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Hilbert functions, toric rings, as well as cohomological invariants of ordinary powers, and symbolic

powers of monomial and binomial ideals, have been brought forward. The theory of monomial and

binomial ideals has many benefits from combinatorics and Göbner bases. Simultaneously, monomial

and binomial ideals have created new and exciting aspects of combinatorics and Göbner bases.
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arising from combinatorial objects including finite graphs, simplicial complexes, lattice polytopes,

and finite partially ordered sets, because there is a rich and intimate relationship between algebraic

properties and invariants of these classes of ideals and the combinatorial structures of their

combinatorial counterparts. This volume gives a brief summary of recent achievements in this area of

research. It will stimulate further research that encourages breakthroughs in the theory of monomial

and binomial ideals. This volume provides graduate students with fundamental materials in this

research area. Furthermore, it will help researchers find exciting activities and avenues for further
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Abstract: In this article, we discuss new characterizations of Cohen-Macaulay bipartite edge ideals.
For arbitrary bipartite edge ideals I(G), we also discuss methods to recognize regular elements on
I(G)s for all s ≥ 1 in terms of the combinatorics of the graph G.

Keywords: Cohen Macaulay; Bipartite graphs; regular elements on powers of bipartite graphs; colon
ideals; depth of powers of bipartite graphs; dstab; associated graded rings

1. Introduction

The interplay between the combinatorics of finite simple graphs G and the algebra of the
underlying edge ideals I(G) has been studied by various researches during the last few decades.
The algebraic invariants that have been particularly prone to combinatorial interpretation are regularity,
projective dimension, depth, and Betti numbers. In this article, we study the depth of powers of
edge ideals of bipartite graphs. Combinatorics of bipartite graphs have been particularly ripe with
interesting algebraic counterparts in the edge ideals and their powers. Interested readers are referred
to [1–3], etc. In this paper, we continue the study pursued by the same authors in [3]. We study the
closely related topics of combinatorial characterization of regular elements and Cohen-Macaulayness
of various powers of bipartite edge ideals.

In section two of this paper, we offer a new characterization of Cohen-Macaulay bipartite edge
ideals. We characterize it using colon ideals of the form (I(G)2 : e), where e is an edge/generator
of I(G), somehow in the same way as it is done in [3,4], etc., in the study of regularity. An often
quoted and important characterization of Cohen-Macaulay bipartite edge ideals is due to Herzog-Hibi
in [2]. In this article, we also give a new proof of this characterization ([2]). One important feature
of our proof is that it does not use Hall’s marriage theorem or any variant of it as it was done in [2].
Throughout this article, we refer to S as the polynomial ring k[x1, . . . , xn, y1, . . . , yn]. Our main results
in this section are as follows:

Theorem 1. Let G be a bipartite graph with partition V1 = {x1, . . . , xn} and V2 = {y1, . . . , yn′ }. Then the
following are equivalent

1. S/I(G) is Cohen-Macaulay
2. n = n′ and there exists a re-ordering of the vertex sets V1, V2 such that

(a) xiyi ∈ I(G) for all i
(b) If xiyj ∈ I(G) then i ≤ j.
(c) If xiyj, xjyk ∈ I(G) then xiyk ∈ E.

3. I(G) is unmixed and S/I(G) is connected in codimension one.
4. n = n′ and there exists exactly n edges e1, . . . , en such that (I(G)2 : ei) = I(G) and for i �= j, ei and ej

are disjoint.

Mathematics 2019, 7, 762; doi:10.3390/math7080762 www.mdpi.com/journal/mathematics1
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5. n = n′ and there exists exactly n edges e1, . . . , en such that (I(G)2 : ei) is Cohen-Macaulay and for i �= j,
ei and ej are disjoint.

For arbitrary bipartite edge ideals, it is often hard to compute the depth of powers of its edge
ideals I(G)s for all s ≥ 1. Even if G is Cohen-Macaulay, it is not so easy to compute the depth S/I(G)s

for s ≥ 2. It is well known that depth S/I(G)s is asymptotically equal to the number of connected
components of G ([5]). An important invariant related to the study of depth S/I(G)s is the dstab I(G)

which measures the minimal t for which depth S/I(G)t equals the number of connected components
of G. To study such invariants the same authors in [3] characterized regular elements on I(G)s for any
unmixed bipartite graphs G. In the third section of this paper we characterize elements of the form
xν − yμ that are regular on the powers I(G)s of a bipartite edge ideal G. This is a generalization of the
similar result proved in [3]. Our characterization turns out to be the exactly same as the �-condition
proved there. To signify its usefulness we call it the neighborhood properties (we refer to the definition
in Definition 12) Our main result proved here is as follows:

Theorem 2. Let G be a bipartite graph and suppose that xμ ∈ V1 and yν ∈ V2 satisfies the neighborhood
properties. Then xμ − yν is an regular element on S/I(G)s for all s.

2. Structure of Cohen-Macaulay and Unmixed Bipartite Graphs

A characterization theorem for Cohen-Macaulay bipartite graphs was given by Herzog-Hibi in [2].

Theorem 3. (Herzog-Hibi, [2]) Let G be a bipartite graph with partition V1 = {x1, . . . , xn} and V2 =

{y1, . . . , yn′ }. Then the following are equivalent

1. S/I(G) is Cohen-Macaulay
2. n = n′ and there exists a re-ordering of the vertex sets V1, V2 such that

(a) xiyi ∈ I(G) for all i
(b) If xiyj ∈ I(G) then i ≤ j.
(c) If xiyj, xjyk ∈ I(G) then xiyk ∈ E.

The following theorem is an improvement of the Herzog-Hibi characterization (Theorem 3).
We are grateful to Prof. Huneke for the ideas presented in this proof. It is important to notice here
that the following theorem does not make use of the Halls marriage theorem which is an important
element of any proofs known to us of Theorem 3.

Definition 1. (Definition, p. 498, [6]) Let I be an ideal in a polynomial ring S such that I = P1 ∩ · · · ∩ Pk, Pi ∈
Spec(S), 1 ≤ i ≤ k. We say that the ring S/I is connected in codimension one if for any two primes
Q′, Q′′ ∈ Min(S/I), there is a sequence of minimal primes Q′ = Q1, . . . , Qr = Q′′ ∈ Min(S/I) such that
for each i = 1, 2, . . . , r− 1, ht(Qi + Qi+1) = 1 in S/I.

Theorem 4. Let G be a bipartite graph with partition V1 = {x1, . . . , xn} and V2 = {y1, . . . , yn′ }. Then the
following are equivalent

1. S/I(G) is Cohen-Macaulay
2. n = n′ and there exists a re-ordering of the vertex sets V1, V2 such that

(a) xiyi ∈ I(G) for all i
(b) If xiyj ∈ I(G) then i ≤ j.
(c) If xiyj, xjyk ∈ I(G) then xiyk ∈ E.

3. I(G) is unmixed and S/I(G) is connected in codimension one.

Proof. First we show (2)⇒ (1). We prove by induction on n. If n = 1, then I(G) = (x1y1) and hence
clearly S/I(G) is Cohen-Macaulay. Now assume that the result is true for n− 1 and let G be a graph

2
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which satisfies the conditions (a)− (c) of (2) on 2n vertices (with partition V1 = {x1, . . . , xn} and
V2 = {y1, . . . , yn}). Consider

0 → S
(I(G) : x1)

→ S
I(G)

→ S
((I(G), x1)

→ 0 (1)

Notice that (I(G), x1) = (I(G′), x1), where G′ is the graph obtained by deleting x1 and y1 from G.
Clearly G′ satisfies the conditions (a)− (c) of (2) and hence S/I(G′) is Cohen-Macaulay (on 2n− 2
vertices) by induction. So S/(I(G), x1) is Cohen-Macaulay of dimension n. Let {y1, yi1 , ...., yik} ⊆
(I(G) : x1) for some i1, ...., ik. Let xij yl ∈ I(G) for some 1 ≤ j ≤ k. As x1yij ∈ I(G) by the condition (c),
x1yl ∈ I(G) and hence l ∈ {1, i1, ...., ik}. So (I(G) : x1) = (I(G′′), y1, ...., yik ), where G′′ is the graph
obtained from G by deleting x1, y1, xi2 , yi2 , . . . , xik , yik . But by induction, S/I(G′) is Cohen-Macaulay of
dimension n− k. Hence S/(I(G) : x1) is Cohen-Macaulay of dimension n. Now in (1), both S/(I(G) :
x1) and S/(I(G), x1) are Cohen-Macaulay of dimension n, we have S/I(G) is also Cohen-Macaulay
of dimension n ((Proposition 1.2.9, [7]) and the fact that dimension of S/I(G) is the maximum of the
dimensions of S/(I(G) : x1) and S/(I(G), x1)).

The implication (1)⇒ (3) is a consequence of (Corollary 2.4, [6]).
We finally show (3)⇒ (2). We first observe that n = n′ as I(G) is unmixed and both (x1, ..., xn)

and (y1, ..., yn′) are minimal primes. Next, we prove that the existence of conditions (a) and (b) by
induction. Let ∅ �= L ⊂ {1, ...., n} and define

yL = ∏
i∈L

yi xL = ∏
i∈L

xi TL = {j | xjyi �∈ I(G) for any i ∈ L} uL = yLxTL .

Note that uL /∈ I(G) for any subset S ⊆ {1, . . . , n}. We now consider the ideals (I(G) : uL).
If L′ = {1, ...., n} then (I(G) : uL′) = (x1, ...., xn) which shows that (x1, . . . , xn) ∈ Ass(I(G)). Since I(G)

is unmixed, we have ht I(G) = n. Clearly for any L ⊆ {1, ...., n}, (I(G) : uL) = (xj1 , ..., xjt , yl1 , ...., ylt′ )

where for each 1 ≤ i ≤ t, xji yri ∈ I(G) for some ri ∈ S and for each 1 ≤ k ≤ t′, xwk ylk ∈ I(G) for some
wk ∈ Ts. Since I(G) is unmixed of height n and (xj1 , ..., xjt , yl1 , ...., ylt′ ) ∈ Ass(I(G)), we have t + t′ = n.

Now choose yi with minimum vertex degree. Without loss of generality we may assume i = 1.
Let x1, ..., xt be neighbors of y1 and L = {1}. Then as in the previous paragraph, consider (I(G) : uL) =

(x1, . . . , xt, yl1 , . . . , yln−t). After relabeling, we may assume y1, . . . , yt are only connected to x1, . . . , xt.
Let G′ be the induced subgraph on x1, ..., xt, y1, ...., yt. By our choice of y1, of minimal vertex degree t,
notice that every other vertex yj has to have vertex degree at least t. In other words, since t is minimal,
each vertex yi, 1 ≤ i ≤ t in G′ has at least t neighbors and hence G′ is a complete bipartite graph.

Since S/I(G) is connected in codimension one and (x1, . . . , xn), (y1, . . . , yn) ∈ Ass(I(G)), there
exists a sequence of minimal primes (x1, . . . , xn) = P1, . . . , Pr = (y1, . . . , yn) such that ht(Pi + Pi+1) = 1
in S/I(G). If any minimal prime Pl of I(G) does not contain some xi, 1 ≤ i ≤ t then it has to
contain every yj, 1 ≤ j ≤ t (as G′,as defined in the previous paragraph, is a complete bipartite graph).
Let 1 ≤ l ≤ r such that for all 1 ≤ i ≤ l, Pi contains all of x1, . . . , xt (alternatively, Pi’s do not contain any
of y1, . . . , yt). Now Pl+1 does not contain at least one of x1, . . . , xt, hence it has to contain all y1, . . . , yt.
So ht(Pl + Pl+1) ≥ t in S/I(G). Thus t = 1 and hence y1 is only connected to x1.

Now consider (I(G), x1). Since I(G) is an intersection of minimal primes, (I(G), x1) is an
intersection of minimal primes of I(G) containing x1. Thus any minimal prime of (I(G), x1) is a
minimal prime of I(G), and so (I(G), x1) is unmixed. We now show that (I(G), x1) is connected
at codimension one. Any minimal prime of I(G) has to contain either x1 or y1 (as it is minimal it
cannot contain both as y1 is only connected to x1). Let P′, P′′ ∈ Min(I(G), x1). As P′, P′′ ∈ Min I(G),

3
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there exists a sequence of minimal primes P′ = P1, . . . , Pr = P′′ such that ht Pi + Pi+1 = 1. For any
1 ≤ i ≤ r,

P′i =
{

Pi if x1 ∈ Pi

(Pi\{y1}) ∪ {x1} if x1 �∈ Pi
.

The sequence P′ = P′1, . . . , P′r = P′′ defined as before has the property that ht P′i + P′i+1 = 1 and
hence (I(G), x1) is connected in codimension one. Now notice that (I(G), x1) = (I(G′′), x1) where G′′

is the graph obtained from G by deleting x1. By induction hypothesis, S/I(G′′) is Cohen-Macaulay.
So there exists an ordering {x2, ...., xn} and {y2, ...., yn} satisfying (a) − (b) of (2). As y1 is only
connected to x1, G also satisfies (a)− (b) of (2).

To prove that condition (c) holds, take xiyj and xjyk in E(G) such that i, j, k are distinct. Assume
that xiyk is not an edge. Then there is a minimal prime P that does not contain either xi or yk as the
ideal generated by all x-variables except xi and all y-variables except yk is a prime ideal that contains
I(G) and does not contain xi or yk. Now because I(G) is unmixed, height of this prime has to be n.
Since xi and yk are not in P, we get that yj and xj are both in P. As P contains at least one of xm or ym

for all m, one observes that height of P is strictly bigger than n, which is a contradiction.

The following remark is extremely crucial for our work.

Remark 1. If G is a bipartite graph and ab is an edge then from (Theorem 6.7, [4]) we get (I(G)2 : ab)) =
I(G) + (uv|u ∈ N(a), v ∈ N(b)).

Theorem 5. Let G be a bipartite graph with partition V1 = {x1, . . . , xn} and V2 = {y1, . . . , yn′ }. Then the
following are equivalent

1. S/I(G) is Cohen-Macaulay
2. n = n′ and there exists exactly n edges e1, . . . , en such that (I(G)2 : ei) = I(G) and for i �= j, ei and ej

are disjoint.
3. n = n′ and there exists exactly n edges e1, . . . , en such that S/(I(G)2 : ei) is Cohen-Macaulay and for

i �= j, ei and ej are disjoint.

Proof. First, we show (1) ⇔ (2). If S/I(G) is Cohen-Macaulay, we have ordering x1, ..., xn and
y1, ...., yn of the vertices of G which satisfies the conditions of Theorem 4. Condition (c) implies for all
i, I(G)2 : xiyi = I(G) and conditions (a) and (b) implies for i �= j (I(G)2 : xiyj) �= I(G).

Now suppose there exist, after possible reordering, e1 = x1y1, ...., en = xnyn which satisfied the
conditions of (2). First, we show that if Gi is the induced subgraph obtained by deleting xi and yi
then the edge ideal Ji related to Gi satisfies the condition with e1, . . . , ei−1, ei+1, . . . , en. Without loss
of generality, we prove this for G1. Clearly (J2

1 : ei) = J1 for 2 ≤ i ≤ n. Suppose there exists an
edge xiyj, i �= j such that (J2

1 : xiyj) = J1. Without loss of generality we may assume i = 2, j = 3.
As (I(G)2 : x2y3) �= I(G) and x1y1 is an edge we can conclude that there exists a minimal generator of
(I(G)2 : x2y3) which is an edge that is either of the form x1yl or xmy1 (Theorem 6.7, [4]). Again without
loss of generality we may assume it is of the form x1yl as the proof for the other follows simply by
interchanging roles of x and y. So x1y3 and x2yl are edges in G (Theorem 6.7, [4]). As (J2

1 : x2y3) = J1

we conclude x3y2 is an edge in G. As (I(G)2 : x3y3) = I(G) we observe that x1y2 has to be an edge
in G. So l �= 2, 3. Without loss of generality we may assume l = 4. Now (I(G)2 : x2y2) = I(G) so
x3y4 has to be an edge in G. Again (I(G)2 : x3y3) = I(G) hence x1y4 is an edge in G contradicting the
assumption. So we may assume for all i the edge ideal I(Gi) of the graph Gi obtained by deleting xi
and yi satisfies the conditions in (2).

Now by induction we may assume the result holds for n − 1. Pick ei = xiyi such that yi has
minimum degree. Let G′ be the induced subgraph on vertices other than xi, yi with edge ideal I(G′).
As I(G′) satisfies the condition it is Cohen-Macaulay by induction. Without loss of generality we may

4
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assume i = 1 and ordering that gives ordering of previous theorem for I(G′) is x2, ..., xn, y2, ..., yn. As y2

has degree one in G′ it can have at most degree 2 in G. If x1y2 is not an edge, due to minimality degree
of y1 is at most 1. If x1y2 is an edge in G and xiy1 is an edge in G for i > 2, as (I(G)2 : x1y1) = I(G),
we have xiy2 is an edge in G and hence in G′ contradicting the assumption. Now if x1y2 and x2y1

both are edges in G. Notice that x2y1 also satisfies the hypothesis (I(G)2 : x2y1 = I(G)). For,
x1 has to be connected to any neighbor of x2 as x1y2 is an edge and x2y2 satisfies the hypothesis
(I(G)2 : x2y2 = I(G)). This leads to a contradiction and hence no xi for i > 1 is connected to y1.
This guarantees that conditions (a) and (b) of Theorem 4(2) is satisfied. The condition (c) is satisfied
as for all i, (I(G)2 : xiyi) = I(G).

Next we show (1) ⇔ (3). To prove the if part, we pick, without loss of generality, y1 with
minimum degree and the corresponding edge e1 = x1y1. If degree of y1 more than one then degree of
any other vertex is more than one; as (I(G)2 : e1) is Cohen-Macaulay this will be a contradiction to the
fact that any Cohen-Macaulay bipartite graph should have a y-vertex of degree 1 (Theorem 3). So y1

has degree one. Hence (I(G)2 : e1) = I(G) and I(G) is Cohen-Macaulay.
For the only if part let e1 = (x1y1), ..., en = (xnyn) be as the ordering prescribed by the Herzog-Hibi

(Theorem 3) characterization. All we need to show is that J = (I(G)2 : xiyj) is not Cohen-Macaulay
for i > j. This follows as (J2 : e) = J for e = xjyi (which is a minimal monomial generator of J) as
well as for e1, ..., en. To see this first we show that (J2 : ek) = J for all k. Here at every step we use the
description of colon ideal provided by (Theorem 6.7, [4]). If xlym is a minimal monomial generator
of (J2 : ek) which is not in J then xlyk and xkym are in J. Both of them cannot belong to I(G) as from
(I(G)2 : ek) = I(G) that will imply xlym belongs to I(G) and as a result will belong to J, contradicting
the assumption. Without loss of generality assume xkym does not belong to I(G). Then xkyj and xiym

is in I(G). If xlyk does not belong to I(G) then xlyj and xiyk belong to I(G). If xlyk is in I(G) as xkyj is
in I(G) and (I(G)2 : ek) = I(G) we have xlyj is in I(G). In either case we have xlyj and xiym belong to
I(G). Hence xlym belongs to J contradicting our assumption.

Next we show that (J2 : xjyi) = J. If xlyk is a minimal monomial generator of (J2 : xjyi) which is
not in J then xjyk and xlyi is in J. As xjyk is in J it is either in I(G) or yk is a neighbor of xi in G. If xjyk
is in I(G) as (I(G)2 : xjyj) = I(G) we have xiyk is in I(G). By symmetry xlyj is in I(G). Hence xlyk is
in J contrary to the assumption. Hence J is not Cohen-Macaulay.

The next theorem gives insight into the associated graded ring of a Cohen-Macaulay bipartite
edge ideal. The proof of this theorem uses the description of the colon of the nth power of an edge
ideal with n− 1 edges introduced in [4].

Theorem 6. Let I(G) be Cohen-Macaulay bipartite edge ideal with an ordering of vertices satisfying Theorem
3(2) and ei = xiyi for 1 ≤ i ≤ n. Then for all i and for all k, (I(G)k : ei) = I(G)k−1. Hence eis are non zero
divisors in the associated graded ring of I(G).

Proof. Let f ∈ (I(G)k : ei) ⊂ (I(G)k−1 : ei) be a minimal monomial generator of (I(G)k : ei).
By induction (I(G)k−1 : ei) = I(G)k−2. So f = gh1....hk−2 where hjs are minimal monomial generators
of I(G) and g any monomial. So eih1....hk−2g ∈ I(G)k. As f is a minimal monomial generator, without
loss of generality we may assume g is of degree 2 and eih1..hk−2g is a minimal monomial generator of
I(G)k. Let g = xkyl , k ≤ l. If g is an edge we are done. Otherwise by ([4], Theorem 6.7), xk and yl are
even connected with respect to eih1...hk−2. If xiyl is an edge and for some j, m, p, hj = xmyp and xmyi is
an edge. Then by Theorem 4(2(c)) xmyl is an edge and hence proceeding inductively we show g is an
edge and the result follows.

We illustrate this theorem for k = 3, 4.

Example 1. Let S = k[x1, x2, x3, y1, y2, y3] and I = (x1y1, x2y2, x3y3, x1y2, x1y3, x2y3). One can check
using Macaulay 2, that (I3 : x1y1) = (I3 : x2y2) = (I3 : x3y3) = I2 and (I4 : x1y1) = (I4 : x2y2) = (I4 :
x3y3) = I3.

5
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In a private communication, Prof. Villarreal mentioned that results similar to Theorems 5 and 6
can be found in [8,9].

3. Regular Elements in Powers of Bipartite Edge Ideals

This section presents methods to recognize regular elements on the power of bipartite edge ideals
based on the combinatorics of the graph. We first present some examples to motivate the definition
and the results.

Example 2. Consider the ring S = k[x1, x2, x3, y1, y2, y3] and the bipartite edge ideal I(G) =

(x1y1, x2y2, x3y3, x1y2, x1y3, x2y3) corresponding to

x1

x2

x3

y1

y2

y3

Macaulay2 computations show that x3 − y1 is a regular element on I(G)s for 1 ≤ s ≤ 10. Notice that
I(G) is Cohen-Macaulay. This can also be recovered from (Theorem 3.8, [3]).

One would be tempted to generalize that xn − y1 is always a regular element for bipartite graphs.
But it is not always the case as it is shown in this example.

Example 3. Consider the ring S = k[x1, x2, x3, y1, y2, y3] and the bipartite edge ideal I(G) =

(x1y1, x2y2, x3y3, x1y2, x2y1, x2y3) corresponding to

x1

x2

x3

y1

y2

y3

Macaulay2 computations show that x3 − y1 is not a regular element S/I(G) or S/I(G)2.

Studying more such examples, we came up with the following definition involving the
combinatorial nature of the graphs.

Definition 2. Let G be a bipartite graph. Then xμ ∈ V1, yν ∈ V2 satisfies the neighborhood condition if

N(xμ) ⊆ N(xai ) for all i, 1 ≤ i ≤ p where N(yν) = {xa1 , . . . , xap}. (2)

Remark 2. Condition (2) of Definition 2 is equivalent to the following condition

N(yν) ⊆ N(ybj
) for all i, 1 ≤ j ≤ q where N(xμ) = {yb1 , . . . , ybq}.

Suppose (2) of Definition 2 is true. Then {yb1 , . . . , ybq} = N(xμ) ⊆ N(xai ), where N(yν) = {xa1 , . . . , xap}.
This means xai ∈ N(ybj

) where 1 ≤ i ≤ p, 1 ≤ j ≤ q. In other words, N(yν) ⊆ N(ybj
), where 1 ≤ j ≤ q.

The other direction is analogous.

We show in [3] that xn − y1 is a regular element on S/I(G)s for all s ≥ 1 when G is an unmixed
bipartite graph. Of course, when G is unmixed bipartite, xn and y1 satisfies the neighborhood
conditions. In this section, we show that the difference of vertices which satisfies the neighborhood
condition are the right candidates for being a regular element on S/I(G)s for any bipartite graph G.

6
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Theorem 8 is the main theorem we study in this section. We break up the proof of this theorem
into three main parts, where Theorem 7, Lemma 1 provide all the tools required to prove Theorem 8.

Theorem 7. Let G be a bipartite graph and suppose that xμ ∈ V1 and yν ∈ V2 satisfies the neighborhood
properties. If m is a monomial such that mxk

μ, myk
ν ∈ I(G)s, then m ∈ I(G)s for s, k ≥ 1.

Proof. We prove by induction on k. Suppose k = 1. Then mxμ, myν ∈ I(G)s. As mxμ ∈ I(G)s,
then either m ∈ I(G)s or m = m′yt for some yt ∈ NG(xμ) and m′ ∈ I(G)s−1. If m ∈ I(G)s, then the
claim is obviously true.

Suppose m = m′yt with m′ ∈ I(G)s−1\I(G)s. Let m′ = ae1 · · · es−1 for e1, . . . , ek ∈ I(G), a ∈ S.
We assume ei = (xui yvi ), 1 ≤ i ≤ s− 1. Since myν ∈ I(G)s, we have m′ytyν ∈ I(G)s. Thus

m′ytyν = ae1 · · · es−1ytyν ∈ I(G)s (3)

= b f1 . . . fs for f1, . . . , fs ∈ I(G), b ∈ S

Suppose a neighbor of yt divides a, then clearly m = m′yt ∈ I(G)s. Now suppose a neighbor of yν

divides a. Since xμ and yν satisfies the neighborhood properties, any neighbor of yν is also a neighbor
of yt and hence m = m′yt ∈ I(G)s.

Suppose that no neighbor of yt or yν divide a. Now in the decomposition in (3), if yν does not
divide f1 · · · fs, then f1 · · · fs divides m′yt = m and hence m ∈ I(G)s. Now if yt does not divide f1 · · · fs,
then f1 · · · fs divides m′yν. Thus m′yν = b1 f1 · · · fs. If yν divides b1, then f1 · · · fs divides m′ and hence
m ∈ I(G)s. Now suppose yν divides, say f1 = (xδyν). Again, since xμ and yν satisfy the neighborhood
properties, any neighbor of yν is a neighbor of yt and hence m = m′yt = b1(xδyt) f2 · · · fs ∈ I(G)s.

Now suppose that ytyν divides f1 · · · fs. Since ytyν divides f1 · · · fs, we assume, without loss of
generality, f1 = xu1 yt and f2 = (xu2 yν). Thus we have

m′ytyν = a f1 f2e3 · · · es−1yv1 yv2 ∈ I(G)s (4)

= b f1 . . . fs for f1, . . . , fs ∈ I(G), b ∈ S

Now a neighbor of yv1 , say x0, divides a, then

m = m′yt = a′(x0yv1)(xu1 yt)e2 · · · es−1 ∈ I(G)s where a = a′x0

Similarly if a neighbor of yv2 , say x0, divides a, then

m = m′yt = a′′(x0yv2)e1(xu2 yt)e2 · · · es−1 ∈ I(G)s where a = a′′x0

Now suppose no neighbor of yv1 or yv2 divides a. Consider (4). If yv1 does not divide f3 · · · fs, then

m′ytyν = a f1 f2e3 · · · es−1yv1 yv2

= b′yv1 f1 . . . fs = b′yv1(xu1 yt)(xu2 yν) f3 · · · fs

= b′(xu1 yv1)(xu2 yt) f3 · · · fsyν

= b′e1(xu2 yt) f3 · · · fsyν

Deleting yν on both sides, we get m = m′yt = b′(xu1 yv1)(xu2 yt) f3 · · · fs ∈ I(G)s. Thus we assume
yv1 divides f3 · · · fs and hence assume, without loss of generality f3 = (xu3 yv1). Now we have

m′ytyν = a f1 f2 f3e4 · · · es−1yv2 yv3 ∈ I(G)s (5)

= b f1 . . . fs for f1, . . . , fs ∈ I(G), b ∈ S

7
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Now if yv2 does not divides f4 · · · fs, then

m′ytyν = a f1 f2 f3e4 · · · es−1yv2 yv3

= b′yv2 f1 . . . fs = b′yv2(xu1 yt)(xu2 yν) f3 · · · fs

= b′(xu1 yt)(xu2 yv2) f3 · · · fsyν

= b′ f1e2 f3 · · · fsyν

Deleting yν on both sides we get m = m′yt = b′ f1e2 f3 · · · fs ∈ I(G)s.
Thus we assume yv2 divide f4 · · · fs and hence assume, without loss of generality, f4 = (xu4 yv2).

We now have

m′ytyν = a f1 f2 f3 f4e5 · · · es−1yv3 yv4 ∈ I(G)s (6)

= b f1 . . . fs for f1, . . . , fs ∈ I(G), b ∈ S

We continue in the same fashion and arrive at the j-th decomposition

m′ytyν = a f1 · · · f2j−1 f2je2j+1 · · · es−1yv2j−1 yv2j ∈ I(G)s (7)

= b f1 . . . fs for f1, . . . , fs ∈ I(G), b ∈ S

Also f2r−1 = (xu2r−1 yv2r−3) and f2r = (xu2r yv2r−2) for 2 ≤ r ≤ j. Now if a neighbor of yv2j−1 , say x0,
divides a, then

m = m′yt = a′(x0yv2j−1) f1e2 f3e4 · · · e2j−2 f2j−1e2je2j+1 · · · es−1 ∈ I(G)s (8)

where a = a′x0

If a neighbor of yv2j , say (x0), divides a, then

m = m′yt = a′(x0yv2j)e1(xu2 yt)e3 f4e5 f6 · · · e2j−1 f2je2j+1e2j+2 · · · es−1 ∈ I(G)s (9)

where a = a′x0

Now suppose no neighbor of yv2j−1 or yv2j divides a. Now consider (7). If yv2j−1 does not divide
f2j+1 · · · fs, then

m′ytyν = a f1 · · · f2j−1 f2je2j+1 · · · es−1yv2j−1 yv2j (10)

= b′yv2j−1 f1 . . . fs

= b′e1(xu2 yt)e3 f4e5 f6 · · · f2j−2e2j−1 f2j f2j+2 · · · fsyν

Deleting yν on both sides we have m = m′yt = b′e1(xu2 yt)e3 f4e5 f6 · · · f2j−2e2j−1 f2j f2j+2 · · · fs ∈
I(G)s. Thus we assume yv2j−1 divides f2j+1 · · · fs and hence assume, without loss of generality, f2j+1 =

(xu2j+1 yv2j−1). We now have

m′ytyν = a f1 · · · f2j−1 f2j f2j+1e2j+2 · · · es−1yv2j−1 yv2j ∈ I(G)s (11)

= b f1 . . . fs for f1, . . . , fs ∈ I(G), b ∈ S

8
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Again, if yv2j does not divide f2j+2 · · · fs, then

m′ytyν = a f1 · · · f2j−1 f2j f2j+1e2j+2 · · · es−1yv2j−1 yv2j (12)

= b′yv2j f1 . . . fs

= b′ f1e2 f3e4 f5 · · · f2j−1e2j f2j+2 f2j+2 · · · fsyν

Deleting yν on both sides, we get m = m′yt = b′ f1e2 f3e4 f5 · · · f2j−1e2j f2j+2 f2j+2 · · · fs ∈ I(G)s.
Thus we assume yv2j divides f2j+2 · · · fs and hence assume, without loss of generality, f2j+2 =

(xu2j+2 yv2j).
Continuing in the same fashion we may reach the final decomposition

m′ytyν = a f1 · · · fs−1yvs−2 yvs−1 ∈ I(G)s (13)

= b f1 . . . fs for f1, . . . , fs ∈ I(G), b ∈ S

Recall that every stage we make sure that none of the neighbors of the y’s appearing in f1, . . . , fs−1

divide a. Thus a neighbor of yvs−2 or yvs−1 divides a. Now we can use the decomposition in (8) and (9)
to show that m ∈ I(G)s depending on whether s− 2 or s− 1 is odd or even. This concludes the proof
of claim of this theorem in k = 1 case.

Now assume by induction, that if mxl
μ, myl

ν ∈ I(G)s for 1 ≤ l ≤ k − 1, then m ∈ I(G)s.
Suppose mxk

μ, myk
ν ∈ I(G)s. We also assume that k ≤ s. For, if k > s, then mxμs, mys

ν ∈ I(G)s

and hence by induction hypothesis, we have m ∈ I(G)s.
We claim that it is enough to show that mxk−1

μ ∈ I(G)s or myk−1
ν ∈ I(G)s. Suppose we show

that mxk−1
μ ∈ I(G)s. We now have mxk−1

μ , myk
ν ∈ I(G)s. Thus mxk−1

μ yν, myk−1
ν yν ∈ I(G)s and hence

(myν)xk−1
μ , (myν)yk−1

ν ∈ I(G)s. Since myν is a monomial, we use induction hypothesis to conclude that
myν ∈ I(G)s. Thus we now have mxk−1

μ , myν ∈ I(G)s. As before, we have (mxk−2
μ )xμ, (mxk−2

μ )yν ∈
I(G)s. Again, since mxk−2

μ is a monomial, we use induction hypothesis to conclude that mxk−2
μ ∈ I(G)s.

We now have mxk−2
μ , myν ∈ I(G)s. We continue the process to get mx2

μ, myν ∈ I(G)s. We still have
(mxμ)xμ, (mxμ)yν ∈ I(G)s. Since mxμ is a monomial, by induction hypothesis, we get mxμ ∈ I(G)s.
We now have mxμ, myν ∈ I(G)s. This is the k = 1 case. We now use the induction hypothesis to get
m ∈ I(G)s. On the other hand, if we show that myk−1

ν ∈ I(G)s, then we can analogously show that
m ∈ I(G)s.

Now we go to the induction step. We have mxk
μ, myk

ν ∈ I(G)s. Since mxk
μ ∈ I(G)s and mxl

μ /∈ I(G)s

for any l < k, we have m = m′yt1 · · · ytk where m′ ∈ I(G)s−k, yt1 , . . . , ytk ∈ NG(xμ) and not all
yt1 , . . . , ytk may be distinct. Suppose a neighbor of yt1 , . . . , ytk divides a, then mxk−1

μ ∈ I(G)s.
Now suppose no neighbor of yt1 , . . . , ytk divide a. Since myk

ν ∈ I(G)s we have

myk
ν = m′yt1 · · · ytk yk

ν ∈ I(G)s (14)

= b f1 · · · fs where f1, . . . , fs ∈ I(G), b ∈ S

We observe that m′ may be written divisible by many minimal monomial generators of I(G)s−k.
We can take m′ = ae1...es−k such that m′

e1...es−k
has smallest number of x variables in common with f1.... fs.

It is clear that yk
ν must divide f1.... fs, otherwise myl

ν ∈ I(G)s for some l < k and hence myk−1
ν ∈

I(G)s. Recall the no neighbor of yt1 , . . . , ytk divides a. Thus we can assume that no neighbor of
yν, divides a as that will make mxk−1

μ ∈ I(G)s. So without loss of generality we may assume for
1 ≤ i ≤ k, fi = xui yν where for every j, ej = xuj yvj .

Now we observe that if any neighbor of yvi for 1 ≤ i ≤ k divide a then, clearly, mxk−1
μ ∈ I(G)s. For,

without loss of generality, say x0yv1 is an edge where x0 divides a. As xu1 yν is an edge, so is xu1 yt1 (by
neighborhood properties). Thus we have m = ( a

x0
)(x0yv1)e2....es−k(xu1 yt1)....ytk ∈ I(G)s−k+1. Hence

this will force mxk−1
μ ∈ I(G)s. So we assume no neighbor of yvi for 1 ≤ i ≤ k divide a.

9
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As there are s many x variables in f1 · · · fs and k < s, some of the x variables of f1 · · · fs divides a.
We also have that no neighbor of any yti divides a and yk

ν divides f1 · · · fs. Let fk+1 = x0yvk+1 where
x0 divides a and ek+1 = xuk+1 yvk+1 . We may write m′ = a′e1...ek fk+1ek+2....es−k where a′ = ( a

x0
xuk+1).

But this is an expression of m′ with a′ having less number of x variables in common with f1... fs than
a which is a contradiction. Thus, one of the neighbors of yvi for some 1 ≤ i ≤ k divides a and hence
m ∈ I(G)s.

Lemma 1. Let G be a bipartite graph and suppose that xμ ∈ V1 and yν ∈ V2 satisfies the neighborhood
properties. Now assume m1, . . . , mk ∈ S are monomials of the same degree such that (m1 + · · ·+ mk)(xμ −
yν) ∈ I(G)s. Further suppose,

m1xμ = m2yν (15)

mixμ = mi+1yν for 2 ≤ i ≤ k− 1 (16)

m1yν, mkxμ ∈ I(G)s (17)

Then mj ∈ I(G)s for 1 ≤ j ≤ k.

Proof. First, assume that NG(yν) = {xν1 , . . . , xνp}. We prove by induction on k. If k = 1, then clearly
the claim is true by Theorem 7. By induction, assume the claim is true for (m1 + · · ·+ ml)(xμ − yν) ∈
I(G)s satisfying (15)–(17) and l ≤ k− 1. Now suppose we have

(m1 + · · ·+ mk)(xμ − yν) ∈ I(G)s

satisfying (15)–(17). We show that m1 ∈ I(G)s. This will show that (m2 + · · ·+ mk)(xμ − yν) ∈ I(G)s

satisfying (15)–(17). Thus by induction hypothesis we have mj ∈ I(G)s for 2 ≤ j ≤ k proving the claim.
From (15), we have m1 = myν and m2 = mxν where m ∈ S, a monomial. From (16), we have

m3 =
m2xμ

yν
=

mx2
μ

yν
. Subsequently, we show that

mi =
mxi−1

μ

yi−2
ν

for 2 ≤ i ≤ k (18)

Since m1yν ∈ I(G)s, we have m1 ∈ I(G)s or m1 = ae1 · · · es−1xνt for some t ∈ {1, . . . , p} where
NG(yν) = {xν1 , . . . , xνp}.

Suppose m1 = ae1 · · · es−1xν1 . Since m1 = myν, yν divides a or one of the ei’s. If yν divides a,
then m1 ∈ I(G)s.

Now suppose yν divides, say e1 = xνb yν for some b ∈ {1, . . . , p}. Since m1 = myν, we have
m = ae2 · · · es−1xν1 xνb . Using this equality in (18), we have

mk =
mxk−1

μ

yk−2
ν

=
ae2 · · · es−1xν1 xνb xk−1

μ

yk−2
ν

Since yν does not divide a, then yν divides some of the e1, . . . , es−k and hence we have k− 2 ≤ s− 2
or k ≤ s. Without loss of generality, assume yν divides e2, . . . , ek−1. Thus

mk = aek · · · es−1xl1
ν1 · · · x

lp
νp xk−1

μ where
p

∑
j=1

lj = k

Let u = aek · · · es−1xl1
ν1 · · · x

lp
νp . Now as mkxμ ∈ I(G)s, we have uxk

μ ∈ I(G)s. Also, notice that

uyk
ν =

mk

xk−1
μ

yk
ν =

m
yk−2

ν

yk
ν = my2

ν = m1yν ∈ I(G)s

10
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Since u is a monomial, we have u ∈ I(G)s, by Theorem 7. Now m1 = uyk−1
ν ∈ I(G)s and hence

we are done.

We now prove one of the main results of this section. In this theorem, we attempt to rearrange the
sum m1 + · · ·+ mk into a configuration shown in the previous lemma.

Theorem 8. Let G be a bipartite graph and suppose that xμ ∈ V1 and yν ∈ V2 satisfies the neighborhood
properties. Then xμ − yν is an regular element on S/I(G)s for all s.

Proof. Consider (m1 + · · · + mk)(xμ − yν) ∈ I(G)s where mi’s are monomials of the same degree.
We prove m1, . . . , mk ∈ I(G)s by induction on k.

Suppose k = 1 and m1(xμ − yν) = m1xμ −m1yν ∈ I(G)s. Thus m1xμ, m1yν ∈ I(G)s. Now we use
Theorem 7, to show that m1 ∈ I(G)s proving the base case of induction.

Suppose (m1 + · · ·+ml)(xμ− yν) ∈ I(G)s for l ≤ k− 1 implies m1, . . . , ml ∈ I(G)s. Now consider

(m1 + · · · + mk)(xμ − yν) = m1xμ − m1yν + m2xμ − m2yν + · · · + mkxμ − mkyν ∈ I(G)s. (19)

where all mi’s are distinct. We show mi ∈ I(G)s for 1 ≤ i ≤ k.
Observe that if m1xμ, m1yν ∈ I(G)s, then we have m1(xμ − yν) ∈ I(G)s and (m2 + · · ·+ mk)(xμ −

yν) ∈ I(G)s. Now we use induction hypothesis to show that mi ∈ I(G)s for 1 ≤ i ≤ k.
Now we first consider the following configuration, i.e., after possible re-ordering of mi’s we have

m1xμ = m2yν (20)

mixμ = mi+1yν, for 2 ≤ i ≤ k− 1 (21)

mkxμ = m1yν (22)

We refer to this case as the k-cancellation case. Using (20), we get m1 = myν and m2 = mxμ. Using
this and (21), we get

mi =
mxi−1

μ

yi−2
ν

for 3 ≤ i ≤ k (23)

Thus mk =
mxk−1

μ

yk−2
ν

. Using this description in (22) we get xk
μ = yk

ν, a contradiction.

Now consider (19). Without loss of generality, after possible reordering, assume that m1xμ = m2yν.
If m1yν = m2xμ, then we get (m1 + m2)(xμ − yν) ∈ I(G)s and (m3 + · · · + mk)(xμ − yν) ∈ I(G)s.
Now using induction hypothesis, we get mi ∈ I(G)s.

Suppose, if m1yν = m3xμ we introduce the re-ordering

m(1)
1 = m3, m(1)

2 = m1, m(1)
3 = m2

m(1)
i = mi for 4 ≤ i ≤ k− 1

Notice that (m1 + · · · + mk)(xμ − yν) =
(

m(1)
1 + · · ·+ m(1)

k

)
(xμ − yν). Thus it is enough to

show that m(1)
i ∈ I(G)s. Under this re-ordering m(1)

1 xμ = m(1)
2 yν and m(1)

2 xμ = m(1)
3 yν. If m(1)

1 yν =

m(1)
3 xμ, then we get (m(1)

1 + m(1)
2 + m(1)

3 )(xμ − yν) ∈ I(G)s and (m(1)
4 + · · ·+ m(1)

k )(xμ − yν) ∈ I(G)s.

Now using induction hypothesis, we get m(1)
i ∈ I(G)s and hence mi ∈ I(G)s.

11



Mathematics 2019, 7, 762

Now if m(1)
1 yν = m(1)

4 xμ, we introduce a new ordering

m(2)
1 = m(1)

4

m(2)
l = m(1)

l−1 for 2 ≤ l ≤ 4

m(2)
q = m(1)

q for 5 ≤ q ≤ k

As before we consider if m(2)
1 yν = m(2)

4 xμ or m(2)
1 yν = m(2)

5 xμ and introduce new ordering,
if necessary.

We now continue this process and arrive at the j-th re-ordering defined as follows

m(j)
1 = m(j−1)

j+2

m(j)
l = m(j−1)

l−1 for 2 ≤ l ≤ j + 2

m(j)
q = m(j−1)

q for j + 3 ≤ q ≤ k

with the following configuration

m(j)
i xμ = m(j)

i+1yν for 1 ≤ i ≤ j + 1

First, suppose j = k− 2. As before, we consider two cases m(j)
1 yν = m(j)

j+2xμ or m(j)
1 yν �= m(j)

j+2xμ.

If m(j)
1 yν = m(j)

j+2xμ, then we arrive at the k-cancellation case discussed above, which leads to a

contradiction. So we have m(j)
1 yν �= m(j)

j+2xμ which is discussed separately in Lemma 1, showing that
mi ∈ I(G)s.

Now we assume j < k− 2 and m(j)
1 yν �= m(j)

t xμ for 2 ≤ t ≤ k. If m(j)
j+2xμ �= m(j)

t yν for j+ 3 ≤ t ≤ k,

then we have (m(j)
1 + · · ·+ m(j)

j+2)(xμ − yν) ∈ I(G)s and (m(j)
j+2 + · · ·+ m(j)

k )(xμ − yν) ∈ I(G)s and we

use induction hypothesis to conclude that m(j)
i ∈ I(G)s and hence mi ∈ I(G)s for 1 ≤ i ≤ k.

Thus assume m(j)
j+2xμ = m(j)

t yν for some j + 3 ≤ t ≤ k. Now we use the ordering

m(j,1)
j+3 = m(j)

t , m(j,1)
t = m(j)

j+3

m(j,1)
i = m(j)

i for i �= j + 3, t

with the configuration m(j,1)
i xμ = m(j,1)

i+1 yν for 1 ≤ i ≤ j + 2.

