algorithms

Edited by
Frank Werner, Larysa Burtseva and Yuri Sotskov
Printed Edition of the Special Issue Published in Algorithms

=4
www.mdpi.com/journal/algorithms rM\D\Py

Exact and Heuristic Scheduling
Algorithms

Exact and Heuristic Scheduling
Algorithms

Special Issue Editors

Frank Werner
Larysa Burtseva
Yuri Sotskov

MDPI e Basel o Beijing ¢ Wuhan e Barcelona e Belgrade ¢ Manchester e Tokyo e Cluj e Tianjin

Special Issue Editors

Frank Werner Larysa Burtseva Yuri Sotskov
Otto-von-Guericke-University ~ Universidad Autonoma de Baja National Academy of Sciences of
Magdeburg California Mexicali Belarus

Germany Mexico Belarus

Editorial Office

MDPI

St. Alban-Anlage 66
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal
Algorithms (ISSN 1999-4893) (available at: https://www.mdpi.com/journal/algorithms/special-
issues/Scheduling_Algorithms).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,
Page Range.

ISBN 978-3-03928-468-9 (Pbk)
ISBN 978-3-03928-469-6 (PDF)

© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
published articles, as long as the author and publisher are properly credited, which ensures maximum
dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons
license CC BY-NC-ND.

Contents

About the Special Issue Editors o L o
Preface to “Exact and Heuristic Scheduling Algorithms”

Marco Antonio Juarez Pérez, Rodolfo Eleazar Pérez Loaiza,

Perfecto Malaquias Quintero Flores, Oscar Atriano Ponce and Carolina Flores Peralta

A Heuristic Algorithm for the Routing and Scheduling Problem with Time Windows: A Case
Study of the Automotive Industry in Mexico

Reprinted from: Algorithms 2019, 12,111, d0i:10.3390/a12050111

Julia Lange and Frank Werner

On Neighborhood Structures and Repair Techniques for Blocking Job Shop Scheduling
Problems

Reprinted from: Algorithms 2019, 12,242, d0i:10.3390/a12110242

Jihene Kaabi

Modeling and Solving Scheduling Problem with m Uniform Parallel Machines Subject to
Unavailability Constraints

Reprinted from: Algorithms 2019, 12, 247, d0i:10.3390/a12120247

Alessandro Agnetis, Fabrizio Rossi and Stefano Smriglio
Some Results on Shop Scheduling with S-Precedence Constraints among Job Tasks
Reprinted from: Algorithms 2019, 12,250, d0i:10.3390/a12120250

Jose M. Framinan and Rainer Leisten
Linking Scheduling Criteria to Shop Floor Performance in Permutation Flowshops
Reprinted from: Algorithms 2019, 12, 263, d0i:10.3390/a12120263

Yuri N. Sotskov, Natalja M. Matsveichuk and Vadzim D. Hatsura

Two-Machine Job-Shop Scheduling Problem to Minimize the Makespan with Uncertain Job
Durations

Reprinted from: Algorithms 2020, 13, 4, d0i:10.3390/a13010004

Victor Pacheco-Valencia, José Alberto Hernandez, José Maria Sigarreta and Nodari Vakhania
Simple Constructive, Insertion, and Improvement Heuristics Based on the Girding Polygon for
the Euclidean Traveling Salesman Problem

Reprinted from: Algorithms 2020, 13,5, d0i:10.3390/a13010005

Ilia Tarasov, Alain Hait and Olga Battaia

A Generalized MILP Formulation for the Period-Aggregated Resource Leveling Problem with
Variable Job Duration

Reprinted from: Algorithms 2020, 13, 6, d0i:10.3390/a13010006

About the Special Issue Editors

Frank Werner studied Mathematics from 1975-1980 and graduated from the Technical University
Magdeburg (Germany) with honors. He defended his Ph.D. thesis on the solution of special
scheduling problems in 1984 with ‘summa cum laude’ and his habilitation thesis in 1989. In 1992,
he received a grant from the Alexander-von-Humboldt Foundation. Currently, he works as
an extraordinary professor at the Faculty of Mathematics of the Otto-von-Guericke University
Magdeburg (Germany). He is the author or editor of five books and has published more than 280
papers in international journals. He is on the Editorial Board of 17 journals, in particular, he is
the Editor-in-Chief of Algorithms and an Associate Editor of the International Journal of Production
Research and Journal of Scheduling. He was a member of the Program Committee of more than 75
international conferences. His research interests are operations research, combinatorial optimization,

and scheduling.

Larysa Burtseva graduated in Economic Cybernetics (1975) at the Rostov State University (Russia)
and defended her Ph.D. thesis on Control in Technical Systems (Technical Cybernetics), 1989, at the
Radioelectronics University of Kharkov (Ukraine). Since 2000, she works as a professor researcher
at the Engineering Institute of Universidad Auténoma de Baja California, Mexicali, Mexico. She has
led the Laboratory of Scientific Computation since 2005. She has more than 70 publications in
international journals and proceedings of congresses and 6 book chapters. Her research interests
are discrete optimization, particularly combinatorial optimization, scheduling, and also packing
problems for different applications. She is a member of the National System of Researchers of the
National Council for Science and Technology of Mexico (SNI CONACYT) and a regular member of
The Mexican Academy of Computation (AMEXCOMP).

Yuri N. Sotskov, Prof. D.Sc., finished secondary school with a gold medal in 1966 and graduated
from the Faculty of Applied Mathematics of the Belarusian State University in Minsk in 1971. In 1980,
he defended his Ph.D. thesis at the Institute of Mathematics of the National Academy of Sciences of
Belarus in Minsk. In 1991, he defended his D.Sc. thesis at the Institute of Cybernetics of the National
Academy of Sciences of Ukraine in Kyiv. He has the title of Professor in Application of Mathematical
Models and Methods in Scientific Research (Russian Academy of Sciences, 1994). He currently works
as a principal researcher at the United Institute of Informatics Problems of the National Academy
of Sciences of Belarus in Minsk. He has more than 350 publications: five scientific monographs,
two textbooks, more than 200 papers in international journals, books, and conference proceedings
in English on applied mathematics, operations research, graph theory, and scheduling. He is on the
Editorial Board of five journals. He has supervised eight Ph.D. scholars (defended). In 1998, he

received the National Prize of Belarus in Science and Engineering.

vii

Preface to “Exact and Heuristic Scheduling
Algorithms”

Optimal scheduling is an important area of operations research and in particular of decision
making. This research field covers a large variety of different solution approaches designed for
particular problems. It is clear that efficient algorithms are highly desirable for large-size real-world
scheduling problems. Due to the NP-hardness of the majority of scheduling problems, practitioners
often prefer to use rather simple scheduling algorithms since large-size problems usually cannot be
solved exactly in an acceptable time. However, fast heuristics may produce schedules the function
values of which might be far away from the optimal ones.

This book is based on a Special Issue entitled “Exact and Heuristic Scheduling Algorithms”. It
is a follow-up book of the booklet, “Algorithms for Scheduling Problems” published in 2018 (ISBN
978-3-03897-119.1) and contains both theoretical and practical aspects in the area of designing efficient
exact and heuristic scheduling algorithms. We hope that the articles contained in this book will
stimulate researchers to find new practical directions for implementing their scheduling algorithms.
In response to the Call for Papers, we selected eight submissions, all of which are of high quality,
reflecting the interest in the area of developing exact and heuristic algorithms to solve real-world
production planning and scheduling problems. As a rule, all submissions have been reviewed by
three experts in the Discrete Optimization and Scheduling area.

The first article deals with a real-world distribution problem arising in the vehicle production
industry in Mexico. This problem includes both the loading and optimal routing of each auto-carrier,
where both the capacity constraints and the time windows have to be taken into account. The
authors suggest a two-stage heuristic algorithm. First, a route is constructed by an optimal insertion
heuristic. Then a feasible loading is determined. For the computational experiments, two scenarios
were generated with 11 different instances of the demand. Here one instance describes a real problem
of a logistics company in Mexico. The algorithm allowed to obtain the routes and the loading of the
vehicles for problems with 4400 vehicles and 44 dealerships considered. The results showed that
the developed algorithm was successful in minimizing total traveling distance, loading/unloading
operations and transportation costs.

The second article is devoted to the heuristic solution of job shop scheduling problems with
blocking constraints and minimization of total tardiness. This problem has many applications
in manufacturing, but also in railway scheduling. Due to the NP-hardness of the problem, the
development of heuristics is of high relevance. In particular, a permutation-based heuristic is
derived. The authors use three interchange- and shift-based transition schemes. However, typical
neighborhoods applied to job shop problems often generate blocking infeasible solutions. Therefore,
the core of this paper is to present two repair mechanisms that always generate neighbors being
feasible with respect to the blocking constraints. Characteristics for the complex neighborhoods such
as the average distance of a neighbor are analyzed. The suggested neighborhoods are embedded
into a simulated annealing algorithm. Detailed computational results have been given for the
modified Lawrance instances with up to 30 jobs and 15 machines as well as for hard train inspired
instances with up to 20 jobs and 11 machines. A computational comparison was made with the MIP
formulation given in an earlier paper by Lange and Werner in Journal of Scheduling (2018). It turned
out that for small instances, the heuristic often obtained an optimal or near-optimal solution, while

for larger instances several of the best known solutions by the MIP solver have been improved.

The third article deals with scheduling jobs on a set of uniform parallel machines subject to given
unavailability intervals with the objective to minimize the makespan. For this NP-hard problem, a
new quadratic model is developed. In addition, the authors present a two-stage heuristic procedure.
In the first phase, a modified Longest-Processing-Time rule is used to construct a schedule, which is
then improved by pairwise interchanges of jobs between the machines. Computational results have
been presented for instances with up to 2001 jobs and 1000 machines. The experiments showed that
the quadratic model can solve small- and medium-size instances with roughly up to 140 jobs and 70
machines within a time limit of one hour. The heuristic algorithm presented in this paper was very

fast and outperformed also an earlier heuristic by Kaabi and Herrath (2019).

In the fourth article, some special cases of flow and job shop problems with so-called sprecedence
constraints are addressed. This means that a task of a job cannot start before the task which precedes
it has started. Polynomial algorithms are given for three special cases, namely a two-machine job
shop problem with two jobs and allowed recirculation, the two-machine flow shop problem and an
m-machine flow shop problem with two jobs, each with the objective to minimize the makespan.

Finally, some special cases with open complexity status are mentioned.

The fifth article analyzes the connections between usual scheduling criteria typically applied to
flow shop problems like the makespan or idle time and customary shop floor performance measures
such as work-in-progress or throughput. The authors setup a deep experimental analysis consisting
in finding optimal or near-optimal schedules under several scheduling criteria and then investigating
how these schedules behave in terms of different shop floor performance measures for several
instances with different structures of the processing times. In particular, detailed computational
results have been presented for instances with up to 200 jobs and 50 machines. It turned out that
some of the scheduling criteria are poorly related to shop floor performance measures. In particular,
the makespan performed only well with respect to throughput. On the other hand, the minimization
of total completion time appeared to be better balanced in terms of shop floor performance. The

article finishes with suggesting some aspects for future work.

The sixth article addresses a two-machine job shop scheduling problem, where the job duration
may take any real value from a given segment. A stability approach is applied to this uncertain
scheduling problem. The scheduling decisions in the stability approach may consist of two successive
phases: the first off-line phase, which is finished before starting the realization of a schedule,
and the second on-line phase of scheduling, which is started with the beginning of the schedule
realization. Using the information on the lower and upper bounds for each job duration available
at the off-line phase, a scheduler can determine a minimal dominant set (DS) of schedules based
on sufficient conditions for schedule dominance. The DS optimally covers all possible scenarios of
the job durations in the sense that for each possible scenario, there exists at least one schedule in
the DS which is optimal. Based on the DS, a scheduler can choose a schedule, which is optimal
for the majority of possible scenarios. Polynomial algorithms have been developed for testing a set
of conditions for schedule dominance. The conducted computational experiments on the randomly
generated instances have shown the effectiveness of the developed algorithms. Most instances from
the nine tested classes were optimally solved. If the maximum error was not greater than 20%, then
more than 80% of the tested instances were optimally solved. If the maximum error was equal to 50%,

then 45% of the tested instances from the nine classes were optimally solved.

The seventh article deals with the Euclidean version of the traveling salesman problem (TSP),
where the locations of the cities are points in the two-dimensional Euclidean space and the distances

are Euclidean ones. For this problem, the authors suggest fast and easily implementable heuristics.
They consist of three phases: construction, insertion and improvement. The first two phases run in
O(n) time with n being the number of points, and the number of improvement repetitions in the third
phase is bounded by a small constant. The practical behavior of the suggested heuristics has been
tested on 218 benchmark instances from several well-known libraries for TSP instances. In particular,
the authors grouped the instances into small ones (up to 199 points), medium-size ones (between
200 and 9,999 points) and large instances (between 10,000 and 250,000 points), and results for two
very large instances with 498,378 and 744,410 points were also given. Although for most of the tested
benchmark instances, the best known values have not been improved, nevertheless the computational
times were smaller than the best known values earlier reported, and the heuristic is also efficient with
respect to the required memory.

In the last article, a new mathematical model for a resource leveling problem with variable
job durations is proposed, where the problem includes both scheduling and resource management
decisions within a fixed planning horizon. The objective is to minimize total overload costs necessary
for executing all jobs by the given deadline. In particular, the authors consider three different
approaches for representing the scheduling constraints and decision variables, and they choose after
some experiments a step (start/end) formulation of the scheduling constraints. Both the theoretical
difference and relationships between the generalized modeling presented in this paper and the
aggregated fraction model are discussed. The new formulation was compared to other models of the
resource leveling problem from the literature on benchmark instances with up to 10 resource types
and 30 jobs. Although the generalized modeling uses more variables and constraints, it nevertheless
provided much better final solutions.

The editors would like to thank the authors for submitting their interesting works to this
collection of articles about new scheduling algorithms, the reviewers for their timely and insightful
comments on the submitted articles, and the editorial staff of the MDPI Journal Algorithms for their

assistance in managing the review process in a prompt manner.

Frank Werner, Larysa Burtseva, Yuri Sotskov

Special Issue Editors

xi

algorithms @\py

Article

A Heuristic Algorithm for the Routing and Scheduling
Problem with Time Windows: A Case Study of the
Automotive Industry in Mexico

Marco Antonio Juarez Pérez 1*©, Rodolfo Eleazar Pérez Loaiza 1,

Perfecto Malaquias Quintero Flores !, Oscar Atriano Ponce 2 and Carolina Flores Peralta

1 Tecnolégico Nacional de México, Instituto Tecnolégico de Apizaco, Apizaco 90300, Mexico;

rodolfo.pl@apizaco.tecnm.mx (R.E.P.L.); perfecto.qf@apizaco.tecnm.mx (PM.Q.E);
carolinaflxp@gmail.com (C.F.P.)

Smartsoft America BA, Chiautempan 90802, Mexico; oatriano@smartsoftamerica.com.mx
* Correspondence: marcoantoniojuarezperez@gmail.com; Tel.: +52-241-149-6529

2

Received: 3 May 2019; Accepted: 22 May 2019; Published: 25 May 2019

Abstract: This paper investigates a real-world distribution problem arising in the vehicle production
industry, particularly in a logistics company, in which cars and vans must be loaded on auto-carriers
and then delivered to dealerships. A solution to the problem involves the loading and optimal routing,
without violating the capacity and time window constraints for each auto-carrier. A two-phase heuristic
algorithm was implemented to solve the problem. In the first phase the heuristic builds a route with
an optimal insertion procedure, and in the second phase the determination of a feasible loading. The
experimental results show that the purposed algorithm can be used to tackle the transportation problem
in terms of minimizing total traveling distance, loading/unloading operations and transportation costs,
facilitating a decision-making process for the logistics company.

Keywords: heuristic; time windows; feasible loading; auto-carrier transportation problem (ACTP)

1. Introduction

Vehicle production in Mexico has been increasing in recent years [1,2]. As well as the number of
imported vehicles, generating one of the main tasks to be solved by logistics companies: the transport
of vehicles to dealerships. Currently, there are several commercial offers that provide a solution to route
planning and fleet management. However, the cost of these applications is significantly high because they
depend on the number of auto-carriers to route, making the acquisition of application difficult to afford.

This paper presents a vehicle-routing problem with time windows (VRPTW) in the real-world
proposed by a logistics company in Mexico. In the problem, a heterogeneous fleet of auto-carriers departs
from the new car storage yard (NCSY), delivers and unloads vehicles in the dealerships within predefined
time windows, and finishes at the NCSY as shown in Figure 1. The objective of this research is to design
and develop a logistic software to solve it. Considering the restrictions on the transport of vehicles imposed
by Mexican traffic regulations [3], capacity, and allocation constraints, optimal performance with delivery
time windows and proper planning of transportation routes. The software has a two-phase heuristic
algorithm: in the first phase, the heuristic [4] is implemented to design the auto-carrier routes and an
algorithm is proposed for the allocation of the vehicles in the auto-carriers. For experimentation, we used
a real database of approximately 4000 vehicles, more than 600 auto-carriers, and 44 different dealerships
as a destination, obtaining results with the proposed algorithm in a reasonable time.

Algorithms 2019, 12, 111; doi:10.3390/a12050111 www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 111

The structure of this paper is as follows. A review the relevant literature is provided in Section 2. An
overview of the importance of research and the problem are shown in Section 3. The VRPTW is defined
and mathematical formulations are presented in Section 4. The proposed solution and the developed
methodology are described in Section 5. The experimental results of the algorithm are presented and
analyzed with real-world instances in Section 6. Finally, in Section 7 conclusions and future research work
are given.

[GALE]
=

A

23:00-08:00/ EE

The New Car
Storage Yard
(NCSY) [GALE

22:00-09:00

[HE]
[EE]‘ | SALE |

Figure 1. An illustration for the proposed problem by a logistics company.
2. Literature Review

The definition of the vehicle-routing problem (VRP) has its origins in the formulation of the traveling
salesman problem (TSP) [5]. This section first reviews proposed algorithms and methods for the VRP and
its variants. Then, focusing on the revision of the VRPTW and finally conclude with the review of the
auto-carrier transportation problem (ACTP).

An important part of optimization systems are heuristics, which have multiple applications. From
the extraction of features for a voice evaluation mechanism [6] to the generation of feasible VRP solutions.
Arnau et al. [7] studied VRP with dynamic travel times, considering inputs of a dynamic nature and
re-evaluating travel times dynamically as the solution was being developed. They proposed a learnt
heuristic-based approach that integrates statistical learning techniques within a metaheuristic framework.
Cassettari et al. [8] investigated the capacitated vehicle-routing problem (CVRP) applied to natural gas
distribution networks. The authors introduced an algorithm based on the saving algorithm heuristic
approach to solve it. Zhao and Lu [9] presented an electric vehicle-routing problem (EVRP) raised by a
logistics company. They developed a heuristic approach based on the adaptive large neighborhood search

Algorithms 2019, 12, 111

(ALNS) and integer programming, specifically designed a charging station heuristic adjustment and other
one for the departure time decreasing the total operational cost.

Some well-known heuristic algorithms have been inspired by natural physical phenomena.
Stodola [10] addressed the modified multi-depot vehicle-routing problem (MDVRP). He developed
a metaheuristic algorithm based on the ant colony optimization (ACO) improved by a deterministic
optimization process that is executed repeatedly within the ACO algorithm iterations. Potap and
Wozniak [11] proposed a polar bear optimization algorithm (PBO) which imitates the survival and
hunting behaviors of polar bears for local and global search. The authors presented a novel birth and
death mechanism to control the population. Chen et al. [12] proposed a monarch butterfly optimization
(MBO) algorithm to solve the dynamic vehicle-routing problem (DVRP) using a greedy strategy. Ahmed
and Sun [13] designed a bilayer local search-based particle swarm optimization (BLS-PSO) algorithm to
solve CVRP.

Currently, one of the most studied variants of the VRP is with time windows, in the research
by Desrochers et al. [14] introduced an optimization algorithm to solve a VRPTW, using dynamic
programming. Tan et al. [15] explored simulated annealing (SA), tabu search (TS) and a genetic algorithm
(GA) heuristics to solve it. In another study, Yu et al. [16] proposed a hybrid approach, consisting of the use
of the ACO and TS algorithms, for the VRPTW. To improve the performance of the ACO algorithm, they
introduced a neighborhood search and a TS algorithm to maintain the diversity of the ACO algorithm and
explore new solutions. Taner et al. [17] developed two metaheuristic algorithms to solve the VRPTW, the
SA algorithm and an iterated local search (ILS). Sripriya et al. [18] designed a hybrid genetic search with
diversity control using a GA to solve the VRPTW, using the Pareto approach and two mutation operators
to find the optimal solution set.

Tadei et al. [19] investigated and defined a variant of the VRP, called the ACTP, proposed a three-step
heuristic procedure that considers the loading, vehicle selection, and routing aspects for a solution
to the problem. In other research, B. M. Miller [20] addressed the ACTP for collection and delivery
with limitations in the delivery times and the capacity of the auto-carrier, for new and used vehicles.
The author proposed a constructive heuristic to solve the problem. Dell’Amico, et al. [21] defined
the ACTP as a combinatorial problem of the CVRP. The authors presented a study of a real case and
implemented an ILS algorithm for the routing and mathematical techniques for the loading of vehicles.
On the other hand, Tran et al. [22] implemented a heuristic algorithm for location of alternative-fuel stations.
Hosseinabadi et al. [23] developed a method called TIME_GELS that uses the gravitational emulation local
search algorithm (GELS) for solving the multiobjective flexible dynamic job-shop scheduling problem.

The VRP is widely studied in the areas of operations research and computer sciences, due to its
computational complexity and its multiple applications. The variants of the VRP allow the use of time
window restrictions and vehicle capacity, among others, these restrictions allow solving problems with
solutions closer to the optimum of real-world cases, the ACTP is a result from this. As it has been
described in the literature, several authors have proposed algorithms and methods to solve this problem.
Nevertheless, the characteristics of our problem, motivate us to implement a heuristic approach that
contemplates the restrictions imposed by the logistics company.

3. Importance of the Problem

The automotive industry has been one of the most important engines for the development and
economic growth of Mexico [2,24]. Hence, the importance of promoting the insertion of technology in
the sectors that are parts of it. For this reason, it is necessary to implement technology in the process of
transporting new vehicles within the country. In addition, with it to diminish one of the most expensive
processes for the companies of transport, the routing and scheduling of auto-carriers.

Algorithms 2019, 12, 111

In addition to having a positive impact on the operating expenses for the transportation companies,
decreasing the amount kilometers of the traveled route from each of the auto-carrier also represents a
positive environmental impact because downward the harmful emissions to the environment produced by
diesel motors. According to [25] most of the auto-carriers use this fuel and the main characteristic of diesel
emissions is that particles are produced in a proportion 20 times higher than gasoline engines.

Nitrogen oxides (NOy) are considered an important source of air pollution and contribute greatly to
photochemical smog, acid rain, depletion of the ozone layer and the greenhouse effect. Diesel exhaust
gases are generally composed of more than 90% NOy [26]. Therefore, one of the main contributors to
emissions of NO, and sulfur oxides are diesel engines [27], so it is important to reduce these emissions.
Optimizing the routes of the auto-carriers that generate these emissions are a good way to do it.

According to the National Institute of Statistics and Geography [24], the Mexican automotive industry
is important because:

e Itisranked as the second most important activity in manufacturing after the food industry

e Because its exports were ranked fourth in the world in 2014

e When demanding inputs to carry out its production, it generates impacts on 157 economic activities
out of a total of 259, according to the input-output matrix

The production of the automotive industry has increased its relative importance in the economy:.
Before the North American Free Trade Agreement (NAFTA) came into force, this industry represented
1.9% of gross domestic product (GDP) in Mexico, while in 2014 it was 3.0% [24]. This increase was due to
the implementation of new technologies in the last decade. Both in the automotive sector and in the rest of
economic activities that are suppliers of this, one of them the transportation of vehicles.

Finally, the transportation of vehicles is an important field in operations research (OR), which has
attracted increasing interest in recent years, due to the expected benefits of substantial cost reduction and
efficient consumption of resources. The VRPTW has multiple applications such as supermarkets, cement
plants, hospitals, etc., though its main applications are in the industry.

4. Problem Definition and Mathematical Model

A logistics company distributes new vehicles in Mexico, manufactured in another country. It carries
out the delivery of thousands of vehicles, according to the demand of each of the dealerships responsible
for the sale of vehicles. Currently, the logistics company uses an empirical allocation and routing method
for the auto-carriers.

The empirical method consists of the design of the route according to the experience of the operator
of the auto-carrier, based on the vehicles that will be transported without the use of a heuristic or
similar method for the optimization of the route. Similarly, the allocation corresponds to a simulation
with fictitious vehicles of the load of the auto-carrier, positioning the vehicles in different levels of the
auto-carrier, considering the dimensional restrictions.

The process of the routing and loading of the auto-carriers, begins at the moment that the operators
receive a list of the vehicles to be delivered to the different dealerships. In the NCSY, the operators confirm
the vehicles to be transported with the manager of the NCSY, who to complete the loading process verifies
that the vehicles in the auto-carrier correspond to the request of the dealerships.

Empirical routing is inefficient because it does not consider restrictions as the time windows. The
time windows are the hours in which an auto-carrier can perform the unloading of vehicles at a dealership,
who defines an initial time and an end time to carry it out. Time windows are defined to not violate local
traffic laws, thus avoiding monetary penalties.

Avoiding various penalties and monetary losses for companies, are some reasons of importance for
the VRPTW and its applications. An example of its application is in the cement industry, if the concrete

Algorithms 2019, 12, 111

mixer trucks do not arrive within the stipulated time window. It may be that part of the concrete dries,
becoming unusable, and the work stops. In the case of the logistics company, if an auto-carrier arrives at
the dealership at a time outside the time window, it causes a time penalty that is, the operator must wait at
the dealership to unload vehicles.

In addition to the time window restrictions, this case study includes a total of 44 dealerships, a demand
with approximately 4000 vehicles of different dimensions (which add three restrictions to the allocation)
and a variable number of auto-carriers of different capacity load (3, 6, 7, 10 and 11 vehicles). This paper
describes the algorithm developed for a real-world problem of a logistics company; the problem can be
summarized as follows:

given a heterogeneous fleet of auto-carriers based at a NCSY and a set of dealerships each
requiring a set of vehicles, the loading of the vehicles into the auto-carriers and route the
auto-carriers through the road network to deliver all dealerships with minimum cost (total
number of kilometers traveled) that start and ends in the NCSY, considering the restrictions of
time windows, a LIFO policy for the loading/unloading of vehicles and maximizing the total
use of the capacity of each auto-carrier

The characteristics of the dealerships (time windows), the NCSY and the auto-carriers (capacity), as
well as different operational restrictions on the routes, bring forth the VRPTW, several authors [14-18]
have worked on this variant of the VRP. In this case, study the term vehicle denotes a transported item
(e.g., a car, a van), the term auto-carrier denotes a truck transporting vehicles, and the term dealership
denotes a delivery point (i.e., a customer requiring one or more vehicles). With the previously mentioned
elements, the model can be described as follows [21]:

e Network: Given a complete graph G = (V,E), where V =0, 1,...,n is the set of vertices and E the
set of edges connecting each vertex pair. Vertex 0 corresponds to the NCSY, whereas vertices 1,...,n
correspond to the n dealerships to be served. The edge is connecting vertices i and j is denoted by (i, j)
and has an associated routing cost ¢;;(i, j € V) shown in Figure 2. The distance and times matrices
are symmetric.

\

! The New Car

Storage Yard -
(NCSY) [
J . ___,-/‘"

. —

Figure 2. Example for routing cost between dealership i and j.

e Fleet: Given a heterogeneous fleet of auto-carriers, composed by a set T of auto-carrier types. Each
auto-carrier type t(t € T) has a maximum vehicles capacity W; and is formed A,lf’2 by loading
platforms (levels, shown in Figure 3). There are K; auto-carriers available for each type t.

Algorithms 2019, 12, 111

Figure 3. Auto-carrier levels.

e Demand: The demand of dealership i consists of a set M of vehicles (i € V\{0}). Each vehicle
m; € M demanded by dealership i belongs to a vehicle type (or vehicle model) shown in Figure 4,
which is defined by a height /1, and a vehicle identification number (VIN).

i

Figure 4. Vehicle types (vehicle, vehicle, van).

In this VRPTW, each dealership i € V\{0} has an associated time window [e;, [;], with a time allowed
service for arriving auto-carriers to it and service time or delay d;. If (7,) is an arc of the solution and 4;
and a; are the arrival times to the dealerships i and j, time window imply that necessarily must be fulfilled
a; < ljand a; < I;. On the other hand, if 4; < ¢;, then the auto-carrier must wait until the dealership
"opens" so necessarily aj =ei+ di + Cij.-

Using the nodes 0 and #n + 1 to represent the NCSY and the set K to represent the auto-carriers,
the problem is formulated for a heterogeneous fleet of auto-carriers, according to [28]:

min)") cfjx,kj (1)

keK (i,j)eE
subject to

Y Y =1 viev\{on+1} 2

keK jeA—(i)
Y, xj=1 Vkek ®)

jEA+(0)

Y ®i- Y =0 VkeKieV\{on+1} 4

jen+(i) jea—(i)
- Y, ai<wWh o Vkek ()

ieV\{0,n+1} jeA+(i)

vi—yi >di+aj—H1—x5) VijeV\{0,n+1},keK (6)
e <yf <l VieV\{0,n+1},keK @)

x;€0,1 V(ij)€EkeK

>0 Viev\{o,n+1},keK

Algorithms 2019, 12, 111

The xf-‘v variables indicate if the arc (7, j) is used by the auto-carrier k. The y;‘ variables indicate the
arrival time at the dealership i when it is visited by the k auto-carrier (if the dealership is not visited by the
auto-carrier, the variable has no meaning). The objective function (1) minimizes the total routing cost.

Constraint (2) state that each dealership is visited exactly once, while constraints (3) and (4) determine
that each auto-carrier k € K goes through a path of 0 to 7 + 1. The capacity of each auto-carrier is imposed
in (5). Since H is a sufficiently large constant, restriction (6) ensures that if an k auto-carrier travels from
i to j, it cannot reach j before y; + d; + a;‘j. These constraints also eliminate subtours and constraints (7)
enforce time windows restriction.

The use of a heterogeneous fleet and the nature of the demand (vehicles and vans) impose the
allocation constraints:

hw >25= (A3 WE) Vme MkeK 8)
18 < hy <25=(ALW}) VmeMkeKk)
h <18= (A2, W}) Vm;e MkeK (10)

The constraint (8) considers the assignment of a vehicle m with a height h;, greater than 2.5 m (meters)
that corresponds to a van, which occupies an allocated space in level A}(and two spaces on level A%, using
three spaces of the capacity W of the auto-carrier k. A vehicle m with height 1, greater than 1.8 m and less
than 2.5 m, its assignment corresponds to a space W] and can only be accommodated at level A}, i.e., the
constraint (9). The last assignment constraint (10) defines that a vehicle m with a height h,, less than 1.8 m
corresponds to an allocation space W} and can be accommodated in either of the two levels A} or AZ.

5. Methodology

The use of a heuristic methodology allows obtaining the solution to the routing problem of the
auto-carriers at a reasonable time, meaning a representative change versus the empirical methodology
previously used by the logistics company. A graphic illustration of the comparison of the insertion
heuristic I1 is made in [29,30]. Regarding its comparison with other methods is presented in [31] and
its computational complexity of the proposed algorithm is O(n?logn?). Hereafter, the approach and
development of the heuristic algorithm are described.

5.1. Heuristic Approach

The development of the solution is divided into two phases, the first one is to generate the route of
the auto-carrier and the second one the vehicle allocation in the auto-carrier, both phases are part of a
main algorithm. In the first phase, the routes are obtained with the implementation of the Solomon I1
insertion heuristic, due to the logistics company is needed to obtain a solution to the VRPTW in fairly
necessary time, given that the VRPTW is an NP-complete problem [28]. This routing process applies a
methodology of cluster first, route second, i.e., first group by the dealership, to then build the route, which
starts with the dealership that has the shortest and earliest time window, considering the allocation and
capacity constraints. The following describes the application of the Solomon I1 insertion heuristic [4] and
the vehicle loading process for allocation phase on this VRPTW.

The routing algorithm builds a feasible solution by constructing one route at a time. At each iteration
the algorithm decides which new dealership u* € U has to be inserted in the current solution, and between
which adjacent dealerships i(u*) and j(1*) the new dealership u* has to be inserted on the current route.
When choosing u*, the algorithm takes into account both the cost increase associated with the insertion

Algorithms 2019, 12, 111

of u*, and the delay in service time at dealerships following u* on the route. The three steps of the
algorithm are:

Step 0. (Initialization). The first route is initially Ry = {0,1,0}, where i is the dealership with the
shortest and earliest time window. In the allocation phase, if vehicle m of dealership i has a feasible
assignment, then set k = 1, otherwise get the next vehicle from dealership i or next dealership with the
shortest and earliest time window, until the allocation phase of the vehicle m is feasible.

Step 1. Let Ry = {ip, i1, ...,im} be the current route, where iy = i,, = 0, i.e., the NCSY. Set

fUip—r,u,dp) = alri, o+ rui, = wri, i) + (1=) (b)) — by,) 1)

where 0 < a <1, > 0and b} is the time when service begins at dealership i, provided that dealership
u is inserted between i, 1 and ip. For each unrouted dealership u, compute its best feasible insertion
position in route Ry as:

FUiu) i) = min F10,1,1,y)

where i(u) and j(u) are the two adjacent vertices of the current route between which u should be inserted.
Determine the best unrouted customer u* to be inserted yielding.

f20(),ut, j(u)) = max{f2(i(u), u, j(u))}

where

f2(i(u),u,j(u)) = Aro, — f1(i(u), u, j(u)) 12)

with A > 0.

Step 2. Insert dealership u* in route Ry between i(1*) and j(u*), in the allocation phase, if vehicle
m of dealership u* has a feasible assignment, then go back to Step 1, otherwise get the next vehicle from
dealership u* until the allocation phase of the vehicle m is feasible. If u* does not exist, but there are
still unrouted dealerships, set k = k + 1, initialize a new route Ry (as in Step 0) and go back to Step 1.
Otherwise, STOP, a feasible solution has been found.

The insertion heuristic tries to maximize the benefit obtained when servicing a dealership on the
current route rather than on an individual route. For example, when 4 = « = A = 1, Equation (12)
corresponds to the saving in distance from servicing dealership 1 on the same route as dealerships i and
j rather than using an individual route. The best feasible insertion place of an unrouted dealership is
determined by minimizing a measure, defined by the Equation (11), of the extra distance and the extra
time required to visit it. Different values of the parameters y, « and A lead to different possible criteria for
selecting the dealership to be inserted and its best position in the current route.

After starting a new route Ry or inserting a dealership u* in the current route, the vehicle allocation
phase is responsible for obtaining the feasible load of the auto-carrier, considering the constraints imposed
by the logistics company, which are listed below by rank:

e Vehicle /1, > 2.5 m: It uses three spaces of the capacity of the auto-carrier k, i.e., a space in level A,l
and two spaces on level A?, this is shown in Figure 5. To maximize the use of the capacity of the
auto-carrier, another allocation is to occupy one space above (A%) and two below (A%).

Algorithms 2019, 12, 111

Figure 5. Constraint of vehicles with # > 2.5 m.

e Vehicle 1.8 m < hy < 2.5 m: It uses a space of the capacity of the auto-carrier k and can only be
assigned in level A}, as shown in Figure 6.

Figure 6. Constraint of vehicles with 1.8m < 7 < 2.5 m.

e Vehicle h;, < 1.8 m: It uses a space of the capacity of the auto-carrier k and can be assigned in any
available space to it, as shown in Figure 7.

Y, N
H

(o) (o)(s) (o)(o)

Figure 7. Constraint of vehicles with & < 1.8 m.

. Policy Last In First Out (LIFO): Last vehicle loaded, first vehicle unloaded. For example, if the first
dealership to visit is d, on the current route, the vehicles of d, should be the last to be loaded on
the auto-carrier.

If the assignment of a vehicle m is not feasible and there are still vehicles on demand, then go back to
the routing phase, while the vehicle m will be assigned to the next auto-carrier route. The development of
the heuristic algorithm is described in the following subsection.

5.2. Development of the Two-Phase Heuristic

To implement the heuristic algorithm, it was necessary to create a distance matrix, with the distance
information (in kilometers) among the 44 dealerships, as shown in Table 1, the NCSY is represented by d,
e.g., a trip from the NCSY (dy) to dealership 2 (d2) has a cost of 1373 km, while the trip from dealership 2
(dp) to dealership 44 (d44) would represent a route of 1245 km.

Algorithms 2019, 12, 111

Table 1. Distance (in kilometers) between dealerships.

Dealership dy di do d. du

do 0 885 1373 ... 114
dq 885 0 498 ... 752
da 1373 498 0 ... 1245
d : : : 0 :
dy 114 752 1245 ... 0

A time matrix is also required for the implementation of the heuristic algorithm. Table 2 shows the
duration in minutes of the travel times between the dealerships, for example, the duration of the trip from
NCSY (dg) to dealership 1 (d;) is 568 min, in other words, 9 h and 28 min. A route from the dealership 44
(daa) to dealership 2 (dp) is 13 h and 49 min of travel.

Table 2. Travel times (in minutes) between dealerships.

Dealership dy di do d. du

do 0 568 880 ... 92
dq 568 0 319 ... 490
da 880 319 0 ... 829
d : : : 0 :
m 92 490 829 ... 0

The distances (Table 1) and times (Table 2) matrices are symmetric, but in the time windows, a matrix
was created with the earliest (¢;) and the latest (/;) time window, using a 24-h time format, as shown in
Table 3. The NCSY (dy) does not have a time window established, therefore, ¢; = 00:00 and [; = 23:59.
Figure 1 shows an example of the dealerships who have established a time window, otherwise they do not
have a time window established as the NCSY.

Table 3. Time windows for the dealerships in 24-h time format.

TimeWindow
Dealership e; I;
dy 00:00 23:59
dq 06:00 13:00
dy 08:00 12:00
a . .
du 22:00 09:00

The heuristic is described in Algorithm 1, first phase is responsible for generating the route for the
auto-carriers and the second of the feasible load of vehicles in the auto-carrier. This algorithm is codified in
JAVA language, it has as input a matrix M with the demand of vehicles to be transported and a matrix with
auto-carriers K available for the delivery of vehicles. The first phase clusters the demand M according to
the dealerships to visit (U), then perform the sorting of the dealerships with the shortest and earliest time
window, considering that the execution time (current time, CT) of the algorithm influences this ordination,

10

Algorithms 2019, 12, 111

i.e., the execution of the algorithm at different times of the day with the same data produces different
routing outputs and vehicle accommodation.

Algorithm 1: Two-phase heuristic

Data: M (demand), K (auto-carriers).

Output: The K auto-carriers with Ay arrangement, Ry route and delivery schedules. A vector with
the remaining M, if any.

1 begin

2 U <— get dealerships from demand

3 CT «— get current time

4 while M > 0 and K > 0 do

5 Initialization a new route Ry

6 Wi <— get capacity from k

7 Ay <— generate a new arrangement with capacity W;

8 u <— get first dealership to visit from U

9 while W; > 0and u* € U do

10 while m, € M do

11 if Allocation(my, Ax) then

12 Update demand M, capacity W; and route Ry
13 end

14 end

15 u* <— get nextdealership(Ry, CT) to visit and update U
16 end

17 if K< 0and M > 0 then

18 Get remaining from M

19 end

20 Add to Solution(Ry, Ay), k =k+1

21 end

2 end

The first loop is the demand M and the auto-carriers K, while there are vehicles to load and
auto-carriers, a new route Ry is initialized with time and distance counters, the auto-carrier k € K is
obtained, assigns W; according to k, which is the vehicle load capacity of k for its type ¢, then a new
accommodation Ay based on capacity W; is generated. After determining the first dealership to visit u, i.e.,
Step 0 of the heuristic, this is shown in line 8 of Algorithm 1.

With the first dealership u to be selected, start the loop of the auto-carrier k with capacity W; and loop
of the existing demand M of the dealership u, carrying out the loading of the vehicle m,, in the auto-carrier
k in the second phase of the algorithm, the allocation, this is shown in line 11 of Algorithm 1. The allocation
algorithm receives as parameters the vector Ay of the current arrangement and the vehicle m,, to be loaded
(see Algorithm 2). If the load is successful, then update the demand M (eliminating m1,), the number of
available spaces of the capacity W; and the route Ry. In the case that the auto-carrier k is not filled or the
vehicle m,, does not comply with the assignment restrictions, obtain the next vehicle m, + 1 to load, until
the auto-carrier k is full.

11

Algorithms 2019, 12, 111

Algorithm 2: Allocation
Data: m,, (vehicle), Ay (arrangement).
Output: The A; arrangement with 11, assigned if it is feasible.

1 begin
2 Wi <— size of Ay
3 level +— %
4 for Ay, € A do
5 if 1y, > 2.5and i < level and parity then
6 if Ay, € Ayand Ay, € Arand Aki+zmz € Ay then
7 Allocate m, vehicle to spaces Ay,, Ay, , and Ay,
8 else
9 if Ay, € Ay and AkH»(lezwl—l) € Agand Ay, | € Ay then
10 Allocate m, vehicle to spaces Ak,-r AkH (tevet—1) and A Ki teuet
11 end
12 end
13 else
14 if Akz c Ak and Ale c Ak and Aki+(level+1) c Ak then
15 Allocate my vehicle to spaces A, Ay,,, and Ay, (evel41)
16 else
17 if Ay, € Ayand Ay, € Agand Aki+(lfwl+l) € Ay then
18 Allocate my, vehicle to spaces Ay, Ay,, ., and Ag,, (evet)
19 end
20 end
21 end
2 if hy, > 1.8 and hy,, < 2.5 and i > level and Ay, € Ay then
23 Allocate my, vehicle in space Ay,
24 end
25 if hy, < 1.8 and Ay, € Ay then
26 Allocate my, vehicle in space Ay,
27 end
28 end
29 return Ay
30 end

If the auto-carrier k still has available spaces W;, but the demand of the dealership u does not comply
with the assignment restrictions, update accumulators of time and distance to obtain the next dealership
u* to visit, this is Step 1 of the heuristic and is observed on line 15 of Algorithm 1. To obtain u* the route
Ry built so far and the current time CT are received as parameters, finally enter the demand loop M of the
dealership u*.

Once selected u*, in the capacity loop W; the vehicle m,« allocation phase of the auto-carrier k starts,
this is Step 2 of the heuristic algorithm. If the accommodation of m,,+ is feasible and there are still spaces of
W, return to Step 1 of the heuristic algorithm, to obtain the next vehicle m,+ + 1, the capacity loop ends
when W; is equal to 0 or does not exist u*. Then, the route Ry and the arrangement Ay of the auto-carrier k
add to the Solution, and finally a new route Ry is started.

12

Algorithms 2019, 12, 111

A requirement of the logistics company is to add to the solution the remaining demand M, in the case
that the number of auto-carriers K were not enough to transport the demand M, line 17. Algorithm 1 ends
when there is no demand M or auto-carriers K available for routing.

In the allocation phase (Algorithm 2), to accommodate the vehicles in the auto-carrier, Ay is abstracted
as a vector of size W; (capacity of the f-type auto-carrier), to simulate and delimit the levels of the
auto-carrier a variable called level is created. If t is pair, the index i of the upper level initializes at i = 0
and ends at i = level — 1, while the lower level initializes at i = level and ends at i = W;, as shown in
Figure 8a. If f is odd, the index i of the upper level initializes at i = 0 and ends at i = level, while the lower
level initializes at i = level + 1 and ends at i = W}, as shown in Figure 8b.

Once Ay is defined, the load and assignment of the vehicle 11, is defined by its height /1,,;,,, Algorithm 2
starts by obtaining level = % If by, > 2.5 m, the vehicle m, will occupy spaces in the two levels of the
auto-carrier, then first determine if there is available space in the lower level i < level, otherwise m,, is
assigned in the next auto-carrier with available space, the case that is met i < level, parity verifies if t is
even or odd, depending on this result obtain the spaces that comply with Equation (8) and if are available,
perform the allocation of m, (e.g., see Figure 5) to these spaces.

level-1 initial level initial
“ 2 1 0 Upper Level 5 3 2 1 0 Upper Level
(] =
= 5
8 5 4 3 Lower Level Q 6 5 4 Lower Level
E [e]
) 5 W level+
2 w level & -
(o)) ovo—— Q====0'0 ovou—
Upper Level Lower Level Upper Level Lower Level
5 S
2 o
9 0 1 2 3| 4 Q 0 1 2 3 4 5
S S
initial level-1] level w initial level |level+1 W
(a) (b)

Figure 8. Vector of auto-carrier capacity: (a) Pair (b) Odd.

If hyy, > 1.8 mand hy,, < 2.5 m, to assign the vehicle n1, verify if there is available space in the lower
level i > level as shown in line 22 of Algorithm 2, otherwise m, is assigned to the next auto-carrier with
available space in the lower level. Finally, for 1, < 1.8 m it is only determined if there is space available
in the auto-carrier and 1, is allocated, with the assignment of 71, in any of the cases and the return of Ay,
the allocation phase ends.

6. Results and Analysis

6.1. Experimental Results

To evaluate the performance of the auto-carriers routing algorithm with time windows, two scenarios
were designed with 11 different instances of the demand, the last instance corresponds to the real problem
of the logistics company. The scenarios are the following:

13

Algorithms 2019, 12, 111

e Random Dealerships with Time Windows (RDTW)—context in which most of the dealerships (34 of 44)

were set different time windows for vehicle unloading.
e Main Dealerships with Time Windows (MDTW)—context that corresponds to the case of the logistics

company, only the dealerships (14 of 44) that are located in the main cities of the country establish a
time window for the unloading of vehicles.

The configuration of the most important parameters for the implementation of the proposed heuristic
algorithm is shown in Table 4. Next, the content of the instances is described in Table 5, the first column
corresponds to the instance number, the second is the demand size, and in the following columns the
content of this in terms of vehicles (cars, partners) and vans (managers). It is necessary to emphasize
the number of vans because they use more spaces in the auto-carrier compared to the vehicles. For both
scenarios, the same instances demand was used to perform tests and compare the results of the total
distance of the generated routes.

Table 4. Parameters of the proposed heuristic algorithm.

Parameter Value
Algorithm 1
mu 1
alpha 0.9
lamda 1
time_unloading 15
k 1
Algorithm 2
initial 0
Wi It depends on the auto-carrier K
level %
parity It depends on the auto-carrier K

Table 5. Test Instances.

Instance Demand Size Cars Partners Managers

1 20 6 14 0
2 50 46 1 3
3 100 32 66 2
4 200 108 87 5
5 500 206 270 24
6 1000 456 502 42
7 1500 654 767 79
8 2000 941 974 85
9 2500 1164 1224 112
10 3000 1433 1431 136
11 3884 1810 1906 168

With the instances of Table 5, a total of 132 tests were made in the two scenarios to the Algorithm 1, as a
result of each of the tests the routes were obtained (auto-carriers, each route corresponds to one scenario
previously mentioned) and the accommodation of the auto-carrier considering the allocation restrictions,
in order to present all the results, these are grouped according to the capacity of the auto-carriers (3, 6,
7,10, 11, and a heterogeneous fleet with these). Each table shows a comparison of the two scenarios for
the eleventh instance, each table contains the column Routes (K=Auto-carriers), this shows the number
of routes generated for the eleventh instance, the Distance (KM) column contains the cost in terms of
kilometers of the routes and the Time (Min) column shows the cost in minutes of the same.

14

Algorithms 2019, 12, 111

Table 6 concentrates the results of the routing of the instances using auto-carriers with a capacity 10
and 11 vehicles in the MDTW scenario. The use of capacity auto-carriers 11 obtains a 13% decrease in total
distance and total time compared to capacity 10. In addition, 60 less auto-carriers were used to route the
demand of the eleventh instance.

Table 6. Results of the main dealerships with different auto-carriers.

Auto-Carrier with W = 10 Auto-Carrier with W = 11

Instance Routes (K) Distance (Km) Time (Min) Routes (K) Distance (Km) Time (Min)

1 4 19,263 12,660 4 19,263 12,660
2 7 18,329 12,481 7 18,338 12,493
3 18 71,366 48,256 14 62,571 41,809
4 24 81,429 55,950 21 71,231 48,997
5 69 148,588 102,617 59 130,604 87,928
6 137 323,696 213,737 118 270,872 179,242
7 195 417,909 277,747 170 364,385 241,743
8 254 550,555 367,032 220 471,456 312,449
9 318 681,336 458,476 278 585,245 389,968
10 366 794,553 525,284 323 696,878 459,669
11 478 1,037,633 686,562 418 900,562 597,259

Algorithm 2 was designed to work with a heterogeneous fleet of auto-carriers, the results of the tests
in the two scenarios are shown in Table 7. In this table the results obtained from the tests are compared
with the 11 instances in the two scenarios. Sometimes obtaining a smaller number of routes does not
guarantee that it is the lowest total distance of the routes, e.g., in the row of instance 5 for the RDTW
scenario, 95 routes are generated. In comparison with the 102 routes obtained in the MDTW scenario, but
the total travel distance is 41,218 km smaller in this scenario (MDTW).

Table 7. Results of heterogeneous fleet (3,6,7,10 & 11).

Random Dealerships Main Dealerships
Instance Routes (K) Distance (Km) Time (Min) Routes (K) Distance (Km) Time (Min)
1 4 17,458 11,416 5 25,649 16,875
2 10 27,626 18,854 9 22,964 15,622
3 26 94,510 62,905 22 91,525 61,156
4 32 111,317 75,206 37 124,226 84,035
5 95 240,376 160,016 102 199,158 134,659
6 180 436,777 284,208 190 446,823 294,392
7 278 563,385 367,985 278 572,442 381,464
8 350 724,204 476,686 350 764,601 511,309
9 444 932,767 611,969 450 933,942 623,494
10 490 1,091,345 710,645 495 1,049,780 696,274
11 655 1,389,356 907,976 660 1,416,358 943,464

Regarding the assignment of vehicles, Algorithm 2 returned feasible loads as illustrated in Figure 9.
Table 8, concentrates the data of 18 vehicles (VIN and height (/1)) before entering the allocation phase.

15

Algorithms 2019, 12, 111

Table 8. Vehicle data.

VIN Vehicle h, VIN Vehicle I

1 2.52m 10 147 m
2 1.47 m 11 147 m
3 147 m 12 147 m
4 1.47 m 13 147 m
5 1.47 m 14 147 m
6 1.47 m 15 147 m
7 252m 16 147 m
8 1.87 m 17 147 m
9 1.47 m 18 147 m

From Table 8, Figure 9a shows the output of Algorithm 2 using the auto-carriers of capacity 11 (odd),
in which we can observe the allocation of two vans (VIN1, VIN?) using three spaces in both auto-carriers
in their platforms, the rest of spaces are occupied by other vehicles. On the other hand, Figure 9b shows
the output of the allocation of the vans in auto-carriers of capacity 6.

Auto-carrier #1 Auto-carrier #1 Auto-carrier #3

VIN5 | VIN4| VIN3 | VIN2 [VINT| VIN1 VINZ| VINT| VIN1 VIN11{VIN10| VIN9

VIN10[VIN9 | VIN8 | VIN6 | VIN1 VIN4 VIN14

Qum—O0 ovom— LQumwovo

Auto-carrier #2

VIN13|

VIN12]

Auto-carrier #2

VIN14{VIN13|VIN12| VIN11| VIN7 | VIN7 VIN7| VING | VINS

VIN18|VIN17|VIN16|VIN15| VIN7 VIN7

()0} ovou—— 0 0'0
(a) (b)

Figure 9. Output of vehicles allocation in auto-carriers: (a) Odd capacity (b) Pair capacity.

In Table 9 concentrates the results obtained to perform the routing of the demand in the MDTW
scenario, using different capacities of auto-carriers and heterogeneous fleet, as it is highlighted in the
capacity row of 11 vehicles, this shows the best results as regards distance (km) and time (min), as well
as a lower number of auto-carriers (418) employed to carry out the routing of the real demand of the
logistics company. A computer with Intel Core i5 7600K@3.8 GHz processor and 16 GB of RAM were used
to perform the tests.

Table 9. Results of routing instance 11 with different auto-carriers.

Auto-Carrier (Capacity) Main Dealerships
Routes (K) Distance (Km) Time (Min)

3 2043 4,146,291.8 2,720,157
6 936 2,018,547.9 1,332,574
7 688 1,488,546.3 980,416
10 478 1,037,633.2 686,562
11 418 900,562.8 597,259

3,6,7,10 & 11 660 1,416,358.8 943,464

16

Algorithms 2019, 12, 111

6.2. Analysis of the Results

The logistics company before the implementation of Algorithm 1 routed the auto-carriers empirically,
i.e., the personnel in charge of this process did it without the assistance of some planning or optimization
software, meaning the construction of inefficient routes [17]. Similarly, the loading of the vehicles in the
auto-carrier was the responsibility of the operators, a process prone to damage during the unloading of
the vehicles upon arrival at the dealership. Due to the absence of a LIFO policy that considers the route of
the auto-carrier in the process of vehicle allocation.

The planning and routing of the auto-carriers of the logistics company were favorably impacted by the
implementation of Algorithm 1, obtaining as output the generated routes (e.g., dg— > dgg— > d3s— > dp)
for the auto-carriers, the unloading vehicles in each dealership and auto-carrier schedules, as shown in
Table 10. These results were possible to obtain thanks to the heuristic routing algorithm that considers the
time (CT variable and time matrix). In addition, the proposed Algorithm 2 allowed to automate the process
of allocation of vehicles in the auto-carrier, making it easier for operators to load the vehicles, examples of
the output of this Algorithm 2 are shown in Figure 9. The allocation constraints can be adjusted to the
requirements of different vehicles to be transported, but retaining the allocation logic.

Table 10. Example of schedule of the auto-carrier route.

Dealership Arrival Departure Unloaded Vehicles

do —— 18:19 0
d44 22:59 23:14 6
d35 08:21 08:36 5

do 21:55 - 0

The efficiency of the proposed algorithm was demonstrated by being able to generate planning (routes,
schedules, vehicle accommodations) in a reasonable time for more than 2000 routes, using auto-carriers of
3 vehicles of capacity. With the same performance, the results were obtained in a real case of the logistics
company, using a heterogeneous fleet were generated 660 routes as shown in Table 9. As a consequence
of the size of the demand, the routes constructed by Algorithm 1 contain from one dealership to four
dealerships in their planning.

7. Conclusions and Future Research Works

The results of the experimental work with the proposed heuristic algorithm were satisfactory. These
show the ability to route and obtain feasible loads for the auto-carriers with the demand of the logistics
company. The allocation of vehicles using restrictions reduced the likelihood that the vehicles suffer
some damage during the loading/unloading in the dealership, in addition to complying with the traffic
guidelines that govern the auto-carriers in Mexico.

The implementation of the algorithm allowed obtaining the planning of the routes and the feasible
loading of vehicles at a reasonable time, considering a demand of 4000 vehicles and 44 dealerships as
a destination, which translates into thousands of kilometers diminished, i.e., a saving of fuel, money,
and time for the logistics company, while polluting emissions are reduced. Impacting favorably in the
decision-making regarding the planning and programming of the routing of the auto-carriers that has
its service.

Future work is to develop tests with other auto-carrier capabilities, in addition to developing a
metaheuristic algorithm, with the combination of the heuristic Algorithm 1 to obtain an initial solution
and a PSO to improve the current solution. In addition to implementing a dynamic routing according to a

17

Algorithms 2019, 12, 111

series of variables that can be presented in the current route of the auto-carrier, such as blocked routes or
the transport of vehicles from one dealership to another.

Author Contributions: Conceptualization, O.A.P., PM.Q.F. and R.E.P.L.; methodology and supervision, R.E.P.L.
and PM.Q.F,; data curation, software and writing—original draft preparation, M.A.].P. and C.EP,; investigation and
writing-review and editing, M.A.J.P. and R.E.P.L.; validation and project administration, PM.Q.F. and O.A.P,; all
authors have read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: The first two authors acknowledge support from CONACyT through a scholarship to complete
the Master in Computational Systems program at Tecnol6gico Nacional de México (TecNM). The authors appreciate
the company for providing real data and the facilities granted for this research. In addition, the authors would like to
thank the referees for their useful suggestions that helped to improve the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bonassa, A.C.; Cunha, C.B.; Isler, C.A. An exact formulation for the multi-period auto-carrier loading and
transportation problem in Brazil. Comput. Ind. Eng. 2019, 129, 144-155. [CrossRef]

2. Asociacion Mexicana de la Industria Automotriz. AMIA-BOLETIN DE PRENSA/HISTORICO/BOLETIN
HISTORICO/2005 2018; AMIA: Ciudad de México, Mexico, 2018. Available online: http://www.amia.com.
mx/descargarb.html (accessed on 22 July 2018).

3. Secretaria de Comunicaciones y Transportes. PROYECTO de Norma Oficial Mexicana PROY-NOM-012-SCT-2-2017;
DOF—Diario Oficial de la Federacién/SCT: México city, Mexico, 2017. Available online: https://www.dof.gob.
mx/nota_detalle.php?codigo=5508944&fecha=26/12/2017 (accessed on 15 March 2018).

4. Ghiani, G.; Laporte, G.; Musmanno, R. Introduction to Logistics Systems Planning and Control; Online Edition;
John Wiley & Sons Ltd: Chichester, UK, 2004; pp. 273-278, ISBN 0-470-84916-9.

5. Dantzig, G.; Fulkerson, R.; Johnson, S. Solution of a large-scale traveling-salesman problem. J. Op. Res. Soc. Am.
1954, 2, 393-410. [CrossRef]

6. Potap, D.; Wozniak, M.; Damagevicius, R.; Maskelitinas, R. Bio-inspired voice evaluation mechanism. Appl. Soft
Comput. 2019, 80, 342-357. [CrossRef]

7. Arnau, Q;Juan, A.A ; Serra, I. On the Use of Learnheuristics in Vehicle Routing Optimization Problems with
Dynamic Inputs. Algorithms 2018, 11, 208. [CrossRef]

8. Cassettari, L.; Demartini, M.; Mosca, R.; Revetria, R.; Tonelli, F. A Multi-Stage Algorithm for a Capacitated
Vehicle Routing Problem with Time Constraints. Algorithms 2018, 11, 69. [CrossRef]

9. Zhao,M,; Lu, Y. A Heuristic Approach for a Real-World Electric Vehicle Routing Problem. Algorithms 2019, 12, 45.
[CrossRef]

10. Stodola, P. Using Metaheuristics on the Multi-Depot Vehicle Routing Problem with Modified Optimization
Criterion. Algorithms 2018, 11, 74. [CrossRef]

11. Potap, D.; Wozniak, M. Polar Bear Optimization Algorithm: Meta-Heuristic with Fast Population Movement and
Dynamic Birth and Death Mechanism. Symmetry 2017, 9, 203. [CrossRef]

12. Chen, S.; Chen, R.; Gao, J. A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem.
Algorithms 2017, 10, 107. [CrossRef]

13. Ahmed, A K.M.E; Sun, J.U. Bilayer Local Search Enhanced Particle Swarm Optimization for the Capacitated
Vehicle Routing Problem. Algorithms 2018, 11, 31. [CrossRef]

14. Desrochers, M.; Desrosiers, J.; Solomon, M. A New Optimization Algorithm for the Vehicle Routing Problem
with Time Windows. Oper. Res. 1992, 40, 342-354. [CrossRef]

15. Tan, K.C; Lee, L.H.; Zhu, Q.L.; Ou, K. Heuristic methods for vehicle routing problem with time windows. Artif.
Intell. Eng. 2001, 15, 281-295. [CrossRef]

16. Yu, B, Yang, Z.Z.; Yao, B.Z. A hybrid algorithm for vehicle routing problem with time windows. Expert Syst.
Appl. 2011, 38, 435-441. [CrossRef]

18

Algorithms 2019, 12, 111

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Taner, F,; Gali¢, A.; Cari¢, T. Solving Practical Vehicle Routing Problem with Time Windows Using Metaheuristic
Algorithms. Promet-Traffic Transp. 2012, 24, 343-351. [CrossRef]

Sripriya, J.; Ramalingam, A.; Rajeswari, K. A hybrid genetic algorithm for vehicle routing problem with time
windows. In Proceedings of the 2015 International Conference on Innovations in Information, Embedded and
Communication Systems (ICIIECS), Coimbatore, India, 19-20 March 2015; pp. 1-4.

Tadei, R.; Perboli, G.; Della, F. A Heuristic Algorithm for the Auto-Carrier Transportation Problem. Transp. Sci.
2002, 36, 55-62. [CrossRef]

Miller, B.M. Auto Carrier Transporter Loading and Unloading Improvement. Master’s Thesis, Air Force Institute
of Technology, Air University, Montgomery, AL, USA, March 2003. Available online: https://apps.dtic.mil/dtic/
tr/fulltext/u2/a413017.pdf (accessed on 25 May 2018).

Dell’Amico, M.; Falavigna, S.; Iori, M. Optimization of a Real-World Auto-Carrier Transportation Problem.
Transp. Sci. 2014, 49, 402-419. [CrossRef]

Tran, T.H.; Nagy, G.; Nguyen, T.B.T.; Wassan, N.A. An efficient heuristic algorithm for the alternative-fuel station
location problem. Eur. J. Op. Res. 2018, 269, 159-170. [CrossRef]

Hosseinabadi, A.A.R.; Siar, H.; Shamshirband, S.; Shojafar, M.; Nasir, M.H.N.M. Using the gravitational emulation
local search algorithm to solve the multi-objective flexible dynamic job shop scheduling problem in Small and
Medium Enterprises. Ann. Op. Res. 2015, 229, 451-474. [CrossRef]

Instituto Nacional de Estadistica y Geografia, Asociacion Mexicana de la Industria Automotriz. Estadisticas a
Propdsito de. .. la Industria Automotriz; INEGI: México city, Mexico, 2016. Available online: http:/ /www.dapesa.
com.mx/dan-a-conocer-inegi-y-la-amia-libro-estadistico-de-la-industria-automotriz/ (accessed on 3 June 2018).
Morawska, L.; Moore, M.R.; Ristovski, Z.D. Desktop Literature Review and Analysis: Health Impacts of Ultrafine
Particles; Technical Report; Department of the Environment and Heritage, Australian Government: Canberra,
Australia, 2004. Available online: http://www.environment.gov.au/system/files/resources /00dbec61-f911-
494b-bbcl-adc1038aa8c5/files /health-impacts.pdf (accessed on 17 July 2018).

Jiménez, M. Wastes to Reduce Emissions from Automotive Diesel Engines. |. Waste Manag. 2014, 2014, 1-5.
[CrossRef]

Sajeevan, A.C.; Sajith, V. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental
Investigation. J. Eng. 2013, 2013, 1-9, doi:10.1155/2013/589382. [CrossRef]

Cordeau, J.E; Laporte, G.; Savelsbergh, M.W.P,; Vigo, D. Chapter 6. Vehicle Routing. In Handbooks in Operations
Research and Management Science; Elsevier: Amsterdam, The Netherlands, 2007; Volume 14, pp. 367-428.
Brdysy, O.; Gendreau, M. Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local
Search Algorithms. Transp. Sci. 2005, 39, 104-118, doi:10.1287 /trsc.1030.0056. [CrossRef]

Solomon, M.M. Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints.
Op. Res. 1987, 35, 254-265. [CrossRef]

El-Sherbeny, N.A. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic
methods. J. King Saud Univ. Sci. 2010, 22, 123-131. [CrossRef]

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@. article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY

BY) license (http://creativecommons.org/licenses/by/4.0/).

19

algorithms ﬁw\n\py

Atrticle
On Neighborhood Structures and Repair Techniques
for Blocking Job Shop Scheduling Problems *

Julia Lange »* and Frank Werner >

1 Division of Information Process Engineering, FZI Forschungszentrum Informatik Karlsruhe,

76131 Karlsruhe, Germany

Fakultét fiir Mathematik, Otto-von-Guericke-Universitat Magdeburg, D-39016 Magdeburg, Germany;

frank.werner@ovgu.de

* Correspondence: lange@fzi.de

1t This paper is an extended version of our paper published in the proceedings of the 9th IFAC Conference on
Manufacturing Modeling, Management, and Control.

Received: 23 October 2019; Accepted: 11 November 2019; Published: 12 November 2019

Abstract: The job shop scheduling problem with blocking constraints and total tardiness minimization
represents a challenging combinatorial optimization problem of high relevance in production
planning and logistics. Since general-purpose solution approaches struggle with finding even feasible
solutions, a permutation-based heuristic method is proposed here, and the applicability of basic
scheduling-tailored mechanisms is discussed. The problem is tackled by a local search framework,
which relies on interchange- and shift-based operators. Redundancy and feasibility issues require
advanced transformation and repairing schemes. An analysis of the embedded neighborhoods shows
beneficial modes of implementation on the one hand and structural difficulties caused by the blocking
constraints on the other hand. The applied simulated annealing algorithm generates good solutions
for a wide set of benchmark instances. The computational results especially highlight the capability
of the permutation-based method in constructing feasible schedules of valuable quality for instances
of critical size and support future research on hybrid solution techniques.

Keywords: job shop scheduling; blocking; total tardiness; permutations; repairing scheme; simulated
annealing

1. Introduction

Complex scheduling problems appear in customer-oriented production environments, automated
logistics systems, and railbound transportation as an everyday challenge. The corresponding job
shop setting, where a set of jobs is to be processed by a set of machines according to individual
technological routes, constitutes one of the non-trivial standard models in scheduling research. Even
-simple variants of this discrete optimization problem are proven to be NP-hard, see [1]. While the
classical job shop scheduling problem with infinite buffers and makespan minimization has been a
subject of extensive studies for many decades, see, for instance [2—4], solving instances with additional
real-world conditions, such as the absence of intermediate buffers, given release and due dates of the
jobs and recirculation, newly receives increasing attention.

The blocking job shop problem with total tardiness minimization (BJSPT) is regarded as an
exemplary complex planning situation in this paper. Blocking constraints refer to a lack of intermediate
buffers in the considered system. A job needs to wait on its current machine after processing,
and thus blocks it, until the next required machine is idle. Such situations occur, for instance, in the
manufacturing of huge items, in railbound or pipeline-based production and logistics as well as in
train scheduling environments; see, for instance [5-8]. The consideration of a tardiness-based objective

Algorithms 2019, 12, 242; d0i:10.3390/a12110242 21 www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 242

implements efficient economic goals like customer satisfaction and schedule reliability as they appear
in most enterprises.

On the one hand, existing computational experiments indicate that exact general-purpose solution
methods have significant difficulties in finding optimal and even feasible solutions for non-classical job
shop instances of practically relevant size; see, for instance [9-11]. On the other hand, the application
of special-purpose heuristics shows a necessity of complicated construction, repairing and guiding
schemes to obtain good solutions; see [12-14]. This work is intended to analyze the capability of
well-known scheduling-tailored heuristic search methods in determining high quality solutions for
complex job shop scheduling problems. Structural reasons for the appearing complexity are detected
and algorithms, which assure the applicability of basic strategies, are proposed.

As a natural foundation, permutations shall be used to represent feasible schedules of BJSPT
instances. Widely applied interchange- and shift-based operators are chosen as transition schemes to
set up neighboring solutions. Combining these ideas causes considerable redundancy and feasibility
issues. A Basic Repair Technique (BRT) is proposed to construct a feasible schedule from any given
permutation, cf. [15,16]. To fit the requirements in generating neighboring solutions, it is extended
to an Advanced Repair Technique (ART), which defines a feasible neighboring schedule from an initial
permutation and a desired interchange, see [15,16].

The resulting distances of solutions in a neighborhood are discussed to shed light onto the
nature of the search space. In addition, different shifting strategies are analyzed with regard to their
advantageousness in the search process. The presented neighborhood structures are embedded in a
simulated annealing (SA) metaheuristic, which is applied to solve a diverse set of benchmark instances.
Beneficial and critical aspects regarding the quality of the schedules found and the search guidance are
pointed out by the computational results.

The remainder of the article is organized as follows. Section 2 summarizes existing work on
complex job shop scheduling problems related to the BJSPT. A theoretical description of the problem
and its notation are given in Section 3. Two variants of permutation-based encodings of schedules
are discussed with regard to redundancy and feasibility in Section 4. Therein, the BRT is introduced
and the distance of two schedules is defined. Section 5 incorporates explanations on the applied
transition schemes, their implementation, and the operating principles of the ART. Furthermore,
the neighborhoods are described and characteristics such as connectivity and solution distance are
analyzed. Computational experiments on solving the BJSPT by an SA algorithm are reported in
Section 6. Finally, Section 7 concludes with the main findings and further research perspectives.

2. Literature Review

A variety of exact and heuristic solution approaches to complex scheduling problems reported in
the literature exist. This section will focus on observations and findings on job shop problems featuring
constraints and optimization criteria similar to the BJSPT.

Exact solution methods are only sparsely applied to job shop problems with blocking constraints
or tardiness-based objective functions. In 2002, Mascis and Pacciarelli [17] present a Branch &
Bound procedure that is enhanced by scheduling-tailored bounds and a special branching technique.
The approach is tested on complex instances with ten machines and ten jobs involving blocking
constraints and makespan minimization. Obtaining proven optimal solutions for the benchmark
problems takes between 20 min and four hours of computation time. Even if technical enhancements
have been achieved and general-purpose mixed-integer programming solvers became more powerful,
the job shop scheduling problem remains one of the hardest combinatorial optimization models. It is
recently shown in [9,11,15,18] that even sophisticated mixed-integer programming solvers, such as
IBM ILOG CPLEX and Gurobi, struggle with finding optimal and even feasible solutions to BJSPT
instances with up to 15 machines processing up to 20 jobs in reasonable computation time.

Table 1 summarizes the heuristic approaches presented for job shop problems involving blocking
constraints and tardiness-based objectives. A reference is stated in the first column, while the second

22

Algorithms 2019, 12, 242

column specifies whether a job shop problem with blocking constraints (BJSP) or without such
restrictions (JSP) is examined. Column three contains the objective function regarded and the fourth
column displays the maximal size (11, 1) of the considered instances, where 1 denotes the number of
machines and n defines the number of jobs. The last column presents the applied heuristic technique.

For reasons of comparison, the first two works [19,20] mentioned in Table 1 deal with a classical
variant of the problem, namely the job shop problem with makespan minimization. The applied
solution approaches constitute fundamental heuristic methods and the best-known algorithms to solve
instances of the standard job shop setting until today. With the popular (10,10) instance of Fisher and
Thompson having been open for decades, the size of standard job shop problems, for which good
solutions can be obtained, has grown. However, most of the large instances have never been solved
to optimality, which highlights the significant intricacy of the combinatorial optimization problems
under study.

The following set of studies on JSPs with tardiness-based optimization criteria is intended to show
the variety and the evolution of heuristic solution approaches applied together with the limitations
in solvable problem size. A more comprehensive literature review including details on the types of
instances solved can be found in [21].

In [22], a shifting bottleneck procedure is presented to generate schedules with minimal total
tardiness for JSPs with release dates. The method is tested on a set of benchmark instances of
size (10,10). A well-known critical path-oriented neighborhood, cf. [2], is discussed with regard
to its applicability to pursue tardiness-based objectives in [23]. The authors tackle JSPs with total
tardiness minimization by Simulated Annealing (SA) and show that a general neighborhood based
on interchanges of adjacent operations on machines leads to better results. A hybrid genetic
algorithm (GA) is proposed for JSPs with recirculation, release dates and various tardiness-based
objective functions in [14]. Even if the procedure is enhanced by a flexible encoding scheme and a
decomposition approach, the results do not significantly support GAs as a favorable solution method.
The computational experiments are conducted on a set of twelve instances with maximum size (8,50).
In [24], a generalized JSP consisting of a set of operations with general precedence constraints and
required time lags is optimized with regard to total weighted tardiness. The authors apply a tabu
search (TS) approach where neighboring solutions are also constructed by interchanges of adjacent
operations, and the starting times of the operations are calculated based on a network flow. Here,
the instance size of (10, 10) is still critical.

A classical job shop setting involving release dates and minimizing the total weighted tardiness
is considered in [25]. The authors combine a GA with an iterative improvement scheme and discuss
the effect of various search parameters. Computational experiments are conducted on the set of
benchmark instances with up to 15 machines and 30 jobs. The iterative improvement scheme seems
to be a highly beneficial part of the solution approach, since it counteracts the occurring quality
variance of consecutively constructed solutions. The same type of problems has also been tackled by a
hybrid shifting bottleneck procedure including a preemption-allowing relaxation and a TS step in [26].
A more general type of optimization criteria, namely regular objective functions, are considered for
JSPs in [27]. An enhanced local search heuristic with modified interchange-based neighborhoods
is applied. The computational experiments are based on a large set of instances, where the most
promising results are obtained for problems with up to 10 machines and 15 jobs. In [28], the critical
path-based neighborhood introduced in [2] is used together with a block reversion operator in SA.
Numerical results indicate that the combination of transition schemes is beneficial for finding job
shop schedules with minimal total weighted tardiness. This work involves the largest test instances
featuring 10 machines and 50 jobs as well as five machines and 100 jobs. However, these instances
do not constitute a commonly used benchmark set so that no optimal solutions or lower bounds are
known or presented to evaluate the capability of the method.

