-defined theme
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approach to define the overall strategy, with the themes being motivated by real-world challenges [18].
The resulting IGOS-P theme reports documented very well the outcomes of the first step defining
from observational needs for societally relevant themes, see, e.g., [19–23]. However, IGOS-P was less
successful in the second step.

Already the Agenda 21 [24], which wasa result of the World Summit in Rio in 1992, emphasized the
need for coordinated Earth observations and for the creation of knowledge that would support decisions
for sustainable development. The World Summit on Sustainable Development in Johannesburg in 2002
reconfirmed the need for coordinated Earth observations, and this led in 2003 to the initiation of the ad hoc
Group on Earth Observations (GEO) with the task to develop in eighteen months an implementation
plan for the Global Earth Observation System of Systems (GEOSS). The outcome of this activity resulted
in 2005 in the establishment of Group on Earth Observations (GEO). The vision of GEO is a future where
decisions can be informed by Earth observations. Considering the spectrum of challenges and threats to
our global civilization, this is no longer a nice-to-achieve vision; it is a necessity for survival. For GEO,
the tool for making progress towards this vision is Global Earth Observation System of Systems (GEOSS).
Initially, GEOSS was intended to be integrated into an end-to-end feedback loop with GEOSS providing
data and information in support of decision making and users providing feedback on information needs
for the further development of GEOSS (Figure 1). Importantly, this initial concept included for GEOSS the
task of integrating Earth observation (EO) data with other data and the use of Earth system models to
generate the information and knowledge required by societal decision makers.

Figure 1. The initial concept for global Earth observation system of systems (GEOSS) emphasized its
aim to inform decision making through an end-to-end feedback loop of data and knowledge supporting
decision making and feedback from users informing the development of GEOSS. GEOSS was intended
to integrate Earth observation (Earth observation (EO)) data with other data and Earth system models
to provide the information needed for decision and policy making [25].

In the first ten years of GEO, considerable efforts were made on the feedback part of the loop to
improve the knowledge of societal needs in support of defining EO priorities, both in communities of
practice that mostly originated in IGOS-P themes, see, e.g., [26], and dedicated efforts to gain overviews
of observational requirements derived from societal needs, see, e.g., [27–30]. For the development
of GEOSS, the main effort was on improving data discoverability, availability, and accessibility,
while the integration with other data and models had much lower priority. As a result, GEOSS
up to today serves best expert communities who have the capacity to search, access, and process the
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data. Efforts to combine data with a knowledge base remain at an early conceptual state. As recent
as 2019, a new concept paper has been accepted by the GEO Executive Committee that proposes
the development of a GEOSS Knowledge Hub mainly for expert communities as a framework for
transforming Earth observation (EO) data to knowledge for decision making [31]. On the other hand,
participatory workshops bringing Earth observation (EO) and science communities together with
societal stakeholders again and again reveal that there is a lack of capacity outside relatively small
expert communities for the extraction of information from Earth observations (EOs), see, e.g., [32].

Considerable efforts have been made to measure the potential and actual societal benefits of
Earth observations (EOs). For example, from 2009 to 2011, a community effort led by NASA aimed
at an assessment of societal benefits of Earth observations (EOs) as a basis for the prioritization
of Earth observation (EO) systems [27,33]. For several years, the GEO Work Programme included
a Fundamental Task on Societal Benefits organizing a sequence of workshops addressing the assessment
of societal benefits of Earth observations (EOs). NASA has set up the “VALUABLES” collaboration
to measure how satellite information benefits people and the environment when it is used to make
decisions [34]. However, very often the results of these assessments are published in reports and not
easily available in digital format to link benefit-based knowledge needs to observational requirements.

New societal knowledge needs emerged in 2015 with the United Nations’ adoption of the 2030
Agenda for Sustainable Development [4], the adoption of the Sendai Framework for Disaster Risk
Reduction 2015–2030 [35] by the United Nations, and the Paris Climate Agreement reached under
the United Nations Framework Convention on Climate Change (UNFCCC). GEO has responded to
the emergence of these agreements by including the support for the UN 2030 Agenda for Sustainable
Development, the Paris Climate Agreement, and the Sendai Framework for Disaster Risk Reduction
in the global priorities. Likewise, several United Nations agencies give the support of these frameworks
high priority. Among others, the urgent need for a transformative digital ecosystem for the environment
is emphasized by [5] to ensure that progress towards sustainability is informed by data.

Considering the example of the 2030 Agenda, the development and validation of interventions to
reach the many targets associated with the seventeen Sustainable Development Goals (SDGs) pose
wicked problems to society. Wicked problems are social or cultural problems that are difficult or
impossible to solve because of incomplete and often contradictory knowledge, the large number of
people and opinions involved, the heavy economic burden associated with progress towards a solution,
and the interconnected nature of each problem with many other problems [36]. All of this applies
to the Sustainable Development Goals (SDGs). In particular, knowledge on how to make progress
towards the Sustainable Development Goals (SDGs) is incomplete and contradictory, reaching the
SDGs even on a local level involves the whole of society, making progress requires a rethinking
of economy [37], and the goals are strongly interconnected, see, e.g., [38–40]. Moreover, there are
many interactions between the individual goals that are variable across different economic, social,
and cultural settings [7].

Monitoring progress towards the targets associated with the Sustainable Development Goals
(SDGs) requires metrics defined by a set of indicators, and developing indicators that provide useful
quantitative metrics is a long process involving the scientific community, see, e.g., [41,42]. The United
Nations Statistical Commission (UNSC) created the Inter-Agency and Expert Group on SDG Indicators
(IAEG-SDGs) with the aim to develop a manageable indicator framework. Based on a proposal of
the IAEG-SDGs, an initial framework with a total of 232 global indicators was adopted in 2017 by
the United Nations General Assembly as a voluntary and country-led endeavor to monitor progress
towards the SDG Targets. According to the level of data availability and methodological development,
the SDG Indicators have been grouped in three different Tiers: From Tier I, for the ones having
an established methodology and widely available data, to Tiers II and III, for those not having data
available or no methodology established, respectively. As of 11 May 2018, the updated tier classification
contains 93 Tier I indicators, 72 Tier II indicators, and 62 Tier III indicators [43]. However, actually
being able to quantify these indicators for individual countries poses an insurmountable challenge to
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small countries like the Small Island Developing States (SIDS) and those countries with very limited
economic resources. Many of the indicators depend very much on Earth observations (EOs) and
an integration of Earth observations (EOs) with other socioeconomic data and models [6,7,44,45].

Many efforts have focused on archiving and publishing datasets. An example is the World Data
Center PANGAEA [46], which is a member of the ICSU World Data System. PANGAEA provides
services for archiving, publishing, and re-usage of data [46]. Most of the datasets are open access,
and a search engine provides a high level of discoverability. However, being a repository, the dataset
are passive objects and extracting information from a dataset requires accessing the data and using
expertise in the analyses of the data. The datasets are structured under a set of themes and sub-themes,
which limits transdisciplinary approaches.

Efforts are also being made to utilize relationships between datasets and products to increase
data discoverability and utilization. For example, the Linked Open Data Cloud (LODC) captures the
relationships between an increasing number of datasets [47]. As of March 2019, the dataset contains
1239 datasets with 16,147 links. More datasets can be registered manually and links can be recorded.
The LODC generates domain specific sub-clouds. Users can interactively explore the cloud to retrieve
information of specific datasets or explore the relationships captured in the links. The full LODC is
available for analyses. However, links to other objects such as applications, user types, processing
tools, etc., are not comprehensively captured and feedback on the datasets is not solicited.

Recommender systems that would promote datasets and products to potential users are very
limited in the Earth observation (EO) community. However, recommender systems are increasingly
used for the promotion of commercial products. Commercial retailers increasingly use advanced
algorithms including big data analyses, deep learning, deep search, and crowd-sourcing to bring their
products to potential customers. In the early use of the Web, customers often had to carry out lengthy
searches over limited domains to discover the products and services they were looking for, a conceptual
approach that is denoted here as Customers Discover Products (CDP). The recent development in the
commercial domain constitutes a transition to a conceptual approach where a framework enables
products to discover potential customers, a concept denoted here as Products Discover Customers
(PDC). Customers of, e.g., Amazon are informed when new books and other products appear on the
market that might be of interest for them based on previous searches or purchases. Recommender
systems have been developed and deployed in supermarkets to aid customers in decisions of what
to choose from the large variety of products, see, e.g., [48]. Web advertisements are targeted to likely
recipients based on social media behavior or Web searches. In Products Discover Customers (PDC),
data from social media are increasingly collected and analyzed to explore connections among people
and between people and products to propose and facilitate new connections. Extensive feedback on
products and services is collected from customers and users and made available to inform decisions of
other customers and users. In some cases, attempts are made to stimulate feedbacks with rewards,
e.g., when hotels have very low numbers of reviews, Hotels.com offers coupons for special nights
in return for reviews, and feedbackrewards.com manages for companies customer feedback programs
using rewards for stimulating feedback [49].

Recent artificial intelligence (AI) developments have opened the door for intelligent software
agents, see, e.g., [50,51]. Theoretical concepts have been developed to capture connections between
societal agents, products, tools, activities, and transactions, and to construct graph data describing the
chains and networks between these elements.

1.2. From Passive Data Objects to Active Data Subjects

The ability to design intelligent software agents that can represent a data product and provide
comprehensive information derived from this product, combined with the ability to construct extensive
graph data provides a basis for a transition in the Earth observation (EO) domain from the perception
of Data as Passive Objects (DPO) to a perception of Data as Active Subjects (DAS). The DAS concept
has the overarching goal to greatly increase data usage and exploitation. It has the potential to
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revolutionize data discovery, sharing, dissemination and usage and by doing so greatly enhance the
exploitation of Earth observations (EOs) for research and the realization of societal benefits. In contrast
with the current DPO concept, in which datasets are passive and isolated in repositories, the DAS
approach pairs datasets with intelligent software data agents that can connect and interact with other
software and human agents. These software data agents are comparable to human agents who provide
links between people (such as actors, musicians, etc.) and potential jobs. Similar to those human agents
for people, the software data agents have full knowledge about the dataset(s) they represent, including
among others comprehensive metadata as well as information on usability and applicability, and they
have the ability to discover potential applications and users for their datasets(s).

The subject does the action. The object is the center of action. In the DPO perception, e.g., researcher
X analyzed the global temperature data to quantified global warming. In the DAS perception, the global
temperature dataset Y would inform that global heating has reached 0.1 ◦C per decade. In the first case,
the temperature data is the object. In the second case, the data is the subject and this subject informs about
knowledge it could extract from its data.

Another example would be a minister in a government who is in need to quantify one of the
indicators for the SDGs. In the DPO world, the minister could have to engage a team of experts to
discover and collect the relevant data, use appropriate processing tools, and, following a best practice,
generate the quantitative indicator. In this case, all data used would be objects and even the indicator
would be an object. However, in the DAS world, there would be a software agent representing this
indicator, and this agent could inform the minister of the quantitative development of the indicator
in the minister’s country. This would be of great value particularly for the smaller and less resourceful
countries such as the SIDS, see, e.g., [52].

Having active data-based subjects, these subjects also could have the capability to promote their
data and knowledge to societal human agents who would benefit from this. Today, the dominating
concept for data distribution is one of Users Discover Data (UDD). Within the Data as Active Subjects
(DAS), a transition to a new concept of Data Discover Users (DDU) would be possible. This would
be comparable to the ongoing transition in the commercial world mentioned above from Customers
Discover Products (CDP) to Products Discover Customers (PDC).

1.3. Structure of The Paper

In the next section, the DAS concept is outlined in more detail. After an overview, three subsequent
subsections discuss the three core elements of this concept, i.e., the Intelligent Semantic Data Agents
(ISDAs) that are representing datasets, products and services (Section 2.2), the knowledge base that
creates and provides access to extensive graph data (Section 2.3), and the interaction platform on
which human users and ISDAs interact (Section 2.4). Section 3.1 explores the potential of DAS not
only in terms of increased data exploitation but also in terms of capacity building, decision and
policy making, and realization of societal benefits of Earth observations (EOs) and derived knowledge.
Section 3.2 outlines a case study for the validation of the concept, and Section 3.3 provides thoughts on
the implementation and identifies challenges for the implementation of DAS. Section 4 summarizes
the main conclusions.

2. The DAS Concept

2.1. Overview

The overarching design criterion for the DAS concept (Figure 2) is the goal of enabling data products
to actively respond to information and knowledge needs of societal users and to reach out to those who
may benefit from knowing about a data product and having access to the product or information derived
from the product. To some extent, this change in perception of data objects is comparable to the one
from considering cars as passive objects that are driven by humans to cars as active subjects that provide
transportation to humans and other objects as needed. In the same way as autonomous cars may lead to
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a Gestalt shift [53] in how we perceive transportation, the transition to perceiving data as active subjects
could lead to a Gestalt shift in how we perceive knowledge derived from data.

Figure 2. In the data as active subjects (DAS) concept, each intelligent semantic data agent (ISDA)
represents a data product (DP). The ISDAs utilize the graph data in a knowledge base to discover
applications and users that could benefit from their data products. They interact with those users,
or users that contact them, to provide knowledge or manage access to data. All interactions that
impact the data are recorded to ensure provenance. The knowledge base generates graph data based
on information obtained through crowd sourcing or extracted from social and research networks
and publications.

The DAS concept introduced here hinges on three core elements (Figure 2):

1. Intelligent Semantic Data Agents (ISDAs) that are software agents that represent data products.
They have the goal to serve potential users and to increase the exploitation of the societal benefits
of the data product they represent. To achieve this, an ISDA has comprehensive knowledge
about the data product it represents including quality, uncertainties, access conditions, previous
uses, user feedbacks, etc. These non-human software agents have the semantic capabilities to
communicate with potential users in the human environment and comprehensive graph data
in the knowledge base. The ISDAs also have semantic and pragmatic descriptors that allow
them to meaningfully interconnected with software agents of other datasets through complex
and dynamic relations. These relations are continuously updated as users interact with the data
agents and provide feedback on the data.

2. A knowledge base that can construct and analyze extensive graphs presenting a comprehensive
picture of the elements in a community of people, applications, models, tools, and resources.
Earth observation (EO) data is mostly polyglot spatial data representing properties at points, lines,
or polygones in space and their changes over time (Figure 3). Graph data captures the connections
between objects and can consist, e.g., of property graphs linking persons, network graphs linking
locations, semantic graphs linking language elements in ontologies, and more generalized graphs
linking diverse objects such as data sets, information needs, and societal agents. Polyglot data
are helpful in answering questions such as “how did land cover change over time at this point?”
Graph data can answer questions such as “which researcher could benefit from land cover data?”
The knowledge base will focus on graph data providing links between, e.g., knowledge needs and
data types, user types and applications, publications and datasets, processing tools and datasets.
None of the objects linked in the graph data resides in the knowledge base.
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3. An interaction platform to negotiate and execute “contracts” under which users gain access
to knowledge extracted from data, access data, modify data, use data and provide feedback
on their usage, and to document these interactions in a secure and reliable way maintaining
full provenance.

Figure 3. In the DAS concept, graph data capturing the properties and connections in diverse networks
(people, applications, models, datasets) are used by data agents representing data to match users and
data both on request (searches) and through promotion. The data agents “learn” from user feedback
and dynamically adjust to changes in the graphs.

In the DAS concept, datasets and products derived from Earth observations (EOs) are associated
with the Intelligent Semantic Data Agents (ISDAs) that can communicate semantic information
in response to queries including access conditions, derived knowledge, quality, uncertainties, guidance
on applicability, and user feedback. Conceptually, these ISDAs utilize the graph data in the knowledge
base to explore the user landscape in search for users that might have interest in the data (Figure 2).
They can interact with users as well as other ISDAs. An ISDA will also have knowledge about tools
that can make use of the data or derive other products from the data. The sharing of this knowledge
with users facilitates rapid capacity building in the use of the data and broadens the range of scientific
applications of the data represented by the ISDA. Thus, the DAS concept provides remedies to many
of the current issues associated with a perception of passive data objects paired with passive metadata
that often are maintained separately from the actual data. All interactions with a data agent are either
integrated into the agent as an innate part or recorded in the provenance system.

The knowledge base in the DAS concept uses deep searches, big data analyses and crowd
sourcing to map for specific use cases the user landscape in the communities engaged in research and
applications and to identify their knowledge and information needs. Based on deep searches and deep
learning, graphs of user types, what they do, their tools, and their potential needs are constructed from
publications, social networks, social media communications, and observation inventories. The graph
data are analyzed to enable the ISDAs to promote their data products to users with potentially matching
interests and needs.

The ISDAs utilize the interaction platform for communication and interactions with users.
This platform provides a system that tracks interactions with users, ensures provenance and increase
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reproducibility of research that is based on the represented data. The matching of users and data
products takes place on this interaction platform, which will ensure provenance. The interactions are
handled with an approach similar to smart contracts. Searches and feedbacks are analyzed by the
knowledge base to update graphs and by the ISDAs to add intelligence to the ISDAs and to enable
them to identify new potential use cases for the data they represent.

2.2. Intelligent Semantic Data Agents

The introduction of the software Intelligent Semantic Data Agents (ISDAs) (Figure 2) is a concept
that has the potential to revolutionize the interaction of users and data. The principle idea is comparable
to the human agent of, e.g., a movie star, who has the task to promote the actor and to negotiate new
engagements for the actor. Ideally, the human agent has all relevant information about the actor,
including past engagements, preferred partners, limitations, and preferences, and fully understands
the capabilities of the actor. Similarly, an ISDA has all relevant information about a dataset, including
comprehensive provenance, related datasets, models and applications to be used by users, user types
that might be interested, applicability and limitations, quality and uncertainties, and more. The ISDA
has the task to promote the dataset actively to potential users (thus making progress toward the Data
Discover Users (DDU) concept), to respond to queries, to inform about the dataset, to provide derived
information (e.g., selected statistics, subsets, etc.), receive feedback from users, and to learn from user
interactions to be better prepared for future users.

From a semantic point of view, the knowledge base will formulate the semantics of the domain,
such that each data product has a meaning attached to it. However, it will go beyond the semantics of
datasets to a pragmatic approach, in which a data product is represented by an agent that is aware
of the data product’s meaning and is capable of learning potential use cases of the data product.
Thus, data products will be represented by agents (the ISDAs) that can act on knowledge within the
knowledge base and generate new knowledge.

Data products present in the graphs of the knowledge base will be represented by ISDAs that
act on their behalf. The ISDAs are purposive software agents whose aim is to facilitate the interaction
between users and the data product. In particular, an ISDA will be able to respond to questions about
its data product, provide access to parts or all of the data product, and solicit feedback on the data
product. Initially, the ISDAs will be goal-based agents [50,51] but they will have to evolve into learning
agents. The ISDAs can request specific analytics from the knowledge base to discover potential users
and to enter into communication with them. In particular, it can find users with the skills and interest
to use the data or who might need these data to corroborate a published study, even if these potential
users did not know of the existence of the data. The ISDAs will be able to use the social media and
contact information of users in the knowledge base to enter in communication with them. A core
research question on the path to implementation is how rich the data description will have to be to
enable these capabilities.

The ISDAs are capable of executing complex transaction patterns with users, such as granting
access, executing custom queries to aggregate, truncate, convert, randomly sample data, and provide
references or meta-data. For that, the agents will adopt a transaction processing framework to manage
its interactions with other agents and users [54].The concept of rough set [55–58] can be considered as
a capability of the ISDAs.

The ISDAs will be able to grow from initial “seeds” with very limited capabilities into fully
developed “adult” agents that have access to all the information related to the dataset, including all
uses, experiences, feedbacks. Thus, the agents gain in knowledge as the knowledge base becomes
more complete. A deep-learning algorithm will be used to further enrich the information available to
an ISDA about the represented dataset so that it can link to users with potentially matching interests
and needs and inform users about products of potential interest to them, including the data sharing
and access conditions.
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The ISDAs will also benefit from a generalization of the concept of digital object identifier which
comprehensively identifies a dataset including the relevant metadata, the ISDA, and derived datasets
in a consistent identification scheme. Having the main identifier pointing to the ISDA instead of the
dataset itself will ensure that a user who aims to access the data always will have access to the full
history of transformations and applications of the data.

2.3. The Knowledge Base

The knowledge base is envisioned as an extended version of the existing Socio-Economic and
Environmental Information Needs Knowledge Base (SEE-IN KB), which has the main function to
construct and analyze graph data capturing the connections between datasets, products, applications,
user types, and other elements in scientific communities and society at large. To the extent permissible
under privacy and personal data protection regulations (such as the European General Data Protection
Regulation (GDPR)), individual persons can be integrated into graph data. This knowledge base
provides the graph data and analytical tools to connect users and facilitate collaborations.

Graph data consists of two basic elements: The nodes (or vertices), and the links (or edges)
between these nodes. Both the nodes and links are objects that are characterized by a set of
properties. Each link is associated with two nodes. Links can be directional with head and tail
nodes or bidirectional. In the Socio-Economic and Environmental Information Needs Knowledge
Base (SEE-IN KB), the nodes are not limited in terms of what objects can constitute a node. For example,
nodes can be as diverse as a specific person, a group or type of humans (e.g., a user type), a dataset,
an information need, a societal goal, a modeling software, or a specific observation sensor. The set
of properties for each class of nodes and links is dynamic and can be extended as more information
about an object becomes available. Importantly, each node and link has a unique identifier.

The knowledge base uses big data analysis techniques to map the user landscape in the
communities engaged in research and applications and identify their knowledge and information
needs. It generates graph data that describe user types and their potential needs based on publications
and social media communications and links them to tools and datasets. In utilizing published
information on persons, such as paper authorship and owners of data and processing tools, it will
be important to ensure compliance to privacy and personal data protection regulations, such as the
General Data Protection Regulation (GDPR). Individual persons can be integrated as nodes into the
graphs. During the development of the Global Earth Observation System of Systems (GEOSS) User
Requirements Registry (URR), which initially only captured user types, users of the User Requirements
Registry (URR) repeatedly requested the possibility to link themselves to user types and establish
a social network of users within the User Requirements Registry (URR) [30]. It is expected that similar
requests are made for the knowledge base. The knowledge base also maps the Earth observation (EO)
landscape in terms of available datasets, products, and processing tools. The research communities
are being mapped in terms of research topics, needs, and challenges, as well as the tools available
to process and analyze data and to use data for modeling and simulation. An important source for
mapping research communities is the comprehensive publication and citation data compiled in rapidly
expanding research knowledge hubs. Increasingly, journals require information on data and tools used
for the research published in a paper, see, e.g., [59]. This information can be exploited to inform the
construction of graph data and to increase the knowledge and skills of the ISDAs. The development of
the graph data also is based on deep searches and deep learning from scholarly and other publications,
social networks, etc. In particular, the knowledge base will employ parallel crawlers to inform the
construction of graph data.

The knowledge base requires the capability to provide the information needed to bring data
and products to potential users. This capability has to be based on the full spectrum of graph
theory. This includes the detection of components and communities applying, e.g., the deep search
algorithms depth-first search (DFS) [60] and Kosaraju, see, e.g., [61], and the concept of weakly
connected components, label propagation, and spacification [62]. Evaluating community structures
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can focus on conductance, modularity, and clustering coefficients [63], and this provides a basis to
identify collaboration potentials between research groups and individuals. Ranking and walking along
graphs provides a basis for prioritization as well as discovery of relevant nodes in support of data
promotion and can be based on algorithms applying pageranks and different centralities, see, e.g., [64],
random walking and sampling. Path-finding facilitates the identification of users who’s requirements
could be a match for a dataset, applying, e.g., Dijkstra’s [65] and Bellman-Ford’s [61] algorithms.
Importantly, detection of unreliable or fake information [66,67] has to be integrated into the graph
development processes.

The Socio-Economic and Environmental Information Needs Knowledge Base (SEE-IN KB)
provides extensive search and feedback utilities and the analysis of both searches and feedbacks with
deep learning methods can further improve the capability to add intelligence to the Intelligent Semantic
Data Agents (ISDAs). Crowd-sourcing opportunities can be used to gather both primary graph data
and feedback on data and the performance of the ISDAs. The lexicon (ontology) contained in the
Socio-Economic and Environmental Information Needs Knowledge Base (SEE-IN KB) as the primary
source for all semantic aspects will grow based on deep learning from other registries and from user
interactions. The Socio-Economic and Environmental Information Needs Knowledge Base (SEE-IN KB)
provides access to a large set of user needs (originally collected in the Global Earth Observation System
of Systems (GEOSS) User Requirements Registry (URR) [68,69]) and observational requirements
(partly harvested from OSCAR, see http://www.wmo-sat.info/oscar). The Socio-Economic and
Environmental Information Needs Knowledge Base (SEE-IN KB) explores existing and new data
repository in an effort to link Earth observations (EOs) and the global community of potential users.

Big data analytics on the graph data in an extended version of the Socio-Economic and
Environmental Information Needs Knowledge Base (SEE-IN KB) is at the core of the DAS concept.
In the current DPO concept datasets are passive and isolated in repositories. In contrast to this, the DAS
approach will create the graph data of a “Web of things” where each dataset will be represented by
a node with semantic and pragmatic descriptors, and meaningfully interconnected with the other
entities (other datasets, users, models, instruments, etc.) through complex and dynamic relations,
which will be updated as users and ISDAs interact with the graph data and provide feedback.

The graph data requires a generic model for metadata (referred to below as metamodel) that
enables the networked representation of a population of entities and their mutual relations. Since the
system is open-ended, and the final extent of all datasets that may be added is not known at inception,
it would be illusive to attempt to create a fixed and comprehensive ontology that would encompass
every future addition of datasets in the knowledge base.

A dataset provides a partial, biased, and time-bounded description of an object of interest in the
real world. This means that the dataset expresses a reference in a semiotic relationship that involves
the real world object as a referent, and the specific form of the data as symbol. The data provider
and data users relate with the dataset both at a semantic level to uncover the meaning expressed in it,
and also at a pragmatic level to achieve some practical ends, communicative or otherwise. In this sense,
datasets seem to be more complex objects to manipulate and recommend automatically than products
on Amazon or videos of Youtube. Even the individuation of the real-world object to which the data
is pointing is subject to the researcher’s interests and underlying theories or a user’s preconceptions
and world view. Similarly, the characteristics of the object represented by the dataset depend on the
technical means of observation, on the methodology adopted, and on the level of fidelity decided by
the data provider.

Other aspects to be covered in the DAS approach involve the origin of the data (what actors made
it available), how it was obtained, for instance, whether the measurement is punctual or longitudinal,
whether the data originated from a model (and what kind of model), a survey, observations (what kind
of sensor), and what use-cases the data can support. The Socio-Economic and Environmental
Information Needs Knowledge Base (SEE-IN KB) will also have to enforce integrity rules through
mechanisms like reputation management, voting, and read/copy/write access rules, to make sure that
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datasets are not tampered with, and that single source of truth principles are maintained for every
given data entity.

An important step towards the implementation of the DAS concept is the introduction of
an extensible metamodel that covers these aspects of the graph data, so that the Intelligent Semantic
Data Agents (ISDAs) initiated by data providers may represent their associated datasets as precisely as
possible, that advanced search capabilities may be implemented, and that the big data algorithms have
a rich basis upon which to analyze a continuously growing knowledge base, and ultimately bring the
data to those data users who need it.

Besides the graph-data metamodel, an important ingredient for the DAS concept is the introduction
of advanced machine learning algorithms to bring the data to potential users. Broadly speaking, machine
learning refers to capability of a computer program to learn a knowledge-intensive task while improving its
performance on the task as it gains more experience [70]. The task at hand is the suggestion of datasets and
potential collaborators to a set of users. The performance corresponds to the practical value of the suggested
datasets to the users, while the experience is derived from the feedback obtained from users regarding the
quality of the suggestions. The machine learning algorithms will take advantage of the underlying structure
of the graph data, the similarity between datasets, and the similarity between users as obtained from social
media and scholarly publications. The machine learning techniques that can be used to achieve this include
clustering, collaborative filtering, case-based reasoning, and deep learning.

Clustering is a computing task in which a set of objects is segmented in subsets such that the
objects in one cluster are more similar to each other than the objects out of the cluster [70]. Clustering
can be used to create categories of datasets on the one hand, and categories of users and applications
on the other hand. The clustering of datasets can be performed by applying the highly connected
subgraph algorithm [71] on the graph data. Datasets will be found in the same cluster if they are
highly connected in the graph data, which would mean that the datasets within one cluster will share
relevant variables and methodological features. The similarity metric of the clustering algorithm will
be continuously adapted based on the feedback received from users. Thus, as the algorithm gains
in experience, the clustering of the datasets will result in groups more and more homogeneous, thereby
enabling more customized suggestions. Since the graph links have different semantics, the same
dataset element will potentially belong to multiple clusters, for instance geographic clusters, data
fidelity clusters, topical clusters, etc.

Using social network data (such as Facebook posts or Twitter hashtags), parsed publications,
research knowledge hubs with citation data, newspaper articles (particularly those discussing
science-related topics), co-citation analysis, as well as past patterns of dataset search and use, it will
be possible to similarly cluster the users into multiple groups based on their scientific disciplines,
their application domains of interest, their geographic area of focus, etc. Here again, as the algorithm
learns more about the relevant properties that users share, they will be placed in clusters that become
more and more specific, so that the recommendations will become more accurate.

Collaborative filtering uses the ratings and feedback provided by users of a product to recommend
the same product to users with a high level of similarity. A commonly used similarity metric is the
Pearson correlation [72] or the vector cosine-based similarity [73]. In this approach, crowd-sourced
user feedback is exploited to provide better suggestions. This method may be inadequate at the
beginning when user feedback data is sparse, but improves exponentially as user data becomes
more widespread [74]. Collaborative filtering works well in combination with the clustering method
described before, since, initially, recommendations may be forwarded to users in the same cluster,
as they share some similarity.

In case-based reasoning, properties of datasets and of users entities are utilized to match users
and products. The cases encode knowledge such as “users sufficiently similar with user u and who
accessed dataset with property x also used dataset with property y.” As such, case-based reasoning
will exploit the results of the clustering algorithms. Case-based reasoning algorithms are often based
on decision trees [75] and have some major benefits: They are suitable for non-formalized knowledge
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domains, they are robust and easy to maintain, and they allow for incremental improvement. However,
just as with collaborative filtering, the approach becomes computationally inefficient when the domain
is too dynamic and when the number of cases becomes very large [76].

To remedy these shortcomings, deep learning, based on restricted Boltzmann machines [77] are
emerging as very promising techniques for data intensive learning tasks, owing to the availability
of parallelized computational resources. These techniques use successive layers of neural networks
and perform computations of increasing levels of abstraction to discover a hierarchy of features,
from low-level features to higher level ones [78], i.e., a bottom-up approach. Deep-learning algorithms
have been successfully applied to computer vision and language processing and have only recently
begun to be used in commercial recommender systems [79]. As shown in [80], deep-learning algorithm
can be used to learn about the attitudes of a user toward a dataset from the review text of dataset
posted by users and the features of the product itself, and thereby match datasets with types of users
to maximize the utility of a dataset for a certain type of user.

2.4. Interaction Platform

The interaction platform is the space in which users and ISDAs interact with each other (Figure 2)
and where a track record of these interactions is being kept. Users of the platform can take on the
role of data provider, who want to make datasets available to a community of users, and data users
who may be scientists who need some data in the context of their research or other social agents
(individuals, governmental bodies, NGOs) who may have interest in knowledge derived from the data
to answer practical questions relevant to their problems.

Experience and events should be captured in schemes that provide a complete history of a given
dataset. While such a scheme for the recording of the transactions could be based on blockchains, there
are concerns that this would be far too demanding in terms of energy, see, e.g., [81]. Blockchain is
an emerging interaction paradigm for transmission and storage of information without centralized
control. It is a secure and distributed database that is hosted locally by the human or software
agents engaged in a transaction. It contains the history of all transactions performed by these agents,
without a centralized intermediary, thereby allowing each participant to independently verify validity
of a chain of interactions. Furthermore, blockchains can be made public or limit access to only users
with specified credentials.

The first blockchain was introduced by Bitcoin [82], but its use as an architectural model for secure
user interaction has now expanded beyond the domain of digital currencies [83]. User transactions are
structured in blocks. Each block is validated by an algorithmic key or “proof-of-work.” Once a block
is validated, it is timestamped and added to the chain of blocks and becomes publicly visible to the
members of the network. The decentralized, transparent and robust nature of blockchain makes it
particularly well adapted for a distributed and intelligent data search system. However, the choice
of whether to use one of the existing blockchains (for a discussion of potential candidates, see,
e.g., [84]) or to develop a new blockchain dedicated to data and knowledge-related transactions
would be a difficult one. In addition, there are concerns that the trust in blockchains is not fully
justified [85]. An important application of blockchains is to provide provenance particularly with
respect to transfers of ownership in something. This comes with a very high use of resources.
In fact, a white paper developed by the World Economic Forum states that the energy consumed
in the blockchain network is unsustainable [81]. Energy consumption can be reduced significantly
depending on the consensus algorithms used [86], and replacing the “proof-of-work” algorithms by
“proof-of-stake” or “proof-of-authority” results in drastically reduce energy consumption decoupled
from the number of users engaged in a blockchain [87]. For the access to data, tools to process the
data, information derived from data, and knowledge created using the data, the ownership in general
remains with the orginator, and only the rights to access, processing, use and further distribution are
points of negotiation. For this purpose, provenance may be achieved without blockchains. However,
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a distributed ledger that validates and records transactions between several ISDAs as well as between
ISDAs and human agents seems to be mandatory for the interaction platform.

For the management of interactions between agents (data agents, models, persons, repositories,
etc.), a concept similar to that of “smart contracts” could be developed. These “smart contracts” would
automatically perform delegated terms of a contract without user intervention. The traceability of
blockchains or a similar distributed ledger would allow the capture of events and user experiences
as blockchain-based schemes to provide a complete history of datasets addition, access, purchase,
updates, etc. To the extent possible, protocols would facilitate, verify, or enforce the negotiation or
performance of a “contract” between a user and the ISDA representing the data product. With this
concept, many aspects of the transactions could be made partially or fully self-executing, self-enforcing,
or both. Conceptually, this approach provides security superior to traditional more open transactions.
The “smart contract” concept seamlessly interfaces with a distributed ledger.

However, as noted above, blockchains are very demanding in terms of computational resources
and energy, and a careful assessment of the trade-off between the amount of resources needed and
the level of security, perseverance, and documentation achieved needs to be carried out to inform the
design of the interaction platform.

3. Discussion

3.1. Current Status and New Contributions

Many Earth observation (EO) communities have made considerable efforts to improve data
discoverability and accessibility. In particular, Group on Earth Observations (GEO) has made
a significant contribution serving users of data with means to discover data, see, e.g., [88]. In many
scientific communities, efforts have been made towards the integration of data and modeling tools.
A particular focus has been on the development of data models that support interdisciplinary and
cross-disciplinary data integration, see, e.g., [89]. Harmonization of metadata across thematic areas
and beyond poses a major challenge, see, e.g., [90]. Brokering of data and metadata for a large number
of datasets is often at the core of efforts to overcome this challenge, see, e.g., [88,91]. The need for new
transformative approaches is acknowledged, see, e.g., [5,92].

For the development of Earth observation (EO) systems with high scientific and societal benefits,
comprehensive knowledge of information needs is mandatory. Over the last few decades, there have
been abundant efforts at national and international levels to assess user needs that constitute
requirements for Earth observations (EOs). Examples are the reports produced by IGOS-P themes,
see, e.g., [19–21,23,93], and the reports that resulted from the GEO task US-09-01a, see, e.g., [94].
In most cases, mapping of user landscapes was based on limited surveys, user forums, or literature
reviews by experts with emphasis mostly on one or another methodology. Surveys of users often
resulted in limited responses, and the main input was provided by expert groups and communities
(see, e.g., [33] and the references therein). The output of most of these efforts consists mainly in written
reports with no functionality for further machine and algorithm-based analyses. While these reports
have a high value, exploitation is low. Repositories of observational requirements (such as OSCAR,
see http://www.wmo-sat.info/oscar) are mostly limited to relational databases and in most cases
lack a linkage of the observational requirements to societal users and their decision and policy
making processes. In most cases, feedback capabilities are limited or absent and users have limited
opportunities to comment on and augment the information in the repositories. The construction and
analysis of graphs is not supported in these approaches. However, implementing DAS can build on
these initiatives and utilize the resulting reports and repositories in the construction of graphs.

The Global Earth Observation System of Systems (GEOSS) User Requirements Registry (URR)
aimed to construct graphs that represented user types, applications, observational requirements,
and needs in terms of research, technology, infrastructure, and capacity [69,95,96]. These graphs
captured the connectivity between instances in one group as well as cross-group interdependencies.
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The experience with the URR shows that users wanted the graphs to be extended to include far
more groups, such as models, tools, people, data, knowledge, decision and policy making, etc. [69].
This user-based request was one of the main motivations for the transition of the URR to the
Socio-Economic and Environmental Information Needs Knowledge Base (SEE-IN KB).

Identifying and describing comprehensively all characteristics of data relevant for the matching
of potential users still presents a major challenge to the provision of sufficient metadata. Different
communities have different views and understandings of a given characteristics, and this severely
hampers harmonization (see, e.g., the discussion on data quality in [97]).

Abundant efforts have been made to map the user landscapes for Earth observations (EOs).
For example, numerous efforts have been made to characterize those users engaged in water
sustainability that depend on information derived from Earth observations (EOs), see, e.g., [94].
However, the full picture of the user landscape has not been captured, at least not in a form that
could easily be analyzed by algorithms to discover unexploited linkages and unmatched needs. In the
past, focus has been too much on writing reports and articles and not on getting the information on
needs and requirements in a form available for machine-based analyses. The reports (e.g., the set of
reports produced by US-09-01; see [33]) often disappear in shelfs and are not really used in guiding the
development of observing systems and knowledge services or in linking users and data.

Recent developments in unstructured databases allow for a far more flexible approach to data
that represents a system of graphs. Advances in big data analysis and the availability of abundant
information in social media, research networks, social communication channels, governmental and
non-governmental Web sites, and online publications enables the machine-based construction of
complex graphs that include, among others, also the decision and policy making processes and
agents that depend on evidence and knowledge derived from Earth observations (EOs). Likewise,
improvements in the presentation and analysis of graph data open new avenues for comprehensive
user assessments and the detailed mapping of user landscapes. Importantly, the theory for the analysis
of graph data is fully developed (see Section 2.3) and provides a powerful tool for those who need
to explore the landscape in order to identify and engage with users, discover gaps, and improve
the services they provide to better meet the needs of the users. Utilizing these recent developments,
efforts have been made to utilize large Web-based knowledge sources to develop new avenues for
access to data sources. For example, knowledge has been extracted from Wikipedia to link this
knowledge to data by [98]. Other efforts aim at unifying the access to knowledge, see, e.g., [99].
The Linked Open Data Cloud (LODC) provides an opportunity to publish data and integrate it into
a graph connecting data across many domains [47].

Despite the many efforts to improve access and usability of Earth observations (EOs), to increase
knowledge of information needs, and to link users better to available data and knowledge resources,
the current techniques available to Earth scientists and other users to discover and access data are
still at a very low level with respect to comprehensive discovery, easy access, options for feedback,
etc. The separation of passive metadata from the actual data often leads to incomplete metadata with
crucial information missing. This has major impacts on provenance and reproducibility of research.
Data citation is also impacted by incomplete metadata, see, e.g., [100]. What appears necessary is
a fundamental transformation, a “Gestalt shift”, in the view of how data and users should interact [5].
The DAS concept could provide for this transformation.

The overall DAS concept is fully developed (see Figure 2). The knowledge base builds on the
Socio-Economic and Environmental Information Needs Knowledge Base (SEE-IN KB). The SEE-IN
KB is being developed as a knowledge base to construct, store, present, and analyze complex
systems of graphs. It is populated with graphs fully capturing the stakeholder landscapes for
societally relevant themes. It provides the means to explore the graphs to discover connectivity
and to identify gaps in terms of unmatched linkages. The current version of the Socio-Economic and
Environmental Information Needs Knowledge Base (SEE-IN KB) is at a prototype level with respect to
storing graph-data. In most approaches to graph data, the concept of triples is used, where a triple
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consists of two nodes (a subject and an object) and a link or predicate connecting these two nodes
(e.g., the Resource Description Framework (RDF), see [101]). In a number of approaches, the nodes
carry information on the links (in and out links) they are attached to (an example is the “Oracle Big
Data Spatial and Graph” package; see, e.g., [102]). The Socio-Economic and Environmental Information
Needs Knowledge Base (SEE-IN KB) does not include information on links with the nodes. Moreover,
links are not necessarily directional. This generalized graph data model provides on the one hand for
more flexibility and on the other hand requires more analytical skills to extract relationships from the
graph data.

The artificial intelligence (AI)-based construction of graphs applying deep search and deep
learning methodology is at the beginning. The currently available knowledge base design specification
and architecture description needs to be further detailed and discussed with relevant communities,
including the providers of GEOSS infrastructure. Comments from experts communities, including the
private sector, will be crucial for the full conceptual development.

The concept for ISDAs is developed in terms of functionality and desired capabilities. Conceptually,
the ISDAs are fully software agents that represent specific datasets and have the authority to answer queries
from potential users and to negotiate with interested users conditions of data access and use. The ISDAs
could be designed similar to Web servers giving access to information about extended metadata and
contents of datasets, as well as derived attributes. Among others, an ISDA can provide the full dataset
it represents or subsets of it in a user-requested format, can give access to tools used to process the data,
and answer questions that require certain processing of the data. The ISDAs can access and query the
graph data in the knowledge base to discover potential users and contact these users with promotional
information about their dataset. They also can collect feedback from users of their datasets and provide this
feedback to the knowledge base. The machinery the ISDAs could initially work on is the Web. For example,
a dedicated main domain could ensure easily recognizable URLs and enhanced browsers could facilitate
the communication between ISDAs and humans. In a later stage, a new framework for the world of the
ISDAs could be created. The ecosystem of the ISDAs would be a core part of the digital ecosystem for the
environment and the planet envisioned by [5,92].

The main advantage of the DAS concept is the fact that ISDAs are local agents associated with
the data products where these data products exist. Thus, the need to publish data in archives or
repositories, to develop large catalogs of datasets, etc., would be much reduced or disappear.

The interaction platform is conceptually developed in terms of the software and human actors
and the documentation of interactions to ensure provenance. It will provide a matching and recording
framework, where users and ISDAs can interact in promotion of datasets and in transactions that can
lead to data modifications (e.g., for data providers) and use of data (for users). The platform could
utilize the blockchain concept to ensure provenance, but a key question to be researched is the trade-off
between the amount of resources needed and the level of security, perseverance, and documentation
achieved needs to be carried out to inform the design of the interaction platform (see Section 2.4).

3.2. Validation Through Case Studies

Detailed case studies addressing societal problems in a transdisciplinary approach could provide
validation of the DAS concept. Initially, focus should be on broad scientific communities that depend
heavily on Earth observations (EOs) and are researching societally relevant problems. Most of the
problems related to sustainable development or developing sustainability are wicked problems [36]
or super-wicked problems [103], and for most of these problems transdisciplinary collaborative
approaches are most suited to address the problem [104].

Problems that appear to be ideal candidates for such case studies are within the
Food-Water-Energy Nexus (FWEN). The FWEN provides an excellent example of interactions
in a complex system of systems [7,38,44] with many potentially severe societal consequences [105].
In particular, a water crisis has been identified as a global catastrophic risk, see, e.g., [106]. Earth
observations (EOs) are crucial to address the FWEN comprehensively, see, e.g., [107,108], and to

64



Data 2019, 4, 135

make progress towards the SDGs. The FWEN links sustainability of water use to almost all of
humanity’s activities. Achieving the 2030 Agenda for Sustainable Development [4] is conditioned by
addressing the FWEN and making progress towards global food, water, and energy sustainability.
The Sustainable Development Goals (SDGs) 2 (no hunger), 6 (clean water), and 7 (affordable and clean
energy) are directly interdependent, while almost all other SDGs are impacted or are impacting the
sustainability within these three domains. This makes the landscape of users depending on knowledge
of the state and trends in the planetary physiology including the water, nitrogen and phosphorus
cycles a very complex one. Diagnosing the time and spatial patterns of problems and co-developing
and validating solutions for food, water and energy-related problems constitutes a suite of wicked
problems. Addressing these issues requires access to comprehensive data, and the need for increased
cross-domain data sharing has been emphasized within the relevant domains e.g., [109]. Likewise,
building capacity to use the available cross-domain knowledge for decision and policy making and
management of the relevant cycles in the planetary physiology is a complex task that needs to use many
different avenues to engage with users in their activities. Comprehensive knowledge of the landscape
of stakeholder, decision makers, and knowledge providers engaged in sustainability in a form that
supports matchmaking, collaboration, and participatory activities is a prerequisite for identifying
problems as well as providing evidence and knowledge to those who need this, and to build capacity.

The goal of such case studies would be to improve the understanding of the relationship between
the FWEN and modern global change, including modern climate change, changes in the nitrogen
and phosphorus cycles, and loss of biodiversity, and to develop transformative interventions that
could change the trajectory of the underlying system towards desirable futures. The knowledge base
would be used to construct the graph data relevant for research and user communities related to
these challenges and to construct a data Web of relevant datasets. ISDAs for these datasets would be
trained and would interact with researchers in the participating communities to discover and access
data products. The ISDAs would also promote data products to potential users. Feedback collected
from those participating in the use cases would provide a basis to validate and improve the DAS
components. The communities that ideally should be involved in this validation include, among others,
the Group on Earth Observations (GEO) Initiative “Earth Observations in Service of the 2030 Agenda
for Sustainable Development” (http://eo4sdg.org/), the GEO Water Cycle Community of Practice
(http://www.earthobservations.org/wa_igwco.shtml), the Future Earth Sustainable Water Future
Programme (https://water-future.org/), and the Sustainable Water-Energy-Food Nexus Working
Group (http://water-future.org/working_groups/sustainable-w-e-f-nexus-working-group/).

3.3. Considerations For Implementation

To ensure broad acceptance and support for the transition from the DPO perception to a DAS
perception, the design and implementation of the DAS concept should be further developed
in a participatory modeling. The planning of a versatile, secure, efficient, and active system linking
observations and users for the benefit of society constitutes a wicked problem, and participatory
modeling could be the first step in a collaborative approach to this problem. Group on Earth
Observations (GEO) could utilize its convening power to bring a wide range of stakeholders together
for such a participatory modeling. Again, the FWEN and related SDGs could be the societal challenge
for this participatory modeling effort to focus on.

As a result of this effort, the design specifications for the DAS concept would be further detailed,
including a detailed description of the functionality. The architecture will have to consider distributed
cloud-based elements and will most likely require modifications of the current graph data model.
The current graph data model separates the graph information from the objects. In many other graph
software implementation, objects carry part of the graph information, and it will have to be researched
whether a complete separation of objects and links is desirable and feasible within legal constraints.
The specification will include the description of the methodology for the construction, presentation
and analysis of graph data as well as the functionality for user feedback collections. For the latter,
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potential legal constraints will have to be assessed to ensure that the collection of user information is
conform with legal requirements.

The concept for the ISDAs as representatives of datasets and products has to ensure that the
ISDAs have semantic capabilities. A core research question to address is how rich the data description
available to the ISDAs will have to be to enable these capabilities. The development of a genuine
knowledge model that enables AI to reason and search is a necessity for the implementation of the
DAS concept.

The specification of a communication protocols for the ISDAs is an important step towards
implementation. The methodology for self-learning ISDAs can be based on deep learning methodology
to increase their knowledge relevant to the data they represent as well as the potential and actual
applications and users of the data. To some extent, the ISDAs could utilize crawlers to collect relevant
information. It is anticipated that ISDAs will be initiated as minimal seeds and then grow into more
adult ISDAs. A research question relates to the minimum capability of the seeds necessary for them to
grow. Among others, the ISDAs will need limited data processing capabilities to extract rough datasets
or statistical or average properties, and they will have “magnifying glasses” to allow users to zoom
into large datasets. They also should have the capability to provide data in a format requested be
a user. Thus, a user would not have to know anything about the details of how the data are actually
stored in the original data archive.

The generic design specification and architecture of the virtual interaction platform for ISDAs
and users requires careful considerations. In terms of interactions, the platform will support the
capabilities of the ISDAs to respond to user queries, identify users and needs and to promote data
accordingly or to suggest collaborations between users to users. For this, the ISDAs will need to utilize
and analyze the graph data available in the knowledge base to assess where their data would be
beneficial. The ISDAs will be able to provide access to data in various ways. Actual transactions could
be recorded in a scheme derived from blockchains to ensure provenance of both the original data and
derived products,

The knowledge base is currently implemented as an extension of the already existing Socio-Economic
and Environmental Information Needs Knowledge Base (SEE-IN KB). The SEE-IN KB contains considerable
graph data for several research areas including water cycle, geohazards, health, and air quality. The data
model of the Socio-Economic and Environmental Information Needs Knowledge Base (SEE-IN KB) is
specifically designed for graph data, and a methodology for graph construction based on deep search and
deep learning approaches is being implemented.

The GEOSS Common Infrastructure provides access to a large number of datasets. It will be
important to ensure that the three core elements of DAS can communicate with the GEOSS Common
Infrastructure (GCI) to train ISDAs for relevant datasets and to allow access to the knowledge base,
ISDAs and interaction platform through the GCI.

4. Conclusions

The amount, quality, and diversity of Earth observations (EOs) is rapidly increasing but
exploitation of this extremely valuable resource is hampered by limited discoverability, lack of
information on applicability, and insufficient capacity in extracting relevant information from this
resource for knowledge creation. Most efforts to improve in all these aspects are incremental
improvements of existing concepts. At the same time, as outlined in Section 1, humanity in the
Anthropocene is challenged increasingly with global catastrophic risks while aiming for more
sustainability. Assessing and addressing these risks requires comprehensive information on the
biosphere, the humansphere and the impacts of the humansphere and technosphere on the biosphere.

In this situation, a transformational paradigm shift in the relationship between data and users
is required. The transition from the DPO to a DAS perception could facilitate this “Gestalt shift"
and would have far reaching transformational consequences. In particular, it is expected that this
transition would provide novel ways of integrating data into transdisciplinary approaches to wicked
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problems discussed, e.g., by [110]. Implementing the United Nations’ 2030 Agenda for Sustainable
Development [4] poses many wicked problems to society, and most of the seventeen Sustainable
Development Goals (SDGs) detailed in the agenda have all the additional properties of super-wicked
problems identified by [103]. In particular, for most of the Sustainable Development Goals (SDGs),
there is no central authority for the implementation, time is running out, and those who are causing the
challenge are now attempting to solve the problem. For the validation of the DAS concept, use cases
can be built around selected wicked problems associated with the implementation of the Sustainable
Development Goals (SDGs).

The implementation of the DAS concept requires a major community effort and GEO could
use its convening power to bring together selected communities for pilot projects aiming at the
further development and validation of the DAS concept. A specific use cases of interest would
be the Food-Water-Energy Nexus (FWEN) and the related Sustainable Development Goals (SDGs)
2 (no hunger), 6 (clean water), and 7 (clean energy). A DAS-related use case would aim at
understanding the relationship between the FWEN and modern global change, including modern
climate change, changes in the nitrogen and phosphorus cycles, and loss of biodiversity.
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Abstract: This study aims at assessing the feasibility of automatically producing analysis-ready
radiometrically terrain-corrected (RTC) Synthetic Aperture Radar (SAR) gamma nought backscatter
data for ingestion into a data cube for use in a large spatio-temporal data environment. As such,
this study investigates the analysis readiness of different openly available digital elevation models
(DEMs) and the capability of the software solutions SNAP and GAMMA in terms of overall usability
as well as backscatter data quality. To achieve this, the study builds on the Python library pyroSAR for
providing the workflow implementation test bed and provides a Jupyter notebook for transparency
and future reproducibility of performed analyses. Two test sites were selected, over the Alps and Fiji,
to be able to assess regional differences and support the establishment of the Swiss and Common
Sensing Open Data cubes respectively.

Keywords: Sentinel-1; SAR; analysis ready data; ARD; interoperability; data cube; Earth observation;
pyroSAR

1. Introduction

Global Earth systems are facing increased pressure—over-exploitation of resources, climate change,
environmental and ecological degradation, and overpopulation—meaning that the ability to measure
and monitor Earth surface change is of ever-increasing value [1]. Advances in technology,
the democratization of space and recognition of the value of Earth Observation (EO) in providing
insights—e.g., for the Sustainable Development Agenda—have led to an increase in the availability
of EO data worldwide, and with this, a growing interest globally in efficient exploitation of EO data
at scale [2]. Global monitoring programs coupled with an extensive archive of historical remotely
sensed imagery have paved the way for both historic time-series analysis and operational routine
monitoring [3].

The launch of the set of Sentinel satellites by the European Space Agency (ESA) as part
of the European Commission’s Copernicus Program has been a catalyst for this change and is
generating ever-increasing interest across governments and different market sectors, each with
different user requirements [4]. It becomes quickly apparent that it is simply not technically feasible
or financially affordable to consider traditional methods of storing, handling and manipulating EO data.
Local processing and data distribution methods currently exploited by industry and government are
not suitable to address the challenge of scalability, increases in the size of data volumes, and the growing
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complexities in the preparation, handling, storage, and analysis required to meet user requirements.
To allow immediate analysis of the data without additional significant user effort, these barriers need to
be addressed. In response, there has been a drive within the EO community to find faster, cost-effective
ways to process EO data at scale, whilst facilitating access to EO-derived insights. Two concepts
addressing this challenge are Earth Observation Data Cubes (EODC), coupled with the concept of
Analysis-Ready Data (ARD) [5,6].

As a geodata infrastructure technology for convenient storage and analysis of large amounts of
raster data, the concept of data cubes has been gaining ground. In particular, the Open Data Cube (ODC),
originally developed by Geoscience Australia (GA) and having evolved as an international initiative
supported by the Committee of Earth Observation Satellites (CEOS), has found wide application in
part due to its user-friendly Python application programming interface (API). Several efforts from
CEOS and national ODC initiatives, such as the Swiss Data Cube (SDC) [7], the Common Sensing Data
Cube (CSDC), the Ghana Data Cube [8], and Digital Earth Australia (DEA) [9] are working towards
making EO data accessible and are discussing which data specifications need to be met to optimally
provide data over this new infrastructure.

Synthetic Aperture Radar (SAR) is an EO system that has the advantage of being almost weather
and solar illumination independent. Therefore, SAR data, and more specifically, Sentinel-1 is becoming
popular, as many regions have issues with cloud cover, and would benefit from denser temporal
sampling, e.g. for applications such as forest change detection and coastal monitoring. Through
the Copernicus program, Sentinel-1 data is routinely and freely available. With the availability of
ESA’s Sentinels Application Platform (SNAP) open-source software, the access barrier to SAR data has
been significantly lowered. Large amounts of SAR data acquired with a repeat interval of twelve days
(reduced to six using both Sentinel-1A and Sentinel-1B) can be freely downloaded and conveniently
processed [10,11].

However, to access the valuable information contained within EO data, users are required to
undertake a series of complex pre-processing steps to turn the data from a ‘raw’ unprocessed format
into a state that can be analyzed. Unless the user has the expertise, software and infrastructure to
handle and process this information, efficient exploitation of the data is not realized.

A term that is now frequently used in this context is Analysis-Ready Data (ARD). According to
the Committee on Earth Observation Satellites (CEOS), this is defined as ‘satellite data that have been
processed to a minimum set of requirements and organized into a form that allows immediate analysis
without additional user effort and interoperability with other datasets both through time and space’
(http://ceos.org/ard/).

Originally defined for optical satellite imagery, this generally describes data that is corrected for
atmospheric effects and thus contains measurements of surface reflectance. Currently, the majority
of known Data Cube implementations rely on optical imagery [9,12,13] and only a few of them
offer access to SAR ARD products. One example of the use of SAR data in a Data Cube framework
is the Water Across Synthetic Aperture Radar Data (WASARD) for water body classification [14].
Having SAR data in an Earth Observation Data Cube (EODC) can be an excellent complement to optical
imagery and can overcome limitations such as cloud coverage. The main reason that there is currently
little SAR data available in EODCs comes from the fact that there was, until recently, no common
definition of the ARD level. CEOS is leading an effort to define the minimum set of requirements
to allow immediate analysis with minimum additional user effort. The CEOS Analysis-Ready Data
for Land (CARD4L—http://ceos.org/ard/) provides specifications for Optical, Thermal, and SAR
imagery. Regarding SAR, the ARD level was recently defined only for terrain-corrected radar
backscatter. Polarimetric and interferometric specifications are under development and are expected
for 2019. CARD4L SAR products will be: (1) Normalized Radar Backscatter; (2) Geocoded Single-Look
Complex; (3) Polarimetric Radar Decomposition; (4) Normalized Radar Covariance Matrix, and (5)
Differential Interferometry Products [15]. To be considered as ARD, the Normalized Radar Backscatter
product should be Radiometric Terrain Correction (RTC) and provided as gamma0 (γ0) backscatter,
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which mitigates systematic contamination that would otherwise still be present in sets of data acquired
with multiple geometries [16].

While there is little dispute over the individual processing steps necessary to convert
the original level 1 backscatter products provided by, e.g., Copernicus to RTC [16], different software
implementations may lead to significant differences in final product quality. The Committee
on Earth Observation Satellites (CEOS) recently published a comprehensive guide on how to
produce Analysis-Ready SAR RTC data for land mapping applications, listing a large number
of requirements for metadata specifications and necessary corrections to obtain a well-documented
data set of high quality [15]. However, what remains missing, is a straightforward implementation
in commercial and open-source software such that a user can directly select a certain level of quality
and “analysis readiness”. Once the data is prepared to the highest standard possible, the influence of
SAR-specific imaging effects is to be assessed. Effects such as geometric decorrelation are inherent to
SAR data and while they are relevant to some applications, they can be considered as disturbances
for others. Therefore, the user needs to be aware of them when analyzing any specific backscatter
ARD product.

The overall aim of this study is to evaluate how far Sentinel-1 data is interoperable in terms of
geometry and software. It picks up on findings reported in [17], however, investigating two new test
areas; in the Alps and in Fiji. These test areas were selected as there is currently work underway
on developing operational data cubes for these two areas (SDC—http://www.swissdatacube.ch,
CSDC—http://commonsensing.org.gridhosted.co.uk/).

The SDC is an innovative analytical cloud-computing platform allowing users to access, analysis
and visualization of 35 years of optical (e.g., Sentinel-2; Landsat 5, 7, 8) and radar (e.g., Sentinel-1)
satellite EO ARD over the entire country [5,18]. Importantly, the SDC minimizes the time and scientific
knowledge required for national-scale analyses of large volumes of consistently calibrated and spatially
aligned satellite observations. The SDC is based on the Open Data Cube software stack [19,20] and is
updated continually. It contains approximately 10,000 scenes for a total volume of 6TB and more than
200 billion observations over the Alps. The objective of the SDC is to support the Swiss government
for environmental monitoring and reporting, as well as enabling Swiss scientific institutions to benefit
from EO data for research and innovation. Additionally, the SDC allows for medium/high spatial
and temporal resolution environmental monitoring, thereby providing synoptic, consistent and spatially
explicit information sufficiently detailed to capture anthropogenic impacts at the national scale. The SDC
is supported by the Swiss Federal Office for the Environment (FOEN) and currently is being developed,
implemented and operated by the United Environment Program (UNEP)/GRID-Geneva in partnership
with the University of Geneva (UNIGE), the University of Zurich (UZH) and the Swiss Federal Institute
for Forest, Snow and Landscape Research (WSL). Ultimately, the SDC will deliver a unique capability
to track changes in unprecedented detail using EO satellite data and enable more effective responses to
problems of national significance [18]. To our knowledge, the Swiss Data Cube is the first Data Cube
to contain almost the entire Sentinel-1 ARD archive. It contains five years of 12-day terrain-flattened
backscatter Sentinel-1 backscatter composites generated using the methodology described in [16] in
the initial stage.

For the SDC, Sentinel-1 data will be useful to enhance the Snow Observations from Space (SOfS)
algorithm that currently only uses optical imagery (e.g., Landsat, Sentinel-2) [20]. Preliminary results
have shown a clear decrease in snow cover over the Alps in the last 30 years. However, to provide
an integrated and effective mechanism to monitor snow cover and its variability, SAR data will help
identify snowmelt processes [21]. In addition to snow mapping, Sentinel-1 analysis-ready data has
been shown to be useful for vegetation mapping and dynamics [22], rapid assessment after a storm
event [23], and melt-onset mapping using multiple SAR sensors [24].

The Common Sensing project is an international development project that aims to improve
climate change and disaster risk resilience in the Small-Island Developing States (SIDS) of Fiji, Vanuatu
and the Solomon Islands (http://commonsensing.org.gridhosted.co.uk/) with the support of EO data
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and tools. As part of this multi-year project, an EODC for Fiji is being developed on the Open
Data Cube software stack [19,20] and will contain Analysis-Ready Data for Sentinel-2, Landsat-5-8,
SPOT 1-5 (surface reflectance) and Sentinel-1 (normalized radar backscatter). Much like the SDC,
the Common Sensing Data Cube (CSDC) will be built with an aim to break down barriers to the use
of EO data by policymakers through the provision of data and tools to facilitate rapid generation of
EO-derived products and insights through both time and space. The objective is to support government
and non-government stakeholders to undertake routine monitoring and reporting on Earth surface
dynamics in rapidly changing environments in the South Pacific SIDS. For example, the CSDC will
focus on exploitation of S1 data for vegetation mapping, coastal erosion, water resource management
and disaster response, e.g., flooding.

As part of this study, different existing pre-processing workflows from different software solutions
were evaluated for their interoperability. For instance, changes in backscatter from these differences
might be too severe for certain mapping applications. Therefore, this study aimed at investigating
the signal stability over different land cover classes to observe whether temporal backscatter variability
originates from actual changes over land or are in fact the result of, e.g., different viewing angles
or acquisition times. Of further interest in this context is a thorough analysis of how far the quality of
the Digital Elevation Model (DEM) used in the processing affects the quality of the resulting products.
Finally, this study provides an open-source assessment framework via a Python package including
a Jupyter notebook (see Supplementary Materials).

Although compatibility with the CEOS ARD backscatter standard is, ultimately, to be reached,
this study does not perform a formal assessment of the extent to which the specific requirements
are met.

2. Study Outline and Description of Test Sites

This study investigated the use of two SAR processing software solutions, SNAP and GAMMA,
for producing radiometrically terrain-corrected Sentinel-1 SAR backscatter. In particular, the influence
of the resampling method and the DEM on the resulting topographic normalization was assessed.
This section guides the reader through the paper’s structure. First, Chapter 3 describes the technical
methodology of the study. In Chapter 4, the results from the analyses performed are presented.
Chapters 5 and 6 discuss the findings and conclude. Motivated by the activities around the Swiss
and Common Sensing Data Cubes, two test sites were selected, in the Alps and in Fiji, respectively.

In a first major component, two single S1A ground-range detected (GRD) scenes, acquired
over the two test sites, were processed using two software solutions with different parametrizations
and DEMs to assess the quality of the resulting RTC backscatter. This is described in Sections 4.1–4.3.
The identifiers of the two scenes are presented in Table 1; their footprints are shown in Figures 1 and 2.
The footprints shown in these plots were used throughout the three mentioned sections to create DEMs
of the same size and used the same inputs for the SAR processing.

Table 1. Identifiers of the scenes used for single image analysis.

Test Site Scene Identifier

Alps S1A_IW_GRDH_1SDV_20180829T170656_20180829T170721_023464_028DE0_F7BD
Fiji S1A_IW_GRDH_1SDV_20181229T064000_20181229T064036_025236_02CA47_4B57
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Figure 1. Footprint of the S1 ground-range detected (GRD) scene over the Alps used throughout
this study.

 
Figure 2. Footprint of the S1 ground-range detected (GRD) scene over Fiji used throughout this study.

These scenes were processed with the steps described in Section 3.3 to UTM Zone 32N (EPSG 32632)
and Zone 60S (EPSG 32760), respectively, with a spatial resolution of 90 m. This resolution was chosen
as a common denominator of all DEMs used in order to more objectively compare their quality
independent of the differences in spatial resolution.

