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Preface to “Multi-Sensor Information Fusion”

Around the 1970s, information fusion technology was developed for the military, purportedly
because only military systems utilized such significant amounts of sensors. Half a century has
now passed and sensor technology has continued to develop. With the decline in cost, it is almost
impossible to find systems that do not contain multiple sensors, which has led to the development of
multi-sensor technology, and more universal and diversified development.

We have found that many civil systems also have multi-sensor systems, such as unmanned
vehicle technology, cyber physical system, the Internet of Things, and intelligent robot systems. In
the face of these new application systems, multi-sensor information fusion technology research faces
many new issues.

Our 30 paper collection includes the latest research results of current multi-sensor information
fusion technology. These research papers are mainly divided into two parts, theoretical and
applicational. The basis of the theoretical papers is in-depth research on methods and theories, and
proposes new methods. The papers include three main aspects of theoretical and methodological
research: new fusion methods based on filtering and estimation; the study of various nonlinear
Klaman filters, such as CKF and UKF; and Bayesian inference—new methods for imaging, including
video target follow-up and expression recognition. We were also delighted to include applicational
papers for applications with extremely high reading and reference value.

From 2018 to 2019, there was an obvious new trend in the research of information fusion
technology, which resulted in the emergence of more network-based fusion technologies. For
example, particle swarm optimization and deep learning was used for information in this collection.

We believe that with the increasing application of sensors in the system, new technology trends
will develop on the basis of classic multi-sensor fusion technology, especially that with strong

processing capabilities for complex systems, such as Artificial Intelligence and optimization.

Xue-Bo Jin, Yuan Gao

Topical Collection Editors

xi






E SeNnsors ﬁw\n\py

Article
Multi-Sensor Data Fusion for Real-Time Surface
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Abstract: Multi-sensor data fusion systems entail the optimization of a wide range of parameters
related to the selection of sensors, signal feature extraction methods, and predictive modeling
techniques. The monitoring of automated machining systems enables the intelligent supervision of
the production process by detecting malfunctions, and providing real-time information for continuous
process optimization, and production line decision-making. Monitoring technologies are essential
for the reduction of production times and costs, and an improvement in product quality, discarding
the need for post-process quality controls. In this paper, a multi-sensor data fusion system for the
real-time surface quality control based on cutting force, vibration, and acoustic emission signals
was assessed. A total of four signal processing methods were analyzed: time direct analysis (TDA),
power spectral density (PSD), singular spectrum analysis (SSA), and wavelet packet transform (WPT).
Owing to the nonlinear and stochastic nature of the process, two predictive modeling techniques,
multiple regression and artificial neural networks, were evaluated to correlate signal parametric
characterization with surface quality. The results showed a high correlation of surface finish with
cutting force and vibration signals. The signal processing methods based on signal decomposition in
a combined time and frequency domain (SSA and WPT) exhibited better signal feature extraction,
detecting excitation frequency ranges correlated to surface finish. The artificial neural network model
obtained the highest predictive power, with better behavior for the whole data range. The proposed
on-line multi-sensor data fusion provided significant improvements for in-process quality control,
with excellent predictive power, reliability, and response times.

Keywords: surface quality control; multi-sensor data fusion; cutting forces; vibration; acoustic emission;
signal feature extraction methods; predictive modeling techniques

1. Introduction

Current quality control techniques require slow and costly measurement procedures for inspecting
finished products. In industrially competitive sectors, these aspects impose serious constraints directly
affecting the benefits obtained. Machining monitoring systems are an ideal tool for overcoming
these deficiencies, since they permit the real-time monitoring and control of the cutting process,
detect in-process malfunctions, and apply corrective measures to avoid the manufacture of defective
products. Several aspects of machining processes can be supervized using monitoring techniques.
In recent years, numerous publications have focused on the analysis of tool condition [1-4] and
chatter [5-8], whereas other aspects such as surface finish [9-12], dimensional precision [11-14],

Sensors 2018, 18, 4381; d0i:10.3390/s18124381 1 www.mdpi.com/journal /sensors



Sensors 2018, 18, 4381

and chip formation [15,16] have received less attention. The appropriate selection of sensors is crucial
for monitoring techniques to be efficacious.

The dynamic character of machining processes, characterized by random and transitory
phenomena, has prompted the need for processing on-line information captured by cutting
force sensors [15,17,18], mechanical vibration [19-21], acoustic emission [22-25], sound [26-28],
power consumed [29,30], among others. Frequently, the information from one single sensor has
been insufficient for the accurate characterization of a process, underscoring the need for multi-sensor
data fusion. The first attempts at using multi-sensor data fusion for process monitoring were developed
in the 1990s to monitor tool wear in turning [31,32] and drilling operations [33,34]. Since then,
numerous works with sensor fusion have been published [35-39]. The amount of information
provided by a sensor depends mainly on the signal feature extraction method. Signal processing
techniques in one single domain have been extensively employed, with the time direct analysis
(TDA) method [40-43] being used for analysis in the time domain; and the fast Fourier transform
(FFT) method [19,40,43-45], and the power spectral density (PSD) method [45-48] for frequency
analysis. In many cases, these methods are not sufficiently efficacious for extracting signal information,
which stresses the need for applying more complex analysis techniques that decompose a signal
into an independent time series with defined frequency ranges such as: singular spectrum analysis
(SSA) [19,49,50], and wavelet packet transform (WPT) [6,15,51]. Statistical parametric characterization
is the most common technique used for signal information extraction [21,52]. Moreover, the selection
of an efficacious predictive technique is vital for obtaining a high level of precision in predicting data
from monitoring systems, with multiple regression (MR) techniques [52,53], artificial neural networks
(ANN) [19,54], and support vector machines (SVM) [12,55] being the most frequent methods.

The mean deviation of the assessed profile (Ra) is the primary parameter used for the monitoring
of surface quality in machining processes. This parameter is an indicator of the surface quality of a
product and the behavior of the cutting process, since it is directly linked to machining aspects such as:
cutting parameters, tool geometry, use of cutting fluids, tool wear, and chatter, among others [56,57].
In recent years, several surface finish monitoring techniques have been developed. Cutting force and
vibration sensors are the most widely employed, and off-line parameters have been incorporated as an
additional information source of the cutting process. When one works under ideal conditions—i.e.,
those recreated in the laboratory—these off-line parameters raise the performance of predictive models.
However, under real working conditions characterized by the appearance of random and transitory
phenomena, monitoring systems with off-line parameters are more rigid and may mask malfunctions
or severe process deficiencies that go undetected by the system.

TDA is the signal analysis method most extensively used by researchers for the monitoring of
surface finish. Hessainia [41] used TDA processed vibration signals and cutting conditions for the
monitoring of the parameter Ra, using a small sample of 27 data built for regression models and
validation with the same data. Kirby and Chen [58] used a single component of vibration signals
and cutting conditions to monitor the parameter Ra. The vibration signal was processed by TDA,
using 87 data for fuzzy logic predictive models and validating only with seven workpieces selected
under non-random cutting conditions. Upadhay et al. [59] also monitored surface finish using TDA
processed vibration signals. In this study 15 workpieces were simultaneously used for the building
and validation of the predictive models. Risbood et al. [13] evaluated the parameter Ra using TDA
processed radial vibration signals and cutting conditions on 20 workpieces to validate ANN models.
Ozel et al. [60] monitored surface finish using a combination of cutting forces, cutting parameters,
cutting time, consumed electrical power, and specific force. The cutting force signals were processed
by the TDA method, with only 18 workpieces for building ANN models and 9 for validation.

Signal analysis in the frequency domain is seldom used for the monitoring of surface finish.
Abouleta and Madl [47] calculated the Ra parameter with vibration signals, cutting conditions, and
tool and workpiece geometry features. The signals were processed by the PSD method using a
total of 480 workpieces to build MR models without validating them. Wang et al. [45] calculated
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the vibration modes of cutting tools by applying the PSD method to cutting forces, and found
high frequency vibration (14 kHz) had a significant impact on surface roughness (Ra). Moreover,
Krolczyk et al. [48] applied the PSD method to 3D measurement surfaces images to analyze the
performance of surface morphology in turning operations. Botcha et al. [61] applied frequency analysis
to determine the frequency ranges with significant information correlated to surface finish in cylindrical
plunge grinding processes.

In contrast, advanced processing methods working simultaneously in a combined time and
frequency domain (hereafter, time—frequency domain) are not commonly used owing to their greater
complexity. Salgado et al. [49] used SSA processed vibration signals, cutting conditions, and tool
angle and radius to estimate the parameter Ra, with 35 data for the SVM predictive models, and 20 for
validation. Garcia and Nufiez [50] applied SSA to vibration signals to monitor surface finish using
270 data test to build MR predictive models, and 90 for validation. Likewise, Garcia and Nufez [52,53]
applied the WPT method to vibration and cutting force signals, respectively.