23

Algorithms 2019, 12, 242

*S9AT)OR(qO pasvq-ssauip.vy 10 upnSal SnoLrea ‘I'm X ssaurpie) pajySom [ejo) ‘T X ssaurpie) [ejo} X7y wedsayew :suondung aanddlqo

o1eag nqeL, [of[ered (st's1)“(0g01) e} dslg [sel 610T Te 10 Yeqeq

yreagnagel (0€°0z) ‘(02 sT) “(0£°01) 1en3ar dsla [6] 210z A3mg

oSy Apaarn) aaneral (oz*s1) “(0g01) o dslda [7€] 910€ 1P1IEIR pUE OZURI]

uoneziundQ wiemg ppIe] (st’e1)“(0g0T) e} dslg [e€] €10¢ Teypnog pue reziry

awaYdG JuswRA0Id W] dARIN] (st’g1)“(0£01) e} dslg [cel Z10T Te 312 TIPPO

yoreagnqel (0z°0¢) “(02°S1) “(06°0T) oy dslg [£1] 600 123 UIDY pue uIoID

OHSLINAEIA IOT[OY (ot’o1)) dslg [1€] $00T "Te 10 TUOPIN

sogstnoy Apeor (oc’st)“(0g“01) o) dsla [£1] 00T TIaTEIDIR] pUE SDSE]N

Yoreag nqef, (0g’or) e} dslg [8] T00T Te 3° BN

w03y dRRULD) (0z’02) iy dsfa [c1] 100T 'Te 3 e[enziag

2mpado1] Yo1edg aandepy paziwopuey Apaaro (st°s1)“(0£01) 'mX dsl([12] £10Z 1yeydyny pue yamiaig
Sur[eauury paje[nUIS ‘DWLYDS JUDSI(] [2907] (st's1)“(0g01) ' % dsf [0€] 910z WamIa1g pue [qeydyny
21895 NGE], PIM WRLIOS]Y dBaUdD) PLIqAH (oz’s1) “(0g01) 'mX dsf [62] T10T Te 10 ZafeZU0D
Surpeauuy pareuis (001°s) ‘(05 °01) ‘(0T ST) T'mX dasf [82] 110T DM pue Sueyz

OTSLINSH UDIedG [E00] (058) “(0€02) Ten3ar ds([£2] T10T e 30 BeN

oIeag Nqe], Yim 2Inpadol] Jpauspiog Sunjiys prqi (st°s1)“(001) T'm % dsl [9¢] TT0Z Mamd
UDIEaG [220] PIYEID}] YHM WIHIOS[Y dBaUIn) PLqAL] (sts1)“(0g’01) T'm X dsf [gz] 800T Te 30 yessq
Yo1eag nqey, (ot’01) ' ds([¥2] o0c TopPIIUCg 2

WHOS[Y dHRuLD (0s’g) poseq-ssourpre; dasf [F1] $00T warmIarg pue pye

Surpesuuy paje[nug (06°0¢) X dasf([£2] 000T DM pue Suepm

unpLody yoouspiog Sunyiys (oror) T'mX dsl([cz] 6661 Opaul pue 123ulg

2Inpado1] Joudpiog SumyIys (s£°22) i) dsf [02] 800 'Te 30 sereg

yo1eag nqef, (001 02) “(0S“01)) dasf [61] S00T BIPTUINWS pue BPIMON

yoeorddy uonnjog (u'w) 3z1g XN «9AMRIqO wa[qoI] dUAIJIY

"LdS[g a3 01 pajepar saypeordde uonnios onsLMay SUNSIXd JO MIIATIAQ T d[qEL

24

Algorithms 2019, 12, 242

A JSP with setup times and total weighted tardiness minimization is tackled by a hybrid heuristic
technique in [29]. A TS method is integrated into a GA to balance intensification and diversification
in the search process. Furthermore, an improvement potential evaluation is applied to guide the
selection of neighboring solutions in the TS. Promising results are found on a widely used set of
benchmark instances. Different neighborhood structures are discussed and analyzed according to
their capability of constructing schedules for a JSP with release dates and total weighted tardiness
minimization in [30]. The experimental results show that the choice of the main metaheuristic method
and the initial solution influence the performance significantly. Complex neighborhood structures
involving several partially critical path-based components yield convincing results for instances with
up to 15 machines and 30 jobs. In [21], an enhanced Greedy Randomized Adaptive Search Procedure
(GRASP) is proposed and tested on the same set of benchmark instances. The applied method involves
a neighborhood structure based on a critical tree, a move evaluation scheme as well as an amplifying
and a path relinking strategy. The comprehensive computational study of Bierwirth and Kuhpfahl [21]
shows that the presented GRASP is able to compete with the most powerful heuristic techniques
tackling JSP instances with total tardiness minimization, namely the GA-based schemes proposed
by Essafi et al. [25] and Gonzalez et al. [29]. Overall, the complexity of the applied methods, which
is required to obtain satisfactory results for instances of still limited size, highlights the occurring
difficulties in guiding a heuristic search scheme based on tardiness-related objective functions.

Considering the second set of studies on BJSPs given in Table 1, an additional feasibility issue
arises and repairing or rescheduling schemes become necessary. The inclusion or exclusion of swaps of
jobs on machines constitutes a significant structural difference with regard to real-world applications
and the applied solution approach, see Section 4.2 for further explanations. Note that almost all
existing solution approaches are dedicated to makespan minimization, even if this does not constitute
the most practically driven objective.

In [12], a BJSP involving up to 20 machines and 20 jobs with swaps is tackled by a GA based on
a permutation encoding. The well-known critical path-oriented transition scheme, cf. [2], is applied
together with a job insertion-based rescheduling method in a TS algorithm in [8]. The authors consider
a real-world application where swaps are not allowed and test their approach on instances with up
to 10 machines and 30 jobs. Different greedy construction heuristics are compared in solving BJSP
instances with and without swaps in [17]. Even for small instances, the considered methods have
significant difficulties in constructing feasible schedules, since the completion of an arbitrary partial
schedule is not always possible. The same issue occurs in [31], where a rollout metaheuristic involving
a scoring function for potential components is applied to BJSP instances of rather small size with and
without swaps.

A connected neighborhood relying on interchanges of adjacent operations and job reinsertion is
presented for the BJSP in [13]. Instances involving setup and transfer times, and thus excluding swaps,
are solved by a TS algorithm with elite solutions storage. Computational experiments are conducted on
a large set of benchmark instances with up to 20 machines and 50 jobs. In [32], an iterative improvement
algorithm incorporating a constraint-based search procedure with relaxation and reconstruction steps
is proposed for the BJSP with swaps. A parallel particle swarm optimization is tested on instances
of the BJSP without swaps in [33] but turns out not to be competitive with the method proposed
in [13] and the following one. In [34], an iterated greedy algorithm, which loops deconstruction and
construction phases, is applied to problems with and without swaps. Computational experiments on
well-known benchmark instances with up to 15 machines and 30 jobs imply that forced diversification
of considered solutions is favorable to solve the BJSP. A study tackling instances with up to 20 machines
and 30 jobs and approaching a wider range of regular objective functions including total tardiness is
reported in [9]. The authors embed a job reinsertion technique initially proposed in [36] in a TS and test
their method on the BJSP with swaps. A parallel TS including the critical path-oriented neighborhood,
cf. [2], and construction heuristics to recover feasibility is presented in [35]. Parallel search trajectories
without communication are set up to increase the number of considered solutions.

25

Algorithms 2019, 12, 242

Overall, the most promising approaches to solve BJSP instances proposed by Biirgy [9],
Dabah et al. [35], and Pranzo and Pacciarelli [34] give evidence for focusing on the application
of sophisticated neighborhood and rescheduling structures instead of increasing the complexity of
the search procedure itself. This motivates the following work on evaluating the capability of basic
scheduling-tailored techniques. Furthermore, a study on the interaction of blocking constraints and
tardiness-based optimization criteria will be provided.

3. Problem Description and Benchmark Instances

The BJSPT is defined by a set of machines M = {Mj | k = 1,...,m} which are required to
process a set of jobs J = {J; | i = 1,...,n} with individual technological routes. Each job consists of
a set of operations O’ = {0i;1j=1,...,n;}, where operation O; ; describes the j-th non-preemptive
processing step of job J;. The overall set of operations is defined by O = Uj,cs O' containing)
elements. Each operation O; j requires a specific machine Ma(O,-,]-) for a fixed processing time p; ; € Z.
The recirculation of jobs is allowed. Furthermore, a release date r; € Zyo and a due date d; € Z(are
given for every job J; € J.

Blocking constraints are introduced for every pair of operations O; ; and Oy of different jobs
requiring the same machine. Given that O;; — Oy j determines the operation sequence on the
corresponding machine M and j # 1; holds, the processing of operation Oy j» cannot start before job J;
has left machine My, in other words, the processing of operation O; j,1 has started. To account for the
optimization criterion, a tardiness value is determined for every job with T; = max{0, C; - d;}, where
C; describes the completion time of the job.

There exist different mathematical formulations of the described problem as a mixed-integer
optimization program. For an overview of applicable sequence-defining variables and comprehensive
studies on advantages and disadvantages of the corresponding models, the reader is referred to [11,15].
According to the well-known three-field notation, cf. for instance [37,38], the BJSPT can be described by

Jm | block, recre,ri | Y. T;.

A feasible schedule is defined by the starting times s; ; of all operations O; ; € O, which fulfill the
processing sequences, the technological routes and the release dates of all jobs as well as the blocking
constraints. Since the minimization of total tardiness constitutes a regular optimization criterion,
it is sufficient to consider semi-active schedules where no operation can be finished earlier without
modifying the order of processing of the operations on the machines, see e.g., [38,39]. Thus, the starting
times of the operations and the operation sequences on the machines constitute uniquely transformable
descriptions of a schedule. If a minimal value of the total tardiness of all jobs }.j. s T; is realized,
a feasible schedule is denoted as optimal. Note that, regarding the complexity hierarchies of shop
scheduling problems, see for instance [38,40] for detailed explanations, the BJSPT is harder than the
BJSP with the minimization of the makespan Cy;gy.

To discuss the characteristics of neighborhood structures and to evaluate their performance,
a diverse set of benchmark instances is used. It is intended to involve instances of different sizes (111,1)
featuring different degrees of inner structure. The set of problems contains train scheduling-inspired
(ts) instances that are generated based on a railway network, distinct train types, routes and speeds,
cf. [11,15], as well as the Lawrence (la) instances which are set up entirely random with n; = m for
Ji € J, cf. [41]. The problems include 5 to 15 machines and 10 to 30 jobs. The precise instance sizes can
be found in Tables 2—4.

For all instances, job release dates and due dates are generated according to the following terms
in order to create computationally challenging problems. The release dates are restricted to a time

26

Algorithms 2019, 12, 242

interval which forces jobs to overlap and the due dates are determined with a tight due date factor,
see [9,11,30]:

n; n;
r; € [O , ZIIn{ryl{Z pij}:| and d; = ’Vr,- + (l.2~ > pij)] forall ;e J. (1)
i€ j=1

j=1
4. Representations of a Schedule

The encoding of a schedule is basic to every heuristic solution approach. In contrast to most of the
existing work on BJSPs, the well-known concept of permutation-based representations is used here.
In the following, redundancy and feasibility issues will be discussed and overcome, and a distance
measure for two permutation-based schedules is presented.

4.1. Permutation-Based Encodings

An operation-based representation s°F of a schedule, also called permutation, is given as a single list
of all operations. Consider exemplarily

0
s°? =[0;1,0i1,0i2,0i1,0i3,05 5,

The permutation defines the operation sequences on the machines, and the corresponding starting
times of all operation can be determined by a list scheduling algorithm. Note that the processing
sequences of the jobs are easily satisfiable with every operation O; ; having a higher list index than its
job predecessor O; ;1. Furthermore, blocking restrictions can be implemented by list index relations so
that the feasibility of a schedule can be assured with the operation-based representation. However,
when applying the permutation encoding in a heuristic search procedure, redundancy issues need to
be taken into account. Regarding the list s°” shown above and assuming that the first two operations
0;1 and Oy require different machines, the given ordering O;; - O;; and the reverse ordering
Ojr1 = O;1 imply exactly the same schedule. Generally, the following conditions can be identified for
two adjacent operations in the permutation being interchangeable without any effects on the schedule
encoded, cf. [15]:

e The operations belong to different jobs.

e The operations require different machines.

e The operations are not connected by a blocking constraint.
* None of the operations is involved in a swap.

Details on the relation of two operations due to a blocking constraint and the implementation
of swaps are given in the subsequent Sections 4.2 and 4.3. To avoid unnecessary computational
effort caused by treating redundant permutations as different schedules, the application of a unique
representation is desirable.

A second permutation-based encoding of a schedule, namely the machine-based representation s,
describes the operation sequences on the machines as a nested list of all operations. Consider

smu = [[Oi,lroi",ll .. ‘]r [Oi’,lloi,z]r .. ‘]r [Oi,Sl .. ']/ [Oi’,Z/ .. ']/ ..]

as a general example, where the k-th sublist indicates the operation sequence on machine M. It can be
observed that the machine-based representation uniquely encodes these operation sequences and any
modification leads to the creation of a different schedule. However, since the machine-based encoding
does not incorporate any ordering of operations requiring different machines, the given schedule may
be infeasible with regard to blocking constraints. Preliminary computational experiments have shown
that this blocking-related feasibility issue frequently appears when constructing BJSP schedules in
heuristic search methods. Therefore, both representations are simultaneously used here to assure the
uniqueness and the feasibility of the considered schedules.

27

Algorithms 2019, 12, 242

As a consequence, the applied permutation-based encodings need to be transformed efficiently
into one another. Taking the general representations given above as examples, the operation-based
encoding features list indices lidx(O; ;) and required machines Ma(O; ;) as follows:

s=[Oi1, Owi, Oip, Oma, Oz, Oip, -]
lidx(0;;): 1 2 3 4 5 6
MH(O,‘J‘)I M1 M2 M2 Ml M3 M4
The transformation s°” — s"* can be performed by considering the operations one by one with
increasing list indices in s°” and assigning them to the next idle position in the operation sequence of
the required machine in s, see [15,16]. As an example, after transferring the first two operations O; ;
and Oj 1 from s to s™, the machine-based representation turns out as s™* = [[O;1], [Ow 1], [1, [],--.].
After transferring all operations given in the permutation s°7, the machine-based encoding exactly
corresponds to the nested list shown above.

While performing the transformation s™* — s°7, the redundancy of operation-based encodings
needs to be taken into account. If the machine-based representation s™* is constructed from
an operation-based representation s’ of a specific schedule, it will be desirable that the reverse
transformation yields exactly the initially given permutation s7 instead of a redundant equivalent.
To assure that the resulting list of operations is equivalent or closest possible to an initially given
operation-based representation, the following method is proposed.

Priority-Guided Transformation Scheme s™ — 5%, cf. [15]: In transferring a machine-based
representation s to a permutation s°P', the set of candidate operations to be added to the permutation
s°P" next consists of all operations O; ; in s™, for which the job predecessor O;; 1 and the machine

ma

7

predecessor given in s™* either do not exist or are already present in s°”. Considering the
machine-based representation s given above and an empty permutation s’? ', the set of candidate
operations to be assigned to the first list index in s°7 " contains the operations O; 1 and Oy ;. To guarantee
the recreation of the initially given permutation s°/, the operation O;; with the maximum priority
prio(0; ;) is chosen among all candidate solutions, whereby

a

W if lidx' () < lidx(O;),
prio(0;;) =42 if lidx' () = lidx(O; }), 2
lidx'(+) —lidx(O; ;) + 2 if lidx(O;) < lidx'(+),

with lidx(O; ;) being the list index of the operation in the initially given permutation s°” and lidx'(+)
being the currently considered, idle list index in the newly created list o', Recalling the example
described above, the currently considered index features lidx'() = 1, while prio(O;;) = 2 due to
lidx’(*) = lidx(Oill) =1land pI’iO(Oirrl) = Zlfl =1dueto lidx’(*) =1<2= lidx(Olv,l). Thus, Sgpl = [Oi,l]
holds after the first iteration, and the set of candidate operations to be assigned to the next idle list index
lidx"(x) = 2 consists of the operations O;»; and Oy ;. Following this method iteratively, the newly
constructed permutation s°P" will be equivalent to the initially given permutation s°7 from which s
has been derived.

Given that the considered machine-based representation is feasible with regard to the processing
sequences and the technological routes of the jobs, the priority-guided transformation scheme will
assign exactly one operation to the next idle list index of the new permutation in every iteration and
can never treat an operation more than once. Thus, the method constructs a unique operation-based
representation from a given machine-based representation in a finite number of O(n,) - m) steps,
see [15] for detailed explanations.

28

Algorithms 2019, 12, 242

4.2. Involving Swaps

When considering a lack of intermediate buffers in the job shop setting, the moments in which
jobs are transferred from one machine to the next require special attention. The situation where two
or more jobs interchange their occupied machines at the same point in time is called a swap of jobs.
Figure 1 shows an excerpt of a general BJSP instance involving operations of three jobs with unit
processing times on two machines. The Gantt chart in part (a) of the figure illustrates a swap of the
jobs J; and Ji on the machines M and My at time point f.

Mk’ Oi’,l Ol‘,z -—-

Mk Oi,l oi/lz Oi”,l e

Mk’ Oilll Oi,2 -=-

Mk Oi,l Oi”,l Oi’,2 —_

(b) A blocking-infeasible cycle in the BJSP schedule

Figure 1. Illustration of feasible and infeasible cycles in BJSP schedules.

Dependent on the type of real-world application, swaps are treated as feasible or infeasible in a
BJSP schedule; see, for instance [8,17]. In particular, the implementation of rail-bound systems and
the existence of setup times require their exclusion, cf. [5,6,13,34]. In this work, it is assumed that,
even if jobs cannot be stored between consecutive processing steps, it is possible to move several jobs
simultaneously on the production site. Thus, swaps are treated as feasible here.

Considering the alternative graph representation of a BJSP, initially proposed in [42], reveals
an upcoming issue related to swaps and feasibility. In Figure 1, the corresponding excerpt of the
alternative graph implementing the given operations as nodes and the implied ordering constraints as
arcs is shown on the right next to the Gantt chart. The gray arcs represent the processing sequences of
the jobs, while the black arcs indicate the existing operation sequence and blocking constraints. Taking
the swap situation in part (a) of Figure 1 as an example again and assuming that the operation Oy 5 is
the last processing step of job J;/, the operation sequence O; ; - O;r » = O;» ; on machine M implies the
solid arcs (O;,0ir) and (Ojr 5, O;r 1) in the alternative graph. Equivalently, the operation sequence
Ojr1 = O;2 on machine My causes a blocking constraint, which is represented by the dashed arc
(Oir2,0i 7). The resulting structure of arcs shows that swaps appear as cycles in the alternative graph
representation of the schedule. These cycles refer to feasible situations, since the underlying blocking
inequalities can simultaneously be fulfilled by an equivalent starting time of all involved operations.

In part (b) of Figure 1, a Gantt chart and the corresponding graph-based representation of
infeasible operation sequences are shown as a contrasting example. When trying to determine the
starting times of the operations according to the operation sequences on the machines, an infeasible
cyclic dependency of ordering and blocking constraints occurs at point as follows:

i1+ Pirg < Sirp < Sip < Sim .

29

Algorithms 2019, 12, 242

It can be observed that such infeasible operation sequences similarly appear as cycles in the
alternative graph representation. Thus, treating swaps as feasible results in a need to differentiate
feasible and infeasible cycles when encoding BJSP schedules by an alternative graph. Following
findings presented in [39] on a weighted graph representation, a simple structural property to contrast
feasible swap cycles from infeasible sequencing cycles can be proposed. An alternative graph represents
a feasible schedule for the BJSP, if all cycles involved do only consist of operations of different jobs
requiring different machines, cf. [15]. The operations forming the cycle and featuring their start of
processing at the same point in time are called a swap group. The given property facilitates the
interchange of two or more jobs on a subset of machines, since it assures that every machine required
by an operation of the swap group is currently occupied by the job predecessor of another operation of
the group. Comparing the cycles in Figure 1, it can be seen that the arcs involved in the feasible swap
cycle in part (a) feature different patterns, since the operations at their heads require different machines.
On the contrary, two of the arcs forming the infeasible cycle in part (b) are solid arcs indicating that the
two involved operations O;» 1 and Oy , require the same machine.

Since this work relies on permutation-based encodings of schedules and corresponding feasibility
checking procedures, the concept of swap groups is used to handle feasible cyclic dependencies. In the
previous section, it is already mentioned that relations between operations on different machines
can only be included in the operation-based representation of a schedule. Thus, the appearance of a
swap is implemented in a single list by forming a swap group of operations which is assigned to one
single list index. This list index fulfills the existing processing sequence and blocking constraints of all
involved operations, and indicates that these operations will also feature a common starting time in
the schedule. Considering the small general example given in part (a) of Figure 1, an operation-based
representation of this partial schedule may resultin s =[...,0;1,0i1,(0;2,042),0jm 1,...].

4.3. Feasibility Guarantee

In the following, the feasibility of a schedule given by its operation-based representation shall be
examined more closely. As mentioned before, the processing sequences of the jobs and the blocking
constraints can be translated to required list index relations of pairs of operations in the permutation.

For two consecutive operations Oy j and Oy of a job J; with j < j/, the starting time constraint
$1,j + P1,j < 51, has to be fulfilled by a feasible schedule. Since these starting times are derived from the
ordering of the operations in the permutation-based encoding, the required processing sequence can
easily be implemented by assuring lidx(Oy ;) + 1 < lidx(Oy ;7). Blocking constraints can be described
using list indices following the same pattern. Assume that, besides the operations O;; and Oy
requiring two machines My and My, respectively, there is another operation O, j» requiring machine
M. If Ol,j - OZ,]‘H is determined as the operation sequence on this machine, the absence of intermediate
buffers causes the starting time constraint s1 j;1 < s j». Translating this blocking restriction to a list
index constraint implies that the list index of the job successor of the machine predecessor of an
operation needs to be smaller than the list index of the operation. Formally, for two operations O; ;
and Oy of different jobs requiring the same machine and a given operation sequence O;; — Oy jr,
the following list index relation has to be fulfilled by a feasible permutation:

lidx(Oi,]'+1) +1< lidx(O,-/J—,), 3)

provided that the operation O; j,1 exists.

This type of list index constraints constitutes the basis of checking and retrieving the feasibility
of a BJSP schedule given by a single list of operations. The proposed method, called the Basic Repair
Technique (BRT), takes any permutation perm, which is feasible with regard to the processing sequences
of the jobs, as input and constructs the operation-based representation s°7 of a feasible schedule for
the BJSP, cf. [15,16]. Note that the different terms perm and s°” both describing an operation-based
encoding of the schedule are only used for reasons of clarification here. Figure 2 outlines the algorithm.

30

Algorithms 2019, 12, 242

initialize perm, s°F

Is perm

empty?
Required
idle? T T _____ ,
| Case 2 i
v |
i
determine :
blckingop |
1 | |
i |
| . i
Case 3 |)
d4- - - - == - - - - A
St Required
s machine
idle?
Case 1
for all op. in queue <

Figure 2. Schematic outline of the Basic Repair Technique (BRT), cf. [15].

A permutation perm, from which a feasible schedule is to be constructed, is initially given.
The return permutation s°” is initialized with an empty list. The basic strategy of the BRT is to iterate
over the list perm, take at least one operation from this list in each iteration and place it in the list s°7,
so that all BJSP constraints are satisfied. As long as perm is not empty, the operation O; ; at the first list
index is considered in the current iteration. If the required machine Ma(0O; ;) is idle, meaning that there
is no other operation blocking it, the function SCHEDULEOP is called on operation O; ;. This function

e determines and stores the earliest possible starting time of the considered operation,
® removes the operation from perm,

e adds the operation to the next idle list index in s°7, and

e sets the status of Ma(O,',j) to blocked provided that a job successor O; j,1 exists.

With this, operation O; ; is said to be scheduled and the algorithm continues with the next iteration.

In case the required machine Ma(O; ;) is not idle, meaning that it is blocked by another operation,
the currently considered operation is involved on the right-hand side of a blocking constraint as given
in (3). The operation O; ; is added to a queue and the operation required at a smaller list index to satisfy
the blocking constraint is determined. The required operation is denoted as O, in the following.
At this point, the BRT proceeds according to one of three different paths indicated in Figure 2.

Case 1: If the operation O, is not involved in the queue and its required machine Ma(O,) is
idle, operation O, ; and all operations in the queue are scheduled following a last in-first out strategy.
Note that, when Case 1 is singly executed, exactly two operations are transferred from perm to the new
operation-based representation s°7.

Case 2 — Case 1: If operation O, , is not involved in the queue but its required machine Ma(O,)
is not idle, operation O, j, is added to the queue and the next required operation to fulfill the occurring
blocking constraint is determined. Operations are added to the queue according to Case 2 until a
required operation with an idle machine is found. Then, Case 1 is executed and all queuing operations
are scheduled. Note that following this path, at least three operations are transferred from perm to s°?.

Case 2 — Case 3: Equivalent to the previous path, the operation O, ;, is added to the queue and
the next required operation is determined. Case 2 is executed until an operation already present in the
queue is found. This refers to the situation where a cyclic dependency of blocking constraints exists
and a swap needs to be performed in the schedule. The swap group is defined by all operations in
the queue added in between the two occurrences of the currently considered operation. Following
case 3, all operations of the swap group are scheduled with equivalent starting times and potentially

31

Algorithms 2019, 12, 242

remaining operations in the queue are scheduled correspondingly after. Since the smallest possible
swap cycle is formed by two operations, at least two operations are transferred from perm to s’V when
this path is executed.

With this, the BRT captures all occurring dependencies in arbitrary permutation-based encodings
of BJSP schedules. The method assures that all blocking constraints are fulfilled by shifting required
operations to positions with smaller list indices and by forming and modifying swap groups. Given
that the number of operations in the problem is finite and the initially given permutation is feasible
with respect to the processing sequences of the jobs, the following proposition holds, cf. [15].

Proposition 1. The Basic Repair Technique (BRT) terminates and constructs an operation-based representation
s°P of a feasible schedule for the BJSP.

Proof. It has to be shown that

(1) the resulting permutation s°” is feasible with regard to the processing sequences of all jobs J; € 7,
(2) the resulting permutation s°” is feasible with regard to blocking constraints and
(3) every operation O; ; € O is assigned to a position in the feasible permutation s°7 exactly once.

An unsatisfied blocking constraint s, j» <8 is detected in the BRT while an operation Oy jr_1 is
already scheduled in the feasible partial permutation s°” and operation O; ; is the currently considered
operation, for which Ma(0; ;) is not idle. The BRT shifts required operation(s), here only operation
Oy jr, to the next idle position lidx'(+) > lidx'(Oy ;1) and will never affect list indices prior to or
equal to lidx’ (O,-/,]-/_l). Hence, a given feasible ordering accounting for processing sequences and
technological routes, such as lidx(Oy 1) < lidx(Oy), can never be violated by changes in the
operation sequences made to fulfill blocking constraints. (1) is true.

The initially empty permutation s°7 is expanded iteratively in the BRT. Every time an operation
0;; is considered to be assigned to the next idle list index lidx’(*), unsatisfied blocking constraints are
detected and fulfilled. Accordingly assigning an operation Oy i to the list index lidx'(+) in s°7 prior to
its initially given index lidx(Oy ;) in perm may implement a change in the operation sequence on the
concerned machine. This may only cause new blocking constraints referring to the positions of the
job successor Oy ;7,1 and the machine successor of operation Oy . Due to given feasible processing
sequences, affected operations cannot be part of the current partial permutation s°” and unsatisfied
blocking constraints do only arise in the remainder of the permutation perm. Thus, it is assured that
the existing partial permutation s°7 is feasible with regard to blocking constraints in every iteration.
Since this remains true until the BRT terminates, (2) is shown.

The consideration of operations in the BRT follows the ordering given in the initial list perm
starting from the first position. Since the assignment of an operation O; ; to the next idle list index
lidx' () in s°” may only affect constraints that are related to succeeding operations in the initial list
perm, the necessity of a repeated consideration of an operation can never occur, once it is added to the
feasible ordering s°7. Therefore, (3) is true. [

Considering the remarks on the numbers of operations scheduled in every iteration of the BRT,
it can already be expected that a feasible schedule is determined by the BRT in polynomial time.
In [15], it is shown in detail that the schedule construction takes O(#,) - m) steps. Thus, the BRT is an
appropriate basic tool to be applied in heuristic search schemes.

4.4. Distance of Schedules

The distance of feasible solutions is an important measure in analyzing search spaces and
neighborhood structures of discrete optimization problems, cf. [43,44]. When a heuristic search
method is applied, the distance of two consecutively visited solutions refers to the size of the search
step. In such a procedure, the step size may act as a control parameter or observed key measure

32

Algorithms 2019, 12, 242

to guide the search. Intensification and diversification are strategically implemented by conducting
smaller or bigger steps to avoid an early entrapment in locally optimal solutions.

In scheduling research, the distance d(s,s") of two feasible schedules s and s’ is commonly
defined by the minimum number of basic operators required to construct one schedule from the
other, cf. [44,45]. Here, the adjacent pairwise interchange (API) of two neighboring operations in the
machine-based representation of a schedule is used as the basic operator. Formally, it can be described
by the introduction of an indicator variable for all pairs of operations O; ; and Oy with i < i’ requiring
the same machine as follows:

0 _ |1, ifanordering O;; - Oy yr or Oy jr - O;j in s is reversed in s, @
0, else.
Consequently, the distance of two schedules is determined by
J(S, S/) = Z hi,j,i’,j’ . (5)

0,05 ;1€ O with
Ma(0;)=Ma(Oy 1), i<i’

Note that, when describing the BJSP with a mixed-integer program and implementing the pairwise
ordering of operations with binary variables, the given distance measure is highly related to the
well-known Hamming distance of binary strings, see [15] for further explanations.

5. Neighborhood Structures

In the following, neighborhood structures, which apply interchanges and shifts to the
permutation-based representations of a schedule, are defined. The generation of feasible neighbors
receives special attention, and the connectivity of the neighborhoods when dealing with complex
BJSPT instances is discussed. A statistical analysis of a large set of generated neighboring solutions is
reported to detect critical characteristics of the repairing scheme and the search space in general.

5.1. Introducing Interchange- and Shift-Based Neighborhoods

5.1.1. Transition Schemes and Their Implementation

In line with the findings presented in the literature, intensification and diversification shall both
be realized in a heuristic search procedure by appropriate moves. When solving general sequencing
problems, interchanges and shifts of elements in permutations constitute generic operators which
are widely used, cf. [45/46]. The interchange-based moves applied here to the BJSPT and their
implementation in the permutation-based encodings are defined as follows, see [15,16].

Definition 1. An API move denotes the interchange of two adjacent operations O; j and Oy j» of different jobs
requiring the same machine My € M in the machine-based representation of the schedule. Adjacency is defined
in a strict sense. A pair of operations O; j and Oy is called adjacent if there is no idle time on machine My
between the preceding operation leaving the machine and the start of the processing of the succeeding operation.

Definition 2. A TAPI move denotes an interchange of two adjacent operations O; j and Oy jr of different jobs
requiring the same machine My € M with O;; — Oy jr in the machine-based representation of the schedule,
where strict adjacency is given and the job]y is currently tardy.

The limitation to pairs of operations, which are strictly adjacent in a schedule, can be made

without loss of search capability, cf. [15]. An idle time between two consecutively processed operations
of different jobs on a machine may only occur due to

33

Algorithms 2019, 12, 242

1. the technological routes of the jobs and the corresponding processing sequences on other
machines or
2. the release date of the job of the succeeding operation.

In the first case, there always exists a sequence of applicable API moves that eliminates the
idle time and enables an interchange of the considered pair of operations. In the second case,
an interchange of the considered pair of operations will only result in postponing the starting time of
the initially preceding operation, since the succeeding operation cannot be processed earlier. If such
a postponement is beneficial, this will also be indicated by an applicable API at another point in the
schedule. Otherwise, postponing the preceding operation can never be advantageous with regard to
total tardiness.

These operators are intended to construct close neighboring solutions with a desired distance
4(s,s") = 1. Small steps are supposed to intensify the search and make a heuristic search procedure
nicely tractable towards locally optimal schedules. The advantageousness of restricting the set of
potential API moves based on the objective function value, namely considering only TAPI moves, shall
be closely investigated in the computational experiments. Figure 3 shows all applicable API moves
(solid arrows) and TAPI moves (dashed arrows) for a small BJSPT instance with three machines and
three jobs. It can be observed that, referring to the same schedule, the set of TAPI moves is a subset of
the set of API moves. Note that there is an idle time occurring between three pairs of consecutively
processed operations on the machines M, and M3, while there is no blocking time on any machine in
the given schedule.

r,ry 13
v v
M3 03,1 O13 022
<« --» TAPI moves
M O1 Os3
. 1 <— API moves
M, O11 <> O3 71701
A A
dy dyd3

Figure 3. Illustration of applicable API and TAPI moves in a given schedule for the BJSPT

To avoid redundancy in the neighborhood structure on the one hand, API moves are applied to
the machine-based representation of a schedule. To check the feasibility of the constructed neighboring
schedule on the other hand, the applied API move needs to transferred to the operation-based
representation of the schedule, cf. [16]. Since the interchanged operations are not necessarily directly
adjacent in the permutation, this can be done by a left shift or a right shift transformation, respectively.
First, consider the API move Op; <« O3 in the schedule given in Figure 3 and the following
permutation encoding this schedule:

0
§7 =[01,1,03,1,0172,032,013,033,021,02,2].

The API move can be implemented either by shifting operation Oy ; to the right together with its
job successor O , to preserve the processing sequence or by shifting operation O3 » to the left together
with its job predecessor O3 1. In both cases, the following permutation perm is generated:

perm =[031,052,01,1,01,,013,033,021,02,].

It appears that the permutations generated by implementing API moves are infeasible with regard
to blocking constraints. Here, operation Oy ; cannot be scheduled on machine M), since this machine
is blocked by operation O3,. Thus, the given list needs to be repaired. After applying the BRT to

34

Algorithms 2019, 12, 242

perm, the following feasible neighboring schedule 57, which incidentally turns out as a permutation
schedule, is constructed:

’
s =[031,032,033,01,1,012,013,021,02,].

Considering the second applicable API move O3, <> O, in the schedule of the (3, 3)-instance
in Figure 3, the left shift of operation O, and the right shift of operation O3, in s°7 generate two
different permutations perm; and perm;, respectively:

permy = [01,1,031,012,021,032,013,033,02],

pernz = [O11,031,01,2,013,02,1,052,033,02,].

Applying the BRT to perm; constructs a feasible neighboring schedule

sy =[011,031,012,021,(022,032),013,033],

which is displayed in Figure 4. This schedule features a swap of the jobs J, and J3 on the machine M;
and M3 and two periods of blocking time on the machines M; and M3 indicated by the curved lines.

ry,r2 13
v v

M3 03,1 M 02,2 ‘ 01,3
Mz Ol,Z }’\/\/\-1 0373 ‘

My ‘ 011 021 ‘ O3

2 A
di dyds3

Figure 4. Illustration of the feasible neighboring schedule s‘{p resulting from an API move.

Applying the BRT to perm; reveals a major difficulty of using permutations, interchange-based
operators, and repairing schemes in solution approaches for BJSPs. After the first three operations
have been added to the partial permutation s;p, =[01,1,05,1,01], the operation O; 3 is considered.
It requires machine M3, which is blocked by operation O3z ;. Thus, the job successor O3, must be
scheduled prior to operation Oy 3, and the BRT reverts the given API to regain the feasibility of the
schedule. A graphical representation of the critical step is given in Figure 5.

permy =[01,1,031,012,013,021,032,033,07]

Figure 5. Schematic presentation of an API reverted by applying the BRT.

It can easily be seen that the operation sequence given in the first part of the permutation perm,
and the operation sequence resulting from the API cannot be implemented together. Additional
changes in the schedule are necessary to construct a feasible solution involving the desired ordering
03,1 = O3. Preliminary experiments have shown that a reversion occurs in 80 to 90% of all generated
and repaired neighboring schedules. Therefore, an enhanced repairing scheme is required to find
feasible solutions that contain given orderings while featuring as few changes as possible compared to
the initially given ones.

The desired operation sequence can be interpreted as a partial schedule with exactly two elements.
While the decision problem on the existence of a completion of an arbitrarily large partial schedule
is NP-complete for the BJSP, cf. [17], the generation of a feasible schedule with a given ordering of

35

Algorithms 2019, 12, 242

exactly two operations is always possible. Nonetheless, the challenging task is to find a structured and
commonly applicable procedure, which returns a feasible neighbor from an initially given schedule
and a desired operation sequence resulting from an API. The subsequent section deals with this issue
in detail.

It is indicated by previous studies on BJSPs that a diversification strategy is beneficial to
reach promising regions of the search space, see [32,34]. Therefore, a randomized and objective
function-oriented transition scheme is defined. It is applied to the operation-based representation of a
schedule and relies on shifts of operations in the permutation as generic operators, see [15,16].

Definition 3. A T] mowe is defined by applying random leftward shifts to all operations of a tardy job J; in the
permutation-based representation of a schedule, while preserving the processing sequence O;1 — Ojp — -+ —
O; , of the job.

The resulting permutation might be infeasible with regard to blocking constraints, and the BRT is
used to construct a feasible neighboring schedule. Since a T] move creates desired partial sequences
for every shifted operation, it is not guaranteed that a solution involving all of these orderings
simultaneously exists. Thus, no fixation can be applied and the BRT is potentially able to revert all
shifts. To avoid neighboring schedules which are equivalent to the initially given ones, sufficiently
large shifts are executed.

5.1.2. Generating Feasible API-Based Neighbors

As mentioned in the previous section, the generation of feasible neighboring schedules for
BJSPs involving a given API-based ordering is a critical issue. Since potentially required additional
changes in the schedule are not contained in the BRT, an Advanced Repair Technique (ART) is proposed,
cf. [15,16]. This method takes the operation-based representation of a schedule s, named perm, and a
desired sequence of two operations O, ;, — Oy and returns the operation-based representation s°”
of a neighboring schedule s’, which involves the given ordering. All additional APIs necessary to
transform the schedule s into s follow a basic rule. Instead of reverting a given pairwise sequence
Oq,p = Oy jr, the initial permutation is adapted by leftward interchanges of an operation of the job J,
and the repairing scheme is restarted. Figure 6 gives a schematic illustration of the ART in total.

It can be observed in the left part of the chart that the BRT constitutes the foundation of the ART.
The operations are iteratively taken from the list perm, requiring machines are checked for idleness,
and blocking operations are determined, if necessary. The first important difference is indicated by
the ellipsoid node printed in bold face. An operation is defined to be fixed, if it acts as the successor
operation in a given pairwise sequence. The corresponding predecessor is denoted as the associated
operation. In the general example stated above, operation Oy is fixed with the associated operation
O, p- In case a fixed operation shall be added to the queue and its associated operation is already
scheduled in the feasible permutation s°7, no reversion occurs and the procedure continues in the basic
version. In case the associated operation O, is not yet scheduled, the given ordering O,; — Oy i
would be reverted by adding operation Oy i to the queue. To avoid this, the ART follows one of
four modification paths in the gray box, the initial list perm is adapted, and the whole procedure
is restarted.

36

Algorithms 2019, 12, 242

initialize perm, s°7 ADAPTPERM

gase)

zase)

Required 2
machine ADDTOQUEUE ®
: n
idle? :
determine !
A.Ss"f,'},?P machine !
me pred. list |
I
Jocking o A |
CHEDULEOP blocking op. ; !
det I Q I
associated op. S |
List |
! Y |
! I
1 ! |
I
. Required ! 5Oy pred. -
Operation Operation Gk I ;j pred.
SCHEDULECYCLE in queue? fixed? méchme ' | of assoc. op.?
idle? i e

i . !

I

i Al i

all op. in qp assoc. op? _ _rno_ _|

Figure 6. Schematic outline of the Advanced Repair Technique (ART), cf. [15].

Figure 7 illustrates the four possible cases of adaptation by means of Gantt charts. Assume that
Oq,p = Oy jr is a given ordering and operation O; ;, shown in striped pattern, is the operation currently
considered by the ART. Irreversible pairwise sequences are given by bold rightward arrows connecting
adjacent operations on a machine, and the required additional APIs are indicated by leftward arrows
with case-corresponding line patterns, see Figure 6. Let the feasible partial schedule s already contain
operation O[r,jr_l in the cases 1, 2, and 3, and operation O,-/,]-z_z in case 4. The consideration of operation
O;,j to be scheduled next requires the following blocking constraint to be fulfilled: lidx(Oy) <
lidx(0O; ;). Since the associated operation O, , is not yet included in the list s°7, the fixed operation O
cannot be positioned at the next idle list index prior to operation O; ;. To resolve the situation, the basic
strategy is to shift or interchange the associated operation O, ;, further to the left on its machine, so
that it will be scheduled before the required repairing shift of operation Oy j» occurs in the next run
of the procedure. Therefore, the machine predecessor list of O, excluding operations of job], is
determined, see Figure 6, and the adaptation of the initial permutation is conducted according to one
the following cases:

Case 1: If there exists a machine predecessor (O, ;), an additional API move is performed and
the ordering O,), - (O,) is defined to be fixed additionally, see part (a) of Figure 7. The API is
implemented in the list perm by a left shift of operation O, .

Case 2: If there exists no machine predecessor of operation O, , and there exists no other operation
associated with operation Oy , the currently considered operation O; ; might itself be a job predecessor
O, of the associated operation O, ;. If this is true, an API move is performed with its machine
predecessor Oy i1, see part (b) of Figure 7. Note that, for this situation to occur, the machine
predecessor necessarily needs to exist and belong to job J;.

Case 3: Assume that there exists no machine predecessor of operation O, ;, and no other operation
associated with operation Oir’jr, and, furthermore, the currently considered operation is not a job
predecessor of operation O, ;. Then, the associated operation is shifted leftward in the permutation
perm to the position prior to the currently considered operation O; j, see part (c) of Figure 7. This shift
does not implement an API move but is sufficient to satisfy the given blocking constraint.

Case 4: This situation differs structurally from the other three cases. It involves at least three
machines, and it can only appear with operations of recirculating jobs after one or more additional APIs

37

Algorithms 2019, 12, 242

have already been performed. In part (d) of Figure 7, besides the initially given ordering, the pairwise
sequences O, pr = Oy jr_1 and Og pr —~ Oy ji_1 are exemplarily fixed. After the machine predecessor list
of the associated operation O, ;s has been determined as empty, a second operation associated with the
fixed operation Oy ;r_; can be found, namely operation O, ;». Dependent on the existence of a machine
predecessor a(O,), the ART proceeds according to Cases 1, 2, or 3 with an adaptation of the list
perm. In the depicted Gantt chart, a shift following Case 1 is shown as an example.

My a(Ogp) - Oup O jr My o Ogp O jr

My Oirji1 Oy My v Oy jr-1 Og

(a) Case 1: Shifting the associated operation (b) Case 2: Shifting the currently considered operation O;; =

. . ! . .
O, in the operation sequence on Ma(O, ;) O, (b < b) in the operation sequence on Ma(O,)
My Oup O jt

——————————— ‘ e, -
T 7 T

My v R Ogp Oirjr My Oy * - (O pr) s On,la”__gr’,j’—l

:
My Ojr -1 0ij My Opja 0y ‘

(c) Case 3: Shifting the associated operation (d) Case 4: Shifting further associated operations like operation
O,p in perm Ogp, (b' <" < b) of the fixed blocking operation Oy j_1 in
the operation sequence on Ma(O,, ;)

Figure 7. Adapting the permutation perm in the ART, cf. [15].

After the permutation is adapted according to one of the four cases, the ART is restarted involving
one additionally fixed pairwise sequence. The following observation can be made regarding the
operations moved during adaptation.

Observation 1. While executing the ART, the operation interchanged or shifted leftwards when adapting the
permutation is always the associated operation Oy, defined by the initially given fixed sequence O,y — O v or
one of its job predecessors.

Based on this, arguments indicating the correctness of the ART can be derived as follows, cf. [15]:

Proposition 2. The ART terminates and returns a permutation s°F encoding a feasible schedule for the BJSP
involving a predefined ordering O, — Oy i» of two operations of different jobs requiring the same machine.

Proof. It is equivalently assumed here that the initially given list perm is feasible with regard to
the processing sequences of all jobs J; € J. The ART proceeds like the BRT until there is a fixed
operation Oy i to be scheduled prior to its associated operation O, ;. According to Proposition 1,
the BRT terminates and returns a feasible encoding s°” of a BJSP schedule from a given permutation.
Consequently, the adaptation of the permutation and the restart of the ART are the only critical aspects
to regard here in detail.

It needs to be shown that

(1) an adaptation does not violate the processing sequences of the jobs,

(2) an adaptation can never be reverted,

(3) the number of possible adaptations is finite and

(@) there exists a sequence of adaptations leading to a feasible schedule for the BJSP including the
predefined pairwise sequence O, — Oy jr.

When an adaptation is performed, an operation of job J, is shifted leftwards in the permutation.
The processing sequence of this job is the only one potentially affected and it may only get violated,

38

Algorithms 2019, 12, 242

if the operation is moved prior to one or more of its job predecessors. This situation is checked during
the adaptation and job predecessors are additionally shifted, if necessary. Thus, (1) is always true.

The set of irreversible orderings is extended by one pairwise sequence in every execution of
the adaptation procedure. Thus, the incorporated BRT mechanisms can never reverse an adaptation.
A consecutively required API or shift can only result from a fixed ordering O, — O, 4 with b’ €
{1,...,b}, where the currently regarded operation O; ; features a list index prior to lidx(O, /) in perm.
This means that a consecutively required adaptation does always appear at a position prior to the
previous adaptation causing the fixed sequence O, ;» - O, 4. As a consequence, the operation O, 3/
or one of its job predecessors is moved to a list index smaller than lidx(0O;;), for which lidx(0; ;) <
lidx(Oy) < lidx(O.4) holds. Thus, an implemented adaptation can never be reverted by an ART
mechanism. (2) is true.

Since the list perm contains a finite number of elements, and the set of shifted operations is
restricted to all operations of a job], € 7, see Observation 1, and (2) is true, the number of possible
adaptations is finite. (3) holds.

The strategy of the ART can be summarized as shifting the operations of a job J, iteratively
leftwards in the operation sequences on the required machines. This is repeatedly applied until the
given pairwise sequence is realized in a feasible schedule for the BJSP constructed by BRT mechanisms
only. Following from Observation 1 and statement (2), all moved operations may end up at the
first positions in the operation sequences on their machines in the extreme case. Thus, the job J,
involving operation O, is scheduled prior to all other jobs involved in the problem and O, ;, - Oy v is
guaranteed. (4) is shown. [J

Considering that the total number of operations is given by 7., and, furthermore, taking this
measure as a worst case estimate for the number of operations requiring a certain machine, the ART
determines a feasible schedule involving a given pairwise sequence in O ((nop)4) steps, cf. [15].
This method enables the usage of APIs as generic operators in neighborhood structures for BJSPs.

5.1.3. Definition of the Neighborhoods

In line with the transition schemes described in the previous section, the examined neighborhoods
are defined as follows:

Definition 4. The API neighborhood of a schedule s is defined as the set of schedules s', where s’ is a feasible
schedule involving a given API move implemented by a left shift or a right shift.

Definition 5. The TAPI neighborhood of a schedule s is defined as the set of schedules s', where s’ is a feasible
schedule involving a given TAPI move implemented by left shift or right shift.

Definition 6. The TJ neighborhood of a schedule s is defined as the set of schedules s', where s’ is a feasible
schedule resulting from a T] move.

In the following, all neighboring solutions constructible through a given API or TAPI are generally
denoted as API-based neighbors of a schedule. Note that, due to the required repairing schemes,
the actual distances of neighboring schedules are not precisely determined, cf. [15]. The minimum
distance of a schedule and its API-based neighbor is given by 1, and the maximum distance is
theoretically bounded by ¥y, m (‘%kl), where QF defines the set of operations requiring machine
M. As mentioned in the previous section, schedules in the TJ] neighborhood might have a minimum
distance of 0 to the initially given one, while the maximum distance is equivalently restricted by the
structural upper bound. While the leftward shifting strategy applied by the ART in the adaptation of
the permutation is required for the termination of the method, it is not guaranteed that the smallest
number of necessary changes is implemented. To the best of the authors” knowledge, there does not
yet exist a general neighborhood structure or repairing scheme for BJSP schedules capable of certainly

39

Algorithms 2019, 12, 242

constructing the closest possible neighbor for an initial solution and a given change. An empirical
study on the distances resulting for the proposed neighborhoods together with the ART is reported in
the next section.

5.2. Characteristics and Evaluation

5.2.1. Connectivity of the Neighborhoods

A neighborhood is said to be connected, if every existing feasible schedule can be transformed
into every other existing feasible schedule by (repeatedly) applying a given neighbor-defining
operator, see [13,39,45]. Here, the neighbor-defining operators consist of a move and a repairing
scheme. The connectivity of the neighborhood is of significant importance in the application of search
procedures, since it guarantees that the methods are capable of finding optimal solutions. However,
such a structural result can only be interpreted as an indication for the actual performance of a
neighborhood-based heuristic solution approach on practically relevant instances.

Proposition 3. Given general release dates r; € Z for |; € J and the minimization of total tardiness as the
optimization criterion, the proposed neighborhoods, namely the API neighborhood, the TAPI neighborhood and
the T| neighborhood, are not connected.

Proof. Consider API and TAPI moves first. As described in Section 5.1, in a feasible schedule, there
may exist two subsequent operations O; ; and Oy - on a machine in the schedule which are considered
as non-adjacent due to an idle time caused by the release date of the succeeding job J;». Such a pair of
operations can never be chosen for an API or a TAPI move in constructing neighboring schedules. Thus,
a schedule involving the ordering Oy ;s — O; ; cannot be reached by applying the neighbor-defining
operators even if it is feasible for the BJSP. Thus, the API and the TAPI neighborhoods are not connected.

Furthermore, regarding the T] move which shifts all operations of a currently tardy job in the
permutation, the limitation to choosing a job with a strictly positive tardiness value implies that the
neighborhood of feasible schedules with a total tardiness of 0 is empty. Even if optimal solutions
for the BJSPT are found in this case, these schedules are isolated by definition and no other feasible
schedule can be constructed subsequently. Thus, the TJ neighborhood is not connected. [

Despite these negative findings on the connectivity of the neighborhoods, the proposed structures
are still supposed to be successfully applicable in a metaheuristic search method for the BJSPT. It can
be expected that extraordinarily widespread release dates, which cause a disjoint partitioning of the
search space, do not occur in practically relevant problems. Furthermore, in most of the cases, it is not
necessary to continue the search once an optimal solution is found.

However, the questions on whether the described API neighborhood is connected for the special
case r; =0, J; € J or for a specific combination of release date and processing time ranges remain open.
It is conjectured that the API neighborhood together with the ART feature the connectivity property
for the BJSP without release dates.

5.2.2. Observations on the Interchange-Based Transition Scheme

Besides the general problem solving capability of a metaheuristic involving the proposed
neighborhood structures, the API-based transition schemes shall be evaluated with regard to their
ability to generate small distance and high quality neighbors. Special attention is given to the
differences appearing in using a left shift or a right shift transformation to implement an API in
the operation-based encoding of a schedule. For all API and TAPI neighbors constructed during the
computational experiments, a specific interchange is chosen, left shift and right shift transformation
are performed, and both resulting solutions are evaluated with regard to their distances from the
initially given schedule and their total tardiness values.

40

Algorithms 2019, 12, 242

Figure 8 displays the distributions of the distances of API-based neighbors with left shift (LS) and
right shift (RS) transformation for the benchmark instances by boxplots. The range in which 50% of the
distance measures of the neighbors can be found, the so-called interquartile range, is represented by
the box. The black horizontal line indicates the median of the sample. The whiskers plot the minimal
and the maximal distance value which are not more than one and a half interquartile ranges away
from the box.

60

Instance Group
0 W0 BS ts01 - ts05
g
5 ES ts06 - ts10
o
A E3 ts11-ts15
20
) “‘“““ é
1 23 456 7 8 911112131415 123 45 6 7 8 9101112131415
Instance
100
75
50 |73
25
=1
£
]
5 100
75
50 %

IRRRRRNNRERRARGRRI | RqpI SN ISAREL

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Instance

Instance Group
BE 101 - 1a05 B3 1a06 - 1a10 B3 lall-lal5 B 1al6 - 1a20 B3 la21 - 1a25 B3 1a26 - 1a30 £ 1a31 - 1a35 B 1a36 - 1ad0

Figure 8. Boxplots representing the distribution of the distance measure among neighbors based on
API-moves for the benchmark instances of the BJSPT, cf. [15].

Considering all transitions independent of the direction of implementation, it can be stated
that the distance of neighboring schedules based on a single API is remarkably large for the BJSP.
Evidently, a significant amount of additional adaptations is required to fit a given pairwise sequence to
a feasible schedule. Even if it is not guaranteed that the closest neighbor is generated by the ART, these
results highlight the complexity of the search space caused by blocking constraints. This may lead to
difficulties in the effectiveness and the control of a heuristic search method, since an iterative execution

41

Algorithms 2019, 12, 242

of small changes is desirable to systematically explore the set of feasible schedules. Comparing
the directed implementations of APIs, the distances of neighbors constructed using a right shift
transformation are significantly smaller than the measures of neighboring schedules generated by
a left shift transformation. Thus, it is recommendable to implement APIs by a right shift in the
operation-based encoding to support the execution of smaller search steps, cf. [15].

The chart in Figure 9 shows the proportion of APIs for which the neighbors resulting from a left
shift and a right shift transformation are equivalent (EQ). Given that two different schedules arise, it is
displayed to which extent the schedule with a smaller total tardiness value is generated by a left shift
or by a right shift implementation of the API in the operation-based encoding. It can be observed that
the majority of neighboring schedules based on the same API end up to be equivalent after applying
the ART. Regarding the cases where different schedules are constructed, the right shift transformation
clearly outperforms the left shift transformation by means of total tardiness. Since heuristic methods
are intended to require limited computational effort, it is reasonable to implement APIs by right shift
transformation only, cf. [15]. The analysis indicates that the proportion of cases in which the best
possible neighboring schedule is not generated is less than 13%.

ts01 - ts05 506 - ts10 ts11 - ts15

1.00
0.75

Property
050 B EQ | LS MRS
025

. mANEn DEuER Himnl

01 02 03 04 05 06 07 08 09 10 1 12 13 14 15
1a01 - 1a05 lall - lal5 1a16 - 1a20 1a21 - 1a25 1a26 - 1a30 1a31 - 1a35 1a36 - 1a40

1a06 - 1a10
00
5

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

9
o

Proportion

Instance

o
3

Proportion

)
o

Instance

Figure 9. Proportion of equivalent solutions and performance of right shift and left shift transformation
among all API-based neighbors for the benchmark instances of the BJSPT, cf. [15].

6. Computational Experiments and Results

Finally, the proposed neighborhood structures and repairing schemes are used to solve the
benchmark instances of the BJSPT introduced in Section 3. In line with the findings in the literature,
SA is chosen as a simple and generic local search scheme. The neighborhoods and repairing schemes
can easily be embedded and the method facilitates moves to inferior neighboring solutions. The latter
aspect seems especially promising with regard to the observed ruggedness of the search space of the

42

Algorithms 2019, 12, 242

BJSPT. The following computational results give insight to the general capability of permutation-based
procedures in solving the problem under study. Furthermore, the potential change in the performance
when guiding the search scheme by objective function values is observed.

6.1. A Simulated Annealing Algorithm

The metaheuristic framework is implemented in the standard variant, see, for instance [2,38,39],
with a geometric cooling scheme f,,1 = ¢ - t;. Correspondingly, the initial temperature t(, the terminal
temperature T, and the cooling factor c act as the control parameters of the procedure. With regard
to the asymptotic convergence of SA, n,, - m neighboring solutions are evaluated for every
temperature level.

Since the probability for a generated neighbor to be accepted as the new current solution depends
on the objective function values of the considered schedules next to the temperature level, the parameter
setting needs to be adjusted according to the magnitude of the total tardiness. Preliminary experiments
indicated the following settings (o, T, c) as beneficial for the benchmark problems: (20, 0.5, 0.9925)
and (20, 10, 0.999) for the train scheduling-inspired instances and (200, 50, 0.995) for the Lawrence
instances, cf. [15,47]. Dependent on the size of the instances, 11,000 to 84,000 iterations are performed,
cf. [15].

Furthermore, the extent to which the API-based and the randomized shift-based neighborhood
structures are used to include intensification and diversification advantageously has been part of an
initial study. The proposed algorithm applies either the API or the TAPI neighborhood combined with
the T] neighborhood, respectively. This implies that the effectiveness of an objective function-oriented
guidance can be analyzed, while a random component is always involved. For every generation
of a neighbor, the API-based neighborhood is chosen with a probability of 0.9 and a T] neighbor is
constructed with a probability of 0.1, cf. [15,47]. If an APl is performed, both schedules resulting from
a left shift and a right shift transformation are evaluated, and the superior one becomes the candidate
to represent the next incumbent solution. The created algorithm is called permutation-based simulated
annealing (PSA).

6.2. Numerical Results

The computational experiments are conducted on a notebook featuring an Intel Dual Core i5
processor (2.20 GHz) with 8 GB RAM. Algorithm PSA is implemented in Python 3. Tables 2—4
summarize the numerical results of five independent runs operated for each instance, parameter
setting, and neighborhood structure. The first two columns of each table display the instance and
the corresponding size (m,n). For reasons of comparison, the third column contains the best total
tardiness value obtained by solving the considered problem with the help of IBM ILOG CPLEX 12.8
using a mixed-integer programming (MIP) formulation with pairwise precedence variables, see [15]
for detailed explanations on the model. Objective function values with proven optimality are denoted
by an asterisk. The next pairs of columns show the average total tardiness ¥, T; and the minimal total
tardiness min(}, T;) obtained for each instance by Algorithm PSA based on the API and the TAPI
neighborhood, respectively. Contrasting the mean total tardiness values reached, the smaller measure
is highlighted by boldface printing.

Generally, it can be stated that Algorithm PSA yields satisfactory results for instances with and
without inner structure especially when being compared to the MIP approach. For instances of
small size and an equivalent number of jobs and machines, such as ts01 to ts05, 1a02 to 1a05, 1a07
and 1a08, lal7, lal9 and 1a20, the method is capable of finding an optimal solution. Even more
important, the algorithm is able to generate medium quality solutions for large problems like la31
to la35, for which a general-purpose method might even struggle in generating feasible schedules.
This gives evidence for the advantageousness of the proposed heuristic approach in solving real-world
production planning instances of critical size.

43

Algorithms 2019, 12, 242

Nonetheless, the complex repairing schemes constitute a drawback of the heuristic algorithm
with regard to computation time. PSA requires 2 to 70 min of runtime dependent on the size of the
instances, while the MIP technique is able to solve small instances to optimality in a few seconds, cf. [15].
As indicated by the statistical analysis of the neighborhoods in the previous section, the runtime of PSA
can be improved by implementing APIs by a right shift transformation only. To further overcome these
difficulties, a hybrid method combining heuristic and MIP mechanisms seems promising. Heuristic
methods can be used to generate feasible schedules for large instances quickly, while solving smaller
subproblems by MIP may be a superior improvement strategy towards locally optimal solutions. First,
results following this research direction are presented in [15,18].

Table 2. Computational results of Algorithm PSA with (20,0.5,0.9925) applied to the train scheduling-
inspired instances, cf. [15].

API TAPI

LT, min(fT) YT, min(XT)
ts01 (11,10) 138* 140.0 138* 142.6 138*

Inst. (m,n) MIP

ts02 (11,10) 90* 95.0 91 96.6 90 *
ts03 (11,10) 72* 788 72% 84.8 76
ts04 (11,10) 41* 414 41* 41.2 41*
ts05 (11,10) 71* 712 71% 71.6 71%
ts06 (11,15) 88* 125.0 108 119.4 109
ts07 (11,15) 172* 196.0 184 201.0 192
ts08 (11,15) 163* 185.6 163 * 185.6 181
ts09 (11,15) 153 174.0 160 175.2 161
ts10 (11,15) 97* 116.6 107 112.6 108
ts11 (11,20) 366 409.4 387 411.8 392
ts12 (11,20) 419 429.2 412 4424 419
ts13 (11,20) 452 4922 472 478.2 445
tsl4 (11,20) 459 500.6 473 508.8 492
ts15 (11,20) 418 4332 413 428.2 387

Table 3. Computational results of Algorithm PSA with (20,10,0.999) applied to the train scheduling-
inspired instances, cf. [15].

API TAPI

Inst. (m,n) MIP —— —
YT; min(XT;) XT; min(XT;)

ts01 (11,10) 138* 140.2 138 * 140.0 138 *

ts02 (11,10) 90* 94.6 91 95.2 91

ts03 (11,10) 72* 74.2 72* 74.4 72*
ts04 (11,10) 41* 418 41* 41.0* 41*
ts05 (11,10) 71* 714 71% 71.0 * 71%
ts06 (11,15) 88* 121.6 107 119.8 111
ts07 (11,15) 172* 1954 189 192.8 185
ts08 (11,15) 163* 184.2 179 185.0 181
ts09 (11,15) 153 1788 168 177.4 174
ts10 (11,15) 97* 1148 97 * 112.0 105
ts11 (11,20) 366 406.4 390 401.6 387
ts12 (11,20) 419 4282 412 424.6 405
ts13 (11,20) 452 4626 448 460.6 447
ts14 (11,20) 459 462.8 418 495.0 466
ts15 (11,20) 418 4194 401 435.0 414

Comparing the API and TAPI neighborhood with regard to solution quality over all instances,
no transition scheme clearly dominates. An advantageousness of guiding the search by current

44

Algorithms 2019, 12, 242

total tardiness values cannot be observed. A preliminary performance testing might be beneficial
for every individual application of the API-based neighborhood structures to other BJSPT instances,
since the solution quality reached may dependent on the problems size and structure as well as on
the setting of the metaheuristic framework. It can be remarked that, based on the experiments on
the ts instances with two different parameter settings, the API neighborhood performs better with
lower temperature levels between 20 and 0.5, while the TAPI neighborhood is favorable combined
with higher temperature levels between 20 and 10. This implies that simultaneously applying a strict
limitation of the acceptance of inferior schedules in the search procedure and a restriction of the
possible interchanges based on the objective function value is not reasonable.

Table 4. Computational results of Algorithm PSA with (200,50,0.995) applied to the Lawrence
instances, cf. [15].

API TAPI

Inst. (m,n) MIP — —

LT, min(fT;) YT; min(YT)
la01 (5,10) 762 * 787.4 773 783.8 773
la02 (5,10) 266 * 283.4 266 * 277.6 266 *
la03 (5,10) 357* 357.0* 357 * 357.0 * 357 *
la04 (5,10) 1165* 1217.2 1165* 1284.2 1165 *
la05 (5,10) 557 * 557.0* 557 * 557.0* 557 *
la06 (5,15) 2516 2790.0 2616 2912.4 2847
1la07 (5,15) 1677* 1942.2 1869 1904.2 1677 *
1a08 (5,15) 1829* 2335.0 1905 2129.6 1829 *
la09 (5,15) 2851 3275.2 3161 3226.6 3131
lal0 (5,15) 1841* 21782 2069 2119.4 2046
lall (5,20) 6534 6186.2 5704 5846.4 5253
lal2 (5,20) 5286 5070.0 4859 4997.8 4809
la13 (5,20) 7737 7850.6 7614 7611.8 7342
lal4 (5,20) 6038 6616.8 5714 6872.4 6459
la15 (5,20) 7082 7088.6 5626 7153.6 6330
lal6 (10,10) 330* 395.8 335 360.8 335
la17 (10,10) 118* 144.2 120 118.8 118*
la18 (10,10) 159* 229.4 159 * 264.0 235
la19 (10,10) 243* 306.6 243 * 301.0 243 *
la20 (10,10) 42* 55.6 42* 42.0 * 42*
la21 (10,15) 1956 2847.2 2101 2961.8 2680
la22 (10,15) 1455 2052.8 1773 2123.0 1988
la23 (10,15) 3436 3692.6 3506 3746.8 3424
la24 (10,15) 560 * 966.8 761 724.0 644
la25 (10,15) 1002 1557.4 1289 1583.0 1390
la26 (10,20) 7961 9275.8 8475 8600.8 7858
la27 (10,20) 8915 7588.0 6596 7641.8 6457
la28 (10,20) 2226 3430.8 2876 3367.6 2849
la29 (10,20) 2018 2948.0 2432 3099.0 2626
la30 (10,20) 6655 7621.6 6775 7372.8 6395

la31 (10,30) 20,957 18,921.8 17,984 18,409.6 17,751
la32 (10,30) 23150 21,991.4 20,401 21,632.2 20,546
la33 (10,30) none 22,494.2 19,750 22913.2 20,553
la34 (10,30) none 20,282.8 18,633 21,911.8 19,577
la35 (10,30) none 21,895.0 18,778 21,384.4 20,537

la36 (15,15) 675 1856.0 1711 1839.0 1599
la37 (15,15) 1070 1774.2 1621 1835.8 1594
la38 (15,15) 489* 760.4 645 745.4 676
la39 (15,15) 754 1573.0 1391 1850.2 1551
la4d0 (15,15) 407* 1008.6 613 1187.6 912

45

Algorithms 2019, 12, 242

Moreover, it can be observed that the mean and the minimal total tardiness values differ
significantly for most of the instances. Especially for problems of larger size, the mean objective
function value often exceeds the minimal one by more than 10%. This aspect numerically emphasizes
the ruggedness of the search space of the BJSPT, which leads to difficulties in the guidance of any
heuristic search method. There seems to be a necessity of developing tailored neighborhood structures
to more efficiently solve job shop problems with practically relevant constraints and objective functions.
Based on these results, the involvement of random and diversifying components in a solution approach
is recommendable together with the performance of several independent runs when using standard
scheduling-tailored mechanisms.

7. Conclusions

In this paper, instances of a complex job shop scheduling problem are solved by a
permutation-based heuristic search method. Two repairing schemes are proposed to facilitate the usage
of well-known list encodings and generic operators for job shop problems with blocking constraints.
In applying interchange- and shifts-based transition schemes, three neighborhoods are defined and
analyzed with regard to structural issues and performance in an SA algorithm.

The computational experiments indicate that the proposed heuristic method using basic
scheduling-tailored operators is capable of finding optimal and near-optimal schedules for small
and medium size instances. Furthermore, it outperforms general-purpose techniques in generating
feasible schedules for problems of large size. This gives evidence to its applicability in decision support
systems for solving problems of practical relevance in production planning and logistics.

It turns out that the implementation of APIs by right shifts in the operation-based representation of
a schedule is favorable compared to other mechanisms with respect to small search steps and solution
quality. This narrows the required computational effort for heuristic search schemes using these types
of operators. The complexity of the problem under study becomes clearly visible in the necessary
enhancements of neighbor-defining moves and the resulting large distances of feasible schedules in
the API-based neighborhoods. This work shows that existing generic scheduling-tailored operators
have limits in their applicability to job shop problems with blocking constraints and tardiness-based
objectives. The development of dedicated heuristic solution approaches, which allow more controllable
search patterns, can be named as an important aspect of future research.

An advantage of guiding the choice of the executed interchanges by the objective function value
is not substantiated by the numerical results. Furthermore, considering the total tardiness values
obtained in several independent runs of the metaheuristic on the same instances, a high variance
in quality of the best schedules found is observed. Thus, the ruggedness of the search space of the
BJSPT and remarkable feasibility issues in the generation of neighboring schedules can be named
as reasons for the ongoing difficulties in solving instances of practically relevant size. However,
the computational results give evidence for hybrid solution approaches as a promising future research
direction to overcome such issues. The combination of a heuristic technique to find feasible schedules
for large instances and a general-purpose MIP method to quickly generate superior neighboring
solutions is expected to be beneficial.

Overall, the proposed permutation-based heuristic can enhance solving capability of complex
job shop scheduling problems. Important insights are gained into advantages and limits of applying
generic operators to BJSPT instances, and future research directions are highlighted.

Author Contributions: Conceptualization, J.L. and EW.; Software, J.L.; Investigation, J.L. and EW.;
Writing-original draft preparation, J.L. and EW.
Funding: This research received no external funding.

Acknowledgments: The authors would like to thank Felix Miiller for his remarkable commitment in the
preparation of the statistical figures.

Conflicts of Interest: The authors declare no conflict of interest.

46

Algorithms 2019, 12, 242

References

1. Garey, M.R; Johnson, D.S.; Sethi, R. The Complexity of Flowshop and Jobshop Scheduling. Math. Oper. Res.
1976, 1, 117-129. [CrossRef]

2. Van Laarhoven, PJ.; Aarts, E.H.; Lenstra,].K. Job shop scheduling by simulated annealing. Oper. Res. 1992,
40, 113-125. [CrossRef]

3. Adams, |; Balas, E.; Zawack, D. The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 1988,
34,391-401. [CrossRef]

4. Nowicki, E.; Smutnicki, C. A fast taboo search algorithm for the job shop problem. Manag. Sci. 1996,
42,797-813. [CrossRef]

5. Biirgy, R.; Groflin, H. The blocking job shop with rail-bound transportation. J. Comb. Optim. 2016, 31,152-181.
[CrossRef]

6. D’Ariano, A.; Pacciarelli, D.; Pranzo, M. A branch and bound algorithm for scheduling trains in a railway
network. Eur.]. Oper. Res. 2007, 183, 643-657. [CrossRef]

7. Liu, S.Q.; Kozan, E. Scheduling trains as a blocking parallel-machine job shop scheduling problem.
Comput. Oper. Res. 2009, 36, 2840-2852. [CrossRef]

8. Mati, Y,; Rezg, N.; Xie, X. A taboo search approach for deadlock-free scheduling of automated manufacturing
systems. |. Intell. Manuf. 2001, 12, 535-552. [CrossRef]

9. Biirgy, R. A neighborhood for complex job shop scheduling problems with regular objectives.]. Sched. 2017,
20, 391-422. [CrossRef]

10. Heger, J.; Voss, T. Optimal Scheduling of AGVs in a Reentrant Blocking Job-shop. Procedia CIRP 2018,
67,41-45. [CrossRef]

11. Lange, J.; Werner, F. Approaches to modeling train scheduling problems as job-shop problems with blocking
constraints. . Sched. 2018, 21, 191-207. [CrossRef]

12. Brizuela, C.A.; Zhao, Y.; Sannomiya, N. No-wait and blocking job-shops: Challenging problems for GA'’s.
Int. Conf. Syst. Man Cybern. 2001, 4, 2349-2354.

13. Groeflin, H.; Klinkert, A. A new neighborhood and tabu search for the blocking job shop. Discret. Appl. Math.
2009, 157, 3643-3655. [CrossRef]

14. Mattfeld, D.C.; Bierwirth, C. An efficient genetic algorithm for job shop scheduling with tardiness objectives.
Eur.]. Oper. Res. 2004, 155, 616-630. [CrossRef]

15. Lange, J. Solution Techniques for the Blocking Job Shop Scheduling Problem with Total Tardiness
Minimization. Ph.D. Thesis, Otto-von-Guericke-Universitdt Magdeburg, Magdeburg, Germany, 2019.
[CrossRef]

16. Lange, J.; Werner, F. A Permutation-Based Neighborhood for the Blocking Job-Shop Problem with Total
Tardiness Minimization. In Operations Research Proceedings 2017; Springer International Publishing: Cham,
Switzerland, 2018; pp. 581-586.

17. Mascis, A.; Pacciarelli, D. Job-shop scheduling with blocking and no-wait constraints. Eur. J. Oper. Res. 2002,
143, 498-517. [CrossRef]

18. Lange, J.; Biirgy, R. Mixed-Integer Programming Heuristics for the Blocking Job Shop Scheduling Problem.
In Proceedings of the 14th Workshop on Models and Algorithms for Planning and Scheduling Problems,
MAPSP 2019, Renesse, The Netherlands, 3-7 June 2019; pp. 58-60.

19. Nowicki, E.; Smutnicki, C. An advanced tabu search algorithm for the job shop problem.]. Sched. 2005,
8,145-159. [CrossRef]

20. Balas, E.; Simonetti, N.; Vazacopoulos, A. Job shop scheduling with setup times, deadlines and precedence
constraints. J. Sched. 2008, 11, 253-262. [CrossRef]

21. Bierwirth, C.; Kuhpfahl, J. Extended GRASP for the job shop scheduling problem with total weighted
tardiness objective. Eur. J. Oper. Res. 2017, 261, 835-848. [CrossRef]

22. Pinedo, M.; Singer, M. A shifting bottleneck heuristic for minimizing the total weighted tardiness in a job
shop. Nav. Res. Logist. (NRL) 1999, 46, 1-17. [CrossRef]

23. Wang, T.Y.; Wu, K.B. A revised simulated annealing algorithm for obtaining the minimum total tardiness in
job shop scheduling problems. Int. |. Syst. Sci. 2000, 31, 537-542. [CrossRef]

24. De Bontridder, K.M.]. Minimizing total teighted tardiness in a generalized job shop. J. Sched. 2005, 8, 479-496.

[CrossRef]

47

Algorithms 2019, 12, 242

25. Essafi, I; Mati, Y.; Dauzeére-Péres, S. A genetic local search algorithm for minimizing total weighted tardiness
in the job-shop scheduling problem. Comput. Oper. Res. 2008, 35, 2599-2616. [CrossRef]

26. Biilbiil, K. A hybrid shifting bottleneck-tabu search heuristic for the job shop total weighted tardiness
problem. Comput. Oper. Res. 2011, 38, 967-983. [CrossRef]

27. Mati, Y,; Dauzere-Péres, S.; Lahlou, C. A general approach for optimizing regular criteria in the job-shop
scheduling problem. Eur. J. Oper. Res. 2011, 212, 33-42. [CrossRef]

28. Zhang, R.; Wu, C. A simulated annealing algorithm based on block properties for the job shop scheduling
problem with total weighted tardiness objective. Comput. Oper. Res. 2011, 38, 854-867. [CrossRef]

29. Gonzalez, M.A.; Gonzalez-Rodriguez, I.; Vela, C.R.; Varela, R. An efficient hybrid evolutionary algorithm
for scheduling with setup times and weighted tardiness minimization. Soft Comput. 2012, 16, 2097-2113.
[CrossRef]

30. Kuhpfahl, J.; Bierwirth, C. A study on local search neighborhoods for the job shop scheduling problem with
total weighted tardiness objective. Comput. Oper. Res. 2016, 66, 44-57. [CrossRef]

31. Meloni, C.; Pacciarelli, D.; Pranzo, M. A rollout metaheuristic for job shop scheduling problems.
Ann. Oper. Res. 2004, 131, 215-235.[CrossRef]

32. Oddi, A,; Rasconi, R.; Cesta, A.; Smith, S.F. Iterative Improvement Algorithms for the Blocking Job Shop.
In Proceedings of the ICAPS, Atibaia, Brazil, 25-29 June 2012.

