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The presence of drops, bubbles, and particles affects the behavior and response of complex
multiphase fluids. In many applications, these complex fluids have more than one non-Newtonian
component, e.g., polymer melts, liquid crystals, and blood plasma. In fact, most fluids exhibit
non-Newtonian behaviors, such as yield stress, viscoelastity, viscoplasticity, shear thinning, or shear
thickening, under certain flow conditions. Even in the complex fluids composed of Newtonian
components, the coupling between different components and the evolution of internal boundaries often
lead to complex rheology. Thus, the dynamics of drops, bubbles, and particles in both Newtonian fluids
and non-Newtonian fluids are crucial to the understanding of the macroscopic behavior of complex
fluids. The goal of this Special Issue was to gather recent experimental, numerical, and theoretical
research on drop, bubble, and particle dynamics in complex fluids.

Leiva and Geffory [1] experimentally investigated the variation of droplet size distribution of
emulsions under slow shearing flow. In contrast to the good stability of emulsions at rest, the size
distribution changes significantly due to breakup and coalescence of droplets under flow. A bimodal
size distribution and a banded structure were observed at lower and higher shear rates, respectively.

Amah et al. [2] performed direct numerical simulations on the motion of dielectric particles in
electric fields of microfluidic devices, where the rigid-body motion of particles was enforced by a
distributed Lagrange multiplier method and the electric force acting on the particles was computed
using the point-dipole and Maxwell stress tensor approaches. Their numerical results revealed that the
tendency of particles to form chains diminishes when the particle size is comparable to the spacing
between electrodes, due to the modification of the electric field by the presence of particles.

Poryles and Zenit [3] experimentally studied the rising of Newtonian oil drops in a shear-thinning
viscoelastic liquid. A so-called rising velocity discontinuity was observed for drops larger than a
certain size. Beyond the critical velocity, the drop forms a long tail, which emits small droplets. The size
and emission frequency of the droplets were found to be dependent on the volume of the mother drop.
Potentially, this setup can be used to generate small droplets with desirable sizes by adjusting the
volume of the rising drop.

Spanjaards et al. [4] numerically investigated the migration of sedimenting particles in a viscoelastic
Couette flow between two rotating cylinders. An arbitrary-Lagrangian–Eulerian moving-mesh method
was used to track the moving particles, and the DEVSS-G and log-conformation representation were
used for the viscoelastic stress. The migration velocity of a sedimenting particle in a Couette flow
was found to be higher than the sum of migration velocities due to sedimentation and Couette
flow individually.

Hamidouche et al. [5] investigated the performance of a discrete element method (DEM)/large-eddy
simulation (LES) solver for the prediction of gas-particle flows in a fluidized bed. Mesh sensitivity,
wall conditions for the gas phase, and particle-wall and particle-particle friction coefficients were
systematically studied. Good agreements with experimental data were achieved if the numerical
parameters were properly chosen.

Fluids 2020, 5, 4; doi:10.3390/fluids5010004 www.mdpi.com/journal/fluids1
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Helmers et al. [6] developed a mathematical model to predict the excess velocity of Taylor drops
in square microchannels. The proposed model was adapted with a stochastic and metaheuristic
optimization approach based on genetic algorithms and compared well with high-speed camera
measurements and published empirical data.

Zaleski and Afkhami [7] analyzed the dynamics of ellipse-shaped droplets, either conducting
or dielectric, in an electric field using conformal maps. Different from previous analytical work in
the literature, the complexity of boundary conditions at the electrode was also considered. In the
conducting case, the maximum droplet height is attained when the distance between the electrode and
the drop becomes sufficiently large; in the dielectric case, hysteresis can occur for certain values of
electrode separation and relative permittivity.
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Abstract: Understanding the rheology of immiscible liquids mixtures, as well as the role played
by its micro-structures are important criteria for the production of new materials and processes in
industry. Here, we study changes over time of the droplet size distributions of emulsions induced by
slow shearing flows. We observe that the initial heterogeneous microstructure may evolve toward
more complex structures (such as bimodal distribution) as a result of coalescence and rupture of
droplets. These dynamic structures were produced using a flow cell made up of two parallel disks,
separated by a gap of 100 μm. The steady rotation of the lower disk generates a simple shear flow
of

.
γ= 0.75 s−1, during ∼ 400 s. After a brief rest time, this procedure was repeated by applying a

step ramp until the maximum shear rate of 4.5 s−1 was reached, using step increments of 0.75 s−1.
During the last portion of the flow and during the rest time in between flows, structures of emulsions
were characterized. Initially, a broad single-peak distribution of drops was observed, which evolved
toward a rather narrower bimodal distribution, at first due to the coalescence of the smaller droplets
and subsequently of the larger drops. The rupture of drops at higher shear rates was also observed.
The observed evolutions also presented global structures such as “pearl necklaces” or “bands of
particles”, the latter characterized by alternating bands of a high density of particles and regions of
the continuous phase with only a few droplets. These changes may indicate complex, time-dependent
rheological properties of these mixtures.

Keywords: emulsion microstructure; drop size distribution; monomodal–bimodal distributions

1. Introduction

Emulsions are of great relevance for a variety of applications in food, pharmaceuticals, adhesives,
cosmetics, plastics, fertilizers, and petroleum recovery industries, inasmuch as mixtures of fluids
provide a wider range of properties in their final products. However, the properties of the mixtures
depend, to a great extent, on the microstructure of the emulsion, which is, in turn, the result of the
history of the flow. Therefore, most rheological properties must be considered as dynamical properties,
which may depend on the structure of the emulsion in a nonlinear manner.

For emulsions, the time evolution of their rheological properties can depend on a number of
factors, such as fluid properties—i.e., the fluid viscosities and the interfacial energy—the particle size
and shape, volume fractions of the phases, and other subtler effects, such as the anisotropic distribution
of particles that the imposed flow can induce [1]. In the literature, we find studies focused on the
effects characterized by important processes, such as the role of coalescence-rupture [2–4] of drops
or parameters (e.g., the viscosity ratio [5,6], the shear rate [7–9], and the volume fraction [10,11]).
Nevertheless, much remains to be explored mainly because a complete understanding of the observed
phenomena [12] is still lacking. This is especially relevant when the structure evolution shows multiple
well-defined structures as time passes under a flow field, particularly, when global anisotropic structural

Fluids 2018, 3, 46; doi:10.3390/fluids3030046 www.mdpi.com/journal/fluids3
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changes are induced at higher shear rates. Despite the possible relevance of the latter, here, we address
the changes in the microstructure of the emulsion at low shear rates and in the relevance to the rheology
of the emulsion. This behavior corresponds to the low, dimensionless time evolutions induced by slow
shearing flows presented in this work.

1.1. Theoretical Background

There are many results published on the effects of the history of the shear rate (e.g., on the
deformation, breakup of a single drop, or coalescence of quasi-equal size drops). The pioneering work
of G. I. Taylor [13] about the slight deformation of a single drop establishes experimentally that two
dimensionless numbers mainly determine the drop deformation under a linear flow: the capillary
number and the viscosity ratio. Larger capillary numbers induce larger drop deformations, and viscous
drops require a higher shear rate or capillary number in order to deform significantly.

The capillary number is given by Equation (1)

Ca =
ηmR

.
γ

σ
, (1)

where ηm, R,
.
γ, and σ represent the viscosity of the fluid matrix, the radius of the drop, the applied

shear rate, and the interfacial tension coefficient between phases, respectively.
The viscosity ratio between the two phases is given by Equation (2)

p =
ηd
ηm

, (2)

where ηd is the viscosity of the disperse fluid, and ηm is the viscosity of the continuum fluid or matrix.
When studying emulsions under flow (besides deformation of drops), other phenomena can

frequently be observed, such as coalescence of drops [4], break up of drops [6], or capture of a rather
small drop by another significantly larger drop [14]. When applying a larger shear rate to the emulsion,
these phenomena may be observed and are frequently the main source of the observed dynamical
changes of the size distributions of drops; although, each phenomenon depends most likely on different
physical mechanisms. Under weak flows, coalescence of small, equal-sized drops is observed, and the
rupture of drops occurs at higher rates of deformation, especially with low viscosity fluids. Research
reporting large induced deformations under shearing flows, even beyond a critical drop size (up
to break-up into two or multiple droplets), are given in [15–17]. The growth of drops through the
capture of much smaller, nearby droplets—by a mechanism that appears to resemble an Oswald
ripening process—can be readily produced but requires a rather broad size distribution, including
large drops. Finally, spatially varying distributions of particles induced by flow have been observed as
well, but its relation to the former phenomena is less well documented. Here, we attempt to describe a
robust technique to evaluate the slow-shear-flow phenomena, which generally modifies the observed
rheology of an emulsion in a rather complex and nonlinear manner.

1.1.1. Coalescence in Slow Flows

Here, the coalescence mechanism occurs mainly in the weakest of flows. During this process,
two drops may coalesce if they spend enough time in close proximity. Thus, a dimensionless time, τ,
indicative of the minimum time required for a high probability of coalescence (or its efficiency) can be
calculated as

τ =
.
γte, (3)

where te corresponds to the duration of imposed flow of the experiment, while the shear rate,
.

γ,
is proportional to the rate of collisions of drops of a given size. Please note that it is customary to
consider Equation (3) as a deformation measure, but here, we prefer to associate the inverse of this
dimensionless number to an efficacy or efficiency of coalescence. Dimensionless deformation measures

4
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are most appropriate when studying fluids with a homogeneous and continuous micro-structure,
such as polymer solutions (with an associated characteristic time-scale spectrum), etc. In contrast, for
our experiments, a dimensionless time is more closely associated with inverse frequency of events.
This may provide a better understanding between the statistics of the drops distributions and the
experimental conditions. The inverse time for shear rate is associated here with a value proportional
to the frequency of collision of drops and is not relevant as a measure of rate of deformation.

This interpretation allows us to compare different flow regimes, assuming that other present
phenomena remain stationary. The proportionality constant for the rate of collisions is a rather complex
function of the hydrodynamics of multiple interacting drops. For isolated pairs of drops (i.e., very
dilute emulsions), the film drainage model is frequently used, which is more suited for non-deformable
surfaces (i.e., drops of high viscosity) [18,19].

For emulsions, mean field values for the drainage model are difficult to calculate. In contrast,
when evaluating the evolution of the size distributions under flow, coalescence between the smallest
of drops can be inferred rather easily, because the rate of decrease of frequency for the smallest drops
is about twice the rate of increase of frequency of drops with double their volume. The same is true for
the larger-size drops of multimodal distribution, as will be shown subsequently. Thus, the coalescence
rate can be established by the product of the frequency of the drops’ collision times the efficiency of
coalescence [20].

For emulsions with a high fraction of the disperse phase—characterized by a broad size
distribution and under weak shearing flows—the experimental information is difficult to interpret,
due mainly to a high density of very small drops, especially at the onset of the flow. It is also evident
that an upper limit to the drop size (spheroidal drops and for a given shear rate) exists when the
kinetics of the rupture of the drops competes with the coalescence phenomenon, and the changes
of the distribution of small drops vanish almost completely [21]. Given that the capillary number
increases for the larger drops, then a maximum size exists, where coalescence dominates and rupture
kinetics begin, cancelling each other out. In the work of Grizzuti and Minale, it is suggested that
the two processes coexist in the same system [19–27]. Therefore, a second critical capillary number
should be observed—associated with the transition of coalescence to rupture—and defined when
drops increasing in size undergo a breakage process [11,12,23,24]. The purpose of this work is to clarify
the presence of coalescence and rupture processes under shearing flows by studying the evolution of
the drop size distribution of the dispersed phase.

1.1.2. Breakup of Droplets under a Shearing Flow

The so-called critical capillary number required for the rupture of a vesicle, Carup, appears
to depend principally on p for simple shear flows, as shown by Grace [16] and De Bruijn [17].
A broad set of data for drops deformation and break up, including a large class of two-dimensional
(2D)-flows—covering from simple shear up to a purely elongational flow—was provided by Bentley
and Leal [28]. More recently, for emulsions subjected to simple shear flows, Jansen [29] has shown
that the critical capillary number decreases with increments of the fraction of the disperse phase:
Carup(p, φ). Droplet-breaking mechanisms and shapes of Newtonian liquid droplets have been
extensively studied. If Ca << 1, the drop shape is slightly ellipsoidal, depending on p, and aligned at
an orientation angle of 45◦ with respect to the direction of flow. As the capillary number increases,
the steady state elongation grows, and the drop rotates aligning itself along the direction of flow.
For higher capillary numbers, beyond the critical value, rupture is observed with the breaking mode
depending on the viscosity ratio. For p < 1, the drops assume an elongated highly cusped form,
from which small drops (the so-called tip streaming phenomenon) are launched. For p approximately
equal to 1, the central portion of the droplet forms a neck (or necks) followed by the breaking up
into two daughter-droplets, with small satellite droplets between them. Ca >> Carup, droplets are
deformed into long, thin filaments that eventually break up through the instability of the capillary wave
mechanism. These mechanisms become more complex as the density of disperse phase drops increases.

5
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2. Materials and Methods

2.1. Constituents and Preparation of Emulsions

Two immiscible fluids were prepared as the emulsion disperse-continuum components, looking
for a pair of liquids with high viscosities and equal densities: an aqueous solution, as the dispersed
phase, and a mixture of alkanes. The aqueous solutions is (w/W) 10 μM polyethylene oxide (with a
viscosity-averaged molecular weight of Mv ∼ 1,000,000 , Sigma-Aldrich CAS#372781, Sigma-Aldrich,
St. Louis, MO, USA) in 97% ultra-pure water (resistivity ≥18.2 MΩ·cm; ρ = 0.997 g/mL)) and
3% 2-propanol (Sigma-Aldrich CAS#190764, ≥99.5% Reagent grade). The continuum phase is
a mixture of eicosane (Sigma-Aldrich CAS#219274), heptadecane (Sigma-Aldrich CAS#128503),
1,2,4-trichlorobenzene (Sigma-Aldrich CAS#132047), and polybutadiene (Sigma-Aldrich CAS#181382).
The alkane fluid is prepared by first mixing 7.56% eicosane with 39.69% heptadecane in a glass
bottle, while maintaining it at 30 ◦C, and then adding 46.5% 1,2,4-trichlorobenzene and 6.25%
polybutadiene (Mn ∼ 200,000). The viscosities of the fluids were measured with an ARES G2
Rheometer (TA Instruments, New Castle, DE, USA) using the concentric cylinder geometry.
The aqueous phase has a viscosity of 0.57 Pa·s and the continuum phase a viscosity of 2.08 Pa·s at 30 ◦C;
the viscosity ratio is p = 0.27. The densities (g/cm3, at 30 ◦C) are 0.98 and 0.95 for the aqueous phase
and the continuum phase, respectively. By using 2-propanol (aqueous solution) and trichlorobenzene
(alkane mixture), the density of the two fluids can be adjusted to minimize sedimentation in the
emulsion. The interfacial tension σ was determined by the deformed drop retraction (DDR) method,
as described by Guido and Villone [30], using the optical shear cell CSS450, which is the same cell
that we use in this work. The measured averaged surface tension is 0.11 mN/m, evaluated for a set of
11 drops of aqueous fluid (40%) in the oil phase.

The emulsion was prepared by mixing a 50 wt % oil phase with 50 wt % water phase using an
homogenizer (Omni Inc., Kennesaw Georgia, GA, USA) with a generator probe 10 mm × 95 mm fine
saw tooth (SKU#15051), spinning at 3000 rpm during 300 s, and at a constant temperature of 30 ◦C.
Afterwards, the emulsion was placed in glass tubes (5 mm inner diameter) at rest for 48 h and at 30 ◦C.
In this way, the stability of the emulsion was visually evaluated after 48 h, ensuring that trapped air
bubbles were removed. The sample of the emulsion was placed on the bottom plate of the flow cell, and
the top plate was carefully placed on top, while the plates were being slowly compressed (squeezed)
to reduce the separation until reaching a gap of 100 μm. This compression process reduces residual
stresses while maintaining the homogeneity of the sample. Following loading, the cell was allowed
to relax for a period of ~600 s. All flow experiments started with an initial pre-conditioning of the
emulsion to eliminate possible residual stresses by subjecting it to a shear rate of 0.075 s−1 for ∼500 s.
During this initial flow, the drop size data was dominated by a large count of very small drops—with
diameters below the resolution of the optical arrangement ≤5 μm—and no comparison with the drop
distribution after the loading of the cell is considered reliable. At this instant, we set τ ≡ 0.

Subsequently, a ramp sequence of constant steady shear flows was applied for each sample.
Each step of the ramp consisted of a steady flow applied during ∼400 s, followed by a no-flow rest
time of ∼18 s, sufficiently long for drops to attain a spherical shape. The initial step of the ramp
began with a flow of

.
γ = 0.75 s−1, and subsequent flows stepped up by increments of 0.75 s−1 up to

4.5 s−1. Toward the end of each steady shear stress—just before the flow was stopped—and a short
time after the no flow condition prevailed, a set of images was taken for the statistical analysis. For all
the experiments, the no-flow rest time appears to have a negligible effect on the drop size distributions
while facilitating the determination of the size of particles of a quasi-spherical shape. Thus, this
multistep history of flow stresses is responsible for the changes in the distribution of drops in the
sample. The influence of stopping the flow upon the global dimensionless time

(
τ =

.
γte

)
, as well as the

structure of the distribution, can be considered negligible. Here, no inertia effects on the deformation
of drops is expected given that the nominal Reynolds number—based on tangential velocity, cell gap,
and viscosity of the continuum phase—are within 3 × 10−6–2 × 10−5, for all shear rates.
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2.2. Smooth Kernel Distribution Estimation

The smoothing of all drop size frequency histograms was done with the kernel density technique
in order to obtain the probability density function with a known collection of frequency points. Here,
the histogram area under the curve is assumed to be 1, and the probability of a drop diameter di
corresponds to the area under the curve between those two points (di, di + Δd), where Δd is the
difference between diameters [31]. This tool provides a quick evaluation of the distribution as a
continuous function; the smoothing parameter (bandwidth) used in all histograms is 1.25 [32]. We also
evaluated the quality of polydispersity for the drop distributions via a polydispersity index based on
the average drop size (diameter) D1,0, the average volume size D4,3, and the contributions of the tails
of the distribution, respectively:

dN = D1,0 =
∑∞

i=1 ni·di

∑∞
i=1 ni

, (4)

dV = D4,3 =
∑∞

i=1 ni·d4
i

∑∞
i=1 ni·d3

i
, (5)

skewness =
n

(n − 1)(n − 2)

n

∑
i=1

(
di − d

sd

)3

, (6)

kurtosis =
n(n + 1)

(n − 1)(n − 2)(n − 3)

n

∑
i=1

(
di − d

sd

)4

− 3
(n − 1)2

(n − 2)(n − 3)
. (7)

2.3. The Experimental Conditions

All experiments were performed with the parallel plate geometry (Linkam CSS450, Linkam
Scientific Instruments, Tadworth, UK), schematically shown in Figure 1. It consisted of two parallel
quartz plates with a diameter of 36 mm, each in contact with flat silver heaters on the outside, with
an observation window located at 7.5 mm radial position. The motion of the lower disc imposed a
shearing stress field on the emulsion. Images were captured on the vorticity–velocity plane through
the 2.8 mm observation window. The effects of the shearing and duration of the imposed shear flow
were studied using a constant rotation rate with a speed control better than 1% of the rotational speed
and using a sequence of microstructure measurements at spaced events in time. In the present work, a
gap spacing of 0.1 mm between disks and a temperature 30 ◦C was used.

Figure 1. Schematic description of the shearing device: parallel-plate geometry with a diameter
of 36 mm and a gap of 100 μm. The observation plane is described by the velocity–vorticity axes.
The motion of the lower disc imposes a simple shearing stress field on the sample.

Emulsion structures were visualized using an optical microscope Nikon SMZ-U (Nikon Corp.,
Tokyo, Japan). Capture of images was carried out with a Nikon Digital Sight DS-2 mV camera
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in a bright field illumination arrangement. All images were processed with the ImageJ® software
(U.S. National Institutes of Health, Bethesda, MD, USA), manually and automatically. Pre-processing
of drop images included assigning a threshold value, converting the image to a binary map, followed
by an automatic count of drops with circularity better than >0.94. The statistical methods are later
applied after verifying the reliability and veracity of the data obtained by the image processing. Prior to
the selection of an experimental run, the image capturing process was optimized in order to reduce
the emulsion turbidity and proper exposure to light [33]. Thus, a full view image with the focus
plane centered on the plane of the flow field was assured. In order to visualize the evolution of the
microstructure, multiple images were taken towards the end of the shearing period and after the flow
stopped and fully relaxed; images were spaced at intervals of 1 s for statistical analysis.

In order to obtain the droplet size distributions, mainly three operations were carried out (i.e., the
image acquisition, pre-processing of digital images (involving cleansing, defining drop contours,
etc.), and the statistical analysis of at least two (or multiple) images) to generate the frequency
histograms. The observed droplets are those present only on the focal plane normal to the direction of
the velocity-gradient. The depth of field for the optical arrangement is approximately 100 μm, about
the size of the gap between plates; thus, most drops in the flow field were observed, while the width of
the field view of the microscope on the focal plane was 2–3 times larger than the captured image, thus
minimizing magnification ratio variations away from the central axis.

For τ < 0—that is, using a gap of 100 μm during pre-shearing—images would have shown many
small drops, with several of them frequently overlapping along the optical path, making the correct
determination of the size or the count numbers of the drops almost impossible. The highest possible
concentration (of small droplets) occurred at the onset of the flow (τ ≡ 0). At this instant, the average
size of the droplets implied a tight closeness of particles, and in order to be able to distinguish every
individual droplet, data was only taken after ∼ 380 s. That is, even for the most concentrated emulsions,
the image processing algorithm must assign a given size to each drop. It is only for

.
γ = 0.75 s−1

that drops less than 5 μm are still observable at the bottom of the image (Figure 2a’). Understanding
how this fraction of the population evolves (that is, attempting to elucidate the proper mechanism
mediating this capture process) will require experiments with a smaller gap size.

For each subsequent constant shear rate flow section, the duration of the flow for ~400 s was
sufficient to ensure the correct evaluation of the properties of the individual droplets at ~380 s after
start-up of the steady flow. But as a shear rate of 1.5 s−1 was reached, only drops greater than 5 μm
were observed for

.
γ = 2.25, 3.0, 3.75 and 4.5 s−1 (see Figure 2b’–f’). Under the prescribed conditions,

all experiments addressed the changes in the size distributions of the particles as a function of (1) the
shear rate; (2) the duration of the applied flow; and (3) the possible spatial variation of the distribution
of particles parameters.

3. Results

Figure 2 shows the images captured during flow and immediately after flow (unprimed and
primed labels, respectively—left most columns). The applied shear rates were from 0.75 to 4.5 s−1, top
to bottom, respectively, with the corresponding density function of drop sizes—right most column.
The objective is to show several of the possible structures in an emulsion induced by flow and observed
during these experiments.

Figure 2a shows many small drops, of diameter <5 μm and below the lower limit of the resolution
threshold [23], for this optical arrangement; these drops are not included in the distribution for the shear
rate of

.
γ = 0.75 s−1. Indeed, these drops quickly disappear with increasing (τ ≥ 400), as observed in

the bottom of the images of Figure 2b”–f”. Possible experiments with a weaker shear rate,
.
γ ≤ 0.75 s−1,

which may be most relevant for the smallest of drops, are not included here and are not considered to
be relevant to the observed structural phenomena, which is the main objective of this work. Drops with
a diameter larger than 45 μm are only a few and were not considered significant to the values of the
parameters of the distribution. The relative frequency of drops larger than 45 μm is of the order of 0.00172.
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Figure 2. The sequence of images shows the effects due to increase of shear rates (top to bottom) on
the evolution of the morphology—during flow, left, unprimed letters (a–f); after cessation of flow
(a’–f’), center, and primed letters—for a (50/50) emulsion. For histograms—right plots, double primes
(a”–f”)—pkn stands for the first, second, etc., peak of the distribution; mean is the average size of
drops. All images are captured with the same magnification and at a temperature of 30 ◦C.
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One of the first effects of the shearing that was observed that can readily be evaluated occurred
for the smallest bin of the population, when the frequency of the smallest of drops (about 5–7.5 μm)
decreased and the frequency of drops with about twice the volume (8–10 μm) clearly grew. This
condition indicates that for flows with

.
γ ≤ 2.25 s−1 the critical time for coalescence of the smaller drops

already occurred. That is, at
.
γ = 2.25 s−1, the number of small drops is reduced within a few minutes,

with pairs of drops generating larger drops of about twice the volume.
As shown in Figure 2f,f’, at larger shear rates, a poly-disperse emulsion with a multimodal

distribution was generated. Here, Figure 2 shows that the average size of drops increased in time as the
shear rate increased, accompanied by the formation of a (secondary) peak of larger drops and resulting
in a bi-modal distribution. The same coalescence phenomenon appears to dominate the onset of the
bi-modal distribution shown in Figure 2f” from smaller size drops. At this flow rate—

.
γ = 4.5 s−1—the

collision of drops with an average diameter close to 12–14 μm gave rise to drops of about 16.5 μm
(double the volume of the smaller drops). From the histogram in Figure 2f”, it is clear that a new
population phenomenon was at play: both frequencies of the 10–12 μm and 12–14 μm bins decreased
significantly and simultaneously. It appears that pairs of drops of size 10–14 μm may coalesce rapidly,
until a more stable drop size is attained, both bins contributing to the appearance of the second and
third peaks in the distribution at about 14–20 μm.

Interestingly, Figure 2f also shows (a) the onset of pearl collar structures—several drops of similar
diameter, evenly spaced and roughly aligned along the flow direction—with ellipsoid-like drop shapes
and a waist close to ~15 μm; and (b) a banded, structured emulsion along the flow direction and
perpendicular to the vorticity axis. The surprising feature of the collars and bands were their persistent
lengths, several times the characteristic length scale of previous phenomena and several times the
thickness of the channel (about 300 μm).

In these experiments, a few large drops were also observed—larger than 40 μm in diameter,
with an ellipsoid-like shape with an averaged waist size ~35 μm—at the onset of the flow regime
that did not show up initially in the upper tail of the distribution. In Figure 2c, the highly elongated
drops—similar to wire-structures—could be attributed to possibly larger drops that had reached a
very large deformation, only possibly due to confinement effects by neighboring drops and by the
presence of the cell walls, simultaneously.

Table 1 presents the data used for each experiment of the most relevant parameters characterizing
these distributions. Thus, approximately 1000 drops were captured for each drop size distribution,
and several measures of the diameter were calculated. Of particular relevance are the mean (D1,0), as well
as the Number-area and Number-volume mean diameter. The relevance of these numbers is further
expanded upon in the Section 4.

Table 1. Drop size distribution statistics for the histograms shown in Figure 2.

Shear
Rate
(s−1)

Total
Number
Drops

Diameter
Mean
(μm)

Diameter
Median

(μm)

D4,3

(μm)
D3,2

(μm)
D2,0

(μm)
D1,0

(μm)

Distribution
Properties

Skewness Kurtosis

0.75 1148 14 12.9 21.1 18.6 15 13.9 1.2 1.82
1.5 1078 14.3 13.2 22.8 19.7 15.6 14.4 1.32 2.46
2.25 1084 14 13.2 24.3 20.6 15.6 14.2 1.44 2.49

3 1015 15.3 14.1 24.7 22.2 17.2 15.5 0.73 −0.39
3.75 1135 15.4 15 21.9 20.3 16.8 15.6 0.26 −0.86
4.5 1034 15.9 16.4 20 19 16.9 16.2 −0.12 −0.61

D4,3 is the volume or mass moment mean also known as the De Broucker mean diameter. D3,2 is the surface area
moment mean or the Sauter mean diameter (SMD). D2,0 is the number-area mean diameter. Kurtosis measures the
relative weight of the tails with respect to the central portion of the distribution.

In Figure 3, the drop size distributions are shown with their corresponding smoothed kernels for
all shear rates studied in this work. The horizontal axis is the bin average diameter and the vertical
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axis is the drop count. It is observed in Figure 3a–c that these size distributions are characterized by a
single peak and positive Kurtosis—with a single peak and relatively high weight of the distribution
tails (see Table 1). Please note that for a flow cell with a gap of 100 μm, drops with diameters as large
as 100 μm should be observed; although, very few are seen during these experiments, which do not
significantly alter the Kurtosis of the distribution. Most drop diameters are constrained to less than
40 μm. In Figure 3d, the maximum value of dV = D4,3 is reached (blue vertical bar). In Figure 3e,f, a
rapid decrease in the value of D4,3 (Figure 4) is shown. This effect is mainly due to a rather broad peak,
which here becomes evident by the presence of a second peak that emerges from right to left, and a
Kurtosis measure that changes sign. For the drop size distribution generated when

.
γ = 4.5 s−1, the

skewness parameter becomes negative indicating a larger (secondary) peak at higher diameters.

Figure 3. Droplet size distribution and the smoothing kernels for all shear rates studied. For the first
three (lower) shear rates (a–c), the size distributions are characterized by a single peak and positive
Kurtosis [34–37]; with rather broad distributions. The magenta bar corresponds to the mean diameter
for the distribution, the green bar to the D2,0 value, and the blue bar corresponds to the value of D4.3.
In histogram (d), the maximum value of D4.3 is reached (see Table 1). Histograms (e,f) show a rapid
decrease in the value of D4.3, characteristic of distributions with a high top and a smaller contribution
from outliers.

11



Fluids 2018, 3, 46

Figure 4 presents the evolution of the mean drop size using the suggested averages (values shown
in Table 1). Figure 4a presents the diameter evolution with respect to the dimensionless time (or as a
function of the applied shear strain by the flow); Figure 4b corresponds to the same data vs. the applied
shear rate. It is clear that D1,0 and D2,0 remain essentially constant at 14 and 15.5 μm, respectively, for
times less than τ ≤ 800, abruptly increasing to means of 15.5 and 17 μm, respectively, under a faster
flow and a longer duration of the flow.

Figure 4c,d correspond to the normalized average size (D4,3/D1,0 and D2,0/D1,0) versus the
dimensionless time and the accumulated dimensionless time (total imposed strain). Therefore, the base
line for these two plots corresponds to D1,0, a two-step function with rather constant lower and upper
values (i.e., 14 μm and 15.5 μm (see Figure 4a)). The droplets generated during the preparation of
the emulsion grew constantly within the initial 675 units of dimensionless time and then evolved
rapidly to an average mean diameter of 15.5 μm. In most experiments, close to 300–10,000 units of
dimensionless time are necessary to reach a reproducible size distribution of the emulsions. The longer
times are especially the case for global anisotropic structures, which may require a total dimensionless
time longer than 8000, as shown in Figure 4d.

 

Figure 4. (a) Mean diameters of the distributions—D1,0 up to D4,3—vs. the dimensionless time τi

incurred during each flow regime; (b) D1,0, D2,0, and D4,3 vs. the applied shear rate during each
regime; (c,d) are, respectively, the dimensionless normalized mean drop size vs dimensionless time in
each cycle and for the total duration of the flow ∑

.
γi ti.

4. Discussion

The distributions of drops appear to change mainly due to two processes, coalescence and rupture,
with little evidence of Oswald ripening. The lack of evidence for the latter may be due to the fact
that drops larger than 35–40 μm were not observed. In contrast, the presence of the coalescence
phenomenon can be inferred at several instances in the evolution of the distributions, which may
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be due to different hydrodynamic processes albeit operating simultaneously. As pointed out in the
description of the coalescence kinetics, the most likely case corresponds to two of the smaller drops
(about equal size) generating a drop with about twice their volume. This was clearly the case for
the smaller drops in Figure 3a–d. But coalescence may also be the dominant mechanism for the
reduction of probability observed in the first peak and in the dawning of the second peak. During
collision of these larger drops, those of ∼ 10 μm disappear, with the 15 μm bin growing and during
a subsequent coalescence, becoming drops of about 20 μm. Coalescence seems to be the dominant
mechanism for critical dimensionless time less than τ ≤ 700, with an associated critical shear rate of
about

.
γ ≤ 2.25 s−1. Coalescence occurs simultaneously with rupture up to τ ≈ 8000

.
γ ≤ 4.5 s−1.

A second possible mechanism for the onset of the secondary peak is break up, particularly for
the heavier tail, with the disappearance of the much larger drops (less than 40 μm) producing smaller
drops of about half their volume (i.e., ∼27 μm (as shown when

.
γ = 3.0–3.75 s−1 (Figure 3d,f))).

These drops, in turn, break up again, producing an increase in frequency for drops sizes of about
22 μm. The rupture mechanism appears to depend on dimensionless time and on a critical shear rate
of the order of

.
γ = 3.0–3.75 s−1, not being observed for smaller drops. The simultaneous contribution

of these two mechanisms makes it possible to explain the appearance of the second peak of the
bimodal distribution.

Figure 4 presents the evolution of the mean drop size (with five different measures) versus its
shear rate history. Initially, droplets generated during the preparation of the emulsion grew constantly,
from sizes less than the threshold of the image processing, but attained values that can be readily
evaluated with the statistical measures proposed for τ ≥ 300, as shown in Figure 4. The mean value
D1,0 remained at a constant value for shear rates less than

.
γ ≤ 2.25 s−1—the same behavior is observed

for D2,0—while D3,2 D4,3 increased linearly with dimensionless time up to 900τ units, followed by a
monotonic decrease of the mean size for the total accumulated dimensionless time τ ≥ 3000.