Now if m(j,1)
j+3 xμ �= m(j,1)

a yν for j + 4 ≤ a ≤ k, then (m(j,1)
1 + · · ·+ m(j,1)

j+3 )(xμ − yν) ∈ I(G)s and

(m(j,1)
j+4 + · · ·+m(j,1)

k )(xμ− yν) ∈ I(G)s and we use induction hypothesis to conclude that m(j,1)
i ∈ I(G)s

and hence mi ∈ I(G)s for 1 ≤ i ≤ k.
Now if m(j,1)

j+3 xμ = m(j,1)
a yν for some j + 4 ≤ a ≤ k, then we use the ordering as before

m(j,2)
j+4 = m(j,1)

a , m(j,2)
a = m(j,1)

j+4

m(j,2)
i = m(j,1)

i for i �= j + 4, a

with the configuration m(j,2)
i xμ = m(j,2)

i+1 yν for 1 ≤ i ≤ j + 3.
We continue in the same fashion to reach (j, l)-th re-ordering to get

(m(j,l)
1 + · · ·m(j,l)

k )(xμ − yν) ∈ I(G)s

12
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with the following configuration

m(j,l)
i xμ = m(j,l)

i+1 yν for 1 ≤ i ≤ j + l + 1

Suppose j + l = k − 2, then m(j,l)
1 yν, m(j,l)

k xμ ∈ I(G)s. Now using Lemma 1 we have m(j,l)
i ∈

I(G)s, 1 ≤ i ≤ k and hence mi ∈ I(G)s for 1 ≤ i ≤ k.
If j + l < k − 2, then there exists a term m(j,l)

b such that m(j,l)
b (xμ − yν) ∈ I(G)s and(

∑t �=b m(j,l)
t

)
(xμ − yν) ∈ I(G)s and hence we are done by induction.

Corollary 1. Let G be a bipartite graph. Suppose xμ ∈ V1, yν ∈ V2. Then xμ and yν satisfies the neighborhood
properties, if and only if xμ − yν is regular on S/I(G)s for all s.

Proof. Suppose xμ and yν satisfies the neighborhood properties, then xμ − yν is regular on S/I(G)s

for all s by Theorem 8.
Now if xμ and yν does not satisfy the neighborhood properties, then there exists yp such that

xμyp ∈ E(G) and xν1yp �∈ E(G) where xν1 ∈ N(yν). Thus for all s and e = xν1yν1 ∈ I(G),

es−1(xν1yp)(xμ − yν) = es−1((xν1yp)xμ − (xν1yp)yν)

= es−1(xν1(ypxμ)− (xν1yν)yp)

Since ypxμ, xν1yν ∈ I(G), we get es−1(xν1yp)(xμ − yν) ∈ I(G)s. Thus xμ − yν is not a regular element
on I(G)s.
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Abstract: We characterize the finite distributive lattices on which there exists a unique compatible algebra
with straightening laws.
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1. Introduction

Let P be a finite partially ordered set (poset for short) and I(P) the distributive lattice of the poset
ideals of P. A subset α of P is a poset ideal of P if it satisfies the following condition: for every x ∈ α and
y ∈ P, if y ≤ x, then y ∈ α. By a famous theorem of Birkhoff [1], for every finite distributive lattice L,
there exists a unique subposet P of L such that L ∼= I(P). The order polytope O(P) and the chain polytope
C(P) were introduced in [2]. In [3], it was shown that the toric ring K[O(P)] over a field K is an algebra
with straightening laws (ASL in brief) on the distributive lattice I(P) over the field K. In [4], it was shown
that the ring K[C(P)] associated with the chain polytope shares the same property.

Let S = K[x1, . . . , xn, t] be the polynomial ring over a field K and {wα}α∈I(P) be an arbitrary set of
monomials in x1, . . . , xn indexed by I(P). Let K[Ω] ⊂ S be the toric ring generated over K by the set of
monomials Ω = {ωα}α∈I(P) where ωα = wαt for all α ∈ I(P). Clearly, K[Ω] is a graded algebra if we
set deg(ωα) = 1 for all α ∈ I(P). Let ϕ : I(P) → K[Ω] be the injective map defined by ϕ(α) = ωα for
all α ∈ I(P). Assume that K[Ω] is an ASL on I(P) over K. According to [4], K[Ω] is a compatible ASL if
each of its straightening relations is of the form ϕ(α)ϕ(α′) = ϕ(β)ϕ(β′) with β ⊆ α ∩ α′ and β′ ⊇ α ∪ α′,
where α, α′ are incomparable elements in I(P). If K[Ω] and K[Ω′] are compatible ASL on I(P) over K,
we identify them if they have the same straightening relations. In this case, we write K[Ω] ≡ K[Ω′].

In ([4], Question 5.1), Hibi and Li asked the following questions:

(a) Given a finite poset P, find all possible compatible algebras with straightening laws on I(P) over K.
(b) For which posets P, does there exist a unique compatible ASL on I(P) over K?

In this note, we give a complete answer to question (b). Namely, we prove the following:

Theorem 1. Let P be a finite poset. Then, the following statements are equivalent:

(i) There exists a unique compatible ASL on I(P) over K.
(ii) K[O(P)] ≡ K[C(P)] ≡ K[C(P∗)], where P∗ denotes the dual poset of P.

(iii) Each connected component of P is a chain, that is, P is a direct sum of chains.

Mathematics 2019, 7, 671; doi:10.3390/math7080671 www.mdpi.com/journal/mathematics
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An answer to question (a) seems to be quite difficult. In ([4], Example 5.2), it was observed that, if one
considers the poset P = {a, b, c, d, e} with a < c < e and b < c < d, then there exist nine compatible ASL
structures on I(P) over K, while if one considers P = {a, b, c, d} with a < c, b < c, b < d, then there are
three compatible ASL structures on I(P) over K, namely, K[O(P)], K[C(P)], and K[C(P∗)].

2. Order Polytopes, Chain Polytopes, and Their Associated Toric Rings

Let P = {p1, . . . , pn} be a finite poset. For the basic terminology regarding posets used in this paper,
we refer to [1] and ([5], Chapter 3). The order polytope O(P) is defined as

O(P) = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1, 1 ≤ i ≤ n, and xi ≥ xj if pi ≤ pj in P}.

In ([2], Corollary 1.3), it was shown that the vertices of O(P) are ∑pi∈α ei, α ∈ I(P). Here, ei denotes
the unit coordinate vector in Rn. If α = ∅, then the corresponding vertex in O(P) is the origin of Rn.

The chain polytope C(P) is defined as

C(P) = {(x1, . . . , xn) ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n,

xi1 + · · ·+ xir ≤ 1 if pi1 < · · · < pir is a maximal chain in P}.

In ([2], Theorem 2.2), it was proved that the vertices of C(P) are ∑pi∈A ei, where A is an antichain
in P. Recall that an antichain in P is a subset of P such that any two distinct elements in the subset are
incomparable. Since every poset ideal is uniquely determined by its antichain of maximal elements,
it follows that O(P) and C(P) have the same number of vertices. However, as it was observed in [2],
O(P) and C(P) need not have the same number of i-dimensional faces for i > 0. Therefore, in general,
they are not combinatorial equivalent. Combinatorially, equivalence of order and chain polytopes are
studied in [6].

The Toric Rings K[O(P)] and K[C(P)]

To each subset W ⊂ P, we attach the squarefree monomial uW ∈ K[x1, . . . , xn], uW = ∏pi∈W xi.
If W = ∅, then uW = 1. The toric ring K[O(P)], known as the Hibi ring associated with the distributive
lattice I(P), is generated over K by all the monomials uαt ∈ S, where α ∈ I(P). The toric ring K[C(P)]
is generated by all the monomials uAt where A is an antichain in P. In addition, as we have already
mentioned in the Introduction, both rings are algebras with straightening laws on I(P) over K.

We recall the definition of an ASL as it was introduced in [7]. For a quick introduction to this topic,
we refer to [7] and ([8], Chapter XIII). Algebras with straightening laws turned out to be useful tools in
studying determinantal rings. Let K be a field, R =

⊕
i≥0 Ri with R0 = K be a graded K-algebra, H a finite

poset, and ϕ : H → R an injective map which maps each α ∈ H to a homogeneous element ϕ(α) ∈ R with
deg ϕ(α) ≥ 1. A standard monomial in R is a product ϕ(α1)ϕ(α2) · · · ϕ(αk) where α1 ≤ α2 ≤ · · · ≤ αk in H.

Definition 1. The K-algebra R is called an algebra with straightening laws on H over K if the following
conditions hold:

(1) The set of standard monomials is a K–basis of R;
(2) If α, β ∈ H are incomparable and if ϕ(α)ϕ(β) = ∑ ci ϕ(γi1) . . . ϕ(γiki

), where ci ∈ K \ {0} and γi1 ≤ . . . ≤
γiki

, is the unique expression of ϕ(α)ϕ(β) as a linear combination of standard monomials, then γi1 ≤ α, β for
all i.

16
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The above relations ϕ(α)ϕ(β) = ∑ ci ϕ(γi1) . . . ϕ(γiki
) are called the straightening relations of R and

they generate all the relations of of R.
Let us go back to the toric rings K[O(P)] and K[C(P)].
One considers ϕ : I(P)→ K[O(P)] defined by ϕ(α) = uαt for every α ∈ I(P). As it was proved by

Hibi in [3], K[O(P)] is an ASL on I(P) over K with the straightening relations ϕ(α)ϕ(β) = ϕ(α ∩ β)ϕ(α ∪
β), where α, β are incomparable elements in I(P).

On the other hand, one defines ψ : I(P)→ K[C(P)] by setting ψ(α) = umax αt for all α ∈ I(P) where
max α denotes the set of the maximal elements in α. Note that, for every α ∈ I(P), max α is an antichain in
P and each antichain A ⊂ P determines a unique ideal α ∈ I(P), namely, the poset ideal generated by A.
Therefore, ψ is an injective well defined map and by ([4], Theorem 3.1), the ring K[C(P)] is an ASL on I(P)
over K with the straightening relations

ψ(α)ψ(β) = ψ(α ∗ β)ψ(α ∪ β),

where α ∗ β is the poset ideal of P generated by max(α ∩ β) ∩ (max α ∪max β).
We observe that one may also consider K[C(P∗)] as an ASL on I(P), where P∗ is the dual poset of

P. We may define δ : I(P)→ K[C(P∗)] by δ(α) = umin αt for α ∈ I(P), where min α is the set of minimal
elements in α and α is the filter P \ α of P. We recall that a filter γ in P (or dual order ideal) is a subset of P
with the property that for every p ∈ γ and every q ∈ P with q ≥ p, we have q ∈ γ. Thus, a filter in P is
simply a poset ideal in the dual poset P∗. The ring K[C(P∗)] is an ASL on I(P) over K as well with the
straightening relations

δ(α)δ(β) = δ(α ∩ β)δ(α ◦ β)

for incomparable elements α, β ∈ I(P), where α ◦ β is the poset ideal of P which is the complement
in P of the filter generated by min(α ∩ β) ∩ (min α ∪min β). Let us also observe that all the algebras
K[O(P)], K[C(P)], and K[C(P∗)] are compatible algebras with straightening laws.

3. Proof of Theorem 1

We clearly have (i)⇒ (ii). Let us now prove (ii)⇒ (iii). By hypothesis, the straightening relations of
K[O(P)], K[C(P)], and K[C(P∗)] coincide. Therefore, we must have

α ∩ β = α ∗ β and α ∩ β = α ◦ β (1)

for all α, β incomparable elements in I(P). From the second equality in (1), it follows that α ∩ β is the filter
of P generated by min(α ∩ β) ∩ (min α ∪min β). Assume that there exists two incomparable elements
p, p′ ∈ P such that there exists q ∈ P with q > p and q > p′. Consider α the filter generated by p and β the
filter generated by p′. Then, min(α ∩ β) ∩ (min α ∪min β) = ∅, but obviously, α ∩ β �= ∅. This shows that,
for any two incomparable elements p, p′ ∈ P, there is no upper bound for p and p′.

Similarly, by using the first equality in Equation (1), we derive that, for any two incomparable
elements p, p′ ∈ P, there is no lower bound for p and p′. This shows that every connected component of
the poset P is a chain.

Finally, we prove (iii)⇒ (i). Let P be a poset such that all its connected components are chains and
assume that the cardinality of P is equal to n. Let {ωα}α∈I(P) be the generators of K[Ω] ⊂ S and assume
that the straightening relations of K[Ω] are ϕ(α)ϕ(α′) = ϕ(β)ϕ(β′) where β ⊆ α ∩ α′, β′ ⊇ α ∪ α′, and α, α′

are incomparable elements in I(P). We have to show that, for all α, α′ incomparable elements in I(P),
we have β = α ∩ α′ and β′ = α ∪ α′.
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We proceed by induction on

k = n− (rank(α ∪ α′)− rank(α ∩ α′)).

Let us recall that, if γ ∈ I(P), then rank γ denotes the rank of the subposet of I(P) consisting of all
elements δ ∈ I(P) with δ ⊆ γ.

If k = 0, that is, rank(α ∪ α′)− rank(α ∩ α′) = n, then α ∪ α′ = P and α ∩ α′ = ∅, thus β = α ∩ α′

and β′ = α ∪ α′. Assume that the desired conclusion is true for rank(α ∪ α′)− rank(α ∩ α′) = n− k with
k ≥ 0. Let us choose now α, α′ incomparable in I(P) such that rank(α ∪ α′)− rank(α ∩ α′) = n− k− 1
and assume that we have a straightening relation ϕ(α)ϕ(α′) = ϕ(β)ϕ(β′) with β � α ∩ α′ or β′ � α ∪ α′.
By duality, we may reduce to considering β′ � α ∪ α′. In other words, in K[Ω], we have

ωαωα′ = ωβωβ′ , with β ⊆ α ∩ α′ and β′ � α ∪ α′.

As P is a direct sum of chains, we may find p ∈ max(α ∪ α′) and q ∈ β′ \ (α ∪ α′) such that q covers p
in P, that is, q > p and there is no other element q′ in P with q > q′ > p. Without loss of generality, we may
assume that p ∈ α′. Let α1 be the poset ideal of P generated by α′ ∪ {q}. As all the connected components
of P are chains, we have α1 = α′ ∪ {q} since there are no other elements in P which are smaller than q
except those that are on the same chain as p and q, which are in α′. Moreover, by the choice of q, we have

α1 ⊆ β′ and α ∩ α1 = α ∩ (α′ ∪ {q}) = α ∩ α′.

On the other hand,

rank(α ∪ α1)− rank(α ∩ α1) = rank(α ∪ α′ ∪ {q})− rank(α ∩ α′)

= rank(α ∪ α′) + 1− rank(α ∩ α′) = n− k.

By the inductive hypothesis, it follows that ϕ(α)ϕ(α1) = ϕ(α ∩ α1)ϕ(α ∪ α1), or, equivalently, in K[Ω]

we have the equality ωαωα1 = ωα∩α1 ωα∪α1 . Thus, we have obtained the following equalities in K[Ω] :

ωαωα′ = ωβωβ′ and ωαωα1 = ωα∩α′ωα∪α1 .

This implies that

ωα∩α′ωα′ωα∪α1 = ωβωα1 ωβ′ . (2)

In addition, we have:

α ∩ α′ ⊂ α′ ⊂ α ∪ α1 and β ⊂ α ∩ α′ = α ∩ α1 ⊂ α1 ⊂ β′.

This implies that the monomials in Equation (2) are distinct standard monomials in K[Ω], which is in
contradiction to the condition that the standard monomials form a K-basis in K[Ω]. Therefore, our proof
is completed.
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1. Introduction

Detecting the existence of cycles in graphs is a fundamental problem in graph theory (cf. [1–15]).
Graph theoretic algorithms exist to enumerate both odd and even cycles. In [16], the first author,
together with Francisco and Van Tuyl, gave an algebraic algorithm to detect and exhibit all induced
odd cycles in an undirected graph. The work in [16] is an example of the rich interaction between
commutative algebra and graph theory. In fact, using algebraic methods to study combinatorial
structures and using combinatorial data to understand algebraic properties and invariants has evolved
to be an active research topic in combinatorial commutative algebra in recent years (cf. [17,18] and
references therein).

In the present paper, we continue this line of work and describe an algebraic algorithm to
enumerate even circuits in an undirected graph; a circuit is a closed walk in which the edges are all
distinct and a cycle is a closed walk in which the vertices are all distinct. We also discuss an application
of our work to the problem of finding directed cycles in a directed graph (digraph). Let G = (V, E) be
a finite simple undirected graph on the vertex set V = {x1, . . . , xn}. Let � be a field and identify the
vertices in V with the variables in R = �[x1, . . . , xn]. The edge ideal of G is defined to be

I(G) = 〈xixj
∣∣ xixj ∈ E〉.

The construction of edge ideals of graphs was first introduced by Villarreal in [19] (see also [20,21]
for edge ideals of simplicial complexes and hypergraphs) and has been an essential tool in various
studies in this area of research. Our main result states that even circuits in G can be detected by
considering the reduced Jacobian dual of the edge ideal I(G), a notion which we define in Section 2.

An even circuit is called indecomposable if it cannot be realized as the edge-disjoint union of two
smaller even circuits. Our first theorem reads as follows, leaving unexplained terminology until
Section 2.

Theorem 1. Let G be a graph, I = I(G), and φ the presentation matrix from the Taylor resolution of I. Then,
the indecomposable even circuits of G correspond exactly to the binomial minors of the reduced Jacobian dual
B(φ), which satisfy the following conditions:
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1. the monomials in these binomials are square-free and relatively prime; and
2. the columns of the corresponding submatrices are pairwise center-distinct.

We focus on even circuits because they form a larger class than that of even cycles. With a slight
modification of Condition (2), we can also obtain an algebraic characterization for cycles of even
lengths in G (see Remark 5). The proof of Theorem 1 is based on an ad hoc analysis of the possible
forms of minors of the reduced Jacobian dual B(φ).

Theorem 1 allows us to derive an algebraic algorithm to enumerate all indecomposable even
circuits in a given graph that runs in polynomial time on the size of the edge set of the graph
(see Algorithm 1). Our goal is not to compare the running time of our algorithm to that of existed
ones, rather we aim to exhibit yet another interesting connection between commutative algebra and
graph theory. Theorem 1 also has an algebraic consequence to finding defining equations for the Rees
algebras of edge ideals of graphs (see Theorem 3).

Theorem 1 furthermore has an interesting application toward the study of directed cycles in
digraphs. For a digraph D, we construct a bipartite graph G = G(D) (see Definition 7). Note that
this bipartite graph has a natural perfect matching, which we denote by MD. There is an established
equivalence between the directed cycles in D and the even cycles in G with a certain property that
traces its roots back to work done by Dulmage and Mendelsohn in the 1950s (see, for example, [22,23]),
which we restate for convenience. Specifically, again leaving unexplained terminology until later,
we have:

Theorem 2. The directed cycles in a digraph D correspond exactly to the even cycles in G = G(D) in which a
collection of alternating edges forms a subset of the perfect matching MD.

Theorem 2, combined with Algorithm 1, gives an algebraic algorithm to enumerate all directed
cycles in digraphs (see Corollary 4). As a consequence of Theorems 1 and 2, we are also able to
translate the famous Caccetta–Häggkvist conjecture for directed cycles in digraphs to a statement
about binomial minors of the Jacobian dual matrix (see Conjecture 5).

2. Preliminaries

In this section, we collect important notations and definitions used in the paper. For unexplained
terminology in commutative algebra, we refer the reader to [24,25], and, in graph theory, we refer the
reader to [26].

Algebra. Throughout the paper, � denotes an infinite field. Let R = �[x1, . . . , xn] be a polynomial ring
over k and let m = (x1, . . . , xn). Let I ⊆ R be an ideal and use μ(I) to denote the minimal number of
generators of I. Let φ be a presentation matrix of I.

Definition 1. The Rees algebra of I is defined to be the graded ring

R(I) = R[It] = R⊕ It⊕ I2t2 ⊕ · · · ⊆ R[t].

Suppose that I = ( f1, . . . , fr). Then, there exists a natural presentation of the Rees algebra of I, namely,

R[T1, . . . , Tr]
θ→ R[It]→ 0,

given by Ti �→ fit for i = 1, . . . , r, where T1, . . . , Tr are indeterminates. Set J = ker θ.
Then, R[It] ∼= R[T1, . . . , Tr]/J, and J is referred to as the ideal of equations or defining ideal of R[It].
Since φ(Ti) = fit, we say that Ti corresponds to the generator fi of I.

By the definition of a presentation matrix φ, the linear (in the variables T1, . . . , Tr) equations of J
are generated by entries of the matrix [T1 . . . Tr] · φ. When these entries are linear in x1, . . . , xn, that
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is, when the entries of φ are linear, then φ is the Jacobian matrix of these equations with respect to
T1, . . . , Tr. In this setting, one can also define another Jacobian matrix of the same polynomials in
[T1 . . . Tr] · φ but with respect to x1, . . . , xn. This new Jacobian matrix is usually denoted by B(φ) and
referred to as the Jacobian dual of φ. We now give the generalized version of this notion when the entries
of φ are not necessarily all linear. See [Section 1.5] in [27,28] for further information on Jacobian duals.

Definition 2 (Jacobian dual). Let r = μ(I) and let φ be a presentation matrix of I with respect to a set of r
generators of I.

1. A Jacobian dual of φ, denoted by B(φ), is defined to be a matrix, whose entries are in R[T1, . . . , Tr] and
linear in the variables T1, . . . , Tr, that satisfies the equation

[T1 . . . Tr] · φ = [x1 . . . xn] · B(φ).

2. The reduced Jacobian dual of φ, denoted by B(φ), is defined to be B(φ)⊗k R/m.

Observe that, given a fixed φ, there may be more than one choice for B(φ), but B(φ) exists uniquely
up to elementary row and column rearrangements that come from re-orderings (see, for example, [28]).
The matrix B(φ), or B(φ), has served as a source for the higher degree generators of J (see, e.g., [28–32]),
with the emphasis being on minors of B(φ).

Example 1. Consider the graph

x5

x6

x4 x3

x2x1 x7

x8

T6
T5

T1
T4 T2

T7

T3

T8

corresponding to I = (x1x2, x2x3, x3x4, x1x4, x4x5, x5x6, x6x1, x7x8). Then,

φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3 0 0 x4 0 x6 0 0 0 0 x3 x4 x4 x5 x5 x6 x7 x8
−x1 x4 0 0 0 0 0 0 0 0 0 0 0 0

0 −x2 −x1 0 −x5 0 0 0 0 0 −x1 x2 0 0 0
0 0 x3 −x2 0 0 −x5 0 0 −x6 0 0 0 0 · · ·
0 0 0 0 x3 0 x1 −x6 0 0 0 −x1 x2 0 0
0 0 0 0 0 0 0 x4 x1 0 0 0 −x1 x2 0
0 0 0 0 0 −x2 0 0 −x5 x4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −x1 x2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the remaining columns of φ correspond to the rest of the (quadratic) Koszul relations on disjoint pairs of
edges. The Koszul relations involving T1 have been included for illustration. Now,

[T1, . . . , T8] · φ =

(x3T1 − x1T2, x4T2 − x2T3, x3T4 − x1T3, x4T1 − x2T4, x3T5 − x5T3, x6T1 − x2T7,

x1T5 − x5T4, x4T6 − x6T5, x1T6 − x5T7, x4T7 − x6T4, x3x4T1 − x1x2T3,

x4x5T1 − x1x2T5, x5x6T1 − x1x2T6, x7x8T1 − x1x2T8, · · · ).

When using these equations to form B(φ) as in Definition 2, the nonlinear terms (in the variables xis) are
ambiguous. For example, x3x4T1 can be viewed as x3(x4T1) or as x4(x3T1). Different choices of B(φ) arise
from different interpretations for each such nonlinear term in the xis. The coefficient of xi of the jth equation
goes in the (i, j) entry of B(φ). One such choice of B(φ) is

B(φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−T2 0 −T3 0 0 0 T5 0 T6 0 −x2 T3 −x2 T5 −x2 T6 0
0 −T3 0 −T4 0 −T7 0 0 0 0 0 0 0 −x1 T8

T1 0 T4 0 T5 0 0 0 0 0 x4 T1 0 0 0
0 T2 0 T1 0 0 0 T6 0 T7 0 x5 T1 0 0
0 0 0 0 −T3 0 −T4 0 −T7 0 0 0 x6 T1 0 · · ·
0 0 0 0 0 T1 0 −T5 0 −T4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x8 T1
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Tensoring with R/m yields

B(φ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−T2 0 −T3 0 0 0 T5 0 T6 0 0 0 0 0
0 −T3 0 −T4 0 −T7 0 0 0 0 0 0 0 0
T1 0 T4 0 T5 0 0 0 0 0 0 0 0 0
0 T2 0 T1 0 0 0 T6 0 T7 0 0 0 0
0 0 0 0 −T3 0 −T4 0 −T7 0 0 0 0 0 · · ·
0 0 0 0 0 T1 0 −T5 0 −T4 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that entries of B(φ) that result from interpretations of the nonlinear terms of φ become
zero when passing to B(φ). Thus, the nonzero columns of B(φ) correspond precisely to the linear
columns of φ and the 0-rows of B(φ) correspond to vertices that do not appear as endpoints of any
path of length two in G. Such vertices can be isolated, part of a connected component consisting of
a single edge, or the center vertex of a connected component that is a tree of diameter 2. Deleting
zero-rows and zero-columns will not change the minors of a matrix. Thus, in practice, when focusing
on minors, one can work with a smaller matrix φ′ defined by the linear columns of φ, and assume
that the content ideal, I1(φ

′), is generated by a subset of the variables, say x1, . . . , xd. In this case,
[T1, . . . , Tr] · φ′ = [x1, . . . , xd] · B(φ).

When I is a monomial ideal, a particular presentation matrix φ of I that we make use of comes from
the Taylor resolution of I. We now recall the construction of the Taylor resolution and its presentation
matrix (see [33,34] for more details). For a collection B = { f1, . . . , fr} of polynomials in R and a subset
σ ⊆ B, let fσ denote the least common multiple of { fi

∣∣ fi ∈ σ}.

Definition 3. Let I ⊆ R be a monomial ideal with the unique set of monomial generators B = { f1, . . . , fr}.
The Taylor resolution of I is the following complex:

0 → Fr
∂r→ Fr−1

∂r−1→ · · · ∂2→ F1
∂1→ I → 0,

where, for p = 1, . . . , r, Fp = R(r
p) is the free R-module of rank (r

p) whose basis corresponds to all subsets
of p elements from B, and the differential map ∂p : Fp → Fp−1 is defined, for each basis element eσ ∈ Fp

corresponding to a subset σ of cardinality p in B, by

∂p(eσ) = ∑
f�∈σ

(−1)|{ f j∈σ | j<�}| fσ

fσ\{ f�}
eσ\{ f�}.

The presentation matrix of I from its Taylor resolution is the matrix corresponding to the map F2
∂2→ F1;

its ({ f j}, τ)-entry, for { f j} ⊆ B, τ ⊆ B with |τ| = 2, is equal to 0 if fj �∈ τ, equal to (−1)
fτ

f j
if τ = { f j, fk}

and j < k, and equal to
fτ

f j
if τ = { f j, fk} and j > k.

The matrix φ in Example 1 is an instance of the presentation matrix that comes from the Taylor
resolution of a monomial ideal. Another important notion that we use is minors and ideals of minors
of a matrix.

Definition 4. Let A be an r× s matrix whose entries are polynomials in R. For t ≤ min{r, s}, a t× t minor
of A is the determinant of a t× t submatrix of A. The ideal in R generated by all t× t minors of A is often
denoted by It(A). A minor is binomial if it can be written as the sum (or difference) of two monomials in R.
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Graph theory. An undirected graph G = (V, E) consists of a set V of distinct points, called the vertices,
and a collection E of unordered pairs of vertices, called the edges. We assume that all graphs in this
paper are simple; that is, a graph has neither loops nor multiple edges. We write xy for the undirected
edge between vertices x and y in a graph.

Definition 5. Let G be an undirected graph.

1. A walk is an alternating sequence of vertices and edges x1, e1, x2, e2, . . . , es−1, xs such that ei = {xi, xi+1}
for all i = 1, . . . , s− 1. Such a walk is said to be closed if x1 = xs.

2. A walk is called a trail if its edges are distinct (while its vertices may repeat). A closed trail is called a
circuit.

3. A walk is called a path if its edges and vertices are distinct (except possibly at x1 = xs). A closed path is
called a cycle.

4. The length of a walk is the number of edges that the walk transverses (including multiplicities). A walk is
even (or odd) if its length is an even (or odd) number.

We often list only the vertices to indicate a walk since the edges are obvious from the vertices.
The main graph-theoretic structure that our work captures in this paper is indecomposable even
circuits, which we define below. We also recall a similar notion of primitive even closed walks.

Definition 6. Let G be a graph.

1. An even circuit is indecomposable if it cannot be realized as the edge-disjoint union of two smaller
even circuits.

2. An even closed walk is primitive if it does not contain an even closed subwalk.

Remark 1. There is a close connection between even closed walks in a graph G and the equations of the
Rees algebra of the edge ideal of G (see [35]). In particular, suppose x1, e1, x2, e2, . . . , e2s−1, x2s, e2s, where
ei = {xi, xi+1} and e2s = {x2s, x1}, is an even closed walk and θ(Ti) = ei as in Definition 1. Then,

θ(
s

∏
i=1

T2i −
s

∏
i=1

T2i−1) =
s

∏
i=1

e2i −
s

∏
i=1

e2i−1 =
2s

∏
i=1

xi −
2s

∏
i=1

xi = 0

so ∏s
i=1 T2i −∏s

i=1 T2i−1 ∈ J.

An application of our work is to directed graphs, thus we also recall basic terminology for directed
graphs. A digraph D = (Z,�E) consists of a set Z of distinct points, called the vertices, and a collection �E
of ordered pairs of vertices, called the directed edges. We also assume that all digraphs in this paper are
simple digraphs. We write x → y for the directed edge from x to y in a digraph.

Directed walks, paths, circuits and cycles in a digraph can be defined similarly to those in an
undirected graph with only one difference, that is, if x1, e1, x2, . . . , es−1, xs represents a directed walk
from x1 to xs, then ei is the directed edge xi → xi+1 for all i = 1, . . . , s− 1.

The application of our work to directed cycles in digraphs is based on the following
construction [36].

Definition 7. Let D = (Z,�E) be a digraph over the vertex set Z = {z1, . . . , zm}. The bipartite graph G(D),
associated to D, is constructed as follows.

1. The vertices of G(D) are {x1, . . . , xm, y1, . . . , ym}.
2. The edges of G(D) are:

(a) {xi, yi} for all i = 1, . . . , m; and
(b) {xi, yj}, for i �= j, if zi → zj is an edge in �E.
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It is easy to see that, for any digraph D = (Z,�E), the bipartite graph G(D) has a perfect matching{
ei = {xi, yi}

∣∣ i = 1, . . . , m
}

. We denote this perfect matching of G(D) by MD.

Example 2. Let D be directed graph

D :

z1 z2

z3

z4

z5

Then, the bipartite graph G = G(D) associated to D is

G :

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

3. Even Circuits in Graphs

In this section, we present an algebraic algorithm to enumerate indecomposable even circuits
in a graph. Recall that G = (V, E) is a simple graph on the vertex set V = {x1, . . . , xn} with r = |E|.
For I = I(G), fix φ to be the presentation matrix of I = I(G) that results from the Taylor resolution of
I, as in Definition 3. For the remainder of the paper, φ always refers to the Taylor presentation matrix
unless otherwise noted.

We start with the following simple observation about φ. Example 1 already illustrates the
statements below, which are generally known but written here for ease of reference.

Lemma 1. If G is a graph and I = I(G), then the following statements hold.

1. The entries of φ are monomials in {x1, . . . , xn}.
2. Every column of φ has precisely two nonzero entries.
3. The nonzero entries in each column of φ are either both linear or both quadratic.
4. Every linear column of φ corresponds to a path of length 2 in G whose end-vertices are the nonzero entries

of this column.
5. Every quadratic column of φ corresponds to a pair of disjoint edges.

Proof. The assertions are straightforward from the construction of the Taylor resolution of I(G). Note
that, in general, all relations on a set of monomials can be generated by pairwise relations (i.e., relations
of two monomials). If m1, m2 are monomials, then a minimal relation between them has the form
am1 + bm2 = 0 where a = (lcm(m1, m2)/m1) and b = (lcm(m1, m2)/m2) are monomials. If m1 �= m2

both have degree 2, then a = m2, b = m1 if m1, m2 have disjoint support. Otherwise, a, b both have
degree one. The results follow.

As above, we denote by B(φ) and B(φ) the Jacobian dual and the reduced Jacobian dual of φ,
respectively. We obtain an immediate corollary of Lemma 1 when φ is assumed to be the Taylor
presentation matrix of I(G) for a graph G.
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Corollary 1. The nonzero columns of B(φ) are precisely the columns of B(φ) that correspond to linear columns
of φ. Particularly, each nonzero column of B(φ) contains precisely two nonzero entries, each of which is a degree
one monomial in T1, . . . , Tr.

Proof. By definition, the nonzero entries of B(φ) come from nonzero entries of B(φ) that are contained
in �[T1, . . . , Tr]. Observe, by the equation

[T1 . . . Tr] · φ = [x1 . . . xn] · B(φ), (1)

that the columns of B(φ) correspond to columns of φ. Moreover, by Lemma 1, the nonzero entries
in each column of φ are of the same degrees (either linear or quadratic). It further follows from
Equation (1) that the degree with respect to the xis of nonzero entries of a column in B(φ) is exactly
one less than that of the corresponding column of φ. Hence, nonzero columns of B(φ) correspond to
columns without the xis in B(φ), which correspond to columns of linear forms (and 0) in φ.

The second statement also follows from Lemma 1.

Remark 2. Note that, since zero columns of a matrix do not play any role in what follows, we could define B(φ)
to exclude all its zero columns. That is, we are working just with the (uniquely defined) columns of φ, whose
nonzero entries are linear, that result from binomial relations of edges in paths of length 2 in G. As mentioned
above, zero rows of B(φ) do not play a role and can be eliminated by using the content ideal of φ to define B(φ)
rather than m. However, since zero rows do not affect minors, which are our main focus when using B(φ), it is a
matter of convenience to allow them.

As stated in Lemma 1, the linear columns of φ are generated by pairs of monomials corresponding
to edges that share a vertex. In other words, the linear columns of φ correspond to paths of length 2
in the graph. It can be desirable for computational purposes to use a minimal presentation matrix
for φ rather than the full Taylor presentation matrix. It is easy to check that there are three paths
of length two in each triangle, yielding three linear relations, any two of which generate the third.
Since this is the only redundancy among the linear relations for a graph, if the graph is triangle free,
the linear columns of a minimal presentation matrix will be the same as the linear columns of the
Taylor presentation matrix.

Since the linear columns arise from paths of length two, as seen in Lemma 1, the endpoints of
each path are the nonzero entries of that column of φ. These endpoints will thus be encoded in the
corresponding column of B(φ) as the rows in which the nonzero entries appear. It is natural to expect
that the third vertex, the midpoint of the path, would play a role.

Definition 8. We call two nonzero columns of B(φ) center-distinct if their corresponding paths of length 2 in
G have distinct middle vertices. We also call the middle vertices of these paths of length 2 the mid-points of the
corresponding columns.

Finding the mid-point of a column of B(φ) can be done easily by examining the corresponding
edges of G. If Ti and Tj are the two nonzero entries of a column of B(φ) and fi, f j are the corresponding
edges of G (that is, θ(Ti) = fit, and θ(Tj) = f jt)), then the mid-point of the column is supp fi ∩ supp f j,
or equivalently gcd( fi, f j).

The next lemma collects information that can be gleaned about a graph from minors of B(φ) of a
form that appears frequently in the remainder of the article.
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Lemma 2. If B(φ) has a minor of the form

M =

⎡⎢⎢⎢⎢⎢⎢⎣
T2 0 . . . −T2t−1

−T1 T4 . . . 0
0 −T3 . . . 0
...

... . . .
...

0 0 . . . T2t

⎤⎥⎥⎥⎥⎥⎥⎦ , (2)

then G contains an even closed walk corresponding to det M. Moreover,

1. the walk is primitive if and only if the columns of M are pairwise center-distinct; and
2. the walk is a circuit if and only if the nonzero entries of M are distinct, in which case the circuit is

indecomposable if and only if the columns of M are pairwise center-distinct.

Proof. Combining Equation (1) with Lemma 1 gives that each column of M corresponds to a path of
length 2 in G whose end-vertices are labeled by the rows of M corresponding to the nonzero entries
in that column. By re-indexing the variables, we may assume that the rows of M correspond to the
variables x1, . . . , xt. Then, the ith column of M, for 1 ≤ i ≤ t− 1, corresponds to a path of length 2 from
xi to xi+1, and the last column of M corresponds to a path of length 2 from xt to x1. We denote those
paths by xi, yi, xi+1, for i = 1, . . . , t− 1, and xt, yt, x1. Furthermore, edges on these paths correspond to
the variables T1, . . . , T2t. Hence, these paths glue together to form an even closed walk of length 2t in
G. Since det M = ∏t

i=1 T2i −∏t
i=1 T2i−1, we have that det M corresponds to an even closed walk in

G, as in Remark 1. This walk is a circuit if and only if the Ti, and thus the corresponding edges, are
distinct. Finally, the columns of M are pairwise center-distinct if and only if the vertices y1, . . . , yt are
pairwise distinct. Note that the vertices x1, . . . , xt are distinct by definition. This guarantees that the
obtained closed walk or circuit of length 2t in G is primitive or indecomposable, respectively, if and
only if the columns of M are pairwise center-distinct.

We are now ready to prove the main result of the paper, Theorem 1. Note that relabeling the
vertices or edges of a graph corresponds to rearranging the rows of φ or of B(φ). Such a rearrangement
will not affect the minors of a matrix, thus, when convenient, a specific labeling of vertices can be used
without loss of generality.

Theorem 1. Let G be a graph. Then, the indecomposable even circuits of G correspond exactly to
the binomial minors of B(φ), which satisfy the following conditions:

1. the monomials in these binomials are square-free and relatively prime; and
2. the columns of the corresponding submatrices are pairwise center-distinct.

Proof. Suppose that C is an indecomposable even circuit in G. For ease of notation, select a labeling
on the vertices and edges so that the edges of C (in order) are e1, . . . , e2t, where ei = xixi+1 for i < 2t
and e2t = x2tx1. Since C is indecomposable, it is easy to see that x1, x3, . . . , x2t−1 are pairwise distinct.
Particularly, the linear relations of I = I(G) include x1e2 − x3e1, x3e4 − x5e3, . . . , x2t−1e2t − x1e2t−1

which correspond to the following columns of φ:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−x3 0 . . . 0
x1 0 . . . 0
0 −x5 . . . 0
0 x3 . . . 0
...

... . . .
...

...
... . . . −x1

0 0 . . . x2t−1
...

... . . .
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where, for convenience, labelings were chosen so that Ti corresponds to ei for 1 ≤ i ≤ 2t.
We can reorder the columns of φ so that these are the first t columns. These columns

produce x1T2 − x3T1, x3T4 − x5T3, . . . , x2t−1T2t − x1T2t−1 as linear equations of the Rees algebra R[It],
which correspond to the first t equations of [x1 . . . xn] · B(φ). Thus, the first t columns of B(φ) are:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T2 0 . . . −T2t−1

0 0 . . . 0
−T1 T4 . . . 0

0 0 . . . 0
0 −T3 . . . 0
...

... . . .
...

0 0 . . . T2t
...

... . . .
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By Corollary 1, these columns of B(φ) are unchanged when passing to B(φ). Consider the t× t
submatrix M of B(φ) consisting of the first t columns and the t identified nonzero rows:

M =

⎡⎢⎢⎢⎢⎢⎢⎣
T2 0 . . . −T2t−1

−T1 T4 . . . 0
0 −T3 . . . 0
...

... . . .
...

0 0 . . . T2t

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then, det(M) = ∏t
i=1 T2i −∏t

i=1 T2i−1. This is a binomial whose monomials are square-free and
relatively prime. Observe further that, since C is indecomposable, x2, x4, . . . , x2t are pairwise distinct.
Therefore, the columns of M are pairwise center-distinct.

Conversely, suppose that M is a t× t submatrix of B(φ) whose determinant is a binomial of degree
t with square-free and relatively prime monomials, and whose columns are pairwise center-distinct. It
follows from Lemma 1 and Corollary 1 that each column of M contains at most two nonzero entries.
Since the monomials in det(M) are relatively prime, each column of M must contain exactly two
nonzero entries. Particularly, M contains exactly 2t nonzero entries. In addition, since the monomials
in det(M) are relatively prime, det(M) contains exactly 2t distinct variables. Thus, all the 2t nonzero
entries of M are distinct. Since each row also contains at least two distinct entries in order for the
monomials to be relatively prime, a simple counting argument guarantees exactly two nonzero entries
per row as well.

Now, by rearranging the rows and columns of M, it is easy to put M in a block-matrix form,
where each nonzero block is of the form in Equation (2) and lies on the diagonal. Observe further
that, if M has more than one such block, then det(M) is not a binomial since all entries of M are
distinct. Therefore, we can assume that M is exactly as in Equation (2). The result now follows from
Lemma 2.

Theorem 1 gives us the following algebraic algorithm to detect the existence of and list all even
circuits in a given graph G.
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Algorithm 1 To enumerate all indecomposable even circuits in a given graph G

1. Form φ.
2. Compute B(φ).
3. for t from 1 to the rank of B(φ) compute all t× t minors of B(φ).
4. Test if each minor satisfies the following conditions:

(a) its columns are pairwise center-distinct; and
(b) its determinant is a binomial whose monomials are square-free and relatively prime.

5. If the answer is “Yes”, then return the rows and centers of the columns corresponding to the
minor. These are the vertices of an indecomposable even circuit in G.

Remark 3. Note that only the linear columns of φ are necessary in this process and so in Step 1 only the linear
relations need be considered. Note also that the Taylor resolution and its presentation matrix can be constructed
in polynomial time on the number of generators of I(G) (i.e., the number of edges in G). Note further that
the computation of the determinant of a matrix can also be done in polynomial time on the size of the matrix,
and the rank of B(φ) is at most the number of edges in G. Finally, testing if the columns of a minor in B(φ) are
center-distinct can be done in polynomial time on the size of the minor, which is bounded by the number of edges
in G. Thus, Algorithm 1 runs in polynomial time on the size of the edge set of G.

Example 3. Consider the following graph.

G : T1
T2

T3

T4

T6

T5

x1

x2

x3

x4

x5

The nonzero columns of the reduced Jacobian dual of G corresponding to the Taylor presentation matrix φ

are computed to be:

B(φ) :

x1

x2

x3

x4

x5

⎡⎢⎢⎢⎢⎢⎣
−T2 T2 0 0 0 0 0 0 −T4 −T6

0 −T3 T3 0 0 0 −T4 −T6 0 0
T1 0 −T1 −T5 T5 0 0 0 0 0
0 0 0 0 −T6 T6 T2 0 T3 0
0 0 0 T4 0 −T4 0 T2 0 T3

⎤⎥⎥⎥⎥⎥⎦ ,

where the labels x1, . . . , x5 indicate the variables of the corresponding rows. Furthermore, the mid-points of
the columns are successively x2, x3, x1, x4, x5, x3, x3, x3, x3, x3. By evaluating the minors of B(φ), the only
binomial minor whose monomials are square-free and relatively prime is T1T4T6 − T2T3T5, which corresponds
to the only indecomposable even circuit x1, x2, x3, x4, x5, x3, x1 in G. This minor appears using the submatrix
formed by taking Rows 1, 3, 4 and Columns 1, 5, 9, for example, or the one formed by Rows 2, 3, 4 and Columns
3, 5, 7.

Remark 4. There can be binomial minors of B(φ) whose monomials are neither square-free nor relatively prime.
These minors may correspond to even closed walks which transverse an edge multiple times.

Example 4. Consider the following graph.
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G : T1
T2

T3 T4

T5

T7

T6

x1

x2

x3 x4

x5

x6

The nonzero columns of the reduced Jacobian dual of I(G) with respect to the Taylor presentation matrix φ

are computed to be:

B(φ) :

x1

x2

x3

x4

x5

x6

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−T2 T2 0 0 −T4 0 0 0 0 0
0 −T3 T3 T4 0 0 0 0 0 0
T1 0 −T1 0 0 −T5 −T7 0 0 0
0 0 0 −T2 T3 0 0 −T6 T6 0
0 0 0 0 0 T4 0 0 −T7 T7

0 0 0 0 0 0 T4 T5 0 −T5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where the labels x1, . . . , x6 indicate the variables of the corresponding rows. Furthermore, the mid-points of the
columns are successively x2, x3, x1, x3, x3, x4, x4, x5, x6, x4.

The only binomial minor of B(φ) is T2T3T5T7 − T1T2
4 T6. This corresponds to submatrices formed using

Rows 1, 3, 4, 5 and Columns 1, 5, 6, 9 for example, or Rows 2, 3, 4, 6 and Columns 3, 4, 7, 8. A monomial of
this minor is not square-free. This indicates that G contains an even closed walk x2, x3, x4, x5, x6, x4, x3, x1, x2,
but this walk is not a circuit because it transverses through the edge T4 twice. Hence, G has no indecomposable
even circuits.