33. AitZai, A.; Boudhar, M. Parallel branch-and-bound and parallel PSO algorithms for job shop scheduling
problem with blocking. Int. J. Oper. Res. 2013, 16, 14-37. [CrossRef]

34. Pranzo, M.; Pacciarelli, D. An iterated greedy metaheuristic for the blocking job shop scheduling problem.
J. Heuristics 2016, 22, 587-611. [CrossRef]

35. Dabah, A.; Bendjoudi, A.; AitZai, A.; Taboudjemat, N.N. Efficient parallel tabu search for the blocking job
shop scheduling problem. Soft Comput. 2019. [CrossRef]

36. Groflin, H.; Klinkert, A. Feasible insertions in job shop scheduling, short cycles and stable sets. Eur. .
Oper. Res. 2007, 177, 763-785. [CrossRef]

37. Graham, R.L; Lawler, E.L.; Lenstra,] K.; Rinnooy Kan, A. Optimization and approximation in
deterministic sequencing and scheduling: A survey. In Annals of Discrete Mathematics; Elsevier: Amsterdam,
The Netherlands, 1979; Volume 5, pp. 287-326.

38. Pinedo, M. Scheduling: Theory, Algorithms, and Systems; Springer: Berlin/Heidelberg, Germany, 2016.

39. Brucker, P; Knust, S. Complex Scheduling; Springer: Berlin/Heidelberg, Germany, 2011.

40. Btlazewicz,].; Ecker, KH.; Pesch, E.; Schmidt, G.; Weglarz, J. Handbook on Scheduling: From Theory to
Applications; International Handbook on Information Systems; Springer: Berlin/Heidelberg, Germany, 2007.
[CrossRef]

41. Lawrence, S. Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic
Scheduling Techniques; GSIA, Carnegie Mellon University: Pittsburgh, PA, USA, 1984.

42. Mascis, A.; Pacciarelli, D. Machine Scheduling via Alternative Graphs; Technical Report; Universita degli Studi
Roma Tre, DIA: Rome, Italy, 2000.

43. Bierwirth, C.; Mattfeld, D.C.; Watson, J.P. Landscape regularity and random walks for the job-shop
scheduling problem. In European Conference on Evolutionary Computation in Combinatorial Optimization;
Springer: Berlin/Heidelberg, Germany, 2004, pp. 21-30.

44. Schiavinotto, T; Stiitzle, T. A review of metrics on permutations for search landscape analysis. Comput. Oper.
Res. 2007, 34, 3143-3153. [CrossRef]

45. Werner, F. Some relations between neighbourhood graphs for a permutation problem. Optimization 1991,
22,297-306. [CrossRef]

46. Anderson, EJ; Glass, C.A.; Potts, C.N., Machine Scheduling. In Local Search in Combinatorial Optimization;
Aarts, E.H.L.; Lenstra,].K., Eds.; Wiley: Chichester, UK, 1997; Chapter 11, pp. 361-414.

47. Lange, J. A comparison of neighborhoods for the blocking job-shop problem with total tardiness
minimization. In Proceedings of the 16th International Conference of Project Management and Scheduling
208, Rome, Italy, 17-20 April 2018; pp. 132-135.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
m article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

48

E algorithms ﬁw\n\py

Atrticle

Modeling and Solving Scheduling Problem with m
Uniform Parallel Machines Subject to
Unavailability Constraints

Jihene Kaabi
College of Information Technology, University of Bahrain, P.O. Box 32038 Manama, Bahrain; jkaapi@uob.edu.bh
Received: 7 November 2019; Accepted: 19 November 2019; Published: 21 November 2019

Abstract: The problem investigated in this paper is scheduling on uniform parallel machines, taking
into account that machines can be periodically unavailable during the planning horizon. The objective
is to determine planning for job processing so that the makespan is minimal. The problem is known to
be NP-hard. A new quadratic model was developed. Because of the limitation of the aforementioned
model in terms of problem sizes, a novel algorithm was developed to tackle big-sized instances.
This consists of mainly two phases. The first phase generates schedules using a modified Largest
Processing Time (LPT)-based procedure. Then, theses schedules are subject to further improvement
during the second phase. This improvement is obtained by simultaneously applying pairwise job
interchanges between machines. The proposed algorithm and the quadratic model were implemented
and tested on variously sized problems. Computational results showed that the developed quadratic
model could optimally solve small- to medium-sized problem instances. However, the proposed
algorithm was able to optimally solve large-sized problems in a reasonable time.

Keywords: uniform parallel machines; unavailability constraints; makespan; quadratic programming;
optimal algorithm

1. Introduction

In the industry field, machines are often supposed to be continuously available for processing
assigned jobs. However, this assumption is not totally realistic in real-world cases. For instance,
machines may be subject to unavailability periods due to many reasons, such as preventive
maintenance [1], corrective maintenance [2], and tool-change activities [3]. There are two main concerns
related to the temporary unavailability of a machine. The first is related to the increased costs caused
by stopping the machine’s activity, while the second is linked to the difficulty in taking decisions
regarding the balance between resource unavailability and production. Therefore, a proper planning
strategy in a manufacturing system is necessary for it to operate in the most cost-effective way.

Scheduling under machine-unavailability constraints has attracted the attention of many
researchers, and many real applications can be found. In [4], the authors listed two applications
in the aerospace industry where the machine must be stopped to change microdrilling tools after
a fixed number of use times. Another application was mentioned by [5] related to electric-battery
vehicles that require refuelling operations.

In this paper, we study a scheduling problem on m uniform parallel machines with multiple
unavailability constraints with the objective to minimize the makespan, which is the completion
time of the last assigned job. The reason behind the choice of such an objective is that minimizing
the makespan can ensure a good load balance among the machines. We followed three-field «|g|y
classification, developed by [6], to represent the problem as Qm, h;i|a|7y. In the first field, Q denotes
uniform parallel machine setting, m represents the number of considered machines, and /; states
that each machine is unavailable during k periods in the planning horizon. In the second field, 3, a

Algorithms 2019, 12, 247; d0i:10.3390/a12120247 49 www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 247

indicates that the machines are subject to availability constraints. Lastly, the third field, -y, describes
the objective to be minimized, that is, the completion time of the last processed job, denoted by Cyax.

Many papers in the literature studied parallel machine-scheduling problems with availability
constraints, but very few considered a uniform parallel machine setting. To the best of our
knowledge, only two related papers exist so far, [7,8]. In [7], the authors studied the uniform
parallel machine-scheduling problem where each machine could be unavailable during one period of
time. The considered performance measures were total completion times and makespan. Two types of
jobs were treated, namely, identical and nonidentical jobs. Linear programming models and optimal
algorithms were developed to solve the problem where jobs are identical. For the case of nonidentical
jobs, the authors proved that the problem is NP-hard, and proposed a quadratic program and a
heuristic that were tested on large-sized problem instances. The online version of the problem was
studied in [8]. The authors considered the case of two machines under the constraint of one periodically
unavailable machine. The identical- and uniform-machine cases were investigated. The objective was
to minimize the makespan. The solution approach consisted of optimal algorithms with competitive
ratios.

Furthermore, most research papers studied the case of identical parallel machines.
For example, [9-13] studied various identical parallel machine problems allowing various types
of unavailable intervals for machines.

The shortage in research in this area, and the important applications of the investigated problem
in reality motivated the author of this paper to explore this area more and contribute to the scientific
research on it. Uniform parallel machine scheduling can be found in the manufacturing field where
the same type of job can be processed on new and old machines that have different speeds. As an
example, a printing task can take much more time on an old machine than on a new one.

In this paper, the main contributions are a quadratic programming-model (QM) formulation of a
uniform parallel machine with multiple availability constraints and an algorithm that provides optimal
solutions. To the best of our knowledge, the proposed QM is the first such formulation for scheduling
on uniform parallel machine with availability constraints.

The content of this paper is organized as follows. Problem notations are laid in Section 2.
In Section 3.1, a quadratic model for the problem with makespan as an objective is developed.
Section 3.2 details an algorithm proposed for makespan-performance measurement. The proposed
algorithm was tested on different problem instances, and results are displayed in Section 4. Finally, a
general conclusion is formulated in Section 5.

2. Notations

For accuracy of description, by “unavailability interval” we denote the time interval in which the
machine is not available for processing any job, whereas the time interval between two consecutive
unavailability intervals is called the ‘availability interval” of the machine.

In this paper, we consider m uniform parallel machines that can process 1 jobs. Each job j,
j=1,...,nis characterized by processing time p; and completion time C;. We assumed that the jobs
were ready at time 0 and could be processed once at any time, but could not be interrupted once
started. Since we consider uniform parallel machines, each machine i, = 1,...,m, can process at
most one job at a time at speed s;. So, the processing time of any job j depends on the machine on
which it is processed and is equal to pij = pj/si, i=1,...,m;j=1,...,n. Without loss of generality,
we assumed that jobs were indexed in LPT order, that is, pj; > pip > ... > pi,. We assumed that
the machine could process the next job once the previous one was finished. Thus, no setup time was
considered. Let sj and e;; be the starting and ending time of the Kt unavailability period on machine i,
respectively. Without loss of generality, we assumed that all machines were available at the beginning
of the planning horizon. By L;;, we denote the length of the Kt availability interval on machine i.

The problem was to find a job assignment on machines that minimizes the makespan. As stated
earlier, the problem of scheduling jobs on uniform parallel machines subject to unavailability

50

Algorithms 2019, 12, 247

constraints has not been studied before. Therefore, a mathematical formulation of the problem
can be of great interest. Thus, in Section 3.1, we detail a mathematical model to describe the problem
under consideration.

3. Proposed Solution Approach for Qim, hiy, |a|Cpiax

In this section, we studied the scheduling problem on uniform parallel machine, where each
machine 7 can be unavailable during #; unavailability periods in its planning horizon. Thus, there are
n; + 1 availability intervals. The objective was to minimize the makespan.

Itis easy to see that Qm, h in; |a|Cpuax is NP-hard. To see this, let s; = 1 for every machine i. Then the
problem reduces to the identical parallel machine-scheduling problem under availability constraints
that was proved to be NP-hard by [14].

3.1. Mathematical Model
Let

P 1 ifjob jis executed on machine i during k' availability interval
ijk 0 Otherwise.

~_ J 1 ifalljobs on machine i are completed before the start of k" unavailability period
Yk =) 0 Otherwise.

Using the above-listed decision variables, the problem can be modeled as a quadratic program
as follows:

Minimize Cyax = Max; C; 1)
Subject to
ni+1 n ni—1 'k nj
Yo) P+) (E eif = Sil)]/tk < Zszk]/zk+d (1- Z%k)i=1,. 2
k=1 j=1 k=1 =1 k=1

where d is a large positive number.

AR 3 Piiije + Ty (e — si) (1 — Ty vir) + Tty [(Sik —ejk—1) — Ly Pijxijk} [1 -Yi, yil} < Cinax 3)

i=1,...,m
n;
Y yx<li=1,..,m @)
k=1
n
Yo pijXip < s —ep—1 i=1,...,mk=1,...,m ®)
=1
m 1ni+1
Y Y xp=1j=1,. (6)
i=1 k=1
xl]ke{Ol}l—l,.,m,]—l onk=1,...,n+1 (7)
ye€{0,1}i=1,....mk=1,...,n (8)

Equation (1) minimizes the makespan. Equation (2) guarantees that, when all jobs are completed
before the start of the 1st unavailability period, the unavailability duration is not considered in the
evaluation of the completion time of the last job assigned to machine i . There are m of these constraints.
Equation (3) states that the completion time of the last job assigned to machine i is at most equal to
the makespan. There are m of these constraints. Equation (4) guarantees that no more than one y; is

51

Algorithms 2019, 12, 247

equal one for a given machine i. There are m of these constraints. The total processing time of the jobs
assigned to a given availability interval cannot exceed the length of that interval. This is shown by
Equation (5). There are m) n; of these constraints. Equation (6) assures that, if a job is assigned to a
machine, it can be processed on only one availability interval of that machine. There are n constraints
of this type. Equations (7) and (8) define the non-negativity constraints about the decision variables
used to develop the mathematical model.

The above quadratic model (QM) can be optimally solved by CPLEX for problem instances with
up to 73 machines. Therefore, a good polynomial algorithm that can solve large and more complicated
problems, and provide promising results is of great interest.

The Largest Processing Time algorithm (LPT) is a famous rule used to build heuristics for
scheduling problems with a makespan criterion. For example, in [15] the authors proposed LPT-based
heuristics to solve Q2||Cmax and Qm, ai||Cmax problems, respectively. The LPT rule sorts jobs into a
nonincreasing order of their processing times and then assigns a job to the machine on which it can
finish as early as possible.

3.2. Proposed-Solution Approach

The approach proposed to solve the problem of scheduling on parallel machines under
unavailability constraints consists of two steps. The first step focuses on assigning jobs to different
available machines using a newly proposed LPT-Based Heuristic, named LPTBH. The second step,
named LSHIP, tries to improve solutions obtained by LPTBH. The Main Algorithm, named MA, is a
combination of L°PTBH and LSHIP.

3.2.1. LPTBH Heuristic Procedure

The main idea of LPTBH is to divide the set of jobs N into two subsets. The first set includes
jobs that can be assigned to one of the machines’ availability intervals. The second set contains the
remaining jobs. The LPTBH consists of two phases. The first is the main phase, as it schedules the
maximum of jobs. First, for every machine, a list of job candidates is formed on the basis of whether
they could fit the machine’s availability intervals except the last ones. This step is achieved by using the
Candidate_Search procedure shown in Algorithm 1. Second, jobs in every constructed list are sorted in
decreasing order of their processing times. Then, for every machine, starting from machine 1, select the
first job in the candidate list of machine 1. If the selected job is only in that machine’s list, assign it to
the availability interval that can fit it. Otherwise, assign it to the machine on which it can finish as early
as possible. The first phase ends when all the machines’ job-candidate lists are empty. The remaining
unscheduled jobs are input for the second phase. The pseudocode of the LPTBH heuristic is shown in
Algorithm 2. Table 1 lists notations used to develop Algorithms 1 and 2.

Table 1. Notations used in Algorithms 1 and 2.

Notation Meaning

S Set of all the jobs to be scheduled

C,i=1,...,m Completion time of last job assigned to machine i

avy, i=1,...,m;k=1,...,n; Length of Kth availability interval of machine i

maxAv;, i=1,...,m Length of largest availability interval of machine i

Lej, i=1,...,m List of jobs that can be processed in any availability interval on machine i
LR List of remaining unscheduled jobs

52

Algorithms 2019, 12, 247

Algorithm 1 Candidate_Search.

%z procedure (Input N = {1,...,n},m, pi,i=1,...,mj=1,...,n,maxAv;, i =1,...,m)
25 fori =1tomdo

g? forj=1tondo

gﬁ if (pjj < maxAv;) then

2 Le; = Le; U {j}

11 end if

12:

13: end for

14:

%2; end for

%g? Sort the jobs in every Lc;, i = 1,...,m in a nonincreasing order of their processing times.
%85 end procedure

Algorithm 2 LPTBH.
1: procedure (nput N = {1,...,n}, m, py, i =1,...,.m;j=1,...,n, Ny, i = 1,...,m, Sy, Ey,, i =
1,...,mk=1,...,N;. Output S = Cyax)
fori =1tomdo
fork =1to N; do
avy = Ejx — Sik1

end for

11: maxAv; = maxy avjy

13: C=0

15: end for

17: Call Candidate_Search

19: while (S # ©) do

21: Among the jobs of Lc;, i = 1,...,m, select the job with the highest processing time. Let I be
that job and 7;(s) the machine(s) to which it can be assigned.

23 if (I exists in more than one Lc;) then

%5, Assign [to the machine on which it can finish as early as possible.

27: elseAssign [to machine i,

29: Update C;,

31 end if

33 S=5\{1}

35 Update av;;, of the machine to which job / was assigned.

37: Call Candidate_Search

39: if (Lc; =O,Vi=1,...,m) then

41 if (|S| # n) then

43 LR+ N\S

45: Schedule the jobs of LR according to LPT rule.

47 Calculate C;,Vi=1,...,m

49: end if

51 S« S\LR

53 end if

55: end while

57 S = max; C;

59: return S.

60:
61: end procedure

53

Algorithms 2019, 12, 247

3.2.2. Improvement Procedure LSHIP

The idea of the improvement procedure was inspired from a local-search heuristic proposed
in [16], developed to solve the scheduling problem of parallel identical-batch processing machines.
The aim of the improvement procedure was to try to balance the load of different machines so that
the completion times of the last jobs in every machine are almost the same. This improvement can
be achieved by interchanging pairs of jobs between the most loaded machine and other machines.
The flowchart of the aforementioned heuristic is shown in Figure 1.

Arrange the machines in
decreasing order of their
completion times

Al the machines have the Yes
same completion times
=1 j=m; k=0
- Search for a pair of jobs a
and b (a in machine | and
a b in machine |) such that
O<= ParPy <= €/~ G
T No iR ’ Yes Jeb bis in the last Yes
=15 k=k+1 here is a pairof aand b, vailability interval
Ne Jab a can fit into the
avallability interval wher: No
job b was assigned on
Nol achine |
Yes
i1, j=m; k=0 Yes
Interchange jobs a and b
between machines | and |
__MNo i=m

Stop
Figure 1. Flowchart of LSHIP procedure.

In order to illustrate the proposed heuristic, let us consider a problem instance with 2 machines
and 10 jobs. Table 2 summarizes the input data, and Figures 2 and 3 show the Gantt charts of solutions
obtained by LPTBH and LSHIP, respectively.

54

Algorithms 2019, 12, 247

Table 2. Input data for 10 jobs and two machines.

Jobj 1 2 3 4 5 6 7 8 9 10

pij 25 25 30 36 38 38 41 4 44 47
p2j 10 10 12 14 15 15 16 17 17 19

M1 5 | - |
M2 J10 | Js J7 J5 J6 Ja | J2 N .

19 @ 4 = =2 35 &7 82 g5 98 100 115 125 130 135 215 230

D Machine's idle time Cmax =135

. Machine's unavailability interval

Figure 2. Gantt chart of solution generated by LPTBH.

Schedule generated by LPTBH

M1 J9 | N5

M2 410

J8

g7 J5

J& | J4 | -3

18 3/ 4 50 52 38 &7 2 95 93 10 115 125 130 135 215 230

Interchange jobs J9 and J10

M1 410 | J3 |
M2 JE-| J8 J7 J5 J5 | Ja | J2 i | .

17 T 47 =0 65 50 o4 @5 100 115 125 130 135 215 230

Interchange jobs J3 and J8

M1 J10 | 8
Mz ol | oo = i J4| &2 n

17 2 45 47 50 @0 35 75 88 88 100 115 125 1320 715 230

Cmax =125

Figure 3. Gantt chart of the solution generated by LSHIP.

Note that after interchanging a pair of jobs between two machines, the LSHIP procedure looks
to shift jobs to the left whenever the idle time interval on the machine can fit them. In the above
example, after interchanging jobs J3 and |8, LSHIP shifted job]2 to the left since it could fit in the idle
time interval.

4. Experiment Results

For the purpose of evaluating the performance of the proposed algorithm, many problem instances
were tested. These were generated after examining the important factors that significantly impacted the
performance of the proposed algorithm. The first factor was the number of jobs 7 to be processed that
directly affects the machines’ load. The second important factor is the number of machines m that has
an impact on the assignment of jobs to machines. Job processing times may play a role in the efficiency
of the proposed algorithm. Thus, we generated problem instances with different job processing times.
The algorithm was coded in Intelli] IDEA. In addition, the quadratic model was modelled in IBM
ILOG CPLEX Optimization Studio 12.7. The proposed heuristic was implemented using programming
language Java. We ran all test problems on an Intel Core i5 2.5 Gigahertz, 4 Gigabyte RAM Macintosh
HD.

In order to avoid useless computational time, the program was stopped for two possible reasons.
The first was when the CPLEX became unable to generate a solution within the time limit of 3600 s
(1 h). The second reason was due to memory overflow. At this point, the best feasible solution found
within the time limit was recorded.

55

Algorithms 2019, 12, 247

4.1. Data Generation

A deep empirical study was conducted with the aim to generate datasets that would help to
correctly analyze the efficiency of the proposed algorithm. By the end, two dataset series were
considered, namely, DS1 and DS2. In fact, the way to generate dataset series DS2 was inspired
from Graham's data-generation process [17] addressing P||Cmax problems. The parameters used to
generate DS1 and DS2 are summarized in Tables 3 and 4, respectively.

Table 3. DS1 parameters.

Number of machines (1) m € {2,3,5}

Number of jobs (1) n € {20,30,40,50,60,70,80}

Machine speed (s;) s; e U(1,5)

Job processing time (p;) pj € U(5,50) and p; € U(50,100)

Number of unavailability periods (12;) np=mVvi=1,..., m

Duration of an unavailability period on machine i (t;) t; =10, if p; € U(5,50) and t; = 15, if p; € U(50,100) Vi =1,..., m

Length of time interval between two consecutive unavailability periods on machine i (T;) Ti = 25i, if p; € U(5,50) and T; = 50i, if p; € U(50,100)

Table 4. DS2 parameters.

Number of machines (1) me {30, 31,32,...,.., 80}
Number of jobs (1) n=2m+1

Machine speed (s;) s; € U(1,5)

Job processing time (p;) pj € U(1,100)

Number of unavailability periods (1;) n;=2Vi=1,...,m
Duration of an unavailability period on machine i (t;) t=10Vi=1,...,m

Length of time interval between two consecutive unavailability periods on machine i (T;) ~ Ti = 20i

The starting and ending times S;; and Ej; of the unavailability periods were generated according
to Equations (9) and (10), respectively.

Sik:kT,‘-‘r(k—l)t,‘iil,...,m;kil,...,i’l,‘)
ex=sx+ti=1....mk=1,...,n (10)

4.2. Experiments

In this section, we outline different experiments that were conducted to evaluate the performance
of the QM and the proposed algorithm. In all experiments, Central Processing Unit time (CPUt)
represents the time in seconds required to find the optimal or best feasible solution. Tables 5 and 6
show the results obtained by QP and MA for small and large job processing times, respectively.

Table 5 clearly shows that the proposed algorithm was generating optimal solutions with a CPU
time of less than 1 second for all problem instances. Quadratic model QM was also able to provide
optimal schedules in a reasonable time. By considering much longer processing times than in the
previous data series, we still obtained optimal solutions in reasonable CPU time even though the
quadratic model became slower than in the first batch of problem instances. The proposed algorithm
outperformed the quadratic model in terms of computational time that was still less than 1 second.
Table 6 confirms these observations.

56

Algorithms 2019, 12, 247

Table 5. Comparison of QM and MA for datasets DS1 with s; € U(1,5) and p; € U(5,50).

Cwax(QM) Cuax(MA) CPUt(QM) CPUt(MA)

m
2 20 66 66 116 0.01
2 30 66 66 1.16 0.01
2 40 229 229 0.46 0.02
2 50 463 463 0.86 0.05
2 60 343 343 1.26 0.03
2 70 401 401 0.71 0.04
2 80 780 780 1.25 0.03
3 20 87 87 1.72 0.01
3 30 218 218 3.58 0.04
3 40 244 244 391 0.02
3 50 165 165 2.81 0.02
3 60 282 282 4.73 0.02
3 70 246 246 4.01 0.04
3 80 298 298 6.46 0.04
5 20 28 28 1.52 0.02
5 30 60 60 3.25 0.03
5 40 85 85 7.24 0.03
5 50 196 196 114.24 0.06
5 60 93 93 14.19 0.04
5 70 120 120 27.02 0.06
5 80 174 174 121.58 0.05

Table 6. Comparison of QM and MA for datasets DS1 with s; € U(1,5) and p; € U(50,100).

n Cunax(QM) Cumax(MA) CPUt(QP) CPUt(MA)

m

2 20 169 169 1.76 0.02
2 30 409 409 1.25 0.03
2 40 319 319 1.03 0.01
2 50 622 622 0.73 0.02
2 60 567 567 0.6 0.03
2 70 659 659 0.79 0.04
2 80 689 689 1.10 0.02
3 20 130 130 1.83 0.01
3 30 239 239 3.24 0.04
3 40 359 359 2.09 0.02
3 50 365 365 8.45 0.03
3 60 407 407 17.98 0.04
3 70 561 561 23.65 0.06
3 80 702 702 3.53 0.03
5 20 94 94 3.00 0.01
5 30 143 143 5.87 0.02
5 40 277 277 9.55 0.06
5 50 272 272 473.35 0.06
5 60 208 208 14.41 0.06
5 70 382 382 796.08 0.06
5 80 339 339 223.71 0.06

In order to investigate the limitations of the proposed quadratic model, a second dataset series,
namely, DS2 was considered. Table 7 reports the computational results for both QM and MA.

57

Algorithms 2019, 12, 247

Table 7. Comparison of QM and MA for datasets DS2.

m n Cuax(QM) Cuax(MA) QP Optimal? CPUt(QM) CPUt(MA)

30 61 133 133 Yes 70.74 0.15
33 67 137 137 Yes 40.19 0.22
36 73 142 142 Yes 21.1 0.21
40 81 140 140 Yes 44.71 0.31
45 91 232 232 Yes 398.64 0.33
51 103 240 240 Yes 495.44 0.4

57 115 237 237 Yes 214.28 0.2

62 125 336 336 Yes 263.21 0.2

68 137 331 331 Yes 393.97 0.39
73 147 434 434 No 3603.54 0.42
76 153 439 439 No 3602.48 0.43
80 161 538 538 Yes 3602.9 0.27

The computational results displayed in Table 7 show that quadratic model QM was able to
generate an optimal solution within a time limit for problems with up to 73 machines.

On the basis of the computational results shown in Table 7, the quadratic model was not able
to generate optimal solutions in a reasonable time and for bigger problems. Therefore, proposed
procedure MA was tested for large-sized problems and compared to an adapted form of MLPT,
proposed earlier by the author of this paper in [7]. Table 8 reports the obtained results for problem
instances with m € {100,200, 300, 400, 500, 600, , 700, 800, 1000} and n = 2m + 1.

Table 8. Comparison of MA and MLPT.

m # Cuax(MLPT) Cpax(MA) Chax(MLPT)/Cpox(LSHIP) CPUt(QP) CPUt(MA)

100 201 1120 880 1.27 0.47 0.49
200 401 1090 1050 1.03 2.16 2.5
300 601 1250 970 1.28 4.69 4.81
400 801 1110 960 115 9.12 9.55
500 1001 1120 760 1.47 16.24 15.48
600 1201 1260 1240 1.01 28.24 24.07
700 1401 1240 1160 1.06 41.92 62.24
800 1601 1260 1110 113 74.97 48.5
1000 2001 1110 1080 1.02 120.04 122.99

Table 8 shows that M A outperformed MLPT for all problem instances with slightly higher CPU
time than the time of MLPT CPU for most instances. In addition, run time increased with problem size.

5. Conclusions and Future Work

In this paper, we studied the problem of parallel machine scheduling with multiple planned
nonavailability periods. In the current literature, very few papers investigated this problem.
The problem was formulated as a quadratic program and optimally solved using CPLEX for small-
to moderately large-sized problems. In order to be able to solve large-sized problems, an algorithm
consisting of two main phases was developed. The first phase searches for schedules on the basis
of the LPT rule. The second aims to improve these schedules by considering simultaneous pairwise
interchanges of jobs between machines. A deep computational study was conducted to test the
efficiency of the proposed approach. Many datasets were carefully generated to help evaluate the
algorithm. Computational results showed that the proposed algorithm generated optimal solutions for
all considered problem sizes and outperformed an adapted form of a heuristic that was developed
earlier by the author of this paper. Further investigation can be done to consider other criteria and
more general versions of the problem, such as the dynamic case where jobs arrive one by one over the
planning horizon.

58

Algorithms 2019, 12, 247

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

Azadeh, A.; Sheikhalishahi, M.; Firoozi, M.; Khalili, S. An integrated multi-criteria Taguchi computer
simulation-DEA approach for optimum maintenance policy and planning by incorporating learning effects.
Int. J. Prod. Res. 2013, 51, 5374-5385. [CrossRef]

Yazdani, M.; Khalili, 5.M.; Jolai, F. A parallel machine scheduling problem with two-agent and tool change
activities: An efficient hybrid metaheuristic algorithm. Int. |. Comput. Integr. Manuf. 2016, 29, 1075-1088.
[CrossRef]

Azadeh, A.; Sheikhalishahi, M.; Khalili, 5.M.; Firoozi, M. An integrated fuzzy simulation—Fuzzy data
envelopment analysis approach for optimum maintenance planning. Int. |. Comput. Integr. Manuf. 2014,
27,181-199. [CrossRef]

Low, C.; Ji, M.; Hsu, C.J.; Su, C.T. Minimizing the makespan in a single machine scheduling problems with
flexible and periodic maintenance. Appl. Math. Model. 2010, 34, 334-342. [CrossRef]

Schneider, M.; Stenger, A.; Hof, . An adaptive VNS algorithm for vehicle routing problems with intermediate
stops. Or Spectrum 2015, 37, 353-387. [CrossRef]

Graham, R.L.; Lawler, E.L.; Lenstra,].K.; Kan, A.R. Optimization and approximation in deterministic
sequencing and scheduling: a survey. Ann. Discrete Math. 1979, 5, 287-326.

Kaabi, J.; Harrath, Y. Scheduling on uniform parallel machines with periodic unavailability constraints.
Int. J. Prod. Res. 2019, 57, 216-227. [CrossRef]

Liu, M.; Zheng, F.; Chu, C.; Xu, Y. Optimal algorithms for online scheduling on parallel machines to minimize
the makespan with a periodic availability constraint. Theor. Comput. Sci. 2011, 412, 5225-5231. [CrossRef]
Liao, L.W.; Sheen, G.J. Parallel machine scheduling with machine availability and eligibility constraints.
Eur.]. Oper. Res. 2008, 184, 458-467. [CrossRef]

Mellouli, R.; Sadfi, C.; Chu, C.; Kacem, I. Identical parallel-machine scheduling under availability constraints
to minimize the sum of completion times. Eur.]. Oper. Res. 2009, 197, 1150-1165. [CrossRef]

Fu, B.; Huo, Y.; Zhao, H. Approximation schemes for parallel machine scheduling with availability
constraints. Discret. Appl. Math. 2011, 159, 1555-1565. [CrossRef]

Wang, X.; Cheng, T. A heuristic for scheduling jobs on two identical parallel machines with a machine
availability constraint. Int. J. Prod. Econ. 2015, 161, 74-82. [CrossRef]

Gedik, R.; Rainwater, C.; Nachtmann, H.; Pohl, E.A. Analysis of a parallel machine scheduling problem
with sequence dependent setup times and job availability intervals. Eur. J. Oper. Res. 2016, 251, 640-650.
[CrossRef]

Lee, C.Y. Parallel machines scheduling with nonsimultaneous machine available time. Discret. Appl. Math.
1991, 30, 53-61. [CrossRef]

Mireault, P.; Orlin,].B.; Vohra, R.V. A parametric worst case analysis of the LPT heuristic for two uniform
machines. Oper. Res. 1997, 45, 116-125. [CrossRef]

Kashan, A .H.; Karimi, B.; Jenabi, M. A hybrid genetic heuristic for scheduling parallel batch processing
machines with arbitrary job sizes. Comput. Oper. Res. 2008, 35, 1084-1098. [CrossRef]

Graham, R.L. Bounds on multiprocessing timing anomalies. SIAM]. Appl. Math. 1969, 17, 416-429.
[CrossRef]

(D (© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

59

algorithms m\py

Article
Some Results on Shop Scheduling with S-Precedence
Constraints among Job Tasks

Alessandro Agnetis 1'*, Fabrizio Rossi and Stefano Smriglio 2

1
2

Dipartimento di Ingegneria dell'Informazione e Scienze Matematiche, Universita di Siena, SI 53100 Siena, Italy
Dipartimento di Ingegneria e Scienze dell’ Informazione e Matematica, Universita di L’Aquila,

AQ 67100 L’Aquila, Italy; fabrizio.rossi@univagq.it (F.R.); stefano.smriglio@univagq.it (S.S.)

* Correspondence: agnetis@diism.unisi.it

Received: 9 October 2019; Accepted: 18 November 2019; Published: 25 November 2019

Abstract: We address some special cases of job shop and flow shop scheduling problems with
s-precedence constraints. Unlike the classical setting, in which precedence constraints among the
tasks of a job are finish-start, here the task of a job cannot start before the task preceding it has started.
We give polynomial exact algorithms for the following problems: a two-machine job shop with two
jobs when recirculation is allowed (i.e., jobs can visit the same machine many times), a two-machine
flow shop, and an m-machine flow shop with two jobs. We also point out some special cases whose
complexity status is open.

Keywords: job shop; flow shop; s-precedence constraints; exact algorithms; complexity

1. Introduction

This paper addresses a variant of classical shop scheduling models. While, in classical job shop
or flow shop (as well as in the large majority of scheduling problems with precedence constraints), the
task of a job cannot start before the previous task of the same job has finished, we address a situation in
which each task of a job cannot start before the previous task of the same job has started. These types of
constraints are known in the literature as s-precedence constraints. Scheduling problems with s-precedence
constraints have been introduced by Kim and Posner [1] in the case of parallel machines. They showed
that makespan minimization is NP-hard, and developed a heuristic procedure deriving tight worst-case
bounds on the relative error. Kim, Sung, and Lee [2] performed a similar analysis when the objective
was the minimization of total completion time of the tasks, while Kim [3] extended the analysis to
uniform machines. Tamir [4] analyzed a parallel-machine problem in which traditional finish-start
precedence constraints coexisted with s-precedence constraints (that she renamed selfish precedence
constraints, giving an enjoyable dramatized motivation of the model), and established various worst-case
bounds for classical dispatching rules which refer to specific structures of precedence constraints. Indeed,
s-precedence constraints also arise in project management, called start-start precedence constraints
(Demeulemeester and Herroelen [5]), as a result of the elaboration of a work breakdown structure (WBS)
and of the coordination among different operational units. To our knowledge, none has addressed job
shop and flow shop problems with s-precedence constraints so far.

The problem can be formally introduced as follows. We are given a set of n h JLT2,...,]", tobe
processed on a shop with m machines denoted as My, ..., M;,. Each job]k consists of a totally ordered
set of tasks,]k = {Oll‘, ok, ..., Oﬁk}, k=1,...,n. Task Of.‘ requires processing time pi.‘ on a given machine
M (O:‘), i =1,...,n. Tasks cannot be preempted. Task Of can only start after task O:F—l is started;
i.e., there is an s-precedence constraint between tasks OZQI and Of-‘, forallk =1,...,n,i =2,...,n;.

Algorithms 2019, 12, 250; d0i:10.3390/a12120250 www.mdpi.com/journal/algorithms

61

Algorithms 2019, 12, 250

A schedule is an assignment of starting times to all tasks so that at any time each machine processes at
most one task and all s-precedence constraints are satisfied. The problem is to find a feasible schedule
that minimizes makespan.

We characterize the complexity of special cases of the problem, considering a fixed number of
jobs and machines. Shop problems with few jobs occur when modeling synchronization and conflicts
among processes share common resources. Examples of this situation include scheduling robot moves in
flexible robotic cells (Agnetis et al [6]), aircraft scheduling during taxiing at an airport so that no aircraft
collides (Avella et al. [7]), or, in container terminals, the synchronization of crane gantry movements once
transportation tasks have been assigned (Briskorn and Angeloudis [8]).

The structure of the paper is as follows. In Section 2 we consider the job shop scenario, and give a
polynomial time algorithm for the problem in which #n = 2, m = 2, and each job can visit the machines
several times (that is, recirculation [9] is allowed). In Section 3 we focus on the flow shop scenario.
We show that the two-machine flow shop can be solved in linear time and we give a polynomial time
algorithm for the m-machine problem with two jobs. In Section 4 we briefly discuss cases with n > 2 and
point out open problems.

2. The Job Shop with Two Jobs and Two Machines

In this section we describe a polynomial algorithm for the job shop problem with two jobs and two
machines; i.e., J2|n = 2,5 — prec|Cmax. For notation simplicity, in this section we denote the two jobs as A
and B, consisting of the sequence of tasks, A = {A1, Ay, ..., An, } and B = {By, By, ..., By, }, respectively.
Task A; (By,) requires processing time plA (pE) on machine M(A;) (M(By,)).

Obviously, if two consecutive tasks of the same job, say, A; and A, 1, require the same machine, then
Aj+1 has to wait for the completion of A;, but if the machines required by the two operations are different,
ie, M(Aji1) # M(A;), then A; 4 can start even if A; has not completed yet. So, unlike the classical job
shop setting in which precedence relations are finish-start, in our model it may actually happen that A;,4
even completes before A; (the same of course applies to job B).

Given a partial schedule, the first unscheduled tasks of the two jobs will be referred to as the available
tasks. Suppose now that one of the two machines, say M’, has just completed a task, while the other
machine, say M”, is still busy. If both the available tasks require M”, we say that machine M’ is blocked
and this certainly results in idle time on M'.

We let A[i] and B[h] denote the first i tasks of A and the first /i tasks of B; i.e., A[i] = {A1, Ay, ..., A}
and B[h} = {Bl, Bz, ey Bh}

Given A and B, consider any two task subsequences X C A and Y C B. We want to characterize
the schedules of X U Y such that each task starts right after the previous task on the same machine has
completed. More formally, a schedule of X U'Y is a no-idle subschedule (NIS) if, across the span of such a
subschedule, the only machine idle time occurs, on one machine, after all the tasks of X U Y have started.
When X = Ali] and Y = B[h], forsome 1 <i < n4 and 1 < h < np, then we say that the NIS is an initial
no-idle subschedule (INIS).

Consider Figure 1 and the task set A[2] U B[2]. The subschedule in Figure 1a is not an INIS for
A[2] U B[2], since on M; there is idle time before B, starts. On the contrary, in the case depicted in
Figure 1b, the subschedule of A[2] U B[2] is an INIS. Note that if we restrict our attention to the task set
A[2] U B[1], then the subschedule in Figure 1a is an INIS.

62

Algorithms 2019, 12, 250

My A] M, | Ay |

My As By | By My A |

(@ (b)
Figure 1. In instance (a), the set A[2] U B[2] does not form an INIS (initial no-idle subschedule);
in instance (b) it does.

2.1. Generating Initial No-Idle Subschedules

We denote by A[i, M;] and B[k, M;], the subset of tasks of A[i] and B[h] respectively, requiring
machine M,-,]' =1,2;ie.,

Ali, Mj] = {A, :r <i, M(A;) = Mj} j=12,

B[, Mj] = {By:q < h,M(Bg) = M;} j=1,2.

We also let P(A[i, M;]) and P(B[h, M;]) indicate the total processing time of tasks in A[i, M;] and
B, Mj); ie.,

P(AlLM]) = Y, P,
reAli,M;]

PBILMY) = Y P
qEB[h,M;]

If an INIS of tasks A[i] U B[h] exists, its makespan is given by
max{P(A[i, Ml]) + P(B[h, Ml]),P(A[i, Mz]) + P(B[h, Mz])}

Proposition 1. In any optimal schedule, there are indices i and h such that the subschedule involving tasks
Ali] U B[h] is an INIS.

In fact, given an optimal schedule, consider the subschedule of the tasks scheduled on the two
machines from time 0 to the end of the first idle interval of the schedule, assuming, e.g., that such an idle
interval occurs on M. If the subschedule is not an INIS, we can iteratively remove the last task scheduled
on M, in the subschedule, until the definition of INIS is met.

In view of Proposition 1, we are only interested in schedules in which the initial part is an INIS.
However, not all initial no-idle subschedules are candidates to be the initial part of an optimal schedule.

We first address the following question. Can we determine all operation pairs (i, /) such that an
INIS of A[i] U B[h] exists? We show next that this question can be answered in polynomial time.

The idea is to build the no-idle partial schedules from the beginning of the schedule onward. To this
aim, let us define an unweighted graph G, which we call initial no-idle graph. Nodes of G are denoted
as (i, h), representing a NIS of A[i] U B[l] (for shortness, we use (i, 1) also to denote the corresponding
INIS). If the schedule obtained appending By, ;1 to schedule (i,) is still an INIS, we insert node (i, 1 + 1)
and an arc from (7, /) to (i,h + 1) in G. Symmetrically, if the schedule obtained appending A; 1 to (i,h)
is an INIS, we insert (i + 1, /) and an arc from (i,) to (i +1,h) in G.

As illustrated later on (cases (i) — (iv) below), while building the graph G, we can also determine
whether or not a certain INIS can be the initial part of an optimal schedule. If it can, we call it a target
node.

63

Algorithms 2019, 12, 250

Consider any node (i,) in G, and the machine completing soonest in the INIS. Ties can be broken
arbitrarily, but to fix ideas, suppose that M) is still busy when M; completes. (Note that, since there is no
idle time, M; completes at time P(A[i, M;]) + P(B[h, M;]).) If i < n4 and h < np, the two available tasks
are A;;1 and By 1, and four cases can occur.

(i) M(Ai+1) = M(Bj41) = My. In this case, M is necessarily idle until M, completes (Figure 2a).
Hence, there is no way to continue an INIS, and therefore node (i, #) has no outgoing arcs. In this
case, (i,h) is a target node.

(ii) M(Ai11) = My and M(Bj, ;1) = M,. In this case, when A; completes, the only way to continue an
INIS is to start task A; 1 on M; (Figure 2b). Thus we generate node (i + 1, 1) and the arc from (i, 1)
to (i+ 1, 1), which is the only outgoing arc of (i, 11). In this case as well, (i,) is a target node.

(iii) M(A;y1) = My and M(By;1) = M. A symmetrical discussion to the previous case holds; i.e., the
only way to continue an INIS is to start task B, 1 on M; (Figure 2¢), so we generate node (i, 1+ 1)
and the arc from (i, 1) to (i,h + 1), which is the only outgoing arc of (i, /). In this case also, (i, 1) is a
target node.

(iv) M(Ajz1) = M(By11) = Mj. In this case, the INIS can be continued in two possible ways; i.e.,
scheduling either A; 1 or By, 1 on M; (Figure 2b,c respectively). Therefore, (i, 1) has two outgoing
arcs, pointing towards nodes (i +1,/) and (i, h + 1), respectively. However, in this case (i, h) is not
a target node, since there is no point in keeping M idle until the completion of Mj.

M; My ‘ A; ‘ Ais1 ‘
M, By M, | B

» »
t t
(a) (b)
My Aj | By1
M; By,
4
[
(0)

Figure 2. Possible scenarios when M; completes before My: (a) The INIS (i, h) cannot be
continued, (b) it can only be continued scheduling A;;1, and (c) it can only be continued
scheduling By ;1.

Clearly, if M, completes before Mj, in the four above cases the roles of M; and M, are exchanged. If
either i = n4 or h = np, the above cases simplify as follows, where we assume that 1 = np;i.e., job Bis
finished. (A symmetric discussion holds ini = 14.)

(v) M(Aj+1) = Mj. In this case, we can continue an INIS starting task A; ;1 on M;. Thus we generate
node (i + 1, 1) and the arc from (i, 1) to (i + 1, k), which is the only outgoing arc of (i,). Node (i,)
is a target node.

(vi) M(Aj+1) = My. In this case, M; is necessarily idle until M, completes. Hence, there is no way to
continue an INIS, and therefore node (i, 1) has no outgoing arcs. In this case, (i, 1) is a target node.

Again, the roles of the two machines are exchanged if M, frees up before M in the partial schedule.

64

Algorithms 2019, 12, 250

In conclusion, the question of whether a NIS exists for the task set A[i] U B[] is equivalent to asking
whether node (i, 1) can be reached from the dummy initial node (0,0) on G.

A few words on complexity. Clearly, G has O(n4ng) nodes, and each node has at most two outgoing
arcs. The graph G can be built very efficiently. In fact, for each node (i, 11), it can be checked in constant
time, which condition holds among (i)-(iv) (or (v)—(vi) when one of the jobs is over), and hence whether
or not it is a target node.

2.2. Minimizing the Makespan

Now we can address the main question. How to schedule the tasks on the two machines so that
the overall makespan is minimized. The key idea here is that any active schedule can be seen as the
juxtaposition of no-idle subschedules. In fact, suppose that after processing a certain task A;, one machine
stays idle until the other machine completes task Bj,. It is important to observe that this may happen for
one of two reasons:

e When a machine completes, it is blocked because both available tasks require the other machine;
e When a machine completes, there is one task the machine can process, but it might be profitable to
wait for the other machine to free up another task.

Note that in both of these two cases (i, /) is a target node of G. On the contrary, if a machine
completes a task while the other machine is still busy, and both available tasks require that machine
(i.e., (i,h) is not a target node of G), with no loss of generality we can assume that the machine will
immediately start one of them, since otherwise the schedule might turn out non-active (there is no point
in waiting for the other machine to complete its task).

If t denotes the makespan of an INIS, the schedule after ¢ is completely independent from the
schedule before t. In other words, the optimal solution from f onward is the optimal solution of a problem
in which t is indeed time 0, and the two jobs are A \ A[i] and B\ B[h]. Hence, to address the overall
problem, the idea is to build another, higher-level graph in which the arcs specify portions of the overall
schedule.

Suppose that (i,) is a target node of graph G, and consider the task sets A \ A[i] and B\ B[h]. We
can build a new no-idle graph on these sets, and call it G(i,). (Correspondingly, the graph previously
denoted as G can be renamed G(0,0).) Suppose that (r,q) is a target node in graph G(i, k). This
means that the tasks of the set {A;11, Ajsp, ..., Ar} U{Bj11, Byyo, ..., By} form a NIS, that we denote by
[(i+1,h+1) = (r,q)]. Itis convenient to extend the previous notation, letting A[i + 1,7, M;] denote
the set of tasks of A[i +-1,7] that require machine M;, and analogously we let B[l + 1,4, M;] be the set
of tasks of B[+ 1, 4] that require M;. Their total processing times are denoted as P(A[i + 1,7, M;]) and
P(B[h+ 1,4, Mj]). (The set previously denoted as A[i, M;] should now be written A[0,, M;].)

We next introduce the (weighted) graph G as follows. As in G, nodes denote task pairs (i,). There
isanarc [(i,h), (r,q)] if (r,q) is a target node in the graph G(i, h); i.e., if the NIS [(i + 1,h + 1) — (r,q)]
exists. Such an arc [(i,), (r, q)] is weighted by the length of the corresponding NIS; i.e.,

max{P(Afi + 1,7, My]) + P(B[h+ 1,4, M1]), P(A[i + 1,7, Ms]) + P(B[h + 1,4, Ma]) }.

Moreover, G contains a (dummy) initial node (0,0) while the final node is (14, ng). At this point the
reader should have no difficulty in figuring out that the following theorem holds.

Theorem 1. Given an instance of J2|n = 2, s — prec|Cmax, the optimal schedule corresponds to the shortest path
from (0,0) to (na,np) on G, and its weight gives the minimum makespan.

Now, let us discuss complexity issues. The graph G can indeed be generated starting from (0,0),
and moving schedules forward. From each node (i, /1) of G, we can generate the corresponding no-idle

65

Algorithms 2019, 12, 250

graph G(i, 1), and add to G all target nodes of G(i,). We then connect node (i, 1) in G to each of these
nodes, weighing the arc with the corresponding length of the NIS. If a target node was already present in
G, we only add the corresponding new arc. Complexity analysis is, therefore, quite simple. There are
O(nang) nodes in G. Each of these nodes has a number of outgoing arcs, whose weight can be computed
in O(nang). Clearly, finding the shortest path on G is not the bottleneck step, and therefore, the following
result holds.

Theorem 2. J2|n = 2,s — prec|Cmax can be solved in O(n%qn%).

Example 1. Consider the following instance, in which job A has four tasks and job B two tasks.

job 1 2 3 4
ine A 5,M1 1,M1 4,M2 6,M1
B 4My | 7My | - -

Figure 3a depicts the graph G(0,0), in which all nodes are target nodes. Figure 3b shows the INIS [(0,0) —
(2,2)]. At the end of this INIS, machine M, is blocked, since the next task of A requires My and job B is already
finished. Notice that [(0,0) — (2,2)] is the longest INIS which can be built, but the optimal solution does not
contain it. Figure 4a shows the best schedule which can be attained when the INIS [(0,0) — (2,2)], having
makespan 17. Figure 4b shows the optimal schedule, having makespan 16. The optimal schedule consists of two
no-idle subschedules; namely, the INIS [(0,0) — (1,1)] (containing tasks Ay and By and corresponding to arc
[(0,0),(1,1)] on G), and the NIS [(2,2) — (4,2)] (containing tasks Ay, A3, A4 and By and corresponding to arc
[(1,1), (4,2)] on G). For illustrative purposes, Figure 5 shows the graph G(1,1). Notice that in such a graph, (2,1)
is not a target node.

M A ‘ A |
N //’. -\
(0,0] @—@— @ M, By ‘ By ‘
Lt e
L
;

Figure 3. (a) The graph G(0,0) in the example. (b) The INIS [(0,0) — (2,2)].

M A A A M, A [Az[A

My B I B | Az M: B H A | B ']

17 1 16 I

Figure 4. (a) The best schedule starting with the INIS [(0,0) — (2,2)], and (b) the optimal schedule in the
example.

66

Algorithms 2019, 12, 250

Figure 5. Graph G(1,1) in the example.
3. Flow Shop

In this section we consider the flow shop problem, i.e., F|s—prec|Cmax, in which the job set | contains
1 jobs, and job J¥ requires processing time p¥ on machine M; (here we use index j for both tasks and
machines, as there is exactly one task per machine). While in the classical problem F||Cmax a job cannot
start on machine M; before it is completed on Mj—l/ in Fm|s—prec|Cmax, a job can start on machine M ;as
soon as it is started on M; 1.

3.1. Two-Machine Flow Shop (F2|s—prec|Cmax)

We next consider the two-machine flow shop problem, so p’l‘ and pé denote the processing times
of job Jy on M; and M; respectively, k = 1,...,n. Note that, as in the classical F2||Cmax, with no loss of
generality we can assume that in any feasible schedule the machine M; processes all the jobs consecutively
with no idle time between them. We next show that problem F2|s—prec|Cmax can be solved in linear time.

Proposition 2. Given an instance of F2|s—prec|Cmax, there always exists a schedule o* having makespan
max{Y}_, pk,Y0_, p5}, which is therefore optimal.

Proof. Given an instance of F2|s—prec|Cmax, partition the jobs into two sets, J' and J”, such that
J' = {J¥|pf < pk}and J” = J\J'. Then, build ¢* by scheduling, on both machines, first all jobs of
J' in arbitrary order, and then all jobs of J”, also in arbitrary order. If we let C(1) and C(2) denote
the completion time of the last job of]’ on M; and M, respectively, one has C(1) < C(2). From the
definition of J’, one gets that up to C(2), no idle time occurs on M,. From then on, all jobs of J” are
scheduled, and two cases may occur. (i) No idle time ever occurs on Mj, in which case the makespan
equals max{Y¥}_, pk, I, p5}. (ii) Some idle time occurs on M,. Consider the first time that M, is idle
and M), is still processing a job Ji. Upon completion of Ji, the two machines will simultaneously start the
next job, say, J;, but since J; € J”, My will still be processing it while M, returns idle. Since all remaining
jobs belong to J”, this will happen for each job until the end of the schedule. In particular, when the last
job is scheduled, again, M, completes first, so in conclusion, the makespan of o is Zf:1 p’{. O

The above proof contains the solution algorithm. For each job T, put it into J' if p’l‘ < p’é and in
J"" otherwise. Then, schedule all jobs of]’ followed by all jobs of J” (in any order). Since establishing
whether a job belongs to J' or J” can be done in constant time, and since jobs can be sequenced in arbitrary
order within each set, we can conclude with the following result.

Theorem 3. F2|s—prec|Cmax can be solved in O(n).
While F2|s—prec|Cmax appears even simpler than the classical F2||Cmax, one may wonder whether
other simplifications occur for m > 2. While the complexity status of Fri|s—prec|Cmax is open, we point

out a difference between Fi||Cmax and Fm|s—prec|Cmax, which may suggest that the problem with
s-precedence constraints is not necessarily easier than the classical counterpart.

67

Algorithms 2019, 12, 250

It is well known [10] that in Fm||Cmax there always exists an optimal schedule in which the
job sequences on M; and M, are identical, and the same holds for machines M,,_ and M,,. (As a
consequence, for m < 3 the optimal schedule is a permutation schedule.) This is no more true in
Fm|s—prec|Cmax, even with only two jobs.

Example 2. Consider an instance with three machines and two jobs, A and B:
j 1 2 3
ine A 4,M1 6,M2 1,M3
B 10,My | 4 My | 9,M3
ine
Scheduling the jobs in the order AB on all three machines, one gets Cyay = 15, and the makespan is attained
on machine Mj (see Figure 6a). If they are scheduled in the order BA on all three machines, Cyyax = 16, and in this
case the value of the makespan is attained on My (Figure 6b). If jobs are scheduled in the order AB on My and BA
on My and Ms, then Cpax = 14 (all three machines complete at the same time, Figure 6¢), and this is the optimal
schedule.

(a)

16 t

(b)

Figure 6. Three schedules for Example 2.
3.2. Flow Shop with Two Jobs and m Machines (Fm|n = 2,s—prec|Cmax)

In what follows we give an Algorithm 1 that solves Fm|n = 2,5—prec|Cpax. Again we denote the
two jobs with A and B, and by p]‘-é‘ and p}} the processing time of jobs A and B on machine M;,j =1,...,m,
respectively. Notice that a schedule is fully specified by the order of the two jobs on each machine, either
AB or BA. In what follows, for a given schedule and a given machine, we call leader the job scheduled
first and follower the other job. So if, on a given machine, the jobs are sequenced in the order AB, then, on
that machine, A is the leader and B is the follower.

68

Algorithms 2019, 12, 250

Algorithm 1 For finding a schedule with C;;5x < K if it exists.
: Initialize F4(0) = Fz(0) = 0;
cforu=1,...,mdo
forv=1,...,mdo

1
2
3
4 Compute L (u,v), Lg(u,v), Spo(u,v) and Sg(u,v) via (1), (2), (3) and (4) respectively;
5. end for

6: end for

7. forv=1,...,mdo

8. Compute F4(v) and Fg(v) via (5) and (6);

9: end for

10: if Fo(m) < o0 or Fg(m) < +oo then

11: Cmax < K;

12: else

13: Cmax > K.
14: end if

Given any feasible schedule, we can associate with it a decomposition of the 7 machines into blocks,
each consisting of a maximal set of consecutive machines in which the two jobs are scheduled in the same
order. We denote the block consisting of machines My, M,,+1, ..., My as <M, M,> (see Figure 7). In a
block, due to the s-precedence constraints, all the tasks of the leader job start at the same time. Given
a block <M, M,>, we can compute a number of quantities. (Assume for the moment that v < m.) If,
in <M, My>, A is the leader, then we call leader span the length of the longest A-task in the block, and
denote it with L4 (u,v):

La(u,0) = Igjagv{p?}, (1)

and similarly, if B is the leader, the leader span is given by:

Lg(u,0) = By, 2
B(1,0) urgjagv{p, } @
56(5,7)
1] 7
2 L (1,4)
3 —
4 —— A
. -
6 — - (57)
7
. -
9 —/ - (8,10)
10 ———

L,(1,4) Lg(5,7) | 5,(8,10)

Figure 7. A sample schedule for Fm|n = 2,5 — prec|Cmax. The tasks of job A are in grey.

69

Algorithms 2019, 12, 250

Notice that, due to the definition of block, in the block that follows <M, M, >, the roles of leader
and follower are exchanged. Hence, the time at which the leader completes its longest task in <M, M,>
is also the start time of the other job’s tasks in the next block.

Given a block <M,,, M, >, suppose again that A is the leader. We let 54 (u,v) indicate the span of
block <My, My>; i.e., the difference between the maximum completion time of a B-task and the start
time of all A-tasks in <M,,, M,>. This is given by:

_ A B
Sa(u,v) = urg%{g%{m Fpit ®)

and exchanging the roles of leader and follower in <M, M,>, we get

_ B A
Sp(u,v) = urg?;v{urgggj{ph} i} @)

Notice that trivial lower and upper bounds for the minimum makespan are given by

LB = max{ max {p{'}, max {p/}}
and
UB = max {7} + max {77}
respectively. In what follows we address the problem of determining a schedule having a makespan not
larger than K, or prove that it does not exist. Assuming that all processing time values are integers, a
binary search over the interval [LB, UB] allows one to establish the value of the minimum makespan.

As we already observed, a relevant difference between Fn||Cyax and Fm|s—prec|Cpay is that, in a
feasible schedule for Fm|s—prec|Cpax, the value of Cy,q may not be attained on the last machine, but
rather on any machine. This fact requires carefully handling by the algorithm.

Let F4 (v) be the minimum sum of leader spans of all blocks from M; to My, when A is the leader of
the last block (i.e., the block including M,). Similarly, Fg(v) is the same when B is the leader of the last
block. In order to write a functional equation for F4 (v) and Fg(v), we introduce the notation §(x) = 0 if
x <0and d(x) = +ooif x > 0.

Hence, we write

Fy(v) = Or<ni£1 {Fp(u) + La(u+1,0) +5(Fg(u) + Sa(u+1,0) —K)}. (5)
<u<v
The first terms accounts for the fact that in the previous block the leader is B, while the rightmost term
(6(+)) rules out solutions in which the sum of the start time of the last block and the span of the block
itself exceeds K. Symmetrically, one has:

Fg(v) = Orgnuigv{FA(u) +Lp(u+1,0)+6(Fa(u)+ Sp(u+1,0) —K)}. (6)

Expressions (5) and (6) are computed for v = 1,...,m. If at least one of the values F4(m) and Fp(m)
has a finite value, a schedule of makespan not exceeding K exists. The values of machine index for which
each minimum in (5) and (6) is attained define the blocks of the schedule, which can, therefore, be easily
backtracked.

Equations (5) and (6) must be initialized, simply letting F4(0) = Fz(0) = 0.

Notice that in general one cannot infer the value of the minimum makespan schedule directly from
this procedure. If the minimum in the computation of F4 (1) has been attained for, say, machine M, it
does not imply that Fg(u) 4+ S (1 + 1, m) is indeed the minimum makespan. This is because the overall

70

Algorithms 2019, 12, 250

makespan may be due to a previous machine, and the algorithm has no control on this aspect. For
instance, in the sample schedule of Figure 7 the makespan is attained on machine M. However, its actual
value has no relevance, so long as it does not exceed K, since it does not affect the values F4 (v) and Fg(v)
subsequently computed.

Concerning complexity, each computation of (5) and (6) requires O(m) comparisons. Since the whole
procedure is repeated at each step of a binary search over [LB, UB], the following result holds.

Theorem 4. Problem Fm|n = 2,s — prec|Cpax can be solved in O(m?log(UB — LB)).

4. Further Research

In this paper we established some preliminary complexity results for perhaps the most basic cases of
shop problems with s-precedence constraints. Here, we briefly elaborate on possible research directions.

e Job shop problem with three jobs. The job shop problem with more than two jobs is NP-hard. This
is a direct consequence of the fact that J|s— prec|Cyax can be viewed as a generalization of J||Cpuax,
which is NP-hard with three jobs [11].

Theorem 5. J|n = 3,5 — prec|Cpay is NP-hard.

Proof. Consider an instance I of J|n = 3|Cyx, in which Oi-‘ denotes the i-th task of job J¥in I, having
processing time p¥ on machine M(OF).

We can define an instance I’ of J|n = 3,5 — prec|Cyuqax with the same number of machines. The three
jobs of I' are obtained replacing each task OF of I with a sequence of two tasks Of.‘, and O{f,,, in which
O precedes O, O has length p¥ and requires machine M(O¥), while O, has sufficiently small length
€ > 0 and also requires machine M(Of‘) As a consequence, in J|s— prec|Cpax, the task Of.‘ ',/ cannot start
before OF is started, but since M(O) = M(O¥,) = M(O¥), this can only occur after OF is finished. So, for
sufficiently small ¢, a feasible schedule for I’ having makespan < K + me exists if and only if a feasible
schedule for I exists having makespan < K. [

Notice that the above reduction cannot be applied to F|n = 3,5 — prec|Cmax, since in the flow shop
each job visits all machines exactly once. In fact, the complexity of Fm|s—prec|Cmax is open, even for
fixed m > 3 or fixed n > 3.

e Open problems with two jobs. The approach in Section 2 for J2|n = 2, s — prec|Cmax cannot be trivially
extended to more than two machines. The complexity of this case is open. Additionally, an open
issue is whether a more efficient algorithm can be devised for J2|n = 2,5 — prec|Cmax, and a strongly
polynomial algorithm for Fm|n = 2,5 — prec|Cmax-

Author Contributions: Conceptualization, A.A. ER. and S.S.; methodology, A.A. ER. and S.S.; validation, A.A.
ER. and S.S.; formal analysis, A.A. FR. and S.S.; investigation, A.A. FR. and S.S.; resources, A.A. FR. and S.S.;
writing—original draft preparation, A.A. ER. and S.S.; writing-review and editing, A.A. ER. and S.S.; visualization,
A.A.FR.and S.S,; supervision, A.A. ER. and S.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kim, E.-S.; Posner, M.E. Parallel machine scheduling with s-precedence constraints. IIE Trans. 2010, 42, 525-537.
[CrossRef]

2. Kim, E.-S; Sung, C.-S.; Lee, L.-S. Scheduling of parallel machines to minimize total completion time subject to
s-precedence constraints. Comput. Oper. Res. 2009, 36, 698-710. [CrossRef]

71

Algorithms 2019, 12, 250

10.
11.

Kim, E.-S. Scheduling of uniform parallel machines with s-precedence constraints. Math. Comput. Model. 2011,
54, 576-583. [CrossRef]

Tamir, T. Scheduling with Bully Selfish Jobs. Theory Comput. Syst. 2012, 50, 124-146. [CrossRef]
Demeulemeester, E.L.; Herroelen, W.S. Project Scheduling, a Research Handbook; Springer Science & Business
Media: Berlin, Germany, 2006.

Agnetis, A.; Lucertini, M.; Nicolo, F. Flow Management in Flexible Manufacturing Cells with Pipeline
Operations. Manag. Sci. 1993, 39, 294-306. [CrossRef]

Avella, P; Boccia, M.; Mannino, C.; Vasilev, I. Time-indexed formulations for the runway scheduling problem.
Transp. Sci. 2017, 51, 1031-1386. [CrossRef]

Briskorn, D.; Angeloudis, P. Scheduling co-operating stacking cranes with predetermined container sequences.
Discret. Appl. Math. 2016, 201, 70-85. [CrossRef]

Bertel, S.; Billaut, J.-C. A genetic algorithm for an industrial multiprocessor flow shop scheduling problem with
recirculation, Eur. J. Oper. Res. 2004, 159, 651-662. [CrossRef]

Pinedo, M. Scheduling, Theory, Algorithms and Systems; Springer: Cham, Switzerland, 2018.

Brucker, P,; Sotskov, Y.N.; Werner, F. Complexity of shop scheduling problems with fixed number of jobs: A
survey. Math. Methods Oper. Res. 2007, 65, 461-481. [CrossRef]

: ® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY

BY) license (http://creativecommons.org/licenses/by/4.0/).

72

algorithms ﬁw\n\py

Atrticle
Linking Scheduling Criteria to Shop Floor
Performance in Permutation Flowshops

Jose M. Framinan “*© and Rainer Leisten 2

Industrial Management, School of Engineering, University of Seville, 41004 Sevilla, Spain

Industrial Engineering, Faculty of Engineering, University of Duisburg-Essen, 47057 Duisburg, Germany;
leisten@uni-due.de

* Correspondence: framinan@us.es

2

Received: 30 October 2019; Accepted: 4 December 2019; Published: 7 December 2019

Abstract: The goal of manufacturing scheduling is to allocate a set of jobs to the machines in the
shop so these jobs are processed according to a given criterion (or set of criteria). Such criteria are
based on properties of the jobs to be scheduled (e.g., their completion times, due dates); so it is not
clear how these (short-term) criteria impact on (long-term) shop floor performance measures. In this
paper, we analyse the connection between the usual scheduling criteria employed as objectives
in flowshop scheduling (e.g., makespan or idle time), and customary shop floor performance
measures (e.g., work-in-process and throughput). Two of these linkages can be theoretically predicted
(i.e., makespan and throughput as well as completion time and average cycle time), and the other
such relationships should be discovered on a numerical/empirical basis. In order to do so, we
set up an experimental analysis consisting in finding optimal (or good) schedules under several
scheduling criteria, and then computing how these schedules perform in terms of the different shop
floor performance measures for several instance sizes and for different structures of processing
times. Results indicate that makespan only performs well with respect to throughput, and that one
formulation of idle times obtains nearly as good results as makespan, while outperforming it in terms
of average cycle time and work in process. Similarly, minimisation of completion time seems to be
quite balanced in terms of shop floor performance, although it does not aim exactly at work-in-process
minimisation, as some literature suggests. Finally, the experiments show that some of the existing
scheduling criteria are poorly related to the shop floor performance measures under consideration.
These results may help to better understand the impact of scheduling on flowshop performance,
so scheduling research may be more geared towards shop floor performance, which is sometimes
suggested as a cause for the lack of applicability of some scheduling models in manufacturing.

Keywords: scheduling; shop floor performance; flowshop; manufacturing

1. Introduction

To handle the complexity of manufacturing decisions, these have been traditionally addressed in
a hierarchical manner, in which the overall problem is decomposed into a number of sub-problems
or decision levels [1]. Given a decision level, pertinent decisions are taken according to specific local
criteria. It is clear that, for this scheme to work efficiently, the decisions among levels should be
aligned to contribute to the performance of the whole system. Among the different decisions involved
in manufacturing, here we focus on scheduling decisions. Scheduling (some authors use the term
“detailed scheduling”) is addressed usually after medium-term production planning decisions have
been considered, since production planning decision models do not usually make distinction between
products within a family, and do not take into account sequence-dependent costs, or detailed machine
capacity [2]. A short-term detailed scheduling model usually assumes that there are several jobs—each

Algorithms 2019, 12, 263; d0i:10.3390/a12120263 73 www.mdpi.com/journal/algorithms

Algorithms 2019, 12, 263

one with its own characteristics—that have to be scheduled so one or more scheduling criteria are
minimised. The schedule is then released to the shop floor, so the events in the shop floor are executed
according to the sequence and timing suggested by the schedule [3]. Therefore, there is a clear impact
of the chosen scheduling criteria on (medium /long term) shop floor performance, which is eventually
reflected on shop floor performance measures such as the throughput of the system (number of jobs
dispatched by time unit), cycle time (average time that the jobs spend in the manufacturing system),
or work in process. As these performance measures can be linked to key aspects of the competitiveness
of the company (e.g., throughput is related to capacity and resource utilisation, while cycle time and
work in process are related to lead times and inventory holding costs), the chosen scheduling criterion
may have an important impact in the performance of the company, so it is important to assess the
impact of different scheduling criteria on shop floor performance measures. However, perhaps for
historical reasons, the connection between shop floor performance measures and scheduling criteria
has been neglected by the literature since, to the best of our knowledge, there are not contributions
addressing this topic. In general, the lack of understanding and quantification of these connections has
led to a number of interrelated issues:

e Some widely employed scheduling criteria have been subject of criticism due to their apparent lack
of applicability to real-world situations (see, e.g., the early comments in [4] on Johnson’s famous
paper, or [5] and [1] on the lack of real-life application of makespan minimisation algorithms),
which suggest a poor alignment of these criteria with the companies’ goals.

e Some justifications for using specific scheduling criteria are given without a formal proof.
For instance, it is usual in the scheduling literature to mention that minimising the completion
time in a flowshop leads to minimising work-in-process, whereas this statement—as we discuss
in Section 2.2—is not correct from a theoretical point of view.

e Some scheduling criteria employed in manufacturing have been borrowed from other areas.
For instance, the minimisation of the completion time variance is taken from the computer
scheduling context; therefore their potential advantages on manufacturing have to be tested.

e There are different formulations for some scheduling criteria intuitively linked to shop floor
performance: While machine idle time minimisation can be seen, at least approximately, as related
to increasing the utilisation of the system, there are alternative, non-equivalent, manners to
formulate idle time. Therefore, it remains an open question to know which formulation is actually
better in terms of effectively increasing the utilisation of the system.

e Finally, since it is customary that different, conflicting goals have to be balanced in the shop
floor (such as balancing work in process, and throughput), it would be interesting to know the
contribution of the different scheduling criteria to shop floor performance in order to properly
balance them.

Note that, in two cases, the linkages between scheduling criteria and shop floor performance
measures can be theoretically established. More specifically, it can be formally proved that makespan
minimisation implies maximising the throughput, and that completion time minimisation implies
the minimising the average cycle time. However, for the rest of the cases such relationships cannot
be theoretically proved, so they have to be tested via experimentation. To do so, in this paper we
carry out an extensive computational study under a different variety of scheduling criteria, shop floor
performance measures, and instance parameters.

Since the mathematical expression of the scheduling criteria is layout-dependent, we have to
focus on a particular production environment. More specifically, in this paper we assume a flow shop
layout where individual jobs are not committed to a specific due date. The main reason for the choice
is that flow line environments are probably the most common setting in repetitive manufacturing.
Regarding not considering individual due dates for jobs, it should be mentioned that both scheduling
criteria and shop floor performance measures differ greatly from due date related settings to non due
date related ones, and therefore this aspect must be subject of a separate analysis. Finally, we also
assume that all jobs to be scheduled are known in advance.

74

Algorithms 2019, 12, 263

The results of the experiments carried out in this paper show that

1. There are several scheduling criteria (most notably the completion time variance and one
definition of idle time) which are poorly related with any of the indicators considered for shop
floor performance.

2. Makespan minimisation is heavily oriented towards increasing throughput, but it yields poor
results in terms of average completion time and work-in-process. This confines its suitability to
manufacturing scenarios with very high utilisation costs as compared to those associated with
cycle time and inventory.

3. Minimisation of one definition of idle times results in sequences with only a marginal worsening
in terms of throughput, but a substantial improvement in terms of cycle time and inventory.
Therefore, this criterion emerges as an interesting one when the alignment with shop floor
performance is sought.

4. Minimisation of completion times also provides quite balanced schedules in terms of shop floor
performance measures; note that it does not lead to the minimisation of WIP, as recurrently stated
in the literature.

The rest of the paper is organised as follows: In the next section, the scheduling criteria and
shop floor performance measures to be employed in the experimentation are discussed, as well as the
theoretically provable linkages among them. The methodology adopted in the computational experience
is presented in Section 3.2. The results are discussed in Section 4. Finally, Section 5 is devoted to outline
the main conclusions and to highlight areas for future research.

2. Background and Related Work

In this section, we first present the usual scheduling criteria employed in the literature, while
in Section 2.2 we discuss the usual shop floor performance measures, together with the relationship
with the scheduling criteria that can be formally proved. For the sake of brevity, we keep the detailed
explanations on both criteria and performance measures at minimum, so the interested reader is
referred to the references given for formal definitions.

2.1. Scheduling Criteria

Undoubtedly, the most widely employed scheduling criterion is the makespan minimisation
(usually denoted as Cjqy) or maximum flow time (see, e.g., [6] for a recent review on research in
flowshop sequencing with makespan objective). Another important measure is the (total or average)
total completion time or }_ C;. Although less employed in scheduling research than makespan, total
completion time has also received a lot of attention, particularly during the last years. Just to mention
a few recent papers, we note the contributions in [7,8].

An objective also considered in the literature is the minimisation of machine idle time, which can
be defined in (at least) three different ways [9]:

o Theidle time, as well as the head and tail, of every single machine, i.e., the time before the first
job is started on a machine and the time after the last job is finished on a machine, but the whole
schedule has started on the first machine and has not been finished yet on the last machine, can
be included into the idle time or not. In a static environment, including all heads and tails means
that idle time minimisation is equivalent to minimisation of makespan (see, e.g., in [4]). This case
would not have to be considered further.

e Excluding heads and tails would give an idle time within the schedule, implicitly assuming that
the machines could be used for other tasks/jobs outside the current problem before and after the
current schedule passes/has passed the machine. This definition of idle time is also known as
“core idle time” (see, e.g., in [10-12]) and it has been used by [13] and by [14] in the context of
a multicriteria problem. We denote this definition of idle time as }_ IT;.

75

Algorithms 2019, 12, 263

e Including machine heads in the idle time computation whereas the tails are not included means
that the machines are reserved for the schedule before the first job of the schedule arrives
but are released for other jobs outside the schedule as soon as the last job has left the current
machine. In the following, we denote this definition as }_ ITH;. This definition is first encountered
in [15] and in [16] and it has been used recently as a secondary criterion for the development of
tie-breaking rules for makespan minimisation algorithms (see, e.g., [17,18]).

Figure 1 illustrates these differences in idle time computation for an example of two jobs on three
machines. The light grey time-periods (IT and Head) are included in our idle time definition whereas
the Tail is not. In the literature, an equivalent expression for heads and tails are Front Delay and Back
Delay, respectively, see in [19] or [9].

Ml p(1.1) p(2.1)
JTail®
M2 p(1.2) IT p(2.2)
—— .Head*
M3 p(1.3) 1T p(2.3)

Figure 1. Different components of machine idle time.

Finally, the last criterion under consideration is the Completion Time Variance (CTV). CTV was
originally introduced by [20] in the computer scheduling context, where it is desirable to organise the
data files in on-line computing systems so that the file access times are as uniform as possible. It has
been subsequently applied in the manufacturing scheduling context as it is stated to be an appropriate
objective for just-in-time production systems, or any other situation where a uniform treatment of
the jobs is desirable (see, e.g., in [21-24]). In the flow shop/job shop scheduling context, it has been
employed by [25-32].