For dimensionless time between 675–900 and under an increment of
.
γ > 2.25 s−1, the mean value

D1,0 (and D2,0) appeared to remain at a new constant value of D1,0 = 15.5 μm (and D2,0 = 17.5 μm)
approximately. This jump in mean diameter correlated with the time and shear rate in these
experiments. An interesting observation is that the ratio of these two means was essentially constant
for the complete range of values of the shear rate (see Figure 4c) regardless of the dimensionless time
or shear rate. In contrast, measures D3,2 and D4,3 did change significantly (−25%) after τ ≥ 675 or
under an increase of

.
γ > 3.0 s−1. This abrupt collapse of D3,2 and D4,3 values correlated with the

behavior of other statistical measures, indicating a dominant breakup mechanism of the larger drops.
The rupture mechanism was most clearly associated with the appearance of pairs of satellite drops (of
about half volume) that did not appear to influence the low end of the distribution. Hence, under these
flows, the drops attained deformations associated with dumbbell shapes before breaking up, with a
few of them reaching a significantly elongated waist capable of generating smaller satellite drops.

In most cases, 100–10,000 units of strain are necessary to reach a size distribution of the emulsion
with low tail populations. Figure 4d shows a total time longer than τ ≥ 8000, a time scale that is
representative of the anisotropic global structures observed in this emulsion. By increasing the shear
rate, the arithmetic average value increased at a rather constant rate. However, the position of the
peaks was not affected in a forceful way and appeared to be independent of time, contrary to the
behavior of the width of each of the main peaks, which became broader over time while keeping
the area under the curve approximately equal. This phenomenon may have been the result of the
disappearance of the smallest droplets, as shown in Figure 3f. For the large drops, the formation of
a secondary peak from right to left was observed (see Figure 3d–f), resulting in the decrease of the
height of the first peak and the increase of its width and vice versa for the second peak.

Figure 4d shows a total time longer than τ ≥ 8000. In other to evaluate in detail the global structure
shown in Figure 2e,f, associated with τ ∼ 8000 global times, future experiments may require times
significantly longer than the length of time considered here, as well as a new statistical analysis for
evaluation of the anisotropic character of the distribution of particles in the sample.
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5. Conclusions

This emulsion showed good stability when left to rest. However, under flow conditions, the
size distribution changed significantly in terms of the mean values, as well as other characteristics,
such as mono- to bimodal distributions or measures of skewness and kurtosis. Besides coalescence
and rupture as possible explanations of the observed behavior at lower shear rates, other possible
structures are readily observable, such as necklaces and banded structures. Evidence of necklaces
appear at a transition

.
γ ∼ 3.0 s−1 in a single band to transient chains of drops in the flow direction

and in several layers at a shear rate of
.
γ ∼ 3.75 s−1.

These experiments also elucidate two possible mechanisms for the evolution of the size
distribution of drops in highly concentrated emulsions at low shear rates. The first is coalescence,
dominant for smaller drops at low shear rates and short times. The arithmetic mean of 14.0–14.3 μm
under a shear rate of about 0.75–1.5 s−1 can be explained by coalescence of the smallest drops, while
indicating a poor stability to flow induced perturbations. The behavior of the small drops indicates a
high frequency of close neighbor encounters, promoting coalescence during this stage. Due to the fact
that the efficiency of coalescence decreases with the increasing difference in the size of the colliding
drops [2,24], coalescence tends to be less likely at longer times. These results are in agreement with the
qualitative works of Grizzuti and Bifulco [25] and Rusu and Peuvrel-Disdier [23].

The weak increase of the D1,0 value of the distribution as the shear rate grows may indicate
that it is independent of time, which is in contrast to the behavior of the width of each of the main
peaks, which increase as time passes while keeping the area under the curve approximately constant.
Observing the evolution of the peaks and width of peaks in Figure 3d–f, it becomes evident that
the largest drops rupture, giving rise to smaller ones. These dynamics may induce the appearance
of the second peak (of larger drops) in Figure 3f. Here, Figure 4c,d show that the D4,3 measure
decreases significantly relative to the mean value when the tail of the distribution for large drops is
decreasing and rupture is a prevalent mechanism. This hypothesis may be correct; although, we have
not addressed this point in detail, we may do it in future work. The tails of the distribution are less
dominant as shown by the skewness and kurtosis values.
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Abstract: A numerical scheme is developed to simulate the motion of dielectric particles in the
uniform and nonuniform electric fields of microfluidic devices. The motion of particles is simulated
using a distributed Lagrange multiplier method (DLM) and the electric force acting on the particles
is calculated by integrating the Maxwell stress tensor (MST) over the particle surfaces. One of the
key features of the DLM method used is that the fluid-particle system is treated implicitly by using a
combined weak formulation, where the forces and moments between the particles and fluid cancel,
as they are internal to the combined system. The MST is obtained from the electric potential, which,
in turn, is obtained by solving the electrostatic problem. In our numerical scheme, the domain is
discretized using a finite element scheme and the Marchuk-Yanenko operator-splitting technique
is used to decouple the difficulties associated with the incompressibility constraint, the nonlinear
convection term, the rigid-body motion constraint and the electric force term. The numerical code is
used to study the motion of particles in a dielectrophoretic cage which can be used to trap and hold
particles at its center. If the particles moves away from the center of the cage, a resorting force acts
on them towards the center. The MST results show that the ratio of the particle-particle interaction
and dielectrophoretic forces decreases with increasing particle size. Therefore, larger particles move
primarily under the action of the dielectrophoretic (DEP) force, especially in the high electric field
gradient regions. Consequently, when the spacing between the electrodes is comparable to the particle
size, instead of collecting on the same electrode by forming chains, they collect at different electrodes.

Keywords: dielectrophoresis; direct numerical simulations; Maxwell stress tensor method;
point-dipole method; distributed Lagrange multiplier method

1. Introduction

In recent years, considerable attention has been given to understanding the behavior of
particles suspended within liquids because of their importance in a wide range of applications,
e.g., self-assembly of micron to nano-structured materials, separation and trapping of biological
particles [1], stabilization of emulsions, and the formation of fluids with adjustable rheological
properties, etc. [2–11]. Future progress in these and related areas will critically depend upon our
ability to accurately control the arrangement of particles for a range of particle types and sizes,
including those of uncharged particles.

When a dielectric particle is subjected to a spatially non-uniform electric field it experiences an
electrostatic force, called the dielectrophoretic (DEP) force. The DEP force arises because the particle
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becomes polarized and the polarized particle (or dipole) placed in a spatially varying electric field
experiences a net force. This phenomenon itself is referred to as dielectrophoresis [2]. The force can be
in the direction of the gradient of electric field or in the opposite direction. For a positively polarized
particle the force is in the direction of the electric field gradient and for a negatively polarized particle
the force is in the opposite direction to the gradient. In addition, the particle interacts electrostatically
with other particles which can be modeled as dipole-dipole interactions. The dipole-dipole interactions
are present even in a uniform electric field.

Dielectrophoresis is an important technique because it can be used to manipulate uncharged
particles. Also, since the DEP force depends on the dielectric properties of the particle, the force is
different on different kinds of particles. Therefore, in principle, DEP force can be used to separate
particles with different dielectric properties [3]. For example, cancer cells can be separated from normal
cells as they have different dielectric properties [12–15].

Here we present a direct numerical simulation (DNS) method based on the finite element
method which can be used to study the motion of dielectric particles suspended in a dielectric
liquid. The electric field can be uniform or nonuniform, e.g., the field in a dielectrophoretic cage
is nonuniform. Direct numerical simulations are important for understanding the dependence of
the DEP force-induced motion on the fluid and particle properties, and also for designing efficient
microfluidic devices.

The point dipole (PD) approximation [2,14] which has been used in many past studies assumes
that the particle is small compared to the length scale over which the electric field varies, and that the
distance between the particles is much larger than the particle diameter. In this approximation, the
electric force acting on a particle consists of two components, one due to dielectrophoresis, and the
other due to the particle-particle interactions. The accuracy of the PD approximation decreases when
the electric field varies significantly over a length scale comparable to the particle size and also when
the distance between the particles is small.

The accuracy of the PD approximation can be improved by including higher order multipole
moment terms in the force [16]. However, as shown in Reference [17], even when the multipole terms
are included, it lacks the completeness of the Maxwell Stress Tensor (MST) method. In the latter
method, the force is computed from the electric field that accounts for the presence of all particles
in the computational domain and so the computed force incorporates multibody interactions [17].
The MST method is computationally demanding because the electric field has to be computed at each
time step as the field changes when the particles move [18–20]. In Reference [21], an energy based
method, which accounts for the presence of particles, was used to compute the force on the particles
in a uniform electrical field. In this method, both far and near field interactions are included in the
particle-particle force.

During the past 10 years, several new DNS approaches have been developed to model
dielectrophoresis [22–29]. A scheme to study ac dielectrophoresis is described in Reference [30].
In this scheme, the ac electric field is obtained by solving the quasi-electrostatic form of the Maxwell
equation from which the DEP force acting on the particles is obtained and the motion of particles
in the fluid is simulated using the immersed boundary method. The scheme was used to study the
motion of levitated particles and to evaluate the accuracy of the point dipole method. It was noted
that in a given domain the accuracy of the PD method decreases with increasing particle size and
that the accuracy diminishes in a high electric field gradient region. A numerical approach to study
chain formation by particles with dissimilar electrical conductivities, sizes and shapes is described
in [24]. An arbitrary Lagrangian-Eulerian (ALE)-based method was used in Reference [25,26] to study
ac and dc dielectrophoresis in two-dimensions. The focus of this work was on understanding the
mechanisms involved in particle assembly. A scheme based on the boundary-element method (BEM)
was developed in Reference [27] to solve the coupled electric field, fluid flow and particle motion
problems in the Stokes flow limit. A PD-based method in which the induced dipole moments within
the particles are computed by accounting for the nearby particles, was developed in Reference [28].
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There are several other studies in which only the DEP force lines in the devices were considered and
the particle trajectories were estimated without considering the fluid-particle interactions [30,31].

Recently, in Reference [28], a multiphase model-based approach has been developed to study
the motion of a large number of particles. The dielectrophoretic force in this approach is calculated
using the point dipole approach, and the drag acting on the particles is modelled by Stokes law.
The fluid flow induced due the motion of particles is not considered in this model. These model-based
simulations allow us to study systems with thousands of particles which, at present, is not possible
when a DNS approach is employed. However, a model-based approach may not accurately capture
the underlying physics, and so the DNS or experimental results are needed to validate it.

In our DNS method, the exact equations governing the motion of the fluid and the particles are
solved and subjected to the appropriate boundary conditions. The scheme uses a distributed Lagrange
multiplier (DLM) method to enforce the rigid body motion constraint in the region occupied by the
particles [32] and the electric force acting on the particles is computed using the point-dipole and
Maxwell stress tensor approaches. One of the focuses of this paper is on the case where the particle
size is comparable to the length scale over which the electric field varies. It is shown that the tendency
of particles to form chains diminishes with increasing particle size, as the DEP force increases faster
than the particle-particle interaction force. Thus, although particles come together to form chains
when they are away from the electrodes, they may not collect at the same electrode as the neighboring
electrode pulls some particles away from the first electrode. This happens because the presence of
particles modifies the electric field, which changes the magnitude and direction of the DEP force.

2. Methods

The motion of particles suspended in fluids under the action of electric forces is governed by
highly nonlinear coupled partial differential equations. We must solve the Navier-Stokes equation for
the fluids which are coupled with the equation of motion for the particles and satisfy the boundary
conditions. In addition, we must determine the electric field and calculate the electric force by
integrating the Maxwell stress tensor over the surface of particles. The flow field and the electric field
must be resolved at a scale smaller than the size of particles as well as in the gap between the particles.
Let us assume that there are N solid particles in the domain denoted by Ω and denote the interior
of the i th particle by Pi(t), and the domain boundary by Γ (see Figure 1). The momentum and mass
conservation equations are

ρL

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ · (2ηD) in Ω\P(t) (1)

∇ · u = 0 in Ω\P(t) (2)

where u is the fluid velocity, p is the pressure, η is the dynamic viscosity of the fluid, ρL is the fluid
density, D is the symmetric part of the velocity gradient tensor. The boundary conditions on the
domain and the particle boundaries are:

{
u = uL on Γ

u = Ui + ωi × ri on ΓPi, i = 1, . . . , N
(3)

where Ui and ωi are the linear and angular velocities of the i th particle, respectively, and ΓPi = ∂Pi(t)
is the boundary of the i th particle.

The above equations are solved using the initial condition u|t=0 = u0 , where u0 is the known
initial value of the velocity.
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Figure 1. A typical rectangular prism shaped domain used in our simulations. The fluid velocity on
the domain walls is assumed to be zero and the electrode’s potential is specified.

The linear velocity Ui and the angular velocity ωi of the i th particle are governed by

mi
dUi
dt

= Fi + FE,i (4)

Ii
dωi
dt

= Ti + TE,i (5)
{

Ui|t=0 = Ui,0
ωi|t=0 = ωi,0

(6)

where mi and Ii are the mass and moment of inertia of the i th particle, respectively. Fi and Ti are the
hydrodynamic force and torque acting on the i th particle, respectively, FE,i is the electrostatic force
acting on the i th particle and TE,i is the electrostatic torque acting on the i th particle. In this paper,
our focus is on the case of spherical particles, and so we do not need to keep track of the particle
orientation. The particle velocities are then used to update the particle positions

dXi
dt

= Ui (7)

Xi|t=0 = Xi,0 (8)

where Xi,0 is the position of the i th particle at time t = 0.

2.1. Formulation of Algorithms

2.1.1. Point-Dipole and Maxwell Stress Tensor Approaches

In the PD approximation, the electric force acting on a particle is obtained by computing the
net particle-particle interaction force and adding it to the dielectrophoretic force. The time averaged
dielectrophoretic force in an AC electric field is [2,14]

FDEP = 2πa3ε0εcβ∇E2 (9)

where a is the particle radius, εc is the dielectric constant of the fluid, ε0 = 8.8542 × 10−12 F/m is the
permittivity of free space and E is the RMS (root mean square) value of the electric field. Equation (9)
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is also valid for a DC electric field, in which case E is simply the electric field intensity. The coefficient
β(ω) is the real part of the frequency-dependent Clausius-Mossotti factor, given by

β(ω) = Re

(
ε∗p − ε∗c
ε∗p + 2ε∗c

)
(10)

where ε∗p and ε∗c are the frequency dependent complex permittivities of the particle and fluid,
respectively. Here ε∗ = ε − jσ/ω is the complex permittivity, where ε and σ are the permittivity and
conductivity, and j =

√−1. Notice that the value of Clausius-Mossotti factor is between −0.5 and 1.0.
In a non-uniform electric field, the particle-particle interaction force on the i th particle due to the

j th particle is obtained by accounting for the spatial variation of the electric field [33–36]

FD =
12πε0εcβ2a6

r4

(
rij

(
Ei · Ej

)
+

(
rij · Ei

)
Ej +

(
rij · Ej

)
Ei − 5 rij

(
Ei · rij

)(
Ej · rij

))
. (11)

Here rij is the unit vector from the center of i th particle to j th particle and r = |rij|.
We first obtain the electric potential by accounting for the presence of particle:

∇ · (ε∇ϕ) = 0. (12)

The boundary conditions on the particle surface are given by

ϕ1 = ϕ2

εc
∂ϕ1
∂n = εp

∂ϕ2
∂n

(13)

where ϕ1 and ϕ2 are the electric potential in the liquid and particles, respectively. The electric field is
then calculated using the expression

E = −∇φ, (14)

Then the Maxwell stress tensor is computed

σM = εEE − 1
2

ε(E•E)I (15)

The electrostatic force and torque on the i th particle are given by

FE,i =
∫

ΓPi

σM × ni ds (16)

TE,i =
∫

ΓPi

(x − xi)× σM·ni ds (17)

where ni is the unit outer normal on the surface of the i th particles and xi is the center of the i th particle.

2.1.2. Dimensionless Equations and Parameters

Equations (1), (2) and (4) are nondimensionalized by assuming that the characteristic length,
velocity, time, stress, angular velocity and electric field scales are a, U*, a/U*, ηU*/a, U*/a and E0,
respectively. The gradient of the electric field is assumed to scale as E0/L, where L is the distance
between the electrodes, which is taken to be the same as the domain width. The nondimensional
equations for the liquid, after using the same symbols for the dimensionless variables, are:

Re
(

∂u

∂t
+ u · ∇u

)
= −∇p +∇ · σ (18)
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∇ · u = 0 in Ω\P(t) (19)

where σ is the dimensionless extra stress. If the PD approximation is used for evaluating the
electrostatic force, the dimensionless equations for the particles become

dU

dt
=

6πηa2

mU∗
∫ (−pI + σ

6π

)
· n ds +

4πa4ε0εcβ|E0|2
mU∗2L

E · ∇E +
3πε0εca3β2|E0|2

4mU∗2
∣∣rij

∣∣4 FD (20)

Ii
dωi
dt

=
∫

(x − xi)× [(−pI + σ) · n] dA + TE,i (21)

In terms of the Maxwell stress tensor, they are:

dU

dt
=

6πηa2

mU∗
∫

(−pI + σ) · nds +
εE2

0a3

mU∗2

∫
σM · nds (22)

dω

dt
=

5ηa2

2mU∗
∫

(x − xi)× (−pI + σ) · nds +
εE2

0a3

mU∗2

∫
(x − xi)× σM · nds. (23)

If the PD approximation is used, the above equations contain the following dimensionless parameters:

Re =
ρLU∗a

η
, P1 =

6πηa2

mU∗ , P2 =
3πε0εcβ2a3

∣∣E0
∣∣2

4mU∗2 , P3 =
4πε0εcβa4

∣∣E0
∣∣2

mU∗2L
, h′ = L

a
. (24)

Here Re is the Reynolds number, which determines the relative importance of the fluid inertia
and viscous forces, P1 is the ratio of the viscous and inertia forces, P2 is the ratio of the electrostatic
particle-particle interaction and inertia forces, and P3 is the ratio of the dielectrophoretic and inertia
forces. Another important parameter, which does not appear directly in the above equations, is the
solids fraction of the particles; the rheological properties of ER (electrorheological) suspensions depend
strongly on the solids fraction.

If the Maxwell stress tensor approach is used, an alternative parameter PE =
εE2

0 a3

mU∗2 which is a
measure of the electrostatic forces is obtained in place of P2 and P3. This parameter is less informative
than parameters P2 and P3, as it does not separately quantify the particle-particle and dielectrophoretic
contributions. In flows for which the applied pressure gradient or the imposed flow velocity is zero,

a characteristic velocity U∗ =
2ε0εc βa2|E0|2

3ηL can be obtained by assuming that the dielectrophoretic
force and the viscous drag terms balance each other. For our simulation results, U∗ is the maximum
particle velocity.

In order to investigate the relative importance of the electrostatic particle-particle and
dielectrophoretic forces, another parameter is defined:

P4 =
P2

P3
=

3βL
16a

(25)

Equation (25) implies that if β = O(1) and L >> a, and so P4 > 1, the particle-particle interaction
forces will dominate, which is the case in most applications of dielectrophoresis. On the other hand, if
β << O(1) and L

a ∼ O(1), and thus P4 < 1, then the dielectrophoretic force dominates. The latter is the
case for the larger sized particles considered in our simulations.

2.2. Finite Element Method

The computational scheme uses a distributed Lagrange multiplier method (DLM) for simulating
the motion of rigid particles suspended in a Newtonian fluid [26,27]. In our implementation of the
scheme, the fluid-particle system is treated implicitly using a combined weak formulation in which the
forces and moments between the particles and fluid cancel. The flow inside the particles is forced to be
a rigid body motion by a distribution of Lagrange multipliers. The time integration is performed using
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the Marchuk-Yanenko operator-splitting technique which is first-order accurate [19,21,26]. The domain
is discretized using a tetrahedral mesh where the velocity and pressures fields are discretized using
P2-P1 interpolations and the electric potential is discretized using P2 interpolation. The scheme allows
us to decouple its four primary difficulties:

1. The incompressibility condition, and the related unknown pressure, This gives rise to a Stokes-like
problem for the velocity and pressure distributions, which is solved by using a conjugate gradient
method [32,37].

2. The nonlinear advection term. This gives rise to a nonlinear problem for the velocity which is
solved by using a least square conjugate gradient algorithm [32,37].

3. The constraint of rigid-body motion in Ph(t), and the related distributed Lagrange multiplier.
This step is used to obtain the distributed Lagrange multiplier that enforces rigid body motion
inside the particles. This problem is solved by using a conjugate gradient method described
in Reference [32,37]. In our implementation of the method we have used an H1 inner product
(see (35)) for obtaining the distributions over the particles, as the discretized velocity is in H1.

4. The equation for the electric potential. It is solved independently as it is not directly coupled with
the momentum and mass conservation equations. Then the electric force is obtained using the
Maxwell stress tensor approach [18,20].

2.3. Simulation Domains and Parameters

To test our finite element code, we conducted direct numerical simulations of the motions of
two spherical particles in three-dimensional rectangular channels in which the electric field was
non-uniform. In one of the domains, two electrodes were placed in one of the sides of the channel and
in the second domain the electrodes were mounted on four walls of the channel.

In the first domain, as shown in Figures 2 and 3, two equally-spaced electrodes are embedded in
the left wall parallel to the yz-plane. The electrodes are mounted in the middle of the wall such that
they are equidistant from the domain centerline. Notice that the electrodes cover only a fraction of the
wall area and so the electric field they generate in the domain is non-uniform. We also assume that the
electrodes are mounted inside the walls so that they do not affect the fluid boundary conditions on the
surface. The width of the electrodes in the y-direction is equal to the domain width which ensures that
the electric field does not vary in the y-direction.

(a) (b) 

Figure 2. Electric field on the domain midplane (y = 0.25). (a) Isovalues of log|E|. The magnitude
of |E| is maximal near the electrode edges. (b) Magnitude and direction of ∇E2. The magnitude is
shown by isovalues of |∇E2| and the direction by arrows (the direction of positive DEP force is in this
direction and of the negative DEP force in the opposite direction).
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Figure 3. The DEP force induced the motion of two particles in the xz-plane for εp = 1.2.
(a) The diameter of particles is 0.2. The initial positions of the two particles, shown by red circles,
are (0.2, 0.25, 0.88) and (0.5, 0.25, 0.88). The final positions are shown using blue circles. Notice that, for
clarity, the circles used to show the particles are smaller than the actual particle size. (b) Isovalues of
log|E|; the particles are at their initial positions. Notice that the electric field is modified from that in
Figure 1 because of the presence of particles. (c) Magnitude and direction of ∇E2; the particles are at
(0.11, 0.25, 0.6) and (0.23, 0.25, 0.6). Notice that the direction of the DEP force is no longer symmetric
about the domain midplane. (d) The diameter of particles is 0.05. The initial positions of the particles,
shown by red circles, are (0.2, 0.25, 0.88) and (0.5, 0.25, 0.88). The final positions are shown using blue
circles. Notice that in this case both particles collected at the upper electrode.

In the second domain, as shown in Figure 4, there are four electrodes mounted in the four side
walls parallel to the yz- and xy-planes. The electrodes are mounted in the middle of the side walls and
their depth is equal to the channel depth. The width of the electrodes is one and half the width of the
domain sides. This domain can be used to capture a negatively polarized particle at its center and so it
is referred to as the dielectrophorectic cage configuration.
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Figure 4. The x-coordinate of the first particle as a function of time for two different mesh resolutions
and three different time-step sizes.

In this paper, we will assume that the fluid density ρL = 1.0 g/cm3 and that the particles
are neutrally buoyant. The fluid viscosity is η = 0.01 g/(cm·s), and both particles and fluid are
non-conducting. The normalized dielectric constant of particles in our simulations is varied and that
of the fluid is fixed at one. We will also assume that all of the dimensions reported in this paper are in
mm and the time is in seconds. In our simulations, the initial fluid and particle velocities are assumed
to be zero. At the domain walls the fluid velocity is assumed to be zero.

As shown in Figure 2, the dimensions of the computational domains in the x-, y- and z-directions
are L, L/2 and L, respectively. All lengths are nondimensionalized by dividing by L. The particle
radius and the distance between the particles are additional characteristic length scales in this problem.
Note that the particle dielectric constant has been normalized with respect to the ambient liquid.
Thus, a particle with εp > 1 is positively polarized and if εp < 1 the particle is negatively polarized.
The radius of the circles used to represent particles is smaller than the actual particle radius.

3. Results and Discussion

3.1. Domain with the Electrodes Mounted in a Side Wall

The magnitude of the electric field distribution (|E|) on the xz-plane passing through the center
of the domain is shown in Figure 2. The field is calculated for the case when the particles are not
present and so the dielectric constant does not vary in the domain. Notice that the electric field
distribution inside the channel is non-uniform and that the magnitude of |E| is maximum near the
electrode edges and decreases with increasing distance from the electrodes. As discussed earlier in
the paper, when particles are placed in a non-uniform electric field they are subjected to both the
particle-particle interaction forces and the dielectrophoretic forces. Thus, their transient motions
depend on the magnitudes and directions of E and E·∇E, and also on the particles positions relative to
the electric field direction.

Figure 2b shows that the gradient lines of the electric field magnitude (∇E2) point toward the
electrodes, i.e., in the direction normal to the isovalues of |E|. Therefore, the DEP force on a particle
with a dielectric constant greater than that of the suspending liquid is directed towards the electrodes;
which is in the same direction as the lines of gradient of the electric field magnitude, as indicated by
the arrows in Figure 2b. If the dielectric constant of the particle is smaller than that of the liquid, the
DEP force is away from the electrodes.
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3.2. Motion of Two Particles and Convergence Study

We next describe the transient motion of the two particles in the above non-uniform electric
field and analyze the influence of the dipole-dipole and DEP forces. The dimensionless diameter
of the particles in Figure 3a is 0.2. The initial positions of the particles are (0.2, 0.25, 0.88) and (0.5,
0.25, 0.88). The dimensionless parameters for the case presented are: Re = 0.652, PE = 74.7, and
P4 = 0.117. Figure 3 shows the positions of the particles. The positions of the particles are shown at
fixed time-intervals and the arrows show the direction of their motion. To track the movement of each
particle, we use RYGB color-coding, with red showing the starting position and blue showing the final
position. Initially, the particles moved closer because of the particle-particle interaction force, while
moving toward the nearest electrode under the action of the dielectrophoretic forces. The particle on
the left reached the electrode wall faster, as shown by the yellow circles, as the DEP force acting on it is
greater than the particle-particle force because it is close to the upper electrode and the gradient of
electric field is larger near the electrodes. The dielectrophoretic force increases as the distance between
the particles and the electrode decreases, and the particle-particle force becomes relatively less in
magnitude. The left particle is thus collected at the electrode much more quickly. The second set of
particles initially moved slowly as the dielectrophoretic force acting on it was smaller, but its speed
increased as it moved closer to the electrode. Notice that the electric field intensity and the magnitude
and direction of ∇E2 are modified by the particles (Figure 3c,d). The DEP force lines are no longer
symmetric about the domain midplane, and the DEP force on the right particle is towards the lower
electrode. The right particle, therefore, collected at the lower electrode. The particle-particle interaction
force in this case is weaker than the DEP force which is expected since P4 = 0.117. In Figure 3d, we
present the results for the case where the particle diameter is 0.05, and P4 = 0.468. Notice that in this
case both particles collected at the upper electrode. This is due to the fact that the DEP force in this
case is not stronger than the particle-particle force since the particle size is smaller.

Convergence Study

A convergence study is conducted to show that the numerical results obtained using the MST
method converge when the time-step size is reduced and when the mesh is refined. To show
convergence with the mesh refinement, we performed simulation on two mesh sizes. The first
contained 139,425 nodes and the second 269,001 nodes. The times-step size used for these simulations
is 1.0 × 10−4 s. To show convergence with the time-step size, simulations were performed for the
time-step sizes of 2 × 10−4 s, and 1 × 10−4 s and 0.5 × 10−4 s. The number of nodes in these simulations
is 139,425.

Figure 4 shows the x-position of the first particle as a function of time for two different mesh
resolutions and three different time-step sizes. The figure shows that the trajectory of the particle
remains virtually unchanged when the time step is reduced and also the mesh is refined. We may,
therefore, conclude that the numerical results are converged and so are independent of the mesh
refinement and the time step used.

3.3. Motion in a Dielectrophoretic Cage

As noted earlier, a dielectrophoretic cage is formed by placing electrodes in the four sides of a
square-shaped domain as shown in Figure 5. The same voltage is applied to the opposite sides and the
voltage applied to the adjacent sides is of the opposite sign. This device is of practical interest because
it provides a way to trap one or more particles at the center of the device in a contactless fashion.
The magnitude of the electric field (|E|) on the xz-plane passing through the middle of the domain
is shown in Figure 5. Notice that there is a local minimum of |E| at the center of the domain, and
that the field magnitude near the center increases with increasing distance from the center. The figure
also shows that the electric field inside the cage is non-uniform, and that its gradient near the domain
center is non-zero, except at the center itself where it is zero. Thus, the DEP force acting on a particle at
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the center is zero. The gradient of electric field magnitude points radially outward from the center and
towards the electrodes (see Figure 5b). Therefore, if the dielectric constant of a particle is smaller than
that of the liquid, the DEP force on the particle near the center will be towards the center, i.e., in the
direction opposite to the gradient lines of the electric field magnitude. This implies that if the particle
drifts away from the center, a restoring force acts on it which brings it back to the center. On the other
hand, if the dielectric constant of the particle is greater than that of the liquid, the direction of the
electric force is away from the center and so the particle moves away from the center and is carried to
an electrode edge.

We next consider the motion of two particles in a dielectrophoretic cage, under the influence
of positive and negative dielectrophoresis. For positive dielectrophoresis, εp > εc = 1, and so the
DEP force is in the direction of the force lines shown in Figure 5b, and for negative dielectrophoresis,
εp < εc = 1, the DEP force is in the direction of the force lines shown in Figure 4b.

 

Figure 5. Electric field (log|E|) and ∇E2 distributions in a DEP cage. The dimensionless parameters
are: Re = 0.113, PE = 3080, and P4 = 0.668. (a) Isovalues of log|E| at y = 0.25, i.e., the domain mid-plane.
Electric field does not vary in the y-direction. The magnitude of |E| is maximal near the electrode
edges and decreases with increasing distance from the electrodes. The minimum of |E| is at the center.
(b) The magnitude and direction of ∇E2 to which the DEP force is proportional. Arrows indicate the
direction of positive DEP force (for negative DEP, the direction is the opposite) and the isovalues levels
give the magnitude.

3.3.1. Positive Dielectrophoresis
(
εp = 1.2

)
We first consider the case of positive dielectrophoresis, and so the dielectric constant of the

particles (εp = 1.2) is assumed to be greater than that of the suspending fluid εc = 1.0. Figure 6 shows
the positions of two particles for four different initial positions. The particles position at selected times
are shown using a color-coded RYGB scheme, with red showing the starting position and blue showing
the final position. The figure shows that the two particles are collected at a nearby electrode in all
four cases.

27



Fluids 2018, 3, 52

 

Figure 6. The DEP force-induced motion of two particles in the xz-plane under positive
dielectrophoresis. The diameter of particles is 0.2. The initial positions of the two particles, shown by
red circles, are: (a) (0.2, 0.25, 0.65) and (0.8, 0.25, 0.65); (b) (0.25, 0.25, 0.2) and (0.5, 0.25, 0.65); (c) (0.25,
0.25, 0.50) and (0.5, 0.25, 0.50); (d) (0.75, 0.25, 0.50) and (0.50, 0.25, 0.50). The dimensionless parameters
are: Re = 0.652, PE = 74.7, and P4 = 0.117.

Notice that in most cases particles are collected at the electrode edge that is nearest to them.
However, a particle near the domain center can be pulled away from the nearest electrode by the
particle-particle interaction force so that it is collected at an electrode edge that is farther away.
For instance, in Figure 6c,d the final position of the particle at the center of the domain is determined
by the initial position of the second particle which is near the center. The particle at the center is
not subjected to a DEP force because the gradient of the electric field at the center is zero, and so if
the second particle was not present it would remain at the center. In Figure 6c,d, the second particle
pulls the particle at the center in its direction, and after it moves away from the center the DEP force
also starts to act, and the DEP and particle-particles forces collectively determine its subsequent
trajectory. The particle which was initially at the center is collected at the upper electrode because the
particle-particle force in this case is smaller than the DEP force; P4 = 0.117. The presence of particles
modifies the DEP force lines, as was the case in Figure 3, and the DEP force drives the particle to the
upper electrode. As discussed in Section 3.2, when the distance between the electrodes is comparable to
the particle size, the tendency to form chains is weaker, especially near the electrodes, and so particles
move individually.
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These results are similar to the results in Reference [35] where the parameter P4 was reduced by
reducing β (which was varied independently by changing the frequency). Specifically, it was shown
that since the particle-particle interaction force depends on the second power of β, and therefore
becomes negligible compared to the DEP force, which itself depends linearly on β when β is small.
This diminished the role of particle-particle interaction forces and, as a result, yeast particles moved
individually, without forming chains, because of the DEP force. Here, on the other hand, the parameter
P4 has been reduced by increasing the particle size.