After thorough analysis of single image processing results, focus shifted to time series analysis in
Section 4.4. For this, the study area was scaled down slightly to the island of Viti Levu, which can also
be seen in Figure 2. Viti Levu is the largest island in the Fijian archipelago and the most populated.
Sentinel-1 data is being routinely collected over Viti Levu from ascending and descending tracks every
~6 days; however, data is currently only being collected by Sentinel-1A. For this study, 62 Sentinel-1
GRD scenes acquired between April 2018 and April 2019 were processed in accordance with steps
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described in Section 3.3 and re-projected onto a UTM Zone 60S (EPSG 32760) grid with a sample
interval of 20 m. An overview of Fiji, the study area for time series analysis, and the relevant S1
acquisition frames are displayed in Figure 3.

Figure 3. Sentinel-1 acquisition frames covering Fiji study area. Spatial reference system: Fiji 1986 Map
Grid (EPSG 3460).

3. Methods

3.1. Software

This study and the accompanying Jupyter notebook (see Supplementary Materials) build
on two Python packages pyroSAR [25,26] and spatialist [27]. PyroSAR is a framework for
organizing and processing SAR data with APIs to the ESA Sentinel Application Platform (SNAP) [28]
and GAMMA [29]. It serves the purpose of wrapping the image processing into convenient Python
functions so that processing in SNAP and GAMMA can be operated in a similar way. Spatialist
offers general spatial data handling functionality for pyroSAR by providing a convenient wrapper for
the Python bindings of the Geodata Abstraction Library (GDAL) [30], offering a collection of general
spatial data handling tools.

Several additions have been made to pyroSAR during this study, which are reflected in versions 0.7
to 0.9.1. A changelog summarizing these changes is available in pyroSAR’s online documentation [26].

While the workflows used during this study for processing with GAMMA and SNAP already
existed, several additions and modifications were made to further improve the accuracy of the processing
result and the usability of the routines within a Jupyter notebook.

Throughout this study, images were processed using SNAP version 6.0.9 and a GAMMA version
released in November 2018. SNAP7 is due to be released in Summer 2019 with announced improvements
to the terrain flattening procedure [31]. This processing step is particularly important for creating RTC
products and processing results will be considered as soon as this new version is released to update
the findings accordingly.

During this study, it was observed that SNAP processing of large workflows, i.e., with many
processing steps in sequence, takes disproportionately longer, the more processing steps are added
to it. For this reason, a mechanism was added to pyroSAR which splits a workflow into several
groups, writes each group to a new temporary workflow XML file and executes these new workflows
in sequence. Temporary products are written by the intermediate workflows, which are then passed
to the succeeding workflow. Once finished, the directory containing the temporary workflows
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and products is deleted. This was observed to drastically increase processing speed, but no dedicated
benchmarking was performed.

In addition to the Jupyter notebook technology [32], this study further builds on several open-source
Python packages, in particular, Numpy [33] for general array handling, Matplotlib [34] for visualization,
Scipy [35] and Astropy [36] for specific array computations and Scikit-Learn [37] for computation of
performance statistics.

3.2. DEM Preparation

The choice of a high-quality DEM is crucial for accurate SAR processing, in particular for
the correction of topographic effects such as foreshortening. According to the CEOS recommendations
on producing analysis ready normalized backscatter for land [15], the selected DEM optimally has
a spatial resolution as good or better than the resolution of the SAR image. Furthermore, it is
recommended to assess whether the topography had changed between the acquisition of the DEM
and that of the SAR scene to ensure that changes in backscatter are not related to changes in topography.

Thus, in this study, different DEMs were compared in order to assess the extent to which newer
options are better suited for processing SAR imagery than older ones. Although newer DEMs might
be closer in acquisition date to the SAR scene, older options have likely undergone more processor
updates and manual edits to correct processor shortcomings over the years and might still be the better
choice. See, e.g., [38] and [39] for details on SRTM quality enhancement.

The SAR processing was performed with four different DEMs, SRTM in 1 arcsec and 3 arcsec
resolution [40], the 30 m ALOS World DEM (AW3D30) [41] and the TanDEM-X DEM in 90 m
resolution [42]. An overview of DEM download URLs is given in Table 2. For this study, routines
were developed in pyroSAR to automatically prepare these different DEM types for processing in both
SNAP and GAMMA software. This includes downloads of respective DEM tiles for a defined geometry,
e.g., the footprint of a SAR scene, mosaicking and cropping, as well as re-projection and conversion
from EGM96 geoid heights to WGS84 ellipsoid heights if necessary. Adopting this methodology, it was
guaranteed that all DEM mosaics were created in an identical way—thereby mitigating inconsistencies
introduced by the DEM preparation itself. The DEM files used for SNAP and GAMMA were thus
identical aside from the file format, which was GeoTIFF for SNAP and the GAMMA file format in
the latter.

Table 2. Digital Elevation Models (DEMs) used in this study and their sources.

DEM Source

ALOS World 3D 30 m ftp://ftp.eorc.jaxa.jp/pub/ALOS/ext1/AW3D30/release_v1804
SRTM 1 arcsec https://step.esa.int/auxdata/dem/SRTMGL1
SRTM 3 arcsec http://srtm.csi.cgiar.org/wp-content/uploads/files/srtm_5x5/TIFF

TanDEM-X 90 m ftpes://tandemx-90m.dlr.de

To fully evaluate the quality of the respective DEMs, a high-resolution reference DEM,
e.g., from a LiDAR flight campaign, is required for error analysis. Such products were not available
in this study for either test site. By relying on openly available DEM products, however, the overall
reproducibility of the study is increased. Hence, the analysis focused on identifying which DEM
deviated most from the others to provide an indication of relative DEM consistency within the area
under investigation. For this, the median of all DEMs was computed and an index map created
identifying which DEM deviated most from the median at respective pixels and to what magnitude.
This analysis served the purpose of quantifying outliers in the four DEMs. In a second analysis,
the impact of the DEM choice on SAR processing was investigated, whose methodology is described
in Section 3.4. The optimal DEM over a specific test site has only a few outliers of small magnitude,
resulting in high-quality SAR products. The results of both analyses are presented in Section 4.3.
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Generally, this analysis aims to be reproducible for every area worldwide in order to assess
which DEM is best suited for a specific area of interest—we do not intend here to make a general global
DEM recommendation.

3.3. SAR Processing

For this study, processing of Sentinel-1 Ground-Range Detected (GRD) imagery to radiometrically
terrain corrected gamma0 backscatter (γ0 RTC)—in line with the CARD4L SAR backscatter
specification—was investigated. The correction of topographic effects is seen as essential for storing SAR
datasets from multiple acquisition geometries in a data cube in order to create a consistent interoperable
product. The superior interoperability of gamma0 in comparison to sigma0 was previously investigated
in a previous study [17].

The workflows in SNAP and GAMMA were designed to match each other as closely as possible.
This includes removal of border noise and thermal noise, calibration, multilooking, update of orbit
state vectors, terrain flattening according to [16], geocoding and conversion to logarithmic (dB) scaling.
See Figure 4 for a visualization of the GAMMA and SNAP workflows used.

 
Figure 4. pyroSAR’s GAMMA (left) and SNAP (right) workflows for producing Sentinel-1 radiometrically
terrain corrected (RTC) backscatter (from [26]). Dark blue: input and output products; light blue: intermediate
products; green: processing steps. POEORB: Precise Orbit Ephemerides orbit state vector files; intermediate
products created by GAMMA: mli: multi-looked image in slant range; inc: local incident angle map; lut: geocoding
lookup table; ls: layover-shadow mask; pan: pixel area normalized backscatter; sigma0_ratio: ratio between
ellipsoid and DEM-based sigma0 normalization areas. The suffix _geo depicts products in map geometry.
No intermediate products are created by SNAP.

One major difference in the overall approach between the two software solutions is the handling
of the input ground range detected (GRD) imagery. While in SNAP, all processing steps are directly
performed on the original GRD images, in GAMMA, the images are per default first converted
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back to slant range before further processing steps such as multi-looking and terrain flattening are
performed. According to [16], the topographic normalization can be performed in either ground or slant
range geometries after appropriate conversions. Differences between the backscatter estimates from
alternatively processing the images in ground range or slant range were not investigated in this study.

Further differences can occur due to the different resampling methods used by SNAP and GAMMA.
While in GAMMA, an input DEM is either left as it is or oversampled by user-defined factors, a SNAP
user has several options of standard resampling methods of which one has to be selected. Therefore,
the input DEM is modified by SNAP at all times while in GAMMA, the DEM can be left unaltered,
possibly reducing additional inaccuracies caused by resampling. The latter approach is preferred,
since all images processed with a certain DEM will be in exactly the same pixel grid while they
can be shifted relative to each other if the DEM is resampled to the exact extent of the SAR scene
during processing.

The same methods that are available in SNAP for resampling of the input DEM are also
available for geocoding the final SAR image. For this study, bilinear resampling was chosen based
on the overall quality of the result and processing time. For resampling multi-looked images
with the GAMMA software, B-spline interpolation on the square root of the SAR data (sqrt(data))
was the recommended method according to the GAMMA documentation. By first transforming
the data to the square root, interpolation errors are reduced due to reduced dynamic range and effective
spectral bandwidth. After interpolation the data is transformed back to its original linear scale [43].

In addition to the processing capabilities of both software packages, one critical step was executed
directly in pyroSAR. A feature inherent to S1 GRD images acquired before IPF version 2.9 released in
early 2018 was the border noise, which needs to be masked prior to processing. A processing step is
available in SNAP, which is a direct implementation of the recommendations for removal by ESA [44].
No such implementation is offered in GAMMA. While the SNAP implementation certainly reduces
the noise, it is not sufficient to completely remove it. Hence, a custom implementation is used by
pyroSAR, which also follows the official ESA recommendations but applies additional corrections to
the results, thus creating a cleaner image border and reducing the noise to a minimum. The correction
consists of three major steps. First, a line is generated marking the border between valid and invalid
pixels from the ESA masking. Second, this line is simplified using the Visvalingam-Whyatt (VW) method
of polyline vertex reduction [45]. Third, the VW-simplified line is shifted so that all areas masked
by the original line are again covered. This process is exemplarily shown in Figure 5. While earlier
versions of pyroSAR already featured this removal for GAMMA processing, it was added to the default
SNAP workflow during this study to further match the workflows across both software packages
and increase the quality of SNAP products.

Figure 5. Demonstration of the border noise removal for a left image border. The area under
the respective lines covers pixels considered valid, everything above will be masked out. From [26].
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3.4. Assessment of Topographic Normalization Quality

In order to compare different processing workflows for their ability to correct for backscatter
differences originating from the orientation of the terrain towards the sensor, the RTC backscatter
products were compared with the local incident angle (INC). An image which has not been corrected
for terrain effects will show a negative correlation with the INC product such that areas tilted towards
the sensor are brighter than shadowed areas tilted away from the sensor [16]. In order to compare
all processed images to a common INC product, an image was created according to the descriptions
by Small 2011 and Meier et al. 1993 [46] in 30 m resolution and UTM projection for both study sites,
respectively. In the following sections, this product is referred to as a UZH (University of Zurich)
incident angle product. During processing, the products created by SNAP were found to be aligned
to a different pixel grid than that defined by the input DEM, while in GAMMA, this exact grid was
preserved. This is explained by the above-described additional resampling, which is always applied in
SNAP. For this reason, two different INC products were resampled from the original UZH product to
match the respective grids and the spatial resolution of 90 m used throughout this study for comparison
with single image results. By up-sampling the product from 30 m to 90 m, nearly identical products
were used for the SNAP and GAMMA grids. Otherwise, an additional resampling step would have
had to be applied directly to the backscatter results of either software to match the grid of the other,
potentially introducing additional errors and impairing comparability of the results.

By default, the INC products created by SNAP and GAMMA internally are also created as GeoTIFF
files together with the SAR backscatter files in the accompanying Jupyter notebook using the processors
described in Section 3.3. While the large UZH product could not be integrated with this otherwise
open-source approach, similar products can thus be created in the notebook and alternatively be used
for comparisons.

While it was expected that these three INC products, UZH, GAMMA and SNAP, would be nearly
identical due to their simple computation, large differences were observed. Figure 6 shows the general
differences between the three. All products were resampled to a common grid at 90 m resolution.

Figure 6. Comparison of local incident angle maps produced by University of Zurich (UZH),
GAMMA and SNAP.

One large difference is the value range of the angles found in the maps. While the UZH product
contained negative values lower than −20◦, the other two products contained only positive values.
An angle of 0◦ would be found on slopes oriented vertically to the sensor’s line of sight with a value
identical to that of the sensor’s incident angle. Any slope tilted even further would thus be negative.
The reason that these values do not occur in either SNAP or GAMMA may be that they employ
a different solution compared to the angle between two 3D vectors, as done by UZH.

A much larger divergence between the GAMMA and UZH products was observed compared
to the other two juxtapositions. The highest similarity, both in Root Mean Square Error (RMSE)
and coefficient of determination (R2), was found between the UZH and SNAP product. On closer
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inspection, a shift of the GAMMA product relative to the other two products of about 1
2 to one pixel to

the east was observed. The SNAP product appeared much smoother than the other two, suggesting
some additional spatial filtering is internally applied by the software. Overall, the UZH product
visually contained the most detail and spatial variation, particularly, on slopes tilted towards the sensor.

Furthermore, the linear regression slope significantly deviated from one with values between 0.74
and 0.87. The value closest to one was observed in the SNAP vs. GAMMA comparison, both being
similar in value range between 0 and 90. Larger deviations were observed in the UZH comparisons,
which can be explained by the different value ranges.

3.5. Masking of Land Cover Classes

In order to compare the quality of topographic normalization of the different DEMs, backscatter
was masked to forested areas which generally return more stable backscatter than most other land cover
classes [16]. In the Alps, the European CORINE 2018 product (CLC) was used [47]. Being available
with 100 m resolution, it was up-sampled to 90 m resolution and the grid of the respective SAR images
to be masked. Binary forest masks were created combining broad-leaved, coniferous and mixed forest.

Over the Fiji study area, a land cover dataset made available by Fiji’s Ministry of Lands, sourced
from PacGeo (http://www.pacgeo.org/layers/geonode:fiji_vector), was used. The Land Use/Land Cover
dataset was created by AIR Worldwide for the Pacific Catastrophe Risk Assessment & Financing
Initiative (PCRAFI—http://pcrafi.spc.int/).

To reliably assess ARD interoperability, it is essential that backscatter properties of corresponding
land cover surfaces remain relatively consistent over the period of analysis. To discriminate regions
of moist (evergreen) and dry (deciduous) tropical forest, forested-area polygons were fused with
average annual precipitation derived from 1 km resolution WorldClim version 2 climate datasets—http:
//www.worldclim.org/. The fused dataset is shown in Figure 7. Interoperability analysis subsequently
focused on areas provisionally identified as evergreen forest and regions of grassland located to the north
west of Viti Levu—the main island of Fiji.

Figure 7. Viti Levu land cover. Spatial reference system: Fiji 1986 Map Grid (EPSG 3460).

3.6. Time Series Analysis

A 12-month time series (April 2018–April 2019) of Sentinel-1 GRD gamma0 at 20 m resolution was
generated using the GAMMA- and SNAP-derived workflows outlined in Section 3.3. For the latter
software, the SNAP6 SRTM 1 arcsec auto-download setup was used. In total, 62 Sentinel-1A raw scenes
from orbital tracks 44 (descending) and 139 (ascending) were processed, providing a regular six-day
sampling of spatiotemporal variation in C-band backscatter across the island of Viti Levu. Sentinel-1B
is currently not being tasked to acquire imagery of this part of the South Pacific.
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To manage large raster time series and retrieve image statistics coincident with shapefile geometries,
the study leveraged the functional power of open-source spatiotemporal database technologies
(PostgreSQL, PostGIS, TimescaleDB). Land cover datasets, outlined in Section 3.5, were re-projected
into a local UTM coordinate reference system and loaded into ancillary PostgreSQL/PostGIS data
tables. On a scene by scene basis, gamma0 image files were compiled into a multi-band, XML-based
virtualized raster (VRT) file and loaded as out-of-database raster objects into TimescaleDB hypertables
partitioned according to acquisition datetime. Analysis was, therefore, supported by a highly optimized,
data abstraction platform, where complex multi-dimensional queries were rapidly executed against
raster and vector datasets using a single SQL command. This approach allows for convenient
repeatability and scalability of queries for statistical analysis.

4. Results

4.1. Software Parameterization

Several tests were performed to ensure optimal parameterization of the processing routines. A large
number of options exist for preparing the DEM, adjusting its resolution, the choice of DEM resampling
during processing and choice of interpolation of the SAR scene during geocoding. While optimizing
all these processing parameters is outside the scope of this study and the results are likely different
for other SAR scenes, a quick comparison was judged necessary in order to approximate optimal
processing parameters. This analysis was performed for the Alps test site only.

4.1.1. GAMMA

Of particular interest was the effect of DEM resolution choice on the normalization. For example,
if a SAR scene is to be processed to 90 m resolution, users have the option to resample the DEM to this
resolution prior to processing, or alternatively, during processing. Furthermore, users have the option
to convert DEM heights from EGM96 geoid to WGS84 ellipsoid in GDAL or, alternatively, in GAMMA.
While for the sake of optimal comparison with SNAP it is seen preferential to do the conversion in
GDAL, it was judged necessary to assess whether the SAR image quality is similar to the result using
GAMMA’s internal conversion.

A second comparison was made between UTM and WGS84 LatLon to assess the software’s
sensitivity to different coordinate reference systems. The UTM DEM was used in 30 m resolution,
the WGS84 DEM was left at its original resolution of approximately 30 m north–south and 21 m
east–west. Both were internally resampled in GAMMA so that a target resolution of 90 m in both
directions was approximated.

As a third assessment, several geocoding interpolation modes were compared, which are listed
in Table 3.

Table 3. GAMMA geocoding interpolation modes compared in this study.

Identifier Description

1 Bicubic Spline (GAMMA Default)
2 bicubic-log spline, interpolates log(data)
3 bicubic-sqrt spline, interpolates sqrt(data)
4 B-spline interpolation (degree: 5)
5 B-spline interpolation sqrt(x) (degree: 5)

The degree of option 4 and 5 were left at their defaults, as further optimization was considered to
be outside the scope of this study.

It should be mentioned that in order to compare the backscatter to the UZH local incident angle
product, three different subsets had to be created for the latter each at a 90 m resolution but in three
different pixel grids, for the utm_30, utm_90 and wgs84_30 DEMs, respectively. Two different UZH
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base products were used, one in WGS84 LatLon, the other in UTM but both with a resolution of 30 m
in order to keep the differences as small as possible. Similarly, the CLC product was resampled to
these three different grids for masking forest.

The results computed for the SRTM 1 arcsec DEM are shown in Figure 8. In the first row,
several DEM setups were tested with different coordinate reference systems, conversions from geoid
to ellipsoid and resampling of the DEM to 90 m target resolution directly in GDAL, or alternatively,
internally in GAMMA. The nomenclature used to describe the different setups is listed in Table 4.

Figure 8. Comparison of topographic normalization quality for several GAMMA parameter settings.
In all cases, the SRTM 1 arcsec DEM was used. Only backscatter acquired within the forest mask
is shown.

Table 4. Nomenclature used for describing the different GAMMA image processing setups.

Identifier Description

utm|wgs84 The Coordinate Reference System
30|90 the resolution of the DEM input into the processor in meters

gdal|gamma the geoid/ellipsoid height conversion process
Gb [1–5] the GAMMA interpolation method

While differences in the top row were marginal, the optimal configuration was selected to
be a DEM in UTM and 90 m resolution with geoid heights converted using GDAL, which was
option utm_90_gdal_gb1 in Figure 8. While the other configurations showed slightly better values
for the coefficient of variation, the values were only marginally different from the selected choice.
The configuration of first resampling the DEM to the target resolution was seen as preferential, as any
further resampling during processing is specific to the scene extent and thus introduces shifts in pixel
grids between different images. Since several images processed with the 30 m UTM DEM would be in
different grids relative to each other, further resampling would be necessary to align the grids after
processing, introducing additional inaccuracies. UTM was selected since working with a resolution
in meters with same values for x and y resolution was seen to be more convenient for interpreting
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and visualizing results. As expected, only small differences could be detected between UTM and WGS84
LatLon with otherwise identical parametrization. Differences between using the GAMMA and GDAL
geoid conversion were also negligible; the latter was preferred in order to enable more consistent
treatment with SNAP.

Having selected an optimal DEM set up in the first row, the second row only compares differences
in geocoding resampling algorithms. Contrary to the recommendations given in [43], the optimal
result was achieved using the bicubic-log spline method, which can be identified by utm_90_gdal_gb2
in Figure 8. This setup, using a DEM in 90 m resolution projected to DEM and geocoding the SAR
images using bicubic-log spline interpolation was used for further GAMMA processing of SAR scenes
throughout this study.

4.1.2. SNAP

During this study, the utilization of external DEMs for SNAP6 terrain flattening was not possible.
An error message indicating a bug in reading the DEM files was identified, which occurred in the default
parametrization of the workflow in the SNAP GUI, as well as all possible parameter combinations
available in the workflow XML files. The cause of this was not further investigated since several
bug reports were found in SNAP’s online ticketing system describing similar problems and a fix of
the problem is thus soon to be expected.

To still be able to compare different DEMs as intended in this study, a mechanism was developed
in pyroSAR to execute individual processing nodes in different versions of SNAP. The workflow was
set up such that all processing nodes are executed in SNAP6 except Terrain-Flattening, which was
executed in SNAP5. The authors are well aware that the terrain flattening has been fundamentally
improved in SNAP6 and will further be improved in the soon-to-be-released SNAP7. However, in order
to compare different DEMs and their processing results, the older version with a less accurate result
had to be used. The SNAP6 terrain flattening could still be run with, e.g., the SRTM 1-Sec auto-download
option and thus, a visualization of the improvement from one version to the other was still possible.
This is shown in Figure 9. Once the bugs in SNAP6 are fixed or SNAP7 is released, the analyses can be
run again and the conclusions updated accordingly.

Figure 9. Comparison of SNAP processing results without terrain flattening (TF) and with
the implementations of SNAP5 and SNAP6 over forested areas; all processing steps aside from
Terrain-Flattening were performed in SNAP6.

While this feature to replace individual processing nodes with other versions was developed
as a work-around for this study, it could also be beneficial in future studies, as it enables users to
selectively assess the impact of single processing steps within future releases on the processing result.
Once SNAP7 is released, a user could continue processing with SNAP6 and replace individual nodes
with the SNAP7 version to selectively compare the impact of each on the processing result.
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In order to assess which resampling method of the seven different options available in SNAP is best
suited to the task at hand, the GRD product was processed with all combinations of DEM resampling
and SAR image resampling. The RTC backscatter of all 49 images over forest was then compared to
the UZH incident angle product. The resulting coefficient of variation is shown in Table 5. The slope
values are not shown here as only very small differences were found, with nearly all values being 0.01
and 0.0 or 0.02 in few cases. DEM resampling can be defined for terrain flattening and terrain correction,
while image resampling is only relevant for the terrain correction in the geocoding step. The same
option for DEM resampling was applied in both flattening and orthorectification. Only options
available for both DEM and image resampling in both processing steps were selected. For terrain
correction, Delaunay interpolation is available for DEM resampling—it was excluded from this analysis
as it was not available for DEM resampling in the flattening step and also not for the image resampling.
For this experiment, the images were processed using the SRTM 1 arcsec HGT auto-download option in
SNAP6. All produced images were of the exact same size and pixel grid, thus only a single subset was
necessary for the UZH and CLC products, respectively.

Table 5. Coefficient of variation (CV) of SAR backscatter compared to UZH local incident angle for
different combinations of DEM resampling (rows) and SAR image resampling (columns). Less variation
with a CV closer to zero describes a better normalization, which is highlighted in color accordingly.
Range depicts the CV value range for respective rows and columns.

NEAREST BILINEAR CUBIC BISINC_5 BISINC_11 BISINC_21 BICUBIC Range

NEAREST −0.26 −0.21 −0.26 −0.24 −0.3 −0.38 −0.26 0.17
BILINEAR −0.26 −0.19 −0.23 −0.22 −0.3 −0.34 −0.23 0.15

CUBIC −0.25 −0.2 −0.23 −0.23 −0.32 −0.36 −0.23 0.16
BISINC_5 −0.25 −0.19 −0.23 −0.21 −0.28 −0.34 −0.23 0.15
BISINC_11 −0.24 −0.19 −0.22 −0.22 −0.3 −0.36 −0.23 0.17
BISINC_21 −0.25 −0.19 −0.22 −0.21 −0.32 −0.35 −0.22 0.16
BICUBIC −0.25 −0.2 −0.23 −0.22 −0.32 −0.36 −0.23 0.16

range 0.02 0.02 0.04 0.03 0.04 0.04 0.04

Only small differences in coefficient of variation (CV) were visible when changing the DEM
resampling method with ranges of 0.02 to 0.04. Changing the image resampling method, on the other
hand, resulted in much higher differences in CV ranging from 0.15 to 0.17. The best results were
achieved for bilinear image resampling and bilinear or BSINC DEM resampling with a CV of −0.19.

Table 6 shows the processing times needed to achieve the results using the different methods.
For this test, a laptop with 16 GB of RAM and a 1.9 GHz × 8 intel i7 CPU was used. This test was not
intended as a formal benchmarking but rather a quick comparison and hence the numbers only show
an approximation. Interestingly, several methods needed slightly less processing time than the simplest
and presumably fastest nearest-neighbor method during DEM resampling while they required significantly
more time during image resampling. The reason for this was not further investigated. Likely, the small
relative time differences for DEM resampling will change with repeated runs. The differences in time
between the DEM resampling methods varied significantly, with a range of 1324 to 1435 s, while the choice
of image resampling had a much smaller impact, with ranges of 29 to 112 s.

In summary, changing the DEM resampling method did not result in large differences in the quality
of the topographic normalization but had an impact on the processing time needed. In contrast,
the image resampling method did not impact the CV quite as strongly but differences in processing time
were much smaller. As a best compromise of processing time and lowest coefficient of variation, bilinear
resampling was chosen for both DEM and image resampling and was used for further processing
throughout this study.
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Table 6. Processing time in seconds for different combinations of DEM resampling (rows) and SAR
image resampling (columns). The color coding highlights the overall processing time differences
between all 49 runs. Range depicts the time value range for respective rows and columns.

NEAREST BILINEAR CUBIC BISINC_5 BISINC_11 BISINC_21 BICUBIC Range

NEAREST 277.59 262.54 258.86 266.74 274.56 287.68 265.8 28.82
BILINEAR 272.3 271.82 320.97 297.16 309.95 303.75 285.69 49.15

CUBIC 291.67 286.74 289.61 296.76 304.83 319.24 292.17 32.5
BISINC_5 532.42 549.04 511.16 509.3 517.1 528.16 507.99 41.05
BISINC_11 866.05 839.12 859.91 865.12 885.41 915.87 875.77 76.75
BISINC_21 1707.67 1595.32 1604.46 1608.85 1614.23 1611.57 1601.53 112.35
BICUBIC 387.02 388.06 395.55 397.98 400.79 417.86 400.02 30.84

range 1435.37 1332.78 1345.6 1342.11 1339.67 1323.89 1335.73

4.2. DEM Assessment

4.2.1. Alps

Quantification of Outliers

The maximum deviation from the median for the area of the scene under investigation is shown
in Figure 10. While a higher level of deviation can generally be seen in mountainous regions compared
to the flatland to the Southeast of the image, a particularly high deviation was observed around
Lake Garda to the southwest and a mountain range to the east. These two regions are highlighted in
Figure 10 and inspected more closely in Figure 11.

Figure 10. Alps: magnitude of maximum deviation from the median of all four DEMs. The area shown
is a subset of the scene footprint in Figure 1. The highlighted squares are magnified in Figure 11.
WGS84, UTM zone 32N (EPSG 32632).

The mentioned index map identifying which of the DEMs contained the height value that deviated
most from the median is not shown here, as no areal patterns could be visually identified due to
frequent near-random deviations of lower magnitude. However, a difference becomes visible above
100 m deviation, which is shown in Figure 12. Unexpectedly, deviations on the order of several
hundreds of meters were seen, with the ALOS World DEM deviating more than 2500 m in several
cases. On closer inspection, several artifacts could be identified in this particular DEM over Lake
Garda, which would need to be masked out prior to SAR processing. In all other DEMs, the lake
was either masked out or contained the actual height of the lake. While these deviations were very
high in magnitude, the ALOS World DEM showed only a few maximum deviations in comparison to
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the TanDEM-X DEM. In particular, the mountain range with high deviations visible to the east shown
in Figure 10 and the bottom row of Figure 11 can be attributed to this particular DEM. While this
DEM showed the lowest magnitude of deviations in the boxplot of Figure 12, it was by far the option
with the highest number of maximum deviations, contributing 86% to the overall random sample.
The ALOS DEM, on the other hand did contain only a few, but extreme, outliers centered around
Lake Garda.

Figure 11. Exemplary image chips showing DEM inconsistencies over Lake Garda (top) and in
a mountain range northeast of the Italian town of Belluno (bottom). The position of the image chips is
highlighted in Figure 10.

It is not clear what caused these artifacts, and it is expected that the processing result will
significantly improve in future versions of this product initially released in October 2018. We stress
that the SRTM DEM was manually edited to correct processor deficits, likely more than the current
version of the TanDEM-X DEM, as previously mentioned in Section 3.3.

Figure 12. Alps: value distribution of DEM height deviations greater 100 m. For each of the box plots,
10,000 samples were selected randomly wherever available. The whiskers represent the 5th and 95th
percentile. The histogram shows the distribution of DEM IDs for the ‘all’ sample shown in the box plot
to the left.
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Table 7 summarizes statistics of the samples selected for Figure 12. The lowest overall deviation
magnitude and frequency can be observed for the two SRTM DEMs, with both showing the two lowest
values for the 95th percentile of maximum deviations and containing the least maximum deviations
across the image. It is therefore concluded that, in particular, the higher resolution SRTM 1 arcsec DEM
is a viable choice for any further processing. However, this was only a quick test and not an in-depth
investigation and is thus not made as a general recommendation. In many regions, the SRTM 1 arcsec
is likely a suboptimal choice due to ground movements that occurred between its acquisition and that
of the SAR scene. One aim of the accompanying Jupyter notebook is to enable quick and convenient
assessments of DEM quality for any study site.

Table 7. Alps: size (n) and 95th (p95) percentile of the samples drawn for the boxplot in Figure 12,
as well as the histogram values of the ‘all’ sample in percent (%). If n is smaller than 10,000, all pixels
where the individual DEM showed the highest deviation were selected.

Identifier n p95 %

all 10,000 522.92
AW3D30 5629 1197.80 5.90

SRTM-1Sec-HGT 3423 526.48 3.69
SRTM-3Sec 4826 298.47 4.74

TDX90m 10,000 530.46 85.67

Comparison of Single Image Processing Results

In order to assess the quality of the topographic normalization between SNAP and GAMMA,
as well as between the four different DEMs, backscatter was compared to the local incident angle
at each pixel location in forest areas which were masked as described in Section 3.5.

As measures of quality of topographic normalization, the slope of the linear regression function
and the coefficient of variation were used. The former is optimal at zero, as no significant dependence
on the local angle of incidence was found in the data. An uncorrected backscatter image correlates
negatively with the incident angle, containing lower values with increasing angle of incidence.

The coefficient of variation was used to quantify the scattering around the mean backscatter
as an indicator of insufficiently corrected pixels. The mean is also displayed so that the overall level of
backscatter can be compared between images. The result is displayed in Figure 13.

It is understood, that this presents only a basic assessment of image quality, which does by far not
cover all aspects of SAR processing and the resulting differences in RTC backscatter. A more formal
assessment was made by [48].

In images processed with GAMMA using the AW3D30 and SRTM 1 arcsec DEMs, the overall
dependency on the local incident angle was completely removed, reflected in an overall slope of 0.
The two other GAMMA cases showed a slight under-correction of the incident angle dependency with
slopes of 0.01. In terms of variation, the best GAMMA result was achieved using the SRTM 1 arcsec
DEM showing the lowest CV of −0.1965. This DEM thus presented the optimal choice for this test site
as it had the lowest values for both slope and variation. Of similarly high quality was the AW3D30
DEM result, with the same slope and only marginally higher variation of −0.208. The TDX DEM
performed worst, with a slope of 0.01 and a CV of −0.27.

In all SNAP images, a larger dependency on the incident angle was still present with higher
slopes of 0.04 and 0.05. Contradicting the GAMMA results, the SRTM 3 arcsec and TDX DEMs yielded
the best SNAP results, with the former showing the overall best values for slope (0.04) and CV (−0.315).

Due to the use of the deprecated SNAP5 processor, a direct comparison between SNAP
and GAMMA was refrained from at this point. However, relative results for the different DEMs were
expected to be similar between SNAP and GAMMA.
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Figure 13. Alps: backscatter processed with GAMMA and SNAP using four different DEMs compared
to the UZH local incident angle. Only pixels acquired over forests are shown.

4.2.2. Fiji

Quantification of Outliers

The maximum deviation from the DEM median for Fiji is shown in Figure 14. Multiple noise
features across the water body around the islands were observed. Several rectangular features are
visible along the coast of Fiji which likely present artifacts of the automated DEM processing. A closer
inspection of the southwest coast of Viti Levu and several islands to the east are shown in Figure 15.

Figure 14. DEM differences in Fiji: magnitude of maximum deviation from the median with areas
shown in Figure 15 highlighted in green. The area shown is a subset of the scene footprint in Figure 2.
WGS84, UTM zone 60S (EPSG 32760).

It was observed that the mentioned noise features, as well as the rectangular artifacts along the Fiji
coast, are contained in the TDX data. In the bottom row of Figure 15, several smaller features of high
deviation are shown next to the mentioned noise. These features, although only rarely occurring,
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highlight very large deviations of up to more than 15,000 m in several cases. While these features are
mostly contained in the AW3D30 product, they can also be observed in the SRTM 1 arcsec product,
which was found to be the most viable choice for SAR processing in the Alps.

Furthermore, it needs to be noted that the DEMs differ in their representation of water bodies.
While in the AW3D30 and SRTM 1-Sec DEMs water is set to 0 in the original products, they are
represented by no data in the other two. Due to the conversion of DEM heights from geoid to ellipsoid,
the former two DEMs will contain a mean value of 56 m across the image, varying slightly with the local
geoid height.

Since DEM no-data areas will also be set to no data in resulting SAR products, the latter two
DEMs are not suited for processing without further modifications if water bodies are of interest.
The water mask of the TDX DEM contains a high omission error not only across the water body
with the aforementioned noise and the rectangular features along the coast but also, with a general
overestimation of the island size wherein the water mask shows an average distance of approximately
500 m on to the actual coast. The TanDEM-X DEM was delivered with several ancillary products,
including a water indication layer (referred to as WAM in the product guide [42]). This layer was
extracted for the two sites to investigate whether water bodies could easily be masked in the actual
DEM. A binary water mask was extracted by thresholding the WAM product, which contains several
water indication metrics, and setting all values between 3 and 127 to water. This was a quick method
for decoding the bitmask values contained in the product to a binary water mask, as recommended by
the TDX90m product guide [42]. Unfortunately, it was observed that this resulted in a high commission
error of detected water bodies across mountainous areas in both study sites. Instead, the SRTM 3 arcsec
DEM was used for masking, which directly contains a reliable water mask and thus presented a quick
and accurate solution.

Figure 15. Exemplary image chips as highlighted in Figure 14 showing DEM inconsistencies on
the southwest shore of Viti Levu (top) and around the small islands of Makogai and Wakaya to the east
(bottom).

The general quantitative overview of median deviation statistics is shown in Figure 16;
the corresponding statistics are shown in Table 8. Only areas not masked as water in the SRTM 3
arcsec product were considered. Both the SRTM 3 arcsec and the TDX DEMs contained only a few
maximum deviations, which were also of low magnitude. The AW3D30 and SRTM 1 arcsec DEMs
contained deviations of more than 15,000 m with the former showing a higher frequency of deviations
of a particularly high magnitude.
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Figure 16. Fiji: distribution of DEM height deviations greater than 100 m. Due to the small size of
the land areas in the scene, only 1783 samples could be selected. The number of samples in the box
plots are thus the same as shown in the histogram. The whiskers represent the 5th and 95th percentile.
The histogram shows the distribution of DEM IDs for the ‘all’ sample shown in the box plot to the left.
Only samples not masked as water in the SRTM 3 arcsec product were used for all DEM options.

Table 8. Size (n) and 95th percentile (p95) of the samples drawn for Figure 16, as well as the histogram
values of the ‘all’ sample in percent (%). All sample sizes are the maximum number of pixels available
for the respective selection.

Identifier n p95 %

all 1783 13890.79
AW3D30 661 14913.00 37.07

SRTM-1Sec-HGT 881 10275.38 49.41
SRTM-3Sec 157 296.20 8.81

TDX90m 84 170.16 4.71

Based on the low frequency and magnitude of maximum deviations, the TDX DEM presented
the best option for processing SAR data over Fiji. However, based on the need to include an ancillary
water mask, which requires an additional pre-processing step, the SRTM 3 arcsec DEM was selected
as the best choice. If the higher resolution of the AW3D30 and SRTM 1 arcsec DEM are required, further
masking is recommended to eliminate the mentioned artifacts in order to avoid propagation of errors
into the SAR backscatter products.

Comparison of Single Image Processing Results

The SAR images processed over Fiji using different DEMs were compared to the UZH local
incident angle in Figure 17 to assess the quality of topographic normalization. The value range of
the incident angle was smaller than in the Alps, reflecting the overall flatter slopes in this study area.
As compared to the Alps, higher slopes and variation were observed for both SNAP and GAMMA,
yet the same trends were present with GAMMA being very slightly under-corrected and SNAP
heavily under-corrected.

For GAMMA, the best performing DEM was the SRTM 1 arcsec DEM with the lowest slope
and variation. The SRTM 3 arcsec and TDX DEMs are, equally, the worst performers, with the former
showing the higher slope and the latter the highest variation of the two.

In line with the findings in the Alps, the two best-performing DEMs using SNAP were the SRTM 3
arcsec and the TDX. However, the latter performed slightly better with a marginally lower variation.
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4.3. Comparison of SNAP and GAMMA by Terrain

Although differences in the quality of the topographic normalization were observed between
SNAP and GAMMA, this could be of little concern for many users who are interested in areas with flatter
terrain only. It was thus of great interest to investigate the similarity of images from the two processors
depending on the orientation of the terrain towards the sensor to quantify differences originating from
the terrain flattening procedure. For this analysis, the SNAP6 SRTM 1 arcsec auto-download result was
used and compared to the GAMMA result processed with the same DEM.

Figure 17. Fiji: backscatter processed with GAMMA and SNAP using four different DEMs compared
to UZH local incident angle. Only pixels acquired over forests were selected.

Figure 18 displays the similarity of the processing results from SNAP6 and GAMMA for the whole
scene without stratification to the left and dependent on the local angle of incidence to the right.
A differentiation was made between samples collected across the whole image and all present CLC
classes (black dashed and solid lines for SNAP5 and SNAP6, respectively) and samples of forested areas
only (green line). The color bars represent the composition of CLC classes for the specific incidence
angle ranges.

The overall RMSE of 2.29 dB in the image to the left was also reflected in the SNAP6 RMSE values
for individual terrain classes up to 60◦ in the image to the right, ranging from 2.11 (>20–30) to 2.56 dB
(>−10–0) for samples from all classes combined. Hence, in this terrain, the differences between the two
could not be explained by the terrain, since this range of incident angles includes regions of layover
and foreshortening over flat terrain to moderate shadows, but showed only little variation in the RMSE.
The mean incident angle of the acquired SAR scene over the island was 39◦, thus this angle represents
approximately flat terrain in the plot.

Only a slight increase in RMSE was observed with incident angles lower than 0◦, showing different
yet very similar qualities of normalization of layover and foreshortening for both SNAP and GAMMA.
In contrast, the SNAP5 normalization exhibited a strong increase of RMSE from approximately
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2.6–3.1 dB in flat areas to nearly 5 dB at angles lower than 0◦, again confirming the large improvement
in SNAP6.

Figure 18. Comparison of SNAP vs. GAMMA 90 m processing results for the scene acquired over
the Alps using the SRTM 1 arcsec DEM. Left: scatter plot of 10,000 samples drawn from across the whole
scene; the red and black lines represent the linear regression and one-to-one lines, respectively. Right:
RMSE of backscatter comparison for different local incident angle classes and the class distribution
of the drawn samples. The solid black and green lines show RMSE values comparing SNAP6
and GAMMA for all classes and for forest, respectively. The dashed black line shows the result for all
classes using the SNAP5 product. For the right plot, 2500 samples were used for each incident angle
class. Although incident angles higher than 90◦ are present in the scene, these classes were excluded
due to an insufficient number of samples.

From 50◦ onwards, a strong increase in RMSE up to 4.5 at >80–90◦ for SNAP6 was observed,
demonstrating larger differences in normalization in areas close to radar shadow. A similar pattern
was observed with the SNAP5 results, yet the maximum RMSE value was much higher at 5.8 dB,
showing an improvement of SNAP6 in this region as well. As was expected, the SNAP6 forest RMSE
progression line followed the same pattern of the overall RMSE, however, with generally smaller
values, as low as 1.70 in flat terrain. The corresponding SNAP5 line, showing a similar trend, is omitted
here for clarity.

4.4. Time-Series Analysis

The scope of this study was expanded to assess the interoperability of pyroSAR-derived
GAMMA and SNAP Analysis-Ready Datasets over space and time—including consideration of
internal (software tool set, DEM selection, pre-processing) and external (local topography, orbit
direction) factors. To align with the objectives and parallel activities of the UK International Partnership
Program (IPP) Common Sensing initiative, a test site was selected, encompassing the island of Viti Levu
in Fiji. Preliminary analysis focused on benchmarking monthly and seasonal variability in gamma0
VV- and VH-polarized backscatter across the 12-month time series for selected land cover classes.
To identify and quantify systematic inconsistencies caused by acquisition parameters, it was vital to
conduct statistical analysis against land surfaces exhibiting a low frequency variability in their radar
backscatter properties.

Mean and standard deviation of VV and VH gamma0 backscatter were computed for all point
geometries (~5000 samples) across every scene in the GAMMA and SNAP time series, which is shown
in Figure 19. Due to the stable canopy structure and climatic conditions, moist tropical forests in
Viti Levu demonstrated minimal variability in mean backscatter for the duration of the gamma0 time
series (−6 dB VV, −12 dB VH). Conversely, the temporal backscatter signature of grassland regions
demonstrated a clear seasonal variation caused by the transition from cooler dry conditions (May
to September) to the wet, warmer season (November to March). Variations in biomass and surface
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moisture content have strong influences on microwave backscatter properties of vegetated land
surfaces [49].

In compliance with CEOS ARD guidelines, no speckle reduction filtering was incorporated
into the SNAP and GAMMA workflows (selection and configuration of speckle filter dependent on
application). The large sample population (~5000 points per land cover class per scene), therefore,
exhibited high levels of deviation (±2 dB) around mean backscatter. Visual inspection revealed that
mean VV and VH backscatter signatures computed for GAMMA and SNAP gamma0 time series
demonstrated near equivalence as a function of time.

Figure 19. Mean (line) and standard deviation (shaded area) VV (blue) and VH (orange) gamma0
backscatter computed for the time series using 5000 randomly selected point geometries coincident
with moist tropical forest (top row) and grassland (bottom row) areas across in Viti Levu.

Workflow interoperability was further examined by computing error statistics between spatially
coincident gamma0 backscatter values retrieved from GAMMA and SNAP raster time series. As indicated
in Table 9, GAMMA and SNAP gamma0 demonstrated a high level of consistency—minimal deviation
was evident in temporally averaged co-polarized backscatter computed for evergreen forest and grassland
classes (<0.1 dB). Statistical analysis revealed a greater level of inconsistency between GAMMA and SNAP
cross-polarized products—~0.25dB differences in mean gamma0.

Table 9. Temporally averaged gamma0 backscatter and RMSE statistics derived from
GAMMA and SNAP time series for different land categories over Viti Levu.

VV gamma0 VH gamma0

GAMMAμ SNAP μ RMSE GAMMAμ SNAP μ RMSE

Evergreen −6.11 −6.20 0.67 −12.65 −12.42 0.64
Grassland −7.54 −7.63 0.58 −13.50 −13.22 0.63

As shown in Figure 20 and summarized in Table 10, variance between GAMMA and SNAP
backscatter was evaluated by fitting a Gaussian probability function (PDF) to the frequency
distribution of mean signed differences. From Table 10, it can be seen that the deviation between
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GAMMA and SNAP-derived backscatter closely approximated a random variable with a normal
distribution, exhibiting minimal bias around zero mean.

Figure 20. Frequency distribution of mean signed difference between temporally averaged
GAMMA and SNAP backscatter plotted against best fit Gaussian probability density function.

Table 10. Best-fit Gaussian PDF fitted to frequency distribution of mean signed difference between
gamma0 values extracted from Viti Levu GAMMA and SNAP time series.

VV gamma0 VH gamma0

PDF μ PDF σ PDF μ PDF σ

Evergreen −0.07 0.53 0.26 0.47
Grassland −0.07 0.46 0.29 0.44

Follow-on analysis evaluated the interoperability between SNAP and GAMMA gamma0 products
as a function of the underlying topography, represented by the SRTM 1 arcsec slope. Randomized point
geometries generated for evergreen and grassland regions were stratified into two categories—one
group coincident with areas of relatively flat terrain (0 to 12 percent slope); the other set aligned with
locations of rapidly varying elevation (20 percent slope and higher).

The RMSE between GAMMA and SNAP VV and VH gamma0 backscatter values coincident
with flat and steep moist forest and grassland areas was subsequently computed on a scene by scene
basis and rendered as a time series plot. Figure 21 visualizes the variation in GAMMA vs SNAP
RMSE as a function of time (x-axis) where inter-comparison between coincident VV (top row) and VH
(bottom row) gamma0 backscatter values was stratified into steep (blue) and flat (orange) locations.
A summary is given in Table 11. Analysis revealed that the underlying slope significantly affected
the degree of consistency between GAMMA and SNAP gamma0 products.
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Figure 21. Temporal variation in RMSE between GAMMA and SNAP VV (top row) and VH (bottom

row) gamma0 values computed for 5000 randomly selected point geometries coincident with steep
(blue) and flat (orange) evergreen (moist forest) and grassland areas of Viti Levu.

Table 11. Aggregated RMSE statistics quantifying level of consistency between gamma0 backscatter
generated from GAMMA and SNAP workflows for Viti Levu raster time series.

VV gamma0 RMSE (dB) VH gamma0 RMSE (dB)

Steep Flat Steep Flat

Evergreen 1.77 1.44 1.80 1.43
Grassland 1.62 1.32 1.68 1.37

Additionally, the time series was subdivided into ascending and descending scenes and the analysis
was run again. Tables 12 and 13 indicate increased variability between GAMMA and SNAP gamma0
backscatter when comparing locations with a high slope in descending scenes.

Table 12. RMSE statistics quantifying consistency between GAMMA and SNAP gamma0 for ascending
scenes and locations of flat and steep terrain.

VV gamma0 RMSE (dB) VH gamma0 RMSE (dB)

Steep Flat Steep Flat

Evergreen 1.63 1.39 1.70 1.40
Grassland 1.54 1.34 1.65 1.40

Table 13. RMSE statistics quantifying consistency between GAMMA and SNAP gamma0 for descending
scenes and locations of flat and steep terrain.

VV gamma0 RMSE (dB) VH gamma0 RMSE (dB)

Steep Flat Steep Flat

Evergreen 1.91 1.49 1.89 1.45
Grassland 1.70 1.31 1.71 1.34
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The final phase of the Viti Levu study evaluated capabilities of GAMMA and SNAP processing
tools to normalize gamma0 backscatter for changes in viewing geometry and effects of the underlying
topography. With even distribution of ascending and descending scenes across the time series period
with a repeat cycle of ~six days, the analysis evaluated the variability of temporally averaged gamma0
backscatter values as a function of orbit direction and slope.

As indicated in Figure 19, radar backscatter properties of the moist tropical forest canopy remained
relatively consistent throughout the year. To quantify variability introduced by the direction of
the satellite platform, temporally averaged gamma0 values were derived for a collection of randomly
selected geometries from sub-divided ascending and descending time series. With over-sampling
dampening effects of natural variability, it was hypothesized that mean backscatter measured at locations
across the Viti Levu evergreen forest should eventually approach a one-to-one relationship when
comparing ascending and descending time series.

For evergreen land cover, Figure 22 indicates the level of interoperability between temporally
averaged gamma0 backscatter derived from ascending and descending scenes of GAMMA and SNAP
time series. Low correlation was recorded when comparing mean gamma0 for ascending and descending
scenes. This can be explained by the overall low variation of backscatter over the homogeneous evergreen
forest around a mean of −6 dB. Differences in the local incident angle between the orbits and differences
in dominant scattering processes (double bounce vs. volume scatter) in an inhomogeneous forest
structure caused frequent outliers, whose origin was not further investigated. A much stronger linear
relationship would be expected for L-Band SAR penetrating deeper into the forest canopy, thus causing
a higher variability in backscatter as compared to C-Band. Products generated by GAMMA demonstrated
a slightly greater error variance compared to SNAP gamma0 products.

Figure 22. Relationship between temporally averaged VV (top row) and VH (bottom row) gamma0
backscatter values derived from ascending and descending 20 m scenes for 5000 randomly selected
point geometries across evergreen moist forest of Viti Levu.

The analysis was subsequently repeated for collections of randomly selected point geometries
coincident with locations of flat and steep terrain. Tables 14 and 15 indicate an increased level of
inconsistency between temporally averaged gamma0 across steep terrain. Tables 16 and 17 summarize
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the results of re-executing the analysis with randomly selected point geometries coincident with flat
and steep grassland areas.

Table 14. Inter-comparison of temporally averaged gamma0 backscatter derived from ascending
and descending 20 m scenes for 5000 randomly selected point geometries coincident with flat terrain in
moist tropical forests of Viti Levu.

VV gamma0 VH gamma0

Ascend μ Descend μ RMSE Ascend μ Descend μ RMSE

GAMMA −5.99 −6.43 2.73 −12.27 −12.63 2.32
SNAP −5.95 −6.33 2.33 −12.51 −12.84 2.18

Table 15. Inter-comparison of temporally averaged gamma0 derived from ascending and descending
20 m scenes for 5000 randomly selected point geometries coincident with steep terrain across moist
tropical forests of Viti Levu.

VV gamma0 VH gamma0

Ascend μ Descend μ RMSE Ascend μ Descend μ RMSE

GAMMA −6.30 −6.24 3.10 −12.57 −12.49 2.81
SNAP −6.20 −6.11 2.71 −12.67 −12.81 2.48

Table 16. Inter-comparison of temporally averaged gamma0 derived from ascending and descending
20 m scenes for 5000 randomly selected point geometries coincident with steep terrain across grassland
areas of Viti Levu.

VV gamma0 VH gamma0

Ascend μ Descend μ RMSE Ascend μ Descend μ RMSE

GAMMA −7.84 −7.51 2.12 −13.14 −13.41 1.63
SNAP −7.56 −7.88 1.81 −13.43 −13.61 1.59

Table 17. Inter-comparison of temporally averaged gamma0 derived from ascending and descending
20 m scenes for 5000 randomly selected point geometries coincident with flat terrain in grassland areas
of Viti Levu.

VV gamma0 VH gamma0

Ascend μ Descend μ RMSE Ascend μ Descend μ RMSE

GAMMA −7.54 −7.57 2.59 −13.30 −13.30 2.43
SNAP −7.33 −7.49 2.14 −13.43 −13.60 2.24

Over forested areas, a good agreement between SNAP and GAMMA VV backscatter was observed
with mean values of approximately −6 dB in all cases and an RMSE of 2.71 to 3.1. For VH, a better
agreement was observed with a mean backscatter of around −12.5 dB and slightly lower RMSE values
between 2.18 and 2.81. RMSE values on steeper slopes were recorded to be higher by about 0.4 for
both polarizations. In descending orbit, backscatter of both polarizations was slightly higher on steep
slopes than on flat areas. The opposite was observed for the ascending orbit.

RMSE values over grassland were lower than over forest with values of 1.81 to 2.59 for VV and 1.59
to 2.43 for VH. Backscatter over flat grassland was lower than that over forest by about 0.7 to 1.6 dB.
The same trend of lower VH backscatter in ascending orbit and higher backscatter in descending orbit
observed over forest was observed over grassland. For VV however, higher backscatter was observed
in ascending mode and in descending orbit, backscatter processed by GAMMA was slightly lower, but
the equivalent from SNAP much higher.
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5. Discussion

5.1. Software Usability

During this study and preceding work on pyroSAR, effort was invested into making the two
processing software packages as easy to use as possible. In the case of GAMMA, this meant creating
an API that wraps the command line interface into modularized Python workflows including a suite
of convenience functions. In SNAP, effort was invested into creating flexible and reliable workflows
delivering consistent results while improving the overall processing speed.

For SAR processing in any software, numerous parameters can be set whose influence on the results
require many years of training and expertise in interpreting SAR data. By providing easy-to-use
workflows and a Jupyter notebook for reproducing the created results, it is intended to further lower
the entry barrier to utilizing SAR imagery. Although simplifying SAR workflows usually comes
with a reduction in parameterization flexibility, great care is taken to keep the workflows and their
configuration as flexible as possible and demonstrate the impact of different processing choices in
the Jupyter notebook.

Particularly, the use of SNAP required a large effort during this study since a bug prevented
the use of external DEMs for terrain flattening in SNAP6, and initial processing was held back by
the much longer processing time in comparison to GAMMA. In addition to this, SNAP required a lot of
memory, thus initial processing was not possible on a 16GB local machine. Processing on a large server
cluster with 500GB of RAM and 48 logical CPUs was still slower than using GAMMA on a local laptop.
Although it is recognized that SNAP’s workflow chaining in memory, without the need to create
intermediate products, is theoretically beneficial due to fewer read and write operations of intermediate
products, apparently more development time is needed to fully implement this philosophy and actually
gain speed in processing and memory efficiency.

The large need for resources of SNAP was drastically reduced by executing each processing
node individually while writing intermediate products. This way, processing time was reduced by
a factor of seven and the memory consumption was reduced so that processing on a local machine
became possible. The isolated execution of single nodes was also highly beneficial in error tracing.
This feature is currently only available in pyroSAR and not in SNAP itself; therefore, the large resource
footprint and long processing time are likely limiting wider adoption of the software. Naturally, it is of
interest to communicate these findings with the SNAP developers and community to contribute to
the improvement of the software.

In addition to the processing speed, testing SNAP with different parameterizations at the beginning
of this study was oftentimes held back by difficulties in interpreting the short ambiguous error messages.
This way, a lot of time had to be invested in repeated trial runs in order to find the origin of generic
error messages. pyroSAR tries to mitigate this problem by providing more verbose error messages
and reacting to those that can be interpreted. For example, a mechanism was implemented during this
study to automatically remove certain parameters from a processing node in case the currently used
SNAP version does not accept this particular parameter, write the modified workflow to a new XML
file and rerun the processing. This was, for example, necessary to be able to use SNAP6 workflows in
SNAP5 since, in the Terrain-Flattening node, two new parameters were introduced in the newer version.

Throughout this study, GAMMA was found to work very reliably yet the authors benefited largely
from several years of know-how built into pyroSAR in order to reduce the complexity of this rather
difficult-to-use software.

If a large data cube with long SAR time series is to be built, software continuity is essential to
ensure that all data have been processed in the same way. Although this is certainly not fully possible
due to several changes in the internal IPF processor during the lifetime of Sentinel-1, a user is advised
to use only one version of SNAP or GAMMA for building larger data sets and continuously expanding
them with newly acquired data. For this, pyroSAR offers the modularized SNAP processing scheme
described earlier, giving a user the option to selectively assign processor versions to specific nodes.
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This way, only critical nodes can be executed in newer versions of SNAP. For example, in early 2018,
the border noise removal became obsolete with a new IPF version, which caused an error in older
versions of SNAP. This particular step could thus be executed by the newer version, leaving all other
nodes working unchanged. Optimally, this kind of mechanism would directly be implemented in
SNAP so that a user could operate multiple subversions of SNAP without explicitly installing them.
A similar mechanism has not yet been developed for GAMMA.

Ideally, a user could also order data processed with a specific IPF version directly from ESA to
also exclude optimizations made in newer versions for the sake of data continuity in case newer
versions introduced changes, reducing the comparability with older scenes. While it is clear that a large
data volume such as the entire S1 archive cannot be re-processed, an on-demand service coupled to
the rolling archive could have a user select the specific IPF version of his or her choice.

5.2. Use of DEM Products

In this study, the suitability of four openly available DEM options for SAR processing
was investigated. The extent to which two newer options, the ALOS World 30 m (AW3D30)
DEM and the TanDEM-X 90 m DEM, stand up against the well-established SRTM variants in 1
and 3 arc seconds, was assessed. These four products represent three very different approaches of
creating DEMs. The AW3D30 DEM was created photogrammetrically from optical ALOS PRISM
data, the SRTM DEM from a bistatic C-Band SAR space shuttle mission and the TDX DEM from
a bistatic X-Band SAR two-satellite constellation. Each having their advantages and disadvantages,
large discrepancies between the four were observed, reflected in deviations of up to 2500 m from
the median of all four in the Alps and even up to 15,000 m over Fiji. These large deviations need to be
considered for SAR data processing, which otherwise would result in topographic normalization of
low quality.

In the Alps, the SRTM 1 arcsec DEM was selected as the best option for processing based on
general usability not requiring additional pre-processing such as masking, an overall low magnitude
of deviations from the median, and the higher resolution in comparison to the 3 arcsec variant
and the available TDX DEM. The AW3D30 DEM was found to contain several outliers of high
magnitude around Lake Garda, which would have to be masked out prior to processing using
an ancillary mask. The TDX DEM was found to contain several regions with artifacts, which are
likely to be reduced in future updates of the products with improvements to the processor and/or
manual corrections.

In the case of Fiji, no DEM fulfilled all criteria of being able to be used as provided, having a high
resolution and containing a low number of high deviations. Both the SRTM 3 arcsec and TDX DEM
required a re-coding of no data values over water so that SAR backscatter over water is not masked in
the output products. The product of the highest quality was the low-resolution SRTM 3 arcsec DEM
with only a few maximum deviations, all being of low magnitude. The TDX DEM, although also
containing only deviations of similarly low magnitude, did not include a water mask of high quality,
resulting in noise over water areas and a high omission of water around the coastlines of the Fiji Islands.
Utilizing the TDX water indication mask delivered together with the current DEM product did not
sufficiently mask out water bodies either. The SRTM 3 arcsec water mask was used instead. The SRTM
1 arcsec and AW3D30 contained several artifacts of very high magnitude above 15,000 m. Several of
those found in the SRTM DEM were also found in the ALOS DEM. Since the ALOS DEM utilizes
the SRTM DEM in areas where low accuracy was achieved with the photogrammetric approach, these
artifacts were likely copied without further visual analysis. Because of the differences in water masking,
the SRTM 3 arcsec water mask was applied to the other three DEMs as well since it was found to
be the most accurate one. An overview of the findings in subsection “Quantification of Outliers” in
Sections 4.2.1 and 4.2.2 is given in Table 18.
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Table 18. Comparison of the 95th percentile (p95) of DEM deviation magnitude and the frequency of
maximum outlier occurrence (%) for both test sites. Summary of Tables 7 and 8.

p95 %

Alps Fiji Alps Fiji

AW3D30 1197.80 14913.00 5.90 37.07
SRTM-1Sec-HGT 526.48 10275.38 3.69 49.41

SRTM-3Sec 298.47 296.20 4.74 8.81
TDX90m 530.46 170.16 85.67 4.71

5.3. Quality of Topographic Normalization

To compare different DEMs and their impact on SAR image topographic normalization, SNAP5
Terrain Flattening had to be used as the use of external DEMs was not possible in the considered
version of SNAP6. Major improvements of the terrain flattening procedure were introduced in SNAP6,
which is shown in Figures 9 and 18 of this study, where the SRTM 1 arcsec auto-download option was
used to show the benefit over SNAP5. Further improvements to this procedure are expected for SNAP7,
which is due to be released in summer 2019. The SNAP results of topographic normalization quality
can thus not objectively be compared to those of GAMMA knowing that they show inferior results to
the latest version of SNAP. By providing the Jupyter notebook with this publication, it is intended to
begin establishing an open testing framework, that can easily be adjusted to future processing software
updates or even extended to additional software solutions not yet considered in this study.

For summarizing the findings of subsection “Comparison of Single Image Processing Results”
in Sections 4.2.1 and 4.2.2, Tables 19 and 20 compare the results of the GAMMA and SNAP processing
results, respectively.

Table 19. Slope and coefficient of variation from the comparisons of GAMMA-processed RTC backscatter
over forested regions with local incident angle made in Figures 13 and 17.

Slope CV

Alps Fiji Alps Fiji

AW3D30 0.00 −0.02 −0.2080 −0.2652
SRTM-1Sec-HGT 0.00 −0.02 −0.1965 −0.2519

SRTM-3Sec −0.01 −0.04 −0.2506 −0.2830
TDX90m −0.01 −0.03 −0.2706 −0.2845

Table 20. Slope and coefficient of variation from the comparisons of SNAP-processed RTC backscatter
over forested regions with local incident angle made in Figures 13 and 17.

Slope CV

Alps Fiji Alps Fiji

AW3D30 −0.05 −0.07 −0.3635 −0.3104
SRTM-1Sec-HGT −0.05 −0.07 −0.3512 −0.3161

SRTM-3Sec −0.04 −0.06 −0.3152 −0.2942
TDX90m −0.05 −0.06 −0.3378 −0.2938

The use of the SRTM 1 arcsec DEM resulted in the highest quality of backscatter normalization
using GAMMA, both in the Alps and in Fiji. This DEM was also found to contain the smallest number
of maximum deviations from the median across the whole Alps scene and low magnitudes for these
deviations, second in ranking only to the SRTM 3 arcsec DEM. In contradiction, this DEM contained
the most outliers in Fiji, where several artifacts of high DEM deviation were observed. The SRTM 3
arcsec DEM performed worse with similar results for the Alps and Fiji, although showing a low number
of DEM outliers with low magnitude. The TDX DEM performed similarly to the SRTM 3 arcsec DEM,
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albeit containing nearly 86% or maximum deviations in the Alps. Higher slopes and variations were
observed in Fiji for all DEMs.

In contradiction to the GAMMA results, the SRTM 3 arcsec and TDX DEMs performed best for
SNAP processing and thus better reflect the findings of the DEM outlier assessment summarized
in Table 18. The former, which consistently contained few outliers and low deviation magnitude
in both test sites, also performed best in the SAR processing comparison. The high number of
maximum deviations in the TDX DEM over the Alps did not have a noticeable influence on the SAR
processing result.

It is concluded that the DEM comparisons performed in this study show valuable findings in
assessing the suitability for SAR processing by highlighting the differences between them in regions
of high deviations but are not directly suited to fully assess the resulting quality of the topographic
normalization. Since this study focused on analyzing DEM outliers above 100 m, only very few points
across the whole images were taken into consideration. However, although rarely occurring, these
extreme outliers present in the data will occasionally have a large impact on the processing results
and should be removed prior to processing to avoid misinterpretation. This becomes even more critical
in a data cube environment where the analysis of individual images loses importance when several
hundreds of images are being analyzed.

Large differences in the RMSE between SNAP and GAMMA products of about 2 dB in flat
terrain and up to 4.5 dB on steep slopes were observed, which can only partially be explained by
the differences in topographic normalization quality. Additional analyses are necessary to further
investigate the differences between the two processing software packages and assess whether their
results can be aligned more closely. The largest conceptual differences between the two processing
workflows are GAMMA’s conversion to slant range prior to normalization, while SNAP operates
entirely in ground range, and the choice of resampling methods during geocoding.