2.2. Shop Floor Performance Measures

Shop floor performance is usually measured using different indicators. Among classical
texts, Goldratt [33] mentions throughput, inventory, and operating expenses as key manufacturing
performance measures. Nahmias [34] mentions the following manufacturing objectives: meet due
dates, minimise WIP, minimise cycle time, and achieve a high resource utilisation. Wiendahl [35]
identifies four main objectives in the production process: short lead times, low schedule deviation,
low inventories, and high utilisation. Hopp and Spearman [1] list the following manufacturing
objectives: high throughput, low inventory, high utilisation, short cycle times, and high product
variety. Lietal. [36] cites utilisation and work-in-process as the two main managerial concerns in
manufacturing systems. Finally, throughput and lateness are identified by several authors (e.g., [37,38])
as the main performance indicators in manufacturing.

Although these objectives have remained the same during decades [39], their relative importance
has changed across time [40], and also depends on the specific manufacturing sector (for instance,
in the semiconductor industry, average cycle time is regarded as the most important objective, see,
e.g., [41] or [42]). According to the references reviewed above, we consider three performance measures:
Throughput (TH), Work-In-Process (WIP), and Average Cycle Time (ACT) as shop floor performance
indicators. With respect to other indicators mentioned in the reviewed references, note that one
of them is not relevant in the deterministic environment to which this analysis is constrained (low
schedule deviation), while other is not specifically related to shop floor operation (high product
variety). Furthermore, as our study does not assume individual due dates for jobs, we exclude due
date related measures, although we wish to note that, quite often short cycle times are employed as an

76

Algorithms 2019, 12, 263

indicator of due date adherence [38,43]. Finally, we prove below that utilisation and throughput are
directly related, so utilisation does not need to be considered in addition to throughput.

Regarding the relationship of the shop floor performance measures with the scheduling criteria,
it is easy to check that TH the throughput may be defined in terms of Cyax(S) the makespan of
a sequence S of 1 jobs, i.e.,

n
TH(S) = ——= 1

As a result, throughput is inversely proportional to makespan. Note that the utilisation U(S) can

be defined as (see, e.g., [36]):

YL pij
Uu(S) = ——— 2
(S) Corre(5))
s _ Likipi YiXpij . . .
therefore, it is clear that U(S) = =5/~ - TH(S), and, as =5~ is constant for a given instance, then

it can bee seen that the two indicators are fully related.

Accordingly, ACT average cycle time can be expressed in terms of the completion time, see,
e.g., [44]:

Ci(s
ACT(S) = Z#() ®3)

It follows that the total completion time is proportional to ACT. Since TH, ACT and WIP are

linked through Little’s law, the following equation holds.
YCi(S)

WIP(S) = TH(S) - ACT(S) = Crax (S) N

From Equation (4), it may be seen that total completion time and WIP minimisation are not exactly
equivalent, although it is a common statement in the scheduling flowshop literature: It is easy to show
that the two criteria are equivalent for the single-machine case, but this does not necessarily hold for
the flowshop case.

As, apart from the two theoretical equivalences above discussed, there are no straightforward
relationship between the scheduling criteria and the shop floor performance measures, such
relationships should be empirically discovered over a high number of problem instances. This
computational experience must take into account that the results might be possibly influenced by the
instance sizes and the processing times employed. The methodology to carry out the experimentation
is described in the next section.

3. Computational Experience

The following approach is adopted to asses how the minimisation of a certain scheduling criterion
impacts on the different shop floor indicators:

1. Build a number of scheduling instances of different sizes and with different mechanisms for
generating the processing times. The procedure to build these test-beds is described in Section 3.1.

2. For each one of these instances, find the sequences optimising each one of the scheduling criteria
under consideration. For small-sized instances, the optimal solutions can be found, while for the
biggest instances, a good solution found by a heuristic approach is employed. The procedure for
this step is described in Section 3.2.

3. For each one of these five optimal (or good) sequences, compute their corresponding values of
TH, WIP,and ACT. This can be done in a straightforward manner according to Equations (1)—(4).

4. Analyse the so-obtained results. This is carried out in Section 4.

77

Algorithms 2019, 12, 263

3.1. Testbed Setting

Although, in principle, a possible option to obtain flowshop instances to perform our research may
be to extract these data from real-life settings, this option poses a number of difficulties. First, obtaining
such data is a representative number is complicated. There are only few references publishing real data
in the literature (see [45,46]). It may be thus required to obtain such data from primary sources, which
may be a research project itself. Second, processing time data are highly industry-dependent, and it is
likely that a sector-by-sector analysis would be required, which in turn makes the analysis even more
complicate and increases the need of obtaining additional data. Finally, extracting these data from
industry would make processing times to be external (independent) variables in the analysis.

Therefore, we generate these data according to test-bed generation methods available in the
literature. For the flowshop layout in our research, this means establishing the problem size (number
of jobs and machines) and processing times of each job on each machine.

With respect to the values of the number of jobs n and m machines, we have chosen the following:
n € {20,50,100,200}, and m € {10,20,50}. For each problem size, 30 instances have been generated.
This number has been chosen so that the results have a relatively high statistical significance.

Regarding the generation of the processing times, methods for generating processing times can
be classified in random and correlated. In random methods, processing times are assumed to be
independent from the jobs and the machines, i.e., they are generated by sampling them from a random
interval using a uniform distribution [a, b]. The most usual values for this interval are [1,99] (see,
e.g., in [47,48]), while in some other cases even wider intervals are employed (e.g., [49] uses [1,200]).
Random methods intend to produce difficult problem instances, as it is known that, at least with
respect to certain scheduling criteria, this generation method yields the most difficult problems [50,51].
As foreseeable, random processing times are not found in practice [52]. Instead of random processing
times, in real-life manufacturing environments it is encountered a mixture of job-correlation and
machine-correlation for the processing times, as some surveys suggest (e.g., [53]). To model this
correlation, several methods have been proposed, such as those of [54-56], or [57]. Among these,
the latest method synthesises the others. This method allows obtaining problem instances with mixed
correlation between jobs and machines. The amplitude of the interval from which the distribution
means of the processing times are uniformly sampled depends on a parameter « € [0,1]. For low
values of &, differences among the processing times in the machines are small, while the opposite
occurs for large values of a. For a detailed description of the implementation, the reader is referred
to [57].

Finally, it is to note that several works claim the Erlang distribution to better capture the
distribution of processing times (e.g., [4,19], or [58]), yet these do not specify whether this has been
confirmed in real-life settings. Therefore, we discard this approach.

In [57], the processing times for each job on each machine p;; are generated according to the
following steps.

1. Set the upper and lower bounds of processing times, Dury g and Durp, respectively, and a factor
« controlling the correlation of the processing times.

2. Obtain the value Intervaly by drawing a uniform sample from the interval [Durpp, Duryp +
Wldtheff}, where Wldtheff = rint(zx . (DMTUB — DMI’LB)).

3. For each machine j, obtain D; = [d;b, d}”’] = [uj— d;’w, Wi+ d}’w], where j; is sampled from the
interval [Intervals, Intervals + Width,¢f] and anv ig uniformly sampled from the interval [1,5].

4. Foreachjob i, a real value rank; is uniformly sampled from the interval [0, 1]. Then, the processing
times p;; are obtained in the following manner: p;; = rint(rank; - (d}‘b - d}b)+ d;b + 11, where 7
is a ‘noise factor” obtained by uniformly sampling from the interval [—2,2].

5. pjj are ensured to be within the upper and lower bounds, i.e. if p;; < Durpp, then p;j = Durpp.
Analogously, if p;j > Duryg, then p;; = Duryg.

78

Algorithms 2019, 12, 263

The parameter a controls the degree of correlation, so for the case &« = 0.0, there is no
correlation among jobs and machines. In our research, we consider four different ways to generate
processing times:

e LC (Medium Correlation): Processing times are drawn according to the procedure described
above and « = 0.1.

e MC (Medium Correlation): Processing times are drawn according to the procedure described
above and & = 0.5.

e HC (High Correlation): Processing times are drawn according to the procedure described above
and a = 0.9.

e NC (No Correlation): Processing times are drawn from a uniform distribution [1,99].
This represents the “classical” noncorrelated assumption in many scheduling papers.

3.2. Optimisation of Scheduling Criteria

For each one of the problem instances, the sequences minimising each one of the considered
scheduling criteria are obtained. For small problem sizes (i.e., n € {5,10}), this has been done by
exhaustive search. As for bigger problem sizes, using exhaustive search or any other exact method is
not feasible in view of the NP-hardness of these decision problems, we have found the best sequence
(with respect to each of the scheduling criteria considered) by using an efficient metaheuristic, which
is allowed a long CPU time interval. More specifically, we have built a tabu search algorithm (see,
e.g., [59]). The basic outline of the algorithm is as follows.

e The neighbourhood definition includes the sum of the general pairwise interchange and insertion

neighbourhoods. Both neighbourhood definitions are widely used in the literature.

e The size of the tabu list L has been set to the maximum value between the number of jobs and the
number of machines, i.e., L = maxn,m. As the size of the list is used to avoid getting trapped
into local optima, the idea is keeping a list size related to the size of the neighbourhood.

e Asstopping criterion, the algorithm terminates after a number of iterations without improvement.
This number has been set as the minimum of 10 - n. This ensures a large minimum number of
iterations, while increasing this number of iterations with the problem size.

4. Computational Results

4.1. Dominance Relationships among Scheduling Criteria

A first goal of the experiments is to establish which scheduling criterion is more related to the
different shop floor performance measures. To check the statistical significance of the results, we test
a number of hypotheses using a one-sided test for the differences of means of paired samples (see,
e.g., [60]) for every combination of m and n. More specifically, for each pair of scheduling criteria
(A, B) and a shop floor performance measure ¢, we would like to know whether the sequence resulting
from the minimisation of scheduling criteria A yields a better value for {, denoted as {(A), than the
sequence resulting from the minimisation of scheduling criteria B. More specifically, we want to
establish the significance of the null hypothesis Hy : {(A) better than {(B) to determine whether
criterion A is more aligned with SF indicator ¢ than criterion B, or vice versa. Note that better than
may express different ordinal relations depending on the performance measure, i.e., it is better to have
a higher TH, but it is better to have lower ACT and WIP, therefore we specifically test the following
three hypotheses for every combination of scheduling criteria A and B:

Hy: TH(A) > TH(B)

Hy : TH(A) < TH(B)

with respect to throughput, and
Hy: WIP(A) < WIP(B)

79

Algorithms 2019, 12, 263

Hy : WIP(A) > WIP(B)

and
Hy: ACT(A) < ACT(B)

Hy : ACT(A) > ACT(B)

with respect to average completion time and work in process, respectively.

The results for each pair of scheduling criteria (A, B) are shown in Tables 1-10 for the different
testbeds, where p-values are given as the maximum level of significance to reject Hy (p represents the
limit value to reject hypothesis Hy resulting from a t-test, i.e., for every level of significance « < p, Hy
would have to be rejected, whereas for every & > p, Hy would not be rejected. A high p indicates that
Hj can be rejected with high level of significance, and therefore H; can be accepted.) To express it in
an informal way: a value close to zero in the column corresponding to the performance measure { in
the table comparing the pair of scheduling criteria (A, B) indicates that minimizing criterion A leads
to better values of ¢ than minimizing criterion B, whereas a high value indicates the opposite.

To make an example of the interpretation of the procedure adopted, let us take the column TH
for any of the testbeds in Table 1 (all zeros). This column shows the p-values obtained by testing
the null hypothesis that makespan minimisation produces solutions with higher throughput than
those produced by using flowtime minimisation as a scheduling criterion. Since these p-values are
zero for all problem sizes, then the null hypothesis cannot be rejected. As a consequence, we can be
quite confident (statistically speaking) that makespan minimisation is more aligned with throughput
increase than completion time minimisation.

In view of the results of the tables, the following comments can be done.

e Regarding Table 1, it is clear that makespan outperforms the total completion time regarding
throughput, and that the total completion time outperforms the makespan regarding average cycle
time. These results are known from theory and, although they could have been omitted, we include
them for symmetry. The table also shows that completion time outperforms makespan with respect
to work in process, a result that cannot be theoretically predicted. This results is obtained for all
instance sizes and different methods to generate the processing times. As a consequence, if shop
floor performance is measured using primarily one indicator, Cy;,y would be the most aligned
objective with respect to throughput, whereas }_ C; would be the most aligned with respect to
cycle time and work in process.

e From Table 2, it can be seen that makespan outperforms }_ ITH; with respect to throughput,
and, in general, with respect to ACT (with the exception of small problem instances for
certain processing times’ generation). Finally, regarding work in process, in general, makespan
outperforms) ITH; if n > m, whereas the opposite occurs if m > n.

e Tables 3 and 4 show an interesting result: despite the problem size and/or the distribution of the
processing times, makespan outperforms both }_ IT; and CTV for all three shop floor performance
measures considered. This result reveals that the minimisation of CTV or }_ IT; are poorly linked
to shop floor performance, as least compared to makespan minimisation.

e Table 5 show that, regardless the generation of processing times and/or the problem size,
completion time performs worse than }_ ITH; for makespan, whereas it outperforms it in terms of
average cycle time and work in process.

e Table 6 show that, with few exception cases, the completion time outperforms) I T] for all three
SF indicators.

e InTable 7, a peculiar pattern can be observed: while it can be that }_C; dominates CTV with
respect to the three SF indicators, this is not the case for the random processing times, as in
this case the makespan values obtained by CTV are higher than those observed for the total
completion time.

e InTables 8 and 9 it can be seen that }_ ITH; outperforms both) I Tjand CTV for all instance sizes
and all generation of the processing times. Regarding considering the heads or not in the idle time

80

Algorithms 2019, 12, 263

function, this result makes clear that idle time minimisation including the heads is better with
respect to all shop floor performance measures considered.

Finally, in Table 10 it can be seen that the relative performance of }_ IT; and CTV with respect to
the indicators depends on the type of testbed and on the problem instance size. However, in view
of the scarce alignment of both scheduling criteria with any SF already detected in Tables 3, 4, 8
and 9, these results do not seem relevant for the purpose of our analysis.

If a trade-off between two shop floor performance measures is sought, for each pair of indicators
it is possible to represent the set of efficient scheduling criteria in a multi-objective manner,
i.e., criteria for which no other criterion in the set obtains better results with respect to both two
indicators considered. This set is represented in Table 11, and it can be seen that completion time
minimisation is the only efficient criterion to minimise both WIP and ACT. In contrast, if TH is
involved in the trade-off, a better value for TH (and worse for ACT and WIP) can be obtained by
minimising)} ITH;, and a further better value for TH (at the expenses of worsening ACT and
WIP) would be obtained by minimising Ciqx-

Table 1. Maximum level of p-values regarding the pair (C;;,,y, 2 C]*) for different testbeds.

LC MC HC NC
n m TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
5 10 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
10 5 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
10 10 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
20 10 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
20 20 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
20 50 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
50 10 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
50 20 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
50 50 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0 0.0 100.0 100.0
Table 2. p-values for rejecting the hypotheses regarding the pair (Cj;,,, Y. ITH]‘) for different testbeds.
LC MC HC NC
n m TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 0.0 0.0 0.0 0.0 100 97.1 0.0 0.0 0.0 0.0 0.0 0.0
5 10 0.0 0.0 85.9 0.0 100 100.0 0.0 0.0 100.0 0.0 0.0 100.0
10 5 0.0 0.0 0.0 0.0 100 0.1 0.0 0.0 0.0 0.0 0.0 100.0
10 10 0.0 0.0 74.9 0.0 100 100.0 0.0 0.0 0.2 0.0 0.0 100.0
20 10 0.0 0.0 0.0 0.0 016 100.0 0.0 0.0 0.1 0.0 0.0 100.0
20 20 0.0 0.0 100.0 0.0 0 97.9 0.0 0.0 7.4 0.0 0.0 100.0
20 50 0.0 0.0 100.0 0.0 0 100.0 0.0 0.0 100.0 0.0 0.0 100.0
50 10 0.0 0.0 0.0 0.0 0 18.1 0.0 0.0 0.0 0.0 0.0 0.0
50 20 0.0 0.0 0.0 0.0 0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
50 50 0.0 0.0 100.0 0.0 0 100.0 0.0 0.0 100.0 0.0 0.0 100.0
0.0 00 461 0.0 400 713 0.0 0.0 408 0.0 0.0 700
Table 3. p-values for rejecting the hypotheses Hy regarding the pair (Cjqy, Y 1 T]*) for different testbeds.
LC MC HC NC
nom TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

81

Algorithms 2019, 12, 263

Table 3. Cont.

LC MC HC NC
nom TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
20 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4. p-values for rejecting the hypotheses Hj regarding the pair (C;;,,, CTV*) for different testbeds.

LC MC HC NC

nom TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 5. p-values for rejecting the hypotheses Hy regarding the pair (1 C;, ITH") for different testbeds.

LC MC HC NC
n m TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP

5 5 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
5 10 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
10 5 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
10 10 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
20 10 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
20 20 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
20 50 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
50 10 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
50 20 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
50 50 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0
100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0 100.0 0.0 0.0

Table 6. p-values for rejecting the hypotheses Hy regarding the pair (3 C]*, IT*) for different testbeds.

LC MC HC NC

n m TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 5 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0
10 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
20 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 50 95.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.9 0.0 0.0
50 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.6 0.0 0.0
50 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
50 50 98.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.1 0.0 0.0

82

Algorithms 2019, 12, 263

Table 7. Maximum level of significance for rejecting the hypotheses Hy regarding the pair (1 C/’f, CTV*)

for different testbeds.
LC MC HC NC

n m TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 97.4 0.0 0.0
5 10 99.9 0.0 0.0 27.5 0.0 0.0 93.6 0.0 0.0 100.0 0.0 0.0
10 5 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.4 0.0 0.0
10 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
20 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
20 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
20 50 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
50 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
50 50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
30.0 0.0 0.0 2.8 0.0 0.0 9.4 0.0 0.0 79.7 0.0 0.0

Table 8. p-values for rejecting the hypotheses Hj regarding the pair (ITH*, IT*) for different testbeds.

LC MC HC NC

n m TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 5 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0
10 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
20 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 50 95.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.9 0.0 0.0
50 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.6 0.0 0.0
50 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
50 50 98.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.1 0.0 0.0

Table 9. p-values for rejecting the hypotheses Hj regarding the pair (I TH;,CTV*) for different

testbeds.
LC MC HC NC

n m TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 5 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.8 0.0 0.0
10 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
20 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
20 50 95.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 96.9 0.0 0.0
50 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 94.6 0.0 0.0
50 20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
50 50 98.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
29.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.1 0.0 0.0

83

Algorithms 2019, 12, 263

Table 10. p-values for rejecting the hypotheses Hy regarding the pair (IT*, CTV*) for different testbeds.

LC MC HC NC

n m TH ACT WIP TH ACT WIP TH ACT WIP TH ACT WIP
5 5 100.0 100.0 100.0 100.00 100.0 67.97 7.29 0.03 0.00 100.0 100.0 100.0
5 10 100.0 100.0 0.0 100.0 100.00 0.00 100.0 100.0 0.0 100.0 100.0 0.0
10 5 0.0 99.96 100.0 6.96 100.0 100.0 0.0 100.0 100.0 7.94 100.0 100.0
10 10 100.0 100.0 100.0 100.0 100.00 98.09 100.00 100.0 100.0 100.0 100.0 100.0
20 10 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0
20 20 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
20 50 100.0 100.0 643 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0
50 10 100.0 100.0 100.0 100.0 100.0 100.0 8.4 100.0 100.0 0.0 100.0 100.0
50 20 1.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 100.0 100.0
50 50 0.0 1.2 100.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 100.0 100.0
70.1 89.0 864 100.0 100.0 100.0 63.6 1000 88.9 66.7 1000 80.0

Table 11. Efficient criteria for each pair of SF indicators.

SF Indicators Efficient Scheduling Criteria
(WIP, ACT))N
(WIP,TH) ZC],ZITH]/ Cmax
(ACT, TH) ZC]',):,ITH]', Cinax

4.2. Ranking of Scheduling Criteria

In this section, we further try to explore the trade-off among the different criteria by answering
the following question: Once we choose certain scheduling criterion according to the aforementioned
ranking, how are the gains (or losses) that we can expect in the different shop floor performance
measures when we switch from one scheduling criterion to another. More formally, we intend to
quantify the difference between picking one scheduling criterion or another for a given shop floor
performance measure. To address this issue, we define the RDp); or Relative Deviation with respect to
a given PM (performance measure) in the following manner.

PM(S4) — PM(S p+)

RD(A)pm = PM(S4+)

-100)

where PM(S 4) is the value of PM obtained for the sequence S4 which minimises scheduling criterion
A. Analogously, S 4+ is the sequence obtained by minimising scheduling criterion A", being A™ the
scheduling criterion ranking immediately behind A for the performance measurement PM. When A is
the scheduling criterion ranking last for PM, then RD is set to zero.

Note that this definition of RD allows us to obtain more information than the mere rank of
scheduling criteria. For instance, let us consider the scheduling criteria A, B, and C, which rank
(ascending order) with respect to the performance measure PM in the following manner: B, C, A.
This information (already obtained in Section 4.1) simply states that B (C) is more aligned that C (A)
with respect to performance measure PM, but does not convey information on whether there are
substantial differences between the three criteria for PM, or not. This information can be obtained
by measuring the corresponding RD: If RD(B) is zero or close to zero, it implies that B and C yield
similar values for PM, and therefore there is not so much difference (with respect to PM) between
minimizing B, or C. In contrast, a high value of RD(C) indicates a great benefit (with respect to PM)
when switching from minimizing A to minimizing C.

Since RD is defined for a specific instance, we use the Average Relative Deviation (ARD) for
comparison across the testbed, consisting in averaging the RDs. The results of the experiments for
the different testbeds with respect to ARD are shown in Tables 12-15, together with the rank of each
criterion for each problem size. In addition, the cumulative ARD of the scheduling criteria for each
shop floor performance measures are shown in Figure 2 for the different testbed. In view of the results,
we give the following comments.

84

Algorithms 2019, 12, 263

16T 000 Z¥9 188 €I'¢ €T 600 20T ¢Sl 081 00T ST0 /8¢ 0T 06€
@) (9 (© (1 @ (© ()] (@ (1 #) (© ()] (@ ®»
96T 000 SL1 a9 0t €00 000 ITIT 611 Trl L1 000 €90 480 ¥09 0SS 0S
#) (9 (© (1 @ (€ ()] #) (1 @ ()] © (@) (D
L£T 000 9TF €01 997§ 8I'0 000 IFE 9641 €50 000 990 6F¢ g0 IS 0T 08
©) (© (D (@ #) ()] (€ (D @ ()] (© (@) (D
€0C 000 II'6 /981 SL€ 0% 000 6T ¥8°€C S6'1 000 IT0 196 /8T 041 0T 0S
©) (€ (D (@ ©)) (@ (D (€ (@ #) (© ()] (D
06C 000 9€C 0TS 8¢ 000 00 €871 9901 8T0 00 €I0 /T€ 000 6% 05 0¢
©) (€ (D (@ # 9 (@ (D (€ (© 9 (@ #) (D
€8¢ 000 FIF 174 LFY 9¢T 000 10T 971 ST 6T 000 €61 90 1S 0T 0T
©) (€ (D (@ @ ()] (@ (D ()] #) (© (@ © (D
ITT 000 S 1TTL 89T Ve 000 460 8861 1ST LIT SF0 1TS 000 L€ 0L 0¢
(©) (€ (D @ @ © (@ (D (© (€ © (@ (2] (D
LEF 000 /89 0TL 9T 880 000 14T 65€l LIT 9€T 000 99T 0€T €IS 0L O
(9 (© (D (@ # (%) (@ (D (€) ¥ (€) (@ @
00T 000 06CI €001 ¥TT ST 000 ¥S0 881 86F 460 €TO0 IS8 000 ¢8I ¢ 0T
® C) (© (D (@ ©)) (@ (D (€) (€) (%) (@ ®»
99C 000 8¢S 68s 16T 000 ¥90 ¥TI 886 €£T 0ST 000 8F1 68T 6T 0L S
2 (9 (© (D (@ 2 ()] (© (1 @ (© ()] (@ ®»
L% 000 ¥T6 ¥e9 76T 960 000 6% el S50 0 000 €09 89¢ 01T & §
ALD IR fHIIZ X wrmy ALD IR fHIIZ X wrmy ALD IR HIIZ DX omy w ow
dIM IOV HL

*Pag-1$9) WOPUEI 9y} J0J LLIDYLID SUTNPaYds oy Jo (sasayjuared ur) syuer pue ((¥V) UOHLRIAI(] dATR[oY 93eIoAY “TL d[qeL

85

Algorithms 2019, 12, 263

9¢0 100 101 LT 610 I€0 000 6T0 €T 910 600 100 8§F0 S0 610
(9 #) (€ n @) ()] @ (1) ()] ()] ()] @ & (D
000 <00 ¥TT 61 120 o 000 1€0 8¢ €0 000 900 0TI W0 TS0 0S 09
(2] (9 (€ (1) @ #) ()] (© (1) (] ()] #) (@ (€ (1)
FI0 000 THO $L0 €10 ¥I0 000 0T0 60 400 000 100 €10 800 £00 0T 08
(2] (9 (€ (1) @ #) ()] (€ (1) (] #) ()] (@ (€ (1)
9T 000 90T w6 6%0 9TT 000 860 €801 90 ¥C0 000 880 0€0 ¥C0 0L 08
(2] (9 (€ (1) @ #) ()] (@ (1) (€ (€ #) @ ()] (1
€00 000 €90 80 010 000 000 610 680 SO0 200 T00 6£0 000 620 0S 0T
) (9 (€ (1) @ (2] ()] (@ (1) (€ (2] ©) @ (© (1
¥£0 000 6€1 9T 620 €90 000 SO0 ¥ST ST0 ¥I0 000 €80 9T0 ¥€0 0T 0¢
(2] (9 (€ (1) @ (2] ()] (€ (1) @ (2] ()] @ (€ (1
80 000 /80 960 /T0 120 000 %50 €T 610 400 000 620 ¥I0 600 O 0C
(2] (9 (€ (1) @ (2] © (@ (1) (€ (2] (© @ (© (1)
W0 000 440 6g0 STO £T0 000 000 00T TE€0 90 000 T€0 ST0 ST0 O O
2 (9 (© o @) (%) (€) (n @ (€)) (@ @ @
00 000 ¥L0 990 900 0r0 000 6£0 80T €00 00 SO0 I€0 000 €00 S 0T
(2] (9 (€ (1) @ ()) @ (1) (€) (€) (9) @)) (1)
600 000 TTO 0 800 000 TO0 000 k0 400 €00 000 €10 600 800 0L §
(2] (9 (€ n @ #) ()] (© (1) @ #) ()] @ ©
00 000 120 o ¥I0 00 000 T€0 €80 SO0 10 000 €£0 900 800 S S
ALD IIX 'HIIZ X wrmy ALD IR fHIIX X vy ALD 11X fHIIZ DX omy w ow
dIM LOV H.L

Pag-159) DT AU} 10§ LI Surnpayds ay) Jo (sasayjuared ur) syyuer pue ((YV) UOHRIAD(] dANR[RY] 98 IdAy €T d[qe],

86

Algorithms 2019, 12, 263

610 000 6g'0 990 900 cro 100 110 ¥6'0 TI'0 800 000 €0 800 010

#) ©) (€ n @) ()] (@ (1 (© #) ©) @ ©
o 000 S€0 60 00 600 000 SO0 850 600 $00 000 910 L000 600 0S 08
#) (©) (€) (1) (@) ()] (@ (D (© #) ©) @ (€ (1)
6c0 000 €70 60 110 §T0 000 10 T 200 00 000 010 110 600 0T 08
#) ©) (€ (1) (@ #) ()] (@ (D (©) #) ()] @ (€ (1)
9¢0 000 €90 88T 900 0€0 000 I€0 0T 100 00 000 €10 010 S00 0L 0§
#) ()] (€ (1) (@ #) ()] (@ (D (€ #) (©) @ (€ (1)
600 000 690 8€0 S00 00 000 <TI0 /80 £00 900 000 FO0 900 8I0 05 0T
#) (©) (€ (1) (@ #) ()] (@ (D (€ #) (©) @ (€ (1)
9T0 000 6€0 V0 800 0T0 000 100 L0 800 000 000 TTO 800 600 0T 0¢T
#) ()] ()] (1) (@ #) © (@ (D (€) (©) @ (€ (1)
0T0 000 IS0 180 200 L0 000 ¥00 660 €C0 900 000 910 000 400 O 0C
(2] (© (€ (1) (@ (2] ()] (@ (D (€ (2] (©) @ (€ (1)
8T0 000 160 90 800 00 000 600 080 6£0 LT0 000 £T0 ST0 410 0L O
) (9 (€ o @ (2] (%) (@ (D (© (9 (2l @ © @
8T0 000 ¥H0 090 00 6T0 000 Z1°0 980 200 000 100 TZO G0 €0 § O0r
) (9 (€ o @ (9 (2] (@ (D (© (2 (9 (@ ©
U0 000 FLO geo0 <00 000 IT0 010 6L0 800 ¥C0 000 60 100 910 O0I ¢
#) ©) ()] n @) ()] (@ (1 (€ #) ©) (4] © ()
0ro 000 8F0 80 500 000 000 100 60 020 110 000 610 L00 900 S §
ALD IR HIIR X vy ALD LIX 'HIIR X wwy ALD IR HIIZ DX vy w ow
dIM LOV HL

Pag-159) DA Y} 105 LIy Surmnpayps oy Jo (sasayjuared ur) syyuer pue ((TYV) UOHRIAD(] ALY 98eIdAY “FT d[qel,

87

Algorithms 2019, 12, 263

91’0 000 770 ¢s0 £00 cro 100 10 L£0 <00 ¥00 100 0T0 600 200

#) ()] (€ n @) ()] (@ (1 (©) ©) #) (4] ©
600 000 £4£0 F0 200 €r0 000 ¥00 90 SO0 000 €00 610 900 Z00 05 08
#) (©) (€) (1) (@) ()] (@ (D (©) #) ©) @ () (1)
610 000 T€0 €80 00 910 000 100 860 L0 $00 000 TT0 900 S00 0T 08
#) ()] (€ (1) @) ()] (© (D (@ ©) #) @ (€ (1)
IO 000 £E€0 LT 900 €0 000 10 [TT €00 000 000 IO €00 200 0l 0§
#) ©) (€ (1) (@ ()] #) (@ (D (€ #) (©) @ (€ (1)
U0 000 £E€0 0T0 €00 000 000 £00 €0 100 00 000 0TO 1o 110 05 0¢
#) (©) (€ (1) @ #) ()] (€ (D (@ #) (©) @ (€ (1)
0£0 000 SE€0 W0 110 610 000 110 040 000 0 000 810 00 TIT0 0T O0C
(2] (©) (€ (1) (@ #) ()] (€ (D (@ #) ©) @ (€ (1)
80 000 0S0 L0 400 ¥20 000 920 460 200 800 000 40 800 400 0L 0¢
(2] (©) (€ (1) @ (2] © (€ (D (@ (2] (©) @ (€ (1)
o 000 950 €0 600 €r0 000 ¢TO 190 100 600 000 0T0 IO 800 O O
(2 (9 (€ o @ (2] (%) (© (D (@ (9 (2l @ © @
Tr0 000 990 90 €00 IO 000 €£0 660 €00 000 <00 S€0 900 T00 S 0T
) (9 (€ o @ ()} (2] (@ (D (© (© (9 (@ ®»
9’0 000 80 810 TI0 000 €00 200 60 TT0 00 000 00 ¥C0 910 0T §
()] #) (€ n @ ()] #) (© (1 (@ (©) #) (4] ©
000 00 870 6c0 110 000 SO0 910 650 £00 000 100 920 800 S0 § §
ALD IX 'HIIZ X wrwy ALD 11X 'HIIZ DX wwy ALD IR HIIZ DX vmy w ow
dIM LOV HL

*Pag-1s9) DH 9y} 10§ LI Surnpayds ay) jo (sasayyuared ur) syuer pue (([¥V) UOIRIAS(] dATR[RY] 98eIoAY ST d[qeL

88

Algorithms 2019, 12, 263

_TH

TH

— Cinas

= LG

— YITH,
—_ 5 =

= % AT
Ly, ITH, 5, T

0 A \ s
— o A~ \\

wie ACT

wip ACT

(a) NC testbed (b) LC testbed
T L TH
=4 2 =B
f 0 o -y
o ¥, ITH, ¥, T,
e/ X, A T
41 A\ — CTV - TV
_— “\\
wip T e wip AcT
() MC testbed (d) HC testbed

Figure 2. Relative performance of the criteria for the different testbeds.

e) ITH; emerges as an interesting criterion as its performance is only marginally worse than Cysax
with respect to TH—particularly in the NC testbed, see Figure 2a, but it obtains better values
regarding ACT and WIP. Similarly, although it performs worse than }_C; for ACT and WIP,

it performs better in terms of throughput.
e The differences in ARD for throughput are, in general, smaller than those for ACT and WIP.

For the correlated test-beds (LC to HC), the differences never reach 1%. This speaks for the little
difference between minimising any of the scheduling measures if throughput maximisation is
sought. The highest differences are encountered for the random test-bed (~6%).

e The differences in all measures for structured instances are smaller than for random test-bed.
For instance, whereas makespan ranks first for TH (theoretically predictable), the maximum
ARD for a given problem size in the random test-bed is 6.04%, whereas this is reduced to 0.52%
for LC, and to 0.16% for HC. Analogously, the maximum differences between the completion
time (ranking first for ACT) and the next criterion raise up to 23.84% for the random test-bed
while dropping to 1.27% for HC. This means that the structured problems are easier than random
problems because the distribution of the processing times flattens the objective functions, at least
with respect to the considered shop floor performance measures.

5. Conclusions and Further Research

An extensive computational study has been carried out in order to analyse the links between
several scheduling criteria in a flowshop and well-known shop floor performance measures. These
results give some insights into the nature of these links, which can be summarised as follows.

e Roughly speaking, we could divide the considered scheduling criteria into two big categories:
those tightly related to any (some) shop floor performance measure, and those poorly related to

89

Algorithms 2019, 12, 263

SF performance. Among the later, we may classify CTV and }_ IT;. Nevertheless, this is not meant
to say that these criteria are not useful. However, from a shop floor performance perspective,
it may be interesting to investigate whether these scheduling criteria relate to other performance
measures. Perhaps extending the analysis to a due date scenario might yield some positive answer.

e Makespan matches (as theoretical predicted) throughput maximisation better than any other
considered criteria. However, it turns out that differences between its minimisation and the
minimisation of other criteria with respect to throughput are very small. Additionally, given the
relatively poor performance of makespan with respect to ACT, one might ask whether makespan
minimisation pays off for many manufacturing scenarios in terms of shop floor performance
as compared, e.g., to completion time or }_ ITH; minimisation. A positive answer seems to be
confined to these scenarios where costs associated to cycle time are almost irrelevant as compared
to costs related to machine utilisation. The fact that this situation is not common in many
manufacturing scenarios may lead to the lack of practical descriptions on the application of this
criteria already discussed by [4].

e Completion time minimisation matches extremely well both work in process and average
cycle time minimisation (the latter being theoretical predictable), better than any other criteria.
In addition, the rest of the scheduling criteria perform much worse. Therefore, completion time
minimisation emerges as a major criterion when it comes to increase shop floor performance.
This empirical reasoning indicates the interest of the research on completion time minimisation
rather than on other criteria, at least within the flowshop scheduling context.

e The minimisation of idle time (including the heads) performs better than completion time with
respect to throughput. However, its performance is substantially worse than completion time
regarding ACT and WIP. Hence, it seems an interesting criterion when throughput maximisation
is the most important performance measure but work-in-process costs are not completely irrelevant.

e With respect to the influence of the test-bed design on the results, there are noticeable differences
between the overall results obtained in the correlated test-beds (LC-HC), and those obtained
from the random test-bed. In general, the introduction of structured processing times seems to
reduce the differences between the scheduling criteria. At a first glance, this means that random
processing times make it difficult to achieve a good shop floor performance by the application of
a specific scheduling criterion. It is widely know that random problems produce difficult instances
in the sense that there were high differences between bad and good schedules (with respect to
a given scheduling criterion), at least for the makespan criterion. In view of the results of the
experiments, we can also assert that these also translate into shop floor performance measures.

From these results, some aspects warrant future research:

e) ITH; emerges as an interesting scheduling criterion, with virtues in between makespan and
completion time. For most of the problem settings, it compares to makespan in terms of cycle time,
and it outperforms total completion time in terms of throughput. In view of these results, perhaps
it is interesting devoting more efforts to flowshop minimisation with this criterion, which so far
has been used only as a secondary tie-breaking rule. Interestingly, the results in this paper might
suggest that its excellent performance in terms of tie-breaking rule is motivated by its alignment
with shop floor performance.

e While it is possible to perfectly match the shop floor objectives of throughput and average cycle
time with scheduling criteria (makespan and completion time, respectively), WIP cannot be
linked to a scheduling criterion in a straightforward manner. Although the minimisation of
completion time achieves the best results for WIP minimisation among the tested criteria, “true”
work-in-process optimization is not the same as completion time minimisation. Here, the quotient
between total completion time and makespan emerges as a “combined” scheduling criteria which
may be worth of research as it matches an important shop floor performance measure such as
work-in-process minimisation.

90

Algorithms 2019, 12, 263

The results of the present study are limited by the shop layout (i.e., the permutation flowshop)
and the scheduling criteria (i.e., not due date-related criteria) considered. Therefore, an obvious
extension of this study is to analyse other environments and scheduling measures. Particularly,
the inclusion of due date related criteria could provide some additional insights on the linkage
between these and the shop floor performance measures, as well as between the due date and
non-due date scheduling criteria.

Author Contributions: Methodology,] M.E. and R.L.; Writing—original draft,] M.E; Writing —review & editing,
J.M.E. and R.L.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hopp, W.; Spearman, M. Factory Physics. Foundations of Manufacturing Management, 3rd ed.; Irwin: New York,
NY, USA, 2008.

2. Framinan, J.; Leisten, R.; Ruiz, R. Manufacturing Scheduling Systems: An Integrated View on Models, Methods
and Tools; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1-400.

3. Aytug, H,; Lawley, M.A.; McKay, K.; Mohan, S.; Uzsoy, R. Executing production schedules in the face of
uncertainties: A review and some future directions. Eur. J. Oper. Res. 2005, 161, 86-110. [CrossRef]

4. Conway, R.; Maxwell, W.L.; Miller, L.W. Theory of Scheduling; Dover: Mineola, NY, USA, 1967.

5. Dudek, R.A; Panwalkar, S.S.; Smith, M.L. The Lessons of Flowshop Scheduling Research. Oper. Res. 1992,
40,7-13, [CrossRef]

6. Fernandez-Viagas, V.; Ruiz, R.; Framinan,]. A new vision of approximate methods for the permutation
flowshop to minimise makespan: State-of-the-art and computational evaluation. Eur. J. Oper. Res. 2017,
257,707-721. [CrossRef]

7. Fernandez-Viagas, V.; Framinan, . A beam-search-based constructive heuristic for the PFSP to minimise
total flowtime. Comput. Oper. Res. 2017, 81, 167-177. [CrossRef]

8. Fernandez-Viagas, V.; Framinan, J. A new set of high-performing heuristics to minimise flowtime in
permutation flowshops. Comput. Oper. Res. 2015, 53, 68-80. [CrossRef]

9. Framinan, J; Leisten, R.; Rajendran, C. Different initial sequences for the heuristic of Nawaz, Enscore and
Ham to minimize makespan, idletime or flowtime in the static permutation flowshop sequencing problem.
Int. J. Prod. Res. 2003, 41, 121-148. [CrossRef]

10. Benkel, K,; Jornsten, K.; Leisten, R. Variability aspects in flowshop scheduling systems. In Proceedings
of the 2015 International Conference on Industrial Engineering and Systems Management (IESM), Seville,
Spain, 21-23 October 2015; pp. 118-127.

11. Maassen, K; Perez-Gonzalez, P.; Framinan,].M. Relationship between common objective functions, idle time
and waiting time in permutation flowshop scheduling. In Proceedings of the 29th European Conference on
Operational Research (EURO 2018), Valencia, Spain, 8-11 July 2018.

12. Maassen, K.; Perez-Gonzalez, P. Diversity of processing times in permutation flow shop scheduling problems.
In Proceedings of the 66th Operations Research Conference, Dresden, Germany, 3-6 September 2019.

13. Liao, CJ.; Tseng, C.T.; Luarn, P. A discrete version of particle swarm optimization for flowshop scheduling
problems. Comput. Oper. Res. 2007, 34, 3099-3111. [CrossRef]

14. Liu, W, Jin, Y; Price, M. A new Nawaz-Enscore-Ham-based heuristic for permutation flow-shop problems
with bicriteria of makespan and machine idle time. Eng. Optim. 2016, 48, 1808-1822. [CrossRef]

15. Sridhar, J.; Rajendran, C. Scheduling in flowshop and cellular manufacturing systems with multiple
objectives-a genetic algorithmic approach. Prod. Plan. Control 1996, 7, 374-382. [CrossRef]

16. Ho, J.; Chang, Y.L. A new heuristic for the n-job, M-machine flow-shop problem. Eur.]. Oper. Res. 1991,
52,194-202. [CrossRef]

17. Fernandez-Viagas, V.; Framinan, J. On insertion tie-breaking rules in heuristics for the permutation flowshop
scheduling problem. Comput. Oper. Res. 2014, 45, 60-67. [CrossRef]

18. Fernandez-Viagas, V.; Framinan,]. A best-of-breed iterated greedy for the permutation flowshop scheduling

problem with makespan objective . Comput. Oper. Res. 2019, 112, 104767. [CrossRef]

91

Algorithms 2019, 12, 263

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.
35.
36.

37.
38.

39.

40.

41.

42.

43.

44.

King, J.; Spachis, A. Heuristics for flow-shop scheduling. Int. . Prod. Res. 1980, 18, 345-357. [CrossRef]
Merten, A.; Muller, M. Variance minimization in single machine sequencing problems. Manag. Sci. 1972,
18,518-528. [CrossRef]

Kanet, J.J. Minimizing variation of flow time in single machine systems. Manag. Sci. 1981, 27, 1453-1464.
[CrossRef]

Baker, K.R; Scudder, G.D. Sequencing with earliness and tardiness penalties. A review. Oper. Res. 1990,
38, 22-36. [CrossRef]

Gupta, M.; Gupta, Y.; Bector, C. Minimizing the flow-time variance in single-machine systems. J. Oper. Res.
Soc. 1990, 41, 767-779. [CrossRef]

Cai, X.; Cheng, T. Multi-machine scheduling with variance minimization. Discret. Appl. Math. 1998, 84, 55-70.
[CrossRef]

Cai, X. V-shape property for job sequences that minimize the expected completion time variance. Eur. |.
Oper. Res. 1996, 91, 118-123. [CrossRef]

Marangos, C.; Govande, V.; Srinivasan, G.; Zimmers, E., Jr. Algorithms to minimize completion time
variance in a two machine flowshop. Comput. Ind. Eng. 1998, 35, 101-104. [CrossRef]

Gowrishankar, K.; Rajendran, C.; Srinivasan, G. Flow shop scheduling algorithms for minimizing the
completion time variance and the sum of squares of completion time deviations from a common due date.
Eur. J. Oper. Res. 2001, 132, 643-665. [CrossRef]

Leisten, R.; Rajendran, C. Variability of completion time differences in permutation flow shop scheduling.
Comput. Oper. Res. 2015, 54, 155-167. [CrossRef]

Ganesan, V.; Sivakumar, A.; Srinivasan, G. Hierarchical minimization of completion time variance and
makespan in jobshops. Comput. Oper. Res. 2006, 33, 1345-1367. [CrossRef]

Gajpal, Y;; Rajendran, C. An ant-colony optimization algorithm for minimizing the completion-time variance
of jobs in flowshops. Int. |. Prod. Econ. 2006, 101, 259-272. [CrossRef]

Krishnaraj, J.; Pugazhendhi, S.; Rajendran, C.; Thiagarajan, S. A modified ant-colony optimisation algorithm
to minimise the completion time variance of jobs in flowshops. Int. J. Prod. Res. 2012, 50, 5698-5706.
[CrossRef]

Krishnaraj, J.; Pugazhendhi, S.; Rajendran, C.; Thiagarajan, S. Simulated annealing algorithms to minimise
the completion time variance of jobs in permutation flowshops. Int. J. Ind. Syst. Eng. 2019, 31, 425-451.
[CrossRef]

Goldratt, E. The Haystack Syndrome: Shifting Information out of the Data Ocean; North River Press:
Croton-on-Hudson, NY, USA, 1996.

Nahmias, S. Production and Operations Analysis; Irwin: Homewood, IL, USA, 1993.

Wiendahl, H.P. Load-Oriented Manufacturing Control; Springer: Berlin/Heidelberg, Germany, 1995.

Li, W,; Dai, H.; Zhang, D. The Relationship between Maximum Completion Time and Total Completion
Time in Flowshop Production. Procedia Manuf. 2015, 1, 146-156. [CrossRef]

Land, M. Parameters and sensitivity in workload control. Int. . Prod. Econ. 2006, 104, 625-638. [CrossRef]
Thiirer, M.; Stevenson, M.; Land, M.; Fredendall, L. On the combined effect of due date setting, order release,
and output control: An assessment by simulation. Int. . Prod. Res. 2019, 57, 1741-1755. [CrossRef]

Land, M. Workload in Job Shop, Grasping the Tap. Ph.D. Thesis, University of Groningen, Groningen,
The Netherlands, 2004.

Wiendahl, H.P; Glassner, J.; Petermann, D. Application of load-oriented manufacturing control in industry.
Prod. Plan. Control 1992, 3, 118-129. [CrossRef]

Grewal, N.S.; Bruska, A.C.; Wulf, T.M.; Robinson,].K. Integrating targeted cycle-time reduction into the
capital planning process. In Proceedings of the 1998 Winter Simulation Conference, Washington, DC, USA,
13-16 December 1998; Volume 2, pp. 1005-1010.

Leachman, R.; Kang, J.; Lin, V. SLIM: Short cycle time and low inventory in manufacturing at Samsung
electronics. Interfaces 2002, 32, 61-77. [CrossRef]

Sandell, R.; Srinivasan, K. Evaluation of lot release policies for semiconductor manufacturing systems.
In Proceedings of the 1996 Winter Simulation Conference, Coronado, CA, USA, 8-11 December 1996;
pp- 1014-1022.

Abedini, A.; Li, W.; Badurdeen, E; Jawahir, I. Sustainable production through balancing trade-offs among
three metrics in flow shop scheduling. Procedia CIRP 2019, 80, 209-214. [CrossRef]

92

Algorithms 2019, 12, 263

45.
46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Bestwick, P.E; Hastings, N. New bound for machine scheduling. Oper. Res. Q. 1976, 27, 479-487. [CrossRef]
Lahiri, S.; Rajendran, C.; Narendran, T. Evaluation of heuristics for scheduling in a flowshop: A case study.
Prod. Plan. Control 1993, 4, 153-158. [CrossRef]

Taillard, E. Benchmarks for Basic Scheduling Problems. Eur. J. Oper. Res. 1993, 64, 278-285. [CrossRef]
Vallada, E.; Ruiz, R.; Framinan, J. New hard benchmark for flowshop scheduling problems minimising
makespan. Eur. . Oper. Res. 2015. 240, 666—677. [CrossRef]

Demirkol, E.; Mehta, S.; Uzsoy, R. Benchmarks for shop scheduling problems. Eur.]. Oper. Res. 1998,
109, 137-141. [CrossRef]

Campbell, H.G.; Dudek, R.A.; Smith, M.L. A Heuristic Algorithm for the n Job, m Machine Sequencing
Problem. Manag. Sci. 1970, 16, B-630-B-637. [CrossRef]

Dannenbring, D.G. An evaluation of flowshop sequencing heuristics. Manag. Sci. 1977, 23, 1174-1182.
[CrossRef]

Amar, A.D.; Gupta,]. Simulated versus real life data in testing the efficiency of scheduling algorithms.
IIE Trans. 1986, 18, 16-25. [CrossRef]

Panwalkar, S.S.; Dudek, R.; Smith, M.L. Sequencing research and the industrial scheduling problem.
In Symposium on the Theory of Scheduling and Its Applications; Springer: Berlin/Heidelberg, Germany, 1973;
pp- 29-38.

Rinnooy Kan, A. Machine Scheduling Problems; Martinus Nijhoff: The Hague, The Netherlands, 1976.
Lageweg, B.; Lenstra, J.; Rinnooy Kan, A. A general bounding scheme for the permutation flow-shop
problem. Oper. Res. 1978, 26, 53-67. [CrossRef]

Reeves, C. A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 1995, 22, 5-13. [CrossRef]
Watson, J.P.; Barbulescu, L.; Whitley, L.; Howe, A. Contrasting structured and random permutation
flow-shop scheduling problems: Search-space topology and algorithm perfomance. INFORMS . Comput.
2002, 14, 98-123. [CrossRef]

Park, Y.; Pegden, C.; Enscore, E. A survey and evaluation of static flowshop scheduling heuristics. Int. J.
Prod. Res. 1984, 22, 127-141. [CrossRef]

Hoos, H.H.; Stiitzle, T. Stochastic Local Search: Foundations and Applications; Elsevier: Amsterdam, The
Netherlands, 2005.

Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2006.

® (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

93

algorithms ﬁw\n\py

Atrticle

Two-Machine Job-Shop Scheduling Problem
to Minimize the Makespan with Uncertain
Job Durations

Yuri N. Sotskov *, Natalja M. Matsveichuk % and Vadzim D. Hatsura 3

1 United Institute of Informatics Problems, National Academy of Sciences of Belarus, Surganova Street 6,

220012 Minsk, Belarus

Department of Automated Production Management Systems, Belarusian State Agrarian Technical
University, Nezavisimosti Avenue 99, 220023 Minsk, Belarus; matsveichuk@tut.by

Department of Electronic Computing Machines, Belarusian State University of Informatics and
Radioelectronics, P. Brovki Street 6, 220013 Minsk, Belarus; vadimgatsura@gmail.com

* Correspondence: sotskov48@mail.ru; Tel.: +375-17-284-2120

Received: 30 October 2019; Accepted: 16 December 2019; Published: 20 December 2019

Abstract: We study two-machine shop-scheduling problems provided that lower and upper bounds
on durations of # jobs are given before scheduling. An exact value of the job duration remains
unknown until completing the job. The objective is to minimize the makespan (schedule length).
We address the issue of how to best execute a schedule if the job duration may take any real value
from the given segment. Scheduling decisions may consist of two phases: an off-line phase and an
on-line phase. Using information on the lower and upper bounds for each job duration available
at the off-line phase, a scheduler can determine a minimal dominant set of schedules (DS) based
on sufficient conditions for schedule domination. The DS optimally covers all possible realizations
(scenarios) of the uncertain job durations in the sense that, for each possible scenario, there exists at
least one schedule in the DS which is optimal. The DS enables a scheduler to quickly make an on-line
scheduling decision whenever additional information on completing jobs is available. A scheduler
can choose a schedule which is optimal for the most possible scenarios. We developed algorithms
for testing a set of conditions for a schedule dominance. These algorithms are polynomial in the
number of jobs. Their time complexity does not exceed O(n?). Computational experiments have
shown the effectiveness of the developed algorithms. If there were no more than 600 jobs, then all
1000 instances in each tested series were solved in one second at most. An instance with 10,000 jobs
was solved in 0.4 s on average. The most instances from nine tested classes were optimally solved.
If the maximum relative error of the job duration was not greater than 20%, then more than 80% of
the tested instances were optimally solved. If the maximum relative error was equal to 50%, then 45%
of the tested instances from the nine classes were optimally solved.

Keywords: scheduling; uncertain duration; flow-shop; job-shop; makespan criterion

1. Introduction

A lot of real-life scheduling problems involve different forms of uncertainties. For dealing with
uncertain scheduling problems, several approaches have been developed in the literature. A stochastic
approach assumes that durations of the jobs are random variables with specific probability distributions
known before scheduling. There are two types of stochastic scheduling problems [1], where one is on
stochastic jobs and another is on stochastic machines. In the stochastic job problem, each job duration
is assumed to be a random variable following a certain probability distribution. With an objective of
minimizing the expected makespan, the flow-shop problem was considered in References [2—4]. In the

Algorithms 2020, 13, 4; d0i:10.3390/a13010004 95 www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 4

stochastic machine problem, each job duration is a constant, while each completion time of the job is
a random variable due to the machine breakdown or nonavailability. In References [5-7], flow-shop
problems to stochastically minimize the makespan or total completion time have been considered.

If there is no information to determine a probability distribution for each random duration
of the job, other approaches have to be used [8-10]. In the approach of seeking a robust
schedule [8,11-13], a decision maker prefers a schedule that hedges against the worst-case scenario.
A fuzzy approach [14-16] allows a scheduler to find best schedules with respect to fuzzy durations of
the jobs. A stability approach [17-20] is based on the stability analysis of optimal schedules to possible
variations of the durations. In this paper, we apply the stability approach to the two-machine job-shop
scheduling problem with given segments of job durations. We have to emphasize that uncertainties
of the job durations considered in this paper are due to external forces in contrast to scheduling
problems with controllable durations [21-23], where the objective is to determine optimal durations
(which are under the control of a decision maker) and to find an optimal schedule for the jobs with
optimal durations.

2. Contributions and New Results

We study the two-machine job-shop scheduling problem with uncertain job durations and address
the issue of how to best execute a schedule if each duration may take any value from the given segment.
The main aim is to determine a minimal dominant set of schedules (DS) that would contain at least
one optimal schedule for each feasible scenario of the distribution of durations of the jobs.

It is shown how an uncertain two-machine job-shop problem may be decomposed into two
uncertain two-machine flow-shop problems. We prove several sufficient conditions for the existence of
a small dominant set of schedules. In particular, the sufficient and necessary conditions are proven
for the existence of a single pair of job permutations, which is optimal for the two-machine job-shop
problem with any possible scenario. We investigated properties of the optimal pairs of job permutations
for the uncertain two-machine job-shop problem.

In the stability approach, scheduling decisions may consist of two phases: an off-line phase and
an on-line phase. Using information on the lower and upper bounds on each job duration available at
the off-line phase, a scheduler can determine a small (or minimal) dominant set of schedules based
on sufficient conditions for schedule dominance. The DS optimally covers all scenarios in the sense
that, for each possible scenario, there exists at least one schedule in the DS that is optimal. The DS
enables a scheduler to quickly make an on-line scheduling decision whenever additional information
on completing some jobs becomes available. The stability approach enables a scheduler to choose a
schedule, which is optimal for the most possible scenarios.

In this paper, we develop algorithms for testing a set of conditions for a schedule dominance.
The developed algorithms are polynomial in the number of jobs. Their asymptotic complexities do not
exceed O(n?), where 1 is a number of the jobs. Computational experiments have shown effectiveness
of the developed algorithms: if there were no more than 600 jobs, then all 1000 instances in each tested
series were solved in no more than one second. For the tested series of instances with 10,000 jobs, all
1000 instances of a series were solved in 344 seconds at most (on average, 0.4 s per one instance).

The paper is organized as follows. In Section 3, we present settings of the uncertain scheduling
problems. The related literature and closed results are discussed in Section 4. In Section 4.2, we describe
in detail the results published for the uncertain two-machine flow-shop problem. These results are
used in Section 5, where we investigate properties of the optimal job permutations used for processing
a set of the given jobs. Some proofs of the claims are given in Appendix A. In Section 6, we develop
algorithms for constructing optimal schedules if the proven dominance conditions hold. In Section 7,
we report on the wide computational experiments for solving a lot of randomly generated instances.
Tables with the obtained computational results are presented in Appendix B. The paper is concluded
in Section 8, where several directions for further researches are outlined.

96

Algorithms 2020, 13, 4

3. Problem Settings and Notations

Using the notation «|B|7y [24], the two-machine job-shop scheduling problem with minimizing the
makespan is denoted as J2|1; < 2|Cyax, where & =]2 denotes a job-shop system with two available
machines, n; is the number of stages for processing a job, and v = Cyax denotes the criterion of
minimizing the makespan. In the problem J2|n; < 2|Cyqx, the set 7 = {J1, J2, ..., Jn} of the given jobs
have to be processed on machines from the set M = {M;, M, }. All jobs are available for processing
from the initial time t = 0. Let O;; denote an operation of the job J; € J processed on machine
M; € M. Each machine can process a job J; € J no more than once provided that preemption of each
operation Oj; is not allowed. Each job J; € J has its own processing order (machine route) on the
machines in M.

Let 1 » denote a subset of the set J of the jobs with the same machine route (M, M»), i.e., each
job Ji € Ji2 has to be processed first on machine M; and then on machine M. Let /1 C J denote
a subset of the jobs with the opposite machine route (Mp, M;). Let J;, C J denote a set of the jobs,
which has to be processed only on machine My € M. The partition J = J; U 7> U J12 U J2,1 holds.
We denote my, = |J},|, where h € {1;2;1,2;2,1}.

We first assume that the duration p;; of each operation O;; is fixed before scheduling.
The considered criterion Cyqy is the minimization of the makespan (schedule length) as follows:

Cinax = min Cyyx(s) = min{max{C;(s) : [y € J}},
seS seS

where C;(s) denotes a completion time of the job J; € 7 in the schedule s and S denotes a set of
semi-active schedules existing for the problem J2|n; < 2|Cyyax. A schedule is called semi-active if no
job (operation) can be processed earlier without changing the processing order or violating some given
constraints [1,25,26].

Jackson [27] proved that the problem J2|1; < 2|Cyax is polynomially solvable and that the optimal
schedule for this problem may be determined as a pair (7, 7”) of the job permutations (calling it
a Jackson’s pair of permutations) such that 7' = (712, 711, 7121) is a sequence of all jobs from the set
J1UJ12U J2q1 processed on machine M; and 7”7 = (751, 712, 711 2) is a sequence of all jobs from the
set 7o U J1,2 U J2,1 processed on machine M,. Job J; belongs to the permutation 7y, if J; € Jj.

In a Jackson’s pair (7, 7”") of the job permutations, the order for processing jobs from set 7
(from set 7>, respectively) may be arbitrary, while for the permutation 771 5, the following inequality
holds for all indexes kand m, 1 < k < m < my:

min{p; 1, pi,2} < min{p;,1, pi2} @

(for the permutation 775 1, the following inequality holds for all indexes kand m, 1 < k < m < my 1) [28]:

min{p;,p, pj,1} < min{p;,2pj1} 2)

The aim of this paper is to investigate the uncertain two-machine job-shop scheduling problem.
Therefore, we next assume that duration p;; of each operation O;; is unknown before scheduling;
namely, in the realization of a schedule, a value of p;; may be equal to any real number no less
than the given lower bound /;; and no greater than the given upper bound u;;. Furthermore, it is
assumed that probability distributions of random durations of the jobs are unknown before scheduling.
Such a job-shop scheduling problem is denoted as J2[l;; < p;j < u;j,n; < 2|Cpax. The problem
] 2|lij < pij S ujj,n; < 2|Ciax is called an uncertain scheduling problem in contrast to the deterministic
scheduling problem J2|n; < 2|Cyax. Let a set of all possible vectors p = (p11, P12, - -, Pn1, Pn2) Of the
job durations be determined as follows: T = {p : L <pij<uj i €T, Mj € M }. Such a vector
p=(p11, P12, -, Pn1, Pn2) € T of the possible durations of the jobs is called a scenario.

It should be noted that the problem]2|l,-j < pij < uj,n < 2|Cypax is mathematically incorrect.
Indeed, in most cases, a single pair of job permutations which is optimal for all possible scenarios

97

Algorithms 2020, 13, 4

p € T for the uncertain problem]2|ll-]- < pij Swujjn; < 2|Cyuax does not exist. Therefore, in the general
case, one cannot find an optimal solution for this uncertain scheduling problem.

For a fixed scenario p € T, the uncertain problem J2|l;; < pj;; < u;j,n; < 2|Cpgx turns into the
deterministic problem J2|n; < 2|Cyqx associated with scenario p. The latter deterministic problem is
an individual one and we denote it as J2|p, n; < 2|Cyay. For any fixed scenario p € T, there exists
a Jackson’s pair of the job permutations that is optimal for the individual deterministic problem
J2|p, n; < 2|Ciax associated with scenario p.

Let 12 denote a set of all permutations of 717 5 jobs from the set [J; o, where |S1 2| = my2!. Let Sp1
denote a set of all permutations of 11, 1 jobs from the set 751, where |Sy 1| = mp4!. Let S =< Sy, 521 >
be a subset of the Cartesian product (S12, 711, S21) % (S2,1, 72, S1,2) such that each element of the set
S is a pair of job permutations (7, 7") € S, where 7' = (7} ,, 711, né/l) and 7" = (né/l, 7, 70 5),
1<i<mp!, 1 <j<my,!. ThesetS determines all semi-active schedules and vice versa.

Remark 1. As an order for processing jobs from set Jy (from set [Jp) may be arbitrary in the Jackson’s pair of
job permutations (7', ©'"), in what follows, we fix both permutations 11y and 15 in the increasing order of the
indexes of their jobs. Thus, both permutations 711 and 7ty are now fixed, and so their upper indexes are omitted

in each permutation from the pair (7', i) = ((7t} 5, 1,), (né 1702, 7 o))

Due to Remark 1, the equality |S| = m,! - my 1! holds. The following definition is used for a
J-solution for the uncertain problem]2\1,7 < pij Sujj,n; < 2|Cpax-

Definition 1. A minimal (with respect to the inclusion) set of pairs of job permutations S(T) C S is called
a J-solution for the problem J2|l;; < p;; < ujj, n; < 2|Cyax with set J of the given jobs if, for each scenario
p € T, the set S(T) contains at least one pair (7', ©'") € S of the job permutations, which is optimal for the
individual deterministic problem J2|p, n;j < 2|Cyuax associated with scenario p.

From Definition 1, it follows that, for any proper subset S’ of the set S(T) S’ C S(T), there exists
at least one scenario p’ € T such that set S’ does not contain an optimal pair of job permutations for
the individual deterministic problem J2|p’, n; < 2|Cpuay associated with scenario p/, i.e., set S(T) is a
minimal (with respect to the inclusion) set possessing the property indicated in Definition 1.

The uncertain job-shop problem]2|ll-]- < pij < ujjn; < 2|Cyax is a generalization of the uncertain
flow-shop problem F2|l,-]- < pij < uij|me, where all jobs from the set 7 have the same machine
route. Two flow-shop problems are associated with the individual job-shop problem J2|I;; < p;; <
uij, i < 2|Cpyax- In one of these flow-shop problems, an optimal schedule for processing jobs 71
has to be determined, i.e., 721 = J1 = J2 = @. In another flow-shop problem, an optimal schedule
for processing jobs [J>1 has to be determined, i.e., J1» = J1 = J» = @. Thus, a solution of the
problem]2|lij < pij < wyj,n; < 2|Cynax may be based on solutions of the two associated problems
F2|l,-j <pi < u,'j|Cm,,x with job set 7 » and with job set 75 1.

The permutation 77, of all jobs from set [J;, (the permutation 7,1 of all jobs from set J, 1,
respectively) is called a Johnson’s permutation, if the inequality in Equation (1) holds for the permutation
71, (the inequality in Equation (2) holds for the permutation 77, 1, respectively). As it is proven in
Reference [28], a Johnson’s permutation is optimal for the deterministic problem F2||Cyax.

4. A Literature Review and Closed Results

In this section, we address uncertain shop-scheduling problems if it is impossible to obtain
probability distributions for random durations of the given jobs. In particular, we consider the uncertain
two-machine flow-shop problem with the objective of minimizing the makespan. This problem is well
studied and there are a lot of results published in the literature, unlike the uncertain job-shop problem.

98

Algorithms 2020, 13, 4

4.1. Uncertain Shop-Scheduling Problems

The stability approach was proposed in Reference [17] and developed in Reference [18,29-31]
for the Cyyyx criterion, and in References [19,32-35] for the total completion time criterion), C; :=
minges Yj,e 7 Ci(s). The stability approach combines a stability analysis of the optimal schedules, a
multi-stage decision framework, and the solution concept of a minimal dominant set S(T) of schedules,
which optimally covers all possible scenarios. The main aim of the stability approach is to construct a
schedule which remains optimal for most scenarios of the set T. The minimality of the dominant set
S(T) is useful for the two-phase scheduling described in Reference [36].

At the off-line phase, one can construct set S(T), which enables a scheduler to make a quick
scheduling decision at the on-line phase whenever additional local information becomes available.
The knowledge of the minimal dominant set S(T') enables a scheduler to execute best a schedule and
may end up executing a schedule optimally in many cases of the problem F2\lij <pi < ui]-|C,m,x [36].
In Reference [17], a formula for calculating the stability radius of an optimal schedule is proven,
i.e., the largest value of independent variations of the job durations in a schedule such that this
schedule remains optimal. In Reference [19], a stability analysis of a schedule minimizing the total
completion time was exploited in the branch-and-bound method for solving the job-shop problem
] m\lij <pij < u,']-\ Y_ C; with m machines. In Reference [29], for the two-machine flow-shop problem
F2|lij <pij < uij|me, sufficient conditions have been identified when the transposition of two jobs
minimizes the makespan.

Reference [37] addresses the total completion time objective in the flow-shop problem with
uncertain durations of the jobs. A geometrical algorithm has been developed for solving the flow-shop
problem Fm|l;; < p;; < uj;,n = 2|1 C; with m machines and two jobs. For this problem with two or
three machines, sufficient conditions are determined such that the transposition of two jobs minimizes
Y_C;. Reference [38] is devoted to the case of separate setup times with the criterion of minimizing the
makespan or total completion time. The job durations are fixed while each setup time is relaxed to
be a distribution-free random variable within the given lower and upper bounds. Local and global
dominance relations have been determined for the flow-shop problem with two machines.

Since, for the problem F2|li]- < pij < ui]-\CmuX there often does not exist a single permutation
of n jobs J = J1, which remains optimal for all possible scenarios, an additional criterion may
be introduced for dealing with uncertain scheduling problems. In Reference [39], a robust solution
minimizing the worst-case deviation from optimality was proposed to hedge against uncertainties.
While the deterministic problem F2||Cyqy is polynomially solvable (the optimal Johnson’s permutation
may be constructed for the problem F2||Cysx in O(nlog 1) time), finding a job permutation minimizing
the worst-case regret for the uncertain counterpart with a finite set of possible scenarios is NP hard.

In Reference [40], a binary NP hardness has been proven for finding a pair (7, 1) € S of
identical job permutations that minimizes the worst-case absolute regret for the uncertain two-machine
flow-shop problem with the criterion Cy,4x even for two possible scenarios. Minimizing the worst-case
regret implies a time-consuming search over the set of n! job permutations. In order to overcome this
computational complexity in some cases, it is useful to consider a minimal dominant set of schedules
S(T) instead of the whole set S. To solve the flow-shop problem F2|l;; < p;; < u;j|Cinax with job set 7,
one can restrict a search within the set S(T).

We next describe in detail the results published for the flow-shop problem FZ\lij < pij < ujj |Crax
since we use them for solving the job-shop problem]2\1,-]- < pij Sujj,n; < 2|Cypax in Sections 5-7.

4.2. Closed Results

Since each permutation 71’ uniquely determines a set of the earliest completion times C;(77') of
the jobs J; € J for the problem F2||Cpax, one can identify the permutation 7/, (7, ') € S), with
the semi-active schedule [1,25,26] determined by the permutation 77’. Thus, the set S becomes a set of
n! pairs (7', 7’) of identical permutations of n = my 5 jobs from the set 7 = J; » since the order for

9

Algorithms 2020, 13, 4

processing jobs J; » on both machines may be the same in the optimal schedule [28]. Therefore, the
above Definition 1 is supplemented by the following remark.

Remark 2. For the problem F2|lij <pij < uij|C,,lﬂx considered in this section, it is assumed that a J-solution
S(T) is a minimal dominant set of Johnson’s permutations of all jobs from the set T 5, i.e., for each scenario
p € T, the set S(T) contains at least one optimal pair (7, 71y) of identical Johnson’s permutations 7ty such that
the inequality in Equation (1) holds.

In Reference [36], it is shown how to delete redundant pairs of (identical) permutations from
the set S for constructing a J-solution for the problem F2|li]- <pij < uij|me with job set 7 = J1,.
The order of jobs [, € J12 and [, € Ji2 is fixed in the J-solution if there exists at least one Johnson’s
permutation of the form 7ty = (s1, Jo, 52, Jw, 3) for any scenario p € T. In Reference [29], the sufficient
conditions are proven for fixing the order of two jobs from set J = Jj. If one of the following
conditions holds, then for each scenario p € T, there exists a permutation 71, = (s1, Jo, 2, Jw, 53) that is
a Johnson's one for the problem F2|p|Cyqx associated with scenario p:

Uy < lpp and gy < Ly, 3)
uyr < Iyp and uyy < Ly, 4)
U2 < Iyt and uyn < L. ®)

If atleast one condition in Inequalities (3)-(5) holds, then there exists a J-solution S(T) for the
problem F2|lij <pij < uij|Cnlax with fixed order], — [, of jobs, i.e., job], has to be located before job
Jw in any permutation 7z;, (77;, 71;) € S(T). If both conditions in Inequalities (4) and (5) do not hold,
then there is no J-solution S(T) with fixed order J, — J;, in all permutations 7;, (77;, 7t;) € S(T). If no
analogous condition holds for the opposite order [, — [y, then at least one permutation with job J,
located before job J;, or that with job J;, located before job J, have to be included in any J-solution S(T)
for the problem FZ\I,-]- <pi < ui/-\Cmax. Theorem 1 is proven in Reference [41].

Theorem 1. There exists a J-solution S(T) for the problem F2|ll-]- <pi < uij|Cmax with fixed order J, — Ju
of the jobs [, and [, in all permutations rty, (7, 7tx) € S(T) if and only if at least one condition of Inequalities
(4) or (5) holds.

In Reference [41], the necessary and sufficient conditions have been proven for the case when
a single-element J-solution S(T) = {(m, 7;)} exists for the problem F2[l;, < pjyu < ttj|Cinax-
The partition 7 = J°U J' U J2U J* of the set J = J; » is considered, where

TP ={li€J : up <lp,up <Iln},

TJ'={lied :uq<lpup>la} ={i € T\JT" : uq <lp},

T*={lieT up >lpup <lpt={i € T\T® : up <lan},

T =A{LeJ : up >lpup>la}.

For each job J; € J°, inequalities uy; < [and uy, < Iy imply inequalities [y = ug = Lo = tiyy.
Since both segments of the possible durations of the job [, on machines M; and M, become a point,
the durations py; and py, are fixed and equal for both machines M; and My: py1 = pr2 =: Pk-
In Reference [41], Theorems 2 and 3 have been proven.

Theorem 2. There exists a single-element J-solution S(T) C S, [S(T)| = 1, for the problem F2|l;; < p;; <
uij|cmux if and only if

(a) for any pair of jobs J; and J; from the set J L (from the set T2, respectively), either u; < lnorup <lIy
(either up < lpp orujp <lp),

(b) |T*| < 1;forjob Ji» € T*, the inequalities iy > max{uyy : J; € T'}, lpp > max{up, : Jj € J*}
hold; and max{l;-1, lyo} > py for each job J € J°.

100

Algorithms 2020, 13, 4

Theorem 2 characterizes the simplest case of the problem F2|l;; < p;; < u;j|Ciax when one
permutation 71 of the jobs J = J;, dominates all other job permutations. The hardest case of this
problem is characterized by the following theorem.

Theorem 3. If max{ly : J; € J, My € M} <min{uy : J; € J, My € M}, then S(T) = S.

The J-solution S(T) may be represented in a compact form using the dominance digraph which
may be constructed in O(nz) time. Let 7 x J denote the Cartesian product of two sets 7. One can
construct the following binary relation A< C J x J over set J = Ji 5.

Definition 2. For the two jobs [, € J and J, € J, the inclusion (Jo, Jw) € A< holds if and only if there
exists a J-solution S(T) for the problem F2|l;j < p;; < ij|Ciax such that job J, € J is located before job
Jw € J, v # w, in all permutations 7ty where (7ty, 11;) € S(T).

The binary relation (J,, J») € A< is represented as follows: J, < J,. Due to Theorem 1, if for
the jobs J, € J and J,, € J the relation], <], v # w, holds, then for the jobs J, and Jy, at least
one of conditions in Inequalities (4) and (5) holds. To construct the binary relation A~ of the jobs on
the set J, it is sufficient to check Inequalities (4) and (5) for each pair of jobs [, and [,. The binary
relation A< determines the digraph (7, A<) with vertex set J and arc set A. It takes O(n?) time
to construct the digraph (7, A<). In the general case, the binary relation A< may be not transitive.
In Reference [42], it is proven that, if the binary relation A< is not transitive, then J' 0 £ @. We next
consider the case with the equality J 0—@ e, J=TJ"UJ U J? (the case with J' 0 # @ has been
considered in Reference [41]). For a pair of jobs |, € J Land J, € J! (for a pair of jobs |, € J 2 and
Jw € J?, respectively), it may happen that there exist both J-solution S(T) with job J, located before
job J in all permutations 71, (71, 71x) € S(T) and J-solution S’(T) with job Ji, located before job J, in
all permutations 7, (71, 7;) € S'(T).

In Reference [42], the following claim has been proven.

Theorem 4. The digraph (J, A<) has no circuits if and only if the set J = J* U J' U J? includes no pair
of jobs J; € J* and Ji € T with k € {1,2} such that Ly, = uy = ik = uj.

The binary relation A, C A< C J x J is defined as follows.

Definition 3. For the jobs |, € J and], € J, the inclusion (], Jw) € A< holds if and only if J, < J,, and
Jo 2 Jo, or Jo X Jowand Jy = Jp withv < w.