3.3.2. Negative Dielectrophoresis
(
εp = 0.2

)
In this subsection, we consider the case where the dielectric constant of the particles (εp = 0.2) is

smaller than that of the suspending fluid εc = 1.0 and so particles undergo negative dielectrophoresis.
For the four test cases shown in Figure 7, all other parameters including the domain size and the initial
positions of the particles, are the same as for the case of the positive dielectrophoresis described in the
previous subsection.

Figure 7. The DEP force-induced motion of two particles in the xz-plane under negative dielectrophoresis.
The diameter of particles is 0.1. The initial positions of the particles, shown by red circles, are: (a) (0.2,
0.25, 0.65) and (0.8, 0.25, 0.65); (b) (0.25, 0.25, 0.2) and (0.5, 0.25, 0.65); (c) (0.25, 0.25, 0.50) and (0.5,
0.25, 0.50; (d) (0.75, 0.25, 0.50) and (0.50, 0.25, 0.50). The dimensionless parameters are: Re = 0.0562,
PE = 1670, and P4 = 0.682.
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From Figure 7, we note that in all four cases the particles moved towards the domain center where
the electric field magnitude is locally minimal (see Figure 5a). This also shows that the particle pair is
stable at the domain center and that if the position is perturbed away from the center a restoring force
acts which brings it back to the center. Thus, a dielectrophoretic cage can be used to position and hold
negatively polarized particles at its center. Also, notice that the particles’ motion was in the opposite
direction to the gradient line of the electric field magnitude (∇E2) as shown in Figure 4b. In fact,
even after they are collected at the domain center, the particles maintained their orientations parallel
to the gradient line along which they traveled. At the center, the gradient lines of (∇E2) emanate
approximately radially outward, and so the particle pair is not subjected to a torque and its final
orientation depends only on the initial orientation. Also, note that if a particle at the center is rotated, it
is not subjected to a restoring torque and so it does not come back to its original orientation. The DEP
force can only bring and hold circular particles at its center but cannot keep their orientations fixed.

3.4. Comparison with the Point-Dipole Approach

Finally, we compare the trajectory of a single particle in a DEP cage obtained using the MST
method with that obtained using the point dipole (PD) method. We remind the reader that the PD
method assumes that the presence of a particle does not alter the electric field and that the electric force
on the particle can be obtained by using the value of ∇E2 at its center. However, this is not the case for
the results presented in Figures 5a and 8 which show that the isovalues of log|E| are altered by the
presence of a particle, and so the electric force given by the two methods is different. The difference
between the forces given by the two methods is greater when the particle size is comparable to the
length scale over which the electric field varies and the dielectric mismatch is larger.

In Figure 9, the particle trajectory and velocity computed using the two methods are shown as a
function of time. The particle moves from its initial position (0.35, 0.25, 0.40) near the diagonal of the
DEP cage to the bottom edge of the left electrode. Notice that although the final position given by the
two force methods are approximately the same, the computed trajectories are different. For the point
dipole method, the time taken to reach the equilibrium position was 0.15 s and for the MST method it
was 0.13 s, implying that the point dipole method underestimates the electric force. This is consistent
with the results reported in Reference [18], where the force acting on a fixed particle was computed
using the MST and point dipole methods, i.e., the fluid and particle were not moving. It was noted that
along the cage diagonal the PD method underestimates the force, and that the difference is larger when
the particle size is larger. However, the PD method overestimates the force if the particle is displaced
along the x- or y-direction from the center (also see [22]).

 

Figure 8. Isovalues of log|E| at the domain mid-plane, y = 0.25, with a particle present (a = 0.05 and
εp = 1.5). The dimensionless parameters are: Re = 0.113, PE = 3080, and P4 = 0.668.
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Figure 9. The z-components of particle position (z) and velocity (w) for the PD and MST methods are
shown as functions of time. a = 0.05 and εp = 1.5 and the initial particle position is (0.35, 0.25, 0.40).
(a) z and (b) w. The dimensionless parameters are: Re = 0.113, PE = 3080, and P4 = 0.668.

In Figures 10 and 11, the particle positions and velocities obtained using the PD and MST methods
are compared for the cases where the two particles are released away from their equilibrium positions
in the cage. In Figure 10, the particles collected at an electrode edge where the magnitude of the electric
field gradient is maximal. Notice that the final particle positions are slightly different for the two
methods. This is due to the fact that the PD method does not account for the electric field modification
caused by the presence of particles. Also, since the electric field gradient near the electrodes is larger,
the differences in the trajectories for the two methods become larger as the particles move closer to
the electrodes.

In Figure 11, the differences in the trajectories obtained using the PD and MST methods are
relatively smaller. In this case, the particles undergo negative dielectrophoresis and move closer to the
cage center where the magnitude of the electric field gradient is smaller (see Figure 8). These results
show that in the regions where the gradient of the electric field intensity is larger or when the particle
radius is comparable to the length scale over which the electric field varies, the difference between the
trajectories obtained for the MST and the point-dipole methods is larger.
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Figure 10. The z-components of the second particle position (z) and velocity (w) for the PD and MST
methods are shown as functions of time. a = 0.1 and εp = 1.5. The initial positions of the particles
are (0.25, 0.25, 0.75) and (0.75, 0.25, 0.75). (a) z, (b) w. The dimensionless parameters are the same as
in Figure 5.

Figure 11. The z-components of the second particle position (z) and velocity (w) for the PD and MST
methods are shown as functions of time. a = 0.1 and εp = 0.7. The initial positions for the particles
are (0.25, 0.25, 0.75) and (0.75, 0.25, 0.75). (a) z, (b) w. The dimensionless parameters are the same as
in Figure 6.

4. Conclusions

A finite element scheme based on the distributed Lagrange multiplier method is used to study the
dynamical behavior of particles in a dielectrophoretic cage. The Maxwell stress tensor method is used
for computing the electric forces acting on the particles, and the Marchuk-Yanenko operator-splitting
technique is used to discretize in time. It is shown that a dielectrophoretic cage can be used to trap
and hold negatively polarized particles at its center. If the particle moves away from the center of the
cage, a resorting force acts on the particle towards the center. The cage also allows two particles to be
trapped simultaneously at the center. The orientation of a trapped particle pair at the center depends
on the initial positions of the particles, and in this sense, the pair orientation at the center is not fixed.
Positively polarized particles, on the other hand, are trapped at the electrode edges depending on their
initial locations. The particle trajectories obtained using the MST and point-dipole methods differ, but
the final steady positions of the particles are approximately the same. The ratio of the particle-particle
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interaction and dielectrophoretic forces, P4, decreases with increasing particle size which diminishes
the tendency of particles to form chains, especially when they are close to the electrodes. Also, when
the spacing between the electrodes is comparable to the particle size, instead of forming chains on the
same electrode, particles collect at different electrodes. This is a consequence of the modification of the
electric field due to the presence of particles, which is greater for larger particles.
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Abstract: The rising of a Newtonian oil drop in a non-Newtonian viscous solution is studied
experimentally. In this case, the shape of the ascending drop is strongly affected by the viscoelastic
and shear-thinning properties of the surrounding liquid. We found that the so-called velocity
discontinuity phenomena is observed for drops larger than a certain critical size. Beyond the critical
velocity, the formation of a long tail is observed, from which small droplets are continuously emitted.
We determined that the fragmentation of the tail results mainly from the effect of capillary effects.
We explore the idea of using this configuration as a new encapsulation technique, where the size and
frequency of droplets are directly related to the volume of the main rising drop, for the particular
pair of fluids used. These experimental results could lead to other investigations, which could help to
predict the droplet formation process by tuning the two fluids’ properties, and adjusting only the
volume of the main drop.

Keywords: drop; cusp instability; encapsulation

1. Introduction

The problem of encapsulating droplets of fluid has important implications in the fields of
bioengineering and medical research, for instance to encapsulate cells [1]. With the development of
microfluidics and lab-on-chip technology to perform analysis on different fluids, the dynamics and size
of such droplets have to be well controlled [2–4]. Several techniques have been used to perform such
encapsulation, for instance using a T-junctions device [5,6]. To be able to perform such encapsulation
at a larger scale in a controlled matter still remains to be achieved.

Here, we study a new alternative technique to encapsulate oil drops by using the non-Newtonian
properties of the surrounding liquid. In the case of an object rising or falling in a non-Newtonian
fluid, new and unexpected phenomena appear in comparison with the Newtonian case. The flow
surrounding the object can be highly modified, due to the viscoelastic properties of the fluids [7–13].

It has been observed that when a bubble or a drop moves, as a result of gravity, in a viscoelastic
shear-thinning fluid, a velocity discontinuity phenomenon appears [14–19]. When the bubble or drop
reaches a certain critical size, its terminal speed increases sharply. The sudden increase has not been
understood fully until recently [17]: a combination of effects has to occur simultaneously. First the
viscoelastic nature of the outside liquid induces a change in shape of the drop or bubble, forming a
characteristic cusped shape [14,15,19–21]; resulting from this change of shape, the drag coefficient of
the object is reduced. Consequently, the speed increases, which, given the shear-thinning properties,
will cause the viscosity around the object to decrease, causing an even further rising velocity increase.
This set of features was recently discussed by [17] in detail. Recent numerical simulations have helped
to clarify the connection among these behaviours [22].
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Furthermore, when the velocity discontinuity appears, a negative wake behind the object is also
detected. The flow field behind the bubble reverses direction. This phenomenon was first observed
by [23] and was directly related to the appearance of the velocity discontinuity by [14,19,22].

More interestingly, for the case of a drop, a recent study by [20] found that a long thin tail formed
from the cusp at the rear edge of the drop. This long tail became unstable, fragmenting into small
droplets that were then left behind the main drop. They observed the tail formation and fragmentation
when the external fluid had non-Newtonian properties. Since they conducted experiments with
both Newtonian (as in the present case) and non-Newtonian drops, it was possible to determine that
viscoelastic drops formed much longer and thicker tails than the Newtonian case. It is important to
note that the fragmentation of the tail was not analyzed in detail. This is, in fact, one of the objectives
of the present study. The fragmentation of fluid filaments has been extensively studied in the literature
under different flow conditions [24,25]. For the case of viscoelastic filament, the breakup has been
shown to lead to the formation of bead-on-a-string [26,27]. In most cases, the fragmentation results
from capillary-driven instabilities similar to the Rayleigh–Plateau instability [24,25]. Some studies
have addressed the case of a Newtonian jet flowing from a nozzle in a viscoelastic fluid [28–30].
In those experiments, the jet fragmenting is controlled by the injection flow, while, in the present case,
the filament is created directly by the rising drop.

In this article, we present results on the formation of droplets behind an oil drop (Newtonian)
rising in a water/glycerol-polyacrylamide solution (non-Newtonian). First, we present the experimental
set-up and a characterization of the fluids we used. Then, we present the experimental observations,
and the different regimes of breakup that were observed. Finally, we discuss different aspects of the
droplets formation, by relating the velocity and volume of the main drop, the size of the tail appearing
behind the drop and the size and frequency of formation of the droplets. These results, obtained only
for a single pair of Newtonian/non-Newtonian fluids, could lead to a more extensive investigation
with which this phenomenon could be fully understood.

2. Experimental Set-Up and Test Fluids

The experimental setup consists of a vertical glass column of a height 60 cm (Figure 1). This column
is square based with a side width of 6 cm. This column is wide enough so that wall effects are negligible
on the drop dynamics, as the velocity field decreases rapidly with the distance to the drop. The setup
is filled with a non-Newtonian water-polyacrylamide solution. Alimentary corn oil is injected at the
bottom of the column using a plastic syringe with a volume capacity of 5 mL. The set-up is backlit with
a LED panel. A fast speed camera (SpeedSence, Phantom) films the rising at a frequency of 200 frames
per seconds with a resolution 1632 × 1200 during 10 s. The camera is placed at mid height of the
column and films a zone of about 12 cm high. At this point, the drop moves at its terminal speed.
The scale ratio of the images is of 110 pixels per centimeter, and we measure the diameter, height and
position of the drop with a precision of about two pixels, so the error is estimated to be smaller than
5 percent for the drop velocity and volume (see Section 3). The error bars have been reported on the
different figures.

The properties of the two fluids used are presented in Figure 2a. The drop consists in an alimentary
corn oil, characterized as Newtonian. For the surrounding fluid, we used a solution composed
of a 49.75% weight solution of water and glycerol each and 0.5% of industrial polyacrylamide
(PAAM, Separan) which are long chains of polymer. This high concentration ensures that the
non-Newtonian behaviour of the fluid will be important (shear-thinning and viscoelasticity).
The density was measured using a flask with a precise volume of 25 mL, which was filled with
the different fluids and weighed.

Both fluids were characterized using a rheometer (HR, TA Instruments), and we performed two
types of tests. We used a plane–plane geometry with a gap of 1 mm, at a fixed temperature of 25 ◦C
and we measured the viscosity, varying the shear-rate. The shear rate γ̇ is varied from 0.01 to 100 s−1

for the polymer solution and from 0.1 to 100 s−1 for the oil with five points per decade (for the oil,
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the rheometer does not have sufficient accuracy for γ̇ < 0.01 s−1 because of the low viscosity), with an
averaging time of 30 s for each point, and with back and forth variation for reproducibility (going from
low shear rate to high, and then reverse). The results are presented in Figure 2b. We observe that
the corn oil is Newtonian, with a viscosity ηoil ≈ 0.06 Pa.s. The non-Newtonian fluid, shows a
shear-thinning behaviour, as the viscosity ηPAAM (red squares) decreases with the shear rate γ̇. In our
case, the shear-rates when the drop ascends in a range between γ̇ = 0.22 s−1 and γ̇ = 0.42 s−1. In this
zone, the viscosity follows a power law: η = Kγ̇n−1, where n = 0.87 and K = 1.10 as represented
in Figure 2b. This type of decrease is typical for polyacryalimde solutions [31,32]. This exponent n
being close to 1 (Newtonian behaviour for n = 1) indicates that the shear-thinning is insignificant in
our experiment. The important decrease in viscosity η will appear for shear-rates γ̇ higher than those
relevant here.

For the non-Newtonian solution, an oscillatory test was also performed. A deformation of 3%
was imposed, and the frequency of oscillation ω was varied from 0.06 to 100 rad·s−1 during two
periods for each point. With these measurements, the elastic G′ (empty symbols) and viscous modulus
G′′ (filled symbols) are obtained. We observe a viscoelastic behaviour, where the elastic property is
dominant at a low shear rate. This is in agreement with what has already been observed for such
polymer solutions [32]. The relaxation time can be approximated as the time where the two moduli
are equal and represents the typical time where the non-Newtonian fluid goes from an elastic solid
behaviour to a viscous fluid. This is represented in Figure 2c as ωr = 25 rad·s−1, and we estimate the
relaxation time τr = 2π/ωr = 0.25 s.

Figure 1. Scheme of the experimental set-up. In a vertical glass column with a square base of 6 cm side
width and a height of 60 cm, we place a non-Newtonian fluid. An oil drop is injected at the bottom of
the column using a plastic syringe. The images are recorded using a fast speed camera (200 fps), and
the set-up is backlit using a LED panel. Behind the drop, we observe formation of droplets.
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Figure 2. (a) table compiling the properties of the two fluids used. Since the oil drop has a lower density
and a Newtonian behaviour, it will rise in the surrounding fluid consisting of a water-polyacrylamide
solution, which is denser and has shear-thinning and viscoelastic properties; (b) measured viscosity η as
a function of the shear-rate γ̇ for the two fluids used. The diamonds represent the oil drop (Newtonian),
the squares the polyacrylamide solution (Shear-thinning). γ̇exp is the shear-rate range in our experiment
and the dashed line corresponds to the power-law fit; (c) elastic modulus G’ (full squares) and viscous
modulus G” (empty squares) as a function of the oscillation frequency for the polyacrylamide solution.
A viscoelastic behaviour is clearly observed. The relaxation frequency ωr, is estimated when the two
moduli are the closest. In (b,c), the measurements are performed both increasing and decreasing the
shear-rate/oscillation frequency.

3. Experimental Observations: Different Regimes

The experiment is performed by injecting oil at the bottom of the fluid column, using a plastic
syringe. The oil volume V is not measured a priori, instead it is estimated by image analysis,
considering that, for small drops, the volume corresponds to the one of a sphere of diameter
D:V = πD3/6 (Figure 3a), and, for the bigger ones, it is the sum of a cone of height H and a
hemisphere of diameter D:V = πD2H/12 + πD3/12 (Figure 3b–e). To ensure good statistics, we
reproduce the experiment 50 times varying the volume V from 0.01 to 0.47 mL. We detect the position
of the front of the drop to determine its velocity. Figure 4a presents the evolution of the vertical
position z of the front of the drop as a function of time t for a drop of volume V = 0.36 mL. For all
drops, we observe that the vertical position is linear in time t; the rising velocity U is computed
by a simple linear regression. Figure 4b shows the rising velocity U of the drop as a function of its
volume V. The rising velocity increases slowly with the volume until it reaches a critical volume
(Vc = 0.13 mL). At this volume, a small velocity jump is observed, which has already been reported
in literature as the velocity discontinuity [14–18,22]. This appears for bubbles and drops rising in a
viscoelastic surrounding fluid, and is directly linked with the appearance of a negative wake behind
the bubble/drop. Above the critical volume Vc, the rising velocity U increases more rapidly with the
volume V. Considering the non-Newtonian properties of the surrounding fluid (shear-thinning and
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viscoelastic), it is not possible to predict the shape of the curve over this critical volume, but many
other experimental examples have reported similar behaviour for drops or bubbles [14,20,21,23].

Figure 3. Different regimes observed: (a) before the tail appears; (b) at the critical volume Vc = 0.13 mL,
where the tail appearance is. We can see very small droplets appearing behind the tail of the main drop;
(c–e) instability for different volumes. We can observe that the tail length L, the width of the tail w,
the distance between two droplets λ and the droplets diameter d increases with the volume. Those are
defined in (e) and this will be discussed in detail in Section 4.

In terms of dimensionless numbers, it is common to use the Reynolds number Re and the Deborah
number De. The Reynolds number compares the inertial forces of the flow with the viscous ones:
Re = ρUD/η = ρUD/Kγ̇n−1, where ρ is the density of the surrounding fluid, U the velocity of the
drop, D the diameter of the drop and η the viscosity. In our case, the fluid is shear thinning, so the
viscosity changes with the shear rate. A common way to account for this problem is to define the
shear-rate as the ratio of velocity and diameter of the drop γ̇ = U/D, and to use this in the rheological
measurements using the formula η = Kγ̇n−1 where n = 0.87 and K = 1.10 (see Section 2). We obtain
a modified Reynolds number scaling as Re = U2−nρDn/K (see, for instance, [33]). This gives us a
Reynolds number varying from 5×10−3 to 2.39. This small Reynolds number shows that inertial
effects are small. The Deborah number compares the viscoelastic relaxation time and the observation
time scale: De = τr/τo. We can define the observation time scale as the inverse of the shear rate:
τo = 1/γ̇ = D/U and the relaxation time is defined in Section 2: τr = 2π/ωr = 0.25 s. In our
experiment, we have the Deborah number varying from 5.6 × 10−2 for the largest drops to 10.6 × 10−2

for the smallest ones. This range of values indicates that elastics effects are small but not negligible.
Note that experiments were conducted only with one container size. Since the Reynolds number is
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small, the walls will affect the terminal velocity of the drops. Considering the Faxen series correction
(see Mendoza-Fuentes et al., [34]), the terminal velocity will be smaller by 51% for the case of the
largest drop. Note that the correction is valid only for spherical particles in Newtonian fluids; hence,
we expect the wall effects to be present but to be smaller than this value. Figure 3 shows the different
regimes of the drops as the volumes V increases. First, at small volumes (Figure 3a, the scale is reported
on this image and is the same for all), the drop is spherical and no significant shape alterations are
detected. When the drop reaches the the critical volume Vc (Figure 3b), a tail appears. According to
Ortiz et al. [20] and Zenit and Feng [17], the appearance of the tail coincides with the formation of
a negative wake. This tail will undergo a capillary instability where droplets are produced. At the
critical volume, the tail is very small as are the droplets released. For the rest of the article, we will use
the term droplets for the liquid released behind the tail and drop for the main one. When the volume
is increased (Figure 3c–e), we observe that the tail grows bigger in length L and width w, as well as the
droplets diameter d and the distance between two droplets λ. Those values are defined in Figure 3e.
One important fact to note is that the volume of the original drop V is not constant since it releases
droplets. This will be further discussed in Section 5. Note that secondary smaller droplets appear
for the biggest drops (V/Vc > 1.9, Figure 3e). The formation of such secondary droplets has been
discussed previously for the Newtonian case in [24]. In this article, we will focus only on the main
droplets’ formation.

 t

 z

Figure 4. (a) position of the front of the drop as a function of time. This example corresponds to
Figure 3e. We observe that the rising velocity U stays constant over the 12 cm experiment height;
(b) rising velocity U of the drops, as a function of the volume V. We observe a small velocity jump
at the moment of the tail appearance for a critical volume Vc = 0.13 mL and a critical velocity
Uc = 0.46 cm·s−1.

4. Droplet Formation

4.1. Tail Size

From the images, the size of the tail behind the drop can be readily measured. We can obtain its
width w and its length L, as defined in Figure 3e.

Since we photograph the drop in a terminal condition, we do not observe the initial formation
of the tail. As for the volume of the drop, the length L and width w of the tail might change during
the rising, since droplets are emitted, but, once again, we did not observe a significant reduction of
either the length or the width of the tail over the height of the camera window (12 cm). We measured
the length L and the width w once the tail was fully visible in the images. Figure 5a shows the length
of the tail as a function of the velocity of the drop U. We observe a breakup of the end of the tail
leading to droplets’ emission at a distance going from 0.5 to 3.6 cm from the main drop. This distance
(which corresponds to what we called the tail length L) will vary linearly with the velocity U, with a
slope of 1.5 s (dashed line, Figure 5a). This shows that the length of the tail depends directly on the
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velocity of the drop, via the negative wake. The slope corresponds to the time needed for the drop to
move a distance L.

Figure 5b shows the tail aspect ratio L/w as a function of the drop velocity U. This aspect ratio is
between 10 (for the drop at the transition), up to 50 for the largest drops. This shows that the tail is
very long compared to its width, the width being for the smallest tail of about 0.035 cm to 0.075 cm for
the biggest one. The fact that the curve increases shows that the tail will grow more rapidly with the
velocity U in length L than in width w. We can explain this by the fact that the main driving force for
the length of the tail is the strong non-Newtonian behaviour of the fluid, while the width of the tail is
limited by the capillary length.

Figure 5. (a) tail length L as a function of the velocity of the drop U. We see clearly a critical velocity Uc

where the tails appears (corresponding to a critical volume Vc). The tail length grows linearly with the
speed of the drop (dashed line); (b) tail aspect ratio L/w as a function of the drop velocity V. The tail
has a very elongated shape.

4.2. Emission Period and Wavelength

Figure 6a shows the average time Δte (or emission period) between two droplets emitted, as a
function of the velocity of the drop. Except at the critical velocity Vc, the period of emission of droplets
Δte is roughly constant and has a value contained between 0.2 and 0.3 s. This results from a competition
between the width w of the tail and the velocity U of the drop. For small velocity, the tail is thinner,
so it would tend to break more easily, and, at higher velocity, the drainage of the tail is more rapid,
which also helps the breakup. At the end, the time between the emission of two droplets emitted will
be roughly the same for all velocity.

Figure 6b shows the average distance between two droplets λ, as a function of the velocity of the
drops U. This distance increases importantly with velocity, which is in agreement with the constant
emission period Δte: since the tail velocity is the same as the drop velocity U (stationary regime),
and the emission time between two drops is almost constant; this implies that the distance between
two drops will increase with the velocity of the drop. We have a linear relation between λ and U for
the drops over the critical volume Vc, with a slope of Δte ≈ 0.27 s (dashed line, Figure 6b), which is in
accordance with Figure 6a. We can compute the frequency of emission of the droplets, if we assume
that the velocity is constant during one run, which gives us fe = 1/Δte ≈ 3.7 s−1.
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Figure 6. (a) period of emission Δte of the droplets (average time between two droplets appearance),
as a function of the drop velocity U. Except close to the critical volume, this period seems roughly
constant (dashed line, Δte = 0.27 s), which corresponds at a frequency of emission fe of 3.7 Hz;
(b) wavelength λ (average distance between two droplets), as a function of the drop velocity U.
The dashed line represents the linear adjustment.

4.3. Droplet Size

We also analyzed the size of the droplets created behind the main drop. Once again, we observe
that the size of the droplets is constant over the course of one experiment (for one given drop volume V).
The contrast being better for the droplets than the drop, the uncertainty on the diameter gets to
about one pixel, but it is still important in comparison with the droplet diameter. To reduce the
error, we measure the diameter for 10 different droplets, which decrease significantly the error,
down to an estimated 5 percent. The error bars have been reported on Figure 7. We used the same
method to estimate the width of the tail, measuring the width at different heights and then averaging.
Figure 7a shows the average volume of the droplets Vd as a function of the volume of the main drop V.
The volume of the droplets Vd has been computed assuming that the droplet is a sphere: Vd = πd3/6,
where d is the diameter of the droplets (see Figure 3e). We observe that the volume of the droplets
increases linearly with the volume of the drop. This will be used to calculate the volume loss of the
main drop over time (Section 5.2).

Figure 7. (a) mean volume of the droplets Vd as a function of the volume of the drop V. We observe an
important increase which is coherent with Figure 3. The dashed line represents the linear regression,
which will be used in Section 5; (b) droplet diameter d divided by the tail width w as a function of the
drop velocity U. We observe that, except for the critical case, the diameter of the droplets is always
bigger than the tail width.
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Figure 7b shows the normalized droplet diameter d/w as a function of the velocity of the drop U.
We observe that this ratio increases with the velocity, and, most of all, its value is always larger than
one (except for one point at the transition), which means that the droplets are wider than the tail before
it breaks. This can be explained by a simple mass conservation argument. The volume of oil before
the break corresponds to the volume of a column of width w and height λ (for one wavelength), and
also to the volume of one droplet of diameter d. We can write this volume as Vd = π/4λw2 = πd3/6.
Therefore,

d2

w2 = 3/2
λ

d
. (1)

Considering that the distance of between two droplets is much bigger than the size of the droplet
except at the critical volume (see Figure 3), we have λ/d > 1, and so the diameter of the droplet d will
be bigger than the width of the tail w.

5. Discussion

5.1. Tail Appearance and Breakup

We observe that a tail appears behind the drop for a volume larger than the critical one,
Vc = 0.13 mL. This critical volume corresponds to the appearance of a negative wake behind the
drop. This negative wake has been already studied in various cases, for bubbles [14–16,18,20,21,23],
and for drops [11,17,20]. The main difference between the drop and the bubble case is that the
interfacial tension between the air and the liquid is larger than that for two liquids. The bubble shape
will then remain the same over the course of the experiment, while in the case of a drop, this interface
is more deformable, and the tail will be able to grow due to the negative wake [20]. This negative
wake will be more important as the velocity U increases, and the width of the tail w will also increase.
The tail will then grow to a length L, where it will break up into small droplets. The size of these
droplets is controlled by their emission frequency fe, or its corresponding wave length, λ.

This breakup is similar to the Rayleigh–Plateau instability which arises from capillary
effects [24,25]. The temporal evolution of this rupture, which fixes the length of the tail L, is hard to
predict, as it takes into account the velocity of the fluid inside the tail. We do not have access to this
velocity (it would require Particle Image Velocimetry (PIV) in the oil phase), and it is hard to predict
it since it results from the negative wake. The fact that the length L increases with the velocity U is
not trivial, but we can assume that the breakup occurs when the oil at the tip of the tail has a zero
velocity. This would be in agreement with the negative wake increasing with the velocity of the drop.
One way to describe such type of instabilities is to look at the capillary number and capillary length.
The capillary number is the ratio between the capillary and the viscous forces: Ca = ηU′/σ, where σ

is the interfacial tension between the two fluids. In this case, U′ is the speed of the droplets and not
the velocity of the drop, but since we are in a stationary regime, we have U′ = U. Since we have a
proportionality between the wavelength λ, and the velocity U = U′, and the shear-thinning behaviour
is small, we have a direct proportionality between the capillary number Ca and the wavelength λ:

λ = ΔteU′ = k · Ca, (2)

where k = Δteσ/η is a constant coefficient with the dimension of a length. An important difficulty is to
determine the interfacial tension σ between the two phases. In the literature, the corn oil surface tension
is reported to be σoil ≈ 33.5 mN/m [35] and for the polyacrylamide solution σPAAM ≈ 75 mN/m [36].
At the first order, Antonoff’s rule gives the interfacial tension between the two phases σ = |σPAAM −
σoil | ≈ 41.5 mN/m. By considering that η ≈ 0.9 Pa.s, we obtain that k ≈ 1.24 cm. The capillary length
can be defined as lc =

√
σ/Δρg ≈ 1.29 cm, where Δρ is the density difference between the two fluids,

and g is the gravitational acceleration. Therefore, k ≈ lc, which is consistent with the assumption
that, indeed, the breakup of the tail results from capillary instability. This scaling relies on important
assumptions, notably on the value of the interfacial tension. In addition, it does not take into account
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the viscoelastic properties of the surrounding fluid. Nevertheless, these scaling arguments indicate
that indeed the tail is fragmenting mainly as a result of capillary instability and the viscoelastic effects
are secondary.

5.2. Volume Loss

It is important to evaluate the role of volume change for the main drop, resulting from the droplets
emitted at the tail. In all cases, we assumed that the drop volume V was constant. This assumption is
supported by two facts. First, in Figure 4a, the bubble rises at a constant velocity, which would not
have been the case if the volume had varied significantly. Secondly, Figure 7a show that the volume
of the droplets Vd remains smaller than 0.65 percent of the main drop volume, for the largest drops.
In this case, only 20 droplets are emitted over the experiment, which makes (in the worst case scenario)
a volume loss around 13 percent of the initial drop volume.

A simple model is proposed to predict the volume of the droplets in an infinitely long liquid
column. First, by using the linear regression in Figure 7a, we can predict the volume of a droplet
knowing the volume of the main drop. Then, assuming that the emission frequency of droplets
is constant fe = 3.7 s−1 (Figure 6a), we can write the following differential equation for the
volume change:

dV
dt

= − feVd = − fe(α · V + β), (3)

where α = 9.2 × 10−3 and β = −1.2 × 10−3 mL are the slope and intercept of the dashed line in
Figure 7a. Integrating, we obtain

V(t) = V0exp(− fe · α · t) +
β

α
(exp(− fe · α · t)− 1), (4)

where V0 is the initial drop volume (taken to be 0.5 mL). This expression, if used carelessly, will predict
a negative volume value for long times; however, one must consider that the droplets will no longer be
emitted once the volume V(t) reaches the critical volume (Vc = 0.13 mL). The drop will then rise with
a constant volume Vc and a constant velocity Uc ≈ 0.46 cm·s−1. Figure 8a shows the volume evolution
V(t) as a function of time t. The critical volume Vc is reached at a time tc = 26 s.

We can use a linear regression between the volume and the velocity over the critical volume in
Figure 4b which gives U(t) = 7.6V(t)− 0.52. Figure 8b shows the velocity of the drop U, as a function
of time t, the velocity decreases from 3.3 cm·s−1 to Uc = 0.46 cm·s−1. This is clearly only a first order
approximation, since the relation between the volume and velocity is most likely nonlinear. It allows
us to continue the integration. We can then compute the position z(t) of the drop as a function of
time as:

z(t) =
∫ t

0
Udt′ =

∫ t

0
(7.6V(t)− 0.52)dt′. (5)

For simplicity, we will not write down this integral (it implies exponential integrals). Figure 8c
shows the position of the droplets emitted zd, as a function of time t. The droplets are emitted
every Δte = 0.27 s, and the marker size is proportional to the volume of the droplets. The drop
will reach its critical volume at a position zc = 43.4 cm, and then will rise at its constant velocity,
without emitting new droplets. The volume of the droplets emitted will vary from Vd = 0.0034 mL
at the beginning, and will tend to 0 when we approach the critical volume. We must emphasize
that the calculation above is only valid for the two-fluid combination considered here. However, the
same general behaviour is expected for a Newtonian/non-Newtonian combination. Clearly, more
experiments are needed to extend the parametric range of validity. This simple model gives us an
order of magnitude of what should be expected in terms of time tc and height zc for the bubble to reach
its critical volume Vc. This is in agreement with what was shown before: tc is much bigger than the
time of our experiment (10 s), and zc is also much bigger than the 12 cm where we observed the rise,
so the model holds some consistency. This simple model could lead to some applications. For instance,
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we could imagine a device where one would like to encapsulate oil droplets (containing another
substance to analyze or to use as a reactant for example) with droplets varying in size. With this simple
two-fluid configuration, and by choosing well both fluids (which would require more experiments
and more general understanding), one could construct such device, which would be very easy to
use since the only input would be the volume of the main drop. Since the emitted droplets would
be small, their rising velocity would be small too. Hence, their capture would be relatively simple.
Additionally, one could use a surrounding yield-stress viscoelastic fluid, so that the encapsulated
droplets would be completely trapped and then easily manipulated.

 t

 V

 t

 U

 t

 z
d

Figure 8. (a) evolution of the volume V as a function of time t. The critical volume Vc = 0.13 mL is
reached after a time tc = 28.5 s; (b) velocity of the droplet U as a function of time t; (c) velocity of the
droplet U as a function of time t; (c) position of the droplets zd as a function of time t. The size of the
markers represents the volume of each droplet.