Remark 5. With basically the same proof as that of Theorem 1, it can be shown that the even cycles of G
correspond exactly to the binomial minors of B(φ), which satisfy the following conditions:

1. the monomials in these binomials are square-free and relatively prime; and
2. the variables labeling the rows and the mid-points of the columns of the corresponding submatrices are

pairwise distinct.

Example 5. Let G be the graph in Example 3. As shown in Example 3, the only binomial minor of B(φ) whose
monomials are square-free and relatively prime is T1T4T6 − T2T3T5. This minor is obtained by taking Rows
1, 3, 4 and Columns 1, 5, 9. In this minor, the mid-points of the columns are x2, x5 and x3. On the other hand,
the variables labeling the rows are x1, x3 and x4. Clearly, we have a repeated x3 among the mid-points and the
row labels. Thus, this minor corresponds to an even indecomposable circuit, which is not a cycle.

Example 6. Let G be the graph in Example 1. A binomial minor of B(φ) whose monomials are square-free
and relatively prime is T2T5T7 − T1T3T6. This minor is obtained by taking Rows 1, 3, 5 and Columns 1, 5, 9.
The mid-points of the columns are x2, x4 and x6, and the variables labeling the rows are x1, x3 and x5. Since
these are distinct variables, this minor corresponds to an even cycle x1, x2, x3, x4, x5, x6, x1.

We continue this section by discussing an algebraic consequence of Theorem 1 in finding defining
equations for the Rees algebras of edge ideals of graphs. Recall that the Rees algebra R[It] of I has a

presentation R[T1, . . . , Tr]
θ→ R[It]→ 0, and J = ker θ is called the defining ideal of R[It].

It was shown in [35] that the nonlinear equations of J arise from the even closed walks in the
graph G. An alternate proof of this fact appears in Chapter 10.1 of [24]. In addition, it was proved
in [Corollary 10.1.5] of [24] that the generators correspond to primitive even closed walks and form
a reduced Gröbner basis for J. The binomials corresponding to indecomposable even circuits of G
are thus known to be elements of J. However, there are elements of J that do not correspond to
indecomposable circuits, as seen in Example 4. It is worth noting that it was established in a more
general setting that the maximal minors of B(φ) are contained in J (see, for example, [31]). A close
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examination of the proof of Theorem 1 shows that any even closed walk in G corresponds to a binomial
minor of B(φ).

Corollary 2. Let G be a graph with edge ideal I = I(G), and let J be the defining ideal of R[It]. Then,
every nonlinear generator of J appears as a binomial minor of B(φ).

Proof. By the work in [35] and (Chapter 10.1 [24]), we have that the nonlinear generators of J
correspond to primitive even closed walks in G. Consider any primitive even closed walk W in
G and, after a re-labeling, suppose that the vertices on W are x1, . . . , x2t (not necessarily distinct).

Observe that, since W is primitive, if xi = xj is a repeated vertex in W, then i and j are of
different parity. View W as the union of t paths of length 2, namely, Pi = x2i−1, x2i, x2i+1, for i = 1, . . . t
(where x2t+1 = x1). Then, the endpoints of each path Pi are distinct vertices. Thus, Pi corresponds to
a column of B(φ) with exactly two nonzero entries, appearing in the rows labeled by x2i−1 �= x2i+1.
Selecting these columns and the corresponding nonzero rows results in a t× t submatrix MW of B(φ).

As in the proof of Theorem 1, the rows and columns of MW can be rearranged so that MW is
a block-matrix in which each block is of the form of Equation (2). If there are multiple blocks, then
each corresponds to an even closed walk contained in W by Lemma 2, a contradiction to the fact that
W is primitive. Therefore, MW is of the form in Equation (2), where the nonzero entries may not be
distinct. Hence, the corresponding generator of J is the same as det(MW), which is a binomial minor
of B(φ).

Let T = [T1 . . . Tr]. Corollary 2 gives us the containment

J ⊆ 〈T · φ, I2(B(φ)), I3(B(φ)), . . . , Ik(B(φ))
〉
,

where k is the rank of B(φ). The reverse containment fails to hold. In general, It(B(φ)) will contain
monomials that are not in J. For instance, in Example 1, T2T3 ∈ I2(B(φ)) but T2T3 �∈ J. Interestingly,
we see that by restricting to binomial minors we in fact obtain an equality. While not all binomial
minors of B(φ) are minimal generators of J, such minors correspond to multiples of binomials which
come from (not necessarily primitive) even closed walks and are elements of J. The following lemma
is used in proving the desired equality. For convenience, we consider 1 to be a trivial monomial.

Lemma 3. Suppose ψ is an n× n matrix such that:

1. det(ψ) is a nonzero binomial; and
2. every column of ψ has at most 2 nonzero entries.

Then, after row and column rearrangements, ψ has a block decomposition

ψ =

[
X W
Y Z

]

where det(X) is a monomial, det(Z) is a binomial, det(ψ) = det(X)det(Z), and every row of Z has at least
two nonzero entries and every column of Z has exactly two nonzero entries.

Proof. If every row of ψ has at least two nonzero entries and every column of ψ has exactly two
nonzero entries, set X, Y, W to be empty matrices and Z = ψ. Then, since an empty product is defined
to be 1, det(X) = 1 is a (degenerate) monomial, and the result holds. In particular, the result holds
when n = 2. Assume n > 2.

Assume there exist s rows of ψ with a single nonzero entry. Since det(ψ) �= 0, every row and
column of ψ has at least one nonzero entry and no two rows (columns) have a single nonzero entry
in the same column (row). Note also that row and column exchanges modify only the sign of the
determinant and not the binomial nature. By performing row exchanges, we can rearrange all rows
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with a single nonzero entry to come before all rows with multiple nonzero entries. That is, we may
assume that ψ has the form

ψ =

[
D1 0
A1 ψ1

]
,

where D1 is an s× s diagonal matrix, and A1 is a matrix where each column has at most one nonzero
entry. Observe that det(D1) is a monomial and det(ψ) = det(D1)det(ψ1), thus det(ψ1) is again a
nonzero binomial. As before, each column of ψ1 has either one or two nonzero entries and each row
has at least one nonzero entry. Since ψ1 is n− s× n− s with s ≥ 1, by induction,

ψ1 =

[
X1 W1

Y1 Z1

]

where det(X1) is a monomial, det(Z1) is a binomial, det(ψ1) = det(X1)det(Z1), and every row of Z1

has at least two nonzero entries and every column of Z1 has exactly two nonzero entries. Now,

ψ =

⎡⎢⎣ D1 0

A1
X1 W1

Y1 Z1

⎤⎥⎦ =

⎡⎢⎣ D1 0 0
A′1 X1 W1

A′′1 Y1 Z1

⎤⎥⎦ ,

where A′1, A′′1 consist of the appropriate rows of A1. Set Z = Z1, X =

[
D1 0
A′1 X1

]
, W =

[
0

W1

]
,

and Y =
[

A′′1 Y1

]
. Note that

det(ψ) = det(D1)det(ψ1) = det(D1)det(X1)det(Z1) = det(X)det(Z)

and the result follows.
Similarly, if any column of ψ has a single nonzero entry, then by performing column exchanges,

we may assume ψ has the form

ψ =

[
D2 B2

0 ψ2

]
,

where D2 is a diagonal matrix. Observe that det(ψ) = det(D1)det(ψ2) and det(D2) is a monomial,
thus det(ψ2) is again a nonzero binomial. As before, each column of ψ2 has either one or two nonzero
entries and each row has at least one nonzero entry and the result follows by induction as in the case
above.

Note that in the above lemma, since the columns of Z have two nonzero entries each and the
columns of ψ have at most two nonzero entries, it follows that W = 0. To state our next result formally,
for a matrix M, set bi(It(M)) to be the collection of t× t minors of M that are binomials.

Theorem 3. Let G be a graph with edge ideal I = I(G). Let J be the defining ideal of R[It] and let k =

rank B(φ). Then,
J =

〈
T · φ, bi(I2(B(φ))), bi(I3(B(φ))), . . . , bi(Ik(B(φ)))

〉
.

Proof. One inclusion follows directly from Corollary 2.
For the reverse inclusion, suppose that ψ is a t× t submatrix of B(φ) with det(ψ) a binomial. We

show that det(ψ) ∈ J. Indeed, since det(ψ) �= 0, every row and column of ψ has at least one nonzero
entry and no two rows (columns) have a single nonzero entry in the same column (row). As noted
before, each nonzero column of B(φ) has precisely two nonzero entries. Thus, each column of ψ has

at most two nonzero entries. Applying Lemma 3, we can assume that ψ =

[
A B
C ψp

]
where ψp is a
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minor of ψ in which every column has exactly two nonzero entries, every row has at least two nonzero
entries, and det(ψp) is a nonzero binomial with det(ψ) = det(A)det(ψp). Thus, if det(ψp) ∈ J, then
det(ψ) ∈ J.

Now, we can reorder the rows of ψp so that the nonzero entries of the first column appear in the
first two rows. Since the second row has at least two nonzero entries, we can rearrange the remaining
columns of ψp so that the (2, 2) entry is not zero. If the second nonzero entry of Column 2 is not in
Row 1, then we can rearrange the remaining rows so that the (3, 2) entry of ψp is not zero. We can
continue to rearrange the rows and columns of ψp in this manner (see also Equation (2)) until for some
row i, the remaining columns with nonzero entries in row i have the second nonzero entry in row j for
some j < i. At this point, ψp has the following form

ψp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ 0 0 0 · · · 0
∗ ∗ 0 0 · · · 0
0 ∗ ∗ 0 · · · ∗
0 0 ∗ ∗ · · · 0

. . .
0 0 0 0 · · · ∗

N

0 ψp+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ∗ denotes a nonzero entry and the position of the second ∗ in the final column before N is
illustrative. Notice that ψp has a minor of the form of Equation (2). In addition, ψp has the form

ψp =

⎡⎢⎣ Lψp 0
Cψp Mψp

N

0 ψp+1

⎤⎥⎦
where Lψp is lower triangular (the empty matrix if j = 1), and Mψp has the form of Equation (2). Note
that

det(ψp) = det(Lψp)det(Mψp)det(ψp+1).

By Lemma 2, det(Mψp) ∈ J, and since J is closed under multiplication, det(ψ) ∈ J as required.

Remark 6. It can be seen in the proof above that every row of ψp+1 has at least two nonzero entries and each
column has either one or two nonzero entries. We can continue the process to get a block decomposition of ψ,
in which the determinant is the product of the determinants of the diagonal blocks, each of which is either a
monomial or a binomial coming from a block of the form of Equation (2). Hence, det(ψ) can be written as a
product of monomials and of binomials coming from blocks of the form of Equation (2). Since minors of the form
of Equation (2) correspond to (not necessarily primitive) even closed walks, these binomials are in J by [35].
Thus, not only are the binomial minors in J, if they are not irreducible, they factor as products of monomials and
binomial elements of J.

In the proof of Theorem 3, the fact that det(ψ) was a binomial came from the statement. Since the
entries of ψ are not assumed to be distinct, it is possible for the product of two binomials to be a
binomial. However, much of the proof holds if instead det(ψ) is assumed not to be a monomial.
The following result demonstrates how to use this to obtain all nonlinear generators of J from a single
sized ideal of minors of B(φ).

Corollary 3. Let k = rank B(φ). Then, all nonlinear generators of J can be obtained as factors of generators
of Ik(B(φ)).
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Proof. By Corollary 2, every nonlinear generator of J appears as some binomial minor of B(φ). Let f
be a nonlinear generator of J and let M be the corresponding submatrix of B(φ). Since J is generated
by primitive even walks, the monomials in f are relatively prime, thus every column of M contains
exactly two nonzero entries. By performing row and column exchanges, write

B(φ) =

[
M ∗
0 B2

]
.

The set of columns of B(φ) used to form M can be extended to a set of columns of full rank. That
is, by selecting appropriate columns and rows from B2, there is a k× k submatrix of B(φ) of the form

M̂ =

[
M ∗
0 B′2

]

with nonzero determinant. Since det(M̂) = det(M)det(B′2), f is a factor of an element of Ik(B(φ)) as
desired.

4. Directed Cycles in Digraphs

In this part of the paper, we discuss an interesting application of our main result, Theorem 1,
to the problem of detecting the existence of directed cycles in a given directed graph.

Let D = (Z,�E) be a directed graph over the vertex set Z = {z1, . . . , zm}. Let G = G(D) be the
undirected bipartite graph constructed from D as in Definition 7. Recall that MD represents the perfect
matching

{
ei = xiyi

∣∣ i = 1, . . . , m
}

in G = G(D).
The connection between directed cycles in a digraph D and even cycles in G(D) is well established

(see, for example, [22,23]). We present the following known result in a form that is convenient for
applying Theorem 1. Note that, in an even circuit, we can start at any place and collect the first, third,
fifth, etc. (all the odd ordered) edges, or collect the second, fourth, etc. (all the even ordered) edges.
This way we get two sets of disjoint edges, each consisting of exactly half the number of edges on the
circuit. We refer to each of these two sets a collection of alternating edges in the even circuit.

Theorem 2. The directed cycles in D correspond exactly to the even cycles in G = G(D) in which
a collection of alternating edges forms a subset of the perfect matching MD in G.

Proof. We start the proof with the following observation. Consider an even circuit C in G with the
property that its alternating edges form a subset of the perfect matching MD. It can be seen that, if one
transverses around C on its edges and hits xi (or yi) from an edge that is not in MD, then the next edge
of C has to be xiyi. Since in a circuit the edges are distinct, this ensures that C cannot contain xi (or yi)
more than once. That is, C is a cycle (which is necessarily indecomposable). Thus, the indecomposable
circuits in G with the property that a collection of their alternating edges forms a subset of the perfect
matching MD are exactly the even cycles in G with the same property.

Suppose that zi1 → zi2 → · · · → zit → zi1 is a directed cycle in D. By the construction of G,
it is easy to see that xi1 , yi2 , xi2 , yi3 , xi3 , . . . , xit , yi1 , xi1 is an indecomposable even circuit in G. Moreover,
the collection of even edges in this circuit is {ei1 , . . . , eit}, which is a subset of the perfect matching MD.

Conversely, suppose that G contains an indecomposable even circuit C in which a collection
of alternating edges form a subset of the perfect matching MD. Since G is bipartite, every edge in
G (and so any edge in C) connects a vertex xij to a vertex yik . Thus, without loss of generality, we
may assume that the circuit C is of the form xi1 , yi2 , xi2 , yi3 , xi3 , . . . , xit , yi1 , xi1 . Since C is a circuit and
C contains {ei1 , . . . , eit}, it follows that i1, . . . , it are distinct indices. By the construction of G again,
we have a directed cycle zi1 → zi2 → · · · → zit → zi1 in D.

Example 7. Let D be the directed graph in Example 2 and let G = G(D) be its associated bipartite graph. It can
be seen that G has only one even cycle whose alternating edges form a subset of the perfect matching MD, namely,
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x2, y3, x3, y5, x5, y4, x4, y2, x2. This even cycle of G corresponds to the directed cycle z2 → z3 → z5 → z4 → z2

in D.
Note that z1, z2, z3, z1 does not form a directed cycle in D even though its undirected edges would form a

triangle. This is reflected by the fact that there is no even cycle between x1, y1, x2, y2, x3, y3 in G. Furthermore,
not all even cycles in G would correspond to directed cycles in D. For instance, consider the even cycle
x1, y3, x3, y5, x5, y4, x4, y2, x1 in G. Neither collection of alternating edges of this cycle is a subset of the perfect
matching MD, and this even cycle does not correspond to any directed cycle in D (z1, z3, z5, z4, z2, z1 does not
form a directed cycle in D).

As a corollary of Theorem 2, we derive an algebraic algorithm to enumerate all directed cycles in
a given digraph. Note that, by the proof of Theorem 2, indecomposable even circuits of G = G(D),
in which a collection of alternating edges is a subset of MD, are exactly the even cycles in G with the
same property.

Corollary 4. Let D be a digraph and let G = G(D) be its corresponding bipartite graph. Let φ be the
presentation of the edge ideal I = I(G) of G that results from its Taylor resolution. Let B(φ) be its reduced
Jacobian dual. Then, the directed cycles of length t in D correspond exactly to the binomial t× t minors of B(φ)
that satisfy the following conditions:

1. their columns are pairwise center-distinct;
2. their monomials are square-free and relatively prime; and
3. one of these monomials is the product of variables that correspond to a subset of the perfect matching MD.

Proof. The assertion is a direct consequence of Theorems 1 and 2.

We recall the famous Caccetta–Häggkvist conjecture for directed cycles in digraphs [37].

Conjecture 4 (Caccetta–Häggkvist). Let D be a digraph on n vertices. Let � ∈ N and suppose that the
outdegree of each vertex in D is at least

n
�

. Then, D contains a directed cycle of length at most �.

As a consequence of Theorems 1 and 2, we are able to present a Jacobian dual matrix interpretation
of the Caccetta–Häggkvist conjecture as follows. Note that every cycle is an indecomposable even
circuit, and that, for a bipartite graph, the two notions coincide.

Conjecture 5. Let D be a digraph on n vertices such that the outdegree of each vertex in D is at least
n
�

.

Let φ be the Taylor presentation matrix of I(G(D)). Then, for some q ≤ �, Iq(B(φ)) contains a binomial with
square-free, relatively prime terms, one of which is a product of elements of MD.

By Theorems 1 and 2, Conjectures 4 and 5 are equivalent. Conjecture 5 can also be rephrased
using the language of Rees algebras by using Theorem 3.

Conjecture 6. Let D be a digraph on n vertices such that the outdegree of each vertex in D is at least
n
�

. If J is

the defining ideal of the Rees algebra R[I(G(D))t], then, for some q ≤ �, J has a binomial generator of degree q
that is square-free and has relatively prime terms, one of which is a product of elements of MD.

We conclude the paper with the observation that Conjecture 5 can be further translated into a
problem in linear algebra. Notice that, if the outdegree of a vertex zi is at least r, then there are at least
r paths of length 2 using the edge xiyi with xi as the mid-point. The corresponding linear relations
yiTji − yjTi give specific information about r columns of B(φ), each of which has an element from
the perfect matching. If D has m vertices, this yields mr columns of B(φ), each of which contains an
element from the perfect matching, which form a fertile source of potential minors using submatrices
of the form of Equation (2) that would correspond to directed cycles in D.
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10. Máčajová, E.; Mazák, J. On even cycle decompositions of 4-regular line graphs. Discrete Math.
2013, 313, 1697–1699. [CrossRef]

11. Markström, K. Even cycle decompositions of 4-regular graphs and line graphs. Discrete Math.
2012, 312, 2676–2681. [CrossRef]

12. Seymour, P.D. Even circuits in planar graphs. J. Comb. Theory Ser. B 1981, 31, 327–338. [CrossRef]
13. Thomassen, C. Even cycles in directed graphs. Eur. J. Comb. 1985, 6, 85–89. [CrossRef]
14. Yuster, R.; Zwick, U. Finding even cycles even faster. SIAM J. Discrete Math. 1997, 10, 209–222. [CrossRef]
15. Zhang, C.-Q. On even circuit decompositions of Eulerian graphs. J. Graph Theory 1994, 18, 51–57. [CrossRef]
16. Francisco, C.A.; Hà, H.T.; van Tuyl, A. Associated primes of monomial ideals and odd holes in graphs.

J. Algebr. Comb. 2010, 32, 287–301. [CrossRef]
17. Francisco, C.A.; Hà, H.T.; Mermin, J. Powers of Square-Free Monomial Ideals and Combinatorics;

Commutative Algebra; Springer: New York, NY, USA, 2013; pp. 373–392.
18. Morey, S.; Villarreal, R.H. Edge Ideals: Algebraic and Combinatorial Properties; Progress in commutative algebra 1;

de Gruyter: Berlin, Germany, 2012; pp. 85–126.
19. Villarreal, R.H. Cohen-Macaulay graphs. Manuscr. Math. 1990, 66, 277–293. [CrossRef]
20. Faridi, S. The facet ideal of a simplicial complex. Manuscr. Math. 2002, 109, 159–174. [CrossRef]
21. Hà, H.T.; van Tuyl, A. Monomial ideals, edge ideals of hypergraphs, and their graded Betti numbers. J. Algebr.

Comb. 2008, 27, 215–245. [CrossRef]
22. Dulmage, A.L.; Mendelsohn, N.S. Coverings of bipartite graphs. Can. J. Math. 1958, 10 , 517–534. [CrossRef]
23. Kundu, S.; Lawler, E. A matroid generalization of a theorem of Mendelsohn and Dulmage. Discrete Math.

1973, 4, 159–163. [CrossRef]
24. Herzog, J.; Hibi, T. Monomial Ideals; Graduate Texts in Mathematics 260; Springer: Berlin, Germany, 2011.

37



Mathematics 2019, 7, 859

25. Villarreal, R.H. Monomial Algebras, 2nd ed.; Monographs and Research Notes in Mathematics; CRC Press:
Boca Raton, FL, USA, 2015; pp. xviii + 686, ISBN 978-1-4822-3469-5.

26. Diestel, R. Graph Theory, 5th ed.; Graduate Texts in Mathematics, 173; Springer: Berlin, Germany, 2018; pp.
xviii + 428, ISBN 978-3-662-57560-4, 978-3-662-53621-6.

27. Vasconcelos, W.V. Arithmetic of Blowup Algebras; London Math. Soc., Lecture Note Series 195; Cambridge
University Press: Cambridge, UK, 1994.

28. Morey, S. Equations of blowups of ideals of codimension two and three. J. Pure Appl. Algebra
1996, 109, 197–211. [CrossRef]

29. Johnson, M.; Morey, S. Normal blow-ups and their expected defining equations. J. Pure Appl. Algebra 2001,
162, 303–313. [CrossRef]

30. Kustin, A.; Polini, C.; Ulrich, B. The equations defining blowup algebras of height three Gorenstein ideals.
Algebra Number Theory 2017, 11, 1489–1525. [CrossRef]

31. Ulrich, B.; Vasconcelos, W.V. The equations of Rees algebras of ideals with linear presentation. Math. Z. 1993,
214, 79–92. [CrossRef]

32. Vasconcelos, W.V. On the equations of Rees algebras. J. Reine Angew. Math. 1991, 418, 189–218.
33. Bayer, D.; Peeva, I.; Sturmfels, B. Monomial resolutions. Math. Res. Lett. 1998, 5, 31–46. [CrossRef]
34. Taylor, D. Ideals Generated by Monomials in an R-Sequence. Ph.D. Thesis, University of Chicago,

Chicago, IL, USA, 1966.
35. Villarreal, R.H. Rees algebras of edge ideals. Commun Algebra 1995, 23, 3513–3524. [CrossRef]
36. Villarreal, R.H. (Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN,

Apartado Postal 14–740, 07000 Mexico City, D.F., Mexico). Personal Communication, 2019.
37. Caccetta, L.; Häggkvist, R. On minimal digraphs with given girth. In Proceedings of the Ninth

Southeastern Conference on Combinatorics, Graph Theory, and Computing, Boca Raton, FL, USA,
30 January–2 February 1978; pp. 181–187.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

38



mathematics

Article

The Regularity of Edge Rings and Matching Numbers

Jürgen Herzog 1 and Takayuki Hibi 2,*

1 Fachbereich Mathematik, Universität Duisburg-Essen, Campus Essen, 45117 Essen, Germany;
juergen.herzog@uni-essen.de

2 Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology,
Osaka University, Suita, Osaka 565-0871, Japan

* Correspondence: hibi@math.sci.osaka-u.ac.jp

Received: 30 November 2019; Accepted:18 December 2019; Published: 1 January 2020
��������	
�������

Abstract: Let K[G] denote the edge ring of a finite connected simple graph G on [d] and mat(G) the
matching number of G. It is shown that reg(K[G]) ≤ mat(G) if G is non-bipartite and K[G] is normal,
and that reg(K[G]) ≤ mat(G)− 1 if G is bipartite.

Keywords: edge ring; edge polytope; regularity; matching number

Let G be a finite connected simple graph on the vertex set [d] = {1, . . . , d} and let E(G) be its edge
set. Let S = K[x1, . . . , xd] denote the polynomial ring in d variables over a field K. The edge ring of G is
the toric ring K[G] ⊂ S which is generated by those monomials xixj with {i, j} ∈ E(G). The systematic
study of edge rings originated in [1]. It has been shown that K[G] is normal if and only if G satisfies
the odd cycle condition ([2], p. 131). Thus, particularly if G is bipartite, K[G] is normal.

Let e1, . . . , ed denote the canonical unit coordinate vectors of Rd. The edge polytope is the lattice
polytope PG ⊂ Rd which is the convex hull of the finite set { ei + ej : {i, j} ∈ E(G) }. One has
dimPG = d− 1 if G is non-bipartite and dimPG = d− 2 if G is bipartite. We refer the reader to ([2],
Chapter 5) for the fundamental materials on edge rings and edge polytopes.

A matching of G is a subset M ⊂ E(G) for which e∩ e′ = ∅ for e �= e′ belonging to M. The matching
number is the maximal cardinality of matchings of G. Let mat(G) denote the matching number of G.

When K[G] is normal, the upper bound of regularity of K[G] can be explicitly described in terms
of mat(G). Our main result in the present paper is as follows:

Theorem 1. Let G be a finite connected simple graph. Then

(a) If G is non-bipartite and K[G] is normal, then reg K[G] ≤ mat(G);
(b) If G is bipartite, then reg K[G] ≤ mat(G)− 1.

Lemma 1 stated below, which provides information on lattice points belonging to the interiors of
dilations of edge polytopes, is indispensable for the proof of Theorem 1.

Lemma 1. Suppose that (a1, . . . , ad) ∈ Zd belongs to the interior q(PG \ ∂PG) of the dilation qPG = {qα :
α ∈ PG}, where q ≥ 1, of PG. Then ai ≥ 1 for each 1 ≤ i ≤ d.

Proof. The facets ofPG are described in ([1], Theorem 1.7). When W ⊂ [d], we write GW for the induced
subgraph of G on W. Since K[G] is normal, it follows that PG possesses the integer decomposition
property ([2], p. 91). In other words, each a ∈ qPG ∩Zd is of the form

a = (ei1 + ej1) + · · ·+ (eiq + ejq),
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where {i1, j1}, . . . , {iq, jq} are edges of G.

(First Step) Let G be non-bipartite. Let i ∈ [d]. Let H1, . . . , Hs and H′1, . . . , H′s′ denote the connected
components of G[d]\{i}, where each Hj is bipartite and where each H′j′ is non-bipartite. If s = 0,

then i ∈ [d] is regular ([1], p. 414) and the hyperplane of Rd defined by the equation xi = 0 is a facet of
qPG. Hence ai > 0.

Let s ≥ 1 and s′ ≥ 0. For each 1 ≤ j ≤ s, we write Wj ∪Uj for the vertex set of the bipartite
graph Hj for which there is a ∈ Wj with {a, i} ∈ E(G), where Uj = ∅ if Hj is a graph consisting of a
single vertex. Then T = W1 ∪ · · · ∪Ws is independent ([1], p. 414). In other words, no edge e ∈ E(G)

satisfies e ⊂ T. Let G′ denote the bipartite graph induced by T. Thus the edges of G′ are {b, c} ∈ E(G)

with b ∈ T and c ∈ T′ = U1 ∪ · · · ∪Us ∪ {i}. Since each induced subgraph GWj∪Uj∪{i} is connected,
it follows that G′ is connected with V(G′) = T ∪ T′ as its vertex set. Since the connected components
of G[d]\V(G′) are H′1, . . . , H′s′ , it follows that T is fundamental ([1], p. 415) and the hyperplane of Rd

defined by ∑ξ∈T xξ = ∑ξ ′∈T′ xξ ′ is a facet of qPG. Now, suppose that ai = 0. Since PG possesses the
integer decomposition property, one has ∑ξ∈T aξ = ∑ξ ′∈T′ aξ ′ . Hence (a1, . . . , ad) ∈ Zd cannot belong
to q(PG \ ∂PG). Thus ai > 0, as desired.

(Second Step) Let G be bipartite. If G is a star graph with, say, E(G) = {{1, 2}, {1, 3}, . . . , {1, d}},
then PG can be regarded to be the (d − 2) simplex of Rd−1 with the vertices
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Thus, since each (a1, . . . , ad) ∈ qPG ∩ Zd satisfies
a1 = q, the assertion follows immediately. In the argument below, one will assume that G is not a
star graph.

Let i ∈ [d] and H1, . . . , Hs be the connected components of G[d]\{i}. If s = 1, then i ∈ [d] is
ordinary ([1], p. 414) and the hyperplane of Rd defined by the equation xi = 0 is a facet of qPG. Hence
ai > 0.

Let s ≥ 2. Let Wj ∪Uj denote the vertex set of Hj for which there is a ∈ Wj with {a, i} ∈ E(G).
Since G is not a star graph, one can assume that U1 �= ∅. Then T = W2 ∪ · · · ∪Ws is independent and
the bipartite graph induced by T is G[d]\(W1∪U1)

. Hence T is acceptable ([1], p. 415) and the hyperplane
of Rd defined by ∑ξ∈W1

xξ = ∑ξ ′∈U1
xξ ′ is a facet of qPG. Now, suppose that ai = 0. Since PG possesses

the integer decomposition property, one has ∑ξ∈W1
aξ = ∑ξ ′∈U1

aξ ′ . Hence (a1, . . . , ad) ∈ Zd cannot
belong to q(PG \ ∂PG). Thus ai > 0, as required.

We say that a finite subset L ⊂ E(G) is an edge cover of G if ∪e∈Le = [d]. Let μ(G) denote the
minimal cardinality of edge covers of G.

Corollary 1. When K[G] is normal, one has q ≥ μ(G) if q(PG \ ∂PG) ∩Zd �= ∅.

Proof. Since PG possesses the integer decomposition property, Lemma 1 guarantees that,
if a ∈ q(PG \ ∂PG) ∩Zd, one has q ≥ μ(G).

Once Corollary 1 is established, to complete the proof of Theorem 1 is a routine job on computing
the regularity of normal toric rings.

Proof of Theorem 1. In each of the cases (a) and (b), since the edge ring K[G] is normal, it follows
that the Hilbert function of K[G] coincides the Ehrhart function ([2], p. 100) of the edge polytope PG,
which says that the Hilbert series of K[G] is of the form

(h0 + h1λ + · · ·+ hsλs)/(1− λ)(dimPG)+1

with each hi ∈ Z and hs �= 0. One has

s = (dimPG + 1)−min{ q ≥ 1 : q(PG \ ∂PG) ∩Zd �= ∅ }.
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Now, Corollary 1 guarantees that

s ≤ (dimPG + 1)− μ(G).

Finally, since μ(G) = d−mat(G) ([3], Lemma 2.1), one has

reg K[G] = s ≤ dimPG − (d− 1) + mat(G),

as required.

Rafael H. Villarreal informed us that part (b) of Theorem 1 can also be deduced from ([4],
Theorem 14.4.19).

When K[G] is non-normal, the behavior of regularity is curious.

Proposition 1. For given integers 0 ≤ r ≤ m, there exists a finite connected simple graph G such that
reg K[G] = r, and

mat(G) =

{
m, if G is non-bipartite,

m + 1, if G is bipartite.

Proof. In the non-bipartite case, let H be the complete graph with 2r vertices. Its matching number is
r. We know from ([5], Corollary 2.12) that reg K[H] = r. At one vertex of H we attach a path graph of
length 2(m− r) and call this new graph G. Then mat(G) = m and reg K[G] = reg K[H] = r, as K[G] is
just a polynomial extension of K[H].

In the bipartite case, let H be the bipartite graph of type (r + 1, r + 1). The matching number is
r + 1. Indeed, K[H] may be viewed as a Hibi ring whose regularity is well-known, see for example ([6],
Theorem 1.1). At one vertex of H we attach a path graph of length 2(m− r) and call this new graph G.
Then mat(G) = m + 1 and reg K[G] = reg K[H] = r, for the same reason as before.

These bounds for the regularity of K[G] are generally only valid if K[G] is normal. Consider,
for example, the graph G which consists of two disjoint triangles combined as a path of length �.
Then the defining ideal of K[G] is generated by a binomial of degree �+ 3, and hence reg K[G] = �+ 2,
while the matching number of G is 2 + ��/2�.

Question 1. Let m be a positive integer, and consider the set Sm of finite connected simple graphs
with matching number m.

• Is there a bound for reg K[G] with G ∈ Sm?
• If such a bound exists, is it a linear function of m?
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Abstract: Studying Hilbert functions of concrete examples of normal toric rings, it is demonstrated that
for each 1 ≤ s ≤ 5, an O-sequence (h0, h1, . . . , h2s−1) ∈ Z2s≥0 satisfying the properties that (i) h0 ≤ h1 ≤
· · · ≤ hs−1, (ii) h2s−1 = h0, h2s−2 = h1 and (iii) h2s−1−i = hi + (−1)i, 2 ≤ i ≤ s− 1, can be the h-vector of
a Cohen-Macaulay standard G-domain.
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1. Background

In the paper [1] published in 1989, several conjectures on Hilbert functions of Cohen-Macaulay
integral domains are studied.

Let A =
⊕∞

n=0 An be a standard G-algebra [2]. Thus A is a Noetherian commutative graded ring for
which (i) A0 = K a field, (ii) A = K[A1] and (iii) dimK A1 < ∞. The Hilbert function of A is defined by

H(A, n) = dimK An, n = 0, 1, 2, . . .

Let dim A = d and v = H(A, 1) = dimK A1. A classical result ([3], Chapter 5, Section 13) says
that H(A, n) is a polynomial for n sufficiently large and its degree is d− 1. It follows that the sequence
h(A) = (h0, h1, h2, . . .), called the h-vector of A, defined by the formula

(1− λ)d
∞

∑
n=0

H(A, n)λn =
∞

∑
i=0

hiλ
i

has finitely many non-zero terms with h0 = 1 and h1 = v− d. If hi = 0 for i > s and hs �= 0, then we write
h(A) = (h0, h1, . . . , hs).

Let Y1, . . . , Yr be indeterminates. A non-empty set M of monomials Ya1
1 · · ·Yar

r in the variables
Y1, . . . , Yr is said to be an order ideal of monomials if, whenever m ∈ M and m′ divides m, then m′ ∈ M.
Equivalently, if Ya1

1 · · ·Yar
r ∈ M and 0 ≤ bi ≤ ai, then Yb1

1 · · ·Ybr
r ∈ M. In particular, since M is non-empty,

1 ∈ M. A finite sequence (h0, h1, . . . , hs) of non-negative integers is said to be an O-sequence if there exists
an order ideal M of monomials in Y, . . . , Yr with each deg Yi = 1 such that hj = |{m ∈ M|deg m = j}|
for any 0 ≤ j ≤ s. In particular, h0 = 1. If A is Cohen-Macaulay, then h(A) = (h0, h1, . . . , hs) is an
O-sequence ([2], p. 60). Furthermore, a finite sequence (h0, h1, . . . , hs) of integers with h0 = 1 and hs �= 0 is

Mathematics 2020, 8, 22; doi:10.3390/math8010022 www.mdpi.com/journal/mathematics
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the h-vector of a Cohen-Macaulay standard G-algebra if and only if (h0, h1, . . . , hs) is an O-sequence ([2],
Corollary 3.11).

An O-sequence (h0, h1, . . . , hs) with hs �= 0 is called flawless ([1], p. 245) if (i) hi ≤ hs−i for 0 ≤ i ≤ [s/2]
and (ii) h0 ≤ h1 ≤ · · · ≤ h[s/2]. A standard G-domain is a standard G-algebra which is an integral domain.
It was conjectured ([1], Conjecture 1.4) that the h-vector of a Cohen-Macaulay standard G-domain is
flawless. Niesi and Robbiano ([4], Example 2.4) succeeded in constructing a Cohen-Macaulay standard
G-domain with (1, 3, 5, 4, 4, 1) its h-vector. Thus, in general, the h-vector of a Cohen-Macaulay standard
G-domain is not flawless.

In the present paper, it is shown that, for each 1 ≤ s ≤ 5, an O-sequence

(h0, h1, . . . , hs−1, hs, . . . , h2s−2, h2s−1) ∈ Z2s≥0

satisfying the properties that

(i) h0 ≤ h1 ≤ · · · ≤ hs−1,
(ii) h2s−1 = h0, h2s−2 = h1,

(iii) h2s−1−i = hi + (−1)i, 2 ≤ i ≤ s− 1

can be the h-vector of a normal toric ring arising from a cycle of odd length. In particular, the above
O-sequence, which is non-flawless for each of s = 4 and s = 5, can be the h-vector of a Cohen-Macaulay
standard G-domain.

2. Toric Rings Arising from Odd Cycles

Let C2s+1 denote a cycle of length 2s + 1, where s ≥ 1, on [2s + 1] = {1, 2, . . . , 2s + 1} with the edges

{1, 2}, {2, 3}, . . . , {2s− 1, 2s}, {2s, 2s + 1}, {2s + 1, 1}. (1)

A finite set W ⊂ [2s + 1] is called stable in C2s+1 if none of the sets of (1) is a subset of W. In particular,
the empty set ∅ and {1}, {2}, . . . , {2s + 1} are stable. Let S = K[x1, . . . , x2s+1, y] denote the polynomial
ring in 2s + 2 variables over K. The toric ring of C2s+1 is the subring K[C2s+1] of S which is generated by
those squarefree monomials (∏i∈W xi)y for which W ⊂ [2s + 1] is stable in C2s+1. It follows that K[C2s+1]

can be a standard G-algebra with each deg(∏i∈W xi)y = 1. It is shown ([5], Theorem 8.1) that K[C2s+1] is
normal. In particular, K[C2s+1] is a Cohen-Macaulay standard G-domain. Now, we discuss when K[C2s+1]

is Gorenstein. Here a Cohen-Macaulay ring is called Gorenstein if it has finite injective dimension.

Theorem 1. The toric ring K[C2s+1] is Gorenstein if and only if either s = 1 or s = 2.

Proof. Since the h-vector of K[C3] is (1, 1) and since the h-vector of K[C5] is (1, 6, 6, 1), it follows from ([2],
Theorem 4.4) that each of K[C3] and K[C5] is Gorenstein.

Now, we show that K[C2s+1] is not Gorenstein if s ≥ 3. Let s ≥ 3. Write QC2s+1 ⊂ R2s+1 for the stable
set polytope of C2s+1. Thus QC2s+1 is the convex hull of the finite set{

∑
i∈W

ei : W is a stable set of G

}
⊂ R2s+1,

where e1, . . . , e2s+1 ∈ R2s+1 are the canonical unit coordinate vectors of R2s+1 and where ∑i∈∅ ei =

(0, . . . , 0) ∈ R2s+1. One has dimQ2s+1 = 2s + 1. Then ([6], Theorem 4) says that QC2s+1 is defined by the
following inequalities:
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• 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ 2s + 1;
• xi + xi+1 ≤ 1 for all 1 ≤ i ≤ 2s ;
• x1 + x2s+1 ≤ 1;
• x1 + · · ·+ x2s+1 ≤ s.

It then follows that each of QC2s+1 and 2QC2s+1 has no interior lattice points and that (1, . . . , 1) is an
interior lattice point of 3QC2s+1 . Furthermore, (Ref. [7], Theorem 4.2) guarantees that the inequality

x1 + · · ·+ x2s+1 ≤ s

defines a facet of QC2s+1 . Let Ps = 3QC2s+1 − (1, . . . , 1). Thus the origin of R2s+1 is an interior lattice point
of Ps and the inequality

x1 + · · ·+ x2s+1 ≤ s− 1

defines a facet of Ps. This fact together with [8] implies that Ps is not reflexive. In other words, the dual
polytope P∨s of Ps defined by

P∨s = {y ∈ R2s+1 : 〈x, y〉 ≤ 1 for all x ∈ Ps}

is not a lattice polytope, where 〈x, y〉 is the usual inner product of R2s+1. It then follows from ([9],
Theorem (1.1)) (and also from ([5], Theorem 8.1)) that K[C2s+1] is not Gorenstein, as desired.

It is known ([2], Theorem 4.4) that a Cohen-Macaulay standard G-domain A is Gorenstein if and only
if the h-vector h(A) = (h0, . . . , hs) is symmetric, i.e., hi = hs−i for 0 ≤ i ≤ [s/2]. Hence the h-vector of the
toric ring K[C2s+1] is not symmetric when s ≥ 3.

Example 1. By using Normaliz [10], the h-vector of the toric ring K[C7] is (1, 21, 84, 85, 21, 1).

3. Non-Flawless O-Sequences of Normal Toric Rings

We now come to concrete examples of non-flawless O-sequences which can be the h-vectors of normal
toric rings.

Example 2. The h-vector of the toric ring K[C9] is

(1, 66, 744, 2305, 2304, 745, 66, 1).

Furthermore,
(1, 187, 5049, 37247, 96448, 96449, 37246, 5050, 187, 1)

is the h-vector of the toric ring K[C11].

We conclude the present paper with the following

Conjecture 1. The h-vector of the toric ring K[C2s+1] of C2s+1 is of the form

(1, h1, h2, h3, . . . , hi, . . . , hs−1, hs−1 + (−1)s−1, . . . , hi + (−1)i, . . . , h3 − 1, h2 + 1, h1, 1).
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Abstract: We show that Cohen-Macaulay and (S2) properties are equivalent for the second power
of an edge ideal. We give an example of a Gorenstein squarefree monomial ideal I such that S/I2

satisfies the Serre condition (S2), but is not Cohen-Macaulay.

Keywords: Stanley-Reisner ideal; edge ideal; Cohen-Macaulay; (S2) condition

1. Introduction

Let K be a fixed field. Let S = K[x1, . . . , xn] be a polynomial ring with deg xi = 1 for all
i ∈ [n] = {1, 2, . . . , n}. Let I be a squarefree monomial ideal.

For a Stanley-Reisner ring S/I, the Cohen-Macaulay and (S2) properties are different in general.
For instance, consider the Stanley-Reisner ring of a non-Cohen-Macaulay manifold, e.g., a torus,
which satisfies the (S2) condition. However, for some special classes of such rings, they are known
to be equivalent. The quotient ring of the edge ideal of a very well-covered graph (see [1]) and a
Stanley-Reisner ring with “large” multiplicity (see [2] for the precise statement) are such examples.
What about the powers of squarefree monomial ideals?

As for the third and larger powers, the following is proven in [3]:

Theorem 1. Let I be a squarefree monomial ideal. Then, the following conditions are equivalent for a fixed
integer m ≥ 3:

1. S/I is a complete intersection.
2. S/Im is Cohen-Macaulay.
3. S/Im satisfies the Serre condition (S2).

Then, what about the second power of a squarefree monomial ideal? This is the theme of
this article. If the second power I2 is Cohen-Macaulay, I is not necessarily a complete intersection.
Gorenstein ideals with height three give such examples.

In Section 3, we prove that the Cohen-Macaulay and (S2) properties are equivalent for the second
power of a squarefree monomial ideal generated in degree two:

Theorem 2. Let I be a squarefree monomial ideal generated in degree two. Then, the following conditions
are equivalent:

1. S/I2 is Cohen-Macaulay.
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2. S/I2 satisfies the Serre condition (S2).

In Section 4, we first give an upper bound of the number of variables in terms of the dimension of
S/I when I is a squarefree monomial ideal generated in degree two and S/I2 has the Cohen-Macaulay
(equivalently (S2)) property. Using a computer, we classify squarefree monomial ideals I generated
in degree two with dim S/I ≤ 4 such that S/I2 have the Cohen-Macaulay (equivalently (S2))
property. Since not many examples of squarefree monomial ideals I generated in degree two such
that S/I2 are Cohen-Macaulay are known, new examples might be useful. See [4,5] for the two- and
three-dimensional cases, respectively, and [6,7] for the higher dimensional case. See also [6,8] for the
fact that for a very well-covered graph G, the second power I(G)2 is not Cohen-Macaulay if the edge
ideal I(G) of G is not a complete intersection.

In Section 5, we give an example of a Gorenstein squarefree monomial ideal I such that S/I2

satisfies the Serre condition (S2), but is not Cohen-Macaulay. Hence, the Cohen-Macaulay and (S2)
properties are different for the second power in general.

2. Preliminaries

2.1. Stanley-Reisner Ideals

We recall some notation on simplicial complexes and their Stanley-Reisner ideals. We refer the
reader to [9–11] for the detailed information.