The relation (Jy, Jw) € A< is represented as follows: J, < J,. As it is shown in Reference [42], the
relation J, < J implies that [, <], and that at least one condition in Inequalities (4) or (5) must hold.
The relation J, < J, implies exactly one of the relations [, < J or Ju < Jo.

Since it is assumed that set J° is empty, the binary relation A~ is an antireflective, antisymmetric,
and transitive relation, i.e., the binary relation A~ is a strict order. The strict order A~ determines
the digraph G = (J, A=) with arc set A-. The digraph ¢ = (J,.A<) has neither a circuit nor
a loop. Properties of the dominance digraph G were studied in Reference [42]. The permutation
7 = (Jkys Jigr 1 Jiy) (7k, 1) € S, may be considered as a total strict order of all jobs of the set 7.
The total strict order determined by permutation 77y is a linear extension of the partial strict order
A if each inclusion (Ji,, Ji,) € A< implies inequality v < w. Let I1(G) denote a set of permutations
7Ty € S1, defining all linear extensions of the partial strict order .A~. The cases when I1(G) = S, and
I1(G) = {my} are characterized in Theorems 2 and 3. In the latter case, the strict order A~ over set J
can be represented as follows: Ji, < ... < Ji; < Ji,,, < ... < Ik”m' In Reference [42], the following
claims have been proven.

101

Algorithms 2020, 13, 4

Theorem 5. Let 7 = J*U J' U J?. Forany scenario p € T, the set T1(G) contains a Johnson’s permutation
for the problem F2|p|Ciax-

Corollary 1. If J = J*U J' U J?, then there exists a J-solution S(T) for the problem F2|lj < pij <
1ij|Cnax such that 7w’ € TI(G) for all pairs of job permutations, { (7', 7')} € S(T).

In Reference [42], it was studied how to construct a minimal dominant set S(T) = {(7/, ')},
7’ € TI(G). Two types of redundant permutations were examined, and the following claim was proven.

Lemma 1. Let J = J* U Ty U Jb. If permutation 7ty € 11(G) is redundant in the set 11(G), then 1, is a
redundant permutation either of type 1 or type 2.

Testing whether set I1(G) contains a redundant permutation of type 1 takes O(n?) time, and
testing whether permutation 71, € I1(G) is a redundant permutation of type 2 takes O(n) time.
In Reference [42], it is shown how to delete all redundant permutations from the set I1(G). Let IT*(G)
denote a set of permutations remaining in the set I1(G) after deleting all redundant permutations of
type 1 and type 2.

Theorem 6. Assume the following condition:
max{liz iz x} <lix = i = L = uj < min{u;z ¢, ;3 ¢} (6)

Ifset J = J*U JYU J? does not contain a pair of jobs |; € Tk and]j e Jk ke {1,2}, such that the above
condition holds, then S(T) =< IT*(G),IT*(G) >.

To test conditions of Theorem 6 takes O(n) time. Due to Theorem 6 and Lemma 1, if there are
no jobs such that condition (6) holds, then a J-solution can be constructed via deleting redundant
permutations from set IT(G). Since the set IT*(G) is uniquely determined [42], we obtain Corollary 2.

Corollary 2 ([42]). Ifset J = J* U JYU T2 does not contain a pair of jobs J; and Jj such that condition (6)
holds, then the binary relation A determines a unique J-solution S(T) =< IT*(G),I1*(G) > for the problem
F2|lij < pij < wj| Cinax.

The condition of Theorem 6 is sufficient for the uniqueness of a J-solution IT*(G) = S(T) for the
problem F2|l;; < pjj < 14;j|Cinax. Due to Theorem 1, one can construct a digraph G = (.7, A<) in O(n?)
time. The digraph G = (7, A~) determines a set S(T) and may be considered a condensed form of
a J-solution for the problem F2|lij <pij < uij|me, The results presented in this section are used in
Section 5 for constructing precedence digraphs for the problem J2|I;; < p;; < u;j, 1; < 2|Cax-

5. Properties of the Optimal Pairs of Job Permutations

We consider the uncertain job-shop problem | Z\Iij < pij < ujj,n; < 2|Cinax and prove sufficient

conditions for determining a small dominant set of schedules for this problem. In what follows, we
use Definition 4 of the dominant set DS(T) C S along with Definition 1 of the J-solution S(T) C S.

Definition 4. A set of the pairs of job permutations DS(T) C S is called a dominant set (of schedules) for the
uncertain problem]2\11-]- <pij <ugm; < 2|Cyax if, for each scenario p € T, the set DS(T) contains at least
one optimal pair of job permutations for the individual deterministic problem J2|p, n; < 2|Cyax with scenario p.

Every J-solution (Definition 1) is a dominant set for the problem]Z\Iij < pij < wjj,n; < 2|Ciax-
Before processing jobs of the set J (before the realization of a schedule s € S), a scheduler does not
know exact values of the job durations. Nevertheless, it is needed to choose a pair of permutations

102

Algorithms 2020, 13, 4

of the jobs 7, i.e., it is needed to determine orders of jobs for processing them on machine M; and
machine M,. When all jobs will be processed on machines M (a schedule will be realized) and the
job durations will take on exact values p;“]., li]- < pl’-‘j < uyj, and so a factual scenario p* € T will be
determined. A schedule s chosen for the realization should be optimal for the obtained factual scenario
p*. In the stability approach, one can use two phases of scheduling for solving an uncertain scheduling
problem: the off-line phase and the on-line phase. The off-line phase of scheduling is finished before
starting the realization of a schedule. At this phase, a scheduler knows only given segments of the
job durations and the aim is to find a pair of job permutations (7, 7”") which is optimal for the most
scenarios p € T. After constructing a small dominant set of schedules DS(T), a scheduler can choose
a pair of job permutations in the set DS(T), which dominates the most pairs of job permutations
(!, ") € S for the given scenarios T. Note that making a decision at the off-line phase may be
time-consuming since the realization of a schedule is not started.

The on-line phase of scheduling can begin once the earliest job in the schedule (7, 7) starts.
At this phase, a scheduler can use additional on-line information on the job duration since, for each
operation Oj;, the exact value p;‘j becomes known at the time of the completion of this operation. At the
on-line phase, the selection of a next job for processing should be quick.

In Section 5.1, we investigate sufficient conditions for a pair of job permutations (7', 7”’) such
that equality DS(T) = {(/, 7”")} holds. In Section 5.2, the sufficient conditions allowing to construct
a single optimal schedule dominating all other schedules in the set S are proven. If a single-element
dominant set DS(T) does not exist, then one should construct two partial strict orders AL’Z and A%;l on
the set 7, and on the set 7, 1 of jobs as it is described in Section 4.2. These orders may be constructed
in the form of the two precedence digraphs allowing a scheduler to reduce a size of the dominant set
DS(T). Section 5.4 presents Algorithm 1 for constructing a semi-active schedule, which is optimal for
the problem F2\li]~ <pij < u,']-|CWX for all possible scenarios T provided that such a schedule exists.
Otherwise, Algorithm 1 constructs the precedence digraphs determining a minimal dominant set of
schedules for the problem F2\l,~j <pi < u,']-\Cmux.

5.1. Sufficient Conditions for an Optimal Pair of Job Permutations

In the proofs of several claims, we use a notion of the main machine, which is introduced within
the proof of the following theorem.

Theorem 7. Consider the following conditions in Inequalities (7) or (8):

Youn < Y, lpand Y 1> Y up 7)

Ji€ed Ji€ T VTn Ji€T Ji€ T, 1V
Youp < Y lnand) In> Y. up (8)
Ji€D Ji€ 2V Ji€T Ji€h VT

If one of the above conditions holds, then any pair of job permutations (1t', ') € S is a single-element dominant
set DS(T) = {(7', ") } for the problem J2|l;; < p;; < uyj,n; < 2|Cyuax withset J = J1 U T2 U T2 U T2
of the given jobs.

Proof. Let the condition in Inequalities (7) hold. Then, we consider an arbitrary pair of job
permutations (77, 1”7) € S with any fixed scenario p € T and show that this pair of job permutations
(7', ") is optimal for the individual deterministic problem J2|p,n; < 2|Cygy with scenario p,
i.e., Cpax (77, 7'") = Ciax-

Let ¢1(7t) (c2(7”)) denote a completion time of all jobs J; U J12 U Ja1 (jobs Jo U J12 U J21)
on machine M; (machine M;) in the schedule (7/, 7”), where ' = (my, 71, 7121) and 7" =
(72,1, 712, 711 2). For the problem J2|p, n; < 2|Cyuax, the maximal completion time of the jobs in schedule
(', ") may be calculated as follows: Cpax (77, 7'") = max{cy ('), ca(7")}.

103

Algorithms 2020, 13, 4

Machine M; (machine M,) is called a main machine for the schedule (7/,7n") if equality
Cax (70, ©") = ¢1(7t") holds (equality Cax (70, ©") = c2(7r") holds, respectively).
For schedule (7', 1"") € S, the following equality holds:

e (') = > pia+h; or") =)y pi2 + I,
Ji€ T U U Ji€TUTnUT2

where I; and I, denote total idle times of machine M; and machine M, in the schedule (7, ”7),
respectively. We next show that, if the condition in Inequalities (7) holds, then machine M is a main
machine for schedule (7, 7'’) and machine M, has no idle time, i.e., machine M, is completely filled
in the segment [0, c(71")] for processing jobs from the set J3, U J21 U Jo. At the initial time t = 0,
machine M, begins to process jobs from the set 7,1 U J> without idle times until the time moment

b= 2]{6]2,1&72 Pi2-
From the first inequality in (7), we obtain the following relations:

Yo Y un< Y, < Y pp=t.
Ji€T2 Ji€T2 Ji€ VT2 Ji€D VT2

Therefore, at the time moment {1, machine M, begins to process jobs from the set [J; » without idle
times and we obtain the following equality: ¢;(77") = ¥j.¢ Ti2Ud507, Piz, Where I, = 0 and machine
M; has no idle time. We next show that machine M, is a main machine for the schedule (77, 7).
To this end, we consider the following two possible cases.

(a) Let machine M; have no idle time.

By summing Inequalities (7), we obtain the following inequality:

ug < Y. lip.
Ji€T12UT,1UN Ji€T12UT1UT2

Thus, the following relations hold:

a(n) = Y pin < Yy Uy < > Ip <) pia = c2(").
Ji€T12UT,1U Ji€T12UT,1UN Ji€2UT1UT2 Ji€T12UT,1UTn

Hence, machine M, is a main machine for the schedule (77/, 7).

(b) Let machine M; have an idle time.

An idle time of machine M is only possible if some job J; from set 75 is processed on machine
M, at the time moment ¢, when this job]; could be processed on machine M;.

Obviously, after the time moment } ;. 7, pi» when machine M, completes all jobs from set 751,
machine M; can process some jobs from set [J,; without an idle time. Therefore, the inequality
b+ <Yje Jo1 Pi2 holds and we obtain the following relations:

a(@)<b+h+ Y. pa< Y o+ Y pa< Y po+ Y ua

JASNVZS Ji€J Ji€ a1V Ji€T Ji€ T, 1V
< Y o+ Y < Y o+ Y pe< Y pio = cao(n").
Ji€n Ji€d Ji€T2n Ji€T2 Ji€TopUHUT 2

We conclude that, in case (b), machine M, is a main machine for the schedule (7', 7”"). Thus, if the
condition in Inequalities (7) holds, then machine M, is a main machine for the schedule (77, 7”") and
machine M, has no idle time, i.e., equality Cpax (7', ©”) = c2(7”") holds and machine M, is completely
filled in the segment [0, ¢, (7"")] with processing jobs from the set J12 U 721 U Ja.

Thus, the pair of permutations (7/, 7”’) is optimal for scenario p € T. Since scenario p was
chosen arbitrarily in the set T, we conclude that the pair of job permutations (77, 7”’) is a singleton
DS(T) = {(n, ")} for the problem J2|l;; < pj;j < ujj, #1; < 2|Cpuax withset 7 = J1 UL U J12U Do

104

Algorithms 2020, 13, 4

of the given jobs. As a pair of permutations (77, 777) is an arbitrary pair of job permutations in the
set S, any pair of job permutations (i, 7") € S is a singleton DS(T) = {(n’, 7"")} for the problem
]2“1‘]' < Pij < Uij, 1 < 2|Cmax with]Ob set 7 = HUJHU j1,2 U Jz,].

The case when the condition in Inequalities (8) holds may be analyzed similarly via replacing
machine M; by machine M, and vice versa. [

If conditions of Theorem 7 hold, then in the optimal pair of job permutations (7, 7”) existing for
the problem]2|lz-/ < pij S wujjn; < 2|Cyax, the orders of jobs from sets 71, € J and Jo1 C J may be
chosen arbitrarily. Theorem 7 implies the following two corollaries.

Corollary 3. If the following inequality holds:

Yooun < Y, Ip,)

Ji€dha Ji€TnUT2

then set < {12}, S21 >C S, where 11 5 is an arbitrary permutation in set Sy 5, is a dominant set of schedules
for the problem J2[1;; < p;; < ujj, n; < 2|Cax with set J = J1 U Ja U J12U Ja of the given jobs.

Proof. We consider an arbitrary vector p € T of the job durations and an arbitrary permutation 7y »
in the set S1,. The set S contains at least one Johnson’s permutation ”;,1 for the deterministic
problem F2|p; 1|Ciuax with job set J»1 and scenario pp; (the components of vector p,; are equal
to the corresponding components of vector p). We consider a pair of job permutations (7/, 7)
= ((mi2,m1,75,), (7051, 72, M12)) € <{m12},821>C S and show that it is an optimal pair of job
permutations for the problem J2|p,n; < 2|Cpayx with job set J and scenario p. Without loss of
generality, both permutations 71, and 71, are ordered in increasing order of the indexes of their jobs.
Similar to the proof of Theorem 7, one can show that, if the condition in Inequalities (9) holds,
then machine M processes jobs without idle times and equality c2(7") = Lj.c 7,050, Pi2 holds,
where the value of ¢;(71”") cannot be reduced. If machine M; has no idle time, we obtain equalities

Cinax (7', ") = max{ey ('), c2(7") } = max{ Y pits Yy Pi2} = Ciax-
Ji€J12VT1 VTN Ji€T1 VT2 VT2

On the other hand, an idle time of machine M; is only possible if some job J; from set 75 is
processed on machine M, at the time moment f; when job J; could be processed on machine M;.
In such a case, the value of ¢1(7) is equal to the makespan Cmﬂx(ni‘,l) for the problem F2|p3 1|Ciax
with job set J,,1 and scenario p; 1. As the permutation ”;,1 is a Johnson’s permutation, the value of
Crax (71;,1) cannot be reduced and we obtain the following equalities:

Cinax (', 1'") = max{cy ("), c2(7")} = max{Ciax (713 1),) pi2} = Cax-
Ji€2UT21UT2

Thus, the pair of job permutation (7', ©'") = (7112, 711, 713 1), (715 1, 712, 1 2)) € <{m12},S21 >C
S is optimal for the problem J2|p,n; < 2|Cyay with scenario p € T. The optimal pair of job
permutations for the problem J2|p, n; < 2|Cyyax with scenario p € T belongs to the set <{71}, 521 >.
As vector p is an arbitrary vector in the set T, the set < {717,}, 571 > contains an optimal pair of
job permutations for all scenarios from set T. Due to Definition 4, the set < {m2},5,1 >C Sisa
dominant set of schedules for the problem]2\11-]- < pij < ujjn; < 2|Cipax withjob set 7. [

Corollary 4. Consider the following inequality:

Youp< Y I

Ji€T2 Ji€2VN

105

Algorithms 2020, 13, 4

If the above inequality holds, then set < Sy, {7121} >, where 151 is an arbitrary permutation in set Sy 1, is a
dominant set of schedules for the problem J2|li; < pij < wj, n; < 2|Cpay withset J = J1 U U J12U Joy
of the given jobs.

This claim may be proven similar to Corollary 3. If the conditions of Corollary 3 (Corollary 4)
hold, then the order for processing jobs from set 71, C J (set Jo,1 C J, respectively) in the optimal
schedule (7', ©") = ((71,2, 711, 72,1), (72,1, 702, 701,2)) for the problem J2|l; < pj; < wjj, 1 < 2|Cax
may be arbitrary. Since the orders of jobs from the sets J; and ./, are fixed in the optimal schedule
(Remark 1), we need to determine only orders for processing jobs from set 71 (set 7 2, respectively).
To do this, we will consider two uncertain problems F2\l,~j < pij < u,-j\Cmax with job set 71, € J
and with the machine route (Mj, My) and that with job set 51 C J and with the opposite machine
route (M, My).

Lemma 2. If S}, C Sy is a set of permutations from the dominant set for the problem F2|l;; < pi; < u1j;|Cinax
with job set Jy 5, then < Sﬁ/z, Sp1 >C S is a dominant set for the problem]2|lz-/ < pij < ujjn; < 2|Cimax
with jobset 7 = J1U U J12U Jan.

The proof of Lemma 2 and those for other statements in this section are given in Appendix A.

Lemma 3. Lef 5&,1 C Sy be a set of permutations from the dominant set for the problem F2|l;; < p;;
1j;|Cinax with job set T, 5’2/1 C Sp4. Then, < Sy, 5/2/1 > is a dominant set for the problem J2|l;; < p;;
ujj, 1 < 2|Cax with job set J.

ININ

The proof of this claim is similar to that for Lemma 2 (see Appendix A).

Theorem 8. Let S}, C Sy be a set of permutations from the dominant set for the problem F2|l;; < p;; <
1ij| Cax with job set Jn o, and let Sy | C Sy be a set of permutations from the dominant set for the problem
F2|lij < pij < wjj|Cuax with job set Jp1. Then, < Sﬁ/z, Sé/l > C S is a dominant set for the problem
J2|lij < pij < wij,ni < 2|Cpuax with job set T = J1 U U J12U To,1-

Theorem 9. Let a pair of identical permutations (71, 711 2) determine a single-element J-solution for the
problem F2[l;; < pij < u;i|Cax with job set J1,, and let a pair of identical permutations (71,1, 7021)
determine a single-element J-solution for the problem F2|l;; < pi; < u;j|Cyax with job set 1. Then, the pairs

of permutations { (7112, 711, 701)and (71 o, 712, 721 } are a single-element dominant set DS(T) for the problem
12|l < pij < wij,n; < 2|Cpuax with job set T = J1U U J12U Jo1-

The following claim follows directly from Theorem 9.

Corollary 5. If the conditions of Theorem 9 hold, then there exists a single pair of job permutations, which is an
optimal pair of job permutations for the problem J2|p, n; < 2|Cynax with job set J and any scenario p € T.

Theorem 9 implies also the following corollary proven in Appendix A.

Corollary 6. If the conditions of Theorem 9 hold, then there exists a single pair of job permutations which is a
J-solution for the problem J2|I;; < pjij < ujj, 1; < 2|Cpax with jobset T = Ty U T U J12U Jo 1.

Note that the criterion for a single-element J-solution for the problem F2|li]- <pij < u,vj\Cmﬂx is
given in Theorem 2.

106

Algorithms 2020, 13, 4

5.2. Precedence Digraphs Determining a Minimal Dominant Set of Schedules

In Section 4.2, it is assumed that J1, = jllz) ‘7122 U Jl’iz and Jo1 = ‘721,1 u jz%l U jzfl, ie.,
\71(32 = qul = @. Based on the results presented in Section 4.2, we can determine a binary relation A'?
for the problem F2|l;; < p;; < u;;|Cpax with job set 71 and a binary relation A%} for this problem
with job set J;1. For job set J; 5, the binary relation AQZ determines the digraph G, = (1,2, Agz)
with the vertex set Jj» and the arc set Aiz. For job set 7, 1, the binary relation Ai’l determines the
digraph Gy 1 = (J21, Ail) with the vertex set 7,1 and the arc set Ail.

Let us consider the problem F2[l;; < p;j < u;j|Cynax with job set J1, and the corresponding
digraph Gi, = (J12, AL’Z) (the same results for the problem F2|l;; < p;; < u;;|Cax With job set 751
can be derived in a similar way).

Definition 5. Two jobs, [€ J1p and J, € J12, x # y, are called conflict jobs if they are not in the relation
AL’Z' ie., (Jx,]y) ¢ Agz and (]yr Jx) & A]<'2~

Due to Definitions 2 and 3, for the conflict jobs Jx € J12 and |, € J12, x # y, Inequalities (4) and
(5) do not hold either for the case v = x with w = y or for the case v = y with w = x.

Definition 6. The subset Jx C J1, is called a conflict set of jobs if, for any job |, € J1 5 \ T, either relation
(Jx,]y) S AL’Z or relation (]y, Jx) € Akz holds for each job | € Jx (provided that any proper subset of the set
Jx does not possess such a property).

From Definition 6, it follows that the conflict set 7, is a minimal set (with respect to the inclusion).
Obviously, there may exist several conflict sets in the set J; ». (A conflict set of the jobs Jy C J51 can
be determined similarly.) Let the strict order Alf for the problem F2|l,-]- <pij < u,-]-|Cmax with job set
J1,2 be represented as follows:

<D< <Je =Tkt Tevzr oo oo) = Jewrs1 < Jepran < -o. < Jmy 50 (10)

where all jobs between braces are conflict ones and each of these jobs is in relation A2 with any job
located outside the brackets in Relation (10). In such a case, an optimal order for processing jobs from
theset {J1, J2, ..., Jx} is determined as follows: (J1, J,- .., Jx)-

Due to Theorem 5, we obtain that set IT1(Gy2) of the permutations generated by the digraph
G contains an optimal Johnson’s permutation for each vector p; » of the durations of jobs from the
set J12. Thus, due to Definition 1, the singleton { (7112, 7112) }, where 71, € I1(Gy), is a J-solution
for the problem F2|l;; < pj;j < u;j|Cyax With job set J15. Analogously, the singleton { (72,1, 72,1)},
where 7151 € T1(Gy,1), is a J-solution for the problem F2\li]' <pij < ul-j\Cmux with job set 7 1. We can
determine a dominant set of schedules for the problem]2|lij < pij S wjjn; < 2|Cynax with job set T as
follows: <IT(Gy),I1(Gy1)> C S. The following theorems allow us to reduce a dominant set for the
problem]2|lij < pij <wjjn; < 2|Cynax. We use the following notation: L, = Z];E]z,lqu lip.

Theorem 10. Let the strict order Aﬁz over set J1p = J7'5 U .7112 U ‘7122 be determined as follows: J; < ... <
Jo = Ukt Je2r -+ Jewr Y < Jkgre1 < - = Jimy,. Consider the following inequality:
k+r k
Y un <L+ Y I, (11)
i=1 i=1

If the above inequality holds, then set S' = < {m},I1(Gy1) >C S with w € I1(Gy2) is a dominant set of
schedules for the problem]2|lij < pij < wjpn; < 2|Cypax with job set J.

107

Algorithms 2020, 13, 4

Proof. We consider an arbitrary vector p € T of the job durations and an arbitrary permutation 7
from the set IT1(G; »). The set I1(Gy,1) contains at least one optimal Johnson’s permutation 75 1 for the
problem F2|p; 1|Cuax with job set J5 1 and vector p, 1 of the job durations (components of this vector
are equal to the corresponding components of the vector p).

We consider a pair of job permutations (7', 7) = ((7, 11, 7131), (1131, 72, 7)) € S’ and show
that it is an optimal pair of job permutations for the problem J2|p, n; < 2|Cyuax with set J of the jobs
and scenario p. To this end, we show that the value of Cyx (7', 7'’) = max{cy(7'), c2(r")} cannot
be reduced. Indeed, an idle time for machine M; is only possible if some job]j from the set 71 is
processed on machine M) at the same time when job J; could be processed on machine M;. In such
a case, c1(7t") is equal to the makespan Cmux(nzl) for the problem F2|p 1|Cyuax with job set J5 1 and
vector py 1 of the job durations. As permutation 75 | is a Johnson’s permutation, the value of

c1(7') = max{) Pit, Crax(73,1) }
Ji€12UT21 U

cannot be reduced. In the beginning of the permutation 7, the jobs of set {J1, J, ..., Jx} are arranged
in the Johnson’s order. Thus, if machine M, has an idle time while processing these jobs, this idle time
cannot be reduced. From Inequality (11), it follows that machine M, has no idle time while processing
jobs from the conflict set.

In the end of the permutation 7, jobs of set {Jx;,11,...,]'"1,2} are arranged in Johnson’s order.
Therefore, if machine M, has an idle time while processing these jobs, this idle time cannot be reduced.
Thus, the value of ¢ (7t"") cannot be reduced by changing the order of jobs in the conflict set.

We obtain the qualities Cpax (77, 7'7) = max{c1 (1), c2(7r"")} = Ciuax. The pair of job permutations
(7, 7") = ((m,m1,735,), (7051, 2, 7)) is optimal for the problem J2|p,n; < 2|Cyqyx With scenario
p € T. Thus, set S’ =<{m},I1(G,,1)> contains an optimal pair of job permutations for the problem
J2|p, n; < 2|Cpuax with scenario p € T. As vector p is an arbitrary vector in set T, set S’ contains an
optimal pair of job permutations for each vector from set T. Due to Definition 4, set S’ is a dominant
set of schedules for the problem J2|I;; < p;; < uj;, n; < 2|Cyax withjobset 7. O

Theorem 11. Let the partial strict order A% over set Jip = I U .7112 U jfz be determined as follows:
Ji <o =< e = Ukt sz Jeer b < Jigre1 < -+ < Jing,- Consider the following inequality:

k+s—1

sy < Lo+ Y (lp—up) (12)
i-1

If the above inequality holds for all s € {1,2,...,r}, then the set ' =< {m},Sy1 >, where 7

- et oo Jos1s Jowar - - oo Tiers Tbrsds - - .,]ml/z) € I1(Gy), is a dominant set for the problem]2|lij <
pij < wij,n; < 2|Cinax with job set J .

Proof. We consider an arbitrary scenario p € T and a pair of job permutations (7', ") = ((7t, 711, 775 1),
(nﬁ’l, 1, 7)) € S', where 7r§’1 € Sy is a Johnson’s permutation of the jobs from the set 7, ; with
vector py 1 of the job durations (components of this vector are equal to the corresponding components
of vector p). We next show that this pair of job permutations (7, 7”’) is optimal for the individual
deterministic problem J2|p, n; < 2|Cpax with scenario p, i.e., Ciax (77, ©") = Cipax-

If conditions of Theorem 11 hold, then machine M; processes jobs from the conflict set
{Jks1, Jks2s - - - Jegr b without idle times. At the initial time ¢+ = 0, machine M; begins to process
jobs from the permutation 7r without idle times. Let a time moment f; be as follows: t; = Zi‘;rll pil-
At the time moment ¢y, job [is ready for processing on machine M.

On the other hand, at the time ¢t = 0, machine M, begins to process jobs from the set 7,1 U J»
without idle times and then jobs from the permutation (J1, J, ..., Ji1+1)- Let 2 denote the first time
moment when machine M, is ready for processing job Ji.1. Obviously, the following inequality

108

Algorithms 2020, 13, 4

holds: t, > L, + Zf‘:ll pi2- From the condition in Inequality (12) with s = 1, we obtain inequality

Y uy < Lo+ 35 .
Therefore, the following relations hold:

k1 k1 k k1
=Y pn <Y ug <Lo+) lp <L+ po=h.
i=1 i-1 i-1 i-1

Machine M, processes job [1 without an idle time between job [, and job [i.

Analogously, using s € {2,3,...,r}, one can show that machine M, processes jobs from the
conflict set {Jx11, Jet2,- - -, Jkr} without idle times between jobs J.1 and Ji o, between jobs Ji,, and
Jk+3, and so on to between jobs Ji.,_1 and Ji,. To end this proof, we have to show that the value of
Conax (7, ") = max{c1(7"), co(7”") } cannot be reduced.

An idle time for machine M is only possible between some jobs from the set 7, 1. However, the
permutation 773 ; is a Johnson’s permutation of the jobs from the set 1 for the vector p;; of the job
durations. Therefore, the value of ¢1(71") cannot be reduced. On the other hand, in the permutation
7, all jobs Ji, J2, ..., Jx and all jobs Jiy,41,. .., Jm, are arranged in Johnson’s orders. Therefore, if
machine M, has an idle time while processing these jobs, this idle time cannot be reduced. It is clear
that machine M, has no idle time while processing jobs from the conflict set. Thus, the value of
c2(r") cannot be reduced by changing the order of jobs from the conflict set. We obtain the equalities
Cnax (7, @) = max{c1 (1), co(7"") } = Cyax-

It is shown that the pair of job permutations (7', ") = ((7t, 71, 715,), (7051, 72, 70)) € S'is
optimal for the problem J2|p, n; < 2|Cyuax with vector p € T of job durations. As vector p is an arbitrary
one in set T, the set S’ contains an optimal pair of job permutations for each scenario from set T. Due to
Definition 4, the set S’ is a dominant set of schedules for the problem]2\1,7 < pij < wjj,n; < 2|Cpax
withjobset 7. [

The proof of the following theorem is given in Appendix A.

Theorem 12. Let the partial strict order Aﬁz over set Jip = \71*2 U Jf/z U sz have the form [} < ... <
Jo = Uk Jes2r o Jkar b = Jkerg1 < oo = g, If inequalities

r+1 r
Yo hyin= Y o (13)
i=r—s+2 j=r—s+1

hold for all indexes s € {1,2,...,r}, then the set ' = < {m},Sp1 >, where m1 = (J1,..., Jx-1, Jkr
Jewts Jkw2s oo Jktrs Jkwrs1s -+ -0 Jmyy) € TG 2), is a dominant set of pairs of permutations for the problem
J2|lij < pij < wij,ni < 2|Cpax with job set J.

Similarly, one can prove sufficient conditions for the existence of an optimal job permutation for
the problem F2|l;; < pj; < u;;|Cinax with job set 7,1, when the partial strict order Ail ontheset Jp1 =
T U ‘721,1 U .,751 has the following form: 1 < ... < Jx < {Jxs1, Jowzr - o Jor} = Jhrs1r < oo < Jiyy-

To apply Theorems 11 and 12, one can construct a job permutation that satisfies the strict order
A2 Then, one can check the conditions of Theorems 11 and 12 for the constructed permutation.
If the setof jobs {J1, J2,...,]k} is empty in the constructed permutation, one needs to check conditions
of Theorem 12. If the set of jobs {Jijr41,- -, Jm, | is empty, one needs to check the conditions of
Theorem 11. It is needed to construct only one permutation to check Theorem 11 and only one
permutation to check Theorem 12.

5.3. Two Illustrative Examples

Example 1. We consider the uncertain job-shop scheduling problem]2|l,']- < pij < uyj,n; < 2|Cinax with
lower and upper bounds of the job durations given in Table 1.

109

Algorithms 2020, 13, 4

Table 1. Input data for Example 1.

Ji ln win lp up
L 6 7 6 7
L 8 9 5 6
5 7 9 5 6
Jo» 2 3 - -
5 - - 16 20
s 1 3 3 4
;1 3 3 4
5 1 3 3 4

These bounds determine the set T of possible scenarios. In Example 1, jobs J1, J», and J3 have
the machine route (Mj, My); jobs Jg, J7, and Js have the machine route (Mp, M;); and job J4 (job
J5, respectively) has to be processed only on machine M; (on machine My, respectively). Thus,
Tip =N T2 I3}, Jog = {Je, 7, T8}, J1 = {Ja}, T2 = {J5}

We check the conditions of Theorem 7 for a single pair of job permutations, which is optimal
for all scenarios T. For the given jobs, the condition in Inequalities (7) of Theorem 7 holds due to the
following relations:

Yieq,in =i +upy+us1 =7+9+9=25<Yc7 uplo=lep+l7p+1lsp+150=3+3+3+16=25
2],6‘7],2 lp = 11/2 + 12,2 + 13,2 =6+54+5=16 > ZIIEJMUJ] Ujp = Ug + Uy +Ug1 + g1 = 343+3+3=12.

Due to Theorem 7, the order of jobs from the set 71, = {J1,]2, J3} and the order of jobs from
the set 751 = {Js, J7, Js} may be arbitrary in the optimal pair of job permutations for the problem
J2|li; < pij < uij, i < 2|Cpugx under consideration. Thus, any pair of job permutations (7,) € S is

a single-element dominant set DS(T) = {(7/, "’)} for Example 1.

Example 2. Let us now consider the problem J2|l;; < p;; < u;;, n; < 2|Cinax with numerical input data given
in Table 1 with the following two exceptions: l5p = 2 and us, = 3.

We check the condition in Inequalities (7) of Theorem 7 and obtain
Yjeq, il =gy +uz1 =7+9+9=25£Y 7 ipln=lep+la+lsp+1lsp =3+3+3+2=11. (14)

Thus, the condition of Inequalities (7) does not hold for Example 2. We check the condition of
Inequalities (8) of Theorem 7 and obtain

):/,672,1 Ujpp = Ugp +Uyp +ugp =4+4+4=12< E/‘Eﬁ,zul Ih = 11,1 + 12,1 + 13,1 + 14,1 =6+8+47+2=23. (15)

However, we see that the condition of Equation (8) does not hold:
Yieqmln =len+lp+1ls1 =14+141=3 2V c 7,0z tin =12+ U2+ U2 +usp =7+6+6+3 =22

From Equation (14), it follows that the condition of Inequalities (9) of Corollary 3 does not
hold. On the other hand, due to Equation (15), conditions of Corollary 4 hold. Thus, the order for
processing jobs from set /1 C J in the optimal schedule (7, 7”) = ((711,2, 711, 72,1), (721, T2, 711 2))
for the problem | 2\l,~j < pij < uyjn; < 2|Cpuax may be arbitrary. One can fix permutation 7,7 with
the increasing order of the indexes of their jobs: 71 = (J6,J7,J3). Since the orders of jobs from
the sets J; and J, are fixed in the optimal schedule (Remark 1), i.e., 713 = (J4) and 7y = (J5), we
need to determine the order for processing jobs in set J; . To this end, we consider the problem
F2|l,-j <pij < uij|C,mx with job set J; . We see that conditions of Theorem 2 do not hold for the jobs
inset J1psince 1 € J7', 2 € jfz, and J3 € ‘712,2; however the following inequalities hold: up, > I3,
and uzp > ’2,2.

110

Algorithms 2020, 13, 4

We next construct the binary relation A2 over set J1,2 based on Definition 3 and Theorem 1. Due
to checking Inequalities (4) and (5), we conclude that the inequality in Equation (5) holds for the pair
of jobs J; and J,. We obtain the relation J; < J,. Analogously, we obtain the relation J; < J3. For the
pair of jobs [, and J3, neither Inequality (4) nor Inequality (5) hold. Therefore, the partial strict order
Alf over set 71 » has the following form: J; < {J, J3}. The job set {]», J3} is a conflict set of these jobs
(Definition 6).

Let us check whether the sufficient conditions given in Section 5.2 hold.

We check the conditions of Theorem 10 for the jobs from set J;,. For k = 1 and r = 2, we
obtain the following equalities: L, = Yedhiumn lp =lep+1l7o+1gp+150 =3+3+3+2 =11
The condition of Theorem 10 does not hold since the following relations hold:

k+r k
Zuﬂ :u],1+u2/1+u3,1 :7+9+9:25 £L2+Zli2 :L2+ll’2:11+6:17
i=1 i=1

For checking the conditions of Theorem 11, we need to check both permutations of the jobs from
set 71 5, which satisfy the partial strict order A% T1(G15) = {ri,, 75,5}, where 7t} , = {J1,]2, J3} and
13, = {3 J2}-

We consider permutation 7'(%,2. As in the previous case, L, = 11, k = 1, r = 2, and we must
consider two inequalities in the condition in Equaiton (12) with s = 1 and s = 2. For s = 1, we obtain
the following:

1111 1
uppin =1 =9 < Lo+ Y (p—un) = Lo+ Y (lp—up) =114 (lip —u11) = 11+ (6—7) = 10.
=1 izl

However, for s = 2, we obtain
142-1 2
U1 =uz1 =9 £ L+ Y (lp—un) = Lo+ Y (lp — i)
i=1 i=1

=11+ (11,2 — u1,1) + (12,2 — uzrl) =11+ (6 — 7) + (5 — 9) = 6.

Thus, the conditions of Theorem 11 do not hold for permutation 7} ,.
We consider permutation niz, where [= Jz and Ji;2 = Jo. Again, we must test the two
inequalities in Equation (12), where either s = 1 or s = 2. For s = 1, we obtain
k11 1
ueprg =us1 =9 < Lo+ Y (lp—upn) =Lo+) (lp—un) =11+ (hp—u1y) = 11+ (6—7) = 10.
i=1 i=1

However, for s = 2, we obtain

k21 k1
Upiog =1 =9 £ Lo+ Y (lp—un) =La+ Y (lp—un) =114 (I —u11) + (lap — uz1)
i=1 i=1

=11+ (6-7)+(5-9) =6.

Thus, the conditions of Theorem 11 do not hold for permutation 717 ,.

Note that we do not check the conditions of Theorem 12 since the conflict set of jobs {J2, s}
is located at the end of the partial strict order A'*. We conclude that none of the proven sufficient
conditions are satisfied for a schedule optimality. Thus, there does not exist a pair of permutations of the
jobsinset 7 = J1o U Jp1 U Ty U Jp which is optimal for any scenario p € T. The J-solution S(T) for
Example 2 consists of the following two pairs of job permutations: { (7}, 7t{), (7, 75)} = S(T), where

7'(1 = (7'[}'2, T, 7-[2,1) = (]l/]2113114r 16/]7/]8)/ 7.[{/ = (7T2,117T2/ 7-[%,2) = (16/]7/]8/]5111112/]3)/

111

Algorithms 2020, 13, 4

7Té = (7'[%,2, m, 7-[2,1) = (]1/]3!]2/]4/]6/]7/]8)/ 7'(5/ = (7T2,1/ T2, 7-(%,2) = (]6!]7/]8/]5/]1/]3/]2)4

We next show that none of these two pairs of job permutations is optimal for all scenarios
p € T using the following two scenarios: p’ = (7,6,9,5,9,6,2,0,0,2,1,3,1,3,1,3) € T and p” =
(7,6,9,6,9,5,2,0,0,2,1,3,1,3,1,3) € T. For scenario p’, only pair of permutations (77}, 75) is optimal
with Cmax (75, 71y) = 30 since Cmax (7], 7}) = 31 > 30. On the other hand, for scenario p”, only the
pair of permutations (771, 71{’) is optimal with Crax (71}, 71{') = 30 since Cmax (715, 77§') = 31 > 30.

Note that the whole set S of the semi-active schedules has the cardinality |S| = mq,! - myq! =
3!.3! = 6-6 = 36. Thus, for solving Example 2, one needs to consider only two pairs of job
permutations { (7}, 7t}'), (15, 4)} = S(T) C S instead of 36 semi-active schedules.

5.4. An Algorithm for Checking Conditions for the Existence of a Single-Element Dominant Set

We describe Algorithm 1 for checking the existence of an optimal permutation for the problem
F2|l,-j <pij< uij|C,mx with job set 7 » if the partial strict order AL’Z on the set 7 » has the following
form: J1 < ... < Jo = {Jesv Jkr2r o Jeiry < Jkgrr1 < oo < Jmy,- Algorithm 1 considers a set of
conflict jobs and checks whether the sufficient conditions given in Section 5.2 hold. For a conflict set of
jobs, it is needed to construct two permutations and to check the condition in Inequality (12) for the first
permutation and the condition in Inequality (13) for the second one. If at least one of these conditions
holds, Algorithm 1 constructs a permutation which is optimal for the problem F2|l;; < pi; < 14| Cirax
with any scenario p € T.

Obviously, testing the conditions of Theorems 11 and 12 takes O(r), where the conflict set contains
7 jobs. The construction of the permutation of jobs takes O(rlog). Therefore, the total complexity of
Algorithm 1 is O(rlogr).

Remark 3. If Algorithm 1 is completed at Step 7 (STOP 1), we suggest to consider a set of conflict jobs
ki1, Jki2s - -0 Jxyr b and construct a Johnson’s permutation for the deterministic problem F2|p'|Cpay with job
set ' = {Jkr1, Jer2r - Jxyr}, wherevector p' = (P 10 Pki1ore - Pryr1s Prorn) Of the durations of conflict
jobs {Jki1, Jet2s - - - Jetr } B8 calculated for each operation Oj; of the conflict job J; € {Jxi1, Jk42, - - Jkgr } O1
the corresponding machine M; € M as folows:

pij = (uij + 1) /2 (16)

Theorem 11 and Theorem 12 imply the following claim.
Corollary 7. Algorithm 1 constructs a permutation 7t* either satisfying conditions of Theorem 11 or Theorem 12
(such permutation 7v* is optimal for the problem F2|l;j < pij < uj|Cax with job set J1 o and any scenario
p € T) or establishes that an optimal job permutation for the problem F2|l;; < pij < u;j|Cynax with any scenario

p € T does not exist.

The set of jobs Jp,1 for the problem F2|;; < p;; < u;;|Cyuax With job set J = J51 can be tested
similarly to the set of jobs 77 5.

112

Algorithms 2020, 13, 4

Algorithm 1: Checking conditions for the existence of a single-element dominant set of
schedules for the problem F2|l;; < pi; < u;j|Cirax

Input: Segments [I;;, u;;] for all jobs J; € J and machines M; € M,
a partial strict order Aﬁz on the set J;, = jfiz U] ‘7]12 U \712'2 in the form
Ji = < T = Akt Jeez oo T} < ket <o < g
Output: EITHER an optimal job permutation for the problem
F2|lij <pij< ui]»\C,,mx with job set J; » and any scenario p € T, (see STOP 0)
OR there no permutation 71y of jobs from set 7 5, which is optimal
for all scenarios p € T, (see STOP 1).

Step 1: Setds = lyyg0 — Upysq foralls € {1,2,...,r}
construct a partition of the set of conflicting jobs into two subsets X; and Xj,
where Jiys € Xpif 65 > 0, and Ji, s € X3, otherwise.

Step 2: Construct a permutation ! = (J1J2r 0 Jir 701, 702, Tt - - -0],,11’2), where the permutation
7t1 contains jobs from the set X; in the non-decreasing order of the values u ;1 and the
permutation 7r, contains jobs from the set X in the non-increasing order of the values
lj4i2, renumber jobs in the permutations 711 and 71, based on their orders.

Step 3: IF for the permutation 7r! conditions of Theorem 11 hold THEN GOTO step 8.

Step 4: Setds = lyyg1 — gysp foralls € {1,2,...,r}
construct a partition of the set of conflicting jobs into two subsets
Y7 and Y, where Jiy5 € Y7 if s > 0, and [, 5 € Y2, otherwise.

Step 5: Construct a permutation 2= (J1J2r o0 Jir 702, 701, Jietrsds - - -0],,11’2), where the permutation
711 contains jobs from the set Y7 in the non-increasing order of the values uy.,,, and the
permutation 71, contains jobs from the set Y, in the non-decreasing order of the
values /i, ; 1, renumber jobs in the permutations 771 and 715 based on their orders.

Step 6: IF for the permutation 77> conditions of Theorem 12 hold THEN GOTO step 9.

Step 7: ELSE there is no a single dominant permutation for problem
F2|l;; < pij < ujj|Cinax With job set 7 2 and any scenario p € T STOP 1.

Step 8: RETURN permutation 7!, which is a single dominant permutation
for the problem F2|l,'j <pi < uij|Cm”x with job set 73 » STOP 0.

Step 9: RETURN permutation 772, which is a single dominant permutation
for the problem F2|Iij <pij< u,v]v|C,,mx with job set 73, STOP 0.

6. Algorithms for Constructing a Small Dominant Set of Schedules for the Problem
J2|lij < pij < wij,ni < 2|Cax

In this section, we describe Algorithm 2 for constructing a small dominant set DS(T') of schedules
for the problem J2|l;; < pij < ujj, n; < 2|Cpiay. Algorithm 2 is developed for use at the off-line phase
of scheduling (before processing any job from the set 7). Based on the initial data, Algorithm 2
checks the conditions of Theorem 7 for a single optimal pair of job permutations for the uncertain
problem]2\1,-]- < pij < wijn; < 2|Cpiax. If the sufficient conditions of Theorem 7 do not hold,
Algorithm 2 proceeds to consider the problem F2|l;; < pjj < u;;|Cuax with job set J1» and the problem
F2|l;j < pjij < uj|Cinax with job set J1. For each of these problems, the conditions of Theorem 2 are
checked. If these conditions do not hold, then strict orders of the jobs [J based on Inequalities (4)
and (5) are constructed. In this general case, Algorithm 2 constructs a partial strict order AQZ of the
jobs from set 77 » and a partial strict order A% of the jobs from set Ja,1- Each of these partial orders
may contain one or several conflict sets of jobs. For each such conflict set of jobs, Algorithm 2 checks
whether the sufficient conditions given in Section 5.2 hold. Thus, if some sufficient conditions for a
schedule optimality presented in Sections 4 and 5 are satisfied, then there exists a pair of permutations
of jobs from set J which is optimal for any scenario p € T. Algorithm 2 constructs such a pair of
job permutations { (7', 7”")} = DS(T). Otherwise, the precedence digraphs determining a minimal
dominant set DS(T) of schedules is constructed by Algorithm 2. The more job pairs are involved in the

113

Algorithms 2020, 13, 4

binary relations A2 and A%}, the more job permutations will be deleted from set S while constructing
a [-solution S(T) C S for the problems F2\l,~j <pi < u,-]-\Cma,r with job sets J; » and J5,1.

Algorithm 2: Construction of a small dominant set of schedules for the problem J2|;; < p;; <
Uij, N < 2|Cmﬂx

Input: Lower bounds /;; and upper bounds u;j, 0 < I;; < u;j, of the durations
of all operations Oj; of jobs J; € J processed on machines M; € M = {My, My}.
Output: EITHER pair of permutations (7', 1”") = ((711,0, m1, 7121), (7021, 702, 7112)),
where 77’ is a permutation of jobs from set 7 , U J3 U Jp,1 on machine
M, " is a permutation of jobs from set J; », U J» U J2 1 on machine My,
such that {(7/, ©”")} = DS(T), (see STOP 0),
OR permutation 715 1 of jobs from set 7, 1 on machines M; and M, and
a partial strict order A};Z of jobs from set 77 5,
OR permutation 711 of jobs from set 71 , on machines M; and M, and
a partial strict order Ail of jobs from set 7 1,
OR a partial strict order A" of jobs from set 73 , and
a partial strict order Ai] of jobs from set 7, 1, (see STOP 1).
Step 1: Determine a partition J = J; U Jp U J12 U Jp1 of the job set 7,
permutation 71 of jobs from set 7; and permutation 7, of jobs from
set J,, arrange the jobs in the increasing order of their indexes.
Step 2: IF the first inequality in condition (7) of Theorem 7 holds THEN BEGIN
Construct a permutation 771 5 of jobs from set 77 »,
arrange them in the increasing order of their indexes;
IF the second inequality in condition (7) of Theorem 7 holds
THEN construct a permutation 7151 of jobs from set 751,
arrange them in the increasing order of their indexes GOTO Step 10 END
Step 3: IF the first inequality in condition (8) of Theorem 7 holds THEN BEGIN
Construct a permutation 71 1 of jobs from set 7, 1,
arrange them in the increasing order of their indexes;
IF the second inequality in condition (8) of Theorem 7 holds THEN
construct a permutation 77y, of jobs from set J; 5,
arrange the jobs in the increasing order of their indexes END
Step 4: IF both permutations 771 5 and 715 are constructed THEN GOTO Step 10.
Step 5: IF permutation 77y 5 is not constructed THEN fulfill Algorithm 3.
Step 6: IF permutation 77y ; is not constructed THEN fulfill Algorithm 4.
Step 7: IF both permutations 771 5 and 715 are constructed THEN GOTO Step 10.
Step 8: IF permutation 775 1 is constructed THEN GOTO Step 11.
Step 9: IF permutation 77y 5 is constructed THEN GOTO Step 12 ELSE GOTO Step 13.
Step 10: RETURN pair of permutations (7', 71""), where 7’ is the permutation
of jobs from set 73 , U J4 U Ja1 processed on machine M and 7" is
the permutation of jobs from set J1, U J> U J51 processed
on machine M, such that {(7/, 7”")} = DS(T) STOP 0.
Step 11: RETURN the permutation 775 1 of jobs from set 7, ; processed on machines M; and M,
the partial strict order A};Z of jobs from set J; , GOTO Step 14.
Step 12: RETURN the permutation 77y 5 of jobs from set J; », processed on machines M; and M,
the partial strict order A% of jobs from set 751 GOTO Step 14.
Step 13: RETURN the partial strict order Agz of jobs from set 77 »
and the partial strict order Ail of jobs from set 7 1
Step 14: STOP 1.

Algorithm 2 may be applied for solving the problem J2|l;; < p;; < uyj,n; < 2|Cyax exactly or
approximately as follows. If at least one of the sufficient conditions proven in Section 5.1 hold, then

114

Algorithms 2020, 13, 4

Algorithm 2 constructs a pair of job permutations (', 7'’) = ((712, 71, 21), (72,1, 702, 7012), which is
optimal for any scenario p € T (Step 10).

It may happen that the constructed strict order on the set 73, or on the set 7, ; is not a linear
strict order. If for at least one of the sets [J; » or [, 1, the constructed partial strict order is not a linear
one, a heuristic solution for the problem]2\1,7 < pij < ujj,n; < 2|Cyax is constructed similar to that
for the problem F2|l;; < p;; < u;j|Ciax solved by Algorithm 1 (see Section 5.4). If Algorithm 2 is
completed at Steps 11-13 (STOP 1), we consider a set of conflictjobs {Jx11, [x+2, - - -, Je+, } and construct
a Jackson’s pair of job permutation for the deterministic problem]Z\p’, n; < 2|Cpax with job set
J = ki1 Jer2, - - Jkir}, where the vector p' = (pj 11, Py 12/ Py r1s Piyro) Of the durations of
conflict jobs {Ji+1, Jk+2,- - - Jetr } is calculated using the equality of Equation (16) for each operation
O;j of the conflict job J; € {Ji11, Jk+2,- - - Jk4r} O the corresponding machine M; € M (Remark 3).

Algorithm 3: Construction of a strict order A%? on the set Ji2

Input: Lower bounds /;; and upper bounds u;j, 0 < I;; < u;j, of the durations
of all operations O;; of jobs J; € J on machines M; € M = {M;, Mp}.
Output: EITHER permutation 7r; 5, which is optimal for the problem
F2|lij <pij < ui]»\C,,mx with any scenario p € T for the jobs 71 5,
OR partial strict order A&z on the set J; 5.
Step 1: Construct a partition [J;, = .7112 U ._712/2 U ‘71*,2 of the set 7, of the jobs.
Step 2: IF conditions of Theorem 2 hold THEN
Step 3: Construct permutation 711, = (ﬂiw]i‘lz, ”%/2)/ where ”%/2 is a permutation for
processing jobs from the set ~7112 in the non-decreasing order of the values u;;,
nfz is a permutation for processing jobs from the set ‘712,2
in the non-increasing order of the values u;; GOTO Step 7 ELSE
Step 4: FOR each pair of jobs |, € Ji and [y € J10, v # w, DO
IF at least one of two conditions (4) and (5) holds THEN
determine the relation J, < [
END FOR
Step 5: Renumber jobs in the set 7 » such that relation v < w holds if [, < Jz.
Step 6: FOR each conflict set of jobs DO
IF condition of Theorem 10 holds THEN
Order jobs in the conflict set in the increasing order of their indexes GOTO Step 7
ELSE fulfill Algorithm 1
END FOR
Step 7: IF the partial strict order Al’z is linear THEN
construct a permutation 771 ; generated by the linear order AL’Z
STOP.

Algorithm 4 is obtained from the above Algorithm 3 by replacing the set 77 » of jobs by the set 7, 1
of jobs, machine M; by machine M5, and vice versa. Obviously, testing the conditions of Theorems 11
and 12 takes O(r), where conflict set contains r jobs. Construction of permutation of r jobs takes
O(rlogr). Therefore, the total complexity of Algorithm 1is O(rlogr).

Testing the conditions of Theorem 2 takes O (112 log m1 2) time. A strict order AL’Z on the set J; »
is constructed by comparing no more than (17, — 1) pairs of jobs in the set J; ». Thus, it takes
O(myp(myp — 1)) time. The complexity of Algorithm 1 is O(rlogr) time provided that the conflict
set contains r jobs, where r < m; 5. Since a strict order AL’Z is constructed once in Algorithm 3, we
conclude that a total complexity of Algorithm 3 (and Algorithm 4) is O(nz) time.

In Algorithm 2, testing the condition of Theorem 7 takes O(max{myp,my}) time. Every
Algorithm 3 or Algorithm 4 is fulfilled at most once. Therefore, the complexity of Algorithm 2
is O(n?) time.

115

Algorithms 2020, 13, 4

7. Computational Experiments

We describe the conducted computational experiments and discuss the results obtained for
randomly generated instances of the problem J2|l;; < p;; < uyj,n; < 2|Cyax. In the computational
experiments, each tested series consisted of 1000 randomly generated instances with the same numbers
n € {10,20,...,100,200,...,1000,2000,...,10.000} of jobs in the set J provided that a maximum
relative length ¢ of the given segment of the possible durations of the operations O;; takes the following
values: {5%, 10%, 15%, 20%, 30%, 40%, and 50% }. The lower bounds lij and upper bounds ujj for possible
values of the durations p;; of the operations Oj;, p;; € [l,-/-, u,-j] using the value J have been determined
as follows. First, a value of the lower bound /;; is randomly chosen from the segment [10,1000] using a
uniform distribution. Then, the upper bound u;; is calculated using the following equality:

5
Ll,‘j = l,] <1 + ﬁ) (17)

For example, we assume that § = 5%. Then, for the lower bounds I;; = 50 and ;; = 500, the upper
bounds u;; = 52.5 and u;; = 525 are calculated using Reference (17). If § = 50%, then based on the
lower bounds /;; = 50 and /;; = 500 and on Reference (17), we obtain the upper bounds u;; = 75 and
u;; = 750. Thus, rather wide ranges for the tested durations of the jobs 7 were considered.

In the experiments, the bounds /;; and u;; were decimal fractions with the maximum possible
number of digits after the decimal point. For all tested instances of the problem]2\1,-]- < pij Sujjn; <
2|Cinax, a strict inequality l,'j < ujj was guarantied for each job J; € J and each machine M; € M.

We used Algorithms 1 -4 described in Section 5.4 and Section 6 for solving the problem J2|I;; <
pij < uij,ni < 2|Ciax- These algorithms were coded in C# and tested on a PC with Intel Core i7-7700
(TM) 4 Quad, 3.6 GHz, and 32.00 GB RAM. Since Algorithms 1 - 4 are polynomial in number # jobs in
set J, the calculations were carried out quickly. In the experiments, we tested 15 classes of randomly
generated instances of the problem]2\117 < pij < wn < 2|Ciax with different ratios between
numbers 111, My, My », and ny 1 of the jobs in subsets 71, J>, J12, and J>1 of the set 7. The obtained
computational results are presented in Tables A1-A15 for 15 classes of the solved instances. Each tested
class of the instances of the problem]2\1[]- < pij S ugjn; < 2|Cipax is characterized by the following
ratio of the percentages of the number of jobs in the subsets 71, J2, J12, and J51 of the set J:

"M 100% : 2 .100% : T12 . 100% : 2L 100% (18)
n n n n

Tables A1-A9 present the computational results obtained for classes 1-9 of the tested instances
characterized by the following ratios (Equation (18)):

25% : 25% : 25% : 25% (Table A1); 10% : 10% : 40% : 40% (Table A2);

10% : 40% : 10% : 40% (Table A3); 10% : 30% : 10% : 50% (Table A4);

10% : 20% : 10% : 60% (Table A5); 10% : 10% : 10% : 70% (Table A6);

5% : 20% : 5% : 70% (Table A7); 5% : 15% : 5% : 75% (Table A8);

5% : 5% : 5% : 85% (Table A9).

Note that all instances from class 1 of the instances with the ratio from Equation (18), 25% : 25% :
25% : 25%, were optimally solved by Algorithm 1 -4 for all values of 5 € {5%, 10%, 15%, 20%, 30%, 40%,
and 50%}. We also tested classes 10-15 of the hard instances of the problem]Z\Iij < pij S wjjn; <
2|Cyax characterized by the following ratios (Equation (18)):

3% : 2% : 5% : 90% (Table A10); 2% : 3% : 5% : 90% (Table A11);

2% : 2% : 1% : 95% (Table A12); 1% : 2% : 2% : 95% (Table A13);

1% : 1% : 3% : 95% (Table A14); 1% : 1% : 1% : 97% (Table A15).

All Tables A1-A15 are organized as follows. Number 7 of given jobs J in the instances of the
problem]2|l,‘j < pij < un < 2|Cax are presented in column 1. The values of ¢ (a maximum

relative length of the given segment of the job durations) in percentages are presented in the first

116

Algorithms 2020, 13, 4

line of each table. For the fixed value of ¢, the obtained computational results are presented in four
columns called Opt, NC, SC, and t. The column Opt determines the percentage of instances from the
series of 1000 randomly generated instances which were optimally solved using Algorithms 1 — 4. For
each such instance, an optimal pair (77, 7"7) of the job permutations was constructed in spite of the
uncertain durations of the given jobs J. In other words, the equality Cpax (77, 7'") = Cipax (7%,)
holds, where (77*, 7**) € S is a pair of job permutations which is optimal for the deterministic problem
J2|p*, n; < 2|Cyax associated with the factual scenario p* € T. The factual scenario p* € T for the
instance of the uncertain problem | 2\[,7 < pij < uijn < 2|Ciax is assumed to be unknown until
completing the jobs 7.

Column NC presents total number of conflict sets of the jobs in the partial strict orders Al?
on the job sets [Jj, and partial strict orders Ai’l on the job sets [J,; constructed by Algorithm 2.
The value of NC is equal to the total number of decision points, where Algorithm 2 has to select an
order for processing jobs from the corresponding conflict set. To make a correct decision for such an
order means to construct a permutation of all jobs from the conflict set, which is optimal for the factual
scenario (which is unknown before scheduling). In particular, if all conflict sets have received correct
decisions in Algorithm 2, then the constructed pair of job permutations will be optimal for the problem
J2|p*, n; < 2|Cpax, where p* € T is the factual scenario.

Column SC presents a percentage of the correct decisions made for determining optimal orders
of the conflict jobs by Algorithm 2 with Algorithms 3 and 4. Column ¢ presents a total CPU time
(in seconds) for solving all 1000 instances of the corresponding series.

Average percentages of the instances which were optimally solved (Opt) are presented in Figure 1
for classes 1-9 of the tested instances and in Figure 2 for classes 10-15 of the hard-tested instances.

(2335888 3838%

™ 10% 1% 20% Lo 40% 0%

25925 %25 % 25N e 10% 10% 1 S0 % 40 K =i 10% 0% 1 10 % - A0 K e 10 1 30 K- 10 % - S0 K e 10 - 20 % : 10 % : 60 %
= 10%:10%:10% : TO K mem SN 20K 3K TON ==K 1SN 3N :TIN = N 3N IN-EX

Figure 1. Average percentages of the instances presented in Tables A1-A9, which were optimally
solved at the off-line phase of scheduling.

Percentages of the average values of the correct decisions (SC) made for determining optimal
orders of the conflict jobs for classes 1-9 are presented in Figure 3. Most instances from these
nine classes were optimally solved (Table 2). If the values of 4 were no greater than 20%, i.e.,
§ € {5%,10%,15%, 20%}, then more than 80% of the tested instances were optimally solved in spite
of the data uncertainty. If the value J is increased, the percentage of the optimally solved instances
decreased. If the value J was equal to 50%, then 45% of the tested instances was optimally solved.

For all series of the hard instances presented in Tables A10-A15 (see the third line in Table 2), only
a few instances were optimally solved. If § = 5%, then 70% of the tested instances was optimally
solved. If value é belongs to the set {20%, 30%, 40%, 50%}, then only 1% of the tested instances was
optimally solved. There were no hard-tested instances optimally solved for the value of § = 50%.

117

Algorithms 2020, 13, 4

90% -
B0% -

T0% -

§

&

§

§

0% - i
0% 5% 10% 15% 20% 30% a0% 50%

=3B 2N 5N MR- H IR SN MO N2 N 2N 1% 95N

el %29 2N N1 N 1N BN RN-e—=1N: 1% 1% 97N

Figure 2. Average percentages of the instances presented in Tables A10-A15, which were optimally
solved at the off-line phase of scheduling.

Table 2. Average percentage of the instances which were optimally solved.

6% 5% 10% 15% 20% 30% 40% 50% Average

Instances from Tables A1-A9 ~ 99.93 98.48 8893 80.66 63.97 50.18 44.10 75.18
Instances from Tables A10-A15 69.78 2489 796 273 020 0.03 0.00 15.08

Percentages of the average values of the correct decisions made for determining optimal orders of
the conflict jobs by Algorithm 2, Algorithm 3 and Algorithm 4 for the hard classes 10-15 of the tested
instances are presented in Figure 4. Note that there is a correlation between values of Opt and SC
presented in Figures 1 and 3 for classes 1-9 of the tested instances and those presented in Figures 2
and 4 for classes 10-15 of the hard-tested instances.

EEEEER
5.
§
§

§

% % 0% 15% 0%

25525 %25 K25 K e 105 10 % 1 40 % 1 30 % == 103 -0 % 1 10 % : 40 % w10 % : 30 % : 10 % : 50 % s 10 % : 20 % : 10 % - 60 %
=10%:10%: 10K TO K mmI N 20K 5N TOK = =IN: 13N 5K 73K 3% 5%:3%:83%

Figure 3. Average percentages of the correct decisions made for constructing permutations of the
conflict jobs for the instances presented in Tables A1-A9.

118

Algorithms 2020, 13, 4

EEEEREENR

§§§

% 10% 15% 20% 30% a0 50%

e EHFESER R R R E R R T L
*1%:2%:2H 95 N1 1N BN N1 %:1%: 1% 97

Figure 4. Average percentages of the correct decisions made for constructing permutations of the
conflict jobs for the hard instances presented in Tables A10-A15.

8. Concluding Remarks and Future Works

The uncertain flow-shop scheduling problem F2|l;; < pj;j < u;;|Cpax and its generalization
the job-shop problem J. 2\1{]' < pij < ugm < 2|Cpuax attract the attention of researchers since these
problems are applicable in many real-life scheduling systems. The optimal scheduling decisions for
these problems allow the plant to reduce the costs of productions due to a better utilization of the
available machines and other resources. In Section 5, we proved several properties of the optimal pairs
(!, ") of job permutations (Theorems 7-12). Using these properties, we derived Algorithms 1-4
for constructing optimal pairs (77, 7”’) of job permutations or a small dominant set of schedules for
the problem J2[I;; < pjj < ujj, 11; < 2|Cpiay. If it is impossible to construct a single pair (77/, 77) of job
permutations, which dominates all other pairs of job permutations for all possible scenarios T, then
Algorithm 2 determines the partial strict order A2 on the job set J; » (Algorithm 3) and the partial
strict order A%' on the job set 751 (Algorithm 4). The precedence digraphs (73, AX?) and (75,1, A%)
determine a minimal dominant set of schedules for the problem | 2|lz-]- < pij Sujj,n; < 2|Cax-

From the conducted extensive computational experiments, it follows that pairs of job permutations
constructed using Algorithm 2 are close to the optimal pairs of job permutations, which may be
determined after completing all jobs J when factual operation durations become known. We tested
15 classes of the randomly generated instances]2\1,7 < pij < uyj,n; < 2|Cyax- Most instances from
tested classes 1-9 were optimally solved at the off-line phase of scheduling. If the values of § were
no greater than 20%, i.e., & € {5%, 10%, 15%,20%}, then more than 80% of the tested instances was
optimally solved in spite of the uncertainty of the input data. If 6 = 50%, then 45% of the tested
instances was optimally solved. However, less than 5% of the instances with § > 20% from hard
classes 10-15 were optimally solved at the off-line phase of scheduling (Figure 2). There were no tested
hard instances optimally solved for the value 6 = 50%.

In future research, the on-line phase of scheduling will be studied for the problem J2|l;; < p;; <
ujj, n; < 2|Cinax- To this end, it will be useful to find sufficient conditions for existing a dominant pair
of job permutations at the on-line phase of scheduling. The additional information on the factual value
of the job duration becomes available once the processing of the job on the corresponding machine
is completed. Using this additional information, a scheduler can determine a smaller dominant set
DS of schedules, which is based on sufficient conditions for schedule dominance. The smaller DS
enables a scheduler to quickly make an on-line scheduling decision whenever additional information
on processing the job becomes available. To solve the problem]2|li]- < pij S ujjn; < 2|Cax at the

119

Algorithms 2020, 13, 4

on-line phase, a scheduler needs to use fast (better polynomial) algorithms. The investigation of the
on-line phase of scheduling for the uncertain job-shop problem is under development.

We suggest to investigate properties of the optimality box and optimality region for a pair
(7!, ") of the job permutations and to develop algorithms for constructing a pair (7', 7) of the job
permutations that have the largest optimality box (or the largest optimality region). We also suggest to
apply the stability approach for solving the uncertain flow-shop and job-shop scheduling problems
with | M| > 2 available machines.

Author Contributions: Methodology, Y.N.S.; software, V.D.H.; validation, Y.N.S., N.M.M. and V.D.H.; formal
analysis, Y.N.S. and N.M.M_; investigation, Y.N.S. and N.M.M; writing—original draft preparation, Y.N.S. and
N.M.M.; writing—review and editing, Y.N.S.; visualization, N.M.M.; supervision, Y.N.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We are thankful for useful remarks and suggestions provided by the editors and three
anonymous reviewers on the earlier draft of our paper.

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A. Proofs of the Statements

Appendix A.1. Proof of Lemma 2

We choose an arbitrary vector p in the set T, p € T, and show that set < S} ,,S,1 > contains at
least one optimal pair of job permutations for the problem J2|p, n; < 2|Cyqx with scenario p € T.

Let (7%, 0*) = ((117,, ™1, 73 4), (7051, 72, 717 ,)) be a Jackson’s pair of job permutations for the
problem J2|p, n; < 2|Cyax with scenario p € T, i.e., Cpax (7%, T**) = Cypax. Without loss of generality,
one can assume that jobs in both permutations 771 and 71, are ordered in increasing order of their
indexes. Itis clear that 7r3 | € Sy 1. If inclusion 71}, € S/, holds as well, then (77*, 7**) € <S] ,, S5 1>
and set < Sl1,2/ Sp1 > contains an optimal pair of job permutations for the problem J2|p, n; < 2|Cyax
with scenario p € T. We now assume that 7i{, ¢ Sj,. The set S}, contains at least one optimal
permutation for the problem F2|p; »|Ciuax with job set 7 » and scenario p; » (the components of vector
p1,2 are equal to the corresponding components of vector p). We denote this permutation as 7} .
Remember that permutation 77} , may be not a Johnson’s permutation for the problem F2|p; 2|Crrax
with job set 71 » and scenario p; 2. We consider a pair of job permutations (7, 1) = ((77} 5, 71, 703 1),
(”3,1' T, nﬁ,z)) c <S§/2, Sp1> and show that equality Cyax (77, 7**) = Cpiax holds. We consider the
following two possible cases.

(j) Cpax (7!, %) = 1 ().

If equality c1(7T') = YLj.c 7,,u7,07 Pin holds, then c1(7T') < 1(7*).

We now assume that inequality ¢; (1) > Ye TiaUdh U Pil holds. Then, machine Mj has an idle
time. As it is mentioned in the proof of Theorem 7, an idle time for machine Mj is only possible if
some job J; from the set 7 is processed on machine M at the time moment ; when job J; could
be processed on machine M. Thus, the value of ¢ (7r’) is equal to the makespan Cmax(ﬂﬁ,l) for the
problem F2|p; 1 |Ciuax with job set /5 1 and scenario py 1 (the components of vector py 1 are equal to the
corresponding components of vector p). As jobs from the set 7,1 are processed as in the permutation
75 1, which is a Johnson’s permutation, the value of ¢ (7r') cannot be reduced and so ¢ (') < ¢ (7).
We obtain the following relations: Cpax (7', %) = c1(7') < c1(7*) < max{ey (%), ca(n*™)} =
Conax (7%, %) = Cpugx. Thus, equality Cpax (77, 7%) = Cyyax holds.

(ji) Cimax (7', %) = o (7).

Similarly to case (j), we obtain the following equality:

co () = max{ Y. Pizs Cinax (7712) 3,
Ji€h2UT1UT2

120

Algorithms 2020, 13, 4

where Cmax(nﬂ/z) is the makespan for the problem F2|pj 5|Cpuax with job set 73 » and vector p; of the
job durations (it is assumed that 77} , is an optimal permutation for this problem). Thus, the value of
c2(71**) cannot be reduced and equality Cpax (7', 7°%) = Cypax holds.

In both considered cases, the pair of job permutations (7, 7**) is an optimal schedule for the
problem J2|p, n; < 2|Cyax with scenario p € T. Therefore, an optimal pair of job permutations for
the problem J2|p, n; < 2|Cpqx with scenario p € T belongs to the set < 53,2' Sp1 >. As vector pis an
arbitrary vector in set T, the set < S ,, 551 > contains an optimal pair of job permutations for each
scenario from set T. Due to Definition 4, the set < SLZ, Sp1 > is a dominant set of schedules for the
problem]2|lij < pij S wipn; < 2|Cypax with job set J.

Appendix A.2. Proof of Theorem 8

We consider an arbitrary vector p € T of the job durations from set T and relevant vectors
p1,2 and pyq of the durations of jobs from set [J;, and set [J, 1, respectively. Set 5/1,2 contains an
optimal permutation 77} , for the problem F2|p12|Ciax with job set J 2 and with vector py of the
job durations. Set S}, contains an optimal permutation 7t} ; for the problem F2|py 1|Cimax with job
set J»,1 and with vector p;; of the job durations. We next show that the pair of job permutations
(', n") = (), 711,705 1), (7054, 702,717 5)) is an optimal pair of job permutations for the problem
J2|p, n; < 2|Cpiax with scenario p € T (the jobs in permutations 71 and 7, are ordered in increasing
order of their indexes). From the proofs of Lemmas 2 and 3, we obtain the value of Cya (7, 7)) =
max{cy(7'), c2 (7"}

= max{max{ Z PilszaX(ﬂé,l)}/maX{ Z Pi2s CmaX(na/z)}}r
Ji€T12UT,1VN Ji€T12UT,1UTn

which cannot be reduced. Therefore, Cpax (77, 7)) = Cpax. An optimal pair of job permutations for
the problem J2|p, n; < 2|Cyax with vector p € T of the job durations belongs to the set < Sirz, Sé[l >.
As vector p is arbitrary in set T, the set < S} ,, S | > contains an optimal pair of job permutations for
all vectors from set T. Due to Definition 4, the set < 51,2' 5/2/1 >C S is a dominant set of schedules for
the problem J2|l;; < pj;j < ujj, n; < 2|Cpyay With job set J.

Appendix A.3. Proof of Theorem 9

We consider an arbitrary scenario p € T. Due to Definition 1, the permutation 711 » is a Johnson’s
permutation for the problem F2|p; »|Cyax with job set J; » and scenario p; » (the components of this vector
are equal to the corresponding components of vector p). Due to Definition 4, the singleton { (711 2, 711 2) }
is a minimal dominant set of schedules for the problem F2|I i <pij<u l-]'\Cmax with job set 77 5.

Similarly, the singleton { (75,1, 712,1) } is a minimal dominant set of schedules for the problem
F2|li]- < pij < llij|Cmax with job set J; 1. We consider permutations 7r; and 71, of the jobs [J; and
Jh, respectively (due to Remark 1, the jobs in permutations 7r; and 7, are ordered in increasing
order of their indexes). Due to Theorem 8, the pair of permutations ((712, 711, 72,1), (7712, 72, 72,1))
is a single-element dominant set (DS(T)) for the problem J2|l;; < p;; < u;j,n; < 2|Cyax With job set
J=N"UNnUTpUn.

Appendix A.4. Proof of Corollary 6

In the proof of Theorem 9, it is shown that the pair of job permutations ((7112, 71, 721),
(7112, 712, 712,1)) is a single-element dominant set of schedules for the problem J2|l;; < p;; < u;;,n; <
2|Cppax with job set J = U TNHU T U Jo1. We next show that the pair of permutations
((7r1,0, 711, 7T2,1), (71,0, 72, 712,1)) satisfies to Definition 1, i.e., this pair of permutations is a Jackson’s
pair of job permutations for the problem J2|l;; < p;i < wjj;,n; < 2|Cyuax with job set J (the
minimality condition is obvious). Indeed, due to conditions of Theorem 9, the permutation 7,
is a Johnson’s permutation for the problem F2|lij < pij < ui]-|Cmax with job set [J1, and the

121

Algorithms 2020, 13, 4

permutation 715 ; is a Johnson’s permutation for the problem F2|l,-j <pi < ui]-|Cmax with job set 7 1.
Therefore, pair ((7112, 71, 72,1), (71,2, 72, 72,1)) is a Jackson’s pair of permutations for the problem
J2|lij < pij < g, n; < 2|Cpay with job set J. Due to Definition 1, the pair of job permutations
((rr12, 711, 712,1), (7712, 702, 7T2,1)) is a single-element J-solution for the problem J2[l;; < p;; < uyj,n; <
2|Cmﬂx with]Ob set 7 =L UJU .:71,2 U j2,1~

Appendix A.5. Proof of Theorem 12

We consider any fixed scenario p € T and a pair of job permutations (7/,7") =
((rt, 711, 7151), (7051, 712, 77)) € S, where 713, € Sy is a Johnson’s permutation of the jobs from the set
J2,1 with vector p, 1 of the job durations (components of this vector are equal to the corresponding
components of vector p). We next show that this pair of job permutations (7', 7”’) is optimal for the
individual problem J2|p, n; < 2|Cyax with scenario p, i.e., Cax (77, 1"") = Cpygx.