6. Conclusions and Perspectives

In this article, we investigated the instability occurring at the tail of a Newtonian drop rising in a
viscoelastic fluid. We observe that this leads to the formation of small droplets, which are controlled
in size by the velocity of the drop, which in turn depends on its volume. It is interesting to note that
such behaviour (cusp and tail formation with fragmentation) had not been discussed previously in
this combined manner. In this article, we use the results of a very particular case where the rising drop
presents a velocity discontinuity and a negative wake (corn oil in a polyacrylamide solution), so the
physical properties of the fluids are fixed. We described the appearance of a tail resulting from the
negative wake over a critical volume and its breakup due to capillary forces. This limits our results
to the ranges of Reynolds and Deborah number we used. To provide a more general understanding,
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more experiments are needed, by changing both fluids. A number of open questions remain, notably
on the role of the viscosity ratio between both fluids, the interfacial tension, the quantitative role of
the surrounding fluid elasticity, for both the tail formation and the breakup, as well as the role of
elongational rheology (since we are dealing with polymer solutions). An exhaustive study would
require a very important number of experiments, since changing fluids will influence all the properties
at once (density, viscosity, elasticity, critical volume, etc.). We plan to pursue such experiments in the
future. Finally, we proposed a simple model, based on the volume of the emitted droplets, that could
have some application to encapsulate droplets with varying size, with just one input: the volume of
the main drop.
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Abstract: In this work, a systematic investigation of the migration of sedimenting particles in
a viscoelastic Couette flow is presented, using finite element 3D simulations. To this end, a novel
computational approach is presented, which allows us to simulate a periodic configuration of rigid
spherical particles accurately and efficiently. To study the different contributions to the particle
migration, we first investigate the migration of particles sedimenting near the inner wall, without
an externally-imposed Couette flow, followed by the migration of non-sedimenting particles in
an externally-imposed Couette flow. Then, both flows are combined, i.e., sedimenting particles with
an externally-imposed Couette flow, which was found to increase the migration velocity significantly,
yielding migration velocities that are higher than the sum of the combined flows. It was also found
that the trace of the conformation tensor becomes asymmetric with respect to the particle center
when the particle is initially placed close to the inner cylinder. We conclude by investigating the
sedimentation velocity with an imposed orthogonal shear flow. It is found that the sedimentation
velocity can be both higher or lower then the Newtonian case, depending on the rheology of the
suspending fluid. Specifically, a shear-thinning viscosity is shown to play an important role, which is
in-line with previously-published results.
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1. Introduction

Suspensions of particles in viscoelastic fluids are encountered in many natural, biological,
and industrial processes. Examples of these suspensions are blood, paint, and pharmaceuticals.
Therefore, the behavior of particles suspended in a single viscoelastic fluid is of great interest.
Many practical applications also show the occurrence of cross-streamline migration of particles.
Examples are separation of particles with different sizes, suspensions in microfluidic devices where
migration can lead to non-homogenous particle distributions, cells in blood causing clots, which are
obstructing the flow, and other biosensing applications [1]. Furthermore, Couette flow devices are
often used as a rheometer, to measure the rheology of suspensions. Therefore, the migration behavior
of the particles is of great interest, since migration of particles will change the rheology of the fluid.

Understanding the sedimentation behavior of particles in a viscoelastic shear flow can for
example be used to optimize the hydraulic fracturing process for obtaining natural gas. In this process,
solid particles in polymeric solutions are pumped into hydraulically-induced fractures under high
pressure. The particles must keep the fractures open in order to increase the rate of gas recovery.
In vertically-oriented fractures, sedimentation causes the particle to settle. Therefore, sedimentation
should be limited in order to limit settling and place the particles far into the fracture to increase
gas recovery [2].
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Migration of a sedimenting particle in a channel near a vertical wall was investigated by Singh
and Joseph [3]. They found that a falling particle initially placed close enough to the wall will migrate
towards the wall. However, in a Newtonian liquid, the sphere moves away from the vertical wall and
attains a steady position between the channel center and the wall.

When the particle was placed in a shear flow, D’Avino et al. [4] found that three different regimes
can be recognized in the migration of the particle, depending on the distance of the particle from the
wall, where the migration velocity is initially linear with the particle position, but increases when
the particle approaches the wall and decreases again when the particle is in very close proximity to
the wall.

Migration of a particle in a viscoelastic fluid in a Couette flow was numerically and experimentally
investigated by D’Avino et al. [5]. It was found that elasticity promotes migration of the particle
towards the outer cylinder for almost every initial position. Only if the particle was initially placed
very close to the inner cylinder, it would move towards it. Furthermore, a maximum in the migration
velocity was found when the particle moves closer to the outer cylinder. High Newtonian solvent
viscosity and shear thinning reduce the migration rate.

The sedimentation of particles in a flow without shear has been studied extensively.
A dimensionless number called the sedimentation Weissenberg number relates the polymer relaxation
time scale to the flow time scale. It has been shown that at high values for Λ, the deformation of the
polymer is dominated by the flow due to the movement of the particle. This can cause significant
extension of the polymer around the particle, causing pronounced elastic effects in the wake of the
sphere that decrease the particle mobility [6–8].

Many research works have also been devoted to the sedimentation of a particle in a shear flow [9].
Van den Brule et al. [10] performed experiments to gain more insight into the effects of fluid elasticity
on the settling velocity of spherical particles suspended in viscoelastic fluids. Here, the settling velocity
of a spherical particle was measured in three different fluids: a Newtonian fluid, a Boger fluid and
a shear-thinning fluid. From this study, it could be concluded that fluid elasticity plays a significant role
in reducing the settling velocity of a spherical particle in a viscoelastic fluid. Shear-thinning, however,
increased the settling velocity of the particles, since now the viscosity decreases with increasing shear
rate. This was also found in another study [11]. Padhy et al. [12] numerically investigated the effect of
viscoelasticity on the settling velocity of a particle in a cross-shear flow. Padhy et al. [12] calculated
the drag on a particle in their simulations and found that the drag in viscoelastic fluids is increased
indirectly through the increase of viscous stresses. The dominant contribution to the viscous stresses
becomes asymmetric when sedimentation and shear flow are combined, leading to a decrease in
settling velocity. The coupling between the two flows needs to be non-linear for the increase in drag to
be substantial. This non-linear coupling is only present in viscoelastic fluids.

Murch et al. [13] recently numerically investigated the growth of viscoelastic wings and how this
reduces the particle mobility in a viscoelastic shear flow. They found that for high shear Weissenberg
numbers and sedimentation Weissenberg numbers of O(1), the particle mobility is decreased due to
the growth of viscoelastic wings around the particle.

Migration is often a problem in flows that are more complex than simple shear, or pure
sedimentation. In the current paper, a first step up in complexity is offered, by combining two
flows that yield migration. The finite element method is used to investigate numerically the influence
of both the sedimentation and shear Weissenberg number on the migration and sedimentation of
a particle in a viscoelastic fluid under orthogonal shear in a Couette flow device. The mass of the
particle is varied via the downward force on the particle to create different local shear rates around the
falling particle, leading to different sedimentation Weissenberg numbers. Furthermore, the orthogonal
shear rate is varied to create different shear Weissenberg numbers. The influence of both Weissenberg
numbers on the sedimentation and migration of the particle is investigated, using a Giesekus model.
Migration of the particle close to the inner cylinder of the Couette is studied systematically to see
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how the different flow types influence the migration of the particle and what happens if the two
are combined.

2. Problem Statement

The shear flow is created in a Couette flow device, by rotating the outer cylinder with a velocity
Uw, while keeping the inner cylinder stationary. When studying sedimentation, a force is applied to
the particle in the z-direction. To minimize the computational costs, only a part of the Couette flow
device is modeled, as is shown in Figure 1. Periodicity is assumed on surfaces S2 and S4. The top and
bottom of the domain are assumed to be far enough away from the particle, to not feel the presence
of the particle. The angle φ, together with the inner radius Ri, the outer radius Ro, and the height
H define the size and shape of the domain. The spherical particle has radius a, and its boundary is
denoted by ∂P. A cylindrical coordinate system will be used throughout this paper, with components,
using the convention [r, θ, z]. The computational domain of the Couette is denoted by Ω. Note that the
positive z-direction is directed in the gravitation direction.

Figure 1. Problem description of a rigid, spherical particle suspended in a viscoelastic Couette flow.
The Couette flow is set up by moving the outer cylinder in the tangential direction, with velocity
Uw, while the inner cylinder remains stationary. Simultaneously, a force acts on the particle in the
z-direction, causing it to sediment. The inner cylinder boundary is denoted by S1, the outer cylinder
boundary is denoted by S3. The top and bottom of the Couette are denoted by S5 and S6, respectively.
The periodic side boundaries are denoted by S2 and S4, where S4 is rotated over an angle φ with respect
to surface S2.

2.1. Governing Equations

2.1.1. Balance Equations

It is assumed that the fluid is incompressible, that inertia can be neglected, and that there are
no external body forces acting on the fluid. This leaves the following equations for the balance of
momentum and balance of mass:

−∇ · σ = 0 in Ω, (1)

∇ · u = 0 in Ω, (2)
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where u is the fluid velocity and σ is the Cauchy stress tensor, which consists of three contributions:

σ = −pI + 2ηsD + τp, (3)

where p is the pressure, I the unit tensor, and ηs the solvent or Newtonian viscosity. Furthermore, D =

(∇u + ∇uT)/2 is the rate of deformation tensor, and τp represents the viscoelastic stress tensor,
given by:

τp = G(c − I), (4)

where c is the conformation tensor and G the polymer modulus, which equals ηp/λ. Here, ηp is the
polymer viscosity and λ the polymer relaxation time. The evolution of the conformation tensor c can
be described by the following equation using the Giesekus model [14]:

λ
�
c + c − I + α(c − I)2 = 0, (5)

where α is the mobility parameter and
�
() denotes the upper-convected derivative, which is defined as:

�
() =

D()

Dt
− (∇u)T · ()− () · ∇u, (6)

where D()/Dt is the material derivative denoted by D()/Dt = ∂()/∂t + u · ∇().

2.1.2. Particle Motion

It is assumed that the inertia of the particle can be neglected and that a force Fext = Fez is applied
to the particle. The balance of forces and the balance of torques that act on the particle can be expressed
as follows: ∫

∂P
σ · np dS = Fext, (7)∫

∂P
(x − X)× (σ · np) dS = 0, (8)

where np is the outwardly-directed unit normal vector on the boundary of the particle ∂P, X is the
position of the center point of the particle, and σ is evaluated on the fluid side of the particle boundary
∂P. The translational velocity of the particle is denoted by U, which is an unknown in the problem,
but will be such that Equation (7) is satisfied. The relation between the particle position and velocity is
obtained by the following kinematic equation:

dX
dt

= U. (9)

2.2. Boundary Conditions

On the particle boundary and rigid walls S1 and S3, a no-slip condition is imposed. On S1,
the velocity is set to zero, whereas on S3, the velocity is tangential to the curved surface. Periodicity of
the surfaces S2 and S4 is assumed. Surfaces S5 and S6 are assumed to be far enough from the particle
to not feel the presence of the particle. Symmetry is prescribed in surfaces S5 and S6, i.e., the velocities
in the r- and θ-direction are left free, while the velocity in the z-direction is prescribed to be zero.

52



Fluids 2019, 4, 25

The velocities on the side curves of surfaces S5 and S6 are periodic in the θ- and r-direction. This yields
the following boundary conditions:

u = U + ω × (x − X) on ∂P, (10)

u = 0 on S1, (11)

u · eθ = Uw on S3, (12)

u · er = u · ez = 0 on S3, (13)

u · ez = 0 on S5 and S6, (14)

t · er = t · eθ = 0 on S5 and S6, (15)

u4 = R · u2, (16)

t4 = −R · t2, (17)

where ω is the particle angular velocity and the subscripts containing a number denoting the velocities
on the surfaces S1 up to S6, respectively. Equation (16) imposes a periodic boundary condition for the
velocities on surfaces S2 and S4. The traction vector on the surface with outwardly-directed normal n is
denoted by t = σ · n. The rotation φ of the velocities and tractions from surfaces S2 to S4 is performed
by the rotation tensor R. More details on the rotation tensor can be found in Appendices A and B.
On surface S6, the solution of the conformation of cS of the problem without a particle is prescribed
since this surface is an inflow surface due to the rigid body movement of the whole mesh with the
particle, as will be explained in Section 3.3. This conformation cS is obtained by solving a separate 1D
problem of a Couette flow without the particle and using the steady state value of cS. This means that
for the conformation tensor, the following boundary condition is applied:

c = cS on S6. (18)

Furthermore, a periodic boundary condition is also applied for the conformation tensor on
surfaces S2 and S4. This periodic boundary condition is imposed by the following equation in the
same way as is done for the velocities, but now for a tensor instead of a vector:

c2 = R · c4 · RT . (19)

An initial condition is needed for the conformation tensor c. In order to reduce the computation
time, the steady-state solution for the problem without a particle is prescribed as the initial condition
for the conformation:

c(t = 0) = cS|t→∞. (20)

2.3. Arbitrary Lagrange–Euler Formulation

The domain is described with a boundary-fitted mesh that is moved in time in such a way that the
mesh moves with the particle, but not necessarily with the fluid. Therefore, the governing equations
have to be rewritten in the Arbitrary Lagrange–Euler (ALE) formulation [15]. The movement of the
grid has to be compensated. This only applies to the evolution equation of the conformation tensor,
since this is the only equation that contains a convective term. The material derivative in Equation (6)
is now written as:

Dc
Dt

=
∂c
∂t

∣∣∣
ξ
+ (u − um) · ∇c, (21)

where ∂c/∂t|ξ denotes the time derivative in a fixed grid point and um is the mesh velocity.
Details about the mesh velocity will be explained in Section 3.3.
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3. Numerical Method

The finite element method is used to solve the problem. For the velocity and the pressure,
isoparametric, tetrahedral P2P1 (Taylor–Hood) elements are used, whereas for the conformation,
tetrahedral P1 elements are used. In order to solve the constitutive equation, the log-conformation
representation [16] and DEVSS-G are used for stability [17].

3.1. Weak Formulation

In this section, the weak formulation of the balance equations is presented. The motion of the
particle is enforced as a constraint, using the combined equation of motion approach [18]. The periodic
boundary condition for the velocity is also enforced as a constraint, using Lagrange multipliers.
The weak form of this problem can now be formulated as follows: find u, p, U, c, ω and λ such that:

(
(∇v)T , ν(∇u − GT)

)
+

(
Dv, 2ηD + τp

)− (∇ · v, p
)
+

〈
v − (V + χ × (x − X)), λ

〉
∂P = V · F, (22)

(H,−∇u + GT) = 0, (23)

(q,∇ · u) = 0, (24)

(
d + τ(u − um) · ∇d,

Ds
Dt

− g
(

G, s
))

= 0, (25)

〈μ, u − (U + ω × (x − X))〉∂P = 0, (26)

for all admissible test functions v, H, q, d, χ, V , μ. Furthermore, Dv = (∇v + (∇v)T)/2, and (·, ·)
denotes an inner product on domain Ω, whereas 〈·, ·〉∂P is an inner product on ∂P; τ and ν are
parameters for SUPG and DEVSS-G stabilization, respectively, and s = log c. More information on
log-conformation stabilization and the function g can be found in [16], whereas more information on
the DEVSS-G method and the projected velocity gradient G can be found in [17]. A finite element
method on moving meshes aligned with the particle boundary is used to solve the equations. Since the
elements are aligned with the particle boundary, the inner product on ∂P can be calculated in the
nodes. This is done using a collocation method [18]:

〈μ, u − (U + ω × (x − X))〉∂P =
ncoll

∑
k=1

μk · [u(xk)− (U + ω × (xk − X))], (27)

where ncoll is the number of collocation points, which corresponds to the nodes on the particle
boundary. Furthermore, μk and xk are the Lagrange multiplier and coordinate of the kth collocation
point, respectively. The same approach can be used for the weak formulation of the periodic boundary
condition on the velocity. Note that the periodic surfaces have to be meshed such that the meshes are
also periodic.

3.2. Implementation Periodic Boundary Conditions

In order to impose periodic boundary conditions for the velocity, the velocity has to be prescribed
such that the er, eθ and ez components on S2 and S4 are equal. This means that u4 is equal to u2,
but rotated. The actual implementation is done in Cartesian coordinates. The same approach is used
for the periodic boundary condition for the conformation tensor, only now, a tensor rotation is used
instead of a vector rotation. More details on the implementation can be found in Appendices A and B.

3.3. Mesh Movement

Since the mesh will move in time, it is necessary to move the mesh to track the particle boundary.
This is done using the ALE method. The starting mesh in the ALE method is used until it becomes too
distorted. When this happens, a new mesh, covering the same domain as the old one, is generated
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using Gmsh [19], and the solution on the old mesh is projected onto the new one. The projection
problem is solved to obtain the solution variables on the new mesh. This remeshing and solving the
projection problem is done in the same way as was done by Jaensson et al. [20]. However, the projection
leads to inaccuracies, and the remeshing procedure is very time consuming. Therefore, the number of
remeshing steps should be reduced as much as possible during the simulations.

The mesh velocity um can be set to an arbitrary value, and this can be exploited to reduce the
remeshing steps, or even avoid remeshing [15]. Therefore, the whole mesh moves as a rigid body
with the particle in the θ- and z-direction, while the mesh still deforms in the r-direction due to the
movement of the particle. The mesh displacement in the r-direction due to the migration of the particle
can be obtained by solving a Laplace equation, in order to guarantee a smooth mesh motion [15].

3.3.1. Prescribing the Conformation Tensor

Since the conformation tensor obeys a hyperbolic partial differential transport equation,
the conformation has to be prescribed at inflow boundaries [21,22]. The bottom surface S6 of the
domain can be seen as an inflow surface, since the whole mesh is moved as a rigid body with the
particle in the z-direction. Therefore, a solution of the conformation tensor from the same problem
without a particle is prescribed at surface S6.

3.4. Time Integration

The time stepping approach now contains the following steps:

Step 1: Compute the particle position at the beginning of every time step. The new particle
position can be found using an explicit Euler scheme for Equation (9):

X1 = X0 + ΔtU0. (28)

For subsequent time steps, however, a second-order Adams–Bashforth scheme is used:

Xn+1 = Xn + Δt(
3
2

Un − 1
2

Un−1). (29)

Step 2: Update the mesh, using the new particle position as explained in Section 3.3.

Step 3: The mesh velocities can now be obtained by numerically differentiating the mesh
coordinates. For the first time step, the mesh velocity um is obtained in each node using a backward
differencing scheme:

um =
x1

m − x0
m

Δt
, (30)

where x are the nodal coordinates of the mesh. For subsequent time steps, a second-order backward
differencing scheme is used:

un+1
m =

3
2 xn+1

m − 2xn
m + 1

2 xn−1
m

Δt
. (31)

The z- and θ-component of the mesh velocity are set equal to the particle velocity in the z- and
θ-direction. In this way, the whole mesh moves with the particle.

Step 4: Compute un+1 and pn+1. The method of D’Avino and Hulsen [23] for decoupling the
momentum balance from the constitutive equation is applied, using DEVSS-G for stability [17].

Step 5: After solving for the new velocities and pressures, the actual conformation tensor cn+1 is
found using a second-order, semi-implicit Gear scheme with conformation prediction for Equation (5)
using SUPG and the log-conformation representation for stability. The conformation tensor is solved
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component wise, meaning that not all conformation tensor components are known at the same time.
Because of this, it is not possible to enforce periodicity of c on surfaces S2 and S4 via a constraint.
Therefore, an iteration is performed until the periodic solution for c is found. During this iteration,
the conformation tensor has to be described on the inflow-nodes of surfaces S2 and S4. See Section 3.3.1.
Therefore, it is first computed which of the nodes on surface S4 are inflow nodes by computing whether
(u − um) · n is positive. Here, n is the normal vector of surface S4. Due to periodicity, outflow nodes
on S2 have to be inflow nodes on S4.

4. Results

In this section, the convergence of the migration problem will be investigated. After that,
the results of the migration of a sedimenting particle without Couette flow, migration of a particle
in a Couette flow without sedimentation, and migration of a particle with the two flows combined
will be discussed. Finally, the results of the sedimentation of a particle in a Couette flow for two
different sets of fluid parameters will be discussed. In order to increase the sedimentation Weissenberg
number, the applied downward force on the particle is increased. Since a force is applied on the
particle, the sedimentation velocity of the particle is not known a priori. Therefore, the sedimentation
Weissenberg number is defined as follows:

Λ = λ
UN

2a
, (32)

where UN is the Stokes velocity defined as UN = F/(6πη0a). The shear Weissenberg number is
defined as:

Wi = λ
Uw

Ro − Ri
. (33)

The ratio between the solvent viscosity and the total viscosity can be expressed as the ratio
between the solvent viscosity and the polymer viscosity and can be described as β = ηs/(ηp + ηs).
The viscosity ratio β is chosen to be 0.35, together with a non-linear parameter α of 0.2. The particle is
positioned initially at a distance 3a from the inner cylinder of the Couette.

The outer radius of the outer cylinder has a value of 90-times the particle radius, while the
radius of the inner cylinder has a value of 50-times the particle radius, yielding a gap size of 40-times
the particle radius. The height of the Couette flow device is 80-times the particle radius. To save
computational costs, only a part of the Couette flow device is modeled, where surface S4 is rotated
over an angle of θ = 45◦ with respect to surface S2. By using θ = 45◦, we actually model a Couette
flow with eight particles in it, because of the periodic boundary conditions. For this angle, the distance
between the particles is larger than 40-times the particle radius, which is large enough to exclude the
effect of particle–particle interactions [12].

4.1. Convergence

In this section, the convergence of the migration problem will be investigated. Convergence was
the hardest to obtain for a high shear Weissenberg number combined with a high sedimentation
Weissenberg number. Therefore, a convergence study was performed for a shear Weissenberg number
of Wi = 2 and a sedimentation Weissenberg number of Λ = 2. In order to choose a mesh with elements
small enough that convergence is reached, the migration velocity of a particle, made dimensionless by
dividing by a/λ, was plotted for different element sizes hp around the particle. For these simulations,
meshes were constructed with six elements across the gap of the Couette flow device and hp = 20,
hp = 30, and hp = 40 elements on the equator of the particle. This element size was extended over
a distance a from the particle and then slowly increased to the element size of the surrounding mesh
over a distance 9a. The mesh was refined near the inner radius of the Couette, where 15 elements
were placed along the inner radius. The mesh for hp = 30 is shown in Figure 2. The results for
mesh convergence are shown in Figure 3a. Time convergence was studied by plotting again the
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dimensionless migration velocity of the particle, for a mesh with hp = 30, but now with different time
step sizes Δt. The result is shown in Figure 3b. Note that we use quadratic elements for the velocity,
meaning that hp = 30 means 61 nodes on the equator of the particle, and six elements across the gap
means 13 nodes across the gap.

(a) Mesh (b) Mesh refinement around particle

Figure 2. Mesh that is refined around the particle boundary and at the inner cylinder for hp = 30.
Red dotted lines in (a) indicate the cross-section SCS shown in (b).

(a) Mesh (b) Time

Figure 3. Migration velocity of a particle placed at a distance 3a from the inner cylinder of a Couette
for different element sizes around the particle hp and different time step sizes Δt.
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These figures show that for small enough element sizes and time step sizes, the lines superimpose.
The convergence is studied here for the most complicated scenario of high Weissenberg numbers
and the particle placed originally close to the inner cylinder. Since Figure 3 shows relatively good
convergence, we expected that convergence would be better for the less difficult scenarios. In order to
have a good balance between accuracy and computational costs, a element size of hp = 30 and a time
step size of Δt = 0.05 were chosen for the simulations.

4.2. Migration

In this section, it is investigated how the two complex flows (shear and sedimentation) influence
the migration of a particle placed close to the inner cylinder of a Couette flow device. In order to do
this, first the effect of the two separate complex flows is investigated. This is done for different initial
particle positions in the Couette flow device, close to the inner cylinder. The dimensionless particle
radial position is defined as:

Γ =
xp − Ri

a
, (34)

where xp is the radial position of the center of the particle at time t/λ = 10 and a is the particle
radius. Therefore, Γ indicates how many times the particle radius is away from the inner cylinder.
The migration velocity at time t/λ = 10 is used in the figures in this Results Section. For a time
that is ten-times the relaxation time of the fluid, it was assumed that the viscoelastic stresses were
fully developed, and therefore, all transient effects were due to the migration of the particle. For the
representation of the results, the cross-section indicated in red in Figure 2 was used. From here on,
this cross-section is referred to as SCS.

4.2.1. Migration for a Falling Particle without Shear in Couette Flow

The migration of a falling particle close to the inner cylinder of the Couette was first investigated
without applying a shear flow. This means that the velocity of the outer cylinder Uw = 0. The result is
shown in Figure 4. Here, the migration velocity Ur of the particle is made dimensionless with a/λ.

Figure 4. Migration velocity of the particle at different positions from the inner cylinder without shear
and varying sedimentation Weissenberg number at time t/λ = 10. The shaded area indicates the
inaccessible region.
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This figure shows that the movement of the particle towards the inner cylinder slows down
significantly when the particle approaches the inner cylinder. For small values of Λ, it even seems to
become positive, i.e., the particle is migrating away from the inner cylinder. This effect of the wall
is much more severe for the case of a migrating particle in a Couette flow without sedimentation
than for a migrating particle without shear, but with sedimentation, as we will see in Section 4.2.2.
The figure also shows that the migration velocity goes to zero when the particle position is further
away from the inner cylinder. The movement of the particle towards the inner cylinder speeds up for
increasing Λ (i.e., higher negative Ur). The trace of the conformation tensor around the particle for
initial particle positions Γi = 2 and Γi = 5 and Λ = 1 without shear is shown using SCS in Figure 5 at
time t/λ = 10. This figure shows that the trace of the conformation tensor around the particle becomes
slightly asymmetric and larger at the side of the particle close to the cylinder, when the particle is
positioned close to the inner cylinder.

(a) tr(c) for Γi = 2 (b) tr(c) for Γi = 5

Figure 5. The trace of the conformation tensor around the particle for different initial positions from
the inner cylinder at time t/λ = 10 for Λ = 1 and Wi = 0 using SCS.

4.2.2. Migration of a Particle in Couette Flow without Sedimentation

The migration of the particle is now investigated for the case where there is no sedimentation,
but the shear rate is varied. This means that the downward force on the particle is set to zero and the
velocity of the outer cylinder Uw is varied. The result is shown in Figure 6.

This figure shows that the movement of the particle towards the inner cylinder speeds up with
increasing shear Weissenberg number. For low values of Wi, the migration velocity is nearly zero,
independent of the position of the particle. For particles close to the inner cylinder, the migration
velocity is negative, indicating that the particle migrates towards the inner cylinder. For larger distances
from the inner cylinder, the migration velocity is positive for high values of Wi, i.e., the particle seems
to migrate away from the inner cylinder. Figure 7 shows the trace of the conformation tensor around
the migrating particle with Wi = 1 and no sedimentation, for an initial position Γi = 2 and Γi = 5
at time t/λ = 10 using SCS. This figure shows that the presence of the inner cylinder causes the
trace of the conformation to by asymmetric around the particle when the particle is placed close to it.
The conformation is higher at the side of the particle close to the inner cylinder, indicating that the
polymers are more stretched in the small gap between the particle and the inner cylinder.
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Figure 6. Migration velocity of the particle at different positions from the inner cylinder without
sedimentation and varying shear Weissenberg number at time t/λ = 10. The shaded area indicates the
inaccessible region.

(a) tr(c) for Γi = 2 (b) tr(c) for Γi = 5

Figure 7. The trace of the conformation tensor around the particle for different initial positions from
the inner cylinder at time t/λ = 10 for Λ = 0 and Wi = 1, using SCS.

4.2.3. Migration of a Falling Particle in a Shear Flow

Now, the two complex flows are combined by first fixing the shear Weissenberg number (Wi = 2)
and varying the sedimentation Weissenberg number and vice versa. The results are shown in Figure 8.

Both figures show that when the particle approaches the inner cylinder Γ = 2, this slows down
the movement of the particle towards it for high shear and sedimentation Weissenberg numbers.
Here, the particle nearly touches the inner cylinder at t/λ = 10, drastically reducing the mobility of
the particle in the r-direction. Furthermore, it can be observed that combining the two complex flows
(solid lines) leads to significantly larger migration velocities than the superposition of the migration
velocities of the two separate flows (dashed lines). This effect was more pronounced for large values
of both Weissenberg numbers, indicating that for large values of Λ and high Wi, the coupling of the
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flows becomes non-linear, and therefore, the migration velocity for the combination of the two flows
will no longer be a simple superposition of the migration velocities of the two separate flows.

(a) Fixed Wi= 2 (b) Fixed Λ = 2

Figure 8. Migration velocity of a particle placed at different initial positions from the inner cylinder
with combined complex flows (solid lines) and the superposition of the two separate flows (dashed
lines) at time t/λ = 10. The shaded area indicates the inaccessible region.

Figure 9 shows the trace of the conformation tensor at time t/λ = 10 for initial particle positions
Γi = 2 and Γi = 5 for Λ = 1 and Wi = 1, using SCS. This figure again shows that the trace of
the conformation tensor is larger at the side of the particle close to the cylinder, when the particle
approaches it. For Γ = 5 the trace of the conformation tensor is symmetric and high at both sides of
the particle due to the shear flow.

(a) tr(c) for Γi = 2 (b) tr(c) for Γi = 5

Figure 9. The trace of the conformation tensor around the particle for different initial positions from
the inner cylinder at time t/λ = 10 for Λ = 1 and Wi = 1, using SCS.
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Contour plots of the migration velocities for the two flows combined are shown in Figure 10 for
Γ = 2, Γ = 3, Γ = 4, Γ = 5.

These contour plots show, that it is possible to influence the migration velocity of a particle by
combining shear and sedimentation flows and changing the shear and sedimentation Weissenberg
numbers. Figure 10b for example shows that the migration velocity can be accelerated, when both
Weissenberg numbers are high. The migration can be slowed down by lowering one, or both of these
Weissenberg numbers.

(a) Γi = 2 (b) Γi = 3

(c) Γi = 4 (d) Γi = 5

Figure 10. Contour plots of the migration velocities for combined shear and sedimentation flows.
Markers x indicate the data points; between these points, the data are interpolated using the MATLAB R©

function contourf.

4.3. Sedimentation

To investigate the influence of shear and sedimentation Weissenberg number on the sedimentation
of a particle, the two complex flows are combined. The particle is now placed initially in the middle
of the Couette flow device. Simulations are performed for two different sets of material parameters
shown in Table 1. Here, Fluid 1 is used to mimic a Boger fluid with a large value for β and small
value for α [24], so the effect of shear thinning can be excluded from the results. Fluid 2 has a much
higher value for α, meaning that the fluid is more shear thinning, and a slightly lower value for β.
These parameters are the same as for the migration simulations. The zero-shear viscosity η0 = ηs + ηp

is the same for both fluids.
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Table 1. Material parameters.

β Non-Linear Parameter α

Fluid 1 0.5 0.01
Fluid 2 0.35 0.2

The sedimentation velocity for both fluids, scaled with the sedimentation velocity in a Newtonian
fluid with viscosity η0 = η + ηp, is plotted as a function of the shear Weissenberg number for different
sedimentation Weissenberg numbers in Figure 11.
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Figure 11. Sedimentation velocity as a function of Wi for increasing Λ for Fluid 1 and Fluid 2.

This figure shows that the sedimentation velocity is indeed decreasing with increasing
shear Weissenberg number. This effect is much more pronounced in Fluid 1 than in Fluid 2.
Furthermore, the sedimentation velocity is higher in Fluid 2 than in Fluid 1, and for small Wi,
the sedimentation velocity is almost equal to the sedimentation velocity of a particle in a Newtonian
fluid in Fluid 1, whereas it is higher than the Newtonian velocity in Fluid 2. This confirms that shear
thinning is increasing the sedimentation velocity of a falling particle, also decreasing the effect of
elasticity that causes the sedimentation velocity to decrease for higher Wi, as was also found in the
literature [10,11]. The contour plots of the sedimentation velocity for both fluids are shown in Figure 12.
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Figure 12. Contour plots of the sedimentation velocity of Fluid 1 and Fluid 2. Markers x indicate the
data points; between these points, the data are interpolated using the MATLAB R© function contourf.
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The contour plots also clearly show different behavior for the two fluids. For Fluid 1,
the sedimentation velocity clearly decreases with increasing Wi, while for Fluid 2, the sedimentation
velocity seems almost independent of Wi for small Λ, whereas the effect of decreasing velocity for
increasing Wi for higher Λ is much less pronounced as for Fluid 1. For Fluid 2, the effect of increasing
Λ is also bigger than for Fluid 1.