In the last three decades, acoustic emission and sound signals have been commonly applied to the
monitoring of tool condition [31,32,62,63]; however, only a few studies have analyzed the monitoring
of surface finish. Azouzi and Guillot [14] estimated the parameter Ra with the fusion of cutting force,
vibration, acoustic emission signals, and cutting parameters. The signals were processed with the
TDA method with only 16 workpieces for the ANN models and 5 for validation. Acoustic emission
were found to have no significant impact on surface finish. Carou et al. [27] estimated surface finish
using TDA processed sound signals and cutting parameters by applying regression models with
18 experimental and 18 validation replicated trials. Frigieri et al. [64] undertook a similar study,
except the sound signal was processed in the time-frequency domain using the mel-frequency cepstral
coeffiecients, with 15 trials replicated 10 times using 80 for Gaussian mixture models, and validation
on non-independent replicated trials. Certain studies have sought to determine the behavior patterns
of the acoustic emission signal in relation to surface finish without predictive models. The study
of Bhuiyan et al. [42] found the AE signal had a moderate correlation with the Ra parameter,
whilst Pawade and Joshi [65] observed a moderate correlation between the AE signal and surface finish
with high quality obtained in this study. Rao et al. [66] processed vibration, cutting forces, and acoustic
emission signals for the monitoring of surface roughness in ultraprecision diamond turning with a
nonparametric clustering technique called, the mean-shift algorithm, and found only the force and
vibration signals in the feed direction were adequate for detecting changes in process dynamics and
were sensitive to surface variations.

The present study assessed a novel multi-sensor data fusion system for surface quality control
in automated machining processes using cutting force, vibration, and acoustic emission sensors.
An exhaustive analysis of signal feature extraction methods was performed using two signal processing
methods in one single time (TDA) or frequency (PSD) domain; and two processing methods (SSA and
WPT) working in the time—frequency domain. In order to correlate the signal characterization
parameters with surface finish, multiple regression, and artificial neural network predictive models
were analyzed. The original contribution of this study was to determine the optimum multi-sensor
data system configuration, signal feature extraction method, and predictive modeling technique in
terms of predictive power, reliability, and processing times for the real-time quality control of surface
finish using only information from the sensors without off-line parameters.

2. Experimental Design and Methodology

The machining trials were performed on a numerical control lathe (Goratu G Crono4S).
Titanium carbonitride Ti(C,N) cutting inserts for finishing operations (0.4 mm corner radius) were
used. Each workpiece was machined on a new cutting edge to avoid variability in cutting edge wear.
The workpiece material was AISI 1045 steel, 80 mm in diameter and 130 mm in length, with 80 mm in
cantilever (Figure 1). The experimental design was based on a factorial design with three factors at
different levels: feed (f) six levels (0.08, 0.11, 0.14, 0.17, 0.20, 0.23 mm /rev), cutting speed (v) five levels
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(250, 275, 300, 325, 350 m/min), and cutting depth (d) four levels (0.5, 0.8, 1.1, 1.4 mm), with a total
of 120 trial combinations. The machined length of each workpiece was subdivided into three 20 mm
sampling areas (Figure 1), and signals were registered independently in each sampling area (SA1, SA2,
SAB), with a total of 360 monitoring trials.

The parameter selected for the characterization of surface finish was the mean deviation of the
assessed profile (Ra), as measured with a Talysurf Intra 50 profilometer. The cut-off (A;) was 0.8 mm
with an evaluation length (I;) of 4 mm. The arithmetic mean roughness value (Ra) was calculated for
each sampling area (Raga1, Rasaz, Rasa3) as the average of the three equidistant measures in 120°
rotation (Figure 1): 0" (Rage ), 120" (Ray ¢ ), and 240° (Ra,,qe ). The roughness measurements obtained
for each sampling area were correlated to the signals registered in the machining trials.

The multi-sensor data system was designed in the LabVIEW virtual platform to process
simultaneously cutting force (Fp, Ff, F¢), mechanical vibration (a,, ay, ac), and acoustic emission
(AE) signals with a dynamometer Kistler 9021, a triaxial accelerometer Kistler 8763B500BB, and a
piezotron acoustic emission sensor 8152B111, respectively (Figure 1). In order to obtain adequate
signal resolution, signals were captured with a sample frequency (f;) 5 times higher than the maximum
frequency range of each sensor. The mechanical vibration signal was sampled with a data acquisition
card NI PCI 6110 using a sample frequency f; = 50 kSamples /s, whereas cutting forces and acoustic
emission (in RMS mode) were jointly sampled with a card NI PCI 6133 with a sample frequency
fs =5 kSamples/s.

L 130

50 20 20 Profilometer
C—------ F

@80
|
|
l
L
:

Labview
monitoring
system

Signal

conditioner Dynamometer  Accelerometer

Cutting Forces Vibration Acoustic Emission
(F, F.F) (a,a,a) (AE)
_ 400 ISAL1SA2I1SA3I 510 SAIL SA201SA3 = SATL 1SA3 SA3,
z ) ’ - = by Lact < I Lo
< c it i K L
8200~ S o] RPN e a1
]
e £ ‘ &
0 . . >.10 | l‘ < o ; ' .
0 20 35 0 20 35 0 20 35
Time (s) Time (s) Time (s)

Figure 1. Experimental setup.

The methodology in this study involved the analysis of captured signals (Fp, Ff, Fe, ap, ag, dc,
AE) using the four signal feature extraction methods shown in Figure 2. The processed signals
with TDA, PSD, SSA, and WPT methods were characterized by statistical and non-statistical
parameters (Table 1). The signal feature extraction methods were evaluated in terms of each
individual sensor, and multi-sensor. To correlate surface roughness with the signal characterization
parameters, multiple regression and the artificial neural network were used as predictive modeling
techniques. Finally, an optimum multi-sensor data fusion system was developed for real-time surface
quality control.
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Figure 2. Methodology.

Table 1. Signal characterization parameters.

Signal Components

Features

Fy Fe F, a, as ac AE
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Where, j = t is time for TDA method, SSA j = Ay,...,AL are number of the eigenvalues for SSA method,
PSDj = f1,..., f4 are frequency ranges for PSD, and j = A,..., ADADA are frequency ranges (packets) for
the WPT.

Multiple regression and artificial neural network predictive models were evaluated in four ways:
(1) the goodness of fit to experimental data by the adjusted determination coefficient Ridj; (2) the
predictive power by the mean relative error ¢, (Equation (1)) in the prediction of the experimental
validation data, and the variability of e, by the standard deviation associated to the mean value o ;
(3) the reliability in the prediction by the R%ZS coefficient [53], and the percentage in the distribution
error; and (4) the correlation of the data estimated by the predictive models versus the experimental
validation data (R). All of the models under analysis reached the minimum requirement of a mean
relative prediction error of ¢, < 25%, and reliability of R%ZS > 75% [53]. Of the 360 experimental
data obtained, 75% were used for building the models, and the remaining 25.0% were randomly
selected for model validation. The multiple regression predictive models were adjusted stepwise
to include only the significant (p-value < 0.05) characterization parameters (Table 1). All regression
models were diagnosed by analyzing atypical values, multicollinearity, independence, and normality
of the residuals, homoscedasticity, and contrasts and hypothesis tests.
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The design of the neural network was performed using a feedforward network structure
with back-propagation training methodology. To determine the optimum network configuration,
several training and transference functions widely used for the monitoring of machining processes
were tested. As with the regression models, network validation was undertaken independently,
with 25.0% of all the trials.

3. Results

3.1. Time Direct Analysis

The TDA method directly analyses the signal registered by the sensor in the time domain,
with no transformation or decomposition, for fast processing at a low analytical-computational cost.
This method is based on signal definition as an amplitude-time function x(t) discretized by the
succession [x;], with i = 0,1,2,...,N — 1, where N is the total number of points in the sample
(Figure 3). The term N depends on sampling frequency (f;) and sampling time (t), which has a direct
impact on processing times. Thus, cutting force (Fp, I, F) and acoustic emission (AE) signals, both
with f; = 5kHz, required shorter processing times than vibration signals (ay, a7, ac) with f; = 50kHz.
The TDA method performs signal feature extraction using parametric characterization of the original
signal captured by the sensor, defined in the time domain. For parametric characterization, statistical
measurements (arithmetic mean, standard deviation variance, kurtosis Shannon entropy, etc.) or
non-statistical measurements (energy, maximum and minimum peak amplitude, etc.) can be used [50].
The efficiency of the TDA method depends on the type of signal to be processed, and the information
to be extracted.
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Figure 3. Time direct analysis signal processing method.

The signal feature extraction of cutting forces, vibration and acoustic emission with the TDA
method, involved direct parametric signal characterization using the parameters outlined in Table 1.
In order to correlate the signal information with surface finish, the variables were related using
a multiple regression predictive model with higher R? djr lower mean relative error ¢,, and higher
reliability R;%. For the optimum characterization of the triaxial signal sensors (dynamometer and
accelerometer), the signals were analyzed independently for each component, and the fusion of the
three components. This methodology identified correlations between components from each sensor to
avoid information overloading of the predictive model that would undermine the fit.