5.4. Time Series Analysis

Section 4.4 of this study—Time Series Analysis—investigated the temporal interoperability of
SNAP and GAMMA processed gamma0 for two land cover classes; annually consistent evergreen
tropical forest, and seasonal grassland, taking into consideration the influence of both internal
and external factors in the overall consistency of the output backscatter. The evaluation considered
the influence of orbit direction, choice of software and topography.

The software analysis for the backscatter time series highlighted little discrepancies, and thus good
interoperability, for the analyzed land covers, the different acquisition geometries and for small slopes.
Contrariwise, large slopes yielded large discrepancies. Nevertheless, a useful property highlighting
a consistent gamma0 processing chain is the intra-software interoperability among different viewing
geometries at all slopes.

In view of the construction of a Sentinel-1 data cube, it can be concluded that both the commercial
and open-source software workflows presented in this study do provide reliable gamma0 products, with
the general recommendation of including a geometrical distortion (layover, shadow) map and the local
incident angle as an auxiliary data cube product. The quality of the generated time series benefited
from the custom border noise removal presented in Section 3.3. After processing, a data cube can
aid in temporally exploiting and analyzing the time series in terms of backscatter and geophysical
parameters, or simple change detection be performed. However, it needs to be kept in mind that
changes in backscatter originating from DEM artifacts and insufficient topographic normalization
might still be present in the data and care is thus to be taken when analyzing pixel time series out
the spatial image context.

6. Conclusions and Further Recommendations

The choice of DEM as an input for creating gamma0 RTC backscatter is a major influencing
factor for the correction of topographic effects such as foreshortening. Hence, it was assessed whether
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particular DEMs are generally better suited for the task and whether regional differences require
site-specific selection. As DEM options, the two SRTM variants in 1 and 3 arcsecs, the ALOS 30m World
DEM and the TanDEM-X 90m DEM were selected. In a first analysis, the four DEMs were compared,
assessing their direct similarity and quantity of outliers. A second test focused on their influence on
the quality of the resulting terrain correction. As factors for selecting between the four options, the need
for additional pre-processing and thus overall usability, the frequency of outliers and the spatial
resolution were considered. The highest overall quality was found in the two SRTM DEMs, containing
accurate handling of water bodies and a low number of outliers, thus reducing the need for additional
processing. The lowest quality was found in the TanDEM-X DEM containing an inaccurate water mask
and also several large artifacts in mountainous regions. However, neither DEM was found to fulfill all
criteria, with results differing between the two test sites. Hence, it is necessary to perform the presented
comparisons prior to processing data for a test site in order to prevent the introduction of systematic
backscatter errors that can be particularly difficult to assess in a data cube time series analysis scheme
that potentially incorporates hundreds of scenes. Optimally, differences in DEM quality and their
influence on SAR processing could be further quantified so that the development of an automated
method is made possible that locally detects and corrects inconsistencies while taking actual terrain
changes into consideration.

To assess the influence of the DEM quality on the actual processing result, the SAR images were
compared with the local incident angle maps. This way, insufficiently corrected dependencies on
the terrain were quantified both across the whole image, represented through a slope in the linear
regression equation, and locally through the amount of variation around the mean backscatter.
The findings of this analysis could not be predicted by those of the preceding DEM comparison
and thus present an additional direct method to help select an optimal DEM.

A direct comparison of SNAP and GAMMA was not conducted as comprehensively as anticipated,
as the use of external DEMs was not possible in the SNAP version available at the time of writing.
Large improvements were confirmed between SNAP5 and SNAP6, with the latter performing similar
to GAMMA. Large differences were found in areas of steep shadowed slopes, yet no assessment was
made as to whether SNAP6 or GAMMA delivered better quality. Most remaining differences between
the result of SNAP6 and GAMMA could not be explained by the quality of the terrain correction and are
thus more likely the result of different methods used for resampling and interpolating the images
during geocoding.

One step that is missing in both solutions is the accurate removal of Sentinel-1 border noise.
While SNAP, as opposed to GAMMA, offers an implementation, this method was found to not
sufficiently remove this noise. Alternatively, a custom implementation in pyroSAR was used,
which was shown to reliably remove these artifacts and was thus applied prior to processing with
either software.

In terms of the overall usability of the used processing software solutions, advantages
and disadvantages can be attested to for both. SNAP offers a convenient, user-friendly graphical user
interface and is open source, but its usage is often hindered by difficult-to-interpret error and log
messages. Furthermore, the complex Java structure of the toolbox complicates the search and fix of
encountered bugs.

GAMMA, on the other hand, offers a very basic command line interface requiring a lot of experience
to use in order to develop workflows as flexible and easy to use as those of SNAP. However, once this
is achieved, it works very robustly and fast.

The final choice of software is to be left to the user depending on the requirement and available
resources. The study outlined a generally good interoperability of products except for extreme slopes
tilted away from the sensor. However, this study focused on forests and grassland only and it is
thus recommended to specifically test product interoperability for the land cover classes of interest.
Furthermore, it is recommended to mask backscatter values in areas of incident angles greater 60◦
as an increase of RMSE between the products of SNAP and GAMMA was observed, which was
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attributed to a decrease in topographic normalization quality. This threshold value might change with
future software versions and improved normalization routines.

In order to directly encompass the results of this study, a Jupyter notebook is provided. This way,
the analyses presented here can easily be reproduced in new study sites, with new versions of
the software solutions discussed, and also, with additional processing software options not yet taken
into consideration. Additionally, the increased transparency is anticipated to contribute to an open
discussion of best practices for producing ARD data and thus, generally accelerate progress in this field.
The accompanying Jupyter notebook (see Supplementary Materials) together with pyroSAR is envisaged
as an open test bed for extending ARD assessments towards SAR data domains, such as polarimetry
and interferometry. In this context, the authors acknowledge the CEOS Analysis-Ready Data for Land
(CARDL4L) guidelines as the best foundation for formally describing and standardizing the term ARD.
No formal assessment was made of how far the workflows presented here meet the requirements of
this guideline. This is considered as a future goal such that a user might eventually be able to select
a certain level of analysis “readiness” in either software and conveniently process data accordingly.

As a data cube option to analyze the processed data, the Open Data Cube (ODC) technology
was selected. Functionality to ingest data into this environment is presented in the accompanying
Jupyter notebook and thus know-how is provided for lowering the entry border to working with
such an environment. However, setting up such a cube and ingesting data into it is anticipated to
require little effort only in comparison to ensuring a consistently high level of data quality and workflow
transparency. The authors thus encourage application of the developed analyses provided in the Jupyter
notebook and welcome additions to its online GitHub repository and the pyroSAR framework in order
to improve the quality of ARD backscatter data and thus further lower the entry barrier to using SAR
data. The ODC, in general, is seen as an interesting option for providing not only the SAR data itself
but also the implementation of algorithms exploiting the data, further leveraging open science.

Supplementary Materials: A Jupyter notebook and auxiliary code for reproducing this study are available online
at https://github.com/johntruckenbrodt/S1_ARD and http://www.mdpi.com/2306-5729/4/3/93/s1.

Author Contributions: Conceptualization: J.T., T.F., T.J., C.D., C.T. and A.S.; Data Curation: J.T., T.F., C.W., T.J.
and D.S.; Formal Analysis: J.T. and C.W.; Investigation: J.T., C.W., T.J., D.S., C.D. and C.T.; Methodology: J.T.,
C.W., D.S., T.F., T.J., C.D., C.T. and C.R.; Software: J.T., C.W. and T.J.; Supervision: J.T., D.S., C.D., C.T. and C.R.;
Validation: C.W., D.S. and C.R.; Visualization: J.T., C.W. and T.J.; Writing—Original Draft Preparation: J.T., C.W.,
T.F., C.R., T.J., A.S. and G.G.; Writing—Review and Editing: J.T., T.F., C.W., D.S., C.D., C.T., C.R. and T.J.

Funding: This project was partially funded through DFG (German Research Foundation) project HyperSense
(grant No. TH 1435/4-1). This research was supported by the Common Sensing project funded by the UK Space
Agency’s International Partnership Programme (http://commonsensing.org.gridhosted.co.uk/).

Acknowledgments: The authors wish to extend their gratitude to the Fiji Ministry of Lands for providing data to
support this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Onoda, M.; Young, O.R. Satellite Earth Observations and Their Impact on Society and Policy; Springer: Singapore, 2017.
2. Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 agenda

for sustainable development. Geo-Spat. Inf. Sci. 2017, 20, 77–96. [CrossRef]
3. Wulder, M.A.; Coops, N.C. Satellites: Make earth observations open access. Nature 2014, 513, 30–31.

[CrossRef] [PubMed]
4. COPE-SERCO. Sentinel Data Access Annual Report 2019; COPE-SERCO-RP-19-0389; COPE-SERCO:

Frascati, Italy, 3 May 2019.
5. Giuliani, G.; Chatenoux, B.; De Bono, A.; Rodila, D.; Richard, J.-P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building

an earth observations data cube: Lessons learned from the swiss data cube (sdc) on generating analysis
ready data (ard). Big Earth Data 2017, 1, 100–117. [CrossRef]

107



Data 2019, 4, 93

6. Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.;
Sixsmith, J.; et al. The australian geoscience data cube — foundations and lessons learned. Remote Sens.
Environ. 2017, 202, 276–292. [CrossRef]

7. Swiss Data Cube. First Sentinel-1 Analysis Ready Data Ingested. Available online: https://www.swissdatacube.org/
index.php/2018/12/05/first-sentinel-1-analysis-ready-data-ingested/ (accessed on 9 April 2019).

8. Haarpaintner, J.; Killough, B.; Ofori-Ampofo, S.; Boamah, E.O. Advanced sentinel-1 analysis ready data for
the ghana open data cube and environmental monitoring. In Proceedings of the International Workshop
on Retrieval of Bio- & Geo-physical Parameters from SAR Data for Land Applications, Oberpfaffenhofen,
Germany, 5 November 2018.

9. Dhu, T.; Dunn, B.; Lewis, B.; Lymburner, L.; Mueller, N.; Telfer, E.; Lewis, A.; McIntyre, A.; Minchin, S.;
Phillips, C. Digital earth australia – unlocking new value from earth observation data. Big Earth Data 2017,
1, 64–74. [CrossRef]

10. Veci, L.; Lu, J.; Foumelis, M.; Engdahl, M. Esa’s multi-mission sentinel-1 toolbox. In Proceedings of the EGU,
Vienna, Austria, 23–28 April 2017.

11. Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 system capabilities and applications.
In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada,
13–18 July 2014; pp. 1457–1460.

12. Ariza-Porras, C.; Bravo, G.; Villamizar, M.; Moreno, A.; Castro, H.; Galindo, G.; Cabera, E.; Valbuena, S.;
Lozano, P. Cdcol: A geoscience data cube that meets colombian needs. In Proceedings of the Colombian
Conference on Computing, Cali, Colombia, 19–22 September 2017; Springer International Publishing:
Cham, Switzerland, 2017; pp. 87–99.

13. Baumann, P.; Rossi, A.P.; Bell, B.; Clements, O.; Evans, B.; Hoenig, H.; Hogan, P.; Kakaletris, G.; Koltsida, P.;
Mantovani, S.; et al. Fostering cross-disciplinary earth science through datacube analytics. In Earth
Observation Open Science and Innovation; Mathieu, P.-P., Aubrecht, C., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 91–119.

14. Kreiser, Z.; Killough, B.; Rizvi, S.R. Water across synthetic aperture radar data (wasard): Sar water body
classification for the open data cube. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience
and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 437–440.

15. CEOS. Analysis Ready Data for Land: Normalized Radar Backscatter; CEOS: Reston, VA, USA, 14 December 2018.
16. Small, D. Flattening gamma: Radiometric terrain correction for sar imagery. IEEE Trans. Geosci. Remote Sens.

2011, 49, 3081–3093. [CrossRef]
17. Wicks, D.; Jones, T.; Rossi, C. Testing the interoperability of sentinel 1 analysis ready data over the united

kingdom. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018; pp. 8655–8658.

18. Giuliani, G.; Chatenoux, B.; Honeck, E.; Richard, J.-P. Towards sentinel-2 analysis ready data: A swiss data
cube perspective. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018.

19. Killough, B. Overview of the open data cube initiative. In Proceedings of the IEEE International Geoscience
and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8629–8632.

20. Frau, L.; Rizvi, S.R.; Chatenoux, B.; Poussin, C.; Richard, J.; Giuliani, G. Snow observations from space:
An approach to map snow cover from three decades of landsat imagery across switzerland. In Proceedings
of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018;
pp. 8663–8666.

21. Small, D.; Miranda, N.; Ewen, T.; Jonas, T. Reliably flattened backscatter for wet snow mapping from wide-swath
sensors. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013.

22. Rüetschi, M.; Schaepman, M.E.; Small, D. Using multitemporal sentinel-1 c-band backscatter to monitor
phenology and classify deciduous and coniferous forests in northern switzerland. Remote Sens. 2017, 10.

23. Rüetschi, M.; Small, D.; Waser, L. Rapid detection of windthrows using sentinel-1 c-band sar data. Remote Sens.
2019, 11.

24. Howell, S.E.L.; Small, D.; Rohner, C.; Mahmud, M.S.; Yackel, J.J.; Brady, M. Estimating melt onset over
arctic sea ice from time series multi-sensor sentinel-1 and radarsat-2 backscatter. Remote Sens. Environ. 2019,
229, 48–59. [CrossRef]

108



Data 2019, 4, 93

25. Truckenbrodt, J.; Cremer, F.; Baris, I.; Eberle, J. Pyrosar: A framework for large-scale sar satellite data
proessing. In Proceedings of the Big Data from Space, Munich, Germany, 19–20 February 2019; Soille, P.,
Loekken, S., Albani, S., Eds.; Publications Office of the European Union: Munich, Germany, 2019; pp. 197–200.
[CrossRef]

26. Truckenbrodt, J.; Baris, I.; Cremer, F.; Kidd, R. Pyrosar Version 0.9.1 Online Documentation. Available online:
https://pyrosar.readthedocs.io/en/v0.9.1/ (accessed on 5 July 2019).

27. Truckenbrodt, J.; Baris, I.; Cremer, F. Spatialist: A Python Module for Spatial Data Handling. Available online:
https://github.com/johntruckenbrodt/spatialist (accessed on 9 April 2019).

28. ESA. Snap—Esa Sentinel Application Platform. Available online: http://step.esa.int/ (accessed on 9 April 2019).
29. Gamma Remote Sensing. Gamma Software. Available online: https://www.gamma-rs.ch/ (accessed on

9 April 2019).
30. GDAL/OGR Contributors. Gdal/ogr Geospatial Data Abstraction Software Library. Available online:

http://gdal.org (accessed on 9 April 2019).
31. Barrilero, O.; Peters, M.; Cara, C.; Veci, L.; Engdahl, M.; Ramoino, F.; Volden, E. Evolutions and roadmap

of snap and the sentinel toolboxes. In Proceedings of the ESA Living Planet Symposium, Milan, Italy,
13–17 May 2019.

32. Kluyver, T.; Ragan-Kelley, B.; Perez, F.; Granger, B.; Brussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.;
Grout, J.; Corlay, S.; et al. Jupyter notebooks—A publishing format for reproducible computational workflows.
In Proceedings of the International Conference on Electronic Publishing, Göttingen, Germany, 7–9 June 2016.

33. van der Walt, S.; Colbert, S.C.; Varoquaux, G. The numpy array: A structure for efficient numerical
computation. Comput. Sci. Eng. 2011, 13, 22–30. [CrossRef]

34. Hunter, J.D. Matplotlib: A 2d graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [CrossRef]
35. Jones, E.; Oliphant, T.; Peterson, P. Scipy: Open Source Scientific Tools for Python. Available online:

http://www.scipy.org/ (accessed on 14 April 2019).
36. Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.;

Price-Whelan, A.M.; Kerzendorf, W.E.; et al. Astropy: A community python package for astronomy.
Astron. Astrophys. 2013, 558, A33.

37. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

38. Reuter, H.I.; Nelson, A.; Jarvis, A. An evaluation of void-filling interpolation methods for srtm data. Int. J.
Geogr. Inf. Sci. 2007, 21, 983–1008. [CrossRef]

39. Slater, J.A.; Garvey, G.; Johnston, C.; Haase, J.; Heady, B.; Kroenung, G.; Little, J. The srtm data “finishing”
process and products. Photogramm. Eng. Remote Sens. 2006, 72, 237–247. [CrossRef]

40. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.;
Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [CrossRef]

41. JAXA. Alos Global Digital Surface Model (DSM) Product Description; JAXA: Tokyo, Japan, April 2019.
42. DLR. Tandem-x Ground Segment Dem Products Specification Document; DLR: Cologne, Germany, 7 May 2018.
43. Wegmüller, U.; Werner, C.; Magnard, C. Geocode_Back; Gamma Diff&Geo: Reference Manual; Guemligen, Switzerland,

1 December 2017.
44. Miranda, N.; Hajduch, G. Masking "no-value" Pixels on Grd Products Generated by the Sentinel-1 Esa Ipf ; CLS:

New York, NY, USA, 29 January 2018.
45. Visvalingam, M.; Whyatt, J.D. Line generalisation by repeated elimination of points. Cartogr. J. 1993, 30, 46–51.

[CrossRef]
46. Meier, E.; Frei, U.; Nüesch, D. Precise terrain corrected geocoded images. In Sar Geocoding: Data and Systems;

Schreier, G., Ed.; Herbert Wichmann Verlag GmbH: Karlsruhe, Germany, 1993.
47. Büttner, G.; Kosztra, B.; Soukup, T.; Sousa, A.; Langanke, T. Clc2018 Technical Guidelines; European

Environment Agency: Copenhagen, Denmark, 25 October 2017.

109



Data 2019, 4, 93

48. Schmitt, A.; Wendleder, A.; Hinz, S. The kennaugh element framework for multi-scale, multi-polarized,
multi-temporal and multi-frequency sar image preparation. ISPRS J. Photogramm. Remote Sens. 2015,
102, 122–139. [CrossRef]

49. Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity
of sentinel-1 backscatter to vegetation dynamics: An austrian case study. Remote Sens. 2018, 10, 1396.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

110



data

Article

Building a SAR-Enabled Data Cube Capability in
Australia Using SAR Analysis Ready Data

Catherine Ticehurst 1,*, Zheng-Shu Zhou 2, Eric Lehmann 3, Fang Yuan 4, Medhavy Thankappan 4,

Ake Rosenqvist 5, Ben Lewis 4 and Matt Paget 1

1 Commonwealth Scientific and Industrial Research Organisation (CSIRO) Land & Water,
Canberra ACT 2601, Australia

2 CSIRO Data61, Floreat WA 6014, Australia
3 CSIRO Data61, Canberra ACT 2601, Australia
4 Geoscience Australia, GPO Box 378, Canberra ACT 2601, Australia
5 solo Earth Observation (soloEO), Tokyo 104-0054, Japan
* Correspondence: Catherine.Ticehurst@csiro.au

Received: 28 May 2019; Accepted: 12 July 2019; Published: 15 July 2019

Abstract: A research alliance between the Commonwealth Scientific and Industrial Research
Organization and Geoscience Australia was established in relation to Digital Earth Australia, to develop
a Synthetic Aperture Radar (SAR)-enabled Data Cube capability for Australia. This project has been
developing SAR analysis ready data (ARD) products, including normalized radar backscatter
(gamma nought, γ0), eigenvector-based dual-polarization decomposition and interferometric
coherence, all generated from the European Space Agency (ESA) Sentinel-1 interferometric wide
swath mode data available on the Copernicus Australasia Regional Data Hub. These are produced
using the open source ESA SNAP toolbox. The processing workflows are described, along with a
comparison of the γ0 backscatter and interferometric coherence ARD produced using SNAP and the
proprietary software GAMMA. This comparison also evaluates the effects on γ0 backscatter due to
variations related to: Near- and far-range look angles; SNAP’s default Shuttle Radar Topography
Mission (SRTM) DEM and a refined Australia-wide DEM; as well as terrain. The agreement between
SNAP and GAMMA is generally good, but also presents some systematic geometric and radiometric
differences. The difference between SNAP’s default SRTM DEM and the refined DEM showed a
small geometric shift along the radar view direction. The systematic geometric and radiometric
issues detected can however be expected to have negligible effects on analysis, provided products
from the two processors and two DEMs are used separately and not mixed within the same analysis.
The results lead to the conclusion that the SNAP toolbox is suitable for producing the Sentinel-1
ARD products.

Keywords: Sentinel-1; Synthetic Aperture Radar; Data Cube; dual-polarimetric decomposition;
interferometric coherence; Digital Earth Australia

1. Introduction

1.1. Background

Synthetic Aperture Radar (SAR) data have been shown to provide different and complementary
information to the more common optical remote sensing data. Radar backscatter response is a function
of topography, land cover structure, orientation, and moisture characteristics—including vegetation
biomass—and the radar signal is able to penetrate clouds, providing information about the earth’s
surface where optical sensors cannot. Despite these advantages, it is not used as extensively or
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operationally as optical data. Reasons for this have included the traditionally high cost of SAR data
acquisition and the relatively complex and specialized processing methods [1].

The release of freely available European Copernicus programme data, especially the routinely
acquired global coverage of Sentinel-1 SAR data, has opened up opportunities for greater exploration
and application of SAR data globally. The Sentinel-1A and 1B SAR satellites have been operating
since 2014 and 2016 respectively, and have been building up an archive of dual polarized C-band
data, including extensive, wall-to-wall acquisitions over Australia since December 2016 at the spatial
resolution of ~3 m × 22 m in the default acquisition mode of interferometric wide (IW) swath [2].

Digital Earth Australia (DEA) is an analysis platform for observations of all forms [3], but particularly
those captured from satellites which have unique potential and pose particular challenges for their full
exploitation. DEA uses images and information recorded by satellites orbiting our planet to detect
physical changes across Australia. DEA was originally built upon the extensive Landsat archive
processed into an analysis ready data (ARD) product (including atmospheric correction to surface
reflectance, co-registration, and associated cloud/cloud shadow masks), and is being developed to
feature other satellite datasets including SAR. A research alliance between the Commonwealth Scientific
and Industrial Research Organization (CSIRO) and Geoscience Australia (GA) was established to
develop SAR capability for DEA (referred to as the Australian SAR Data Cube project).

GA and the CSIRO are also both partners in the Open Data Cube (ODC) initiative, in which
ODC platforms [4] aim to enable easier access to satellite ARD, as they remove the need for the user
to pre-process Earth observation datasets, and provide access to archived remotely sensed data in a
format ready for use. The definition of ARD with respect to SAR data is being actively developed
through the Committee on Earth Observation Satellites (CEOS) analysis ready data for land (CARD4L)
framework [5]. The Australian SAR Data Cube project has been utilizing this information in developing
SAR ARD products for Australia, which currently include radar backscatter (gamma nought, γ0),
eigenvector-based dual-polarization decomposition and interferometric coherence, all generated from
the Sentinel-1 IW swath mode data available through the Copernicus Australasia Regional Data
Hub [6]. These three products have been selected since their processing methods are relatively well
advanced, and they have already been used for environmental and agricultural applications within
Australia [7,8]. Another reason for the selection of these three SAR ARD products for Australia is due
to the availability of the dual-polarized Sentinel-1 SAR imagery by the European Space Agency (ESA).

The processing workflows for producing these SAR ARD products make use of ESA’s free
Sentinel-1 Toolbox within the Sentinel Application Platform (SNAP). SNAP is an open source platform,
allowing easy access and sharing of processing workflows with the capability of batch processing
through its graph processing tool (GPT). To evaluate the performance of SNAP for producing SAR
ARD products, selected scenes are also processed to radar backscatter and interferometric coherence
using the proprietary software GAMMA [9] for comparison.

This manuscript first describes the three SAR ARD products being developed for the Australian
SAR Data Cube project and the applications they have been used for, with particular emphasis on
Sentinel-1. It then details the workflows used to produce the SAR ARD products using the SNAP
toolbox and gives an example of how the three selected products provide complementary information
about the landscape. We then evaluate the outputs from the SNAP toolbox and compare them to
outputs from the proprietary GAMMA software.

1.2. SAR ARD Products

The Australian SAR ARD products are currently produced using Sentinel-1 data in IW swath
mode, which has been acquired systematically since October 2014 (for Sentinel-1A). It covers a swath of
250 km at a spatial resolution of ~3 m × 22 m (single look complex–SLC), or 20 m × 22 m for its ground
range detected (GRD) high resolution class (HR) sampled to 10 m × 10 m, allowing regional coverage
at a pixel size compatible with optical sensors such as the Landsat data series. Each Sentinel-1 satellite
carries a dual polarization C-band SAR sensor (i.e., switchable H or V transmitter and parallel H and V
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receivers). Over land it is typically configured to acquire VH (vertical transmit–horizontal receive)
and VV (vertical transmit–vertical receive) polarizations in IW mode [2]. Sentinel-1A in conjunction
with Sentinel-1B have been routinely acquiring the dual-polarimetric IW products across the whole of
Australia every 12 days since December 2016.

The SAR ARD products being developed for an Australian SAR data cube are normalized radar
backscatter, dual-polarization decomposition, and interferometric coherence. These products are
currently being tested for integration into the DEA data cube (which is part of the ODC initiative),
which involves indexing of the products and retaining relevant metadata information to meet CARD4L
standards. The normalized radar backscatter is the most widely used, however there are advantages to
including the dual-polarization decomposition and interferometric coherence in a range of applications.
These will be demonstrated in the following sections, based on information available in the literature,
as well as an example of some SAR ARD data for Australia.

1.2.1. Radar Backscatter

Radar backscatter is the most widely used of the SAR products due to it being the simplest to
produce and understand. It typically gives the proportion of radar signal backscattered to the receiver
as amplitude (or intensity). Radar backscatter is dependent on the characteristics of the surface it is
interacting with including its dielectric properties, orientation, and structure [10].

Applications based on SAR backscatter have appeared extensively for decades including a range
of applications such as mangrove monitoring [11], forest biomass [12], and flood extent mapping [13,14].
However, the availability of free SAR archive data has increased the use of SAR for multi-temporal
analysis, often improving results compared to single-date scenes [8]. Multi-temporal Sentinel-1 SAR
can be used to identify patches of deforestation based on the detection of radar shadows from two
viewing angles (using Sentinel-1 in ascending and descending mode) [15]. It has also been used to
map fire scars in areas where persistent cloud-cover hampered efforts with optical remote sensing
technology [16], as well as for the identification of irrigated agriculture [17].

1.2.2. Dual-Polarimetric Decomposition

For a fully polarimetric SAR system, quad-polarimetric decompositions enable the scattering
mechanisms to be extracted as a single scattering matrix from the averaged Mueller matrix, decomposed
into the sum of elementary matrices from the coherent scattering matrix, or characterized into
physical scattering mechanisms by eigenvector-based decompositions of the coherency or covariance
matrix [18]. These methods are used to distinguish land cover types exhibiting different scattering
behaviors. Since the default imaging mode (IW) of Sentinel-1 works with selectable dual polarization,
the quad-polarizations are not available. However, eigenvector-based dual-polarimetric decomposition
can be applied to characterize the behavior of the scatterers to a certain extent, resulting in entropy,
anisotropy, and alpha parameters [19].

This information is useful in applications such as land cover classification and change detection
analysis. Zhou et al. [8] demonstrate how including the dual-polarimetric decomposition bands
(entropy, anisotropy, and alpha) along with the normalized radar backscatter of multi-temporal
Sentinel-1 data improves the discrimination of dryland crop type in the Wheatbelt of Victoria, Australia,
as well as detecting the growth stage of an irrigated rice region in New South Wales. Cloude [19]
demonstrates the ability of entropy/alpha in discriminating forest from non-forest, and in highlighting
the complex scattering behavior of urban environments.

1.2.3. Multi-Temporal Coherence

Multi-temporal (or interferometric) coherence is a by-product when generating interferograms for
applications such as deformation monitoring. However interferometric coherence can also be useful for
determining whether the scattering properties of a surface change through time. This can be related to
land-cover change or vegetation growth. The coherence between two images reduces over time as the
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land surface changes, which is more pronounced for the shorter wavelengths (such as C-band). This is
particularly so for vegetation cover. However, objects that do not change through time (or change
very slowly) can have a high coherence value between two multi-temporal images. In particular,
buildings or bare ground (with constant soil moisture) can have a high coherence compared to their
surroundings [20]. Sentinel-1 interferometric coherence is of interest to the ESA as demonstrated
through the SINCOHMAP project [21], which is developing methods for land cover and vegetation
mapping. Tamm et al. [22] found it was feasible to use Sentinel-1 12-day repeat pass interferometric
coherence for identifying the dates that grasslands have been mown. However ploughed fields and
remnant grass created confusion. One of the challenges of using interferometric coherence is that
precipitation can cause temporal decorrelation [22].

2. SNAP Graph Processing Tool Workflow

2.1. SNAP Processing

The code developed in the SAR data cube project comprises a collection of shell scripts and
python code to enable batch processing of the SNAP graph processing tool (GPT) XML files [23].
To produce a SAR ARD product, the list of available Sentinel-1 files is first extracted through the
Sentinel Australasia Regional Access (SARA) portal [24]. SARA’s web API allows queries based on
area of interest, date range, Sentinel-1 level-1 data type (GRD or SLC), and sensor mode (in this case
IW is used). The GPT executable is then run using the GPT graph XML files on the list of Sentinel-1
zip files. This process is currently run on the Australian National Computational Infrastructure [25],
the same facility hosting SARA, so no data transfer is required for Sentinel-1 level-1 data access.

While each SAR ARD product requires its own processing workflow, some common steps and
parameters are used for all. For IW mode, Sentinel-1 acquires data in three sub-swaths (and numerous
bursts that are synchronized between passes) using the TOPSAR (terrain observation with progressive
scans SAR) method [26]. To form a complete image from the SLC data, each sub-swath needs to be
processed, including ‘debursting’ to remove the gaps between each burst, and then merged together [2].
Precise orbit file correction is applied to each SAR ARD product to ensure best geo-positional accuracy.
All SAR ARD products are geometrically corrected using the ‘SRTM 1Sec HGT’ option available in the
SNAP toolbox, which is automatically downloaded within the processing, or using the pre-downloaded
and/or refined SRTM 1 arc-second DEM as a local DEM. The Australian Albers equal area projection was
selected for the SAR ARDs, ensuring interoperability with the extensively used Landsat ARD products
in DEA. An output pixel size of 25 m × 25 m is used for compatibility with the DEA Landsat series.
The current output format is the BEAM-DIMAP flat binary image file format, as it is the native output
by SNAP. However, GeoTIFF image file format, with internal compressed tiling enabled, is preferred
as it improves compatibility with other software tools and improves performance (e.g., windowed
reading). Conversion from BEAM-DIMAP to compressed GeoTIFF file format is performed after the
initial SAR ARD product is created.

Each SAR ARD workflow is now described in more detail as it is processed in SNAP. Each of
the processing steps, as built in the SNAP graph builder tool, is shown in Figure 1. All processing
parameters are left as their default option unless specified.
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Figure 1. Workflows in the SNAP graph builder tool for producing Synthetic Aperture Radar
(SAR) anlysis ready data (ARD) products (a) gamma nought radar backscatter, (b) dual-polarimetric
decomposition, (c) interferometric coherence.

The normalized radar backscatter ARD is gamma nought (γ0) as recommended in the CARD4L
report [27], since it accounts for topographic variation better than the more traditional sigma naught
(σ◦) [28]. This ARD is generated from the ESA’s Sentinel-1 GRD product, rather than the SLC product,
to save on processing time since debursting and multi-looking have already been applied [29]. It requires
removal of border noise along the edge of some scenes, where the ‘borderLimit’ is set to 800 pixels,
and the ‘trimThreshold’ to 10.0, to correct for some of the early Sentinel-1 scenes that had a wide strip of
border noise with relatively high intensity values. Thermal noise removal is applied, before the image
is calibrated to γ0 backscatter. Radiometric terrain flattening is then applied using the ‘SRTM 1Sec
HGT’ product available in SNAP, followed by the range Doppler terrain correction to orthorectify the
image. The local incidence angle image is also output to meet CARD4L recommendations. No speckle
filtering is applied to the radar backscatter SAR ARD product, as the type and parameters for speckle
filtering (if one is required) is determined by its application.

The dual-polarization decomposition SAR ARD is generated from ESA’s Sentinel-1 SLC product.
The image is calibrated, but kept in complex format, and then deburst. The improved Lee Sigma filter
is applied as it results in a smoother output image, before the H-alpha dual-polarization decomposition
step to generate the alpha, anisotropy, and entropy bands. Each band is then multi-looked to create
square pixels, before range Doppler terrain correction to orthorectify the image.

Processing the Sentinel-1 data into an interferometric coherence product first requires the matching
of suitable interferometric scene pairs. For the interferometric coherence ARD product, scenes are
considered as a suitable pair for processing if they have the same relative orbit number, and their
acquisitions are a maximum of 12 days apart. Once the image pairs are defined and precise orbit
correction applied, radiometric calibration is applied, followed by back-geocoding to each sub-swath
before an interferogram is generated. The window size used for estimating coherence when generating
the interferogram is set at 30 pixels in the range direction, and 9 pixels in azimuth, to produce a
smoother output image. The flat-earth (reference) phase is subtracted in this step to remove the effects
of the earth’s curvature. The sub-swaths are then deburst and merged into a single image, followed by
multi-looking and range Doppler terrain correction to orthorectify the image.

115



Data 2019, 4, 100

The batch processing of Sentinel-1 data to ARD for backscatter, dual-polarimetric decomposition,
and interferometric coherence has been automated for execution on the Raijin super-computer at the
National Computational Infrastructure (NCI, http://nci.org.au/). The code used to process the Sentinel-1
data on the NCI is available on the GitHub: https://github.com/opendatacube/radar. One complication
of running the processing on high-performance facilities at the NCI is that the compute nodes do not
have an external network interface. In the SNAP processing sequences discussed above, this creates
issues when some of the steps are set to automatically download data from the ESA servers. This mainly
applies to the apply-orbit-file, terrain-correction and back-geocoding steps, which require access to
external orbit files or tiles of digital elevation model (DEM) data. To circumvent this issue, the necessary
files of external data are pre-downloaded to the NCI file system prior to processing, and the SNAP
workflow is made to use these files during execution.

Python code is used to submit jobs to Raijin to process the Sentinel-1 files as per the user’s
specifications (date range, spatial extents, etc.). Processing of the XML workflow using the GPT occurs
in a multi-threaded way, allowing each job to be executed on multiple computer processing units
(CPUs). Typical processing times (‘walltime’, using 8 CPUs) required by the tasks of interest are:

• Backscatter: 30–40 min per scene with typical input scene sizes of 0.5 Gb to 1 Gb.
• Dual-polarimetric decomposition: 80–85 min per scene with typical input scene sizes of 4.5 Gb.
• Interferometric coherence: 55–65 min per pair of Sentinel scenes with typical input scene sizes of

4.5 Gb.

2.2. Demonstration of SAR ARD Products

Normalized radar backscatter is often used in SAR applications, while dual-polarimetric
decomposition and interferometric coherence are less common. However, depending on the application,
there are benefits in using more than one of the ARD products. The benefits of utilizing the normalized
radar backscatter, dual-polarimetric decomposition, and interferometric coherence are shown within
the coastal zone of the Fitzroy River catchment in Western Australia.

Sentinel-1A data were processed to all three ARD products described in Section 2.1 for the Fitzroy
River catchment (Figure 2) for December 2016 to April 2017. Sentinel-2 data were also used for a
similar date (based on cloud cover) to identify land cover. The radar backscatter also had a Lee Sigma
speckle filter applied to reduce speckle effects.

Figure 2 shows the γ0 VV, γ0 VH, entropy and interferometric coherence bands for three dates,
along with a cloud-free Sentinel-2 scene. This scene shows a tidal inlet surrounded by mudflats and
coastal mangroves. The middle of the scene consists of mangroves within the intertidal zone with
larger mangroves adjacent to narrow river channels and the smaller mangroves and hypersaline areas
further inland. The eastern side of the scene is outside the intertidal zone and consists of scattered
trees among the grassland. The VH backscatter (Figure 2c) contrasts the very low backscatter of the
mudflats with the high backscatter of the mangroves along the narrow channels. The VV backscatter
(Figure 2b) shows further detail within the mudflats (blue areas along the lower-middle of the scene)
as well as over water. The entropy band (Figur 2e) provides additional information with flooded
wetlands and vegetated sand banks having a high entropy value, and the exposed non-vegetated sand
banks having a low entropy value. This contrasts with the VV backscatter which has a low backscatter
over water, but a high backscatter for the vegetated sand banks. A temporally flooded area towards the
south-east of the scene (green area in Figure 2e) is not visible at all in the radar backscatter. Figure 2f
demonstrates how the multi-temporal interferometric coherence can provide additional information in
an environment as complex as a mangrove coastal zone. The information shown in the interferometric
coherence image (Figure 2f) is very different to that available in the backscatter images (Figure 2b,c).
High interferometric coherence values are observed over the slightly elevated bare areas within the
coastal zone that aren’t subject to tidal flooding.
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Figure 2. (a) Sentinel-2 true color image for 1 April 2017; (b) VV (vertical transmit – vertical receive) gamma
nought backscatter with red-green-blue (RGB) as 30 Dec 2016, 11 January 2017, and 23 January 2017; (c) VH
(vertical transmit – horizontal receive) gamma nought backscatter with RGB dates same as (b); (d) location
of lower Fitzroy River catchment; (e) entropy band with RGB dates same as (b); (f) VV interferometric
coherence with RGB as 18–30 December 2016, 30 December 2016–11 January 2017, 11–23 January 2017.

3. Assessment of Suitability of SNAP Toolbox for Australian SAR Data Cube Applications

To test how robust the proposed method of producing Sentinel-1 SAR ARD data is, an evaluation
was done comparing the proposed workflow (SNAP toolbox and its default SRTM DEM from NASA’s
Shuttle Radar Topography Mission [30]) to some of the best available options (proprietary GAMMA
software and a refined DEM). The SNAP toolbox has the advantage in that it is open source with a
relatively simple processing workflow, while the proprietary GAMMA software is widely used for
specialized SAR processing. The standard SRTM DEM available in the SNAP toolbox is openly available
and automatically downloaded during the processing workflow, however the refined DEM [31] is a
refined version of the SRTM DEM with Australia-wide coverage. The refined DEM has void filling,
vegetation removal, and smoothing applied to reduce noise associated with low relief areas. The aims
of these comparisons were to:

- Test how well the SNAP processing software compares to the proprietary GAMMA software
(often considered to be one of the most reputable and industry best SAR software) when producing
Sentinel-1 γ0 backscatter.

- Compare how the standard SRTM DEM available in the SNAP processing software (referred
to as the SRTM_DEM) and the refined, Australia-wide DEM (referred to as the GA_DEM [31])
influence γ0 backscatter.

- Compare γ0 backscatter from SNAP and GAMMA in an area of relatively steep topography and
an area of relatively flat terrain.

- Compare the effects of look angle from a far-range and near-range image over the same area on
the Sentinel-1 γ0 backscatter.

- Evaluate the absolute geometric accuracy of the γ0 images based on the location of a corner
reflector within a scene.

- Compare the interferometric coherence ARD product generated from SNAP to the one generated
from GAMMA.

Two study sites used for these comparisons are:
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- Lake Eucumbene (Figure 3a), an area in the alpine region of southeast Australia containing
relatively steep topography (height differences of ~1120 to 1550 m AHD) where the orbit paths
overlap to give a near- and far-range image; and

- The Surat Basin (Figure 3b), a topographically flat (height differences of ~320 to 480 m AHD)
dryland agricultural area in eastern Australia. This site is also used for radiometric and geometric
calibration of SAR satellites including the Sentinel-1 constellation, through a permanent corner
reflector array deployed there [32].

Figure 3. Location of Sentinel-1 images for (a) Lake Eucumbene far range (1) and near range (2),
(b) Surat Basin for descending (3) and ascending mode (4).

The Sentinel-1 images processed to γ0 backscatter for these two study sites are shown in Table 1.
Two Sentinel-1 image pairs were used for generating the interferometric coherence (shown in Table 2).
The processing steps and parameters used in the GAMMA software were selected to be the same
as those in SNAP. There may however be slight differences due to the internal settings for some
functions, which are not visible to the user. Note that a comparison could not be performed for the
dual-polarimetric decomposition method, as it is only available within SNAP, not GAMMA.

The assessment is divided into four sections: Comparison of the γ0 image from the SNAP toolbox
and GAMMA software; comparison of the γ0 image from the SRTM_DEM and GA_DEM; comparison
of the γ0 image from the near range and far range; and comparison of the interferometric coherence
image from the SNAP toolbox and GAMMA software. These sections evaluate the radiometric and
geometric consistencies of the different software, DEMs, and viewing angles. Note that all Sentinel-1
scenes are VV, with the exception of a scene in the Surat Basin, which is HH. This is a Sentinel-1B scene
in ascending mode, which was selected to assess the γ0 image’s absolute geometric accuracy due to
the availability of an accurately characterized corner reflector within this scene [32].
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3.1. Comparison of SNAP and GAMMA Output for Radar Backscatter

GAMMA and SNAP software were used to produce radiometrically terrain corrected Sentinel-1
γ0 backscatter products for Lake Eucumbene and Surat Basin study sites, both using the same input
parameters and the same DEM (the refined GA_DEM). Figure 4 shows the γ0 backscatter output
for Lake Eucumbene from the far-range (top row) and near-range (middle row) images, as well as
the Surat Basin (bottom two rows with HH along the bottom row) as produced from the GAMMA
software and SNAP toolbox. The first column of Figure 4 shows the γ0 images from GAMMA in the
red band and SNAP in the blue/green bands (i.e., cyan). The grey color of these images illustrates
there is generally similar radiometric and geometric agreement between the GAMMA and SNAP γ0

backscatter products. The middle column of Figure 4 shows the GAMMA minus SNAP difference
images. The geometric features visible in the difference images indicate systematic (rather than random)
differences in image geometry. These differences are most prominent in areas with steep terrain and
layover/radar shadowing effects (as illustrated in the GAMMA–SNAP difference images of Figure 4b,f),
with shifts of 3–4 pixels detected. In terrain with moderate topography displacements in the order
of 1–2 pixels were observed. In both cases the directions of the displacements furthermore differ
systematically depending on the slope aspects relative to the radar, indicating different radiometric
terrain correction approaches between GAMMA and SNAP. On slopes facing away from the radar
a backscatter difference of 0.1 to 0.4 dB (with GAMMA values greater than SNAP) was observed
compared to no detectable difference on the sides facing the radar. The magnitude of the effect was
larger in the far-range image pair. The open farmlands to the east of Lake Eucumbene have backscatter
intensity values within 0.1 dB. The flat agriculture areas of the Surat Basin study site show good
agreement, with minor differences over vegetated areas (Figure 4m).

Figure 4c,g show a close up of the near range and far-range images respectively, including part
of the lake. This area contains relatively steep terrain leading to the water’s edge. Most of this
area shows good radiometric and geometric agreement, except along small sections of the water’s
edge where SNAP γ0 backscatter values are higher (showing in cyan tones). The near-range image
in Figure 4g includes minor differences where γ0 backscatter from GAMMA is higher than from
SNAP (red tones). This occurs within a forested area adjacent to the banks of the lake. In flat open
farmland, isolated buildings act as point scatterers as seen in the far range and near range (Figure 4d,h
respectively), illustrating a small but systematic geometric difference between the GAMMA and SNAP
outputs of less than one pixel in the north-south (azimuth) direction.

In the descending image over the Surat Basin study site (Figure 4i), small systematic differences
between the GAMMA and SNAP γ0 backscatter values are visible (Figure 4j). A close-up of a local dam
and forest areas (Figure 4k) show no visible difference. The ascending image (HH polarization) over the
Surat Basin study site (Figure 4l) shows minor differences (Figure 4m) particularly along the vegetated
river bank. A close-up of the corner reflector in Figure 4n shows that the geometric difference between the
GAMMA and SNAP scenes is approximately one pixel in the east-west (range) direction. The absolute
geometric accuracy of the γ0 HH image agrees to 0.8 arc-second (which is within a Sentinel-1 pixel) when
compared to the coordinates of the corner reflector for both GAMMA and SNAP.

The frequency histograms of the backscatter intensity values (in dB) from Figure 4 are shown in
Figure 5: For Lake Eucumbene for far range (Figure 5a), near range (Figure 5b), and the Surat Basin
study site descending (Figure 5c) and ascending (Figure 5d) both of which have a mid-range look
angle. Overall the results are similar, however the GAMMA output (red line) has a lower number
of mid-range backscatter intensity pixels (~ −15 to −10 dB) compared to the SNAP output products
(blue line). This effect occurs irrespective of radar look angle, however the differences are lower in the
Surat Basin images (Figure 5c,d).
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Figure 4. Gamma nought comparisons of GAMMA and SNAP (a) Lake Eucumbene far range
(red = GAMMA with GA_DEM, cyan = SNAP with GA_DEM); (b) GAMMA minus SNAP difference
image of (a); (c) close up of (a); (d) close up of (a); (e) Lake Eucumbene near range (red = GAMMA
with GA_DEM, cyan = SNAP with GA_DEM); (f) GAMMA minus SNAP difference image of (e); (g)
close up of (e); (h) close up of (e); (i) Surat Basin descending (red = GAMMA with GA_DEM, cyan =
SNAP with GA_DEM); (j) GAMMA minus SNAP difference of (i); (k) close up of (i); (l) Surat Basin
ascending (red = GAMMA with GA_DEM, cyan = SNAP with GA_DEM); (m) GAMMA minus SNAP
difference of (l); (n) close up of (l). Note: all GAMMA minus SNAP difference images are stretched to
the same grey-scale range: −0.3 to 0.3 intensity.
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Figure 5. Frequency histograms of backscatter intensity (in dB) from the GAMMA and SNAP gamma
nought images for Lake Eucumbene Sentinel-1 study site (a) far range, (b) near range, and Surat Basin
study sites (c) descending and (d) ascending (HH).

The GAMMA–SNAP difference images (middle column of Figure 4) have low mean absolute
values varying from 0.013 × 10−3 to 1.3 × 10−3 intensity, with the SNAP image lower than the GAMMA
processed image except for the near-range image of Lake Eucumbene (Table 3). (Note that a small
number of pixels (<0.005%) behaved as strong point scatterers resulting in very high backscatter intensity
values. These were masked as they incorrectly influenced overall image statistics). The standard
deviation of the difference image is lowest for the Surat Basin study site in descending mode and
highest for the far-range difference image of Lake Eucumbene.

Table 3. Mean and standard deviations (as intensity) of gamma nought difference images from the
GAMMA and SNAP comparisons for Lake Eucumbene and Surat Basin study sites.

Comparison Study Site Look Angle Mean Standard Deviation

GAMMA–SNAP

Lake Eucumbene Far range −0.2 × 10−3 0.04
Lake Eucumbene Near range 1.3 × 10−3 0.03

Surat Mid range −0.01 × 10−3 0.01
Surat HH Mid range −0.13 × 10−3 0.03

3.2. Comparison of SNAP Output Using SRTM_DEM and GA_DEM for Radar Backscatter

SNAP software was used to produce Sentinel-1 γ0 images using the SRTM_DEM and GA_DEM
for Lake Eucumbene and Surat Basin study sites; all used the same input parameters except for the
DEMs. Figure 6 shows the γ0 backscatter output for Lake Eucumbene from the far-range (top row) and
near-range (middle row) images, as well as the Surat Basin site (bottom two rows with HH along the
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bottom row) as produced from the SNAP toolbox with the different DEMs. The first column of Figure 6
shows the γ0 images produced using the SRTM_DEM in the red band and using the GA_DEM in the
blue/green bands (i.e., cyan). The grey colour of these images illustrate similar γ0 backscatter products,
both in radiometric and geometric quality. The middle column of Figure 6 shows the difference images
as produced from SNAP using the SRTM_DEM and GA_DEM. The relief patterns visible in Figure 6b,f
illustrate a systematic shift between the two DEMs of 1–2 pixels in the east–west (range) direction and
0.5–1 pixels in the north–south (azimuth) direction within the moderate and steep terrain. Across the
lake surface and immediate shorelines, the two DEMs are identical and consequently, there are no
observable differences in backscatter.

Figure 6. Gamma nought comparisons of SRTM_DEM and GA_DEM (a) Lake Eucumbene Far range
(red = SNAP with SRTM_DEM, cyan = SNAP with GA_DEM); (b) SNAP SRTM_DEM minus GA_DEM
difference image of (a); (c) close up of (a); (d) close up of (a); (e) Lake Eucumbene near range (red = SNAP
with SRTM_DEM, cyan = SNAP with GA_DEM); (f) SNAP SRTM_DEM minus GA_DEM difference
image of (e); (g) close up of (e); (h) close up of (e); (i) Surat Basin descending (red = SNAP with
SRTM_DEM, cyan = SNAP with GA_DEM); (j) SNAP SRTM_DEM minus GA_DEM difference image
of (i); (k) close up of (i); (l) Surat Basin ascending (red = SNAP with SRTM_DEM, cyan = SNAP with
GA_DEM); (m) SNAP SRTM_DEM minus GA_DEM difference image of (l); (n) close up of (l). Note:
all SNAP SRTM_DEM minus GA_DEM difference images are stretched to the same grey-scale range:
−0.3 to 0.3 intensity.

Figure 6c,g show the same close-up view around the edge of Lake Eucumbene as Figure 4c,g.
As expected, the main difference in backscatter occurs in areas where the two DEMs are different.
This is mostly along the edge of forested areas next to the lake, where the refined GA_DEM has been
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corrected to ground level (and hence tall vegetation has been removed). As a direct effect from the
geometric displacement between the DEMs, the γ0 backscatter produced using the SRTM_DEM has
a higher backscatter intensity along the edges of the forest facing towards the radar. The close-up
view of flat open farmland near Lake Eucumbene (Figure 6d,h) shows that the geometric agreement
between the SRTM_DEM and GA_DEM are within a pixel.

For the Surat Basin study site in descending mode, the main differences occur along the edges of
forests (Figure 6k), similar to the Lake Eucumbene area. A close-up view of the corner reflector in the
ascending image (bottom-left of Figure 6n) shows the geometric difference between the SRTM_DEM
and GA_DEM is within a pixel.

The SRTM–GA DEM difference images (second column of Figure 6) have absolute mean values
close to zero, with small variations observed (0.1 × 10−3 intensity or less, Table 4) being a direct a
consequence of the geometric shift between the SRTM and GA DEMs.

Table 4. Mean and standard deviations (as intensity) of gamma nought difference images from the
SNAP toolbox from the SRTM_DEM and GA_DEM comparisons for the Lake Eucumbene and Surat
Basin study sites.

Comparison Study Site Look Angle Mean Standard Deviation

SRTM–GA DEM

Lake Eucumbene Far range 0.09 × 10−3 0.03
Lake Eucumbene Near range 0.07 × 10−3 0.04

Surat Mid range −0.1 × 10−3 0.01
Surat HH Mid range 0.08 × 10−3 0.01

3.3. Comparison of Near-Range and Far-Range Effects for Radar Backscatter

Another important factor to consider when using multi-temporal Sentinel-1 ARD products relates
to radiometric and geometric variation between the near-range and far-range images processed with
the same processor. Figure 7a shows Lake Eucumbene with far range in red and near range in
cyan, and Figure 7b shows the difference image. Differences on land appear random and caused by
actual incidence angle differences, with no systematic geometric shifts detected. The forested areas
of relatively steep terrain show higher backscatter intensity values in the far-range compared to the
near-range image. Patterns are visible on the lake (with the near range having higher backscatter
intensity values), which are caused by surface condition variations between the two acquisition dates
(an interval of 5 days). The mean and standard deviation in intensity for this difference image are
−2.5 × 10−3 and 0.07 respectively, which is a larger standard deviation than seen in the GAMMA–SNAP
and DEM comparisons. However, the geometric accuracy between the two images is within a pixel.

Figure 7. (a) Lake Eucumbene study site; (b) near range minus far range difference image of (a) (c)
flat farm land with bitumen road; (c) close-up view of Lake Eucumbene. (Colors in (a), (c) and (d)
are red = far-range gamma nought from 10 January 2019, cyan = near-range gamma nought from
15 January 2019).

Figure 7c shows a closeup of the backscatter from far-range (red) and near-range (cyan) images
for an area of relatively flat farmland. The bitumen road is easily visible in the near-range (cyan), but is
not visible in the far-range image due to the low backscatter return from specular scattering. There are

124



Data 2019, 4, 100

radiometric differences between the far-range and near-range images, most likely due to the different
look angles resulting in different interactions between the radar and land surface.

This difference has a direct impact on surface water mapping. Figure 7d shows a close-up view
of Lake Eucumbene. There is good geometric agreement between the two dates and look angles,
since the boundary between water and land match well. The blue tones within the water indicate
higher backscatter in the near range over water. This can lead to confusion when discriminating water
from non-water based on threshold values. Figure 8 shows histograms generated from multiple pairs
of near- and far-range Sentinel-1 observations, where water and non-water pixels are identified using
Landsat 8 spectral classifications (the water observations from space [33]) acquired within 5 days from
corresponding Sentinel-1 scenes. The figure illustrates consistently better separation between water
and non-water at larger look angles, regardless of variation caused by weather conditions (e.g., waves).

Figure 8. Histograms of water and non-water pixels for the near-range and far-range Sentinel-1 scenes
over Lake Eucumbene for (a) VV and (b) VH. Water pixels are identified using nearby Landsat 8
spectral classifications (see text). Four pairs of SAR images are included to show how varying weather
conditions can broaden the backscatter distributions over water but backscatter values over water are
consistently lower in the far range.

Other factors influencing the use of overlapping Sentinel-1 images relate to changes in the land
surface (e.g., soil moisture) or atmospheric effects (such as heavy rain which can influence the C-band
wavelength). In this study, we have particularly selected two pairs of data acquired in the dry season
with lower chance of meteorology impact, however these factors need to be considered when using
multi-temporal SAR ARD for environmental and agricultural applications.

3.4. Comparison of SNAP and GAMMA Output for Interferometric Coherence

GAMMA and SNAP software were used to produce Sentinel-1 interferometric coherence products
for the Lake Eucumbene and Surat Basin study sites, both using the same input parameters and the
same DEM (the SRTM_DEM). For SNAP, the method used to generate interferometric coherence is
shown in Section 2.1. The left-hand column in Figure 9 shows the two interferometric coherence images
with SNAP in red and GAMMA in cyan, with Lake Eucumbene along the top row and the Surat Basin
along the bottom. The SNAP–GAMMA coherence difference images are shown in the middle column.

For the Lake Eucumbene scene (Figure 9a), bare areas have a high coherence (white) along
the eastern side of the lake. The shoreline around the lake also has a high coherence as it is void
of vegetation. Coherence within the lake is very low due to decorrelation of water surface over
time. There is a 0.5–1 pixel shift between the SNAP and GAMMA coherence images, with the
GAMMA coherence image to the northeast of the SNAP coherence image. The greatest difference in
coherence between SNAP and GAMMA occurs in steep terrain due to this systematic pixel shift and
the effects of layover. This difference is greatest along the steep barren slopes around the edge of the
lake, possibly due to misalignment, and forested slopes along the western side of Lake Eucumbene
(Figure 9c), where gradients up to 50% result in radar shadow and layover effects.
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For the Surat Basin, bare fields have a high coherence (white), and the higher-biomass crops
have a very low coherence (Figure 9d). There is an approximate 1 pixel shift in this scene image with
the GAMMA coherence image northeast of the SNAP coherence image. This effect is visible in the
SNAP–GAMMA interferometric difference image (Figure 9e), where the greatest difference occurs
along the crop edges. The bare fields have a difference in coherence of −0.01 to −0.02 with the SNAP
coherence being lower. This difference is more variable where there is crop growth.

Figure 9. Interferometric coherence comparisons of SNAP and GAMMA (a) Lake Eucumbene
(red = SNAP, cyan = GAMMA); (b) SNAP minus GAMMA difference image of (a); (c) close up of (a);
(d) Surat Basin (red = SNAP, cyan = GAMMA); (e) SNAP minus GAMMA difference image of (d), (f)
close up of (d).

The frequency histograms of the interferometric coherence values from Figure 9 are shown in
Figure 10 for Lake Eucumbene (Figure 10a) and the Surat Basin (Figure 10b) from SNAP (blue) and
GAMMA (red). The frequency distribution of interferometric coherence values between SNAP and
GAMMA are similar, with some variation in the lower values (<0.15) for the Lake Eucumbene scene
and in the higher values (>0.6) for the Surat Basin scene.

Figure 10. Frequency histograms of interferometric coherence from images processed by GAMMA and
SNAP for (a) Lake Eucumbene study site, (b) Surat Basin study site.
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The SNAP–GAMMA coherence difference images (second column of Figure 9) have absolute
mean values of 0.003 and −0.007 for Lake Eucumbene and the Surat Basin respectively, with similar
standard deviations from both study sites (0.031 and 0.024, respectively). These minor differences may
be related to the different internal processing methods used to produce interferometric coherence in
SNAP and GAMMA, which is apparent within the cropping area where coherence changes abruptly
along crop edges, or along steep slopes.

4. Conclusions

Three SAR ARD products have been developed for the Australian SAR Data Cube project due to
their potential benefits in environmental and agricultural applications. The characteristics of the output
ARD products are designed to use freely available SAR data with processing workflows based on open
source software, in particular the Sentinel-1 SAR and the SNAP processing toolbox. The methods used
to produce the SAR ARD products with SNAP have been described along with an example of the
different information they can provide in a coastal environment.

To evaluate the quality of the SAR ARD products generated using the SNAP toolbox, they were
compared to equivalent products generated from one of the industry-best proprietary software,
GAMMA. These comparisons also investigated the effects on γ0 backscatter due to variations related
to: Near- and far-range look angles; SNAP’s default Shuttle Radar Topography Mission (SRTM) DEM
and a refined Australia-wide DEM; as well as different terrain. A comparison of the interferometric
coherence produced from SNAP and GAMMA was also performed. The GAMMA software does not
provide dual-polarimetric decomposition, at the time of writing this article, so this product comparison
could not be made.

The γ0 images are geometrically aligned to within a pixel in the evaluation images from the
near-range and far-range images of Lake Eucumbene, and the Surat Basin study site over flat
terrain. The ascending HH image of the Surat Basin study site had an absolute geometric accuracy
(0.8 arc-second) well within a Sentinel-1 pixel when compared to a well-characterized corner reflector
within the scene.

Based on the radiometric and geometric assessment, comparisons show the γ0 images produced
from the SNAP and GAMMA software packages have small but systematic differences, due to different
radiometric terrain correction algorithms, however we are unable to conclude which one is better.
These differences increase with slope with largest differences being in terrain affected by layover and
shadowing, and is also influenced by slope aspect (i.e., orientation of slope relative to the radar).
The overall difference (based on standard deviations) between the GAMMA–SNAP difference images
is larger in the far-range image compared to the near-range image.

Comparison between the γ0 images produced from SNAP using the (NASA) SRTM_DEM and
GA_DEM revealed systematic geometric displacements between the products in moderate and
steep terrain, possibly because the refined GA_DEM is corrected to the ground surface, whereas the
SRTM_DEM is a digital surface model, and hence is still influenced by the height of the trees. These small
systematic differences were most noticeable in forest areas.

Based on the results evaluated in this study, the greatest difference in the γ0 backscatter is between
the overlapping near-range and far-range images, rather than processing software or DEM.

Comparison of the interferometric coherence images from SNAP and GAMMA showed a
0.5–1 pixel shift resulting in a small difference between products most notable in areas of steep terrain
and crop edges, however overall image statistics were very similar.

Overall the geometric differences were minor, and the radiometric differences were most likely
related to different viewing geometries that are not fully corrected for in the processing. Co-registration
to a standard spatial layer would likely reduce the geometric differences between SNAP and GAMMA,
particularly in flat terrain. The results from this study indicate that the SNAP Sentinel-1 Toolbox can be
considered acceptable for processing Sentinel-1 data into ARD products, in terms of radiometric and
geometric requirements. The systematic geometric and radiometric issues detected can be expected to
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have negligible effects on analysis, provided the products from the two processors are used separately
and not mixed within the same analysis.

However, some factors still require consideration for operational applications and for scaling
to regional- and national-scale extents. Scenes are currently processed individually, so there may
be radiometric inconsistencies between overlapping swaths due to different viewing geometries.
Appropriate co-registration should be implemented in multi-temporal Sentinel-1 data processing for
better alignment. Further quantitative and multi-temporal analysis will be needed for a more accurate
assessment, particularly for different environments within the Australian landscape. Future work will
also include further testing of the SAR ARD processing workflows and development of applications
based on these products. While the code is currently designed to operate on the National Computational
Infrastructure, it is also being developed to enable processing on local computing facilities, or Amazon
web services. Integration of the radar backscatter, dual-polarimetric decomposition, and interferometic
coherence SAR ARD products into the Digital Earth Australia data cube is currently being tested.
The software developed by this project is provided as open source tools via GitHub (GitHub, 2019).
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Abstract: In earth observation and climatological sciences, data and their data services grow on a daily
basis in a large spatial extent due to the high coverage rate of satellite sensors, model calculations, but
also by continuous meteorological in situ observations. In order to reuse such data, especially data
fragments as well as their data services in a collaborative and reproducible manner by citing the origin
source, data analysts, e.g., researchers or impact modelers, need a possibility to identify the exact
version, precise time information, parameter, and names of the dataset used. A manual process would
make the citation of data fragments as a subset of an entire dataset rather complex and imprecise to
obtain. Data in climate research are in most cases multidimensional, structured grid data that can
change partially over time. The citation of such evolving content requires the approach of “dynamic
data citation”. The applied approach is based on associating queries with persistent identifiers. These
queries contain the subsetting parameters, e.g., the spatial coordinates of the desired study area or the
time frame with a start and end date, which are automatically included in the metadata of the newly
generated subset and thus represent the information about the data history, the data provenance,
which has to be established in data repository ecosystems. The Research Data Alliance Data Citation
Working Group (RDA Data Citation WG) summarized the scientific status quo as well as the state of
the art from existing citation and data management concepts and developed the scalable dynamic
data citation methodology of evolving data. The Data Centre at the Climate Change Centre Austria
(CCCA) has implemented the given recommendations and offers since 2017 an operational service
on dynamic data citation on climate scenario data. With the consciousness that the objective of this
topic brings a lot of dependencies on bibliographic citation research which is still under discussion,
the CCCA service on Dynamic Data Citation focused on the climate domain specific issues, like
characteristics of data, formats, software environment, and usage behavior. The current effort beyond
spreading made experiences will be the scalability of the implementation, e.g., towards the potential
of an Open Data Cube solution.

Keywords: dynamic data citation; subset; data curation; persistent identifier; data provenance;
metadata; versioning; query store; data sharing; FAIR principles

1. Summary

Data with a spatial reference, so-called geospatial data, e.g., on land use, demographic statistics,
geology, or air quality, are made accessible by interoperable and standardized web services. This means
that data, whether stored in a database or file-based systems, are transformed into Open Geospatial
Consortium (OGC) [1] conformal data services. These include catalog services for searching and
identifying data via their metadata, view services for visualizing information in the internet browser,
and more comprehensive services such as the Web Feature and Web Coverage Service (WCS) [2], which
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allow access to more complex data structures, such as multidimensional parameters. Data and data
services are becoming more sophisticated, more dynamic, and more complex due to their fine-grained
information and consume more and more storage space. The high dynamics of the content offered can
be explained by data updates, which take place at less and less frequent intervals, and the increasing
number of new available sensors.

According to the objective and strategy of GEO—the Group on Earth Observation [3]—even more
people, not only scientific domain experts, get access to climate, earth observation and in situ measures
to extract information on their own.

Due to increasing interoperable and technologically “simplified” data access, the citation of
newly created data derivatives and their data sources becomes essential for data analyses, such as the
intersection of different data sources. The description of entire process chains with regard to information
extraction, including the methods and algorithms applied, will become essential in the practice of
data reproducibility [4]. In order to obtain this information in a structured system, the concept of data
provenance [5,6] was defined, which describes the sequence of how data were generated.