Set V = [n] = {1, 2, . . . , n}. A nonempty subset Δ of the power set 2V of V is called a simplicial
complex on V if the following two conditions are satisfied: (i) {v} ∈ Δ for all v ∈ V, and (ii)F ∈ Δ,
H ⊆ F imply H ∈ Δ. An element F ∈ Δ is called a face of Δ. The dimension of F, denoted by dim F, is
defined by dim F = |F| − 1. The dimension of Δ is defined by dim Δ = max{dim F : F ∈ Δ}. We call
a maximal face of Δ a facet of Δ. Let F (Δ) denote the set of all facets of Δ. We call Δ pure if all its facets
have the same dimension. We call Δ connected if for any pair (p, q), p �= q, of vertices of Δ, there is a
chain p = p0, p1, p2, . . . , pk = q of vertices of Δ such that {pi−1, pi} ∈ Δ for i = 1, 2, . . . , k.

The Stanley-Reisner ideal IΔ of Δ is defined by:

IΔ = (xi1 xi2 · · · xip : 1 ≤ i1 < · · · < ip ≤ n, {xi1 , . . . , xip} /∈ Δ).

The quotient ring K[Δ] = K[x1, . . . , xn]/IΔ is called the Stanley-Reisner ring of Δ.
We say that Δ is a Cohen-Macaulay (resp. Gorenstein) complex if K[Δ] is a Cohen-Macaulay (resp.

Gorenstein) ring. A Gorenstein complex Δ is called Gorenstein* if xi divides some minimal monomial
generator of IΔ for each i.

For a face F ∈ Δ, the link and star of F are defined by:

linkΔ F = {H ∈ Δ : H ∪ F ∈ Δ, H ∩ F = ∅},

starΔ F = {H ∈ Δ : H ∪ F ∈ Δ}.

The Stanley-Reisner ideal IΔ of Δ has the minimal prime decomposition:

IΔ =
⋂

F∈F (Δ)

PF,

where PF = (x ∈ [n] \ F) for each F ∈ F (Δ). We call IΔ unmixed if all PF have the same height for
F ∈ F (Δ). Note that Δ is pure if and only if IΔ is unmixed. We define the �th symbolic power of IΔ by:

I(�)Δ =
⋂

F∈F (Δ)

P�
F.
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For a Noetherian ring A, the following condition (Si) for i = 1, 2, . . . is called Serre’s condition:

(Si)depth AP ≥ min{height P, i} for all P ∈ Spec(A).

See [12] for more information for Stanley-Reisner rings satisfying Serre’s condition (Si).
To introduce a characterization of the (S2) property for the second symbolic power of a

Stanley-Reisner ideal, we first define the diameter of a simplicial complex. Let Δ be a connected
simplicial complex. For p, q being two vertices of Δ, the distance between p and q is the minimal length
k of chains p = p0, p1, p2, . . . , pk = q of vertices of Δ such that {pi−1, pi} ∈ Δ for i = 1, 2, . . . , k. The
diameter, denoted by diam Δ, is the maximal distance between two vertices in Δ. We set diam Δ = ∞
if Δ is disconnected. The (S2) property of the second symbolic power of a Stanley-Reisner ideal is
characterized as follows:

Theorem 3. ([7], Corollary 3.3) Let Δ be a pure simplicial complex. Then, the following conditions
are equivalent:

1. S/I(2)Δ satisfies (S2).
2. diam(linkΔ F) ≤ 2 for any face F ∈ Δ with dim linkΔ F ≥ 1.

2.2. Edge Ideals

Let G be a graph, which means a finite simple graph, which has no loops and multiple edges. We
denote by V(G) (resp. E(G)) the set of vertices (resp. edges) of G. We call F ⊆ V(G) an independent set
of G if any e ∈ E(G) is not contained in F. The independence complex Δ(G) of G is defined by:

Δ(G) = {F ⊂ V(G) : e �⊆ F for any e ∈ E(G)},

which is a simplicial complex on the vertex set V(G). We define α(G) by:

α(G) = dim Δ(G) + 1.

We define the neighbor set NG(a) of a vertex a of G by:

NG(a) = {b ∈ V : ab ∈ E(G)}.

Set NG[a] := {a} ∪ NG(a), which is called the closed neighbor set of a vertex a of G. For S ⊆ V(G),
we denote by G\S the induced subgraph on the vertex set V(G)\S. Set GS := G\NG[S], where
NG[S] := ∪x∈SNG[x]. If S ∈ Δ(G), then:

linkΔ(G)(S) = Δ(GS).

See ([11], Lemma 7.4.3). For ab ∈ E(G), set Gab := G\(NG(a) ∪ NG(b)).
Set V(G) = {1, . . . , n}. Then, the edge ideal of G, denoted by I(G), is a squarefree monomial ideal

of S = K[x1, . . . , xn] defined by:

I(G) = (xixj : {xi, xj} ∈ E(G)).

Note that I(G) = IΔ(G). We call G well-covered (or unmixed) if I(G) is unmixed.

Theorem 4 ([13,14]). Let G be a graph. Then, the following conditions are equivalent:

1. G is triangle-free.

2. I(G)(2) = I(G)2.
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Theorem 5 ([15]). Let G be a graph. Then, the following conditions are equivalent:

1. G is triangle-free, and I(G) is Gorenstein.
2. S/I(G)2 is Cohen-Macaulay.

3. The Second Power of Edge Ideals

In this section, we show that the Cohen-Macaulay and (S2) properties are equivalent for the
second power of an edge ideal.

Lemma 1. Let G be a graph with α(G) ≥ 2. The following conditions are equivalent:

1. S/I(G)(2) satisfies the (S2) property,
2. G is a well-covered graph and satisfies diam Δ(GF) ≤ 2 for all the independent sets F of G such that

|F| ≤ α(G)− 2,
3. Gab is well-covered and satisfies α(Gab) = α(G)− 1 for all ab ∈ E(G).

Proof. (1)⇔ (2): By [12], Theorem 8.3, I(G) satisfies the (S2) property if so does S/I(G)(2). Using [12],
Corollary 5.4, we obtain that Δ(G) is pure. This means that G is well-covered, and thus:

dim linkΔ(G)(F) = dim Δ(G)− |F|

and linkΔ(G)(F) = Δ(GF). The result is implied by Theorem 3.
(2)⇒ (3): For all ab ∈ E(G), we have:

α(Gab) ≤ α(G)− 1.

Let F be an independent set of Gab. If |F| < α(G) − 1, then |F| ≤ α(G) − 2. Recall that
Gab = G\(NG(a) ∪ NG(b)) and F ⊆ V(Gab). This implies that a, b /∈ NG[F]. Hence, we obtain
that {a, b} is an edge of GF. In other words, {a, b} is not an independent set of GF. By the assumption,
diam Δ(GF) ≤ 2, there is a vertex c ∈ V(GF) such that {a, c}, {c, b} are independent sets of GF.
Thus, ac, bc /∈ E(GF). Hence, c ∈ V(Gab). Therefore, F ∪ {c} is an independent of Gab. Then, Gab is
well-covered, and moreover, α(Gab) = α(G)− 1.

(3)⇒ (2): By [15], Lemma 4.1 (2), G is a well-covered graph. We will prove that diam Δ(GF) ≤ 2
for all independent set F with |F| ≤ α(G)− 2 by induction on α(G).

If α(G) = 2, then we must prove diam Δ(G) ≤ 2. For all a, b ∈ V(G), we assume {a, b} /∈ Δ(G).
Then, ab ∈ E(G). By the assumption, α(Gab) = α(G)− 1 = 1 > 0. Therefore, we can take a vertex c in
Gab, and thus, ac, bc /∈ E(G). Hence, {a, c}, {b, c} ∈ Δ(G). Therefore, we conclude that diam Δ(G) ≤ 2.

Let α(G) > 2, and suppose that the assertion is true for all graphs G′ with the same structure as
G satisfying the condition “Gab is well-covered and satisfies α(Gab) = α(G)− 1 for all ab ∈ E(G)” with
α(G′) < α(G). For all independent set F of G such that |F| ≤ α(G)− 2, we divide the proof into the
following two cases:

Case 1: F = ∅. In this case, we need to prove that diam Δ(G) ≤ 2. In fact, using the same
argument as above, we obtain diam Δ(G) ≤ 2.

Case 2: F �= ∅. Let x ∈ F. Recall that G is a well-covered graph, and thus, we have
α(Gx) = α(G)− 1. Hence, |F\{x}| = |F| − 1 ≤ α(G)− 3 = α(Gx)− 2. Note that for all ab ∈ E(Gx), we
have that (Gx)ab and (Gab)x are two induced subgraphs of G on vertex set V(G)\(NG[x] ∪ NG(a) ∪
NG(b)). Thus, (Gx)ab = (Gab)x. By the assumption and [15], Lemma 4.1 (1), (Gab)x is a well-covered
graph with α((Gab)x) = α(Gab)− 1. Therefore, (Gx)ab is also a well-covered graph. Moreover,

α((Gx)ab) = α((Gab)x) = α(Gab)− 1 = α(G)− 2 = α(Gx)− 1.
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Thus, Gx has the same structure as G satisfying the condition “Gab is well-covered and satisfies
α(Gab) = α(G)− 1 for all ab ∈ E(G)” with α(Gx) < α(G). By the induction hypothesis, we obtain
diam Δ((Gx)F\{x}) ≤ 2. Note that:

(Gx)F\{x} = Gx\NG[F\{x}] = G\(NG[x] ∪ NG[F\{x}]) = G\(NG[F]) = GF.

Therefore, Δ(GF) = Δ((Gx)F\{x}). Therefore, we conclude that diam Δ(GF) ≤ 2.

Then, we get the following theorem.

Theorem 6. Let G be a graph. The following conditions are equivalent:

1. S/I(G)2 satisfies the (S2) property,
2. S/I(G)2 is Cohen-Macaulay,
3. G is triangle-free, and Gab is a well-covered graph with α(Gab) = α(G)− 1 for all ab ∈ E(G).

Proof. By the statements of Conditions (1), (2) and (3), without loss of generality, we can assume that
G contains no isolated vertices.

(2)⇔ (3): By [15], Theorem 4.4, S/I(G)2 is Cohen-Macaulay if and only if G is triangle-free and in
W2, which is a well-covered graph such that the removal of any vertex of G leaves a well-covered graph
with the same independence number as G. By [15], Lemma 4.2, this is equivalent to the condition that
G is triangle-free and Gab is a well-covered graph with α(Gab) = α(G)− 1 for all ab ∈ E(G).

(2)⇒ (1): It is obvious.
(1)⇒ (3): If α(G) = 1, then G is a complete graph. By the assumption, G is one edge. Therefore,

the statement holds true. Now, we assume α(G) ≥ 2. We know that S/I(G)2 satisfies that (S2) property
if and only if S/I(G)(2) satisfies the (S2) property and I(G)2 has no embedded associated prime, which
means I(G)2 = I(G)(2). By Theorem 4 and Lemma 1, G is triangle-free, and Gab is well-covered with
α(Gab) = α(G)− 1 for all ab ∈ E(G).

Question. If S/I(G)(2) satisfies the (S2) property, then is it Cohen-Macaulay?

The question is affirmative if G is a triangle-free graph by Theorems 4 and 6.

4. Classification

The purpose of the section is to classify all graphs G such that S/I(G)2 is Cohen-Macaulay with
dimension less than five. First, we give an upper bound of the number of vertices of a graph G such
that S/I(G)2 is Cohen-Macaulay.

4.1. Upper Bound of the Number of Vertices

Theorem 7 (Upper bound). Let G be a graph with the vertex set [n]. Suppose G has no isolate vertex. If
S/I(G)2 is d-dimensional Cohen-Macaulay, where d ≥ 3, then we have n ≤ d2+3d−2

2 .

Proof. We prove this by induction on d. For d = 3, we have n ≤ 8 by [5] (see Proposition 3). Set
N(d) = d2+3d−2

2 . Let n be the number of vertices of G such that S/I(G)2 is d-dimensional and
Cohen-Macaulay. Let i ∈ [n]. Then, we have n = |V(starΔ(G){i})| + |([n] \ V(starΔ(G){i})|. Since
G is triangle-free by Theorem 5, an edge among {i, p}, {i, q} and {p, q} belongs to Δ(G) for any
p, q ∈ ([n] \V(starΔ(G){i}), where p �= q. By the definition of starΔ(G){i}, we have {i, p}, {i, q} �∈ Δ(G).
Then, we have {p, q} ∈ Δ(G). By the fact that I(G) is generated in degree two, all minimal non-faces
of Δ(G) have cardinality two. Now, we know that {p, q} ∈ Δ(G) for any p, q ∈ ([n] \V(starΔ(G){i});
hence, we have [n] \ V(starΔ(G){i}) ∈ Δ(G). By the assumption that S/I(G)2 is d-dimensional,
we have |[n] \ V(starΔ(G){i})| ≤ d. Since Δ(G) is Gorenstein*, so is linkΔ(G){i} by [10], Theorem
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5.1. By Theorem 5, I2
linkΔ(G){i} is Cohen-Macaulay. Hence, |V(starΔ(G){i})| = |V(linkΔ(G){i})|+ 1 ≤

N(d− 1)+ 1 by the induction hypothesis. Therefore, n ≤ N(d− 1)+ d+ 1 = (d−1)2+3(d−1)−2
2 + d+ 1 =

d2+3d−2
2 = N(d).

4.2. Classification

In this subsection, we classify all graphs G such that S/I(G)2 is Cohen-Macaulay with dimension
less than five.

Proposition 1. (One-dimensional case) Let G be a graph with the vertex set [n]. Suppose G has no isolate
vertex. Then, S/I(G)2 is one-dimensional Cohen-Macaulay if and only if n = 2 and I(G) = (x1x2).

Proposition 2 ([4]). (Two-dimensional case) Let G be a graph with the vertex set [n]. Suppose G has no
isolate vertex. Then, S/I(G)2 is two-dimensional Cohen-Macaulay if and only if I(G) is one of the following up
to the permutation of variables:

1. If n = 4, then (x1x3, x2x4).
2. If n = 5, then (x1x3, x1x4, x2x3, x2x5, x4x5).

Proposition 3 ([5]). (Three-dimensional case) Let G be a graph with the vertex set [n]. Suppose G has no
isolate vertex. Then, S/I(G)2 is three-dimensional Cohen-Macaulay if and only if I(G) is one of the following
up to the permutation of variables:

1. If n = 6, then (x1x4, x2x5, x3x6).
2. If n = 7, then (x1x5, x1x6, x2x5, x2x7, x3x4, x6x7).
3. If n = 8, then (x1x2, x1x5, x1x8, x2x3, x3x4, x4x5, x4x8, x5x6, x6x7, x7x8).

Using a computer with Nauty [16] and CoCoA [17], we classify four-dimensional case: By
Theorem 7, it is enough to search for them up to n = 13.

Theorem 8. (Four-dimensional case) Let G be a graph with the vertex set [n]. Suppose G has no isolate
vertex. Then, S/I(G)2 is four-dimensional Cohen-Macaulay if and only if I(G) is one of the following up to the
permutation of variables:

1. If n = 8, then (x1x5, x2x6, x3x7, x4x8).
2. If n = 9, then (x1x5, x2x6, x3x7, x1x8, x4x8, x4x9, x5x9).
3. If n = 10, then

(a) (x1x5, x2x6, x3x7, x1x8, x4x8, x2x9, x4x9, x5x9, x4x10, x5x10, x6x10).
(b) (x1x5, x2x6, x1x7, x3x7, x3x8, x5x8, x2x9, x4x9, x4x10, x6x10).

4. If n = 11, then

(a) (x1x5, x2x6, x3x7, x1x8, x4x8, x2x9, x4x9, x5x9, x3x10, x4x10, x5x10, x6x10, x4x11, x5x11, x6x11, x7x11).
(b) (x1x5, x2x6, x1x7, x3x7, x3x8, x5x8, x2x9, x4x9, x1x10, x4x10, x6x10, x4x11, x5x11, x6x11, x7x11).

5. If n = 12, then

(x1x5, x2x6, x1x7, x3x7, x2x8, x4x8, x2x9, x3x9, x5x9, x1x10, x4x10, x6x10, x4x11, x5x11, x6x11,

x7x11, x3x12, x5x12, x6x12, x8x12).

6. If n = 13, then

(x1x5, x2x6, x1x7, x3x7, x2x8, x4x8, x2x9, x3x9, x5x9, x1x10, x3x10, x4x10, x6x10, x3x11, x5x11, x6x11,

x8x11, x2x12, x4x12, x5x12, x7x12, x4x13, x6x13, x7x13, x9x13).
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See [18] for the concrete algorithm we used. By Theorem 6 in this case, the Cohen-Macaulay
property is equivalent to the (S2) property, which is independent of the base field K.

5. Example

In this section, we give an example of a Gorenstein squarefree monomial ideal I such that S/I2

satisfies the Serre condition (S2), but it is not Cohen-Macaulay.

The Cohen-Macaulay property of I2
Δ implies the “Gorenstein” property of IΔ. More precisely:

Theorem 9 ([7]). Let Δ be a simplicial complex on [n]. Suppose that S/I2
Δ is Cohen-Macaulay over any field K.

Then, Δ is Gorenstein for any field K.

In [7], the authors asked the following question:

Question. Let Δ be a simplicial complex on [n]. Let S = K[x1, . . . , xn] be a polynomial ring for a fixed field K.
Suppose Δ satisfies the following conditions:

1. Δ is Gorenstein.
2. S/I2

Δ satisfies the Serre condition (S2).

Then, is it true that S/I2
Δ is Cohen-Macaulay?

Using a list in [19] and CoCoA, we have the following counter-example:

Example 1. Let K be a field of characteristic zero. Set:

IΔ = (x1x10, x3x9, x2x9, x7x8, x2x8, x4x7, x5x6, x3x6, x4x5, x6x8x10, x2x5x10, x1x4x9, x1x3x7).

Then, the following conditions hold:

1. Δ is Gorenstein.
2. S/I2

Δ satisfies the Serre condition (S2).
3. S/I2

Δ is not Cohen-Macaulay.

We explain how to find the example. The manifold page of Lutz [19] gives a classification of all
triangulations Δ of the three-sphere with 10 vertices, which shows that there are 247,882 types. Using
Theorem 3, we checked the Serre condition (S2) for them, and there were only nine types such that
S/I2

Δ satisfies the Serre condition (S2). Among the nine types, there was only one simplicial complex Δ
such that S/I2

Δ is not Cohen-Macaulay, which is the above example. Note that a triangulation Δ of a
sphere is always Gorenstein. See [18] for more information.
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Abstract: Let G be a finite simple graph on n vertices. Let JG ⊂ K[x1, . . . , xn] be the cover ideal of G.
In this article, we obtain syzygies, Betti numbers, and Castelnuovo–Mumford regularity of Js

G for all
s ≥ 1 for certain classes of graphs G.

Keywords: syzygy; Betti number; Castelnuovo-Mumford regularity; bipartite graph; multipartite
graph

1. Introduction

In this article, we compute the resolution, syzygies, and Betti numbers of powers of certain
classes of squarefree monomial ideals. As a by-product, we obtain the expression for the regularity
of powers of these classes of ideals. Computation of minimal free resolution and syzygies of ideals
and modules over polynomial rings have always attracted researchers in commutative algebra and
algebraic geometry. Recently, there has been much interest in studying the homological aspects of
squarefree monomial ideals in polynomial rings. As these ideals have strong combinatorial connections,
problems in this area have attracted both commutative algebrists and combinatorists. Even in this case,
there are only very few cases of ideals for which explicit computation of the resolution, including the
complete description of syzygies, is done. The main open problems in this area are to find/construct
minimal free resolutions in more cases, and to introduce new ideas and structures ([1] Remark 2.6).
There are even less results on the resolution of powers of ideals. If I is generated by a regular sequence,
then Is is a determinantal ideal and hence the minimal free resolution of Is can be obtained by using
the Eagon–Northcott complex [2]. As the maps in this resolution may not be degree preserving, the
computation of graded Betti numbers and more generally the computation of the syzygies may not be
possible. In the work by the authors of [3], they explicitly compute the graded Betti numbers of Is if I
is a homogeneous complete intersection in a polynomial ring.

Among the resolutions, linear resolutions are possibly the simplest to describe. Let R =

K[x1, . . . , xn], where K is a field. If I is the defining ideal of the rational normal curve in Pn−1, then
Conca proved that Is has a linear resolution for all s [4]. Herzog, Hibi, and Zheng proved that if I is a
monomial ideal generated in degree 2, then I has linear resolution if and only if I has linear quotients
if and only if Is has a linear resolution for all s ≥ 1 [5]. It was proved by Conca and Herzog [6], that if
I is a polymatroidal ideal in R, then I has linear quotients. Moreover, they proved that the product of
polymatroidal ideals are polymatroidal. Therefore, if I is polymatroidal, then Is has linear resolution
for all s ≥ 1. If I is a lexsegment ideal, then Ene and Olteanu proved that I has linear resolution if and
only if I has linear quotients if and only if Is has linear resolution for all s ≥ 1 if and only if Is has
linear quotients for all s ≥ 1 [7].

Mathematics 2019, 7, 869; doi:10.3390/math7090869 www.mdpi.com/journal/mathematics55
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In all the above-mentioned results, the authors do not compute the syzygy modules. In general,
it is a nontrivial task to compute the syzygy modules, even when the resolution is linear. It was
shown by Kodiyalam [8], and independently by Cutkosky, Herzog, and Trung [9], that if I is a
homogeneous ideal in a polynomial ring, then there exist non-negative integers d, e and s0 such that
reg(Is) = ds + e for all s ≥ s0, where reg(−) denote the Castelnuovo–Mumford regularity. Kodiyalam
proved that d ≤ deg(I), where deg(I) denotes the largest degree of a homogeneous minimal generator
of I. In general, the stability index s0 and the constant term e are hard to compute. There have been
discrete attempts in identifying s0 and e for certain classes of ideals.

Recently, there have been a lot of activity in studying the interplay between the combinatorial
properties of graphs and the algebraic properties of ideals associated to graphs. For a finite simple
graph G on the vertex set {x1, . . . , xn}, let JG ⊂ R = K[x1, . . . , xn], where K is a field, denote the
cover ideal of G (see Section 2 for the definition). It may be noted that JG = ∩{xi ,xj}∈E(G)(xi, xj) is
the Alexander dual of the edge ideal of I (see Section 2 for the definition). Although the connection
between algebraic properties of the edge ideal and combinatorial properties of the graph has been
studied extensively, not much is known about the connection between the properties of the cover ideal
and the graph. In [10], Seyed Fakhari studied certain homological properties of symbolic powers of
cover ideals of very well covered and bipartite graphs. It was shown that if G is a very well covered
graph and JG has a linear resolution, then J(s)G has a linear resolution for all s ≥ 1. Furthermore, it was
proved that if G is a bipartite graph with n vertices, then for s ≥ 1,

reg(Js
G) ≤ s deg(JG) + reg(JG) + 1.

Hang and Trung [11] studied unimodular hypergraphs and proved that if H is a unimodular
hypergraph on n vertices and rank r and JH is the cover ideal ofH, then there exists a non-negative
integer e ≤ dim(R/JH)− deg(JH) + 1, such that

reg Js
H = deg(JH)s + e

for all s ≥ rn
2 + 1. Since bipartite graphs are unimodular, their results hold true in the case of bipartite

graphs as well. While the first result gives an upper bound for the constant term, the later result gives
the upper bound for both the stability index and the constant term.

In this article, we obtain the complete description of the minimal free resolution, including the
syzygies, of Js

G for some classes of multipartite graphs. The paper is organized as follows. In Section 2,
we collect the preliminaries required for the rest of the paper. We study the resolution of powers of
cover ideals of certain bipartite graphs in Section 3. If G is a complete bipartite graph, then JG is a
regular sequence and hence the minimal graded free resolution of Js

G can be obtained from (Theorem
2.1 in the work by the authors of [3]). We then move on to study some classes of bipartite graphs which
are not complete. We obtain the resolution, syzygies and Betti numbers of powers of cover ideals of
certain bipartite graphs, and as a by-product, we obtain expression for the regularity of powers of
these ideals. Section 4 is devoted to the study of resolution and regularity of powers of cover ideals of
certain complete multipartite graphs.

The main results of this article are the following: When G is the cycle of length three or the
complete graph on 4 vertices, we describe the graded minimal free resolution of Js

G for all s ≥ 1.
This allow us to compute the Betti numbers, Hilbert series and the regularity of Js

G for all s ≥ 1. As a
consequence, for cover ideals of complete tripartite and 4-partite graphs, we obtain precise expressions
for the Betti numbers and the regularity of Js

G. We conclude our article with a conjecture on the
resolution of Js

G for all s ≥ 1, where G is a complete multipartite graph.

2. Preliminaries

In this section, we set the notation for the rest of the paper. All the graphs that we consider in
this article are finite, simple, and without isolated vertices. For a graph G, V(G) denotes the set of all
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vertices of G and E(G) denotes the set of all edges of G. A graph G is said to be a “complete multipartite”
graph if V(G) can be partitioned into sets V1, . . . , Vk for some k ≥ 2, such that {x, y} ∈ E(G) if and
only if x ∈ Vi and y ∈ Vj for i �= j. When k = 2, the graph is called a “complete bipartite” graph.
If k = 2 with |V1| = m and |V2| = n, we denote the corresponding complete bipartite graph by Km,n

or by KV1,V2 . If G and H are graphs, then G ∪ H denote the graph on the vertex set V(G) ∪ V(H)

with E(G ∪ H) = E(G) ∪ E(H). A graph G is called a “bipartite” graph if V(G) = V1 �V2 such that
{x, y} ∈ E(G) only if x ∈ V1 and y ∈ V2. A subset w = {xi1 , . . . , xir} of V(G) is said to be a vertex cover
of G if w ∩ e �= ∅ for every e ∈ E(G). A vertex cover is said to be minimal if it is minimal with respect
to inclusion.

Let G be a graph with V(G) = {x1, . . . , xn}. Let K be a field and R = K[x1, . . . , xn]. The edge
ideal of G is defined to be I(G) = 〈{xixj : {xi, xj} ∈ E(G)}〉 ⊂ R and the cover ideal of G is defined
to be JG = 〈xi1 , . . . , xir : {xi1 , . . . , xir} is a (minimal) vertex cover of G〉 It can also be seen that JG is the
Alexander dual of I(G).

Let S = R/I, where R is a polynomial ring over K and I a homogeneous ideal of R. For a finitely
generated graded S-module M = ⊕Mi, set

tS
i (M) = max{j : TorS

i (M, K)j �= 0},

with tS
i (M) = −∞ if TorS

i (M, K) = 0. The Castelnuovo–Mumford regularity, denoted by regS(M), of
an S-module M is defined to be

regS M = max{tS
i (M)− i : i ≥ 0}.

3. Bipartite Graphs

In this section, we study the regularity of powers of cover ideals of certain bipartite graphs.
We begin with a simple observation concerning the vertex covers of a bipartite graph.

Proposition 1. Let G be a bipartite graph on n + m vertices. Then G is a complete bipartite graph if and only
if JG is generated by a regular sequence that has disjoint supports.

Proof. Let V(G) = X � Y be the partition of the vertex set of G with X = {x1, . . . , xn} and
Y = {yn+1, . . . , yn+m}. First, note that JG is generated by a regular sequence if and only if for any two
minimal vertex covers w, w′, w ∩ w′ = ∅. If G = Kn,m, then JG = (x1 · · · xn, yn+1 · · · yn+m) which is a
regular sequence. Conversely, suppose G is not a complete bipartite graph. As G is a bipartite graph,
note that ∏xi∈X xi, ∏yj∈Y yj ∈ JG are minimal generators of JG. Therefore, there exist xi0 ∈ X and
yi0 ∈ Y such that {xi0 , yi0} /∈ E(G). Then w = {xi, yj : i �= i0 and yj ∈ NG(xi0)} is a minimal vertex
cover of G that intersects X as well as Y nontrivially. Therefore JG is not a complete intersection.

First we discuss the regularity of powers of cover ideals of complete bipartite graphs. As the cover
ideal of a complete bipartite graph is a complete intersection, the result is a consequence of (Theorem
2.1 in the work by the authors of [3]).

Remark 1. Let J = JKm,n be the cover ideal of the complete bipartite graph Km,n, m ≤ n. Then reg(Js) =

sn + m− 1 for all s ≥ 1.

Proof. Consider the ideal I = (T1, T2) ⊂ R = K[T1, T2] with deg T1 = m and deg T2 = n. It follows
from (Theorem 2.1 in the work by the authors of [3]) that the resolution of Is is

0 → ⊕
a1+a2=s+1

ai≥1

R(−a1m− a2n)→ ⊕
a1+a2=s

R(−a1m− a2n)→ Is → 0. (1)
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Note that J = (x1 · · · xm, ym+1 · · · ym+n). Set x1 · · · xm = T1 and ym+1 · · · ym+n = T2. Then, Js has
the minimal free resolution as in (1). If m ≤ n, then reg(Js) = sn + m− 1.

It follows from Remark 1 that in the case of the complete bipartite graph Km,n, the stability index
is 1 and the constant term is τ − 1, where τ is the size of a minimum vertex cover.

If the graph is not a complete bipartite graph, then the cover ideal is no longer a complete
intersection. If G is a Cohen–Macaulay bipartite graph, then it was shown by F. Mohammadi and S.
Moradi that the vertex cover ideals are weakly polymatroidal. Therefore, they have linear quotients
and hence all the powers have linear resolution (Theorem 2.2 in the work by the authors of [12]). It
would be quite a challenging task to obtain the syzygies and Betti numbers of powers of cover ideals
of all bipartite graphs. Therefore, we restrict our attention to some structured subclasses of bipartite
graphs.

x1

x2

x3

x4

x5

x6

x7

y1

y2

y3

y4

y5

y6

Figure 1. KU1,V ∪ KU2,V2 .

Notation 1. For disjoint vertex sets U and V, let KU,V denote the complete bipartite graph on U � V.
Let U1 = {x1, . . . , xk}, U2 = {xk+1, . . . , xn}, V1 = {y1, . . . , yr}, and V2 = {yr+1, . . . , ym}. Let U =

U1 ∪ U2 and V = V1 ∪ V2. In the following, we consider the bipartite graph G on the vertex set U � V
with edges E(G) = E(KU1,V) ∪ E(KU2,V2). An illustrative figure can be seen in Figure 1 above. Note that
although the vertex sets of KU1,V and KU2,V2 are not disjoint, the edge sets are. The figure on the left is an example
of such a graph with U1 = {x1, x2, x3}, U2 = {x4, x5, x6, x7}, V1 = {y1, y2, y3, y4} and V2 = {y5, y6}.

Theorem 1. Let U = U1 � U2 and V = V1 � V2 be a collection of vertices with |U| = n,
|Ui| = ni, |V| = m, |Vi| = mi and 1 ≤ ni, mi for i = 1, 2. Let G be the bipartite graph KU1,V ∪ KU2,V2 .
Let R = K[x1, . . . , xn, y1, . . . , ym]. Let JG ⊂ R denote the cover ideal of G. Then the graded minimal free
resolution of R/JG is of the form

0 −→ R(−n−m2)⊕ R(−m− n1) −→ R(−(n1 + m2))⊕ R(−m)⊕ R(−n) −→ R.

In particular,
reg(JG) = max{n + m2 − 1, m + n1 − 1}

Proof. It can easily be seen that the cover ideal JG is generated by g1 = x1 · · · xn, g2 = y1 · · · ym,
and g3 = x1 · · · xn1 ym1+1 · · · ym. Set X1 = x1 · · · xn1 ; X2 = xn1+1 · · · xn; Y1 = y1 · · · ym1 and
Y2 = ym1+1 · · · ym. Then we can write g1 = X1X2, g2 = Y1Y2 and g3 = X1Y2.

Consider the minimal graded free resolution of R/JG over R:

· · · −→ F
∂2−→ R(−n)⊕ R(−m)⊕ R(−(n1 + m2))

∂1−→ R,

where ∂1(e1) = g1, ∂1(e2) = g2, and ∂1(e3) = g3.
Let ae1 + be2 + ce3 ∈ ker ∂1. Then aX1X2 + bY1Y2 + cX1Y2 = 0. Solving the above equation, it can

be seen that,
ker ∂1 = SpanR{Y2e1 − X2e3, X1e2 −Y1e3}.
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Also, it is easily verified that these two generators are R-linearly independent. Therefore, ker ∂1
∼=

R2. Note that deg(Y2e1 − X2e3) = n + m2 and deg(X1e2 − Y1e3) = n1 + m. Therefore, we get the
minimal free resolution of R/JG as

0 −→ R(−n−m2)⊕ R(−m− n1)
∂2−→ R(−(n1 + m2))⊕ R(−m)⊕ R(−n)

∂1−→ R,

where ∂2(a, b) = a(Y2e1 − X2e3) + b(X1e2 −Y1e3). The regularity assertion follows immediately from
the resolution.

Our aim is to compute the syzygies and the Betti numbers of Js
G, where JG is the cover ideal

discussed in Theorem 1. For this purpose, we first study the resolution of powers of the ideal
(X1X2, X1Y2, Y1Y2) and obtain the resolution and regularity of the cover ideal as a consequence. It is
known from the work by the authors of [5] that all the powers of this ideal has a linear resolution. We
explicitly compute the syzygies and Betti numbers for the powers of this ideal.

Theorem 2. Let R = K[X1, X2, Y1, Y2] and J = (X1X2, X1Y2, Y1Y2) be an ideal of R. Then, for s ≥ 2,
the minimal free resolution of R/Js is of the form

0 −→ R(s
2) −→ R2(s+1

2 ) −→ R(s+2
2 ) −→ R,

and reg(Js) = 2s.

Proof. Denote the generators of J by g1 = X1X2, g2 = X1Y2, and g3 = Y1Y2. Note that J is the edge
ideal of P4, the path graph on the vertices {X1, X2, Y1, Y2}. Since P4 is chordal, it follows that R/Js has
a linear resolution for all s ≥ 1 [5]. Now we compute the Betti number of the R/Js. Write

(g1, g2, g3)
s = (gs

1, gs−1
1 (g2, g3), gs−2

1 (g2, g3)
2, . . . , g1(g2, g3)

s−1, (g2, g3)
s)

where
(g2, g3)

t = (gt
2, gt−1

2 g3, gt−2
2 g2

3, . . . , g2gt−1
3 , gt

3).

For i ≥ j, set Mi,j = gs−i
1 gi−j

2 gj
3 = (X1X2)

s−iYi
2Yj

1Xi−j
1 . It follows that μ(Js) = (s+1)(s+2)

2 .

Set β1 = (s+1)(s+2)
2 . Let {ep,q | 0 ≤ p ≤ s; 0 ≤ q ≤ p} denote the standard basis for Rβ1 .

Let ∂1 : Rβ1 −→ R be the map ∂1(ep,q) = Mp,q. As gi’s are monomials, the kernel is generated by
binomials of the form mi,j Mi,j − mk,l Mk,l , where mp,q’s are monomials in R. Since the resolution of
R/Js is linear, it is enough to find the linear syzygy relations among the generators of ker(∂1). To find

these linear syzygies, we need to find conditions on i, j, k, l such that
Mi,j
Mk,l

is equal to Xp
Yq

or Yq
Xp

for
some p, q. First of all, note that for such linear syzygies, |i − k|, |j − l| ≤ 1. If i = k and j = l + 1,

then
Mi,j

Mi,j+1
=

g3

g2
=

Y1

X1
. We get the same relation if i = k and j = l − 1. If i = k + 1 and j = l,

then
Mi,j

Mi−1,j
=

g2

g1
=

Y2

X2
. As before, i = k − 1 yields the same relation. Therefore, the kernel is

minimally generated by {
Y1ei,j − X1ei,j+1, X2ei,j −Y2ei−1,j | 0 ≤ j < i ≤ s

}
.

Hence, μ(ker ∂1) = 2(s+1
2 ). Write the basis elements of R2(s+1

2 ) as

{e1,i,p, e2,i,q | 1 ≤ i ≤ s, 0 ≤ p < i and 0 ≤ q < i}
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and define ∂2 : R2(s+1
2 ) −→ Rβ1 by

∂2(e1,i,p) = Y1ei,p − X1ei,p+1

∂2(e2,i,q) = X2ei,q −Y2ei−1,q.

By (Proposition 3.2 in the work by the authors of [13]), pdim(R/Js) = 3 for all s ≥ 2. Hence we
conclude that the minimal graded free resolution of R/Js is of the form

0 −→ Rβ3 −→ R2(s+1
2 ) ∂2−→ R(s+2

2 ) ∂1−→ R.

Therefore,

β3 − 2
(

s + 1
2

)
+

(
s + 2

2

)
− 1 = 0,

so that β3 = (s
2). Now we compute the generators of the second syzygy. Again, as the resolution is

linear, it is enough to compute linear generators. First, note that

B = {Y2e1,i,j − X2e1,i+1,j + Y1e2,i+1,j − X1e2,i+1,j+1 | 0 ≤ j < i < s} ⊆ ker ∂2.

It can easily be verified that B is R-linearly independent. As μ(ker ∂2) = (s
2), B generates ker ∂2.

Let {Ei,j | 0 ≤ j < i < s} denote the standard basis for R(s
2). Define ∂3 : R(s

2) → Rs(s+1) by

∂3(Ei,j) = Y2e1,i,j − X2e1,i+1,j + X1e2,i+1,j −Y1e2,i+1,j+1.

Therefore, we get the minimal free resolution of R/Js as

0 → R(s
2)

∂3−→ R2(s+1
2 ) ∂2−→ R(s+2

2 ) ∂1−→ R.

As the resolution is linear, reg Js = 2s.

As an immediate application of the previous theorem, we obtain resolution and regularity of
powers of the cover ideals of graphs discussed in Theorem 1.

Corollary 1. Let U = U1 � U2 and V = V1 � V2 be a collection of vertices with |U| = n, |Ui| = ni,
|V| = m, |Vi| = mi and 1 ≤ ni, mi for i = 1, 2. Let G be the bipartite graph KU1,V ∪ KU2,V2 .
Let R = K[x1, . . . , xn, y1, . . . , ym]. Let JG ⊂ R denote the cover ideal of G. Then the minimal free resolution of
R/Js

G is of the form

0 −→ R(s
2) −→ R2(s+1

2 ) −→ R(s+2
2 ) −→ R.

Moreover,

reg Js
G = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(s− j)n1 + (s− i)n2 + jm1 + im2 for 0 ≤ j ≤ i ≤ s
(s− j)n1 + (s− i)n2 + (j + 1)m1 + im2 − 1 for 0 ≤ j < i ≤ s
(s− j)n1 + (s− i + 1)n2 + jm1 + im2 − 1 for 0 ≤ j < i ≤ s
(s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 for 0 ≤ j < i < s

.

Proof. Let R = K[x1, . . . , xn, y1, . . . , ym]. Then JG = (x1 · · · xn, y1 · · · ym, x1 · · · xn1 ym1+1 · · · ym).
Set X1 = x1 · · · xn1 , X2 = xn1+1 · · · xn, Y1 = y1 · · · ym1 and Y2 = ym1+1 · · · ym. Then JG =

(X1X2, Y1Y2, X1Y2). Therefore, it follows from Theorem 1 that Js
G has the given minimal free resolution.
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To compute the regularity, we need to obtain the degrees of the syzygies. Following the notation
in the proof of Theorem 1, we can see that

deg ei,j = (s− j)n1 + (s− i)n2 + jm1 + im2,

deg e1,i,j = (s− j)n1 + (s− i)n2 + (j + 1)m1 + im2,

deg e2,i,j = (s− j)n1 + (s− i + 1)n2 + jm1 + im2,

deg Ei,j = (s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2.

Therefore, the assertion on the regularity follows.

3.1. Discussion

It has been proved by Hang and Trung [11] that if G is a bipartite graph on n vertices and JG
is the cover ideal of G, then there exists a non-negative integer e, such that for s ≥ n + 2, reg(Js

G) =

deg(JG)s + e, where deg(JG) denote the maximal degree of minimal monomial generators of JG.
It follows from Remark 1 that if G = Kn,m with n ≥ m, then e = m− 1 and the index of stability is 1.
If the graph is not a complete bipartite graph, then e does not uniformly represent a combinatorial
invariant associated to the graph as can be seen in the computations below. We compute the polynomial
reg(Js

G) for some classes of bipartite graphs that are considered in Corollary 1. We see that e depends on
the relation between the integers n1, n2, m1 and m2. Just to illustrate the computation of the polynomial
from Corollary 1, we compute reg(Js

G) in some cases below:

1. If m1 = m2 = 1, then it can be seen that for s ≥ 2,

reg(Js
G) = max{(s− j)n1 + (s− i + 1)n2 + jm1 + im2 − 1 : 0 ≤ j < i ≤ s}.

Since (s− j)n1 + (s− i + 1)n2 + jm1 + im2 − 1 = s(n1 + n2) + j(1− n1) + i(1− n2) + n2 − 1 and
n1 > 1, n2 > 1, this expression attains maximum when i and j attain minimum, i.e., if j = 0 and
i = 1. Therefore, reg(Js

G) = ns. Thus, in this case, e = 0. It can also be noted that, since n ≥ 2,
it follows from Theorem 1 that reg(JG) = n. Therefore, in this case, the stability index is also equal
to 1.

2. If n1 = n2 = m1 = m2 = � > 1, then for s ≥ 2,

reg(Js
G) = max{(s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 : 0 ≤ j < i ≤ s}.

Therefore, reg(Js
G) = 2�s + (2�− 2), and therefore e = 2�− 2. Note that in this case, the stability

index is 2.
3. n1 ≥ m2 ≥ n2 = m1: Note that, in this case, deg(JG) = n1 + m2. We have

reg(Js
G) = max{(s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 : 0 ≤ j < i < s}.

Since (s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 = s(n1 + n2) + j(m1 − n1) + i(m2 − n2) +

m1 + m2 − 2. Since n1 ≥ m1 and m2 ≥ n2, the above expression attains the maximum when
i attains the maximum and j attains the minimum, i.e., if i = s − 1 and j = 0. Therefore,
reg(Js

G) = (n1 + m2)s + (n2 + m1 − 2) and hence e = n2 + m1 − 2.
4. n1 ≥ n2 = m1 ≥ m2: In this case, deg(JG) = n and

reg(Js
G) = max{(s− j)n1 + (s− i)n2 + (j + 1)m1 + (i + 1)m2 − 2 : 0 ≤ j < i < s}.

As in the previous case, one can conclude that the maximum is attained when i = 1 and j = 0.
Therefore, reg(Js

G) = ns + (2m2 − 2). Thus e = 2m2 − 2.
5. n2 = m1 ≥ n1 ≥ m2: As done earlier, one can conclude that reg(JG)

s = ns + (2m2 − 2), and
therefore e = 2m2 − 2.
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Remark 2. If G = KU1,V ∪ KU2,V2 ∪ KU3,V3 , for some set of vertices Ui, Vi, then one can still describe the
complete resolution and the regularity of Js

G using a similar approach. However, the resulting syzygies are not so
easy to describe though the generating sets are similar. Therefore, we restrict ourselves to the above discussion.

4. Complete Multipartite Graphs

In this section our goal is to understand the resolution and regularity of the powers of cover ideals
of complete m-partite graphs. Let G be a complete m-partite graph and let JG be the cover ideal of
G. Let R = K[x1, . . . , xm]. It is known that the cover ideal JG of complete graph G = Km is generated
by all squarefree monomials x1x2 · · · x̂i · · · xm of degree m− 1. Moreover one can also identify this
cover ideal with the squarefree Veronese ideal I = Im,m−1, and thus it is a polymatroidal ideal [14].
Therefore, by the results of Conca-Herzog [6] and Herzog-Hibi [15], we have

Remark 3. The cover ideal JG of the complete graph G = Km has linear quotients and hence has linear
resolution. Moreover Js

G has linear resolution for all s ≥ 1.

If I is an ideal of R all of whose powers have linear resolution, then depth R/Ik is a non-increasing
function of k and depth R/Ik is constant for all k � 0, ([14] Proposition 2.1). Further, we have,

Remark 4. (Corollary 3.4 in the work of [14]) Let R = K[x1, · · · , xm] and JG be the cover ideal of G = Km.
Then

depth R/Js
G = max{0, m− s− 1}.

In particular, depth R/Js
G = 0 for all s ≥ m− 1.

4.1. Complete Tripartite:

We first describe the graded minimal free resolution of Js
K3

for all s ≥ 1. We also obtain the Hilbert
series of the powers.

Theorem 3. Let R = K[x1, x2, x3] and I = (x1x2, x1x3, x2x3). Then, the graded minimal free resolution of
R/I is of the form

0 → R(−3)2 → R(−2)3 → R.

For s ≥ 2, the graded minimal free resolution of R/Is is of the form:

0 → R(−2s− 2)(
s
2) → R(−2s− 1)2(s+1

2 ) → R(−2s)(
s+2

2 ) → R

so that regR(Is) = 2s. Moreover, the Hilbert series of R/Is is given by

H(R/Is, t) =
1 + 2t + 3t2 + · · ·+ 2st2s−1 −

(
(s+2

2 )− 2s− 1
)

t2s

(1− t)
.