The results obtained for cutting force signals with the TDA method (Figure 4) showed that the
back force Fj was the cutting force component most correlated to surface roughness (Ra), and provided

the best results in all of the indices (Rg 4 = 79.4%, ¢, =17.8 = 3.1%, R2~25 =71.1%). The back force F) is
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responsible for tool-workpiece contact stability, and flexing of the workpiece machined in cantilever,
given that this force was perpendicular to the axis of rotation of the workpiece. These results underscore
the impact of this component (Fp) on surface finish, due to the influence of the tool-workpiece
interaction, and the dynamic behavior of the rotated workpiece. The feed force Pf, and tangential force
F. showed weaker correlations to roughness, with an R2, j percentages of 43.4% and 34.0%, respectively.
The model combining the three force components (F, + Ff + Fc), slightly improved the results of
the F, force model, increasing reliability to 76.7%, and improving the data fit to 82.5%, but with no
improvement in predictive power with an e, of 17.9 &+ 3.4%. This corroborated that the back force
F, explained a larger percentage of the variability in the experimental data, indicating it was the
component with the greatest impact on roughness (Ra). The feed force Fy and tangential force F,
complemented the information provided by the back force F),, but the improvement in the fused model
was relatively small.

With the TDA method, the individual analysis of vibration signal models (a;) exhibited a moderate
fit to data, with an Rﬁdj below 63% for all of the components, and an ¢, close to the critical value
of 25% but never surpassing it. The three vibration components provided similar percentages of
information, with the feed vibration a¢ (R(zl 4= 62.2%) and radial vibration a, (R{ZI 4= 62.9%) explaining
most variability of the experimental data, and to a lesser extent the a, percentage (54.1%). The fused
vibration model (a, + as + ac) significantly improved model prediction, both in terms of the fit to data
(81.6%), predictive power (20.5 & 5.6%), and reliability (76.7%). This implied that the three vibration
components (ap, a iz a.) had a similar impact on surface finish, with a lower correlation among them
than for the cutting force components.

The acoustic emission (AE) model obtained very poor results in all of the indicators analyzed,
having little impact on the parameter Ra. This model explained only 17.1% of the variability of the
experimental data, which indicated a very poor correlation to roughness (Ra). This implies information
extracted for the AE signal and processed with the TDA method did not permit the correlation between
this signal and surface roughness.
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Figure 4. Signal analysis results with the TDA method.

The correlations of the estimated data versus the validation data for the best model obtained with
each sensor are shown in Figure 5. Cutting force signals exhibited the best behavior (Figure 5a) with
a correlation R = 0.94, and uniform behavior in all of the data ranges. The model tended to slightly
overestimate, given that most of the estimated values were higher than the experimental validation
values. As shown in Figure 5b, in the vibration model greater dispersion was observed in all of the
value ranges, which weakened the correlation of R = 0.87 in comparison to cutting forces. As for
acoustic emission (Figure 5c¢), a very poor correlation R = 0.08 was obtained, indicating a very poor
correlation between this signal AE and surface finish with the TDA method. In relation to model
reliability in terms of the distribution error of the validation data (Figure 5d), a similar behavior was
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observed between the cutting force model and the vibration model. In both models, from 56.0% to
58.0% of the validation trials were optimally estimated with an e, < 15%, and 76.7% of trials were
satisfactorily predicted with error e, < 25%. The poor behavior observed with acoustic emission signal

generated a model with 75% of estimated data out of the acceptable range.
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Figure 5. Estimated values versus experimental validation values for the parameter Ra with the TDA
method: (a) cutting forces, (b) vibration, and (c) acoustic emission. (d) Prediction reliability with the
TDA method.

3.2. Power Spectral Density

The PSD is a real positive function to calculate the distribution of the power of an original signal
x(t) along the entire frequency range registered by the signal. The PSD can be calculated according to
Wiener-Khintchin’s theorem as the Fourier transform of the autocorrelation function (Equation (2)).

T

/ Ry (1)e 2t dt where Ry (1) = E{x(t)x*(t + 1)}
“r

Sx(f) @

As mentioned in Section 2, the frequency ranges of the sensors were different: for cutting force
and acoustic emission signals maximum frequency was ~1 kHz, whereas the maximum frequency for
vibration was ~10 kHz. The broad bandwidth of the vibration signal entailed certain frequency ranges
with significant information failed to be adequately characterized. Thus, the frequency analysis of the
vibration signal was undertaken using two methods: a complete analysis of the entire bandwidth and
a fractioned analysis by discretizing the bandwidth into four independent frequency ranges as shown
in Figure 6.
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Figure 6. PSD signal processing method with four frequency ranges.

Following signal feature extraction and the building of the predictive models, Figure 7 shows the
results obtained with the PSD method for each signal. For cutting force signals, neither the models
built for each force component (F, Ff, F;), nor the models of the fused components (Fp + Ff +E),
obtained satisfactory results, and neither reached the minimum criteria for a model to be considered
acceptable. Vibration signal analysis in four frequency ranges (4R) improved the results obtained as
compared to signal analysis in one single frequency range, but the mean relative errors and reliability
were deficient. The feed vibration aFwas the most correlated to surface roughness with a R% 4; 0of 70.1 %,
with a lower correlation for the back vibration a,, and tangential vibration a. components of 46.4%
and 47.5% of Rgdj' respectively. The fused vibration model (a, + as + ac) obtained the best results
(Ridj = 84.0%, e, = 22.0 £5.5%, R%25 = 71.1%), underscoring it was the best predictive model of
those analyzed. Similar to TDA method, the acoustic emission signals analyzed with the PSD method
also obtained poor results, with a low correlation between this signal and surface finish.
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Figure 7. Signal analysis results with the PSD method.

With reference to estimated validation data (Figure 8), the best cutting force model (F, + F¢ + Fc)
obtained a low correlation of R = 0.68 (Figure 8a), with inaccurate estimates in high and low roughness
values, and a slightly better behavior in mid-range values. The fused vibration model (a, + a5 + ac)
with four frequency ranges (4R) (Figure 8b) obtained the highest correlation (R = 0.76), with uniform
estimated data in all of the ranges of surface finish (Figure 8b). The acoustic emission signal was not
correlated in anyway (R = 0.06) with very deficient results being obtained.
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The analysis of model reliability in terms of the distribution error in the prediction of the validation
data (Figure 8d), revealed the best model was fused vibration signals (a) + as + ac) in four frequency
ranges with an R)? of 71.1%, followed by fused cutting forces model (F, + Fs + F.) with an R} of
60.0%, and acoustic emission with very poor results (R%25 =38.9%).

The analysis revealed the PSD method failed to provide adequate signal feature extraction for the
prediction of surface roughness, given that none of the models analyzed reached a prediction reliability

of 75%.
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Figure 8. Estimated values versus experimental validation values of the parameter Ra for the PSD
method: (a) cutting forces, (b) vibration (4R), and (c) acoustic emission. (d) Prediction reliability with
the PSD method.

3.3. Singular Spectrum Analysis

The SSA method is a non-parametric time series analysis technique, based on statistical
multivariability, multivariante geometry, and dynamic signal processing systems. The SSA method
decomposes a signal into independent time series (with defined frequency ranges) referred to as
principal components (PC;). The SSA method builds a Hankel matrix termed the trajectory matrix X,
calculated through a sliding windows (L) applied to the succession of data [x;] from the original signal.
The next step is singular value decomposition (SVD) of the trajectory matrix by decomposing the X
matrix into a series of elementary matrixes X; obtained by calculating the eigenvalues and eigenvectors
of the matrix S = XXT. Finally, the principal components are obtained from the reconstruction of the
elementary matrixes X; [50]. The number of principal components obtained with the SSA method
depends directly on the parameter L, which is a significant factor conditioning the results. To determine
the principal components containing information of the original signal, it is standard practice to show
in descending order the weight of each principal component (or eigenvalue) on a graph commonly
referred to as Singular Spectrum (SS), which give its name to the SSA method itself.

The application of SS to cutting force, vibration, and acoustic emission signals for the window
lengths L =5 and L = 10, showed significant differences (Figure 9). A similar behavior was observed in
cutting forces and acoustic emission (Figure 9a), where the eigenvalue associated to the first principal

10
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component (PC;) contained approximately 100% of the weight of the total signal, and the remaining
principal component values obtained were almost negligent. The application of the SSA method to
vibration signals exhibited a different behavior (Figure 9b) with non-zero eigenvalues, resulting in
principal components with different levels of information.
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Figure 9. Signal analysis with the SSA method using two window lengths L = 5 and L = 10: (a) cutting
forces and acoustic emission, and (b) vibration.

Figure 10 shows the principal components obtained with the SSA method for a window length of
L = 5. Cutting forces and acoustic emission only contained information in the first principal component
(PCy), the remaining components being negligible, which corroborated the SS results (Figure 9).
The first principal component (PC;) was the original signal, thus the results obtained for the signals
with the SSA method were equivalent to those obtained with the TDA method. This phenomenon
occurred in signals with a characteristic function x(t) = Asint + b where the factor b represented signal
amplitude, and the term Asint the signal oscillation. With SSA decomposition, this amplitude and
the oscillation range were contained in the first principal component, and the remaining components
provided little or negligible additional information. Moreover, the vibration signal obtained significant
information from the original signal in the five principal components as these signals had a value
of b~ 0. The selection of the vibration signal configuration parameters for the SSA method was
determined on the basis of the results obtained by Garcia and Nuifiez [50].
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Figure 10. Principal components obtained with the WPT method for cutting forces, vibration,
and acoustic emission, and a window length of L = 5.
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The individual analysis of the vibration signals with the SSA method (Figure 11) showed the
feed vibration ar explained most of the variability in the experimental data with a fit of data of 82.8%,
a predictive power of 16.7 & 4.3%, and 76.7% of reliability. The radial vibration a, and tangential
vibration a. components explained less variability (65.1% and 68.4%, respectively) with high relative
errors (29.0% and 24.5%, respectively) and low reliabilities (61.1% and 64.4%, respectively) that failed
to reach acceptable levels. In contrast, the combination of the vibration components (a) + a5 + ac)
improved the model in all of the evaluation indices of the individual analyses, with a R2, i of 87.8%,
sharp fall in the relative error ¢, reaching a value of 14.6%, and a significant increase in reliability to
91.1%. These results revealed that feed vibration af was the component with the greatest impact on
surface finish (Ra), and that the radial a, and tangential a. vibration complemented the information
provided by ay.
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Figure 11. Signal analysis results with the SSA method.