5. Conclusions

A numerical model was developed in order to investigate numerically the influence of shear and
sedimentation Weissenberg number on the migration and sedimentation of a particle in a Couette flow
device. DEVSS-G and the log-conformation representation are used for numerical stability. To reduce
computational costs, only a part of the Couette flow device is modeled. Periodic boundary conditions
are applied at the symmetry planes, using vector and tensor rotations. We believe that this domain
excludes the effect of particle–particle interactions. In order to reduce the amount of remeshing steps,
the mesh moves as a rigid body with the particle in the θ- and z-direction, while it still deforms due to
the movement of the particle in the r-direction. This is done using the ALE method.

The particle was initially placed at different positions close to the inner cylinder of the device.
First, the influence of the two separate complex flows was investigated by either applying no velocity
Uw on the outer cylinder, and therefore Wi = 0, or applying no downward force on the particle,
and therefore Λ = 0. The suspending fluid is a Giesekus fluid.

First, the migration velocity of a falling particle without applying a shear flow was studied. It was
found that the migration velocity was almost zero when the particle was far away from the inner
cylinder. When the particle approached the inner cylinder, the particle migrated towards it, and this
migration velocity was increased by increasing Λ. At a certain position, the particle got so close to the
inner cylinder that the mobility of the particle in the r-direction was drastically decreased, decreasing
the migration velocity. Secondly, the migration of a particle in a Couette flow, without sedimentation,
was studied. Here, it was found that for small values of Wi, there was no migration. When Wi was
increased, the particle started to migrate towards the inner cylinder when it was initially placed close
to it. When the particle was initially positioned further away from the cylinder, the particle migrated
away from it. When the two flows were combined, it was found that combining the two complex flows
leads to a higher migration velocity than the sum of the migration velocities of the two separate flows.
This effect was more pronounced for higher Weissenberg numbers, indicating that for high values of
Λ and Wi, the coupling of the two flows becomes non-linear. The trace of the conformation tensor
was found to be asymmetric around the particle when the particle was in close proximity of the inner
cylinder. The trace of the conformation is higher at the side of the particle close to the inner cylinder,
indicating that the polymers are more stretched here.

To study the influence of shear and sedimentation Weissenberg number on the sedimentation
of a particle, two different sets of material parameters were used, where Fluid 2 is much more shear
thinning than Fluid 1 and fluid 1 has a large β, mimicking a Boger fluid. It was confirmed that shear
thinning increases the sedimentation velocity of the particle. Furthermore, it was found that the
sedimentation velocity indeed decreases for increasing Wi in Fluid 1, whereas this effect was less
pronounced for Fluid 2. For small values of Λ, this effect was not seen at all for Fluid 2, indicating that
shear thinning opposes the effect of elasticity.
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Appendix A. Periodic Boundary Condition Velocity

A schematic overview of the domain in 2D is shown in Figure A1. The domain is shown in 2D for
clarity, because the velocity in the z-direction does not undergo a rotation. The z-component is now
the vector pointing into the paper.

S2 S4

φ

ex

ey

ez

u

u′

φ

eθer er

eθ

Figure A1. Schematic overview of a 2D curve with periodic boundary conditions.

To obtain the velocity components on surface S2 equal to the velocity components on S4, u2 has to
be rotated over a counterclockwise angle φ, since surface S4 is rotated over an angle φ with respect to
surface S2. The rotation of a vector can be performed by taking the dot product with a tensor R, which
rotates the vector in a constant coordinate system. After applying the rotation, the velocity on surface
S2 equals the velocity on S4. In a Cartesian coordinate system (ex, ey, ez), the rotation is expressed
as follows: ⎛

⎜⎝ Ux

Uy

Uz

⎞
⎟⎠ =

⎛
⎜⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝ U′

x
U′

y
U′

z

⎞
⎟⎠ . (A1)

Using Equation (A1), Ux, Uy, and Uz on surface S4 can be expressed as follows:

Ux = U′
x cos φ − U′

y sin φ, (A2)

Uy = U′
x sin φ + U′

y cos φ, (A3)

Uz = U′
z. (A4)

The same approach can be used to calculate the traction components on surfaces S4 and S2,
in order to obey the periodic boundary conditions.

Appendix B. Periodic Boundary Condition Conformation Tensor

Appendix B.1. Tensor Rotation

Periodic boundary conditions for the conformation tensor are needed on surfaces S2 and S4, since
only a part of the Couette flow device is modeled. This is done following the same principle as for the
periodic boundary conditions for the velocity, only now a tensor rotation has to be performed instead
of a vector rotation. The formula to rotate a tensor A can be derived as follows:
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The rotation of an arbitrary vector u′ can be performed by taking the product of a tensor that
performs a rotation with this vector. Now, the rotated vector u of u′ is obtained:

u = R · u′, (A5)

where R is a tensor that performs a rotation in a constant coordinate system. Furthermore, the inner
product of a rotated tensor A with a rotated vector x gives a rotated vector b, and the same thing holds
for the unrotated tensor and vectors:

A · x = b (A6)

A′ · x′ = b′. (A7)

If these equations are combined with Equation (A5), the following can be obtained:

A · R · x′ = R · b′. (A8)

Equation (A8) can be multiplied with R−1, (R−1 · R = I), to obtain:

R−1 · A · R · x′ = b′. (A9)

Equation (A9) combined with Equation (A7) states that A′ = R−1 · A · R. If A′ = R−1 · A · R is
pre-multiplied with R and post-multiplied with R−1, we obtain: R · A′ · R−1 = R · R−1 · A · R · R−1.
Invoking that R is an orthogonal tensor (RT = R−1), the rotation of tensor A′ to tensor A can be
performed as follows:

A = R · A′ · R−1 = R · A′ · RT . (A10)

Appendix B.2. Conformation Tensor

Periodic boundary conditions for the conformation tensor are applied to surfaces S2 and S4.
This means that the components cxx, cxy, cxz, cyx, cyy, cyz, czx, czy, and czz on the inflow nodes of
surfaces S2 and S4 have to be equal to the components c′xx, c′xy, c′xz, c′yx, c′yy, c′yz, c′zx, c′zy, and c′zz on
the outflow nodes of surfaces S2 and S4, but rotated. Since the surface S2 is rotated over an angle
φ compared to surface S4, the components of c′ on the inflow nodes have to be rotated over the
same angle φ. Using the result of Equation (A10), this gives the following equation for rotating the
conformation tensor c′:⎛

⎜⎝cxx cxy cxz

cyx cyy cyz

czx czy czz

⎞
⎟⎠ =

⎛
⎜⎝cos φ − sin φ 0

sin φ cos φ 0
0 0 1

⎞
⎟⎠

⎛
⎜⎝c′xx c′xy c′xz

c′yx c′yy c′yz
c′zx c′zy c′zz

⎞
⎟⎠

⎛
⎜⎝ cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎞
⎟⎠ . (A11)

The equations for the tensor components can be expressed using Equation (A11):

cxx = (c′xx cos φ − c′yx sin φ) cos φ − sin φ(c′xy cos φ − c′yy sin φ) (A12)

cxy = (c′xx cos φ + c′yx sin φ) sin φ + cos φ(c′xy cos φ − c′yy sin φ) (A13)

cxz = c′xz cos φ − c′yz sin φ (A14)

cyx = (c′xx sin φ + c′yx cos φ) cos φ − sin φ(c′xy sin φ + c′yy cos φ) (A15)

cyy = (c′xx sin φ + c′yx cos φ) sin φ + cos φ(c′xy sin φ + c′yy cos φ) (A16)

cyz = c′xz sin φ + c′yz cos φ (A17)
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czx = c′zx cos φ − c′zy sin φ (A18)

czy = c′zx sin φ + c′zy cos φ (A19)

czz = c′zz (A20)

Since, cxy = cyx, cxz = czx, and cyz = czy, it can be concluded that the conformation tensor
is symmetric.
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Abstract: The present work investigates the performance of a mesoscopic Lagrangian approach for
the prediction of gas-particle flows under the influence of different physical and numerical parameters.
To this end, Geldart D particles with 1 mm diameter and density of 2500 kg/m3 are simulated in a
pseudo-2D fluidized bed using a Discrete Element Method (DEM)/Large-Eddy Simulation (LES)
solver called YALES2. Time-averaged quantities are computed and compared with experimental
results reported in the literature. A mesh sensitivity analysis showed that better predictions regarding
the particulate phase are achieved when the mesh is finer. This is due to a better description of the
local and instantaneous gas-particle interactions, leading to an accurate prediction of the particle
dynamics. Slip and no slip wall conditions regarding the gas phase were tested and their effect was
found negligible for the simulated regimes. Additional simulations showed that increasing either the
particle-particle or the particle-wall friction coefficients tends to reduce bed expansion and to initiate
bubble formation. A set of friction coefficients was retained for which the predictions were in good
agreement with the experiments. Simulations for other Reynolds number and bed weight conditions
are then carried out and satisfactory results were obtained.

Keywords: DEM/CFD simulations; Euler/Lagrange approach; fluidized beds; frictional effects

1. Introduction

Based on their effectiveness regarding gas-solid heat and mass transfers, fluidized beds are
among the best options for developing economically and environmentally viable techniques for
fossil-fuel-based energy generation. Such systems involve complex physical mechanisms such as
momentum, heat and mass exchanges between the gas and the particulate phases. In addition,
fluidized beds exhibit an unsteady and inhomogeneous behavior leading to wide characteristic length
and time scales. Particle-particle and gas-particle interactions at the micro-scale (1 to 5dp, where
dp is the characteristic length of a particle) result in meso-scale structures, such as bubbles (10 to
100dp), which can affect the macro-scale gas-particle flow [1]. Further, different local behaviors can
be observed depending on the local particle-particle, gas-particle and particle-wall interactions, and
may profoundly modify the bed hydrodynamics. Therefore, various numerical approaches have been
developed over the past decades to simulate those flows at microscopic, mesoscopic and macroscopic
scales with the aim of elucidating the mechanisms underlying the origin and the evolution of the
heterogeneous gas-particle flow pattern. The accurate prediction of the underlying physics makes
possible to improve existing processes and to design more efficient new facilities. In this context,
the development of reliable numerical approaches is an essential prerequisite.

Fluids 2019, 4, 51; doi:10.3390/fluids4010051 www.mdpi.com/journal/fluids69
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Discrete Element Method (DEM) is among the most appropriate meso-scale approaches to
simulate small scale fluidized beds, with O(106) particles [2]. In this technique the particle motion
is given by the Newtonian equations. Particles interact with each others through collisions, that can
be described using models from molecular dynamics [3], the so-called sphere models [4–6]. In this
work the particles are considered as soft spheres that can overlap slightly and exert both normal and
tangential forces on each other [4]. This model, known as the soft-sphere model, requires a contact
force model in order to account for the inter-particle collision dynamics. The gas flow is solved on
an Eulerian grid using a continuum approach based on a volume averaging of the Navier-Stokes
equations [7]. Interphase momentum transfer terms are included in the modeling to account for the
fluid-particle interactions [8]. In this work, the ability of a DEM/LES approach to reproduce the
gas-particle flow behavior in a 2D-fluidized bed is assessed. A specific attention will be paid to the
influence of numerical (grid cell size) and physical parameters (friction coefficient).

In Section 2, the modeling strategy is given. Detailed models, based on averaged Navier-Stokes
equations for the gas phase, DEM technique for the particles and coupling procedure between the
phases are provided in Sections 2.1–2.3, respectively. Detailed information about the numerical schemes
can be found in Section 2.4. Finally, an overview of the simulation cases is presented in Section 3 and
results discussed in Section 4.

2. Modeling Strategy

All the numerical simulations presented in this work are performed using the finite-volume code
YALES2 [9], a Large-Eddy Simulation (LES) and Direct Numerical Simulation (DNS) solver based on
unstructured meshes. This code solves the low-Mach number Navier-Stokes equations for turbulent
reactive flows using a time-staggered projection method for constant [10] or variable density flows [11].
YALES2 is specifically tailored for solving these low-Mach number equations on massively parallel
machines with billion-cell meshes thanks to a highly optimized linear solvers [12].

Recently, a meso-scale four-way coupling approach for the modeling of solid particles has been
implemented in the YALES2 solver. This approach combines DEM approach to represent the solid
phase with LES equations solved on an Eulerian unstructured grid for the fluid phase. The CFD/DEM
solver has been thoroughly optimized for massively parallel computing. It features a dynamic collision
detection grid for unstructured meshes and packing/unpacking of the halo data for non-blocking
Message Passing Interface (MPI) exchanges.

2.1. Gas Phase Modeling

The governing equations for the averaged fluids flow are obtained from the filtering of the
unsteady, low-Mach number Navier-Stokes equations, taking the local fluid and solid fractions into
account. If G is a filtering kernel (see for instance [7]), the local fluid fraction ε is defined as:

ε(x, t) =
∫

Vf

G(|x − y|)dy, (1)

where Vf is the volume occupied by the fluid. Defining Φ(x, t) as a function of position and time,
the volume filtered field < Φ > (x, t) refers to the regular spatial average and is computed by taking
the convolution product with the filtering kernel G, giving:

ε < Φ > (x, t) =
∫

Vf

Φ(y, t)G(|x − y|)dy. (2)

Further details concerning the volume filtering operations can be found in [8]. The governing
equations finally read:

∂ε

∂t
+∇ · (ε < u >) = 0, (3)
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ρ
∂

∂t
(ε < u >) + ρ∇ · (ε < u > ⊗ < u >) = −∇ < P > +∇ · (ε < τ >) + ερg +

1
ΔV

< F >p→ f , (4)

u, ρ, P, and τ are the gas velocity, density, dynamic pressure respectively and viscous stress tensor.
The closure used to calculate the turbulent viscosity μt is the localized dynamic Smagorinsky model [13]
proposed by [14,15]. The term F̄p→ f is the momentum source term due to particle displacement. ΔV is
the local control volume. Details concerning the computation of this term can be found in Section 2.3.
For the sake of clarity, the notation <> will be dropped for the averaged quantities in the following.

The use of the LES model for CFD/DEM simulations in case of dense granular flows is
questionable. Indeed, there are very few publications dealing with the effect of inertial particles
on a turbulent flow in a confined domain. It is thus very difficult to conclude whether the actual flow is
turbulent or not. Nevertheless, previous publications (see, for instance, [8]) used this kind of model in
fluidized bed simulations. In our case the bulk Reynolds number based on the bed width is relatively
high (5600 ≤ Re ≤ 8000) so that, a single gas-phase flow in the same condition, is likely to be turbulent
or at least in a transition regime. We performed a series of additional computations in order to assess
the effect of the turbulent viscosity on the bed hydrodynamics. Results showed that, both qualitatively
and quantitatively, such a model did not change significantly the hydrodynamics of the fluidized bed
(see Appendix A). This tends to confirm that in the present configuration, the global behaviour of the
flow is driven by the largest scales and by particle-particle contact.

2.2. Discrete Particle Modeling

The forces acting on a particle in motion can be divided into two categories, volume and surface
forces. The unique volume force in the present situation is the weight whereas, the surface forces
consist of hydrodynamic and contact forces. While the hydrodynamic forces arise from fluid-particle
interactions, such as drag and lift forces, the contact forces are due to particle-particle and particle-wall
interactions. Such forces can be further classified in collision and adhesive forces. In the present work,
due to the high solid/gas density ratio, as reported in Table 1, buoyancy, lift and added mass forces
are neglected. To date, theoretical expressions for the history force in dense regimes are still missing.
Therefore, such a force is not taken into account in our modeling. Concerning the contact forces, only
collision forces are accounted for. Adhesive effects that may originate from electrostatic or Van Der
Vaals forces can safely be here neglected since, as it can be seen in Table 1, the simulated particles are
relatively large (Geldart D particles).

Discrete particle models, in which each particle is tracked is tracked in a Lagrangian fashion, have
clearly shown their ability to simulate the behavior of granular flows, and originate from molecular
dynamics methods initiated in the 1950s [3]. A soft-sphere model [16] is employed to compute contact
between each particle. They are allowed to overlap other particles or walls in a controlled manner.
A resulting contact force accounting for particle-particle and particle-wall repulsion is thus added in
the momentum balance of each particle. Particle movement is then given by Newton’s second law for
translation assuming high solid/gas density ratio:

mp
dup

dt
= FD + FG + FP + FC with

dxp

dt
= up, (5)

where mp, up, and xp are the particle mass, velocity, position respectively. FD is the drag force, FG is
the gravity force, FP is the pressure gradient force and FC is the collision force. The relation between
FD, FC in Equation (5) and Fp→ f in Equation (4) is detailed in Section 2.3. Preliminary simulations
including particle rotation provided similar results as those without rotation. As a consequence, for
computational reason, the particle rotation is not accounted for in this paper.
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2.2.1. Modeling of Collisions

The total collision force FC acting on particle a is computed as the sum of all forces fcol
b→a exerted by

the Np particles and Nw walls in contact. As particles and walls are treated similarly during collisions,
the b index refers to both:

FC =
Np+Nw

∑
b=1

fcol
b→a, (6)

fcol
b→a = fcol

n,b→a + fcol
t,b→a. (7)

Depending on the desired compromise between accuracy and numerical cost, a lot of soft sphere
models can be found in the literature. Here, a linear-spring/dashpot [16] is used along with a simple
Coulomb sliding model accounting for the normal

(
fcol

n,b→a

)
and tangential

(
fcol

t,b→a

)
components of

the contact force, respectively, as in the work of Capecelatro [8]. For one particle (or wall) b acting on a
particle a:

fcol
n,b→a =

{
−knδabnab − 2γn Mabuab,n if δab > 0,

0 else,
(8)

fcol
t,b→a = −μtan||fcol

n,b→a||tab. (9)

The term δab is defined as the overlap between the a and b entities expressed using each particle radius
rp and center coordinates xp such as:

δab = ra + rb − (xb − xa).nab. (10)

The system effective mass Mab is expressed using each particle mass mp such as:

Mab =
1

1/ma + 1/mb
. (11)

In case of a particle-wall collision, the wall is considered as a particle with infinite mass and null
radius. This model requires three user-defined parameters; kn, γn, and μtan respectively accounting for
the spring stiffness, normal damping, and friction coefficient of the a − b binary system. nab and tab
respectively account for the unit normal vector from particle a towards entity b and the unit tangential
vector. nab is calculated as follows:

nab =
xb − xa

||xb − xa|| . (12)

with uab being the relative velocity of the colliding system, its normal and tangential components are
then given by:

uab,n = ((ua − ub).nab)nab, (13)

uab,t = uab − uab,n. (14)

Finally, tab is given by:

tab =
uab,t

||uab,t|| . (15)

Using Newton’s third law and a projection on nab yields the following ordinary differential
equation for the overlap evolution of an a − b binary system undergoing collision without taking any
other force into account:

d2δab
dt2 + 2γn

dδab
dt

+ ω2
0δab = 0, (16)

where ω0 stands for the system’s natural frequency and is defined as:

ω2
0 =

kn

Mab
. (17)
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The damping parameter γn accounting for the energy dissipation occurring during contact is
calculated by the mean of a normal restitution coefficient en verifying 0 < en ≤ 1 such as:

γn = − ω0 ln en√
π2 + (ln en)2

. (18)

A contact time TC can also be analytically extracted from Equation (16) corresponding to the time
during which the particle a and the entity b are overlapping:

TC =
π√

ω2
0 − γ2

n

. (19)

2.2.2. Closure for Drag

The drag force FD acting on a particle p is written:

FD =
mp

τp
(u@p − up), (20)

where u@p is the local gas velocity interpolated at the center of the particle p and τp is the drag
relaxation time expressed as follows:

τp =
4ρpd2

p

3μCDRep
with Rep =

ε@pρ||u@p − up||dp

μ
, (21)

where ρp is the particle density, dp its diameter, μ the dynamic viscosity, ε@p is the local fluid fraction
interpolated at the center of the particle, and CD is the drag coefficient. In order to compute CD,
the classical closures proposed by Ergun (CD,ER) [17] for high ε@p values and Wen & Yu (CD,WY) [18] for
low ε@p values are used along with the smoothing function φgs introduced by Huilin & Gidaspow [19]
to avoid discontinuities when switching models:

φgs =
1
π

arctan(150 × 1.75(0.2 − (1 − ε@p))) + 0.5, (22)

in such a way that:
CD = φgsCD,WY + (1 − φgs)CD,ER, (23)

with

CD,WY =

⎧⎪⎨
⎪⎩

24
Rep

(
1 + 0.15Re0.687

p

)
ε−2.7

@p for Rep < 103,

0.44ε−2.7
@p for Rep ≥ 103,

(24)

and

CD,ER =

(
200

1 − ε@p

Rep
+

7
3

)
ε−1

@p. (25)

2.2.3. Other Forces

The gravity force FG acting on a particle p is written:

FG = mpg. (26)

The pressure gradient force FP in Equation (5) reads as:

FP = −Vp∇P@p, (27)
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where Vp is the particle’s volume and ∇P@p is the local pressure gradient interpolated at the center of
the particle.

2.3. Phase Coupling

The coupling between the particle and fluid phases is a key point for the modeling of particle-laden
flows, especially when the particle size approaches the Eulerian cell size. Many Eulerian fields have to
be interpolated at the center of the particles for the numerous closures, as shown in Section 2.2. In the
YALES2 solver, particles are located in a unique mesh cell (C) using the position of their center. For any
Eulerian scalar or vector field Φ(x, t), its value taken at the particle p center Φ@p(t) obeys:

Φ@p(t) = ∑
i∈C

ωp,iΦ(x, t) with ∑
i∈C

ωp,i = 1. (28)

Here i is a node index so that ‘i ∈ C’ means ‘all nodes composing the mesh cell C in which the particle
p is located’. ωp,i is the interpolation weight of the particle p on cell node i and is calculated using a
trilinear interpolation on tetrahedra and on hexahedra. The same interpolation weights are used for
data transfer from grid to particles (interpolation step) and from particle onto the grid (projection step).

The conservative projection operator needed to compute Fp→ f (see Equation (4)) is thus written
on each node i as:

Fp→ f ,i = − ∑
p∈SCi

ωp,i(FD + FP), (29)

and the fluid fraction at node i is written:

εi =
1

ΔVi
∑

p∈SCi

ωp,iVP. (30)

Here ΔVi denotes the control volume of node i and ‘p ∈ SCi’ means ‘all particles belonging to any
surrounding cell (SC) of node i’. Referring to Figure 1, it means that any particle belonging to one of
the cells will be accounted for when computing ε (as well as Fp→ f ) at node 3.

p,1
p,2

p,3

Figure 1. 2D representation of a particle p located in a triangular cell ( ) moving towards a neighboring
cell ( ). : mesh nodes. : contour of node 3 control volume. ωp,i: interpolation weight of particle
p on node i.

This method consisting in distributing particle quantities only in the cell where its center resides,
referred to as Particle Centroid Method (PCM), can lead to large calculation errors in particular
regarding the fluid fraction, as pointed out in [20]. This is partly due to the fact that many CFD/DEM
codes feature a staggered grid where the fluid fraction is defined at cell centers, causing dramatic
discontinuities in time and space derivatives when a particle enters or leaves a cell. On the contrary,
in the YALES2 code the fluid fraction, as all the Eulerian fields, is computed at the grid nodes.
As depicted in Figure 1, it is then straightforward that the particle crossing from the green cell to
the red one won’t cause any discontinuity on the computation of neither ωp,1 nor ωp,3 involved in
their interface. Moreover ωp,2 won’t be much affected neither during the crossing because as the
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particle approaches the cell’s interface, ωp,2 tends towards 0. This is still true in 3D cases and on
Cartesian meshes.

Nevertheless, it is well known that the PCM method can induce inaccuracies and lead to numerical
instabilities because it cannot prevent the fluid fraction from reaching unrealizable values, in particular
when dealing with close to unity particle diameter/mesh cell size ratios. In such cases, the fluid
fraction value can locally decrease below the theoretical packing limit. To cope with this limitation,
a filtering operator well suited for distributed memory machines is used. Taking a 2D case as shown
on the left in Figure 2, this filtering operator is built for any Eulerian scalar or vector field noted Φi, its
filtered value being Φ̂i. At node i1, Φ̂i reads:

Φ̂i1 =
1
3

Φi1 +
1

3ΔVi1
((S23 + S34)Φi3 + (S34 + S45)Φi4 + · · ·+ (S72 + S23)Φi2), (31)

where ΔVi1 is the control volume associated to node i1 and Smn is the part of ΔVi1 contained in the face
delimited by nodes i1, im and in, as shown on the left in Figure 2. If all the control volumes are equal,
on a structured mesh for instance, Equation (31) becomes:

Φ̂i1 =
1
3

Φi1 +
1
9 ∑

m∈[[2;7]]
Φim . (32)

1

2
3

4

5

6

7

23

34

45

56
67

72

1

Figure 2. On the left: 2D representation of an unstructured mesh. : mesh nodes. The control volumes
of nodes i1 ( ), i2 ( ), i3 ( ), i4 ( ), i5 ( ), i6 ( ), i7 ( ) are shown. The control volume of node i1
is composed of surfaces S23, S34, S45, S56, S67 and S72. On the right: 3D representation of a regular
Cartesian mesh part. : node i1. : nodes at faces’ center. : nodes at edges’ center. : nodes at corners.

The same type of filter can be derived in 3D. The following equation gives the value of Φ̂i1 in a
3D structured case with all equal control volumes as shown on the right in Figure 2, where RN is the
abbreviation of Red Nodes, BN of Blue Nodes and GN of Green Nodes:

Φ̂i1 =
1
8

Φi1 +
1
64

(
4 ∑

m∈RN
Φim + 2 ∑

m∈BN
Φim + ∑

m∈GN
Φim

)
. (33)

This fully conservative operation being performed on all volumes at the same instant provides a
fully filtered field, and can be repeated several times to increase the filter width. In all the simulations
presented in this paper, only one filtering step was used. It should be underlined that for the
computation of ε̂, the filtering step is applied before dividing by the local control volume in order to
conserve total solid mass over the whole computational domain volume V:

Total solid mass = ρp

∫
V
(1 − ε)dV = ρp

∫
V
(1 − ε̂)dV. (34)

The properties of such a filtering operator, i.e., its moments, are not straightforward to determine
on unstructured meshes but it can be noticed that it is based on direct neighbors and thus doesn’t need
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distant nodes, hence its attractiveness regarding parallelism. The main drawback is that the filter width
can’t be directly obtained because it depends on the local mesh size. Thus, when using this filtering
operator, the user cannot prescribe the filter width. Other projection methods have been developed to
circumvent this drawback while ensuring interesting mathematical properties as moment conservation
for instance. One can cite the work of Capecelatro [8], who used a Gaussian kernel filter in a method
called mollification for the same kind of application as presented here, and the work of Mendez [21] in
which a projection operator based on high-order moments conservation was built for deformable red
cell membrane modeling purposes.

2.4. Numerical Schemes

2.4.1. Fluid Advancement Procedure

This section presents some numerical features of the YALES2 code. This code solves the filtered
low-mach number Navier-Stokes equations presented in Section 2.1 with an explicit time advancement.
Among the various implemented numerical schemes, a fourth-order central scheme was used for
the spatial integration, and a fourth-order scheme called TFV4A [22] combining Runge–Kutta and
Lax-Wendroff methods was used for the explicit time integration.

The time advancement uses a time-staggered projection method for variable density flows [11]
described below in which the n superscript refers to discrete times:

1. Lagrangian phase advancement
First, the particles are advanced. The full description of this step is available in Section 2.4.2. After
being relocated on the grid, εn+3/2 can be computed using Equation (30).

2. Density prediction for scalar advancement
The density predictor (ερ)� is then determined by the mean of the mass conservation equation
(Equation (3)):

(ερ)� − (ερ)n+1/2

Δt
= −∇ · (ερu)n. (35)

3. Velocity prediction
Once (ερ)n+1 is known, the velocity can be predicted reusing the dynamic pressure gradient of
the previous time step:

(ερu)� − (ερu)n

Δt
= −∇ · ((ερu)nun)−∇Pn−1/2

2 +∇ · τn. (36)

4. Velocity correction
Velocity correction is performed by updating the pressure gradient:

(ερu)n+1 − (ερu)�

Δt
= −∇(Pn+1/2

2 − Pn−1/2
2 ). (37)

The Poisson equation aiming at calculating Pn+1/2
2 is obtained by taking the divergence of

Equation (37) and inserting the condition imposed by the following equation of mass conservation
written for un+1:

∇ · (ερu)n+1 = − (ερ)n+3/2 − (ερ)n+1/2

Δt
. (38)

The Poisson equation finally reads:

∇ ·
(
∇

(
Pn+1/2

2 − Pn−1/2
2

))
=

(ερ)n+3/2 − (ερ)n+1/2

Δt2 +
∇ · (ερu)�

Δt
. (39)

This linear system requires an efficient and accurate iterative solver. For all our simulations, a
Deflated Preconditioned Conjugate Gradient (DPCG) algorithm [23] is used.
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The resulting time advancement is fully mass and momentum conserving. The time step for
the fluid phase Δt is calculated at each solver iteration by enforcing a maximum value of 0.2 for the
Courant-Friedrichs-Lewy number (CFL) criterion and 0.15 for the Fourier number criterion for all
the simulations.

2.4.2. Particle Advancement Procedure

A second-order explicit Runge–Kutta (RK2) algorithm is used to advance the position xp,
the velocity up (see Equation (5)) of the particles in time:

RK2 - 1st step:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn+1/2
p = xn

p +
Δt
2

un
p,

un+1/2
p = un

p +
Δt
2

∑ Fn

mp
,

(40)

RK2 - 2nd step:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn+1
p = xn

p + Δtun+1/2
p ,

un+1
p = un

p + Δt ∑ Fn+1/2

mp
,

(41)

where ∑ F refers to the summation of all forces acting on particle p (see Section 2.2).
At the particle scale, several phenomena need to be integrated properly by the mean of an

associated characteristic time, among these: drag, gravity, etc. Thus, several stability criteria have to
be computed on each particle to determine the smallest time step needed for the most constraining
characteristic time. In dense fluidized beds simulations the collision time step is generally the limiting
one, so it will be noted Δtp from now on.

Δtp must be inferior to the contact time TC described in Equation (19) in order to be able to solve
collisions properly. Furthermore, it must be small enough to ensure numerical stability depending
on the selected numerical scheme, without compromising the performances of the code. It can be
noted that there is a unique value of TC because all the particles are identical. In our simulations,
the following criterion was used:

Δtp = TC/6. (42)

This criterion has been tested against the following non-dimensional analytical solution of
Equation (16) that can be found in [24] for a normal collision of a single particle on a wall with
given collision parameters as shown in Figure 3:

δ�ab(t) =
δab(t)
δmax

ab
=

ω0

Ω
exp

(
γn

[
1
Ω

arcsin
(

Ω
ω0

)
− t

])
sin (Ωt) , (43)

u�
ab,n(t) =

uab,n(t)
u0

=
1
Ω

e−γnt (−γnsin(Ωt) + Ωcos(Ωt)) , (44)

with
Ω =

√
ω2

0 − γ2
n. (45)
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wall

n =

n =

ab( = ) =

ab,n( = ) = 0

Figure 3. The simple test consists of a single particle colliding a wall in the normal direction. Only the
collision force is accounted for and the parameters used for the resolution are visible on the right side.
The contact starts at t = 0.

The time evolution of both overlap and particle velocity during contact has been plotted in
Figure 4a,b, respectively.
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Figure 4. Non-dimensional overlap (a) and velocity (b) as a function of the non-dimensional time
during the contact presented in Figure 3. Comparison between analytical method ( ), Euler method
with tp = TC/80 ( ) and RK2 method with tp = TC/6 ( ).

The agreement with the analytical solution is not perfect. However the scheme is stable and in
this case the absolute error on the restitution velocity was found to lie below 5%.

2.5. Performances and Parallelism

A critical point in the coupling between the gas and solid phase is the time advancement, as
they can have very different time scales. The choice was made to sub-step the solid phase, of which
time advancement is generally limited by the collision time step in dense fluidized beds, during a gas
phase time step, which is itself governed by convective and diffusive time scales. The mean number of
particle sub-steps observed during our simulations was approximately 3 for the refined mesh, 7 for the
intermediate mesh and 16 for the coarse mesh (mesh details are described in the following section).

As the computation of the collision force requires a distance estimation for each particle
pair a priori, solving Equations (40) and (41) can become critically time consuming. The work of
Lubachevsky [25] provides an analysis of the linked-cell method to tackle this problem, which is the
most commonly used method. The solution consists in the definition of a Cartesian grid superimposed
on the grid mesh allowing each particle to search for its potential collision partners, as shown in
Figure 5. First, each particle is located in one of the Cartesian grid cell. Then looping over the 8
surrounding cells plus the one where the particle stands (26+ 1 cells in 3D) provides a list of the closest
particles, that are stored as potential collision partners. Eventually, during the computation of the
collision force, only these particles are checked.
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Figure 5. Linked-cell method. : mesh nodes. : superimposed Cartesian grid. The particle of
interest is noted p in the central cell ( ). The particles of which center belongs to this cell or one of the
surrounding ones ( ) are stored as potential collision partners of particle p.