At time t = 0, machine M; begins to process jobs from the permutation 77 without idle times.
We denote t; = Zﬁ‘i{ +1 pi1. At time moment t1, job Ji,,.1 is ready for processing on machine M.
From the condition of Inequality (13) with s = 1, it follows that, even if machine M, has an idle time
before processing job Ji,.1, machine M; is available for processing this job at time #;. If in addition,
the condition of Inequality (13) holds with s € {2,3,...,r}, then machine M, may also have idle times
between processing jobs from the conflict set {Ji 11, Jx12,-- -, Jksr}- However, machine M, is available
for processing job Jii,41 from the time moment t; = Zi‘;rl' +1 pit-

In permutation 77, jobs Jxy,41,. - -, Jm, are arranged in Johnson’s order. Therefore, if machine M,
has an idle time while processing these jobs, this idle time cannot be reduced.

Thus, the value of cp(7”") cannot be reduced by changing the order of jobs from the conflict
set. Note that an idle time for machine M; is only possible between some jobs from the set 7.
Since the permutation 7'(3‘/1 is a Johnson’s permutation of the jobs from set J,; with scenario p; 1,
the value of ¢1(77') cannot be reduced. Thus, we obtain Cpay (77, 7'") = max{cy (7'), c2(7")} = Cpiax
and the pair of permutations (v, ') = ((7, 71y, T), (”3,1/ T, 7)) € S'is optimal for the problem
J2|p, n; < 2|Cpax with scenario p € T. As the vector p is an arbitrary vector in the set T, set S’ contains
an optimal pair of job permutations for each vector from the set T. Due to Definition 4, set S is a
dominant set of schedules for the problem]2\lij < pij S ujj,n; < 2|Ciax with job set J.

122

0 00T €£TS 00L 0 00T $0'9Z 00L 0 00T ¥STL 00T O 00T 88F% 00L O 00T ¥0'€ 00L O 00T SO'T 00L O 00T ¥S0 001 oAy
0 - 0 0I0 - 0 00 - 0 0IO0 - 0 0[O0 - 0 0I0 - 0 0I0 - 0 00 0000I
0 - 0 0I0 - 0 0I0- 0 0I0- 0 0IO0- 0 0ILO0 - 0 0IO0 - 0 00 0006
0 - 0 0I0 - 0 0[O0 - 0 0I0- 0 0I0- 0 0IO0 - 0 0IO0 - 0 00 0008
0 - 0 0I0 - 0 0I0 - 0 0I0 - 0 0I0- 0 00 - 0 0I0 - 0 00 000
0 - 0 0I0 - 0 0I0- 0 0I0- 0 0IO0- 0 0[O0 - 0 0IO0 - 0 00 0009
0 - 0 0I0 - 0 0I0 - 0 0I0 - 0 0I0- 0 0IO0 - 0 000 - 0 00I 0008
0 - 0 0I0 - 0 0I0 - 0 0IO0 - 0 0I0- 0 0I0 - 0 000 - 0 00 000F
0 - 0 0I0 - 0 0I0- 0 0I0- 0 0[O0- 0 0[O0 - 0 0IO0 - 0 00 000€
0 - 0 0I0 - 0 0I0 - 0 0I0 - 0 0I0- 0 0IO0 - 0 000 - 0 00I 000
0 - 0 0I0 - 0 0[O0 - 0 0IL0 - 0 0I0- 0 0IL0 - 0 0I0 - 0 00 000I
0 - 0 0I0 - 0 0[O0 - 0 0I0 - 0 0[O0 - 0 0[O0 - 0 0IO0 - 0 00 006
0 - 0 0r0 - 0 00 - 0 0I0 - 0 0I0- 0 0I0 - 0 0I0 - 0 00 008
0 - 0 00L0 - 0 0LO0 - 0 00 - 0 0L0- 0 0[LO0=- 0 0L0 - 0 00 00
0 - 0 0I0 - 0 0I0 - 0 0I0 - 0 0[0- 0 0[O0 - 0 0I0 - 0 00 009
0 - 0 0rI0 - 0 0I0 - 0 0I0 - 0 0I0- 0 0I0 - 0 0I0 - 0 00 009
0 - 0 0I0 - 0 0I0- 0 0IL0- 0 0[O0 - 0 0[O0 - 0 0ILO0 - 0 00 O00F
0 - 0 0r0 - 0 0I0 - 0 0I0- 0 0I0- 0 0[O0 - 0 0IO0 - 0 00 00€
000L ¢ 000 - 0 00 - 0 0IO0 - 0 0[O0 - 0 0I0 - 0 0I0 - 0 00 00C
000L ¥8 00I 000L 6 00L O - O O0OL O - O O00L O - O O0OL O - O O00OL O - O OO0l O0L
0 00T ¢ZT 00T 0 00T S 00T O - O 00T 0 OOL € 00T O - O O0OL O - O 00L O - O O00L 08
0 00T 6FL 00T 0 00 TZ 00T O 00T TL 00T O 0O € 00T 0 00L ¢ 00L O - O 00L O - O O00L O
0 00 %2z 00T 0 00T ¥IT 00T O 00T 0S O00L O 00T § 00T 0 00T 9T 00T 0 00L € 00T O 00T 4 00T OS
0 00T €£€ 00T 0 00T 9¢T 00T O 00T TOL 00T O 00T €€ 00T 0 00T Oz 00T 0 00T ¥ 00T O - O 00T OF
0 00T 68 00L 0 00L 0ST 00T 0 00T 6£T 00T O 00L 0OZ 00T O 00T S€ 00L 0 00L 6L 00OL O 00L 9 00L 0T
705 ON #40 1 25 ON #0 1 25 ON #0 12 OS ON 340 12 20§ ON #40 2 2§ ON #40 # 2§ ON #0 u
%08 %0b %0€ %0¢ %SL %01 %S %9

Algorithms 2020, 13, 4

*$}9sqNS Y} Ul SOl JO IaquInu 343 JO 9,67 : %GT : %ST © %SGT ORI UIIM Sadue)sur pajersuad Ajuopuel 105 sjnsal feuoneindwo)) *Iy 3[qeL,

s3nsay suonenduwro)) yym safqey, g xipuaddy

123

Algorithms 2020, 13, 4

19°G 8566 09ST 69'66 TS89 SL'66 VLLL ¥8'66 1T8 9866 0CTIT €666 F0'0 €666 98FL 86'66 0 T6'66 T68 6666 0 00T 6¢S 00T 0 00L 19 001 oAy
0F 00T 000 00T 6F 00T 000 00T 19 00T 000 00T T 00T % 00L O - 0 00L 0 - O 00L O - 0O 00 00001
7€ 00T 000 00T 6€ 00T 000 00T 8F 00T 000L 00T O 00L € 00L O - 0 00 O - O 00I O - O O00L 0006
6z 00T 000 00T 1I€ 00T 000 00T Z& 00T TI00T 00T O 00T 9 00L O - 0 00 O - O 00I O - O 00T 0008
6L 00T 000 00T ¢€¢ 00T 000 00T 8Z 00T 000 00T O 00T 8 00L O - 0 00L 0 - O 00L O - O 00T 000
¥I 00T TOOL 00T ZI 00T T00T 00T Iz 00T TOOL 00T O 00 € 00l 0 - 0 00L O - O 00L O - O 00T 0009
0T 00T 000 00T TI 00T 000 00T %I 00T IIOT 00T O 00T %€ 00l O - 0 00L O - O 00L O - O 00T 000S
£ 00T 000L 00T 8 00L SOOL 00T 6 00T TEOL 00T O 00T 98 00L O - 0 00L 0 - O 00L O - O 00L O000%
¥ 00 II0L 00T S 00T S20T 00T 9 00T £ZIT 00L O 00T 09T 00 O - 0 00L O - O 00I O - O 00T 000€
T 00 ¥FOL 00T € 00T ZEIT 00T € 00T ZSPT 00T O 00T T¥F 0O O 00T € 00T O - O 00T O - O 00T 000T
I 00l 86cT 00L T 00l 0€9T 00T T 00l SSZ¢ 00T O 00l SZZL 00T O 00OL 96T 00OL O - O 00L O - O O0OL 000L
T 00 OZFT 00T T 00T £ZZ9T 00L T 00T ¢66C 00T O 0O ZFHPL 00T O OOT 8I€ 00T O - O O0OL O - O 00 006
T 00T G8FT 00T T 00T 998T 00L O 00T 9592 00T O 00T ZOZL 00T O 00T ¥6Z 00T 0 00T 9¢ 00T O - O O00L 008
T 00T S8ST 00T T 00T SIOZ 00L T 00T 642 00T O 00T ¥#68T 00T O 00T 82 00T O 00T S¥ 00T O - O 00 00Z
0 00 T69T 00T O 00T TOTCT 00T O 00T TIS6C 00T O 00T 940T 00T O 00T 66F O0OL O 00T 88 00T O - O 00T 009
0 00I 8€8T 00L O 00T T9C 00T O 00T 8€I€ 00L O 00T Z0ST 00T O 00T €I8 00T 0 00T OFc 00T O 00T TIT 00T 009
0 00 996 00 O 00I 69%C 00T O 00T €92€ 00L O 00T 99%¢ 00T O 00T 186 00T O 00T TOE 00T O 00T IS 00T 00F%
0 00I ZITZ 00T O 00T 645C 00T O 00T S9¢€ 00T O 00T §88T 00T O 00T 80T 00T O 00T IZZ 00T O 00T IST 00T 00€
0 00 0S¢ 00 O 00T 604 00T O 00T T6EE€ 00L O 00T S90€ 00T O 00T 666L 00T O 00T SPIT 00T O 00T II¥ 00T 00T
0 00I Tze 00 O 00T S86C 00T O 00T ¥IIE 00T O 00T 950 00T O 00T 89€¢ 00T O 00T €€9T 00T 0O 00T 928 00T 00T
0 00I €4 00I O 00T 8SC 00L O 00T €0I€ 00T O 00T S06C 00T O 00T OIEZ 00T O 00T 099T 00T O 00T 88 00T 06
0 00L 6Fcc 00 O 00L £49SC 00L O 00T S66C 00T O 00T 968C 00L O 00T TheT 00T O 00T 0ZST 00T O 00T 186 00T 08
0 00 90T 00T O 00T Z/FC 00T O 00I S€6C 00T O 00T SZZT 00T O OOL S82C 00T O 00T 68ST 00T 0 00T T¥8 00T 0L
0 00 60T 00T O 00T OFFbC 00T O 00T 85T 00T O 00T 619C 00T O 00T <Zece 00T O 00T CHST 00T O 00T €68 00T 09
0 00 600C 00I O 00T IIZc 00O O 00T 9¥Sc 00T O 00T TII¥¢ 00T O 00T ¥Z0Z 00T O 00T 96¥T 00T O 00T ¥28 00T 0S
0 S666 €561 666 0 00T T9TC 00L O 00T TS€T 00T O 00T 890T 00T O 00T 6S9T 00T O 00T S8IT 00T O 00T 9€9 00T OF
0 00T 808T 00T 0 G666 €681 666 0 00T CI6L 00T 0 00T €F9T 00T O 00T ¥EET 00T O 00T Z88 00T O 00T 09% 00T OF
0 S966 VPl S66 0 €666 0SFT 666 0 00T T¥EL 00T O 00T <€OT 00T O OOL TII8 00T O 00T I€S 00T O 00T S€C 00T OCT
0 7988 €IZ 616 0 0T 819 896 0 G096 I8F 18 0 €186 0C€ ¥66 0 ¥€86 IFC 966 0 00T €T 00T 0 00T TZ 00T OT
+ 2S5 ON #d0 1 028 ON 30 1 OS ON #0 1 2S ON #0 + DS ON 340 1 2S5 DN #40 1 OS DN 10 u

G\Qcm

%0¥%

%0€

%0T

%ST

%0L

Q\Gm

%

*$}9sNS 9} U SqO[JO IaquINu ay) JO %0F : %0 : %0T : %0T OLEI YIIM SadUR)SUl pajerauad A[uwopuer 105 synsai feuoneinduwo)) gy a[qer,

124

Algorithms 2020, 13, 4

68°C 8E7T6 69S1 1498 TEE 1946 98L1 64'S6 F0T 166 THIT 1686 T1'S LE'66 6C8C 9966 89S LG66 0CSE €866 €79 1566 G98F L8'66 L0L €566 1988 ¥6'66 1oAY
0z 00 000 00T #%Z 00T 000T 00T 6C 00T 000L 00T 8¢ 00L 000L 00T TF 00T 820l 00T 8% 00l 4£Zl 00 %S 001 6¢SP 00T 000°0L
LI 00T 000 00T 61 00T 000T 00T ¥ 00T 000L 00T 0€ 00T TOOL 00T €€ 00T 80T 00T 8¢ 00T T9ST 001 Tk 00T 8485 00T 0006
€L 00l 000 00L ST 00L 000L 00T 8L 00L 000 00T €C 00l Z0OL 00T 9 00L ¥80T 00L 0€ O00L 69SL 00T €€ 00 9%¥€9 00L 0008
0L 00 000 00T TIL 00T TOOL 00T %L 00L 000L 00T ZI 00T 920L 00L 0T 00L SHIT 00T <C 00T SS8T 00T ¥¢ 001 9¢hZ 001 000Z
8 00l 000 00T 6 00L 000L 00T OL 00T 00T 00T €I 00T €F0L 00T %L 00T T9¢L 00T 9L 00T 66¢C 00T 4L 00T <T¢88 00T 0009
S 00 000 00T 9 00L 000L 0OL 8 00L 800L 00T 6 00L 9ZIT 00T OL 00T S8FL 00T II 00T Se6C 00T €L 00T IZHFOL 00T 000S
¥ 0866 100l 866 + 00I ¥00T 00L S 00T ¥FOL 00T 9 00T Te6ZL 00T 9 00T ¥Z8T 00T £ 00T TI6E 00T Z 00T <TOECL 00T 000F%
€ 0866 900 866 € 00L TZOL 00T € 00L 60LL 00T € 00L %<9 00L ¥ 00T 665C 00T ¥ 00T 6SCS 00L % 00T #88€T 00T 000€
I 9¥'86 OWOL ¥86 1 00 SEIT 00T T 00T TOPL 00L T 00l Tckc OOL ¢ 0Ol SIZE 00 T 00L 9069 00l ¢ 00T 6€S'ST 001 000T
0 T0€6 TOET 606 T 966 SS9T 966 1 00l 64CC 00T T 00T £08€ 00T T 00 00¥S 00T T 00T 6IF8 00T T 00T ¥I9'9T 00T 000T
0 2076 991 168 0 0£66 LIZ1 886 0 00 646C 00L T 00L SOOF 00T 1 00T 8095 00T T 00T %68 00L O 00T 89291 00L 006
0 ¥C68 L8F1 ¥8 0 S€66 9¥8L 886 0 00 €€5C 00L O 00T 94IF 00T O 00l €645 00L O 00T 9088 00L O 00T 6£F9T 00T 008
0 6068 €191 #78 0 G886 9661 446 0 00 984 00L 0 00T 6467 00L O 00T 6846 00L O 00T €S48 00L O 00T TIZ6'ST 00T 00Z
0 8698 S0ZL 8L 0 0486 €51T TZ6 0 001 116 00L O 00L c6bF 00T O 00T 1209 OOL O 00T 7€88 00L O 00T 084S 00L 009
0 TI'88 808T S84 0 /48146 L6TC T'S6 0 L666 LEIE 666 0 00L 0€9F 00T O 00 TOI9 00T O 00T 8598 00 O 00T SE6FL 00T 00S
0 9598 TOOT 1'€L 0 8946 09%C €¥6 0 ¥6'66 LFCE 866 0 00L 0S9% 00L O 00T €119 00L O 00L #€98 00 1 00L 60€¥L 00L 00F
0 TI8/8 LIIT S¥L 0 1846 S09T €%6 0 S866 69¢€ S66 0 00L ¢8ZF 00L O 00 009 00L O 00T 6528 00L O 00T OLT'SL 00T 00€
0 0648 18CC £TL 0 1996 L1ZT 806 0 966 02€€ 686 0 00L SH9F 00T O 00T ZIZS 00T O 00T 8092 00L O 00T 0T90L 00L 00T
0 8768 87€T 964 0 8496 90T €16 0 ¥F66 L0T€ T86 0 00L LWOF 00 O 8666 €587 666 0 00L 4695 00L O 00L G619 00T 00L
0 ¥806 6FCC S64 0 TIL6 SL9T ST6 0 1C66 $SIE £Z6 0 00T OI6E 00T O 00 9S9% 00L O 00T 8685 00L O 00T 8ISS 00T 06
0 LL68 LSTT €4L 0 6696 4T9C TW6 0 TS66 €OIE G86 0 L666 678 666 0 G666 0467 866 0 00L <06F 00I O 00T £ZISF 00T 08
0 /[F68 9FIT 8L 0 T996 LIST 616 0 9566 6S6C £86 0 L666 SH9E 666 0 8666 €90F 666 0 00L S8¢F 00L O 00T 1II6€ 00T OZ
0 SL06 TLIT S08 0 0996 ¢hbc 616 0 1¥66 188C S86 0 1666 ¥6£€ 666 0 00 T0Z 00T O 00T 808 00L O 00T 8Ige 00T 09
0 TH16 SL0T TT8 0 1596 €87¢ ST6 0 LI'66 V99T 846 0 €666 SH0E 866 0 L666 L6IE 666 0 1666 FLIE L66 0 001 SkC 00L 0S
0 TST6 6L61 SG8 0 S€96 SEIT ¥T6 0 €066 TOFT 946 0 6866 89T L66 0 T666 099C 866 0 00L SS€¢ 00L O 00T 004 00T OF
0 €868 0641 TT8 0 8566 Sh6l ¥I6 0 086 €50C 496 0 O0I'66 L00C T86 0 ¥866 6/81 L66 0 /866 461 866 0 00T 01 00 0¢
0 1968 10ST 9F%8 0 €L¢€6 L9F1 16 0 S996 €€Fl €S6 0 6486 FHZl 86 0 ¥T66 LS0L €66 0 TS66 068 966 0 9¢66 99 L66 0T
0 SOFZ €IZ S18 0 ¥L08 46§ S88 0 6198 €FS ST6 0 89F8 656 SF6 0 0C68 Z8C 696 0 9698 L0T €46 0 /8 F0I 486 0L
+ 2SS ON #0 1 028 ON #0 + 23S ON #0 3 23S ON #0 1 23S ON 30 3 02§ ON #0 1 25 ON #Oo u

%08

%0%

%0€

%0T

%ST

%0T

%S

%9

*$}9sNS 9} U SqOf JO IaquInu ay) JO %0F : %0T : %0F : %0T OLEI YIIM Sadur)SUl pajerauad A[uwopuer 105 synsai feuoneinduwo)) *gy a[qer,

125

Algorithms 2020, 13, 4

¥9F ST'98 T9S1 8TSL V'S 68°T6 VLLL 06'S8 059 T9'86 SEIT 6TL6 9€'8 €566 0S8T €566 816 09'66 9SSE 466 TEOL 69°66 968F S8'66 SV L L8'66 1788 9666 1oAYV
€¢ 00l 000l 00L OF 00L 000L 00T 8% 00L 000L 0OL 09 00L 000l 00OL 89 00T €00L 00T ZZ 00L 8Z0L 00L 98 00L 9S0€ 00L 00001
9z 00T 000L 00L ¢ O00L 000L 00T 8€ 00L 000L 00L 8F 00L 100l 00L SS 00T SOOL 00T 79 00L SeIl 00L 69 00T ISZE 00T 0006
I 00L 000L 00L ¥c 00T 000L 00T O¢ 00T 000L 00T GF 00T TOOL 00L €F 00T $20T 00T 8% 00L ObcL 00l ¥S 00T €FSP 00T 0008
91 00T 000L 00T 8T 00T 000 00T €Z 00T TOOL 00T §C 00T £Z0OL 00T <€ 00T 0S0L 00T S€ 00T 86€T 00T OF 00T €9¥S 001 000Z
ZL 00T 000L 00T %L 00T 000 00T 9T 00T 000L 00T 0C 00T ¥IOL 00T €C 00T S60L 00T 92 00T ¥cZl 00T 8¢ 00T <TP69 001 0009
8 00I 000L 00L 6 00T 000L 00T TI 00T €00L 00T %I 00T T€OL 00l ST 00T SOCIL 00T 8T 00 ObIz 00T 6L 00T ¥2S8 00T 000S
9 00T 000I 00T 9 00T 000 00T £ 00T TIOL OOL 6 00T TSIT 00T Ol 00T £9%T 00T II 00T ZZ6¢ 00T <L 00T SZEOL 00T 000F
€ 00I T100I 00I ¥ 0666 €00 666 ¥ 00 80T 00T S 00I ¥SEL 00L S 00T 9€0C 00 9 00L ZOZk 00T 9 00T €F9'CL 00L 000
T WLL6 L0 LL6 T 1986 9501 986 T 001 €¥Cl 00T T 00T 26l 00L € 00L S60€ 00 € 00 GS6S 00T € 00T 649%F1 00L 000T
T 0S/8 6811 6F8 1 ¥406 92¥l 898 1 G866 8661 66 1T 00 696 00T T 00T ¥90S 00T T 00T €€I8 00L T 00T GSE9T 00T 000T
I 0S¥8 ShCL £08 1 G206 SZSL 8¥8 1 €966 €41C T66 L 00l 466 00L 1 00T ¥S¢& 00T T 00Ol 8928 00L I 00L ZPE'9L 00L 006
T €418 6161 664 1 TO68 8F9L 618 1 6966 142 €66 1 001 €€ 00L 1T 00T ¢6kS 00T T 00l 6I¥8 00L I 00l SIT9L 00T 008
0 1€8L 0TFL €69 0 £4£98 9441 S94 0 %966 0I1SC 166 0 001 9466 00L 0 00T 6095 00L O 00L 098 00L O 00T OL6'SL 00L 00Z
0 996 0¢ST 979 0 TOZ8 Th6L 8FL 0 O0L'66 ¥29¢ 926 0 00L ¢Sk 00L O 00T €546 00L O 00T TIZ8 00 O 00T THP9L 00 009
0 /£€L 9891 T'SS 0 8€/8 00IT S€ 0 <TI'66 THST SZ6 0O 00T L6FF 00 O 00T 9486 00L O 00L €288 00L O 00T SOZSI 00L 00S
0 €F1Z 0T8T T'8F 0 S0/8 987C S0Z 0 1886 990 ¥96 0 00L TIZF 00L O 00T SEI9 00L O 00L T98 00T O 00T ¢TCO'ST 00T OOF
0 €97 ¥90T ¥'E€F 0 9948 ¥9VT 969 0 0686 S8T€ ¥96 0 00L €2F 00 O 00T 9609 00L O 00 S€48 00T O 00T SZEFL 00L 00€
0 1I¥'SL €€ ¥'SF 0 2006 S99C S€4 0 1486 066 4S6 0O 001 ShZF 00 0 00T 1IS6S 00L O 00 0Z6Z 00T O 00l $§CT’TL 00L 00T
0 666/ 66TC 9FS 0 1906 ¢H9T 8SL 0 1€86 L95€ SF¥6 0 1666 SSEF 966 0 00L £6IS 00L O 00T 8629 00L O 00T ¥IZZ 001 001
0 TLSL 0LTC €TS 0 /816 089T S8L 0 886 TEEE 9F%6 0 1666 €I1TF 966 0 00 ¥86F 00T 0O 00T 8109 00 O 00T 8669 00 06
0 GI'I8 092C 85 0 THT6 ST9T S08 0 T986 4STE 966 0 0666 TLIF 966 0 8666 SI6F 666 0 00l 048 00L 0 00l 6919 00l 08
0 GLT8 ¥82C T'19 0 FIT6 65T 964 0 1786 €81€ €F6 0 €866 L0F €66 0 00l 6957 00L O 00l 18IS 00L O 00T 8£8S 00l O
0 09€¢8 867C ¥9 0 €5€6 995C £€8 0 9786 186C SF6 0 V866 048 ¥66 0 8666 68I1F 666 0 00L 189% 00L O 00 SZbb 001 09
0 /¥€8 T0TC TF9 0 9476 98VT TT8 0 SE'86 GST €66 0 9866 ISP G66 0 L666 FFS8E 666 0 8666 €10F 666 0 00L <Ccbe 00 0S
0 9068 G507 S69 0 8FT6 926T €8 0 9086 I8GT TS6 0 €966 TL6T 686 0 F6'66 S6CC 866 0 0666 ISIE L66 0 T666 <CHT 866 OF
0 /TS8 I¥6L LTL 0 LLS6 00TT 898 0 1€86 L96C 96 0 TS66 66VC 66 0 L966 665 T66 0 LL66 0SIT S66 0 0866 CESL 466 0
0 GI'S8 ¥2Ll T'SZ 0 916 04Z1 9S8 0 6696 T9LL L¥6 0 6£86 0891 S/6 0 9886 68F1 ¥'86 0 1966 T€CL ¥'66 0 /4866 L9 666 0T
0 G6TL ¥€6 TFL 0 €0SL 6V8 T6L 0 SS¥8 674 €88 0 €668 995 €%6 0 1S06 ¥/F SS6 0 TCT6 V€€ ¥i6 0 1696 ¥6l ¥66 01
3 02§ ON #0 1 DS ON #0 + 2§ ON #0 1 23S ON #0 *+ 23S ON #0 1 25 ON #0 3+ 02§ ON #o u

O\Oom

%0%

%0€

%0C

%ST

%0L

%S

%

*$}9sNS 9} U SqO[JO IaquINu a3 JO %0G : %0T * %0E : %0T OLEI YIIM S9dURISUT pajerauad A[uwopuer 105 synsaz feuoneinduwo)) “py a[qer,

126

Algorithms 2020, 13, 4

149 0S9¢ €861 FI'LL $I'8 06'LF LSLL LUTE #9'6 €096 LTIT ¥1'16 9€TL €766 ¥SST V166 LSEL S966 S9S€ L9°66 9CST 6466 £T6F S8'66 T8Il TS66 LS88 ¥6'66 1oAY
g 0 000L O € 0 000L O 0Z O00L 000L 00OL 68 0OL 000L OOL 00L 00L TOOL 00L 6LL 00l ¥2OL 00T 92 00L $8bcc 001 000°0T
6 0 000l O ZF O 000L O 95 00L 000L 0OL IZ 0OL 000L 0OL 08 00T 000L 00 06 00T 8POL 00L <Ol 00T 99T 001 0006
0¢ 0 000 O 9 0 000L O € 00L 000L 00OL 99 00T 000L OOL 9 00L 900L 00T 1 00T €60L 00T 08 00L 89¢€ 00 0008
€ 0 000 O £ 0O 000 O %€ 00L 000L 00L ¢F 00T TOOL 00T ZF 00T 910L 00T €6 00T ¥ICL 00T 65 00L 1IZIF 00T 0004
LI 0 000 O 0z O 000L O 4T 00T 000L O0OL 0€ 00T €00L 00T %€ 00L IFOL 00T 8€ 00T <96 00L TF 00T 60FS 00T 0009
I 0 000L O %L 0 000L O 9T O00L TOOL 00 IZ 00T €20T 00L £ O0OL <¢OLL 00 SZ 00T I69T 00T 8¢ 00T 869 001 000S
8§ 0 000 0O 6 T0 000L T'0 OL 00l €00L 0OL €I 00T ¥SOL 00T %I 00T Skcl 00 91 00T €8¢ 00T 4L 00T 6948 001 000%
G 0 000I 0O S 040 €00 ¥0 9 0866 PIOL 866 L4 00L OIZL 00 8 00T 9€91 00L 6 00T 0OFE 00T 6 00T ¥FETIL 00T 000E
€ 070 T0T 0 € TSE ¥0l TI € /4486 8SIT 986 € 00L 229l 00 ¥ 00L 6¥SZ 00T ¥ 00T TOIS 00T ¥ 00T IZ6€L 00T 000T
I 6STL¥PIT 0 1 0TIE VIS 96 T 9I'S6 4841 916 I 00 6V0OE 00T T 00T §¢S¥ 00T T 00T G99/ 00T T 00T SIO9T 00T 000T
I 89%L 2ZIL 0 1 08¥E 89€L §0L 1 TS¥H6 ¥e6l S68 I 001 S9¢€ 00L L 00OL 808F 00L T 00 9g6Z 00L L 00L SEL9T 001 006
I C€4l £0TL TO 1 SLOF ZSFL 6CL 1 956 L40T 488 1 1666 6/F€ 666 L 00l €20S 00L T 00L 0°08 00L L O0OL ZOZ9L 00L 008
I 00Cc28cl 0 1 009F $£61 SI 1T €4%6 €0CC ¥88 I 00 €€4€ 00L T 00T 09¢§ 00T T 00 99¥8 00L T 00T 86C9T 001 00Z
0 86'6C 80FL 0 0 TSTS /T4l 81 1 88¥6 Ochbe £/48 0 00T 866 00L O 00 T8SS 00T T 00T 0TFS 00T O 00T 9£€9L 00T 009
0 996 TFST £0 0 0€8S S88T 91T 0 €9€6 869 TE8 0 €6'66 06¢F 466 0 00 G286 00T 0 00T 0248 00T O 00T SZZST 00T 00§
0 8TTH OIZI €T 0 8099 0TIT €8T 0 96'€6 668C ST8 0 €666 06FF 466 0 00L 8%09 00L O 00T §F88 00T O 00L ¥0OLSL 00T 00
0 99'8F 0481 9% 0 S80L 6C5T TTE 0 8IF6 LTIE T8 0 9466 S/9% 686 0 00L 0109 00L O 00T 6988 00L O 00L 666FL 00T 00S
0 TG'8S TLIT €01 0 0SZL IVST 6€F 0 68¥6 62€€ 1'€8 0 6466 FISF 66 0 8666 6209 666 0 00L IE€I8 00L 0 00L 99€€l 00T 00T
0 1789 L8TT L/T 0 /[TH8 689T TSS 0 L6T6 09 L€8 0 €866 985% T66 0 S6'66 L0SS L66 0 00T 950/ 00L 0 00 6916 00T 00T
0 €0TZ 19€C 7€ 0 8LS8 /S/T V19 0 0796 $8€€ 8/8 0 9466 C0ST 686 0 9666 €¥2S 866 0 00I 0959 00L O 6666 1828 666 06
0 0F0Z 092C 9€€ 0 #9688 914T ¥'19 0 ¥1'96 TLEE €48 0 0L66 €66F 886 0 1666 761G 866 0 8666 S€C9 666 0 001 86%Z 00L 08
0 G8TL 16TC 98¢ 0 6968 699 979 0 T096 Pl S48 0 G866 SCIV ¥66 0 8666 8967 666 0 00L G865 00L O 00 #SP9 001 O
0 6SFL 6/TC 9TH 0 SF/8 €V9T TZ9 0 1596 860 €68 0 G566 /866 T86 0 8666 809F 666 0 00L 89¢S 00T O 00L €ZPS 00T 09
0 ¥6'SZ 8CC TP 0 €898 9965 999 0 TE96 8867 768 0 €466 1046 66 0 0666 vZIF 966 0 00L F04F 00L 0 00L 0ZF 00L 0§
0 092 ¥L1C TS 0 THSS 69VC 81 0 €996 L/8T 606 0 0566 T6EE €86 0 G666 869 866 0 L666 LFLE 666 0 001 ¥Tece 00L OF
0 €08 090T €09 0 9¥'88 04T €L 0 T3G6 8097 968 0 LE66 88T €86 0 L966 650 66 0 €666 84T 866 0 S666 1€I1T 666 0F
0 €L6LSPST €9 0 ¥6'68 8961 ¥08 0 €1'S6 €IIT 668 0 786 ¥861 946 0 TE66 V06 886 0 6166 1091 886 0 1466 V€Ol L66 0T
0 6V0Z98IT 99 0 659Z 0Ll 6% 0 9€18 ¥PIOL STI8 0 0S88 164 16 0 SVI6 489 S¥6 0 16%6 16V SZ6 0 ¥¥S6 €97 8§86 0L
3 2§ ON #0 1 025 ON #0 *+ 23S ON #0 1 2 ON #0 3 D28 ON #0 3+ 23S ON #0 1 D2S ON o u
%08 %0% %0€ %0¢ %S %01 %S %Q

*$}9SNS 9} U SqO[JO IaquInu ay) JO %09 : %0T : %0T : %0T OLEI YIIM SadUR)SUl pajerauad A[uwopuer 105 synsai feuoneinduo)) *gy a[qer,

127

Algorithms 2020, 13, 4

206 Z8'T€ 6TST 1601 11 00'IF #€41 86'61 TEEL 7809 601T 00°LF TEIL 0C66 6€8C €1'86 1L61 $9°66 18SE 1566 9F0C SL'66 SH6Y 0866 1L€C G866 FH88 €666 ToAY
G9 0 000L O 08 O 000 O 46 S 000L S 0CL 0OL 000L O0OL 6SI 00T T00L 00T #SI 00T IIOL 00T ¥4I 00T 8ZZL 001 000701
76 0 000 0O S9 0 000L O 64 <T9 000L T9 96 00T 000L OOL OIT 00L TOOL 00T #ZI 00T SIOL 00T OFL 00T 6S0C 001 0006
€ 0 000 O IS O 000L O 19 9Z 000L 9Z 94 00L 000L OOL 06 O0OL COOL 0OL 86 00T OFOL 00L TcL 00T TLISC 00T 0008
1€ 0 000I O 8 0O 000L O /v L4 000L £4Z 8§ 00T 000L 00T S9 00T £ZOOL 00T %9 00T €80T 00L ¢8 00T 9¢2€ 001 000Z
€ 0 000L 0O 8 0O 000L O %€ 86 000I 86 <¢b 00L 000L OO 95 00L 6I0L 00T €5 00T %0CL 00l 65 00T %€k 001 0009
6L 0 000 O 6L O 000L O € <¢Tl 000 ¢TI §C 00L S00L 00T 1€ 00l <FOL 00T 9¢ 00L OSFL 00T OF 00T 9195 001 0005
0L 0 000 O ¢ O 000L O SI T9T 000 C9T 4L 00T £ZZOL 00T O 00T OEIL 00T ¢ 00T €F8T 00T ¥C 00T <TOFZ 001 000F
L 010 T00L 0 £ 0 000L O 8 6£0T 00T TOC OL 00T €0LT 00T IL 00T Z0¥L 00T CL 00T 9%ZC 00L €L 00T 0966 00L 000€
€ 0C0 TOOL O € 040 L0OL O ¥ 68T 6501 €F¢ ¥ 001 I€PL 00L S 00L 00ZC 00L S 00L ¥chb 00L 9 001 641°€l 00L 000T
I 6€6 £S0T 0 1 TUST ZZIT TO0 T /€8S SeST 19¢ 1 466 ¥69C €66 T 00 €CIF 00L T 00T ¥62Z 00T T 00T 908'SL 00T 000T
I €8 8601 0 I £460C #921 10 1 0§65 9141 S0€ 1 9966 66 66 L 001 ZFF 00L 1T 00l ¥6bZ 00T T 00T 0009 00L 006
T PLTI1 €11 0 1 6F%C 6I€1 #0 T 6TS9 IZ8 89¢ T 6966 90C€ 66 1 001 ¥hF 00L T 00T 6064 00T T 00 S$FS9T 00T 008
I 959 611 0 1 950¢€ 0Zbl ¥1 1T T01Z 650 ¥0F 1 466 T€FE 166 L 00L SS0S 00T T 00l CFI8 00T T 00T 8EE€9T 00T 00Z
I I8TC 641 0 1 009€ 68ST 9T 1T ¥T¥L L1TT 6TF 1 8966 ¥ee 886 1 8666 91¥S 666 I 001 SCb8 00L T 00T 9191 00L 009
0 F48T TOFL 10 0 ¥I'€k LoLl 8T 0 OLLL 1/FC 6% T 8F66 £90F 646 0 001 0946 00T O 00T 9488 00L O 00T 8SI9T 00T 00§
0 FE€/E 9651 0 0 94TS 6W0T ¥'€ 0 II'I8 LE4C €8F 0 8T66 H0SF 696 0 8666 ¢S8S 666 0 00 €468 00L O 00I 9S8'ST 00 00F
0 €9¢h S941 90 0 £6ZS SITT 69 0 ¥8H8 £90€ 9€S 0 1¥66 €957 €46 0 8666 ¥809 666 0 00 088 00L 0 00T 0SS'ST 001 00€
0 01§ 900C 4T 0 8999 L¢ST 19T 0 G488 1926 S€9 0 8L'66 964F T96 0 L666 919 866 0 00L 4868 00L 0 00T 908'€l 00L 00T
0 7919 ¥IET 811 0 T6'SL S69T 8SE 0 6VT6 6VFE ¥HL 0 0966 9vSF T86 0 €666 1455 966 0 6666 S04 666 0 00L 6066 001 00T
0 TET9 88CC €€I 0 ¥€9L 969T 94L& 0 86T6 LIFE #94 0 0566 SSSF L6 0 9666 €095 866 0 L666 €664 866 0 00I G816 00 06
0 T0€9 85CC 891 0 6T8L £99C LTH 0 LET6 $0S€ €64 0 1T66 ¢Chh S96 0 ¥666 SIFS 466 0 001 £4€49 00T 0 00T S0S8 00T 08
0 S£G9 0e€T 1T 0 0908 904 €8F 0 066 192¢ #08 0 6V66 8TeF 846 0 8866 SIIS ¥66 0 00l S9€9 00L O 6666 ¥hhL 666 0L
0 6£99 S5CC 9'GC 0 0808 959 6'6F 0 F6¥6 €8¢¢ I#8 0 9766 ¢8IF 146 0 #8866 Fe6v €66 0 8666 708S 666 0 00L #4899 001 09
0 8I'Z9 00TC 98T 0 S£T8 S665C SS 0 TSe6 S9I€ ¥08 0 TH66 ¢S6€ L6 0 €666 €657 L66 0 8666 0SIS 666 0 00I 1€cS 001 0§
0 T190Z 161C S9¢ 0 6878 STST ¥'8S 0 066 €86 S8 0 6166 C2LE TZ6 0 0866 SIOF T66 0 €666 6577 466 0 8666 950F 666 0OF
0 86T 6£1T S€F 0 8678 ¥HEC TS9 0 €96 L44C 6S8 0 €066 F0IE 696 0 9466 L6SE T66 0 8866 IFEE 966 0 6866 €1LC L66 0F
0 €I'PL TS6L £0S 0 6TF8 61T S49 0 196 T¢cC 6S8 0 V086 Sher S§S6 0 4486 €4TC TL6 0 S966 8861 €66 0 9866 TEHL 866 0T
0 69°€9 8FEL €F%S 0 OU'€L 1061 149 0 €4%8 1€l 178 0 9068 SIOL 68 0 SI'T6 €58 9€6 0 €9¢6 TI9 C9% 0 €096 1 98 0L
3} 2SS ON #0 3 2§ ON #0 13 D2S ON #0 3 028 ON #0 3+ 2§ ON #0 1 2S ON #0 3 D2S ON o u

%08

%0%

%0€

%0T

%ST

%01

%S

%9

*$}9sNS 9} U SqO[JO IaquInu a3 JO %0/ : %0T * %0T : %0T OLEI YIIM SadUr)SUl pajerauad A[uwopuer 105 synsaz feuoneinduo)) *9y a[qer,

128

Algorithms 2020, 13, 4

11 Z0°€C #1FL TTE TSEL 9€°0€ CI9L €29 8F9L €1LF $S61 S9'IC LS0T 1506 904 S8'89 96°CT 1866 00SE €CH8 L1'9C SL'66 8F0S 1486 19°8C ¥6'66 €696 #8366 oAV
99 0 000 O 08 0 000L O 66 6S 000 69 <TCL 00L 000L OOL 8€L 00T 000L 00T 99T 00L OIOL 00T SZI 00T <¢Z91 00T 000°0T
76 0 000 0O € 0 000L O 64 49 000L 49 66 00L 000L 00T SIT 00T 000L 00T TE€L 00T ¥IOL 00T OFL 00T 620C 00T 0006
P 0 000L O 0SS O 000L O S9 ¥9 000 #9 84 00L 000L OOL 88 0466 FOOL 466 86 00 1SOL 00T OLL 00T I8¢ 00L 0008
1€ 0 0000 0O 66 0 000 O ZF 98 000L 98 09 00L 000L OOL 99 0466 L00L L66 ¥ 001 9401 00L S8 00T 80IE 00L 000Z
€ 0 000 0O € 0 000L O ¥ ¥0I 000l ¥OL 9F 0666 CO0L 666 8F 1566 FPIOL S66 FS 00L £8IT 00 65 00T £4STF 00T 0009
9L 0 000 O 6L 0 000L O € ¥IL 000L ¥IL 6T 0S66 800 S66 <T€ ¥S46 9501 ¥Z6 S& 00L O€Pl 00 OF 00T €195 00L 000§
0L 0 000 O ¢ 0 000L O %I 86SL I00L 6SI 8T €586 IT0L S86 0T 6996 SIIL €96 TC 866 €81 966 SC 00L 89S 00T 000%
9 0 000L 0 £ 0 000l O 8 /P8I L00L 641 OL 6S¥6 6011 #6 LI 1€06 €0FL ¥98 <TIL ¢866 994 S66 €L 001 8€0'0L 00L 000€
€ 0g0 €00I 0 € 6I'T TIOL 0 ¥ €0'8C €90 S€C S 97€8 9IFL €94 & 0TH8 ¥9IC 899 & 1966 1TSF 846 9 00L SSO°CL 00T 000C
I TFZ 0801 O 1 ISZL IICL TO T GE€0S ISST € T HOFZ 804T L6C 1 8106 981F T6S 1 TS66 4STZ 996 T 00T 0SZ'ST 001 000T
I SS0T SIIT 0 I 8F6L 621 ¥0 1 ¥8%S $691 S€C 1 TCSL S88C £8T 1 0L06 65FF 885 1T 1966 €194 L6 1 001 66091 00L 006
T 8STL IEIT 0 T 976 86l 0 1T 9766 9081 €61 1 ¥69Z T6IE S9¢ T 1616 9¢4F 179 1 6466 L864 €86 1 001 T9F91 00I 008
I 896L 9811 0 1 FEI€ TSPl €0 T 809 480C TZL T 008Z I¥bE 9%C 1 S9T6 L96% 8€9 1 866 788 £86 L[00L 1IST9L 001 00Z
1 062 £8T1 0 1 S09€ 9951 90 1 TL19 ¥8IC ¥91 1 T66L 099 89T 1 1966 1665 TS9 1 0466 L8 SZ6 T 00L 1€591 001 009
0 SFZT 661 0 0 60SH #641 ST 0 GSF9 89%C 9Tl 1 68718 £86€ 98C 0 086 7995 1Z 0 9466 8858 86 0 001 98191 00I 00§
0 ST/E TSI 10 0 0TO0S 0461 6T 0 6999 Lt/ T6 0 €TH 8ech €76 0 LL'S6 888G €64 0 7866 968 ¥'86 0 6666 V¢6'ST 666 00F
0 0SSH €681 T'0 0 ¥T/S /Z8T¢ ¥'T 0 9169 S0 €4 0 6978 9957 S¥F 0 L0Z6 /819 ¥78 0 T6'66 S0Z8 €66 0O 001 10TST 00L 00€
0 0CTIS TF0C £0 0 €€79 9%SC 8F 0 69€L €66 ¥E€L 0 0CT16 169F S66 0 €646 €809 S/Z8 0 #8366 6058 986 0 001 9S8°€l 00L 00T
0 $6'SS ¥TcC LT 0 8599 114 S0L 0 91'8Z 8€8€ ¥'6C 0 08¥6 $E€9% S94 0 6986 ObZS 9T6 0 1866 C0TL L86 0 6666 S9I'0L 666 00T
0 6545 ¥5¢C £S 0 F0'89 8847 SFL 0 9608 TLIE 68C 0 1CS6 LFFP S6L 0 €686 SE€5 LF6 0 G466 1049 €86 0 €666 FI98 S66 08
0 4109 £92C 601 0 6889 #85¢ 1'lc 0 #H€8 941€ 88F 0 996 90I% ST8 0 1986 €68F 1'€6 0 SL66 CILS L86 O 9866 8C99 166 09
0 £TT9 681C 61 0 TOEL 685C TEE 0 €998 L00E 609 0 €696 S89¢ 888 0 PE86 816€ S€6 0 1466 9ChF £86 0 0866 10IF T66 OF
0 €£99 TF61 8F¢ 0 6094 160C 1CS 0 8€98 01T ¥IZ 0 SI'¥6 €F€C 698 0 8046 STEC €96 0 6786 €661 L96 0 F066 €561 886 0T
3 25 ON #0 3 D25 ON #o 3 2S ON #0 3+ 23S ON 30 1 DS ON #0o 3 2S ON #O 3+ 25 ON #o u
%08 %0F %0€ %0T %ST %0L %S %9

*$J9SNS 9} U SqO[JO IoqUINU Y3 JO %0/ : %G : %0 : %SG ORI Y)IM Sadue)sur pajerauad A[uopuer 10y s)nsai euonendwo)) LV d[qel,

129

Algorithms 2020, 13, 4

84°CL 81'CC 90FL £E'T S1 S6'8C 06ST 86F 96'8T SS'8E 6661 95°0L SEEC 1099 169 66'0F 6£9C 9676 19¥€ 0018 LI'6C 8566 FH0S 8446 €€ 96'66 8796 666 TAY
6 0 000L O I6 O 000L O %I O 000L O I¥PL I€ 000L T€ 09T 00T 000L OOL 9L 00L OIOL 00T 661 00T 9€ST 00T 000°0T
9 0 0000 0 € 0 000l O % 0 000I O <II 6€€ 000l 6€€ 4TI 666 100l 666 <Pl 00T 900T 00T €91 00T <COSL 00T 0006
Z¢ 0 000 O 45 0 000L O IZ O 000L O 06 <T€E 000L <€ TOL 00L 000L 00T <TIT 00T ¥2OL 00T 8ZL 00l 08¢¢ 00T 0008
9¢ 0 000 O IF O 000L O %S O 000L O 89 6S€ 000I 6S€ ZZ 0866 ¥00L 866 ¥8 00L T90L 00L 96 00T T8 00T 000Z
9¢ 0 000L O T€ O 000L O 6€£ 0 000L O 6V 6648 €00I 84€ SS 1¥66 00T ¥66 <9 001 8ZIT 00T 69 00T Z€€ 00T 0009
8L 0 000L O IZ O 000L O ZZ O 000L O €£ G€8¢ ¥OOL 18 8¢ ¥9'86 I€0L 986 TF S866 SIEL 866 8¢ 00I ©/8F 00I 0005
IT 0 000 0O ¥L O 000L O 9T 0 000I O 0C OSTF CIOL §0F € 0496 T60l ¥96 ST 7866 L/91 L66 $C 001 €189 00T 000%
L 0 000L O 8 0 000L O IL 640 800 0 TI 6£1F 0801 £9¢ €1 0€88 80€T %8 ¥I €686 ¥¢S¢ €46 ST 001 84€6 001 000€
€ 0 000l O ¥ 680 600I O ¥ 1T% ¥HOL O S 19TS 0FEL S9¢ 9 G978 900T TS9 9 €986 ITZh £€¥6 9 00L TT9TL 001 000T
T 6£S £60T 0 T THEL GSIT 0 T ¥9T€ 09FL C0 ¢ T989 88GC 881 T <CIZ8 698€ €0S T LT66 8104 6F%6 ¢ 001 <CO8'SL 00T 000T
I G4/ ¥801 0 1 €T8L €zel 0 1 896E 06T ¥0 T ¥#00Z 094 ¥Z1 1 1188 90Tk €0S ¢ TS66 06hZ ¥96 1 001 9€0°91 001 006
1 G600 €2IT 0 T czeT 1€l 0 1 ¥FTh T4l #0 T LI'TL ¥W0€ LSIL 1 6V68 ¥8SF TS 1 €€66 €544 8%6 T 001 62€9T 00T 008
T L6ST 06T 0 1 LUZT €461 0 1 €8/F 1161 90 T I8€L /8T€ THL 1 ¥#006 1€8% 17S 1 8F66 CSI8 8G6 1 001 6FE€9L 00T 004
1 881T 08Tl 0 T ££€€ 0ISL 0 1 60€S 201 ST T #6942 919¢ LI 1 96’16 6VIS 885 1 6566 98€8 996 1 001 £2€9T 00T 009
0 T€9T L8€1 0 0 #60F G691 0 T 148G €66 €1 1 L96L 9T6€ 80T T 8TE6 09¥S S€9 1T 1966 9998 £96 1 6666 99T 666 005
0 0SPc TeST 0 0 8€8F 6861 0 0 8I'€9 SZ9C 1T 0 €€T8 65CF 6SC 0 €596 G445 69 0 1466 ¥0/8 SL6 0 6666 8F6'ST 666 00F
0 0STF 641 0 0 9¢€S ¥PIT 0 0 9899 696 €T 0 8898 T9sF 89¢ 0 GT96 919 SZL 0 0866 L8638 T86 0 6666 L9L'ST 866 00€
0 T00S 600C 0O 0 0665 98%C 60 0 <THTZ 006 TOL 0 0868 ¥hF €5 0 #146 0609 TE€8 0 €466 1€48 LZ6 0 00L #OL'FL 00T 00T
0 8995 T6cT T'L 0 TLV9 ¥FLT ¥F 0 ¥8/L 11¥E 6SC 0 06€6 909F €4 0 GF'86 ¥88S ¥'16 0 8466 L0LL €86 0 6666 €0S0L 666 001
0 TELS 10ST T'€ 0 £999 989T €TL 0 LE6L 0S€€ 8T€ 0 GCH6 L8FF €S4 0 GS86 CISS TC6 0 8466 €989 486 0 8666 €116 866 08
0 SI'8G T8CC 6 0 T8Z9 009T LZ1 0 <T0T8 Thee S€F 0 ¥TS6 Sk €08 0 0£86 9¢6F L16 0 8566 ¢h6S 946 0 000 %269 001 09
0 6065 6FIT £€1 0 S8T1Z S9ST T0€ 0 8€H8 TIIE 6TS 0 1796 0S8 6S8 0 S£'86 SHTh S¢6 0 €566 9ISh T86 0 ¥866 [8FF V66 OF
0 €£€9 TS6l 80€ 0 667 €01 ¢T6F 0 £098 0FEC 489 0 TSE6 ¥1GC L#8 0 8146 0SHC ¥'€6 0 ¥#986 Thcc §96 0 C€66 SLFL 66 0C
3 O0S ON 20 3 OS ON #0 3 2§ ON #O 3 23S ON 30 1 D25 ON #0 3+ 2§ ON #O 1 2SS ON #o u

%0S

%0%

%0€

%0T

%ST

%01

%S

%

*$19SNS 9} UL SO JO IOqUINU Y} JO %G/ : %G : %GT : %S Ol Y)IM Sadue)sur pajerauad A[uopuer 10y s)nsai euonendwo)) gy d[qel,

130

Algorithms 2020, 13, 4

1991 €7°0C 88T 09'T 0T 049C 8SST 0L'€ SE€FC 61°9¢ £881 €T'8 SY'IE 61'6F $E€9T G961 LIFE LF8S €6€€ FH9E 9648 S1'S6 6967 1F06 €L'EF 9666 9616 L866 ToAY
8% 0 000L O 6IT 0 000L O ZFL O 000L O T8L O 000L O ¥0Z O 000L O 0€C €506 €00l S06 0T 00l 06CL 00T 000°0T
6/ 0 000L O 96 0 000L O ZIT O 000L O ZFPL O 000L O ¥91T T0 000L TO ¥8L €568 €00l S68 60T 00 ZIST 00T 0006
29 0 000L O S O 000L O € O 000L O SIT O 000L O 9¢T O 000L O GFL 1688 OIOL 888 #9L 00L €08T 00T 0008
€ 0 000L O 4§ 0 000L O 04 O 000L O 88 O 000L O 66 0CO 100 T0 OIl 8€68 9601 68 GCI 00l 08ZC 00T 000Z
F¢ 0 000L O ¥ 0 000L O IS O 000L O 16 O 000L O TZ 090 €00L €0 08 SI'S8 160l 8€8 16 00T 946 00T 0009
€ 0 000l O 62 O 000L O S O 000L O ¥ 0OCTO TOOL O 6V 9IC 610 €0 95 0568 9811 878 19 00 OLIF 00L 000S
ST 0 000L O S8 0 000L O T O 000l O ZT 040 £Z00L O 0f 609 0S0T ST € <T0Z8 ¢bl 608 € 001 8F9S 00T 000F%
8 0 000L O OL O 000L O ¢ OL0 [00L O SI IT% ¥OL 0 41 8CZL 98I 61 81 1606 14T ¥64 6L 00T 0CE8 00T 000€
id 0 000L O S 660 00 O 9 T8C 620L 0O L €08L 0CZL O L YESh 9141 T9 8 6056 019 €8 8 00L TZYTL 001 000T
T 10¢ 1€0I 0 ¢ 168 €60L 0 T 06€C PIEL 0 T 919G 64T¢ €0 ¢ F¥LL 985 €61 T S646 0489 998 T 001 8THSL 00T 000T
I 1Ty ¥WOI 0 1 99TL SPIT 0 I ¥60€ 8PPl 0 T 1019 4PST L0 T 8408 816€ L¥C T 8T86 £989 €88 T 00L C09'SL 00L 006
T 978 060L 0 T 80ZL 902l O 1 ZLZE L09T O 1 06€9 €4c 1T 1 1Hhes I8Th €6C 1 9486 ¥OFZ 806 1 00l TZ6'SL 00T 008
T ZFOL ZIIT 0 1T #€cC 68CL 0 1 60€h 46841 0 T €89 680€ 9T 1T €968 LSSt L¥%€ 1 8486 S64Z 906 T 00l 081'9L 00 00Z
T IUSE 8T 0 T 988C L0FL 0 1 FI'6h 9961 0 T ISTZ SS€€ S¥ 1 T€/8 SL6V €48 1 6486 6018 S06 I 00L 629 00L 009
T 88IT08CI 0 T S6€€ FIST 0 1 86€S 041C 0 T T6FL S99¢ #¥8 1 H1'68 987 S¢F 1 €I'66 €6¥8 826 T 00L 0199 00T 00S
0 6€0¢ 8HL 0 0 €4€F L1 0 0 0665 96FC 10 0 0F8Z 62IF 911 0 <¢€l6 G146 T'IS 0 ST66 G898 8¢6 0 00T OIF9L 00L 00F
0 ££6€ 1691 0 0 ¥91S 00 0 0 <T€F9 808T 90 0 LTT8 OFFF 61C 0 ¥8'€6 £06S 6€9 0 1566 9988 8S6 0 001 T98'SL 00L 00€
0 8LZF SI6L 0 0 €€8S L0FC TO 0 8T69 061 6T 0 0898 €44F T8 0 ¥9S6 1809 S€L 0 #966 848 696 0 6666 8L 866 00T
0 8£6S L§CC TO 0 LOF9 S0ZT S€ 0 ¥LVL 926e ¥LL 0 9UT6 TELV TF9 0 L9L6 6VLS 698 0 £966 8/8L SL6 0 S6'66 THI'IL ¥'66 001
0 04SS €T 90 0 91'S9 814T 49 0 6£LL SI¥E ST 0 ¥#H16 PSP 6T9 0 0646 79SS £88 0 8966 TLIL 8.6 0 L666 6886 L66 08
0 6785 6FcC ¢€ 0 1799 189 SIL 0 1008 10€E SS€ 0O €6 Teeh G4 0 €€86 60TS ST6 0 6966 6079 86 0 L666 €964 866 09
0 6085 1€2C £8 0 9989 88ST ¥'Ic 0 1418 0F0E 89F 0 €9%6 86€ 664 0 0€86 89FF 6T6 0 6V66 9905 ¥46 0 0666 SE€IS S66 OF
0 9919 €90C ¢T¥C 0 €0TL 072 6'1F 0 LE€8 TEST T'19 0 0£€6 L4LC TT8 0 0T96 €9/C ¥06 0 G646 S8ST 676 0 1£66 9681 886 0T
3 0S ON 10 3 D2 ON #0 3 O3S ON #0 3 2§ ON #O0 3+ 23S ON 30 1 25 ON #0 3 028 ON 1o u
%08 %0F %0€ %0T %ST %0L %S %9

*S19SqNS 9} UT SqO[JO IDqUINU Y} JO %G8 : %G : %G : %G OLI Y}IM SIOURISUT pajesouad A[uopuer 105 synsai feuoneindwo)) *6y a[qeL

131

v£7T TI0 8611 0 11'SC Z1'0 €€€1 SO0 8SZE TTO S6FL $00 Ceeh 80 €1€C T8F 9U'/ZF PO TIIE SIFL €9°€S €90 €08Y ¥8'Sh ¥4'85 00T 12001 LL66 1oAY
TIL 0 000 O Z€T 0 000L O 89T 0O 000 O 90z O 000L O 1€ O O000L O ¥ ST00 000L SC #6c T §FCL 00T 000°0T
68 0 000 O 60L O 000L O €I 0 000L O S9L O 000L O 98T O 000L O OIZ 8FO0 €00T S¥ 9¢¢ 1T LOFL 00 0006
IZ 0 000 0 S 0 0000 O SOL O 000 O €T 0 000L O Z¥bL O 000L O 99T £90°0 SOOL ¢9 98T T €€91 00T 0008

¥S 0 000L O € 0O 000L O T O 000L O 0OL O 000L O SIL 1000 TOOL O 4TI 8600 $¢0T 92 I¥l T GHOCT 00T 000Z
66 0 000L O 8 0O 000 O 9 O 000L O € O O000L O T8 1000 IOOL O 86 £TL'0 I¥OL I'6 <Ol T £99C 00L 0009
L0 000L O € 0 000L O 6§ 0O 000L O 05 1000 TOOL O 4§ 8000 800L 0 %9 60T0 IFIL 86 0L L6660 IF9€ 666 0005
LI 0 000L O T 0O 000L O OF O 000L O I€ Z000 £00L O S& OVO0 ¢hOL O 6€ 88€0 08CT 9SI €F V6660 SIS L66 000%
0L 0 000L O T 1000 I00L O ST 0 000 O ZI 9200 £ZOL O 1T <€€1°0 ¥SIL O 1T G850 6¥61 T6L ST 46660 €84 866 000€
S 0 000L O £ #0000 F00L O %L €000 €00I 0 8 €910 S6IT 0 6 #8€0 ¥9I 0 6 0640 60€€ S0€ 0L 66660 LLC'TL 666 000C

T 9200 £Z01 O T €800 160l O £ 6I00 6101 O T 9850 ¥SIZ O T 6140 SOFE ¥F € /€60 €1F9 S09 T 866610 ITI'ST 466 0001

T €00 SP0L 0 ¢ 6600 OIIT 0 ¢ SPCO ¥¢€l O T 8450 89¢C T'0 T GFL0 Se48 6F T SP60 0949 9€9 T L6660 06¥'ST 966 006

I 29009901 0 T IS0 8ZIT 0 T /8TO €0FL O T /4290 129C SO T 9440 911F 18 T 0860 OFIZ 9%9 T /L6660 SE6'ST 966 008

1 6800 €0l 0 T 18I0 TIZCL 0O T #PE0 SZST 0 1 €990 956 ¥0 I 0080 8cFF CIL T 6S60 €294 169 1 L6660 €48'ST 966 00Z

T 9%L0 IZIT 0 T TLTO¥ZEL 0 T 80F0 8891 0 1 4690 ¥6c€ 40 T 1280 108F <%l T #960 €86 614 1 866610 €809T 966 009

1 G6L'0 TVl 0 T ZS€0 SSST 0 T #9¥0 8981 0 1 9240 129¢ ¥I1 T ¥F80 OFIS €0T T €460 09€8 TZL 1 866610 L6€9L £66 009

T €091 0 0 SIFOTIL 0 T €850 ¢hIT 0 T 9S40 096€ S€ 1 8980 IF9S 9T T 8460 €098 918 0 L6660 80T9L S66 00F

0 ¥9€0 TLST 0 0 66V0 T00Cc 0 [T80 S6€C 0 0 T6LO ¥6EF COL 0 8680 9986 1F 0 9860 46/8 88 0 L6660 9S9ST 966 00€

0 TUV0L6ST 0O 0 ¥4503TS€C 0 0 €F90 CI8T 10 0 €680 909F €¥¢ 0 S96°0 ¥¥C9 #09 0 €660 868 6 0 86660 090'ST 466 00T

0 655078 0 0 1€90 T T 0 8890 ZIT€ 90 0 T680 L69F S0S 0 €960 ¥l6S 64 0 ¥660 9108 ¥S6 0 46660 LISIT £66 001

3 0S ON 10 3+ 2§ ON #0 1 2S5 ON #0 1 D25 ON #Oo 3 23S ON #O 3+ 2§ ON 1O 1 2§ ON #o u

%08 %0F %0€ %0¢ %ST %01 %S %9

Algorithms 2020, 13, 4

*$19SqNS A} UL SO JO IOqUINU Y} JO %06 : %G : %T © %€ OLRI UJIM S9dURISUT pajerauad A[uopuer 105 synsai feuoneindwo)) 01y 21qer,

132

Algorithms 2020, 13, 4

85TC TI0 ¥6IT 0 €974C 10 €61 SO0 TE€FE 920 6091 TS0 €F 8€0 106 T0F b LF0 €Tl 1411 ¥S 090 ¥6LF ¥6°£48 8985 00'T 880°01 ST66 1oAY
IIT 0 000 O #T 0 000L O S9T 0 000L O SO O 000L O 1T€C O 000L O 09 1000 T00L 0 €6C 6660 L¥CL 666 00001
68 0 000L O 60 O 000L O #¥EL O 000L O O0SL O 000L O 98T O 000 O 1IIT 4000 SOOL TO 9€T 6660 LSEL 866 0006
0 0 000L O 98 0O 000 O 90L O 000L O € O 000L O OSL O 000L O 841 9000 FOOL TO S8I 6660 IF9L 666 0008
¥S 0 000L O 99 0O 000L O 48 O 000L O 00OL O 000L O LT 1000 TOOL O 9T 9100 IIOT S0 <CHL 8660 9661 966 000L
66 0 000L O ZF O 000L O 8 O 000L O ¥ O 000L O T8 €000 €00 O 66 €500 LFOL 80 <TOL 9660 989C 66 0009
L0 000L O € 0O 000L O 9% O 000L O 0OS O 000 O 95 6000 600L O ¥9 SEI'0 I€IL TC 0L 8660 C08E 166 000S
L0 000L O 0C O 000L O 92 O 000L O I€ €000 €00L O SE€ 9€0°0 LEOT O [V 60€0 T6S1 6€ SF S66'0 L6CS ¥/6 000%
0L 0 000l O € 0 000L O %L <TO00 TOOL O 4L ££0°0 80T O 6L THLO 9911 0 1T CTISO 8€61 ¥'S €T 8660 LLLL 186 000€
S 1000 100L 0 9 0 000 O 4 €200 ¥%0L 0 8 ¥SI'0 ¢8I 0 6 T6E0 9F9T 0 6 090 ¢€€€ 10T 0L 6660 6FE'TL 886 000C
T ¥T00 S201 0 € ¥800 T6OL O T 09C0 TSEL 0 T /[TSO FIIZ O ¥ SIL0 Sebe€ TT € 6060 189 STF T 00071 46T'ST 66 0001
I G800 980T 0 € %0 IFIL 0 T SLTO 6461 0 T €850 86€C 0 T ¥9L0 828¢ 9T T €260 1449 98F T 0001 LI9SL %66 006
T /900 190T 0 T TIST°0 8ZIT 0 I 9660 90ST 0 ¢ %290 T99C 0 T €940 880F €¢ T €€60 981Z 8IS T 0001 SZ09T S66 008
I #0008 0 T 6810¢€2l 0 T 86800991 0 I SS90 S68C 0 T €640 08FF 94 1 €b60 ¢/bZz T8S 1 0001 TST9L L66 00L
I TET06ZIT 0 T 08C0 88EL O T 6SF0 0S8T 0 T 8890 66I€ S0 T ¥I80 ZI6F S6 T 9960 9964 199 1T 0001 L6C9L T66 009
I 8810Tecl 0 T 9b€0 82ST O 1T 8260 ¢CIz 0 I 8240 €99¢ TI 1 6280 SEIS TEL 1 4960 SI¥8 974 1 0001 SOE9L £66 00S
0 04T0 TZ61 0 1 TCh0 €841 O 1 G850 TIFC 0 T TSL0 9¢6€ 9T 1 19800 TS9S ¥TC¢ 1 ¥46'0 T¢98 8ZL 0 0001 TIE9L 966 00F
0 6460119 0 0 8050 ¥€0C 0 0 G€90 6FZC TO 0 €840 09¢F £9 0 8880 1065 €95 0 ¥86'0 7688 868 0 0001 ¥26'ST ¥'66 00€
0 89%0 6881 0 0 /4950 ¥2€C 0 0 9490 €60€ ¥0 0 0TS0 FH9¥ S8 0 6160 4419 €IS 0 8860 6198 106 0 0001 T98FL €66 00T
0 ¥%50 90cC 0 0 290 6£9C¢ 60 0 1€40 8IFE €6 0 1880 I€9% 89F 0 9560 6685 SZ 0 <660 ¥l6Z ¥6 0 6660 96T 66 001
+ 2§ ON #o 1 23S ON #0 1 D25 ON #0 3 23S ON #0 1 O3S ON #0 3+ 23S ON 30 3 O2S ON o u

%08

%07

%0€

%0T

%ST

%01

%S

%9

*$19SNS A} UL SO JO IOqUINU Y} JO %06 : %G : %E %g ORI UJIM SIOURISUT pajerauad A[uopuer 105 synsai feuoneindwo) *I1v a[qer,

133

Algorithms 2020, 13, 4

TFIE 800 STIT 0 8S0€ 910 SIEL 100 89°8€ STO ST ST'0 ¥49% L£0 987C 18T THTIS SHO THOE S9'S 6885 950 604F €F'8L TEL9 080 1566 PIHS oAy
€L 0 000L O ISL 0O 000L O €T 0 000L O 0€c O 000L O 46 O 000L O 06 L0000 LOOL O 0€€ 6ET0 SSIT S0 00001
¥9T 0 000 O I O 000L O OSL O 000L O 48T O 000L O OIC O 000l O S€C 1000 T0OL O 69 I¥TO 80EL 40 0006
8 0 000L O S6 O 000L O 8L 0 000L O 9¥L O 000L O ¥9T O 000L O #8L €000 €00I O OIT €F€0 60SI 80 0008
69 0 000L O € 0 000 0O 06 O 000L O <TIL 1000 TOOL O 92T O 000L O <CPL ZI00 ZI0L O SZT T8F0 S68L 61 000Z
¥ 0 000 O € 0 000 O €9 0 000L O I8 O O000L O T6 €000 €00L O ¥OL 9€0°0 Z€0I O SIL 1660 6S€C +'€ 0009
/0 000L O 9¢ 0O 000L O 8 O 000L O ZS 1000 100 O €9 <TO00 COOL O I TIL0 SCIT O 08 TCLO €S€€ 69 000§
0¢ 0 000 O € 0O 000 O 8 0 000L O S& €000 €00L O IF 6100 610 0 9% €€C0 ¥0SI O 6V Sc80 €l6F ['F1 000F
1T 0 000 0O € 0 0000 O 9L 1000 TOOL O 60 TIOO ITOL O [T OLL0 ¥¢IT 0 ¥T 6SF0 £¥8T 0 9¢ 0060 L0TZ 64T 000€
IT 0 000L 0O 9 TO00 0L O 4 SIO0 SIOL O 6 O0PL0 €911 0 OL 6F€0 95T 0 II T890 I¥IE T0 II TS6°0 L980T €8F 000C
9 0 000L O T S900690L O T €0T0O ¥sCI O € 0TS0 T80T 0 € ¥690 992€ 0 € /P80 €079 TS € 0660 00TSL S8 0001
T 6100 610 O T 9800 ¥60L 0 T 8SC0 ZFEL 0 ¢ 6950 TCec O T ITL0 G666 0 T 9980 S0S9 69 T T6610 89€'ST €48 006
T 8600 60T 0 I 0€10 0SIT O ¢ ZISO ¥9FL O ¢ 9090 ¥¥SCc O ¢ FPL0 606€ TO T €480 1804 4O0L T €660 S84'ST 968 008
T 65000 850T 0 T Z9T0 10TL O T ZZ£0 %091 O T /90 £€8C O T S940 S9¢F 0 T 9880 €0bZ £91 1T G660 SEI9L €76 00Z
I €900 £90T 0 ¢ #Hc0ccel 0 1 6¢v0 0S4 0 T 4490 960€ 0 T /840 069F 40 1T 8680 ¢6/Z 1¢ 1 G660 1FC9L ¥16 009
I 6I10SEIT 0 1T S0E0 6691 O 1 8IS0 940C 0 T 0240 909¢ 0 T 1080 Cl0S I'T T #1600 %618 60¢ 1 9660 €019 1¥6 00§
T 8810 T€l 0 T Z0F0 S89T 0 T 0480 ¥eec O 1 €040 8166 0 1 /T80 8ISS ¥S I 0€60 8098 60F T /660 ¥SE9T S6 00
0 8STO 8FET 0O 0 T6V0 6961 0 0 %290 #99¢ 0 0 140 6467 60 0 €¥80 L8465 80L 0 0S60 8248 4SS 0 1660 TLY'SL §S6 00€
0 69€0 98T 0 0 8950 9z€C 0 0 ¥£90980€ 0 0 6640 ¥ZF 19 0 9880 LFC9 80 0 6960 TI98 THL 0 86610 TTESL 146 00T
0 €088 0 0 0€90 Z2Lc TO 0 SOLO0 £/£€ 8T 0 0F80 689F €4 0 9260 £98S ¥'8S 0 7860 1484 S98 0 8660 ¥CI'Cl #46 001
3 25 ON #o 1 23S ON #O0 1 D25 ON #O 3 O2S ON #0 + 2§ ON #0 1 23S ON 30 1 D2S ON o u

%08 %0F %0€ %0T %ST %0L %S %9

*S19SqNS 9} UT SqO[JO SIDQUINU U} JO %G6 * %I : %C : %Z OTEI U)IM Sadueisul pajerauad A[uopuer 10§ symsar reuonendwo)) “gIv a1qeL

134

Algorithms 2020, 13, 4

€667 110 S8IT 0 8S0€ 910 80l €00 Z¥ZE STO 18SL LL'0 649% LE0 £LTT 96T 64FS SHO TE0E 0SS $8'8S 950 0CLF 6T8L 8549 080 8166 90FS 1oAY
€L 0 000 O 6FPL O 000L O #¥8T 0 000L O 0€c O 00OL O €0€ O 000L O 06c O 000L O 0€€ €FL0 S9IT TO 00001
00L 0 000L O IZL O 000L O 6VL O 000L O 98T O 00OL O 80C O 000L O 96 1000 100L O 98T €£¢0 86l +0 0006
8 0 000L O 96 0O 000L O ZIT 0 000L O £ZFL O 000OL O 69T O 000L O S8 000 $¥00I O OIT SPE€0 ¥IST 60 0008
09 0 000L O % 0 000 O 68 0 000L O <CIL O O000L O 92T 1000 TOOL O TFL 6I00 6101 O 09T 6ZF0 881 1T 000Z
¢ 0 000L O € 0 000 O 49 0 000L O 18 O 000L O 16 O 000L O #OL £FOO 6FOL O ZIL 0190 6¥bC ¥¥ 0009
¥¢ 0 000L O 9¢ 0 000L O S¥ 0O 000L O 95 O 000L O €9 9000 900L O T €600 TOIL O 08 ZTL0 8¢ 6L 0008
IC 0 0000 0 ¥% 0 000L O 8 O 000L O S& 9000 900I 0 6£ 8200 620 0 ¥F STT0 0621 0 6V G280 Sc6v L €L 000%

IT 0 000 0O € 0 000L O 9T 1000 TOOL O T¢ 1200 120l O 1T €010 SITL O ¥C 1I¥FF0 <641 0O 8T 0060 48T 94T 000€

9 0 000l O 9 1000 I0OL O Z £000 £Z00L O 6 ZTL0 SPIT O 6 HEEC0 TOSL O OL €890 Z51€ 0 €1 €560 8€6'0L 4'8F 000C

T FI00 PIOL O T 7900 990L O T 80TO €921 0 € ZIS0 ¥Z0C O € T690 1SC€ 0 € I¥80 SE19 €€ € 6860 S00ST #8 0001

T ¥200 601 0 T 9600 90IT 0 T 6£C0 FIEL 0 ¢ 4SS0 662C O T 0TL0 ¥8SE O T 8980 8199 TY9 T 0660 L9TSI 'S8 006

I 0900 ¥90T 0 I 6IT0SSIT O ¢ TIC0CSPL O ¢ 2090 0ISC O ¢ SPL0 8166 T0 T 0480 6404 €6 T €660 CLLST £68 008

T 100 40T 0 T 06I0Sect 0 T 09€0 29ST O 1T €890 664 0 T 0940 1Z1F TO T 0880 9624 ¥ 1T #6600 ¥6'ST ¥'16 004

I 80091 0 T £ZECOOIEL O 1 9¥F0 908T O T /890 CIze 0 T 6840 €€4F 80 1T 6680 994 6CC 1 9660 ¥IF9L ¥6 009

I ¥6I0 I¥CL 0 1 12€0 ¢kl O 1 8050 8€0C O 1 1240 0686 TO0 T 9080 1916 ¥1 1 SI60 8418 TIE 1 S66'0 TIT9L 876 00§

T 08C0 68€T 0 T 98¢0 6291 0 T #480 6vec 0 1T Sh40 1€6€ 0 1 €280 T9%S 6€ I ¥€60 €298 L¥F 1T 9660 6¢8'ST L€6 00F

0 €960 GPST O O 8870 9561 0 0 <TE90 08T 0 0 0420 ¥0€F 41 0 SP80 698G 90L 0 0S60 Z848 64S 0 8660 0209l 696 00€

0 TISP0 88T 0O 0 9950 10€C 0 0 €90 00¢€ 0 0 S6L0 869F 6F 0 1880 8509 62 0 8960 LTL8 LTL 0 L6610 SSTST 196 00T

0 4850 £91C 0 0 1290 9%9¢ S0 0 ¥IL0 6¥F€ TE 0 9¥8°0 SIZF #0€ 0 8260 198G S8 0 1860 0908 #S8 0 8660 €88'TL €46 00L

3 25 ON #o 1 23S ON #O0 1 D25 ON #O 3 O2S ON #0 + 2§ ON #0 1 23S ON 30 1 D2S ON o u

%08 %0F %0€ %0T %ST %0L %S %9

*$19SNS A} UL SO JO IOqUINU Y} JO %G6 : %T : %T © %] OLEI UJIM S9dURISUT pajerauad A[uopuer 105 synsai feuoneinduwo)) *¢1v a1qer,