The prediction of the validation data versus the experimental values for the best vibration model
obtain with SSA method (a, + ay + ac) is shown in Figure 12a. The results showed the model had a
good predictive power with a high correlation (R = 0.93), without any significant bias, except for a
slight underestimation in the prediction of Ra values above 2.5 um. The analysis of model reliability in
terms of the distribution error in the prediction of the validation data showed the model had very good
reliability (Figure 12b), with 67.8% optimum estimation of the data (e, < 15%), and 91.1% acceptable
predictions (e < 25%).
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Figure 12. (a) Estimated data versus experimental validation data of the parameter Ra. (b) Reliability
of predictive models.

3.4. Wawvelet Packet Transform

The WPT method decomposes a signal into scaled and shifted series (packets) of a prototype
function referred to as the mother wavelet, which is characterized on a time-frequency scale.
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The method applies a pyramidal algorithm, where the original signal is successively split into
approximation 4; (low frequencies) and detail D; (high frequency) signals until the desired wavelet
decomposition level is achieved. The approximation and detail signals are calculated by the coefficients
described in Equations (3) and (4),

Aj (k) =Y h(n—2k)cj1(n) ®)
Dj (k) =) _g(n — 2k)cj—1(n) (4)

where A; (k) and D; (k) are approximation and detail coefficients, j is the number of transformation
levels with j =1, 2, .. .; k is the number of scaled and wavelet coefficients with k =1, 2, ..., Nx277/,
where N is the total number of samples of the original signal; & and g are low-pass and high-pass
coefficients of the scaled function and wavelet function, respectively, based on a chosen mother wavelet;
and 7 is the filter length.

For the satisfactory application of the WPT, three fundamental factors should be borne in
mind: (1) selection of the appropriate mother wavelet for each specific type of signal; (2) to
determine the number of decomposition levels (L;) needed to divide the signal into effective frequency
ranges; and (3) selection of the information packets of significance to the parameter under analysis.
The optimum selection of the configuration parameters applied in the WPT method to cutting force
and vibration signals for the monitoring of surface finish was determined by Garcia and Nufez in two
previous studies [52,53], respectively, where the mother wavelet bior4.4 with three decomposition levels
provided the best results for vibration signals, and the mother wavelet db06 with four decomposition
levels provided the best results for cutting forces. As there are no studies published in the literature
determining the optimum configuration for acoustic emission signals, this study replicated the
methodology employed by Garcia y Nufiez, establishing the best configuration for mother wavelet
coifflet4.4 (coif4.4), and a number of decomposition levels L; = 5.

The sampling frequency (f;), and decomposition level (L;) determined the frequency ranges of
the original signal (Figure 13). For cutting force signals, seven frequency ranges of 156.25 Hz were
obtained, for vibration signals four frequency ranges of 3125 Hz, and for acoustic emission 13 frequency
ranges of 78.125 Hz (Figure 13).
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Figure 13. WPT method applied to cutting force, vibration, and acoustic emission signals.
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As shown in Figure 14, in the individual analysis of cutting forces, the back force F, was the
principal information source explaining most of the variability in the experimental data, with a data fit
of 86.4% and 14.1 + 2.5% of predictive power. As with the TDA method, the back force F, was the
cutting force component having the greatest impact on surface finish, with better prediction indices
than in the TDA method. Nevertheless, in this case the tangential force F. also obtained a good fit
to the experimental data with an Ri g of 77.7%, and an e, of 20.7 = 3.6%. As shown in the analysis,
the WPT method only analyzed time series in effective frequency ranges with relevant information,
excluding series that masked the original signal, and impeded adequate signal feature extraction in
methods such as the TDA. This enhanced the analysis of cutting force signals, eliminated noise from
the signal, with the tangential force F. exhibiting a greater influence on roughness.

The fusion of the three orthogonal cutting force components (F, + Fy + F) hardly improved
the fit of the model with an R2,. of 88.0%, indicating a strong correlation among the cutting force
components. In contrast, the fused model (F, + Fs + F.) improved the predictive power with an ¢, of
11.9 + 1.9%, and an 86.7% of reliability. These results revealed that the back force F,, and tangential
Fc were had the greatest influence on surface finish (Ra), and the feed force F; complemented the
information, improving the predictive power with the fusion of the cutting force components.

The results obtained for the vibration signals were similar to those obtained with the SSA method.
In the individual analysis of the vibration components (a;, ay, ac), once again the feed vibration ay
provided most of the information, with a data fit of 75.7%, a predictive power of 18.0 & 4.3%, and a
reliability of 75.6%. The results for the back a, (szzdj = 62.0%) and tangential a, (Rgd]. = 61.2%)
components were poorer than those obtained for 4; with high relative errors and low reliabilities
that failed to reach minimum acceptable levels. The combination of the three vibration components
(ap +ag+ ac) improved the model in all of the evaluation indices (R%dj = 88.5%, ¢, = 14.2 + 3.8%,
R%25 = 93.3%) The acoustic emission signal (AE) failed to obtain good results with the WPT method,
with all of the indicators of predictive power being deficient.
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Figure 14. Signal analysis results with the WPT method.

The correlation between estimated data versus the validation data for the model obtained for each
sensor is shown in Figure 15. The cutting force and vibration models obtained the best results with
very high R correlations of 0.95 and 0.94, respectively. Though the data distribution in both models
was fairly uniform in all of the ranges of surface finish (Ra), a slight overestimation was observed in all
of the data ranges in the cutting force model (Figure 15a), which tended to increase at higher roughness
values (2.6 pm < Ra < 3.0 um). As for acoustic emission (Figure 15c), the correlation obtained was
very deficient (R = 0.37). The analysis of model reliability (Figure 15d) revealed a similar behavior,
with cutting force and vibration models obtaining the best results. Both models obtained similar results
in the optimum prediction range, where 67.0-69.0% of the validation trials had an estimated error
er < 15%; however, in the interval of acceptable predictions, the vibration model obtained the best
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results, with an error e, < 25% in 93.3% of the validation data, compared to 86.7% for the cutting force
model. The poor behavior obtained with the acoustic emission signal produced a model where 60.0%
of estimated data was outside the acceptable range.
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Figure 15. Estimated data versus experimental validation data for the parameter Ra: (a) cutting forces,
(b) vibration, and (c) acoustic emission. (d) Reliability of predictive models.

3.5. Comparison of Methods

A comparison of the best predictive models obtained in the previous section, classified according to
processing method and the type of signal under analysis, is shown in Figure 16. In order to draw a more
accurate comparison of the processing methods in a single domain (TDA and PSD) versus methods of
analysis in the time-frequency domain (SSA and WPT), the predictive models obtained with the fusion
of the TDA and PSD methods were compared. To evaluate the computational cost of each method,
the monitoring system response time in the processing of a second signal was analyzed (Figure 17).

In the analysis of cutting forces, the WPT method presented the best prediction results with
an ¢, of 12.0 & 2.0%, a reliability of 88.7%, and a 24 ms response time. As shown in Figure 16,
the results obtained with the other methods fell far short of the method WPT. It should be noted that
the characterization of cutting force signals in the frequency domain presented the worst results, and
the combination with the TDA method worsened the predictive power ¢, of the TDA method.

In the analysis of the vibration signals, the SSA and WPT methods presented the best prediction
results with an ¢, of 14.6 &= 3.5% and 14.2 & 3.8%, and reliability of 91.1% and 93.3%, respectively.
In comparison, the prediction results obtained with the other methods fell far short of the SSA and
WPT methods. In this case, PSD analysis provided complementary information to the TDA analysis,
which improved the prediction and reliability results. For the vibration signals, system response
times increased significantly as sampling frequency was five times greater than in cutting force
signals. In spite of this increase, the processing time of the WPT method was sufficiently low for
real-time monitoring (101 ms), but the SSA method presented a very long response time (10,750 ms),
which discarded it as feasible for the real-time prediction of surface finish.
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Acoustic emission failed to provide good results in all of the methods under analysis, with a slight
improvement in the WPT method, but failing to obtain satisfactory results. The lowest computational
costs were for acoustic emission in comparison to the other signals, owing to the smaller amount of
information processed in one single signal.
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Figure 16. Comparison of the predictive results according to processing method and signal type.
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Figure 17. Response times obtained for the TDA, PSD, TDA + PSD, SSA, and WPT processing methods.
4. Multi-Sensor Data Fusion Analysis

4.1. Comparative Analysis of Sensor Fusion

Having determined the behavior of the processing methods individually for each signal, the next
step was to analyze the multi-sensor fusion data by building a fused model of each processing method,
using the significant characterization parameters obtained in each individual analysis. It should be
borne in mind that the acoustic emission signal provided poor prediction results in each individual
analysis, which indicated the AE signal contained no information correlated to surface finish. Thus,
two types of analysis of the fusion of sensors were performed: the fusion of all the sensors, and the
fusion of all the sensors except the acoustic emission signal. It should be noted that the SSA method can
only be applied efficaciously to vibration signals as explained previously in Section 3.3. Nevertheless,
the SSA method was applied to all of the signals in order to compare the fusion of sensors, taking into
account that cutting force and acoustic emission signals were equivalent to applying the TDA method.