It is common practice that behavior related to data usage goes away from downloading and using
desktop tools to web-based analysis. The Open Data Cube (ODC) [7,8] as an open source framework
for geospatial data management and effective web based data analysis for earth observation data.
There is a growing number of implementations of ODC on national and regional level. Therefore,
precise citation processes [9] should be considered in available data infrastructures.

For proper data management, data citation and evidence as robust information of data provenance
in relation to the core principles on data curation [10–12] will be relevant. Each data object should be
citable, referenceable, and verifiable regarding its creators, the exact file name, from which repositories
it originates from, as well as the last access time.

The requirements [13] for citation of data should take into account: (i) the precise identification and
time stamp of access to data, (ii) the persistence of data, and (iii) the provision of persistent identifiers
and interoperable metadata schemes that reflect the completeness of the source information. These are
the basic pillars of data citation, reflected in the Joint Declaration of Data Citation Principles [10] and
the FAIR (Findable, Accessible, Interoperable, Reusable on Data Sharing) Principles [13].

These were considered in the Research Data Alliance Data Citation Working Group (RDA Data
Citation WG) [14,15] and summarized as 14 recommendations of the document “Data Citation of
Evolving Data: Recommendations of the Working Group on Data Citation” (WGDC) [9,10]. This
outcome forms the basis for the concept of dynamic data citation. Nevertheless, there are still barriers
within the sophisticated offer on huge widespread characteristics on syntactical data formats and
scientific domain issues. The Earth Observation domain is handling data curation in different principles
than the climate model domain. Stockhause et al. [16] give a detailed overview of the evolving data
characteristics and compare the different approaches.

As a recently established research data infrastructure, the Data Centre at the Climate Change
Centre Austria (CCCA) started with a dynamic data citation pilot concept focused on NetCDF Data for
the RDA working group in 2016 and implemented completely the recommendation so that since 2017,
operational service can be provided for regional and global atmospheric datasets.

The current development efforts are scaling up techniques with the aim to extend our coverage on
existing services especially towards the objective to cover the requirements of scientific domain on
Open Earth Observation and the Open Data Cube environment and to offer the technical approach as
an extension for the domain.

The overall objective of this article was to demonstrate the technical implementation and to provide
the future potential of benefits regarding the RDA recommendations, with operational service offered
as evidence, such as sustainable storage consumption using the Query Store for the data subset, and
automatic adaptation into interoperable metadata description to keep the data provenance information.
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2. Introduction on Dynamic Data Citation

Citing datasets in an appropriate manner is agreed upon as good scientific praxis and well
established. Data citation as a collection of text snippets provides information about the creator of the
data, the title, the version, the repository, a time stamp, and a persistent identifier (PID) for persistent
data access. These citation principles can easily be applied in a data repository to static data. If only a
fragment of a dataset is requested, which is served by subset functionalities, a more or less dynamic
citation is required [9]. The consideration is to identify exactly those parts, subsets, of the data that
are actually needed for research studies or reports, even if the original data source evolves with new
versions, e.g., by corrections or revisions.

With data-driven web services, the data used are not always static, especially in collaborative
iteration and creation cycles [14]. This is particularly valid for climatological research, where different
data sources and models serve as input for new data as derivatives, e.g., climate indices like calculation
of the number of tropical nights, which is based on different climate model ensembles. From a data
quality point of view, it is preferable that such derivatives also be affected and updated automatically
by the performed correction chain. Such changes in consideration on dependencies in data creation
should be communicated as automatically as possible. A research data infrastructure should be able to
provide an environment for dynamic data. With the reproducibility of results in mind, it is essential to
be able to accurately verify a particular dataset, its exact version, or the creation of data fragments.
The reproducibility of the data fragments and their relationship to their originals is essential if data
processing has to be repeated.

Creating subsets is a common procedure for setting up needed customized data extraction for
experiments or studies. Either only specific areas of interest or only a certain time interval are needed,
but also particular information layers, such as the distribution of the mean surface temperature, can be
of interest for a further effective processing. However, it is also a known fact that the storage of subsets
created cannot scale with increasing amounts of data [8]. This implies that subsets are always copies of
the original, and redundant storage consumption is not an economical option for capacity reasons
(storage costs). The objective on considerations of the RDA—WGDC is to store only the criteria that
create the subsets as arguments in a query store. In general, these are only few kilobytes compared to
mega- to gigabytes with a subset of, e.g., Austrian climate scenarios. Such a query can be executed
again, and the subset will be created on demand for a needed use.

To ensure that the stored queries are available for long-term use, to be executed again, and created
subsets are available to other users, they are assigned to unique persistence identifiers and verification
techniques. These are the core concepts of the RDA recommendations on dynamic data citation.

With such implementation, an operator of data infrastructures or service provider has to allocate
only temporary storage for access to a subset. For the aforementioned OGC-compliant web services,
the storage plays a minor role too, as the mechanisms for the provision of data fragments are very
similar to subset services, such as browser-controlled zooming in by controlling the bounding box
parameters. However, for such web applications, the RDA recommendations provide the targeted
added value that queries are provided by a persistent identifier and thus enable delivering information
about the data origin, which is reflected in the inheritance and adaptation of metadata to newly
generated data fragments.

The 14 RDA recommendations for the creation of reproducible subsets in a context of easy
and precise identification for dynamic data is a very demanding but pragmatic guidance. The
RDA—Recommendations for the Scalable Dynamic Data Citation Methodology serves as a guideline
with technical requirements for implementation, which are underpinned with practical examples in an
understandable manner.
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The 14 RDA Recommendation on Dynamic Data Citation

The recommendations for creating reproducible subsets reflecting the results of expert discussion,
which served as a guideline on how to identify dynamic subsets from existing data sources. Short core
messages on each recommendation are given, based on Rauber et al. [14,15].

Four pillars for structuring the recommendations were identified, see Figure 1:

• Framework on preparing the data and a query store;
• Identifying specific data in a persistent manner;
• Resolving PID and retrieving data; and
• Guaranteeing modifications and adaptability for data infrastructures as well as changes in

software environments.

 
Figure 1. A structured order for the Research Data Alliance (RDA) recommendation on dynamic
data citation.

The recommendations in detail are summarized and adapted according to the implementation at
the CCCA Data Centre as listed below. More information equipped with practical examples can be
found in Rauber et al. [10].

R1—Data Versioning: Versioning ensures the former states of available datasets which can be retrieved.
This information about this version is described within the metadata and the URI, which directs to
the query store.

R2—Timestamping: Ensuring that all operations on data get timestamps is part of each data repository
or database. The timestamp is provided in metadata.

R3—Query Store Facilities: Enabling a query store is an essential building block, with queries and
associated metadata in order to enable re-execution in the future. The [UNI DATA] subset service
(NCSS) provides a catalogue of subset arguments which are prepared in URIs.

R4—Query Uniqueness: Detecting identical queries and its arguments, e.g., by a normalized form and
its comparison.

R5—Stable Sorting: Ensuring a stable sorting of the records in the dataset is unambiguous and
reproducible. Executed queries are available in a query library, and if R4—Query Uniqueness
response is a positive true result, the user has to apply still existing ones.

R6—Result Set Verification: Computing a kind of checksum generates a hash key as fixity information
on the query result to ensure the verification of the correctness of re-execution. The check sum
algorithm runs on each created subset and its execution.

R7—Query Time-stamping: A timestamp is assigned to the query, based on the last update to the
entire database.
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R8—Query PID: Each new query with a purpose of republishing is assigned a new handle identifier as
a PID.

R9—Store the Query: Storing query and all related arguments, e.g., check-sum, timestamp, superset
PID, and relation, based on R3—Query Store Facilities.

R10-Automated Citation Texts: Generating citation texts based on snippets of authors, title, date,
version and repository information. It lowers the barrier for citing and sharing the data.

R11-Landing Page: PIDs resolve to a human readable landing page that provides the data and
metadata, including the relation to the superset (PID of the data source) and citation text snippet.
The metadata are held in DCAT-AP Schema, adapted by the European Commission [17]

R12-Machine Actionability: Providing an API/machine actionable interface to access metadata and
data via the provided ckan API. The query re-execution creates a new download link which is
available for 72 h.

R13-Technology Migration: When data are migrated to a new infrastructure environment (e.g., new
database system), ensuring the migration of queries and associated fixity information.

R14-Migration Verification: Verify successful data and query migration, ensuring that queries can be
re-executed correctly.

3. Purpose of Implementation and Development Tasks

The CCCA—Data Centre operates a research data infrastructure for Austria with highly available
server cluster, storage capacity, and linked to high-performance computing facilities of the Vienna
Scientific Cluster and the Central Institute for Meteorology and Geodynamics (ZAMG), the national
weather service. The main portfolio of CCCA Services is to enable a central access point of Austrian
research institutions and the Greater Alpine Region for storing and distributing scientific data and
information in an open and interoperable manner regarding FAIR principles.

The CCCA—Data Centre developed a web-based tool for dynamic data citation. The main
motivation in 2015 was simply to have a technical solution to providing a persistent identifier and an
automatically generated citation text. At this point, the issue of what happens with evolving data and
its version concept arises. Consequently, this led to the incentive to provide proper components for an
appropriate data lifecycle and assign a dynamically persistent identifier (PID) for all associated data
derivatives. With the RDA recommendations, the approach of a query store was convincing, and an
appropriate decision base to follow this concept on identifying uniquely queries which can be executed
again when needed was created. With the CCCA—Data Centre’s task to provide large file sizes like
climate scenarios, the argumentation to reduce redundancies for the storage consumption was the
most convincing argument for the planned implementation at this time.

In cooperation with the Data Citation Working Group, a concept for a technical pilot
implementation was accompanied.

This pilot implementation on Dynamic Data Citation at the CCCA Data Centre focused on CF
standard [18] compliant NetCDF data to manage high-resolution climate scenarios for Austria in
a time range from 1965 until 2100. NetCDF is an open standard and machine-independent data
format for structured and multidimensional data. It includes attributes, dimensions, and variables.
For example, for the Austrian Climate Scenarios, calculated temperature records on daily basis are
available in 1 × 1 km gridded, geo-referenced data in multiple single files. The scenarios include
different “representative concentration pathways” (RCPs) [19], ensembles of different GCM (general
circulation models) and RCM (regional climate model) runs, for high-resolution conclusions, which
are combined with statistical methods for the integration of in situ observations. The open accessible
entire data package includes, for Austria, over 1200 files with a size up to 16 GB per file. Due to user
requirements, in particular for the development of data-driven climate services and the characteristics
of the climate scenarios provided, a subset service, Figure 2, was required.
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Figure 2. Schematic draft of subset needs, which includes the control on versioning and the alignment
with the persistent identifier (PID), here handle.NET identifier—hdl. For the fragmented subset
(blue cube), a new identifier is aligned, coupled with its own version number.

Especially for such large files, the first argument is decreasing the download rate, and the second
is again storing the subsets on a desktop workstation. The continuous process chain on data fragments
will be broken. Normally, GIS or data analytic tools are used to intersect the individual ‘area of interest’
or choosing a separate, distinguished layer or simply selecting a given time frame is still a common
behavior. In a case of republishing, to offer a reuse or reproducibility study, all metadata and siblings’
relation to the origin and different version would be lost and have to be described again. To do this
manually is time-consuming, while describing the processes with all arguments for the intersection
procedure will be imprecise. The CCCA Data Centre wants to overcome these troublesome processes
mostly related with complex data structures especially for the climate services.

The overall approach on the CCCA-DC software environment was to set up a system which follows
open source licenses. All developments and modules are available on the CCCA GitHub [20]. The data
in the storage system, which are embedded in a highly available Linux Server Cluster, are managed
by the ckan [21] software packages as a Python application server. This collaborative development
framework is specialized in data management and catalogue systems, which is used as a central system
component. For ckan, many extensions especially for the geospatial scientific domain are available,
which brings a lot of synergies and benefits in its own modular software developments. One essential
component for a provided catalogue of services is the flexible metadata scheme functionality. The Data
Catalog Vocabulary DCAT [22] as a ckan default metadata profile was extended by the DCAT-AP and
GeoDCAT-AP [23], a development by the Joint Research Centre of European Commission, which meets
interoperable requirements for data exchange between distributed data servers. With this solution,
heterogeneous data formats can be described with a common core schema for metadata and enable a
uniform transformation into other profiles, such as Dublin Core, INSPIRE, and ISO 19115 metadata for
geographical information.

The graphical user interface of the CCCA data server is based on the ckan web server and includes
all functionalities, such as catalog and search functions, view services for web-based visualization of
data content, as well as the implemented subset service. A Python API interface is also provided via
ckan, which enables machine-to-machine communication for automatically steered processes.

For the unique identification of a data object, persistent identifiers (PIDs) are used, see Figure 2,
and its registry guarantees uniqueness according to the specifications of internet identifiers to other data
objects. For the CCCA, the Handle.NET® Registry Server was used for PID assignment. The advantage
of Handle is the unlimited and instant assignment of identifiers, the technical coherence on standards,
and encoding, which is essential for each newly created query.
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The primary component for processing and creating data fragments is the Unidata Thredds Data
Server (TDS) [24]. This server is responsible for processing NetCDF data, such as visualizing the data.
In addition to TDS, the NetCDF Subset Services (NCSS) was embedded. NCSS provides a catalog of
subsetting parameters that allows creating data fragments while retaining the original resolution and
characteristics of the original data. These parameters include geographic coordinates, date ranges, and
multidimensional variables. NCSS uses “HTTP GET” [25] in the following structure:

http://{host}/{context}/{service}/{dataset}[/dataset.xml | /dataset.html | {?query}]

where elements proposed as:

{host}—server name
{context}—“thredds” (usually)
{service}—“ncss” (always)
{dataset}—logical path for the dataset, obtained from the catalog
dataset.xml—to get the dataset description in xml
dataset.html—to get the human-readable web form
datasetBoundaries.xml—to get a human-readable description of the bounding boxes
{?query}—to describe the subset that you want.

The subsetting parameters for the element {?query} allow a combination of different parameters,
like the name of variables, the location points or bounding box, arguments which specify a time range,
the vertical levels, and the returned format.

Figure 3 illustrates the implemented components and gives an overview about the relationships
between requests (blue arrows) and responses (orange arrows) between the server. The application
server takes the requests via the Web server and generates URL-based (HTTP GET) requests with the
subsetting parameters (subset requests). These requests are stored in the query store and are assigned
with the Handle identifier.

Figure 3. Simplified structure of server and hardware components for dynamic data citation within
the CCCA Data Centre environment: (i) ckan web server, (ii) the application server for access, data
management used as query store, (iii) Handle.NET® Registry Server for PID allocation, and (iv) the
Unidata Thredds Data Server (TDS), NCSS Subset Service and planned features on Open EO support.
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Within the ckan data management system, the required meta information for the subset dataset is
compiled from the original meta data via adaptation and inheritance and tagged with the necessary
description of the relationship as well as versions as supplementary meta data elements. The metadata
of the newly created data subset also contain the original metadata elements, such as a short description,
the data creator, licenses, etc. The supplementary elements are based on the query arguments and the
meta information from the application server, which are automatically adapted. These are the title of
the subsets, the selected parameters, the new spatial extent, and the changed time interval. In addition,
there is the contact of the subset creator, the time of creation, the check-sum to verify if it is the same
result if the request is repeated, the file size, and then the relationship to other records and their version.

The Thredds server retrieves the defined arguments from the query store via NCCS and thus
creates the subset directly from the data store in which the original NetCDF data are contained. The data
format is again NetCDF; other formats like comma-separated values (CSV) are also supported and
return them to the web server. There, the subset is available as a resource for download, but also as a
view service (OGC-WMS) for web-based visualization.

4. User Interface of the Application on Dynamic Citation Service

The Subset and Dynamic Data Citation Service at the CCCA Data Server is accessible for
everyone. Due to performance reasons via Thredds, only registered users get access, Figure 4, for the
comprehensible functionality on defining and republishing the subset at the data server.

 

 

(a) (b) 

Figure 4. The general landing page of a data resource, after the personalized login: the general landing
page of a dataset resource after login, where the subset can be created (on top): (a) The visualization
is a view service (WMS), created by Thredds, and it allows the user by activating the time control to
visualize each time step up to 2100; (b) additionally, it shows a timeline diagram after a point of interest
on the map window is created.

After creating the subset, Figure 5, the user immediately receives a dynamically generated citation
text containing the original author, the name of the subset, version, selected parameters, and the
persistent identifier. This citation proposal can be used for correct reference in studies, publications,
etc. and is clearly assignable to the entire research community. For a newly created and published
subset, all metadata are inherited from the original data and supplemented by the defined arguments,
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such as the customized bounding box and the name of the creator, as well as the relation as a first step
for data provenance information.

  
(a) (b) 

Figure 5. GUI of the subset creation function: (a) The upper part of web page for defining the parameter,
or reuse of a still existing query, defining a bounding box either by polygon or predefined administrative
units, (b) allows choosing a time range for other datasets like the globally available radio occultation
data packages, a fourth dimension—e.g., the Potential High was introduced and can choose.

Versioning is used to ensure that previous states of records are maintained and made retrievable.
Being able to refer to previous versions of datasets is important for reproducibility of simulation,
calculations, and methods in general. The given Handle PID resolves into the landing page of the
subset resource, where detailed metadata are provided. The web application generates automated
citation texts. It includes predefined text snippets like the title, author, publishing date, version, and
the data repository. For subsets, the aforementioned filter arguments based on queries were used
and provided as text information, see Figure 6. The generated citation texts are in a form that lowers
barriers for data sharing and reusability with proper credits.

Figure 6. The screenshot gives an impression of what versions, relations, and the suggested text for
citation looks like. In addition, the user could create, with the same arguments, a subset based on
oldest versions but normally on a new version published. If new versions are available, a notification
will be sent to the subset creator, which is part of the metadata profile.
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5. Discussion and Next Steps

The implementation of the CCCA Data Centre’s Dynamic Subsetting of evolving data shows its
feasibility on a Pilot for NetCDF software and data processing environment. Nevertheless, limitations
exist and can be seen both in the particular scope of the data format and in the lack of hardware
configurations that enable interfaces and connectivity to other data infrastructures. The given
requirements for CCCA data only lie in the CF conformity. Thus, all described functionalities are
automatically available to the data providers. Due to the performance of the NetCDF format, the
system independence and the multidimensional structured description of geospatial content, this
format is used as an ingest and transfer format for the Open Data Cube. Integrated Python libraries
allow a seamless transformation of data formats that are commonly used in the Earth Observation
sector, such as GeoTIFF. Open Data Cube is a Python-based software framework that allows analyzing
and processing the entire data package as a Data Cube to generate new earth observation products and
services. Further considerations for the described dynamic citation implementation consist oϕ setting
up the data management software components with regard to the linkage with PID and the automated
extraction of metadata on local Open Data Cube implementation in order to apply exactly this gap
of the dynamic data citation within the Data Cubes. A first showcase within the framework of the
Austrian Data Cube in cooperation with the Vienna University of Technology and the EODC—Earth
Observation Data Center in Austria is currently in the conception phase, see Figure 3.

Another potential field of application is seen in the direction of OGC-compliant Web Services.
The focus of these techniques is more on the interoperable web-based provision of data. The Web
Coverage Service (WCS) describes the effective handling of subset generation and data fragments for
effective further processing. The aspect to the requirements in the direction of dynamic data citation is
taken into account but is not implemented so consistently in data infrastructures. This gap is not the
aim of OGC standards themselves, but data infrastructure operators as well as their users should be
guided towards these needs.

With this demonstrated implementation, an effort is undoubtedly made from a technical as well
as a development as well as maintenance cost perspective. The big advantage, which can be shown
here, is the avoidance of redundancies for storage consumption of generated subsets, whether locally
or via cloud storage systems, and the exact citation to such individually created subsets so that they
can be made accessible for other users.

The considered reflection and implementation regrettably go only in one direction, that is, from a
dataset to its own data fragment. Inheriting the meta-information from an original to its subsets is not
a dialectical challenge. What needs to come next in data curation and data management science is a
method for how to deal with grouping of data ensembles and the merging of metainformation and
contrary metadata elements.

6. Conclusions

The citation of data, which are mostly static, serves the description of the origin, the credits on
authorship, and a link for accessing and downloading an entire dataset. In many research environments,
data grow dynamically and through updating, which is a challenge for research data repositories. New
versions can be created continuously through corrections; this can be done regularly, for example, on a
monthly basis, but also quite agilely at irregular intervals and helps to improve data quality.

When data are used as the basis for a study or calculation, it can be ensured that the exact data
version is available for verification in a study. This is especially the case for data derivatives where
new algorithms are applied to the original data at a given point in time, e.g., the calculation of climate
indices based on different climate models. The citation of the data should make it possible to identify
the data fragment in a reliable and efficient process for all aspects of reproducibility of research and
published studies.

The RDA recommendations of the Working Group on Data Citation (WGDC) enable researchers
and data infrastructures to identify and cite data they are using. The recommendations support a
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dynamic, query-centric view of the data and enable precise identification by associating the queries to
the subsets that are generated.

The Subset and Dynamic Data Citation Service of the CCCA was one of the first operational
adaptations of the RDA Citation Working Group recommendations. This implementation is also listed
as an RDA Adoption Story [26] as a factsheet, which also contains some useful information about the
development effort required for implementation and acceptance.

This ongoing operational service for subset creation and dynamic data citation is evidence of the
applicable approach of the RDA Recommendation.

Nevertheless, the observation of user behavior shows that there are still obstacles to republishing
the created subsets on the CCCA server. Reasons for this behavior could be the minor number of
users in Austria, especially for the climate scenario scope. In order to expand the user community,
the implemented subset service was applied to datasets with a global 5-dimensional atmospheric
dataset. An extension was also made by providing climate scenarios for the Western Balkan region in
Europe, where institutions, such as their national weather services, can create their scenarios covering
the national territories as subsets.

The additional strategy for expanding the user community is to extend the service to the scientific
field of satellite-based Earth observation, such as through the Open EO approach and the Open Data
Cube environment. The RDA is supporting this planned activity at CCCA through the RDA Adoption
Grant Program for the next 12 months.

With the present implementation of the dynamic data citation of evolving data, the feasibility is
given on the one hand, while on the other hand, experiences as well as software developments can be
passed on in order to obtain a more exact estimation of efforts for future implementation for other data
infrastructures in order to realize mechanisms for proper data management.
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Abstract: Continental and global datasets based on earth observations or computational models
challenge the existing map algebra approaches. The available datasets differ in their spatio-temporal
extents and their spatio-temporal granularity, which makes it difficult to process them as time series
data in map algebra expressions. To address this issue we introduce a new map algebra approach
that is topology based. This topology based map algebra uses spatio-temporal topological operators
(STTOP and STTCOP) to specify spatio-temporal operations between topological related map layers
of different time-series data. We have implemented several topology based map algebra tools in
the open source geoinformation system GRASS GIS and its open source cloud processing engine
actinia. We demonstrate the application of our topology based map algebra by solving real world big
data problems using a single algebraic expression. This included the massively parallel computation
of the NDVI from a series of 100 Sentinel2A scenes organized as earth observation data cubes.
The processing was performed and benchmarked on a many core computer setup and in a distributed
container environment. The design of our topology based map algebra allows us to deploy it as
a standardized service in the EU Horizon 2020 project openEO.

Keywords: topology based map algebra; data cubes; big data; map algebra; earth oberservation;
GRASS GIS

1. Introduction

Continental and global time series data from earth observation satellites [1–3] or computational
simulations with arbitrary spatio-temporal granularities require very sophisticated tools for efficient
analysis and processing. The NASA Landsat mission produces a large time series of earth observation
data using different spectral bands that differ in their geographical locations, spatial resolution,
spatial extents and their sensing time. The same is true for the ESA Copernicus mission, that includes
a wide range of earth observation satellites. The publicly available NASA and ESA earth observation
archives contain multiple petabytes of data, growing by several petabytes each year. There are several
public global and continental climate datasets [4] available with high spatial- and temporal resolution.

A rapidly changing global environment, the global climate change, its continental and global
effects on agriculture or natural hazards raise the requirement to analyse these large time series data
and their relations to each other. A major challenge from the perspective of data analysis is how to
process this kind of data altogether, handling the different spatio-temporal extents and their different
spatio-temporal granularities.

In this research we develop a topology based map algebra to process large scale time series
datasets with different spatio-temporal granularities and extents using algebraic expressions. We show
how to apply topological algebraic expressions to Landsat8, Sentinel2A and climate time series data
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to compute vegetation indices and hydro-thermal coefficients. We demonstrate the big data analysis
capabilities of the topology based algebra by computing the NDVI from 100 Sentinel2A scenes using
the tools that we developed on a many core computer system and a distributed docker container
environment. Our research is based on the spatio-temporal capabilities of the temporal enabled
GRASS GIS [5]. It makes use of spatio-temporal topological features of the GRASS GIS Temporal
Framework [6] to formulate algebraic expressions with spatio-temporal topological operators.

2. Related Work

The book [7] from Dana Tomlin introduced the concept of map algebra as a general language in
geographical information systems (GIS) for analysis and processing of raster based geographic data
with two dimensions. This data is mainly referenced as raster layers in GIS. By integrating time as
the third dimension by [8,9] a new class of algebra was introduced into the GIS world. The new map
algebra approach works on space-cubes, time-cubes and hyper-cubes that have two to three spatial-
and one temporal dimension. Space-, time- and hyper-cubes have by definition equidistant spatial
dimensions and require periodic time intervals that are equidistant. The computational spatial region
must be equal for all layers in these cubes.

The map algebra approach of Dana Tomlin are available in many GIS applications. The GIS
software systems GRASS GIS, ArcGIS and ERDAS Imagine integrate map algebra concepts. The Google
Earth Engine [10] framework supports two different approaches to apply mathematical operations
on images1. It is possible to use algebraic expressions with spatial, comparison and logical operators
or nested functions on image objects. However, mathematical operations can not be applied on
times-series data2 directly. The user must implement code to iterate over an image collection or map
an algorithm to apply mathematical operations for each image in the collection.

2.1. GRASS GIS

We chose GRASS GIS to implement the topology based map algebra, because it is a full-featured,
free and open source temporal geographical information system [5,6,11]. GRASS GIS has been used
in numerous environmental scientific applications by [12–16]. A comprehensive overview of its
application in environmental modelling is given in [17].

The temporal enabled GRASS GIS can efficiently manage, analyse and process continental- and
global-scale time-series raster, 3D raster or vector data sets. Being free and open source allows users to
modify it, which enabled us to integrate the topology based map algebra as a main feature.

Our topology based map algebra was implemented as three new modules in the temporal enabled
GRASS GIS version 7 [5]. It utilises the GRASS GIS Temporal Framework [6], PyGRASS [18] and the
GRASS GIS modules g.copy3, r.mapcalc4 and r3.mapcalc5.

2.2. Actinia

Actinia [19] is an open source REST API for scalable, distributed, high performance processing of
geographical data that uses GRASS GIS for computational tasks. It provides a REST API to process
satellite images, time series of satellite images, arbitrary raster data with geographical relations and
vector data. We improved Actinia in context of this work to support massive parallel processing of
topology based map algebra expressions in a distributed cloud environment. Actinia and GRASS
GIS are software components of the EU Horizon 20206 openEO project [20], that is an open source

1 https://developers.google.com/earth-engine/image_math, June 2018.
2 Time-series data is called image collection in Google Earth Engine.
3 https://grass.osgeo.org/grass76/manuals/g.copy.html.
4 https://grass.osgeo.org/grass76/manuals/r.mapcalc.html.
5 https://grass.osgeo.org/grass76/manuals/r3.mapcalc.html.
6 H2020 grant 776242.
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interface between earth observation data infrastructures and front-end applications. Actinia is actively
developed and deployed on different cloud platforms from cloud provides like Amazon, Google,
Deutsche Telekom and others.

2.2.1. Time in GRASS GIS

The temporal enabled GRASS GIS uses the concept of linear, discrete time represented by time
instances and time intervals. Time intervals and time instances represent the time stamps of map
layers. Time intervals are left closed and right open. The end time is not part of the time interval but
represents the start time of a potential successor. Time intervals can overlap or contain each other.
The temporal model supports gaps and time instances. Time in GRASS GIS is described in detail in [5].

Time is measured using the Gregorian calender time, also called absolute time, conform to ISO
86017 and as relative time defined by an integer and a unit of type year, month, day, hour, minute
or second. The smallest supported temporal granule is one second. The definition of absolute and
relative time follows the temporal database concepts collected in [21].

2.2.2. Map Algebra in GRASS GIS

The GRASS GIS module r.mapcalc and r3.mapcalc implement a subset of the map algebra
functionality described in [7–9], especially the local and focal algebraic methods. Zonal algebraic
methods are performed by dedicated GRASS GIS modules like r.series, r.neighbors, r.univar, r3.univar,
r.stats, r3.stats and several others.

With the integration of time in GRASS GIS by [5] the space-cube map algebra module r3.mapcalc
was enabled to perform spatio-temporal operations on time-cubes using the existing map algebra syntax.

2.2.3. Data Cubes in GRASS GIS

A data cube is an aggregation concept from relational databases introduced by [22] that works on
attribute data organized in a N-dimensional cube. We use the concept of earth observation data cubes,
that organize earth observations like satellite images in a multi-dimensional cube. Dimensions are
spatial and temporal coordinates, attributes are pixel values.

Space-time datasets (STDS) are the spatio-temporal data types in GRASS GIS to manage series of
time-stamped map layers and were introduced in [5]. They can be interpreted as sparse data cubes
with irregular time dimensions. There are three spatio-temporal GRASS GIS data types:

• Space-Time Raster Datasets (STRDS) that manage time series of raster map layers. These are
sparse raster data cubes in which each time stamped slice stores only pixels from the area of
interest in this slice, that can be different from any other slice and is a subset of the spatial extent
of the whole data cube.

• Space-Time Raster 3D Datasets (STR3DS) that manage time series of 3D raster map layers.
These are sparse voxel data cubes, using the same storage approach as the STRDS.

• Space-Time Vector Datasets (STVDS) that manage time series of vector map layers. STVDS can be
interpreted as vector data cubes.

An arbitrary number of time-stamped map layers can be registered in a single space-time dataset.
A single time-stamped map layer can be registered in several different space-time datasets at the same
time. Space-time datasets have a dedicated temporal type. Therefore a STDS can have either absolute
time or relative time. The same is true for time-stamped map layers.

STDS can contain map layers that have time intervals or time instances attached as time stamps.
Intervals and instances of time can be mixed in a space-time dataset. The spatial extents and spatial

7 http://en.wikipedia.org/wiki/ISO_8601.
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resolutions of associated raster or 3D raster map layers in a STDS can be different. See [5,6] for
more details.

2.3. Temporal Granularity and Topological Relations

A calendar has multiple granularities that can be described using a temporal hierarchy, see [23].
We use the temporal Gregorian calendar hierarchy of years, months, days, hours, minutes and seconds.
A year is composed of 12 months, a month contains between 28 and 31 days, a day has 24 h, a hour
has 60 min and one minute has 60 s. A glossary about temporal granularity is available in [24].
The temporal granularity is defined in the GRASS GIS Temporal Framework as the largest common
divider of time intervals and gaps between intervals or instances from all time-stamped map layers
that are collected in a space-time dataset (STDS). It supports space-time datasets that have complex
temporal structures. See [6] for more details. Temporal relations between time-stamped map layers
follow temporal interval logic defined by [25], see Figure 1.

The GRASS GIS Temporal Framework can compute topological relations between the spatial
extents in two and three dimensions based on [26], see Figure 2. Spatial extents are represented as axis
aligned bounding boxes.

Figure 1. Temporal relations between time intervals after [25].

Figure 2. Spatial topological relationships visualised after [26].

2.4. Spatio-Temporal Operations

Spatio-temporal operations are based on the approaches implement in the GRASS GIS Temporal
Framework by [6]. It provides boolean operations like intersection, union, disjoint union on time
intervals and time instances. It support spatial boolean operations between spatial extents. As boolean
operations, spatial intersection, spatial union and spatial disjoint union are available.

3. Topology Based Spatio-Temporal Map Algebra

We designed our topology based map algebra to perform two different tasks. The first task is the
creation of subsets from space-time datasets based on algebraic expressions. That allows us to extract
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map layers from different space-time datasets based on their spatio-temporal topological relations.
We implemented the dedicated GRASS GIS module t.select to perform such tasks. This module
supports as input all STDS types that can also be mixed in a single expression. This algebraic approach
is also part of the second task.

The second task is to perform spatio-temporal operations between STDS of the same type.
We implemented this approach for STRDS and STR3DS as GRASS GIS modules t.rast.algebra
and t.rast3d.algebra.

The syntax of the topology based map algebra is similar to the syntax of r.mapcalc [27]. The result
of an algebraic operation is a new STDS. Two GRASS GIS modules r.mapcalc and r3.mapcalc are
used to perform the spatial operations on raster layers, space- and time-cubes in our topology based
map algebra.

A spatio-temporal expression of our topology based map algebra has the following form:

STDS = expression

A new space-time dataset is created by an expression that contains other space-time datasets, raster
or 3D raster map layers, scalars, spatio-temporal operators as well as spatial and temporal functions.

An important feature of our topology based map algebra is the application of computational
regions based on the spatial-extents of raster map layers that are involved in a single spatial operation.
Hence, time-stamped raster map layers in a STRDS can have different spatial extents. This mode is
activated by using the -s flag in the GRASS GIS algebra module t.rast.algebra. It assures that spatial
operations that are applied to spatio-temporal related raster map layers are using the disjoint union of
all spatial extents and the smallest raster cell size of all involved raster map layers for this operation.

3.1. The Spatio-Temporal Topological Operator STTOP

A core feature of our topology based map algebra is the spatio-temporal topological operator
(STTOP). This operator defines what spatial and temporal operations should be performed between
two entities. An expression involving the STTOP has always the following form:

le f t entity {STTOP} right entity

The spatio-temporal topology of an entity is arbitrary, it can contain components with equal,
overlapping or including time stamps and spatial extents. The following entities are supported in
an expression:

expression := STDS {STTOP} STDS

:= STDS {STTOP} map layer

:= STDS {STTOP} scalar

:= STDS {STTOP} expression

:= expression {STTOP} STDS

:= expression {STTOP} map layer

:= expression {STTOP} scalar

:= expression {STTOP} expression

Expressions can be nested. The result of an expression evaluation is an entity that always
contains a series of time-stamped components of type map layer or scalar. The temporal topology is
evaluated between the time-stamped components. Spatial topology evaluation is performed between
time-stamped map layers.
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A single map layer as well as a scalar can be defined as entity on the right side of the STTOP.
In this case the single map layer or the scalar on the right side are applied to all map layers on the left
side of the operator.

An operation between STDS A and B that result in a new STDS C can be expressed as:

C = A {STTOP} B

Operation between several STDS A, B, C, D and E that result in a new STDS Z can be expressed
as follows:

Z = A {STTOP} ((B {STTOP} C {STTOP} D) {STTOP} E)

Braces are used to specify non-default operator precedence’s, otherwise the operator evaluation
is performed from the left to the right. Intermediate results are specified as STDS B∗, B∗∗ and B∗∗∗

that represent a series of time-stamped components after expression evaluation. The evaluation and
therefore the operator precedence of the expression above is shown below:

B∗ = B {STTOP} C

B∗∗ = B∗ {STTOP} D

B∗∗∗ = B∗∗ {STTOP} E

Z = A {STTOP} B∗∗∗

The STTOP can specify a selection operation or a spatial operation combined with spatio-temporal
topological relations and temporal operators. It is shown in Figure 3 with all available sub-operators.

Figure 3. The spatio-temporal topological operator. The operator is specified in curled braces that
contains the spatial and selection operators in red, the spatio-topological relations in blue and the
temporal operators in green.

The STTOP is not commutative, the result of A {STTOP} B may not be equal to B {STTOP} A.

3.1.1. Spatial Operators

Spatial operations are performed between raster map layers or between 3D raster map layers
that have spatio-temporal topological relations to each other. A single scalar or series of time-stamped
scalars can be used in a spatial operation as well. However, a series of time-stamped scalars is the
result of an expression evaluation so that only single scalars can be specified directly in an expression.
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Spatial operators are defined as the first sub-operators in the STTOP. If spatial operations are
applied, new raster or 3D raster map layer will be created and registered in a new STRDS or STR3DS.

A special operator is the count operator that returns the number of time-stamped components on
the right side of the operator that have adjacent temporal-topological relations to the time-stamped
map layers on the left side of the operator.

All spatial operators are listed in Table 1.

Table 1. Spatial operators and their precedence in the topology based map algebra.

Symbol Description Precedence

# count 1
% modulus 1
/ division 1
∗ multiplication 1
+ addition 2
− subtraction 2

Spatial operators can be used directly in an expression, without the specification of temporal
topological relations or operations. Then only time-stamped components with equal temporal
topological relations are used in spatial operations. Equal spatial topological relations are not enforced
because of the GRASS GIS computational region concept. For example, the creation of a new STRDS C
that contains the sum of raster map layers from STRDS A and STRDS B that have equal time stamps,
can be expressed as:

C = A + B

3.1.2. Temporal Selection Operators

Temporal selection operators were introduced to select and extract map layers of different STDS
that have certain spatio-temporal topological relations to each other. This operator is defined as the
first sub-operator in the STTOP. The selection operator does not create new map layers. It selects
map layers based on their spatio-temporal topological relations and registers them in a new STDS.
If the selection operation performs temporal operations, like temporal extent intersection, then the
resulting map layers are copies of the original map layers and new time stamps, based on the temporal
operations, are assigned. The original map layer must be copied, since GRASS GIS does not support
multiple time stamps for single map layers. The type of the resulting STDS is defined by the type of
the most left STDS in a selection expression. All supported selection operators are listed in Table 2.
Examples for temporal selections are available in Appendix C.

Table 2. Temporal selection operators and their precedence in the topology based map algebra.

Symbol Description Precedence

: Selection Operator 1
! : Inverse Selection Operator 1

3.1.3. Spatio-Temporal Topological Relations

Spatio-temporal topological relations are defined as the second sub-operators in the STTOP.
Operations between two series of time-stamped components are based on their spatio-temporal
topological relations to each other. Using topological relations is a convenient way to handle time series
of components that have arbitrary spatio-temporal topologies. Spatio-temporal relations as shown
in Figures 1 and 2 are used to decide what operations should be performed between time-stamped
components that can be map layers or scalars.

One or several topological relations can be specified as a single operator. Specifying several
temporal topological relations will be interpreted using a boolean OR operation. The temporal
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topological relation is valid if one topological relation out of the specified list of relations is fulfilled.
If several topological relations are fulfilled then a single map layer at the left side can be topologically
related to many time-stamped components on the right side of the STTOP and vice verse. Specifying
temporal or spatial topological relations can result in one to many relations between two series of
time-stamped components. If one to many relations occur from the left side to right then an implicit
aggregation approach is applied. A detailed example of implicit aggregation is described in Figure A1
in Appendix A.

Spatial and temporal topological relations can be combined in the second sub-operator.
Temporal relations have OR relationships to each other. Spatial relations have also OR relationships to
each other. However, temporal and spatial relationships are connected with an AND relation. This is
important to distinct map layers that have equal time stamps but different spatial extents. If spatial
and temporal topological relations are specified together as sub-operator, then one of the temporal and
one of the spatial relationships must be fulfilled. The delimiter of a list of topological operators is the
the logical OR |:

expression {+, equals | during | equivalent, l} expression

3.1.4. Temporal Operators

Temporal operators are located at the third position in the STTOP. They are performed between
the temporal extents of two or more spatio-temporal related time-stamped components. The boolean
temporal operations intersect, union and disjoint union are supported as well as decision operators
left side and right side. The decision operators specifies if the time interval or time instance of a
time-stamped map layer on the left side or of a time-stamped component on the right side of the
STTOP should be used for the resulting time-stamped components of a selection or spatial operation.
All supported temporal operations are shown in Figure 4.

Figure 4. Temporal operations between time intervals implemented in the topology based map algebra.

3.2. Conditional Expressions

Conditional expression are required to formulate comparison and logical decision statements
in our topology based map algebra. The syntax of conditional expressions is similar to [27] with
the exception that topological relations must be specified. A conditional expression consists of an
i f statement that specifies the comparison operations between STDS or time-stamped components
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and the then and else expressions. The result of a conditional expression is a series of time-stamped
map layers.

expression := i f ({topological relations},

i f statement,

then expression,

else expression)

3.2.1. The Spatio-Temporal Topological Comparison Operator STTCOP

One key component of a conditional expression is the spatio-temporal topological comparison
operator (STTCOP) that can only be specified in the i f statement. The spatio-temporal topological
comparison operator must be used to specify comparison operations between time-stamped
components like map layers, boolean values, scalars, date and time definitions. This operator expects
a series of time-stamped components on the left and the right side. The result of the evaluation of
a STTCOP is a series of time-stamped components. A single component can be of type map layer,
scalar, date, datetime or boolean. Boolean, date and datetime component types are used in comparison
operations. They cannot be used in spatial operations. The result of the evaluation of an i f statement
is either a list of time-stamped boolean values or a list of spatial comparison operations. Topological
relations defined before the i f , then, else expressions and time-stamped boolean values resulting from
the evaluation of the i f statement are used to select the spatial operations performed in the then or
else expression. Spatial operations of the then expressions are performed if time-stamped boolean
values are true and have a valid topological relation to the resulting map layers in the then expression.
Spatial operations in the else expressions are performed if no topological relation to the i f statement
exists or if they are false. This is demonstrated in Figures A2 and A3 in Appendix A.

Spatial comparison operations are handled differently. They are applied to then and else
expressions, if topological relations exist. Spatial comparison operations are then integrated in the
resulting spatial operations. This is visualised in Figure A4 in Appendix A.

The STTCOP is not commutative, the result of A {STTOP} B may not be equal to B {STTOP} A.
The STTCOP is described in Figure 5 with all available sub-operators. The STTCOP is build upon

4 sub-operators:

1. The comparison operator;
2. The spatio-temporal topological operator;
3. The aggregation operator;
4. The temporal operator.

The spatio-temporal topological operator and the temporal operator are similar to the STTOP.
Specific for the STTCOP are the comparison, boolean and aggregation operators. The comparison
and boolean operators are shown in Table 3. The aggregation operator is specified using the boolean
AND & and OR | symbols. The cause of existence of these operators is the requirement to decide what
kind of logical operation should be performed in a one to many relationship. If a time interval on the
left side contains multiple time intervals with boolean values from the right side, the question arises
how these values should be aggregated in a boolean operation? The aggregation operator describes
the logical operations that should be performed between all boolean values on the right side of the
STTCOP. An example of this operation is demonstrated in Figure A2.
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Figure 5. The spatio-temporal topological comparison operator (STTCOP). The operator is specified in
curled braces that contain the logical and comparison operator in red, the spatio-topological relations
in blue, the aggregation operator in red and the temporal operator in green.

Table 3. Comparison and boolean operators of the STTCOP.

Symbol Description Precedence

== equal 1
! = not equal 1
> greater than 1
>= greater than or equal 1
< less than 1
<= less than or equal 1
&& Boolean and 2
|| Boolean or 2

The STTCOP can be simplified in the same way as the STTOP. Boolean and comparison operators
can be used without specifying topological relations and temporal operations, if only equal temporal
topological relationships are required. For example:

{&&, equals, &, l} → &&

{>=, equals, l} → >=

3.3. Spatio-Temporal Functions

We implemented several spatio-temporal functions that include the following functionalities:

• Temporal buffering of time instances and time intervals;
• Temporal topological operation like shifting and snapping of time intervals;
• Mathematical functions like log(), sin(), sqrt(), null() and many more;
• Date- and time functions like start_time(), start_year(), start_doy() and many more;
• Special functions to use different spatio-temporal datatypes in a single expression like map()

and tmap().

A complete list of spatio-temporal functions is available in Appendix B.
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3.4. Neighbourhood Operations

The topology based map algebra supports neighbourhood operations based on indices. The syntax
is similar to [27] with the difference that the temporal dimension was added. STRDS neighbourhood
operations can be temporal A[t] or spatio-temporal A[t, x, y]. The temporal index is based on a nearest
neighbour approach rather then temporal topological relations like precedes or follows. This has the
advantage that neighbourhood operations can also be performed on raster map layers that have time
intervals or time instances and no adjacent temporal topological relations to their temporal neighbours.
The difference between raster and 3D raster algebra is, that the 3D raster algebra is based on space
time 3D raster datasets and a four dimensional neighbourhood operator [t, x, y, z]. Several examples
are available in Appendix C.

3.5. Temporal Granularity Algebra Approach

The granularity mode in our topology based map algebra was introduced to handle topological
well aligned STDS in a convenient way. In granularity mode all spatio-temporal operators in our
topology based map algebra imply equal temporal topological relations between time-stamped
map layers.

The GRASS GIS Temporal Framework provides methods to compute the temporal granularity
of space time datasets with valid temporal topology based on the Gregorian calendar hierarchy [6].
It can determine if the granularity has the unit years, months, days, hours, minutes or seconds.
Different space time datasets may have different temporal granularities. To perform spatio-temporal
operations between them, one must know what their common temporal granularity is. Hence,
the GRASS GIS Temporal Framework was extended to compute the common temporal granularity of
series of time-stamped map layer, or STDS and to re-sample them by the common granularity.

For example, we assume that space time dataset A has a temporal granularity of one month.
Space time dataset B has a granularity of 7 days. Their temporal extent starts at 1 January 2001 and ends
1 January 2002. We assume that the time-stamped map layers of A and B have the same interval size
as the granularity. There are no temporal gaps between the time-stamped map layers. The common
temporal granularity between A and B is one day. To perform spatio-temporal operations between
the space time datasets A and B, we need to re-sample them to a common granularity of one day.
This re-sampling operation will always be performed temporally. The re-sampling operation will result
in the intermediate space time datasets A∗ and B∗. This operation is performed on the fly in memory,
based on the temporal metadata and will not affect the original space time datasets. Hence, between 28
and 31 in memory map objects of A∗ with a daily interval size will point to the same physical map
layer, dependent on the actual month. For space time dataset B∗ seven in memory map objects will
point to the same physically map layer. This step assures that temporal topological relations between
space time dataset A∗ and B∗ are reduced to equal, after, before, precede and follow. Therefore the
STTOP and the STTCOP are simplified to spatial, selection and comparison operators.

This approach simplifies the handling of time with temporal or spatio-temporal operators.
However, resulting space time dataset may have many more time-stamped map layers than the
original space time datasets with plenty of redundant spatial and temporal information. It can not
handle space time datasets with invalid temporal topology. However, the GRASS GIS Temporal
Framework provides convenient functionality to compute valid temporal topology and to perform
temporal aggregation of space time raster datasets.

4. Solving Real World Problems

4.1. Landsat NDVI Computation

The spatial operator allows us to apply the normalised difference vegetation index (NDVI) formula
to a series of satellite images. An important requirement is that the satellite images are spatio-temporal
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distinctive from each other. This is the case for Landsat scenes, all bands of a single scenes have equal
spatio-temporal extents that are distinct from any other Landsat scenes. We assume that the near
infrared channel raster layers of several Landsat scenes are stored in STRDS Landsat8_NIR. The red
channel raster layers are stored in STRDS Landsat8_RED. The NDVI computation for a time series of
several Landsat scenes can now be formulated as a simple mathematical expression:

NDVI = (Landsat8_NIR − Landsat8_RED)/(Landsat8_NIR + Landsat8_RED)

The resulting algebraic expression applied with the command line tool t.rast.algebra to run in
parallel on 8 dedicated CPU cores looks as follows:

t.rast.algebra

basename=ndvi nprocs=8

expr="NDVI=(Landsat8_NIR - Landsat8_RED) /

(Landsat8_NIR + Landsat8_RED)"

4.2. Sentinel2A NDVI Computation

The simple NDVI formula for Landsat time series can not be applied to Sentinel2A scenes,
since different Sentinel2A scenes have different spatial extent but sometimes equal time stamps.
They are not spatio-temporal distinctive. The expression must be extended with the spatio-topological
relation equivalent to solve this issue, so that only scenes with equal spatio-temporal extents are used
for the computation. We compute the normalised difference vegetation index (NDVI) for our dataset
that consists of 100 Sentinel2A scenes from Germany using bands 4 and 8. We selected Sentinel2A
scenes that were produced between 13 February 2017 and 6 July 2017. In addition we applied a
filter to select only scenes that have an areal size greater then 5000 km2 and cloud cover lower than
2%. The resulting dataset contained 200 time-stamped raster map layers organised in two STRDS
(S2A_B08, S2A_B04) with a total size of 43 GB. We applied temporal and spatial topological relations
to differentiate between time-stamped map layers with equal time stamps but different spatial extents.

The command to compute the NDVI on 8 dedicated CPU cores is:

t.rast.algebra

basename=ndvi -s nprocs=8

expr="NDVI=(S2A_B08{-,equal|equivalent,l}S2A_B04)

{/,equal|equivalent,l} \

(S2A_B08{+,equal|equivalent,l}S2A_B04)"

We made use of the -s flag in t.rast.algebra to assure that the computational region is derived from
the spatio-temporal related raster map layers that are involved in a spatial operation.

The GRASS GIS REST processing engine actinia was used to compute the same algebraic
expression with a deployment of 12 docker container. The dedicated program actinia-algebra8 was
implemented, to distribute the map algebra expressions generated by t.rast.algebra to all 12 container
and to collect the result in a new STRDS. In Figure 6 is the process time shown to compute the NDVI
from 100 Sentinel2A scenes using up to 8 CPU’s on a many core setup and up to 12 parallel processes
on a docker container deployment.

8 https://github.com/mundialis/actinia_core/blob/master/scripts/actinia-algebra.
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Figure 6. Computation of the normalised difference vegetation index (NDVI) based on 100 Sentinel2A
scenes. The Sentinel2A dataset has a volume of 43 GB stored as two space-time raster datasets (STRDS).
The many core setup benchmark was run on a virtualised Intel XEON System with 32 GB RAM,
8 Cores and 400 GB SSD. The docker container deployment was run on a 16 Core AMD Ryzen 1950
Threadripper with 32 GB RAM and 1 TB SSD. GRASS GIS 7.7 and actinia development version from
March 2019 were used to create this benchmark.

4.3. Hydrothermal Coefficient Computation

The hydrothermal coefficient is a simple measure for agricultural drought and is commonly used
in eastern Europe for monitoring meteorological conditions. The index is based on daily temperature
and precipitation values and is sensitive to dry conditions specifically in the temperate climate zone.
It is calculated as the relation of the accumulated precipitation values to the temperature sum above
a baseline temperature threshold value of 10 for annual periods. The mathematical formulae is:

HTC =
∑ P(T>10◦C)

∑ T(T>10◦C) · 0.1

The index can be formulated by using the implicit aggregation feature of the spatio-temporal
algebra for different temporal granularities in combination with a conditional statement for the
threshold temperature. Therefore an STRDS with zeros and annual granularity has to be created as
mask for which the daily meteorological STRDS are aggregated.

The algebraic expression for the hydrothermal coefficient can be formulated as:

t.rast.algebra

basename=htc nprocs=8

expr="HTC = (D {+,contains,l} if(T >= 10.0, P, 0.0)) /

(D {+,contains,l} if(T >= 10.0, T / 10.0, 0.0))"

and is applied with the command line tool t.rast.algebra to run in parallel on 8 dedicated CPU cores,
whereby three different STRDS are utilized:

• T := STRDS of daily temperatures,
• P := STRDS of daily precipitation
• D := STRDS of annual mask with 0 as pixel value

The result is shown in Figure 7. The index values range between 0 and 2, whereas zero values
indicating intensive drought conditions and values above 1 represent a more humid year.
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Figure 7. Comparison of the hydro-thermal coefficients (HTC) of Germany from the years 2003 and
2007. The HTC was computed using t.rast.algebra with the expression described above. The daily
temperature and daily precipitation for the years 2003 and 2007 was provided by the German Weather
Service DWD.

5. Discussion and Conclusions

We designed and implemented a new map algebra based on spatio-temporal topological relations.
The syntax of the topology based map algebra was derived from the GRASS GIS map algebra module
r.mapcalc. We extended the map algebra syntax by introducing a new spatio-temporal topological
operator (STTOP) and a spatio-temporal comparison operator (STTCOP). Our topology based map
algebra can therefore be easier understood by users, that are familiar with the syntax of existing map
algebra implementations.

Our topology based map algebra allows selection operations as well as spatio-temporal operations
on space-time datasets (STDS) based on spatio-temporal topological relations of the time-stamped map
layers that are registered in the STDS. The selection part of our topology based map algebra works
with all spatio-temporal datatypes that are available in GRASS GIS: STVDS, STRDS and STR3DS.
Spatio-temporal operations can only be applied to STRDS and STR3DS. However, that means that
our topology based map algebra works with 3 and 4 dimensions. The GRASS GIS space-time raster
and 3D raster datasets can be interpreted as sparse data cubes with arbitrary time dimension. Hence,
our topology based map algebra is designed to processes earth observation data cubes.

Spatial topological relations are based on the spatial extents of time-stamped map layers.
Temporal topological relations are based on the temporal extents of time-stamped map layers.
Spatio-temporal operations and topological relations must be specified as STTOP and STTCOP.
In addition, useful spatial and temporal functions are available to modify STDS and to specify single
maps and STDS of different types in a single expression. This is the first map algebra approach that
allows the mixing of different datatypes in a single expression.

The STTOP and STTCOP are very powerful but its applications needs careful planning and can be
very complex in nested expressions. The user must be aware of the temporal and spatial dimensions
and the temporal topology of the STDS that are used in an expression. The usage of temporal and
spatial topological relations must be carefully thought out to compute the required results.

The introduction of topological relations between time-stamped map layers in spatio-temporal
operations leads to one-to-many relations between map layers. To address this issue we
implemented the concept of implicit aggregation in case one-to-many relationships occur in the
expression evaluation.
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Both operators STTOP and STTCOP can be simplified in case the temporal topological relations
between map layers are only equal, precedes and follows. Then simplified STTOP spatial operators
and STTCOP comparison operators can be specified. This leads to less complex expressions and
simplifies the application of our topology based map algebra.

We introduced the granularity mode in our topology based map algebra to simplify the handling
of datasets with complex temporal topologies. In this mode all STDS that are specified in the
algebraic expression will be temporally re-sampled to the greatest common temporal granularity.
All time-stamped map layers will have the same temporal topology. Only equals, precedes and follows
temporal topological relations are possible. Therefore, in granularity mode, all STTOP’s and STTCOP’s
can be simplified to use only spatial and comparison operators in an expression.

Our topology based map algebra is not limited to a fixed computational region. The time-stamped
map layers can have different spatial extents and spatial granularities. GRASS GIS will re-sample all
raster and 3D raster maps on the fly based on nearest neighbour inter- or extrapolation. The algebra
supports the definition of spatial relationships, so that only spatially related map layers are used
for spatial operations. Our algebra supports the creation of computational regions based on the
spatial extents of spatio-temporal-topologically related time-stamped map layers that are involved
in a single spatial operation. This allows the application of algebraic expressions to time series of
globally scattered satellite images without the need to create a computational region that includes the
disjoint union of all spatial-extents of the time-stamped map layers that are used in the expressions.
We demonstrated this in our NDVI computation of Sentinel2A satellite images example.

The implementation of our algebra is based on the GRASS GIS Temporal Framework.
This framework provides many functionalities that were directly used in our algebraic approach.
One functionality we would like to discuss is the ability to compute virtual space-time datasets (vSTDS)
that can be used in other spatio-temporal operations in case of nested expressions. Each sub-expression
is transformed in a vSTDS that consists of virtual map layers, that are defined by their spatio-temporal
extents and an r.mapcalc operation. This functionality allowed us to implement lazy execution of the
algebraic expressions. Hence, the full analysis of a topology based map algebraic expression eventually
results in a list of independent r.mapcalc expressions and time stamping operations that can be executed
massively parallel. This allows us to distribute the computation of any algebraic expression over
many cores on a single computer, or over several computer nodes in a cluster or cloud environment.
The many core approach was successfully demonstrated in the Sentinel2A NDVI computation example
that includes a benchmark of processing time dependent on the number of used CPU cores.

The actinia processing engine was used to demonstrate the massively parallel processing of
a single algebraic expression in a distributed container deployment. Hence, our topology based
algebra can be deployed as a web service to perform complex algebraic computations on massive
datasets. The actinia geo-processing engine allows to deploy GRASS GIS and other geo-tool based
algorithms as REST service where earth observation data is physically stored. It runs on Telekom-,
Google- and Amazon-Cloud platforms that provide direct access to earth observation data from
satellites as Sentinel2A, Sentinel2B and Landsat. GRASS GIS and actinia are software components
of the openEO initiative that provides standardized connections to and between earth observation
providers. Two authors of this work are actively involved in the openEO initiative which opens the
possibility to deploy our topology based map algebra as a standardized openEO processing service.
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Appendix A. STTOP and STTCOP

Appendix A.1. STTOP Detailed Explanation

We demonstrate the application of temporal topological relations that results in implicit
aggregation with the following expression

C = (A{+, contains, l}B){/, equals, l}(A{#, contains, l}B)

that includes several spatio-temporal topological operators. The temporal relation contains leads to
implicit aggregation. In Figure A1 is the evaluation of the sub-expression, the application of the implicit
aggregation and the assembling of the final result shown. The corresponding STRDS are identified
using capital letters, the associated raster map layers have lower letters and a numerical index.

Figure A1. Visualization of nested expression evaluation with implicit aggregation
based on one to many relationships between map layers of the expression: C =

(A{+, contains, l}B){/, equals, l}(A{#, contains, l}B). The STRDS A manages the raster map
layers a1, a2, a3 and a4. The STRDS B manages the raster map layers b1, b2, b3, b4, b5, b6, b7, b8, b9 and
b10. Both STRDS have interval time. The time intervals of raster map layers in STRDS A contain the
time intervals of raster map layers in STRDS B. The result of this expression is the new STRDS C that
contains 4 new raster map layers c1, c2, c3 and c4. The spatial operations between the spatio-temporal
topological related raster map layers is expressed using the algebraic syntax specified in [27].

Appendix A.2. STTCOP Detailed Explanation

We designed three examples to illustrate the STTCOP and its application. The first example
shown in Figure A2 describes the analysis of a conditional expression that involves date checks,
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implicit boolean and spatial aggregation. All intermediate results of the expression evaluation are
visualised and its time-stamped components are shown. The STTCOP is shown in normal form
{&&, contains, &, l} as well as simplified forms <= and >=. The STRDS A manages the raster map
layers a1, a2, a3 and a4. The STRDS B manages the raster map layers b1, b2, b3, b4, b5, b6, b7, b8, b9 and
b10. Both STRDS have interval time. The time intervals of raster map layers in STRDS A contain the
time intervals of raster map layers in STRDS B.

Figure A2. Visualisation of nested conditional expression evaluation with implicit aggregation of
boolean values and spatial operations. The conditional statement selects only raster map layers from A
that have a start time greater or equal to the date 3 January 2001 and raster map layers from B that have
a start time smaller or equal to the date 9 January 2001. The boolean operation based on a temporal
contains relation between the two sub-conditional statements is an AND operation with implicit AND
aggregation. The conditional statement is connected with a temporal topological equals relation to the
then expression. The result is the new STRDS C that contains 2 new raster map layers c1 and c2.
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The second example shown in Figure A3 describes the analysis of a temporal selection operation
with i f , then, else statements and expressions. No spatial operation is performed. This example
illustrates how time-stamped boolean values from conditional statements are applied to the then and
else expressions.

Spatial conditional operations are handled differently then boolean conditional operations.
The third example in Figure A4 shows the assembling of spatial conditional operations into the
spatial operations of the then and else statements.

Figure A3. Visualisation of a simple nested conditional expression evaluation without spatial
operations. The STRDS involved in the conditional expression are the same as in Figure A2.
The conditional statement selects all raster map layers from STRDS A that have a start time lower or
equal to the date 3 January 2001 and that have equal or contains topological relations. Otherwise raster
map layers from STRDS B are selected that have no topological relations to the boolean values of the if
statement or false boolean value if topological relations exist.
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Figure A4. Visualisation of the assembling of conditional spatial operations in our topology based
map algebra. The STRDS A contains the raster map layers a1, a2, a3 and a4. The conditional statement
constrains that individual cells in raster map layers of A to be greater or equal to 0 and lower or equal
to 1. These conditions are applied to the spatial operations in the then and else statements that have
topological equal relations to the conditional statement. The resulting STRDS C contains 4 raster map
layers that applied the spatial conditions and operations.

Appendix B. Spatio-Temporal Functions

Appendix B.1. Temporal Functions

Temporal functions in our topology based map algebra are introduced to perform temporal task
based on time stamps of map layers. Available functions are listed in Table A1.
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Table A1. Temporal functions in the topology based map algebra. All functions require a STDS as
argument. The return type of the td() function is a time-stamped list of scalars. All other temporal
functions return a list of time-stamped map layers. The granularity size for buffering and shifting can
be specified using absolute time like 1 month or 10 days or relative time that is represented by a scalar.
All functions can be used on the left and right side of the STTOP.

Function Description

td(A) Return the interval size of each time-stamped map layer in
STDS A as number of days and fraction of days

bu f f _t(A, size) Temporal buffer each map layer of STDS A with granule size
tshi f t(A, size) Temporal shift each map layer of STDS A with granule size

tsnap(A) Snap time instances and intervals of each map layer in STDS A

Appendix B.2. Spatial Functions

All spatial raster and 3D raster functions are displayed in Table A2.

Table A2. Spatial functions in the topology based map algebra. The argument for each function is a
STRDS or STR3DS. Spatial functions are applied to all pixels of each map layer in a STDS.

Function Description

abs(A) return absolute values of all map layers registered in STDS A
f loat(A) convert all map layers registered in STDS A to floating point
int(A) convert all map layers registered in STDS A to integer [ truncates ]
log(A) return natural logs of all map layers registered in STDS A
sqrt(A) return square roots of all map layers registered in STDS A
tan(A) return tangent of all map layers registered in STDS A (in degrees)

round(A) round all map layers registered in STDS A to nearest integer
sin(A) return sines of all map layers registered in STDS A (in degrees)
sqrt(A) return square roots of all map layers registered in STDS A

isnull(A) check if each pixel of each map layers registered in A is NULL
isntnull(A) check if each pixel of each map layers registered in STDS A is not NULL

null() set null values for each pixel for all map layers registered in STDS A

Appendix B.3. Special Functions

Special functions are used to identify STDS and map layers in expressions with mixed STDS types.
Available functions are listed in Table A3.

Table A3. Special functions in the topology based map algebra.

Function Description

STRDS(A) A is a STRDS
STR3DS(A) A is a STR3DS
STVDS(A) A is a STVDS

map(a) a is a single raster map layer without time stamp
tmap(a) a is a single raster map layer with time stamp

Appendix B.4. Date and Time Functions

Supported date and time functions are listed in Table A4. All functions require a STDS as
argument. Each function returns a time-stamped list of time components that can be used for temporal
topological comparison operations. Each time-stamped component has the same time stamp as the
raster map layer of the STDS it represents.
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Table A4. Date and time functions in the topology based map algebra. Each function has a STDS as
argument. Each function returns a list of time-stamped components of type datetime and scalar.

Function The Type of the Time-Stamped Component

start_time(A) Start time as HH::MM:SS
start_date(A) Start date as yyyy-mm-DD

start_datetime(A) Start datetime as yyyy-mm-DD HH:MM:SS
end_time(A) End time as HH:MM:SS
end_date(A) End date as yyyy-mm-DD

end_datetime(A) End datetime as yyyy-mm-DD HH:MM
start_doy(A) Day of year (doy) from the start time [1–366]
start_dow(A) Day of week (dow) from the start time [1–7],

the start of the week is Monday == 1
start_year(A) The year of the start time [0–9999]

start_month(A) The month of the start time [1–12]
start_week(A) Week of year of the start time [1–54]
start_day(A) Day of month from the start time [1–31]
start_hour(A) The hour of the start time [0–23]

start_minute(A) The minute of the start time [0–59]
start_second(A) The second of the start time [0–59]

end_doy(A) Day of year (doy) from the end time [1–366]
end_dow(A) Day of week (dow) from the end time [1–7],

the start of the week is Monday == 1
end_year(A) The year of the end time [0–9999]

end_month(A) The month of the end time [1–12]
end_week(A) Week of year of the end time [1–54]
end_day(A) Day of month from the start time [1–31]
end_hour(A) The hour of the end time [0–23]

end_minute(A) The minute of the end time [0–59]
end_second(A) The second of the end time [0–59]

Appendix C. Examples

Appendix C.1. Temporal Selection Examples

An expression that selects all map layers from a STRDS A that are located during intervals of
a STRDS B can be formulated as follows:

C = A {:, during, l}B

To select all map layers from STRDS A that have no equal time stamps to map layers of STRDS B
but contain map layers from STRDS C the following expressions can be formulated:

D = A ! : B{:, contains, l}C

Appendix C.2. Spatio-Temporal Operation Examples

We developed several spatio-temporal operation examples to visualise the different aspects of
our topology map algebra that are shown Figures A5–A9.
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Figure A5. The the expression C = A {+, contains, l} B is an example of one to many relationship from
the left side to the right side of the spatio-temporal topological operator. It demonstrates the implicit
aggregation of two time series of map layers using a contains relation between STRDS A and B.