Proof. It is clear that the resolution of I is as given in the assertion of the theorem. Since I is the cover
ideal of K3, Is has linear minimal free resolution for all s ≥ 1. Note also that by ([16] Lemma 3.1),
depth R/Is = 0 for all s ≥ 2 so that pdim R/Is = 3 for all s ≥ 2. Therefore, the minimal free resolution
of R/Is is of the form

0 → R(−2s− 2)β3
∂3−→ R(−2s− 1)β2

∂2−→ R(−2s)β1
∂1−→ R.

Now we describe the syzygies and Betti numbers of R/Is for s ≥ 2. Let g1 = x1x2, g2 = x1x3 and
g3 = x2x3. The generators of Is are of the form g�1

1 g�2
2 g�3

3 , where 0 ≤ �1, �2, �3 ≤ s and �1 + �2 + �3 = s.
Set f�1,�2,�3 = g�1

1 g�2
2 g�3

3 = xs−�3
1 xs−�2

2 xs−�1
3 . It is easy to see that μ(Is) = (s+2

2 ), as the cardinality
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of a minimal generating set of Is is same as the total number of non-negative integral solution of
�1 + �2 + �3 = s, which is (s+2

2 ).

Let {e�1,�2,�3 : 0 ≤ �1, �2, �3 ≤ s; �1 + �2 + �3 = s} denote the standard basis for R(s+2
2 ) and consider

the map ∂1 : R(s+2
2 ) → R defined by ∂1(e�1,�2,�3) = f�1,�2,�3 . As f�1,�2,�3 ’s are monomials, the kernel

is generated by binomials of the form m�1,�2,�3 f�1,�2,�3 − mt1,t2,t3 ft1,t2,t3 , where mi,j,k’s are monomials
in R. Also, as the minimal free resolution is linear, the kernel is generated in degree 1. Note that
f�1,�2,�3

ft1,t2,t3

= xt3−�3
1 xt2−�2

2 xt1−�1
3 . Therefore, for

f�1,�2,�3

ft1,t2,t3

to be a linear fraction, |ti − �i| ≤ 1 for i = 1, 2, 3.

Let t3 = �3, t2 = �2 + 1 and t1 = �1 − 1. The corresponding linear syzygy relation is

x3 · f�1,�2,�3 − x2 · f�1−1,�2+1,�3 = 0, (2)

where 1 ≤ �1 ≤ s, and 0 ≤ �2, �3 ≤ s− 1. Note that the number of such relations is equal to the number
of integral solution to (�1 − 1) + �2 + �3 = s, i.e., (s+1

2 ). Similarly, if t3 = �3 + 1, t2 = �2 − 1 and t1 = �1,
then we get the corresponding linear syzygy relation as

x2 · f�1,�2,�3 − x1 · f�1,�2−1,�3+1 = 0, (3)

where 0 ≤ �1, �3 ≤ s− 1 and 1 ≤ �2 ≤ s. Note that the linear syzygy relation obtained by fixing �2 and
taking |�i − ti| = 1 for i = 1, 2

x3 · f�1,�2,�3 − x1 · f�1−1,�2,�3+1 = 0

can be obtained from Equations (2) and (3) by setting the �i’s appropriately. Therefore,

ker ∂1 = 〈x3 · e�1,�2,�3 − x2 · e�1−1,�2+1,�3 , x2 · e�1−1,�2+1,�3 − x1 · e�1−1,�2,�3+1 : 1 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 1〉.

As there are (s+1
2 ) minimal generators of type (2) and (3), μ(ker ∂1) = β2 = 2(s+1

2 ). Write the

standard basis of R2(s+1
2 ) as

B2 =

{
e1,(�2+1,�3),�1−1
e2,(�1,�2),�3

: 1 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 1

}

and define ∂2 : R2(s+1
2 ) → R(s+2

2 ) by

∂2(e1,(�2+1,�3),�1−1) = x2 · e�1−1,�2+1,�3 − x1 · e�1−1,�2,�3+1,

∂2(e2,(�1,�2),�3
) = x3 · e�1,�2,�3 − x2 · e�1−1,�2+1,�3 .

From the equation, β3− 2((s+1)
2 ) + (s+2

2 )− 1 = 0, it follows that β3 = (s
2). Now, we describe ker ∂2.

For 2 ≤ �1 ≤ s and 0 ≤ �2, �3 ≤ s− 2, set

E�1,�2,�3 = −x3 · e2,(�1−1,�2),�3+1 + x2 · e2,(�1−1,�2+1),�3
+ x2 · e1,(�2+2,�3),�1−2 − x3 · e1,(�2+1,�3),�1−1.

Note that
B3 = {E�1,�2,�3 : 2 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 2} ⊂ ker ∂2.

Let N = ker ∂2. We claim that B̄3 = {Ē�1,�2,�3} is a basis for N/mN. It is enough to prove that B̄3

is R/m-linearly independent. Suppose ∑
�1,�2,�3

α�1,�2,�3 Ē�1,�2,�3 = 0̄. Since B3 ⊂ N1 and mN ⊂ ⊕r≥2Nr,

the above equation implies that ∑ α�1,�2,�3 E�1,�2,�3 = 0. In the above equation, the coefficient of
e2,(i,j),k = −x3αi+1,j,i−1 + x2αi+1,j−1,k and coefficient of e1,(i,j),k = x2αk+2,j−2,i − x3αk+1,j−1,i. As the set

B2 is linearly independent in R2(s+1
2 ), all of these coefficients have to be zero, i.e., αi,j,k = 0 for all i, j, k.
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This proves our claim and hence N = 〈B3〉. Let {H�1,�2,�3 : 2 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 2} denote the

standard basis of R(s
2). Define ∂3 : R(s

2) → R2((s+1)
2 ) by ∂3(H�1,�2,�3) = E�1,�2,�3 . As pdim(R/Is) = 3, this

map is injective and the resolution is complete.
It can also be seen that deg e�1,�2,�3 = 2s, deg e1,(�2+1,�3),�1−1 = deg e2,(�1,�2),�3

= 2s + 1 and
deg H�1,�2,�3 = 2s + 2. Therefore, we get the minimal graded free resolution of R/Is as

0 → R(−2s− 2)(
s
2)

∂3−→ R(−2s− 1)2((s+1)
2 ) ∂2−→ R(−2s)(

s+2
2 ) ∂1−→ R.

Therefore, the Hilbert series of R/Is is given by

H(R/Is, t) =
1− (s+2

2 )t2s + 2(s+1
2 )t2s+1 − (s

2)t
2s+2

(1− t)3

= (1− t)−2 (1− (s+2
2 )t2s + 2(s+1

2 )t2s+1 − (s
2)t

2s+2)

(1− t)
.

By expanding (1− t)−2 in the power series form and multiplying with the numerator, we get the
required expression.

We now proceed to compute the minimal graded free resolution of powers of complete
tripartite graphs.

Notation 2. Let G denote a complete tripartite graph with V(G) = V1 �V2 �V3 and E(G) = {{a, b} : b ∈
Vi, b ∈ Vj, i �= j}. Set V1 = {x1, . . . , x�}, V2 = {y1, . . . , ym} and V3 = {z1, . . . , zn}. Let JG denote the vertex
cover ideal of G. Let X = ∏�

i=1 xi, Y = ∏m
j=1 yi and Z = ∏n

k=1 zi. It can be seen that JG = (XY, XZ, YZ).

Theorem 4. Let R = K[x1, . . . xm1 , y1, . . . , ym2 , z1, . . . , zm3 ]. Let G be a complete tripartite graph as in
Notation 2. Let JG ⊂ R denote the cover ideal of G. Then for all s ≥ 2, the minimal free resolution of R/Js

G is of
the form

0 → R(s
2)

∂3−→ R2(s+1
2 ) ∂2−→ R(s+2

2 ) ∂1−→ R.

Set α = (s− �3)m1 + (s− �2)m2 + (s− �1)m3. Then for all s ≥ 2,

reg(Js
G) = max

⎧⎪⎨⎪⎩
α, for 0 ≤ �1, �2, �3 ≤ s,
α + m3 − 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 1,
α + 2m3 − 2, for 2 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 2.

Proof. Taking X1 = x1, X2 = x2 and X3 = x3 in Theorem 3, it follows that the minimal free resolution
of S/Js

G is of the given form:

0 → R(s
2)

∂3−→ R2(s+1
2 ) ∂2−→ R(s+2

2 ) ∂1−→ R.

We now compute the degrees of the generators and hence obtain the regularity. Let deg X1 = m1,
deg X2 = m2, and deg X3 = m3. Then, it follows that

deg e�1,�2,�3 = deg
(

Xs−�3
1 Xs−�3

2 Xs−�1
3

)
= (s− �3)m1 + (s− �2)m2 + (s− �1)m3.

We observe that

deg e1,(�2+1,�3),�1−1 = deg e2,(�1,�2),�3
= deg e�1,�2,�3 + deg X3,

deg H�1,�2,�3 = deg e�1,�2,�3 + 2 deg X3.
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Therefore,

reg(Js
G) = max

⎧⎪⎨⎪⎩
deg e�1,�2,�3 , for 0 ≤ �1, �2, �3 ≤ s,
deg e�1,�2,�3 + deg(X3)− 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 1,
deg e�1,�2,�3 + 2 deg(X3)− 2, for 2 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 2,

where �1 + �2 + �3 = s. Let α = deg e�1,�2,�3 . Then the regularity assertion follows.

Observe that the above expression for reg(Js
G) is not really in the form ds + e. Given a graph,

one can compute d and e by studying the interplay between the cardinality of the partitions. For
example, suppose the graph is unmixed, i.e., all the partitions are of same cardinality. Then, reg(Js

G) =

2�s + (2�− 2) for all s ≥ 2, where � = m1 = m2 = m3. Note also that the stabilization index in this
case is 2. As in Section 3.1, one can derive various expressions for reg(Js

G) for different cases as well.
Consider the arithmetic progression m1 = m + 2r, m2 = m, and m3 = m + r:

Corollary 2. Let m, r be any two positive integers. Let m1 = m + 2r, m2 = m, and m3 = m + r in Theorem 4.
Then for all s ≥ 2, we have

reg(Js
G) = s(2m + 3r) + 2m− 2.

Proof. By Theorem 4, α = (s− �3)m1 + (s− �2)m2 + (s− �1)m3. Therefore, we get

α = s(3m + 3r)− �3(m + 2r)− �2(m)− �1(m + r).

Using Theorem 4, we have for all s ≥ 2,

reg(Js
G) = max

⎧⎪⎨⎪⎩
α, for 0 ≤ �1, �2, �3 ≤ s,
α + (m + r)− 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 1,
α + 2(m + r)− 2, for 2 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 2,

where �1 + �2 + �3 = s. As regularity reg(Js
G) is maximum of all the numbers, we need to maximize

the value of α. For this to happen, negative terms in α should be minimum. The coefficient of �3 is
largest among the negative terms in α, so �3 should be assigned the least value. After �3, assign the
minimum value to �1, and finally take �2 = s− �1 − �3. For example, to get the maximum of α when
2 ≤ �1 ≤ s, 0 ≤ �2, �3 ≤ s− 2, put �3 = 0, �1 = 2, and �2 = s− 2. We get for all s ≥ 2

reg(Js
G) = max

⎧⎪⎨⎪⎩
s(2m + 3r), for 0 ≤ �1, �2, �3, �4 ≤ s,
s(2m + 3r) + m− 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 1,
s(2m + 3r) + 2m− 2, for 2 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 2.

For all m ≥ 1, and for all s ≥ 2, we get

reg(Js
G) = s(2m + 3r) + 2m− 2.

4.2. Complete 4-Partite Graphs

We now describe the resolution and regularity of powers of cover ideals of 4-partite graphs.
For this purpose, we first study the resolution of powers of cover ideal of the complete graph K4.

Theorem 5. Let R = K[x1, x2, x3, x4] and I = (x1x2x3, x1x2x4, x1x3x4, x2x3x4). Then, for s ≥ 3, the
minimal graded free resolution of R/Is is of the form

0 → R(−3s− 3)β4−→R(−3s− 2)β3−→R(−3s− 1)β2−→R(−3s)β1−→R,
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where

β1 =

(
s + 3

3

)
, β2 = 3

(
s + 2

3

)
, β3 = 3

(
s + 1

3

)
, and β4 =

(
s
3

)
.

In particular, regR(Is) = 3s. Moreover the Hilbert series of R/Is is given by

H(R/Is, t) =
1 + 2t + 3t2 + 4t3 + · · ·+ 3st3s−1 −

(
(s+3

3 )− 3s− 1
)

t3s + (s
3)t

3s+1

(1− t)2

=
∑3s−1

i=0 (i + 1)ti −
(
(s+3

3 )− 3s− 1
)

t3s + (s
3)t

3s+1

(1− t)2 .

Proof. By Remark 3, Is has linear resolution for all s ≥ 1. Moreover, by Remark 4, depth R/Is = 0 for
all s ≥ 3, and therefore pdim R/Is = 4 for all s ≥ 3. Therefore, the minimal graded free resolution of
R/Is, for s ≥ 3, is of the form

0 → R(−3s− 3)β4
∂4−→ R(−3s− 2)β3

∂3−→ R(−3s− 1)β2
∂2−→ R(−3s)β1

∂1−→ R.

Let g1 = x1x2x3, g2 = x1x2x4, g3 = x1x3x4 and g4 = x2x3x4. The minimal generators of Is are
of the form g�1

1 g�2
2 g�3

3 g�4
4 where 0 ≤ �i ≤ s for every i and �1 + �2 + �3 + �4 = s. The number of

non-negative integral solution to the linear equation �1 + �2 + �3 + �4 = s is (s+3
3 ). Therefore, we

have μ(Js) = β1 = (s+3
3 ). Note that g�1

1 g�2
2 g�3

3 g�4
4 = xs−�4

1 xs−�3
2 xs−�2

3 xs−�1
4 with 0 ≤ �1, �2, �3, �4 ≤ s.

Set f�1,�2,�3,�4 = xs−�4
1 xs−�3

2 xs−�2
3 xs−�1

4 . Let

{e�1,�2,�3,�4 : 0 ≤ �1, �2, �3, �4 ≤ s and �1 + �2 + �3 + �4 = s}

denote the standard basis of R(s+3
3 ) and consider the map ∂1 : R(s+3

3 ) → R defined by ∂1(e�1,�2,�3,�4) =

f�1,�2,�3,�4 . Now we find the minimal generators for ker ∂1.
Let f�1,�2,�3,�4 , ft1,t2,t3,t4 be any two minimal monomial generators of Is. It is known that the kernel

of ∂1 is generated by binomials of the form m�1,�2,�3,�4 f�1,�2,�3,�4 −mt1,t2,t3,t4 ft1,t2,t3,t4 , where mi,j,k,l’s are
monomials in R. As the syzygy is generated by linear binomials, we need to find conditions on

�1, �2, �3, �4 such that
f�1,�2,�3,�4
ft1,t2,t3,t4

is equal to xi
xj

for some i, j. Observe that

f�1,�2,�3,�4

ft1,t2,t3,t4

= xt4−�4
1 xt3−�3

2 xt2−�2
3 xt1−�1

4 .

Suppose t4 = �4 + 1, t3 = �3 − 1 and tj = �j for j = 1, 2. Then we get the linear syzygy relation

x2 f�1,�2,�3,�4 − x1 f�1,�2,�3−1,�4+1 = 0. (4)

Fixing t3 and t4 with 1 ≤ t3 + t4 ≤ s, there are as many linear syzygies are there as the number of
solutions of t1 + t2 = s− (t3 + t4). Therefore, for the pair (t3, t4), there are (s+1

2 ) + (s
2) + · · ·+ (2

2) =

(s+2
3 ) number of solutions. Similarly, for each pair (t4, t2), (t4, t1), (t3, t2), (t3, t1) and (t2, t1), we get (s+2

3 )

linear syzygies. Note that the syzygies x4 ft1+1,t2−1,t3,t4 − x3 ft1,t2,t3,t4 and x3 ft1,t2,t3,t4 − x2 ft1,t2−1,t3+1,t4

give rise to another linear syzygy x4 ft1+1,t2−1,t3,t4 − x2 ft1,t2−1,t3+1,t4 . The same linear syzygy can also be
obtained from a combination of linear syzygies that arise out of the pairs (t1, t4) and (t3, t4). Therefore,
to get a minimal generating set, we only need to consider the linear syzygies corresponding to the pairs
(t1, t2), (t2, t3), and (t3, t4). For each such pair, we have (s+2

3 ) number of linear syzygies. Therefore,
β2 = 3(s+2

3 ).

66



Mathematics 2019, 7, 869

Write the basis elements of R3(s+2
3 ) as

B2 =

⎧⎪⎨⎪⎩
e(1,�1−1,�2),�3+1,�4

e(2,�1−1,�4),�2+1,�3

e(3,�3,�4),�1,�2

: 1 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 1

⎫⎪⎬⎪⎭
and define ∂2 : R3(s+1

2 ) −→ Rβ1 by

∂2(e(1,�1−1,�2),�3+1,�4
) = x2e�1−1,�2,�3+1,�4 − x1e�1−1,�2,�3,�4+1;

∂2(e(2,�1−1,�4),�2+1,�3
) = x3e�1−1,�2+1,�3,�4 − x2e�1−1,�2,�3+1,�4 ;

∂2(e(3,�3,�4),�1,�2
) = x4e�1,�2,�3,�4 − x3e�1−1,�2+1,�3,�4 .

Now, we decipher the Betti numbers β3 and β4 to complete the resolution. The Hilbert series of
R/Is is

H(R/Is, t) =
(
1− β1t3s + β2t3s+1 − β3t3s+2 + β4t3s+3)

(1− t)4 =
p(t)

(1− t)4 .

As dim R/Is = 2, the polynomial p(t) has a factor (1 − t)2. Note that (1 − t)2 is a monic
polynomial of degree 2, therefore we can write p(t) = (1− t)2 · q(t), where

q(t) = β4t3s+1 + (2β4 − β3)t3s + a3s−1t3s−1 + · · ·+ a1t + 1. (5)

On the other hand, we also have

p(t)
(1− t)2 =

(
∑
n≥0

(n + 1)tn

)(
1− β1t3s + β2t3s+1 − β3t3s+2 + β4t3s+3

)
(6)

=
3s−1

∑
n=0

(n + 1)tn + (3s + 1− β1)t3s + (3s + 2− 2β1 + β2)t3s+1 + ∑
j≥3s+2

ajtj

For the expressions in Equations (5) and (6) to be equal, their respective coefficients should be
equal. In particular, we should have that

β4 = 3s + 2− 2β1 + β2 and 2β4 − β3 = 3s + 1− β1.

On substituting β1 = (s+3
3 ) and β2 = 3(s+2

3 ), we get β4 = (s
3) from the first equation and

substituting the value in the second equation, we get β3 = 3(s+1
3 ). Now we verify that aj = 0 for all

j ≥ 3s + 2. Note that for r ≥ 2, the coefficient of t3s+r in Equation (6) is

a3s+r = (3s + r + 1) + (r− 2)β4 − (r− 1)β3 + rβ2 − (r + 1)β1.

As 1− β1 + β2 − β3 + β4 = 0, this equation is reduced to a3s+r = (3s + 3) − β3 + 2β2 − 3β1.
Applying the binomial identify (n+1

r+1) = ( n
r+1) + (n

r) repeatedly, we get a3s+r = 0 for all r ≥ 2. Hence
the Hilbert series of R/Is is

H(R/Is, t) =
1 + 2t + 3t2 + 4t3 + · · ·+ 3st3s−1 −

(
(s+3

3 )− 3s− 1
)

t3s + (s
3)t

3s+1

(1− t)2 .

We now complete the description of the resolution. Write the basis elements of R3(s+1
3 ) as

B3 =

⎧⎪⎨⎪⎩
E1,�1,�2,�3,�4 ;
E2,�1,�2,�3,�4 ,
E3,�1,�2,�3,�4 ,

: 2 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 2

⎫⎪⎬⎪⎭ .
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Note that |B3| = 3(s+1
3 ). Now define the map ∂3 : R3(s+1

3 ) −→ R3(s+2
3 ) by

∂3(E1,�1,�2,�3,�4) = x4e(2,�1−1,�4),�2+1,�3
+ x4e(1,�1−1,�2),�3+1,�4

− x3e(3,�3,�4),�1−1,�2+1

−x3e(2,�1−2,�4),�2+2,�3
− x3e(1,�1−2,�2+1),�3+1,�4

+ x1e(3,�3,�4+1),�1−1,�2
;

∂3(E2,�1,�2,�3,�4) = x4e(1,�1−1,�2),�3+1,�4
− x3e(1,�1−2,�2+1),�3+1,�4

− x2e(3,�3+1,�4),�1−1,�2

+x1e(3,�3,�4+1),�1−1,�2
;

∂3(E3,�1,�2,�3,�4) = x3e(1,�1−2,�2+1),�3+1,�4
− x2e(2,�1−2,�4),�2+1,�3+1 − x2e(1,�1−2,�2),�3+2,�4

+x1e(2,�1−2,�4+1),�2+1,�3
.

We now compute the kernel of ∂3. Consider the set

A =
{

H�1,�2,�3,�4 : 3 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 3
}

,

where

H�1,�2,�3,�4 = x4E3,�1,�2,�3,�4 − x3E2,�1−1,�2+1,�3,�4 − x3E3,�1−1,�2+1,�3,�4 + x2E1,�1−1,�2,�3+1,�4

−x1E1,�1−1,�2,�3,�4+1 + x1E2,�1−1,�2,�3,�4+1.

It can be verified that ∂3(H�1,�2,�3,�4) = 0, i.e., A ⊆ ker ∂3. Let �′1 = �1 − 3, then one has �′1 + �2 +

�3 + �4 = s− 3. The cardinality of A is equal to the total number of non-negative integral solution
of this linear equation, which is (s

3). As in the proof of Theorem 3, it can be seen that ker ∂3 = 〈A〉.
Write the basis elements of R(s

3) as B4 =
{

G�1,�2,�3,�4 : 3 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 3
}

and define the

map ∂4 : R(s
3) −→ R3(s+1

3 ) by

∂4(G�1,�2,�3,�4) = H�1,�2,�3,�4 .

This is an injective map, and therefore we get the complete resolution:

0 → R(−3s− 3)β4−→R(−3s− 2)β3−→R(−3s− 1)β2−→R(−3s)β1−→R.

Note that in the above proof, we used s ≥ 3 only to conclude that pdim(R/Is) = 4. By Remark 4,
depth(R/I) = 2, and therefore pdim(R/I) = 2. Similarly, depth(R/I2) = 1 and hence pdim(R/I2) =

3. This forces ∂2 to be injective when s = 1 and ∂3 to be injective when s = 2. The computations
of syzygies in the cases of resolution of R/I and R/I2 remain the same as given in the above proof.
Therefore, we get resolutions truncated at Rβ2 in the case of R/I and truncated at Rβ3 in the case of
R/I2, with the expressions for β2 and β3 coinciding with the ones given in the proof. Therefore, we
can conclude that in this case, reg(Is) = 3s for all s ≥ 1.

As an immediate consequence, we obtain an expression for the asymptotic regularity of cover
ideals of complete 4-partite graphs.

Theorem 6. Let G denote a complete 4-partite graph with V(G) = �4
i=1Vi and E(G) = {{a, b} : a ∈

Vi, b ∈ Vj, i �= j}. Set Vi = {xi1, . . . , ximi} for i = 1, . . . , 4. Let JG ⊂ R = K[xij : 1 ≤ i ≤ 4; 1 ≤ j ≤ mi]

denote the cover ideal of G. Then the minimal free resolution of R/Js
G is of the form

0 → R(s
3)−→R3(s+1

3 )−→R3(s+2
3 )−→R(s+3

3 )−→R.
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Set α = (s− �4)m1 + (s− �3)m2 + (s− �2)m3 + (s− �1)m4. Furthermore, we have

reg(Js
G) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, for 0 ≤ �1, �2, �3, �4 ≤ s,
α + m4 − 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 1,
α + 2m4 − 2, for 2 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 2,
α + 3m4 − 3, for 3 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 3,

where �1 + �2 + �3 + �4 = s.

Proof. Let Xi = ∏mi
j=1 xij. Then JG = (X1X2X3, X1X2X4, X1X3X4, X2X3X4). Then it follows from

Theorem 5 that the minimal free resolution of R/Js
G is of the given form

0 → R(s
3)−→R3(s+1

3 )−→R3(s+2
3 )−→R(s+3

3 )−→R.

To compute the regularity of R/Js
G, we first need to find the degree’s of the generators of the

syzygies. Following the notation of Theorem 5, we have

deg e�1,�2,�3,�4 = deg
(

Xs−�4
1 Xs−�3

2 Xs−�2
3 Xs−�1

4

)
= (s− �4)m1 + (s− �3)m2 + (s− �2)m3 + (s− �1)m4,

deg e(1,�1−1,�2),�3,�4
= deg e(2,�1−1,�4),�2+1,�3

= deg e(3,�3,�4),�1,�2
= deg e�1,�2,�3,�4 + deg(X4),

deg E1,�1,�2,�3,�4 = deg E2,�1,�2,�3,�4 = deg E3,�1,�2,�3,�4 = deg e�1,�2,�3,�4 + 2 deg(X4),
deg G�1,�2,�3,�4 = deg e�1,�2,�3,�4 + 3 deg(X4).

Therefore, by setting α = deg e�1,�2,�3,�4 , we get

reg(Js
G) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, for 0 ≤ �1, �2, �3, �4 ≤ s,
α + deg(X4)− 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 1,
α + 2 deg(X4)− 2, for 2 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 2,
α + 3 deg(X4)− 3, for 3 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 3,

,

where �1 + �2 + �3 + �4 = s.

Here also, we have obtained an expression for reg(Js
G) not in the form of a linear polynomial.

However, as we have demonstrated in the previous cases, this can always be derived for a given graph.
Analyzing the interplay between the cardinalities of the partitions, one can obtain the polynomial
expression. Let m1 = m2 = m3 = m4 = m. Then,

α = (s− �4)m1 + (s− �3)m2 + (s− �2)m3 + (s− �1)m4

= (4s− (�1 + �2 + �3 + �4))m = 3ms.

Therefore reg(Js
G) = 3ms + (3m− 3) for all s ≥ 3.

Corollary 3. Let m, r be any two positive integers. Consider the arithmetic progression m1 = m, m2 = m + r,
m3 = m + 2r, and m4 = m + 3r in Theorem 6. Then, for all s ≥ 3, we have

reg(Js
G) = s(3m + 6r) + 3m− 3.

Proof. We have from Theorem 6, α = (s − �4)m1 + (s − �3)m2 + (s − �2)m3 + (s − �1)m4. On
substituting the values of mi’s in α, we get

α = s(4m + 6r)−m�4 − (m + r)�3 − (m + 2r)�2 − (m + 3r)�1
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By Theorem 6, we have for all s ≥ 3,

reg(Js
G) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α, for 0 ≤ �1, �2, �3, �4 ≤ s,
α + (m + 3r)− 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 1,
α + 2(m + 3r)− 2, for 2 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 2,
α + 3(m + 3r)− 3, for 3 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 3,

where �1 + �2 + �3 + �4 = s. To achieve the maximum value of α, negative terms in α should be
minimum. The coefficient of �1 in negative terms in α is largest, so �1 should be assigned the minimum
value. After assigning the minimum value to �1, assign the minimum value to �2, and, similarly,
the minimum value to �3. Then assign �4 = s− �1 − �2 − �3. For instance, to get the maximum of α

when 1 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 1, put �1 = 1, �2 = 0, �3 = 0, and �4 = s− 1. With appropriate
substitution, we get for all s ≥ 3

reg(Js
G) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s(3m + 6r), for 0 ≤ �1, �2, �3, �4 ≤ s,
s(3m + 6r) + m− 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 1,
s(3m + 6r) + 2m− 2, for 2 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 2,
s(3m + 6r) + 3m− 3, for 3 ≤ �1 ≤ s, 0 ≤ �2, �3, �4 ≤ s− 3.

Clearly for all m ≥ 1, and for all s ≥ 3, we get

reg(Js
G) = s(3m + 6r) + 3m− 3.

4.3. Complete m-Partite Graphs

Let G be a complete graph on m-vertices. Then the cover ideal JG of G is generated by
{x1 · · · x̂i · · · xm : 1 ≤ i ≤ m}. It follows from Remark 4 that depth R/Js

G = 0 for all s ≥ m − 1.
Moreover, by Remark 3, we know that R/Js

G has linear resolution for all s ≥ 1. Therefore, the minimal
graded free resolution of R/Js

G for all s ≥ m− 1 is of the form

0 → R(−s(m− 1)−m + 1)βm−→ → · · · → R(−s(m− 1)− 1)β2−→R(−s(m− 1))β1−→R.

Let g1, g2, . . . , gm be the minimal generators JG. Then, the elements in Js
G consist of elements

T�1,�2,...,�m = g�1
1 g�2

2 . . . g�m
m , such that �1 + �2 + · · ·+ �m = s and 0 ≤ �i ≤ s. Therefore the total number

of elements in Js
G is same as the total number of non-negative integral solution to the linear equation

�1 + �2 + · · ·+ �m = s, which is (s+m−1
m−1 ). Thus, μ(Js

G) = (s+m−1
m−1 ). Therefore, β1 = (s+m−1

m−1 ).
Let {e�1,�2,...,�m | 0 ≤ �i ≤ s; and �1 + �2 + · · · + �m = s} denote the standard basis for Rβ1 .

Let ∂1 : Rβ1 −→ R be the map ∂1(e�1,�2,...,�m) = T�1,�2,...,�m . As done in the proofs of Theorems 3 and 5,
we can see that the first syzygy is given by the relations of the form

xi · T�1,�2,··· ,�i−1,�i−1,�i+1+1,··· ,�m − xi+1 · T�1,�2,··· ,�i−1,�i ,�i+1,··· ,�m = 0

for each 1 ≤ i ≤ m − 1. Set �i − 1 = �′i and �i+1 + 1 = �′i+1. Then it can be seen that, for each
1 ≤ i ≤ m− 1, there exist as many such relations as the number of non-negative integer solutions of
�1 + · · ·+ �′i + · · · �m = s− 1. Therefore, the total number of such linear relations is (m− 1)(s+m−2

m−1 ).
Therefore β2 = (m−1

1 )(s+m−2
m−1 ). However it is not very difficult to realize that writing down the higher

syzygy relations are quite challenging. Based on Theorems 3 and 5 and some of the experimental
results using the computational commutative algebra package Macaulay 2 [17], we propose the
following conjecture.
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Conjecture 1. Let R = K[x1, x2, . . . , xm] and let J be the cover ideal of the complete graph Km. The minimal
graded free resolution of R/Is for all s ≥ m− 1 is of the form

0 → R(−s(m− 1)−m + 1)βm−→ · · · −→ R(−s(m− 1)− 1)β2−→R(−s(m− 1))β1−→R,

where

βi =

(
m− 1
i− 1

)(
s + m− i

m− 1

)
.

Notice that proving the above conjecture will give the Betti numbers of powers of cover ideals of
complete m-partite graphs. We conclude our article by proposing an expression for the regularity of
powers of the cover ideals of complete m-partite graphs:

Conjecture 2. Let G denote a complete m-partite graph with V(G) = �m
i=1Vi and E(G) = {{a, b} : a ∈

Vi, b ∈ Vj, i �= j}. Set Vi = {xi1, . . . , xini} for i = 1, . . . , m. Let JG ⊂ R = K[xij : 1 ≤ i ≤ m; 1 ≤ j ≤ ni]

denote the cover ideal of G. Let 0 ≤ �1, �2, . . . , �m ≤ s be integers such that �1 + �2 + · · ·+ �m = s. Set

α = s · (
m

∑
i=1

ni)−
m

∑
i=1

ni�m+1−i.

Then for all s ≥ m− 1, one has

reg(Js
G) = max

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α, for 0 ≤ �1, �2, · · · , �m ≤ s,
α + nm − 1, for 1 ≤ �1 ≤ s, 0 ≤ �2, · · · , �m ≤ s− 1,
α + 2(nm − 1), for 2 ≤ �1 ≤ s, 0 ≤ �2, · · · , �m ≤ s− 2,

...
α + (m− 1)(nm − 1), for m− 1 ≤ �1 ≤ s, 0 ≤ �2, · · · , �m ≤ s− (m− 1).
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Abstract: In this short note we give an elementary description of the linear part of the minimal
free resolution of a Stanley-Reisner ring of a simplicial complex Δ. Indeed, the differentials in the
linear part are simply a compilation of restriction maps in the simplicial cohomology of induced
subcomplexes of Δ. Along the way, we also show that if a monomial ideal has at least one generator of
degree 2, then the linear strand of its minimal free resolution can be written using only±1 coefficients.
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1. Introduction

Let k be a field and S = k[x1, . . . , xn] be the polynomial ring over it. Consider a finitely generated
graded S-module M, and its minimal free resolution F•. The linear part [1] lin(F•) of F• has the same
modules as F•, and its differential dlin is obtained from the differential d of F• by deleting all non-linear
entries in the matrices representing d in some basis of F•.

The main result of this short note is an explicit description of lin(F•) in the case where M = k[Δ]
is the Stanley-Reisner ring of a simplicial complex Δ. It is well-known that F• is multigraded and
generated as S-module in squarefree multidegrees. By Hochster’s formula, it holds that

TorS
i (k[Δ],k)U ∼= H̃#U−i−1(ΔU ;k),

where U ⊆ {1, . . . , n} is a squarefree multidgree and ΔU := {F ∈ Δ : F ⊆ U} is the restriction of Δ.
Therefore, lin(Fi) is isomorphic to the direct sum of modules of the form H̃#U−i−1(ΔU)⊗k S(−U).
The differential dlin turns out to be simply a compilation of all the restriction maps H̃i(ΔU) →
H̃i(ΔU\u), ω �→ ω|U\u, induced by the inclusions ΔU\u ⊂ ΔU .

Theorem 1. Let k[Δ] be the Stanley-Reisner ring of a simplicial complex Δ and let F• denote its minimal free
resolution. The linear part lin(F•) of F• is isomorphic to the complex with modules

lin(Fi) =
⊕

U⊆[n]
H̃#U−i−1(ΔU)⊗k S(−U),

and the components of the differential are given by

H̃j(ΔU)⊗k S(−U) −→ H̃j(ΔU\u)⊗k S(−U \ u)

ω⊗ s �−→ (−1)α(u,U)ω|U\u ⊗ xus

Mathematics 2019, 7, 605; doi:10.3390/math7070605 www.mdpi.com/journal/mathematics73
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This extends the result of Reiner and Welker ([2], Theorem 3.2), which describes the maps in the
linear strand of F•. An alternative description of lin(F•) in terms of the Alexander dual of Δ was given
by Yanagawa ([3], Theorem 4.1).

Example 1. Let Δ be the simplicial complex with vertex set {a, b, c, d, e} and facets {a, c, d}, {b, d, e}, {c, d, e}
and {b, c}. Its Stanley-Reisner ideal is IΔ = 〈ab, ac, bcd, bce〉. A minimal free resolution F• is given by the
following complex:

0 ← S

( ab ac bcd bce

1 ab ac bcd bce
)

←−−−−−−−−−−−−−−−−− S4

⎛⎜⎜⎜⎝
abc abcd abce bcde

ab −c cd ce 0
ac d 0 0 0
bcd 0 −a 0 e

bce 0 0 −a −d

⎞⎟⎟⎟⎠
←−−−−−−−−−−−−−−−−−−−−−−− S4

⎛⎜⎜⎜⎝
abcde

abc 0
abcd e

abce −d

bcde a

⎞⎟⎟⎟⎠
←−−−−−−−−−−− S ← 0

The linear entries are marked in boldface. We indicate the relevant induced subcomplexes of Δ in Figure 1.
There, the arrows indicate non-zero linear entries in the matrices of F•. They correspond to non-zero restriction
maps in the zero- or one-dimensional cohomology.

a
b
c

d

e

Figure 1. The induced subcomplexes of Δ from Example 1. The arrows indicate non-zero
linear coefficients.

As a special case of Theorem 1, we obtain a very simple and explicit description of the 1-linear
strand of F• (this is the strand containing the quadratic generators of IΔ). In particular, we show that
the maps in the 1-linear strand can always be written using only ±1 coefficients, see Corollary 1. This
extends and simplifies the results of Horwitz [4] and Chen [5], who constructed the minimal free
resolution of IΔ under the assumption that IΔ is generated by quadrics and has a linear resolution.

This article is structured as follows. In Section 2 we set up notational conventions and recall
various preliminaries. In the subsequent Section 3 we prove our main result. In the last section, we ask
several open questions and pose a conjecture.

2. Notation and Preliminaries

For n ∈ N we write [n] := {1, . . . , n}. To simplify the notation, we set U \ u := U \ {u} and
U ∪ u := U ∪ {u} for U ⊆ [n] and u ∈ [n].

Throughout the paper let k denote a fixed field and S = k[x1, . . . , xn]. Further, we write

m := 〈x1, . . . , xn〉
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for the unique maximal graded ideal in S. We only consider the fine Zn-grading on S, i.e., the degree of
xi is the i-th unit vector in Zn. Squarefree multidegrees are identified with subsets of [n]. In particular,
for U ⊆ [n], we write S(−U) for the free cyclic S-module whose generator is in degree U.

2.1. The Linear Part

Let M be a finitely generated graded S-module. We consider its minimal free resolution

F• : 0 ←− M ←− F0
d1←− · · · dn←− Fn ←− 0.

There is a natural filtration on F•, which is given by

F j(Fi) := mj−iFi.

The associated graded complex lin(F•) is called the linear part of F•. It was introduced in [1], but see
also ([6], Chapter 5). Note that lin(Fi) ∼= Fi as S-modules, but the differentials on the complexes are
different. Indeed, lin(F•) can be constructed alternatively by choosing a basis for F•, representing its
differential in this basis by matrices, and deleting all non-linear entries, that is, entries in m2.

2.2. Simplicial Chains and Cochains

Let Δ be a simplicial complex with vertex set [n]. For the convenience of the reader, we recall the
definitions of the chain and cochain complexes of Δ. For keeping track of the signs, we use the notation

α(A, B) := #{(a, b) ∈ A× B : a > b}

for subsets A, B ⊆ [n]. We further set α(a, B) = α({a}, B). The (augmented oriented) chain complex of
Δ is the complex of k-vector spaces C̃•(Δ), where C̃d(Δ) is the k-vector space spanned by the d-faces
of Δ, and the differential is given by

∂(F) = ∑
i∈F

(−1)α(i,F)F \ i.

Here, we consider the empty set as the unique face of dimension −1. Note that the definition of α(i, F)
depends on the ordering of [n]. The (augmented oriented) cochain complex of Δ is the dual complex
C̃•(Δ) := homk(C̃•(Δ),k). We write F∗ ∈ C̃d(Δ) for the basis element dual to a d-face F ∈ Δ. In this
basis, the differential on C̃•(Δ) can be written as

∂(F∗) = ∑
i∈[n]\F

(−1)α(i,F)(F ∪ i)∗.

Here, we adopt the convention that (F∪ i)∗ = 0 if F∪ i /∈ Δ. The (reduced) simplicial cohomology
of Δ is H̃∗(Δ) := H̃∗(Δ;k) := H∗(C̃•(Δ)).

For a subcomplex Γ ⊆ Δ, there is a restriction map C̃•(Δ)→ C̃•(Γ). If ω ∈ C̃•(Δ) is a cochain and
U ⊆ [n], then we write ω|U for the restriction of ω to ΔU .

3. Proof of the Main Result

Let Δ be a simplicial complex with vertex set [n]. Recall that the Stanley-Reisner ideal of Δ is
defined as IΔ := 〈xU : U ⊆ [n], U /∈ Δ〉, where xU := ∏i∈U xi. Further, the Stanley-Reisner ring is
k[Δ] := S/IΔ. Every squarefree monomial ideal arises as the Stanley-Reisner ideal of some simplicial
complex ([7], Theorem 1.7).

We are going to need an explicit version of Hochster’s formula. It is of course well known, but
we give the details for the convenience of the reader. Let V = spank{e1, . . . , en} be an n-dimensional
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k-vector space and let Λ•V denote the exterior algebra over it. For F = {i1, . . . , ir} ⊆ [n] with
i1 < · · · < ir, we set eF := ei1 ∧ · · · ∧ eir . Then k[Δ]⊗k Λ•V is the Koszul complex of k[Δ].

Proposition 1 ([8]). For each squarefree multidegree U ⊆ [n], there is an isomorphism of complexes (k[Δ]⊗k

Λ•V)U −→ C̃#U−1−•(ΔU), given by xF ⊗ eU\F �→ (−1)α(F,U)F∗.

Proof. It suffices to show that the following diagram commutes:

xF ⊗ eU\F ∑
i∈U\F

(−1)α(i,U\F)xFxi ⊗ eU\(F∪i)

(−1)α(F,U)F∗ (−1)α(F,U) ∑
i∈U\F

(−1)α(i,F)(F ∪ i)∗

We only need to show that α(F, U) + α(i, F) ≡ α(i, U \ F) + α(F ∪ i, U) modulo 2. This follows
from the following computation:

α(F ∪ i, U)− α(F, U) = α(i, U) = α(i, F) + α(i, U \ F)

Now we turn to the proof of Theorem 1, which we restate for convenience.

Theorem 2. Let k[Δ] be the Stanley-Reisner ring of a simplicial complex Δ and let F• denote its minimal free
resolution. The linear part lin(F•) of F• is isomorphic to the complex with modules

lin(Fi) =
⊕

U⊆[n]
H̃#U−i−1(ΔU)⊗k S(−U),

and the components of the differential are given by

H̃j(ΔU)⊗k S(−U) −→ H̃j(ΔU\u)⊗k S(−U \ u)

ω⊗ s �−→ (−1)α(u,U)ω|U\u ⊗ xus

Proof of Theorem 1. We follow the arguments of the proof of ([3], Theorem 4.1). Following [6]
and ([1], pp. 107–109), we consider the double complex (L•,•, ∂, ∂′), whose modules are given by
La,b := k[Δ]⊗k ΛaV ⊗k Sb and the differentials are:

∂(s1 ⊗ eF ⊗ s2) := ∑
i∈F

(−1)α(i,F)s1xi ⊗ eF\i ⊗ s2

∂′(s1 ⊗ eF ⊗ s2) := ∑
i∈F

(−1)α(i,F)s1 ⊗ eF\i ⊗ xis2

It is not difficult to see that the homology of (L•,•, ∂) is isomorphic to TorS•(k[Δ],k)⊗k S. By ([6],
Theorem 5.1), the linear part of the minimal free resolution is induced by ∂′.

Consider that the sub-double complex L′a,b :=
⊕

σ∈[n](k[Δ] ⊗k ΛaV ⊗k Sb)σ of L•,•. As
TorS•(k[Δ],k) is non-zero in squarefree degrees only ([7], Corollary 1.40), both L′•,• and L•,• have
the same homology with respect to ∂.

By Proposition 1, (L′•,•, ∂) is isomorphic to
⊕

U⊆[n] C̃#U−1−•(ΔU)⊗k S(−U), where ∂′ translates
to the map:

C̃j(ΔU)⊗k S(−U) −→ ⊕
u∈U

C̃j(ΔU\u)⊗k S(−U \ u)

F∗ ⊗ s �−→ ∑
u∈U

(−1)α(u,F)F∗|U\u ⊗ xus
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Now the claim follows by taking homology with respect to ∂ and applying ([6], Theorem 5.1).

A particularly simple case of Theorem 1 is the following. See Conjecture 1 for a conjectural
improvement of this result.

Corollary 1. Let I ⊆ S be a monomial ideal and let F• be its minimal free resolution. Then one can choose a
basis of F• such that the maps in its 2-linear strand have only coefficients in {−1, 0, 1}.

Proof. We may assume that I is squarefree by replacing it with its polarization ([7], p. 44). So it is the
Stanley-Reisner ideal of some simplicial complex Δ. By Theorem 1, maps in the 2-linear strand of its
minimal free resolution are induced by the restriction maps H̃0(ΔU)→ H̃0(ΔU\u) for each u ∈ U.

For each subset U ⊆ [n] we choose a distinguished connected component CU,0 of ΔU . For each
other connected component CU,i of it, let eU,i : U → k the function which is 1 on the vertices of CU,i
and 0 on the others. It is clear that the set {eU,i : i > 0} forms a basis of H̃0(ΔU).

We claim that in this basis, the differential has coefficients ±1. For i > 0 there are the
following cases:

1. CU,i = CU\u,j for some j > 0,
2. CU,i = CU\u,0,
3. CU,i splits into several connected components CU\u,j1 , . . . , CU\u,jr of ΔU\u with j1, . . . , jr > 0,
4. same as (3), with j1 = 0,
5. CU,i is the isolated vertex u.

In each case, it is easy to see that eU,i is mapped to a linear combination of the eU\u,j with
coefficients in {−1, 0, 1}.