As shown in Figure 18, with exception of PSD analysis, the results obtained with the other
methods and the fusion of three sensors provided predictive models with low relative errors e, < 12%,
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and high reliability over 88.0%, which improved the results obtained with the individual analysis
of each sensor. The best result was obtained for the SSA method, with excellent predictive power
e, = 8.2+ 1.6%, and very high reliability of 93.3%. Similar results were obtained for the WPT method
with a mean relative error of 10.8 + 2.0% and a reliability of 91.1%.

When the AE signal was eliminated from multi-sensor data fusion, with the exception of the
model of the PSD method, the predictive power of the other models improved, indicating the AE signal
provided no significant information for the prediction of surface finish, or even negatively affected the
prediction. The results for the fusion of cutting force and vibration signals were similar with hardly
any considerable differences between them, with the exception of the PSD method. All of the methods
exhibited an excellent predictive power, particularly the WPT and SSA methods that obtained an
excellent mean relative error of 8.5 4= 1.5% and 8.8 &= 1.8%, respectively, with an optimum reliability of
95.5% in both. Even the TDA method and TDA+PSD fusion obtained excellent results with the fusion
of sensors.
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Figure 18. Comparison of the prediction results obtained with multi-sensor data fusion with and
without the acoustic emission signal.

The correlations between the estimated data and the validation data of the models obtained with
the fusion of sensors are shown in Figure 19. The three models had very strong correlations (Figure 19),
with the SSA (Figure 19b) and WPT (Figure 19b) methods exhibiting a uniform behavior in the entire
range of experimental data. However, the TDA + PSD method underperformed in data prediction
at the 2.5 <+ 3.0 um interval. The analysis of model reliability (Figure 19d), in the range of optimum
predictions (e, < 15%), showed the SSA model had the best performance with 85.5% of the data,
followed by the WPT model with 80.0% of the data, and the TDA + PSD model with 75.5%. In the
acceptable prediction range (e, < 25%), excellent results were obtained for the three models with a
95.5% reliability in all three models.

Bearing in mind these data and the aforementioned computational costs, the WPT model with
the fusion of cutting force and vibration sensors was the best option for the time-real prediction of
surface quality in CNC automated machining processes. Moreover, the WPT method was applicable
to all of the signals analyzed and enabled the determination of effective frequency ranges correlated
to surface finish. The significant characterization parameters obtained with the WPT model and the
corresponding frequency ranges, the sum of squares (type III), and the p-values are shown in Table 2.
The most relevant information of cutting force signals was found at very low frequency ranges AAAA
(0-156.25 Hz), with a small contribution from low DAAA (156.25-312.50 Hz), and very high DADA
frequencies (937.50-1093.75 Hz), and negligible information from the other frequency ranges analyzed.
The behavior of the vibration signals was entirely different with high frequency DDA (6250-9375 Hz)
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providing most of the relevant information, followed by the very high ADA frequency (9375-12,500 Hz),

and no information provided by the other frequency ranges.
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Figure 19. Estimated data versus experimental validation data for the parameter Ra with multi-sensor

data fusion for the (a) TDA + PSD, (b) SSA, (c) WPT methods, and (d) model reliability.

Table 2. Significant signal feature extraction of the optimum model obtained with WPT.

Feature Frequency (Hz) Sum of Sq (Type III) p-Value
x;‘PAAA 0-156.25 3.30 3.10x 10718
opAAA 156.25-312.50 0.22 139 x 1072
KéADA 937.50-1093.75 0.19 217 x 1072
SEAAAA 0-156.25 5.37 1.26 x 1026
SEDDA 6250-9375 1.42 241 x107°
agﬁf‘ 6250-9375 3.82 1.77 x 1020
ppPPA 6250-9375 0.14 538 x 102
SEPDA 6250-9375 1.41 2.74 %107
xpPa 9375-12,500 1.45 1.81 x 107°
SE/PA 9375-12,500 0.67 3.03 x 1073
oA 6250-9375 3.81 1.90 x 10~20
SE;iDA 9375-12,500 122 272x 1078

As for the level of information provided by the cutting forces, the mean of the back force
X#A44 and Shannon entropy of the tangential force S EI’Q‘CAAA were the primary information sources.
Both components (F, and F) were responsible for the load on the tool in the direction perpendicular
to the axis of rotation, and flexing of the workpiece at the cantilever. This aspect led to displacement
and eccentric rotation of the workpiece, which altered the dynamic behavior and causes vibrations in
workpiece-tool contact areas. The parameter Xf_i‘pAAA measured the static component of the back force

Fy, and SEI‘Q‘;AAA measured the dynamic component of tangential force F.
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In relation to the vibration signal, the parameters measuring the dynamic behavior of the signal
were the most significant, with the feed ¢PP4 and tangential ¢PP# standard deviation being the

ag ac
principal sources of information, complemented by mean feed vibration X;{}D A

the three components SEﬂDp DA SE”D DA, SE;“D A SE;‘ED A The feed component of the vibration signal
provided most of the variables with the greatest impact on the prediction of surface roughness.
Feed vibration ay was the vibration component most affecting surface roughness, and was directly
correlated to the parameter Ra.

and the entropy of

4.2. Comparative Analysis of Predictive Techniques

The ANN optimized for the prediction of surface finish had a feedforward structure with
back-propagation training methodology. In order to obtain the optimum network configuration,
the training and transference functions available in Matlab 2018 were analyzed using a pyramidal
criterion [67] to determine the number of layers and neurons providing the best results. Similar to
the multiple regression models, network validation was undertaken independently with 25.0% of
the randomly selected experimental data. The input variables were restricted to significant signal
characterization parameters obtained with the regression models to ensure the fit of the network
was not weakened due to information overloading or correlations between variables. The optimum
networks obtained for the TDA + PSD and SSA methods had a structure 13 x 6 x 2 x Tand 10 x 3 x 1,
respectively, with the tansig transference function and trainlm training. The network for the WPT
method had a structure 12 x 3 x 1 with the purelin transfer function and trainlm training.

The results obtained for the prediction of surface finish with ANN and multiple regression are
shown in Figure 20. The two prediction techniques analyzed obtained excellent prediction results
with ¢, below 10.0 + 2.0%, and reliability over 95.0% for the three methods analyzed (TDA + PSD,
SSA, and WPT). The ANN predictive modeling technique improved the e, from 1.0% to 1.2 %,
obtaining 8.2 £ 1.7% for TDA + PSD, 7.5 & 1.3% for SSA, and 7.7 &+ 1.6% for the WPT method.
As for reliability, a 1.1% to 2.2% improvement was observed, obtaining 96.7% for the TDA + PSD,
97.8% for SSA, and 96.7% for the WPT method. Though the improvement in prediction and reliability
may initially appear to be insignificant, it entailed a substantial increase in the performance of the
predictive model, owing to the low prediction errors in both models, and the precision requirements of
surface quality control systems.
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Figure 20. Prediction results for the MR and ANN models with multi-sensor data fusion of cutting
force and vibration signals.

The correlation of estimated data versus experimental validation data (Figure 21) of the ANN
models was very high, with excellent behavior in all of the value ranges. The reliability of the models
(Figure 21d) was very similar, with the SSA method showing the best results with 86.6% of the
predictive data in the optimum range (e, < 15%) versus the TDA + PSD and WPT methods that
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reached a reliability of 83.3%. As for the range of acceptable predictions (e, < 25%), the three models
presented similar results with 97.8% for the SSA, and 96.7% for the TDA + PSD and WPT methods,
indicating only from 2.2% to 3.3% of the data was predicted with an e, greater than 25.0%.
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Figure 21. Correlation of estimated data versus validation experimental data obtained with ANN
predictive model and multi-sensor data fusion: (a) TDA + PSD, (b) SSA, and (¢) WPT methods.
(d) Prediction reliability with the ANN model.

The best prediction and reliability results were obtained with the ANN model for the SSA and
WPT methods, reaching excellent precision and reliability indices. The WPT method, with short
responses times was the most adequate signal processing method for real-time signal feature extraction
in surface quality control. It is worth noting that multiple regression enabled the determination of
the significant characterization parameters of signals, eliminating factors correlated to or with little
significant impact on the response variable (Ra), which improved the fit of ANN. In comparison to
the ANN technique, multiple regression permitted greater control of the method, without random
events. Thus, the use of the ANN predictive modeling technique is recommended, but with the prior
multiple regression analysis of significant variables to ensure only input variables providing significant
information correlated to surface quality were used in the ANN.