Figure A6. The the expression C = A {+, during, l} B is an example of one to many relationship
from the right side to the left side of the spatio-temporal topological operator. It demonstrates the
dis-aggregation of two time series of map layers using a during relation between STRDS A and B.

Figure A7. Implicit aggregation using topological neighbourhood relations and the application of the
disjoint union temporal operator is demonstrated with the expression C = A {+, f ollows|preceedes, d} B.

Figure A8. The temporal topological relation overlaps in conjunction with the intersect temporal operator
are demonstrated with the expression C = A {−, overlaps, i} B.
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Figure A9. The expression C = A {+, equals|equivalent, l} B is an example of the application of
temporal and spatial topological relations to determine raster map layers that have equal time stamps
but different spatial extents.

Appendix C.3. Spatio-Temporal Function Examples

• The following expression temporally buffers the STRDS A and B by one month and spatially
summarise all time-stamped map layers of A and B that have equals, overlaps or overlapped
temporal topological relations. The time stamps of the resulting map layers are the temporal
union of the temporal topological related map layers.

C = bu f f _t(A, ′1 month′) {+, equals|overlaps|overlapped, u} bu f f _t(B, ′1 month′)

• The expression to selects all map layers from a STR3DS A that are located during intervals of a
STVDS B can be formulated as follows:

C = STR3DS(A) {:, during, l} STVDS(B)

• The map() function allows us to compute the soil-adjusted vegetation index SAVI in case the
canopy background adjustment factor was computed for each pixel and stored in raster layer L.
The expression is as follows:

SAVI = ((NIR − RED) ∗ (map(L) + 1)) / (NIR + RED + map(L))

Appendix C.4. Neighbourhood Operation Examples

• Compute the average of a moving window with the size of 5 time intervals of STRDS A:

B = (A[−2] + A[−1] + A + A[1] + A[2])/5.0

• Compute the gradient between the temporal neighbour map layers based on the interval size of
STRDS A:

B = (A[−1] + A)/td(A)
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Abstract: Earth observation data cubes are increasingly used as a data structure to make large
collections of satellite images easily accessible to scientists. They hide complexities in the data
such that data users can concentrate on the analysis rather than on data management. However,
the construction of data cubes is not trivial and involves decisions that must be taken with regard to
any particular analyses. This paper proposes on-demand data cubes, which are constructed on the fly
when data users process the data. We introduce the open-source C++ library and R package gdalcubes
for the construction and processing of on-demand data cubes from satellite image collections, and
show how it supports interactive method development workflows where data users can initially
try methods on small subsamples before running analyses on high resolution and/or large areas.
Two study cases, one on processing Sentinel-2 time series and the other on combining vegetation,
land surface temperature, and precipitation data, demonstrate and evaluate this implementation.
While results suggest that on-demand data cubes implemented in gdalcubes support interactivity
and allow for combining multiple data products, the speed-up effect also strongly depends on how
original data products are organized. The potential for cloud deployment is discussed.

Keywords: earth observations; satellite imagery; R; data cubes; Sentinel-2

1. Introduction

Recent open data policies from governments and space agencies have made large collections
of Earth observation data freely accessible to everyone. Scientists nowadays have data to analyze
environmental phenomena on a global scale. For example, the fleet of Sentinel satellites from the
European Copernicus program [1] is continuously measuring variables on the Earth’s surface and in
the atmosphere, producing terabytes of data every day. At the same time, the structure of satellite
imagery is inherently complex [2,3]. Images spatially overlap, may have different spatial resolutions
for different spectral bands, produce an irregular time series e.g., depending on latitude and swath,
and naturally use different map projections for images from different parts of the world. This becomes
even more complicated when data from multiple sensors and satellites must be combined as pixels
rarely align in space and time, and the data formats in which images are distributed also vary.

Earth observation (EO) data cubes [4,5] offer a simple and intuitive interface to access
satellite-based EO data by hiding complexities for data users, who can then concentrate on developing
new methods instead of organizing the data. Due to its simplicity as a regular multidimensional
array [6], data cubes facilitate applications based on many images such as time series and even
multi-sensor analyses. At the same time, they simplify computational scalability because many
problems can be parallelized over smaller sub-cubes (chunks). For instance, time series analyses
often process individual pixel time series independently and a data cube representation hence makes
parallelization straightforward.

Fortunately, there is a wide available array of technology that works with Earth observation
imagery and data cubes. The Geospatial Data Abstraction Library (GDAL) [7] is an open source
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software library that is used on a large scale by the Earth observation community because it can
read all data formats needed, and has high-performance routines for image warping (regridding an
image to a grid in another coordinate reference system) and subsampling (reading an image at a lower
resolution). However, it has no understanding of the time series of images, nor of temporal resampling
or aggregation.

Database systems such has Rasdaman [8] and SciDB [9,10] have been used to store satellite image
time series as multidimensional arrays. These systems follow traditional databases in the sense that
they can organize the data storage, provide higher level query languages for create, read, update,
and delete operations, as well as managing concurrent data access. The query languages of both
mentioned systems also come with some basic data cube-oriented operations like aggregations over
dimensions. However, array databases are rather infrastructure-oriented. They require a substantial
effort in preparing and setting up the infrastructure, and databases typically require data ingestion,
meaning that they maintain a full copy of the original data.

The Open Data Cube project (ODC) [11] provides open-source tools to set up infrastructures
providing access to satellite imagery as data cubes. The implementation is written in Python and
supports simple image indexing without the need of an additional copy. Numerous instances like
the Australian data cube [4] or the Swiss data cube [5] are already running or are under development
and demonstrate the impact of the technology with the vision to “support . . . the United Nations
Sustainable Development Goals (UN-SDG) and the Paris and Sendai Agreements” [11].

Google Earth Engine (GEE) [3] even provides access to global satellite imagery including the
complete Sentinel, Landsat, and MODIS collections. GEE is a cloud platform that brings the computing
power of the Google cloud directly to data users by providing an easy-to-use web interface for
processing data in JavaScript. The success of GEE can be explained not only by the availability of
data, computing power, and an accessible user interface but also by the interactivity it provides for
incremental method development. Scripts are only evaluated for the pixels that are actually visible on
the interactive map, meaning that computation times are highly reduced by sub-sampling the data.
GEE does not store image data as a data cube but provides cube-like operations, such as reduction
over space and time.

Both, ODC and GEE provide Python clients but lack interfaces to other languages used in data
science such as R or Julia. Additionally, the Pangeo project [12] is built around the Python ecosystem,
including the packages xarray [13] and dask [14]. For data users working with R [15], two packages
aiming at processing potentially large amounts of raster data are raster [16] and stars [17]. While raster
represents datasets as two- or three-dimensional only and hence requires some custom handling of
multispectral image time series, the stars package implements raster and vector data cubes with an
arbitrary number of dimensions, and follows the approach of GEE by computing results only for pixels
that are actually plotted, whereas raster always works with full resolution data. However, the stars
package at the moment cannot create raster data cubes from spatially tiled imagery, where images
come e.g., from different zones of the Universal Transverse Mercator (UTM) system.

Most of the presented tools to process data cubes including Rasdaman, SciDB, xarray, and stars
assume that the data already come as a data cube. However, satellite Earth observation datasets are
rather a collection of images (Section 2) and generic, cross language tools to construct data cubes
from image collections are currently missing. In this paper, we propose on-demand data cubes as
an interface on how data users can process EO imagery, supporting interactive analyses where data
cubes are constructed on-the-fly and properties of the cube including the spatiotemporal resolution,
spatial and temporal extent, resampling or aggregation strategy, and target spatial reference system
can be user-defined. We present the gdalcubes C++ library and corresponding R package as a generic
implementation of the construction of on-demand data cubes.

The remainder of the paper is organized as follows. Section 2 introduces the concept of on-demand
data cubes for satellite image collections and presents our implementation as the gdalcubes software
library. Two study cases on Sentinel-2 time series processing and constructing multi-sensor data cubes
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from precipitation, vegetation, and land surface temperature data evaluate the approach in Section 3,
after which Sections 4 and 5 discuss the results and conclude the paper.

2. Representing Satellite Imagery as On-Demand Data Cubes with gdalcubes

2.1. Data Cubes vs. Image Collections

Earth observation data cubes are commonly defined as multidimensional arrays [6] with
dimensions for space and time. We concentrate on the representation of multi-spectral satellite
image time series as a data cube and here we therefore narrow it down to the following definition of a
regular, dense raster data cube.

Definition 1. A regular, dense raster data cube is a four-dimensional array with dimensions x (longitude or
easting), y (latitude or northing), time, and bands with the following properties:

(i) Spatial dimensions refer to a single spatial reference system (SRS);
(ii) Cells of a data cube have a constant spatial size (with regard to the cube’s SRS);
(iii) The spatial reference is defined by a simple offset and the cell size per axis, i.e., the cube axes are aligned

with the SRS axes;
(iv) Cells of a data cube have a constant temporal duration, defined by an integer number and a date or time

unit (years, months, days, hours, minutes, or seconds);
(v) The temporal reference is defined by a simple start date/time and the temporal duration of cells;
(vi) For every combination of dimensions, a cell has a single, scalar (real) attribute value.

This specific data cube type has a number of limitations and other definitions are more general
(see e.g., [18–20]). However we will show how our implementation in the gdalcubes library allows
the construction of such cubes from different data sources in Section 3, and help solve a wide range
of problems.

As discussed in Section 1, satellite imagery is inherently complex and irregular. For example,
a single Sentinel-2 image has different pixel sizes for different spectral bands. Multiple Sentinel-2
images may spatially overlap, and use different map projections (UTM zones). Furthermore,
although the regular revisit time for Sentinel-2 data is five days (including both satellites), the temporal
differences between images from adjacent orbits might be less than five days, leading to an irregular
time series as soon as analyses cover larger spatial regions. Space agencies and cloud computing
providers including new platforms such as the Copernicus Data and Information Access Services
(DIASes), currently do not provide a data cube access to the data. Except for some platforms discussed
in Section 1, including Google Earth Engine, the starting point for data users is often just the files,
whether in the cloud or on a local computer. To efficiently build on-demand data cubes from irregularly
aligned imagery, we define a data structure for image collections, representing how satellite-based
Earth observation data products are distributed to the users.

Definition 2. An image collection is a set of n images, where images contain m variables or spectral bands.
Band data from one image share a common spatial footprint, acquisition date/time, and spatial reference system
but may have different pixel sizes. Technically, the data of bands may come from one or more files, depending on
the organization of a particular data product.

Obviously, images in a collection should come from the same data product, i.e., measurement
values must be comparable. Figure 1 illustrates how image collections are implemented in gdalcubes.
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Figure 1. Data structure for image collections in gdalcubes. Geospatial Data Abstraction Library
(GDAL) datasets refer to actual image data, which can be local or remote files, objects in cloud storage,
sub-datasets in a more complex file format, or any other resources that GDAL can read.

2.2. Constructing User-Defined Data Cubes from Image Collections

Constructing data cubes involves some decisions that may include loss of information. These include
the selection of the spatial reference system, the resolution in space and time, the area and time range of
interest, and a resampling algorithm. Decisions may or may not be appropriate for particular analyses
and we therefore delay the construction of the data cube until data must actually be read in the analysis.
The idea is similar to how Google Earth Engine works: Users write their analysis and independently
select parameters, like the area of interest and the resolution. We define a target cube with a data cube
view, an object that defines the cube “geometry”, and how it is created, including the target cube’s:

• Spatial reference system;
• Spatiotemporal extent;
• Spatial size and temporal duration of cells (resolution);
• Spatial image resampling method, and;
• Temporal aggregation method.

The spatial resampling algorithm is applied when reprojecting, cropping, and/or resizing pixels of
one image. The temporal aggregation method specifies how pixel values from multiple images that are
covered by the same cell in the target data cube are combined. For example, if a data cube pixel has a
temporal duration of one month, values from multiple images need to be combined, e.g., by averaging
the five-daily values covered by a particular month. Similar to [21], who formalize a topological
map algebra for analyzing irregular spatiotemporal datasets including satellite image collections, this
allows to adapt the temporal granularity to the specific needs, and to make this explicit.

To lower memory requirements and to read and process data in parallel for larger cubes, we divide
a target data cube into smaller chunks, whose spatiotemporal size can be specified by users and can
be tuned to improve the performance of particular analyses. A chunk always contains data from all
bands. Below, we summarize the algorithm to read a data cube chunk, given an image collection and a
data cube view. The algorithm returns an in-memory four-dimensional dense array.

1. Allocate and initialize an in-memory chunk buffer for the resulting chunk data (a four-dimensional
bands, t, y, x array);

2. Find all images of the collection that intersect with the spatiotemporal extent of the chunk;
3. For all images found:

3.1. Crop, reproject, and resample according to the spatiotemporal extent of the chunk and the
data cube view and store the result as an in-memory three-dimensional (bands, y, x) array;

3.2. Copy the result to the chunk buffer at the correct temporal slice. If the chunk buffer already
contains values at the target position, update a pixel-wise aggregator (e.g., mean, median,
min., max.) to combine pixel values from multiple images which are written to the same cell
in the data cube.

4. Finalize the pixel-wise aggregator if needed (e.g., divide pixel values by n for mean aggregation).
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In the case of median aggregation, non-missing values from all contributing images are collected
in an additional dynamically sized per-pixel buffer before the median can be calculated in the final step.

2.3. Data Cube Operations

Since data cubes as defined in this paper are simple multidimensional arrays, it is easy to express
higher-level operators that take one (or more) data cubes as input and produce one data cube as
a result. Examples include reduction over dimensions, applying arithmetic expressions on pixels,
or focal window operations like image convolution. Table 1 lists some operations that are already
implemented in gdalcubes.

Table 1. Implemented data cube operations in the current version of the gdalcubes library.

Operator Description

raster_cube Create a raster data cube from an image collection and a data cube view
reduce_time Apply a reducer function independently over all pixel time series
reduce_space Apply a reducer function independently over all spatial slices
apply_pixel Apply an arithmetic expression on band values over all pixels
filter_pixel Filter pixels with a logical predicate on one or more band values
join_bands Stack the bands of two identically shaped cubes in a single cube
window_time Apply a reducer function or kernel filter over moving windows for all pixel time series
write_ncdf Export a data cube as a netCDF file
chunk_apply Apply a user-defined function over chunks of a data cube

These operations can be chained, essentially constructing a directed acyclic graph of operations.
The graph allows reordering operations in order to optimize computations and minimize data reads.
Furthermore, chunks of data cubes can be processed in parallel.

2.4. The gdalcubes Library

The open-source C++ library and R package gdalcubes implement the concept of on-demand raster
data cubes described above. The library includes data structures for image collections, raster data cubes,
data cube views, and includes some high-level data cube operations (see Table 1). It uses the Geospatial
Data Abstraction Library (GDAL) [7] to read and warp images, the netCDF C library [22] to export
data cubes as files, SQLite [23] to store image collection indexes on disk, and libcurl [24] to perform
HTTP requests. Additionaly it includes the external libraries tinyexpr [25] to parse and evaluate C
expressions at runtime, date [26] for a modern C++ datetime approach, a tiny-process-library [27] to
start external processes, and json [28] to parse and convert C++ objects from/to json. In the following,
we focus on the description of the R package which simply wraps classes and functions from the
underlying C++ library but does not add important features. The R package is available from the
Comprehensive R Archive Network (CRAN)1.

Figure 2 illustrates the basic workflow of how the package is used. At first, available images must
be indexed to build an image collection. The image collection stores the spatial extent, the spatial
reference system, the acquisition time of images, how bands relate to individual datasets or files,
and where the image data can be found. The resulting image collection is a simple SQLite single file
database with tables for images, bands, datasets, and metadata according to Figure 1.

1 https://cran.r-project.org/package=gdalcubes
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Figure 2. Typical analysis workflow for users of the R package gdalcubes.

Since we use GDAL to read image data, datasets can point to anything that GDAL can read,
including local or remote files, object storage from cloud providers, sub-datasets in hierarchical file
formats, compressed files, or even databases. GDAL dataset identifiers simply tell GDAL where to
find and how to read the image data. The data structure with a one-to-many relationship between
images and GDAL datasets and a one-to-many relationship between GDAL datasets and bands brings
maximum flexibility in how the input collections can be organized. Images can be composed from a
single file containing all bands (e.g., MODIS), from many files where one file contains data for one
band (e.g., Landsat 8), or even from many files where files store some of the bands (e.g., grouped
by spatial resolution). Again, files here are not limited to local files but refer to anything that GDAL
can read. We chose SQLite for its portability and simplicity, relieving users from the need to run an
additional database. To support fast spatiotemporal range selection and filtering, the image table
contains indexes on the spatial extent and the acquisition date/time.

However, due to the variety of available EO products and its diverse formats and naming
conventions, it is not trivial to extract all the information automatically. We abstract from specific
products by defining collection formats for specific EO products. The package comes with a set of
predefined formats including some Sentinel, Landsat, and MODIS data products. Further formats
can be either user-defined or downloaded from a dedicated GitHub repository2, where new formats
will be continuously added. Internally, the collection formats are JSON files following a rather simple
format that includes a description of the collection’s bands and a few regular expressions on how to
extract the needed fields, e.g., from a granule’s file name.

After one or more image collections have been created, the typical workflow (Figure 2) is to define
a data cube view that includes the area and time of interest, the target spatial reference system, and the
spatiotemporal resolution, then define operations on the data cube, and finally plot or write the result
to disk. These steps are typically repeated, where users refine the data cube view or the operations
carried out on retrieved cubes. This fits well to incremental method development because users can
try their methods on coarse resolution and/or a spatiotemporal extent first, before scaling the analysis
to large regions and/or high resolution.

The workflow can also be identified in Figure 3, showing a minimal example R script to derive
a preview image from a collection of Sentinel-2 Level 2A images by applying a median reducer
over the visible bands at a 300 m spatial resolution. We first create an image collection with
create_image_collection(), indexing available files on the local disk, then define a data cube view
with cube_view(), and create the cube with raster_cube(). Calling this operation will however

2 https://github.com/appelmar/gdalcubes_formats
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neither start any expensive computations nor read any pixel data from disk. Instead, the function
immediately returns a proxy object that can be passed to data cube operations. We subset available
bands of the data cube by calling select_bands() and apply a median reducer over time with
reduce_time(). These functions also return proxy objects, containing the complete chain of operations
and the dimensions of the resulting cube. Expressions passed as strings to data cube operations directly
translate to C++ functions. In this case, the median reduction is fully implemented in C++ and does
not need to call any R functions on the data. The plot() call finally executes the chain of operations
and starts actual computations and data reads. The advantage of such a lazy evaluation is that no
intermediate results must be written to disk but can be directly streamed to the next operation so that
the order of operations can be optimized. In an example with 102 images from three adjacent grid tiles
(summing to approximately 90 gigabytes), stored as original ZIP archives as downloaded from the
Copernicus Open Access Hub [29] (see also Section 3, where we use the same dataset in the second
study case), computations take around 40 s on a personal laptop with a quad-core CPU, 16 GB main
memory, and a solid state disk drive. The resulting image is shown in Figure 4. The complete script
has less than 20 lines of code and if users want to apply the same operation at a higher resolution,
possibly for a different spatial extent and time range, only parameters that define the data cube view
must be changed.

library(gdalcubes)

library(magrittr)

gdalcubes_set_threads(8)

# 1. create an image collection from files on disk

files = list.files("/data/sentinel2_l2a_archive", ".zip", full.names = TRUE)

S2.col = create_image_collection(files, format = "Sentinel2_L2A")

# 2. create a data cube view for a coarse resolution overview

v = cube_view(srs="EPSG:3857", extent=S2.col, dx=300, dt="P5D",

aggregation="median", resampling = "bilinear")

# 3. create a true color overview image

raster_cube(S2.col, v) %>%

select_bands(c("B02", "B03", "B04")) %>%

reduce_time("median(B02)", "median(B03)", "median(B04)") %>%

plot(rgb=3:1,zlim=c(0,1200))

Figure 3. Example R script to derive a mosaic preview of Sentinel-2 images by calculating the median
of visible bands over pixel time series.
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Figure 4. Output of R script in Figure 3, plotting median reflectances of visible Sentinel-2 bands
over time.

Figure 5 shows a Google Earth Engine (GEE) script for applying a median (time) reduction over
the same study region. The results are very similar but not identical on pixel level because of a few
different images being used and because GEE reduced the entire image collections whereas gdalcubes
creates data cubes with regular temporal resolution, which involves aggregating values from multiple
images before applying the reducer.

Figure 5. Screenshot of using Google Earth Engine [3] to apply a median RGB reduction of Sentinel-2
images for the same study area and time as used in Figures 3 and 4. Background imagery and map
data c© 2019 GeoBasis-DE/BKG ( c© 2019), Google.
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3. Study Cases

We now demonstrate and evaluate the R package implementation in two study cases. The first
study case focuses on demonstrating how gdalcubes can be used to combine different data products.
The second study case processes Sentinel-2 time series and evaluates the scalability of computation
times as a function of the resolution of the data cube view and the number of CPUs used.
All computation time measurements have been performed on a Dell PowerEdge R815 Server with
4 AMD Opteron 6376 CPUs, summing to 64 CPU cores in total and 256 GB of main memory.

3.1. Constructing a Multi-Sensor Data Cube from Precipitation, Vegetation Data, and Land Surface
Temperature Data

In this case study, we build a multi-sensor data cube including 16-daily vegetation index data
from the Moderate-resolution Imaging Spectroradiometer (MODIS) product MOD13A23, daily land
surface temperature data from the MODIS product MOD11A14, and daily precipitation data from
the Global Precipitation Measurement mission (GPM) product IMERG5 (using the daily accumulated,
final-run product). Table 2 summarizes some important properties of the datasets used in this study
case. Combining data from such sensors including meteorological and optical measurements is an
important step in analyzing statistical dependencies between environmental phenomena. In this case,
the combined resulting data cube can, for example, be used to study the resistance of vegetation against
heat or drought periods.

Table 2. Summary of the data products as used in the first study case. Definitions: GPM, Global
Precipitation Measurement mission; NDVI, normalized difference vegetation index; liquid_accum,
liquid daily accumulated precipitation; LST_DAY, daytime land surface temperature; SRS, spatial
reference system; MODIS, Moderate Resolution Imaging Spectroradiometer.

MOD13A2 GPM MOD11A1

Selected Variables NDVI liquid_accum LST_DAY
Spatial Resolution 1 km × 1 km 0.1◦ × 0.1◦ 1 km × 1 km
Area of Interest global (land only) global (60◦ N–60◦ S full) Europe (land only)
Temporal Resolution 16 days daily daily
Time Range 2014-01-01–2019-01-01 2014-01-01–2019-01-01 2014-01-01–2019-01-01
File Format HDF4 GeoTIFF (zip compressed) HDF4
SRS MODIS sinusoidal Lat/Lon grid MODIS sinusoidal

The script to build a combined data cube is shown in Figure 6. We first create a common data
cube view, covering Europe from the beginning of 2014 to the end of 2018 at a 10 km spatial and daily
temporal resolution. Then, we create three separate raster data cubes and apply some individual
operations, e.g., to compute 30-day precipitation means from daily measurements. We then combine
the cubes using two calls to the join_bands() function, which collects the bands from two identically
shaped data cubes. Since the MOD13A2 product covers land areas only, we ignore any pixels in the
combined cube without vegetation data by calling filter_predicate(). Expressions passed to the
apply_pixel and filter_predicate functions are translated to C++ functions, with iif denoting
a simple one line if-else statement. Finally, we export the cube as a netCDF file. Figure 7 shows a
resulting temporal subset of a cube derived at a 10 km spatial resolution. Computation times to execute
the script varied between 40 and 240 min on a 50 km and 1 km spatial resolution respectively, meaning
that by reducing the number of pixels in the target data cube by a factor of 2500, we could reduce

3 https://lpdaac.usgs.gov/products/mod13a2v006/
4 https://lpdaac.usgs.gov/products/mod11a1v006/
5 https://pmm.nasa.gov/data-access/downloads/gpm
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computation times by a factor of 6. In this case, data users would additionally need to reduce the area
and/or time range of interest to try out methods and get interactive results within a few minutes.

v.europe = cube_view(srs= "EPSG:3035", extent=list(left=2500000, right = 6000000,

top = 5500000, bottom = 1500000, t0 = "2014-01-01", t1 = "2018-12-31"),

dx=10000, dt="P1D")

MOD13A2.col = image_collection("MOD13A2_global_2014_2018.db")

GPM.col = image_collection("GPM.db")

MOD11A1.col = image_collection("MOD11A1_2014_2018.db")

GPM.cube =

raster_cube(GPM.col, v.europe) %>%

select_bands("liquid_accum") %>%

apply_pixel("liquid_accum / 10", names = "PREC") %>%

window_time(expr = "mean(PREC)", window = c(30,0))

MOD13A2.cube =

raster_cube(MOD13A2.col, v.europe) %>%

select_bands("NDVI") %>%

apply_pixel("NDVI / 1e4", names="NDVI")

MOD11A1.cube =

raster_cube(MOD11A1.col, v.europe) %>%

select_bands("LST_DAY") %>%

apply_pixel("LST_DAY * 0.02", names="LST") %>%

window_time(expr = "mean(LST_30D)", window = c(30,0))

join_bands(MOD13A2.cube, GPM.cube) %>%

join_bands(MOD11A1.cube) %>%

filter_predicate("iif(isnan(NDVI), 0, 1)") %>%

write_ncdf("combined.nc")

Figure 6. R script to combine data cubes from three different data products. The construction of the
image collection is omitted here.
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Figure 7. Temporal subset of the combined data cube with NDVI measurements (left), average daytime
land surface temperature (K) during the last 30 days (center), and average daily precipitation (mm)
during the last 30 days (right).

3.2. Processing Sentinel-2 Time Series

In a second study case, we applied a time series analysis on a collection of 102 Sentinel-2 images.
The dataset covers the border region of Poland and Belarus, covering a total area of approximately
25,000 km2. The images have been recorded between March and November 2018 and come from
three different grid tiles and two different UTM zones. Images sum up to approximately 90 gigabytes
and are stored as original compressed ZIP archives, downloaded from the Copernicus Open Access
Hub [29]. Figure 8 shows the chain of data cube operations to detect permanent water bodies. We first
compute the normalized difference water index (NDWI) based on green and near infrared reflectance,
then simply classify all pixels with NDWI larger than or equal to zero as water (value 1), other pixels
as no water (value 0), and then derive the mean over all pixel time series, representing the proportion
of time instances where a pixel has been classified as water. In the last step, we set all pixels with value
less than or equal 0.1 to NA and export the resulting image as a netCDF file. Figure 9 illustrates the
study area and the results of the water detection on a low and high resolution in a map.

raster_cube(S2.col, v) %>%

select_bands(c("B03", "B08")) %>%

apply_pixel("(B03-B08)/(B03+B08)", names = "NDWI") %>%

apply_pixel("iif(NDWI >= 0, 1, 0)", names = "water") %>%

reduce_time("mean(water)") %>%

filter_predicate("water_mean > 0.1") %>%

write_ncdf(tempfile())

Figure 8. R script to detect permanent water bodies from a Sentinel-2 data cube.
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Figure 9. Result map from water detection in the second study case. The right part illustrates the
results at a high spatial resolution.

To evaluate how the implementation scales with the spatial resolution of the target data cube, we
vary the spatial resolution in the data cube view and measure computation times for executing the
code in Figure 8. At a fixed spatial resolution with pixels covering an area of 100 m × 100 m, we vary
the number of used CPUs.

Figure 10 (left) shows how the speedup changed if the number of pixels was reduced by a certain
factor. Reducing the number of pixels by a factor of 10,000, i.e., working with 1 km × 1 km pixel
size compared to 10 m × 10 m, reduced the computation times by a factor of approximately 100.
Although this may seem like a rather low effect, it means that we can process the whole dataset
within less than a minute on low resolution as opposed to approximately one hour at full resolution.
Computation times reduced consistently with an increasing number of CPUs (Figure 10). For example,
we have been able to process 7.61 times more pixels per second when using eight threads compared to
using a single thread.

Figure 10. Computational results for the second study case. The left plot shows the achieved speedup
factors depending on the reduction of pixels in the target data cube. For example, reducing the number
of pixels by a factor of 100 resulted in a speedup of around 20, compared to computation times with
a 10 m by 10 m spatial resolution. The center and right plots show computation times and pixel
throughput respectively as a function of the number of used CPUs.

4. Discussion

Today, data cubes are increasingly used as the basis for further analysis of large Earth observation
image time series. For the creation of data cubes from image collections, resampling and/or aggregation
in space and time is needed, in addition to image warping. As discussed below, the presented
approach does this on-the-fly and interfaces existing open source software to process Earth observation
data cubes.
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4.1. Interactive Analyses of Large EO Datasets

The case studies have demonstrated that on-demand raster data cubes, where users define the
shape of the target cube, allow the reduction of computation times and thus improve interactivity
in analyses of large satellite image collections. This approach is similar to Google Earth Engine in
that it only reads the pixels that are actually needed, as late as possible (lazy evaluation). However,
the magnitude of reduction in computation times depends on particular data products. In the example
of Sentinel-2 time series processing, gdalcubes makes use of provided image overviews or pyramids
when working on a coarse resolution cube view. In contrast, MODIS products do not include such
overviews and hence the full data must be read first, which reduces the gain in interactivity. In these
cases, users may need to reduce the area and temporal range of interest to yield acceptable computation
times. Under certain situations it might pay off to build overview images manually using the GDAL
implementation before using gdalcubes. This also becomes important in cloud environments, where
overviews may even reduce costs associated with data access or transfer.

There is currently quite some discussion about whether so-called analysis-ready data, which
are essentially data cubes, should be processed for large scale imagery (e.g., [5] and CEOS-ARD6)
in order to make these data usable for a larger community. As this creation is a very expensive
operation, we argue in line with [3] that it is hard to create data cubes with parameters that satisfy
every researcher, and that the on-the fly creation of data cubes retains maximum flexibility in this
respect. More research on quantifying the loss of statistical accuracy or power due to resampling and
working at lower-than-maximum resolutions is still needed.

4.2. Scalable and Distributed Processing in the Cloud

The examples shown here were executed on a local machine. Several days were needed to
download the data, whereas the time for processing in the case study was much lower. While this is
acceptable for medium-sized datasets, it becomes impossible for large scale, high resolution analyses.
The rational trend is to move computations to cloud platforms where the data is already available.
These include Amazon Web Services, the Google Cloud, and specialized EO data centers such as the
Copernicus DIASes. Since the gdalcubes implementation uses GDAL to read imagery, it can directly
access object storage from major cloud providers. Image collections then simply point to globally
unique object storage identifiers and hence image collection indexes can be shared. Furthermore,
though not yet available in the R package, the C++ implementation of gdalcubes comes with a
prototypical server application, providing a simple REST-like API to process specific chunks of a cube.
Running several of these gdalcubes worker instances in containerized cloud environments would
allow process distribution over many compute instances.

An interesting open question is how the image collection index performs with much larger
datasets. In the case studies with up to 34,000 images in a collection (global vegetation index data
from MODIS for 5 years), we could not see any performance decreases so far. The image collection
typically consumes a few kilobytes per image and images can be added incrementally. However,
since the underlying table structure in the SQLite database only uses one-dimensional indexes on
the spatial extent, acquisition time, and identifier of images, this might not scale well e.g., for the full
Sentinel-2 archive. Implementations with more advanced indexes as in the S2 Geometry Library7

might be needed in these cases.

6 http://ceos.org/ard
7 http://s2geometry.io
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4.3. Interfaces to Other Software and Languages

The presented examples demonstrate how the gdalcubes library can be used in R. All data cube
operations, the construction of data cubes from files, and the export as netCDF files are however
implemented in C++. The R package is a thin software layer that makes the C++ library easily usable
for R users. Since other languages such as Python or Julia also allow one to interface the C++ code,
writing interfaces in these languages is feasible and relatively straightforward.

The data model to represent data cubes in memory is rather simple. A chunk is nothing more
than a one-dimensional contiguous double precision C++ vector with additional attributes storing
the dimensionality. As a result, it is also possible to interface and extend gdalcubes with linear
algebra, image processing (e.g., Orfeo ToolBox [30]), or other external libraries including the NumPy C
application programming interface [31].

The only other software systems we know of that can create regular data cubes from image
collections are GRASS GIS [21], Open Data Cube [11], and the (non-open source) Google Earth
Engine [3]. The open source library gdalcubes introduced here is a nice addition to these as it
is relatively easy to integrate in scripting languages such as R, Julia, or Python, and can work in
conjunction with software that can process data cubes such as GRASS GIS [32], R packages raster [16]
and stars [17], and Python packages numpy [33] and xarray [13]. At the moment, a more user-friendly
package to interface gdalcubes with the Python ecosystem is missing.

4.4. Limitations

The presented work focused on representing satellite imagery as raster data cubes and the
implementation always uses a four-dimensional array with two spatial, one temporal, and one band
dimension (see Definition 1). Hence, it is not directly applicable for higher dimensional data such
as climate model output with vertical space or in cases where it is useful to represent time as two
dimensions (e.g., year and day of year, or time of forecast and time to forecast). Furthermore, it currently
represents raster data cubes only. Fortunately, the existing R package stars [17] implements generic
multidimensional arrays, including support for rectilinear and curvilinear rasters and some first
attempts to bring together functionalities from both packages are currently in progress.

The case studies demonstrated that the speed-up effect of on-demand data cubes on interactivity
for lower resolution analyses strongly depends on particular datasets. One very important factor is
whether the data comes with image pyramids/overviews, as well as the data format. In this regard,
modern approaches such as the cloud-optimized GeoTIFF format with additional overviews seem
very promising.

Similar to Google Earth Engine [3], the gdalcubes library is not well suited to problems that are
hardly scalable and perform global analyses where results depend on distant pairs of pixels. There are
also some parameters like the selection of chunk size, which are not easy to automatically optimize.

5. Conclusions

This paper proposes an approach to the on-demand creation of raster data cubes and presents
an open source implementation in the gdalcubes library. It presents a generic solution to convert
and combine irregular satellite imagery to regular raster data cubes, thereby supporting interactive
incremental method development. This makes it easier for data users to exploit the potential of Earth
observation data cubes such as combining data from several sensors and satellites. The organization
of particular data products has a strong effect on speedups for computations on sub-sampled data.
As the library has been written in C++, interfaces to scripting languages like Python and Julia could
be developed easily; a gdalcubes R interface has been published on the Comprehensive R Archive
Network (CRAN).
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Abstract: The amount of data that Sentinel fleet is generating over a territory such as Catalonia
makes it virtually impossible to manually download and organize as files. The Open Data Cube
(ODC) offers a solution for storing big data products in an efficient way with a modest hardware and
avoiding cloud expenses. The approach will still be useful up to the next decade. Yet, ODC requires
a level of expertise that most people who could benefit from the information do not have. This paper
presents a web map browser that gives access to the data and goes beyond a simple visualization by
combining the OGC WMS standard with modern web browser capabilities to incorporate time series
analytics. This paper shows how we have applied this tool to analyze the spatial distribution of the
availability of Sentinel 2 data over Catalonia and revealing differences in the number of useful scenes
depending on the geographical area that ranges from one or two images per month to more than one
image per week. The paper also demonstrates the usefulness of the same approach in giving access
to remote sensing information to a set of protected areas around Europe participating in the H2020
ECOPotential project.

Keywords: Open Data Cube; Earth Observations; interoperability; visualization; Sentinel; Analysis
Ready Data

1. Introduction

The territory of Catalonia has been analyzed by remote sensing from different thematic angles
such as forest fire patterns and effects [1], land use and land cover change [2], agriculture statistics and
abandonment [3,4], forest dynamics [5], or even air temperature [6]. These works required a considerable
amount of time spent in data preparation and organization for requesting and downloading, as well as
in correcting it geometrically and radiometrically [7]. To avoid the repetition of the Landsat imagery
processing for each study, the Department of Environment of the Catalan Government and Centre de
Recerca Ecològica i Aplicacions Forestals (CREAF) created the SatCat data portal that organizes the
historical Landsat archive (from years 1972 to 2017) over Catalonia in a single portal and that provides
visualization and download functionalities based on OGC Web Map Service (WMS) and Web Coverage
Service (WCS) international standards [8]. Still, CREAF inverts a considerable amount of processing
work on maintaining the portal up-to-date and to incorporate the increasing flow of the new Landsat
and Sentinel 2 sensors. The two main reasons are the number of processing steps that the raw satellite
data requires to make it useful and the difficulties on organizing a big series of imagery scenes in a way
that are easy to manage.

To solve the first issue, United States Geological Survey (USGS) and European Space Agency (ESA)
have made a considerable effort facilitating the access to optical satellite imagery, processed up to a level
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that is ready for immediate use on land studies. Recently, Analysis Ready Data (ARD) is distributed in
a processing level that is geometrically rectified and free of the effects of the atmosphere, making it ideal
for immediate use for vegetation and land use studies [9]. Since March 2018, ESA has been distributing
the Sentinel 2A and 2B data at 2A processing level (Bottom of Atmosphere Reflectance), which can
be directly downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/) also
covering the Catalan area. The downloading process is not only available in the portal, but it
is also facilitated by an API that makes the automation of the regular updates programmatically
possible. At the time of writing this paper, USGS is only providing Landsat ARD for the USA territory
(https://www.usgs.gov/land-resources/\T1\textcompwordmarknli/\T1\textcompwordmarklandsat/
\T1\textcompwordmarkus-landsat-\T1\textcompwordmarkanalysis-ready-data) even if it is possible to
request on-demand processing of the Landsat series (4-5 TM, 7 ETM and 8 OLI/TIRS) for other regions
of the world, including Catalonia.

By applying successive technical improvements in their sensors, satellites are responding to the
user demands in terms of spatial and temporal resolution. Obviously, this increment in resolution is
accompanied by an increase in the number of files and/or in file sizes. In the past, it was possible to
deal with file names and data volume, but is currently becoming increasingly impossible, even when
the small region is needed to study. Data distribution is based on bulky scenes with a long list of file
names difficult to classify and maintain, which must be downloaded and processed one by one with
Geographic Information System (GIS) and Remote Sensing (RS) software. Creating long time series of
a small area might take long processing time in repetitive clipping steps and format transformations.
In this situation, extracting a time profile of a single position in the space requires visiting a subset of
the long list of files. There is a need for having the remote sensing data organized in a way that it is
possible to formulate spatio-temporal queries easily. Current distribution in the form of big scenes
is not optimized to respond most of such queries, and the fact that some datasets are growing with
a continuous flow of more recent scenes until the end of the operational life of the platform adds
another level of complexity. One way of making temporal analysis practicable is to organize or index
the data in a way that data extraction of a subset of a continuously growing dataset in four dimensions
(two spatial, one temporal, and one radiometric) is fast.

The Earth Observations Data Cubes (EODC) is an emerging paradigm transforming how
users interact with large spatio-temporal Earth Observations (EO) data [10]. They provide a better
organization of data by indexing it, faster processing speeds by ingesting scenes as well as improved
query languages to easily retrieve a convenient subset of data. The Open Data Cube (ODC) [11,12] is
an implementation of the EODC concept that takes advantage of the existence of ARD to promote and
generalize the creation of national data cubes. The Swiss Data Cube (SDC) is the second operational
implementation, after Australia [13], and delivers nationwide information using remotely-sensed
time-series Earth Observations [14]. As will be described later in detail, by permitting for a local
installation of the software and the data, the ODC allows for full control of the data sources and
the processes and algorithms applied to them. This is particularly convenient to guarantee total
reproducibility of the results obtained when analyzing the data, but it will require an investment in
hardware as well as an initial effort on populating the system with the right products. In contrast,
solutions such as Google Earth Engine (GEE) provides a cloud environment were multi-petabyte
archive of georeferenced datasets that includes Earth observation satellites and airborne sensors (e.g.,
USGS Landsat, NASA MODIS, USDA NASS CDL, and ESA Sentinel), weather and climate datasets, as
well as digital elevation models can be immediately used [15]. Local or global analysis is possible by
adopting GEE programming API that provides build in functions, or by programming lower level
code. At the time these lines were written, GEE did not include Sentinel 2 Level 2A imagery [16] (the
product being the focus of the presented work). GEE offers unprecedented computer capacities to the
uses, removes the need for the user to design parallel code and takes care of the parallel processing
automatically. This means that users can only express large computations by using GEE primitives
and some operations that cannot be parallelized in GEE simply cannot be performed effectively in this
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environment. GEE also imposes some limits and other defenses that are necessary to ensure that users
do not monopolize the system that can prevent some user applications [17].

The ODC provides a good starting point for data organization and data query. Still,
using an installation of the ODC requires experience in python programming language and in
a set of libraries that the ODC builds on top. The ODC offers a Python Application Programming
Interface (API) to query and extract data indexed or ingested by the ODC. This library relays on the
Python XArray library that is a data structure and a set of functions to deal with multidimensional
arrays that are described with metadata and semantics. XArray internally uses NumPy that is
a consolidated pure multidimensional array library. To manipulate the data in the ODC the user needs
to be knowledgeable on the ODC API, the XArray and NumPy libraries. In addition, if the user wants
to get a graphical representation of the data, extra knowledge on Python graphical libraries is also
required. Some examples of practical applications where the ODC could be applied are detecting
changes in landscape, tracking the evolution of agricultural fields, or the stability of protected areas.
Unfortunately, the technical level of expertise for applications similar to the ones mentioned before
relegates the use of the ODC to a subset of RS experts skilled in Python programming.

The first part of the paper demonstrates that the same approach used for national data cubes
is also useful for smaller areas such as a province or a region of a country and shows how the ODC
can be scaled down to the Catalonia region and further down to the level of an European protected
area. This paper also demonstrates that the combination of a modest computer infrastructure with
semiautomatic processes allows a single individual to manage a data cube. The second part of this
paper proposes some additions to the ODC that make possible the exploration of time series of data
for users that have no background in programming languages or scripting widening the potential
audience. The solution is based on a combination of OGC WMS and WCS services with an integrated
HTML5 web client that performs animations and temporal series statistics. The third part of the paper
illustrates how a non-programmer can start exploring the data using the HTML5 enabled MiraMon
Web Map Browser, and for example, compute the number of non-cloudy measurements for each pixel
of the region, and finally discusses the scalability of the solution in space and time.

2. Scaling Down the Data Cube to a Level of a Province, Region or Protected Area

Catalonia is an autonomous community in North-East of Spain, which extends across 32,000 km2.
For about 10 years we have manually build the SatCat Landsat archive that exposes geometrically
corrected imagery coming from all Landsat series over the complete Catalan territory spanning from
the first Landsat 3 image in 1972 to the current Landsat 8 optical product. ESA was solely responsible
for Landsat products in Europe for some time, while USGS is mainly responsible for operating and
distributing Landsat imagery. Both organizations have provided data to the SatCat. On top of the
archive, we setup a standard WMS service encoded in C and developed using libraries coming from the
MiraMon software. To be able to retrieve the data fast, the MiraMon WMS server requires preparing
it as internal tiles and at a diverse set of resolutions with an automatic interpolation and cutting
tool. In addition, the service also adopts the OGC WCS 1.0 standard for subsetting and downloading.
The result is an easy to explore dataset that once presented to the public became widely used both for
visual exploration and downloading. To introduce a new scene in the time series, a manual repetitive
workflow and protocol was established. The temporal and spatial resolution makes the update of
series still manually manageable today. Catalonia is divided in 2 Landsat paths one for the east side
(GironaBarcelona) and one for the west side (LleidaTarragona) that are kept separated in two layers
to preserve the original scenes. Due to the differences in the number of bands and resolutions of the
different instruments, each sensor type is also presented as a different layer. The system benefits from
the TIME and extra dimensions concept in the WMS standard to define a product that has a time series
composed by several original bands. Due to the intrinsic limitations of the WMS interface that provides
pictorial representations of the imagery, the browser is not able to change the visualization of the data
or to perform any kind of analysis. To facilitate the time series interpretation an animation mechanism
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was developed, consisting of requesting individual WMS time frames that are presented to the user as
a continuous film. In the next section of the paper, we will present an uncommon way of using the
WMS standard used in our new map browser that overcomes these limitations.

With the advent of Sentinel 2A and 2B, we have realized that it is no longer possible to process
all incoming data manually with the same human resources. As part of the process of rethinking the
workflow of building a Sentinel 2 data series to make it more automatic, we have considered the data
cube approach as a way to better organize the data but also as a way to maintain the product up to
date with the most recent scenes. We realized that the methodology described by the ODC to setup
national data cubes can be used on a region of any size so we decided to build a Catalan Data Cube
(CDC) starting by the new data flows coming from the ESA Copernicus program.

As for hardware, we were constrained to low budget alternatives. Instead of going for the last
state of the art technology, we opted to use a dual Xeon main-board ASUS Z8NA-D6 with 2 Intel X5675
processors with a total of 12 cores (24 virtualized cores) with 48 GB DDR3 1333 Mhz RAM and four
8 TB disks for about 1500 EUR. After setting up a Windows server operating system, we proceeded
to setup up the miniconda environment, the PostgreSQL database, the cubeenv software (the ODC),
and the Spyder IDE. The process is fully documented in the ODC website1.

We wanted to start by importing a Sentinel 2 Level 2A product. The process of downloading the
data from the ESA Sentinel Data Hub can be made automatic by combining the wget tool with the
instructions for batch scripting provided by ESA2. There are three steps in the process: First, a wget
request to the ESA Sentinel Data Hub to find the resources to be downloaded from the product type
S2MSI2A in an interval of time and space. As a result we get an atom file with a maximum of 100 hits.
Then we needed to download them one by one with a short script (a Python code) to interpret the
atom file (that is in XML format) and to create the list of the URLs corresponding to the granule of each
hit and download each individual granule. Each granule is provided as a ZIP file following the SAFE
format [18] that needs to be uncompressed.

The ODC works with a PostgreSQL database to store the metadata about the elements in the
data cube but it will keep the image data as separated in the hard drive, only retaining a link to
them. In order to import resources in the ODC, specific YAML files containing metadata about the
resources are necessary to populate the database. The ODC GitHub provides abundant information
and examples on how to create the necessary YAML files and how to index imagery in the data cube
for the most common products. Two types of YAML files need to be created: A product description for
the S2MSI2A product as a whole (mainly specifying details about the sensor and the bands acquired
by it) and files that describe the peculiarities of each granule (mainly in terms of spatial and temporal
extent). ESA has only recently distributed the S2MSI2A product (since March 2018) so no example
of the description of it has been found. We created it ourselves following a YAML file for scenes
generated ad-hoc with the Sen2Cor software that produces a very similar SAFE file structure. We also
used a Python script that transforms a SAFE folder result from a Sen2Cor execution into a YAML file
describing the granule peculiarities that we could adapt to the product generated by ESA. Once we
had these YAML files, we were able to index the granules into the data cube. By indexing this kind
of data the ODC still relies on the original JPEG2000 formats. JPEG2000 format is designed for high
compression and fast extraction of a subset but it still requires some time to decompress each scene,
making it not appropriate for queries requiring big time series that results in too slow responses for
the ODC API. Fortunately the ODC offers a solution called ingestion. The ingestion process creates
another product in the data cube that automatically converts the JPEG2000 files into a tile structure
composed by NetCDF files in a desired projection. The ingestion process offers the possibility to mosaic
all granules of the same day in a single time slice reducing fragmentation of the Sentinel 2 granules.

1 https://datacube-core.readthedocs.io/en/latest/ops/conda.html
2 https://scihub.copernicus.eu/userguide/BatchScripting
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In the current implementation of this functionality (called ‘solar day’), the process does not take any
consideration on which is the best pixel and covers one image with the next, which is something that
could be improved in future versions of the ODC software. The ingestion process can be repeated to
add new dates in a preexisting time series as soon as they become available and integrated in the data
cube into a fully automatic batch process.

Once this process is completed, the data is perfectly organized in the data cube and can be accessed
in an agile manner. The cubeenv Python API allows for writing Python scripts that extract a part of
a time series as tiles and represent them on screen by using matplotlib. In practice, the data cube offers
a spatio-temporal query mechanism that does not require any knowledge about file names, folder
structure, or file format. The result is an array of data structures, one for each available time slice.
The number of slices in the time series and the dates associated with them is determined by the API.
The Python API is a very useful feature to test the ingested data and ensure that all data is correctly
available. Some examples on how to do so are provided as Jupyter notebooks in the ODC website.
Using the Python library, data can be exploited by analytical algorithms generating new products,
which can eventually be reintroduced in the data cube. That might produce great results but the need
for Python skills makes it too complicated for most of the GIS community or the Catalan administration
and inaccessible to the general public.

To import the Sentinel 2 product for Catalonia in the CDC for the available period from March
2018 to March 2019, involved the download of 1562 granules (204,386 files) resulting in a volume of
1.18 TB (1.301.116.256.901 bytes) of the original scenes in JPEG2000 format that required a downloading
and indexing time of about 258 h. Once ingested, it resulted in 132 scenes in a volume of 816 GB
(876.598.015.657 bytes) and distributed in 6093 NetCDF files requiring an ingestion time of about 23.4 h.

3. Adding Easy and Interoperable Visualization to the Data Cube

Another Python script was prepared that retrieves the data cube tiles and convert them into the
MiraMon server format at a variety of resolutions. The script determines the number of time slices that
the data cube can provide at that point in time and it is able to detect if a certain time slice was already
prepared in a previous iteration or needs to be prepared now. For each time slice, if the preparation is
successful, the script is also able to edit the server configuration file (that is an INI file) to add it to the
WMS server and the web map client configuration file (that is a JSON file) to add a time step making
the whole update process fully automatic.

Actually, the ODC provides support for WMS services by using the https://github.com/
opendatacube/datacube-ows code. Nevertheless, in this development we wanted to take advantage of
a new functionality that we have recently developed in the MiraMon server and map browser for the
ECOPotential project: MiraMon implementation of the WMS OGC Web Services serves imagery in
JPEG or PNG for standard WMS clients as well as in raw format where the arrays of numeric values
(original data) of the cells is transmitted directly to the client (we call it IMG format). The use of
a raw numerical format opens a myriad of new possibilities in the client side. Now the map browser
JavaScript code is able to request IMG format asynchronously (with AJAX) and get the return as
a JavaScript binary array (new characteristic in HTML5). HTML5 also adds support for a graphics
library that works on an area of the screen that is called canvas. In the canvas, we can get access
to each pixel of the screen area and modify it. Binary arrays are dynamically converted into arrays
of RGBA values that will then covering the whole canvas area. The conversion can be as complex
as we want, ranging from applying a grey scale color map, creating an RGB combination from 3
bands (3 WMS binary array requests), and up to a complex pixel-to-pixel operation involving several
bands and thus many WMS binary array requests [19]. Our CDC WMS client can be accessed at
http://datacube.uab.cat/cdc/ (see Figure 1). The description of most of the functionalities implemented
in the map browser is out of the scope of this paper that will only focus on the time series analysis.
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Figure 1. The Catalan Data Cube WMS browser.

4. Exploratory Analysis of Time Series on the Catalonia Data Cube

In implementing the map browser of the Catalan Data Cube we have gone even further in the
use of binary arrays by exploring the potential of using an array of arrays in supporting time series
visualization and analytics. A time series is a multidimensional binary array in JavaScript allowing
for the extraction of data in any direction of the x,y,t space including spatial slices, but also temporal
profiles and 2D images where one dimension is time.

4.1. Summarizing Scene Area and Cloud Coverage of Each Scene

The first thing we did was to generate a list of temporal scenes that could be more meaningful
for the user. While downloading data from the Sentinel hub, we are only accepting granules that
have less than 80% of cloud coverage. If we combine this with the fact that Catalonia is only covered
partially with a single granule and that both Sentinel 2A and 2B are integrated in a single product; it is
really difficult to anticipate the real coverage of each daily time slice, if the user is not proficient in the
distribution of the satellite paths. For this reason, the list of scene names is a composition of the date,
the percentage of the area or interest (a polygon that includes the Catalan territory) covered by scenes
with less clouds than CDC limit (80% or less) and the percentage of area covered by scenes that shows
the ground (not covered by clouds). In this way, we can differentiate a scene that only covers a small
fraction of Catalonia, but with the available part mostly “visible” (not covered by clouds), so it can still
be useful to study the small areas as a continuous extent (see Figure 2).

4.2. Animation of the Temporal Evolution and Temporal Profiles

The main window of the map browser allows showing one scene at a time (see Figure 1).
To perform time series analysis, we have included a new window (that can be opened by pressing the

video icon:  ) where the set of time slices of the area defined in the main window will be requested,
visualized, and analyzed. For each time slice, the components are downloaded, saved in memory and
rendered in a HTML independent division (HTML DIV) that contains a canvas. Creating the animation
effect is as simple as hiding all divisions and making visible one of them in sequence (see Figure 3e).
Modern browsers are fast in doing this kind of hiding operations allowing for speeds higher than 10
frames per second, thus resulting in a quite convincing video effect.
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(a) (b) 

Figure 2. Two scenes offered in the Catalan Data Cube map browser and how they are shown in
the table of contents (legend): (a) scene offers less coverage than (b) scene (as can be seen in “cov“
percentages), but both scenes have high visibility ("vis" percentage, i.e., the ground is not obscured by
clouds) in the covered areas.

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 3. Time series visualization of the Catalan Data Cube WMS browser: (a) layer selection
and thumbnails download start when pressing the Load button; (b) thumbnails download process;
(c) selection of the full resolution images to download using the slider of percentage of void space;
(d) resulting full resolution animation; and (e) detail of the temporal controls.

In the case of the CDC, downloading and saving the time series binary arrays is a stress test for
both the web browser and the map server. Indeed, a time series from a year will involve about 140
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scenes that will result in up to 140 WMS GetMap requests of individual time slices, if we are visualizing
a band, or 280 WMS GetMap request if we visualize a dynamically generated NDVI. In a state of the
art screen the map requires 1500 × 800 pixels or more; and considering that each pixel is represented
by 2 bytes (short integer binary array), this will require transmitting a total of 310 MB of uncompressed
information for a single band and 620 MB for an NDVI. The situation is partially mitigated by the use
of RLE compression during the transmission, but still a considerable amount of data is transmitted
from the server to the client. Another factor introduced to mitigate the situation was to consider that,
due to the number of scenes having a partial coverage, requesting a time series of a local area will
necessarily result in some scenes completely blank. The map browser turns this into an advantage by
initially requesting only small quick looks of the scenes (see Figure 3a,b). This is going to increase
the user experience by representing a pre-visualization of the time series in the form of a film, and it
is also useful for calculating an estimation of the percentage of nodata values of the area in a certain
time-slice. If the quick look is containing nodata values only, it is automatically discarded. Moreover,
by operating a slider, the user can then decide to download only the scenes that have a minimum
percentage of information in them, reducing the need for requesting unnecessary bad images at full
screen resolution (see Figure 3c,d).

After the user has decided about the accepted percentage of coverage (and presses the Load button),
all the WMS GetMap requests at screen resolution start. Once the images have been downloaded and
the multidimensional binary array has been completed, an animation begins showing the sequence of
scenes (as the “Animation” option, by default, is selected in the dropdown list on the temporal analysis
control, as shown in Figure 3e).

By default, the On click option is set to point/t and thus when the user clicks on any part of the
image, a temporal profile diagram of this point is shown. The profile of the point is presented with the
time evolution of the spatial mean value of the pixels from each scene (grey solid line), as well as the
mean ± standard deviation as a reference (grey dashed lines). The user can continue clicking in the
screen to add temporal profiles of other pixels to the graphic (see Figure 4). These profiles can be copied
to the clipboard as tab separated values that can be later pasted in a spreadsheet for further analysis.

 

Figure 4. Dynamic NDVI layer animation in the Catalan Data Cube including a temporal profile for
a crop (showing phenological dynamics, in black) and sand (almost a constant signal, in red) points
(centered in Roses Gulf area).
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4.3. Temporal Statistics

Having a multidimensional binary array in memory opens the door to expand the temporal
analysis possibilities. To demonstrate some of them, we have implemented initial statistics, available
through the dropdown list View in the temporal analysis control area. For quantitative values, we can
calculate the mean, the mode and the standard deviation of each pixel of the set of scenes resulting in
a new image (see Figure 5a). For categorical values, it is possible to calculate an image that represents
the number of scenes, which contain a particular class or the modal value of the time series (see
Figure 5b).

 
(a) 

 
(b) 

Figure 5. Options of temporal statistics of the Catalan Data Cube WMS browser: (a) for quantitative
values (such as NDVI); (b) for categorical values (such as Scene Classification map, SCL).

As an example, mean and standard deviation for NDVI are shown in Figure 6. The mean NDVI
is useful to see the overall behaviour of a certain area, and thus being able to identify some covers.
Moreover, an overall image representing the amount of variation of a variable can be created by
applying the standard deviation expression to each pixel of the time series. The result is an image
that has low values in pixels that remain constant over time and high values in pixels that have more
variability over time. In an NDVI time series the standard deviation is represented in a grey scale,
where white colours represent agricultural fields that have big dynamics in NDVI, grey values are
stable forest areas, and dark values are invariant human built environments (such as cities, roads,
and paths) that have a much more constant NDVI value over time.

  
(a) (b) 

Figure 6. Temporal statistics of the Catalan Data Cube WMS browser for the NDVI variable along the
first year of Sentinel 2 acquisitions (27/03/2018 to 24/03/2019): (a) mean; (b) standard deviation.

Another interesting addition is the possibility of generating an x/t graph. On this view, a 2D
image is formed by selecting a horizontal line in the animation (Y coordinate that will remain constant)
and representing an image where each row is the selected Y line in one scene. In the resulting 2D
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graph, time progresses down and “vertical changes” in color reflect changes over time (see Figure 7).
White patches are nodata values present in some of the images in the selected horizontal line. In the
future, other time series derived statistics will be incorporated.

 
Figure 7. x/t graphic in the Catalan Data Cube. Black and red rectangles show the temporal profile (in
vertical starting from above with the first date and ending below with the last date) for the same crop
(black) and sand (red) points used in Figure 4.

4.4. Coverage Evolution in Catalonia along First Year of Sentinel-2 Acquisitions

Sentinel 2 level 2A product generated and distributed by ESA incorporates a categorical band (Scene
Classification map, SCL) that classifies the pixels of each image in 12 classes (using L2A_SceneClass
algorithm3). This is particularly useful to estimate if a pixel actually represents the ground or is not
very meaningful because it is a missing value, a saturated pixel, or it is covered by clouds, shadows,
etc. In the map browser, it is possible to generate a dynamic band that reclassifies all categories that
represent a valid value for “ground” (i.e., vegetation, non-vegetated—i.e., bare ground—, water and
snow or ice) as a single category. This virtual band will be dynamically computed for all time scenes
when needed. Then, in the temporal analysis window, we will be able to see the temporal evolution
of this category as well as to generate an image representing the number of scenes that contain the
“ground” category (see Figure 5b). Due to the swath of the Sentinel 2A and B, many scenes partially
cover the Catalan territory, a situation that is modulated by the cloud presence, which is more frequent
in some regions. The image gives us the actual level of Sentinel 2 imagery recurrence for each part of
Catalonia (see Figure 6).

The result visually reflects that the east part of Catalonia and the North-West part only had about
20 samples in the first year of acquisitions (less than one sample every 15 days). The South-West part
presented an average of 40 samples. The central part of Catalonia had more fortune with at least 60

3 Extracted from https://sentinel.esa.int/documents/247904/685211/\T1\textcompwordmarkS2+L2A+Product+\T1\
textcompwordmarkDefinition+\T1\textcompwordmarkDocument/\T1\textcompwordmark2c0f6d5f-60b5-48de-bc0d-
e0f45ca06304.
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samples, but it is the lower left part of the center area the one that received the maximum number of
samples with up to 86 samples (about a sample every 5 days). This is an interesting result that suggests
that future efforts in temporal analysis of Sentinel 2 data over Catalonia should focus in the lower left
part of the central area, where the temporal resolution is higher and we should expect a better accuracy.
This is particularly important for phenological studies that are looking for changes in the vegetation
status that can suddenly happen in only 2–3 days (for example the start of the growing season). Sample
availability is highly correlated with the common area between orbits that dramatically decreases the
revisiting period in certain areas according to its distribution. This is the main reason for the high
values in the central part of the image in Figure 8, as this area is the overlapping between the swaths
of the 051 and 008 orbits (see Figure 9a,b). Moreover, the sample availability is also related to cloud
coverage, thus we can assume some relation to annual rainfall. Figure 9c shows a map of the mean
annual rainfall in Catalonia where we can see a certain spatial correlation with the image availability:
In certain areas, it is lower (marked by a blue polygon) than in others (marked by an orange rectangle)
(see Figure 9a) as they correspond to areas with higher rainfall (in blue in Figure 9c) and lower rainfall
(in reddish in Figure 9c), respectively.

  
Figure 8. Number of scenes with visible ground for each pixel over Catalonia along first year of
Sentinel-2 acquisitions (27/03/2018 to 24/03/2019) in the Catalan Data Cube.

 
(a) (b) 

Figure 9. Cont.

193



Data 2019, 4, 96

 
(c) 

Figure 9. Image availability over Catalonia: (a) number of scenes with “Ground” class; (b) orbits
distribution over Catalonia; and (c) mean annual rainfall4.

5. Discussion & Perspectives

5.1. Can We Apply the Methodology to Other Regions?

As we have explained before, the approach described in this paper was designed with the aim to
make the Sentinel 2 imagery collection automatic for Catalonia and to build the CDC. Nevertheless,
the same methodology is a priori applicable to any other region. To demonstrate this, we have deployed
another data cube for the protected areas in the H2020 ECOPotential project (www.ecopotential-project.
eu). In ECOPotential, we provide 25 protected areas with the available remote sensing data and
derived products that can be used by protected area managers in their maintenance tasks and their
decision making processes. To make data exploration easy, we also used an integrated map browser
(maps.ecopotential-project.eu) that allows selecting the protected area, and then browse to the data
prepared by the different ECOPotential partners. We called it “Protected Areas from Space”.

In ECOPotential we have also experienced the difficulties in retrieving, storing and sorting the
relevant information. Due to the heterogeneity of the sources and products, each addition needed to
be understood in terms of format and data model, analyzed for the best representation in terms of
colors and legends and integrated in the browser. Variety was the most challenging aspect of this big
data problem. In the end, this resulted in the largest map browser our organization has ever prepared,
with a total of 277 different layers distributed among the 25 protected areas (each layer can present
more than one variable and, in many cases, several time frames). However, when trying to incorporate
Sentinel 2 we faced the problem of volume of information due to the number of scenes and granules
that needed to be processed. It was clear that the manual methodology applied for the rest of the
products were completely impractical in this case.

After developing the CDC, we revisited the ECOPotential map browser and we adapted the
methodology applied in the CDC to the extent of the protected areas. The result was another data cube
that contains the data for approximately 2/3 of the protected areas (only the marine and bigger areas
where left out) covering a total of 15 of the 25 protected areas. Figure 10 shows the distribution of
the protected areas and the ones included in the data cube. We decided to index all granules for all
protected areas in the data cube as a single product. Due to the extension of the area, the ingestion
process needed to be separated in different products, one for each UTM fuses (see Table 1). When the
WMS service is created, each protected area has its own layer name. In numbers this resulted in one
year of Sentinel 2 Level 2A data; 2553 granules consisting in 199360 jp2 files requiring 4.16 TB and

4 Source: Servei Meteorològic de Catalunya: http://www.meteo.cat/climatologia/atles_climatic/
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resulting in 1693 daily scenes (considering all protected areas). The Figure 11 shows a few examples
of the use of Sentinel 2 images from the ECOPotencial Data Cube in the Protected Areas from Space
map browser.