The linked-cell method is used even if the grid is Cartesian. This choice is justified by the fact
that the cells of the detection grid should probably be (i) at least as big as the particle diameter (ii) as
small as possible, in order to prevent too many neighboring particles from being detected. These
requirements may be hard to guarantee if the Cartesian mesh is too coarse, or locally refined (which is
one of the future aims of the code). For these reasons, a Cartesian grid is superimposed in any case.

Parallelism also requires special treatment for particles, as collision might occur between some
of them although they don’t belong to the same processor domain. To cope with this requirement,
a ghost particle method is used, which is also classical in CFD/DEM. Ghost particles are identified
using a cell halo surrounding each processor domain as shown in Figure 6 for processor ranked #1 in a
cylindrical geometry discretized with an unstructured mesh. The particles belonging to the cell halo
are exchanged between involved processors with the necessary data to compute collision force only
by the mean of non-blocking Message Passing Interface (MPI) exchanges. The size of the cell halo is
locally determined by the cell mesh size and particle diameter to avoid unwanted distant particles
from being identified as ghost particles, which is not straightforward on unstructured meshes. On each
processor, ghost particles are treated to be located as well on the afore mentioned Cartesian detection
grid (see Figure 5).

Figure 6. Ghost particle method principle shown for a part of a cylindrical domain. The different
processor domains are colored accordingly. The processor of interest is ranked #1 ( ) and its closest
neighbors are ranked #2, #3, #4, #5 and #6. A particle entering the white cell halo around #1 will be sent
to #1 as a ghost particle by the processor it belongs to.
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2.6. Assessment of the Solver Performances

Assessments of the code global performances are first extracted from a canonical isothermal
case, disregarding its physical relevance. This case consists of a cubic box meshed with tetrahedra.
Particles are randomly seeded in the box, with a mean porosity of about 0.54, and each tetrahedron
contains roughly 11 particles. A fluid phase is present to account for the computational cost related to
interpolation and projection steps. The particle timestep is chosen such that, ten particle timesteps
are performed for each fluid timestep, which corresponds to a usual sub-stepping configuration.
Code assessments are obtained from a single fluid timestep. All the tests were carried out on the
regional supercomputer Myria of the CRIANN center (Centre Régional Informatique et d’Applications
Numériques de Normandie, France), featuring a Intel Omni-Path interconnect. The processors used
are Intel Broadwell 14 cores running at 2.4 GHz with 128 GB RAM (about 4 GB memory per core) for
total peak power of 400 TFlop/s.

The speed-up is first obtained by running the same simulation on different numbers of cores,
ranging from 532 (reference case) to 4144. Each simulation roughly gathers 38M tetrahedra and 410M
particles. The reference CPU time tre f

CPU being associated with the temporal loop of the solver on
Nprocsre f = 532 cores, the speed-up for a CPU time tCPU on Nprocs is calculated by:

speed-up(Nprocs) = Nprocsre f × tre f
CPU

tCPU
, (46)

and is illustrated on Figure 7a. The solver exhibits a good scalability up to 4144 cores, with a speed-up
reaching 80% of the ideal scaling.

Secondly, the scale-up of the solver is quantified by an evalutation of the performances at constant
load per core on different numbers of cores, ranging from 252 (reference case) to 4144. The number of
particles per core is about 99k, and the number of tetrahedra is about 9.1k per core. The scale-up is
given by:

scale-up(Nprocs) = Nprocsre f × tre f
CPU

Nre f
c

Nc

tCPU
, (47)

where Nre f
c and Nc are the number of cells in the reference case and in the current case, respectively.

The scale-up curve is represented on Figure 7b, which shows an excellent scaling.
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Figure 7. Speed-up (a) and scale-up (b) curves extracted from the canonical case.
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Performances of the code are also assessed on an isothermal pressurized gas-fluidized bed carried
out at the university of Birmingham [26]. The investigated case gathers 10M particles in a cylindrical
domain meshed with 3.7M tetrahedra. Here, the performances are extracted over 1 s of physical time
after the stability of the bed fluidization has been assessed by monitoring both the bed height and the
pressure loss across the system. Thus, this case deals with realistic conditions where the execution
speed highly depends on the local physics (presence of dense or void zones), and where, the fluid
and particle timesteps are recomputed throughout the simulation. The tests were carried out on the
Curie supercomputer of the TGCC center (Trés Grand Centre de Calcul, France), featuring a InfiniBand
QDR Full Fat Tree interconnect. The used nodes comprise two Intel Sandy Bridge octo-core processors
running at 2.7 GHz with 64 GB RAM (about 4 GB per core).

The speed-up is obtained by running the simulation on various numbers of cores, ranging from
64 (reference case) to 1024 cores, and is illustrated on Figure 8. On the whole, the solver reaches 55% of
its ideal scaling value, which is acceptable given the high dispersion of the particles amongst the cores,
causing their de-synchronizing.
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Figure 8. Speed-up curve obtained on the Birmingham fluidized bed.

3. Simulation Cases

3.1. Configuration and Meshes

In this work, CFD/DEM simulations of a fluidized bed, similar to that used in the experiments
reported by Patil et al. [27], are performed. A sketch of the simulated configuration of the fluidized bed
is shown in Figure 9 (left) including its dimensions. The bed contains inert glass particles fluidized by
fresh nitrogen injected through the bottom of the bed at different gas flowrates. Physical properties of
both gas and particles are summarized in Table 1. In the experiments, the bottom area of the bed was
equipped with a small circular nozzle of 1.2 cm diameter, through which no gas was supplied during
the experiments. In order to reproduce the effect of the switched nozzle as faithfully as possible, a zero
gas flow was set through an area located at the center of the lower horizontal section of the bed. This
area was considered as a wall for both gas and particles and is referred to as the bottom wall in the
simulations. In the simulations, three different grid refinements were used and their characteristics are
reported in Table 2, including that of the bottom wall retained for each mesh. As an example, a sketch
of the intermediate mesh is illustrated in Figure 9 (right).
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Figure 9. Sketches of the simulated configuration (left) and of the intermediate mesh (right).

Table 1. Gas and particle properties [27].

Gas Properties (at 20 ◦C)

Density, ρ 1.165 kg/m3

Viscosity, μ 2 × 10−5 Pa·s
Particle Properties

Mean diameter, dp 1 mm
Density, ρp 2500 kg/m3

Norm. coef. of rest., en 0.97

Solid/gas density ratio, ρp/ρ 2146

Table 2. Mesh characteristics.

Number of Cells Bottom Wall Mesh Size/Particle Diameter Ratio
Mesh

Nx Ny Nz Total Nx Ny Δx/dp Δy/dp Δz/dp

Coarse 17 3 55 2805 3 3 4.706 5.000 4.545
Intermediate 35 6 110 23,100 5 4 2.286 2.500 2.273

Fine 70 12 220 184,800 10 8 1.143 1.250 1.136

3.2. Description of the Simulation Cases

Several simulations based on different grid refinements, combined with different physical
parameters, are investigated. In our modeling strategy, a friction coefficient, previously denoted
as μtan in Section 2.2.1, is required to account for the tangential contact force during binary particle
and particle-wall collisions. Since such a coefficient is not provided in the work of Patil et al. [27],
we examined available values from the literature. As reported by Lorenz et al. [28], its value may
depend on the state and history of the particle surfaces. The authors experimentally evaluated the
friction coefficient, of glass particles having experienced a considerable time in granular flows, to 0.177
and 0.141 for inter-particle and particle-spent aluminum plate collisions, respectively. In the work of
Goldschmidt et al. [29], values of 0.10 and 0.09, as measured by Gorham et al. [30], were respectively
used in the modeling of the particle-particle and the particle-wall frictional collisions in a dense
gas-fluidized bed configuration. In Gorham et al., both the particles and the pseudo-2D bed were
made of glass. In the following sections, we denote the particle-particle and the particle-wall friction
coefficients as μp and μw, respectively. All the simulations are summarized in Table 3. A mesh
sensitivity analysis, drawn from simulations C1, C2 and C3, for which μp = μw = 0.2 is assumed, is
first presented. In a second step, various values of the friction coefficients, μp and μw, are investigated.
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This study refers to the sets of simulations C4 and C5, as shown in Table 3. The C4 simulations are
performed using a constant value of μp, with different values of μw, whereas in the C5 simulations,
the effect of μp is investigated for a constant value of μw. From these investigations, values for the
friction coefficients are chosen by comparing numerical results of the volume fraction and the axial flux
of the particulate phase with the available experimental measurements. Finally, additional Reynolds
number and bed weight conditions are used as variable parameters for the simulations C6 and C7. It
has to be mentioned that the inlet gas velocity, Uf , given in Table 3 is the superficial velocity through
the horizontal cross-sectional area of the bed (so, this area also includes the bottom wall). For each
tested gas velocity, the corresponding particle Reynolds number, given as Rep = ρUf dp/μ, is reported
in the table, together with the Stokes number St = ρdpUf /(18μ). It has to be noted that, the bulk
Reynolds number based on the bed width is relatively high (5600 ≤ Re ≤ 8000). Therefore, for all the
performed simulations, a turbulent viscosity based on Smagorinsky model is used. The additional
parameter of interest is the restitution coefficient during particle-wall collisions, ew, which is considered
equal to that of the particle-particle collisions, en.

Table 3. Simulation cases with the selected physical and numerical parameters.

Simulation Bed Uf (m/s) Friction Coefficients Mesh

Cases Mass (g) at 20 ◦C Rep St μp μw

C1
75 1.20 70 ∼4 μp = μw = 0.2

Coarse
C2 Intermediate
C3 Fine

C4 75 1.20 70 ∼4 0.1

0.0

Intermediate
0.2
0.2
0.4
0.8

C5 75 1.20 70 ∼4

0.0

0.1 Intermediate
0.2
0.2
0.4
0.8

C6 75 1.71 100 ∼5.5 μp = μw = 0.1 Intermediate

C7 125 1.54 90 ∼ 5 μp = μw = 0.1 Intermediate

4. Results

Non-dimensional results are presented in this section. Since the lengths of the simulated
configuration are different in all three directions a different length scale is defined in each direction.
As a consequence, x−, y− and z−distances are divided by the bed width (L = 0.08 m), the bed
depth (D = 0.015 m) and the bed height (H = 0.25 m), respectively. The time scale is defined as
t/(dp/Uf ). The velocities are divided by the inlet gas velocity (Uf ) and the mass flowrates by the
inlet gas mass flowrate (ρUf ). In order to characterize the bed hydrodynamics in an Eulerian fashion,
the instantaneous fields of any Lagrangian variable, ψp, are obtained by performing a spatial average
over the grid cell. In addition, a 2D-behavior is considered for this fluidized bed configuration since
the hydrodynamic variations in the depth direction are negligible. This can be observed in Figure 10,
which displays the instantaneous particle volume fraction, αp, on different slices chosen at y/D = 0.2
(close to the back side), y/D = 0.5 (in the middle of the bed) and at y/D = 0.8 (close to the front side).

As an example, in Figure 11, profiles along the depth direction at the height z/H = 0.16 are also
given for the time-averaged vertical velocity of the solid phase normalized by the inlet gas velocity
(Up,3/Uf ). It can be observed that variations along the depth direction of such a quantity are not
strong. Thus, two-dimensional variables are computed by averaging over the bed thickness (i.e., in the
y-direction). In the present work, the 2D-variables corresponding to the computed field, < ψp >,

83



Fluids 2019, 4, 51

are denoted as < ψp >xz. All the simulations are run for 20 s in order to reach a steady regime.
In such a regime, particles and fluid hydrodynamic fields are statistically stationary and time-averaged
quantities, < ψk >, for which k denotes the gas (g) or the particulate (p) phase, may be computed for
comparison with the experimental measurements.

Figure 10. Instantaneous particle volume fraction on different slices of the bed. Simulation C2,
dimensionless time t/(dp/Uf ) = 12,000, μw = μp = 0.2, Rep = 70 and bed weight 75 g.

Figure 11. Profiles of the time-averaged normalized vertical velocity of the particulate phase (Up,3/Uf )
at different locations x/L. Simulation C2, μw = μp = 0.2, Rep = 70 and bed weight 75 g.

4.1. Effect of the Grid Refinement

In this section, the simulations C1, C2 and C3 are presented and discussed. The three simulations
differ from each other by their mesh size, as shown in Tables 2 and 3, and consequently by their
filtering kernel length (�4Δx). However, because the kernel length is always larger than the particle
diameter, the volume-averaged equations are well posed in the sense of Jackson [7]. Snapshots of the
time-averaged fields concerning the volume fraction, < αp >xz, and the mass flux, < αpρpUp >xz, of
the particulate phase are depicted in Figure 12 for the different grid refinements. Experimental results
are also included in the right column. The simulations match quite well the experiments. The particle
volume fraction exhibits high values (dense regions) close to the side and bottom walls and small
values (dilute regions) in the center of the bed. However, the average height of the fluidized bed
seems to be slightly overestimated by the simulations. The solid flux exhibits a macroscopic double
mixing loop and, on average, the particles move upward at the center of the bed and downward
close to the side walls. Comparison to experiments reveals that the center of the mixing loops, as
predicted by the simulations, is located slightly higher than that experimentally observed. The three
simulations indicate clearly that the mesh size affects the bed hydrodynamics prediction. The reason
is that particles continuously interact with the gas flow through the drag and the pressure gradient
forces, which then contributes to the particle dynamics evolution. Since the mesh resolution affects
the hydrodynamics prediction of the gas phase, this consequently modifies the particle dynamics
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predictions. The upper panel of Figure 12, shows that the finest grid leads to the best predictions,
as a result of an accurate resolution of the gas hydrodynamics. The high solid concentrations close
to the side walls, as reported by the experiments, are reproduced with a relatively good accordance
by the fine-grid simulation. Nevertheless, refining the mesh does not seem to have a significant
effect on the height of these dense regions from the bottom of the bed, nor on the mean bed height.
Indeed, refining the mesh “locally” improves the bed hydrodynamic predictions by improving the
fluid velocity field around the solid particles, but it does not influence the predicted overall bed
height. This latter is instead directly affected by the selected drag force model. This is the main reason
why one-dimensional models are accurate regarding the prediction of the mean bed height, given a
sufficiently appropriate drag model. The analysis of the time-averaged fields of the solid flux reveals,
apart from the progressive intensification of these fields due to the increasing mesh resolution, that
this latter did not influence the position of the observed double mixing loop.

Figure 12. Numerical predictions of the time-averaged fields of the volume fraction, < αp >xz, (upper
panel) and the mass flux, < αpρpUp >xz, (bottom panel) of the solid phase. From left to right, increasing
grid refinement with μw = μp = 0.2, and comparison with the experiments (right column). Rep = 70
and bed weight 75 g.

Figure 13 shows profiles of the time-averaged vertical solid mass flux normalized by the gas mass
flowrate, < αpρpUp,3 >xz/ρUf . The profiles are taken at the height z/H = 0.092 (z = 2.3 cm) above
the bottom of the bed, for which experimental data are available. We notice that the predictions are
improved when the finest mesh is used, especially close to the side walls. However, at the center of the
bed, the effect of the bottom wall on the axial solid flux is still poorly reproduced even when a finer
mesh is used.

With the attempt to improve the numerical results, the wall boundary condition type on the gas
phase was also investigated. Within the framework of Navier-Stokes equations, the wall boundary
condition for the gas is no-slip. However, such a condition is questionable for averaged equations, as
those employed in this work. In addition, the presence of the particles may profoundly modify the
flow hydrodynamics. In the present work, slip and no-slip fine-grid simulation cases were run and
compared to each other. The time-averaged results (not shown here) relative to the particulate phase
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were only very slightly affected by the selected wall condition of the gas phase. Such a behavior is
inherent to inertial particles, as those simulated in the present work, for which the Stokes number is
much greater than unity, as shown in Table 3.

Figure 13. Time-averaged normalized vertical mass flux of the solid phase, < αpρpUp,3 >xz/ρUf , at
the height z/H = 0.092 above the bottom bed, for different grid refinements. μw = μp = 0.2, Rep = 70
and bed weight 75 g.

4.2. Investigation of the Frictional Effects

Effects of the inter-particle and the particle-wall friction coefficients on the bed hydrodynamics
are here discussed. In the previous study, the computational time required by the fine-grid simulation
was nearly twice higher than that of the intermediate-grid simulation. Therefore, the present study is
carried out using the intermediate mesh.

The time-averaged fields concerning the particle volume fraction, as obtained from the sets of
simulations C4 and C5 are shown in Figure 14. As previously mentioned, a dense region is observed
close to the side and bottom walls, whereas, the center of the bed is characterized by a dilute solid
concentration. In addition, the average height of the fluidized bed seems to decrease as the frictional
effects become stronger. However, more subtle differences between the situations can be observed.
The upper panel as obtained by the simulations C4, reveals that, for the same value of the particle
friction coefficient, when the wall frictional effects become stronger, the dense regions become denser
and larger near the side walls, while they are sligthly narrowing above the bottom wall. Results
also show that such regions move slightly upwards as μw increases. It has to be reminded that the
influence of the wall friction coefficient is also exerted at the front and the back walls, but should be
stronger in the confined parts of the bed, namely at the side walls, where the denser regions of the
bed are observed. The bottom panel, obtained by the simulations C5, shows that, when μp increases
up to 0.2, the bed hydrodynamics exhibit similar behavior as that observed when μw varies and μp is
kept constant (simulations C4). Such results are in agreement with the work of Yang et al. [31], who
showed the same trend of particle volume fraction distribution when μp was increased from 0.05 to
0.15, in their comparison study between two fluid model (TFM) and discrete particle model (DPM)
simulations. However, unlike simulations C4, continuing to increase the particle-particle friction
coefficient above the value of 0.2 in the simulations C5 resulted in decreasing the solid concentration
near the side walls and increasing it above the bottom wall. The inter-particle friction acts on the
whole bed volume and, as a consequence, high values of the inter-particle friction coefficient may
considerably modify the bulk-bed hydrodynamic behavior. Finally, when the particle friction is not
considered (μp = 0 for μw = 0.1), a homogeneous fluidized bed is obtained, which is not the case
for μp �= 0 and μw = 0 (simulations C4). These various bed behaviors inform about the effect of the
particle friction on the bubble formation. As an exemple, snapshots of the instantaneous bed porosity
(gas volume fraction), obtained at different instants by the simulations C5 for two values of μp, are
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depicted in Figure 15. In the case of frictionless particles (μp = 0), no bubble formation occurs, whereas
in the case of relatively frictional particles (μp = 0.2), a realistic bubble growth is observed. This is
consistent with the work of Hoomans et al. [32], who showed the same bubble patterns in 2D-fluidized
bed DPM simulations.

Figure 14. Time-averaged particle volume fraction, < αp >xz, for different values of the particle–wall
μw and the particle–particle μp friction coefficients. Upper panel: constant μp and different μw.
Bottom panel: constant μw and different μp. Rep = 70 and bed weight 75 g.

Figure 15. Instantaneous gas volume fraction, with μw = 0.1. Upper panel: μp = 0. Bottom panel:
μp = 0.2. Rep = 70 and bed weight 75 g.
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Time-averaged particle agitation energy, q2
p, has been computed as q2

p = u′
p,iu

′
p,i, where u′

p,i =

up,i − Up,i. In these expressions, u′
p,i and Up,i are the ith components of the fluctuating and the

mean particle velocities, respectively, with the mean particle velocity computed as Up,i =< up,i >.
The normalized results are shown in Figure 16 for the two sets of simulations. The first panel obtained
from the set C4 shows that most of the particle agitation is produced at the approximate height
z/h = 0.25. This height corresponds to the average height of the dense bed (αp > 0.2). Furthermore,
it increases when friction at wall becomes stronger. Results of the simulations C5, as depicted in the
bottom panel, show a decline, on average, of the particle agitation energy when the particle friction
increases. In addition, some particle agitation is produced at the height z/h = 0.25, similarly to what
is observed in the C4 simulations. On the contrary, fewer amount of particle agitation is produced
as the particle frictional effects become more significant. These results show that, for low friction
between particles, the fluidized bed may be considerably heterogeneous when friction at wall is high
and become homogeneous when friction between particles is strong. It has to be noted that, in all these
simulations, the computed particle agitation energy in the upper part of the bed (z/H ≥ 0.375), has a
very low significance since, in this part, the particle volume fraction is nearly zero.

Figure 16. Time-averaged dimensionless particle agitation energy, q2
p/U2

f for different values of the
particle-wall μw and the particle-particle μp friction coefficients. Upper panel: constant μp and different
μw. Bottom panel: constant μw and different μp. Rep = 70 and bed weight 75 g.
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Figure 17 shows the time-averaged field of the solid mass flux for the two sets of simulations.
From the visualizations, it appears that friction affects significantly the magnitude of the solid flux
and the extent of the mixing loops. In some cases, it also affects their position from the bottom of
the bed. As previously observed for the particle volume fraction distribution, the position of the
centre of the double mixing loop moves upwards when μw increases (upper pannel). This point is not
straightforward when μp is increased (bottom panel). However, qualitatively speaking, the magnitude
of the solid flux exhibits a maximum for μp = 0.2 in both sets of simulations.

Figure 17. Time-averaged solid mass flux, < αpρpUp >xz, for different values of the particle–wall μw

and the particle–particle μp friction coefficients. Upper panel: constant μp and different μw. Bottom
panel: constant μw and different μp. Rep = 70 and bed weight 75 g.

A quantitative analysis of the solid flux may be performed via its vertical profiles at a given height
of the bed. Profiles of the time-averaged normalized vertical solid mass flux are depicted in Figure 18a,b
for the two sets of simulations. The profiles are taken at the height z/H = 0.092 (z = 2.3 cm) above
the bottom of the bed, for which experimental data are available. In all the simulations, two distinct
parts for each profile can be observed. The first part corresponds to a nearly flat profile located in the
region spanning the center of the bed and the second one is a sloped profile starting from the side
walls. The expansion of one part to the detriment of the other depends on the values of the friction
coefficients μw and μp. These coefficients also determine the maximum values of the upward and the
downward mass fluxes in the flat and the sloped parts, respectively. The figures show that when μw or
μp increases up to 0.2, the downwarding flux increases and the upwarding flux, close to the center
of the bed, decreases. This leads, at the same time, to a steeper slope of the solid mass flux profile in
the sloped part and to a less broad flat part at the center of the bed. For a stronger friction, either at
wall or between particles, larger sloped parts are still observed, but with less steep slopes, leading
to the decrease of both the downwarding and the upwarding solid fluxes. Therefore, despite the
differences observed concerning the volume fraction and the agitation energy of the particulate phase,
simulations C4 and C5 predict similar characteristics (field and magnitude) of the solid mass flux. It is
conjectured that, in this confined configuration, when the wall friction coefficient increases, the front
and back walls may considerably contribute together with the side walls to propagate stronger wall
frictional effects towards the bulk bed. This has already been shown in a previous CFD/DEM study
of Li et al. [33] for bed thicknesses of 10 and 20 particle diameters in a bubbling fluidized bed. As
a consequence, stronger wall friction may produce almost the same effect on the solid flux as that
induced by the friction between particles.
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Finally, comparison with the experimental measurements shows that, the case with μp = μw = 0.1,
is particularly interesting as it allows to reproduce the effect of the bottom wall on the axial solid
flux (Figure 18) and to better predict the location of the solid mixing loops from the bottom of the
bed (Figure 17 vs. experimental data from Figure 12). Nevertheless, the solid concentration close to
the side walls seems to be slightly underestimated (Figure 14 vs. experimental data from Figure 12)
and the solid loops more elongated than that experimentally reported. However, the predicted value
of 0.1 for both the particle-particle and the particle-wall friction coefficients is noteworthy. In fact,
the friction coefficient is a physical parameter that depends on the mechanical properties and the
surface morphology of the solid particles, mainly Young’s modulus and the surface roughness. Its
experimental measurement is also very sensitive to some environmental factors, such as wet or dry
conditions and the exerted normal stress. For this reason, a wide range of values are reported in
the literature for glass beads under various conditions. Values ranging from 0.139 to 0.464 have
been determined by Ishibashi et al. [34] for 1.6 mm-sized particles under dry conditions and various
normal forces. Sandeep and Senetakis [35] reported a unique value of 0.2 for glass particles of 2 mm
diameter. Additionally, other values may also be found in the literature as this is previously discussed
in Section 3.2. The predicted value of 0.1 in our simulations is deemed to be acceptable and it is in very
good agreement with that used by Goldschmidt et al. [29] in their simulation of glass particles in a
pseudo-2D dense fluidized bed.

Figure 18. Time-averaged vertical solid mass flux normalized by the gas mass flow rate,
< αpρpUp,3 >xz/ρUf , for different values of the particle–wall and particle–particle friction coefficients,
and comparison with experiments. Rep = 70 and bed weight 75 g.

4.3. Application of the Results to Other Physical Configurations

In order to generalize the previous results to different physical configurations, other Reynolds
number and bed weight conditions are investigated using the intermediate mesh. The same value
of μw and μp and equal to 0.1 is used in the simulations since, as shown in Section 4.2, this leads to
minor deviations from the experiments conducted for Rep = 70. A gas no-slip condition at the wall is
also retained. In the simulation C6, a superficial gas velocity of 1.71 m/s corresponding to Rep = 100,
as reported in Table 3, is imposed at the bottom of the bed. Predictions obtained by this simulation
concerning the time-averaged fields of volume fraction and mass flux of the solid phase are reported
in Figure 19a,b, respectively. Experimental measurements are also included for comparison purpose.
One can see that the simulation reproduces very well the experimental solid distribution and the
solid mass flux field. However, slight mismatches can be observed concerning the mean bed height
and the position of the solid mixing loops. At the height z/H = 0.092, numerical and experimental
vertical mass fluxes are displayed on Figure 20. Globally, results are conveniently reproduced by the
simulation and confirm the accuracy of the selection μw = μp = 0.1.
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(a) < αp >xz (b) < αpρpUp >xz

Figure 19. Numerical (a) against experimental (b) time-averaged fields of the volume fraction and the
mass flux of the solid phase. Rep = 100 and bed weight 75 g. In the simulation, μw = μp = 0.1.

Figure 20. Numerical against experimental time-averaged vertical mass flux, < αpρpUp,3 >xz/ρUf , of
the solid at the height z/H = 0.092 above the bottom of the bed. Rep = 100 and bed weight 75 g. In the
simulation, μw = μp = 0.1.

Results of a fluidization experiment of 125 g of particles by nitogen injected at a velocity of
1.54 m/s, corresponding to Rep = 90, have also been reported in Patil et al. [27]. This operating point is
simulated in the present work (simulation C7) and results displayed in Figure 21a,b, together with the
experimental data. Based on the investigations reported in Section 4.2, a value of the friction coefficient
that allows to match as best as possible the experiments is retained. However, for all the simulations
investigated so far, common deviations from the experiments are observed, namely concerning the
mean bed height that appears overestimated, and the lateral solid recirculation zones which seem
to be more elongated than that experimentally reported. The present simulation, using a higher bed
weight, also does not sufficiently match the experiments, although the general pattern of the bed is
globally well reproduced. Improvement of the numerical results should be achieved by, first, selecting
an accurate drag law, which would allow to decrease the mean bed height, and then, by refining the
mesh, which, as shown in Section 4.1, allows to accurately reproduce the solid concentration near the
side walls.
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(a) < αp >xz (b) < αpρpUp >xz

Figure 21. Numerical (a) againt experimental (b) time-averaged fields of the volume fraction and the
mass flux of the solid phase. Rep = 90 and bed weight 125 g. In the simulation, μw = μp = 0.1.

5. Conclusions

In this work, a DEM/LES approach is used to simulate a confined fluidized bed configuration
for several physical and numerical conditions. Results are compared with experimental data of [27].
This study shows that, compared with the experimental measurements, predictions regarding the
volume fraction and the mass flux of the particulate phase, obtained from the fine grid, are slightly
better than that of the coarse and the intermediate grids. This slight improvement is attributed to a
better prediction of the gas-particle interactions through the drag and the pressure gradient forces.
The present work is also dedicated to frictional effects between particles and between particles and
walls on the bed hydrodynamics behavior. It is shown that, increasing either the coefficient of the
inter-particle friction or that of the particle-wall friction, the average bed height decreases and the
bubble formation is enhanced. At low friction between particles, increasing the wall friction coefficient
leads to similar solid circulation patterns (fields and magnitudes) as in the simulations with increasing
friction between particles. Thus, it is conjectured that, in such confined 2D-configuration, when
the wall friction coefficient increases, the friction of the front and back walls may have a significant
impact on the inner-flow hydrodynamics of the fluidized bed. This finally may lead to the same bed
hydrodynamics behavior as that observed when the friction coefficient between particles increases.
Nevertheless, this point has to be further investigated. Indeed, to clearly understand the contribution
of the friction at the front and back walls, simulations with various bed thicknesses combined with
different values of the friction coefficients have to be performed. Additional simulations, performed
at higher Reynolds numbers and/or other bed weights, showed globally good agreement with the
experiments, reproducing almost similar particle volume fraction and solid circulation patterns as the
experiments. However, deviations from the experiments concerning the average height of the dense
bed is still exhibited in all the simulations. This could be further enhanced by studying other modeling
features, such as the drag law.
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Abbreviations

The following abbreviations are used in this manuscript:

CFL Courant-Friedrichs-Lewy
DEM Discrete Element Method
DPCG Deflated Preconditioned Conjugate Gradient
DPM Discrete Particle Model
DNS Direct Numerical Simulation
LES Large-Eddy Simulation
MPI Message Passing Interface
PCM Particle Centroid Method
RK Runge–Kutta
SC Surrounding Cell
TFM Two Fluid Model
BN Blue Nodes
GN Green Nodes
RN Red Nodes

Appendix A. Influence of LES Model on the Numerical Results

In order to clearly assess the influence of the LES model on the numerical simulations we
performed additional simulations with and without LES model. The physical and numerical
parameters corresponds to case C6 in Table 3. Figure A1 shows that there almost no difference
between the case using a LES model and the case with no model. The closure law for small scale
structures have a weak impact on the flow which means that the dissipation is mainly governed by the
large scale structure and by particle-particle friction.

Figure A1. Time-averaged particle volume fraction. (Left): Experimental results, (middle): numerical
results using Smagorinsky model, (right): numerical results without Smagorinsky model.
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Abstract: Microscopic multiphase flows have gained broad interest due to their capability to
transfer processes into new operational windows and achieving significant process intensification.
However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work,
we introduce a model to determine the excess velocity of Taylor droplets in square microchannels.
This velocity difference between the droplet and the total superficial velocity of the flow has a direct
influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not
occupy the entire channel cross-section, it enables the continuous phase to bypass the droplet through
the corners. A consideration of the continuity equation generally relates the excess velocity to the
mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet
cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids
exerted onto the interface and allows estimating the local driving pressure gradient for the bypass
flow. The characterizing parameters are identified as the bypass length, the wall film thickness,
the viscosity ratio between both phases and the Ca number. The proposed model is adapted with a
stochastic, metaheuristic optimization approach based on genetic algorithms. In addition, our model
was successfully verified with high-speed camera measurements and published empirical data.

Keywords: Taylor flow; droplet excess velocity; droplet velocity model; microfluidics; genetic
algorithms; greybox modeling

1. Introduction

Microscopic multiphase flows facilitate a wide field of possible applications since they provide
short diffusion layers within the flow structures. This enables high mass and heat transfer rates [1,2]
for several applications ranging from extraction [3] and multiphase catalyst reactions [4] to improved
unit operations such as mixing tasks [5]. The distinct features allow performing reactions at new
process windows with fewer hazards or higher selectivity [6]. The specific flow conditions can
furthermore serve for cell isolation [7], genetic analysis [8] and reaction screening in a droplet chain [9].
In contrast to large scale multiphase flows, microscopic flows are much easier to predict as there are no
complex interactions such as swarm turbulence [10,11] commonly found in bubble columns. In fact,
the reproducibility of Taylor flows is a key for the application of microscopic multiphase flows [12].

In the Taylor flow regime, the disperse phase is separated from the wall by a thin wall film
and does not fill the entire cross-section of the microchannel. The remaining space between the
droplet and the microchannel’s corners is occupied by the continuous phase, which is referred to as
gutters [13]. The droplets are typically longer than the channel diameter, which leads to separated
elongated disperse phase instances. The continuous phase segments between the droplets are called
slugs. Taylor flows are mainly established in circular capillaries or rectangular microchannels whereas
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especially the hydrodynamics of moving Taylor droplets in circular capillaries and the role of the thin
wall film have been intensively studied [14].

Chemical reactions on the microscale are often performed in monolith reactors functioning as as a
catalyst support. In these reactors, a high number of parallelized channels with hexagonal or square
channel cross-section offer a high specific reaction area for wall placed catalysts at small wall thickness.
This results in a better heat transfer through the walls and better mechanical stability than circular
capillaries [15]. For process control and stabilization, as well as precise reactor design, knowledge of
the underlying fluidic terms is crucial. The high grade of parallelity complicates the prediction of the
hydrodynamics and the resulting pressure drop [16,17].