5. Conclusions

In this study, multi-sensor data fusion for the real-time intelligent control of surface quality in
CNC machining systems was examined. The sensors most widely used for the monitoring of the
machining processes based on cutting force, vibration, and acoustic emission signals were analyzed.
A total of four signal processing methods were compared: two global analysis of the signal in one
single domain, time (TDA) or frequency (PSD), and two signal analysis methods in the combined
time-frequency domain (SSA and WPT). Owing to the nonlinear and stochastic nature of the process,
two predictive modeling techniques were evaluated: multiple regression and artificial neural networks.
The information provided by each individual sensor and the fusion of sensors was evaluated in terms
of predictive power, reliability, and response time.

20



Sensors 2018, 18, 4381

In the analysis of individual signals, both cutting forces and vibration were correlated to surface
finish, allowing for the building of models with the best predictive results. In general terms, the
back force F, responsible of the contact stability between tool and workpiece, was the cutting force
component with the greatest influence on roughness. As for the vibration signals, the tool dynamic
behavior in feed direction, registered by a5, was the component with most impact on surface finish.
Regarding the fusion of signals, the combination of cutting force and vibration signals improved
predictive power and reliability. No correlation was observed between the AE signal and surface finish
in either the individual or the fusion of other signals, and both even worsened the results obtained.

In the global signal analysis methods in the single domain (TDA and PSD), frequency analysis
exhibited the worst behavior, with low prediction and reliability levels in all the signals analyzed,
proving to be inadequate for signal feature extraction on its own. The TDA method improved the
results of the PSD, which reached the minimum levels required, but with prediction and reliability
below the SSA and WPT methods, particularly for individual signals. In most cases, the TDA + PSD
combination slightly improved the results of the TDA method, indicating this combination could be
applicable according to the precision of system requirements. The analytical-computational cost of
these methods was very low, with the best response times.

The decomposition of the signals into a time series with defined frequency ranges improved
signal feature extraction. The WPT method maximized information extraction in cutting force and
vibration signals, whereas the SSA method was only applicable to vibration signals. The SSA method
obtained long response times, rendering it inadequate for real-time monitoring systems. However,
the WPT had shorter response times, making it the most adequate signal feature extraction method for
use in real-time surface quality control systems.

Frequency bandwidths with information correlated to surface finish in both cutting force and
vibration signals, and the sampling frequencies for each type of signal for the monitoring of surface
finish were determined. The excitation ranges of cutting force signals that most influenced surface
finish were found at very low frequencies (0-156.25 Hz), whilst vibration signals were at high frequency
(6250-9375 Hz). Moreover, the vibration frequencies most affecting surface finish were determined for
the selection of cutting speeds that did not excite the system in these frequency ranges.

The ANN models obtained the best prediction and reliability results, and was the most efficient
predictive technique, but the prior elimination of non-significant characterization parameters using
multiple regression is recommended.

Furthermore, the most adequate characterization parameters were determined for signal feature
extraction of the three types of signals analyzed. This allowed for optimum parametric signal
characterization by monitoring only parameters correlated to surface finish.

The present study proposes a multi-sensor data fusion method for on-line monitoring of surface
quality in automated machining systems. Multi-sensor data fusion enabled highly accurate and
reliable real-time monitoring of surface finish similar to post-process methods. This allows for
in-situ decision-making based on the predictions of intelligent surface quality control systems
that analyze only on-line cutting process information, which translates into greater flexibility and
the real-time detection of malfunctions. The results obtained underscored that the selection of
sensors, signal feature extraction method, and predictive modeling technique were crucial aspects for
optimizing monitoring systems.
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Abstract: Multi-sensor fusion system has many advantages, such as reduce error and improve
filtering accuracy. The observability of the system state is an important index to test the convergence
accuracy and speed of the designed Kalman filter. In this paper, we evaluate different multi-sensor
fusion systems from the perspective of observability. To adjust and optimize the filter performance
before filtering, in this paper, we derive the expression form of estimation error covariance of three
different fusion methods and discussed both observable degree of fusion center and local filter of
fusion step. Based on the ODAEPM, we obtained their discriminant matrix of observable degree
and the relationship among different fusion methods is given by mathematical proof. To confirm
mathematical conclusion, the simulation analysis is done for multi-sensor CV model. The result
demonstrates our theory and verifies the advantage of information fusion system.

Keywords: multi-sensor network; observable degree analysis; information fusion

1. Introduction

Multi-sensor network technology is extensively used in modern life. It has many advantages
over single sensor network. However, it faces some new challenges, such as low observability and
large data delay [1-3]. To some extent, observability can reflect the filtering performance of the system.
The low observability caused by complex data collection and translation will deteriorate the estimator
performance, and should be given more attention [4-7]. Thus, it is essential to find a way to guide the
multi-sensor netting for improving the estimation performance. The most classic estimator for mobile
target tracking is the Kalman filter presented by R. E. Kalman in the 1960s [8]. For the Kalman filtering
theory, a basic concept is the observability of state space equation [9]. The observability is used to
express the possibility of recovering the initial state by using measurement data and it is related to
both state and observation models. Thus, it is important to analyze quantitatively on observability
because it can guide the improvement of estimator performance.

For the modern control theory, the observability, which is a qualitative index, can generally be
expressed by a variable with two values “0” and “1”. Namely, the result is Boolean value. For zero
value, it means that the system is unobservable, which means that the system state is not fully
recovered by the measurement. As the quantitative variable, the observable degree is used to measure
the observability ability [10]. In [10], an analysis on the observability and observable degree has
been given, the kernel is abstracted as follows. Based on the current research work, there are some
ways to evaluate the observable degree [11-14]. For this, observable degree analysis (ODA) has
been presented by using estimation error covariance (EEC) of the Kalman filter in [11], which can
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intuitively express the observable ability of system states or linear combination of state variables.
In [12], an evaluation method of observable degree with regard to singular value decomposition has
also been given [10]. The observability definition has been further improved by using optimization
singular value decomposition method in [13]. Another ODA method, based on pseudo-inverse with
the relevant knowledge of least square, is proposed in [14].

The observable degree analysis with estimation performance measure (ODAEPM) proposed by
Ma et al., [15] is a great observable degree analysis method, which considers the effect of measurement
noise. It reveals the inner relation between the discriminant matrix of observability and the estimation
performance of the Kalamn filtering. By synchronously defining the observable degree of state
component as local observable degree (LOD) and the observable degree of system as global observable
degree (GOD), it establishes the completeness of the observable degree theory.

However, the ODAEPM in [15] only discusses the observable degree problem on single sensor
observation. It is necessary to establish the observable degree for multi-sensor network technology.
How the fusion methods affect the estimator performance, and the advantage of information fusion
should also be verified by the observable degree theory. Further research on observable degree is
still needed. Motivated by these, in this paper, following the ODAEPM, we research the observable
of different type fusion methods [4,7,16,17], and make the comparison among them. The main
contributions of our work are: First, the observable degree discriminant matrix of three different kinds
fusion methods, namely the distributed multi-sensor fusion system without feedback, the distributed
multi-sensor fusion system with feedback and the centralized multi-sensor sequential fusion system,
is derived, mainly based on the estimation error covariance of their fusion process. Second, the
mathematical proof of the observable degree relationship between fusion center and local filter is given,
along with the relation among different fusion methods, which provides evidence for the advantage of
multi-sensor information fusion, and the effect of different fusion methods.

The rest of the paper is organized as follows. First, we review the ODAEPM in Section 2.
Then, in Section 3, we introduce the structure of three fusion methods, and, by using ODAEPM,
the observable degree analysis is performed on both fusion center and local filter. The comparison
of observable degree among different fusion methods is given a mathematical proof in Section 4.
In Section 5, the simulation is established to verify our research. Section 6 is the conclusion.

2. Review of ODAEPM

2.1. Problem Formulation

The associate models of linear time-varying discrete estimation system is considered as [4,18]:

X1 = Qo1 kX% + Wi (€]
zx = Hyxp + v (2)

where k(k =1,2,---) is time index. x; € R" is state variable, where 7 is the state dimension. z; € R"
is the observation vector, where 1 is the observation dimension. ®;1; € R"*" is the linear state
transition matrix and H;, € R"™*"

respectively, n-dimensional Gaussian process noise and m-dimensional Gaussian observation noise.

is the linear observation matrix. w; € R" and v; € R" are,

2.2. The ODAEPM for Observable Degree Analysis

ODAEPM [15] is a method dealing with the observable degree analysis for linear time-varying
discrete estimation system [15]. The process of ODAEPM is shown in Figure 1.
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Figure 1. The process of ODAEPM.

In Figure 1, we summarize ODAPEM. Here, we need to know that the ODAEPM does not consider
the process noise [15]. The ODAEPM names the observable degree of system as global observable
degree (GOD):

1
= @)
U Trace( fk)
and names the observable degree of state component as local observable degree (LOD):
1
An, = —— 4)
U (DT,k)i
We define the optimal observability discriminant matrix as:
Dj; = @Dy Py 5)

Because the non-recursive information form Yy of the EEC given the KF related knowledge is
as follows:

Ve = ®ro Yoo®Pro '+ Pp1 T Dpp ' @pq (6)

Normally, if the system is stable, the system filtering accuracy is independent of the initial value.
It may be assumed that Yjg — 0, thus Equation (6) can be written as

Vg = @1 Dy 'y 7)
Therefore,
Py — ®p1Dy1 @iy’ ®)
where Dy is
. -1
. - _ -1 _
Dy = min{Var[x; — %1} = (81, Ry j814) = () @i H R H;®i1) )
i=1
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The main contributions of ODAEPM towards observable degree analysis are as follows. First,
by constructing observability discriminant matrix by jointly using WLS and Cauchy Schwartz
inequality, the uncertainty from the observability effects of observation noise are taken into account.
Second, by substituting observability discriminant matrix into the estimation error covariance matrix
of KF under the assumption that the initial value of the estimation error covariance matrix tends to be
infinite, the relationship between filter estimation performance and observability analysis is clearly
established. Finally, by defining the local observable degree (LOD) and global observation degree
(GOD), the estimation abilities can be expressed from different scale levels.