4. Questions and Open Problems

4.1. Affine Monoid Algebras

Recall that a (positive) affine monoid Q ⊆ Nn is a finitely generated submonoid of Nn. The
monoid algebras k[Q] of affine monoids form a well-studied class of algebras. We refer the reader
to [7] or ([9], Chapter 6) for more information on these rings. Each positive affine monoid has a
unique minimal generating set, which is called its Hilbert basis. It yields a set of generators for
k[Q] and thus a surjection S → k[Q] from a polynomial ring S. Moreover, k[Q] carries a natural
Nn-multigrading. There is a combinatorial interpretation of the multigraded Betti numbers of k[Q],
namely TorS

i (k[Q],k)a
∼= H̃i(Δa), for a certain simplicial complex Δa, see ([7], Theorem 9.2).

Question 1. Is there a topological interpretation of the linear part of the minimal free resolution of
k[Q] over S?

In this situation, a description along the lines of Theorem 1 would require a map H̃i(Δa) →
H̃i−1(Δa−b), where b is an element of the Hilbert basis such that a−b ∈ Q. Here, Δa−b is a subcomplex
of Δa, but in general it is neither a restriction nor a link.

4.2. Approximations of Resolutions

Let IΔ ⊆ S be the Stanley-Reisner ideal of some simplicial complex Δ and let F• denote the
minimal free resolution of IΔ. Hochster’s formula can be interpreted as giving a description of the
complex F•/mF• (with trivial differential). Our Theorem 1 extends this by (essentially) describing
F•/m2F•. These results can be considered as successive approximations of F•, so the following
question seems natural:

Question 2. Is there a combinatorial or topological description of F•/m3F•?
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This seems to be substantially more difficult than describing F•/m2F•. One reason for this is the
following. Even though a minimal free resolution is unique up to isomorphism, if one wants to write
it down explicitly one needs to choose an S-basis for F•. This choice can be done in two steps. First
choose a k-basis for F•/mF• = Tor∗(S/IΔ,k), and then choose a lifting of these elements to F• (any
such lifting works due to Nakayama’s lemma). Hochster’s formula is a convenient tool for the first
choice. Theorem 1 implies that the differential of F•/m2F• does not depend on the second choice, but
this is no longer true for F•/m3F•.

4.3. Coefficients in Resolutions

Let I ⊆ S be a monomial ideal containing no variables, and let F• denote it with minimal free
resolution. We saw in Corollary 1 that the differential in the 2-linear strand of F• can be written using
only coefficients ±1. On the other hand, in ([2], Section 5) Reiner and Welker gave an example where
the differential on the 4-linear strand cannot be written using only coefficients ±1. We believe that
their example is optimal in that sense, and hence offer the following conjecture.

Conjecture 1. Let I ⊆ S be a monomial ideal. Then it is possible to choose a basis for its minimal free
resolution F•, such that the differential on the 3-linear strand can be written using only coefficients ±1.

Note that the first map in F•, d : F1 → F0, can always be written using coefficients from {−1, 0, 1}.
This is easily seen by considering the Taylor resolution. Further, it is not difficult to explicitly give a
basis for F2 such that the differential d : F2 → F1 has coefficients ±1.
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Abstract: In the present paper, we study the normality of the toric rings of stable set polytopes,
generators of toric ideals of stable set polytopes, and their Gröbner bases via the notion of edge
polytopes of finite nonsimple graphs and the results on their toric ideals. In particular, we give
a criterion for the normality of the toric ring of the stable set polytope and a graph-theoretical
characterization of the set of generators of the toric ideal of the stable set polytope for a graph of
stability number two. As an application, we provide an infinite family of stable set polytopes whose
toric ideal is generated by quadratic binomials and has no quadratic Gröbner bases.

Keywords: toric ideals; Gröbner bases; graphs; stable set polytopes

1. Introduction

Let P ⊂ Rn be an integral convex polytope, i.e., a convex polytope whose vertices have integer
coordinates, and let P ∩Zn = {a1, . . . , am}. Let K[X, X−1, t] = K[x1, x−1

1 , . . . , xn, x−1
n , t] be the Laurent

polynomial ring in n + 1 variables over a field K. Given an integer vector a = (a1, . . . , an) ∈ Zn, we
set Xat = xa1

1 · · · xan
n t ∈ K[X, X−1, t]. Then, the toric ring of P is the subalgebra K[P ] of K[X, X−1, t]

generated by {Xa1 t, . . . , Xam t} over K. Here, we need the variable t in order to regard K[P ] as a
homogeneous algebra by setting each deg Xai t = 1. The toric ideal IP of P is the kernel of a surjective
homomorphism π : K[y1, . . . , ym] → K[P ] defined by π(yi) = Xai t for 1 ≤ i ≤ m. In general, IP is
generated by homogeneous binomials and any reduced Gröbner basis of IP consists of homogeneous
binomials; see [1]. A simplex σ is called a subsimplex of P if the set of vertices of σ is contained in
P ∩Zn. A set Δ of subsimplices of P is called a covering of P if

⋃
σ∈Δ σ = P . A covering Δ of P is called

a triangulation of P if Δ is a simplicial complex. A covering (triangulation) Δ of P is called unimodular
if the normalized volume of each maximal simplex in Δ is equal to 1. The following properties of
an integral convex polytope P have been investigated in many papers on commutative algebra and
combinatorics:

(i) P is unimodular (any triangulation of P is unimodular), the initial ideal of IP is generated by
squarefree monomials with respect to any monomial order ([2] Section 4.3);

(ii) P is compressed (any “pulling” triangulation is unimodular), the initial ideal of IP is generated
by squarefree monomials with respect to any reverse lexicographic order [3,4];

(iii) P has a regular unimodular triangulation, there exists a monomial order such that the initial
ideal of IP is generated by squarefree monomials ([2] Theorem 4.17);

(iv) P has a unimodular triangulation ([2] Section 4.2.4);
(v) P has a unimodular covering ([2] Section 4.2.4);
(vi) P is normal, K[P ] is a normal semigroup ring ([2] Section 4.2.3).
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Details for these conditions are explained in ([1] Chapter 8) and ([2] Chapter 4). The hierarchy (i)
⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) is trivial by their definition. The implication (v)⇒ (vi) is explained in ([2]
Theorem 4.11). Note that the converse of each of the above implications is false. On the other hand, the
following properties of IP are studied by many authors:

(a) IP has a Gröbner bases consisting of quadratic binomials;
(b) K[P ] is Koszul ([2] Definition 2.20);
(c) IP is generated by quadratic binomials.

The hierarchy (a)⇒ (b)⇒ (c) is known, and the converse of each of the two implications is false;
see ([5] Examples 2.1 and 2.2) and [6].

The purpose of this paper is to study such properties of toric rings and ideals of stable set
polytopes of simple graphs. Let G be a finite simple graph on the vertex set [n] = {1, 2, . . . , n},
and let E(G) denote the set of edges of G. Given a subset W ⊂ [n], we associate the (0, 1) vector
ρ(W) = ∑j∈W ej ∈ Rn, where ei is the ith unit vector of Rn. In particular, ρ(∅) = 0 ∈ Rn. A subset
W ⊂ [n] is said to be stable (or independent) if {i, j} /∈ E(G) for all i, j ∈ W with i �= j. In particular, ∅
and each {i} with i ∈ [n] are stable. Let S(G) be the set of all stable sets of G. The stable set polytope
(independent set polytope) QG ⊂ Rn of a simple graph G is the convex hull of {ρ(W) : W ∈ S(G)}.

Example 1. If G is a complete graph, then QG is a unit simplex, and hence IQG = {0} and K[QG] =

K[x1t, . . . , xnt, t]  K[y1, . . . , yn+1].

Stable set polytopes are very important in many areas, such as optimization theory as well as
combinatorics and commutative algebra. Below, we present a list of results on the toric ring K[QG]

and the toric ideals IQG of the stable set polytope QG of a simple graph G.

1. The stable set polytope QG is compressed if and only if G is perfect ([3,4,7]).
2. Let G be a perfect graph. Then, the toric ring K[QG] is Gorenstein if and only if all maximal

cliques of G have the same cardinality ([8]).
3. The toric ring K[QG] is strongly Koszul ([2] p. 53) if and only if G is trivially perfect ([9]

Theorem 5.1).
4. Let G(P) be a comparability graph of a poset P. Then, QG(P) is called a chain polytope of P. It is

known that the toric ideals of a chain polytope have a squarefree quadratic initial ideal (see
[10] Corollary 3.1). For example, if a graph G is bipartite, then there exists a poset P such that
G = G(P).

5. Suppose that a graph G on the vertex set [n] is an almost bipartite graph, i.e., there exists a vertex
v such that the induced subgraph of G on the vertex set [n] \ {v} is bipartite. Then, IQG has a
squarefree quadratic initial ideal ([11] Theorem 8.1). For example, any cycle is almost bipartite.

6. Let G be the complement of an even cycle of length 2k. Then, the maximum degree of a minimal
set of binomial generators of IQG is equal to k ([11] Theorem 7.4).

In the present paper, we study the normality of the toric rings of stable set polytopes, generators
of toric ideals of stable set polytopes, and their Gröbner bases via the notion of edge polytopes of finite
(nonsimple) graphs and the results on their toric ideals. Here, the edge polytope PG ⊂ Rn of a graph G
allowing loops and having no multiple edges is the convex hull of

{ei + ej : {i, j} is an edge of G} ∪ {2ei : there is a loop at i in G}.

This paper is organized as follows. In Section 2, fundamental properties of K[QG] and IQG

are studied. In particular, the relationship between the stable set polytopes and the edge polytopes
are given (Lemma 1). In addition, it is shown that QG is unimodular if and only if the complement of
G is bipartite (Proposition 5). We also point out that, by the results in [11], it is easy to see that IQG
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has a squarefree quadratic initial ideal if G is either a chordal graph or a ring graph (Proposition 2).
In Section 3, we discuss the normality of the stable set polytopes. We prove that, for a simple graph
G of stability number two, QG is normal if and only if the complement of G satisfies the “odd cycle
condition” (Theorem 1). Using this criterion, we construct an infinite family of normal stable set
polytopes without regular unimodular triangulations (Theorem 2). For general simple graphs, some
necessary conditions for QG to be normal are also given. In Section 4, we study the set of generators
and Gröbner bases of toric ideals of stable set polytopes. It is shown that for a simple graph G of
stability number two, the set of binomial generators of IQG are described in terms of even closed walks
of a graph (Theorem 3). If G is bipartite and if IQG is generated by quadratic binomials, then IQG has a
quadratic Gröbner basis (Corollary 1). Finally, using the results on normality, generators, and Gröbner
bases, we present an infinite family of non-normal stable set polytopes whose toric ideal is generated
by quadratic binomials and has no quadratic Gröbner bases (Theorem 4).

2. Fundamental Properties of the Stable Set Polytopes

In this section, we give some fundamental properties of K[QG] and IQG . In particular, a relation
between the stable set polytopes and the edge polytopes is discussed. The stability number α(G) of a
graph G is the cardinality of the largest stable set. If a simple graph G satisfies α(G) = 1, then G is a
complete graph in Example 1. Given lattice polytopes P1 ⊂ Rm and P2 ⊂ Rn, the product of P1 and
P2 is defined by P1 ×P2 = {(α1, α2) ∈ Rm+n : α1 ∈ P1, α2 ∈ P2}. Then the toric ring K[P1 ×P2] is
called the Segre product of K[P1] and K[P2].

Example 2. Suppose that a simple graph G is not connected. Let G1, . . . , Gs be the connected components
of G. Then, it is easy to see that QG = QG1 × · · · × QGs , and hence K[QG] is the Segre product of
K[QG1 ], . . . , K[QGs ].

Thus, it is enough to study stable set polytopes of connected simple graphs G such that α(G) ≥ 2.
We use the notion of toric fiber products to study toric rings of stable set polytopes. This notion is first
introduced in [12] as a generalization of the Segre product. Since the definition of toric fiber products
is complicated, we give an example.

Example 3. Let G1 and G2 be cycles of length 4, where E(G1) = {{1, 2}, {2, 3}, {3, 4}, {1, 4}} and
E(G2) = {{3, 4}, {4, 5}, {5, 6}, {3, 6}}. Then K[QG1 ] = K[t, x1t, x2t, x3t, x4t, x1x3t, x2x4t] and K[QG2 ] =

K[t, x3t, x4t, x5t, x6t, x3x5t, x4x6t]. We define the multigrading by deg(xa1
1 . . . xa6

6 tα) = (a3, a4, α). Let A =

{(0, 0, 1), (1, 0, 1), (0, 1, 1)}. Then, the toric fiber product K[QG1 ]×A K[QG2 ] is generated by the monomials
xa1

1 . . . xa4
4 tα · xb3

3 . . . xb6
6 tβ such that xa1

1 . . . xa4
4 tα ∈ K[QG1 ] and xb3

3 . . . xb6
6 tβ ∈ K[QG2 ] have the same

multidegree a ∈ A. It is easy to see that K[QG1 ] ×A K[QG2 ]
∼= K[QG1∪G2 ], and A corresponds to the

lattice point in QG1∩G2 , which is a simplex.

The application of toric fiber products to toric rings of stable set polytopes was studied in [11].
For i = 1, 2, let Gi be a simple graph on the vertex set Vi and the edge set Ei. If V1 ∩ V2 is a clique
of both G1 and G2, then we construct a new graph G1�G2 on the vertex set V1 ∪V2 and the edge set
E1 ∪ E2, which is called the clique sum of G1 and G2 along V1 ∩V2.

Proposition 1. Let G1�G2 be the clique sum of simple graphs G1 and G2. Then, IQG1�G2
is a toric fiber product

of IQG1
and IQG2

. We can construct a set of binomial generators (or a Gröbner basis) of IQG1�G2
from that of

IQGi
’s and some quadratic binomials. Moreover, K[QG1�G2 ] is normal if and only if both K[QG1 ] and K[QG2 ]

are normal.

Proof. Note that IQG1∩G2
= {0}. Hence, this is a special case of ([11] Proposition 5.1) by ([11]

Proposition 9.6).
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A simple graph G is called chordal if any induced cycle of G is of length 3. A graph G is called a ring
graph if each block of G that is not a bridge or a vertex can be constructed from a cycle by successively
adding cycles of length ≥ 3 using the clique sum construction. Ring graphs are introduced in [13,14].

Proposition 2. Suppose that a simple graph G is either a chordal graph or a ring graph. Then, IQG has a
squarefree quadratic initial ideal.

Proof. It is known by ([15] Proposition 5.5.1) that a graph G is chordal if and only if G is a clique sum
of complete graphs. By the statement in Example 1 and Proposition 1, IQG has a squarefree quadratic
initial ideal if G is chordal.

Suppose that G is a ring graph. Then, G is a clique sum of trees and cycles since any graph is a
clique sum (along a vertex) of trees and its blocks. Since trees and cycles are almost bipartite, by ([11]
Theorem 8.1), the toric ideal IQH has a squarefree quadratic initial ideal if H is either a tree or a cycle.
Thus, by Proposition 1, IQG has a squarefree quadratic initial ideal if G is a ring graph.

A graph G is called perfect if the chromatic number of every induced subgraph of G is equal to the
size of the largest clique of that subgraph; see [15]. We recall the following result on perfect graphs
and their stable set polytopes; see [3,4,7].

Proposition 3. Let G be a simple graph. Then, QG is compressed if and only if G is perfect. In particular, if G
is perfect, then QG is normal.

For a graph G on the vertex set [n], let G denote the complement of a graph G. An induced cycle
of G of length > 3 is called a hole of G and an induced cycle of G of length > 3 is called an antihole of G.
Below we combine two important characterizations of perfect graphs, where the first part is the strong
perfect graph theorem and the second part considers just the perfect graphs with stability number 2.

Proposition 4. Let G be a simple graph. Then G is a perfect graph if and only if G has no odd holes and no
odd antiholes. In particular, G is a perfect graph with α(G) = 2 if and only if G is bipartite and not empty.

For a graph G, let G� be the nonsimple graph on the vertex set [n + 1] whose edge (and loop) set
is E(G) ∪ {{i, n + 1} : i ∈ [n + 1]}. The following lemma plays an important role when we study the
stable set polytope QG of G.

Lemma 1. Let G be a simple graph with α(G) = 2. Then we have K[QG]  K[PG� ]. Moreover, if G is
bipartite, then there exists a bipartite graph H such that K[QG]  K[PH ].

Proof. Let ϕ : K[QG]→ K[x1, . . . , xn+1] be the injective ring homomorphism defined by

ϕ(xa1
1 · · · xan

n t) = xa1
1 · · · xan

n x2−(a1+···+an)
n+1 .

Then ϕ(t) = x2
n+1, ϕ(xit) = xixn+1 for i = 1, 2, . . . , n, and ϕ(xkx�t) = xkx� for each stable set {k, �}

of G. Note that {k, �} is a stable set of G if and only if {k, �} is an edge of G. Hence, the image of ϕ

is K[PG� ].
Suppose that G is bipartite. Then G has no odd cycles. Hence, any odd cycle of G� have the vertex

n + 1. (Note that {n + 1, n + 1} is an odd cycle of length 1.) Thus, in particular, any two odd cycles of
G� has a common vertex. We now show that there exists a bipartite graph H such that K[PG� ]  K[PH ]

(by a similar argument in ([16] Proof of Proposition 5.5)). Let [n] = V1 ∪V2 be a partition of the vertex
set of the bipartite graph G. Let H be a bipartite graph on the vertex set [n + 2] and the edge set

E(H) = E(G) ∪ {{i, n + 1} : i ∈ V1} ∪ {{j, n + 2} : j ∈ V2} ∪ {{n + 1, n + 2}}.
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Let ψ : K[PH ]→ K[x1, . . . , xn+1] be the ring homomorphism defined by

ψ(xa1
1 · · · xan+2

n+2 ) = xa1
1 · · · xan

n xan+1+an+2
n+1 .

Since G� is obtained from H by identifying the vertices n + 1 and n + 2, it follows that the image
of ψ is K[PG� ]. Hence, it is enough to show that ψ is injective. Suppose that u = xa1

1 · · · xan+2
n+2 ,

v = xb1
1 · · · xbn+2

n+2 ∈ K[PH ] satisfies ψ(u) = ψ(v). Then an+1 + an+2 = bn+1 + bn+2 and ai = bi for
i = 1, 2, . . . , n. Since [n] = V1 ∪V2 is a partition for G, we have

an+2 + ∑
k∈V1

ak = an+1 + ∑
�∈V2

a�, bn+2 + ∑
k∈V1

bk = bn+1 + ∑
�∈V2

b�.

Thus, an+1 = bn+1 and an+2 = bn+2, as desired.

The first application of Lemma 1 is as follows:

Proposition 5. Let G be a simple graph. Then the following conditions are equivalent:

(i) QG is unimodular;
(ii) G is bipartite.

Moreover, if α(G) = 2, then the conditions

(iii) QG is compressed;
(iv) G is perfect

are also equivalent to conditions (i) and (ii).

Proof. We may assume that G is not complete (i.e., G is not empty and α(G) �= 1). Let A be the matrix
whose columns are vertices of QG, and let

Ã =

(
A

1 · · · 1

)
and B =

(
0 e1 · · · en

1 1 · · · 1

)
.

Then B is a submatrix of Ã. Since |det(B)| = 1, the rank of Ã is n + 1. It is known by ([1] p. 70) that
QG is unimodular if and only if the absolute value of any nonzero (n + 1)-minor of the matrix Ã is 1.

Suppose that G is not bipartite. Then G has an odd cycle C = (i1, . . . , i2�+1). Then the absolute
value of the (n + 1)-minor of Ã that corresponds to

{eik + eik+1
: 1 ≤ k ≤ 2�} ∪ {ei1 + ei2�+1

, 0} ∪ {ej : j /∈ {i1, . . . , i2�+1}}

equals 2. Hence, QG is not unimodular. Thus, we have (i)⇒ (ii).
Suppose that G is bipartite. By Lemma 1, there exists a bipartite graph H such that K[QG]  K[PH ].

It is well known that the edge polytope of a bipartite graph is unimodular; see ([2] Theorem 5.24).
Thus, PH is unimodular, and hence we have (ii)⇒ (i).

Suppose that α(G) = 2. By Proposition 3, conditions (iii) and (iv) are equivalent. In addition, by
Proposition 4, conditions (ii) and (iv) are equivalent.

We close this section with the following fundamental fact on stable set and edge polytopes.

Proposition 6. Let G′ be an induced subgraph of a graph G. Then

(i) the edge polytope PG′ is a face of PG;
(ii) if G is a simple graph, then QG′ is a face of QG.
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It can be seen from Proposition 6 that several properties of K[QG] (resp. K[PG]) are inherited to
K[QG′ ] (resp. K[PG′ ]), for example, normality of the toric ring, the existence of a squarefree initial ideal,
existence of a quadratic Gröbner basis, and the existence of the set of quadratic binomial generators of
the toric ideal; see [17].

3. Normality of Stable Set Polytopes

In this section, we study the normality of stable set polytopes. Normality of edge polytopes is
studied in [18,19], and we make use of the normality conditions of edge polytopes while working with
stable set polytopes, due to the relation discovered in Lemma 1. If C1 and C2 are cycles in a graph G,
then {i, j} ∈ E(G) is called a bridge of C1 and C2 if i is a vertex of C1 \ C2 and j is a vertex of C2 \ C1.
We say that a graph G satisfies the odd cycle condition if any induced odd cycles C1 and C2 in G have
either a common vertex or a bridge. For the sake of simplicity, assume that a graph H has at most
one loop. Then, it is known by [18,19] that PH is normal if and only if each connected component
of H satisfies the odd cycle condition. By ([18] Corollary 2.3) and Lemma 1, we have the following.
(Note that G below is not necessarily connected.)

Theorem 1. Let G be a simple graph with α(G) = 2. Then the following conditions are equivalent.

(i) QG is normal;
(ii) QG has a unimodular covering;
(iii) G satisfies the odd cycle condition, i.e., if two odd holes C1 and C2 in G have no common vertices, then

there exists a bridge of C1 and C2 in G.

In particular, if QG is normal, then PG is normal.

Proof. By Lemma 1, we have K[QG]  K[PG� ]. Hence, by ([18] Corollary 2.3), conditions (i) and
(ii) are equivalent, and they hold if and only if G� satisfies the odd cycle condition. (Note that G�

is connected.) Since the vertex n + 1 is incident to any vertex of G�, it is easy to see that G� satisfies the
odd cycle condition if and only if G satisfies the odd cycle condition.

It is shown in [20] that there exists a graph G such that PG is normal and that IPG has no squarefree
initial ideals. Examples on infinite families of such edge polytopes are given in [21]. We can construct
the stable set polytopes with the same properties. Let G1(p1, . . . , p5) be the graph defined in ([21]
Theorem 3.10).

Theorem 2. Let G be a graph such that G = G1(p1, . . . , p5) with pi ≥ 2 for i = 1, . . . , 5. ThenQG is normal,
and IQG has no squarefree initial ideals.

Proof. Since G has no triangles, we have α(G) = 2. Since G1(p1, . . . , p5) satisfies the odd cycle
condition, QG is normal by Theorem 1. On the other hand, IG has no squarefree initial ideals. Since G
is an induced subgraph of G�, IQG has no squarefree initial ideals by Lemma 1 and Proposition 6.

It seems to be a challenging problem to characterize the normal stable set polytopes with
large stability numbers. We give several necessary conditions. The following is a consequence
of Proposition 6 and Theorem 1.

Proposition 7. Let G be a simple graph. Suppose that QG is normal. Then any two odd holes of G without a
common vertex have a bridge in G.

Proof. Suppose that two odd holes C1, C2 of G without common vertices have no bridges in G. Let H
be an induced subgraph of G whose vertex set is that of C1 ∪ C2. Then α(H) = 2, and hence QH is not
normal by Theorem 1. Thus, QG is not normal by Proposition 6.
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Similar conditions are required for antiholes of G.

Proposition 8. Let G be a simple graph. Suppose that QG is normal. Then G satisfies all of the
following conditions:

(i) Any two odd antiholes of G having no common vertices have a bridge in G.
(ii) Any two odd antiholes of G of length ≥ 7 having exactly one common vertex have a bridge in G.
(iii) Any odd hole and odd antihole of G having no common vertices have a bridge in G.

Proof. Let G be a graph on the vertex set [n]. Let A = {(ρ(W), 1) : W ∈ S(G)}. It is known by ([1]
Proposition 13.5) that QG is normal if and only if we have Z≥0A = Q≥0A∩Zn+1.

(i) Let C1 = (i1, . . . , i2k+1) and C2 = (j1, . . . , j2�+1) be odd antiholes in G having no common
vertices and no bridges in G. By Proposition 6, we may assume that G = C1 ∪ C2. Then,

∑
W∈S(C1) and |W|=k

(ρ(W), 1) = (2k + 1)en+1 + k
2k+1

∑
p=1

eip ,

∑
W∈S(C2) and |W|=�

(ρ(W), 1) = (2�+ 1)en+1 + �
2�+1

∑
q=1

ejq .

Since k, � ≥ 2, we have k�− k− � ≥ 0. Hence,

α := 5en+1 +
2k+1

∑
p=1

eip +
2�+1

∑
q=1

ejq

=
1
k

(
(2k + 1)en+1 + k

2k+1

∑
p=1

eip

)
+

1
�

(
(2�+ 1)en+1 + �

2�+1

∑
q=1

ejq

)
+

k�− k− �

k�
en+1

belongs to Q≥0A∩Zn+1. Suppose that α belongs to Z≥0A. Since the (n + 1)-th coordinate of α is 5,
there exist W1, . . . , W5 such that

α = (ρ(W1), 1) + · · ·+ (ρ(W5), 1),

where each Wi belongs to either S(C1) or S(C2). It then follows that ∑Wi∈S(C1)
|Wi| = 2k + 1 and

∑Wi∈S(C2)
|Wi| = 2�+ 1. Since max{|W| : W ∈ S(C1)} = k, max{|W| : W ∈ S(C2)} = �, we have

|{W1, . . . , W5} ∩ S(C1)| ≥ 3,

|{W1, . . . , W5} ∩ S(C2)| ≥ 3.

This is a contradiction. Thus, α is not in Z≥0A.
(ii) Let C1 = (i1, . . . , i2k+1) and C2 = (j1, . . . , j2�+1) be odd antiholes in G of length ≥ 7 having

exactly one common vertex i1 = j1 and no bridges in G. By Proposition 6, we may assume that
G = C1 ∪ C2. Let

S1 = {W ∈ S(C1) : |W| = k and either i1 ∈ W or {i2, i2k+1} ⊂ W},

S2 = {W ∈ S(C2) : |W| = � and either j1 ∈ W or {j2, j2�+1} ⊂ W}.

85



Mathematics 2019, 7, 613

Then,

∑
W∈S1

(ρ(W), 1) = (2k− 1)en+1 + kei1 + (k− 1)
2k+1

∑
p=2

eip ,

∑
W∈S2

(ρ(W), 1) = (2�− 1)en+1 + �ei1 + (�− 1)
2�+1

∑
q=2

ejq .

Since k, � ≥ 3, we have 0 < 1/(k− 1) + 1/(�− 1) ≤ 1. Hence,

α := 5en+1 + 3ei1 +
2k+1

∑
p=2

eip +
2�+1

∑
q=2

ejq

=
1

k− 1

(
(2k− 1)en+1 + kei1 + (k− 1)

2k+1

∑
p=2

eip

)

+
1

�− 1

(
(2�− 1)en+1 + �ei1 + (�− 1)

2�+1

∑
q=2

ejq

)
+

(
1− 1

k− 1
− 1

�− 1

)
(ei1 + en+1)

belongs to Q≥0A∩Zn+1. Since the (n + 1)-th coordinate of α is 5, there exist W1, . . . , W5 ∈ S(G) such
that α = (ρ(W1), 1)+ · · ·+(ρ(W5), 1). Then, each Wi belongs to either S(C1) or S(C2). Since max{|W| :
W ∈ S(C1)} = k, max{|W| : W ∈ S(C2)} = �, we have

|{W1, . . . , W5} ∩ S(C1)| ≥ 2,

|{W1, . . . , W5} ∩ S(C2)| ≥ 2.

Thus, (|{W1, . . . , W5} ∩ S(C1)|, |{W1, . . . , W5} ∩ S(C2)|) is either (2, 3) or (3, 2). Changing indices
if necessary, we may assume that W1, W2 ∈ S(C1) and W3, W4, W5 ∈ S(C2). It then follows that
ρ(W1) + ρ(W2) = ∑2k+1

p=2 eip , and hence ρ(W3) + ρ(W4) + ρ(W5) = 3ei1 + ∑2�+1
q=2 ejq . This implies that

i1 ∈ W3 ∩W4 ∩W5. Thus, i2, i2�+1 /∈ W3, W4, W5, a contradiction. Therefore, we have α /∈ Z≥0A.
(iii) Let C1 = (i1, . . . , i2k+1) be an odd hole and C2 = (j1, . . . , j2�+1) an odd antihole in G having

no common vertices. By Proposition 6, we may assume that G = C1 ∪ C2. Then,

∑
W∈S(C1) and |W|=2

(ρ(W), 1) = (2k + 1)en+1 + 2
2k+1

∑
p=1

eip ,

∑
W∈S(C2) and |W|=�

(ρ(W), 1) = (2�+ 1)en+1 + �
2�+1

∑
q=1

ejq .

Hence,

(k + 3)en+1 +
2k+1

∑
p=1

eip +
2�+1

∑
q=1

ejq

=
1
2

(
(2k + 1)en+1 + 2

2k+1

∑
p=1

eip

)
+

1
�

(
(2�+ 1)en+1 + �

2�+1

∑
q=1

ejq

)
+

�− 2
2�

en+1

belongs to Q≥0A ∩ Zn+1. However, this vector is not in Z≥0A since max{|W| : W ∈ S(C1)} = 2,
max{|W| : W ∈ S(C2)} = �, and �(2k + 1)/2�+ �(2�+ 1)/�� = k + 4 > k + 3.

Unfortunately, the above conditions are not sufficient to be normal in general. For example, if the
length of the two odd antiholes of G without common vertices are long, then a lot of bridges in G seem
to be needed.
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4. Generators and Gröbner Bases of IQG

For a toric ideal I, let d(I) be the maximum degree of binomials in a minimal set of binomial
generators of I. If I = {0}, then we set d(I) = 0. In this section, we study d(IQG ) by using results on
the toric ideals of edge polytopes.

Let G be a graph on the vertex set [n] allowing loops and having no multiple edges. Let E(G) =

{e1, . . . , em} be a set of all edges and loops of G. The toric ideal IPG is the kernel of a homomorphism
π : K[y1, . . . , ym] → K[x1, . . . , xn] defined by π(yi) = xkx� where ei = {k, �}. A finite sequence of
the form

Γ = ({v1, v2}, {v2, v3}, . . . , {vq, vq+1}) (1)

with each {vk, vk+1} ∈ E(G) is called a walk of length q of G connecting v1 ∈ [n] and vq+1 ∈ [n]. A
walk Γ of the form (1) is called even (resp. odd) if q is even (resp. odd). A walk Γ of the form (1) is called
closed if vq+1 = v1. Given an even closed walk Γ = (ei1 , ei2 , . . . , ei2q) of G, we write fΓ for the binomial

fΓ =
q

∏
k=1

yi2k−1
−

q

∏
k=1

yi2k ∈ IPG .

We regard a loop as an odd cycle of length 1. We recall the following result from [1,5,22].

Proposition 9. Let G be a graph having at most one loop. Then IPG is generated by all the binomials fΓ, where
Γ is an even closed walk of G. In particular, IPG = (0) if and only if each connected component of G has at most
one cycle and the cycle is odd.

The following theorem implies that the set of binomial generators of IQG can also be characterized
by the graph-theoretical terminology if α(G) = 2.

Theorem 3. Let G be a simple graph with α(G) = 2. Then, IQG = IPG
+ J where J is an ideal generated by

quadratic binomials fΓ where Γ is an even closed walk of G� that satisfies one of the following:

(i) Γ = ({i, j}, {j, k}, {k, n + 1}, {n + 1, i}) is a cycle where {i, j}, {j, k} ∈ E(G);
(ii) Γ = ({i, j}, {j, n + 1}, {n + 1, n + 1}, {n + 1, i}) where {i, j} ∈ E(G).

In particular, d(IQG ) = max{d(IPG
), 2}.

Proof. Since α(G) = 2, we have IQG = IPG� by Lemma 1. Since G is a subgraph of G�, it follows that
IPG� ⊃ IPG

+ J. Thus, it is enough to show that IPG� ⊂ IPG
+ J.

Let Γ be an even closed walk of G�. It is enough to show that fΓ ∈ IPG� belongs to IPG
+ J.

Suppose that fΓ does not belong to IPG
+ J. Then, the vertex n + 1 belongs to Γ. We may assume

that the degree of fΓ is minimum among binomials in IPG� that do not belong to IPG
+ J. Then, fΓ is

irreducible. Let
Γ = ({n + 1, p}, {p, q}, {q, r}, Γ′),

where Γ′ = (ei1 , . . . , ei2k+1
) is an odd subwalk of Γ from the vertex r to the vertex n + 1. Since fΓ is

irreducible, it follows that p, q, r are distinct vertices and that q �= n + 1. Then,

fΓ =

(
k

∏
α=1

yi2α

)
fΓ1 + yj fΓ2 ,

where ej = {p, q}, Γ1 = ({n + 1, p}, {p, q}, {q, r}, {r, n + 1}), and Γ2 = ({n + 1, r}, Γ′). Since deg fΓ2 <

deg fΓ, the binomial fΓ2 belongs to IPG
+ J by the assumption on deg fΓ. Moreover, Γ1 satisfies one of

the conditions (i) or (ii), and hence fΓ1 ∈ J. Thus, we have fΓ ∈ 〈 fΓ1 , fΓ2〉 ⊂ IPG
+ J, a contradiction.
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Remark 1. A graph-theoretical characterization of a simple graph G such that d(IPG ) ≤ 2 is given in [5].
Then, by making use of Theorem 3, one can provide a similar characterization of a simple graph G where
α(G) = 2 and d(IQG ) ≤ 2.

It is known by ([11] Theorem 7.4) that if the complement of a graph G is an even cycle of length 2k,
then we have d(IQG ) = k. By Theorem 3, we can generalize this result for a graph whose complement
is an arbitrary bipartite graph.

Corollary 1. Let G be a simple graph such that G is bipartite. Then we have

d(IQG ) =

⎧⎪⎨⎪⎩
0 if G is empty (i.e., G is complete),
k if G has a cycle,
2 otherwise,

where 2k is the maximum length of induced cycles of G. Moreover, the following conditions are equivalent:

(i) d(IQG ) ≤ 2, i.e., IQG is generated by quadratic binomials;
(ii) K[QG] is Koszul;
(iii) IQG has a quadratic Gröbner basis;
(iv) the length of any induced cycle of G is 4.

Proof. Let G be a simple graph such that G is bipartite. Then α(G) = 2. Since G is bipartite, it is known
(see [23] Lemma 2.4) that IPG

is generated by fΓ where Γ is an induced even cycle of G. Note that
deg fΓ = k if the length of Γ is 2k. Hence, by Theorem 3, we obtain the desired formula for d(IQG ).

It follows from the formula of d(IQG ) that (i) and (iv) are equivalent. Moreover, (iii) ⇒ (ii)
⇒ (i) holds in general. By Lemma 1, there exists a bipartite graph H such that K[QG]  K[PH ].
By ([24] Theorem), IPH has a quadratic Gröbner basis if and only if d(IPH ) ≤ 2. Thus, we have (i)
⇒ (iii).

If G is not bipartite, then condition (i) and (iii) in Corollary 1 are not equivalent. In order to
construct an infinite family of counterexamples, the following proposition is important. (Proof is
essentially given in ([5] Proof of Proposition 1.6)).

Proposition 10. Let P be a (0, 1)-polytope. If IP has a quadratic Gröbner basis, then the initial ideal is
generated by squarefree monomials, and hence P is normal.

Theorem 4. Let G be a simple graph such that G = C1 ∪ C2, where C1 and C2 are odd holes without
common vertices. Then α(G) = 2, and

(a) IQG is generated by quadratic binomials;
(b) IQG has no quadratic Gröbner bases;
(c) QG is not normal.

Proof. Since G has no triangles, we have α(G) = 2. Since each connected component of G is
an odd cycle, IPG

= {0} by Proposition 9. It follows from Theorem 3 that IQG is generated by
quadratic binomials. By Theorem 1, QG is not normal since C1 and C2 have no bridges. Thus, by
Proposition 10, IQG has no quadratic Gröbner bases.

The graphs in Theorem 4 are not strongly Koszul by ([9] Theorem 1.3). However, we do not know
whether they are Koszul or not in general.

Remark 2. It is known by ([5] Theorem 1.2) that if G is a simple connected graph and IPG is generated by
quadratic binomials, then G satisfies the odd cycle condition, and hence PG is normal.
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It seems to be a challenging problem to characterize the graphs G such that α(G) > 2 and
d(IQG ) ≤ 2. The following is a consequence of Proposition 6, Theorem 3 and ([5] Theorem 1.2).

Proposition 11. Let G be a simple graph. If IQG is generated by quadratic binomials, then G satisfies the
following conditions:

(i) Any even cycle of G of length ≥ 6 has a chord;
(ii) Any two odd holes of G having exactly one common vertex have a bridge;
(iii) Any two odd holes of G having no common vertex have at least two bridges.

Proof. Suppose that G does not satisfy one of the conditions above. If G does not satisfy condition (i),
then let H be an induced subgraph of G whose vertex set is that of the even cycle. If G does not satisfy
either condition (ii) or (iii), then let H be an induced subgraph of G whose vertex set is that of two odd
holes. Then α(H) = 2, and hence IQH is not generated by quadratic binomials by Theorem 3 and ([5]
Theorem 1.2). Thus, it follows from Proposition 6 that IQG is not generated by quadratic binomials.
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Abstract: Each of the descriptions of vertices, edges, and facets of the order and chain polytope of a
finite partially ordered set are well known. In this paper, we give an explicit description of faces of
2-dimensional simplex in terms of vertices. Namely, it will be proved that an arbitrary triangle in
1-skeleton of the order or chain polytope forms the face of 2-dimensional simplex of each polytope.
These results mean a generalization in the case of 2-faces of the characterization known in the case
of edges.
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1. Introduction

The combinatorial structure of the order polytope OpPq and the chain polytope C pPq of a finite
poset (partially ordered set) P is explicitly discussed in [1]. Moreover, in [2], the problem when the
order polytope OpPq and the chain polytope C pPq are unimodularly equivalent is solved. It is also
proved that the number of edges of the order polytope OpPq is equal to that of the chain polytope C pPq
in [3]. In the present paper we give an explicit description of faces of 2-dimensional simplex of OpPq
and C pPq in terms of vertices. In other words, we show that triangles in 1-skeleton of OpPq or C pPq
are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope. These results
are a direct generalizations of [4] (Lemma 4, Lemma 5).

2. Definition and Known Results

Let P “ tx1, . . . , xdu be a finite poset. To each subset W Ă P, we associate ρpWq “ ř
iPW ei P Rd,

where e1, . . . , ed are the canonical unit coordinate vectors of Rd. In particular ρpHq is the origin of Rd.
A poset ideal of P is a subset I of P such that, for all xi and xj with xi P I and xj ď xi, one has xj P I.
An antichain of P is a subset A of P such that xi and xj belonging to A with i ‰ j are incomparable.
The empty set H is a poset ideal as well as an antichain of P. We say that xj covers xi if xi ă xj and
xi ă xk ă xj for no xk P P. A chain xj1 ă xj2 ă ¨ ¨ ¨ ă xj� of P is called saturated if xjq covers xjq´1 for
1 ă q ď �. A maximal chain is a saturated chain such that xj1 is a minimal element and xj� is a maximal
element of the poset. The rank of P is 7pCq ´ 1, where C is a chain with maximum length of P.

The order polytope of P is the convex polytope OpPq Ă Rd which consists of those pa1, . . . adq P Rd

such that 0 ď ai ď 1 for every 1 ď i ď d together with

ai ě aj

if xi ď xj in P.

Mathematics 2019, 7, 851; doi:10.3390/math7090851 www.mdpi.com/journal/mathematics91
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The chain polytope of P is the convex polytope C pPq Ă Rd which consists of those pa1, . . . , adq P Rd

such that ai ě 0 for every 1 ď i ď d together with

aii ` ai2 ` ¨ ¨ ¨ ` aik ď 1

for every maximal chain xi1 ă xi2 ă ¨ ¨ ¨ ă xik of P.
One has dimOpPq “ dimC pPq “ d. The vertices of OpPq is those ρpIq for which I is a poset

ideal of P ([1] (Corollary1.3)) and the vertices of C pPq is those ρpAq for which A is an antichain of
P ([1] (Theorem2.2)). It then follows that the number of vertices of OpPq is equal to that of C pPq.
Moreover, the volume of OpPq and that of C pPq are equal to epPq{d!, where epPq is the number of linear
extensions of P ([1] (Corollary4.2)). It also follows from [1] that the facets of OpPq are the following:

• xi “ 0, where xi P P is maximal;
• xj “ 1, where xj P P is minimal;
• xi “ xj, where xj covers xi,

and that the facets of C pPq are the following:

• xi “ 0, for all xi P P;
• xi1 ` ¨ ¨ ¨ ` xik “ 1, where xi1 ă ¨ ¨ ¨ ă xik is a maximal chain of P.

In [4] a characterization of edges of OpPq and those of C pPq is obtained. Recall that a subposet Q
of finite poset P is said to be connected in P if, for each x and y belonging to Q, there exists a sequence
x “ x0, x1, . . . , xs “ y with each xi P Q for which xi´1 and xi are comparable in P for each 1 ď i ď s.

Lemma 1 ([4] (Lemma 4, Lemma 5)). Let P be a finite poset.

1. Let I and J be poset ideals of P with I ‰ J. Then the convex hull of tρpIq, ρpJqu forms an edge of OpPq if
and only if I Ă J and JzI is connected in P.

2. Let A and B be antichains of P with A ‰ B. Then the convex hull of tρpAq, ρpBqu forms an edge of C pPq
if and only if pAzBq Y pBzAq is connected in P.

3. Faces of 2-Dimensional Simplex

Using Lemma 1, we show the following description of faces of 2-dimensional simplex.

Theorem 1. Let P be a finite poset. Let I, J, and K be pairwise distinct poset ideals of P. Then the convex hull
of tρpIq, ρpJq, ρpKqu forms a 2-face of OpPq if and only if I Ă J Ă K and KzI is connected in P.

Proof. (“Only if”) If the convex hull of tρpIq, ρpJq, ρpKqu forms a 2-face of OpPq, then the convex hulls
of tρpIq, ρpJqu, tρpJq, ρpKqu, and tρpIq, ρpKqu form edges of OpPq. It then follows from Lemma 1 that
I Ă J Ă K and KzI is connected in P.

(“If”) Suppose that the convex hull of tρpIq, ρpJq, ρpKqu has dimension 1. Then there exists a line
passing through the lattice points ρpIq, ρpJq, and ρpKq. Hence ρpIq, ρpJq, and ρpKq cannot be vertices of
OpPq. Thus the convex hull of tρpIq, ρpJq, ρpKqu has dimension 2.

Let P “ tx1, . . . , xdu. If there exists a maximal element xi of P not belonging to I Y J Y K,
then the convex hull of tρpIq, ρpJq, ρpKqu lies in the facet xi “ 0. If there exists a minimal element
xj of P belonging to I X J X K, then the convex hull of tρpIq, ρpJq, ρpKqu lies in the facet xj “ 1.
Hence, working with induction on dpě 2q, we may assume that I Y J Y K “ P and I X J X K “ H.
Suppose that H “ I Ă J Ă K “ P and KzI “ P is connected.

Case 1. 7pJq “ 1.
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Let J “ txiu and P1 “ Pztxiu. Then P1 is a connected poset. Let xi1 , . . . , xiq be the maximal
elements of P and Aij “ ty P P1 | y ă xij u , where 1 ď j ď q. Then we write

bk “

$’’&
’’%

7ptij | xk P Aijuq if k R ti1, . . . , iq, iu
0 if k “ i

´7pAijq if k P ti1, . . . , iqu
.

We then claim that the hyperplane H of Rd defined by the equation hpxq “ řd
k“1 bkxk “ 0 is a

supporting hyperplane of OpPq and that H X OpPq coincides with the convex hull of tρpHq, ρpJq, ρpPqu.
Clearly hpρpHqq “ hpρpPqq “ 0 and hpρpJqq “ bi “ 0. Let I be a poset ideal of P with I ‰ H,
I ‰ P and I ‰ J. We have to prove that hpρpIqq ą 0. To simplify the notation, suppose that
I X txi1 , . . . , xiq u “ txi1 , . . . , xir u, where 0 ď r ă q. If r “ 0, then hpρpJqq ą 0. Let 1 ď r ă q, I1 “ Iztxiu,
and K “ Ťr

j“1pAij Y txij uq. Then I1 and K are poset ideals of P and hpρpKqq ď hpρpI1qq “ hpρpIqq.
We claim hpρpKqq ą 0. One has hpρpKqq ě 0. Moreover, hpρpKqq “ 0 if and only if no z P K belongs to
Air`1 Y ¨ ¨ ¨ YAiq . Now, since P1 is connected, it follows that there exists z P K with z P Air`1 Y ¨ ¨ ¨ YAiq .
Hence hpρpKqq ą 0. Thus hpρpIqq ą 0.