Besides disperse phase size distribution and formation frequency [18], the actual droplet velocity
is essential for the droplet residence time in the reactor. It determines the contact time of the educts
and influences the pressure drop of the reactor [19]. In parallel reactors, the exact knowledge of the
pressure drop is especially necessary since a steady educt supply for each individual single reactor is
needed to ensure stable and efficient working conditions [20].

Several publications deal with the droplet velocity in rectangular capillaries and observe a droplet
velocity mostly faster than the superficial velocity (see Section 3). For flows in circular capillaries,
where only a thin wall film is present, this velocity difference is well understood [21], while for
rectangular microchannels a variety of explanations exist, which mostly correlate the relations from
measurements [22]. This complicates the transfer of results to other flow applications or altered process
parameters since local and instantaneous hydrodynamic parameters are mostly not taken into account
by the models and correlations.

This work aims to establish a model to determine the droplet velocity from the actual flow
conditions [23]: e.g., droplet length, material properties, and the Ca number. In a first step, we develop
a concept for the relative droplet velocity, which bases this velocity on extrinsic parameters, allowing
a linear scaling. From this concept, we identify the bypass flow through the gutters as well as the
film-thickness as the prominent parameters for the excess velocity.

In the next step, we develop a model that uses the local surface curvature of the gutters to retrieve
the local pressure at the entrance and outlet of the gutter as a driving force. The bypassing gutter
flow is calculated based on the counterplay of this driving force, the gutter length and a viscosity
correlated resistance factor β. The local droplet curvature at the gutter entrances is derived with an
analytical interface shape approximation [24] and a correlation for the droplet cap curvature based on
the Ca number from our previous work [25]. The model was successfully validated using high-speed
camera measurements.

2. Hydrodynamic Fundamentals of Taylor Flows

The Taylor flow regime in rectangular microchannels is mainly influenced by surface tension
forces rather than inertia forces. In the Taylor flow regime, a droplet fills nearly the whole cross-section
of a hydrodynamic channel, while the continuous phase occupies the gutters and a thin wall film.
The droplets are divided by the slugs, consisting only of liquid from the continuous phase.

The interaction between interfacial and viscous forces is described by the Capillary number Ca.

Ca “ u0ηc

σ
(1)

Herein, ηc represents the dynamic viscosity of the continuous phase, σ the interfacial tension
between both phases and u0 the total superficial flow velocity:

u0 “ Q0

Ach
“ Qd ` Qc

W ¨ H
“ Qd ` Qc

H2 ¨ ar
(2)
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The superficial velocity u0 is based on the volume flow of the disperse Qd and continuous Qc

phase as well as the microchannel’s cross-sectional area Ach that calculates from the channel width W
and channel height H or, respectively, the channel aspect ratio ar “ W

H .
For energetic considerations, knowledge of the ratio between inertia and viscous forces is of

importance. The Reynolds number

Re “ u0Hρc

ηc
(3)

is used to describe the ratio between inertia and viscous forces of the continuous phase with ρc being
the continuous phase density and ηc the continuous phase viscosity. Additionally, the viscosity ratio

λ “ ηd
ηc

(4)

between both phases has a significant influence on the pressure drop and the velocity of a droplet [19,26,27]
since it indicates the momentum coupling into the disperse phase. Please note that the definition of λ

differs in the mentioned publications.
Considering the overall classification of the applied flow system, the material properties of both

fluid phases are of importance. The Ohnesorge number Oh describes the most prominent material
properties for droplets being formed or dispersed [28]. It characterizes the fluidic system independent
of current flow or forces and is mostly used when working with surfactants to manipulate the flow
properties. Here, we use the Oh number to characterize the continuous phase.

Oh “ ηca
dρcσ

“
c

Ca
Re

(5)

In many applications, Taylor droplets in rectangular microchannels move with a velocity different
from the superficial velocity, because the droplet does not fill the entire channel cross-section and continuous
phase can bypass the droplet through the gutters. An early description was given by Wong et al. [29],
who described these phenomena analytically and declared two possible regimes.

In the first regime, the fluid in the gutters moves slower than the droplet, dissipating kinetic
energy. For the gutters, Abiev [21] reported an inverted pressure gradient, indicated by the local
surface curvature. For circular microchannels, this results in an inverse flow of the wall film and the
droplet moves faster than the superficial velocity.

In the second flow regime, which holds true for long and highly viscous droplets [27,29,30],
more energy is dissipated through the larger wall film area and through viscous dissipation in the
droplets. Consequently, the flow in the gutters moves from the droplet back to the front. Thus,
the droplet moves slower than the superficial velocity.

For both regimes, the thin wall film resists the motion of the droplet, resulting in a difference in
pressure with higher value at the back and a lower value at the front of the droplet. The transition
between both regimes is described by a critical flow rate and depends on the droplet length and the
channel aspect ratio [29].

Jakiela et al. [31] focused experimentally on the influence of the momentum coupling between
both phases represented by λ and also revealed a dependence of the droplet velocity on the droplet
length. For short, low viscous droplets (λ ă 1), the droplets move faster than the superficial velocity
and the droplet behavior is assigned to the first flow regime. Highly viscous droplets (λ ą 1) move
either faster or slower than the superficial velocity, depending strongly on the droplet length.

3. Concept of Excess Velocity

Based on the instantaneous droplet velocity ud, which is evident and directly measurable via
optical or electrical measurement techniques [32], different explanatory approaches for the deviation
of superficial velocity u0 and droplet velocity ud have been reported.
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Liu et al. [33] defined this relative difference as slipping velocity uslip, Howard and Walsh [34] as
relative drift velocity udri f t, Angeli and Gavriilidis [35] as relative bubble velocity urel and Abadie et al. [36]
as dimensionless droplet velocity. Jakiela et al. [31] focused directly on the ratio of ud

u0
and named this

quotient droplet mobility according to Bretherton [37]. For this work, we summarize these approaches
as a slipping velocity:

uslip “ ud ´ u0

ud
“ 1 ´ u0

ud
(6)

In those concepts, the desired quantity is scaled with an intrinsic value such as the instantaneous
droplet velocity, which leads to normalization effects as values uslip ă 1 and uslip ą 1 are not
normalized symmetrically (Figure 1). This behavior has to be taken into account when experimental or
simulative data is interpreted.

In our approach, we scale the velocity difference with the superficial velocity as an extrinsic
property and, staying in the terms of extrinsic denomination, define it as an excess velocity uex

uex “ ud ´ u0

u0
“ ud

u0
´ 1 (7)

In this manner, uex results values around 0 for droplet velocities equal to the superficial velocity
(plug flow), while positive and negative values indicate droplets that are, compared to the superficial
velocity, faster or slower, respectively.

The advantage of this extrinsic concept stands out in a comparison of both approaches (Figure 1).
The first shown intrinsic concept (slip velocity) leads to an asymmetrical scaling behavior, especially
for droplets with ud ă u0, since uslip ă 0 decreases more strongly than uslip ą 0 would increase.
For applications such as balancing or process modeling, a linear behavior of ratio values is preferable
to simplify the balances. Otherwise, the nonlinear behavior would lead to an additional bias towards
any direction ud ă u0 _ ud ą u0, which requires a nonlinearly compensation in the description of the
phenomena and complicates the model development.
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Figure 1. Comparison of different concepts of calculating the relative droplet velocity: excess velocity
from this work (black solid line), slip velocity (grey solid line) and difference of both concepts (black
dashed line).

A description for the excess velocity can be derived from the volume flows around moving
droplets (Equation (8)). The continuity equation describes the connection between the gutter flow
and the outer driving flows and delivers the relation between the total flow Q0 and the volume flow
fractions of the disperse Qd as well as the continuous phase Qc. Considering the unit cell of a single
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slug and an adjoining droplet, the continuous phase divides into the volume flow of the slug (Qs),
the flow through the gutters (Qg), and through the wall film (Q f ):

Q0 “ Qd ` Qc “ Qd `
´

Qs ` Qg ` Q f

¯
(8)

If we depict the flows at a moving Taylor droplet (Figure 2a) and introduce a stationary control
surface Γ (Figure 2b), velocities can be retrieved from the balances, while two different flow states are
possible: In the case of a droplet passing Γ, the slug volume flow through the control surface is Qs “ 0
(since there is no slug present). For a slug passing Γ, only the slug volume Qs is present. As one can
see, the use of a stationary point of view leads to nonstationary terms in the balances.
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Figure 2. Prominent averaged and local velocity for a flowing droplet, where overlined entities
represent area-averaged velocities. The film flow is not shown in this drawing. (a) Velocities for a fixed
point-of-view (fixed frame); (b) flow balance at a steady control surface; (c) velocities for a moving
point-of-view with the velocity ud (moving frame); and (d) flow balance at a moving control surface.

If the coordinate system is changed from a fixed frame to a moving frame by moving the control
surface with an arbitrary velocity urel , the balances become stationary and relative velocities become
visible (Figure 2c). For this moving coordinate system, an additional volume flow Qrel adds to the
balances that result from the transformation of the coordinate system (Figure 2d):

Qrel “ urel ¨ Ach (9)

This changes Equation (8) to:

Q0 ´ Qrel “ Qd ` Qg ` Q f ´ Qrel (10)

With knowledge of the specific areas for each distinct volume flow rate, the averaged velocities
can be calculated. Following Figure 3a,c, we conclude for the gutter area Ag of all four gutters

Ag “ 4

«˜
Rg

2 ´ πRg
2

4

¸
` 2δRg ` δ2

ff
(11)
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with δ denoting the wall film-thickness and Rg representing the mean dynamic gutter radius, which
is described below in Section 4. For the cross-sectional film area A f , we state with the aspect ratio
ar “ WH´1

A f “ 4δ

H
H2

˜
1 ` ar

2
´ 2

Rg ` δ

H

¸
(12)

The droplet cross-sectional area Ad is delivered combining Ag and A f :

Ad “ Ach ´
´

Ag ` A f

¯
(13)
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Figure 3. Declaration of relevant geometry for the model of a Taylor droplet flowing through a rectangular
microchannel with the droplet velocity ud. (a) Top-view of x-y-plane, characterizing the droplet with the
front (a f , bf ) and back cap (ab f , bb), as well as the channel width W and droplet width w. (b) Droplet
front-view in y-z-plane with the droplet area Ad, gutter area Ag, film area A f , channel height H and
the droplet height h. Only one representation of each area is shown. (c) Close-up of the droplet corner
region with gutter radius (Rg) and the film-thickness δ.

With the cross-sectional areas of the droplet, the gutter and the wall film, the volume flow rates
can be rearranged to area-averaged velocities and Equation (10) becomes

u0 Ach ´ urel Ach “ ud Ad ` ug Ag ` u f A f ´ urel Ag ´ urel Ad ´ urel A f (14)

Herein, ud, ug and u f are area-averaged velocities of the droplet, gutter and film, respectively.
For the droplet (Qd “ ud Ad ´ urel Ad) and the film volume flow (Q f “ u f A f ´ urel A f ),

the transition velocity urel equals the stagnation point velocity ud, since we assume incompressibility,
mass conservation, a stagnant film and a stationary droplet shape [38].

ud “ ud
!“ urel (15)

Additionally, we assume the averaged velocity in the thin wall films to be insignificant for
Ca ă 0.2

u f « 0 (16)
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Therefore, Equation (14) simplifies to

pu0 ´ udqAch “ urel
g Ag ` p0 ´ udqA f (17)

Herein, urel
g “ ug ´ ud represents the relative gutter velocity, which dissipates flow energy in the

gutter. Simplification and combination with Equation (7) leads to

ud
u0

´ 1 “ uex “ ´ urel
g Ag

u0 Ach
` puex ` 1q A f

Ach
(18)

We neglect the terms that are small of higher-order (see Appendix A) and retrieve an expression
for the excess velocity:

uex “ ´ Qrel
g

Q0
` A f

Ach
(19)

The relative gutter volume flow (Qrel
g ) and the cross-sectional area of the wall film A f are the most

prominent influencing quantities for the excess velocity. Thus, our proposed model aims to especially
determine these quantities.

4. Model Specification

The considerations of the previous section identify the volume flows, which determine the excess
velocity. In a second step, we clarify the relevant influential parameters on these volume flows and
their interconnection.

For the proposed modeling approach, we adapt a greybox model following Hangos and Cameron [39].
Our model is developed from engineering principles, hydrodynamic considerations (see Section 3)
and well-defined equations, whereas the initialization of a part of the influential parameters is based
on measured data. The underlying relations can be described as an intermediate concept between a
black box (completely based on measurement data) and a white box model (based only on analytically
well-known equations and engineering principles).

As depicted in Section 3, we assume a droplet flowing through a rectangular microchannel with its
properties according to Figure 3. The thin wall film cross-section A f is determined by Equation (12) and
depends on the channel height H, the channel aspect ratio ar and the film-thickness δ. To determine
δ, we apply the model of Han and Shikazono [40], which holds for Ca ă 0.2. For the proposed
excess velocity model, full wettability of the walls with a stable wall film is assumed. Besides this
behavior being proven in the later measurements (see Section 6), we compared this assumption with
the literature. Kreutzer et al. [41] analytically retrieved the counterplay of film rupture in the region
near the gutters and film formation at the bubble or droplet front. Furthermore, they found coherences
for the length where the film starts to rupture. For short or fast droplets, new films are formed more
quickly than they rupture. In this work, mainly short droplets are covered.

Khodaparast et al. [42] focused on the dewetting of the wall film and found a distance from the
droplet front, at which dewetting occurs, to correlate with Ca in the range 10´5 ď Ca ď 10´2 and the
surface wettability. As a criterion, they found a minimum film-thickness of 100 nm, beyond which
rupture is suppressed. For the presented range of the model (10´5 ď Ca ď 10´2, 0.5 ď Re ď 3), based
on the film thickness model of Han and Shikazono [40], the critical film-thickness never drops below
this value.

For the flow of the bulk phase as well as the flow in the gutters, we omit the influence of viscous
heating based on the criterion of Morini [43]. We elaborate on this in Appendix B.

The relative volume flow through the gutter Qrel
g is derived from the pressure difference along the

gutters, as suggested by Abiev [21]. Therefore, knowledge of the relevant pressures is crucial. It can be
determined from the dynamic interface deformation caused by the moving liquids through the gutters
in flow direction [44]. Stagnant droplets have a static cap shape with a circular outline according to
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Musterd et al. [45]. When set into motion, the moving liquids exert forces onto the interface and cause
a dynamic shape deformation [38].

A model proposed by Mießner et al. [24] allows to approximate the droplet shape and gutter
diameter. The model implies that the deformation difference of the dynamic droplet cap shape
between the droplet front and back results in a change of the gutter radius from the static shape.
The cross-sectional gutter area Ag widens asymmetrically from back to front. The growing gutter radii
accommodate the relative volume flow Qrel

g of the continuous phase through the gutter. The gutter
entrance at the droplet front is therefore larger than the gutter exit at the droplet back. Utilizing their
model, the dimensionless radius of these gutters can be calculated from the flow-related curvature of
the droplet.

The gutter radius kg,i is therefore defined as a fraction of the droplet height h. For the case of
present wall films, the term is expressed as follows:

kg,i “ Rg,i

h
“ Rg,i

H ´ 2δ
(20)

To simplify the geometry, we define a mean gutter radius Rg using Equation (20):

Rg “ kg, f pH ´ 2δq ` kg,bpH ´ 2δq
2

(21)

“ pH ´ 2δqpkg, f ` kg,bq
2

(22)

which is also used for the mean cross-sectional area Ag derived with Equation (11).
In previous work [25], we introduced a quantification of the droplet cap deformation with an

elliptic approximation of the cap outline

kc, f “ a f

b f
(23)

kc,b “ ab
bb

(24)

The ratio of the semi-major a and semi-minor axis b of the droplet cap curvature is introduced as
deformation ratios kc,i at the droplet front and back. They become kc, f “ kc,b “ 1 when describing the
static circular droplet cap shape of the droplet front and back. For the dynamic cap shape, under the
influence of the moving liquids, the droplet front appears elongated kc, f ą 1 and the back cap is
compressed in flow direction kc, f ă 1. Hence, we introduce a correlation to describe these relations:
The cap curvature only depends on the Ca number for moderate flows (Re ă 5):

kc,i “ mcap ¨ Caccap ` ncap (25)

With the correlation approach from our recent publication and the model from Mießner et al. [24],
we are able to calculate the Laplace pressure at the gutters. We assume a linear connection between
the gutter front and the back of the droplet body, since the curvature of the gutter in flow direction is
negligibly small. In this case, the mean interface curvature at the gutter entrance and its exit depends
on the gutter radii only, and the flow-induced Laplace pressure difference equals:

Δpg, f “ σ

˜
1

Rstat
g, f

´ 1
Rg, f

¸
(26)

Δpg,b “ σ

˜
1

Rstat
g,b

´ 1
Rg,b

¸
(27)
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Those deformation related pressures at the droplet front and back provide a link to the driving
pressure difference ΔpLP along the gutter length in the flow direction. Due to symmetry, the static
terms cancel out:

ΔpLP, f b “ Δpg, f ´ Δpg,b

“ σ

˜
1

Rg, f
´ 1

Rg,b

¸
(28)

Using the dimensionless expression from Equation (20), this results in

ΔpLP, f b “ σ

˜
1

kg, f pH ´ 2δq ´ 1
kg,bpH ´ 2δq

¸
(29)

“
´ σ

H

¯ 1´
1 ´ 2δ

H

¯
˜

kg,b ´ kg, f

kg, f ¨ kg,b

¸
(30)

for the flow-induced pressure difference as a driving force.
The relative volume flow rate through the four gutters Qrel

g can be modeled as a laminar pressure
driven flow [46] and it is linked to this pressure difference with a hydrodynamic resistance Ω:

Qrel
g “ 1

Ω
ΔpLP, f b (31)

The hydrodynamic resistance Ω was defined by Ransohoff and Radke [47] and Shams et al. [27] as

1
Ω

“ Rg
2

β

Ag

ηclg
(32)

Besides the gutter length lg, β denotes a dimensionless factor, which represents the geometrical
obstructions of the gutter flow, as well as the viscous coupling of both flow phases. In accordance with
the simulation results of Shams et al. [27], we declare an influence from the viscosity ratio λ of the flow
phases to take care of the viscous coupling effects:

β “ mβ ¨ λcβ ` nβ (33)

The gutter length lg can be derived from the droplet length ld, if the gutter distance Δxg,i from the
caps is subtracted:

lg “ ld ´ Δxg, f ´ Δxg,b (34)

The gutter distance from the front and back droplet tip Δxg,i was defined by Mießner et al. [24] as

Δxg,i “ kc,i
H
2

„ˆ
ar ´ 2δ

H

˙
`

ˆ
1 ´ 2δ

H

˙ `
1 ´ 2kg,i

˘j
(35)

The above-stated considerations lead to our final description for the relative volume flow through
the gutters

Qrel
g “ Rg

2

β

Ag

ηclg
ΔpLP, f b (36)

Herein, lg and ΔpLP depend on Rg as the preceding considerations show. Thus, Rg has the most
prominent influence feature besides β. Inserting Equations (36) and (33) into Equation (19) delivers
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uex ´ A f

Ach
“ 1

Ca
1
β

Ag

Ach

Rg
2

lgH
1

p1 ´ 2δ
H q

˜
kg,b ´ kg, f

kg, f ¨ kg,b

¸
(37)

expanding with W
W and inserting lg (Equation (34)), we receive our final expression for the excess velocity:

uex “ 1
Ca

1
β

W
ld

Ag

Ach

Rg
2´

1 ´ Δxg, f
ld

´ Δxg,b
ld

¯
Ach

1
p1 ´ 2δ

H q

˜
kg,b ´ kg, f

kg, f ¨ kg,b

¸
` A f

Ach
(38)

We point out that our model is usable within the capillary regime Ca ă 0.02 since the model for the
wall film-thickness from Han and Shikazono [40], the analytic interface model from Mießner et al. [24]
and the droplet curvature correlation from our recent work [25] are valid in this range. At higher Ca in
the viscous regime, different flow conditions with thicker wall films [22] as well as a higher influence
of Re are reported [48].

5. Model Calibration

The final expression for the excess velocity (Equation (38)) depends on accessible data such as W,
ar and ld as well as on Rg, β, kg, f , kg,b, Δxg, f and Δxg,b, whereas the latter is also related to the gutter
radii Rg. As shown in the previous section, the parameters can be calculated from the droplet cap
curvatures kc, f and kc,b and via measurement-based model calibration. The six parameters (mcap, f ,
mcap,b, ncap, f , ncap,b, ccap, f , and ccap,b) influencing the cap deformation at the droplet front and back as
well as the dimensionless resistance factor β with mβ, cβ and nβ need to be adjusted.

For model calibration, we used the dataset presented in [25] in combination with supplementary
measurements in the data range of low Ca and redefine ncap within an interval around 1. Nevertheless,
for Ca Ñ 0, it represents the point of minimal surface energy and equates a spherical droplet shape.
This approach allows improving the convergence of solvers. Out of further a priori considerations
(β ą 0, nc, f « 1), we additionally defined the boundaries for the search space of the solver presented in
Table 1 and allowed the solver to adapt the correlation coefficients from our last work to the presented
model and acquired measurement data.

Table 1. Boundaries of input values for optimization.

Parameter Lower Boundary Upper Boundary

mcap, f 1.00 9.90
ccap, f 0.40 1.50
ncap, f 1.00 1.005
mcap,b ´2.50 ´1.00
ccap,b 0.30 0.75
ncap,b 0.995 1.00
mβ 0.00 10.00
cβ 0.50 1.5
nβ 0.50 20

Besides the fixed boundaries of the search space, a hydrodynamic boundary condition was
applied to improve the convergence of the used optimization algorithms. For a rising Ca, the difference
between kg, f and kg,b must increase, because of the pressure difference between the droplet front
and back increases with higher Ca [21] and the droplet front elongates, which leads to a larger front
gutter radius, while the droplet rear flattens out. This is expressed by the gutter radius increase for an
increasing Ca:

dkg, f

dCa
ą dkg,b

dCa
(39)
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The large number of influence parameters leads to a highly nonlinear optimization problem
with numerous local minima. Thus, most gradient-based algorithms are not suitable for this type of
optimization problem, which tend to converge to local optima. This would result in an enormous
number of randomly initialized solver calls to cover the whole search space. In contrast, stochastic and
metaheuristic approaches cover the search space to solve the statistical part of the greybox model by
finding the global optimum.

The quality of a solver result (e.g., deviation between measured data and estimation) is quantified
by the loss-function of the problem. For the model calibration, we define

L “ ω1

˜ÿ |kc,b ´ kMc,b |
kMc,b

`
ÿ |kc, f ´ kMc, f |

kMc, f

¸
` ω2

ÿ |ud ´ uM
d |

uM
d

` ω3
ÿ |ψ ´ ψM|

ψM (40)

with the weights of the individual properties ω1, ω2, ω3 following Table 2. Values with an upper index
M denote values estimated by the model and values without an upper index represent the calibration
data. The first two sums serve as calibration datasets for the hydrodynamic flow properties, since they
contain the flow related deformation and therefore the hydrodynamic influences. The differences of
the velocity ud serves as a parameter for the actual droplet velocity and therefore the flow resistance β.
This is necessary, since otherwise no representation for β is available.

Table 2. Weight factors ωi of the loss-function for GA optimization.

ω1 ω2 ω3

3.0 5.0 3.7

In addition, the concept of an equilibrium function ψ is introduced to maintain the overall integrity
of the model: The excess velocity depends on extrinsic measurable values such as the dimensionless
quantities and geometrical properties as well as varying flow properties such as the gutter length.
Thus, it is appropriate to separate the measurable quantities from the model based quantities. In doing
so, one can directly compare the quantities received from our correlation with measurement data
adjusted for material and flow properties. The separation of those terms leads to the equilibrium
function ψ (Equations (41) and (42)). Herein, Equation (41) represents the data from our measurements
and Equation (42) only data from our modeling assumptions and geometry. For a well-adjusted model,
the measured data for ψ (Equation (41)) should systematically correspond with the modeled values for
ψ (Equation (42)).

ψ “
ˆ

uex ´ A f

Ach

˙
Ca β

ld
W

(41)

ψM “ Ag

Ach

Rg
2´

1 ´ Δxg, f
ld

´ Δxg,b
ld

¯
Ach

1
p1 ´ 2δ

H q p kg,b ´ kg, f

kg, f ¨ kg,b
q (42)

The calibration procedure is based on a Genetic Algorithm (GA). For good optimization results,
it is necessary to emulate a sufficiently sized genome pool, thus a high number of emulated individuals
is preferred. This in turn results in a massively increased calculation demand, because, for each iteration
step, every single individual and their children need to be evaluated [49]. Additionally, the genetic
algorithm is typically performed iteratively to identify local optima. To decrease the number of
time-consuming iteration steps of the GA and thereby reduce overall calculation time, we utilize a
three-step stochastic and gradient-free approach.

In the first step, a random population at the feasible borders of the problem is generated
for the Genetic Algorithm and a genetic optimization performed. The convergence point of the
GA is initialized via Latin Hypercube Sampling processed by a following fast-converging Pattern
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Search Algorithm (PSA) [50] that results in an improved minimum as the final convergence point.
The properties of both algorithms are shown in Table 3. The algorithm finally merges at the values
shown in Table 4. The results are discussed in the following.

Table 3. Properties of used solver algorithms.

Genetic Algorithm

population size 200 individuals
creation function random feasible population
scaling function ranking
selection function stochastic uniform
mutation function adaptive feasible
crossover function scattered

Pattern Search Algorithm

search method Latin Hypercube
poll method complete poll

Table 4. Values for the fit-functions for droplet shape ki and resistance β.

Target Value mi ci ni

k f 4.8761 0.7465 1.0021
kb ´1.6967 0.4745 0.9980
β 6.1280 1.2105 1.4541

For the flow-induced cap curvature, the solver merges to an exponential behavior as a function
of the Ca number for both cap deformation ratios k f and kb, which coincides with the results of our
previous works [24,25,51]. The retrieved correlation with underlying data points is shown in the
Appendix (Figure A2). Our additional boundary condition (Equation (39)) is satisfied for all values as
the graphs for the gutter radii kg,i show.

For the resistance factor β, no fitting data are available since it cannot be measured directly.
Therefore, β is fitted based on the velocity data from high-speed camera measurements and
the application of parameters for the droplet deformation (measurements are performed in the
experimental setup described in [25]). The resulting droplet velocities in comparison with the measured
values are shown in Figure 4. The measurements fit reasonably well in the range of inevitable velocity
fluctuations caused by Taylor flow stability of ˘10 % range described by [13].

10-3 10-2 10-1
10-3

10-2

10-1

Figure 4. Parity plot for the droplet velocity of measured droplets and corresponding data from our
model after adaption of the dimensionless resistance factor β. The values situate fairly good into the
fluctuation range of 10%, as reported by van Steijn et al. [13], Fuerstman et al. [52].
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6. Model Validation

For a first validation step, the equilibrium functions ψ and ψM are considered. In the case of
a hydrodynamic well-adjusted model, both functions should coincide, and our model based shape
deviations (ψM) equal the combination of measured properties (ψ). The corresponding data and the
values for our model agree well at high Ca numbers (Figure 5), whereas a deviation for lower Ca
numbers can be observed. This can be explained by the fact that the excess velocity itself is a relative
quantity and it is strongly influenced at lower absolute values (low Ca number). Thus, an inevitable
constant measurement deviation for velocity and volume flows caused by the experimental equipment
results in a higher error for low excess velocities. Especially for Ca ă 10´4, the resulting volume flows
are situated at Q0 « 2 ˆ 10´6 L/min and even minor deviations lead to high errors for the excess
velocity. Thus, we consider our model approach to represent the measurements reasonably well and
our fit coefficients to be valid.

10-6 10-5 10-4 10-3 10-2 10-1
-0.005
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10-5 10-4 10-3
-5

-2.5

0

2.5

5
10-4

Figure 5. Calibration function ψ for measured (triangles) and modeled data ψM for the measured
droplet lengths ld and correlated β (crosses) over the Ca number. The black solid line depicts the
calibration function for an averaged ld and β to clarify the underlying systematic.

Besides the hydrodynamic validation, our assumptions for β are compared with available
simulation data. We found a dependence of the gutter flow resistance β on the viscosity ratio λ.
The latter can be interpreted as an indicator for the viscous coupling of both flow phases (Figure 6).
In the case of a highly viscous continuous phase (λ ă 1), the strongest velocity gradients are found
inside the droplet, while, for a viscous disperse phase (λ ą 1), larger velocity gradients and therefore
energy dissipation are found inside the gutter-flow, resulting in a larger β.

This approach agrees with the simulations from Shams et al. [27], who improved the model of
Ransohoff and Radke [47] by introducing the viscous coupling of the disperse and the continuous
phase. For our case of 0.1 ď λ ď 1.4 and a contact angle θ “ 0°, Shams et al. [27] reported a β of 20–30
for a co-current flow. Our values are shifted by a constant offset, while the slope and therefore the
dependence on λ is similar. We consider the difference in the offset to be caused by the use of a different
flow field specifications. Shams et al. [27] described a concurrent flow in a fixed frame specification,
while in this work we determine Qrel

g within a moving frame flow specification. The coordinate
transformation only changes the offset of the function, while the hydrodynamic influence (the slope)
must remain identical. Additionally, within the simulation of [27], they assumed a contact line between
disperse phase, continuous phase and the wall in their problem definition. Although for the solution
shown in Figure 6 the contact angle for the continuous phase is nearly 180°, the existence of a contact
line introduces an additional resistance. Thus, regarding β, we consider our model plausible.

Due to the mentioned experimental restrictions, we cannot directly compare the modeled and
experimental determined excess velocities uex. Instead, we compared the results of our model to
different published approaches. A suitable correlation for the prediction of the excess velocity in the
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first regime was introduced by Jose and Cubaud [22], who identified the Ca number and the ratio of the
droplet length ld

H as characteristic properties (Figure 7). It has to be mentioned that the model of Jose
and Cubaud [22] for non-wetting droplets ends at ld

H Ca´1 ą 600, since for larger values they observed
the disperse phase to wet the channel walls. This results in intensified dissipation and a higher pressure
drop and thereby inhibits a gutter flow from the droplet front to the back. This phenomenologically
equals the second flow regime, as mentioned by Wong et al. [5], but lacks the thin wall film and results
in a much larger pressure drop. Furthermore, the viscosity ratio λ is not included in their correlation.

10-2 10-1 100

0

2

4

6

8

10

Figure 6. Comparison of calculated resistance factor β (squares) and correlation (solid and dashed line)
of our model. The data of the simulation from Shams et al. [27] is shown as squares. Both datasets
are corrected by the offset β0 to compensate for the influence of the flow form (co-current or
counter-current).

A comparison of our greybox model with the correlation from Jose and Cubaud [22] (Figure 7)
shows good agreement. At very low Ca numbers (Ca ă 10´4), our model results in a slightly increased
excess velocity. We regard this behavior of the model as not physical. The effect results from the
mathematical counterplay of the terms lim

CaÑ0
1

Ca “ 8 Ø lim
CaÑ0

kg, f ´ kg,b “ 0 within Equation (38).

To achieve a stable solver convergence, we accepted a small residual deviation for the static case
Ca Ñ 0 for the front and back shape of 0.1%. Due to the relative character of the excess velocity,
this unfolds a significant influence at low Ca values. Unfortunately, additional measurement validation
concerning the shape deviation at very low Ca is not possible in our experimental design, since the
expected shape deviation is smaller than the blurriness of the interfacial area in the images itself and
therefore lies inside the measurement deviation.

Figure 7. Comparison of our model (stars) and measurements (circles) with the measurements
(triangles) and correlation from Jose and Cubaud [22] for a Taylor droplet in co-flow (axis scaling and
normalization kept for comparability). The inclination for low Ca numbers (hatched area) is discussed
in the text. Since the influence of ld correlates linearly with ΔpLP instead of Ca in our model and β

is not included in the x-axis normalization, we additionally show the borders of our model for the
minimum/maximum ld and β of our measurements.
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7. Discussion

The interfacial area of a Taylor droplet in rectangular channels can be divided into the front and
back cap regions, the wall films and the gutter interface. Neglecting the caps, the main momentum input
into a droplet is transferred across the wall film and the gutter interface area. An increasing channel
aspect ratio and droplet length result in a growing wall film area, i.e., an enlarged dissipation interface.

As shown in Section 2, the behavior of the Taylor droplet’s excess velocity can be parted in two
possible regimes and the viscosity ratio λ has a strong influence on the hydrodynamic mechanisms.
In the first regime, the fluid in the gutter flows slower than the droplet, exerting a drag force and
leading to a positive excess velocity uex ą 0. These drag forces influence the droplet shape, leading
to a flattened droplet back and elongated droplet front. We characterize this shape variation with a
correlation (Section 5). As can be seen from the measurements, our data fall into this flow regime,
as our resulting droplet shape indicates in accordance with Wong et al. [29].