3. Observable Degree Analysis of Multi-Sensor Observation Network System

Multi-sensor fusion system integrating signals from different sensors has the great advantage
of overcoming the uncertainty and limitation under single sensor measurement condition [15,19].
To obtain performance improvements in target tracking problem, multi-sensor observation network
becomes an important research field.

3.1. Problem Formulation

Distributed multi-sensor track fusion system contains L local sensors. The target moving model is
X1 = Ppy 1k + Wi (10)

The ith local sensor observation model is shown as
zix = Hjpxp +vig (11)

where k(k = 1,2, ) is time index. The first subscript i of matrix H and v is the sensor index. x; € R" is
state variable, where 1 is the state dimension. z;; € R™ is ith local sensor observation vector, where m
is the observation dimension. ®; 1 € R"*" is the linear state transition matrix and H; , € R"*" is
the ith local sensor linear observation matrix. wy, € R" and v;; € R™ are, respectively, n-dimensional
Gaussian process noise and m-dimensional Gaussian observation noise. The covariances of process
noise wy and observation noise v; ; are Q; and R; , respectively.

3.2. Introduction of Multi-Sensor Fusion System

There are many forms for multi-sensor fusion system; in this paper, we expound three
present major fusion technologies in detail: the distributed multi-sensor fusion without feedback,
the distributed multi-sensor fusion with feedback and the centralized multi-sensor sequential fusion.

3.2.1. Distributed Multi-Sensor Fusion without Feedback

The structure of distributed multi-sensor fusion without feedback is shown in Figure 2 [4,16-18,20].
The distributed multi-sensor fusion system without feedback contains several local sensors.
Each sensor performs Kalman filtering on its own observation data, transmitting the state estimation
value f;j? and estimation error covariance sz to the fusion center. After the fusion center gets the
filter result form all sensors, the fusion results fd’”k and P;dfk can be calculated by fusion algorithm of

distributed multi-sensor fusion system without feedback.

28



Sensors 2018, 18,4197

Observation Local filter
data result

Fusion result

odn dn
X P

a./ Fusion
Target ‘
center

Figure 2. The process of distributed multi-sensor fusion system without feedback.

3.2.2. Distributed Multi-Sensor Fusion with Feedback

The structure of distributed multi-sensor fusion with feedback is shown in Figure 3 [4,16-18,20].

Observation Local filter
data result

Fusion result

B! filter

o I
Feedback as intial Xj',k+1\k > P;,kﬂ\lc

value for k+1 time

Figure 3. The process of distributed multi-sensor fusion system with feedback.

The form of distributed multi-sensor fusion with feedback is similar to the former fusion technology.
The most important difference between these two methods is that the fusion with feedback needs to

return the fusion result J?%c and ijfk to the local sensors as their filter initial value at time k + 1.

3.2.3. Centralized Multi-Sensor Sequential Fusion

The structure of centralized multi-sensor sequential fusion is shown in Figure 4 [4,16-18,20].

The centralized multi-sensor sequential fusion is different from the other two fusion methods
shown in this paper. This fusion technology only contains one sequential fusion filter at fusion
center [21,22]. Not only the observation data z; ; but also the observation matrix H; ; are necessary. The
messages for same sensor are organized into same group and sequential input to the fusion filter. When
each group message is received, the fusion filter will do one sequential filtering and return the result
£75, Pi3 for next sequential step. When the step index i reaches the sensor number L, the sequential
fusion is finished, and the results J?isk and PCLS’k are the final fusion result for centralized multi-sensor
sequential fusion system.
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Figure 4. The structure of centralized multi-sensor sequential fusion system.
3.3. Motivation

Although the ODAEPM proposed by Ma et al., [15] provides a simple way to making observable
degree analysis and presents the relationship between the observable degree and estimator accuracy,
the problem in [15] is based on the single sensor observation system; the observability theory of multi
sensor cooperative target tracking system and estimation of the fusion have not been solved well
yet. The relationship of performance between fusion center and local sensors has only been obtained
from the mutual independent simulation experiment. There is no mathematical proof yet to verify the
advantage of information fusion system. Additionally, how the LOD and GOD of fusion center and
local filter influenced by different fusion methods also needs a further study.

3.4. Observable Degree Analysis of Multi-Sensor Observation Network System

According to Ma et al., [15], the observable degree discriminant matrix equal to the inverse
of non-iterative form of estimation error covariance under the assumption that the initial value of
estimation error information matrix equals zero.

3.4.1. Observable Degree Discriminant Matrix of Distributed Multi-Sensor Fusion without Feedback

In distributed multi-sensor fusion system without feedback [23], the local sensor doing Kalman
filtering is only based on individual observation data, making it the same as the single sensor
observation system. Thus, its local sensors observable degree discriminant matrix at time k is the same
as the ODAEPM performed on single sensor observation system, shown as

k
(D} " = [® ] Zt‘leHTR H;;®;,)®, ] 12)
where @, ;, is the state transition matrix between time a and time b.

Its estimation error covariance matrix of fusion center is:

L
(PH) ™ = (P 0 + ;KPZ?H)* — (P07 (13)
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where
(P?;:W) =41 4 (P @y + Qx (14)
¥ 1, pqT  p-l
(Pl =(Pikiap) +Hia R Higga (15)

Discarding the process noise, Equation (13) can be rewritten as
d T (piny-lg-1 T 1
(PPi) =@ (Pl e + Y HL R Hign (16)
i=1

The fusion center observable degree discriminant matrix (D] k)j’,” is equal to the inverse of

Equation (16) at time k, thus changing Equation (16) into the non-iterative form, (D7 P 7 will be
d T (pd “1g-1 S 1
(DI )" =@y (PF1) " @ppy + ) H R Hi]™
i=1

T pd Tgy—
=[PPk )~ ¢kk2+¢kklezk1R szl¢kk1+ZszR "H ]!

i=1
17)

Z‘I’kk]Zsz] zk] zqu’kk/]

L

T yyT 1
1g(¢j’1Hi'jR H; <1>]1)<1>k
=

'F’J*

—(®-T
=[®;

]

3.4.2. Observable Degree Discriminant Matrix of Distributed Multi-Sensor Fusion with Feedback

The recursive formula of estimation error covariance of local sensor in distributed multi-sensor
fusion system with feedback [23] is shown as

df  \— d _ _
(Pi,£+1) '= (Pij;rl\k) 1+HiT,k+1R,;k1+1Hi,k+1 (18)
where
da df =T
P, £+1\k = ‘I’k+1,ka,fk‘I’k+1,k + Qk (19)

From Equation(18), we need to get the estimation error covariance of fusion center P ff before
calculating the observable degree of local sensor. According to [19], the result of fusion center
estimation error covariance P f]; is the same as in the fusion system without feedback. Thus,

af

the observable degree discriminant matrix of fusion center (D7 ;) f isequal to (D} ) 4!, shown as

M»
M=

d _ _ 1
(DT,k)ff = [q)k,lT (‘I’jTJHZjRi,lez‘,jd’j,l)‘I’k,ﬂ ! (20)

1i=1

j

Then, the observable degree discriminant matrix of ith local sensor is

d
(Dig) f*[d’ ZZ (@ \H;R; 'H;;®;,)®, | + H\R; 'H;;] ! 21
j=1i=
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3.4.3. Observable Degree Discriminant Matrix of Centralized Multi-Sensor Sequential Fusion

The centralized multi-sensor sequential fusion method only operates observation data filtering at
fusion center [24,25]. The process of estimation error covariance in sequential filtering is

PGy =Ppy 1, PP+ Qx (22)
s -1 -1 T ~1

( 15'3<+1) :(Pfil,k+1) +Hi,k+1Ri,k+1H1}k+1 (23)
Pj‘s/kﬂ :PCLS,kH (24)

The observable degree discriminant matrix of fusion center is
(D1)f =[Py )T = (P ) T+ H R, HL,k]”

=[(P§ks1) +ZH R;, 1H1k] !

=[@ 1 (Pryr) ' @pp 1+ZszR ;P (25)

-T
=[®;

2

M»
ngls

T p—1 —171-1
1 (®] H] R, 'H,; @), ]
i

Il
-

j
Although centralized multi-sensor sequential fusion does not have a local filter, the result in

fusion center is computed step by step with sequential input. Define (Dj . )¢* as the discriminant matrix
of fusion center at ith step during time k.