Table 1. UTM fuses covering all 15 selected protected areas in ECOPotential.

Ingestion CRS Protected Area

UTM 28N La Palma
UTM 29N Peneda Gerês, Doñana
UTM 30N Sierra Nevada
UTM 31N Camargue
UTM 32N Gran Paradiso, Swiss National Park
UTM 33N Abisko, Bayerischer Wald, Murgia Alta Park, Northern Limestone (KalKalpen)
UTM 34N High Tatra, Ohrid Prespa, Samaria
UTM 36N Har Ha Negev

After demonstrating that the approach could be easily generalized to other regions of the world
we decided to publish the Python scripts that we used in a GitHub repository (https://github.com/
joanma747/CatalanDataCube) acknowledging that they are actually deeply inspired and based on
previous routines exposed by the ODC developer team.

 

Figure 10. Protected areas in the ECOPotential project. The protected areas selected for the ECOPotential
data cube are represented with the ODC logo next to them.
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(a) (b) 

  
(c) (d) 

Figure 11. Use of Sentinel 2 images from the ECOPotential Data Cube in the Protected Areas from
Space map browser: (a) false color RGB combination over the mountain ecosystem of Gran Paradiso
National Park in Italy (in red, highest values of vegetated areas); (b) Soil Adjusted Vegetation Index
(SAVI) dynamic calculation over the arid ecosystem of Har Ha Negev National Park in Israel (in green,
highest values of SAVI; in brown-orange, lowest values); (c) Leaf Area Index (LAI) dynamic calculation
over the coastal ecosystem of the Camargue National Park in France (in green highest values of LAI;
in brown-orange, lowest values); and (d) Scene Classification map (SCL) provided by ESA over the
coastal ecosystem of Doñana National Park.

5.2. Does the Presented Open Data Cube Approach Scale up?

The data cube approach adopted by the CDC, represents an important step towards in the
simplification of the data preparation and data access of Earth Observation using inexpensive hardware.
However, for the approach to be agile it requires to use local storage in the form of random access
storages: Hard drives. Mass market hard drives are limited to 12 TB and dual Intel Xeon main boards
support only 6 SATA drives. This type of hardware limits the capacity to a maximum of 72 TB. The use
of extension boards adds a maximum of 12 SAS drives (depending on the hardware) thus extending
the storage capacity to 144 + 72 = 216 TB. Assuming (a) a conservative scenario where the storage
capacity is not going to increase significantly in the next years, (b) the amount of Sentinel 2 data will
remain constant in the 2 TB used by the indexed and ingested data from March 2018 to March 2019
presented before (c) we might store up to five similar products (including other platforms such as
Landsat and other Sentinel as well as some derived products) and (d) an annual increase of the data
availability that will grow by a factor of about 1.7 every year (as shown by Reference [20] for the last 4
years), this approach can be supported by a single similar computer for about 10 years for a region of
the same size than Catalonia and in a similar latitude. For a territory 10 times bigger, the approach can
only be applied for 5 years.

Of course, there are other options for digital storage but they will require a much bigger investment.
This might sound discouraging but it actually means that the ODC is the right solution for today data
volume and it is enough for the big data research questions that we are facing now. In the future,
other solutions will be needed, such as the possibility to move the whole data cube to the cloud.

The approach to the time series analytics in the client side presented here also has its limitations.
In ten years time, a time series of about 130 time frames will become 1300 frames requiring 10 times
more memory space for storing the binary arrays. Fortunately, in the 64 bit systems used today, there is
almost no logical direction memory limit and the amount of physical memory is regularly increasing
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so we do not expect to reach any ceiling in the next decade. Note that the quantity of memory needed
to handle a time series in the client does not depend on the size of the territory studied or on the scale
used, because the client requests only an invariable number of screen pixels to the server.

Another factor to take into account is the amount of time required to transmit a time series
from the server to the client. Currently, it takes about 3 m to complete the transference. Assuming
that generation and transmission times remain constant, a 10 year long time series might require
an unacceptable amount of time. Time series is now being requested as a sequence of independent
WMS GetMap requests, one for each time frame. The same WMS standard can be used to request
a multidimensional data cube specifying a time interval. By allowing the server to generate the
complete multidimensional data, a new more compact multidimensional data structure might be
applied that might take advantage of the redundancy in the time series resulting in a considerable
decrease in the transmission time.

For the determination of statistical images, an extrapolation of what is happening today with
a single year will result in unacceptable computational times of several minutes. The solution for this
is a combination of better memory structures with a code optimization. JavaScript code is interpreted
by the browser during the runtime, thus becoming very sensible to inefficiencies in certain costly
operations that once detected are easily avoidable. The suggested memory structures should favor the
easy extraction of the time series for a single point in space keeping, the extraction of a single time
frame reasonable efficient.

5.3. Can the Screen Based Analytics Be Translated into a Full Resolution Analytics?

The main difference between the original SatCat and the new web portal is the ability of the
latter to work with the actual values derived from the satellite measurements instead of being limited
to show pictorial representations. This allows for some data analytics and pixel-to-pixel and local
neighbour processing in the client side. The processing is done at screen resolution and happens each
time that the user pans or zooms, creating the illusion of a pre existing result. Some analytics (such as
filtering) is propagated to the entire time series giving the impression that the process is spread to the
time dimension. The browser is able to save the status of the session and when the same page is loaded
again, the illusion continues. However, the user might examine the results and become convinced
that the tested processing is satisfactory and that he wants to execute it at full resolution and save it
as a new product. We are considering adding this functionality to the CDC and we are evaluating
three options. The first option consists of adding a piece of software that transforms the JavaScript
operations into Python routines, which the ODC could execute directly in the server side. This solution
has the advantage that the new results could be immediately exposed as new products in the data
cube, but has the disadvantage that the hardware of the CDC needs to execute the processing. We have
already described that the whole idea was to demonstrate that a modest hardware could be used for
the data cube so this solution will not scale up to many users. Another approach could be to implement
a OGC WCS access into the data cube. In this case, users could use the WCS GetCoverage operation to
download the information and execute the processing in another facility or in their own computers.
This approach might require too much time and bandwidth to complete the transfer. A final solution
could be to implement a WCPS in the CDC. WCPS [21] provides a collection of operations and a query
language to remotely execute analytical processes. The WCPS standard is agnostic on where the
processing is done. The WCPS implementation (such as Rasdaman) could use the data coming from
the CDC and redirect and distribute the processing among the available processing facilities providing
a more scalable solution.

6. Conclusions

The ODC has been advertised as a platform allowing nations to organize and process remote
sensing products provided by the main Earth Observation satellites. The amount of data that some
of these products generate requires automatic solutions for simplifying the data download and
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use. This paper demonstrates that the approach is equally useful for a sub-national region such as
Catalonia or for smaller natural regions that require information for their management, such as the
protected area network of the ECOPotential project. Even if ODC helps in organizing the data, it still
requires knowledge on the ODC API and Python programming, limiting the accessibility of the data
to expert users. The paper proposes the addition of another layer of software consisting of a web
map browser that combines the interoperability of the state of the art OGC WMS standard with the
new possibilities offered by the HTML5 to present data in a way that everybody can explore and
understand without any need of programming skills. In addition, it demonstrates a promising strategy
based on multidimensional binary arrays allowing for some time series analytics that the current web
browser can execute and that will be extended in the future. Currently, animations, temporal profiles,
x/t images, and images representing mean values and variations can be generated by the user in the
map browser without any server intervention.

The paper proposes the use of modest off-the-shelf computer hardware and concludes that the
current approach can reach some limits in 10 years time but still can offer a solution to analyze the state
and the evolution of the planet valid up to the next decade. The paper also analyzes the real availability
of Sentinel 2 data over Catalonia showing huge variations in the area due to the distribution of the
Sentinel 2 paths and swath overlaps, but also the effect of clouds, concluding that, in 2018, some South
and central regions of Catalonia get more than one useful image per week, while in others situated in
the Pyrenees and Eastern areas, only an average of one or two images per month were useful.

This work is inspired by the original SatCat Landsat service for the Catalonia region (with coverage
starting in the 1972) and extends and complements it with a new useful service that is maintained
automatically, incorporates Sentinel 2 data, and provides time series analysis.
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Abstract: Earth observation imagery have traditionally been expensive, difficult to find and access,
and required specialized skills and software to transform imagery into actionable information.
This has limited adoption by the broader science community. Changes in cost of imagery and changes
in computing technology over the last decade have enabled a new approach for how to organize,
analyze, and share Earth observation imagery, broadly referred to as a data cube. The vision and
promise of image data cubes is to lower these hurdles and expand the user community by making
analysis ready data readily accessible and providing modern approaches to more easily analyze and
visualize the data, empowering a larger community of users to improve their knowledge of place and
make better informed decisions. Image data cubes are large collections of temporal, multivariate
datasets typically consisting of analysis ready multispectral Earth observation data. Several flavors
and variations of data cubes have emerged. To simplify access for end users we developed a flexible
approach supporting multiple data cube styles, referencing images in their existing structure and
storage location, enabling fast access, visualization, and analysis from a wide variety of web and
desktop applications. We provide here an overview of that approach and three case studies.

Keywords: data cube; image cube; image data cube; imagery; Landsat; Sentinel; earth observation;
GIS; web services; web application; analysis; GIS

1. Introduction

The history of earth observation data, and evolution of information technology and the internet
have created a transition of scene-based and project-based thinking to imagery as a seamless time
series. Killough (2018) described a goal of the CEOS Open Data Cube as increased global impact of
satellite data. To achieve this goal, we see four requirements, some already in process, all still evolving.

• Easier to access to data
• Easier to use data
• Imagery big data analytics in the cloud
• Improved usability through tailored imagery web applications

The first three decades of Landsat and the broader earth observation community were dominated
by specialists working on individual projects often on individual satellite scenes of a single date or
a few dates from a single senor. The data was expensive, required special software and knowledge
to extract anything more than the most basic of information, and required significant computational
power. Projects involving large geographies and many time steps were limited to research institutions
and government science agencies.

In 1984 a single Landsat scene cost $4400 [1], which would be over $10,000 today. In 2009,
just before the advent of geospatial cloud computing, the U.S. government made all Landsat available
at no cost. Since 2009, there has been a 100-fold increase in use of Landsat data [2]. Until it became free,
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the idea of doing time series analytics on dozens or hundreds of Landsat scenes over an area was so
cost prohibitive as to limit applied research. This policy change has resulted in a rapid increase in use
and value to the community [3].

Beginning in the late 1990s, the early days of Earth observation imagery on the internet were
dominated by simple visualization and finding data to download then perform local analysis. From the
beginning, starting with Microsoft TerraServer in 1998, it was clear that seamless mosaics would be the
expected user experience. Data search and download web sites of the era remained primarily scene
based, with the notable exception of the USGS Seamless Server [4]. Recognizing significant duplicate
work by its customers downloading and assembling tiled data, USGS assembled seamless collections
of geographic feature data and digital elevation models, and provided a web interface for visualization
and to interactively select an area of interest and download a seamless mosaic. This one was one
of the earliest publicly accessible seamless open data implementations based upon Esri technology.
Keyhole also recognized the need for seamless imagery and its technology was later purchased and
launched as Google Earth in 2005. Esri began providing access to web services of Landsat imagery in
2010. These multispectral, temporal image services provided access to the Landsat GLS Level 1 data.
In 2013 Esri began serving Landsat 8 from private hosting, and in 2015 transitioned to publishing web
image web services of the AWS Open Data Landsat collection.

Over the last decade, the availability of petabytes of free earth observation data through AWS
Open Data, Google Earth Engine, and others, combined with fast, low-cost cloud computing has
created a paradigm shift in the earth observation imagery community. There are now numerous web
sites [5] providing free access to cloud hosted Landsat, Sentinel, and other data, and an increasing
number of sites providing analysis capabilities against this data.

In recent years, several approaches to storing and serving large Earth observation data have been
developed [6,7]. One notable success was the Australia data cube [8] which significantly advanced
the community vision of what could be possible if one’s thinking was less constrained by storage,
computation, and data costs. They highlighted the unexploited value of long image time series and
developed new preprocessing workflows to support them. The project was significant enough that
the Committee on Earth Observation Satellites (CEOS) data cube team launched the Open Data Cube
initiative developing software and workflows to make it easier for others to create similar data cubes [9].
There are currently nine data cubes using the Open Data Cube technology in production or operation,
with a goal to have 20 by 2022 [10].

‘Data cube’ is a generic term used to describe an array of multiple dimensions. Data cubes help
to organize data, simplifying data management and often improving the performance of queries
and analysis. In its simplest form it can be thought of as a 3D spreadsheet where three axes may
represent sales, cities, and time. In a mapping context, the two primary dimensions of a data cube
are typically the latitude and longitude position. Other common dimensions of geospatial data are
time, depth (when working with geologic or oceanographic data), or altitude (when working with
atmospheric data). Data cubes of earth observation imagery are typically three dimensions; latitude,
longitude, and time, Figure 1.

A query of an image data cube at a specific time, will return an image map such as that seen on
the top level of the cube in Figure 1. A query of an image data cube at a specific location will return
the time series of values at that location, like a vertical probe dropped on top of the cube. The cube
structure also simplifies data aggregation operations such as weekly, monthly, or annual analysis.

After years of talk of democratizing geospatial data [11] we are finally seeing notable progress [12].
‘Democratizing’ is not simply about making data and analysis more available, it also requires improving
accessibility in a way which leads to widespread adoption and awareness. This means it is necessary to
understand potential end users and provide a relevant and approachable user experience. The availability
of image data cubes, cloud hosted image analysis, and web technology means this can best be accomplished
through easily configurable web applications tailored to the knowledge and goal of the user.
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Figure 1. Earth observation data cube and its dimensional axes.

Google Earth increased global geospatial awareness by providing access to data in a simple user
experience suitable to the skills and needs of its users. Prior to this, GIS and web maps were more of
a niche few people were aware of, now everyone knows how to navigate a web map. The same is
possible with earth observation data and geospatial data science through the use of image data cubes
and tailored web applications.

This paper describes a collection of geospatial technology components which in combination
establish a complete platform for Earth observation data exploitation, from data ingestion and data
management to big data analytics to sharing and dissemination of modeling results. The first section
of the paper describes the technology components, their relevance toward achieving the full vision of
Earth observation data cubes as well as insight to lessons learned along the way. The second section of
the paper will present three application case studies applying this approach to a variety of data cubes.

2. Method

To obtain the full value of image data cubes, development and integration is required in a number
of areas: data preprocessing, storage optimization, data cube integration, analysis, and sharing.

2.1. Image Preprocessing—Building Analysis Ready Data

Processing imagery before loading into a data cube structure to create Analysis Ready Data
(ARD) is a foundational aspect of modern earth observation data cubes. ARD preprocessing has been
described as a fundamental requirement [13], disruptive technology [13], and cornerstone of the Open
Data Cube initiative [10]. ARD preprocessing makes it easier for a wider audience of non-imagery
experts to perform more correct analysis, thus expanding the potential number of people correctly
applying earth observation imagery [13]. There are multiple approaches and programs for ARD
processing [10,13].

Many image processing workflows to create ARD involve resampling the pixels, which decreases
their quality. While all resampling creates some artifacts, choices can be made appropriate to the
application. For most scientific applications, it is desired to minimize resampling such that only
one resampling takes place and the type of resampling is most applicable to the type of analysis.
Where spectral fidelity is important nearest neighbor resampling is recommended, and for applications
where textural fidelity is important, bicubic or similar sampling is recommended. One of the decisions
in a data cube preprocessing workflow is to what sampling should be applied and how soon after the
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imagery is acquired should the data be processed, or if there is a need to re-process all the data when
new transformation parameters are determined.

Ideally, the data would remain as sensed by the sensors and the user performing the analysis
would define the geometric transforms, projection, pixel size, pixel alignment, as well as radiometric
corrections to be applied to the imagery for analysis specific to their needs. This would require providing
access to the source data, which increases the complexity of any analysis, and adds an unnecessary
size limit on the type of problem to be solve. Hence the data cube concept requires the selection and
agreement on all these factors and the data is data is preprocessed to these specifications. The intent
and assumption is the data is only resampled once and all subsequent processing will be done with the
defined pixel alignment.

There are multiple approaches and programs for ARD processing [10,13] and CEOS has developed
a set of guidelines for ARD processing known as CARD4L [14].

2.1.1. Radiometric Preprocessing

To improve analysis results, the radiometry of the sensor needs to be calibrated and corrected
for a variety of sensor anomalies, as well as effects of atmosphere, for which multiple approaches are
available [13]. Determination of multiple radiometric transforms is complex and relies upon auxiliary
data that may not initially be available at the time of image acquisition. What may be of sufficient
accuracy for one set of scientific analysis may not be sufficient for another. Tradeoffs are evaluated,
and compromises reached to determine a level of processing that is sufficient for the majority of the
users based on the best available auxiliary data. For most data cube applications, the data is processed
to an agreed level of surface reflectance.

In addition to correcting pixel values to surface reflectance, additional calculations are often
performed to flag pixels such as cloud, and cloud shadow, which can be problematic for some analysis
techniques. Cloud masks can be computationally expensive to create, and compress well for efficient
storage, and therefore are frequently part of the preprocessing workflow and stored as a binary
image mask.

A balance needs to be found between processing and storage. If a parameter can be computed
by a computationally simple local function from the existing datasets, then it is generally better to
compute this when needed instead of during preprocessing which requires additional processing
and storage.

For example, computing an NDVI from two bands is computationally insignificant and would
result in a new product that requires significant storage and is therefore typically not part of the
preprocessing workflow. NDVI and other band indices are more often implemented as a dynamic
process performed when needed, as described in Section 2.4.1.

Geometrically referencing the pixels, computing surface reflectance, and creating cloud masks are
computationally expensive and appropriate as part of the preprocessing workflow.

2.1.2. Geometric Preprocessing

From a geometric perspective, remote sensing instruments do not make measurements in
predefined regular grids. Performing temporal analysis that involves multiple data sources involves
resampling the data to a common coordinate system, pixel size, and pixel alignment. Unfortunately,
the transforms from ground to sensor pixels are not usually accurately available as soon as the image
is collected, and the transformation parameters may improve over time.

A disadvantage of storing anything but the unrectified imagery is that the data is resampled to
a defined coordinate system, pixel size and alignment. A key aspect of Analysis Ready Data is to
attempt to ensure that all data is sampled to the same grid. For both the Australian Data Cube and US
Landsat ARD a single coordinate system was selected, and all data processed from the Level 0 data
directly to the defined coordinate system. As the spatial extent of data cubes increases the selection of
appropriate projection becomes more challenging. For multiple regions, a current solution is to split
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the world into multiple regional data cubes each of which has a suitable local coordinate system or to
use UTM Zones.

The tradeoffs in choosing an appropriate coordinate system exists for all global datasets.
For Landsat and Sentinel 2 level 1 and 2 products UTM zones are being used. Each Landsat
scene is defined by a unique path/row and is assigned the most suitable UTM zone. This results
in pixels being aligned for all scenes allocated to the same UTM zone, but resampling is required
between scenes from different UTM zones. For the Sentinel 2 scenes, each scene is cut into granules
that each have their appropriate projection and data that fall at the intersection of two UTM zones is
processed and stored in both projections. As the granules go towards the north and south pole there is
an increasing amount of overlap and duplication, Figure 2. Techniques have been developed [15] for
addressing the UTM zone overlap of Sentinel 2 data.

 

Figure 2. Sentinel 2 tile boundaries as thin yellow lines, with three highlighted tiles overlapping in
central Netherlands. The green tile is predominantly in UTM zone 31, and the blue and magenta tiles
are predominantly in UTM zone 32.

2.1.3. Tiling

The Australia data cube introduced a preprocessing step to cut all imagery into 1-degree tiles to
improve parallel computation performance on their HPC hardware [8,16]. This step has continued
into the Open Data Cube project and others. The advantage of tiling is that any pixel block or pixel
location is addressed by a simple equation that defines the name and location of the file. However,
because satellites do not collect data in 1-degree tiles, and the orbital track prevents collecting square
areas, many more tiles are created, and many tiles are predominantly empty. To know if a pixel exists
for a specific location it is not sufficient to know if a tile exists, but one needs to know the footprint of
the scene or needs to read the data to determine if it is set to NoData. Hence tiling data for processing
or storage reasons can noticeably increase the data access time during use.

The alternative is to maintain the data as individual scenes as acquired by the satellite, where each
scene is referenced to a single file which has a corresponding footprint polygon that defines the extent
of the data. For any pixel location, a simple query of the footprint polygon determines if a scene exists
and has data. Such geometry queries are highly optimized and efficiently eliminate requests fetching
files, blocks, or pixels which contain little or no information.

From a file structure perspective both the tiled datasets and the scene datasets are internally tiled,
meaning that the pixels inside of a file are grouped into regularly size contiguous chunks so that all
pixels in a defined area are stored close together speeding up data access. Such tiling schemes typically
use internal tile sizes of 256 or 512 pixels along each axis.
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2.2. Optimizing Data Storage

Once the data is preprocessed, how the data is stored will impact accessibility, application
utility, performance, and cost. Our focus is to maximize accessibility with potentially thousands of
simultaneous users, make the data useful for visualization and analysis, and to balance interactive
visualization performance against infrastructure cost.

Earth observation data cubes are now growing to petabytes of data leading to potentially significant
infrastructure costs. Although very fast random-access storage is available the cost for such data
volumes can be prohibitively high. Currently, the best approach from a cost and reliability perspective
is object storage in public commercial clouds such as Amazon AWS, Microsoft Azure, and Google
Cloud. Regardless, if a data cube is terabytes in a local file server, or petabytes in a cloud system,
performance of the data will be impacted by choices of file structures and compression. For the best
user experience, faster is better, and there are tradeoffs to balance performance and cost.

2.2.1. Compression

One way to reduce storage cost and improve performance is to compress the imagery.
File compression algorithms can be lossless (pixel values do not change), lossy (pixel values are
changed to achieve greater compression) or controlled lossy (pixel values change to a maximum
amount defined by the user). When imagery is used for analysis, lossless or controlled lossy compression
is preferred. For visualization, where exact radiometric values are less crucial, lossy compression is
typically used because of its higher compression ratio. The type of compression chosen impacts not
only pixel values and size, but also storage cost, performance, and computation cost.

Deflate compression [17] is commonly used in recent data cubes as part of Cloud Optimized
GeoTIFF (COG) [18] such as Landsat AWS and Open Data Cube. It is lossless, has relatively low
compression, with the benefit of low computation cost/short time for compression and decompression.

JPEG 2000 wavelet compression used in the Sentinel AWS data cube can be used as lossless or lossy.
As a lossy compression it provides greater compression than is achieved with deflate compression,
however the computation required to compress and decompress the data is significantly more.

LERC (Limited Error Raster Compression) [19] is a recent compression that can be lossless or
controlled lossy and provides very efficient compression and decompression of imagery data especially
higher bit depth data, such as 12 bit and more. It is our recommended compression for multispectral
earth observation data cubes. Unlike other lossy compression algorithms, LERC allows the user to
define a maximum amount of change that can occur to a pixel value. By setting this to slightly smaller
than the precision of the data the compression maintains the required precision while maximizing the
compression and performance.

Advantages of LERC include that it is 3–5 times faster than deflate for both compression and
decompression, depending upon bit depth, and allows the error tolerance to be defined. When used in
a lossless mode LERC typically achieves about 15% higher compression ratio (smaller file) than deflate
for Landsat and Sentinel type data.

To test the performance and size of different compression algorithms and formats we selected
a collection of Landsat ARD files that were less than 10% cloud and with average 20% NoData (areas
outside the image with no value). These where converted using GDAL version 2.4.1 to different formats
and lossless compressions. The times to create and write the files and the resulting file sizes were
recoded to compare data creation times, shown in Table 1. We also recorded time to read the full image
at full resolution into memory.
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Table 1. Test results comparing image compression and image format. The left side of the table shows
values normalized to a ratio of the size and times for Tiled TIFF with no compression. The right side of
the table shows values for the same test normalized to a ratio of the size and times for COG Deflate.

As a Factor of Tiled TIFF No Compression As a Factor of COG Deflate

Size Time to Write Time to Read Full Size Time to Write Time to Read Full

Tiled TIFF None 1.00 1.00 1.00 1.65 0.12 0.93

Tiled TIFF Deflate 0.67 2.34 0.96 1.10 0.28 0.90

Tiled TIFF LZW 0.58 5.18 0.98 0.96 0.61 0.92

Tiled TIFF LERC 0.53 1.69 1.02 0.87 0.20 0.96

MRF LERC 0.53 2.09 0.91 0.87 0.25 0.85

COG Deflate 0.61 8.48 1.07 1.00 1.00 1.00

JPEG 2000 0.33 7.42 1.02 0.54 0.87 0.95

2.2.2. Image Format

The format of the file storage also impacts performance and therefore cost. Common choices include
JPEG 2000, netCDF, tiled GeoTIFF, COG, and MRF [19,20]. Each has advantages and disadvantages.
JP2 provides the highest compression but requires significantly more computation. NetCDF has
been used in the past but is not recommended here because the data structure is not well suited
for direct access from cloud storage. Tiled GeoTIFF provides a simple to access format, that can
optionally include internal or external image pyramids, but is not specifically optimized for cloud
usage. Multiple compression algorithms are supported including deflate, LZW, and recently LERC.
COG (cloud optimized GeoTIFF) is very similar to Tiled GeoTIFF, but assumes pyramids exist for
the image and stores the pyramids at the start of the file to improve performance when browsing
a zoomed-out low resolution image. However, this change can significantly increase file creation
time as seen in Table 1. File creation performance for COG can be faster than in these tests if all data
restructuring is done in memory.

MRF is similar to tiled GeoTIFF, but information is structured into separate files for metadata,
index, and pixel data which enables different compressions including LERC and ZenJPEG making it
well suited for cloud storage of data cubes. ZenJPEG is an implementation to enable the correct storage
of NoData values with JPEG for improved lossy compression at 8 or 12 bits per channel. The fact that
the metadata and index is kept separately enables applications to easily fetch and cache it, thus reducing
repeated requests for the information when accessing large numbers of files. All these formats are
directly supported by GDAL [21] which is used by most applications for accessing geospatial imagery.

Our tests as reported in Table 1 found MRF with LERC compression is about 13% more compressed
than COG Deflate, and MRF LERC is significantly faster to write. Reading MRF LERC is about 15%
faster than COG Deflate.

2.2.3. Image Pyramids

For analysis applications at the full resolution, only the base resolution of the imagery needs to
be stored. For many applications it is advantageous to enable access at reduced resolutions so that
overviews of the data can be accessed quickly. This can be achieved by storing reduced resolution
datasets, also referred to as pyramids, which increase storage requirements. For uncompressed data
typical pyramids stored with a sampling factor of 2 would increase the storage requirements by 33%.
With compressed data the additional storage requirement is a bit more due to the higher frequency
of the lower resolutions. Wavelet based formats such as JP2 inherently contain reduced resolutions,
but the storage is less efficient to access as described above. If storage cost is not a significant factor,
storing pyramids with a factor of 2 between levels is most suitable. From an analysis perspective,
the existence of reduced resolution datasets provides limited value.
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Alternatives to reduce storage include skipping the first level, changing the sampling factor to 3
or using lossy compression for the reduced resolution datasets. An additional consideration is the
sampling used to create the reduced resolution datasets. In most cases, simple averaging is performed
between the levels, but naturally this is not appropriate for datasets that are nominal or categorical
such as cloud masks.

2.2.4. Optimizing Temporal Access

Storing each captured satellite scene as a file or object per scene provides simplicity from a storage
perspective but is not optimum for temporal access. To access a profile through time for a specific
location requires a file to be opened for each temporal slice and band read. Retrieving a temporal
profile for a stack of 10 scenes that each have 8 bands would require 80 files to be opened, which may
be relatively quick. However, since one of the advantages of data cubes is to manage an extensive time
series, a time series analysis on a Landsat data cube might need to open hundreds or thousands of
files, not suitable for interactive data exploration using a web client drilling through a time series at
a location.

Putting the data into a single file does not resolve the problem as the access pattern has an impact
on efficiency. If the data is structured as slices then access for any specific slice is optimized, but in
that pattern, temporal access still requires sparse requests. If the data are pixel aligned through time
during the preprocessing, they can alternatively be structured into many small cubes (versus tiles).
This results in faster temporal access since the data for a temporal search are stored closer together,
but performance for accessing slices is reduced.

A simple approach with optimal performance when retrieving both image areas as a single time
slice, and a time series at a location is to replicate the data and transpose it such that accessing pixels
representing different times is equivalent to accessing pixels along a row of pixels in the non-transposed
version, essentially rotating the axis of the data, Figure 3. Although this doubles the storage volume
of the full resolution data, it also maintains the best possible simultaneous performance for both
query types.

 
Figure 3. A collection of georeferenced images with time stamps can be organized for easier access as
a mosaic dataset image cube. To simplify usage and improve performance the data can be processed into
a pixel aligned image cube. Optimal performance for temporal queries can be achieved by transposing
the data storage along the time dimension.

An efficient balance to optimizing temporal access to a data cube is to store the data as efficiently
as possible as slices (traditional scenes by date), and when repeated temporal analysis of an area of
interest is required, generating a transposed data structure that is optimum for the analysis.

There are many decisions to make in designing and preprocessing a data cube. These decisions
result in optimizations and compromises based on the requirements of the application and resources
of the data cube creator. The result will be many different data cubes of different styles, flavors,
and capabilities. The following sections address how these different data cubes can be seamlessly
integrated into a platform for visualization and analysis.
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2.3. Building and Referencing Image Data Cubes

A mosaic dataset [22] is an ArcGIS data structure which holds metadata about images, a pointer
to the image pixels, as well as processing workflows to be executed when the pixels are accessed.
The mosaic dataset is how ArcGIS builds and manages data cubes, as well as the mechanism for
integrating third party data cubes such as those described in Section 3 of this paper.

Mosaic datasets do not store pixels, but instead the pixel data remains in its original or most
appropriate form and is referenced by the mosaic datasets. The mosaic dataset ingests and structures
all the metadata and stores it as a relational database such as a file geodatabase or any enterprise
database such as Postgres or SQL Server, as well as cloud optimized databases such as AWS RDS
Aurora. This enables high scalability and allows the mosaic dataset to be updated while in use.

The mosaic dataset can also store processing rules to transform stored pixels into required products,
such as a pansharpened image, or a variety of band indices such as vegetation, water, etc.

The processing is defined by function chains that can include both geometric and radiometric
transformations of the data. In a simple case, a mosaic dataset may consists of a collection of
preprocessed orthoimages in a single coordinate system, or could be a collection of preprocessed
orthoimages in a variety of coordinate systems projections which are reprojected on the fly when the data
is requested. The processing chains can be complex, for example a mosaic dataset may reference imagery
directly acquired by a sensor and the processing chains can define both geometric transformations
(such as orthorectification to a defined digital terrain model) and radiometric transforms (such as to
convert sensor data into surface reflectance). Mosaic datasets can be created using a wide range of tools
within ArcGIS including dialogs, graphical model workflows, Python scripts, and Jupyter notebooks.

To simplify the user experience with common image data sources, Esri works with satellite and
camera vendors to create definitions of how to recognize and read particular sensor data, include
appropriate metadata, and how to process it. For example, if a user runs an NDVI function on Landsat
5 data, it knows the appropriate spectral bands to use without requiring the user to specify which
bands contain red and near infrared information. This sensor metadata and processing information
is stored as a raster type definition [23]. ArcGIS includes a wide range of raster types supporting
many data products from DigitalGlobe and Airbus as well as USGS. MTL for Landsat and Dimap for
ESA Sentinel 1 and 2, and more. New raster types can be easily created by users in Python to ingest
metadata and define processing for any structured pixel data. Custom Python raster types are how
ArcGIS is taught to read metadata and pixels from Digital Earth Australia and Open Data Cube YAML
files, and the other examples later in this paper.

2.4. Analysis

ArcGIS provides two types of analysis on imagery: dynamic or on-the-fly analysis performed at
the current display extent and resolution, and raster analytics typically performed at full resolution
analysis with persistent results.

2.4.1. Dynamic Image Analysis

Dynamic image analysis is the most common approach for interactive data exploration,
rapid prototyping of analysis, or creating highly interactive web applications for exploring data
cubes and performing computationally simple analysis. It is most suitable for local (per-cell) and
focal (neighborhood) operations, and supports function chaining to allow multiple operations to
be performed in a single step. This is done as a single operation with no intermediate files created.
When the map is zoomed or panned the calculation is recomputed for the new area and result displayed,
with no noticeable performance difference between this computation and simply drawing a band
combination with no calculation.

There are over 150 raster functions provided, covering a wide range of image processing and
analysis capabilities, a graphical editor for constructing function chains, as well as the ability to author
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custom raster functions with Python. For overlapping imagery, the system can provide a single output
by blending the pixels, aggregating, or computing a variety of statistics per pixel location. To extend
the provided functions the system can return and utilize a Python NumPy, XArray, or ZArray for
integration with a wide range of scientific analysis libraries.

Processing workflows can be defined in advance as part of the mosaic dataset definition, and also
controlled or modified as desired by a client application. For example, a web application can expose
multiple decades of imagery, a variety of band index options, and a change detection tool, which allows
an end user to select a band index of interest and dates of interest, e.g. to find areas with a significant
change in vegetation, the server would compute NDVI for each of two dates, compute the change,
and apply a threshold and colormap to the result. Due to the way the imagery is stored and served,
such a calculation can return a result dynamically as the map is panned, zoomed, or a different or band
index is chosen.

2.4.2. Big Data Image Analysis

Although dynamic image services provide an excellent experience for performing on-the-fly
processing they are not optimum when processing a large extent at high resolution. To perform more
rigorous analysis, such as segmentation and classification, or create persistent results we developed
a distributed computation framework for local, focal, and global analysis, which automatically chunks
and scales to the to the number of processes requested by the user. The system scales efficiently from
a small number of parallel processes on a local machine to hundreds of processes in a distributed cluster,
and can utilize GPUs when available. To perform analysis on data cubes, we developed efficient search,
parallel read/write, and distributed computation capabilities, which can be deployed to an on-premise
private cluster, or in commercial cloud such as Amazon or Azure. The system includes the same
analysis capabilities as the dynamic image services described above, plus highly optimized versions
of more complex analysis such as segmentation, classification, shortest path, terrain and hydrologic
analysis. The system also integrates with third party analytic packages through Python, R, CNTK,
TensorFlow, and more. These optimized algorithms working on massive distributed data in publicly
accessible cloud storage allowing anyone to perform analysis which previously would be performed
on a supercomputer.

Many image processing tasks are computationally simple and can become I/O bound in a parallel
compute setting. To illustrate the effectiveness of parallel I/O capabilities of the system we ran an image
processing workflow on the Landsat GLS 1990 collection. The data was 7422 multispectral scenes
stored in Amazon S3. The analysis workflow was for each scene to generate a NoData mask, perform
a top of atmosphere correction, calculate a modified soil adjusted vegetation index, slice this into
categories, and write the output image. The computation was performed on a single node, 32 core
AWS c3.8XLarge with 60gb of RAM. We ran 200 processes against the 32 cores and the task completed
in 2 h and 48 min averaging approximately 44 scenes per minute.

For large computation-intensive workflows, it is helpful to distribute the compute load over
multiple nodes in a cluster, each with multiple cores. New algorithms were architected and developed
to scale efficiently in a distributed compute environment where the software framework automatically
chunks and distributes work to each node and core. The input data for this test was a 397 gb, 1-meter
resolution area of the National Agriculture Imagery Program (NAIP), approximately 100 billion pixels.
The analysis workflow performed was a mean shift segmentation, classification, and write the output
file. The computation was performed on a 10 node x 20 cores each Azure Standard_DS15_v2 with
140 gb of RAM. We ran 200 processes and the task completed in 1 hour and 13 min. A Python example
of a similar workflow is shown in Figure 4.
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Figure 4. Python script example for segmenting and classifying imagery from an image service.

Big data analysis workflows can be authored in ArcGIS Pro and run locally or in a remote cloud
server. Because the underlying tools and APIs are the same, the only difference between running on
a local desktop and in a remote cloud server is one parameter on the dialog. It is similarly easy to
publish that workflow to the server so others can access it. Analysis workflows can be authored from
dialogs, graphical modelers, Python, and Jupyter notebooks, Figure 5. Published services are available
via REST and OGC protocols.

 

Figure 5. Jupyter notebook example in Python for computing the NDVI difference between two dates
from an image service.

2.5. Sharing the Value of Image Data Cubes

To achieve the vision of expanding the use of imagery and increasing its impact it is necessary to
grow the community of people using and understanding imagery. This can be achieved through web
services and web applications.

2.5.1. Sharing Web Maps and Image Services

Web services define a protocol for two pieces of software to communicate through the internet,
for example for data from one server to appear as a map in a client application. Imagery can be served
with a variety of protocols [24,25] including OGC WMS, OGC WCS, REST, etc. Map services such as
OGC WMS are the most common way to serve imagery and is essentially a prebuilt picture of the data.
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It is most useful as a background image when used with other data in a web map but is of limited value
for data exploration and analysis because the original data values are often not available. For example,
if provided as jpeg which is lossy compressed, or the data is higher than 8-bit pixel values and needs be
rescaled to fit into an 8-bit RGB PNG. However, because the display has been predefined, map services
are the easiest to use for an imagery novice who does not understand bit depth and stretching values
for display, or edge effects of multi-date imagery.

Image services support interactive image exploration and analysis, and are a cornerstone of image
analysis on the web. They are commonly published as REST, SOAP, or OGC WCS. Image services
provide web applications access to original pixel values, and all bands and dates the publisher chooses
to share. Image services can support a wide range of dynamic image analysis and exploration described
above in Section 2.4.1, as well as full resolution analysis described in Section 2.4.2, as well as extraction
for download.

2.5.2. Sharing Analysis

To increase the impact of imagery it should be transformed from data to information through
some analytic workflow. There are a variety of ways to share analysis tasks and workflows to enable
non-experts to be able to extract useful and reliable information from imagery. Analysis workflows
can be defined as part of a mosaic dataset and published as part of the image service, and when
accessed by a client application the analytic workflow is executed dynamically. Analytic workflows
can also be published as geoprocessing services, OGC WPS, Python scripts, and as Jupyter notebooks.
Using analytic web services, applications can combine data and analysis from multiple locations to
solve a unique new task possibly not envisioned by the service publisher. For example, combining
a fire burn scar difference image analysis service from one publisher with a population overlay service
from another publisher to compute the number of people impacted by a fire.

ArcGIS image analysis workflows are most often authored in ArcGIS Pro, which was designed from
inception to be well integrated for publishing and consuming cloud-based web services. Workflows
are designed using dynamic analysis for rapid prototyping, and then shared to the cloud for scaled up
big data analytics at full resolution, which can be accessed by any web client application, including
ArcGIS Pro.

2.5.3. Web Applications for Focused Analytic Solutions

Providing a relevant and approachable user experience to the breath of potential users and skill
levels is best accomplished through configurable web applications tailored to the knowledge and
goal of the end user. The web applications are powered by cloud hosted analysis services and image
services published from image data cubes.

Web applications can be created that access all forms of geospatial web services. Applications
consume predefined services and can also interact with the dynamic services defining the processing
to be applied. Users can also compose new workflows through web applications. Such processing can
be on-the-fly processing or can also include running analysis tools that interact with cloud servers
performing large computation tasks. These web applications not only act as clients to servers, but can
also retrieve the data values for the servers enabling the creation of highly interactive user environments
that make use of the processing capabilities available in modern web browsers.

With the emergence of cloud technology, we have seen the continuous growth of Software as
a Service [26]. Esri’s SaaS solution, ArcGIS Online, is part of the overall ArcGIS platform, designed
to work seamlessly with ArcGIS Pro and is included with all ArcGIS licenses. It provides access to
petabytes of geospatial data and hosted analytic services, as well as providing infrastructure for hosting
users’ data and all types of geospatial services including image services and analysis services. It also
includes capabilities to author and host custom web applications. Applications can be written using
in Javascript, or using a drag and drop user interface such as Web AppBuilder. For imagery services
there are a collection of prebuilt web control widgets including spectral profile, time series profile,
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scatterplot, change detection, and more. Configurable web application templates are also provided for
common web application needs such as image change detection and interactively browsing image
time series. Using a web application template a novice can progress from a web map to a fully hosted
and publicly accessible web application in minutes.

It is now easy enough to build custom web applications integrating image services and image
analytics that almost anyone can create an interactive application to share specific data, analysis,
and stories. It is no longer necessary for a stakeholder or executive to navigate a generic geospatial
software to understand a drought or zoning problem, their staff familiar with the data and analysis
can create and share a simple web application to lead them through understanding the problem in
a way that is relevant to their knowledge and needs. Representative of their ease and popularity,
there are currently over 3 million web applications in ArcGIS Online, with approximately 1000 new
Web AppBuilder applications created each day.

3. Results

3.1. Landsat and Sentinel in Amazon

In 2015 Amazon Web Services in collaboration with USGS and the assistance of Planet began
loading Landsat 8 Level-1 data into an Amazon S3 bucket and provided open public access [27].
Using the raster type and mosaic dataset approach described in Section 2, Esri provides visualization
and analysis of this data through a free, easy to use web client, Figure 6, as well as web service access
for visualization and analysis in other applications.

 

Figure 6. Landsat Explorer [28] is a free web application for interactively exploring the spectral and
temporal characteristics of the world. It was created with the Web AppBuilder imagery widgets and
utilizes image services published with the methodology described in this paper.

Whereas the traditional approach to an image archive would start with first searching and selecting
individual scenes to view, these services and web application provide an interface that enable users
to pan and zoom to any location on earth and see the best available Landsat scenes in a wide range
of different band combinations and enhancements. The web client also allows searching based on
geographic extent, date, cloud cover, and other criteria. A timeline slider control is used to refine the
date selection.
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The application supports a variety of interactive analyses from common band indices for evaluating
vegetation, water, and burn scares, as well as image thresholding and change detection. All image
processing functions are applied on the fly by the server using the dynamic processing capabilities
described in Section 2. The application also includes graphing widgets for exploring spectral signatures
of areas, or of individual locations through time, Figure 6. With a few clicks, anyone with internet
access can examine vegetation health through time, and map burn scars or water bodies, anywhere in
the world.

A more traditional approach to Landsat data would be to search for individual images, download
images to a local desktop computer, then use a desktop image analysis software application to process
the data, all of which requires more skill, and significantly more time.

Since the initial release, the Landsat collection in Amazon has grown to over a million scenes.
Each day new scenes are added to the collection and an automated script updates the mosaic dataset
referencing the scenes, making new imagery available as image services accessible to client applications.
Python scripts are triggered as new scenes become available and use a raster type to read the metadata
from USGS. MTL files to set up the appropriate functions in the mosaic datasets. The resulting
mosaic dataset defines a virtual data cube that can then be accessed for analysis or served as dynamic
image services.

The application and services are deployed on scalable commercial cloud infrastructure, allowing
them to grow with demand over the last 4 years. They now regularly handle tens of thousands of
requests per hour and maintain response times suitable for interactive web application use.

In 2018, Esri developed similar web services to access and share the Sentinel 2 available from
the AWS Open Data registry [29]. These services use similar scripts that automate the ingestion
of the metadata into the mosaic datasets from the Sentinel 2 DIMAP files. It can be accessed via
a corresponding Sentinel Explorer web application [30].

These Landsat and Sentinel 2 services are also available in a single Earth Observation Explorer
application [31]. It provides access to both collections in a single application and allows easy side-by-side
comparisons of proximal image dates from different sensors, providing useful insight when used with
the interactive image swipe tool.

3.2. Digital Earth Australia

The Australian GeoScience Data Cube was developed by Geoscience Australia and hosted on
the National Computing Infrastructure at Australia National University. It was a 25-meter resolution,
pixel aligned collection of over 300,000 Landsat scenes which were geometrically and spectrally
calibrated to surface reflectance [8,16]. This was the first continental Landsat data cube with a large
number of overlapping scenes in time, enabling new types of analysis to be envisioned and developed.
A new version of this data cube has been created and is now known as Digital Earth Australia (DEA).

Geoscience Australia replicated the DEA cube in Amazon S3 and provided access to Esri Australia
to prototype a capability serving DEA data from S3 using ArcGIS Image Server to enable hosted
visualization and analysis from external client applications. The DEA data cube utilizes a YAML file to
store metadata about each image tile. A Python raster type was created to allow the system to parse the
YAML file of the data cube to generate an Esri mosaic dataset which holds the metadata and references
to images stored in the cloud. The mosaic dataset makes all the imagery and metadata easily accessible
through multiple APIs, directly in desktop applications or through image services published from
ArcGIS Image Server, and therefore web clients.

This prototype also developed server-side analytics for common DEA data products such as
Water Observations from Space (WOfS) [32] Figure 7. WOfS is a relevant test case because it benefits
from the data preprocessing such as surface reflectance calibration and pixel alignment that is part
of the data cube construction preprocessing. The analysis runs in Amazon near the DEA imagery.
These calculations can be computed on-the-fly for the current display extent and resolution, or at full
resolution to a persistent output dataset using a distributed computation service. Data visualization

213



Data 2019, 4, 94

and analytics were shown to be accessible and responsive through Javascript web clients and ArcGIS
Pro. Additional analytics and web applications are being considered for future development.

 

Figure 7. Water Observations from Space (WOfS) [32] calculation in New South Wales, Australia.
Dark blue is persistent water, light blue is intermittent water, as infrequent as once every 10 years.

3.3. Digital Earth Africa

The Open Data Cube [9] is a NASA-CEOS initiative in collaboration with Geoscience Australia
to create open source software for creating, managing, and analyzing Earth observation data cubes.
The largest project is a data cube for the continent of Africa known as Digital Earth Africa. The initial
prototype of this project was the Africa Regional Data Cube (ARDC) created in 2018 which covers
Kenya, Senegal, Sierra Leone, Ghana, and Tanzania [10]. NASA-CEOS provided access to the image
data cube of Ghana stored in Amazon S3, which contains Landsat and Sentinel 1 data. The Sentinel 1
data is a collection of 44 monthly mosaics created by Norwegian Research Centre (NORCE).

Building upon experience gained from the Digital Earth Australia collaboration described above,
the Python raster type for reading the YAML files was modified for the characteristics of the Africa
data collections and a mosaic dataset created to reference the images.

A collection of image services and web applications were published for exploring spectral indices
through time, as well as performing interactive change detection of spectral and radar data, Figure 8.
Additional analytic workflows are under development. This ongoing collaborative research and
prototyping exercise is developing Python workflows and tools to publish similar open capabilities
from the Digital Earth Africa data cube when it becomes available.
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Figure 8. Change detection web application showing Sentinel 1 radar data of the Volta River area in
central Ghana. The RGB is created as VV, VH, VV/VH. This application was created with the Change
Detection web application template.

The image services, analytic services, and web applications will be made openly accessible
through the Africa GeoPortal [33], a no-cost open portal for geospatial data and applications in Africa.
The Africa GeoPortal is a fully cloud hosted SaaS, enabling users to create and share their own data,
web maps, analysis, and custom hosted web applications. These open services and applications for
Africa will be included into the search of other geospatial portals such as ArcGIS Online, which is
part of the federated search of the GEOSS Portal and others supporting the appropriate OGC web
service standards.

The three use cases described above use a common approach and software platform for accessing,
analyzing, and sharing imagery from four different image data cubes. These data collections were
built by four different groups of people in different locations, using different formats, compression,
coordinate systems, and tiling schemes. The data is hosted on three different continents, yet is
accessible from any internet connection through easy to use web applications and standard APIs,
Figure 9. All applications presented maintain response times suitable for interactive exploration and
analysis through web applications, and required no data download or image replication. Interested
readers are encouraged to visit the Earth Observation Explorer application [31] for their area of interest.
This approach is applicable to nearly any spatially and temporally organized collection of earth
observation imagery.
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Figure 9. Conceptual overview of three use case examples illustrating cloud hosted image cubes from
multiple providers (at the bottom), each accessed through a mosaic dataset referencing image metadata
and pixel locations, served with ArcGIS Image Server in a variety of common APIs, consumed by
a range of desktop, web, and mobile applications.

4. Conclusions

We described here a platform for accessing, analyzing, and sharing earth observation imagery
from a variety of data cubes. Free and low-cost open data sharing and cloud hosting of large
collections of imagery as data cubes is improving access and increasing usage of earth observation
data. ARD preprocessing is an important and beneficial step in building data cubes but includes
compromises that should be understood by data cube creators. Cloud hosted image analysis transforms
image data into actionable information, increasing its value and potential for impact. Analytic web
applications tailored to specific stakeholders and problems are growing in use and make multispectral
and multitemporal imagery more approachable to a larger audience.

Within the next 5 years, we expect that nearly all earth observation data will exist in some form of
ARD image data cube hosted in the cloud and provide hosted analytic web services. Therefore, it is
important that software be capable of efficiently accessing and using data without replication from the
variety of data cubes which will be created.

All python scripts, custom raster types, and sample applications developed for and described in
this paper are freely available as examples to follow for anyone interested in connecting to or building
other similar data cube integrations. New online training materials for how to build and integrate data
cubes are being developed, as well as new training materials [34] illustrating how to use image data
cubes and other data for addressing United Nations Sustainable Development Goals.
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Abstract: Mountainous regions are particularly vulnerable to climate change, and the impacts are
already extensive and observable, the implications of which go far beyond mountain boundaries
and the environmental sectors. Monitoring and understanding climate and environmental changes
in mountain regions is, therefore, needed. One of the key variables to study is snow cover, since
it represents an essential driver of many ecological, hydrological and socioeconomic processes in
mountains. As remotely sensed data can contribute to filling the gap of sparse in-situ stations in
high-altitude environments, a methodology for snow cover detection through time series analyses
using Landsat satellite observations stored in an Open Data Cube is described in this paper, and applied
to a case study on the Gran Paradiso National Park, in the western Italian Alps. In particular, this study
presents a proof of concept of the preliminary version of the snow observation from space algorithm
applied to Landsat data stored in the Swiss Data Cube. Implemented in an Earth Observation Data
Cube environment, the algorithm can process a large amount of remote sensing data ready for
analysis and can compile all Landsat series since 1984 into one single multi-sensor dataset. Temporal
filtering methodology and multi-sensors analysis allows one to considerably reduce the uncertainty
in the estimation of snow cover area using high-resolution sensors. The study highlights that, despite
this methodology, the lack of available cloud-free images still represents a big issue for snow cover
mapping from satellite data. Though accurate mapping of snow extent below cloud cover with optical
sensors still represents a challenge, spatial and temporal filtering techniques and radar imagery for
future time series analyses will likely allow one to reduce the current cloud cover issue.

Keywords: data cube; optical remote sensing; snow cover; Gran Paradiso National Park; climate change

1. Introduction

The latest scientific observations [1,2] highlight a clear warming of the global climate system
in recent decades, directly affecting the atmosphere, land, oceans and the cryosphere. Mountainous
environments are among the regions most sensitive to and most affected by climate change [3,4]. Several
studies using both measured and modelled data show evidence that warming rates are amplified
at higher elevations (e.g., [3] and references therein). Among the major effects of such warming are
the shrinking of glaciers; reductions of snow cover extension, quantity and duration; and permafrost
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thawing [1,2,5], bringing on consequences from water availability; e.g., [6], biodiversity and ecosystem
functions and services.

To assess and understand environmental changes in mountains and to support decision-making
and adaptation, regular and continuous monitoring is required. One of the Essential Climate Variables [7]
deserving particular attention is snow cover. The reduction of snow cover causes an amplification of
warming rates through snow-albedo feedback. Moreover, snow represents a crucial seasonal reserve of
water for downstream areas and has a key role in many ecological processes.

Owing to the difficulty of monitoring high-altitude environments with in-situ station networks,
satellite Earth observation (EO) data can be considered as an appropriate source to complement
scattered in-situ measurements [8]. EO are well suited to map snow cover because of the good
contrast of snow with most other natural surfaces, except some clouds [9,10]. Moreover, the global
coverage and regular repeatability of measurements offered by satellite images allow experts to
monitor the vast temporal and spatial variability of snow cover where ground measurements may be
insufficient, expensive or even dangerous [10–12]. For more than 40 years, snow has been successfully
mapped from space using a variety of sensors [9,10,13–17]. Since the 1970s, the long-term data records
make Landsat datasets frequently used to study snow cover around the world at medium resolution
(15 to 100 m) [18–21]. With the advent of the European Space Agency’s (ESA’s) Sentinel constellation,
it is now possible to have images every 5 days at 10-m resolution. This further enhances monitoring
capabilities to provide nearly real-time information on several geophysical parameters [22].

To efficiently exploit the increasing availability of satellite EO data, Earth observations data cubes
(EODC) have recently emerged [23,24]. They represent a solution to store, organize, manage and
analyze large amounts of multi-sensor EO data. The ambition is to allow scientists, researchers and other
possible users to harness big EO data, facilitating the access and use of analysis ready data (ARD) [25–27],
which are consistently processed using the highest scientific standards for immediate analysis in
applications and for time-series exploitation. The interest in that objective has been proven by various
implementations that already exist, such as the Open Data Cube (ODC) [25], the EarthServer [28],
the e-sensing platform [29], the JRC Earth Observation Data and Processing Platform (JEODPP) [30],
the Copernicus Data and Information Access Services (DIAS) [31,32] and the Google Earth Engine
(GEE) [33].

In this paper we show, for the first time, an application of the EO Swiss Data Cube (SDC), an EODC
specifically developed for Switzerland, based on Landsat imagery. We apply a preliminary version of
an algorithm for snow detection, hereafter referred to as snow observations from space (SOfS), to the
SDC to extract information on snow cover area (SCA) in the period 1984–2018, focusing on the Gran
Paradiso National Park (GPNP) in the western Italian Alps. Snow cover information for the Gran
Paradiso National Park based on in-situ stations is very limited and not easily available. In this case
remote sensing data can provide valuable additional information for park management.

The first objective of this study is to assess the characteristics of this new snow dataset, such as the
frequency of available images and of the cloud-free observations per month. Owing to significant cloud
obstruction in many satellite images, we then test an approach, part of the SOfS algorithm, to combine
images into monthly aggregations, providing maximum snow cover area products for a given month.
A similar approach to mitigate the impact of clouds has already been applied to MODIS data by
combining the information provided by MODIS Terra and Aqua sensors at the weekly time scale
(i.e., [34–36]). The SOfS algorithm also allows one to evaluate, on a seasonal (winter) scale, the number
of cloud-free observations and the number of times snow was observed in the corresponding cloud-free
scenes. Combining the information of the number of snow observations relative to the number of
cloud-free observations, we produce “snow cover summaries” for each winter season from 1984 to
2018 and for the aggregation of all 34 winters seasons. Third, a tentative analysis of the temporal
evolution of the percent area of the GPNP with high/low probability to observe snow in winter is also
presented, though this has to be regarded with caution owing to the non-homogeneous frequency of
the underlying observations. We finally identify and discuss the main benefits and limitations of the
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snow data cube and of the SOfS algorithm employed for snow discrimination. Possible strategies to
further enhance the capabilities of the SOfS algorithm exploiting the EODC infrastructure are presented
and discussed.

The paper is structured as follows: Section 2 describes the area of study and its climatic and
environmental characteristics; Section 3 presents the Swiss Data Cube; Section 4 describes the
methodology used to generate the snow cover dataset, including the procedure to identify clouds
and the preliminary version of the SOfS algorithm, and describes how the snow cover monthly and
seasonal summaries are generated; Section 5 shows the application of that methodology, discussing the
characteristics of the snow cover data cube obtained for the GPNP area and presents the main results
of the paper; Section 6 discusses the limitations and perspectives of this study and Section 7 concludes
the paper.

2. Study Area and Its Climatic Characteristics

This study focuses on the Gran Paradiso National Park (GPNP) protected area, located in the
western Italian Alps, encompassing the Aosta Valley and Piedmont regions, as shown in Figure 1.
Established in 1922, the Italian national park covers a surface of about 720 km2 [37], with elevations
ranging from about 700 m a.s.l. to about 4000 m a.s.l. More than 75% of the park area lies above
2000 m a.s.l., and it is covered by snow for several months per year. A total of 60% of the park is
covered by areas with scarce or no vegetation (rocks, screes and glaciers), while 20.2% is characterized
by alpine vegetation (woods and shrubs) [38]. The pastures and meadows represent 17% of the Italian
park and only 0.8% of the park is dedicated to urban areas and cultivated lands. The GPNP is home to
almost 15 altitude lakes and to great richness and diversity of fauna and flora [38].

Figure 1. Location and topographic map of the Gran Paradiso National Park, northwestern Italian Alps.

Though differences in elevation, slope and aspect between valleys can give rise to diverse
microclimate conditions inside the park, the average climate of the area is characterized by a relatively
low mean temperature, scarce precipitation and well-defined seasons. Figure 2 shows the climatological
annual cycle of temperature and precipitation in the GPNP area obtained from an observation-based
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gridded dataset specifically developed for the Greater Alpine Region, HISTALP [39,40]. This dataset
provides monthly temperature and (total and solid) precipitation at a spatial resolution of 0.08◦
latitude-longitude, corresponding to about 10 km, from 1780 to 2014 (for temperature) and from 1801
to 2014 (for precipitation). Based on this dataset and considering averages over the period 1950–2014
(Figure 2), the coldest months in the GPNP are December to March, with an average temperature of
about −6 ◦C. The warmest months are July and August, with an average temperature of about 9 ◦C.
Precipitation has maxima in spring/early summer (April, May and June, 110 mm/month) and autumn
(particularly in November with about 180 mm/month), while the driest conditions along the year are
found in July–August (71 mm/month) and in December to March (76 mm/month).

Figure 2. Climatological annual cycle of temperature (left y-axis, black) and total precipitation (right
y-axis, blue) spatially averaged over the Gran Paradiso National Park area, obtained from the HISTALP
observation-based dataset. The climatology was obtained after temporally averaging the data over the
period 1950–2014.

The temporal extent of the HISTALP dataset allows one to study changes in temperature and
precipitation that occurred over the last few decades; for example, considering the averages in the
period 1951–1980 (Figure 3, left column plots), the averages in the period 1985–2014 (middle column)
and the difference between the latter and the former (right column) of temperature (panels c, d, e),
total precipitation (panels f, g, h) and solid precipitation (panels i, l, m). We considered only the winter
season, including the months from December to February (DJF), which are particularly relevant for
the subsequent snow analysis. The Gran Paradiso National Park area experienced positive winter
temperature changes in 1985–2014 compared to 1951–1980, ranging from about 1 ◦C to about 1.7 ◦C
(Figure 3e). The spatial distribution of the observed warming is positively correlated with the elevation
distribution (Figure 3b) with a Pearson’s correlation coefficient greater than 0.9. Precipitation changes,
for both total (Figure 3h) and solid (Figure 3m) precipitation are negative everywhere in the considered
domain, indicating a decrease of precipitation in 1985–2014 compared to 1951–1980. The spatial pattern
of change is similar for the total and solid precipitation, showing the largest negative values in the
western and north-western part of the box encompassing the GPNP; overall, snowfall decreased
slightly more than total precipitation.

In addition, Table 1 summarizes the temporal trends of winter (DJF) temperature and precipitation
from 1950–2014 and for the more recent sub period (1985 to 2014), for which satellite data are
available. For completeness, results for the months of February and April are also reported in the table,
since these are key months for understanding snow dynamics in the Alps [41]. In particular, February
is representative of a cold winter snowpack while April roughly corresponds to a time of maximum
snowpack in the Alps [42].
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Figure 3. (a,b): Topographic map of the study area from a Digital Elevation Model at 0.008◦
(~1 km) resolution (a) and from the HISTALP dataset at 0.08◦ (~10 km) resolution (b). (c–e): Winter
(December–February, DJF) spatial maps of surface air temperature averaged (c) over the periods
1951–1980 and (d) 1985–2014. (e) Spatial map of the difference between the (1985–2014) and
(1951–1980) climatologies. (f–h): The same as (c–e) for total precipitation. (i–m): the same as (c–e) for
solid precipitation.

Table 1. Trends of temperature, total and solid precipitation, from 1985 to 2014 and from 1950 to 2014,
for DJF, February and April. The (*) indicates statistically significant values (p-value < 0.05).

Temperature
(◦C/decade)

Total Precipitation
(mm/month/decade)

Solid Precipitation
(mm/month/decade)

DJF
1985–2014 −0.07 7.88 5.93
1950–2014 0.31 (*) −1.22 −1.93

FEB
1985–2014 −0.24 9.11 7.75
1950–2014 0.29 −2.79 −2.93

APR
1985–2014 0.30 −18.34 −16.45
1950–2014 0.20 (*) −2.91 −2.78
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3. The Swiss Data Cube

The Swiss Data Cube (SDC) is the second operational national Earth Observation Data Cube
(EODC) worldwide, after Australia’s [25,43,44]. It is an initiative supported by the Swiss Federal
Office for the Environment and jointly developed, implemented and operated by the United Nations
Environment Programme (UNEP)/GRID-Geneva and the University of Geneva. The SDC aims at
supporting the Swiss government and institutions for their environmental monitoring and reporting
mandates, and supports national scientific institutions to benefit from EO data for research and
education. The SDC is built upon the ODC, a storage and analytical open source framework supported
by Geoscience Australia, the Commonwealth Scientific and Industrial Research Organization, the
United States Geological Survey (USGS), the National Aeronautics and Space Administration (NASA)
and the Committee on Earth Observations Satellites (CEOS) [26,45,46]. The SDC currently holds
35 years of Landsat 5,7 and 8 data from the NASA Landsat program [47], covering the period from
1984 to 2019, updated daily, along with the entire Sentinel-2 archives [48,49] and a part of the Sentinel-1
archives [50,51].

The data available in the SDC are in an analysis ready form (after LEDAPS/LaSRC processing
by USGS), meaning that all radiometric, geometric, solar and atmospheric corrections have already
been applied and the data are spatially segmented into 30 × 30 m resolution grids that cover the area
considered. All Landsat data used have undergone the same transformations to become analysis ready
data (ARD) in order to get a consistent and harmonized multi-sensor dataset. ARD ensures that EO
measurements are radiometrically comparable and geometrically aligned. Indeed, as mentioned by
the CEOS [52], ARD is expected to limit as far as possible, barriers to interoperability both through
time and with data from different sensors. Therefore, this multi-sensor dataset can be considered to be
derived from a single sensor [53]. The unique ARD archive of Switzerland accounts for a total data
volume of approximately 6 TB and more than 150 billion observations over the entire country that can
be analyzed both in the spatial and temporal dimensions.

The Swiss Data Cube was originally developed employing eight Landsat tiles following the tiling
notation system for Landsat data (the Worldwide Reference System-2 paths and rows) to cover the
whole of Switzerland, also including parts of northern Italy, such as the Gran Paradiso National Park.
Sentinel data, incorporated subsequently into the data cube, also cover the same domain. Despite the
availability of Sentinel data in the archive, this proof of concept study focuses on Landsat sensors only.
Indeed, for reasons of consistency and homogeneity, it is preferable for an initial test study to use
data from the same satellite series with the same spatial resolution and having undergone the same
ARD process. This study used the Collection 1 Level 1 data from Landsat 5 Thematic Mapper (TM)
available from March 1984 to November 2011, Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
available since June 1999 and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor
(TIRS), available since March 2013. These datasets are characterized by a spatial resolution of 30 m
and a revisit time of 16 days. Spectral bands of Landsat series satellites useful for snow detection and
used in this study are the green and the shortwave Infrared (SWIR1) bands processed to orthorectified
surface reflectance. Moreover, we employed the Collection 1 Level-1 Quality Assessment (QA) 16-bit
Band, which provides information on the surface characteristics, cloud cover and sensor conditions
(Table 2) that can be used to generate masks according to the application and user needs. In our case,
we used information from the QA product to create a cloud mask. The main characteristics of the
dataset used in this study are summarized in Table 3.