The influence of the droplet length in the plug flow regime and λ ă 1, where larger droplets have
an uex « 0, is in agreement with Jakiela et al. [31] and their later publication [53]. Additionally,
they found an elongation of the dynamic droplet length in comparison to the static droplet
length, which is also covered by our shape correlation, since for rising the Ca number the droplet
front elongates stronger than the droplet back is compressed. Recently published simulations by
Kumari et al. [54] show that also for larger Re numbers uex « 0.

Our concept of deriving the excess velocity from the gutter pressure drop that is directed against
the flow direction (larger pressure at the front gutter entrance) is in accordance with Abiev [21].
Nevertheless, the averaged pressure is still higher at the droplet back than at the droplet front due to
the overall droplet pressure drop, since the droplet needs a driving force for its translation.

For the second flow regime identified by Wong et al. [29], where the viscous dissipation in
the film and droplet leads to a bypass flow from the droplet back to the front and therefore a
negative droplet excess velocity (for large λ and long droplets), our model can be adapted, if the
gutter-shape-difference term is revised or a resistance coefficient for the film is added. As the viscosity
ratio λ rises, more momentum will be dissipated via the wall films. This extra momentum is dissipated
at the gutter interface, which results in a slower droplet velocity, forcing the continuous phase to
bypass the droplet reversely. As the hydrophilized channels walls in our experimental setup did not
allow establishing a water-in-oil two-phase flow with a λ " 1, droplet shape correlations, as well as
measurements of uex for the case of λ " 1 should be performed in future work. Although we assume a
systematic inversion of the gutter radii ratio back to front as a consequence of the reversed gutter flow
direction, it should be mentioned that, with the current shape correlation, our model only works for
the case of low viscous disperse phase (λ Æ 1) such as gas/liquid or low viscous oil/water flows.

The influence of the channel aspect ratio, as mentioned by Wong et al. [5], is incorporated in our
model: a higher aspect ratio results in lower excess velocities. This can be explained by the larger drag
forces acting on a larger relative wall film area caused by the flattened channel geometry.

8. Conclusions

In this work, we developed a model to determine the relative droplet velocity of Taylor flows in
square microchannels for moderate Ca numbers and low to moderate viscosity disperse phase (λ Æ 1).
We base our model on the relative volume flow through the gutters, as well as the wall film-thickness.
The flow through the gutters is determined from the pressure drop described by the Laplace pressure
difference between the gutter entrances.

Our model uses the gutter radii to obtain the resulting pressure gradient that drives the continuous
phase through the gutters. We used measurements at different Ca and Re in a surfactant-free fluid
system from a previous publication [25] to derive the radii at the gutter entrances from the surface
shape model proposed by Mießner et al. [24] and calibrate the model parameters.
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Our model was successfully validated with an intrinsic approach comparing the congruence of
measurement data and calibrated model parameters. Additionally, we successfully compared our
model to the phenomenological correlation of Jose and Cubaud [22].

The comparison with the most prominent approaches shows that our model and the chosen
influential parameters are valid for moderate and small viscosity ratios. The excess velocity is
determined by viscous dissipation in the droplet and the gutters as well as the drag of the thin
wall films. The relation is characterized by the Ca number, the viscosity-ratio λ, the dimensionless
gutter-length lg, the aspect ratio ar and the wall film area A f . Furthermore, the proposed model can

close the gap for ld
H Ca´1 ą 600 and allows the calculation of the excess velocity for moderate Ca

numbers (Ca ă 0.02).
In the future, the influence of surfactants and highly viscous droplets (λ " 1) on the excess

velocity should be investigated to extend the model, since an excess velocity uex ă 1 has not been
included into the model so far. We suggest to include this function in the modeling of the wall film
resistance. Especially local spatially resolved measurement techniques, e.g., μPIV measurements,
should be appropriate for this task.
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Abbreviations

The following abbreviations are used in this manuscript:

Acronyms/Abbreviations

GA Genetic Algorithm
PIV Particle Image Velocimetry
PSA Pattern Search Algorithm
Dimensionless Quantities

λ Viscosity ratio [´]
Ca Capillary number [´]
Oh Ohnesorge number [´]
Re Reynolds number [´]
Greek Symbols

β geometric coefficient of resistance [´]
δ wall film-thickness [μm]
η dynamic viscosity [Pa ¨ s]
Γ control surface [-]
Ω flow resistance [Pa ¨s ¨ m´3]
ω weight factor [´]
ψ dimensionless equilibrium function r´s
ρ density [kg ¨ m´3]
σ interfacial tension [N ¨ m´1]
Roman Symbols

A cross-sectional area [μm2]
a semi-minor axis of ellipse [μm]
ar aspect ratio r´s
b semi-major axis of ellipse [μm]
c fitting coefficient [´]
D hydraulic diameter [μm]
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d characteristic length [m]
H channel height [μm]
h droplet height [μm]
k dimensionless ratio [´]
l length [μm]
m fitting coefficient [´]
n fitting coefficient [´]
Q volume flow rate [μl ¨ min´1]
R radius [μm]
u velocity [mm ¨ s´1]
W channel width [μm]
x cap length till gutter entrance [μm]
Superscripts

M model calibration data
meas measurement data
mod model results
rel relative
stat stationary
Subscripts

0 superficial/total/offset
β concerning resistance factor
c continuous phase
c, b back droplet cap
c, f front droplet cap
c, i front or back droplet cap
cap concerning droplet cap curvature
ch channel
d disperse/droplet phase
ex excess scale concept
f wall film
f b from front to back
g gutter
g, b gutter at back of droplet
g, f gutter at front of droplet
g, i i-th droplet gutter
LP Laplace pressure
mean arithmetic mean
rel relative value
s slug
slip slipping scale concept
Other Symbols

... averaged value

Appendix A. Considerations for Mixed Terms

For consideration of the mixed terms in uex, rearranging Equation (18) leads to the equation

uex ´ uex
A f

Ach
“ Qrel

g

Q0
` A f

Ach
(A1)

Our measurements show in agreement with Jose and Cubaud [22] excess velocities with values

uex ă 0.4 for Ca ă 0.2. Additionally, we can assume
A f
Ach

ă 0.005, as shown in Figure A1. Thus, one can

say uex
A f
Ach

ă 0.002 and therefore it can be considered small of higher order and can be neglected.
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0

Figure A1. Dimensionless film-area and excess velocity for ld
W “ 3 and β “ 3.892 for the

proposed model.

The correlations, which were retrieved via a GA (Section 5), show a good agreement with the
measurement data for the cap curvature from our last work and available literature data (Figure A2).
Rising viscous forces indicated by a rising Ca number deform the droplet interface more strongly.
At static conditions (Ca Ñ 0), the cap curvatures are in correspondence with Musterd et al. [45] roughly
circular (kc, f “ kc,b « 1). The back cap is compressed with respect to the main flow direction (kc,b ă 1)
and the front cap elongated (kc, f ą 1) if viscous forces rise in comparison to the static case.

The size of the gutter radii rises with the increasing influence of the viscous forces, since the
bypass flow in the gutter increases and needs to be accommodated by the gutters. The gutter entrance
is always larger in diameter than the exit radius (kg, f ą kg,b).
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kc,f from Helmers et al.(2019)
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kg,b from model Miessner et al.(2019)
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correlation from this work

Figure A2. Measured values and retrieved correlation for the droplet cap deformation ratios kc, f and
kc,b for different Ca numbers used in the proposed model. Additionally, the calculated dimensionless
gutter-radii kg, f , kg,b based on the model of Mießner et al. [24] are shown.
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Appendix B. Criterion for Neglecting the Viscous Heating

Especially for microfluidic applications, flow phenomena such as viscous dissipation gain
importance at specific scaling effects. Emerging from the energy dissipation, the temperature of
the fluids can change (viscous heating) [55], as can relevant flow properties such as the viscosity
change. To elaborate whether the viscous heating should be taken into account for the model,
Morini [43] introduced a criterion, suggesting a bulk phase temperature increase of 1 °C as acceptable to
still consider the viscosity unchanged. For adiabatic channels, they provided information of the critical
Re depending on the hydraulic diameter. For dhyd = 200 μm and rectangular channels, they stated
Re « 1000.

Considering the validity range of the proposed model for Ca and H, this critical Re is reached
under no circumstances using u0 and Ach from our measurements as properties.

When focusing on the gutters instead, local Re of

Reg “
Q0
Ag

Dg ρc

ηc
ă 16 (A2)

are reached, if all four gutters are considered as one area equivalent circular tube with the diameter

Dg “
c

4
Ag

π
(A3)

In addition, these maximum values of Reg « 16 lie below the critical Rec « 1000 following
Morini [43] for circular microchannels. Thus, we consider it valid to neglect the viscous heating in the
applied range of Ca and Re of the proposed model.
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Abstract: The behavior of a conducting droplet and a dielectric droplet placed under an electric
potential is analyzed. Expressions for drop height based on electrode separation and the applied
voltage are found, and problem parameters associated with breakup and droplet ejection are
classified. Similar to previous theoretical work, the droplet interface is restricted to an ellipse shape.
However, contrary to previous work, the added complexity of the boundary condition at the electrode
is taken into account. To gain insight into this problem, a two-dimensional droplet is addressed.
This allows for conformal maps to be used to solve for the potential surrounding the drop, which gives
the total upward electrical force on the drop that is then balanced by surface tension and gravitational
forces. For the conducting case, the maximum droplet height is attained when the distance between
the electrode and the drop becomes sufficiently large, in which case, the droplet can stably grow to
about 2.31 times its initial height before instabilities occur. In the dielectric case, hysteresis can occur
for certain values of electrode separation and relative permittivity.

Keywords: electrified fluids; conformal map; Taylor cone

1. Introduction

Electrified fluids appear in a wide variety of applications, such as inkjet printing [1–3], electrospray
ionization/mass spectrometry [4,5], electrospinning [6,7], focused ion beam (FIB) technology [8,9],
and nanotechnology [10]. However, an early motivation for Rayleigh and Taylor to study the behavior
of droplets in electric fields came from nature, as electrified fluids play an important role in producing
thunderstorms [11,12]. Many early theoretical papers by Taylor [11], and others, primarily focused on
droplets suspended in uniform fields [13,14]. To analyze this problem, Taylor assumed that the interface
was an ellipsoidal shape, derived a two-point approximation satisfying the Young-Laplace’s equation
at the poles and equator of the ellipsoid, which resulted in an expression relating droplet height to
the strength of the surrounding field. After Taylor’s original work on conducting drops in uniform
fields, Miksis [15] extended Taylor’s approach to dielectric drops, and also performed numerical work
which showed that hysteresis or bistability could occur for certain values of relative permittivity.

However, in many applications and experiments, an electric potential is placed directly above
the droplet, and the electric field surrounding the drop is not uniform. This creates a new problem,
which is sketched in Figure 1. Taylor and McEwan theoretically analyzed this problem, but instead
of assuming an ellipsoidal shape and solving for the surrounding potential, they assumed that
the interface was horizontal at its poles and guessed a potential that satisfied the upper boundary
condition at the electrode [16]. Since then, Corson et al. [17,18] theoretically analyzed a conducting drop
in the limiting case where the distance between the substrate and the electrode was large, and obtained
asymptotic results which predicted drop height for small surrounding electric fields.

Fluids 2019, 4, 200; doi:10.3390/fluids4040200 www.mdpi.com/journal/fluids119
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Figure 1. Two-dimensional sketch of the problem. The initial radius of the cylindrical drop is given by
r, the distance between the substrate and the electrode by h, the applied voltage by V0, and the new
height of the drop with the applied voltage by b.

When a sessile drop on a substrate is placed under an electric potential difference between
the substrate and an electrode above the drop, for sufficiently large potentials (where ellipsoidal
shapes are no longer stable), the drop forms a conical shape known as the Taylor cone [11]. In [6],
Yarin et al. showed that the Taylor cone which is a specific self-similar solution is not unique
and that there could also exist nonself-similar solutions that do not admit a Taylor cone. The theory
and numerical simulations of the jetting of the Taylor cone has been described in some recent papers,
e.g., [19–21]. Recently, a study conducted by Elele et al. [22] sparked new interests in this problem, as it
experimentally analyzed a dynamic Taylor cone and found three possible modes that the droplet could
form depending on the applied voltage. The first mode happened for small voltages when the droplet
took on an ellipsoidal shape and steadily rose as the applied voltage increased. Another mode
happened for the largest applied voltages where strong instabilities such as droplet ejection arose.
An intermediate mode happened for moderate voltages where the droplet would form a pointed
protrusion and periodically rose to touch the electrode, and in this mode, a universal self symmetry
independent of the applied voltage was observed [22]. This work served as an early motivation for us
to study the behavior of an electrified droplet.

In this paper, we analyze a perfectly conducting drop and a dielectric drop to mathematically
understand why droplet behavior in both cases is similar for large values of permittivity but drastically
different for small values of permittivity, and why bistability only happens for in-between values of
permittivity. We take the boundary condition at the electrode into account and derive formulas
that signify when instabilities such as droplet ejection or droplet beak-up occur. To achieve
this, we address the two-dimensional version of this problem. We assume that the droplet takes
on an ellipse shape, which allows us to approximate the potential surrounding the droplet
and obtain the total upward electrical force on the droplet that is then balanced by surface tension
and gravitational forces. These assumptions describe a problem that is different from the one that has
been experimentally studied in [12,17,22,23], and thus, our exact values for droplet height and applied
voltage that are associated with droplet stability deviate slightly from those observed in experiments.
However, our approach reasonably predicts the overall behavior of the drop and gives further insight
into how droplet behavior changes as a function of the permittivity.

2. Conducting Drop

For the case of a perfectly conducting drop, we have that the potential VE surrounding the drop
satisfying the Laplace’s equation,

ΔVE = 0, (1)

with a Dirichlet boundary condition at the electrode,
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VE(0, h) = V0, (2)

a homogeneous Dirichlet boundary condition at the droplet interface, which we parameterize by t,

VE(a cos t, b sin t) = 0, (3)

a homogeneous Neumann boundary condition far away from the interface,

∂VE
∂x

(x0, y) = 0, (4)

and finally, we take advantage of the symmetry about the major axis of the ellipse and only analyze
the part of the interface which corresponds to 0 < t < π

2 , which gives one extra homogeneous
Neumann boundary condition on the y-axis,

∂VE
∂x

(0, y) = 0. (5)

To solve for VE, we use the conformal map defined by,

f (z) =
az +

√
(bz)2 − (a + b)2b2

a + b
, (6)

which maps a rectangle with height ĥ to a region that approximates the domain that we are working
on (i.e., it maps the region on the right in Figure 2 to the region on the left), where

ĥ =
ah −√

b2h2 + a2b2 − b4

a − b
. (7)

Thus, we have that the inverse of this map defined by,

g(x + iy) =
1

a − b

(
ax −

√√
(b2(x2 − y2)− a2b2 + b4)2 + 4b4x2y2 + b2(x2 − y2)− a2b2 + b4

2
+

i
(

a y −
√√

(b2(x2 − y2)− a2b2 + b4)2 + 4b4x2y2 − b2(x2 − y2) + a2b2 − b4

2

))
(8)

will map a region which approximates our domain into a simple rectangle with height ĥ, which gives
us the approximate surrounding potential,

VE(x, y) = V0
ĥ(a−b)

(
a y −

√√
(b2(x2−y2)−a2b2+b4)2+4b4x2y2−b2(x2−y2)+a2b2−b4

2

)
. (9)

This gives the potential field shown in Figure 3 that is zero at the interface, and approximately
linear far away from the interface.
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(a) (b)

Figure 2. The map given in Equation (6) maps from (b) to (a), and the inverse map given in Equation (8)
maps in the opposite direction.

Figure 3. Example of the plot of the potential given in Equation (9) for b = 2, a = 1, and h = 5.

While the potential given above is not an exact solution to Equation (1) with the corresponding
boundary conditions, as the boundary condition at the electrode is slightly warped, for most values
of b and h the relative error at the interface is small. For instance, Figure 4a plots ErrorV for varying
values of b where ErrorV is defined as

ErrorV =
‖VE − Vn‖1

‖VE‖1
. (10)

Here Vn stands for a numerical finite element solution to Laplace’s equation on the exact domain,
and the L1-norm is approximated by the function values at the grid points of the scheme. Furthermore,
the error in the electric field at the interface which we define as

ErrorE =
‖(∇VE · n −∇Vn · n)int‖1

‖(∇VE · n)int‖1
, (11)

is plotted in Figure 4b for varying values of b (where (·)int stands for · evaluated the interface).
Both Figure 4a,b indicate that our analytical solution breaks down as b approaches h, as in this regime
the top and right boundaries of our conformal mapped domain deviate from that of straight lines
(see Figure 4c–e).
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Figure 4. (a) The relative error between our analytical potential given in Equation (9) and a finite
element solution for the potential on the exact domain, which we define as ErrorV (see Equation (10)) is
potted for varying values of b. (b) The relative error in the electric field strength at the droplet interface
given by our analytical solution (see Equation (12)) and a finite element solution on the exact domain,
which we define as ErrorE (see Equation (11)) is plotted for varying values of b. (c–e) The exact domain
( ) is plotted against our approximate conformal mapped domain ( ) for b = 1.5, b = 2, and b = 3.
(a–e) We fix h to 5 and a to 1.

3. Total Force on the Conducting Drop

The potential in Equation (9) provides the surrounding electric field,

�E = −∇VE =
−V0

ĥ(a − b)

(
Ex

Ey

)
, (12)

where

Ex =
bx
(

a2−b2−x2−y2+
√

4x2y2+(a2−b2−x2+y2)2
)

√
2
√
(4x2y2+(a2−b2−x2+y2)2)(a2−b2−x2+y2+

√
4x2y2+(a2−b2−x2+y2)2)

, (13)

and,

Ey = a − by(a2−b2+x2+y2+
√

4x2y2+(a2−b2−x2+y2)2)
√

2
√
(4x2y2+(a2−b2−x2+y2)2)(a2−b2−x2+y2+

√
4x2y2+(a2−b2−x2+y2)2)

. (14)

This gives a total electrical force per-unit area that is normal to the interface with magnitude
given by,

fEn =
1
2

ε2E2
int, (15)

where Eint stands for |�E| evaluated at the interface, and ε2 is the permittivity of the medium
surrounding the droplet [24,25]. In our case, this medium is air which means that ε2 ≈ ε0.
Setting x = a cos t and y = b sin t, we evaluate Equation (15) at the interface to get that

fEn =
ε2V2

0

ĥ2

(a + b)2 sin2 t
2(b2 cos2 t + a2 sin2 t)

, (16)
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which gives the force distribution shown in Figure 5.

Figure 5. Electrical force distribution around a conducting drop.

Integrating the expression given in Equation (16) and accounting for surface tension, pressure
(we neglect the effect that the non-constant curvature of the ellipse has on the Laplace pressure
and assume that the internal pressure is constant as in [11]), and gravitational forces dictates that
the total upward force per-unit length on our cylindrical drop is,

FTotal = −ρ
πr2g

2
+ γ

(2a
r
− 2

)
+

ε0V2
0

ĥ2

(
a(a + b)

a − b
+

b2
√

b + a

(b − a)
3
2

arctan
(√b2 − a2

a

))
. (17)

Here r is the radius of the semi-circular drop, ρ is the density of the fluid, γ is the surface tension
constant, and g is the acceleration due to gravity. Assuming incompressibility of the liquid gives us

a = r2

b , which allows us to express the total upward force per-unit length on the drop in terms of b.

Finally, we pick our characteristic length scale to be r and nondimensionalize Equation (17)
to get that

F = −Bog +
1
B − 1 + Boe

(
R2

(R−B
√

R2B2+1−B4)2

(
1−B4

B + B3
√

B4 − 1 arctan (
√

B4 − 1)
))

, (18)

where our new variables are
F =

FTotal
2γ

, (19)

and
B =

b
r

. (20)

Our problem parameters are,

Bog = ρ
πr2g
4γ

, (21)

Boe =
ε0V2

0 r
2γh2 , (22)

and
R =

h
r

. (23)
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4. Results

Setting the total upward force on the droplet given in Equation (18) equal to zero gives us Boe

in terms of Bog, R, and B. For simplicity, we set Bog = 0, and plot Boe in terms of B for various
values of electrode separation R. Similar to earlier analytical results by Taylor [11] and Miksis [15]
for droplets in uniform fields and numerical results for the full three dimensional problem in [15,26,27],
our method gives one stable branch of fixed points (solid line) and one unstable branch (dotted line).
From Figure 6 which plots log (Boe + 1) vs log B for varying values of R, we can see that our formula
for two-dimensional drops, which takes into account electrode separation allows for larger drop
heights and applied voltages than previous theoretical results for ellipsoidal drops by Miksis [15].
However, in Figure 6 we can also see that for small voltages our two dimensional approximation
and Miksis’s [15] three dimensional approximation seem to agree well. Furthermore, from Figure 6,
we have that for each value of R there is a certain threshold value of Boe and a corresponding value of
B which identifies the maximum stable height that the droplet can grow to. These threshold values
are plotted in Figure 7, showing that a two-dimensional drop can only grow to 2.31 its initial height
before instabilities arise and that this maximum height happens when Boe = 0.14, and in the limiting
case where R → ∞ or identically h → ∞. This maximum value of B = 2.31 deviates from Taylor’s
analytical results in three dimensions which predict a maximum value of B = 1.38 [11], and Taylor’s
experiential results with thin films which predict a maximum value of B = 1.48 [12]. However, our
results are in agreement with experimental values in [22,23]. For instance, experiments by Macky [23]
show that a free-falling drop in an electric field can grow to anywhere between 1.7 and 2.2 its original
length before instabilities occur. Experiments done by Inculet and Kromann [28] on water droplets
doped with alcohol and suspended in oil show that the droplet can stably grow to 2.15 its initial height.
Most recently, experiments done by Elele et al. [22] on electrified droplets on the International Space
Station show that a droplet can stably grow to 2.61 its original length. However, it is also important
to note that in many of these experiments, the curvature at the tip of the droplet may be starting
to deviate from that of an ellipse. Furthermore, this deviation from an ellipse shape might also be
the reason why experiments give a voltage threshold that is higher than the one given by our method.
For example, experiments carried out by Elele et al. [22] on a drop of slightly conducting water on
Earth gravity with r = 1.68 mm and an electrode separation of h = 2.10 mm, found that the maximum
voltage that could be applied before spontaneous shoot-up occurred was V0 = 1.61 kV. However,
our method predicts that for these problem parameters, the maximum voltage that can be applied
before an ellipse is no longer a stable solution is V0 = 1.19 kV. Nevertheless, in this case, gravitational
forces are strong in comparison to the electrical forces, and because of this, electrode separation is quite
small which means that the error in our calculated potential could also be having an effect.
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Figure 6. Electrical bond number Boe is plotted against B on a log- log scale for R = 3, R = 5, R = 10,
and R = 50 ( , ), and values of Boe obtained from Miksis’s [15] generalization of Taylor’s two
point method for 3-dimensional ellipsoidal droplets in uniform electric fields is also plotted ( ).
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Here we can see that the stable branch of fixed points approaches a fixed curve as R → ∞,
while the unstable branch of fixed points reaches all the way to R, which corresponds to unstable drop
heights that approach the height of the electrode.

(a) (b)

Figure 7. (a) For each value of electrode separation (R), the maximum height that the droplet can stably
achieve is plotted. (b) For each value of electrode separation (R), the applied potential (Boe) associated
with this maximum height is plotted.

5. Dielectric Drop

For the case of a dielectric drop, the boundary condition at the interface changes; instead of
a Dirichlet boundary condition, we have a Neumann boundary condition at the interface,
which specifies the jump in permittivity and is given by

ε2∇V2(x(t), y(t)) ·�n − ε1∇V1(x(t), y(t)) ·�n = 0. (24)

Here�n is the unit normal vector of the interface, ε1 is the permittivity of the fluid, V2 is the electric
potential outside the droplet, and V1 is the electric potential inside the droplet. Note that this
boundary condition assumes that the fluid is a perfect dielectric and that no free charges build
up at the interface [25].

Because we consider the potential inside the droplet, we cannot use the map given in Equation (8),
so instead we use the map given by

f (z) = i
√

b2 − a2 cos (z) =
√

b2 − a2(sin (x) sinh (y) + i cos (x) cosh (y)), (25)

which maps the rectangle with width π
2 and height arctanh ( a

b ) to the region enclosed by the quarter
of an Ellipse with major axis b and minor axis a. Furthermore, the horizontal line segment given by,

z = x + iH, (26)

where 0 < x < π
2 , and

H = cosh-1
( h√

b2 − a2

)
, (27)

gets mapped to the region enclosed by the quarter of an ellipse with major axis h and minor axis√
h2 − b2 + a2 (see Figure 8). From here, we can see that for most values of b, the width of this outer

ellipse will be much bigger than a.
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Thus, the inverse of this map, given by

w = f−1(z) = cos−1
( y − ix√

b2 − a2

)
, (28)

will allow us to solve the desired equations on an elliptical annulus; however, this requires us to define
a boundary condition on the outer ellipse. To ensure that this boundary condition is physically relevant
and approximates the boundary condition at the electrode, we define V2 on this outer ellipse to be
equal to our conducting potential VE given in Equation (9). This turns out to be a good approximation
for the boundary condition at the electrode, as we find that the error for our potential in the dielectric
case is bounded by the error in the conducting case (results not show here).

Because we are only working in the first quadrant, we can define a branch of f−1(z) = X(x, y) +
iY(x, y) that is analytic everywhere on the elliptical annulus except at the point x = 0, y =

√
b2 − a2.

This branch of f−1(z) = X(x, y) + iY(x, y) is defined by the branch of arccos z given by,

arccos (x + iy) =

arctan2
(

y +

√√
(x2 − y2 − 1)2 + 4x2y2 − x2 + y2 + 1

2
, x −

√√
(x2 − y2 − 1)2 + 4x2y2 + x2 − y2 − 1

2

)

− i
2

ln
(

x2 + y2 +
√
(x2 − y2 − 1)2 + 4x2y2

+
√

2
(
− x

√√
(x2 − y2 − 1)2 + 4x2y2 + x2 − y2 − 1 + y

√√
(x2 − y2 − 1)2 + 4x2y2 − x2 + y2 + 1

))
. (29)

(a) (b)

Figure 8. Example of the map given in Equation (25) and the branch of its inverse define by
Equations (28) and (29) for b = 3, a = 1

2 , and h = 5. Here f (z) maps from (b) to (a).

Using the fact that conformal maps preserve both the Laplace’s equation and homogeneous
Neumann boundary conditions, we arrive at,

V1(x, y) =
ε2V0(b2 − a2)y

ε1(ab
√

h2 − b2 + a2 − a2h) + ε2(hb2 − ab
√

h2 − b2 + a2)
, (30)

and,

V2(x, y) =
V0

h
y+

V0(ε1 − ε2)a b(b2 − a2)

h(ε1(ab
√

h2 − b2 + a2 − a2h) + ε2(hb2 − ab
√

h2 − b2 + a2))

(
h√

b2 − a2
cos(X) sinh (Y)−

√
h2 − b2 + a2y

b2 − a2

)
, (31)

where X and Y are given by a branch of the inverse transformation. Here we notice that the potential
inside the droplet is linear, which implies that the field in that region is uniform, and we can also see
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that the potential inside the droplet approaches zero as ε1 → ∞, which implies that in the limiting
case where the permittivity of the drop goes to infinity V1 goes to zero and V2 goes to VE (the potential
surrounding the conducting drop). Additionally, the example plot (Figure 9 ) of the potential given in
Equations (30) and (31) shows that while the potential inside the droplet is linear, the potential directly
outside the drop is nonlinear and approaches a linear function for values of x, and y that are large.

Figure 9. Example plot of the potential for the dielectric case when b = 3, a = 1, h = 5, and V0 = 10.

6. Total Force on the Dielectric Drop

Equation (30) gives the vertical electric field inside the droplet, defined by,

E1 =
−ε2V0(b2 − a2)

ε1(ab
√

h2 − b2 + a2 − a2h) + ε2(hb2 − ab
√

h2 − b2 + a2)

(
0
1

)
. (32)

Equation (31) gives an electric field outside of the drop that has an x-component of,

E2x = − V0(ε1 − ε2)a b(b2 − a2)

ε1(ab
√

h2 − b2 + a2 − a2h) + ε2(hb2 − ab
√

h2 − b2 + a2)

sin t cos t
a2 sin2 t + b2 cos2 t

, (33)

and a y-component of,

E2y = −V0
h
−

V0(ε1 − ε2)a b
h(ε1(ab

√
h2 − b2 + a2 − a2h) + ε2(hb2 − ab

√
h2 − b2 + a2))

(
abh

(a2 sin2 t + b2 cos2 t)
−

√
h2 − b2 + a2

)
. (34)

This allows to calculate the total force exerted at interface, yielding

fn(t) = [εEn]− 1
2
[εE2], (35)

where fn(t) is the normal electrical force per-unit area at the interface (note that since there are no
free charges, the electrical force will be in the interface normal direction), and [·] stands for the jump
in · at the interface [24,25]. The expression in Equation (35) gives the force distribution shown in
Figure 10. From here, we observe that the electrical force distribution is almost uniform for small
values of relative permittivity.
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(a) (b) (c)
Figure 10. Electrical force distribution around the dielectric drop for (a) ε = 5, (b) ε = 10, and (c)
ε = 50.

By integrating Equation (35) from 0 to π
2 , accounting for surface tension and gravitational

forces, and non-dimensionalizing, we get that the total dimensionless force (see Equation (19)) on
the droplet is,

F = −Bog +
1
B
− 1+

R2Boe

(
2B√

B4 − 1

( B2(B2Ĉ1(ε − 1) + Ĉ2)
2

B4 − 1
− εĈ1

2
(B2 − 1

B2 )−
Ĉ1

2

2
(ε − 1)2(B2 +

1
B2 )− Ĉ1Ĉ2(ε − 1)

)
(

2 arctan
(√

B4 − 1
)
− arctan

(√
B4 − 1 − B2

)
− arctan

(√
B4 − 1 + B2

))

− 2(Ĉ1B2(ε − 1) + Ĉ2)
2

B(B4 − 1)
+

2εĈ1
2

B3 (B2 − 1/B2) +
Ĉ1

2

B
(ε − 1)2 − Ĉ2

2

B
+ εĈ1

2 1
B
(B2 − 1

B2 )
2
)

, (36)

where,

Ĉ1 =
1

ε
(√

R2 − B2 + 1
B2 − R

B2

)
+ RB2 −

√
R2 − B2 + 1

B2

, (37)

and

Ĉ2 =
1
R
− ε − 1

R
Ĉ1

√
R2 − B2 +

1
B2 . (38)

Equation (36), therefore, gives the total upward force on the droplet in terms of three
non-dimensional parameters Boe, Bog, and R that are identical to that of the conducting case, and one
new parameter

ε =
ε1

ε2
. (39)

7. Results

As before, we set the expression for total force given in Equation (36) equal to zero, which allows
us to express Boe in terms of B. This gives three different types of behavior based on the values of ε.
In case one, where ε � 1, and R is fixed we predict that the droplet behaves similarly to the conducting
drop (see Figure 11). In case two, where ε > 29 we have that hysteresis or the presents of two stable
branches of fixpoints can occur for certain values of R (see Figure 12). Finally, in the third case,
where ε < 29, a wide range of stable fixed points exists, which extends to just below the electrode
(see Figure 13). The existence of two stable branches of fixed points for certain values of ε agrees well
with numerical results for the three dimensional problem, as Ramos and Castellanos [27] and Wohlhuter
and Basaran [26] predict a similar behavior, however, their minimum value for which hysteresis can
occur is ε = 20 as opposed to our prediction of ε = 29 for the two dimensional problem.
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Figure 11. Boe as a function of B on a log-log scale for ε = 78 (which approximates the relative
permittivity of water). We can see that for values of R that are small in comparison to ε, the droplet
behaves similarly to a conducting droplet.
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Figure 12. Boe as a functions of B on a log-log scale for ε = 29, which is close to the minimum value of
ε for which hysteresis can occur. We see that hysteresis can only happen for a small range of R values.
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Figure 13. Boe as a functions of B on a log-log scale for ε = 10, we see that for small values of ε a large
range of stable fixed points exist, and the two-dimensional droplet can stably approach the electrode.
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8. Conclusions

Conformal maps are used to analyze the behavior of a substrate supported two-dimensional
droplet that is placed under an electric potential. In both the conducting case and the dielectric case,
the behavior of a two-dimensional droplet is similar to that of a three dimensional one. In the case
of a conducting drop, we find that the maximum stable high for an ellipse shape droplet is B = 2.31,
which has a corresponding voltage value of Boe = 0.14. In the dielectric case, we find that when
problem parameters are fixed and permittivity is large, the potential surrounding a dielectric drop
approaches the potential that surrounds a conducting drop, and thus a dielectric drop behaves similar
to a conducting drop. However, in the intermediate range where the permittivity of the drop is above 29
but also not too large, we have that hysteresis can occur for certain values of electrode separation.
Finally, when the permittivity of the drop is below 29 we have that the behavior of a dielectric drop is
far different than that of a conducting drop, as a wide range of stable fixed points that rise to just below
the electrode exists. In the future, we hope to apply this conformal map approach to address droplets
with varying contact angles, and general droplets with interfaces that are not restricted to an ellipse.
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