Case 2. 7pJq “ d ´ 1.
Let PzJ “ txiu and P1 “ Pztxiu. Then P1 is a connected poset. Thus we can show the existence

of a supporting hyperplane of OpPq which contains the convex hull of tρpHq, ρpJq, ρpPqu by the same
argument in Case 1.

Case 3. 2 ď 7pJq ď d ´ 2.
To simplify the notation, suppose that J “ tx1, . . . , x�u. Then PzJ “ tx�`1, . . . , xdu. Since J and

PzJ are subposets of P, these posets are connected. Let xi1 , . . . , xiq be the maximal elements of J and
xiq`1 , . . . , xiq`r the maximal elements of PzJ. Then we write

Aij “
$&
%ty P J | y ă xij u if 1 ď j ď q

ty P PzJ | y ă xij u if q ` 1 ď j ď r

and

bk “
#

7ptij | xi P Aijuq if k R ti1, . . . , iq, iq`1, . . . , iq`ru
´7pAijq if k P ti1, . . . , iq, iq`1, . . . , iq`ru .

We then claim that the hyperplane H of Rd defined by the equation hpxq “ řd
k“1 bkxk “ 0 is a

supporting hyperplane of OpPq and H X OpPq coincides with the convex hull of tρpHq, ρpJq, ρpPqu.
Clearly hpρpHqq “ hpρpJqq “ hpρpPzJqq “ 0, then hpρpPqq “ hpρpJqq ` hpρpPzJqq “ 0. Let I be a poset
ideal of P with I ‰ H, I ‰ P and I ‰ J. What we must prove is hpρpIqq ą 0.

If I Ă J, then I is a poset ideal of J. To simplify the notation, suppose that I X txi1 , . . . , xiq u “
txi1 , . . . , xis u , where 0 ď s ă q. If s “ 0, then hpρpIqq ą 0. Let 1 ď s ă q, K “ Ťs

j“1pAij Y txij uq. Then K
is a poset ideal of J and hpρpKqq ď hpρpIqq. Thus we can show hpρpKqq ą 0 by the same argument in
Case 1 (Replace r with s and P1 with J).

If J Ă I, then IzJ is a poset ideal of PzJ. To simplify the notation, suppose that pIzJq X
txiq`1 , . . . , xiq`r u “ txiq`1 , . . . , xiq`t u , where 0 ď t ă r. If t “ 0, then hpρpIqq “ hpρpJqq ` hpρpIzJqq “
hpρpIzJqq ą 0. Let 1 ď t ă r, K “ Ťq`t

j“q`1pAij Y txij uq. Then K is a poset ideal of PzJ and
hpρpKqq ď hpρpIzJqq “ hpρpIqq. Thus we can show hpρpKqq ą 0 by the same argument in Case 1
(Replace r with q ` t , q with q ` r and P1 with PzJ). Consequently, hpρpIqq ą 0, as desired.

Let A"B denote the symmetric difference of the sets A and B, that is A"B “ pAzBq Y pBzAq.

Theorem 2. Let P be a finite poset. Let A, B, and C be pairwise distinct antichains of P. Then the convex hull
of tρpAq, ρpBq, ρpCqu forms a 2-face of C pPq if and only if A"B, B"C and C"A are connected in P.
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Proof. (“Only if”) If the convex hull of tρpAq, ρpBq, ρpCqu forms a 2-face of C pPq, then the convex
hulls of tρpAq, ρpBqu, tρpBq, ρpCqu, and tρpAq, ρpCqu form edges of C pPq. It then follows from Lemma 1
that A"B, B"C and C"A are connected in P.

(“If”) Suppose that the convex hull of tρpAq, ρpBq, ρpCqu has dimension 1. Then there exists a line
passing through the lattice points ρpAq, ρpBq, and ρpCq. Hence ρpAq, ρpBq, and ρpCq cannot be vertices
of C pPq. Thus the convex hull of tρpAq, ρpBq,
ρpCqu has dimension 2.

Let P “ tx1, . . . , xdu. If A Y B Y C ‰ P and xi R A Y B Y C, then the convex hull of
tρpAq, ρpBq, ρpCqu lies in the facet xi “ 0. Furthermore, if A Y B Y C “ P and A X B X C ‰ H,
then xj P A X B X C is isolated in P and xj itself is a maximal chain of P. Thus the convex hull of
tρpAq, ρpBq, ρpCqu lies in the facet xj “ 1. Hence, working with induction on dpě 2q, we may assume
that A Y B Y C “ P and A X B X C “ H. As stated in the proof of [3] ([Theorem 2.1]), if A"B is
connected in P, then A and B satisfy either (i) B Ă A or (ii) y ă x whenever x P A and y P B are
comparable. Hence, we consider the following three cases:

(a) If B Ă A, then A"B “ AzB is connected in P, and thus 7pAzBq “ 1. Let AzB “ txku.
If C X A ‰ H, then C X A “ txku, since A X B X C “ C X B “ H. Namely xk is isolated in P.
Hence B"C “ B Y C “ A Y B Y C “ P cannot be connected. Thus C X A “ H. In this case, we may
assume z ă x if x P A and z P C are comparable. Furthermore, P has rank 1.

(b) If B Ć A and B X A ‰ H, then we may assume y ă x if x P A and y P B are comparable.
If C Ă B with C X A X B “ H, then as stated in (a), C"A cannot be connected. Since C Ć B, we may
assume z ă y if y P B and z P C are comparable. If C X B ‰ H, then C X A “ H and P has rank 1 or 2.
Similarly, if C X B “ H, then C X A “ H and P has rank 2.

(c) Let B Ć A and B X A “ H. We may assume that if x P A and y P B are comparable, then
y ă x. If C Ă B, then we regard this case as equivalent to (a). Let C Ć B. We may assume z ă y if
y P B and z P C are comparable. Moreover, if C X B ‰ H, then we regard this case as equivalent to (b).
If C X B “ H, then C X A “ H and P has rank 2.

Consequently, there are five cases as regards antichains for C pPq.
Case 1. B Ă A, C X A “ H, and C X B “ H.
For each xi P B we write bi for the number of elements z P C with z ă xi. For each xj P C we

write cj for the number of elements y P B with xj ă y. Let ak “ 0 for AzB “ txku. Clearly
ř

xiPB bi “ř
xjPC cj “ q, where q is the number of pairs py, zq with y P B, z P C and z ă y. Let hpxq “ ř

xiPB bixi `ř
xjPC cjxj ` akxk and let H be the hyperplane of Rd defined by hpxq “ q. Then hpρpAqq “ hpρpBqq “

hpρpCqq “ q. We claim that, for any antichain D of P with D ‰ A, D ‰ B, and D ‰ C, one has
hpρpDqq ă q. Let D “ B1 Y C1 or D “ txku Y C1 with B1 Ĺ B and C1 Ĺ C. Suppose D “ B1 Y C1.
Since B"C is connected and since D is an antichain of P, it follows that

ř
xiPB1

bi ` ř
xjPC1

cj ă q.
Thus hpρpDqq ă q. Suppose that D “ txku Y C1. It follows that

ř
xjPC1

cj ` ak “ ř
xjPC1

cj ă ř
xjPC cj “ q.

Thus hpρpDqq ă q.
Case 2. B Ć A, B X A ‰ H, C Ć B, C X B ‰ H, C X A “ H, and P has rank 1.
We define four numbers as follows:

αi “ 7pty P BzA | y ă xi , xi P AzBuq;

γj “ 7ptx P AzB | xj ă x , xj P BzAuq;

αk “ 7ptz P CzB | z ă xk , xk P BzCuq;

γ� “ 7pty P BzC | x� ă y , x� P CzBuq.
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Since P has rank 1, B Ă A Y C “ P. It follows that A “ pAzBq Y pBzCq, C “ pBzAq Y pCzBq. Then
ÿ

xsPA

αs “
ÿ

xiPAzB

αi `
ÿ

xkPBzC

αk “ q;

ÿ
xjPBzA

γj `
ÿ

xkPBzC

αk “ q;

ÿ
xuPC

γu “
ÿ

xjPBzA

γj `
ÿ

x�PCzB

γ� “ q,

where q1 is the number of pairs px, yq with x P AzB, y P BzA and y ă x, q2 is the number of pairs py, zq
with y P BzC, z P CzB and z ă y, and q “ q1 ` q2. Let

hpxq “
ÿ

xsPA

αsxs `
ÿ

xuPC

γuxu

“
ÿ

xiPAzB

αixi `
ˆ ÿ

xjPBzA

γjxj `
ÿ

xkPBzC

αkxk

˙
`

ÿ
x�PCzB

γ�x�

and H the hyperplane of Rd defined by hpxq “ q. Then hpρpAqq “ hpρpBqq “ hpρpCqq “ q. We claim
that, for any antichain D of P with D ‰ A, D ‰ B and D ‰ C, one has hpρpDqq ă q. Let D “ D1 Y D2

with D1 is an antichain of A"B and D2 is an antichain of B"C. Since A"B, B"C are connected,
it follows that hpρpD1qq ă q1 and hpρpD2qq ă q2. Thus hpρpDqq “ hpρpD1qq ` hpρpD2qq ă q1 ` q2 “ q.

Case 3. B Ć A, B X A ‰ H, C Ć B, C X B ‰ H, C X A “ H, and P has rank 2.
For each xi P P we write cpiq for the number of maximal chains, which contain xi. Let q be the

number of maximal chains in P. Since each xi P A is maximal element and each xk P C is minimal
element,

ř
xiPA cpiq “ ř

xkPC cpkq “ q. Then

ÿ
xjPB

cpjq “
ÿ

xsPBXA

cpsq `
ÿ

xtPBXC

cptq `
ÿ

xuPBzpAYCq
cpuq

“
ÿ

xsPBXA

cpsq `
ÿ

xtPBXC

cptq `
ˆ ÿ

xvPAzB

cpvq ´
ÿ

xtPBXC

cptq
˙

“
ÿ

xiPA

cpiq “ q.

Let hpxq “ ř
xiPP cpiqxi and H the hyperplane of Rd defined by hpxq “ q. Then hpρpAqq “

hpρpBqq “ hpρpCqq “ q. We claim that, for any antichain D of P with D ‰ A, D ‰ B and D ‰ C, one has
hpρpDqq ă q. D “ A1 Y B1 Y C1 with A1 Ă AzB, B1 Ĺ B, and C1 Ĺ CzB. Now, we define two subsets
of B:

B2 “ txj P B | xj ă xi, xi P A1u;

B3 “ txj P B | xk ă xj, xk P C1u.

Then B1 X B2 “ B1 X B3 “ B2 X B3 “ H and B1 Y B2 Y B3 Ă B3. Let
ř

xiPA cpiq “ q1,
ř

xjPB1
cpjq “

q2,
ř

xkPC1
cpkq “ q3,

ř
xjPB2

cpjq “ q1
1, and

ř
xjPB3

cpjq “ q1
3. Since A"B, B"C are connected, it follows

that q1 ă q1
1 and q3 ă q1

3. Hence

hpρpDqq “
ÿ

xiPA1

cpiq `
ÿ

xjPB1

cpjq `
ÿ

xkPC1

cpkq

“ q1 ` q2 ` q3 ă q1
1 ` q2 ` q1

3

“
ÿ

xjPB2

cpjq `
ÿ

xjPB1

cpjq `
ÿ

xjPB3

cpjq ď
ÿ

xjPB

cpjq “ q.
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Thus hpρpDqq ă q.
Case 4. B Ć A, B X A ‰ H, C X B “ H, and C X A “ H.
Since P has rank 2, we can show hpρpDqq ă q by the same argument in Case 3 (Suppose C X

B “ H).
Case 5. B Ć A, B X A “ H, C X B “ H and C X A “ H.
Since P has rank 2, we can show hpρpDqq ă q by the same argument in Case 3 (Suppose B X A “

C X B “ H).
In conclusion, each H is a supporting hyperplane of C pPq and H X C pPq coincides with the

convex hull of tρpAq, ρpBq, ρpCqu, as desired.

Corollary 1. Triangles in 1-skeleton of OpPq or C pPq are in one-to-one correspondence with faces of
2-dimensional simplex of each polytope.
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Abstract: In 1982, Stanley predicted a combinatorial upper bound for the depth of any finitely
generated multigraded module over a polynomial ring. The predicted invariant is now called the
Stanley depth. Duval et al. found a counterexample for Stanley’s conjecture, and their counterexample
is a quotient of squarefree monomial ideals. On the other hand, there is evidence showing that
Stanley’s inequality can be true for high powers of monomial ideals. In this survey article, we collect
the recent results in this direction. More precisely, we investigate the Stanley depth of powers, integral
closure of powers, and symbolic powers of monomial ideals.

Keywords: complete intersection; cover ideal; depth; edge ideal; integral closure; polymatroidal ideal;
Stanley depth; Stanley’s inequality; symbolic power

1. Introduction

Let K be a field, and set S = K[x1, . . . , xn]. Assume that M is a finitely generated, Zn-graded
S-module. For any homogeneous element u ∈ M and any Z ⊆ {x1, . . . , xn}, the K-vector space uK[Z]
is called a Stanley space of dimension |Z|. A Stanley decomposition of M is a decomposition of M
as a finite direct sum of Stanley spaces. The minimum dimension of a Stanley space in a Stanley
decomposition D is called the Stanley depth of D, and is denoted by sdepth(D). The Stanley depth of
M is defined

sdepth(M) := max
{

sdepth(D) | D is a Stanley decomposition of M
}

.

As a convention, we set sdepth(M) = ∞ when M is the zero module. For an introduction to Stanley
depth, we refer the reader to [1].

Example 1. Consider the ideal I = 〈x1x2
2, x2

1x2〉 in the polynomial ring S = K[x1, x2]. Then,

D1 : I = x1x2
2K[x2]⊕ x2

1x2K[x1, x2]

is a Stanley decomposition for I, with sdepth(D1) = 1. One can also write other Stanley decompositions for I.
For example,

D2 : I = x2
1x2K⊕ x3

1x2K[x1]⊕ x1x2
2K[x2]⊕ x2

1x2
2K[x1, x2],

and
D3 : I = x2

1x2K⊕ x3
1x2K⊕ x4

1x2K[x1]⊕ x1x2
2K[x2]⊕ x2

1x2
2K[x1, x2].

It is clear that sdepth(D2) = sdepth(D3) = 0. It follows from the definition of Stanley depth that
sdepth(I) ≥ 1, and it can be easily verified that the equality indeed holds—that is, sdepth(I) = 1.

Mathematics 2019, 7, 607; doi:10.3390/math7070607 www.mdpi.com/journal/mathematics97
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We say that a Zn-graded S-module M satisfies Stanley’s inequality if

depth(M) ≤ sdepth(M).

In fact, Stanley [2] conjectured that the above inequality holds for every finitely generated,
Zn-graded S-module. Ichim, Katthän, and Moyano-Fernández [3] showed that in order to prove
Stanley’s conjecture for monomial ideals, it is enough to consider squarefree monomial ideals.
However, Stanley’s conjecture has been disproved by Duval, Goeckner, Klivans, and Martin [4].
In fact, they constructed a non-partitionable Cohen-Macaulay simplicial complex, and then, using a
result of Herzog, Soleyman Jahan, and Yassemi ([5] Corollary 4.5), deduced that the Stanley-Reisner
ring of this simplicial complex did not satisfy Stanley’s inequality. However, it is still interesting to
find new classes of modules which satisfy Stanley’s inequality. Of particular interest is the validity of
Stanley’s inequality for high powers of monomial ideals. In this survey article, we review the recent
developments in this regard. In 2013, Herzog [6] published his nice survey on Stanley depth. In fact,
we complement his survey by collecting the results obtained since then, with a focus on powers of
monomial ideals.

2. Ordinary Powers

In this section, we consider the ordinary powers of monomial ideals. As we explained in the
introduction, it is natural to ask whether the high powers of monomial ideals satisfy Stanley’s inequality.
In fact, this question was posed in [7].

Question 1 ([7], Question 1.1). Let I be a monomial ideal. Is it true that Ik and S/Ik satisfy Stanley’s
inequality for every integer, k � 0?

In the following subsections we will see that Question 1 has a positive answer when I belongs to
interesting classes of monomial ideals.

2.1. Maximal Ideal and Complete Intersections

Let m = (x1, . . . , xn) denote the maximal graded ideal of S. It is clear that for every integer
k ≥ 1, depth(S/mk) = 0. Hence, S/mk satisfies Stanley’s inequality for any k ≥ 1. Indeed, since
S/mk is an Artinian ring, we also have sdepth(S/mk) = 0 for every integer, k ≥ 1. On the other hand,
depth(mk) = 1 and by ([6] Corollary 24), we know that the Stanley depth of any monomial ideal is
at least one. This implies that mk satisfies Stanley’s inequality for every integer, k ≥ 1. However,
computing the exact value of the Stanley depth of mk is not easy. In 2010, Biró, Howard, Keller, Trotter,
and Young [8] proved that sdepth(m) = �n/2�. Cimpoeaş [9] determined an upper bound for the
Stanley depth of powers of m. More precisely, he proved the following results:

Theorem 1 ([9], Theorem 2.2). For every integer k ≥ 1, we have

sdepth(mk) ≤
⌈

n
k + 1

⌉
.

In particular, for every integer k ≥ n− 1, we have sdepth(mk) = 1.

Cimpoeaş [9] also conjectured that the inequality obtained in the above theorem was indeed an
equality—that is,

sdepth(mk) =

⌈
n

k + 1

⌉
,

for every k ≥ 1.
In 2018, Cimpoeaş [10] extended Theorem 1 by determining the bounds for the Stanley depth of

complete intersection monomial ideals.
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Theorem 2 ([10], Proposition 2.14 and Theorem 2.15). Let I be a complete intersection monomial ideal
which is minimally generated by t monomials.

(i) For every integer k ≥ 1, we have

n− t + 1 ≤ sdepth(Ik) ≤ n− t +
⌈

t
k + 1

⌉
.

In particular, if k ≥ t− 1, then sdepth(Ik) = n− t + 1.
(ii) For every integer k ≥ 1, we have

sdepth(S/Ik) = sdepth(Ik/Ik+1) = dim(S/I) = n− t.

As an immediate consequence of Theorem 2, we conclude that for any complete intersection
monomial ideal and every integer k ≥ 1, the modules Ik, S/Ik, and Ik/Ik+1 satisfy Stanley’s inequality.
In particular, Question 1 has a positive answer in this case.

2.2. Polymatroidal Ideals

We begin this subsection by recalling the definition of polymatroidal ideals. We mention that for
every monomial ideal I, we denote its minimal set of monomial generators by G(I).

Definition 1. A monomial ideal I is called polymatroidal if it is generated in a single degree, and moreover,
for every pair of monomials u = xa1

1 , . . . , xan
n and v = xb1

1 , . . . , xbn
n belonging to G(I), and for every i with

ai > bi, one has j with aj < bj, such that xj(u/xi) ∈ G(I).

We next define the class of weakly polymatroidal ideals, which is a generalization of the class of
polymatroidal ideals.

Definition 2 ([11], Definition 1.1). A monomial ideal I is called weakly polymatroidal if, for every pair of
monomials, u = xa1

1 . . . xan
n and v = xb1

1 . . . xbn
n in G(I) such that a1 = b1, . . . , at−1 = bt−1 and at > bt for

some t, there exists j > t such that xt(v/xj) ∈ I.

It is obvious that any polymatroidal ideal is weakly polymatroidal.
Let I be a weakly polymatroidal ideal. In ([12] Theorem 2.4), we proved that S/I satisfies

Stanley’s inequality. We also know from ([13] Theorem 12.6.3) that every power of a polymatroidal
ideal is again a polymatroidal ideal. As a consequence, for any polymatroidal ideal I and any
integer k ≥ 1, the module S/Ik satisfies Stanley’s inequality. It is natural to ask whether Ik satisfies
Stanley’s inequality. Before answering this question, we recall the concept of having linear quotients,
introduced in [14].

Definition 3. Let I be a monomial ideal, and assume that G(I) is the set of minimal monomial generators of I.
We say that I has linear quotients if there is a linear order u1 ≺ u2 ≺ . . . ≺ um on G(I), with the property that
for every 2 ≤ i ≤ m, the ideal (u1, . . . , ui−1) : ui is generated by a subset of the variables.

Soleyman Jahan [15] proves that Stanley’s inequality holds for any monomial ideal which has
linear quotients. On the other hand, by ([11] Theorem 1.3), we know that any weakly polymatroidal
ideal has linear quotients. This implies that every weakly polymatroidal ideal satisfies Stanley’s
inequality. Since every power of a polymatroidal ideal is again a polymatroidal ideal, we deduce that
for any polymatroidal ideal I and any integer k ≥ 1, the ideal Ik satisfies Stanley’s inequality.

By the above argument, we know that Question 1 has a positive answer for polymatroidal ideals.
This result was also obtained in [16].
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Let I be a monomial ideal of S with the Rees algebraR(I) =
⊕∞

k=0 Ik. The K-algebraR(I)/mR(I)
is called the fibre ring, and its Krull dimension is called the analytic spread of I, denoted by �(I).
A classical result by Burch [17] states that

min
k

depth(S/Ik) ≤ n− �(I).

By a theorem of Brodmann [18], depth(S/Ik) is constant for large k. We call this constant value
the limit depth of I, and denote it by limk→∞ depth(S/Ik). Brodmann improved Burch’s inequality by
showing that

lim
k→∞

depth(S/Ik) ≤ n− �(I).

We know from ([19] Corollary 3.5) that equality occurs in the above inequality if I is a
polymatroidal ideal. In fact, we will see in the next section that equality holds in Burch’s inequality for
a larger class of ideals—namely, the class of normal ideals.

Inspired by the limiting behavior of the depth of powers of ideals, Herzog [6] proposed the
following conjecture.

Conjecture 1 ([6], Conjecture 59). For every monomial ideal I, the sequence {sdepth(Ik)}∞
k=1 is convergent.

This conjecture is widely open. However, by Theorem 2, it has a positive answer for complete
intersections. Also, we will see in Section 4 that the assertion of this conjecture is true for any normally
torsionfree, squarefree monomial ideal.

Let I be a weakly polymatroidal ideal which is generated in a single degree. We know
from ([16] Theorem 2.5) that depth(S/I) ≥ n − �(I). Since I and S/I satisfy Stanley’s inequality,
it follows that

sdepth(S/I) ≥ n− �(I) and sdepth(I) ≥ n− �(I) + 1.

Restricting to the class of polymatroidal ideals, for any integer k ≥ 1 and any polymatroidal
ideal I, we have

sdepth(S/Ik) ≥ n− �(I) and sdepth(Ik) ≥ n− �(I) + 1.

Indeed, we expect that the equality holds in the above inequality for every k � 0. In other words,
not only do we believe that Conjecture 1 is true for every polymatroidal ideal I, but we also have a
prediction for the limit value of the Stanley depth of powers of I.

Conjecture 2. Let I be a polymatroidal ideal. Then,

sdepth(S/Ik) = n− �(I) and sdepth(Ik) = n− �(I) + 1

for any integer k � 0.

2.3. Edge Ideals

Let G be a finite simple graph with a vertex set V(G) =
{

x1, . . . , xn
}

and edge set E(G). The edge
ideal I(G) of G is defined as

I(G) =
(
xixj : xixj ∈ E(G)

) ⊆ S.

The Stanley depth of powers of edge ideals has been studied in [20–23]. Before reviewing the
main results of these papers, we mention the following result of Trung, concerning the depth of high
powers of edge ideals.
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Theorem 3 ([24], Theorems 4.4 and 4.6). Let G be a graph with n vertices and p bipartite connected
components. Then, for every integer k ≥ n− 1, we have

depth(S/I(G)k) = p.

Note that by ([25] p. 50), for every graph G with n vertices and p bipartite connected components,
we have �(I(G)) = n− p. Thus, Theorem 3, essentially says that

lim
k→∞

depth(S/I(G)k) = n− �(I(G)),

that is, equality occurs in Burch’s inequality.
Pournaki, Yassemi, and the author [22] studied the Stanley depth of S/I(G)k, where G is a forest

(i.e., a graph with no cycle). They proved that for every forest with p connected components and any
integer k ≥ 1, we have

sdepth(S/I(G)k) ≥ p.

This, together with Theorem 3, implies that for any forest G with n vertices, the module S/I(G)k

satisfies Stanley’s inequality for any integer k ≥ n− 1. This result was then extended in [23], to any
arbitrary graph, as follows.

Theorem 4 ([23], Theorem 2.3 and Corollary 2.5). Let G be a graph with n vertices and p bipartite connected
components. Then, for every integer k ≥ 1, we have sdepth(S/I(G)k) ≥ p. In particular, S/I(G)k satisfies
Stanley’s inequality for any integer k ≥ n− 1.

We know from the above theorem that for any graph G, the module S/I(G)k satisfies Stanley’s
inequality for k � 0. However, how about I(G)k? By Theorem 3, in order to prove Stanley’s inequality
for high powers of I(G), we need to prove sdepth(I(G)k) ≥ p + 1 for every integer k � 0. We do
not know whether this inequality holds for any arbitrary graph. However, we have a partial result,
as follows. We recall that for any graph G and every subset U ⊂ V(G), the graph G \U has the vertex
set V(G \U) = V(G) \U and edge set E(G \U) = {e ∈ E(G) | e ∩U = ∅}.

Theorem 5 ([23], Theorem 3.1). Let G be a graph, and assume that H is a connected component of G with at
least one edge. Suppose that h is the number of bipartite connected components of G \V(H). Then, for every
integer k ≥ 1, we have

sdepth(I(G)k) ≥ min
1≤l≤k

{sdepthS′(I(H)l)}+ h,

where S′ = K[xi | xi ∈ V(H)].

Assume that G has a non-bipartite connected component, and call it H. Then, by ([6] Corollary 24),
for every integer l ≥ 1, we have sdepth(I(H)l) ≥ 1. Thus, it follows from Theorem 5 that in this case,
sdepth(I(G)k) ≥ p + 1, where p is the number of bipartite connected components of G and k ≥ 1 is an
arbitrary positive integer. Assume now that G is a bipartite graph. Using Theorem 5, in order to prove
the inequality sdepth(I(G)k) ≥ p + 1, it is enough to prove it only for the class of connected bipartite
graphs. Thus, we raise the following question.

Question 2 ([23], Question 3.3). Let G be a connected bipartite graph (with at least one edge) and suppose
k ≥ 1 is an integer. Is it true that sdepth(I(G)k) ≥ 2?

We investigated this question in [26] and proved that it has positive answer for small k.
More precisely, we proved the following result.
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Theorem 6 ([26], Theorem 3.4). Let G be a connected bipartite graph (with at least one edge) and let g be a
positive integer. Suppose G has no cycle of length at most g− 1. Then, for every positive integer k ≤ g/2 + 1,
we have sdepth(I(G)k) ≥ 2.

Theorem 6, in particular, implies that sdepth(I(G)k) ≥ 2, for any integer k ≥ 1, provided that G
is a tree (i.e., a connected forest). Combining this result with Theorem 5 implies that if G is a bipartite
graph and at least one of the connected components of G is a tree, then for every integer k ≥ 1, we have
sdepth(I(G)k) ≥ p + 1, where p is the number of (bipartite) connected components of G. All in all,
we obtained the following theorem.

Theorem 7 ([23], Corollary 3.6). Assume that G is a graph with n vertices, such that

(i) G is a non-bipartite graph, or
(ii) at least one of the connected components of G is a tree with at least one edge.

Then, for every integer k ≥ n− 1, the ideal I(G)k satisfies Stanley’s inequality.

Let I be a monomial ideal. We know by ([27] Theorem 1.2) that the sequence {depth(Ik/Ik+1)}∞
k=1

is convergent, and moreover,

lim
k→∞

depth(Ik/Ik+1) = lim
k→∞

depth(S/Ik).

Therefore, using Theorem 3, we conclude that for any graph G,

lim
k→∞

depth(I(G)k/I(G)k+1) = p,

where p is the number of bipartite connected components of G. In [23], we also studied the Stanley
depth of I(G)k/I(G)k+1 and proved that it satisfied Stanley’s inequality for any k � 0. In fact,
we proved the following result.

Theorem 8 ([23], Theorem 2.2 and Corollary 2.6). Let G be a graph and suppose p is the number of
bipartite connected components of G. Then, for every integer k ≥ 0, we have sdepth(I(G)k/I(G)k+1) ≥ p.
In particular, I(G)k/I(G)k+1 satisfies Stanley’s inequality, for every integer k � 0.

We mention that in the special case, when G is a forest, Theorem 8 was proved
in ([21] Theorem 3.1).

The diameter of a connected graph is the maximum distance between any two vertices. Here,
the distance between two vertices is the minimum length of a path connecting the vertices.

Fouli and Morey [20] studied the Stanley depth of small powers of edge ideals and determined a
lower bound for it.

Theorem 9 ([20], Theorem 4.18). Assume that G is a graph with c connected components, and let d denote
the maximum of the diameters of the connected components of G. Then, for every integer 1 ≤ t ≤ 3, we have

sdepth(S/I(G)t) ≥
⌈

d− 4t + 5
3

⌉
+ c− 1.

Fouli and Morey ([20] Corollary 3.3, Theorems 4.4 and 4.13) also show that the inequality of
Theorem 9 remains true, if one replaces depth with depth.
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3. Integral Closure of Powers

The study of Stanley depth of integral closure of powers of monomial ideals was initiated in [28]
and continued in [26]. Before stating the results of these papers, we recall some definitions and basic
facts from the theory of integral closure.

Let I ⊂ S be an arbitrary ideal. An element f ∈ S is integral over I, if there exists an equation

f k + c1 f k−1 + . . . + ck−1 f + ck = 0 with ci ∈ Ii.

The integral closure of I, denoted by I, is the set of elements of S which are integral over I.
It is known that the integral closure of a monomial ideal I is again a monomial ideal, and it is
generated by all monomials u ∈ S with the property that there exists an integer k, such that uk ∈ Ik

(see ([13] Theorem 1.4.2)). An ideal is said to be integrally closed if it is equal to its integral closure,
and it is normal if all its powers are integrally closed. By ([29] Theorem 3.3.18), a monomial ideal I is
normal if, and only if, the Rees algebraR(I) is a normal ring.

We first notice that there is no general inequality between the Stanley depth of S/I and that of
S/I. This will be illustrated in the following examples.

Example 2 ([28], Example 1.2). Let I = (x2
1, x2

2, x1x2x3) be a monomial ideal in the polynomial ring
S = K[x1, x2, x3]. It is not difficult to see that I = (x2

1, x2
2, x1x2). Then, the maximal ideal m = (x1, x2, x3) is

an associated prime of S/I, and it follows from ([30] Proposition 1.3) that sdepth(S/I) = 0. Since m is not an
associated prime of S/I, it follows from ([31] Proposition 2.13) that sdepth(S/I) ≥ 1. Thus, in this example,
sdepth(S/I) < sdepth(S/I).

Example 3 ([28], Example 1.3). Let I = (x2
1x2

2, x2
1x2

3, x2
2x2

3) be a monomial ideal in the polynomial ring
S = K[x1, x2, x3]. The maximal ideal m = (x1, x2, x3) is not an associated prime of S/I and hence,
using ([31] Proposition 2.13), we conclude that sdepth(S/I) ≥ 1. On the other hand, using ([32] Theorem
2.4), we know that the maximal ideal m is an associated prime of S/I. Hence, it follows from ([30] Proposition
1.3) that sdepth(S/I) = 0. Therefore, in this example, sdepth(S/I) > sdepth(S/I).

Although there is no general inequality between sdepth(S/I) and sdepth(S/I), we will see in
the following theorem that the Stanley depth of S/I provides an upper bound for the Stanley depth of
the quotient ring of some powers of I.

Theorem 10 ([28], Theorem 2.8). Let I2 ⊆ I1 be two monomial ideals in S. Then, there exists an integer
k ≥ 1, such that for every s ≥ 1,

sdepth(Isk
1 /Isk

2 ) ≤ sdepth(I1/I2).

In particular, we have the following corollary.

Corollary 1. Let I ⊂ S be a monomial ideal. Then, there exist integers k1, k2 ≥ 1, such that for every s ≥ 1,

sdepth(Isk1) ≤ sdepth(I)

and
sdepth(S/Isk2) ≤ sdepth(S/I).

We mention that the assertions of Corollary 1 remain true if one replaces sdepth with
depth, ([26] Theorem 4.5).

In Question 1, we asked whether the high powers of an ideal satisfied Stanley’s inequality. One
can ask a similar question by replacing Ik with its integral closure. This question is posed in [26].

103



Mathematics 2019, 7, 607

Question 3 ([26], Question 1.2). Let I be a monomial ideal. Is it true that Ik and S/Ik satisfy Stanley’s
inequality for every integer k � 0?

Before we focus on the above question, we recall the following result of Hoa and Trung concerning
the depth of integral closure of high powers of monomial ideals.

Theorem 11 ([33], Lemma 1.5). Let I be a monomial ideal of S. Then, depth(S/Ik) = n− �(I) for every
integer k � 0.

According to the above theorem, Question 3 is equivalent to the following question.

Question 4 ([26], Question 1.3). Let I be a monomial ideal. Is it true that the inequalities
sdepth(Ik) ≥ n− �(I) + 1 and sdepth(S/Ik) ≥ n− �(I) hold, for every integer k � 0?

Let I be a monomial ideal of S and assume that sdepth(S/Ik) ≥ n− �(I) (resp. sdepth(Ik) ≥
n − �(I) + 1), for every integer k � 0. It follows from Corollary 1 that sdepth(S/Ik) ≥ n − �(I)
(resp. sdepth(Ik) ≥ n− �(I) + 1), for every integer k � 0. Thus, the answers of Questions 3 and 4 are
positive for I. This argument, together with Theorem 2, implies the following result concerning the
Stanley depth of integral closure of powers for the complete intersection of monomial ideals.

Theorem 12. Let I be a complete intersection monomial ideal which is minimally generated by t monomials.

(i) For every integer k ≥ 1, we have
sdepth(Ik) ≥ n− t + 1.

(ii) For every integer k ≥ 1, we have
sdepth(S/Ik) = n− t.

Note that in part (ii) of the above theorem, we used the fact that for any complete intersection
monomial ideal and any integer k ≥ 1, the dimension of S/Ik is n− t, where t is the number of minimal
monomial generators of I.

Restricting to edge ideals, combining the above argument with Theorems 4 and 7 implies the
following results.

Theorem 13 ([26], Theorem 3.2). Let G be a graph, and suppose that p is the number of bipartite connected
components of G. Then, for every integer k ≥ 1, we have sdepth(S/I(G)k) ≥ p. In particular, S/I(G)k

satisfies Stanley’s inequality for every integer k � 0.

Theorem 14 ([26], Theorem 3.3). Let G be a non-bipartite graph, and suppose that p is the number of bipartite
connected components of G. Then, for every integer k ≥ 1, we have sdepth(I(G)k) ≥ p + 1. In particular,
I(G)k satisfies Stanley’s inequality for every integer k � 0.

Assume that G is a bipartite graph. We know from ([13] Theorem 1.4.6 and Corollary 10.3.17) that
for any integer k ≥ 1, the equality I(G)k = I(G)k holds. Therefore, I(G)k satisfies Stanley’s inequality
if, and only if I(G)k satisfies that inequality. Because of this reason, we exclude the case of bipartite
graphs in Theorem 14.

Let I be a monomial ideal. It is also reasonable to study the depth and the Stanley depth of
Ik/Ik+1. In [26], we proved the following result about the depth of these modules for large k.

Theorem 15 ([26], Theorem 4.1). For any nonzero monomial ideal I � S, the sequence {depth(Ik/Ik+1)}∞
k=0

is convergent, and moreover,
lim
k→∞

depth(Ik/Ik+1) = n− �(I).
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According to Theorem 15, in order to prove that Ik/Ik+1 satisfies Stanley’s inequality, for k � 0,
we must show that sdepth(Ik/Ik+1) ≥ n− �(I), for high k.

Let I be a monomial ideal of S with sdepth(Ik/Ik+1) ≥ n− �(I) for every integer k � 0, say for
k ≥ k0. We fix an integer k ≥ 1. By Corollary 1, there exists an integer s with sk ≥ k0 such that

sdepth(Ik/Ik+1) ≥ sdepth(Isk/Is(k+1)).

On the other hand, as K-vector spaces, we have

Isk/Is(k+1) =
sk+s−1⊕

i=sk

Ii/Ii+1.

By the definition of Stanley depth, we conclude that

sdepth(Isk/Is(k+1)) ≥ min
{

sdepth(Ii/Ii+1) | i = sk, . . . , sk + s− 1
} ≥ n− �(I),

where the last inequality follows from the assumption. Therefore,

sdepth(Ik/Ik+1) ≥ n− �(I).

Hence, Ik/Ik+1 satisfies Stanley’s inequality for k � 0. In particular cases, it follows from
Theorems 2 and 8 that Ik/Ik+1 satisfies Stanley’s inequality, for every integer k � 0, if I is either a
complete intersection monomial ideal or an edge ideal.

Let I be a normal ideal. By ([13] Proposition 10.3.2),

lim
k→∞

depth(S/Ik) = n− �(I).

Hence, if Ik and S/Ik satisfy Stanley’s inequality for large k, we must have

sdepth(S/Ik) ≥ n− �(I) and sdepth(Ik) ≥ n− �(I) + 1.

In fact, in [28], we conjectured that the above inequalities hold in a more general setting.

Conjecture 3 ([28], Conjecture 2.6). Let I ⊂ S be an integrally closed monomial ideal. Then,
sdepth(S/I) ≥ n− �(I) and sdepth(I) ≥ n− �(I) + 1.

The following example shows that the inequalities of Conjecture 3 do not necessarily hold if I is
not integrally closed.

Example 4 ([28], Example 2.5). Consider the ideal I = (x2
1, x2

2, x1x2x3, x1x2x4) in the polynomial ring S =

K[x1, x2, x3, x4]. Then, �(I) = 2. However, m = (x1, x2, x3, x4) is an associated prime of S/I and therefore,
we conclude from ([30] Proposition 1.3) that sdepth(S/I) = 0 and by ([34] Corollary 1.2), sdepth(I) ≤ 2.
This shows that the inequalities sdepth(S/I) ≥ n− �(I) and sdepth(I) ≥ n− �(I) + 1 do not hold for I.

As we mentioned in Section 2, the inequalities of Conjecture 3 are true for any polymatroidal
ideal (we know from ([19] Theorem 3.4) that any polymatroidal ideal is integrally closed)). Also,
in ([35] Corollary 3.4), we verified Conjecture 3 for any squarefree monomial ideal which is generated
in a single degree.

We close this section by the following result which permits us to compare the Stanley depth of
integral closure of a monomial ideal and its powers.

Theorem 16 ([28], Theorem 2.8). Let J ⊆ I be two monomial ideals in S. Then, for every integer k ≥ 1,

sdepth(Ik/Jk) ≤ sdepth(I/J).
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The following corollary is an immediate consequence of Theorem 16.

Corollary 2. Let I ⊂ S be a monomial ideal. Then, for every integer k ≥ 1,

sdepth(Ik) ≤ sdepth(I)

and
sdepth(S/Ik) ≤ sdepth(S/I).

We mention that the inequalities of Corollary 2 remain true if one replaces sdepth with depth,
and this has been proved by Hoa and Trung ([33] Lemma 2.5).

4. Symbolic Powers

In this section, we collect the recent results concerning the Stanley depth of symbolic powers of
squarefree monomial ideals. We first recall the definition of symbolic powers, and then we continue in
two subsections.

Definition 4. Let I be an ideal of S, and let Min(I) denote the set of minimal primes of I. For every integer
k ≥ 1, the k-th symbolic power of I, denoted by I(k), is defined to be

I(k) =
⋂

p∈Min(I)

Ker(S → (S/Ik)p).

Let I be a squarefree monomial ideal in S, and suppose that I has the primary decomposition

I = p1 ∩ . . . ∩ pr,

where each pi is a prime ideal generated by a subset of the variables of S. It follows
from ([13] Proposition 1.4.4) that for every integer k ≥ 1,

I(k) = pk
1 ∩ . . . ∩ pk

r .

4.1. Asymptotic Behavior of Stanley Depth of Symbolic Powers

Let I be a squarefree monomial ideal. As we mentioned in Section 2, based on the limit behavior
of depth of powers of I, Herzog [6] conjectured that the Stanley depth of S/Ik is constant for large k
(see Conjecture 1). On the other hand, it is known that if one replaces the ordinary powers by symbolic
powers, then again the depth function stabilizes. In fact, Hoa, Kimura, Terai, and Trung [36] are
even able to compute the limit value of this function. In order to state their result, we need the
following definition.

Definition 5. Suppose I is a squarefree monomial ideal, and letRs(I) =
⊕∞

k=0 I(k) be the symbolic Rees ring
of I. The Krull dimension ofRs(I)/mR(I) is called the symbolic analytic spread of I and is denoted by �s(I).

Let I be a squarefree monomial ideal. Varbaro ([37] Proposition 2.4) showed that

min
k

depth(S/I(k)) = n− �s(I).

In [36], Hoa, Kimura, Terai, and Trung proved that the minimum and the limit of the sequence
{depth(S/I(k))}∞

k=1 coincide. Indeed, they showed the following stronger result. In the following
theorem, bight(I) denotes the maximum height of associated primes of I.
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Theorem 17 ([36], Theorem 2.4). Let I be a squarefree monomial ideal of S. Then, depth(S/I(k)) = n− �s(I),
for every integer k ≥ n(n + 1)bight(I)n/2.

As the depth function of symbolic powers of a squarefree monomial ideal is eventually constant,
one may ask whether the same is true for the Stanley depth—or in other words, whether an analogue
of Conjecture 1 is true, if one replaces the ordinary power with a symbolic power. In [38], we
gave a positive answer to this question. In fact, we have something more—first, we will see in the
following theorem that one can compare the Stanley depth of certain symbolic powers of a squarefree
monomial ideal.

Theorem 18 ([38], Theorem 4.2). Let I ⊂ S be a squarefree monomial ideal. Suppose that m and k are positive
integers. Then, for every integer j with m− k ≤ j ≤ m, we have

sdepth(I(m)) ≥ sdepth(I(km+j)) and sdepth(S/I(m)) ≥ sdepth(S/I(km+j)).

We recall that in the special case of j = m, the inequalities of Theorem 18 were also proved in ([39]
Corollary 3.2). We also mention that the assertions of Theorem 18 are true if one replaces sdepth with
depth, and this was proved independently by Nguyen and Trung ([40] Theorem 2.7), Montaño and
Núñez-Betancourt ([41] Theorem 3.4), and the author ([38] Theorem 3.3).

As an immediate consequence of Theorem 18, we obtained the following result.

Corollary 3 ([38], Corollary 4.3). For every squarefree monomial ideal I ⊂ S, we have

sdepth(S/I) ≥ sdepth(S/I(2)) ≥ sdepth(S/I(3))

and
sdepth(I) ≥ sdepth(I(2)) ≥ sdepth(I(3)).

Assume that I is a squarefree monomial ideal, and set

m := min
k

sdepth(S/I(k)).

Let t ≥ 1 be the smallest integer with sdepth(S/I(t)) = m. If t = 1, then by Theorem 18, for every
integer k ≥ 1, we have sdepth(S/I(k)) = m. Now, suppose t ≥ 2. Again, by Theorem 18, we have
sdepth(S/I(t

2−t)) = m. For every integer k > t2 − t, we write k = st + j, where s and j are positive
integers and 1 ≤ j ≤ t. As k > t2 − t, we conclude that s ≥ t− 1. It then follows from Theorem 18 that

sdepth(S/I(k)) = sdepth(S/I(st+j)) ≤ sdepth(S/I(t)) = m.

By the choice of m, we conclude that for every integer k ≥ t2 − t, the equality
sdepth(S/I(k)) = m holds. Therefore, the sequence {sdepth(S/I(k))}∞

k=1 is convergent and

min
k

sdepth(S/I(k)) = m = lim
k→∞

sdepth(S/I(k)).

Similarly, one proves that the sequence {sdepth(I(k))}∞
k=1 is convergent and

min
k

sdepth(I(k)) = lim
k→∞

sdepth(I(k)).

Therefore, we have the following result.
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Theorem 19 ([38], Theorem 4.4). For every squarefree monomial ideal I, the sequences {sdepth(S/I(k))}∞
k=1

and {sdepth(I(k))}∞
k=1 are convergent. Moreover,

min
k

sdepth(S/I(k)) = lim
k→∞

sdepth(S/I(k)),

and
min

k
sdepth(I(k)) = lim

k→∞
sdepth(I(k)).