For the generation of snow cover products over the GPNP, we processed more than 480 Landsat
images for the months of December to April in the period 1984–2018.
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Table 2. Values assumed by the Surface Reflectance Pixel Quality Assessment (QA) band values [54].

Landsat-5 and Landsat-7 Landsat-8

Attribute Pixel Values

Fill
(no data values in the pixel) 1 1

Clear 66, 130 322, 286, 834, 898, 1346
Water 68, 132 324, 388, 836, 900, 1348

Cloud shadow 72, 136 328, 392, 840, 904, 1350
Snow/Ice 80, 112, 144, 176 336, 368, 400, 432, 848, 880, 912, 944, 1352

Cloud 96, 112, 160, 176, 224 352, 368, 416, 432, 480, 864, 880, 928, 944, 992
Low confidence * cloud 66, 68, 72, 80, 96, 112 322, 324, 328, 336, 352, 368, 834, 836, 840, 848, 864, 880

Medium confidence * cloud 130, 132, 136, 144, 160, 176 386, 388, 392, 400, 416, 432, 900, 904, 928, 944
High confidence * cloud - 480, 992
Low confidence * cirrus - 322, 324, 328, 336, 352, 368, 386, 388, 392, 400, 416, 432, 480
High confidence * cirrus - 834, 836, 840, 848, 864, 880, 898, 900, 904, 912, 928, 944, 992

Terrain occlusion - 1346, 1348, 1350, 1352

* Low confidence= 0–33% confidence; Medium confidence= 34–66% confidence; High confidence= 67–100% confidence.

Table 3. Characteristics of Landsat data used in this study.

Optical Satellite Platform Landsat-5 Landsat-7 Landsat-8

Sensor TM ETM+ OLI/TIRS
Period (start–end) March 1984–November 2011 June 1999– March 2013–
Revisit time (day) 16 16 16

Spatial resolution (m) 30 30 30
Bands used Green, SWIR1, QA band Green, SWIR1, QA band Green, SWIR1, QA band

Wavelenght (μm)
Green 0.52–0.60 0.52–0.60 0.53–0.59
SWIR1 1.55–1.75 1.55–1.75 1.57–1.65

4. Snow Observation from Space (SOfS) Algorithm

This study presents a preliminary version of the snow observation from space (SOfS) algorithm,
which exploits consolidated techniques to detect snow cover from satellite images in the SDC
and provides further tools to combine snow cover information over different temporal scales,
for example, monthly and seasonal. A detailed description of the SOfS procedure is provided
in the following sub-sections.

4.1. Cloud and Water Masks

Satellite observations are affected by many factors which can lead to poor observational quality,
such as instrument failure or cloud interference [55]. During the winter season and in mountain
regions especially, the presence of clouds reduces the capability of snow cover mapping through
optical remote sensing [56,57]. Additionally, since clouds can have spectral signatures similar to snow,
it is sometimes difficult to discriminate them from spaceborne multispectral sensors [16,21,58,59].
In order to exclude non-clear sky pixels, a cloud mask can be applied before evaluating the presence of
snow. In this paper, to discriminate cloud covered pixels, we considered the cloud cover information
included in the Landsat Collection 1 Level-1 Quality Assessment Band, derived using the C Function
of Mask (CFMask) algorithm [60]. This algorithm provides information on the presence of clouds,
along with a measure of the level of confidence that a pixel is actually cloud covered. The CFMask is
very conservative and may have issues over bright targets, such as snow and ice surfaces, leading
to possible overestimation of cloud cover, thus a loss of useful information for snow cover mapping.
Therefore, we reprocessed the pixels and we considered as “cloud-covered,” those previously identified
as cloudy with a medium (34%–66%) or high (67%–100%) level of confidence, and pixels with cirrus
clouds (at any level of confidence). More precisely, we considered as cloud covered, all pixels having
the following attributes (see Table 2): “fill” (no data value), “low confidence cirrus,” “high confidence
cirrus,” “medium confidence cloud” and “high confidence cloud”.

Next, water pixels were filtered using a water mask from the Global Surface Water Explorer [61].
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4.2. Snow Cover Detection and the Generation of Monthly Products

After filtering the dataset with a cloud and water mask, in order to detect the presence of snow
in each pixel, we employed the well-known normalized difference snow index (NDSI) test [62–64]
which has proven to be effective for the binary (i.e., for distinguishing between “snow” or “not snow”)
monitoring of snow cover [9,15,16,58,65–67]. NDSI is defined as the reflectance difference between
visible (green) and shortwave infrared (SWIR) wavelengths:

NDSI = (rgreen − rSWIR)/(rgreen + rSWIR) (1)

where rgreen and rSWIR are the surface reflectances in the green and in the SWIR bands, respectively
(see Table 3). The index ranges from −1 to +1. A pure snow pixel is characterized by a high NDSI,
while a pixel with mixed elements (e.g., snow, water, vegetation, bare ground, etc.) is characterized
by lower NDSI values [9]. A threshold test is then required to classify a pixel as snow covered or
snow free. Based on a previous study performed using Landsat TM data in Sierra Nevada [64],
pixels with at least 50% snow cover are found to have a NDSI value greater than 0.4. Though this value
is commonly used [12], it may vary according to landscape conditions [15,20,68–70]. For the Gran
Paradiso National Park, we decided to apply the same threshold as the one adopted for a study over
Switzerland (in preparation), i.e., 0.45, given the similarity of land cover and altitude characteristics
between the two areas.

The low temporal resolution of Landsat satellites combined with the presence of clouds in
mountainous environments makes it difficult to get cloud-free observations. Therefore, numerous
techniques, such as multi-date composite and a combination of different sensors, have been developed
to aggregate multiple observations over time [15,21,71,72]. In this paper, we combine the single NDSI
maps into monthly aggregations (for each month from December to April) using a mosaicking method.
As shown in Figure 4, this method takes the maximum NDSI value per pixel from any available
image independently from the sensor during the considered month. The NDSI threshold test is finally
applied to the maximum NDSI value. For each month (December to April) we then obtained one
snow cover area (SCA) map, showing the maximum snow cover extent for that month. Figure 5
shows an example of the SCA map for February 2000, for which cloud-free and water-free pixels were
classified as snow-covered (NDSI > 0.45) or snow-free (NDSI ≤ 0.45).

This technique minimizes, though without completely removing, the number of cloud-covered
pixels in the monthly composite. Indeed, the percentage of scenes with less than 30% cloud cover
increases from 51% to 63% after considering the maximum NDSI value by month. This multi-temporal
and multi-sensor approach allows one to reduce limitations due to Landsat temporal resolution and to
increase the number of pixels tested for the presence of snow [67,73].

A flow diagram of the SOfS algorithm which we set up is shown in Figure 6.

Figure 4. An example of the mosaicking technique employed to derive the maximum normalized
difference snow index (NDSI) for a given month. From the available images (three in this example),
NDSI was derived and the highest NDSI value was retained for the NDSI threshold test.
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Figure 5. Monthly maximum snow covered area in February 2000, displaying snow-covered (blue),
snow-free (red) and cloud-covered (grey) areas. Water surfaces are shown in white.

 
Figure 6. Flow chart of the preliminary version of the snow observation from space algorithm, applied
to the Landsat images referring to the Gran Paradiso National Park.
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4.3. Seasonal Snow Cover Summaries

Besides monthly aggregations, we also performed a seasonal-scale analysis, focusing on the
winter season (DJF). For each winter season at the pixel level, we calculated the seasonal snow cover
summary, Si, representing the relative frequency of snow cover observations in the corresponding
monthly products, with respect to the total number of available cloud-free observations:

Si = ns/nc × 100, (2)

where nc (from 0 to 3) is the number of cloud-free observations in the three-monthly snow cover
products and ns (0 to 3) is the number of snow occurrences in the three snow cover products.

Figure 7 shows two examples of seasonal snow cover summaries for winters 1988/89 (upper panels)
and 2001/02 (lower panels), the former characterized by substantial cloud cover in each of the monthly
snow cover products, and the latter characterized by mostly cloud-free conditions. The number of
cloud-free observations (nc) are displayed in Figure 7a,d: a white color corresponds to no observation
available (0 out of 3 months), and a dark green color to the maximum number of observations available;
i.e., three out of three over the winter season. The percentage of occurrences in each of the four
considered classes is summarized in the pie chart insets in Figure 7a,d: for example, for the 2001/02
winter season (Figure 7d), 78% of observations are cloud-free in all the three images, while 14% (8%)
are cloud-free in two (one) out of three images. The number of snow observations (ns) is displayed
in Figure 7b,e: that corresponds to the number of times one pixel was classified as snow during
the three winter months, with possible values of 0 (indicating absence of snow or no data either
because of clouds or sensor technical issues), 1 (snow in only one out of three months), 2 (snow in
two out of three months) or 3 (snow in all three months). Figure 7c,f shows the snow summaries (Si),
expressing the percentage of snow cover observations with respect to the total number of cloud-free
observations. In that case, each pixel can take one of the following values: 0%, (no snow cover in
none of the three-monthly products), 33%, 50%, 66% (both snow cover and snow-free conditions in the
three-monthly products) or 100% (snow cover in each of the cloud-free monthly products). The white
pixels in Figure 7c,f are those with no data, or water or cloud covered in all three-monthly products.

The winter snow cover summary maps were employed to evaluate each season individually
and explore the temporal evolution of the winter snow cover in the period 1984–2018. In addition
to those time series, a snow cover summary considering all winter months in the period of study
(1984–2018) was calculated. In the following, snow cover summary maps were interpreted in terms of
the probability of observing snow cover in a given period of time in the GPNP.

To summarize, the preliminary version of the snow observation from space algorithm based
on the NDSI approach, widely used to map snow cover in mountain regions, was applied to derive
(i) monthly (December, January, February and April) SCA maps, defined as the maximum snow cover
extent in the study area for that month; (ii) the winter (DJF) SCA analysis representing the percentage of
snow observations with respect to the total number of cloud-free observations in all December, January
and February in the period 1984–2018; (iii) winter (DJF) SCA time series, defined as the percentages
of snow observations with respect to the total cloud-free observations during each winter season in
the period 1984–2018. Implemented in an Earth Observation Data Cube environment, the algorithm
could process a large amount of remote sensing data ready for analysis and benefited from all Landsat
series since 1984 being put into one single multi-sensor dataset. Inspired by a methodology often used
for MODIS sensors data, a multi-date composite of one month was applied to the snow dataset to
reduce the impact of cloud cover. This proof-of-concept study tested, for the first time, the potential
of the data cube infrastructure to monitor snow cover evolution in a small region of the Alps. In this
context, Landsat images, with their long historical records and finer spatial resolution, become very
attractive for multi-decade time series analyses, despite a 16-days repeat cycle. Applying the data cube
methodology to EO datasets attempts to address new computation capabilities and to shift paradigm
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from scene-based analysis to pixel-based time series analysis. Time series analysis, with the aim to
assess and monitor the variability and trends in snow cover extent in the GPNP.

 
Figure 7. Example of aggregation of monthly maximum snow cover information for December,
January and February (DJF) one a seasonal time scale, for the 1988/89 (upper panels) and the 2001/02
(bottom panels) winter seasons in Gran Paradiso National Park: (a,d) number of cloud-free observations
ranging from 0 to 3 in the three-month period, (b,e) number of snow observations ranging from 0 to 3
in the same three-month period, and (c,f) snow cover summaries. The pie charts in (a,d) summarize
the statistics for each of the four considered classes.

4.4. Snow Cover and Climatic Data Correlation

As temperature and precipitation are the two principal drivers of snow [74], we found it interesting
to evaluate their trends over the past three decades in the Gran Paradiso National Park and analyze
them jointly with the snow cover information resulting from the application of the SOfS algorithm.
We used the HISTALP climate data already described in Section 2. We calculated the regression and
correlation coefficients between climatic and snow cover data by least-squares linear fitting over the
time period 1984–2014, for the winter season and for the months of February and April separately.
Correlations were calculated excluding months with a cloud cover exceeding 30% (15%) of the entire
park’s surface in the monthly (seasonal) analyses.

5. Results

5.1. Availability of Cloud-Free Observations

Figure 8 shows in green colors, for every December, January, February, March and April in the
period 1984–2018, the availability of Landsat scenes with less than 30% of cloud cover, while a cross
indicates months with cloud cover exceeding 30% of the total GPNP area. The month of December
is particularly under-represented with only 41% of months containing one or more scenes with less
than 30% of cloud cover. Spring months (March and April) were also frequently affected by clouds.
More than half of the cloudy scenes refer to the years before 2000 when only Landsat-5 (dark green in
Figure 8) data were available. Since June 1999, the availability of two sensors (Landsat-5 and Landsat-7
for the period 2000–2012, and Landsat-7 and Landsat-8 for the period 2013–2018) considerably increased
the number of scenes with less than 30% of cloud cover. The multi-temporal and multi-sensor approach
employed in this study, i.e., the mosaicking method, allowed us to increase the number of valid monthly
products with cloud cover of <30%. The last two columns of Figure 8 shows the percentage of monthly
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SCA products with less than 30% of cloud cover before and after the application of the mosaicking
method. The percentage values referring to the monthly aggregations are always greater than the
corresponding ones referring to the single satellite scenes. As an example, for April, the percentage of
valid monthly SCA products (cloud cover <30% of the total area) increased from 47% to 56%, gaining
three additional months with less than 30% of cloud cover out of the 34 years studied.

 

Figure 8. Green cells show the availability of Landsat (TM, ETM+ and OLI) scenes for the Gran Paradiso
National Park with less than 30% cloud cover (after application of the CFMask) for December, January,
February, March and April since 1984. Cells filled with more than one color indicate that valid scenes
are available for more than one sensor. The last two columns represent the percentages of months over
the full period (1984–2018) with at least one valid scene per month before and after the application of
the mosaicking procedure respectively.

For completeness, Figure 9 shows the percentage of cloud cover which still remains in the monthly
SCA products after application of the mosaicking procedure. Despite the improvements brought by
the applied methodology, on average, 58% of all considered months were valid using a cloud cover
threshold of 30% (see Figure 9). The percentage of cloud cover varied widely from year to year and
from month to month. However, since 2000, and particularly for the months of January, February and
April, we observed a decrease in the percentage of cloud cover, owing to the availability of two different
Landsat sensors. For example, for the month of April (February) the percentage of cloudy months
(cloud cover >30% of the total area) decreased from 62% (50%) for the period 1985–2000 to 28% (22%)
for the period 2001–2018.

5.2. Winter Snow Cover Probability Map

Individual monthly maximum SCA products for December, January and February were employed
to evaluate the “snow cover summary” over 34 years in the period 1984–2018 in the Gran Paradiso
National Park area. Figure 10a shows the percentage of cloud-free observations per pixel in all December,
January and February products in the period 1984–2018 (102 images considered in total; i.e., three
winter months times 34 years). The percentage of cloud-free observations with respect to the total
number of images available is at best equal to 88%, and rarely above 80%, as shown in Figure 10a in
dark green colors. Most of the area (72%) had between 60% and 80% cloud-free observations, 27% of
the area had between 40% and 60% cloud-free observations, while a small part of the park (0.63%)
had less than 40% of cloud-free observations. This last class includes high-altitude areas (>3000 m
a.s.l.) in the center of the park, that are particularly prone to cloud cover and showed few cloud-free
observations available (20% to 40%) during the considered period. For those areas, highlighted in
light green colors in Figure 10a, the uncertainty of snow observations was high and did not allow
for a robust analysis. The percentage of occurrence in each of the five considered classes (0%–20%,
20%–40%, 40%–60%, 60%–80%, 80%–100%) is summarized in the pie chart inset into Figure 10a.

The percentage of snow observations in all December, January and February products in the
period 1984–2018, with respect to the total number of cloud-free observations, is shown in Figure 10b.
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More than 80% of the park surface (about 512 km2 SCA) is usually covered by snow during winter
(the probability to observe snow is greater than 80%), while only 1.8% of the park surface (about 11 km2)
is mainly snow-free in winter (probability to observe snow< 20%). Active areas, where ephemeral snow
covers the ground (probability to observe snow between 20% and 80%), can be considered transitional
zones between snow-covered and snow-free areas, covering about 17% of the Gran Paradiso park
(corresponding to 109 km2). The probability to observe snow in winter months was evaluated as well,
for different 500 m-thick elevation bins between 500 m and 4500 m, as shown in Figure 10c. For each
elevation bin, the frequency of the five different probability classes (0%–20%, 20%–40%, 40%–60%,
60%–80% and 80%–100%) were expressed in terms of percent area in that class with respect to the
total area of that elevation bin. Areas above 2500 meters, corresponding to about 58% of the total area
of the GPNP, are characterized by a high probability (80%–100%) of observing snow cover during
winter. Between 1500 m and 2000 m about 50% of the area still has a high (80%–100%) probability
to be snow-covered, while below 1500 m the area with high snow probability rapidly decreases.
At elevations higher than 1500 m, the area where snow cover is rarely observed is negligible.

Figure 9. Percentage of cloud cover for December, January, February and April monthly snow cover
area (SCA) products since 1984. The dashed line in each panel shows the 30% cloud cover threshold
employed in this study, as described in the text.
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Figure 10. (a) Percentage of cloud-free observations for December, January and February maximum
SCA products in the period 1984 to 2018 for the Gran Paradiso National Park. Dark green areas
indicate that 60% to 100% of cloud-free observations were available for the pixel, while light green
areas indicate that 20% to 60% of cloud-free observations were available for the pixel. The pie chart in
panels (a) summarize the statistics for each of the five considered classes (0%–20%, 20%–40%, 40%–60%,
60%–80% and 80%–100%). (b) Winter snow cover probability map, for December, January and February
maximum SCA products in the period 1984 to 2018 for the Gran Paradiso National Park (GPNP).
Blue areas indicate presence of snow in 80%–100% of cloud-free monthly aggregations, while red areas
indicate presence of snow cover in 0%–20% of the cloud-free monthly aggregations. (c) Frequency, for
each 500 m elevation bins, of the different probability classes (0%–20%, 20%–40%, 40%–60%, 60%–80%
and 80%–100%) are expressed in terms of percentage of the total area of that bin. The grey bars show
the percentage area in each elevation band, according to the ASTER Global Digital Elevation Model at
30 m spatial resolution [75].
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5.3. Winter Snow Cover Evolution

The snow cover summary referring to individual winter seasons in the period 1984–2018
(two examples in Figure 7) provides information on which pixels were classified as snow covered (i) in
all the cloud-free images in that winter (high probability to observe snow cover); (ii) in none of the
cloud-free images in that winter (low probability to observe snow cover). For each season we calculated
the number of observations in those two classes (for which the probability to observe snow cover was
high and low, respectively) and the corresponding area, expressing it as a percentage of the total GPNP
area. The temporal evolution of the percent snow cover area, along with the cloud cover area, is shown
in Figure 11c. The representativeness of those measures is displayed in Figure 11d, showing, for each
winter season, the percent of pixels with three, two, one or no cloud-free observations available in the
corresponding snow cover summary. For the first 15 winter seasons, cloud-free observations were
generally not available for the three winter months considered (dark green bars), but rather on two
(medium green bars) or one (light green bars) winter months only. Since 2000/01, the availability of
cloud-free observations for the three winter months increased considerably, with almost half of the
winter seasons having more than 50% of their observations being cloud-free for the three months.
The uneven consistency of the data hampers a proper long-term trend analysis, for which more
advanced techniques to reconstruct missing data are required. The information currently available
seems to suggest, although with a high level of uncertainty, relatively large interannual variations in the
percentage of the area with a high probability of observing snow (blue bars), varying from 58% to 98%,
with the largest value being in winter 2005/06 and the smallest in 2015/16. There was a small negative,
though not statistically significant, trend (decrease of about 0.5 km2/season, y = −0.0695x + 86.157
and R = 0.0044). Please note that for the trend analysis, only the seasons with less than 15% cloud
cover were retained (seasons 1987/88, 1988/89, 1999/91 and 1995/96 exceeding this threshold have been
excluded). The percentage of the area with a low probability of observing snow (red bars) was generally
very small, varying between 0% and 18%, the latter being observed in 1991/92 and 2011/12 winters.

For completeness, winter mean temperature and (total and solid) precipitation time series from the
HISTALP dataset are displayed in the upper panels of Figure 11a,b, showing no statistically-significant
trend in the period 1985–2014 (see Table 1). Winter mean temperature varied from about 8 ◦C (during the
2009/10 season) to about −3 ◦C (during the 2006/07 season). Figure 11b highlights some relatively dry
winters in 1991/92, 1992/93, 1994/95 and 1999/00 with less than 22 mm/month. Inversely, the 2003/04
winter season was characterized by large quantities of precipitation, exceeding 150 mm/month, most
being snow. We jointly analyzed the snow cover information presented in the previous section with the
climatic data from the HISTALP dataset, by quantifying the time correlation between the meteorological
variables and the percentages of SCA (Figure 12). The percentage of SCA with a high probability
of observing snow was positively and significantly correlated with solid precipitation (R = 0.46),
while the percentages of SCA with low probability of observing snow and solid precipitation were
significantly anticorrelated (R = −0.54). The role of winter temperature on the extent snow is more
complex. The percentage of SCA with a high probability to observe snow cover shows a weak, not
statistically-significant, negative correlation with temperature; and the percentage of SCA with low
probability to observe snow cover shows a weak, not statistically-significant, positive correlation with
temperature. The weak correlation could be attributed to the fact that surface air temperature is often
below the freezing point at such altitudes during winter, with limited effects on the precipitation phase.

Table 4 provides a general summary of the statistics (minimum and maximum values, means
and standard deviations) of the various variables, for DJF and for the months of February and April.
For the minimum and maximum values also, the year of occurrence is reported in parentheses.

The same analysis performed for the winter season and shown in Figures 11 and 12 was repeated
for the months of February and April, since they are key months to understand the dynamics and the
changes of snow cover in mountainous areas. The results are displayed and commented on in Annex 5
(Figures S4 and S5) and are briefly summarized in the following text. February’s percentage of SCA
exhibited a large interannual variability, with some years (1994, 2002 and 2006) in which almost the
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entire extent of the Gran Paradiso National Park appeared snow-covered, and others (1993 and 2000)
in which the park appeared poorly snow-covered, according to the available satellite observations in
that month. April’s percentages of SCA and precipitation varied widely over the period 1984–2014
(Annex 5, Figure S5). April 1987 and 2006 were particularly snow-covered with more than 90% of the
Gran Paradiso territory covered by snow. For both February and April, the analysis of the temporal
percentage of SCA’s evolution and trend was seriously hampered by the high number of years excluded
from the analysis, owing to the presence of clouds.

Figure 11. Mean winter (December–January–February) (a) total and solid precipitation, and (b)
temperatures, obtained from the HISTALP observation-based dataset from 1984 to 2014 in the Gran
Paradiso National Park. (c) Relative area with high (>80%) and low (<20%) probabilities of observing
snow cover (in blue and red respectively), and the relative areas with cloud cover (dark gray) derived
from the winter time series analyses from 1984 to 2018 in the Gran Paradiso National Park. Light grey
bars illustrate winter seasons where cloud cover exceeded 15% of the entire park surface. (d) Percentage
of pixels with cloud-free observations in none of the three months (white), in one month (light green)
out of three months, in two months (medium green) out of three months and in all three months
(dark green).
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Figure 12. Correlation matrix between seasonal (DJF) snow extent and climate variables (temperature
and solid precipitation). The shape, color and the orientation of the ellipse visually describe the
correlation coefficients, whose value are also reported. The (*) indicate statistically significant correlations
at a 95% confidence level (p-value < 0.05).

Table 4. Mean, minimum (Min), maximum (Max) and standard deviation (SD) for winter (DJF),
February and April’s percentage of SCA, air temperature, total precipitation and solid precipitation.
Statistics were calculated over the periods 1984–2018 for snow cover and 1984–2014 for temperature,
and total and solid precipitation.

Variables Mean Min (year) Max (year) SD

WINTER (DJF)

%SCA high probability 86.15 58.13 (2015/016) 98.3 (2005/2006) 9.26
%SCA low probability 6.35 0.17 (2008/09) 18.53 (1991/92) 4.84

Mean air temperatures (◦C) −5.53 −7.82 (2009/10) −3.08 (2006/07) 1.34
Mean total precipitation (mm/month) 66.58 18 (1993/94; 1994/95) 156 (2003/04) 33.41
Mean solid precipitation (mm/month) 56.92 14 (1992/93) 133 (2003/04) 29.20

FEB

%SCA 83.82 70.87 (2000) 99.15 (1994) 16.99
%No-SCA 16.17 0.85 (1994) 29.12 (2000) 16.99

Mean air temperature (◦C) −5.98 −11.2 (2012) −1.58 (1998) 2.51
Mean total precipitation (mm/month) 59.20 4 (2000) 140 (2002) 38.54
Mean solid precipitation (mm/month) 53.53 4 (2000) 128 (1994) 35.41

APR

%SCA 79.10 65.61 (1997) 92.16 (1987) 8.34
%No-SCA 20.90 7.83 (1987) 34.39 (1997) 8.34

Mean air temperature (◦C) −1.16 −2.9 (1991) 3.54 (2007) 1.32
Mean total precipitation (mm/month) 129 4 (2006) 333 (1986) 87.49
Mean solid precipitation (mm/month) 86.93 1 (2006) 288 (1986) 71.97

6. Discussion

In this paper, we presented a methodology to exploit Landsat series satellite data stored in the
Swiss Data Cube (SDC) for snow cover detection, applied to the Gran Paradiso National Park (GPNP).
The frequency of available images and the cloud cover analysis over the analyzed 34 years showed that
the availability of cloud-free observations remains a major limitation for mapping snow with optical
remote sensing data. Indeed, almost half of the Landsat scenes available in the SDC for the period
1984–2018 in the GPNP are cloud-covered by more than 30% of the total area.
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Built in an EODC environment, the preliminary version of the SOfS algorithm implemented in the
SDC can take advantage from the entire Landsat satellite series from 1984 to 2018 to combine different
satellite scenes and generate maximum snow cover area products on a monthly time scale. Temporal
filtering is the most common approach employed, particularly with Moderate Resolution Imaging
Spectroradiometer (MODIS) satellites, to mitigate cloud contamination (i.e., [34,36,59]). In our study,
the mosaicking method used to generate the monthly SCA products allowed to reduce cloud obstruction
by approximately 7% and to gain about two additional monthly observations with cloud cover less
than 30% of the total area. Besides the multi-day combination, we created a multi-sensor snow dataset
combining observations from three different Landsat missions into a single dataset. This multi-sensor
data fusion allowed us to go back further in time with the Landsat-5 mission, but the 2000s benefited
from two Landsat missions at the same time (doubling the number of observations per month).
By comparing the period 1984–2000, for which only observations from one satellite are available
(two observations per month), with the period 2001–2018, for which the data are available from two
satellites (four observations per month, Landsat-7 and Landsat-8 for the period 2013 to 2018), we
observed that monthly cloud contamination was reduced by half after the 2000s. Using the potential of
an EODC infrastructure to overcome the spatiotemporal constraints associated with the conventional
single-sensor satellite mission, the combination of different sensors data into a unique dataset seemed
to be an effective approach to increase the number of available/usable data. This new way of handling
satellites data storage and analysis allows users to access the same ARD for different purposes and
facilitates data analyses using a multitude of observations.

Monthly maximum snow cover products for December to February were aggregated to create
“snow cover summaries” over the full 34 year-period and over each winter season. Snow cover
summaries represented the percentages of snow cover observations with respect to the number of the
total cloud-free observations in the considered period. Given that, we have to keep in mind that winter
snow summaries are generally not representative of the three winter months for 34 years, particularly
before the year 2000 when only the Landsat-5 sensor was active. However, the map showing the
number of cloud-free observations available per pixel in the park over the full 34 year-period illustrates
that cloud-free observations are relatively homogeneous, except in higher altitude areas where less
cloud-free observations are found. As expected, the winter snow cover probability map shows
that regions lying above 2000 m a.s.l. have high probability to be snow-covered in winter months.
The probability to observe snow cover in winter is lowest in the south-eastern part of the park, where
snowfall is also less abundant (from about 40 to 60 mm/month, see Figure 3l) compared to the rest
of the park. Those are the areas lying at relatively low elevations. At higher elevations, lower air
temperature and more abundant solid precipitation create favorable conditions for the formation
and maintenance of snow cover (as shown in Supplementary Material, Annex 4). Using historical
snow cover observations since 1984, our analysis highlights where snow cover is usually present and
where it is seldom observed. Information on snow cover distribution and its evolution is essential for
studying Alpine ecosystems, as well as highlighting the opportunities and risks for winter tourism’s
development. For example, according to a study carried out in Switzerland, it has been estimated that
under warmer conditions, only ski areas at high elevations (above 2000 m a.s.l.) and with installations
for producing artificial snow, will be able to open before Christmas time [76]. With more than one
million people visiting the GPNP every year [38], information on the snow cover distribution during
winter is essential to manage the local economy in a sustainable way.

The seasonal “snow cover summaries” produced in this study are based mostly on one or
two monthly products per season, thus providing only partial information on the presence of snow
during that period. As mentioned before, the month of December is more frequently covered by clouds
than January and February, and thus it was less represented in our winter snow cover summary analysis.
Despite this, winter SCA products showed some consistency with the climatic variables (particularly
with solid precipitation) derived from the HISTALP dataset specifically developed for the alpine region.
These preliminary results encourage further investigations using the proposed methodology.
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6.1. Limitations

One of the major problems of snow detection using optical sensors, such as Landsat, is their
inability to deliver surface information under cloudy conditions [77]. Our analysis has shown that,
despite a monthly mosaicking methodology and a multi-sensors analysis, the cloud issue persists and
limits the number of usable observations for snow cover mapping. On the monthly scale, abundant
cloud cover strongly limits snow observations and the possibility to evaluate long-term trends and
significant correlations between snow cover and climatic data.

The multi-day composite methodology tested in this study is subject to several other limitations.
Using data from Landsat, which has a revisit time of 16-days, forced us to create a one-month composite
with only two dates available, at least for the first 15 years (1984–2000). Previous studies have confirmed
that the overall accuracy of multi-day combined snow cover products improves as the number of
composition-days increase. In other words, the higher the number of images in the composite, the
higher the overall accuracy. Similarly, the number of composition days was not homogeneous over
the 34 years. Indeed, for the period 1984–2000 where only Landsat-5 was active, we used two images
to calculate the maximum NDSI per month, while for the period 2001–2018, we use four images in
a month to create the maximum NDSI products (with the combination of Landsat-5 and 7 and Landsat-7
and 8). Moreover, as mentioned by [78], the overall accuracy of a mosaicking method decreases when
increasing the compositing time period window (one month here). Based on the assumption that
snow will persist on the surface for a certain period of time [31], a one-month compositing period
based on two or four images might be insufficient to assess snow cover change. It would thus be
beneficial to exploit all satellites currently available in the SDC (Sentinel-1 and Sentinel-2, besides the
Landsat series) and MODIS data to increase the number of remote sensing observations per month,
and hence reduce the time window used in the mosaicking procedure. A previous study using MODIS
observations over Austria has demonstrated that seven days of temporal filtering can remove more
than 95% of clouds while maintaining an accuracy exceeding 92% [79].

6.2. Perspectives

In order to mitigate the influence of cloud cover, several methods have been proposed, such as
spatial and temporal filtering or interpolation techniques [66,78,80,81]. Spatial filtering is designed to
replace cloud-contaminated pixels by using information on surrounding adjacent pixels that are not
obscured by clouds on the same date. According to the spatial position of the pixel, the estimation
of the regional snow line (defined as the elevation above which all pixels are covered by snow) can
help when reclassifying cloudy pixels as snow-covered or snow-free [66]. The study undertaken by
Parajka et al. [79] using the daily MODIS snow cover products shows that the snow line method
provides robust snow cover mapping, even if cloud cover is as large as 90%. In our case, with only
Landsat-5 data available in the Swiss Data Cube from 1984 to 2000, that spatial filtering could be
used to effectively reduce the impact of clouds. Similarly, as suggested by Dietz et al. [82], digital
elevation model (DEM) information can be used to infer information on cloudy pixels. For example,
Qobilov et al. [83] suggested that if a pixel is cloud covered, the nearest cloud-free pixel with the same
elevation, azimuth and slope angle can be used instead. Another possibility to get information on
cloud covered areas is to combine different optical datasets (e.g Landsat, Sentinel-2 and MODIS) and
radar-based (Sentinel-1) sensors [84]. In fact, the synthetic aperture radar (SAR) from the first Sentinel
satellite in the European Copernicus program, Sentinel-1, demonstrates an effective ability to map
snow in all-weather and day-and-night conditions [10,15]. This will allow us to combine potentialities
and limit their individual drawbacks. EODC seems to be an appropriate environment to conduct such
multi-sensor data fusion and analysis and to improve the SOfS algorithm.
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7. Conclusions

In this paper, we presented a first study on the snow cover evolution in the Gran Paradiso
National Park, north-western Italian Alps, from 1984 to 2018, using the preliminary version of the snow
observation from space (SOfS) algorithm benefiting from the Swiss Data Cube technology. The SOfS
algorithm was applied to all Landsat series images (Landsat-5, Landsat-7 and Landsat-8) available
in the period 1984–2018 in an analysis-ready form from the SDC, which corresponds to more than
480 Landsat scenes, to study the snow cover evolution in the GPNP.

The Earth observation data cube environment allowed to generate a monthly snow cover area
time series in a totally automated-way for the Gran Paradiso National Park. The SOfS algorithm was
employed for the first time in a multi-date (monthly composite) and a multi-sensor (combination of
Landsat-5, 7 and 8 in the same dataset) mosaicking approach for increasing the number of cloud-free
observations. Indeed, by using three different Landsat sensors incorporated into the same dataset,
cloud cover contamination in the monthly SCA products after the 2000s was reduced by more than half.

However, despite the improvements deriving from our approach, the availability of cloud-free
scenes remains a major limitation for mapping snow cover with optical remote sensing. There is a
need to further investigate the detection of snow under cloud conditions using alternative approaches,
such as spatial and temporal filtering techniques, and a combination of additional satellite data,
such as Sentinel-1 and Sentinel-2. The integration and combination of consistent and comparable
data provides new avenues and opportunities, increasing information density to minimize cloud
contamination and to look further back in the past [52].

The preliminary version of the snow detection tool contained in the SDC and described in this
paper needs to be further enhanced, in order to increase the quality, availability and accessibility of
snow cover information across the Alps. With those improvements, the data cube technology might
support a full analysis of the snow cover evolution, compared to a more traditional, scene-based
sampling approach that might limit our ability to detect changes [26], allowing us better understand
them and their consequences. As mentioned by Guo et al. [85] “multi-temporal Earth observation
data may reveal large-scale processes and features that are not observable via traditional methods.”
Climate change must be taken as an opportunity to gain a more comprehensive understanding of the
past and present evolution of our environment, for rethinking our mountainous regions from both
environmental and economic perspectives through the establishment of adaptation measures to ensure
the sustainable use of alpine resources [86].
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Abstract: This study establishes the use of the Earth Observation Data for Ecosystem Monitoring
(EODESM) to generate land cover and change classifications based on the United Nations Food
and Agriculture Organisation (FAO) Land Cover Classification System (LCCS) and environmental
variables (EVs) available within, or accessible from, Geoscience Australia’s (GA) Digital Earth
Australia (DEA). Classifications representing the LCCS Level 3 taxonomy (8 categories representing
semi-(natural) and/or cultivated/managed vegetation or natural or artificial bare or water bodies)
were generated for two time periods and across four test sites located in the Australian states of
Queensland and New South Wales. This was achieved by progressively and hierarchically combining
existing time-static layers relating to (a) the extent of artificial surfaces (urban, water) and agriculture
and (b) annual summaries of EVs relating to the extent of vegetation (fractional cover) and water
(hydroperiod, intertidal area, mangroves) generated through DEA. More detailed classifications that
integrated information on, for example, forest structure (based on vegetation cover (%) and height
(m); time-static for 2009) and hydroperiod (months), were subsequently produced for each time-step.
The overall accuracies of the land cover classifications were dependent upon those reported for the
individual input layers, with these ranging from 80% (for cultivated, urban and artificial water) to
over 95% (for hydroperiod and fractional cover). The changes identified include mangrove dieback in
the southeastern Gulf of Carpentaria and reduced dam water levels and an associated expansion
of vegetation in Lake Ross, Burdekin. The extent of detected changes corresponded with those
observed using time-series of RapidEye data (2014 to 2016; for the Gulf of Carpentaria) and Google
Earth imagery (2009–2016 for Lake Ross). This use case demonstrates the capacity and a conceptual
framework to implement EODESM within DEA and provides countries using the Open Data Cube
(ODC) environment with the opportunity to routinely generate land cover maps from Landsat or
Sentinel-1/2 data, at least annually, using a consistent and internationally recognised taxonomy.

Keywords: land cover classification; change; Digital Earth Australia; open data cube; Landsat; Australia

1. Introduction

To date, there have been few land cover maps that provide consistent coverage for all of Australia.
Those that exist have mostly focused on only part of the land cover classification spectrum. For example,
the National Vegetation Information System (NVIS; Australian Department of Environment and Energy,
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2017) describes 32 broad categories linked to grasslands, shrublands, woodlands and forests, and
natural and artificial bare and water classes. However, as with most Australian land cover mapping
systems, NVIS is a combination of inputs from separate mapping efforts by governments at the state and
national levels, resulting in an output that has detailed content in some areas but not in others. To create
a consistent land cover map for Australia, Geoscience Australia (GA) and the Australian Bureau
of Agricultural and Resource Economics and Sciences (ABARES) developed the National Dynamic
Land Cover Dataset (DLCD) [1] using data from the Moderate Resolution Imaging Spectroradiometer
(MODIS). The DLCD was generated from 250 m resolution 16-day Enhanced Vegetation Index (EVI)
composites, from which 12 coefficients (based on statistical, phenological and seasonal characteristics
for each pixel) were clustered using a support vector clustering algorithm. Each class was then labelled
using a combination of catchment-scale land-use mapping and the NVIS to provide a consistent land
cover map for Australia [2]. However, the 250 m scale spatial resolution and methodology employed
to create DLCD limited its ability to provide high accuracy across its classes and discriminate features
at a scale useful for policy and land management.

A number of international projects have classified land cover across Australia according to global
taxonomies, including Landcover 2000 and the European Space Agency’s (ESA) Climate Change
Initiative (CCI) 300 m resolution land cover product, which employed a subset of the Food and
Agriculture Organisation’s (FAO) Land Cover Classification System (LCCS), a supervised approach,
and temporal information for some biophysical variables (e.g., canopy cover). The value of the FAO
LCCS was recognised for Australia by Atyeo and Thackway [3], who stated that this taxonomy
provided a comprehensive and flexible system for remapping existing Australian State and Territory
vegetation and land cover types and highlighted its potential for providing comprehensive descriptions
and maps of land cover for national and international reporting. With the development of Digital
Earth Australia (DEA) [4], containing the Australian archive of public good Earth observation (EO)
data, such as from the Landsat and Copernicus programs, the LCCS is seen as a candidate to provide
ongoing national land cover data for Australia on the DEA platform.

An advantage of the FAO LCCS is that the classes generated closely align with habitat taxonomies
that are widely used by ecologists. For example, the taxonomy was adopted within the EU FP7
Biodiversity Multi-Souce Monitoring System (BIO_SOS) [5] project, which applied ecologically-based
rules (based on an approach developed for Wales [6] to progressively classify Very High Resolution
(VHR) satellite data acquired during pre-flush (e.g., temperate spring or tropical/subtropical dry
season) and/or peak flush (e.g., temperate summer or wet season) periods. The BIO_SOS approach
followed the LCCS dichotomous hierarchy [6]. During the subsequent FP7 Horizon 2020 Ecopotential
Project [7], ecological rules derived from single or dual images were replaced by inputs from a defined
set of environmental variables (EVs; e.g., canopy cover, water turbidity) that aligned with those
used by the FAO LCCS Version 2 [8]. A diverse and expandable set of additional EVs external to the
LCCS (e.g., plant species, woody/herbaceous biomass, sea surface temperature, snow depth) were
also integrated. Change events and processes were then identified by accumulating comparisons
of LCCS component codes (e.g., for canopy cover) and EVs internal and external to the taxonomy.
This led to the establishment of a flexible evidence-based historical and near real-time change alert
system. This integrated system of land cover and evidence-based change detection is termed the Earth
Observation Data for Ecosystem Monitoring (EODESM) [9].

The EODESM system is currently implemented in Python and makes use of the functionality
of the RSGISLib software [10] and KEA file format [11]—specifically, raster attribute tables (RAT).
A major advantage of EODESM is that it is applicable to any site worldwide, and it can provide land
cover and change classifications at any scale and temporal separation. The system primarily generates
land cover and change from available EVs, many of which are obtained from EO data. The approach
also focuses on and encourages the standardisation of scientifically robust protocols for recording land
cover information and EVs.

245



Data 2019, 4, 143

2. Aims

The aim of this research was to test the use of EODESM for generating moderate (~25 m) spatial
resolution land cover and evidence-based change maps within the Open Data Cube (ODC) environment
and using the framework of Geoscience Australia’s (GA) Digital Earth Australia (DEA). Focus was
therefore on sites located on the Australian mainland. Specific objectives were to (a) review the nature
and current availability of EVs held within or accessible through DEA, their relevance at a national
level, the requirements for their translation as inputs for EODESM and any gaps that might exist; and
(b) outline an approach for integrating EODESM within the broader ODC environment.

3. Background to EODESM

3.1. Land Cover Classification

The FAO LCCS Version 2 taxonomy is hierarchical, consisting of a decision tree structure (Figure 1).
Each level in the hierarchy consists of one or more binary decisions. The first three levels of the
LCCS tree classify, in sequence, vegetated, aquatic, cultivated/managed, urban and artificial water.
More detail can then be provided through what is known as the Level 4 classification. These resulting
descriptors (such as canopy cover or leaf type) are then combined to produce a cumulated land
cover class.

The EODESM system mirrors this hierarchical and modular classification approach by combining
products from EO data that (a) assign values of 1 or 0 to Level 1–3 raster inputs and (b) thematic
values (e.g., 1, 2 and 3 for water, ice and snow categories, respectively) to layers relevant to the Level 4
hierarchy, with several derived from continuous layers (e.g., water hydroperiod). Additional descriptors
external to the LCCS classification (e.g., above ground biomass (AGB)) can also be included. To ensure
comparability, scalability and consistency over time, all continuous EVs are accepted only if they can be
quantified using pre-defined and recognisable units. Examples include vegetation height (m) and cover
(%), water depth (m) and AGB (Mg ha−1). Thematic layers (e.g., plant species composition) also need
to be associated with pre-defined and standardised lists or categories. Indices (e.g., the Normalised
Difference Vegetation Index (NDVI)) are avoided within EODESM but are instead used to generate
descriptors such as Net Primary Productivity (NPP) or the start of leaf flush (in days) that retain the
same meaning (and units) over time. This ensures the longevity of the system, interpretability and
objective classification.

3.2. Change Detection

To capture the varying nature and rates of change across landscapes, EODESM compares both
temporal thematic classifications (e.g., leaf type and water extent) and quantitative (continuous)
information on EVs (including those external to the LCCS) retrieved from EO data to build up evidence
of changes identified within a defined change taxonomy (e.g., sea level rise, harvesting of crops,
wildfires). The same EVs used to generate a land cover classification for a single date or period
(e.g., annual; t1) are generated for a second time step (t2), and the resulting component codes are
compared to determine changes in land cover. The comparison is augmented by comparisons of
EVs external to the LCCS. The time interval between t1 and t2 can vary between days, weeks and
months to decades, and land cover and EV comparisons can be undertaken before and after events
(e.g., fires, floods) or processes (e.g., regrowth), which can be indicated using more traditional change
detection methods such as the Breaks for Additive Season and Trend (BFAST) algorithm [12] or cross
correlation analysis [13]. As well as the LCCS classes, the EODESM system also compares an expandable
list of EVs that are external to the classification but provide additional descriptors.
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4. Study Sites

The study focused initially on four areas in Queensland and New South Wales (Figure 2). Those in
Queensland were the lower Burdekin catchment (coastal semi-natural/natural and agriculture/urban;
including the townships of Ayr and Townsville), the Diamantina River (inland riverine natural) and
the south eastern Gulf of Carpentaria, including part of the Leichhardt River catchment (coastal dry
natural). The Gwydir catchment was selected in New South Wales as it supported inland wetlands
and agriculture. These areas collectively were known to experience changes in mangrove extent,
hydroperiod and/or agricultural use. Within these, the full range of FAO LCCS Level 3 classes
(cultivated or semi-natural, terrestrial or aquatic vegetation, natural and artificial bare surfaces and
water) and a diverse range of potential Level 4 classes were present.

 

  
(a) (b) 

  
(c) (d) 

 
Figure 2. Landsat annual false colour composites for (a) Ayr (Queensland), (b) Diamantina (Queensland),
(c) Gwydir (New South Wales) and (d) the Leichhardt River (northern Queensland).

Initially, focus was on 100 × 100 km tiles, with these associated with the spatial storage units used
within DEA. However, the classification was extended to several adjoining tiles (200 × 200 km for
Leichhardt, with this encompassing the original 100 × 100 km area) to demonstrate consistency in
classification across a larger region. Higher spatial resolution (< 2–6 m) and temporal change data
were available to support the interpretation of the Level 3 change products for the lower Norman River
catchment (Leichhardt) and Lake Ross (Townsville, Ayr), and hence these two case study areas were
selected to demonstrate the value and potential of the approach. The following subsections provide
an overview of the four sites.

4.1. Lower Burdekin (Townsville and Ayr), Queensland

Two 100 × 100 km tiles centred around the towns of Ayr and Townsville in northern Queensland
support a diverse range of cultivated/managed lands with extensive irrigation (primarily for sugar
cane). The natural vegetation includes grass, shrub and woodlands. Extensive wetlands (including
mangroves and intertidal mudflats) are present along the coast and in some areas inland. Major changes
are associated with water inundation, with the hydroperiod varying annually and impacting the
dynamics of the wetlands but also controlling the amount of water available for irrigation and general
use by the population. Agricultural and urban changes also occur over a range of time steps.
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4.2. Diamantina, Queensland

The region is remote and dominated by the Diamantina River, which (because of the flat
topography) supports numerous river channels that form a dense interconnected network across
the region. Many of the river channels present combinations of herbaceous and woody vegetation,
and flooding is highly variable, both intra- and inter-annually. The surrounding landscape is semi-arid
with extensive areas of bare ground or sparse vegetation. No cultivated or actively managed areas occur.

4.3. Gwydir, New South Wales

The Gwydir River is a perennial river within the Murray Darling River Basin and the catchment is
a major agricultural production area. The availability of water has led to the establishment of irrigated
agriculture, with particular focus on cotton, although non-irrigation farming also occurs. Within this
region, the Gwydir Wetlands support combinations of both herbaceous and woody aquatic vegetation,
although much of the non-cultivated area supports dry grass, shrub and woodlands.

4.4. Southwest Gulf of Carpentaria, Queensland and the Leichhardt River

The Gulf of Carpentaria is a remote region that supports extensive areas of mud and sandflats,
largely because most of the coastal plan is only a few meters above mean sea level and is hence subject to
tidal inundation as well as extensive flooding from rivers (particularly the Flinders River). Agricultural
areas occupy a very small proportion of the landscape, and the main urban centers are at Karumba and
Burketown. The coastline of the Gulf of Carpentaria is macrotidal and supports extensive tracts of
mangrove and saltmarsh. However, A substantive dieback of mangroves was experienced in late 2015.

5. Methods

5.1. Available Data

For the classification of land cover according to the LCCS, a number of EV data layers were
available from DEA products (Table 1), whilst others were obtained from other sources but were
accessible within the DEA environment (Table 2). All layers listed were available at a 25 m spatial
resolution and provided continental coverage.

5.2. Input Layers for EODESM

To support classification within the dichotomous phase (to LCCS Level 3), reference was made
to the annual fractional cover layers held within DEA [14]. A threshold of 10% (i.e., where annual
observation summaries were greater than 10% for the green and non-photosynthetic vegetation
fractions) was determined to define vegetated extent (Level 1). The Level 2 aquatic class was generated
from a combination of layers with user determined thresholds. The Inter-Tidal Extent model (ITEM) was
used to differentiate between non-vegetated intertidal areas such as mud and sand flats. This dataset
represents the tidal range of the Australian coastline, generated from the frequency of inundation
as quantified from all cloud free Landsat observations of the coastal margin over a 28-year period.
Observations were validated with reference to corresponding tide height data at the time of image
capture [15]. This study applied ITEM to extract aquatic areas; that is, areas with greater than 10% and
less than 80% of inundated observations for the Landsat archive. The national (Australian) mangrove
maps in [16] were then used to identify areas of tidally inundated areas not captured by ITEM because
of the obscuration of water by the mangrove canopies. The Water Observations from Space (WOfS) [17]
identified inland and coastal water bodies. An area was considered aquatic when the presence of water
detected was greater than 10% over the annual observations. An ocean mask (defined as water on
the seaward margin of the minimum extent of the ITEM intertidal zone) was also added. All four
data layers were then used in combination to identify areas associated with the Level 2 aquatic class.
To generate the Level 3 classification (8 classes), the Level 1 and Level 2 classes were cross-tabulated
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against data on the extent of agricultural cultivation and artificial land covers, namely urban and water
(artificial), with these extracted from the Catchment Scale Land Use of Australia [18] layer. Areas not
classified as cultivated or managed were considered to be semi-naturally or naturally vegetated or
naturally bare. A summary of the input layers and a description of how these are relevant to EODESM
in generating land cover classifications, but also more advanced descriptions (through the inclusion
of thematic and continuous EV layers, used internally or external to the LCCS taxonomy), are given
in Table 3.

Table 1. Thematic (TM) and continuous (CO) layers from Digital Earth Australia (DEA) products.

Data Layer Type Derivation Reference/Source

Fractional cover (photosynthetic and
non-photosynthetic vegetation and bare surface) CO Spectral unmixing Gill et al. (2018) [14]

Water Observations from Space (WOfS) CO Classification Mueller et al. (2016) [17]

Inter-Tidal Extent model (ITEM) TM Classification Sagar et al. (2017) [15]

National Mangroves TM Classification Lymburner et al. (2018) [16]

Table 2. Thematic (TM) and continuous (CO) layers currently external to DEA.

Data Layer Type Derivation Reference/Source

TERN Continental
Vegetation Height (CVH) CO

Generated through integration
of LiDAR, L-band SAR and

Landsat
Scarth et al. (2019) [19]

National Vegetation
Information System (NVIS) C) Collation of State and Territory

vegetation maps
Australian Department of the

Environment and Energy DOEE [20]

Catchment Scale Land Use
of Australia TM Cultivated areas from

cadastral information

Australian Bureau of Agricultural and
Resource Economics and Sciences

ABARES (2016) [18]

TM Buildings and infrastructure
from cadastral information

Australian Hydrological
Geospatial Fabric

(Geofabric)
TM Artificial water (dams and

reservoirs) Bureau of Meteorology

Table 3. Use of different inputs to the Earth Observation Data for Ecosystem Monitoring (EODESM).

Input Layers Level 3 Level 4 EVs

Fractional Cover Vegetated Canopy cover Canopy cover (%)
WOfS Aquatic Hydroperiod Hydroperiod (days)

ITEM Aquatic/bare 1 Tidal extent Relative tidal inundation frequency
(%)

GMW Mangroves Aquatic Tidal extent
TERN CVH Lifeform, vegetation (canopy) height Canopy height (m)

NVIS Dominant genus
ABARE Cultivated Field size Field size (ha) Crop type

Urban Density, geometry Area (%)
Artificial water Water depth Water depth (m)
1 Classification at Level 3 depends upon the date or period of observation.

In the modular–hierarchical Phase (LCCS Level 4), more detailed descriptions of the LCCS
Level 3 vegetated category were obtained by again referencing the Landsat-derived fractional cover
(indicating canopy cover percentage) and canopy height in meters [19], with the latter generated
using a combination of Advanced Land Observing Satellite (ALOS) Phased Arrayed L-band Synthetic
Aperture Radar (PALSAR) and Landsat sensor data acquired in 2009. Woody vegetation was then
associated with objects for which the average canopy height and cover exceeded 2 m and 20%,
respectively, with trees and shrubs distinguished as being ≥5 m and <5 m, respectively. All forests
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were assumed to be evergreen (as is typical in Australia). NVIS data can also be used to broadly
discriminate those dominated by broadleaved (primarily Eucalyptus and Acacia) and needle-leaved
types (e.g., primarily Callitris and Casuarina species). The areas defined as aquatic were then further
described using WOfS according to the hydroperiod classes defined within LCCS Level 4, namely 1–3,
4–6, 7–9 and >9 months. ABARES data can also be used to indicate field size and crop type and metrics
describing urban areas.

For all four areas, a comparison of the LCCS land cover classifications was undertaken between
2009 (associated with the structural classification of Scarth et al. [19]) and 2016 (the latest year, at the
time of study, with coverages for all DEA layers) to assess the potential of EODESM for detecting change
in EVs (namely hydroperiod and canopy cover). However, for the Gulf of Carpentaria, including the
Leichardt River, comparisons were made between 2014 and 2016 as a substantive dieback of mangroves
was observed from late 2015 [22].

5.3. Implementation of the Land Cover Classification

The overall mechanism for applying the classification was based on the system outlined in
Clewley et al. [23] using Python to combine functionality from a number of different packages,
primarily RSGISLib [10], and using the KEA file format [11] for data storage.

5.3.1. Segmentation

For each area, objects were generated by applying the algorithm of Shepherd et al. [24] (available
within RSGISLib) to annual (geomedian; [25]) composites (for 2016) of multi-spectral Landsat sensor
data and for each tile through DEA. Once proven at the object level, the analysis was applied at
a per-pixel level to take advantage of the full resolution of the data.

5.3.2. Classification

The classification procedure applied rules to each environmental dataset and for each time period
(i.e., t1 and t2). For both periods, and to generate the Level 3 classes, each object (which can be a
segment or pixel) was populated with a value of 1 or 0, respectively, to indicate the presence or absence
of the feature in question (i.e., vegetation, aquatic environments, cultivation and artificial surfaces or
water). The values for each were then cross-tabulated to assign each object to the appropriate LCCS
Level 3 category (e.g., vegetated aquatic cultivated). Once the classification system progressed to the
more detailed modular levels of LCCS in Level 4, values were assigned separately on the basis of
the numerical values associated with each LCCS code specific to each modular layer. For example,
leaf types are assigned to broadleaved (D1), needle-leaved (D2) and aphyllous (D3) in the FAO LCCS
taxonomy, and the raster layer is accordingly given values of 1, 2 and 3. In the case of hydroperiod,
canopy cover and canopy height, the continuous layers were converted to codes according to the
LCCS-2 classification scheme, with each category assigned a value associated with specific LCCS codes
(e.g., perennial water (7–9 months) was assigned a value of 7 representing the code B7).

As well as the component codes, the original numeric values derived from the EVs (e.g., canopy
height) for each object were integrated within the Raster Attribute Table (RAT), as was additional
information external to the classification (e.g., NVIS dominant species type, as a numeric code value).
Once all layers were integrated and RAT columns populated, the component codes were combined to
produce the final combined string prior to translation to a meaningful Level 4 class name. Standardised
colour schemes developed by Lucas and Mitchell [8] for the Level 3 and Level 4 classifications were
then applied.

5.3.3. Evidence-Based Change Detection

To demonstrate the capacity of EODESM to generate descriptions of land cover change alerts,
two of the four test sites were chosen (the lower Norman River catchment near Karumba in Queensland
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and within the Leichhardt River scene) and Lake Ross (within the Townsville–Ayr scene), given the
availability of suitable field and/or higher resolution EO data for validation (Figure 3).

 
(a) (b) 

Figure 3. Location maps for detailed assessment of changes in (a) mangroves on the coastal margin
near Karumba, Gulf of Carpentaria between 2014 and 2016 and (b) water extent in Lake Ross, Burdekin
Catchment, near Townsville between 2009 and 2016.

In late 2015, a substantive dieback of mangroves occurred along the coastline of the Gulf of
Carpentaria, with this attributed to a combination of a substantive drop (20–30 cm) in sea level,
high temperatures and low rainfall [22]. The dieback was most rapid and noticeable within mangrove
communities dominated by lower stature species (e.g., dominated by Avicennia marina) on the landward
margin, but there was some evidence of dieback several years earlier (2012) within mangroves
dominated by Rhizophora stylosa on the landward margin. Airborne and field observations in dieback
areas [26,27] indicated that the dieback in mangroves did not immediately result in a loss of mangrove
extent nor a change in canopy height but rather a change in canopy cover. Hence, attention focused
on establishing changes in the Level 3 classes but also Level 4 canopy cover between 2014 and 2016,
with these representing the pre-dieback and post-dieback periods. Comparisons were made against
time-series of RapidEye data and the derived Normalised Difference Vegetation Index (NDVI) data
provided by Planet [28] for 2014 and 2016. Changes in the WOfS hydroperiod product were also
noted in the lower catchment of the Leichhardt River. For Lake Ross, a progressive loss of water area
was noted between 2014 and 2016 within the WOfS product. Reservoir volume data (percentage of
maximum capacity), Google Earth Imagery (GEI) and RapidEye data were available for the validation
of these changes.

6. Results

6.1. Land Cover Classifications

The EODESM land cover classification procedure was applied to the four study areas, for time
periods t1 and t2, with these being 2009 and 2016, respectively, for Townsville–Ayr, Diamantina and
Gwydir and 2014 to 2016 for the Leichhardt. The latter time interval was selected to capture the
mangrove dieback event. Level 3 and 4 outputs for 2016 are shown in Figures 4 and 5, respectively,
with the latter showing an extended area of 200 × 200 km (for Leichhardt) for the Level 4 classification.

Each map was generated from objects (segments as a first test and then pixels as a final product)
that were populated with LCCS components and combined codes and then translated to a full
taxonomic description plus thematic and continuous EVs (e.g., % canopy cover or hydroperiod in
days). The set of descriptive attributes to complement the classification were also retained within the
RAT row for each object. The legend for the classifications was built from the available layers and
provided a comprehensive description of land cover classes.
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(a) (b) (c) (d) 
 Cultivated terrestrial 

vegetated (CTV) 
 Cultivated aquatic 

vegetated (CAV) 
 Artificial surfaces  

(AS) 
 Artificial water 

(AW) 
 Natural terrestrial 

vegetated (NTV) 
 Natural aquatic 

vegetated (NAV) 
 Natural surfaces  

(NS) 
 Natural water 

(NW) 

Figure 4. Land cover classifications for (a) Ayr (Queensland), (b) Diamantina (Queensland), (c) Gwydir
(New South Wales) and (d) the Leichhardt River (northern Queensland) according to the LCCS-3
taxonomy. Each area represents 100 × 100 km. Acronyms are also provided.

 
 

(a) (b) (c) 

 Water 1  Lifeform 2  A2 A3 A4 
      

 Bare     Canopy height 4 
      B7 B6 B5 

 Urban    A14     

 Shrub crops 5 Canopy 
Cover 3 

A11     

 Herbaceous crops 5 A10     

 

(d) 
1 Water areas include hydroperiod classes (> 9 months (B1), 7–9 months (B7), 4–6 months (B8) and 1–3 
months (B9)). 
2 Lifeform classes of herbaceous (graminoids and/or forbs (A2), trees (A3) and shrubs (A4)). 
3 Canopy cover classes of sparse (1 to 10–20%; A14), open (10–20 to 60–70%; A11) and closed (> 60–70%; A10) 
for both aquatic and terrestrial vegetation. 
4 Canopy height classes of 3–7 m (B7), 7–14 m (B6) and > 14 m (B5) for both aquatic and terrestrial 
vegetation.  
5 Gwydir only. 

Figure 5. Land cover classifications for (a) Ayr (Queensland), (b) the Diamantina River (Queensland),
(c) Gwydir catchment (New South Wales) and (d) the Leichhardt River (northern Queensland;
200 × 200 km) according to the LCCS-4 taxonomy.
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The accuracy of the land cover classifications is dependent upon that of the input layers used for
their generation and, where available, these are listed in Table 4. Those reported for the individual input
layers ranged from between 80% (for cultivated, urban and artificial) to over 95% (for hydroperiod and
fractional cover). A current limitation is that these accuracies are reported using different mechanisms,
and hence a future challenge will be to develop an effective approach for standardizing and combining
these within a common framework.

Table 4. Reported accuracies of the EV layers used as input to EODESM.

EV Derived Layer Validation

Fractional Cover Vegetated

The fractional cover product has an overall RMSE of 11.8%.
The error margins for photosynthetic vegetation,

non-photosynthetic vegetation and bare soil fractions are
11.0%, 17.4% and 12.5%, respectively [14].

WOfS Aquatic Based on 3.4 million validation points; overall accuracy of 97%;
with water identified 93% of time.

ITEM Aquatic/Bare

Mean absolute height difference between (non-inundated)
estimated and actual surface elevation of 0.57 m at the

continental level. Based on Real Time Kinematic (RTK) Global
Positioning Systems (GPS) ground data, with this being

indicative of tidal water depth.

GMW Mangroves Aquatic/Vegetated 1 Users’ and producers’ accuracies from 92–93 and 97–99%,
respectively [16].

TERN CVH Close correspondence with airborne LIDAR profiles from
TERN sites [19].

NVIS Dominant species 2 Final accuracy of 85% in the delineation of vegetation map
units based on aerial photography at 1:20,000.

ABARE 3 Cultivated
Composite product generated from State and Territory land
cover maps with stated overall accuracies above 80% at the

catchment scale.

Urban As above

Artificial water As above
1 Generated through GMW. 2 Undertaken by experienced interpreters (final accuracy of 85%). 3 Australian Bureau
of Agricultural and Resource Economics and Sciences (2011), guidelines for land-use mapping in Australia:
principles, procedures and definitions, fourth edition, Australian Bureau of Agricultural and Resource Economics
and Sciences, Canberra.

6.2. Land Cover Change Maps

By comparing the FAO LCCS component codes between t1 and t2, maps of changes in Level 3
categories were obtained for all four sites (Figure 6). Between-class changes in Level 3 categories from
t1 and t2 can indicate multiple transitions (e.g., bare ground to terrestrial vegetation, natural water to
artificial cultivated vegetation or vice versa) or relative stability in the landscape (e.g., water stays as
water). Where major transitions occur at Level 3, the Level 4 classifications can provide more detailed
information just before and immediately following the transitions. Where the Level 3 class between t1

and t2 does not change, a comparison of the Level 4 classifications provides insights into within-class
changes, such as the annual hydroperiod (e.g., from 1–3 months to 4–6 months) or fractional vegetation
cover (percentage change). Within EODESM, changes can be represented at both levels, with this
indicated in Figure 7, whereby both changes between LCCS Level 3 categories and within Level 4
(hydroperiod) are overlain on the t2 Level 4 classification. Multiple layers of change (annual, monthly
or daily) can also be viewed simultaneously and for different change groups (e.g., canopy cover as well
as hydroperiod).
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(a) (b) 

  
(c) (d) 

 

 

Figure 6. Land cover (LCCS Level 3) change maps for (a) Ayr (Queensland), (b) Diamantina
(Queensland), (c) Gwydir (New South Wales) and (d) the Leichhardt River (northern Queensland)
according to the LCCS-3 taxonomy. The dominant transition is from natural bare surfaces (NS) and
natural aquatic vegetation (NAV) to natural water (NW).
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Figure 7. Classification of LCCS Level 4 transitions (in hydroperiod) between t1 and t2 for the Leichhardt
area (100 × 100 km) and only for areas where the LCCS Level 3 classes remained stable. Hydroperiod
classes are >9 months (B1), 7–9 months (B7), 4–6 months (B8) and 1–3 months (B9). The total area that
was inundated in either 2009 or 2016 is indicated.

6.3. Evidence-Based Change Descriptions

A fuller description of changes between t1 and t2 was demonstrated by combining transitions
in the two taxonomic levels for the lower Norman River catchment (Leichhardt) and Lake Ross
(Townsville, Ayr). In both cases, the LCCS component codes (for Levels 3 and 4) and the original
thematic and continuous information for each LCCS input variable were maintained in the RAT and,
when used in combination, allowed changes to be detected and described on the basis of evidence.