135

€967 110 S8IT 0 1IL'IE 91°0 SIEL 200 9T'8E STO ¥6SI ST'0 €59F €0 S97C TI'T €9°SS SHO 6V0E 619 S0'6S 950 SO0ZF 6S°TC 1299 T80 9586 9¥'C9 1oAY
F¢L 0 000L O 9L O 000L O 00 O 000L O 62 O 000L O cc€ O 000L O <T6Cc O 000l O 1€ €IT0 TIZIT §Z 0000L
00L 0 000L O IZL O 000L O 8¥I O 000L O S8 O 00OL O 80C O 000L O 96 O 000L O 99T 9I€0 6£€l #'8 0006
6/ 0 000l O S6 O 000L O ZIT 0 000L O 9¥L O 000OL O S9T O 000L O S8I £0OO Z00L O 80T 88€0 0ZFL OL 0008

09 0 000L O € 0 000 0O 68 0 000L O IIL O 000OL O ScL O 000L O TPL 9I00 910L O 09T 0PSO 8€8L #SI 000Z

¥ 0 000L O € 0 000 O €9 0 000L O ¢ O 000l O T6 1000 TOOL O €0 62000 0O O 9IL T99°0 O¥bc 9L 0009

0 0 000L O 9¢ 0 000 O S 0 000L O 95 O O000L O €9 6000 600 O IZ <TOL0 €IIL O 64 £940 TIEE 6TC 0005

61 0 000L O € 0O 000L O 8 O O000L O S& €000 €00 O 6 ZI0O ZIOL O 8¢ ¥ET0 90T 0O 6F 9980 ¢€06F cTHe 000%

8L 0 000 O € 0 000L O ZI 0 000L O 6L €200 ¥20I O T¢ ¥I1°0 6Ll O ¥C LE€V0 SLLL 0 /T ¥€6'0 86£4 €1S 0008

S 0 000l 0 9 0 000L O Z €100 €I0L 0O 6 80 ZPIT O 6 TY9€0 £9ST O Ol 9490 890 S0 IL 0460 82401 649 000T

T 0200 020L O T £S00 090L 0 € €070 SSTT 0 € €050 TI0Z 0 € 0690 1€C€ 0 € TS80 SIZ9 I8 € €660 646FL T06 0001

T 6200 060L 0O T €600 TOIL O T S0 08€T 0 ¢ 4860 ¢92c O T TIT40 9096 O T 8980 8799 LTI T G660 LIEST #T6 006

I 6000 1S0T 0 I €10 ¥SIT 0 ¢ 6I€069FT 0 ¢ 1090 80SC O ¢ SPL0 906€ ¥0 T 6480 S00Z 8SI T 9660 LIL'ST ¥¥6 008

T G800 €601 0 T TLI0S0CL 0 T 16€0 €91 0 T €890 908T 0 T 6940 LIk €0 T V680 SI€Z T'€C 1 S660 ¢C6'ST 976 004

I TIT09ZIL 0 1T Shc0 Scel O 1 ¥SP0 0€8T O T 2890 ISIE 0 T 1640 65F €1 1 6060 6¢8 €6C 1 L6600 LI6ST S6 009

I /81006 0O 1 #IC04SPL O 1 SISO 090C O 1 9IZ0 ObSE O T OIS0 ChIS 4T 1 €260 0FZ8 18 1 £L660 99T91 6S6 00§

0 8¥C00eeT 0O T 0CH0 ¥24l 0 T TS0 686 0 T ShL0 <6 #0 1T 8Z80 00SS 19 1 6660 98F8 96F T 8660 19791 £96 00F

0 8S€0 85T 0 0 68706861 0 0 ¥€90 9% 0 0 490 8SZF ST 0 1980 TH8S €FL 0 €960 LTL8 849 0 8660 L¥8'SL #.6 00€

0 09%0 9581 0 0 6950 Zz€¢ O 0 T80 0ZI€ O 0 0080 T0ZF #8 0 1880 €009 806 O TL6O 6748 89L 0 6660 CIOST 86 00T

0 SPS0 Tcce 0 0 0290 929¢ ¥0 0 8040 9/6€ S€ 0 9¥80 S69F 0 0 €960 $68S 819 0 G860 4684 S88 0 66610 LLETL 986 001

3 25 ON #o 1 D2S ON #O0 1 D25 ON #O0 3 O2S ON #0 + 2§ ON #0 1 23S ON 30 1 D2S ON o u

%08 %0F %0€ %0T %ST %0L %S %9

Algorithms 2020, 13, 4

*$19SNS 9} UL SO JO IOqUINU) JO %G6 : %€ : %1 : %] OLEI UJIM SadURISUT pajerauad A[uopuer 105 synsai feuoneindwo) Iy 2[qer,

136

Algorithms 2020, 13, 4

€697 110 6411 0 S6T€ 910 60€T 0 8SFF ST0 98SI €10 LP'8F L£0 16¢C €91 T€HS ¥H0 670€ TSF TEEY GS0 €69F LI'ST 9769 840 TI66 L6SY 1oAY
0T 0 000 O 9ST 0O 000L O 8C O 000L O 6£C O 000L O 8¢ O 000L O SO€ O 000L O ¥be IFL0 ¥9IT 0 000701
G0I 0 000L O 92T O 000I O SSI O 000L O ¥IL O 000L O ZIZ O 000L O 992 0O 000L O 08T 6IT0 ISTL 0O 0006
18 0 000 O 00L O 000L O €L O 000L O ISL O 000L O OZL O 000L O ¥6L S000 SOOT O 8IT 8TE0 48%L 0 0008

€9 0 000L O 94 0 000 0O € 0 000L O ZIL O 000L O OSL O 000L O Z¥L 60000 6001 O 99T 8TFO0 Z¥ZL 10 000Z
9 0 000L O S§ 0O 000L O 8 0 000L O S8 O O000L O S6 1000 TOOL O ZOL 8€00 60 O Il €450 Se€¢ €0 0009
7€ 0 000L O IF O 000L O ZF O 000L O 65 O O000L O Z9 €000 €00L O ¥ ¥600 $OIL O ¥8 9690 ¥Z€ L0 0005
IT 0 0000 0 ¥% 0 000L O 6 O 000L O 9¢ 1000 I00L O I¥F 6200 00T O 19 SITO ¥ZCl 0 1S S640 1L S€ 000%

I 0 000 0 € 0 0000 O 9L 0 000L O 0T 0C00 020l O TCT 6600 OLIL O ST 1IFF0 0641 O 8T SZ80 S60Z STL 000€

9 0 000L O £ €000 €00L O 8 <TIOOCIOL O 6 8CL'0 ZPIT O OL 0SE€0 86ST 0 IT 0490 ¥€0€ 0 L S€6'0 LIS80L 1°0€ 000T

T 9100910 O T 8900 €0l 0 T 16I09¢ct 0 € OISO I¥OZ O € 9890 981€ 0 € /€80 SP09 1T € T86'0 0S0°ST £'€ 0001

T €200 ¥¢0T 0 T €800 160L O T 1920 ¥SET 0 ¢ TSSO €62¢ O T LIZ0 Z9%€ O € 1S80 SS9 8€ T 9860 09€'ST 8L 006

I 8200 0FOT 0 I 6C108PIT O ¢ FICOSSPL O ¢ T090 0ISC O T €840 0946 0 T €980 S04 S¥ T 0660 04'ST 9%8 008

T 6800 €60L 0 T Z9T000CT O T 68€0 I#9T O 1T 0€90 0IZC O T €940 09¢F 0 T ¥/80 0TeL ¥8 T T660 8091 T8 00L

I €Ir0s8cIl 0 T 9%¢09¢6l 0 1 /[FP0808T O T 9490 680€ 0 T 8840 Zb/F 10 1T 6880 148 TEL 1 €660 69091 S'68 009

I 9910861 0 1T 600 FPL O 1 CTISO SF0C O 1 8040 OSk€ O T €080 ¥S0S TI T <2060 0818 90T 1 ¥66'0 LST91 906 00§

T /FC0O8TEL 0 T 00F0 £99T 0 T 9460 /862 0 1 Sh40 Ge6€ 0 1 T80 8%SS T T 6160 4488 €76 T 9660 TIZ9TL ¥¢6 00F

0 9960 ¥SST 0 0 €870 6861 0 0 $€90 I¥ZC 0 0 9920 £9TF 80 0 O0F80 €88 69 0 TH60 0648 #0S 0 9660 €16'ST 9€6 00

0 9570 £681 O O 450656 0 0 Z90911€ 0 0 1640 S99% IF 0 8980 1S09 I'ZC 0 7960 €998 189 0 £6610 00€'ST 196 00T

0 $€50 081C 0 0 <TI90 819 0 0 S0L0 99¢€ ¥C 0 £€8°0 €IZF 19¢ 0 9160 166 STS 0 0860 1064 678 0 4660 €90TL 696 001

3 25 ON #o 1 D2S ON #O0 1 D25 ON #O0 3 O2S ON #0 + 2§ ON #0 1 23S ON 30 1 D2S ON o u

%08 %0F %0€ %0T %ST %0L %S %9

*$}9SNS 9} UL SO JO IOqUINU) JO % /6 : %1 : %1 : %] OLEI UJIM S9dURISUT pajerauad A[uopuer 105 synsai feuoneinduwo)) *g1v a[qer,

137

Algorithms 2020, 13, 4

References

1. Pinedo, M. Scheduling: Theory, Algorithms, and Systems; Prentice-Hall: Englewood Cliffs, NJ, USA, 2002.

2. Elmaghraby, S.; Thoney, K.A. Two-machine flowshop problem with arbitrary processing time distributions.
IIE Trans. 2000, 31, 467-477. [CrossRef]

3. Kamburowski, J. Stochastically minimizing the makespan in two-machine flow shops without blocking.
Eur.]. Oper. Res. 1999, 112 304-309. [CrossRef]

4. Ku, PS.; Niu, S.C. On Johnson’s two-machine flow-shop with random processing times. Oper. Res. 1986,
34,130-136. [CrossRef]

5. Allahverdi, A. Stochastically minimizing total flowtime in flowshops with no waiting space. Eur. J. Oper. Res.
1999, 113, 101-112. [CrossRef]

6. Allahverdi, A.; Mittenthal,]. Two-machine ordered flowshop scheduling under random breakdowns.
Math. Comput. Model. 1999, 20, 9-17. [CrossRef]

7. Portougal, V.; Trietsch, D. Johnson’s problem with stochastic processing times and optimal service level.
Eur.]. Oper. Res. 2006, 169, 751-760. [CrossRef]

8. Daniels, R.L.; Kouvelis, P. Robust scheduling to hedge against processing time uncertainty in single stage
production. Manag. Sci. 1995, 41, 363-376. [CrossRef]

9. Sabuncuogly, I; Goren, S. Hedging production schedules against uncertainty in manufacturing environment
with a review of robustness and stability research. Int. J. Comput. Integr. Manuf. 2009, 22, 138-157. [CrossRef]

10. Sotskov, Y.N.; Werner, E. Sequencing and Scheduling with Inaccurate Data; Nova Science Publishers: Hauppauge,
NY, USA, 2014.

11. Pereira, J. The robust (minmax regret) single machine scheduling with interval processing times and total
weighted completion time objective. Comput. Oper. Res. 2016, 66, 141-152. [CrossRef]

12. Kasperski, A.; Zielinski, P. A 2-approximation algorithm for interval data minmax regret sequencing
problems with total flow time criterion. Oper. Res. Lett. 2008, 36, 343-344. [CrossRef]

13. Wu, Z; Yu, S; Li, T. A meta-model-based multi-objective evolutionary approach to robust job shop
scheduling. Mathematics 2019, 7, 529. [CrossRef]

14. Grabot, B.; Geneste, L. Dispatching rules in scheduling: A fuzzy approach. Int. J. Prod. Res. 1994, 32, 903-915.
[CrossRef]

15. Ozelkan, E.C.; Duckstein, L. Optimal fuzzy counterparts of scheduling rules. Eur.]. Oper. Res. 1999,
113, 593-609. [CrossRef]

16. Kasperski, A.; Zielinski, P. Possibilistic minmax regret sequencing problems with fuzzy parameteres.
IEEE Trans. Fuzzy Syst. 2011, 19, 1072-1082. [CrossRef]

17. Lai, T.-C.; Sotskov, Y.N.; Sotskova, N.Y.; Werner, F. Optimal makespan scheduling with given bounds of
processing times. Math. Comput. Model. 1997, 26, 67-86.

18. Lai, T.-C.; Sotskov, Y.N. Sequencing with uncertain numerical data for makespan minimization. J. Oper.
Res. Soc. 1999, 50, 230-243. [CrossRef]

19. Lai, T.-C.; Sotskov, Y.N.; Sotskova, N.Y. ; Werner, F. Mean flow time minimization with given bounds of
processing times. Eur. |. Oper. Res. 2004, 159, 558-573. [CrossRef]

20. Sotskov, Y.N.; Egorova, N.M.; Lai, T.-C. Minimizing total weighted flow time of a set of jobs with interval
processing times. Math. Comput. Model. 2009, 50, 556-573. [CrossRef]

21. Cheng, T.C.E.; Shakhlevich, N.V. Proportionate flow shop with controllable processing times. J. Sched. 1999,
27,253-265. [CrossRef]

22. Cheng, T.C.E.; Kovalyov, M.Y.; Shakhlevich, N.V. Scheduling with controllable release dates and processing
times: Makespan minimization. Eur. |. Oper. Res. 2006, 175, 751-768. [CrossRef]

23. Jansen, K.; Mastrolilli, M.; Solis-Oba, R. Approximation schemes for job shop scheduling problems with
controllable processing times. Eur. J. Oper. Res. 2005, 167, 297-319. [CrossRef]

24. Graham, R.L.; Lawler, ELL.; Lenstra,].K; Rinnoy Kan, A.H.G. Optimization and approximation in
deterministic sequencing and scheduling. Ann. Discret. Appl. Math. 1979, 5, 287-326.

25. Brucker, P. Scheduling Algorithms; Springer: Berlin, Germany, 1995.

26. Tanaev, V.S, Sotskov, Y.N.; Strusevich, V.A. Scheduling Theory: Multi-Stage Systems; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 1994.

138

Algorithms 2020, 13, 4

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

Jackson, J.R. An extension of Johnson’s results on job lot scheduling. Nav. Res. Logist. Q. 1956, 3, 201-203.
[CrossRef]

Johnson, S.M. Optimal two and three stage production schedules with set up times included. Nav. Res.
Logist. Q. 1954, 1, 61-68. [CrossRef]

Allahverdi, A.; Sotskov, Y.N. Two-machine flowshop minimum-lenght scheduling problem with random
and bounded processing times. Int. Trans. Oper. Res. 2003, 10, 65-76. [CrossRef]

Matsveichuk, N.M.; Sotskov, Y.N. A stability approach to two-stage scheduling problems with uncertain
processing times. In Sequencing and Scheduling with Inaccurate Data; Sotskov, Y.N., Werner, E,, Eds.; Nova
Science Publishers: Hauppauge, NY, USA, 2014; pp. 377-407.

Shafranski Y.M. On the existence of globally optimal schedules for the Bellman-Johnson problem for two
machines under uncertainty. Informatika 2009, 3, 100-110. (In Russian)

Lai, T.-C.; Sotskov, Y.N.; Egorova, N.G.; Werner, E. The optimality box in uncertain data for minimising the
sum of the weighted job completion times. Int. J. Prod. Res. 2018, 56, 6336—-6362. [CrossRef]

Sotskov, Y.N.; Egorova, N.G. Single machine scheduling problem with interval processing times and total
completion time objective. Algorithms 2018, 11, 66. [CrossRef]

Sotskov, Y.N.; Lai, T.-C. Minimizing total weighted flow time under uncertainty using dominance and a
stability box. Comput. Oper. Res. 2012, 39, 1271-1289. [CrossRef]

Sotskov, Y.N.; Egorova, N.G. Minimizing total flow time under uncertainty using optimality and stability
boxes. In Sequencing and Scheduling with Inaccurate Data; Sotskov, Y.N., Werner, E.,, Eds.; Nova Science
Publishers: Hauppauge, NY, USA, 2014; pp. 345-376.

Matsveichuk, N.M.; Sotskov, Y.N.; Egorova, N.G.; Lai, T.-C. Schedule execution for two-machine flow-shop
with interval processing times. Math. Comput. Model. 2009, 49, 991-1011. [CrossRef]

Sotskov, Y.N.; Allahverdi, A.; Lai, T.-C. Flowshop scheduling problem to minimize total completion time
with random and bounded processing times. J. Oper. Res. Soc. 2004, 55, 277-286. [CrossRef]

Allahverdi, A.; Aldowaisan, T.; Sotskov, Y.N. Two-machine flowshop scheduling problem to minimize
makespan or total completion time with random and bounded setup times. Int. J. Math. Math. Sci. 2003,
39, 2475-2486. [CrossRef]

Kouvelis, P; Yu, G. Robust Discrete Optimization and Its Application; Kluwer Academic Publishers: Boston,
MA, USA, 1997.

Kouvelis, P.; Daniels, R.L.; Vairaktarakis, G. Robust scheduling of a two-machine flow shop with uncertain
processing times. IEEE Trans. 2011, 32, 421-432. [CrossRef]

Ng, C.T.; Matsveichuk, N.M.; Sotskov, Y.N.; Cheng, T.C.E. Two-machine flow-shop minimum-length
scheduling with interval processing times. Asia-Pac.]. Oper. Res. 2009, 26, 1-20. [CrossRef]

Matsveichuk, N.M.; Sotskov, Y.N.; Werner, F. The dominance digraph as a solution to the two-machine
flow-shop problem with interval processing times. Optimization 2011, 60, 1493-1517. [CrossRef]

G) (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
[

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

139

SNl «gorithms ﬁvﬁ)fy

Atrticle

Simple Constructive, Insertion, and Improvement
Heuristics Based on the Girding Polygon for the
Euclidean Traveling Salesman Problem

Victor Pacheco-Valencia !, José Alberto Hernédndez 2, José Maria Sigarreta 3(and
Nodari Vakhania 1*

1 Centro de Investigacion en Ciencias UAEMor, Universidad Auténoma del Estado de Morelos, Cuernavaca

62209, Mexico; vhpacval@gmail.com

Facultad de Contaduria, Administracion e Informética UAEMor, Cuernavaca 62209, Mexico;
jose_hernandez@uaem.mx

Facultad de Matematicas UAGro, Universidad Auténoma de Guerrero, Acapulco 39650, Mexico;
josemariasigarretaalmira@hotmail.com

* Correspondence: nodari@uaem.mx

Received: 15 November 2019; Accepted: 17 December 2019; Published: 21 December 2019

Abstract: The Traveling Salesman Problem (TSP) aims at finding the shortest trip for a salesman,
who has to visit each of the locations from a given set exactly once, starting and ending at the same
location. Here, we consider the Euclidean version of the problem, in which the locations are points
in the two-dimensional Euclidean space and the distances are correspondingly Euclidean distances.
We propose simple, fast, and easily implementable heuristics that work well, in practice, for large
real-life problem instances. The algorithm works on three phases, the constructive, the insertion, and
the improvement phases. The first two phases run in time O(n?) and the number of repetitions in the
improvement phase, in practice, is bounded by a small constant. We have tested the practical behavior
of our heuristics on the available benchmark problem instances. The approximation provided by our
algorithm for the tested benchmark problem instances did not beat best known results. At the same
time, comparing the CPU time used by our algorithm with that of the earlier known ones, in about
92% of the cases our algorithm has required less computational time. Our algorithm is also memory
efficient: for the largest tested problem instance with 744,710 cities, it has used about 50 MiB, whereas
the average memory usage for the remained 217 instances was 1.6 MiB.

Keywords: heuristic algorithm; traveling salesman problem; computational experiment; time
complexity

1. Introduction

The Traveling Salesman Problem (TSP) is one of the most studied strongly NP-hard combinatorial
optimization problems. Given an # x n matrix of distances between 1 objects, call them cities, one
looks for a shortest possible feasible tour which can be seen as a permutation of the given 1 objects:
a feasible tour visits each of the 7 cities exactly once except the first visited city with which the tour
ends. The cost of a tour is the sum of the distances between each pair of the neighboring cities in that
tour. This problem can also be described in graph terms. We have an undirected weighted complete
graph G = (V,E), where V is the set of n = |V| vertices (cities) and E is the set of the n*> — n edges
(i,7) = (j,1), i # j. Anon-negative weight of an edge (i,), w(i, j) is the distance between vertices i
and j. There are two basic sets of restrictions that define feasible solution (a tour that has to start and
complete at the same vertex and has to contain all the vertices from set V exactly once). A feasible tour
T can be represented as:

Algorithms 2020, 13, 5; d0i:10.3390/a13010005 141 www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 5

T = (i, ia,- -+ ,ip—1,0n,01); ik €V, 1)
and its cost is

n—1
C(T) = 2 w(ik, ik+1) + w(in,il). (2)
k=1

The objective is to find an optimal tour, a feasible one with the minimum cost miny C(T).

Some special cases of the problem have been commonly considered. For instance, in the symmetric
version, the distance matrix is symmetric (i.e., for each edge (i, /), w(i, j) = w(j,i)); in another setting,
the distances between the cities are Euclidean distances (i.e., set V can be represented as points in the
two-dimensional Euclidean space). Clearly, the Euclidean TSP is also a symmetric TSP but not vice
versa. The Euclidean TSP has a straightforward immediate application in the real-life scenario when a
salesman wishes to visit the cities using the shortest possible tour. Because in the Euclidean version
the cities are points in plane, for each pair of points, the triangle inequality holds, which makes the
problem a bit more accessible in the sense that simple geometric rules can be used for calculating the
cost of a tour or the cost of the inclusion of a new point in a partial tour, unlike the general setting.
Nevertheless, the Euclidean TSP remains strongly NP-hard; see Papadimitriou [1] and Garey et al. [2].

The exact solution methods for TSP can only solve problem instances with a moderate number
of cities; hence, approximation algorithms are of a primary interest. There exist a vast amount of
approximation heuristic algorithms for TSP. The literature on TSP is very wide-ranging, and it is not
our goal to overview all the important relevant work here (we refer the reader, e.g., to a book by
Lawler et al. [3] and an overview chapter by Jiinger [4]).

The literature distinguishes two basic types of approximation algorithms for TSP: tour
construction and loop improvement algorithms. The construction heuristics create a feasible tour
in one pass so that the taken decisions are not reconsidered later. A feasible solution delivered by
a construction heuristic can be used in a loop improvement heuristic as an initial feasible solution
(though such initial solution can be constructed randomly). Given the current feasible tour, iteratively,
an improvement algorithm, based on some local optimality criteria, makes some changes in that
tour resulting in a new feasible solution with less cost. Well-known examples of tour improvement
algorithms are 2-Opt Croes 2-Opt, its generalizations 3-Opt and k-Opt, and the algorithm by Lin and
Kernighan [5], to mention a few.

The most successful algorithms we have found in the literature for large-scale TSP instances are
Ant Colony Optimization (ACO) meta heuristics, with which we compare our results. On one hand,
these algorithms give a good approximation. On the other hand, the traditional ACO-based algorithms
tend to require a considerable computer memory, which is necessary to keep an 1 X n pheromone
matrix. Typically, the time complexity of the selection of each next move using ACO is also costly.
These drawbacks are addressed in some recent ACO-based algorithms in which, at each iteration of the
calculation of the pheromone levels, the intermediate data are reduced storing only a limited number
of the most promising tours in computer memory. With Partial ACO (PACO), only some part of a
known good tour is altered. A PACO-based heuristic was proposed in Chitty [6] and the experimental
results for four problem instances from library Art Gallery were reported. Effective Strategies + ACO
(ESACO) uses pheromone values directly in the 2-opt local search for the solution improvement and
reduces the pheromone matrix, yielding linear space complexity (see, for example, Ismkman [7]).
Parallel Cooperative Hybrid Algorithm ACO (PACO-30pt) uses a multi-colony of ants to prevent a
possible stagnation (see, for example, Giilcii et al. [8]). In a very recent Restricted Pheromone Matrix
Method (RPMM) [9], the pheromone matrix is reduced with a linear memory complexity, resulting in
an essentially lower memory consumption. Another recent successful ACO-based Dynamic Flying
ACO (DFACO) heuristic was proposed by Dahan et al. [10]. Besides these ACO-based heuristics, we
have compared our heuristics with other two meta-heuristics. One of them is a parallel algorithm based
on the nearest neighborhood search suggested by Al-Adwan et al. [11], and the other one, proposed

142

Algorithms 2020, 13, 5

by Zhong et al. [12], is a Discrete Pigeon-Inspired Optimization (DPIO) metaheuristic. We have also
implemented directly the Nearest Neighborhood (NN) algorithm for the comparison purposes (see
Section 4 and Appendix A).

In Table Al in Appendix A, we give a summary of the above heuristics including the information
on the type and the number of the instances for which these algorithms were tested and the number
of the runs of each of these algorithms. Unlike these heuristics, the heuristic that we propose here is
deterministic, in the sense that, for any input, it delivers the same solution each time it is invoked;
hence, there is no need in the repeated runs of our algorithm. We have tested the performance of
our algorithm on 218 benchmark problem instances (the number of the reported instances for the
algorithms from Table A1 vary from 6 to 36). The relative error of our algorithm for the tested instances
did not beat the earlier known best results; however, for some instances, our error was better than that
of the above-mentioned algorithms (see Table 9 at the end of Section 3). The error percentage provided
by our algorithm has varied from 0% to 17%, with an average relative error of 7.16%. The standard
error deviation over all the tested instances was 0.03.

In terms of the CPU time, our algorithm was faster than ones from Table A1 except for six instances
from Art Gallery RPMM [9] and Partial-ACO [6], and for two instances from TSPLIB DPIO [12] were
faster (see Table 10). Among all the comparisons we made, in about 92% of the cases, our algorithm
has required less computational time. We have halted the execution of our algorithm for the two of
the above-mentioned largest problem instances in 15 days, and for the next largest instance ara238025
with 238,025 cities our algorithm has halted in about 36 h. The average CPU time for the remained
instances were 19.2 min. The standard CPU time deviation for these instances was 89.3 min (for all the
instances, including the above-mentioned three largest ones, it was 2068.4 min).

Our algorithm consumes very little computer memory. For the largest problem instance with
744,710 cities, it has used only about 50 MiB (mebibytes). The average memory usage for the remained
217 instances was 1.6 MiB (the average for all the instances including the above largest one was 1.88
MiB). The standard deviation of the usage of the memory is 4.6 MiB. Equation (3) below (see also
Figure 15 in Section 3) shows the dependence of the memory required by our algorithm on the total
number of cities 7. As we can observe, this dependence is linear:

RAM = 0.00006851 + 0.563 MiB. 3)

Our algorithm consists of the constructive, the insertion and the improvement phases, we call it
the Constructive, Insertion, and Improvement algorithm, the ClI-algorithm, for short. The constructive
heuristics of Phase 1 deliver a partial tour that includes solely the points of the girding polygon.
The insertion heuristic of Phase 2 completes the partial tour of Phase 1 to a complete feasible tour using
the cheapest insertion strategy: iteratively, the current partial tour is augmented with a new point,
one yielding the minimal increase in the cost in an auxiliary, specially formed tour. We use simple
geometry in the decision-making process at Phases 2 and 3. The tour improvement heuristic of Phase 3
improves iteratively the tour of Phase 2 based on the local optimality conditions: it uses two heuristic
algorithms which carry out some local rearrangement of the current tour. At Phase 1, the girding
polygon for the points of set V and an initial, yet infeasible (partial) tour including the vertices of that
polygon is constructed in time O(n2). The initial tour of Phase 1 is iteratively extended with the new
points from the internal area of the polygon at Phase 2. Phase 2 also runs in time O(n?) and basically
uses the triangle inequality for the selection of each newly added point. Phase 3 uses two heuristic
algorithms. The first one, called 2-Opt, is a local search algorithm proposed by Croes [13]. The second
one is based on the procedure of Phase 2. The two heuristics are repeatedly applied in the iterative
improvement cycle until a special approximation condition is satisfied. The number of repetitions in
the improvement cycle, in practice, is bounded by a small constant. In particular, the average number
of the repetitions for all the tested instances was about 9 (the maximum of 49 repetitions was attained
for one of the moderate sized instances /12498378, and for the largest instance Irb744710 with 744,710
points, Phase 3 was repeated 18 times).

143

Algorithms 2020, 13, 5

The rest of the paper is organized as follows. In Section 2, we describe the Cll-algorithm
and show its time complexity. In Section 3, we give the implementation details and the results
of our computational experiments, and, in Section 4, we give some concluding remarks and possible
directions for the future work. The tables presented in Appendix A contain the complete data of our
computational results.

2. Methods

We start this section with a brief aggregated description of our algorithm and in the following
subsections we describe its three phases (Figure 1).

Cll-algorithm

Phase 1 Phase 2 Phase 3
Delivers a Extends patrtial .
TSP | > partial w | SOlution of Phase ‘The gtﬁi;tzglrutlon o Solution
instance (vet infeasible) " 1 to a complete o improved " for the TSP
solution feasible solution P

Figure 1. Block diagram of the ClI-algorithm: (a) Phase 1 delivers a partial (yet infeasible) solution,
(b) Phase 2 extends the partial solution of Phase 1 to a complete feasible solution, and, (c) at Phase 3,
the latter solution is further improved.

2.1. Phase 1

2.1.1. Procedure to Locate the Extreme Points

At Phase 1, we construct the girding polygon for the points of set V and construct an initial
yet infeasible (partial) tour that includes the points of that polygon. The construction of this
polygon employs four extreme points v!, v?, v3 and v*; the uppermost, leftmost, lowermost, and
rightmost, respectively [14], with ones from set V defined as follows. First, we define the sets of
points T/,L', B’ and R’ with T = {i | y; is maximum, i € V}, L' = {i | x; is minimum,i € V},
B' = {i|y; is minimum, i € V},and R' = {i | x; is maximum, i € V}. Then,

ol = xj is maximum; j € T, 4)

=7 yj is maximum; j € L', (5)

0®=j| xj is minimum; j € B, (6)
and

vt = j | yjis minimum; j € R,)

See the next procedure for the extreme points in Table 1.

144

Algorithms 2020, 13, 5

Table 1. Procedure extreme_points.

PROCEDURE extreme_points(V = {iy, i, -+ ,in})

1 Ymax == yj //Initializing variables
Xmin *= Xi;
Ymin = Xiy

2
3
4 Xpax =Yy
5 FORj:=2TOnDO
6 IF yz‘/ > Ymax THEN Ymax ‘= yi/
7 IF Xi; < Xpin THEN x,,;,, := xj;
8 IF Yi; < Ymin THEN Yy := Yi;
9 IF Xi; > Xmax THEN Xxp0x := xj;
10 T"=L'=B =R':=0
11 FORj:=1TOnDO
12 IF Yi; = Ymax THEN T’ :=T'U {ij}

13 IF x;; = X3 THEN L := L' U {ij}

14 TF y;, = Yuin THEN B’ := B' U {ij}

15 IF x;, = Xpax THEN R':=R'U {ij}

16 ol :=t] /1T ={t, by b}, T <
17 o2:=1 /1L =10, U <
18 0% :=1b] // B ={by, by, bjp }, || <n
19 '04 = 7‘/1 // R/:{Vlllré/"' rr‘lR/‘}/ ‘R/‘ <n
20 FORj:=2TO |T'| DO

21 mx”>waHENub:q

22 FOR;j:=2TO |L'| DO

23 IF x; > x,» THEN v? = I

24 FORj:=2TO |B'| DO

25 Ew>%JMNﬁ;%

26 FORj:=2TO |R'| DO

27 EW>WTMNﬁ:¢

28 RETURN v!, 02, 03, v*

Lemma 1. The time complexity of Procedure extreme_points is O(n).

Proof of Lemma 1. In this and in the following proofs, we only consider those lines in the formal
descriptions in which the number of elementary operations, denote it by f (), depends on 7 (ignoring
the lines yielding a constant number of operations). In lines 5-9, there is a loop with # — 1 cycles, hence
{f(n) = n—1}. Inlines 11-15, there is a loop with n cycles, hence { f(n) = n} In lines 20-21, 22-23,
24-25 and 26-27; there are four loops, each one with at most has n cycles, so {f(n) = 4n}. Hence,
the total costis O(n). O

2.1.2. Procedure for the Construction of the Girding Polygon

Before we describe the procedure, let us define function (i, j), returning the angle formed between
the edge (i, j) and the positive direction of the x-axis (Equation (8) and Figure 2):

Xj— % Yji— i

arccos —~ if arcsin —— >0,

i) W) N i) ®
e — arccos o i if arcsin Y di <0
(i] wiif) ="

145

Algorithms 2020, 13, 5

Figure 2. Angle 0(i, j).

The girding Polygon P = P(V) is a convex geometric figure in a two-dimensional plane, such
that any point in V either belongs to that polygon or to the area of that polygon Vakhania et al. [14].

The input of our procedure for the construction of polygon P (see Table 2), consists of (i) the set of
vertices V and (ii) the distinguished extreme points v', v?, v® and v*. Abusing slightly the notation, in
the description below, we use: (i) P, for the array of the points that form the girding polygon, and (ii) k
for the last vertex included so far into the array P. Initially, P := (v') and k := 0.

Table 2. Procedure polygon.

PROCEDURE polygon(V, v',v?,v%,v*)

1 P:= (o) //Initializing variables
2 k=o'
3 WHILEk # v?> DO //Step 1
4 form a subset of vertices V* := {i|x; <xx A y; > y,p; i€V} //VECV
5 form a subset of edges E* := {(k,j);j € V*} /JE* CE
6 form a set of angles ©* := {6(k, j); (k,j) € E*}
7 get the minimum angle 6(k,) from ©*
8 append the vertex [to P and update k equal to [.
9
10 WHILEk # o> DO //Step 2
11 form a subset of vertices V* := {i|x; <xp Ay, <yg; i€V}
12 form a subset of edges E* := {(k,j);j € V*}
13 form a set of angles @* := {0(k, j); (k,j) € E*}
14 get the minimum angle 6(k,) from ©*
15 append the vertex [to P and update k equal to [.
16
17 WHILEk # v* DO //Step 3
18 form a subset of vertices V* := {i | x; > x A y; <ypu;icV}
19 form a subset of edges E* := {(k,j);j € V*}
20 form a set of angles ©* := {6(k, j); (k,j) € E*}
21 get the minimum angle 6(k,) from ©*
22 append the vertex [to P and update k equal to [.
23
24 WHILEk # v! DO //Step 4
25 form a subset of vertices V* := {i|x; > x; A y;i >ye; i€V}
26 form a subset of edges E* := {(k,j);j € V*}
27 form a set of angles ®* := {6(k, j); (k,j) € E*}
28 get the minimum angle 6(k,) from ©*
29 append the vertex [to P and update k equal to [.

Lemma 2. The time complexity of Procedure polygon is O(n?).
Proof of Lemma 2. There are four independent while statements with similar structure, each of which

can be repeated at most # times. In the first line of each of these while statements, in lines 4, 11, 18, and
25, the set of points V* is formed that yields {f(n) = 2n} operations. In lines 5, 12, 19, and 26, the

146

Algorithms 2020, 13, 5

set of n — 1 edges E* is formed in time {f(n) = n — 1}. In lines 6, 13, 20, and 27, the set of angles ©*
consisting of at most # — 1 elements is formed in time {f(n) = n — 1}. In lines 7, 14, 21, and 28 to find
the minimum angle in set ©®* at most n — 1 comparisons are needed and the lemma follows. [I

In Figure 3, we illustrate an example with V = {1,2, - - - , 6} with coordinates X = {xq,xp,- - , x4}
and Y = {y1,¥2, - , Y6 }. The extreme points are: vl =4,v2 =2, =5andv* =5and P = (4,2,5,4).
Initially, P = (4). Then, vertex 2 is added to polygon in Step 1, vertex 5 is added in Step 2; Step 3 is not
carried out because v° = v¥; vertex 4 is added at Step 4.

Y

Vi 4=vy1
Y- Yel

Y3

3/2k2=v2

Y5 S5=vi=v4

1 11y 1
%) XolXa X5 X
X3 X]

Figure 3. Example that shows the extreme vertices and girding polygon.

Using polygon P(V) constructed by the Procedure Polygon, we obtain our initial, yet infeasible
(partial) tour Ty = (t1,tp,- -+, tm, t1) that is merely formed by all the points ty,tp,- -, t, of that
polygon, where ¢; = v! and m is the number of the points.

In the example of Figure 3, P is the initial infeasible tour Ty = (4,2,5,4). V\ Tp = {1,3,6} is the
set of points that will be inserted into the final tour.

2.2. Phase 2

The initial tour of Phase 1 is iteratively extended with new points from the internal area of polygon
P(V) using the cheapest insertion strategy at Phase 2 [15].

Let ! ¢ Tj_; be a candidate point to be included in tour Tj,_3, resulting in an extended tour T,
of iteration 1 > 0, and let t; € T, _7. Due to the triangle inequality, w(t;,) + w(l, ti11) > w(t;, tis1);
i.e., the insertion of point | between points t; and t; 1, will increase the current total cost C(Tj,_1) by
w(t;, 1) +w(l, tis1) —w(t;, tiv1) > 0 (see Figure 4). Once point [is included between points t; and #; 1,
for the convenience of the presentation, we let t,,, 1= t,_1, f,y—1 1= ty—2, - -+, tigs = tiyo, tivo 1= tirg
and f; ;1 := I (due to the way in which we represent our tours, this re-indexing yields no extra cost in
our algorithm).

1
X
Rtin RS

Figure 4. The triangle inequality.

147

Algorithms 2020, 13, 5

In Table 3, we give a formal description of our procedure that inserts point I between points t;
and t;,1 in tour T.

Table 3. Procedure insert_point_in_tour.

PROCEDURE insert_point_in_tour(T, 1, i)
Lop:=1T]

2 IFi < p THEN

3 ji=p+1

4 WHILE j > i +1DO
5 t]‘ = t/’*l
6

7

8

j=j-1
tipr =1
RETURN T

Procedure construc_tour

Ateach iteration h, the current tour Tj,_ is extended by point " € V'\ Tj,_; yielding the minimum
cost c? (defined below), which represents the increase in the the current total cost C(T},_1) if that point
is included into the current tour Tj,_1. The cost for point I € V' \ Tj,_; is defined as follows:

of = min {w(ty1) +w(l, tiv1) —w(ti tir)}-)
HETy

For further references, we denote by i(!) the index of point ¢; for which the above minimum
for point ! is reached, i.e., w(t;q), 1) + w(l, tiy41) — w(tiqy, tigy+1) = minger, {w(t;, 1) +w(l, tipq) —
w(ty tip1)}-

Thus, I" is a point that attains the minimum

min{c/|l € V\ T, 1}, (10)

whereas the ties can be broken arbitrarily.
To speed up the procedure, we initially calculate the minimum cost for each point [€ V' \ Tj,_;.
After the insertion of point /", the minimum cost c;’ is updated as follows:

o= min{c! L w(ty, 1) + w(l, tipr) — w(ti, tipr), w(tipr, 1) + (0 tiga) — w(tin, tia)) (11)

We can describe now Procedure construct_tour as shown in Table 4.

Table 4. Procedure construct_tour.

PROCEDURE construct_tour(V, Ty)
h:=1
FOR each point ! € V\ Tj_; DO
cf i=min yer, {w(ty,) +w(l, tig) —w(ttir) }
WHILE exists a vertex | € V' \ Tj,_; DO
get [
insert_point_in_tour (Tj,_1,1",i(I"))
FOR each point € V\ T, DO
= min{cl, w(t;, 1) + w(l, tiyr) — w(ti tip1), Wt 1) +w(l ti) — Wt tiy)}
h:=h+1

O 0 NI U WN -

Lemma 3. The time complexity of the Procedure construct_tour is O(n?).

148

Algorithms 2020, 13, 5

Proof of Lemma 3. In lines 2-3, there is a for statement with n — (m + h — 1) repetitions. To calculate
cf’ in line 3, the same number of repetitions is needed and the total cost of the for statement is
n—(m+h—1)]n—(m+h—1)] = [n?=2(m~+h—1)n+ (m+h —1)?]. The while statement in lines
4-9 is repeated at most n — (m + h — 1) times. In line 5, to calculate c (Equation (10)) n — (m +h —1)
comparisons are required. In lines 7-8, there is a for statement nested in the above while statement with
n — (m + h) repetitions. Hence, the total costis [n?> —2(m +h —1)n+ (m+h—1)?|+[n— (m+h —
DHn—(m+h—=1)]+[n—(m+h)]}=[n?>—=2(m+h—1n+ m?—2m—2h+h+1)] + [n— (m+
h—1)]2n — (2m+2h —1)] = [n? — (2m +2h — 2)n + (m? — 2m — 2h + W2 +1)] + [2n% — (4m + 4h —
3)n+ (2m? + 4mh — 3m — 3h +2h% +1)] = 3n? — (6m + 6h — 5)n + (3m? + 4mh — 5m — 5h + 3h* +2) =
o(n?). O

In the example of Figure 5, Ty = (4,2,5). The costs C}, I € V\ Ty, are calculated as follows:
ol =min{w(4,1) + w(1,2) —w(4,2), w(2,1) + w(1,5) —w(2,5), w(51) +w(1,4) —w(5,4)}

=w(51) +w(l,4) —w(5,),
¢z = min{w +w(3,2) —w(4,2), w2,3)+w(3,5 —w(2,5), w5,3)+w(3,4) —w(5,
% 4,3 3,2 2,3 3,5 2,5 53 3,4 5,4
=w(4,3)+w(3,2) —w(4,2),
ct = min{w(4,6) + w(6,2) —w(4,2), w(2,6) + w(6,5) — w(2,5), w(5,6) +w(6,4) —w(5,4)}
=w(4,6)+w(6,2) —w(4,2).
¥ Y Y
vk o v 4 v 4
Y¥er YEYer YEYe
Y3 V3 Y3
Y 2 Y 2 2
Y[5 %N 5 Y5 5
%2 Xelb x5 % % xelba %5 X % % xs X
X3 X1 X3 X| X3 X|
(a) (b) (c)

Figure 5. Points 1, 3, and 6 that can be inserted between point 4 and 2, 2 and 5, or 5 and 4 from partial
tour Ty are depicted in Figures (a), (b), and (c), respectively.

Hence, min{c},c}, cl} = ¢} = w(4,6) + w(6,2) —w(4,2);I' = 6 and i(6) = 4. Therefore, point 6
will be included in tour T; between points 4 and 2 (Figure 6).
Y
Yar
r¥e ¢
Ya[
o2
Y5]

1 11y 1
X Xo|[X4 X5 X

X3 X1

Figure 6. Point 6 was inserted in the tour Ty between points 4 and 2.

Now, T = (4,6,2,5,4) and the minimum costs c¢? for each point € V' \ Tj are:
2 ={c,w41)+w(l,6) —w46),w61)+wl,2)—w62)}
=w(4,1)+w(1,6) —w(4,6).

149

Algorithms 2020, 13, 5

3 ={c},w(43)+w(3,6)—w(46),w63)+w(32) —w62)}
=w(6,3) +w(3,2) —w(6,2).
Hence, min{cZ, 3} = 2 = w(6,3) + w(3,2) — w(6,2); 1> = 3and i(3) = 6. Therefore, point 3 will
be included in tour T, between points 6 and 2 (Figure 7).

Y
Yar
VYol 6
Ya[
w2
Y[5

1 11y 1
X X¢|[%4 X5 X

X3 X1

Figure 7. Point 3 was inserted in the tour T; between points 6 and 2.

Now, T, = (4,6,3,2,5,4) and the minimum costs cl3, 1€ V\T,are

¢ ={c}w6,1)+w(1,3) —w(63),w31)+w(l,2) —w(3,2) =l

Hence, min{c}} = ¢ = w(4,1) + w(1,6) — w(4,6); 1> = 1 and = i(1) = 4. Therefore, point 1 will
be included in tour T3 between points 4 and 6 (Figure 8).

Y
yar
VYol 6
3
w2
Y5 5

1 11 1 X
X Xg|[%4 X
X3 X]

Figure 8. Point 1 be inserted in the tour T, between points 4 and 6.

The resultant tour T = T3 = (4,1,6,3,2,5,4) includes all points from set V and Procedure
construct_tour halts.

2.3. Phase 3

At Phase 3, we iteratively improve the feasible tour T delivered by Phase 2. We use two heuristic
algorithms. The first one is called 2-Opt, which is a local search algorithm proposed by Croes [13].
The second one is based on our construct_tour procedure, named improve_tour. The current solution
(initially, it is the tour delivered by Phase 2) is repeatedly improved first by 2-Opt-heuristics and then
by Procedure improve_tour, until there is an improvement. Phase 3 halts if either the output of one
of the heuristics has the same objective value as the input (by the construction, the output cannot be
worse than the input) or the following condition is satisfied:

C(TM) - C(Tout) < difminl (12)

where dif,,;, is a constant (for instance, we let dif,,;, = 0.0001). Thus, initially, 2-Opt-heuristics runs
with input T. Repeatedly, Condition (12) is verified for the the output of every call of each of the

150

Algorithms 2020, 13, 5

heuristics. If it is satisfied, Phase 3 halts; otherwise, for the output of the last called heuristics, the other
one is invoked and the whole procedure is repeated; see Figure 9.

PHASE 3

Feasible
Solution .
; Solution
T 2-Opt improve_tour >
given by for the TSP
Phase 2

Figure 9. Block diagram of Phase 3.
2.3.1. Procedure 2-Opt

Procedure 2-Opt is a local search algorithm improving feasible solution T = (t1,t2,- -, tn, t1)
(n = |V|). It is well-known that the time complexity of this procedure is O(1n2). For the completeness
of our presentation, we give a formal description of this procedure in Table 5.

Table 5. Procedure 2-Opt.

PROCEDURE 2-Opt(V,T)

1 i:=1

2 n:=1V|

3 WHILE: < n—2DO

4 ji=i+1;

5 WHILE j < n—1DO
6 IF w(t;, f]) + w<ti+l/tj+l> <w(t, t,ur]) + w(t]», t]'+1) THEN
7 x:=i+1

8 yi=j

9 WHILE x < y DO
10 taux 1= tx
11 ty =ty
12 ty := taux
13 x:=x+1
14 yi=y—1
15 ji=j+1
16 i=i+1

17 RETURNT

The result of a local replacement carried out by the procedure is represented schematically in the
Figure 10).

151

Algorithms 2020, 13, 5

Y Y

R t; tii G G i ti
T tj2 = tj-2
t ‘ t ‘
ty tiss Ty Iti+3
Tin L Tist Tin Tin tin G Lir2

1 1 1 1 X 1 1 1 1 X
(a) (b)

Figure 10. (a) a fragment of a solution before applying the algorithm 2-Opt; (b) the corresponding
fragment after applying algorithm 2-Opt.

2.3.2. Procedure improve_tour

We also use our algorithm construct_tour to improve a feasible solution T = (t1,t,- -+, ty, t1),
n = |V|. Iteratively, point t;,1, 1 < i < n, is removed from the tour T and is reinserted by a call of
procedure construct_tour(V, T \ {tj11}). If a removed point gets reinserted in the same position, then
i:= i+ 1 and the procedure continues until i < n (see Table 6).

Table 6. Procedure improve_tour.

PROCEDURE improve_tour(V,T)
i=1
WHILE i < n DO

tji=tipq
remove t;. 1 from the tour T

1

2

3

4 //now T is infeasible
5 construct_tour(V, T\ {tii1})

6

7

8

//T is feasible again
IF ;.1 = t; THEN
ir=i+1
RETURN T

Figure 11 illustrates the iterative improvement in the cost of the solutions obtained at Phase 3
for a sample problem instance usal115475. The initial solution Ty of Phase 2 is iteratively improved as
shown in the diagram.

Cost of solution T in each cycle j of phase 3
7.500.000 o
7,400,000
7,300,000
T.200,000 .

- 7,100,000 @ phase_2
7,000,000 =
6,500,000 *
£.800,000 B T

6,700,000

Figure 11. The improvement rate at Phase 3 for instance usal115475.

152

Algorithms 2020, 13, 5

Lemma 4. The time complexity of the Procedure improve_tour is O(n?).

Proof of Lemma 4. In lines 2-7, there is a while statement with n — 1 repetitions. The call of Procedure
construct_tour in line 5 yields the cost O(n) since with m = n — 1, h = 1; see the proof of Lemma 3 (m is
the number of points in the current partial tour). The lemma follows. [J

3. Implementation and Results

CllI-algorithm was coded in C++ and compiled in g++ on a server with processor 2x Intel Xeon
E5-2650 0 @ 2.8 GHz (Cuernavaca, Mor., Mexico), 32 GB in RAM and Ubuntu 18.04 (bionic) operating
system (we have used only one CPU in our experiments). We did not keep the cost matrix in computer
memory, but we have rather calculated the costs using the coordinates of the points. This does not
increase the computation time too much and saves considerably the required computer memory.

We have tested the performance of ClI-algorithm for 85 benchmark instances from TSPLIB [16]
library and for 135 benchmark instances from TSP Test Data [17] library. The detailed results are
presented in the Appendix. In our tables, parameter “Error” specifies the approximation factor of
algorithm H compared to cost of the best known solution (C(BKS)):

C(BKS) — C(Ty)

Errory = C(BKS)

100%. (13)
In Table 7 below, we give the data on the average performance of our heuristics. The average error
percentage of our heuristics is calculated using Formula (13). It shows, for each group of instances, the
average error of the solutions delivered by Phase 2 and, at Phase 3, the number of cycles at Phase 3
and the average decrease in the cost of the solution decreased at Phase 3 compared to that Phase 3.

Table 7. Statistics about the solutions delivered by CII.

P ART
Description TSPLIB NATIONAL GALLERY VLSI All
Number of instances 83 27 6 102 218
Average error percentage of the) g 17.7% 6.7% 18.4% 15.4%
solutions at Phase 2
Average number of cycles
performed at Phase 3 7 1 1 10 ?
Average decrease in error at Phase 3 6.5% 9.6% 3.1% 9.8% 8.3%
Final average error percentage 5.3% 8.2% 3.6% 8.6% 7.2%
Average memory usage 0.8 MiB 1.6 MiB 10.9 MiB 2.3 MiB 1.88 MiB

In the diagrams below (on the left hand-side), we illustrate the dependence of the approximation
given by our algorithm on the size of the tested instances, and the dependence of the execution time of
our algorithm on the size of the instances (right hand-side diagrams). We classify the tested instance
into three groups: the small ones (from 1 to 199 points in Figure 12), the middle-sized ones (from 200 to
9999 points in Figure 13), and large instances (from 10,000 to 250,000 in Figure 14). We do not include
the data for the largest two problem instances 11498378 and [rb744710 because of the visualization
being technically complicated. The error for these instances is 12.5% and 15.9%, respectively, and
the CPU time was limited to two weeks for both instances. As we can see, at Phase 3, there is an
improvement in the quality of the solutions delivered by Phase 2.

153

Algorithms 2020, 13, 5

{a) Error vs number of points for each instance {b) Time vs number of points for each instance
140 @0
.
1200 . =m0
. .
. . .

10.0% : . . .
1t . .]
F3 * - - * |wphase 2 £ a0 #phase 2
z M an . - * X
B . N - - . = phase_3 ¥ N . « |®phase 3
=] E 150 .

A0 - H =

. . % e 0o . . 3
. H
20% i . » 13 .
] . - 50 - - - -
[T TR . - M H - ama =
M 4 B 80 W0 10 180 160 180 200 ag e o* -
2om W e 60 W0 0 120 M40 10 0 20
M ™

Figure 12. (a) error vs. number of points, and (b) processing time vs. number of points, where

1< |V]| < 200.
{8) Error vs number of points for each instance (8] Time vs number of points for each instance
30.0% 120
w0 |, . - . 120 -.
», . . .
P — .‘:-.. ¥ - o ' .o 1w .
I A L . - .
£ 150 ™ -« ¥ . - ® phase 7 I . ®phase
] T 4 M wphase 3| E w0 . o
= wow &= » . " " o
‘i = ?-":' LI > * « Lo 2
5.0 . L »
- . 2 v
m:m' ‘ o P T B e
© 1000 2,000 3,000 4000 5,000 G000 7000 BECO 9000 10,000 U LU0 2000 2000 4000 5000 G000 T.OCO RO 9000 10,000

M ™

Figure 13. (a) error vs. number of points, and (b) processing time vs. number of points, where
200 < |V| < 10,000.

{8) Error vs number of points for each instance b} Time vs number of points for each instance
E @
30.0% . - * -
£ =
-]
20,00 ﬁ * . . -
3 " . . e phais 3 £ @ e
Eoasom = phase_3 E = . # phase_:
10.0% - .
) s 0 .
ek . - . . e s sue ®
o 0 eemesewiB i s s e = o= s 8 .
v 50000 IWO000 ISO000 200000 280000 o soocy 100050 150000 00000 80000
M M

Figure 14. (a) error vs. number of points, and (b) processing time vs. number of points, where
10,000 < |V| < 250,000.

Table 8 shows the summary of the comparison statistics of the solutions delivered by our algorithm
CII with the solutions obtained by the heuristics that we have mentioned in the introduction (namely,
DFACO [10], ACO-30pt [10], ESACO [7], PACO-30pt [8], DPIO [12], ACO-RPMM [9], Partial ACO [6],
and PRNN [11]). We may observe in Table 9 that algorithm CII has attained an improved approximation
for 17 instances. At the same time, in terms of the execution time, our heuristic dominates the other
heuristics.

Table 8. Statistics between CII and other heuristics.

. ART

Description TSPLIB NATIONAL GALLERY VLSI All
Number of instances 83 27 6 102 218
Number of t1.1e known results from 142 0 10 12 164
other heuristics

Number of time CII gave a better

error than other heuristics 2 0 4 12 18
Number of times CII has improved

the earlier known best execution 140 0 0 140

time

154

Algorithms 2020, 13, 5

In the Table 9, we specify the problem instances for which our algorithm provided a better relative
error than some of the earlier cited algorithms.

Table 9. Comparative relative errors for some problem instances.

Description Errorcyy Errorg
TSPLIB/rat783 7.4% 19.1% and 19.5% (DFACO [10] and ACO-30pt [10])
ART /Mona-lisal00K 3.4% 5.5% (Partial ACO [6])
ART/Vangogh120K 3.5% 5.8% (Partial ACO [6])
ART/ Venus140K 3.4% 5.8% (Partial ACO [6])
ART/Earring200K 3.9% 7.2% (Partial ACO [6])
VLSI/dcal376 7.6% 19.6% (PRNN [11])
VLSI/djb2036 10.0% 23.4% (PRNN [11])
VLSI/xqc2175 9.1% 21.4% (PRNN [11])
VLSI/xqe3891 9.7% 21.7% (PRNN [11])
VLSI/bgb4355 8.4% 22.8% (PRNN [11])
VLSI/xsc6880 10.1% 21.9% (PRNN [11])
VLSI/bnd7168 9.2% 21.7% (PRNN [11])
VLSI/ida8197 7.2% 23.2% (PRNN [11])
VLSI/dga9698 9.6% 21.1% (PRNN [11])
VLSI/xmc10150 9.6% 20.3% (PRNN [11])
VLSI/xvb13584 9.5% 23.6% (PRNN [11])
VLSI/frh19289 9.3% 22.5% (PRNN [11])

In terms of the CPU time comparison, see Table 10.

Table 10. Comparative CPU time for the problem instances for which the other heuristics were faster.

Description Timecy; Timegy

TSPLIB/pla33810 25.7 m 21.0 m (DPIO [12])

TSPLIB/pla85900 41h 1.4 h (DPIO [12])

Art Gallery /mona-lisal00K 2.3h 1.4hand 1.1 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery /vangogh120K 4.6 h 1.9 h and 1.5 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery /venus140K 48h 2.6 hand 2.1 h (ACO-RPMM [9] and Partial ACO [6])
Art Gallery/parejal60K 7.7h 3.5h (ACO-RPMM [9])

Art Gallery/coubert180K 10.1h 4.5 h (ACO-RPMM [9])

Art Gallery/earring200K 15.1h 6.0 hand 5.1 h (ACO-RPMM [9] and Partial ACO [6])

In the diagram below (Figure 15), we illustrate the dependence of the memory used by our
algorithm of all tested instances.

155

Algorithms 2020, 13, 5

RAM vs number of points for each instance

RAM (M B)

.
10 e®

o'..
0 -

0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000
vl

Figure 15. RAM vs. number of points for all the tested instances.
4. Conclusions and Future Work

We have presented a simple, easily implementable and fast heuristic algorithm for the Euclidean
traveling salesman problem that solves both small and large scale instances with an acceptable
approximation and consumes a little computer memory. Since the algorithm uses simple geometric
calculations, it is easily implementable. The algorithm is fast, the first two phases run in time O(n?),
whereas the number of the improvement repetitions in the third phase, in practice, is not large. The
first two phases might be used independently from the third phase, for instance, for the generation of
an initial tour in more complex loop improvement heuristics. The quality of the solution delivered
already by Phase 2 is acceptable and is expected to greatly outperform that of a random solution used
normally to initiate meta-heuristic algorithms. We have implemented NN (Nearest Neighborhood)
heuristics and run the code for the benchmark instances (the initial vertex for NN heuristic was selected
randomly). Phase 2 gave essentially better results. In average, for the tested 135 instances (6 large,
32 Medium and 97 small ones), the difference between the approximation factor obtained by the
procedure of Phase 2 and that of Nearest Neighbor heuristic was 9.65% (the average error of Phase
2 was 16.89% and that of NN was 26.55%, whereas the standard deviations were similar, 0.05% and
0.04%, respectively). As for the overall algorithm, it uses a negligible computer memory. Although for
most of the tested benchmark instances it did not improve the best known results, the execution time
of our heuristic, on average, was better than the earlier reported best known times. For future work,
we intend to create a more powerful, yet more complex, ClI-algorithm by augmenting each of the
three phases of our algorithm with alternative ways for the creation of the initial tour and alternative
insertion and improvement procedures.

Author Contributions: Conceptualization, N.V. and].M.S.; Methodology, V.P.-V.; Validation, N.V.; Formal
Analysis, N.V. and].M.S.; Investigation, V.P-V.; Resources, UAEMor administrated by J.A.H.; Writing—original
draft preparation, V.P.-V.; Writing—review and editing, N.V.; Visualization, V.P.-V. and N.V,; Supervision, N.V.;
Project administration, N.V.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In the table below (Table A1), we give some details on the earlier mentioned heuristics with which
we compare our results (the entries in the column “Runs” specify the number of the reported runs of
the corresponding heuristic).

156

Algorithms 2020, 13, 5

Table Al. Heuristics used to compare the Cll-algorithm.

Heuristic Id Heuristic Name Number of Reported Runs
Instances
ACO-RPMM [9] ACO - Restricted Pheromone 6 Large 10
Matrix Method
Partial ACO [6] Partial ACO 4 Large and 5 Small 100
DFACO [10] Dynamic Flying ACO 30 Small 100
ACO-30pt [10] ACO-30pt 30 Small 100
DPIO [12] Discrete Pigeon-inspired 1 Large, 6 Medium and 28 25
optimization with Metropolis Small
acceptance
PACO-30pt [8] Parallel Cooperative Hybrid 21 Small 20
Algorithm ACO
ESACO [7] Effective Strategies + ACO 5 Medium and 17 Small 20
PRNN [11] Parallel Repetitive Nearest 3 Medium and 9 Small n=
Neighbor 4
NN Nearest Neighbor Algorithm 4 Large, 25 Medium and 61 1
Small

The next table (Table A2) discloses the headings of our tables.

Table A2. Description of the headings of Tables A3-A6.

Header Header Description
V| the number of vertices in the instance
Opt? “yes” if Best Known Solution (BKS) is optimal, “no” otherwise
C(BKS) the cost of BKS
C(T) Cost of the solution constructed by CII heuristic
RAM RAM used by CII heuristics
the number of cycles at Phase 3 of CII heuristic
Error as defined in Formula (13)
Cg(]g(TH) the average cost of the solution obtained by heuristic H
HeuristicId nomenclature used in Table A1

Time the processing time of a heuristic
ms,s,m h,d time units for milliseconds, seconds, minutes, hours and days respectively.

In the tables below, each line corresponds to a particular benchmark instance. For each of these
instances, we indicate the performance of Phase 2 and Phase 3, separately, and that of the other
heuristics reporting the results for that instance. In addition, 85 benchmark instances were taken from
TSPLIB [16] and 135 instances are from TSP Test Data [17] libraries. Tables A3, A4, and A6 include the
earlier known results.

In some lines of our tables (e.g., line 1, Table A5), a slight difference in the approximation errors of
our algorithm and those of the algorithms from the “Results for National TSP Benchmarks" table can
be seen due to the way the distances in the obtained solutions are represented in our algorithm (we do
not round the distances represented as decimal numbers, whereas the distances in the best known
solutions are rounded).

157

Algorithms 2020, 13, 5

1doe-0dv s0ZL %00 8759
00Vda SOFT %00 87§9 € dUINY0 SWETIL %EE 99 SWIT %L 8€0L 8759 sk ST 0STWP
NN SWl %80l 98879 € dUNOD SW9 %ET 066G SWIT %9€ 2909 L8 A ppl pplad
NN Swgl %96 8SHSTL S AIN90 SWee %0T 1286 SW/T %9 ¥e6T0l TLL96 sk 9el 9grad
doe-0dv s091 %00 0119
0OVdd SO€L %00 0119 6 IN90 SWELT %ET 0619 SWLT %E6 9299 0119 sk el oI
1doe-0DV s09s %00 T8T8IL
0Dvdd SOk %00 T8TRIL € AUIN90 SW9S %87 FFSIZL SWEFS %®T FPSICL ¢8T8Il seA [zl [zielq
NN swel o %Lec 8004 € GIN90 SWes %Ll €5009 SWEL %¥S €6l'T9 0€0'6s A pTr priad
NN SWe0 %TTT 1ITUPs S dUN90 SWISL %TT TS SWIT %€ 0eLSh €ogFy seA so1 Lomd
0ovsd s0T %00 6LETL
doe-0dv s0T %00 6LETL
0DVaa S0T %00 6L£FL € dUIN9D SwgE %P0 OWFFL SWTT o%L€ EI6FT 6% seA 0T gorwy
1doe-0dv s00L %00 629 i
0OVHd S0TL %00 629 € dIN90 SWEel %6S 999 SW'T %6L 649 629 sk 101 1010
doe-0dv s0T %00 ot6L
00vad S0T %00 0164 € dIN90 swge %l W8 swTl o %0Z <o¥8 016 so 001 001PI
doe-0dv s0T %00 890'7C
[eR)% el 0T %00 8907 AIN90 Sweg %IT §§Tc SWOT %9t 0/8T¢ 890Tc A 001 001HON
doe-oov soe %00 $62'1C
[en)%le] S0 %00 F6CIT € dUIN9D SWEE %P WEIT SWIT 40T LI beTlc A 001 001dOnY
doe-0dv s0T %00 6vL/0C
0Dvad S0T %00 6vL0c € dUIN90 SwgE %R0 60t SWIT %€y eIz L0 SeA 0L 001D0
doe-0dv s0T %00 171'2C
0DVHa 0T %00 WI'ee € dIN90 swee %97 91LTT SWI'T %0S Zkgec I¥l'c s 001 001gony
00vsd S9T %00 WTIT
doe-0ov s0T %00 wU1T
[en)%le] S0T %00 WIIT € dIN9D Swge %80 €HFIT SWIT %€8 0S0'€C 8TIT A Q0L 001VODY
NN swgp %Il T € dIN90 SwEe %Sl 0€ZL SWOT %69 F6C1 11t s 66 661
NN SWg0 %TLE 8PESFL b AUINQ0 SWOE %FF LI6TIL SWw0 %9 808FIL 6S1'80L K 9z 9zud
00VsH STl %00 €S
doe-0dv soe %00 8€S
0DVAd S0 %00 8€G € AIN90 SWTT o%bE 95g swz0 %0 9.8 869 sok 9/ 9/
NN SWE) %ETT 928 € dUN90 SWITL %8¢ 0 SWw90 %S o1z <29 ok oL oss
doe-0dv soT %00 TheL
0Dvda SOT %00 ThsL € dIN90 SWwgh %89 8508 SWI'L %89 8508 THeL sof zg zouieq
00VsH ST %00 [rad
doe-0dv soT %00 [rad
0Dvdd SOT %00 a4 T gUNGO0 SWOT %99 FSP o SWE0 %99 g 9k EIO R 1
promsuney awip Hiowmg (HL)™™) # VY aurry, 11240447 (€r)o awny, 140413 (r)o (sxg)0 ado A
SONSLINAH 12410 (€ aseYyq) JHSLMAY [1D (T seYJ) INSHNIH 11D adurjsuy

“SpeWYPUdG gITdSL 105 SHNSY "€V d[qeL

158

Algorithms 2020, 13, 5

OOV4Ad ust %0°€ 1€0°8€
1dog-0Dvd W' %ET £9€'L€ 6 dIN90 SW/IT %99 GEE'6E SWL'6T %0°ST SEV'TH G06'9€ sk L8 pLan
[O): (e} W 6Ts %¥'T 1¥8'aE
1doe-0Dvd weT %80 9975 S dUN90 swecl %8S SP0'ZE SwWSIT %91l 0S0'6€ T00'SE sk eep £6VP
0ovsd SGIL %S00 $08°05
OOV4Ad W gye %8'T 20T'es
1dog-oovd wgT %S0 LV0'1S L dUNZLO SswoTl %67 GLTES SsW /L %L ST 9vL'8S 8££/0S sof gpp zepepd
0OVAa weee %¥ 1 204801
3dOE-0OVd WHT %e0 9IGZ01 € AIN90 SW/99 %0S I€STIT SWELL %9TL 6L0CT LITLOL K eep eepad
OOVAd wrye oLl £86'T1
1dog-0ovd w9 %0 088°LL 8 dUN90 SswWell %L'€ S6TTL SWOPL %69 089°CL 198°T1 sak LIF LIV
OOV4Ad W 6Fe %T'T F19°ST
1dog-oovd wgT %L0 F8E'ST 9 dIN90 SW8T6 %L'S 8G9l SW /P %TTL 9IPTLL 187°ST sof 0% 00¥7Px
NN SWIS %LTT 66205 ¥ dUN90 swgle %06 €90°SH swie %V EL $06'9% SPE'TF sof gre gredyur
oovsd szot %900 g
dog-ooy wgs %g0 ey
[em)i(el w9 %S0 e ¥ dIN90 SsWwgge %CL €90'SH swy'e %9 TL 06'97 60Ty sak gIg sreur
NN swey %ele $5T'€9 S dIN90 Swocey %Y ferad(S sw'g %86 Tl6'cs 161'8% sk 66T 6671d
oovsd sGY %00 6L5T S dIN9O0 SWeTS %lT 989¢ sw 9'¢e %lY 989T 6L5T sak 08T osce
NN S %E6L S19'8S S dIN90 SW¥Ty %9°T 20708 sw {9 %L'8 91¥'eS Sel'e sak $9g Fozad
NN SWwye %S0€ 01e 9 dUN90 SsWicH %89 6€ST swg9 %8TL 189C 8LET sak 79z zoTns
SWET %ELL 85TF6 € dUN90 swggl %T'T 16128 sw gy %l'Y ££9'€8 69€°08 sk 97z 9zzad
NN SW /T %60C €ELY S dIN90 SweTT %89 €81¥% SW 6 %¥ €L Fdiud 916€ sak gte czzdsy
NN SWwgT %861 G89'IST L dN90 swWo0g %67 €08CEL SWCF %L¥T €9I'LST €F99TL sk gTe e
1dog-00v wee %200 £FF'6C
ooviaa wre %00 6T € dIN90 SswgTIL %lY 1€9°0€ sw /e %16 €T1'TE LEV'6T sk 00T 00TAOD
0ovsd SLY 89€°6C
dog-ooy wge 6LE'6C i
0ovdd weT 89€'6C S dIN90 SWwg/l %8 £9£'0€ SW6'e %E'8 6L'1E 89€'6T S9A 00T 00TVOR{
oovsd $g9 08L'ST ¥ dUN90 swWwoTe %1'T 61191 SW6'e %69 9891 08/t sak g6l 861P
NN SWOT %LIC 98T ¥ AUN9O SWTIL %0L syt sw/e 90T 69ST ceec K gel gerer
NN Sw 9T %1'8C 816'€S € dUN90 SswWw/SL %V TT GL8'9F swo9g %TEL 16SLY 080cy sk 6GT 65N
Swy 90698 € AIN90 SWOEl %ET S09FPL SWeT %Py 969. e89eL sh zer gerd
ydog-0ov 506 0€1'9Z
[em)%i(e] S0L 0€1°9C S dUIN9O SWFIT %01 66£'9C swge %CS 9LV LT 0€19 0ST 05190
1dog-0ov wyT ¥25'9C
Oovdd S0LS $25'9C S dUN90 Swzol %L'T 0€C'LT SWTT %98 VI8'8T ¥ sak 0g1 0SIVOD|
promsunay awiny Hiowg (Hp)™5 4 WV iy 11240447 (1)o iy 11240447 (r)o (s9)0 ado A
SIQSUNIY 1PPO (€ 2seYJ) XNSLNIH 11D (¢ 3seYd) SUSLNAH [1D aouejsuy

Ju0D "€V I[qEL

159

Algorithms 2020, 13, 5

doe-odv sguT %01 6979
dog-0ov wzer %IT TeLe9
0ovdad WST %ST 8069 L AINLO SST %S°S 026’99 SWEZT %6l 6LL0L 8179 sk cool ge9TP
0ovsd SY9r %T0 £67'TC
olda SEST %T0 68TTC L AINLO SYT %T 0L 8ISTC SWOIT %LFL £16'sT 6vTTe sok £/G1 LLSTD
oua S6€C %P0 P9SESl L GINLO STT %87 097091 SWIST %6TI 6L1TLT 06761 S Tepl zepIn
oua SSTT %b0 11Z'0e
dog-0dv s9FT %Il Tre0T
1dog-0ovV WTIE %80 T6T0T
oovdd WeE0r %60 1007 0L €@UNZO SST %Ly 10T SW9L %€ 00812 L2102 sk 0Pl 00FLY
olda STEC %S0 79S8 AINLO STL %8'S <06'6S SWIL %9FL ST6'79 8995 sk 6LE1 eLELMIU
olda SOTT %F0 10€'1£2
dogoov sTe %h0 ST
doe-0DV wgze %Pl 0L6'€LT
OOVAd wWIge %Tl 89€EL 6 HINLO SET %8'9 105887 SW/SL %G6L $96'726 661'0Lc A ezel €TEIl
olda SgIz %€0 OFL€ST 6 AINLO STI %96 €61°LLT SWEFL %L6L 199'20€ sp6zsc sA F0el FOEIR
o1da STel %ET 6SFIS L AUNLO SW/T6 %69 S8TFS SWOEL %9FL 0£T'8S 10808 sk 16Tl T6TIP
olda SELL %90 SPTLS L AINLO SWSLL %69 T6L09 SWFLL %9'8L L6V'L9 76895 sok g11 g1iapd
olda SYLL %E0 600FC 6 GUIN9O SWI06 %9L 66€ST SWROT %ESI 686'SLT L6T65T SPA 80T pROTWA
oua SEGl %P0 TeePTT 11 GINZO SOT %0°L QOL'6ET SWEes %SIT £60'19C veOvTc S 0901 090In
oua STPL %S0 99€09C
0DVSsa SgGE %T0 60S'65T
olda SEPL %0 9TF09T S HUNLO SWERL %99 WL SWLL8 %THL 6/8'96C sr0'6sc oA Zo01 Zoolad
NN SWeE %9LT O0SOEISEC S AUNO0 SWISF %P8 PBESTOT SWEes %0/ PIG9LR'I 88109981 S9A 0001 19°0001isp
olda S99l %P0 $80°TELST S AUNLO SWQ9F %P8 F8GSTTOT SWOER %0LL PISOESTC 889'6S9°8T SoA 00T 000TISp
00Vsd S9TC %00 0188
1dog-0ovd Y0t %9€ 216
1dog-0ov wiel %6l STE0t
0oviaa wey %l6l TPOL 9 GUNLZO SWZEE %L 576 SWPS %091 81701 9088 sok €8/ £8/yet
dog-oovd uTe %6T sy h
0ooviaa wey %ET SEFTH 9 AUINLO SWHIT %89 SPLFY SWE09 %0'ST 96T'8P 016'TP sk yzL yen
1dog-0dvVd UFT %8T LLT0S
0oViaa weg o %l €OF6r L HIN9O SWS9T %S €96'1S SW /98 %0'SL 89795 TI6'8h sk /99 £89P
dog-0Dvd u§T %l SL0'gE
0ovia WL %E0 IPLPE S @IN9O SWELL %TS IPP9E SwWoLE %P8 The'Le £99'FE sk p99 $s9d
1dog-0ovd u¥l %St [401 8 AINLO SWIEL %G9 qres SWer %9El T69L €4L9 sk g/s sLget
pIonsundy dwiy Hiowg (Hp)™“y ¢ VM dwal Dsoug (1)2 swyy 4044 (1)2 (sy9)0 ado A
SOSLNOH 1O (€ 95%Y) SHSHNAH I1D (z 2seYd) dBSHNH 11D aduejsug