A squarefree monomial ideal I is called normally torsionfree, if I(k) = Ik, for every integer k ≥ 1.
It is immediate from Theorem 19 that for any normally torsionfree squarefree monomial ideal I,
the sequences {sdepth(S/Ik)}∞

k=1 and {sdepth(Ik)}∞
k=1 are convergent. In particular, Conjecture 1 is

true for normally torsionfree squarefree monomial ideals.
Let I be a squarefree monomial ideal. The smallest integer t ≥ 1, such that

depth(S/Im) = limk→∞ depth(S/Ik) for all m ≥ t, is called the index of depth stability of powers of
I, and is denoted by dstab(I). Similarly, one can define the index of depth stability of symbolic powers by
replacing the ordinary powers with symbolic powers. The index of depth stability of symbolic powers
is denoted by dstabs(I). By Theorem 17, we have

dstabs(I) ≤ n(n + 1)bight(I)n/2.

According to Theorem 19, one can also define the indices of sdepth stability of symbolic powers, that is,

sdstabs(I) = min
{

t | sdepth(I(m)) = lim
k→∞

sdepth(I(k)) for all m ≥ t
}

sdstabs(S/I) = min
{

t | sdepth(S/I(m)) = lim
k→∞

sdepth(S/I(k)) for all m ≥ t
}

.

We also defined the following quantities:

sdmins(I) = min
{

t | sdepth(I(t)) = lim
k→∞

sdepth(I(k))
}

sdmins(S/I) = min
{

t | sdepth(S/I(t)) = lim
k→∞

sdepth(S/I(k))
}

.

The argument before Theorem 19 also proves the following proposition.

Proposition 1 ([38], Corollary 4.5). For every squarefree monomial ideal I ⊂ S, we have

sdstabs(I) ≤ max{1, sdmins(I)2 − sdmins(I)}

and
sdstabs(S/I) ≤ max{1, sdmins(S/I)2 − sdmins(S/I)}.

As we mentioned above, the assertions of Theorem 18 are true also for the depth. Thus, a similar
argument, as we explained before Theorem 19, implies that the inequalities of Proposition 1 remain
true, if one replaces Stanley depth with depth. This has been already observed in ([38] Theorem 3.6).

Let I be a squarefree monomial ideal. We know from Theorem 19 that the sequences
{sdepth(S/I(k))}∞

k=1 and {sdepth(I(k))}∞
k=1 are convergent. Now, it is natural to ask the

following question.

Question 5. Let I be a squarefree monomial ideal. How can one describe the limits of the sequences
{sdepth(S/I(k))}∞

k=1 and {sdepth(I(k))}∞
k=1?
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Question 5 is widely open. We know the answer only for very special classes of ideals.
For example, assume that I is a squarefree complete intersection monomial ideal. It is easy to check
that for any integer k ≥ 1, the equality I(k) = Ik holds. Therefore, using Theorem 2, we conclude that

lim
k→∞

sdepth(S/I(k)) = n− t,

and
lim
k→∞

sdepth(I(k)) = n− t + 1,

where t is the number of minimal monomial generators of I (which is also equal to �s(I)).
We are also able to compute the limit of the sequence {sdepth(S/I(k))}∞

k=1, where I is the
Stanley-Reisner ideal of a matroid. We first recall some basic definitions from the theory of
Stanley-Reisner rings.

A simplicial complex Δ on the set of vertices V(Δ) = [n] := {1, . . . , n} is a collection of subsets of [n]
which contains {i} for any i ∈ [n], and is closed under taking subsets; that is, if F ∈ Δ and F′ ⊆ F, then
also F′ ∈ Δ. Every element F ∈ Δ is called a face of Δ. The dimension of a face F is defined to be |F| − 1.
The dimension of Δ which is denoted by dim Δ, is defined to be d− 1, where d = max{|F| | F ∈ Δ}.
The Stanley-Reisner ideal of Δ is defined as

IΔ =
(
∏
i∈F

xi : F ⊆ [n], F /∈ Δ
) ⊆ S.

Definition 6. A simplicial complex Δ is called matroid if, for every pair of faces F, G ∈ Δ with |F| > |G|, there
is a vertex x ∈ F \ G such that G ∪ {x} is a face of Δ.

As we mentioned above, there is some information about the limit of the Stanley depth function
of symbolic powers of the Stanley-Reisner ideal of a matroid.

Theorem 20 ([38], Theorem 4.7). Let Δ be a matroid. Then,

lim
k→∞

sdepth(S/I(k)Δ ) = n− �s(IΔ) = dim Δ + 1

and
lim
k→∞

sdepth(I(k)Δ ) ≥ n− �s(IΔ) + 1.

4.2. Cover Ideals

Let G be a graph with vertex set V(G) =
{

x1, . . . , xn
}

. A subset C of V(G) is called a vertex cover
of G if every edge of G is incident to at least one vertex of C. A vertex cover C is called a minimal vertex
cover of G if no proper subset of C is a vertex cover of G. The cover ideal of G is a squarefree monomial
ideal of S which is defined as

J(G) =
(

∏
xi∈C

xi | C is a minimal vertex cover of G
)
.

It is easy to see that the cover ideal is the Alexander dual of the edge ideal, that is,

J(G) = I(G)∨ =
⋂

{xi ,xj}∈E(G)

(x1, xj).

Let I be a squarefree monomial ideal. In Question 1, we asked whether Ik and S/Ik satisfied
Stanley’s inequality for every integer k � 0. One can also ask the similar question for symbolic powers.
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Question 6 ([7], Question 1.2). Let I be a monomial ideal. Is it true that I(k) and S/I(k) satisfy Stanley’s
inequality for every integer k � 0?

In this subsection, we investigate the above question for cover ideals. By Theorem 17, in order
to know whether the high symbolic powers of cover ideals satisfy Stanley’s inequality, we need to
compute their symbolic analytic spread. This has been done by Constantinescu and Varbaro [42].
Indeed, they provide a combinatorial description for the symbolic analytic spread of J(G). To state
their result, we need to recall some notions from the graph theory.

Let G be a graph. A matching in G is a set of edges such that no two different edges share a
common vertex. A subset W of V(G) is called an independent subset of G if there are no edges among
the vertices of W. Let M = {{ai, bi} | 1 ≤ i ≤ r} be a nonempty matching of G. We say that M is an
ordered matching of G if the following conditions hold.

(1) A := {a1, . . . , ar} is an independent subset of vertices of G, and
(2) {ai, bj} ∈ E(G) implies that i ≤ j.

The ordered matching number of G, denoted by νo(G), is defined to be

νo(G) = max{|M| | M ⊆ E(G) is an ordered matching of G}.

Theorem 21 ([42], Theorem 2.8). For any graph G,

�s(J(G)) = νo(G) + 1.

As a consequence of Theorems 17 and 21, for any graph G with n vertices, we have

lim
k→∞

depth(S/J(G)(k)) = n− νo(G)− 1.

Hoa, Kimura, Terai, and Trung [36], determined a linear upper bound for the index of depth
stability of symbolic powers of cover ideals. In [7], we provided an alternative proof for their result.

Theorem 22 ([36], Theorem 3.4 and [7], Theorem 3.1). Let G be a graph with n vertices. Then, for every
integer k ≥ 2νo(G)− 1, we have

depth(S/J(G)(k)) = n− νo(G)− 1.

In [7], we also proved that high symbolic powers of cover ideals satisfy Stanley’s inequality.
Indeed, we proved the following result.

Theorem 23 ([7], Theorem 3.5 and Corollary 3.6). Let G be a graph with n vertices. Then, for every integer
k ≥ 1, we have

sdepth(J(G)(k)) ≥ n− νo(G) and sdepth(S/J(G)(k)) ≥ n− νo(G)− 1.

In particular, J(G)(k) and S/J(G)(k) satisfy the Stanley’s inequality, for every integer k ≥ 2νo(G)− 1.

The assertions of Theorem 23 for the special case of bipartite graphs was also proved in [43].
Let G be a graph with n vertices. We say G is very well-covered if n is an even integer and

moreover, every vertex cover of G has size n/2. The graph G is called Cohen-Macaulay if the ring
S/I(G) is Cohen-Macaulay. We know from Theorem 23 that for any graph G, the modules J(G)(k)

and S/J(G)(k) satisfy Stanley’s inequality for k � 0. However, in the case of Cohen-Macaulay very
well-covered graphs, we have something more.
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Proposition 2 ([44], Corollary 3.8). Let G be a Cohen-Macaulay very well-covered graph. Then, J(G)(k) and
S/J(G)(k) satisfy Stanley’s inequality for every integer k ≥ 1.

In Question 5, we asked about the limit values of the sequences {sdepth(S/I(k))}∞
k=1 and

{sdepth(I(k))}∞
k=1, where I is a squarefree monomial ideal. For the case of cover ideals, we pose

the following conjecture.

Conjecture 4. Let G be a graph with n vertices. Then,

lim
k→∞

sdepth(S/J(G)(k)) = n− νo(G)− 1,

and
lim
k→∞

depth(J(G)(k)) = n− νo(G).

Let I be a squarefree monomial ideal. According to Theorem 17, the sequence {depth(S/I(k))}∞
k=1

is convergent. The situation is even better if I is a cover ideal. In fact, Hoa, Kimura, Terai, and Trung
([36] Theorem 3.2) proved that the above sequence is non-increasing for cover ideals. In other words,
for every graph G and any integer k ≥ 1, we have

depth(S/J(G)(k)) ≥ depth(S/J(G)(k+1)).

We recall that the above inequality for bipartite graphs was also proved in ([45] Theorem 3.2).
We close this article by mentioning that the above inequality is true if one replaces depth

with sdepth. In fact, we have the following result.

Theorem 24 ([7], Theorem 3.3). Let G be a graph. Then, for every integer k ≥ 1, we have:

(i) sdepth(S/J(G)(k)) ≥ sdepth(S/J(G)(k+1)), and
(ii) sdepth(J(G)(k)) ≥ sdepth(J(G)(k+1)).
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1. Introduction

Let G be any finite simple graph with vertex set V(G) = {x1, . . . , xn} and edge set E(G), where
simple means no loops or multiple edges. The edge ideal of G is the ideal I(G) =

〈
xixj | {xi, xj} ∈ E(G)

〉
in R = k[x1, . . . , xn], a standard graded polynomial ring over a field k (k is any field). Describing the
dictionary between the graph theoretic properties of G and the algebraic properties of I(G) or R/I(G)

is an active area of research; e.g., see [1,2].
Relating the homological invariants of I(G) and the graph theoretic invariants of G has proven

to be a fruitful approach to building this dictionary. Recall that the minimal graded free resolutionof
I(G) ⊆ R is a long exact sequence of the form:

0 →⊕
j

R(−j)βl,j(I(G)) →⊕
j

R(−j)βl−1,j(I(G)) → · · · →⊕
j

R(−j)β0,j(I(G)) → I(G)→ 0

where l ≤ n. Here, R(−j) denotes the free R-module obtained by shifting the degrees of R by j,
that is R(−j)a = Ra−j. We denote by βi,j(I(G)) the i, jth graded Betti number of I(G); this number
equals the number of minimal generators of degree j in the ith syzygy module of I(G). Two invariants
that measure the “size” of the resolution are the (Castelnuovo–Mumford) regularity and the projective
dimension, defined as:

reg(I(G)) = max{j− i | βi,j(I(G)) �= 0}, and

pd(I(G)) = max{i | βi,j(I(G)) �= 0 for some j}.

One wishes to relate the numbers βi,j(I(G)) to the invariants of G; e.g., see the survey of Hà [3],
which focuses on describing reg(I(G)) in terms of the invariants of G.

In this note, we give explicit formulas for reg(I(G)) for the edge ideals of two infinite families of
circulant graphs. Our results complement previous work on the algebraic and combinatorial topological
properties of circulant graphs (e.g, [4–11]). Fix an integer n ≥ 2 and a subset S ⊆ {1, . . . , $ n

2 %}.
The circulant graph Cn(S) is the graph on the vertex set {x1, . . . , xn} such that {xi, xj} ∈ E(Cn(S))
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if and only if |i − j| or n− |i − j| ∈ S. To simplify notation, Cn(a1, . . . , at) is sometimes written for
Cn({a1, . . . , at}). As an example, the graph C10(1, 3) is drawn in Figure 1.

Figure 1. The circulant C10(1, 3).

When S = {1, . . . , $ n
2 %}, then Cn(S) ∼= Kn, the clique on n vertices. On the other hand, if S = {1},

then Cn(1) ∼= Cn, the cycle on n vertices. For both of these families, the regularity of their edge ideals is
known. Specifically, the ideal I(Kn) has a linear resolution by Fröberg’s theorem [12], so reg(I(Kn)) = 2.
The value of reg(I(Cn)) can be deduced from the work of Jacques ([13], Theorem 7.6.28). One can view
these circulant graphs as “extremal” cases in the sense that |S| is either as large or as small as possible.

Our motivation is to understand the next open cases. In particular, generalizing the case of Kn,
we compute reg(I(Cn(S)) when S = {1, . . . , ĵ, . . . , $ n

2 %} for any 1 ≤ j ≤ $ n
2 % (Theorem 5). For most j,

the regularity follows from Fröberg’s theorem and a result of Nevo [14]. To generalize the case of Cn (a
circulant graph where every vertex has degree two), we compute the regularity of the edge ideal of any
cubic (every vertex has degree three) circulant graph, that is G = C2n(a, n) with 1 ≤ a ≤ n (Theorem
8). Our proof of Theorem 8 requires a new technique to compute reg(I) for a square-free monomial
ideal. Specifically, we show how to use partial information about reg(I), pd(I), and the reduced Euler
characteristic of the simplicial complex associated with I to determine reg(I) exactly (see Theorem 4).
We believe this result to be of independent interest.

We use the following outline. We first recall the relevant background regarding graph theory
and commutative algebra, along with our new result on the regularity of square-free monomial ideals.
In Section 3, we compute the regularity of I(G) for the family of graphs G = Cn(1, . . . , ĵ, . . . , $ n

2 %).
In Section 4, we give an explicit formula for the regularity of edge ideals of cubic circulant graphs.

2. Background

We review the relevant background from graph theory and commutative algebra. In addition,
we give a new result on the regularity of square-free monomial ideals.

2.1. Graph Theory Preliminaries

Let G = (V(G), E(G)) denote a finite simple graph. We abuse notation and write xy for the edge
{x, y} ∈ E(G). The complement of G, denoted Gc, is the graph (V(Gc), E(Gc)) where V(Gc) = V(G)

and E(Gc) = {xy | xy �∈ E(G)}. The neighbours of x ∈ V(G) are the set N(x) = {y ∈ V(G) | xy ∈
E(G)}. The closed neighbourhood of x is N[x] = N(x) ∪ {x}. The degree of x is deg(x) = |N(x)|. If we
need to highlight the graph, we write NG[x] or NG(x).

A graph H = (V(H), E(H)) is a subgraph of G if V(H) ⊆ V(G) and E(H) ⊆ E(G). Given a subset
W ⊆ V(G), the induced subgraph of G on W is the graph GW = (W, E(GW)) where E(GW) = {xy ∈
E(G) | {x, y} ⊆ W}. Notice that an induced subgraph is a subgraph of G, but not every subgraph of G
is an induced subgraph.

An n-cycle, denoted Cn, is the graph with V(Cn) = {x1, . . . , xn} and edges E(Cn) =

{x1x2, x2x3, . . . , xn−1xn, xnx1}. A graph G has a cycle of length n if G has a subgraph of the form
Cn. A graph is a chordal graph if G has no induced graph of the form Cn with n ≥ 4. A graph G is
co-chordal if Gc is chordal. The co-chordal number of G, denoted co-chord(G), is the smallest number of
subgraphs of G such that G = G1 ∪ · · · ∪ Gs, and each Gc

i is a chordal graph.
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A claw is the graph with V(G) = {x1, x2, x3, x4} with edges E(G) = {x1x2, x1x3, x1x4}. A graph
is claw-free if no induced subgraph of the graph is a claw. A graph G is gap-free if no induced
subgraph of Gc is a C4. Finally, the complete graph Kn is the graph with V(Kn) = {x1, . . . , xn} and
E(Kn) = {xixj | 1 ≤ i < j ≤ n}.

2.2. Algebraic Preliminaries

We recall some facts about the regularity of I(G). Note that for any homogeneous ideal, reg(I) =
reg(R/I) + 1.

We collect together a number of useful results on the regularity of edge ideals.

Theorem 1. Let G be a finite simple graph. Then:

(i) if G = H ∪ K, with H and K disjoint, then:

reg(R/I(G)) = reg(R/I(H)) + reg(R/I(K)).

(ii) reg(I(G)) = 2 if and only if Gc is a chordal graph.
(iii) reg(I(G)) ≤ co-chord(G) + 1.
(iv) if G is gap-free and claw-free, then reg(I(G)) ≤ 3.
(v) if x ∈ V(G), then reg(I(G)) ∈ {reg(I(G \ NG[x])) + 1, reg(I(G \ x))}.

Proof. For (i), see Woodroofe ([15], Lemma 8). Statement (ii) is Fröberg’s Theorem ([12], Theorem 1).
Woodroofe ([15], Theorem 1) first proved (iii). Nevo first proved (iv) in [14] (Theorem 5.1). For (v),
see Dao, Huneke, and Schweig ([16], Lemma 3.1).

We require a result of Kalai and Meshulam [17] that has been specialized to edge ideals.

Theorem 2. ([17], Theorems 1.4 and 1.5) Let G be a finite simple graph, and suppose H and K are subgraphs
such that G = H ∪ K. Then,

(i) reg(R/I(G)) ≤ reg(R/I(H)) + reg(R/I(K)), and
(ii) pd(I(G)) ≤ pd(I(H)) + pd(I(K)) + 1.

We now introduce a new result on the regularity of edge ideals. In fact, because our result holds
for all square-free monomial ideals, we present the more general case.

We review some facts about simplicial complexes. Given a vertex set V = {x1, . . . , xn}, a simplicial
complex Δ on V is a set of subsets of V that satisfies the properties: (i) if F ∈ Δ and G ⊆ F, then G ∈ Δ,
and (ii) {xi} ∈ Δ for i = 1, . . . , n. Note that ∅ ∈ Δ by (i) since {x1} ∈ Δ by (ii) (if Δ is not the empty
complex). An element of Δ is called a face. For any W ⊆ V, the restriction of Δ to W is the simplicial
complex ΔW = {F ∈ Δ | F ⊆ W}.

The dimension of F ∈ Δ is dim(F) = |F| − 1. The dimension of a complex Δ, denoted dim(Δ),
is max{dim(F) | F ∈ Δ}. Let fi equal the number of faces of Δ of dimension i; we adopt the convention
that f−1 = 1. If dim(Δ) = D, then the f -vector of Δ is the (D + 2)-tuple f (Δ) = ( f−1, f0, . . . , fD).

We can associate with any simplicial complex Δ on V a monomial ideal IΔ in the polynomial ring
R = k[x1, . . . , xn] (with k a field) as follows:

IΔ =
〈

xj1 xj2 · · · xjr | {xj1 , xj2 , . . . , xjr} /∈ Δ
〉

.

The ideal IΔ is the Stanley–Reisner ideal of Δ. This construction can be reversed. Given a square-free
monomial ideal I of R, the simplicial complex associated with I is:

Δ(I) =
{{xi1 , . . . , xir} | the square-free monomial xi1 · · · xir �∈ I

}
.
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Given a square-free monomial ideal I, Hochster’s formula relates the Betti numbers of I to the
reduced simplicial homology of Δ(I). See [2] (Section 6.2) for more background on H̃j(Γ; k), the jth

reduced simplicial homology group of a simplicial complex Γ.

Theorem 3. (Hochster’s formula) Let I ⊆ R = k[x1, . . . , xn] be a square-free monomial ideal, and set
Δ = Δ(I). Then, for all i, j ≥ 0,

βi,j(I) = ∑
|W|=j, W⊆V

dimk H̃j−i−2(ΔW ; k).

Given a simplicial complex Δ of dimension D, the dimensions of the homology groups H̃i(Δ; k)
are related to the f -vector f (Δ) via the reduced Euler characteristic:

χ̃(Δ) =
D

∑
i=−1

(−1)i dimk H̃i(Δ; k) =
D

∑
i=−1

(−1)i fi. (1)

Note that the reduced Euler characteristic is normally defined to be equal to one of the two sums,
and then, one proves the two sums are equal (e.g., see [2], Section 6.2).

Our new result on the regularity of square-free monomial ideals allows us to determine reg(I)
exactly if we have enough partial information on the regularity, projective dimension, and the reduced
Euler characteristic.

Theorem 4. Let I be a square-free monomial ideal of R = k[x1, . . . , xn] with associated simplicial complex
Δ = Δ(I).

(i) Suppose that reg(I) ≤ r and pd(I) ≤ n− r + 1.

(a) If r is even and χ̃(Δ) > 0, then reg(I) = r.
(b) If r is odd and χ̃(Δ) < 0, then reg(I) = r.

(ii) Suppose that reg(I) ≤ r and pd(I) ≤ n− r. If χ̃(Δ) �= 0, then reg(I) = r.

Proof. By Hochster’s formula (Theorem 3), note that βa,n(I) = dimk H̃n−a−2(Δ; k) for all a ≥ 0 since
the only subset W ⊆ V with |W| = n is V.

(i) If reg(I) ≤ r and pd(I) ≤ n− r + 1, we have βa,n(I) = 0 for all a ≤ n− r− 1 and βa,n(I) = 0
for all a ≥ n− r + 2. Consequently, among all the graded Betti numbers of the form βa,n(I) as
a varies, only βn−r,n(I) = dimk H̃r−2(Δ; k) and βn−r+1,n(I) = dimk H̃r−3(Δ; k) may be non-zero.
Thus, by (1):

χ̃(Δ) = (−1)r−2 dimk H̃r−2(Δ; k) + (−1)r−3 dimk H̃r−3(Δ; k).

If we now suppose that r is even and χ̃(Δ) > 0, the above expression implies:

dimk H̃r−2(Δ; k)− dimk H̃r−3(Δ; k) > 0,

and thus, βn−r,n(I) = dimk H̃r−2(Δ; k) �= 0. As a consequence, reg(I) = r, thus proving (a).
Similarly, if r is odd and χ̃(Δ) < 0, this again forces βn−r,n(I) = dimk H̃r−2(Δ; k) �= 0, thus
proving (b).

(ii) Similar to Part (i), the hypotheses on the regularity and projective dimension imply that χ̃(Δ) =
(−1)r−2 dimk H̃r−2(Δ; k) = (−1)r−2βn−r,n(I). Therefore, if χ̃(Δ) �= 0, then βn−r,n(I) �= 0,
which implies reg(I) = r.
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Remark 1. There is a similar result to Theorem 4 for the projective dimension of I. In particular, under the
assumptions of (i) and if r is even and χ̃(Δ) < 0, or if r is odd and χ̃(Δ) > 0, then the proof of Theorem 4
shows that pd(I) = n− r + 1. Under the assumptions of (ii), then pd(I) = n− r.

We will apply Theorem 4 to compute the regularity of cubic circulant graphs (see Theorem 8).
We will also require the following terminology and results that relate the reduced Euler characteristic
to the independence polynomial of a graph.

A subset W ⊆ V(G) is an independent set if for all e ∈ E(G), e � W. The set of independent sets
forms a simplicial complex called the independence complex of G, that is,

Ind(G) = {W | W is an independent set of V(G)}.

Note that Ind(G) = ΔI(G), the simplicial complex associated with the edge ideal I(G).
The independence polynomial of a graph G is defined as:

I(G, x) =
α

∑
r=0

irxr,

where ir is the number of independent sets of cardinality r. Note that (i0, i1, . . . , iα) = ( f−1, f0, . . . , fα−1)

is the f -vector of Ind(G). Since χ̃(Ind(G)) = ∑α−1
i=−1(−1)i fi, we get:

χ̃(Ind(G)) = −I(G,−1). (2)

Thus, the value of χ̃(Ind(G)) can be extracted from the independence polynomial I(G, x).

3. The Regularity of the Edge Ideals of Cn(1, . . . , ĵ, . . . , � n
2 �)

In this section, we compute the regularity of the edge ideal of the circulant graph G = Cn(S) with
S = {1, . . . , ĵ, . . . , $ n

2 %} for any j ∈ {1, . . . , $ n
2 %}.

We begin with the observation that the complement of G is also a circulant graph, and in particular,
Gc = Cn(j). Furthermore, we have the following structure result.

Lemma 1. Let H = Cn(j) with 1 ≤ j ≤ ⌊ n
2
⌋
, and set d = gcd(j, n). Then, H is the union of d disjoint cycles

of length n
d . Furthermore, H is a chordal graph if and only if n = 2j or n = 3j.

Proof. Label the vertices of H as {0, 1, . . . , n− 1}, and set d = gcd(j, n). For each 0 ≤ i < d, the induced
graph on the vertices {i, j + i, 2j + i, . . . , ( n

d − 1)j + i} is a cycle of length n
d , thus proving the first

statement (if n
d = 2, then H consists of d disjoint edges). For the second statement, if n = 3j, then

d = gcd(j, n) = 3, so H is the disjoint union of three cycles, and thus chordal. If n = 2j, then H consists
of j disjoint edges and, consequently, is chordal. Otherwise, n

d ≥ 4, and so, H is not chordal.

Lemma 2. Let G = Cn(1, . . . , ĵ, . . . , $ n
2 %), and d = gcd(j, n).

(i) If n
d ≥ 4, then G is claw-free.

(ii) If n
d ≥ 5, then G is gap free.

Proof. For the first statement, suppose that G has an induced subgraph H on {z1, z2, z3, z4} ⊆ V(G)

that is a claw. Then, Hc is an induced subgraph of Gc of the form:

z4 z2

z3

z1
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However, by Lemma 1, the induced cycles of Gc have length n
d ≥ 4. Thus, G is claw-free.

The second statement also follows from Lemma 1 and the fact that a graph G is gap-free if and
only if Gc has no induced four cycles.

The main result of this section is given below.

Theorem 5. If G = Cn(1, . . . , ĵ, . . . , $ n
2 %), then:

reg(I(G)) =

{
2 n = 2j or n = 3j

3 otherwise.

Proof. Consider Gc = Cn(j), and let d = gcd(j, n). By Lemma 1, Gc consists of induced cycles of
length k = n

d . Because 1 ≤ j ≤ $ n
2 %, we have d < n, and thus, 2 ≤ k ≤ n. If k = 2 or 3, i.e., if n = 2j

or n = 3j, Lemma 1 and Theorem 1 (ii) combine to give reg(I(G)) = 2. If k ≥ 5, then Lemmas 1 and
2 imply that G is gap-free and claw-free (but not chordal), and so, Theorem 1 (ii) and (iv) implies
reg(I(G)) = 3.

To compete the proof, we need to consider the case k = 4. In this case, n = 4d, and so, G =

C4d(1, . . . , ĵ, . . . , 2d). However, because d = gcd(j, 4d) and 1 ≤ j ≤ 2d, we have d = j. Therefore, the
graph G has the form G = C4j(1, . . . , ĵ, . . . , 2j). By Lemma 1, Gc is j disjoint copies of C4, and thus,
Theorem 1 (ii) gives reg(I(G)) ≥ 3. To prove that reg(I(G)) = 3, we show co-chord(G) = 2 and
apply Theorem 1 (iii).

Label the vertices of G as 0, 1, . . . , 4j− 1, and let:

V1 = {0, 1, 2, . . . , j− 1, 2j, 2j + 1, . . . , 3j− 1} and

V2 = {j, j + 1, . . . , 2j− 1, 3j, 3j + 1, . . . , 4j− 1}.

Observe that the induced subgraph of G on V1 (and V2) is the complete graph K2j.
Let G1 be the graph with V(G1) = V(G) and edge set E(G1) = (E(C4j(1, . . . , j− 1)) ∪ E(GV1)) \

E(GV2). Similarly, we let G2 be the graph with V(G2) = V(G) and edge set E(G2) = (E(C4j(j +
1, . . . , 2j)) ∪ E(GV2)) \ E(GV1).

We now claim that G = G1 ∪ G2, and furthermore, both Gc
1 and Gc

2 are chordal and, consequently,
co-chord(G) = 2. The equality G = G1 ∪ G2 follows from the fact that:

E(G1) ∪ E(G2) = E(C4j(1, . . . , j− 1)) ∪ E(C4j(j + 1, . . . , 2j))

= E(G4j(1, . . . , ĵ, . . . , 2j)).

To show that Gc
1 is chordal, first note that the induced graph on V1, that is (G1)V1 , is the complete

graph K2j. In addition, the vertices V2 form an independent set of G1. To see why, note that if a, b ∈ V2

are such that ab ∈ E(G), then ab ∈ E(GV2). However, by the construction of E(G1), none of the edges
of E(GV2) belong to E(G1). Therefore, ab �∈ E(G1), and thus, V2 is an independent set in G1.

The above observations therefore imply that in Gc
1, the vertices of V1 form an independent set,

and (Gc
1)V2 is the clique K2j. To show that Gc

1 is chordal, suppose that Gc
1 has an induced cycle of length

t ≥ 4 on {v1, v2, v3, . . . , vt}. Since the induced graph on (Gc
1)V2 is a clique, at most two of the vertices

of {v1, v2, . . . , vt} can belong to V2. Indeed, if there were at least three vi, vj, vk ∈ {v1, v2, . . . , vt} ∩V2,
then the induced graph on these vertices is a three cycle, contradicting the fact that {v1, v2, . . . , vt} is
the minimal induced cycle of length t ≥ 4. However, then at least t− 2 ≥ 2 vertices of {v1, v2, . . . , vt}
must belong to V1, and in particular, at least two of them are adjacent. However, this cannot happen
since the vertices of V1 are independent in Gc

1. Thus, Gc
1 must be a chordal graph.

The proof that Gc
2 is chordal is similar. Note that the vertices of V2 are an independent set, and

(Gc
2)V1 is the clique K2j. The proof now proceeds as above.
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4. Cubic Circulant Graphs

We now compute the regularity of the edge ideals of cubic circulant graphs, that is a circulant
graph where every vertex has degree three. In general, a circulant graph Cn(a1, . . . , at) is 2t-regular
(every vertex has degree 2t), except if 2at = n, in which case, it is (2t − 1)-regular. Consequently,
cubic circulant graphs have the form G = C2n(a, n) with integers 1 ≤ a ≤ n. The main result of this
section can also be viewed as an application of Theorem 4 to compute the regularity of a square-free
monomial ideal.

We begin with a structural result for cubic circulants due to Davis and Domke.

Theorem 6. [18] Let 1 ≤ a < n and t = gcd(2n, a).

(a) If 2n
t is even, then C2n(a, n) is isomorphic to t copies of C 2n

t
(1, n

t ).
(b) If 2n

t is odd, then C2n(a, n) is isomorphic to t
2 copies of C 4n

t
(2, 2n

t ).

Theorem 6 implies that a cubic circulant graph is the disjoint union of one or more connected
cubic circulant graphs. Furthermore, the only connected cubic circulant graphs are those circulant
graphs that are isomorphic to either the circulant C2n(1, n) for any n ≥ 2 or the circulant C2n(2, n)
with n > 1 odd (for the second circulant, if n is not odd, then Theorem 6 implies that this circulant is
not connected). Recall from Theorem 1 (i) that, to compute the regularity of a graph, it is enough to
compute the regularity of each connected component. Therefore, it suffices to compute the regularity
of the edge ideals of C2n(1, n) and C2n(2, n) with n odd. Moving forward, unless stated otherwise, we
will restrict to connected cubic circulant graphs. Note it will be convenient to use the representation
and labelling of these two graphs as in Figure 2.

xn−2

xn−1
xn

xn+1

xn+2

xn+3x3

x2

x1

x2n

x2n−1

x2n−2

xi

xn+i

x2n−5

x2n−3

x2n−1 x1x3

x5 xn+5

xn+3

xn+1xn−1

xn−3

xn−5

xi

xn+i

Figure 2. The graphs C2n(1, n) and C2n(2, n).

Our strategy is to use Theorem 4 to compute the regularity of these two graphs. Thus, we need
bounds on reg(I(G)) and pd(I(G)) and information about the reduced Euler characteristic of Ind(G)

when G = C2n(1, n) or C2n(2, n).
We first bound the regularity and the projective dimension. We introduce the following three

families of graphs, where the t ≥ 1 denotes the number of “squares”:

(i) The family At:

(ii) The family Bt:

(iii) The family Dt:
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Lemma 3. With the notation as above, we have:

(i) If G = At, then:

reg(I(G)) ≤
{

t+4
2 if t even

t+3
2 if t odd

and pd(I(G)) ≤
{

3t
2 + 1 if t even
3(t−1)

2 + 2 if t odd.

(ii) If G = Bt, then

reg(I(G)) ≤
{

t+4
2 if t even

t+3
2 if t odd.

(iii) If G = Dt and t = 2l + 1 with l an odd number, then reg(I(G)) ≤ t+3
2 .

Proof. (i) The proof is by induction on t. Via a direct computation (for example, using Macaulay2 [19]),
one finds reg(I(A1)) = 2, reg(I(A2)) = 3, pd(I(A1)) = 2, and pd(I(A2)) = 4. Our values agree with
the upper bounds given in the statement, so the base cases hold.

Now, suppose that t ≥ 3. The graph At can be decomposed into the subgraphs A1 and At−2, i.e.,

a a

b b

Suppose that t is even. By Theorem 2 and by induction (and the fact that reg(R/I) = reg(I)− 1),
we get:

reg(R/I(At)) ≤ reg(R/I(A1)) + reg(R/I(At−2)) ≤ 1 +
(t− 2) + 4

2
− 1 =

t + 4
2
− 1

and:

pd(I(At)) ≤ pd(I(A1)) + pd(I(At−2) + 1 ≤ 2 +
3(t− 2)

2
+ 1 + 1 =

3t
2
+ 1.

Because the proof for when t is odd is similar, we omit it.
(ii) A direct computation shows reg(I(B1)) = 2 and reg(I(B2)) = 3. If t ≥ 3, we decompose Bt

into the subgraphs B1 and At−2, i.e.,

a a

b b

Suppose that t is even. Since reg(I(B1)) = 2, Theorem 2 and Part (i) above give us:

reg(R/I(Bt)) ≤ reg(R/I(B1)) + reg(R/I(At−2)) ≤ (t− 2) + 4
2

=
t + 2

2
.

Therefore, reg(I(Bt)) ≤ t+2
2 + 1 = t+4

2 . When t is odd, the proof is similar.
(iii) Because t = 2l + 1 with l odd, the graph Dt can be decomposed into l + 1 subgraphs of the

form A1, i.e.,

a a

b b

122



Mathematics 2019, 7, 657

Since reg(I(A1)) = 2, by Theorem 2, we get reg(R/I(Dt)) ≤ (l + 1)reg(R/I(A1)) = l + 1. Thus,
reg(I(Dt)) ≤ l + 2 = t+3

2 .

Remark 2. In the above proof, we relied on computer computations for our base case. In general, the graded Betti
numbers of an ideal may depend on the characteristic of the ground field. However, as shown by Katzman [20], the
Betti numbers of edge ideals of graphs on 11 or less vertices are independent of the characteristic. Since the graphs
in our induction steps have 11 or less vertices, the values found for our base cases hold in all characteristics.

We now bound the projective dimensions of the edge ideals of C2n(1, n) and C2n(2, n). In the next
two lemmas, we assume that n ≥ 4. However, as we show in Theorem 8, the bounds (in fact, they are
equalities) given in these lemmas also hold if n = 2 or 3, i.e., if G = C4(1, 2), C6(1, 3) or C6(2, 3).

Lemma 4. Let n ≥ 4.

(i) If G = C2n(1, n), then:

pd(I(G)) ≤
{

3k− 1 if n = 2k

3k + 1 if n = 2k + 1.

(ii) If G = C2n(2, n), then pd(I(G)) ≤ 3k + 1 where n = 2k + 1.

Proof. (i) Let G = C2n(1, n), and suppose that n = 2k + 1. The graph C2n(1, n) can be decomposed
into the subgraphs A1 and A2k−2, i.e.,

xn

x2n

xn+1

x1

x2n

xn

xn+2 xn+2

x2 x2

x2n

xn

Note that since n ≥ 4 and n is odd, 2k− 2 ≥ 2. Combining Theorem 2 and Lemma 3, we get:

pd(I(C2n(1, n))) ≤ pd(I(A2k−2)) + pd(I(A1)) + 1 ≤
(

3(2k− 2)
2

+ 1
)
+ 3 = 3k + 1.

If n = 2k, C2n(1, n) can be decomposed as in the previous case with the only difference being
that C2n(1, n) can be decomposed into the union of the subgraphs A1 and A2k−3. By Theorem 2 and
Lemma 3:

pd(I(C2n(1, n))) ≤ pd(I(A2k−3)) + pd(I(A1)) + 1 ≤
(

3(2k− 4)
2

+ 2
)
+ 3 = 3k− 1.

(ii) Let G = C2n(2, n) with n = 2k + 1. We can draw G as:

xn−1

x2n−1

xn+1

x1

xn−1

x2n−1

The previous representation of G contains 2k squares. Then, the graph G can be decomposed into the
subgraphs A1 and A2k−2, and the proof runs as in (i).

We now determine bounds on the regularity.

Lemma 5. Let n ≥ 4.
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(i) If G = C2n(1, n), then:

reg(I(G)) ≤
{

k + 1 if n = 2k, or if n = 2k + 1 and k odd

k + 2 if n = 2k + 1 and k even.

(ii) If G = C2n(2, n), then

reg(I(G)) ≤
{

k + 1 if n = 2k + 1 and k even

k + 2 if n = 2k + 1 and k odd.

Proof. (i) Let G = C2n(1, n). We consider three cases.

Case 1. n = 2k.

In Lemma 4 (i), we saw that G can be decomposed into the subgraphs A1 and A2k−3. By Theorem 2
and Lemma 3, we get:

reg(R/I(G)) ≤ reg(R/I(A1)) + reg(R/I(A2k−3)) ≤ k.

Case 2. n = 2k + 1 with k an odd number.

Using Theorem 1 (v), we have:

reg(I(G)) ∈ {reg(I(G \ x1), reg(I(G \ NG[x1]) + 1}.

If we set W = G \ x1, then by applying Theorem 1 (v) again, we have:

reg(I(G)) ∈ {reg(I(W \ xn+1), reg(I(W \ NW [xn+1]) + 1, reg(I(G \ NG[x1]) + 1}.

We have G \ NG[x1] ∼= W \ NW [xn+1] ∼= D2k−3. Moreover, 2k− 3 = 2(k− 2) + 1, and since k is
an odd number, k− 2 is also odd. Thus, by Lemma 3 (iii), we obtain reg(I(D2k−3)) ≤ 2k−3+3

2 = k.
On the other hand, the graph W \ xn+1 = (G \ x1) \ xn+1

∼= B2k−1, so by Lemma 3 (ii), we have
reg(I(W \ xn+1)) ≤ 2k−1+3

2 ≤ k + 1. Thus, reg(I(G)) ≤ k + 1.

Case 3. n = 2k + 1 with k an even number.

In Lemma 4 (i), we saw that G can be decomposed into the subgraphs A1 and A2k−2, and the
proof runs as in Case 1.

(ii) Let G = C2n(2, n). We consider two cases.

Case 1. n = 2k + 1 with k an even number.

As in the second case of (i), by Theorem 1 (v), we have:

reg(I(G)) ∈ {reg(I(W \ xn+1), reg(I(W \ NW [xn+1]) + 1, reg(I(G \ NG[x1]) + 1}.

where W = G \ x1. In particular, W \NW [xn+1] ∼= G \NG[x1]. The graph G \NG[x1] can be represented as:

The previous representation of G \ NG[x1] contains 2k− 3 squares. It follows that G \ NG[x1] can be
decomposed into the subgraphs D2k−5 and A1, i.e.,

a

b

a

b
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Note that 2k − 5 = 2(k − 3) + 1, and because k is even, then k − 3 is odd. Using Theorem 2 and
Lemma 3, we get:

reg(R/I(G \ NG[x1])) ≤ reg(R/I(D2k−5)) + reg(R/I(A1)) ≤ 2k− 2
2

= k− 1.

The graph W \ xn+1
∼= B2k−1. Therefore, by Lemma 3 (ii), we have reg(I(W \ xn+1)) ≤ 2k−1+3

2 =

k + 1. Consequently, reg(I(G)) ≤ k + 1, as desired.

Case 2. n = 2k + 1 with k an odd number.

The result follows from the fact that the graphs C2n(2, n) can be decomposed into the subgraphs
A1 and A2k−2 as seen in Lemma 4, and so, reg(I(G)) ≤ reg(I(A1)) + reg(I(A2k−2))− 1.

Our final ingredient is a result of Hoshino ([21], Theorem 2.26) (also see Brown–Hoshino ([22]),
Theorems 3.2 and 3.5), which describes the independence polynomial for cubic circulant graphs.

Theorem 7 ([21,22]). For each n ≥ 3, set:

In(x) = 1 +
$ n−2

4 %
∑
�=0

2n
2�+ 1

(
n− 2�− 2

2�

)
x2�+1(1 + x)n−4�−2.

(i) If G = C2n(1, n) with n even, or if G = C2n(2, n) with n odd, then I(G, x) = In(x).
(ii) If G = C2n(1, n) and n is odd, then I(G, x) = In(x) + 2xn.

We now come to the main result of this section.

Theorem 8. Let 1 ≤ a < n and t = gcd(2n, a).

(a) If 2n
t is even, then:

reg(I(C2n(a, n))) =

{
kt + 1 if n

t = 2k, or n
t = 2k + 1 with k an odd number

(k + 1)t + 1 if n
t = 2k + 1 with k an even number.

(b) If 2n
t is odd, then:

reg(I(C2n(a, n))) =

{
kt
2 + 1 if 2n

t = 2k + 1 with k an even number
(k+1)t

2 + 1 if 2n
t = 2k + 1 with k an odd number.

Proof. The formulas can be verified directly for the special cases that n = 2 (i.e., G = C4(1, 2)) or n = 3
(i.e., G = C6(1, 3) and C6(2, 3)). We can therefore assume n ≥ 4. In light of Theorem 6 and Theorem 1
(i), it will suffice to prove that the inequalities of Lemma 5 are actually equalities. We will make use of
Theorem 4. We consider five cases, where the proof of each case is similar.

Case 1. G = C2n(1, n) with n = 2k.

In this case, Lemma 4 gives pd(I(G)) ≤ 3k − 1, and Lemma 5 gives reg(I(G)) ≤ k + 1.
Furthermore, since χ̃(Ind(G)) = −I(G,−1) by Equation (2), Theorem 7 gives χ̃(Ind(G)) = −1 if
n �= 4m + 2, and χ̃(Ind(G)) = 3 if n = 4m + 2. Because G has 4k = (k + 1) + (3k− 1) vertices and
since χ̃(Ind(G)) �= 0, Theorem 4 (ii) implies reg(I(G)) = k + 1.

Case 2. G = C2n(1, n) with n = 2k + 1 and k even.

We have reg(I(G)) ≤ k + 2 and pd(I(G)) ≤ 3k + 1 = (4k + 2)− (k + 2) + 1 = n− (k + 2) + 1 by
Lemmas 4 and 5, respectively. Because n is odd, χ̃(Ind(G)) = −[In(−1) + 2(−1)n] = −[1− 2] = 1 > 0.
Therefore, reg(I(G)) = k + 2 by Theorem 4 (i) (a) because k + 2 is even and χ̃(Ind(G)) = 1 > 0.
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Case 3. G = C2n(1, n) with n = 2k + 1 and k odd.

We have reg(I(G)) = k + 1 by Theorem 4 (ii) because reg(I(G)) ≤ k + 1 (Lemma 5), pd(I(G)) ≤
3k + 1 (Lemma 4), 2n = 4k + 2 is the number of variables, and χ̃(Ind(G)) = −1 �= 0.

Case 4. G = C2n(2, n) with n = 2k + 1 and k even.

We have reg(I(G)) = k + 1 from Theorem 4 (ii) since reg(I(G)) ≤ k + 1 (Lemma 5), pd(I(G)) ≤
3k + 1 (Lemma 4), and χ̃(Ind(G)) = −I(G,−1) = −1 �= 0 (Theorem 7).

Case 5. G = C2n(2, n) with n = 2k + 1 and k odd.

In our final case, reg(I(G)) ≤ k + 2 by Lemma 5, pd(I(G)) ≤ 3k + 1 by Lemma 4. Since n is odd,
χ̃(Ind(G)) = −I(G,−1) = −1 < 0 by Theorem 7. Since k is odd, k + 2 is odd. Because 2n = 4k + 2 is
the number of variables, we have reg(I(G)) = k + 2 by Theorem 4 (i) (b).

These five cases now complete the proof.
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