In the lower Norman River, the dieback of mangroves between 2014 and 2016 was identified by
a rapid decline in the Landsat-derived Normalised Difference Vegetation Index (NDVI) from values
typically exceeding 0.6 to those that were < 0.1 (Figure 8a). This decline was captured by a Level 3
change from natural aquatic vegetation (i.e., mangroves) to natural water but also a loss of canopy
cover (typically from 70–100%), as determined by comparisons of the Landsat-derived fractional
(green) cover and derived Level 4 component codes for canopy cover between these periods (Figure 8b).
Whilst time-series data on canopy height were not available, as the height layer of Scarth et al. [19]
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was generated for 2009, airborne LIDAR data were acquired in 2016, with these indicating degraded
forests with loss of structural integrity. The change classification indicated a close correspondence
with the area of dieback observed within mangroves (which had been mapped previously by applying
a random forest classifier to 2014 Rapideye spectral data—Figure 8c—and quantified by comparing
time-series of RapidEye NDVI data from 2014 and 2016—Figure 8d)).

  

(a) (b) 

 

 

(c) (d) 

Figure 8. (a) Time-series of Landsat-derived Normalised Difference Vegetation Index (NDVI) data
extracted from DEA, indicating declines between 2014 and 2016 associated with mangrove dieback
along the Gulf of Carpentaria. (b) Changes in land cover detected based on a transition between
the Level 3 classes, including mangrove dieback (from natural aquatic vegetation to natural water;
NAV to NW). Other changes, including flooding of natural terrestrial vegetation (NTV) and vegetation
encroachment onto previously naturally bare surfaces (NS), are also indicated. (c) RapidEye image
from 2014 showing the extent of mangroves (green line) as mapped using a random forest classifier and
(d) differences in the RapidEye-derived NDVI between 2014 and 2016 showing the extent of mangrove
dieback (decreases indicated in white; mangrove area classified in 2014 overlain in red).
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The change detection example over the Townsville–Ayr study area indicated that, between 2014
and 2016, the area experienced a change in hydroperiod and a subsequent decrease of water within
Lake Ross. This decrease was accompanied by an increase in aquatic vegetation, with this restricting
the area of open water. The evidence for this change was based on a change in the LCCS Level 3
category from artificial water to vegetated aquatic (semi) natural indicated by a change in fractional
cover from 0% (as a water class) to over 80% vegetated (Figure 9a). The change indicated herbaceous
vegetation instead of open water, providing evidence of falling water levels within the dam. This was
attributed to low rainfall during this period and water extraction for use by population and irrigated
agriculture in proximal areas. This change was also observed within RapidEye data (Figure 9b) and
agreed with records of water extent produced by Townsville County Council (Figure 9c). Over this
period, dam levels have decreased progressively to a minimum (in 2016).

 
 

(a) (b) 

 
(c) 

Figure 9. (a) Transitions between the Level 3 classes of natural aquatic vegetation (NAV), natural
terrestrial vegetation (NTV) and natural water (NW) for Lake Ross between 2014 and 2016. Such changes
were associated with a progressive decrease in hydroperiod between 2009 and 2016 and an associated
increase in the extent of both aquatic and terrestrial vegetation. (b) RapidEye image (near infrared
(NIR), red edge and red in RGB) from 2016 highlighting the reduced extent of water and replacement
by aquatic and terrestrial vegetation. (c) Changes in dam capacity (%) between 2009 and 2016.

For Lake Ross (Burdekin catchment), the Landsat sensor imagery within the Google Earth Engine
(GEE; Figure 10) further confirmed the progressive loss of open water, the retreat of aquatic (wet)
vegetation and a transition to drier vegetation on the outer margins of the lake’s basin. A confusion
matrix was difficult to generate because of the lack of a field survey at the time of the image acquisitions,
with this highlighting the requirement for the near real-time measurement of equivalent land covers.
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(a) (b) 

Figure 10. (a) Decrease in the extent of water in Lake Ross near Townsville, Queensland, between
2009 and 2016 and the associated increase in aquatic vegetation, as observed within Google Earth
Engine. (b) The distribution of aquatic (wet; primarily green) and drier (brown) vegetation in the
high-resolution Google Image of 2016 (southeast section).

7. Discussion

7.1. Overview of Approach

The classifications of land cover according to the FAO LCCS were generated from multiple
thematic and continuous EV layers, published within or accessible by DEA. Whilst the focus initially
was on several 100 × 100 km areas relating to the four sites, all data layers used were also available at
a national level, with this indicating the capacity for generating similar classifications across Australia
for different points in time through DEA. All of the input layers were also associated with unit measures
(e.g., m, %, number of days) or pre-defined thematic categories (e.g., numeric codes representing urban,
cultivated areas, dominant genus). All data were provided at a 25 m spatial resolution, which provided
a consistent resolution and spatial reference for comparison. The initial testing was undertaken using
segments but then focused at the pixel level to allow the capture of greater detail within the landscape.

In this study, attention was focused on the use of annual summaries of EVs (including fractional
cover and persistent green fraction), with these providing a consistent time reference for comparison
and a basis for linking concurrent or dependent changes between EVs. Several, but all, datasets were
also associated with assessments of retrieval accuracy. Some datasets were only available for one point
in time (e.g., a specific year, as in the case of the ABARES layers and also the TERN CVH. Whilst these
can be construed as limiting, the current implementation of EODESM highlighted the need for the
more regular production of input datasets. For example, the production of annual vegetation CVHs
would provide significant support for the mapping of vegetation change, particularly when integrated
with canopy cover. This could be achieved by using, for example, the Global Ecosystem Dynamics
Investigation (GEDI) LiDAR or interferometric SAR (Tandem-X) data. Algorithms for routinely
retrieving these parameters across Australia could also be developed or improved. A limitation of the
current CVH layer was that heights were assigned to segments [19], and so the area and outline of the
segments was evident within the classification of vegetated categories at LCCS Level 4.

The EODESM system compares input layers from t1 and t2, and this comparison aligns well
with annual change assessments. The time between t1 and t2 can, however, be varied, allowing the
comparison of images acquired from consecutive image overpasses (e.g., daily, weekly, monthly) as
well as inter-annual and even decadal periods (based on derived summaries). The decision on where to
focus the comparison can be assisted by considering the use of dense time-series comparisons of satellite
sensor data and derived products (e.g., the NDVI). This approach was taken in the case of the mangrove
dieback, where the NDVI time-series (and also knowledge) indicated the time periods to compare
LCCS component codes and EVs before and after the event (i.e., 2014 and 2016). Further comparisons

259



Data 2019, 4, 143

between two longer time-separated periods can also be used to track the recovery (or otherwise) of
mangroves over time. Consideration generally should also be given to the temporal analysis of data,
such as the NDVI, over time using algorithms such as the BFAST [12]. These can allow the targeting of
the comparisons between t1 and t2.

The approach to identifying change differs from more traditional change detection procedures
that typically compare classifications or measures (e.g., indices) generated or derived from an entire
scene (or combination of scenes). These tend not to consider that change is often specific to a variable
within and between different land covers and that multiple changes are occurring at the same time but
also over different time frames. EODESM is therefore particularly beneficial, as a wide range of changes
can be captured but also combined. As an example, information on hydroperiod change between
two years can be combined with that of water extent change mapped between two sub-annual periods
(e.g., weeks, months or each time a satellite image is acquired).

The EODESM system also allows for the detection and description of change to generate historical
and potentially near real-time change descriptions. In the case of the mangrove dieback along the
coastline of the Gulf of Carpentaria, evidence within or accessible through DEA included the change
from aquatic (semi) natural vegetation to water (overlying mudflats). Furthermore, in areas where
mangroves had retained a canopy cover, a decrease from a closed to a sparser canopy-covered forest
was observed. No other changes were detected, as all other layers were generated from a single year.
The transition from vegetation to non-vegetation and the loss of canopy could indicate deforestation,
but this is unlikely given that mangroves are protected in Australia and observations post-dieback
indicated canopy height did not decrease significantly. Alternative changes would be defoliation or
dieback, but the introduction of Advanced Land Observing Satellite (ALOS-2) Phased Arrayed L-band
Synthetic Aperture Radar (PALSAR-2) data prior to and following the dieback indicated a decrease
in L-band backscatter and hence a loss of moisture content within the woody biomass. In the case
of the Burdekin catchment, the loss of water between 2009 and 2016 was indicated by a change
from non-vegetated (i.e., water) to vegetated and also the transition (at the margins) from aquatic
to ‘terrestrial’ vegetation as lake levels progressively decreased over time. This sequence indicated
colonisation by vegetation of what was assumed to be relatively shallow water. In both selected case
studies, the integration of additional layers acquired at appropriate time points would benefit the
evidence-based approach to change detection.

7.2. Application within the DEA

Within this study, the DEA datasets were capable of classifying changes in the extent of vegetation
cover and hydroperiod within the EODESM system. These datasets are available in yearly summaries
(from 1987 to present), and potentially at finer temporal scales, and form a significant part of the
system’s ability to describe the state and change across the Australian landscape. However, to provide
more detailed descriptions of land covers, additional datasets not currently part of DEA were accessed,
with these including the cultivated and urban datasets provided by ABARES and TERN’s CVH. It is not
necessary for these to be are hosted within the DEA environment, but they are critical to the base
functionality of the EODESM system, and consideration needs to be given to how best to achieve
access in an operational manner. While they are freely distributed by their respective suppliers, a more
formal engagement with the parties responsible may provide benefits to DEA and the suppliers in
terms of the validation (and error estimation) of datasets, public visibility of the datasets, and the
potential to affect how often these datasets are maintained and updated.

Within EODESM, the land cover and change classifications were generated entirely from EVs,
which were both continuous and thematically coded (e.g., the ABARE Cultivated Layer). In several
cases (e.g., for WOfS, TERN CVH and National Mangroves), uncertainty estimates were available,
although these were based on, for example, a selection of sites for which higher resolution data
(e.g., LIDAR CVHs) were available. The overall class accuracies are therefore accumulated from—and
are therefore dependent upon—the accuracy of the input layers, noting that these will vary both
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spatially and temporally. A criterion for using these layers is that they were available nationally.
However, future efforts are now focusing upon the generation of spatially explicit accuracy layers
that can give estimates of uncertainty at the pixel level and confidence in the classifications generated,
including at the national level. A step towards this also has been the development of the EarthTrack
mobile application (earthtrack.aber.ac.uk), which facilitates the ground level collection and public
dissemination of land cover and change data in near real-time and according to the FAO LCCS Version
2 taxonomy and the TERN mangrove portal [29], which disseminates a diverse range of ground and
airborne datasets to support national mangrove mapping and monitoring efforts.

As the EODESM system is not tied to comparisons over a fixed period of time, change metrics
generated by the system have the potential to highlight events on the landscape at a variety of temporal
scales. Dramatic changes, such as defoliation due to pests and damage from bushfires or flooding, occur
over potentially much shorter timescale than the effects of long-term reduction in rainfall, but both
scales can be monitored simply by specifying the beginning and end of the comparison time period
to before and after such events. In this case, DEA could implement official products classifying the
state of vegetation (according to the LCCS) at the continental scale with annual products (which is the
current preference for major DEA products) and provide users with the ability to focus on areas of
interest to generate LCCS classifications and change metrics for different time-periods (across multiple
years, or within year change). However, one of the challenges to be faced will be to rank the identified
changes and separate true changes (where a real and meaningful event or change in land use has taken
place) from the many natural, seasonal and land management changes which will also be identified by
the system.

The EODESM system has been shown to work under the DEA and National Computational
Infrastructure (NCI) environments, but while the base inputs provided to the system are already
generating useful data on the state of the landscape and the state of change, there is significant
potential to enhance the capability of the generated products through the incorporation of additional
datasets. Vegetation cover, height, hydroperiod, urban and cultivated environments are the base
requirements (i.e., for LCCS Level 3). However, additional datasets should be explored, such as the
use of high-dimensional pixel composites/statistics of time series to distinguish urban and cultivated
environments [25,30]

The inclusion of datasets that can be retrieved periodically, ideally derived from the Landsat
archive, would enable the robust assessment of the state of the landscape. Moreover, the retrieval
of additional variables such as AGB (e.g., as derived from combinations of ALOS-1/2 PALSAR-1/2,
Landsat sensor and ICESAT-1/2 or GEDI data) and water turbidity and depth (from optical sensors)
would further provide information to describe evidence-based change. Additional work is required to
better inform the EODESM system with respect to species distribution of vegetation, road networks,
bare surface classifications and more. The LCCS standard includes numerous physical descriptors
of the landscape (see Figure 1), and all of them can be incorporated into EODESM to form a better
understanding of the state of the landscape both past and present, and to better predict how changes
may affect the landscape in the future. The results for Lake Ross in the Townsville–Ayr region and the
mangrove dieback around the mouth of the Norman river in the Leichhardt region show that both the
WOfS and vegetation fractional cover are already useful layers that can be exploited to detect multiple
changes across the Australian landscape.

There are several advantages to using the EODESM approach within DEA. The national availability
of datasets and the 30-year archive of data make it possible to generate land cover and land cover
change maps for any spatial extents within Australia and for any time period, and to compare changes
between periods that are separated by variable time intervals. DEA also has computing capacity to
generate LCCS classifications at a national (continental) level. Layers that are currently available on an
annual basis (from 1987 to the present) are hydroperiod and fractional vegetation cover, whilst ITEM
has been generated from an interannual time-series of Landsat sensor data in order to maximize the
capture of the landscape at the lowest tides. Other layers that can be used as direct input to EODESM
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are either under review for final publishing on DEA or are separately maintained products. As such,
while EODESM has been successfully tested using data on DEA, the publication of more EV data
layers at a national scale would facilitate comprehensive classifications of land cover and change
using EODESM.

8. Conclusions

This research provides evidence of the capability of the EODESM approach to deliver consistent
classifications of land covers and change dynamics over diverse Australian landscapes. The research
has established that the EODESM system can be integrated within the framework of the ODC, and
applied to diverse landscapes, as demonstrated for Australia through DEA. EODESM therefore
provides an option for the mapping of evidence-based land covers and change at a national level and
for multiple time instances. The maps generated are at a higher spatial resolution than most current
Australian and global land cover classifications, and the use of national EVs results in seamless mapping
between tiles. The information content can also be increased by generating or accessing additional
EVs. Mapping accuracy can be assessed using higher-resolution datasets, but there is a potential for
validation using mobile applications or higher-resolution thematic maps (e.g., vegetation height and
cover, water extent and turbidity) generated from airborne LiDAR or drone imagery; additionally, the
latter can also be used to generate higher-resolution LCCS classifications for validation.

The EODESM system allows for the classifications of land covers for two points in time
(determined by the user), and it can also detect basic and more advanced evidenced-based change
alerts, as demonstrated for the Townsville–Ayr region (hydroperiod and vegetation/water change)
and the Gulf of Carpentaria (mangroves). Change events and processes can also be identified within
DEA through the analysis of the dense time series of Landsat sensor data and/or derived products
(e.g., NDVI), thereby informing the time steps with which to best describe these changes using EODESM.
A benefit of the approach is that new algorithms for generating EVs can be introduced and the resulting
layers (e.g., hydroperiods) then inserted into EODESM to produce revisions of the classifications,
including historically.

As result of this use case, we recommend (a) a national demonstration of the approach to land cover
and change classification using EVs retrieved at the continental level as inputs to EODESM and within
the framework of DEA; (b) the increase of the capacity for generating consistent, nationally available
and temporally variable data layers (e.g., urban extent, cultivated area) for improved classifications;
and (c) the advancement of the use of airborne (including drone) and mobile applications for validating
classifications and advancing the retrieval of EVs.
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Abstract: Environmental issues become an increasing global concern because of the continuous
pressure on natural resources. Earth observations (EO), which include both satellite/UAV and in-situ
data, can provide robust monitoring for various environmental concerns. The realization of the
full information potential of EO data requires innovative tools to minimize the time and scientific
knowledge needed to access, prepare and analyze a large volume of data. EO Data Cube (DC) is
a new paradigm aiming to realize it. The article presents the Swiss-Armenian joint initiative on
the deployment of an Armenian DC, which is anchored on the best practices of the Swiss model.
The Armenian DC is a complete and up-to-date archive of EO data (e.g., Landsat 5, 7, 8, Sentinel-2)
by benefiting from Switzerland’s expertise in implementing the Swiss DC. The use-case of confirm
delineation of Lake Sevan using McFeeters band ratio algorithm is discussed. The validation shows
that the results are sufficiently reliable. The transfer of the necessary knowledge from Switzerland
to Armenia for developing and implementing the first version of an Armenian DC should be
considered as a first step of a permanent collaboration for paving the way towards continuous remote
environmental monitoring in Armenia.

Keywords: big earth data; sustainable development goals; swiss DC; Armenian DC; Landsat; sentinel;
analysis ready data

1. Introduction

Environmental problems become an increasing global concern continuously put stress on natural
resources. Global challenges with environmental compartments dimensions such as fresh water,
air quality, deforestation, land management or urbanization require improved and updated information,
which acquired the dynamic nature of environmental conditions [1,2]. Earth observations (EO) data
(satellite and in-situ), provide strong monitoring mechanisms for above mentioned environmental
problems because of their geospatial consistency, accessibility, repeatability, and global coverage [3,4].
It proves that by providing a summarized view of a given spatial extent remotely sensed EO becomes
an important element to monitor the ecological state of the different environmental compartments
(water, soil, plants, etc.). So, precise and reliable data are an important component of the environmental
monitoring systems [5]. There are several open remote sensing (RS) data repositories that provide
highly valuable, timely and precise remotely sensed EO information. However, there is a strong
need of a set of geoprocessing tools, which would allow to retrieve the full information potential of
EO data [6–8]. This is mainly because of EO data complexity, large-volume, and deficiency of good
processing capacities [8–10].
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Considering EO data as part of Big Data, because of their volume (e.g., Landsat archive is 7.5PB),
variety (e.g., optical, radar), and velocity (e.g., Sentinel data temporal resolution is every 5 days),
innovative tools are required to reduce the time and knowledge needed to access, prepare and analyze
large volumes of EO data having steady and spatially adjusted calibrated observations [5].

EO Data Cube (DC) is a new paradigm aiming to meet Big Earth Data challenge as a new approach
to store, organize, manage and analyze EO data [11,12].

Hence, Data-Cube is now considered as a promising technology to perform time-series analyses
of large satellite Analysis Ready data-sets like Landsat and Sentinel [13].

There are several operational DC initiatives, covering different spatial scales and storing different
data, using different infrastructures and software implementations (e.g., Earth Observation DC
(EODC—http://eodatacube.eu), Earth on Amazon Web Services (EAWS—https://aws.amazon.com/
earth/), Google Earth Engine (GEE—https://earthengine.google.com), Earth System DC (ESDC—http:
//earthsystemdatacube.net) [5].

As of end 2018, three countries (Australia, Switzerland, and Colombia) have DC on a national-scale
(https://www.opendatacube.org/ceos).

Australian Geoscience DC (AGDC—http://www.datacube.org.au), renamed as Digital Earth
Australia, was the first successful attempt, making entire continent’s geographical datasets available to
researchers and policy-makers [12,14]. Lessons learned from design and implementation of AGDC
underpin Chinese DC (CDC) based on the new Open Geospatial Consortium (OGC) Discrete Global
Grids System (DGGS) standard and cloud computing technologies and Colombian DC [15,16].

However, Switzerland is the second country in the world, which claimed to have a national-scale
EODC. The Federal Office for the Environment supports the Swiss DC (http://www.swissdatacube.ch).
It is developed, implemented and operated by the UN Environment (UNEP)/GRID-Geneva in
partnership with the University of Geneva [5]. Currently, the Swiss DC contains 35 years of Landsat
5,7,8 (1984–2019), four years of Sentinel-2 (2015–2019), and 5 years of Sentinel-1 (2014–2019) Analysis
Ready Data over Switzerland (total volume: 6TB; 200 billion observations) [17].

The Committee of Earth Observation Systems (CEOS) has vision, that more over 20 countries will
be developing and realizing their Data-Cube infrastructure by 2022 [18].

Armenia is among these countries, aiming to gain the knowledge and to exchange experience
from Switzerland implementing its own DC for several reasons: (i) Armenia still faces numerous
environmental challenges as one of the most industrialized post-soviet countries; (ii) since the 90s,
the economic policy moved towards supporting industrial development mainly ignoring environmental
interests; (iii) in 2016, Armenia had initiated the Sustainable Development Goals (SDG) nationalization
process and still face-off various problems caused by the lack of sufficient data hindering efficient
national environmental monitoring; (iv) alternative ways need to be developed and realized to fill this
gap and EODC represents a promising solution.

The paper aims to present the Swiss—Armenian joint initiative on the deployment of an Armenian
DC, which is anchored on the best practices of the Swiss model.

2. Building the Armenian DC

Armenia was among the selected countries to contribute towards the shaping of the global
development agenda, which was both a privilege and recognition of the country’s unique perspective
on development [19,20]. However, when monitoring the process of attaining several SDG targets
(e.g., SDG target 6.6; SDG target 15.3; SDG target 15.4) an important problem of data disaggregation
was encountered. EO can support the data aggregation process by providing policy makers with
repeatable, continuous and multi-annual series of quantitative and qualitative data. The integration of
EO technologies into decision making process is still to be improved in Armenia. So far, Armenian
“decision makers” rely on the data provided by a few research or international organizations, which are
experienced in working with EO data and technologies [21–23]. Taking into account the fact that
reliable remotely sensed monitoring of the identified SDGs requires EO systems allowing systematic
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acquisitions, free and open-access data and high quality imagery, the Landsat and ESA’s Sentinel
missions are the main data sources used. But high performances computational resources are needed
to maintain process, visualize and share the EO-based monitoring data. It could be done by creating
linkages with new platforms such as DCs that empower data visualization by providing an easier way
to visualize environmental changes.

Thus, Swiss-Armenian cooperation initiated the establishment of the Armenian DC as a full and
updated archive of EO data (e.g., Landsat, Sentinel), benefiting from the experience of the University
of Geneva in implementing the Swiss DC.

In order, to transfer the necessary knowledge, it is vital to develop new capacities. This helps
to reach adoption, acceptance and commitment to this new technology for increasing the capacity to
access and use Earth Observations [24]. Capacity development can be defined as “human, scientific,
technological, organizational, and institutional resources and capabilities” to “enhance the abilities of
stakeholders to evaluate and address crucial questions related to policy choices and different options
for development” (GEO Secretariat 2006). Three levels of capacity building can be defined: (1) human
(e.g., education and training); (2) institutional (e.g., improving the comprehension of the value of
geospatial data for decision-making); and (3) infrastructure (e.g., installing/configuring/managing of the
technology). This should help demonstrating the benefits of EODC through appropriate examples and
best practices to strengthen: (1) existing observation systems; (2) capacities of decision-makers to use it;
and (3) capacities of the general public to understand important environmental, social and economic
issues at stake. Such initiatives can also be beneficial for providers to increase their visibility and
reliability nationally and internationally by participating in the approach to build such systems [25,26].

Recognizing these needs and based on the experience acquired in developing capacity building
material for implementing Spatial Data Infrastructure [24] similar to the Bringing GEOSS Services
into Practice, the Swiss team started to develop an integrated set of teaching material and software to
give the necessary knowledge to efficiently install, manage and use an EODC based on the Open DC
software stack.

The successfully installed Armenian DC is already available via http://datacube.sci.am (Figure 1)
and the “Bringing Open Data Cube into practice” material is available at: http://www.swssidatacube.
ch/products.

As in the case of the Swiss DC, a fundamental aspect when building a DC is to have Analysis
Ready Data products, ingested, stored and available in the database. Analysis Ready Data (ARD)
are concerned by the four first steps (data acquisition, radiometric calibration, conversion to top of
atmosphere(TOA) reflectance and Surface reflectance) allowing then to analyze data and generate
time-series [5]. All procedures of discovering, downloading from different repositories (e.g., ESPA,
Sentinel Data Hub) and preprocessing were planned to be automated as much as possible and should
be interoperable.

Thus, the Armenian DC contains 3 years (2016–2019) of Landsat 7 and Sentinel-2 analysis ready
data over Armenia.

The full coverage of Armenia includes 11 Sentinel-2 (38TLL, 38TML, 38TNL, 38TLK, 38TMK,
38TNK, 38SMJ, 38SNJ, 38SPJ, 38SNH, 38SPH) and 9 Landsat 7 (171031, 170031,169031, 171032, 170032,
169032, 168032, 169033, 168033) scenes. It requires around 30–40 min to download and process a single
Sentinel-2 image. The system deployment environment is Ubuntu server version 18.04 with 64-bit
virtual machine, 64GB of RAM, 8 cores and a storage space of 2 TB. For downloading the correct scenes
of our region, the boundary and projection conditions are provided, after which the datacube platform
allows to download the available satellite images from global databases and translate data from the
Earth observation satellites into ready-to-use insights about the continent’s environmental conditions.
Armenia is located inside a rectangle with the upper left (38.32335165219022, 42.98858178626198) and
lower right (41.551890393271684, 47.320774961261485) points in the Earth coordinate system.

The Armenian DC uses the National e-infrastructure, which is a complex IT infrastructure
consisting of both communication and distributed computing infrastructures [16].
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Figure 1. Interface of the Armenian DC.

3. Discussion

3.1. Lake Sevan as a Case Study: A Problem Statement

Among the issues where Armenian DC could provide a set of excellent tools and being
demonstrated as a disruptive technology is the monitoring of the shoreline changes of Lake Sevan.

Lake Sevan is one of the most ecologically sensitive areas in Armenia. Since the beginning of the
last century, the shoreline of this biggest freshwater lake in Armenia and South Caucasus has been
changing continuously with different intensity causing many ecological problems: eutrophication of
the lake, activation of erosion processes and so forth [27]. This makes it urgent to study the shoreline
changes in order to understand the effects these produce on the near-shore belt [28,29].

Mapping and detection of coastline changes from satellite images have become increasingly
important over recent decades, especially because satellites capture and provide data in visible and
infrared spectral bands where the land and water can be easily distinguished [30–32]. These make
optical satellite images containing visible and infrared bands of the electromagnetic spectrum widely
used for coastline mapping especially when these images are easily obtainable [33].

There are several studies where the satellite optical imagery was used to assess Lake Sevan
water quality [34–36]. However, there is no direct study on detecting changes of the Lake coastline
using time-series analysis of satellite EO data and it is easy to perform if the data is openly available.
The satellite image analysis enables to study the water boundary changes using the water detection
service provided in the Armenian DC platform (Figure 2).

Exploration of the full potential of EO data requires huge computing resources enriched
by specialized algorithms and tools [5]. So following Australian and Swiss experience on DC
Swiss-Armenian research group decided to develop an automatized tool for shoreline delineation
in ADC.
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Figure 2. Sentinel-2 ingestion of Lake Sevan.

3.2. Analysis Ready Data Production (Data Availability, Access, Ingestion Preprocessing)

The main phase when developing DC is the preparation of ARD allowing to analyze data and
generate time-series [5].

Satellite data scenes (Landsat 5,7,8 and Sentinel-2) were accessible via gsutil: a Python application,
which gives an access to Google Cloud Storage from Command lines (https://cloud.google.com/storage/
docs/gsutil).

The Live Monitoring of Earth Surface (LiMES) framework has been used for ARD preparation,
which is a framework that helps to automate EO data discovery and (pre-) processing using interoperable
set of tools transforming observations into the information products applicable for monitoring
environmental changes. This framework is developed using a system of large storage capacities,
high performance distributed computers, and interoperable standards to develop a scalable, coherent,
flexible, and efficient analysis system, which can be used on various domains through decades of data
for monitoring [5].

3.3. Image Processing

There are several methods of water object identification and shoreline delineation, which include
classification and spectral signature feature analysis, which divided into single-band and multi-band
methods [37].

Single band and multi-band threshold methods are widely used in optical RS to extract water
bodies [38].

Single band method is a simple approach allowing to extract water surface information. Multi-band
threshold methods are based on comprehensive consideration of each band and are widely used in
water body extraction.

McFeeters [39] Normalized Difference Water Index (NDWI), which is well-known band-ratio
method, which has been studied and used in the experiments via Python scripting with Sentinel-2 and
Landsat scenes (Figure 3).

NDWI = (G − NIR)/(G + NIR) (1)

It uses green (G) and near-infrared (NIR) spectral bands to maximize water feature identification
(1). McFeeters proposed a zero threshold to separate water other land.
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(a) (b)

Figure 3. McFeeters band-ratio algorithm for Lake Sevan calculated from (a) Sentinel-2 and (b)
Landsat sensors.

3.4. Validation of the Results

The validation step is an important component and not a straightforward task as DC has number
of limitations, among which unknown quality of the automatized geoprocessing results using different
verification algorithms. It comprises multiple components ranging from in situ measurements
collection, modeling and retrieval of land surface variables to scale related analysis [40]. All these
factors complicate the validation issue.

The validation step is an essential component and not a straightforward task, as the DC platform
may generate unknown quality of the automatized geoprocessing results using different verification
algorithms. It comprises multiple components ranging from in situ measurements collection, modeling
and retrieval of land surface variables to scale related analysis [40]. All these factors complicate the
validation issue.

The experimental verification of McFeeters band math (NDWI) calculation results was performed
integrating the results of diverse observation, such as high-resolution remote-sensing products (UAV
imagery) received during field campaign held in 2018 using Sensefly eBee and the hydrological data
provided by the Service of Hydrometeorology and Active Influence on Atmospheric Phenomena
SNCO, Ministry of Emergency Situation of Armenia (hereafter Service).

The shorelines derived via NDWI from Sentinel-2 and Landsat 8 were compared with the shoreline
received from UAV for the small portion of the north-east shore (2 km).

To a first approximation the visual comparison of shorelines derived via NDWI from Sentinel-2
and Landsat 8 and UAV image shows that they match quite well despite the differences of spatial
resolutions Landsat 8 (30 m), Sentinel-2 (10 m), UAV image (30 cm) (Figure 4).

The other approach was to compare the surface areas derived using NDWI from Sentinel-2 (12
January 2015) and Landsat 8 (29 December.2015) with the surface areas measured and calculated by
the Service on 1 January.2015 and 1 January.2016 respectively (Table 1). The Table 1 shows that the
differences between provided surface areas are 6.38 sq.km and 9.16 sq.km for Sentinel -2 and Landsat 8
respectively. It should be stressed that the images selected for comparison were acquired near the time
of the hydrological data measurements.
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Figure 4. The comparison of shorelines derived from UAV, Sentinel-2 and Landsat imageries.

Table 1. The area of Lake Sevan according to Service and NDWI.

Sensor
Total Area (sq.km)

Satellite Image Service The Difference

Sentinel-2A (12 January 2015) 1269.18 1275.56 6.38
Landsat 8 OLI (29 December 2015) 1265.83 1274.99 9.16

4. Conclusions

This paper aimed to present the international Swiss—Armenian joint initiative to deploy next
national DC in Armenia, which becomes the fourth national DC in the world after Australia, Switzerland
and Cambodia. ADC is one of the best applications of the Armenian national e-infrastructure,
which should be updated and empowered continuously in order to reveal the full potential of this
innovative technology.

Thus far, the ADC is enriched with complete and up-to-date archive of EO data and successfully
works for the simplest issues such as delineation of Lake Sevan.

Landsat and Sentinel image-based delineation of shorelines using NDWI spectral index gives
sufficiently reliable results for Lake Sevan.

It should be added that the web-based User Interface has been developed by CEOS [41] to
allow users exploring the mains functionalities of the data cube. However, for developing more
advanced/tailored applications or services, the Python Application Programming Interface (API) is the
preferred choice.

Once the Armenian Data Cube will be fully operational and will generate “official” products,
they will be complied with the FAIR (Findable, Accessible, Interoperable, Re-usable) data
principles [42,43], which will include adding a license such as Creative Commons and having a Digital
Object Indentifier (DOI) for each generated datasets/products.
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It could be stressed that Armenian DC has a potential to transform the EO into useful information
for users and represents a prospective solution for remotely sensed environmental monitoring in
Armenia. So the analysis between Armenian and Swiss DC and the transfer the necessary knowledge
from Switzerland to Armenia for developing and implementing the first version of an ADC should be
continued paving a way towards continuous remote environmental monitoring in Armenia.
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Abstract: The emerging global trend of satellite operators producing analysis-ready data combined
with open source tools for managing and exploiting these data are leading to more and more countries
using Earth observation data to drive progress against key national and international development
agendas. This paper provides examples from Australia, Mexico, Switzerland, and Tanzania on how
the Open Data Cube technology has been combined with analysis-ready data to provide new insights
and support better policy making across issues as diverse as water resource management through to
urbanization and environmental–economic accounting.

Keywords: Open Data Cube; UN 2030 Agenda for Sustainable Development; UN System of
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1. Introduction

Earth observation (EO) data from ground, airborne, and space platforms and associated
applications have the potential to, and already, provide insights into global policy frameworks
including: the United Nations (UN) 2030 Agenda for Sustainable Development [1], the UN System of
Environmental Economic Accounting [2], the Sendai Framework for Disaster Risk Reduction [3] and
the Paris Climate Agreement [4]. EO data can support, validate, and augment traditional data inputs,
including national statistics, administrative data, household survey data and census information.
In addition, EO data contribute as a direct indicator to inform relevant goals and targets; help optimize
surveys and other traditional data collection efforts; and support disaggregation of targets and
indicators, where relevant, to ensure that no one is left behind. Today, petabytes of EO data and
geospatial information, coupled with analytical methods and innovation in technology, and enabled by
free and open data policies, are applied widely around the world to derive useful information about
the drivers, pace, and associated impacts of change on Earth, as well as to inform policies and support
decision making.

Significant work is still needed, however, to ensure that different types of end-users are harnessing
the full potential of EO to address local challenges and assist with the monitoring and implementation of
global agendas, such as the UN 2030 Agenda for Sustainable Development. Improvements are needed
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to overcome challenges such as: EO data accessibility and handling; EO data validity and fitness for
purpose; integration of information from different data streams; and data continuity [5]. Organizations
such as the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites
(CEOS) are working to reduce the barriers that are faced by end-users across multiple sectors and
regions in accessing, analyzing, and integrating satellite-based and other sources of EO data into
national processes and decision support systems. More and more, there is a recognized need for new
ways of managing and providing easy access to the vast amounts of EO that is increasingly available,
as well as for raising awareness about the value of the data and translating science into policy.

In recent years, there has been a global move towards satellite operators producing analysis-ready
data, to reduce the work needed by users prior to exploiting and analyzing satellite data. For example,
CEOS has led the creation of the CEOS Analysis Ready Data for Land (CARD4L) framework. This
framework defines CARD4L data as “ . . . satellite data that have been processed to a minimum set of
requirements and organized into a form that allows immediate analysis with a minimum of additional
user effort and interoperability both through time and with other datasets” [6].

The CARD4L framework has provided a set of product family specifications (PFS) for surface
reflectance [7], surface temperature [8], and radar backscatter [9]. These specifications, while not
prescriptive, provide both minimum and target thresholds for general metadata, per-pixel metadata,
radiometric and atmospheric corrections, and geometric corrections.

Satellite operators such as the United States Geological Survey (USGS) are now in the process
of using these PFS to produce global collections of CARD4L compliant EO data. This transition
to easily accessible CARD4L compliant data provides an incredible opportunity for EO data to
be more impactful across a wide range of global challenges. However, the sheer amount of data
that is now, or will soon be, available for use demands that we move away from the historical
approach of users downloading data and local processing toward “processing into high performance
computing data centers (e.g., Google Earth Engine, planet-API, National Computing Infrastructure in
Australia, DigitalGlobe DGBX platform) using Big Data processing tools . . . along the lines of moving
the algorithms to the data not the data to the algorithms” [10]. Bringing together data, analytical
methods, infrastructure, and application insights is essential to promote and accelerate social, economic,
and environmental sustainability.

A range of software (open source and proprietary), tools, and analysis platforms exist for accessing,
storing, processing, and facilitating the use of EO to derive insights and for societal applications.
Cloud computing has had a tremendous effect on the emergence of computational infrastructure
designed to provide EO analysis capabilities such as Google Earth Engine [11], the Copernicus Data
and Information Access Services [12] and a range of other platforms provided via Amazon Web
Services, Microsoft Azure (Layerscape), etc. Before choosing a software product, tool or analysis
platform, end-users—including national statistical agencies, line ministries, and national mapping
agencies, among other stakeholders—need to take into account their local needs including governance
requirements, institutional capacity, geospatial analytics expertise, associated costs, and sustainability
of the respective tool(s) or EO analysis platforms.

Countries such as Australia, Mexico, Switzerland, and Tanzania either have adopted or are in
the process of adopting an open source solution, the Open Data Cube (ODC) [13,14], to enable them
to integrate insights from Earth observation data into their national policy and information systems.
The ODC builds on the work of the Australian Geoscience Data Cube [15] and seeks to increase the value
and impact of global EO data by providing an open and freely accessible exploitation architecture, while
fostering a community of cooperation that promotes open EO data, reuse of algorithms, and related
information usage and sharing for the benefit of society.

The open source nature of the ODC was an important factor in this tool being selected by Australia,
Mexico, Switzerland, and Tanzania. However, the other critical factor is the ODC’s ability to be
implemented on diverse computational infrastructures ranging from national supercomputing facilities
such as Australia’s National Computational Infrastructure, through to numerous commercial cloud
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infrastructures. Together, this combination of open source software and infrastructure flexibility has
enabled the establishment of sovereign, operational capabilities that can be controlled and managed
in-country. This is critical in order to build trust that the information products being generated can be
both sustained and relied upon for use in a wide variety of policy problems.

2. Open Data Cube Examples

This paper provides examples of how the provision of CARD4L compliant EO data together with
operational ODC implementations is enabling countries to better tackle challenges ranging from water
resource management through to urbanization. The examples vary in terms of the maturity of their
implementation and their success to date in influencing national development agendas. However,
all of these deployments have the common aim of trying to ensure that there is a better connection
from global EO data to national level development practices.

2.1. Water Resource Management in the Murray-Darling Basin, Australia

2.1.1. Overview of Digital Earth Australia

In May 2018, the Australian Government announced an ongoing investment of approximately 9.1 M
USD per year in Digital Earth Australia (DE Australia) to deliver new and innovative satellite-based
applications and services to the Australian Government and businesses. DE Australia is the world’s
first operational, continental scale implementation of the ODC technology. The technical details of DE
Australia are outlined in [15,16].

DE Australia currently produces its own analysis-ready data for the Landsat and Sentinel-2
satellites, which include corrections for position, terrain, radiometry, atmosphere, and sun-sensor
geometry [17,18]. This approach is currently being reviewed by CEOS to ensure that it is compliant
with the CARD4L standards.

DE Australia is helping the Australian Government to understand environmental changes such
as water availability, crop growth and urban expansion, supporting improved decision making and
planning. DE Australia is also driving Australia’s economic growth by enabling small businesses and
industry to more readily access satellite data to innovate and create new products. This will present
new opportunities and increase the profitability and productivity of businesses in sectors such as land
planning, construction, agriculture, and mineral exploration [19,20]. For example, information drawn
from satellites is vital to help grazers increase the capacity of paddocks and make their farms more
viable and sustainable [21].

2.1.2. Managing Water in the Murray-Darling Basin, Australia

The Murray-Darling Basin (the Basin) is one of Australia’s most important agricultural regions.
It covers 14% of Australia’s land mass, produces more than one-third of the nation’s food and $22
billion in agriculture on average each year [22]. The Basin is also home to more than 30,000 wetlands,
16 of international importance under the Convention on Wetlands of International Importance (Ramsar
Convention), which are fundamental to the health and viability of the whole basin [22].

Managing water across an area as large as the Basin with as many different competing uses for the
water presents numerous challenges that must be addressed to ensure that Australia achieves progress
against a wide range of Sustainable Development Goals (e.g., SDG 2 and 6). In 2012, the Murray-Darling
Basin Plan passed into law in Australia as a major step forward in managing this complex system. This
Murray-Darling Basin Plan was developed “ . . . to bring the Basin back to a healthier and sustainable
level, while continuing to support farming and other industries for the benefit of the Australian
community” [23].

These challenges are further compounded given that Australia is currently in the midst of a drought
that is covering vast tracks of the Basin. In order to help manage the current drought, Geoscience
Australia and the New South Wales government are exploiting one of DE Australia’s first decision-ready
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products, Water Observations from Space (WOfS). DE Australia’s current implementation of WOfS
detects water on the land surface from Landsat imagery [24]. WOfS provides an understanding of
where water is usually present, where it is seldom observed, and where inundation of the surface has
been occasionally observed by satellite.

DE Australia has used the WoFS algorithm, updated for every Landsat pass, and a map of the
locations and spatial extent of over 60,000 water storages, referred to as farm dams, to estimate how
full these farm dams are on a monthly basis. The product does not provide an estimate of the volume
of water available, but rather an estimate of how full the dam is as a percentage of the maximum of the
horizontal extent of the farm dam (Figure 1).

 

Figure 1. Idealized example demonstrating how DE Australia describes the relative ‘fullness’ of a farm
dam. (a) In this panel the dam (identified by the red square) is 100% full as there is water across the
entire spatial extent of the dam; (b) Here the dam is classified as 40% full as the water covers 40% of the
spatial extent of the dam; (c). Here the dam is classified as being 5% full as the water only covers 5% of
the spatial extent of the dam; (d) A time history of the ‘fullness’ of the dam with the fullness of the dam
from panels a, b and c plotted.

The farm dam fullness estimated by this method is not a precise estimate and is meant to be a
qualitative indicator of water availability. For example, this method does not work well for steep
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sided farm dams nor for farm dams with a spatial extent smaller than ~2500 m2. Nonetheless, initial
qualitative attempts to validate this data have demonstrated its utility in providing governments with
a broad-scale understanding of the availability of water. The New South Wales (NSW) government is
taking DE Australia’s monthly estimates of dam fullness, aggregating it spatially across local regions
called parishes, to produce and publish a map of Farm Dam Water Status on a monthly basis (Figure 2).
This is the first ever comprehensive audit of farm dam levels across NSW and it is providing the NSW
government with new insights into how much water is available on farms and where the current
drought is posing the largest risks to water supply for agriculture. This insight is, in turn, informing the
prioritization of a wide range of drought management and response programs of the NSW Government.

Figure 2. Farm Dam Water Status for New South Wales showing how full farm dams are across
New South Wales for the period of 19 April–19 May, 2019 [25].

The NSW Farm Dam Assessment forms part of the NSW Government’s State Seasonal Update
that is used by the NSW Regional Assistance Advisory Committee in making recommendations on
potential support for farm businesses, families, and communities. The Farm Dam Assessment is now
an integral part of the data used by this committee in making recommendations to the NSW Minister
for Primary Industries and NSW Government on relative priority and timing of introducing and
withdrawing drought response programs and initiatives identified in the NSW Drought Framework.

At the same time, given the scarcity of water in the Basin and the various competing uses, it is
critical that the Australian Government is able to ensure that when water has been embargoed for
the environment, that it is not illegally used for other purposes such as irrigation. The Australian
Government is now using Digital Earth Australia (DEA) to ensure compliance with the Murray-Darling
Basin Plan and to help make sure that no one is stealing water that has been earmarked for
environmental purposes.

The Murray-Darling Basin Authority (MDBA) is the Australian government agency responsible
for developing and implementing a plan to ensure the sustainable use of the Basin’s water resources.
In 2018, the MDBA undertook the “ . . . first large-scale use of satellite imagery for tracking the progress
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of an environmental flow event covering a large fraction of the Basin . . . ” [26]. This pilot study
was undertaken with the explicit intent of using satellite data to help prevent and detect water theft.
The MDBA demonstrated that the imagery from DE Australia is able to detect water in irrigation
channels and on-farm storages as well as detect changes to crops [26]. It is also capable of detecting
water in the wetlands and river reaches that are being targeted with a specific water release. The MDBA
has identified that DE Australia is providing them with “ . . . a valuable new tool to ensure water is
delivered to where it is needed and is not diverted for unauthorised use” [27].

DE Australia was subsequently used to provide the MDBA with EO data that they are using to
identify waterbodies that have filled during periods when farmers were not allowed to extract water
from the river [28]. EO data on its own is not enough to determine whether or not these waterbodies
have been filled legally or illegally. However, this data does offer a tool for prioritizing where more
expensive on-ground compliance investigations are undertaken. This approach to using satellite
data to protect water is a new capability that has been enabled by DE Australia and will transform
Australia’s approach to managing this precious resource into the future.

2.2. Snow Cover Monitoring, Switzerland

2.2.1. Overview of the Swiss Data Cube

Following the work done in Australia, the Swiss Data Cube (SDC) [29] is an initiative supported
by the Federal Office for the Environment (FOEN) and developed, implemented, and operated
by the United Environment Program (UNEP)/GRID-Geneva in partnership with the University of
Geneva (UNIGE), the University of Zurich (UZH), and the Swiss Federal Institute for Forest, Snow
and Landscape Research (WSL). The objective of the SDC is to support the Swiss government in
environmental monitoring and reporting, as well as enable Swiss scientific institutions to fully benefit
from EO data for research and innovation.

Currently, the SDC contains 35 years of analysis-ready data of both optical (e.g., Landsat 5, 7,
8; Sentinel-2) and radar (e.g., Sentinel-1) satellite data over the entire country (total volume: 6TB;
200 billion observations) [30]. The SDC is an innovative analytical framework, based on the Open Data
Cube software stack [14,31], allowing users to benefit from this new generation of EO data, and in
particular minimizing the time and scientific knowledge required to access, prepare, and make it
possible to analyze a large volume of data with consistent and spatially-aligned, calibrated observations.

The SDC is aiming at contributing to the national Digital Switzerland strategy by (1) supporting
innovation and growth, (2) improving efficiency and effectiveness of government investments,
(3) improving management of natural resources, (4) stimulating research, (5) generating decision-ready
information products, and (6) improving data access and use and enabling new products/services that
can transform everyday life. Ultimately, the SDC will deliver a unique capability to track changes in
unprecedented detail using Earth observation satellite data and enable more effective responses to
problems of national significance [32].

2.2.2. Monitoring Snow Cover Evolution, Switzerland

Like many other countries in the world, Switzerland faces challenges (e.g., land management,
environmental degradation) caused by increasing pressures on its natural resources [33]. These
challenges need to be overcome to meet the needs of a growing population. Switzerland is acknowledged
as the water reservoir of Europe. While its territory represents four thousandths of the continent’s total
area, 6% of Europe’s freshwater reserves are stored in Switzerland [34,35].

Monitoring snow cover and its variability is an indicator of climate change and identification of
snowmelt processes is essential for effective water-resource management. Indeed, it is expected that by
2085, the proportion of snow contributing to water bodies will decrease by 25%, strongly affecting the
water regime of major European rivers like the Rhône, Rhine, and Danube [36–38].

280



Data 2019, 4, 144

Earth observation (EO) data acquired by satellites are helpful to monitor snow conditions through
time. Synthetic-aperture radar (SAR) images are effective and robust measures to identify melting
snow, whereas optical data are able to identify snow cover extension [39,40]. Detailed knowledge of
snow cover and its evolution in Switzerland is an essential tool for public policies and decision-making.
Beyond the economic issues related to tourism, other questions arise such as flood risk management or
water supply, given the storage role that snow plays, retaining water in winter to release it in spring
and summer.

Consequently, to better understand the spatial distribution and evolution over time of snow cover
nationwide, the UN Environment/GRID-Geneva and the University of Geneva have developed a
snow detection algorithm benefiting from the analysis-ready data archive and analytical framework
offered by the Swiss Data Cube. The Snow Observations from Space (SOfS) algorithm is an integrated
and innovative solution for monitoring snow cover and its variability across the entire country and
ultimately will allow generation of a decision-ready product that can be readily used as a basis for
the design, implementation, and evaluation of policies, programs, and regulation, and for developing
policy advice [41]. Preliminary results have shown a clear decrease of snow cover over Switzerland in
the last 20 years. The perennial snow zone, where the probability of snowfall varies between 80% and
100%, still covered 27% of the Swiss territory in the decade 1995–2005. Ten years later, it has fallen to
23%, a loss of 2100 km2 equal to seven times the size of the canton of Geneva. While areas with little
or no snow covered 36% of the territory during the decade 1995–2005, the area lacking snow cover
increased to 44% between 2005 and 2017, corresponding to an increase of approximately 5200 km2

(Figure 3).

 

Figure 3. Snow cover change between periods 1995–2005 and 2005–2017 visualized in the Swiss Data
Cube Viewer [42]. Red areas show a decline in snow cover over the two decades while green areas
show an increase.

SOfS offers interesting potential for environmental monitoring and can serve as a pilot example,
which can be of interest for other countries/regions. To test its robustness, SOfS is currently being
applied in two protected areas in Italy and France (Gran Paradiso and La Vanoise National Parks) where
in-situ measurements will help validate satellite observations [43], as well as in Armenia to provide
insights for water management of Lake Sevan, the largest lake in the country that has significant
economic, cultural, and recreational value [44].

To turn this algorithm into an integrated and effective mechanism to monitor snow cover and its
variability, providing actionable information to decision makers, we are aiming to (1) consolidate the
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algorithm “Snow Observations from Space” (SOfS) to get the best results possible for monitoring snow
cover conditions using both optical and radar imagery allowing the identification of dry and wet snow,
and (2) automate the algorithm and transform it into a service that allows measurement of different
periods and scales (e.g., a value every month, trimester, year at national, cantonal, and communal
levels). Results will be made available through an interface targeted at decision and policy makers
(at the national, cantonal, and communal levels) so they can access the latest values and trends on the
snow cover indicator. These two activities are currently under development and a first prototype will
made available in 2019–2020.

In a broader context, given its small territory and dense population, effective land management
has become a national priority, as exemplified by a recent vote on land use (e.g., “Stopper le mitage
– pour un développement durable du milieu bâti, initiative contre le mitage/Zersiedelung stoppen
– für eine nachhaltige Siedlungsentwicklung, Zersiedelungsinitiative”). The SDC has the potential
to support the Swiss government to monitor environmental changes nationwide in near real-time.
Currently, land cover and land use data are generated from visual interpretation of aerial photography
over a 6-year period to cover the entire surface of Switzerland [45]. Therefore, following the seasonal
dynamics of vegetation, water, and snow is almost impossible. The SDC can contribute to overcome
this limitation, providing effective monitoring services of snow coverage, drought conditions, water
quality, urban development, agricultural activities, or health of vegetation.

2.3. Testing the UN System for Economic-Environmental Accounting, Mexico

2.3.1. Overview of the Mexican Geospatial Data Cube

Through a collaboration with Geoscience Australia, the Mexican Geospatial Data Cube (MGDC)
is being developed at the National Institute of Statistics and Geography of Mexico (INEGI). Initially,
the MGDC will contain over 109,000 images of Landsat analysis-ready data provided by the USGS and
NASA, including data since 1984. Figure 4 shows the number of images by year that are currently
contained within the MGDC. This archive is already loaded into the institutional infrastructure of
INEGI and is estimated to increase its volume from 30 TB to 90 TB when decompressed.

Figure 4. Overview of the number of images contained within the MGDC broken down by year and
Landsat mission.

In order to facilitate future interoperability between sensors, INEGI has chosen to implement a
defined grid onto which all data in the MGDC will be projected. The grid was defined using Albers
Equal Area projection, with 150 × 150 km tiles and 30 m resolution (5000 × 5000 pixels); this design
will allow future interoperation with 10 m resolution from the data provided by Sentinel-2. This
416 tile grid (144 of which cover the territory) also ensures covering Mexico’s exclusive economic zone
(Figure 5).
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Figure 5. Overview of the standardized grid that is used for the MGDC (each tile represents a
150 × 150 km region).

As with the DE Australia infrastructure described in Section 2.1, the MGDC is designed to produce
an ever expanding range of derived, decision-ready products (Figure 6). INEGI is currently testing a
diverse set of products that range from common indexes such as the Normalized Difference Vegetation
Index and Modified Normalized Difference Water Index, through to more complex classification tools
such as the Water Observations from Space (WOFS) product described in [24]. More important, INEGI
is working to ensure that the EO data is supplemented and integrated with a wide range of in-situ
validation data to ensure that the derived MGDC products are robust and tangibly improving the
design and monitoring of public policies and internationally agreed objectives, such as the 2030 Agenda
for Sustainable Development [1] and the System of Environmental-Economic Accounting [2].

Figure 6. Notional workflow demonstrating how the MGDC intends to combine in-situ data with EO
data to produce products that can drive better decision making and drive progress against a range of
national and international policy priorities.
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The ability to exploit the large amount of time series data contained within the MGDC is allowing
the use of high-dimensional statistical methods [46] to generate robust composite images for all of
Mexico (e.g., Figure 7). These annual, cloud-free summaries that were generated using the geometric
median (or geomedian) algorithm, have already been used to provide insights into matters of national
significance in Mexico like Natural Resources and Agriculture Statistics. A series of initial product
validations by INEGI’s thematic specialists is being carried out, and it is planned that the MGDC
system will be a transversal service platform in INEGI.

 

Figure 7. Example of an annual cloud free image for Mexico, using the available Landsat data from
2015 (January to December) in the MGDC. The image was produced using some 6074 Landsat images
in MGDC and the high-dimensional statistic methods of [46]. The inset shows the Colorado River
Delta region.

2.3.2. Using the MGDC for Natural Capital Accounting and Valuation of Ecosystem Services

One of the priority uses for the MGDC is to support the Natural Capital Accounting and Valuation
of Ecosystem Services (NCAVES) project. This project was launched jointly by the European Union
and implemented by the United Nations Statistics Division (UNSD), the United Nations Environment
(UN Environment), and the Secretariat of the Convention on Biological Diversity. The objective of
the project is to advance the knowledge agenda on environmental–economic accounting, ecosystem
accounting, and by initiating pilot testing of the System of Environmental Economic Accounting
(SEEA). The results will improve the measurement of ecosystems and their services (both in physical
and monetary terms) at the subnational level and develop an internationally agreed methodology.

This project integrates information from the Economic Statistics and the Natural Resources-
Environment Departments. As producer of geospatial information, INEGI generates the data for the
extent (quantity) and condition (quality) of ecosystems. It is also in charge of the monetary valuation
of ecosystem services, also based on the SEEA EEA methodology.

INEGI is currently evaluating the ability of the MGDC to overcome some of the constraints that
the NCAVES project faces while routinely and efficiently using EO data. For example, in the initial
phase of the project, geospatial data from different themes are used in a pilot study developed for
Aguascalientes, a state in the centre of Mexico. This requires the mapping of features of interest such
as rivers, other water bodies and elements of infrastructure, such as roads. These maps and geospatial
data are currently derived from remote sensing imagery, i.e., satellite images from several sensors and
platforms. However, this is based mainly on visual procedures that impose limits to the spatial details
included and are time-consuming if we are to keep those details updated.

However, the MGDC’s ability to do rapid, national-scale analyses with the Landsat archive,
combined with the ability to undertake time series analysis, offers the potential for new, scalable and,
hopefully, automatable image analysis techniques to support these accounts. For example, vegetation
evolution in time can be easily monitored. Figure 8 shows visual results of a MGDC test consisting of
comparing two false-colour images from the areas of Montes Azules and Marqués de Comillas from
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1986 and 2017; to the right of the Lacantún River, the deforestation (Marqués de Comillas) during these
3 decades is observed. This analysis better supports public policy implementation and monitoring,
as this river observed in the area acts as the limit for the natural protected area of Montes Azules.

 
Figure 8. MGDC images from the areas of Montes Azules and Marqués de Comillas from 1986 (left)
and 2017 (right). Rendering (RGB): Red (near infrared band), Green (red band), Blue (green band).

The image from 1986 is a single observation (Landsat 5), while the 2017 image is a pixel-level
statistical summary (geomedian) from the 2017 time series, using Landsat 7 and 8 data. With pixel-level
time-series analysis, there is also huge potential for the development and application of new machine
learning techniques. Collectively, these advances have the potential to dramatically reduce the time it
takes to identify the required features and to improve the accuracy and spatial scale at which they can
be identified.

Based on the observed results, current testing of the MGDC is focused on two stages of the
ecosystem accounting process (Figure 9). The MGDC is demonstrating potential to improve our ability
to determine the ecosystems extent across all of Mexico and to provide insights into the condition of
some of those ecosystems.

 

Figure 9. Notional workflow demonstrating the sequence of accounts and the components where the
MGDC has the most potential to offer improvements.

The MGDC has the potential to support the identification of ecosystems, which can be improved
by classification algorithms applied to an already segmented image. Furthermore, the classification
process can be improved by using new products such as the geomedian images discussed in Section 2.3.1
and shown in Figure 7. These images may be used to generate the input for the current classification
processes in Land Use Land Cover maps.
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Similarly, the MGDC has implemented the same water classification algorithm (WOfS) used in
Australia to support the detection and analysis of water bodies as described in Section 2.1.2. INEGI is
currently testing the accuracy of this product in the Mexican context. However, assuming it has similar
levels of accuracy in Mexico as it does in Australia, it will provide a rich source of information on the
extent of these critical ecosystems in Mexico.

At this stage, the time-series analysis enabled by the MGDC represents the main advantage of
having a massive analysis-ready raster data array. In particular, addressing the ecosystem condition
can be eased with certain algorithms for detecting change over time. For example, results of the
ecosystem extension accounts for the state of Aguascalientes show continuous expansion of urban
areas (particularly in private and communal lands) and no change in the extension of coniferous forest
from 2007 to 2015.

Results from ecosystem services valuation studies will be useful to inform and strengthen key
public policies such as land-use planning, land-use changes, and nature conservation measures.
Over time, it is expected that, with the MGDC, data access and use will become easier and faster,
enhancing the timeliness of valuation procedures. The MGDC will improve the implementation of
policy instruments such as payment for ecosystem service schemes, environmental responsibility and
liability and environmental impact assessment.

2.4. Using the African Regional Data Cube to Manage Urbanization in Tanzania

2.4.1. Overview of the African Regional Data Cube

The Africa Regional Data Cube (ARDC) was launched in May 2018 by the Global Partnership
for Sustainable Development Data (GPSDD), the Committee on Earth Observation Satellite (CEOS),
and Amazon, to support five countries: Kenya, Senegal, Sierra Leone, Ghana, and Tanzania. The ARDC
is focused on building the capacity of users in this region to apply EO satellite data to address local
and national needs, as well as the objectives of the Group on Earth Observations (GEO) and the 2030
Agenda for Sustainable Development [1]. The ARDC will support a number of key users, including
government ministries, national statistical agencies, geographic institutes, and research scientists.

The satellite data in the ARDC (approximately 11 TB volume) is considered analysis-ready data in
that it is processed to a minimum set of requirements and organized into a form that allows immediate
analysis through time and is interoperable with other datasets. To date, the ARDC only includes
Landsat analysis-ready data since the year 2000, but the ARDC is working to add Copernicus data from
the Sentinel-1 and Sentinel-2 missions. These pre-processed analysis-ready datasets were compiled
in time series stacks to allow valuable assessments of changing land and water resources, a task that
would be very time consuming and quite difficult using traditional, scene-based analysis methods.

2.4.2. Urbanization in Tanzania

Many governments, such as Tanzania, are interested in tracking urbanization to understand the
changes in land resources and corresponding population growth rates. These government agencies
include national statistical offices, urban planning managers, and the ministries of agriculture and
environment. It is known that increases in urbanization have an impact on the environment and the
health of a population. With urbanization products from the ARDC, government decision-makers can
measure the extent and location of urban growth to help planning of water and land use. In addition,
these data and information products can be used to directly address Sustainable Development Goal
(SDG) 11.3.1 (ratio of land consumption rate to population growth rate).

An urbanization analysis was conducted over the city of Dar es Salaam, Tanzania using the ARDC.
The results of this study were compared to a report from [47] and the European Space Agency (ESA)
Urban Thematic Exploration Platform [48].The analysis used a fractional cover [49] threshold approach
(bare soil fraction > 25%) to identify urban regions. This threshold range was selected using visual
interpretation with an attempt to match the results of [47] (Figure 10) and [48] (Figure 11). Though this
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is not a complex scientific method, it is a good first-order approximation for urban extent and can be
used to assess long-term urban change. As suggested in [47], a random forest classification approach
should be used to obtain more accurate results in order to validate the measured urban extent.

According to [47], the urban growth was 100% (or 8% per year) from 2007 to 2016. The analysis
results from the ARDC showed an urban growth of 123% (or 9% per year). This urban growth rate can
be compared with the population growth rate (~5% according to several online sources) for the same
time period. Using the equation from the SDG 11.3.1 guidelines, the ratio of land consumption rate
(urban growth) to population growth rate is 1.8. This suggests that the population is rapidly moving out
of the city and expanding its urban footprint at a rate significantly faster than the population is growing.
Though these ARDC results are promising, a more accurate supervised land classification analysis
is needed in the future to validate the results with ground-based data and to remove false-positive
urban areas.

  
(a) (b) 

  
(c) (d) 

Figure 10. Urbanization results are compared for two time periods, 2007 (a,b) and 2016 (c,d), and two
analysis methods, [47] (a,c) and ARDC (b,d), over Dar es Salaam, Tanzania. Though these results are
quite similar, the ARDC results show more urban pixels that are likely associated with non-urban rural
areas that lack vegetation and are classified as urban using the threshold approach. In addition, there
are some common Landsat-7 "banding" issues visible on the background greyscale image and in the
urban results. These artifacts could be removed with further compositing and post-processing.
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Figure 11. Urbanization results are compared for 2015 from [44] (left) and the ARDC (right) to gain
confidence that the urban footprint results were reasonably accurate. The [44] results (left) are based on
proprietary X-band radar and the ARDC results (right) are based on Landsat-8 optical data. Overall,
the primary urbanization results are quite similar and suggest the fractional cover threshold approach
yields sufficiently accurate results to apply to other years in the time series.

3. Conclusions

Satellite missions will continue to provide increasingly larger volumes of free and open
analysis-ready data for global users. With recent advances in the global provision of analysis-ready
data and proven and innovative open source data technology solutions such as the Open Data Cube
(ODC), global users now have the unprecedented ability to routinely utilize satellite data for national
policy and decision-making needs.

The examples shown in this paper have demonstrated that governments have the need and desire
to use satellite data to tangibly improve their management of natural resources and policies that
support sustainable development. One of the reasons that ODC has been successful at enabling this is
that it is an open source and scalable architecture; it allows countries to establish and operate their own
sovereign analysis capability. Countries are able to control the quality and timeliness of their analyses
and rely upon their own operational capability to underpin regulatory and official reporting processes.

However, great effort is needed for deploying an operational ODC at a national level. The vast
amounts of data that need to be integrated and managed means that operational deployments need
to have access to a wide range of system engineering skills and high-performance computational
infrastructure. Consequently, there is an emerging trend to move from sovereign ODC deployments to
larger scale regional centres that support sovereign ODCs. For example, by the end of 2019, the ARDC
will merge into a larger regional cube including data from an ever growing range of satellites, including
Landsat and Sentinel-2, which will cover the entire continent of Africa. This initiative is called Digital
Earth Africa and serves as an example of a vision to create many regional data cubes using the
ODC infrastructure.

Regional-scale data cubes are more manageable in terms governance and institutional
arrangements, whereas a full global data cube would be impractical to implement and manage
effectively. In addition, these regional cubes allow users to address transboundary topics that otherwise
would not be possible with individual country-level data cubes. In this matter, standardization is key;
it is essential that data and processes are consistent and measurements regard similar criteria. In the
future, a set of regional data cubes could share technical approaches and application algorithms, while
maintaining local management of data and products relevant to regional decision-making needs.

With a vision toward a global set of regional data cubes, it will be possible to take advantage of
consistent time series satellite data and different, yet interoperable, datasets. Such data cubes and their
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corresponding open source application algorithms can be enhanced and shared across the world to
address national and transboundary issues while maintaining data sovereignty and political separation
through a regional implementation. In addition, to realise the full potential of the ODC products to
address local and regional decision-making and policies, it is important to increase research and gather
in-situ ground data for proper algorithm and product validation. Over time, it is expected that open
data products will increase, their accuracy will improve, and data access and use will become easier
and faster for everyone.
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