Ju0D "€V I[qEL

160

Algorithms 2020, 13, 5

olda UFL %P1 LOLPEEFRL LT GINE9 UTE %0'S 9LLOVE'6FT WSOl %S/l 6HO'SSE’Z9T TFIT8ETHT S9A 006's8 00658eId

ola WOIz %L1 LP9'S8IZ9 L1 AUN6T WLST %FS 08€97969 WO %091 TSLSTY9L SPE'8H0'99 seA o18'te orgeeeld
0OvVSd WLl %Tl $S1'659 i

ola weg o %ll €979 Tl AIN6ET WgC THS969 ST'ST 899'95L 8ET'ShY sA TIGRL TISSIP
0OVSd weTL %0 88T68ST

o1a wrg o 0l €9g'88¢’l 11 AINOT wog 799601 ST6L LUV FB0'ELST A gIr'el TLISIP
0OVSE WLl %0 L80°FLY

ola wrg o %ll 88LpF 11 AINST WIE %6 89990 S6SL %Ll 899'76S S8E'69F SA IG0FL 1SOPIPIQ
OOvSd Wzl %Il 680'S6T'0C

ola wep %zl 8PZIT0T 0L GUNST WT %96 06I'061T STIL %LO0T EHVSTIVT 69878661 SOA 60S'EL 60gErESH
0oovsE w9 %80 8EE°086

ola woe %I €60€e6 11 NPT WET %LL 909766 STTL %96l FEREOI'L 98TET6 SOA GPRIL 6FSIIM
0oovsE WoE %90 TPE68EET

ola WgT %Gl 6ITE09CT 1T @UNTT SESh %8L 8L9'S0ST SFP %6l SLI'0L/T stL09Ter sA zees Leecerd

ola SL8F %01 88196 6 GUNOT SSST %lL 990'665 STE %86l S67'999 ch0'9ss sA pees peecH
0ovsH woe %90 S66'395

ola Wl %0 PICIZS T1 GINOT STIE %l £89'509 STE %9LL 88£'799 0eg's9s sA Gl6g SI6EH
0ovsH wze %80 9PF'E8T

ola STH %IT 09SF8T L @UIN6O STTIL %TL 98/S61 S6T %9°ST $90'11T 995281 sk T9FF T9FFIY
0ovsH woz o %F0 £88'ST

olda W %ET 60T6 e AUNG0 S9CE %6E 8867 STT 200°€E TLLST sk gelE S6LED

ola sgep F89BEL 6 AUNSD ST9 %E'9 8LEOFL SW /08 606091 $69'LE1 sod geoe 8eoeqed

ola sL6T 9bE08e 9 AUNLO SO0 %08 LETR0F SwWGeh wEEHY weo'sse sk zegr zeerid

ola STYE 8SI'9EC L AUNLO STE %6'T S8L8EC SW 10§ 0Tv'PST osTrec sk eler 6lETn

ola S6'ST 16£79 L GINLO SLT %0°L 99£'89 swolg orT'SL €779 sk zeIlz TeIem

ola SET £9608 L AINLO SST %0°€ 9878 swe/e 98798 05708 sok €Iz €0IZP

o1a 599¢ FILBIE L AINSO STT 88 PISPPE swele S1L'9L€ 959l K 6881 688IM

ola S€0E Te'Ls L AINLO S8T %L €719 swgee £€8/'S9 10728 sk L1801 L1810

ola SEPE %S0 SIT'SEE L GUNLZO SO0T %9'8 80969 SW /9T %TLL 68€'76€ 9gg'oee A SRLT RLIWA

pronsumay dwiny Hiowg (HL)™") 4 Wvy dwil Miowg (1) awy Muosig (@£)o (sxg)> ado A
SORSLNAH PO (€ 95eYJ) dRSLNAH 11D (z 2seY) INSHMIH 1D aouejsuy

Ju0D "€V I[qEL

161

Algorithms 2020, 13, 5

oovIened YIS %CZ 8200948 3002
WINQJ-OOV Y09 %0T IIU'SEE’8 ¢l GUNEFL UTST %6'€ FeL€6¥'8 W8S %S/ 9941848 LL9'TZI'S o4 (000°00C Surrres
WNQI-ODV USt %61 6198908 II dUNOSL UYTOL %LEe ObPesI’8 W8 %04 10L65¥'8 €94/888°Z ou (00°08L MO08L 1291n0od
WAJI-OOV USE %61 609424 11 dUN9TL UZL %GE TF9'888°L W ELE %S9 T0SEIT'S €S6'619°Z ou 000091 09T elered
OOV Iened YTT %8S S9€90T SIOFT
WANQI-OOV U9T %81 /STE€e69 6 dUNCTOL U8t %Y TOLEVOL WOST %P9 TIOGRTZ S99°0189 ou 000°0FL snuaA
OOV Iened YST %8S 8HFFIE’9 SOTT
WAJI-OOV U6T %ST S6£1999 <1 dUNSS U9t %GE ITHELL9 WS0T %S9 0LF1L69 019CPS9 ou 000°0CL ySoSuea
OovIened YTT %SS 856°040°9 00T
WANQI-OOV U¥T %L1 €90'S68'S 6 dUNSZ UET %YEe TOFIGE'S WEFFL %F9 T9TECl9 16IZS4'S Oou 000001 esi-euow
prousumay dwnl Hiowg (Hp)™y 4 WV w4047 (L)o awny, uouug (1)o (srg)0 ado A

SOUSLINAH IdYIO (€ asey) dusunay 11D (2 dsey) >usumay 1D ERLI T |

‘Sypreunpuaq JS.I MV I0J SISy vV d[qeL

162

Algorithms 2020, 13, 5

NN S0T %89T 008659 FI GUNET wWIT %€ 0L 100748 $86 %L 1T €29'€€9 £25'0Ts SeK 6£901 6£901Y
NN sg1 %99C SPEFFET Tl AUNET W9 %L0L €P8'89I'T S6'8 %ETC SOF'86T'T IS8YT0T OU 9466 9667
NN SgT %FTE L9T'S6E PI AUNET wWgT %T'8 665'GTE sg8 %981 €695 668°00¢ S9A 7886 788613
NN S6T %L'8T 69T0€9 9T dUNTI wWQT %L 0T LIPF¥S S/8 %b¥C 6S6'T19 ¥e6'leh sok /¥86 LFSeR!
NN sg1 %0'LC 9L£'€90'T 0l dUNTL Wl %L°0L 8Y¢'LT6 sH'g %UTC TPOFIOT 6LFL€8 ou TGl6 ¢SIeTe
NN szl %GE€C €95FST I UNTT WOl %T6 8/1'STT $09 %9°0C G69'sFc 14190z SeK 9pz8 9Feswe
NN ST %L6T 96'SPT O dUNTT S9'6S %¥ 01 99L'9CT SLS %b 61 TWI'LET SS8FIT ou 608 6L08wd
NN STT %E6C 61T80€ ST AUNTT Wil %06 08.'65C s0'S %0°0C 188687 Ple'ssc SoA €99/ €99/wk
NN STT %eLC S9g6lT FL O AUNTT S6/S %19 6L6'C81 sg¥ %T'ST 99G'861 98€'TLI ou 9pIL 9pIL3°
NN SWehs %S F9FeR ¥ dUNT SO0F %66 $82'6c¥ sg¢ %1'1T 6982y SILFeE ou /119 /11974
NN SWH9S %6'9C 89FL£9T 01 dUN60 STSL %6 168'L0FT S6T %L0T — €T6'LSST 61206CL SoA €99F g99fed
NN sw/ze %99¢ €I£TZL 0L dUNSO0 ST6 %6°L L1L'€0T STT %891 186'111 €196 sk 9ebe 96Fenu
NN SWZIl %S0e ¢9¢’€ll 01 dUN80 S8¢ %SG ¥89'l6 sw0gE %ETI 95€°66 16898 sok 661 6L6INW
NN SWGTL %98C c6b'ee 8 dUNZO S9T %¥ 01 TLL'8T swger %b9l SIe0g 1609 seA [g9L Tz9Imi
NN SWwi6z %09C ¥8TFL S dUN90 SWHOF %S9 LL0'TL SWH9g %TEl $E8CL 0FETT sok 086 08611
NN SW/9¢ %S'ST 8961 8 dUNLZO SW (g9 %8'S P00 swgeL %9Gl L8T011 abe'se sk 626 67612
NN SW9T %SEe I87°TL L dUN9O0 SWT/E %S 9886 swge %eTl G0S°0T 7566 sok w61 v61eb
NN SWE) %LTC 9918 S dUN90 SWTIT %L0 6599 swr g %1€ €989 9599 sak 8¢ gelp
NN SWZ0 %S8T vL¥'SE € dUN90 SWwQ8c %00 1094 swgo %80 65L'LT €09'Lc sk 6C 6TIM
prousundy dwil Heioug (HL)™™) # VYU urty, o40443 (1)o suryy, 40413 (1)2 (sg)0 ado A
SOUSHNIH 1AYI0 (€ aseyq) dusENH 11D (¢ 2seyq) dnsLmay 11D adue)sug

‘SYIeunPuUaq JS.I [eUoneN] 10 S}Nsay 'SV d[qeL

163

Algorithms 2020, 13, 5

NN SW6 %9EC €821 S dUN90 swges %P8 G9ST SWFHIL %SEL 8€91 g s9L 9gp 9¢pwqd

NN SWze %9TE 1181 G dUN90 SWTZL %0% 09%1 SWI'GL %CSL €SI Q9¢1 sof ¢t gepuqd

NN SW// %TEE 68L1 L dUIN9OD SWIIT %99 Iebl SWHPL %ITL SOST erel sok 11% 11pMqd

NN SWeEL %SET 1851 L dUIN9D SWESe %ES 6VET SW9EL %STL Tehl 1821 sok gee geerqd

NN Sw99 %89C gs0T 9 dUN90 SWOL6 %66 181 SWHTIL %69T F681 1291 s9k 08¢ 08€Pq

NN SWwGL %90C 9091 ¥ O4UN90 Sw$99 %¥¥ 661 SWITL %89 TThl Tegt 9L 68 6Lged

NN SWiL %GSe 981 ¢ dUN90 SWweEsS %lh STHL SWOOL %68 06¥1 89¢1 sof ¢pe gpeewd

NN swog %00€ Gzel L dUIN9D SwWwele %bF $90I sSwQS %FEL 9911 6101 sok zg7 1€¢8bx

NN SWOT %E9C TiL ¢ dUN90 SWEFIL %E9 009 SW8T %90L ¥29 95 sok 1er 1e13bx

pIousumey dwil Hiowg (H[)"™) 4 Nvd dwnL Psoug (r)d eway Msomg (1)D (sd4)0 ado A
SOIISLNAY 1dY30 (€ 3seyq) dusunay 1D (¢ @sey) dusunay 11D dueIsuf
SpreunpuRq dS.I ISTA 243 10§ SINSY "9V J[qeL
NN Wiy %0Fc WFI69Z €1 dUNGS 4gh %6 LIF6LL9 WOl %LO0T TLTTEVL 666F0T9 OU G/BSIT S/PGIIesn
NN w9l %ger I€E6C9S I dUNGS UZ1 %6 €L6'986FT WEL %6l G/S'S/V'S 90§'996F ou 600IZ 6001LYR
NN SGIT %L'9T T8Y60CT ¥I dUN6T WITC %L6 9L9%0'T WO9T %00C OTFISI'T 68C6S6 OU 80/EE 80LEEWq
NN STTL %SST €66'€L0T Tl GUNET WOl %FO0L 966FF6 SSE€S %STT 66VTHOT L6S'SS8 S9A 8/6PT 8L6WIMS
NN S66 %S9C 88T0TL 91 GUNIT WOTIL %SS €0L/L19 SE€PF %01T 186’889 887695 S G//TT GLLTTWA
NN ST9 %89T 0CF90L Tl GUNLT wWgF %00l TEI'el9 S8FT %E0T 90409 SIe/GS SoA 79891 T989IM
NN S0% %bTc 94£91T 01 dUN9T W€ %6 TU9C6T SS8L WLLI TTCELOT TO0LLL oUW gLFFT €LFFIO
NN S9F %6EC 96£'67S Pl JUN9T wWgE %6°8 0TSOy S€LT %L0T SCO9IS LL€LTH o4 GRIFT GRIFIOW
prousunay awil Hiowmg (Hp)™*)y 4 vy owiL Idsoug (1)o aury, 40443 (1)2 (sxg9)0 ado A
SOUSHNRH 12YI0 (€ aseyq) dusLmay 11D (¢ 3seyq) dusumay 11D aouejsuy

Ju0D "9V I[qEL

164

Algorithms 2020, 13, 5

NN SWIFL %6'ST G1e8 6 dUNZO S€€ %G'6 Q0FL SWgeE %S0T €518 $9.9 sok /Tce L1ToPq
NN¥d AN, %I 1628 €1 dUNZO STS %L'6 €ehL swo9ge %96l /918 0£89 sok g/1T S/1gdbx
NN swecl %LIE 7928 L dUNLO S9T %06 0/89 SWTI9E %68l T6hL $0€9 sok THIT Phlceaq
NN SWHZl %E9T cees 6 dUNLO S6T %L0L L0EL SWESE %TTC 9908 0099 s9k 980T 980TP
NNRId AN, %beT GF9L L dUNLO STT %00l 6189 SW/EE %60T S6VL L619 sak 9¢0z 9g0zqlp
NN SWell %bTe 2058 L dUNLO STT %E"L T689 SWT0E %bEl 08T 17¥9 sok ¢/61 €L61PIP
NN SWOLL %8'ST P08 L dUNLO S0T %W L 789 SW96T %0LL ¥8PL 96€9 sok TI6T T16199P
NN SWe0l %C9T 61LL 6 dUNLZO SIT %68 9599 SW 19T %C8L ST G119 sok g8/l ggLIdAp
NN SWEg %L8T £4€9 8 dUNZO S91 %L9 6678 sweglz %Sl S/9S 956% sok GI9L GI91qW
NN sweg %IET 6089 0L dUNZO0 S6T %8 6665 SWGIT %LTL GPE9 €€65 sok 6651 66G1Aq1
NN SW0g %9°/T 9/89 Il 9UNZO0 STT % L LLLS SWE0T %TSL L0T9 £8€8 sok €8GT £8GTAqE
NN Sw9/ %80¢ 8.8 8 dUN90 S9T %L'G 6LFF SW6LT %601 ST T4 sok ggFT 88FIey
NN SWe/ %C9T T8 S dUNZO STL %8'L 19/F SW08L %09L ¥TIS 91 s9A €8Pl €8FIMOL
NN SweL o %99C 9999 8 dUNZO S€l %L 879 SwW g9l %98l 9£79 1678 sok 9gbL 9¢plelp
NNRId AN, %961 0809 L dUNLO SOT %9°L I/vS SWo9gl %6'8L SH09 G805 s9k 68ET 68ETEIP
NN SWG9 %04T vzes L dUNLO SOT %6°8 7805 SW /9T %88l 9SS 999% sok 9/6T 9LETAP
NN Swgh o o%bhe 184¥% 8 dUNZO SWEIL %89 008¢ SWg86 %LTL TS0F 866¢e sok €80T €80T
NN SW9E %6'ST 128¢ 6 dUN90 SWIF9 %SS 0S6C SWg08 %0FL 681€ L6/4T sok $86 ¥86Pqd
NN SW /g %S'8T £86¢ 0L dUN90 SW6Z6 %99 V6 Swg8L %LVl 66lE 68.T sok g96 g9ew]
NN SW9z %0'6T 9T1¥ G dUN90 SWe9E %S8 0LFE SW/LES %9LL €98 661€ sok g8 €I8p
NN SWiz %bET 060% S dUN90 SWOET %EL 1666 SWOSE %9LL 668€ yiee sok /g4 Le/nqd
NN SWZT %E0T 8¥LE 8 dUN90 SWIlE %SL gbee SwWgTHF %09L TI9E GIIe sok TIZ TILxqx
NN SWel %CST LP1E 8 dUN90 SWeIT %l6 ThLC SWE9E %T6l S66T €15e sok 799 z991bx
prousumdy dwiL Hiowsg (Hp)™™y # VY dwiL Muoug (1)D PwiL Maoug (1)d (y4)0 &ado A
SOUSLNSH 1210 (€ 2seY) DBSHNSY 11D (¢ @seYJ) SBSHNIY 11D souejsug

U0 "9V I[qEL

165

Algorithms 2020, 13, 5

NN AN, %L1 T66'F1 6 dUNSO0 SOOI %46 €SI'6l SET %eTC TIFL G66'TL sohk Te8e 168¢abx
NN SW9¢ %I'6T 65T'ST 6 dUNZO SE€0T %S6 8F6TL STT WYLl FLS'EL TT8TL S 6TLE 6TLEML
NN SWHhe %9°/T 986'cl 01 dUNZO S¥HOL %EZ €911 STI %Ll SISTL 69601 S F69E F69£qIP
NN SWLIEE %LEE 0r8'cL 8 dUNZO S/8 %09 IS0l STT %UEL PS80l 1096 sk 7/9¢ Toeny
NN SW9ZE %6'LE 98/'C1 L dUNLO S€L %8G 786 STl %TL SPE0L TLT6 9L 6F9¢ 6h9esh
NN Swz0e %8¥T ¥68°€T 6 dUNZO SO8 %G8 T80T SWZE6 %66l 6PEEl STl 9K 98ee 98£equp
NN SWE8T %E6T 9¢9Cl €1 dUNZO STOL %58 86401 SW//8 %L6l €6911 TLL6 s9L g6ce £67€8eq
NN SW9/T %L9T 1L9'T1 g dUNS0 ST %YL 6VLO0L SW806 %S9L I[99°LL 8000 s9& 9sze 9szedpy
NN SW09C %60€ ger'zl 01 dUNS0 SGZ %G8 0€€0L SwWG08 %ELL 09Ul ZIS6 sok OpIE OFIg®I
NN SW (97 %8'ST LOFTT 11 dUNS0 SO8 %9°8 G686 SWE08 %8l FS8LOL FII6 s9L 6IIE 6IIEUS
NN SW /YT %L'ST 6¥ce L dUNS0 STS %68 ISPIL SW99.L %ITC Z94TT 68501 S9A 460€ L60EIP
NN SWGPT %C8T 68’0l II dUNS0 ST8 %0°8 8I68 SW /L %IST 6.6 8578 sak 950 9sogerd
NN Sw/eT %bLT 17801 6 dUNSO S66 %9'8 97T6 SWELL %0LL 9866 678 S9L €66C £66TRAX
NN SW6CT %LLT Ge6'TL L AUNLO S9F %L TEOL SW9L9 %T6L 690°CL SCL'0L A Tec teeclap
NN SW8Iz %I'9C GO1°01 6 dUNZO S9§ %Z6 €6/8 SW8SY %6'LI Sh¥6 7108 s94 $S8T pSSTws
NN SWOlz %9°1E £80°TT 6 dUNZO S6S %b'8 €16 SWSz9 %C6L FRO0T €78 sok 708T T0STMmII
NN SWG0T %C9T ¥6£°01 6 dUNZO SOS %G8 Fe68 SWHI9 %LTIT 02001 $€T8 sok 79/T T9LTUPq
NN SWESl %9°LT G600l 0L dUNSO0 SO0S %L0L 6888 SW/PS %0TC 0586 1408 S9L /65T L6STUW
NN swoel %L6C £986 8 dUN80 STH %L8 01€8 swgrs %L6L 0016 €792 s9L 9967 99gzspd
NN SW 9T %L LT £986 6 dUNZO SI¥ %C0l 1168 SWGey %9€T 8¥S6 ¥TLL sok 18p7 I8hTMal
NN Sw /6T %EFT 7966 6 dUNZO S¥¥ %88 97/8 SWGSSH %0TC I8L6 £108 s9L 78T T8ETEP
NN SWQPL %LET 0’0l IT dUNZO S6F %6°L P06 swechk %STc 9PI0T CSE8 sok ¢rer €TEThIl
NN SWGGL %G9T 016 8§ dUNZO S€€ %9'8 L€8L SWEEE %00C €998 6124 s94 g0ge 8ogTadx

progsunay dwy Hiomg (HL)™) 4 WWvd dwiL [sousg (r)o 2wl IDsowg (1)D (sy4)0 @#do A
SOUSUNaH 12Y10 (€ asey) SUSUNAH 11D (¢ asey) >usUnaH 11D aouejsuy

U0 "9V I[qEL

166

NN S9L %l'ST 69%'6L ¥ GUN6T W08 %06 S0T69 ST8E %S6l 6/8'SL LIS'EY ou GIZIC SITITOP!
NN SG9 %9GT FYPL 11 GUNST WES %C8 0LTP9 S0TE %6LL CI6'69 L8ST6S ou Z0¥'6l COP6IOW
NN¥d AN, %STT 09€'89 I dUN6T WES %6 L0019 SE€TE %S0T €HTL9 86L'SS ou 6876l 63T6IYY
NN SFS %h9C £6£/09 €1 AUNZT WES %08 FEEIS SGLT %ESL T689S ce0’'sk ou Gpgsl shs/ryld
NN SES %9GT 86€'99 6 dUN9T WFE %Eg8 0CTLS SOV %LLL G61'T9 0S8°TS ou gz69L 8TE9IEIX
NN S9C %GST PE0'Z6 71 AUNFT WTE %I6 €656F STLL %S0T 984FS TOV'SF ou geTFL £eThIgqIX
NN¥d AN, %9°€T Geg'shk I JUNGT W97 %S6 1660F SSST %06l 6CI'FF €80°48 SeA FRG'ET $8GETqAX
NN¥d AN, %E0T LPLPE 8§ JUNET WIT %96 FCI'IE S$88 %00C 1% /8’8 s 0G0 0SLOIOWX
NN¥d AN, %LIC P9g'ee Tl AUNEL WEL %96 FLE0S Se6L %0TC €es'ee ¥eLLc s 8696 8696e8P
NNd AN, %TET e1g'/c €1 GUNTT WIT %C/Z VS6'€C S¥FS %ILL TSI'9C 8e€’cc seA /618 L61SEP!
NN STT %8€T POUPC T1 AUNT SL0S %E6 SEIT SST %EeS8l /0l'ec Ses'6l s wGhL psb/der
NN¥d AN, %LTT P69 €1 AUNTT S€0S %C6 SP8ET STT %68T €96'Sc ¥e€8'1c So4 912 891/puq
NN¥d AN, %61C €vT’9c 01 dUNTT S09¢ %L0L P0L€C S6€ %9TC POV9c Geglc seA 0889 (08899sx
NN SWERy %8/T 8e/'61 €1 AUIN60 SE0E %LZL 699l SEFT %9LL 1LI'8L SPPSL seA /GGG /GGGesy
NN SW98G %/TE $S5°L1 6 dUNSO0 SISI %8Z IFOFL STT %CPL /8% 6206l sA /80 /80Gwiby
NN SW /S %E6T L0861 01 dUNSO0 S86L %08 SPS9T S0T %I'ST 0€9Z1 9I€'GT sk 996F 996FPbx
NN SW/8F %EHT 6SF9T ST dUNS0 S9TC %L0L T9SFL S9T %60T 686'ST Teccel sehk o/FF G/PRISq
NN Swgls %h'sT 96261 L AUNS0 SE€0L %8 /8§11 SST %I9L OWFTl LIZ01 S9A OIFF OIFbAY
NN SWwesb %9'8C 92491 Il dUNS0 SZSL %90l S8EFL S9T %8FC 6£T9L 600€l seA 96gh 96£FPSq
NN AN, %8TT €29ST 01 dUN60 SOFL %FS 68L€l SST %SZL Sh6F1 gescl seA geeb GGepdsq
NN Swzly %I'ST 6/9ST 01 dUNSO S9IT %S6 STLE€T SE€T %I6l 686F1 85Tl sohk $G6e $S6ePIP
s NN SWo6E %bLT 786'S1 6 dUNZO SSO0T %68 619CT SE€T %S8T ZI8FL €06TT SoA geee 8L6eMP
m, NN SWELE %T6C 026PL Il dUNSO0 SEEL %E6 S8TTL STL %Eg6l TIVEL 6£TIl SoA /g6€ Lgegenx
& prousumdy dwiL Hiowg (Hp)™™y NVY Pwil Duowg ()0 odwil Dsowg (1)0 (sd4)0 &do A
S SOUSHUNSH 12Y10 (€ aseY) DBSUNAH 11D (¢ asey) SUSHNAH 11D souejsug
So
3

Ju0D "9V I[qEL

167

Algorithms 2020, 13, 5

NN YLT %90€ S8SFOL'T 8T dUNOIS POSL %6ST €LTL98T ULEL %6'8C 996'9/0T TETTIYL Ou OLLFRL OLZPRLAA
NN YTT %0 F08'889T 6F AUNLFE POST %STL OIF8EFT U8S %0ST 9ITOILT 6£0°89T°C OuU 8/E'86F 8LE8EFRIL
NN we9l %ETE 7886SL T¢ AUNSIL PST %99l 685749 U¥1 %T6C 6I9LFL 19848 OU GTO'8ET ST0SETeIR
NN wge %406 0Cr'ece ¥ GUNZL ULE %TLL T60'S6C W9GL %L6C 19597 T19LTSC Ou GIQFOT SISHOTRIS
NN wOT %0ST S4£90C ST UNST 4Tl %¥'6 0S8°08T WS %P0T SLT'661 TLES9T OU 96T'6S 96T6SURP
NN S89¢ %99C 86I'00C FI AUNFF YOl %56 V01 W9T %661 TCS'68T 8L0°8ST OU 6949 69/95euq
NN S9IS %89C 9ge€’/81 €I GUNIT WeE9F %bS I€C09T wge %08l LIE€FLL 68LLFL OU ZG0'TS LS0TSew
NN ST6E %WLFT TE'SST €1 UNLE WIS %I8 9IT'eEl W TE %L8l ISO'8PT $OT'GCL Ou 809'ZF 809U
NN STEE %9ST €LUZST 11 GUNSE WEF6C %bO0l GeT'8ET W9T %ITC LISTGT €8T'SCT Ou 8RR ShLERZQE
NN S69C %I'ST 099€€l €1 GUNTE WTI9T %E0l POSLIT WTT %LTC 6W00ET 6I890T OU €09'6E £096EST
NN S¥Pec %h¥C 0LLPEL €1 GUNTE WEFT %LS TILLIT WIT %G8l GIE'8TL SIEL'S0L ou g/i'8e 8/hgeeqd
NN SETC W6ST PESTIlL 11 dUN6T WOLL %E6 €0l W /T %86l T6L8IL 65166 ou 9g9'pe 959rehaq
NN SFel %IFC $99°0TT ST GUNST WS0T %L GhL/S0T WOT %gel FIO9IL 0FTL6 ou gor'ee €0Teehy
NN sTel %8P 9eL0TT 11 GUNLT WEFST %08 €TEFOT WOT %TLI T9€°e1T £SL'96 ou Z68TE T6STEAX
NN S99T %eFT Seg0IT I GUN9T WEEL %98 6¥6's6 WL %6'8T G86'FOT €IE88 ou OFF0c OFPOgyad
NN SPGL %CST L1900 €1 GUNST WI9FL %06 €9g'/8 WET %L6L 902'96 £5€°08 ou PIg6T FIS6CPI
NN SFTPL %b'ST 18866 €I dUNST WeEl %l6 P€898 WTI %T0CT 60L'S6 9’6l ou ¥76'8T $2687e0q
NN S9El %l (8696 11 AUNVT WSIL %96 79568 WTT %TOT 87866 £80°8L ou 8698 8698TX!
NN SOFL %8'€T 09726 €1 AUINFT WEFEL %E6 ¢F8'e8 wWTI %9TT erdegeld 799'8L ou $gg'sT $eegedLy
NN SEEL %TST 96606 ST AUNFT WTST %8L 0ST8Z WTT %TLI 0e1's8 L09°TL ou g97'8T 89T
NN STIL %092 abe/8 €1 dUNCTT WSOl %68 W6¥SL 968 %98I AtAd] GEE'69 ou pgr'sc Feeszaq
NN STOL %CST L8 6 dUINTT W89 %E6 99.'6L ST6F %C 0T 00€'¢8 $62'69 ou HOI'FT FOTFCUIX
NN S88 %SST 16592 11 dUNOT wgl %L8 86799 S9FF %l8l L66'TL £46°09 ou /L4TT LLLTTAST
NN s¢8 %St 6¥Fe8 1T dUINOT W99 %18 6T6'TL SOTF %Ll 166'LL £25°99 ou gGg'Iz geSTTeuy
pIousEnay dwiL Hiowmg (HL)™™) # WVYH swiy Isomg (1)D suny IDuowg (1)D (s9)0 ado A
SOUSLINAH B_YIO (€ aseyq) dusumay 11D (¢ @seyq) >usumnay 11D duesuy

Ju0D "9V I[qEL

168

Algorithms 2020, 13, 5

References

1. Papadimitriou, C.H. The Euclidean travelling salesman problem is NP-complete. Theor. Comput. Sci. 1977,
4,237-244. [CrossRef]

2. Garey, M.R;; Graham, R.L.; Jhonson, D.S. Some NP-Complete geometric problems. In Proceedings of the
Eight Annual ACM Symposium on Theory of Computing, Hershey, PA, USA, 3-5 May 1976; ACM: New York,
NY, USA, 1976; pp. 10-22.

3. Lawler, E.L; Lenstra,].K.; Rinnooy Kan, A.H.; Shmoys, D.B. (Eds.) The Traveling Salesman Problem: A Guided
Tour of Combinatorial Optimization; Wiley: Chichester, UK, 1985.

4. Junger, M.; Reinelt, G.; Rinaldi, G. The traveling salesman problem. In Handbooks in Operations Research and
Management Science; Elsevier Science B.V.: Amsterdam, The Netherlands, 1995; Volume 7, pp. 225-330.

5. Lin, S,; Kernighan, B.W. An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 1973,
21,498-516. [CrossRef]

6. Chitty, D.M. Applying ACO to large scale TSP instances. In UK Workshop on Computational Intelligence;
Springer: Cham, Switzerland, 2017; pp. 104-118.

7. Ismkhan, H. Effective heuristics for ant colony optimization to handle large-scale problems. Swarm Evol.
Comput. 2017, 32, 140-149. [CrossRef]

8. Giilciy, S.; Mahi, M.; Baykan, OK,; Kodaz, H. A parallel cooperative hybrid method based on ant colony
optimization and 3-Opt algorithm for solving traveling salesman problem. Soft Comput. 2018, 22, 1669-1685.

9. Peake,].; Amos, M.; Yiapanis, P.; Lloyd, H. Scaling Techniques for Parallel Ant Colony Optimization on
Large Problem Instances. In Proceedings of the Gecco’19—The Genetic and Evolutionary Computation
Conference 2019, Prague, Czech Republic, 13-17 July 2019.

10. Dahan, E; El Hindi, K.; Mathkour, H.; AlSalman, H. Dynamic Flying Ant Colony Optimization (DFACO) for
Solving the Traveling Salesman Problem. Sensors 2019, 19, 1837. [CrossRef] [PubMed]

11. Al-Adwan, A.; Mahafzah, B.A.; Sharieh, A. Solving traveling salesman problem using parallel repetitive
nearest neighbor algorithm on OTIS-Hypercube and OTIS-Mesh optoelectronic architectures. J. Supercomput.
2008, 74, 1-36. [CrossRef]

12. Zhong, Y.; Wang, L.; Lin, M.; Zhang, H. Discrete pigeon-inspired optimization algorithm with Metropolis
acceptance criterion for large-scale traveling salesman problem. Swarm Evol. Comput. 2019, 48, 134-144.
[CrossRef]

13. Croes, G.A. A method for solving traveling-salesman problems. Oper. Res. 1958, 6, 791-812. [CrossRef]

14. Vakhania, N.; Hernandez,].A.; Alonso-Pecina, F; Zavala, C. A Simple Heuristic for Basic Vehicle Routing
Problem. J. Comput. Sci. 2016, 3, 39. [CrossRef]

15. Sahni, S.; Horowitz, E. Fundamentals of Computer Algorithms; Computer Science Press, Inc.: Rockville, MD,
USA, 1978; pp. 174-179.

16. Universitat Heidelberg, Institut fiir Informatik; Reinelt, G. Symmetric Traveling Salesman Problem (TSP).
Available online: https:/ /www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/ (accessed on 8
June 2019).

17. Natural Sciences and Engineering Research Council of Canada (NSERC) and Department of Combinatorics

and Optimization at the University of Waterloo. TSP Test Data. Available online: http://www.math.
uwaterloo.ca/tsp/data/index.html (accessed on 8 June 2019).

(D (© 2019 by the authors. Licensee MDP], Basel, Switzerland. This article is an open access
@ ' article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses /by /4.0/).

169

algorithms ﬁw\n\py

Article

A Generalized MILP Formulation for the
Period-Aggregated Resource Leveling
Problem with Variable Job Duration

Ilia Tarasov %* ©©, Alain Hait 1® and Olga Battaia >

1 ISAE-SUPAERO, University of Toulouse, 10 avenue Edouard Belin-BP 54032, 31055 Toulouse CEDEX 4,

France; alain.hait@isae-supaero.fr

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65 Profsoyuznaya street,

Moscow 117997, Russia

3 Kedge Business School (Talence), 680 cours de la Liberation, 33405 Talence CEDEX, France;
olga.battaia@kedgebs.com

* Correspondence: Ilia. TARASOV@isae-supaero.fr

Received: 14 November 2019; Accepted: 16 December 2019; Published: 23 December 2019

Abstract: We study a resource leveling problem with variable job duration. The considered problem
includes both scheduling and resource management decisions. The planning horizon is fixed and
separated into a set of time periods of equal length. There are several types of resources and their
amount varies from one period to another. There is a set of jobs. For each job, a fixed volume of
work has to be completed without any preemption while using different resources. If necessary,
extra resources can be used at additional costs during each time period. The optimization goal is
to minimize the total overload costs required for the execution of all jobs by the given deadline.
The decision variables specify the starting time of each job, the duration of the job and the resource
amount assigned to the job during each period (it may vary over periods). We propose a new
generalized mathematical formulation for this optimization problem. The formulation is compared
with existing approaches from the literature. Theoretical study and computational experiments show
that our approach provides more flexible resource allocation resulting in better final solutions.

Keywords: resource leveling problem; project scheduling

1. Introduction

In the field of operations research, project management remains a topic of intensive research from
various angles such as scheduling and resource allocation. For both cases, there exist such well-known
formulations as a resource-constrained project scheduling problem (RCPSP) and a resource leveling
problem (RLP). The former aims to minimize the completion time of the set of jobs with given
precedence relations and the set of limited required resources. The latter deals with resource allocation
with the objective to minimize the cost of resource usage. Both problems were proved to be NP-hard
(see [1] for RCPSP and [2] for the resource leveling problem). To respond to practical requirements,
these basic models undergo numerous modifications. For example, the model that optimizes the
distribution of man hours for workforce or throughput on a production line was presented by Neubert
and Savino [3].

In this paper, we focus on the resource leveling problem with several practical enhancements.
However, we also refer to RCPSP modeling techniques and approaches that are used for the RLP
and applicable to our case. The RLP was actively studied from both the theoretical and practical
sides. In the paper of Rieck and Zimmermann [4] three basic objective function types from the existing
literature were presented with properties and existing solution approaches. The first objective function

Algorithms 2020, 13, 6; d0i:10.3390/a13010006 171 www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 6

type was described as a total amount of variations in resource utilization within the project duration.
The second case arises when available resource utilization is exceeded; it is total (squared) overload
cost. The authors also presented a total adjustment cost function, which is formed by costs arising
from increasing and decreasing resource utilization. In all cases, the planning horizon was fixed with
the reference that for mid-term planning usually there is a determined project deadline. There are
some papers involving multi-criteria optimization techniques with attention to both project duration
and resource utilization. However, RLP with a fixed deadline and the objective functions that were
presented above still attracts attention: The majority of the following literature references are focused
on this formulation.

From the practical side, these RLP types are found in a wide range of industries, especially
in construction. For these particular cases, researchers apply different heuristics to provide good
solutions. An overview of existing RLP heuristic techniques was prepared by Christodoulou et al. [5].
We can point out recent results with references to industrial problems. For example, a meta-heuristic
genetic algorithm was applied to RLP based on a construction project in the paper of Selvam and
Tadepalli [6]. Simulated annealing was also tested in the construction area by Piryonesi et al. [7].
Li et al. [8] implemented a genetic algorithm for the RLP with uncertain activity durations and
possible overlapping. Construction area and project management usually include discrete resources
such as equipment, machines, materials or manpower. Cherkaoui et al. [9] studied a tactical level of
construction and large-scale engineering planning. To achieve robust tactical planning and resource
allocation, they created a proactive approach providing lower variations in project costs in case of
resource capacity uncertain data. The problem was denoted as rough cut capacity planning (RCCP),
but it is also similar to the classical RLP with several practical changes. The same notation was also
used by Baydoun et al. [10].

There is another point that inspires us to study and develop RLP solution methods. Energy
is the main continuous resource, and the energy management problem becomes more and more
crucial for any industry. According to this, the scheduling of operations with attention to careful
energy consumption remains actual. Artigues et al. [11] considered the industrial case of the energy
scheduling problem for a pipe-manufacturing plant. The goal was to minimize the electricity bill,
which was raised by penalties for power overrun. The two-step solution approach was proposed
with a constraint programming assignment and sequencing part and an MILP scheduling and energy
part. Many industrial management problems can be represented as RLP, especially if the parameters
are defined and well formalized. Sometimes the energy is not the main resource. For example,
for computer embedded systems it can be CPU power, and for data transfer networks it is channel
capacity. An example of an optimization problem from the space industry could be found in the
paper of Capelle et al. [12]. In this practical study, the goal was to maximize a data transfer from
satellites to a network of optical ground stations. While we see that this formulation is closer to
an assignment problem, further research may fit in RLP formulation with satellite data buffer capacity,
energy, and data transfer limits.

For the resource leveling problem, the case with variable job duration was considered by
Hans, who proposed a branch and cut algorithm [13]; furthermore, Kis developed an improved
branching scheme [14]. In these models, the precedence relations are defined on periods and job
duration depends on the resources allocated to each job. The resource consumption is calculated
in an aggregated way for each period. The concept of variable job duration has also been modeled
in the following studies (see [4,15]) but with the objective of makespan minimization or balanced
profile usage. Bianco et al. [16] also considered the resource leveling problem and proposed a lower
bound based on Lagrangian relaxation, and a branch and bound algorithm for the suggested model.
The resource leveling model with the overload cost and overlapping of jobs with precedence relations
was presented by Baydoun et al. [10] with a focus on different overlapping rules such as overlapping
after implementation of some essential predecessor part.

172

Algorithms 2020, 13, 6

We follow these ideas and study the generalization of models presented by Baydoun et al. [10]
and Bianco et al. [16]. The goal is to minimize overload cost when an extra resource amount is
required beyond the available limit. In contrast to these studies, we consider a more flexible resource
distribution. The main difference could be presented in the following way. In these papers, there is
one decision variable (denoted as assigned workload [10] or the fraction [16] of activity in a period)
describing the progress made by a given job in a given period, and it defines the requirement for
each resource type. In our case, we enrich the model to make the allocation of resources per period
independently with additional decision variables.

For example, suppose there is one job j which requires overall one unit of resource r; and two units
of resource ;. In the models considered by [10,16] the solution defines only job fractions (these models
are denoted as ‘aggregate fraction’ in the following). Suppose in the solution the job is implemented
in two time periods with equal fractions in both periods (50%/50%). Then according to the models
in the first period, we involve 0.5 units of resource r; and 1 unit of resource rp, and the same in the
second period. The involved resource amount equals the multiplication of this decision variable and
a resource amount required to carry out the job (fixed input parameter). So there exists a constant ratio
between the involved renewable resource amount (or efforts made by different resources) for a given
job in all periods. We point out that particular fraction values are not important. With any fraction
of the job j in any period, there will be the same ratio 0.5 between the involved resources (caused by
the total required amount ratio of resource 1 to resource ;). According to our model, it is possible to
make a more flexible allocation without any fixed relations between the resources involved to complete
the job in some period. For example, it is possible to involve 0.75 units of 7; and 0.5 units of r, in the
first period and the remaining 0.25 units of 7y and 1.5 units of 7 in the second period. In this solution,
resources are allocated with an independent ratio: 1.5 in the first period and 0.16 in the second period.

The main contribution of this paper is in the new generalized formulation for this type of resource
leveling problem. We analyze the difference between this new generalized model and aggregated
fraction models from the literature, with a comparison of performance and solution quality for the
same instance set. Several particular formulations of this new approach were studied. We also study
the case with discrete overloading of resources, which is compliant with human resources allocation.
However, we do not consider job overlapping of predecessors and successors.

The rest of the paper is organized as follows. In Section 2 we present the new generalized
formulation idea with several modeling implementations. We consider three different formulations
of scheduling constraints and decision variables. After some experiments, we choose the binary step
start/end formulation of variables for scheduling constraints. In Section 3 we describe a theoretical
difference and relations between our generalized formulation and aggregated fraction and analyze the
results of computational experiments. Section 4 presents the case of the discrete overload objective
function and discrete resources. After, we make some concluding remarks.

2. Mathematical Model

2.1. Problem Parameters

The planning horizon is represented by the set of periods T = {1,...,m} with given length d,
the last time period available defines the strict deadline for the execution of all the jobs. There is a set of
jobs] and a set of resources R. For each job j €], some given work volume W;, must be executed with
resource € R, while in each period t € T the available capacity L;; is known for each resource r € R is
fixed. The allocation of an extra unit of resource capacity is subject to extra cost e,. Work volume is the
result of the multiplication of the assigned resource amount by the duration of its usage. Eachjob j € |
has a given time window with lower p;yy, j» and upper pjuqy,jr period for each resource r € R. The pairs
of predecessors and successors are defined in set P. The list of all parameters in our mathematical
model is presented in Table 1.

173

Algorithms 2020, 13, 6

Table 1. Model nomenclature: Parameters notation.

Parameters
T planning horizon, T = {1,...,m}
d period length
R resources set
Lyt availability of resource 7 € Rin period t € T
ey extra resource cost
] jobs set
W job j €] work volume with resource r € R

Pminjr ~ job j €] minimal requirement per period in resource r € R
Pmax,ir job j €] maximal requirement per period in resource r € R
P set of arcs in the given precedence graph

2.2. Generalized Model Description

For any kind of RLD, it is possible to separate the set of variables into two subsets, related to job
scheduling and resource allocation. The subset of scheduling variables for discrete-time period models
is well studied in project scheduling (starting from pioneer introduction of a 1-0 variable approach
by Pritsker et al. [17]). Usually, it is a set of binaries that configure staring and ending periods.
If we consider precedence relations and allow the successor to start we also use continuous duration
variables responsible for the duration inside the period. We define binary variables responsible for the
job starts and ends as Sj; and Ej;, respectively. They may be used in several ways.

e Asastep pointer, i.e., if job j starts at period ¢, then Vt; < tSj; = 0and Vt; > t Sj;, = 1. In this
case the same logic is implemented for Ej, if a job ends at period ¢, than for Vt; <t Ej; = 0 and
Vty >t Ej = 1. To the best of our knowledge, in similar resource leveling models step pointer
to job start and end periods is more common (for example, it was used by Baydoun et al. [10],
Bianco et al. [16]).

e Asan on-off (also referred as pulse) pointer, i.e., if job j starts at period ¢, then Vt; # t Sy, =0
and Sj; = 1 (the same logic for Ej;). This approach was considered by Tamas Kis and Marton
Drotos, [18]. There is an alternative way, with an on—off function Ujt, where Up =1 ifjob jis
implemented at period t, and Uj; = 0 otherwise.

These approaches were also presented and compared in literature related to project scheduling,
for example, see [19,20].

The second subset defines resource-allocation decision variables. We propose to generalize it and
introduce separate fraction decision variables for each resource type instead of aggregated job fraction
decision variables. In our case, these decision variables were defined as c;;;. This approach makes
an independent allocation of each resource type for every job. It leads to more flexible utilization
of resources. However, it increases the size of the model and negatively affects performance, so it
may require more computational resources to achieve a proofed optimal solution. We present a list of
decision variable notations used in this paper in Table 2.

In the next subsections we describe three different approaches to represent scheduling constraints
with binary variables. A general description of each type is presented in Figure 1.

174

Algorithms 2020, 13, 6

Table 2. Model nomenclature: Decision variables notations.

Scheduling decision variables

Uy € {0,1} on/off function : Equals 1 of job j € | is implemented in period t € T, 0 otherwise
Sir € {0,1} pulse start function : Equals 1 if job j € | starts in period t € T, 0 otherwise

E; €{0,1} pulse end function : Equals 1 if job j € | ends in period t € T, 0 otherwise

S]’-‘t € {0,1} step start function : Equals 1 if job j € [starts in Vt; € T, t; < t, 0 otherwise

E]’-‘t € {0,1} step end function : Equals 1ifjob j € Jendsin Vt; € T, t; < t, 0 otherwise

dj; € 10,d] duration of job j € Jin period t € T

Resource allocation decision variables

Cirt € [0,dPpax,jr] work volume of job j €] with resource r € R in period t € T
oyt € [0,00) extra cost of resource r € Rin period t € T

job j T
2f3l.L T T TTTTTTTTT [m

job on-off variables
Up (0]ofof1f1]1]1[1[1[1]1]1]1[1]1]0]0]O]

job pulse start-end variables
Sit |0|0/0|1[0]|0[0|0[0]|0O]O
Et [0/0f[0[0[0|0]Of0O[0]O(O

oo
oo
oo
oo

Si [0folof] 4[][] 4[4 [4[1{4[1[1]1{1]1
Eq, L0l0[ojo0jo]ojo[0[0|0]0[0[0/0fO0[1[1]1

Figure 1. Three different ways to utilize binary scheduling variables.
2.2.1. Scheduling Constraints: Job On-Off Formulation

This set of constraints is defined as job on—off implementation formulation, as we use one binary
variable implying that the job is implemented inside some period or not. This definition of binaries
in project scheduling problems is denoted as pulse or on-off in literature. So we use a variable
Uy € {0,1}, U = 1if job j is implemented in period t, Uj; = 0 otherwise. Constraints (1) imply that
no preemptions are allowed.

t—1
(b=t =1 < Y Ug+m(Upy, +Ujy, —2), YV €T, €T, ty <t, Vj€J. 1)
I=H+1

If the job is implemented in some period t; € T and in some period ¢, € T, t; < t5, then it must
be also implemented in any period t3 € T, t; < t3 < t5. In other words, if for some job j there exists
-1
t1 €T, tp €T, t; < tp,such that U]-tl =1land thz =1,then Y th3 =th—t —1.
ta=t;+1
Constraints (2) and (3) set the minimal and maximal limit of periods when a job may be
implemented:

d. . .
Y Ui > = vie); @
teT

dr i .
Y U< [vier ©
teT

175

Algorithms 2020, 13, 6

where dy;;,; and dyuq,,; are minimal and maximal allowed job duration variables, respectively.
This variables will be described in Section 2.3.

Next two constraints make the correspondence between binary scheduling variable Uj; and job
duration dj;. Firstly, if job j €] is performed in three or more periods, then for all periods between start
period and end period job duration is the same as period length, i.e., preemptions inside periods are
not allowed. This constraints involve continuous duration and binaries variables d it = d if U1 =1,
u]‘,t = 1, ll]v,tﬂ =1

(2 — U]-,Hl - llj,,_l)d + d]'t > det, vteT, Vje]. 4)

Secondly, if job j € | is not implemented in period t € T, it must have zero duration inside this
period. So dj; = 0 is required if U;; = 0:

djp < dUy, Vi€ T, Vj € J. 5)

Precedence constraints are represented on two levels, on periods and inside each period. Firstly,
we state that if there is a precedence {jj, js} € P relation between two jobs, then it is impossible to
implement the successor before the last period when predecessor is implemented (it is possible to start
the successor at the last period of predecessor implementation). In mathematical form it is represented
in the following condition: Vt; € T, if U]‘p,tl =1thenVt, € T, tp < fy, Ui, =0, and the corresponding
constraints are:

u]'S,fz + ll/-p,tl <1, V{jp/js} eEP,VheT, Vh eT, t) <ty (6)
Secondly, we state that if these jobs are implemented in one period, total duration of both jobs is

less than period duration. Otherwise it means that in this period j, and js cross each other.
dﬁt +d]'2t <d,VteT, V(jl,jz) e P. (7)

We note that we use the Constraints (7) to take into account a case when in pair
predecessor-successor both jobs are implemented in one period, which is the last period for predecessor
and the first period for successor.

2.2.2. Scheduling Constraints: Job Pulse Start-End Formulation

We define this set of constraints as pulse start-end formulation because in this formulation we use
binaries S and Ej; which take the value 1 only in period of job start and end, respectively. We have
variable job duration, so it is not sufficient to use only start pulse decision variable Sj;, we also need
variables Ej;. Firstly, we imply Constraints (8) and (9) for Sj; and Ej; to start and end the job only once:

Y. Sp=1Vje]; ®)
teT
Y Ei=1Vje]. ©)
teT

Secondly, we force the job duration variable dj; to get zero value in periods t when job j is not

implemented. The index of starting period for job j equals }_ tSj;, and ending period index is) tEj;.
teT teT
So we state that duration dj; = 0 outside the interval (xS it o tE jt} with the following constraints.
teT teT
If job j is started in some period after the period t or it is finished in some period befor the period t,

thendj; = 0:

m t—1
dp <d(1— Y Sp—Y Ej), Vje], VteT; (10)
k=t+1 1=1

176

Algorithms 2020, 13, 6

Next constraints have the same sense as Constraints (4). In any period between start and end of
the job j it must be implemented without preemptions inside the period, so dj; = d inside the interval
(- tSit, ¥ tE/-t). If job j was started before the period t and it was finished after the period ¢, d;; = d:

teT teT

iy >d Zs,kJr]Z Ey—1), Vje], VteT. 11)
1 t+1

The precedence constraints require two constraints for binaries and continuous job duration
for each pair {jp, js} € P, representing precedence constraints on periods and inside each period.
In this formulation we can just compare start period index of successor j; and end period index of
predecessor jp:

Y hEy <) 8Sin, V(i js) € P; (12)
HeT el
dii+dis < d, ¥t € T, ¥(jp, js) € P. (13)

2.2.3. Scheduling Constraints: Job Step Start-End Formulation

In this case we use step binaries S’-‘t and E]’ft with a following rule:

if job j starts at period t, then Vt; < t S jt =0and Vi, > 5} =1;
if job j ends at period t, then Vt; <t E;=0 and Vi, >t E* =1

This approach is defined as step formulation because for each job the plot with decision variables
looks like a non decreasing step function. Firstly, we require proper values for all binary step variables.
The job may be ended only if it was started in the same period or before, and the values of start and
end step variables S]’-‘t and E;‘t must be non-decreasing for each job j € J:

S* > E/*t, Vie], VteT; (14)
S4<Sj Vi€ VEET; (15)
Ej <Ejq, Vi€l VteT. (16)

Secondly, we set up the correspondence between binaries and decision variables dj; € [0,d]. As in
previous cases, we imply that d;; = 0 if the job was not started before period ¢ or it was finished in
some period before t:

dip <d (S —Ejy), Vi€], VteT. 17)

If a job is implemented in three or more periods, inside all periods between the first one and the
last one job duration is the same as period length:

djp > d (S;;+ S}, —1-Ej,

it]t+1) vje], vteT. (18)

It is also necessary to configure precedence constraints. Successor and predecessor both might be
implemented in one period only if it is the last period of predecessor and the first period of successor:

Sy < Efpan VEET, Vit o) € (19)

jat

djys +djy; < d, Vt € T, Y(j1, j2) € P. (0)

2.2.4. Resource Allocations Constraints and Objective Function

In this set of constraints, we involve only d;; from scheduling decision variables. We denote as
Cirt € [0, Pimax,jrd] the volume of work related to job j €] in period t € T done by resource r € R.

177

Algorithms 2020, 13, 6

It has upper and lower limit defined by the minimal and maximal amount of assigned resources and
job duration:
pmin,jrdjt < Cirt < pmax,jrdjtr V] €], VreR, VteT. (21)

All resource types must implement given total amount required to each job:

2 Cirt = er/ Vje], VreR. (22)
teT

In the objective function, we use the amount of extra usage of each resource o,¢, defined by the
following constraints:
01t > Y Cjpp— Ly, VEET, Vr € R. (23)
j€T
The objective function is the minimization of the extra resource allocation cost. We define the
extra capacity of resource r € R needed in period t € T as o;;. Therefore, the objective function is

Minimize Y Y eqop. (24)
reRteT

2.3. Reduction of Variable Domains

In our formulation job duration is a decision variable. However, it depends on the work volume
Wj, and it is limited by the minimal and maximal resource requirement per period py,j and
Pimax,jr, TeSpectively. These values are input parameters defined for each resource type and each
job. These parameters are used to represent practical conditions. For example, with construction
machines and equipment we can state that it is impossible to use less than one unit at any point in time.
Resource usage usually has an upper limit inside each period. For example, the case when an assembly
line does not allow to assign more than five workers to some operation simultaneously. The same
condition is rational with continuous resources. Usually, there are some technical and management
limits for any kind of power amount (electricity, heat, etc.) that might be applied to the job.

It is possible to use the classical approach with the earliest and latest starting times and completion
time calculation. It is based on the precedence graph data which can provide critical paths and possibly
additional data such as release times and deadlines of jobs. We can determine a lower bound and an
upper bound for job duration to use these values in the critical path method. For each job j, we calculate
the minimal allowed job duration d,,;,, ; based on the maximal amount of the resource usage per period:

W-

dppin i = Max r. 25
min,j it pmax,jr’ (25)

where we note that we obtain minimal job duration if we allocate maximal allowed resource amount
for this job in each period when it is implemented. The maximum function is applied since if multiple
resources are required to execute a job we need to satisfy the minimal required duration constraint for

Wi,
each resource type dyiy j > 7 " The same logic is used for the maximal possible duration of job:
masx,jr
d in Wi (26)
i = min .
max,j rER pmin/jr

2.4. Best Scheduling Constraints Formulation: Comparison

We study three different versions of the mathematical model. Each version has the same Objective
Function (24), and resource allocation constraints (21)—(23) and different type of scheduling constraints
implementation:

1. job on-off variables, presented in Section 2.2.1;

178

Algorithms 2020, 13, 6

2. job pulse start-end variables, presented in Section 2.2.2;
3. job step start—end variables, presented in Section 2.2.3.

In order to study the impact of these scheduling constraints on the performance of the model,
we make numerical experiments on two datasets. Each dataset includes 100 instances. Parameters
of these datasets are presented in Table 3. The instances were generated using a continuous uniform
distribution of parameters. Precedence graphs were created with the given total number of directed
edges under the condition of its acyclicity.

Table 3. Instance datasets parameters.

Data Set IT] a |J| IRl |P| L w; Pmin,jr Pmax,jr ey

inst_j10r5 15 1 10 5 10 [0.0,700] [30.0,50.0] [10,5.0] [6.0,10.0] [1.0,4.0]
inst 15,5 20 1 15 5 15 [0.0,700] [30.0,50.0] [10,50] [6.0,10.0] [1.0,4.0]

We define three Mixed-Integer Linear Programming models. These models are implemented
using the IBM ILOG CPLEX 12.8 mathematical programming solver with Java code on a workstation
with 4 thread 2.70 GHz processor and 8 Gb RAM.

Figure 2 presents solution times obtained for these two datasets with three different
model versions.

Dataset inst_j10_r5 Dataset inst_j15_r5
2.0- : 0
w0
15-
B0 .
g g
20-
08
10-
start/end step = start/end pulse = on-off start/end step = start/end pulse = on-off

Figure 2. Different model formulation time boxplots for instances of datasets inst_jl10_r5 and
inst_j15_r5.

We can conclude that the best performance in terms of solution time is obtained for generalized
model with step formulation of scheduling constraints. This type of constraints has been also used
in models of Baydoun et al. [10] and Bianco et al. [16]. In next sections, we use the generalized
model with step start and end variables (presented in Section 2.2.3) to compare it with an aggregated
fraction approach.

3. Aggregated Fraction Model and Generalized Model: Comparison

3.1. Structural Model Compliance

In order to obtain the model used by Baydoun et al. [10] and Bianco et al. [16], it is sufficient to
replace all variables c;,; by expression W, fjt. Here fjt € [0,1] is an aggregated fraction continuous
decision variable used to make decision about all resources involved in job implementation. There is

179

Algorithms 2020, 13, 6

another way to make our formulation equivalent to these models: We can strengthen the model with

a constraint: c c
jrat _ Cjrat Vi
—_— = €], Vr,rn €R, VteT. 27
W]-,1 erz i€l 172 27)

In this case, all values of f; have to be identical for every pair of resource.

Further, we compare our generalized model with the aggregated fraction model. For this
comparison, the aggregated fraction model is obtained by using f; € [0,1] instead of cj,; and with the
transformation cj,; = W, fj; in all corresponding constraints.

3.2. Time to Obtain the Proofed Optimal Solution

Firstly, we run both models and compare the time spent to construct the optimal solution.
The results presented in Figure 3 confirm that the larger generalized model is slower.

Dataset inst_j10_r5 Dataset inst_j15_r5

time (s)

ized model Agg fraction model = lized model Agg fraction model

Figure 3. Time boxplots for datasets inst_j10_r5 and inst_j15_r5.
3.3. Solution Quality

However, the generalized model provides more flexible solutions that allow to get much better
solutions in terms of the objective function value. Denote an optimal solution objective function value
for instance I of the generalized model and aggregated fraction model, respectively, as V,(I) and
V,f(I), and X(I) as the ratio of these values,

X(I) = Vg(I)/ Vap(D).

In Table 4 there is summary data of X(I) for two datasets of instances. On average, in both cases
the solution provided by generalized model has two times less objective function value.

Table 4. X(I) values for instances of datasets inst_j10_r5 and inst_j15_r5.

Data Set Min Q1 Median Mean Q3 Max

inst_j10_r5 0.17 041 0.49 0.48 055 071
inst_j15_r5 025 042 0.51 0.50 056 0.72

3.4. Reasons to Use the Generalized Model

Suppose there is a resource leveling problem without any special requirements for synchronized
resource occupation for one job, i.e., both models are acceptable. Is it reasonable to use generalized

180

Algorithms 2020, 13, 6

model if it has worse performance? To answer this question, we make the following experiment:
For each instance from dataset we run the generalized model with time limit which equals the execution
time of aggregated fraction model. In other words, we compare the aggregated fraction model optimal
solution with suboptimal solution of generalized model obtained in same time. Results are presented
in Table 5.

Table 5. X(I) value summary for instances of datasets inst_j10_r5 and inst_j15_r5, with time limit
equal to the optimal solution time for the aggregated fraction model.

Data Set Min Q1 Median Mean Q3 Max

inst_j10_r5 019 045 051 0.53 0.59 0.87
inst_j15_r5 025 046 0.55 0.55 0.61 09

We can conclude that for this dataset the ratio of aggregated fraction model optimal solution
objective value to generalized model suboptimal solution objective function obtained remains about
two times more as without time limits.

The value of X(I) depends on the instance parameters. For example, if the availability of resources
is higher in periods, then the objective function value decreases for both models. In this case, we obtain
lower values of X(I). We can demonstrate this on new datasets inst_j10_r5_2 and inst_j15_r5_2 with
distribution Ly € [0, 140] instead of L, € [0,70], see Table 6.

Table 6. X (I) values for instances of datasets inst_j10_r5_2 and inst_j15_r5_2, in two cases: (a) without
time limit and (b) with time limit equal to the optimal solution time for the aggregated fraction model.

Time limit Data set Min Q1 Median Mean Q3 Max

. inst_j10_r5_2 0.1 0.3 0.36 0.36 042 0.63
(a) Not fixed inst_f15_r5.2 004 026 032 032 039 052
(b) Aggregated fraction model inst_j10_r5_2 0.1 033 04 0.41 047 097
optimal solution construction time inst_j15_r5_2 0.09 027 0.37 0.36 043 0.59

We also make new experiments. In addition to datasets presented above, we generate larger
instances and vary the number of resource types: We generate two datasets with 5 and 10 resource types
and 30 jobs. In Table 7 we present the ranges used to generate each instance parameter. Each dataset

contains 30 instances.

Table 7. Instance dataset parameters.

Data Set IT| d |J| |R| |P| Lu w; Pomin,jr Pmax,jr ey

inst_j30_r5 35 1 30 5 30 [0.0,70.0] [30.0,50.0] [1.0,5.0] [6.0,10.0] [1.0,4.0]
inst_j30_r10 35 1 35 10 30 [0.0,70.0] [30.0,50.0] [1.0,5.0] [6.0,10.0] [1.0,4.0]

We note that there are several RLP benchmarks already introduced in the literature.
Bianco et al. [16] used two RLP benchmarks. The first benchmark was described by Kolish et al. [21]
and contained datasets with 10 and 20 jobs. The second benchmark contained datasets with 10, 20,
and 30 jobs. It was presented by Schwindt [22]. These datasets were prepared for the formulation with
fixed job duration and intensity. For the variable duration case Bianco et al. enriched the data with
the following assumption: Initial duration was considered as the maximal value, while the minimal
duration was obtained by multiplying it by 0.75. Project deadline was calculated as the longest path
from 0 to 12 + 1 job in the precedence graph. In some instances each job requires only one resource type.
In both benchmarks the instances included 1, 3 or 5 resources.

In our research, we generate instances with the same size, but various parameters such as minimal
and maximal duration of jobs and resource allocation limits. It is also important to demonstrate the

181

Algorithms 2020, 13, 6

difference in solution quality for the case when there are many resource types required to implement
each job. For datasets inst_j30_r5 and inst_j30_r10 we set a 5 min time limit. In Table 8 we present
the results for these datasets. We note that we compare suboptimal solutions, obtained in a given
time limit.

Table 8. X(I) value summary for instances of datasets inst_j30_r5 and inst_j30_r5, with a 5 min

time limit.
Data Set Min Q1 Median Mean Q3 Max
inst_j30_r5 033 045 048 0.49 0.53 0.62
inst_j30_r10 0.42 049 0.51 0.51 0.54 0.58

We point out that in the same time the generalized model provides better solutions in all cases.
Worst-case ratio of generalized model solution objective to aggregated model solution value is around
0.6. It is reached by the flexible solution structure, even with worse performance evaluated by reached
relative gap. We illustrate the gap values in Table 9 to make conclusions about the real optimal objective
function value. The aggregated fraction model has a low relative gap in all cases. No significant
progress can be achieved by the aggregated fraction model with higher time limits, so it cannot
outperform generalized model in solution quality.

Table 9. Relative gap value summary for instances of datasets inst_j30_r5 and inst_j30_r5, with 5 min

time limit.
Data Set Model Min Q1 Median Mean Q3 Max
inst 130 15 Aggregated fraction 0.004 0.011 0.016 0.018 0.023 0.053
20~ Generalized 0.05 0.11 0.16 0.16 019 03
inst 130 10 Aggregated fraction 0.007 0.01 0.012 0.014 0.019 0.032
=L Generalized 0.07 0.12 0.14 0.16 0.18 0.38

Computational experiments confirm that we can achieve better solutions within the same solution
time limit with the same solver if we apply the generalized formulation approach.

4. Discrete Resource Case

In the Objective Function (24), continuous overloading variables are used in order to calculate the
cost of extra resources. It is compliant with such continuous resources as electricity or heat. However,
in practice such resources as machines or human operators can be only available in discrete units.
For this case, two possible models can be used.

e Firstly, decision variable o,+ can be defined as integer with the minimal unit of each resource g;.
New variables 07, set the number of extra units used and they replace o, in Objective Function (24)
and Constraint (23):

Minimize Y Y e;q,0; (28)
reRteT
4105 =Y cjs — Ly, YVt € T, Vr € R. (29)
j€l

We define this model as DO (discrete objective). This case can be used not only for discrete
resources, but it also suits the usual practice when additional resources could be demanded in
some packages, for example, the batteries.

e Secondly, it is also possible to define other decision variables related to resource allocation
as integers. This corresponds to the case when we have discrete resources and we allocate
a discrete amount of workload to all periods. We define this model as DO&R (discrete objective
and resources).

182

Algorithms 2020, 13, 6

A computational experiment has been run to compare the behavior of continuous and discrete
versions of the model. Seven models with different types and parameters of overload variables were
considered: The original model with continuous overload variables, three versions of the discrete
model with different resource unit size g, = q, Vr € R, equal to 1, 3, and 5, defined as DO, and the
same values of g for the discrete resource allocation case defined as DO&R.

Figure 4 presents the computational results for dataset inst_j10_r5 with a 90 s time limit for all
models. Each column is a boxplot that aggregates the data about the solution time, defining the median,
lower and upper values, and quartiles. In addition, Table 10 provides the mean values of the objective
function, solution time, and gap which was not presented in Figure 4. Here we also compare optimal
solution objective function value provided by discrete model and continuous generalized model (V),
and calculate relative delta. For example, for instance I and model DO it is

Sy (1) = VDO(XI/)C(_I)VC(I)

Dataset inst_j10_r5

time (s)

25-

! Continuous £ DO g=3 = DD&R g=1 = DD&R q=5
DO g=1 =1 DOg=5 = DO&Rg=3

Figure 4. Time boxplot for different cases of discrete objective and allocation for dataset inst_j10_r5.

Table 10. Mean values for different models.

Model Overload Type Objective Time,s Gap J

Continuous 471.5 0.18 0 -
DOq=1 474.1 38.3 0.001 0.006
DOq=3 487.4 18.6 0.001 0.04
DOq=5 502.6 8 0.0005 0.02
DR&Oq=1 482.5 0.9 0 0.06
DR&O q=3 469.9 20.3 0.001 0.07
DR&O q=5 471.5 12 0.001 0.09

As could be expected, the computation time for the discrete model is higher than for the basic
continuous model. For some part of the instances, no optimal solution was reached in 90 s for the
discrete model, while all the instances were solved for the basic continuous model faster than in
a second. However, the information about the gap provided by the solver shows that the main issue is
in the proof of optimality: All instances had a very small gap value when the time limit was reached.
It is also interesting that the second model type DO&R with the discrete allocation of resources

183

Algorithms 2020, 13, 6

provides optimal solutions much faster than the first type DO. Consequently, it is possible to use these
discrete models with some reasonable small gap tolerance.

5. Conclusions

In this paper, we propose a new mathematical formulation for a resource leveling problem with
a variable duration of jobs. We consider the extra resource usage cost as the objective function which
has to be minimized. Extra resources are required because of a lack of available resources during
a fixed planning horizon with a deadline. The main idea behind this new formulation is to provide
a more flexible allocation of different resources to jobs, which allows obtaining solutions with better
objective function values. Moreover, we consider different models for scheduling decision variables
and constraints.

This new formulation approach is compared to other RLP formulations with overload which
were found in the literature. We defined them as aggregated fraction models to underline the main
difference. The numerical experiments show that, even if the generalized formulation uses more
variables and constraints, it provides much better solutions. In this paper the primary goal was to
present and evaluate an improvement in solution quality. We also had a secondary goal to demonstrate
that our generalized model can compete with the aggregated fraction model with the same solver
computational resource and time limit. We compared the proofed optimal solution of the aggregated
fraction formulation with a suboptimal solution of a generalized formulation obtained at the same
time. We can state that with the same solver and time limit, the generalized formulation also provides
better solution quality. However, we did not test any acceleration methods for this RLP model.

There are two directions for further research. Firstly, it would be valuable to provide
a theoretical estimation of the difference in the value of the objective function for the generalized
and fraction-aggregated models. This would allow determining some subsets of instances with
a maximum difference between solution quality. Secondly, with good perspectives in solution quality,
it is reasonable to focus on model improvements and adapt existing RLP solution algorithms for the
new model. This will require more tests with instances and the application of some resource leveling
problem benchmark datasets for model performance comparison. Some particular real case-based
problems may also inspire further steps. For example, scheduling of workforce with additional
constraints such as variable experience depending on previous actions [23].

In order to improve the solution procedure, the development of a Benders decomposition
algorithm is planned for future research. Besides, approximation schemes can be quite efficient
as we can estimate the objective function value difference for the discrete and the continuous resource
models, which provides the estimated accuracy if the scheme is based on the continuous model.

Author Contributions: Conceptualisation, O.B. and A.H.; Methodology, I.T.; Software, LT.; Writing—original
draft, LT.; Writing—review & editing, O.B. and A.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Blazewicz, J.; Lenstra, J.; Kan, A. Scheduling subject to resource constraints: Classification and complexity.
Discret. Appl. Math. 1983, 5, 11-24. [CrossRef]

2. Neumann, K; Schwindt, C.; Zimmermann, J. Resource-Constrained Project Scheduling—Minimization
of General Objective Functions. In Project Scheduling with Time Windows and Scarce Resources: Temporal
and Resource-Constrained Project Scheduling with Regular and Nonregular Objective Functions; Springer:
Berlin/Heidelberg, Germany, 2002; pp. 175-299. [CrossRef]

3. Neubert, G.; Savino, M.M. Flow shop operator scheduling through constraint satisfaction and constraint
optimisation techniques. Int. J. Prod. Qual. Manag. 2009, 4, 549-568. [CrossRef]

184

Algorithms 2020, 13, 6

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Rieck, J.; Zimmermann, J. Exact Methods for Resource Leveling Problems. In Handbook on Project Management
and Scheduling; Schwindt, C., Zimmermann, J., Eds.; Springer International Publishing: Cham, Switzerland,
2015; Volume 1, pp. 361-387. [CrossRef]

Christodoulou, S.E.; Michaelidou-Kamenou, A.; Ellinas, G. Heuristic Methods for Resource Leveling Problems.
In Handbook on Project Management and Scheduling; Schwindt, C., Zimmermann, J., Eds.; Springer International
Publishing: Cham, Switzerland, 2015; Volume 1, pp. 389-407. [CrossRef]

Tadepalli, T.C.M. Genetic algorithm based optimization for resource leveling problem with precedence
constrained scheduling. Int. |. Constr. Manag. 2019. [CrossRef]

Piryonesi, S.M.; Nasseri, M.; Ramezani, A. Resource leveling in construction projects with activity splitting
and resource constraints: A simulated annealing optimization. Can. J. Civ. Eng. 2019, 46, 81-86. [CrossRef]
Li, H.; Wang, M.; Dong, X. Resource Leveling in Projects with Stochastic Minimum Time Lags. J. Constr.
Eng. Manag. 2019, 145, 04019015. [CrossRef]

Cherkaoui, K.; Baptiste, P.; Pellerin, R.; Hait, A.; Perrier, N. Proactive tactical planning approach for large
scale engineering and construction projects. J. Mod. Proj. Manag. 2017, 5, 96-105. [CrossRef]

Baydoun, G.; Hait, A.; Pellerin, R.; Cément, B.; Bouvignies, G. A rough-cut capacity planning model with
overlapping. OR Spectr. 2016, 38, 335-364. [CrossRef]

Artigues, C.; Lopez, P; Hait, A. The energy scheduling problem: Industrial case-study and constraint
propagation techniques. Int.]. Prod. Econ. 2013, 143, 13-23. [CrossRef]

Capelle, M.; Huguet, M.].; Jozefowiez, N.; Olive, X. Ground stations networks for Free-Space Optical
communications: Maximizing the data transfer. Electron. Notes Discret. Math. 2018, 64, 255-264. [CrossRef]
Hans, E. Resource Loading by Branch-and-Price Techniques. Ph.D. Thesis, Twente University Press (TUP),
Enschede, The Netherlands, 2001.

Kis, T. A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Math. Program.
2005, 103, 515-539. [CrossRef]

Bianco, L.; Caramia, M. Minimizing the completion time of a project under resource constraints and feeding
precedence relations: A Lagrangian relaxation based lower bound. 40R 2011, 9, 371-389. [CrossRef]
Bianco, L.; Caramia, M.; Giordani, S. Resource levelling in project scheduling with generalized precedence
relationships and variable execution intensities. OR Spectr. 2016, 38, 405-425. [CrossRef]

Pritsker, A.A.B.; Watters, L.J.; Wolfe, PM. Multiproject Scheduling with Limited Resources: A Zero-One
Programming Approach. Manag. Sci. 1969, 16, 93-108. [CrossRef]

Kis, T.; Drétos, M. Hard Planning and Scheduling Problems in the Digital Factory. In Math for the Digital
Factory; Ghezzi, L., Homberg, D., Landry, C., Eds.; Springer International Publishing: Cham, Switzerland,
2017; pp. 3-19. [CrossRef]

Naber, A. Resource-constrained project scheduling with flexible resource profiles in continuous time.
Comput. Oper. Res. 2017, 84, 33-45. [CrossRef]

Artigues, C.; Koné, O.; Lopez, P.; Mongeau, M. Mixed-Integer Linear Programming Formulations.
In Handbook on Project Management and Scheduling; Schwindt, C., Zimmermann, J., Eds.; Springer International
Publishing: Cham, Switzerland, 2015; Volume 1, pp. 17-41. [CrossRef]

Kolisch, R.; Schwindt, C.; Sprecher, A. Benchmark Instances for Project Scheduling Problems. In Project
Scheduling: Recent Models, Algorithms and Applications; Weglarz, J., Ed.; Springer: Boston, MA, USA, 1999;
pp. 197-212. [CrossRef]

Schwindt, C. Verfahren zur Losung des ressourcenbeschrinkten Projektdauerminimierungsproblems mit
planungsabhingigen Zeitfenstern; Berichte aus der Betriebswirtschaft, Shaker: Aachen, Germany, 1998.
Karam, A_; Attia, E.A.; Duquenne, P. A MILP model for an integrated project scheduling and multi-skilled
workforce allocation with flexible working hours. IFAC-PapersOnLine 2017, 50, 13964-13969. [CrossRef]

(D (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

185

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland
Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Algorithms Editorial Office
E-mail: algorithms@mdpi.com
www.mdpi.com/journal/algorithms

MDPI

St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34

/
Fax: +41 61 302 89 18 mI\D\Py
/

www.mdpi.com ISBN 978-3-03928-469-6

	Blank Page