(D55 =[(P5) 1) !
i
—[(PC -1 + HT RilHlk -1
[( 0,k+1) Z Lk™M Lk ] (26)

L i
Z 3 (@[ HIRH; @)@+ ) HIGR; (Hy ™!
j=1i=1 1=1

3.5. Brief Summary

The observable degree analysis method for multi-sensor information fusion system is rarely
mentioned because the fusion method does not have the direct observation matrix and its observability
discriminant matrix for fusion center cannot be established. The traditional observable degree analysis
method is only analyzed and defined on observability, which fails when studying filtering accuracy.
Thus, it is hard to reveal that there is any promotion by information fusion between fusion center and
local filter before operating filtering. The observable degree of ODAEPM is defined on the main body
of estimation error covariance, which is used to measure the filtering accuracy, ignoring the effect of
process noise, making it possible to analyze the observable degree of fusion center in multi-sensor
information fusion system.

Following these considerations, in this section, we introduce the multi-sensor information fusion
problem, and list the structure of three main information fusion methods. By translating the form of
estimation error covariance, we are able to get the observable degree discriminant matrix for both
fusion center and local filter in each fusion method.
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4. The Relationship of Observable Degree among Information Fusion System

The ODAEPM makes a clear relation between filtering performance and observable degree.
To study how the fusion technology affects the target tracking performance, further research on the
relationship of observable degree between local filter and fusion center is needed as well as on the
observable degree among different fusion methods.

4.1. The Relationship of Observable Degree between Local Filter and Fusion Center

The distributed multi-sensor fusion system contains local filter and fusion center, and the
observable degree can characterize filtering performance. By studying the relationship of observable
degree between local filter and fusion center, how the information fusion affects the observation system
performance can be found.

For local filter and fusion center in distributed multi-sensor fusion system without feedback,
the observable degree discriminant matrix of ith local sensor (Dj )#" and fusion center (Dj , )i K)f are
shown in Equations (12) and (17). To find the relationship between them, a simple way is extracting
the term (Dik)‘i”” from (Di‘,k)?". In this thought, by employing the matrix inverse lemma, we rewrite

(Dik)‘fi” as

MN‘
M=

(D} =(@ ] Y- Y- (@] HI R TH, @)@, 1]

1

-
Il
-
Il

k k L
- Tyl p-1 T 11-1 27
=@, 7Y (@[, HI R, 'H; ;@)@ | + &, Y Y (@] H] R, 'H @), ] 27)

j=1 j=1i=1

1#i
=(D} )" — (D} )™

where
d )i L T p-1 )i 1
. -
(D} )% =(D5 )" @ {1( Y- @[ HR, H@;1) '+ @ 1 (D] )" @ {1710 1 (D] )" (g
j=11=1
1#i

while the terms (D]k )d” and <I>T HT R HZ ,j®j1 are positive semidefinite matrices, and, according to
the discrimination method of posmve semidefinite matrix [26], (Dl,k)ini should also be a positive
semidefinite matrix.

Following the rule of ODAEPM, the GOD of local sensor and fusion center are defined as:

1

dn

_ 29

Ui Trace(Dj )¢ @)
1

dn

an — - 30

i Tmce(Di"k)?" (30)

From Equation (28) and properties of positive semi-definite matrices, we can get the
following formula:

Trace(Dj){" =Trace[(D] )" — (D} )]

31

:Tmce(D{k)?” - Truce(Dl’k)”i"i G

Trace(Di‘/k)’i”i >0 (32)
Tmce(D{/k)?” gTruce(D;‘/k)?" (33)
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Thus, it is obvious that
0t =gl (34)

The LOD of jth state component of local sensor and fusion center is defined as

dn 1
S — 35
AU = g 0, 9
Ay, = — L 36
(17; )/ ( ;k),"jn}j (36)

where the subscript j of observable degree discriminant matrix means the jth diagonal element of the
observable degree discriminant matrix.
To discuss the LOD, we need to extract the diagonal elements by the following equation

j-1
aj=[0---01---0" (37)
Then,
[(D}09"]; =a] (D} 1) %"a (38)
(D} )" =] (D} )" (39)
(D} 0" = (D} )71 =] [(D] L:—(Dik)j’r”]wj (“0)
=u; (Dl,k)—i‘xf =0
(D7 )7 <[(DF"; (41)

Thus, we can get the same result of LOD between local sensor and fusion center as the GOD:

A = D) (42)

Furthermore, if the local sensor in the fusion system has the same observation matrix H; ; for each
time period, and the observation noise covariance matrix R;;is also the same, it means the distributed
multi-sensor fusion system consists of same kind of sensors. Under this condition, Equation (17) is
rewritten as

k L
(le d" :[‘I’ k1 2 Z ‘I’Tl 1H,-,]-<I>]-,1)<1>I;11 -
j=1i=1
_ _ 1 (43)
:L[<I>k,1TE(¢{1HZjRi,j1Hi,j¢j,l)<I>k,11] 1
j=1
=L(D:,)d"
1,k/i

which means the observation degree of fusion center in distributed multi-sensor fusion system without
feedback is the sum of observation degree of its local sensors.
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Next, we discuss the the relationship of observation degree between local filter and fusion
center in distributed multi-sensor fusion system with feedback. According to Equations (20) and (21),
we transform (D} k);f as Equation (27), making

m»
M=

d _ T 1 1
(D7) f = (@] (@ \H[;R; 'H;;@;1)®, ]

f j=11=1
TN & T 1 T (44)
=[@; [ ) Y (@[ H[ ;R 'Hj®;1)® | +H[R,, H,k+z H/ R H )] !
j=11=1
l;éz
d PN
=i, - (01,
where
af 4 1T R ) 411 ppr \f
(D)% =(D70); [ HR ¢ Hy) ™+ (D7 )77 ] 71 (D p); (45)
I=1

I#i
Following the same operation as Equations (29)-(43), we can also get the result
d
n ff > ’Yif (46)
d

At = a0, (47)
From the above proof, we come to the conclusion that, in distributed multi-sensor fusion system,
whether there is feedback or non-feedback in the fusion method, both LOD and GOD of fusion center
are greater than them getting the local filter. That means both in state components and system level,
the fusion center obtains better filter performance than local sensor. In addition, it proves that the

multi-sensor information fusion can improve the observation performance of the system from the
aspect of observable degree.

4.2. The Relationship of Observable Degree among Different Fusion Methods

After we get the relationship between fusion center and local filter of distributed multi-sensor
fusion system, we discuss the observable degree among different fusion methods.

According to Equations (17), (20) and (25), we can find the observable discrimination matrix in
different fusion methods are equal to each other. Thus, we conclude that,

f = Wff =17 (48)
A" = 80 = 8015, (49)

the LOD and GOD of fusion center in these fusion methods are the same. Then, we discuss the
observable degree of local filter in distributed multi-sensor fusion system with or without feedback
and the observable degree of different steps during sequential fusion.
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First, we compare the observable degree of local filter in distributed multi-sensor fusion system
with or without feedback. Doing the same as Equation (27), (Di‘,k)'jf is rewritten as

d
(05 ) =[@, ©] HI R 'H, ;®;1)@ ] + H[R; H; ]!

I Mr-'

=@, ]

k —1 L
1 ol HT.R1 ~17-1 50
E H; @)@ | + @ 2 Yo @ H|;R; 'H; j®;1)®; ] (50)

—11=
] 1#1

e

% d
=D} " - (i 0%,
where

-1 L

d d T T (T p-1 —1 —1 dngy—T1—1g—1 d
(D5 )%, =(Df )i, ZZq)j,lH,,le,j H;j®j1) " + @ (D)@ |7 @1 (D) (51
Z;l

—

Following the same operation as Equations (29)-(43), the conclusion is

rllf > de (52)
d
A = A, (53)
Secondly, compare the observable degree between local filter in distributed multi-sensor fusion
system with feedback and different steps during sequential fusion. Consider that the ranking of

sequential input of sequential fusion system is in ascending sort order of index of the sensor number.
Following the same operation as above,

i

1L
(D} )5 =[® ZZ @ HI R, 'H @)@ | + ) H[ R Hy !
j=11=1 =1
i 1 1 -1 (59
=(@, ] ) ) (®/{H] R 'H;;®;1)® | +H}R;, H,k+z H[;R;'H, )]~
j=11=1
d
=i —( 1) Car
where
. d il Af1-1 s A
(D1 % =(D1g); T H[;R, 'H )1+ (05 )1 D5 (55)
=1
Thus, the result is
d
0 = (56)
d
AGE); = ) (57)

The relationship of observable degree among the local filter in distributed multi-sensor fusion
system with or without feedback and different step during sequential fusion is concluded as follows

ni <l < (58)
A < A < A, (59)
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4.3. Brief Summary

According to [15], the observability definition of ODAEPM, the greater the observability, the better
the filtering performance lead us to the the following conclusions:

In two different distributed multi-sensor fusion systems, both GOD and LOD of the fusion
center are better than the local filters.That means both in state components and system level the
fusion center obtains better filter performance than local sensor. In addition, it proves that the
multi-sensor information fusion can improve the observation performance of the system from the
aspect of observable degree.

In two different distributed multi-sensor fusion systems, the feedback information from the
fusion center can improve the filtering performance of the local filter, but with or without feedback
information, the fusion solution at the fusion center is equivalent. That means both in state components
and system level the local filter of distributed multi-sensor fusion systems with feedback obtains better
filter performance than the local filter of distributed multi-sensor fusion systems without feedback.

From the perspective of observability, in centralized multi-sensor fusion systems, the fusion
solution at the fusion center is equivalent to the others. The filtering performance of the fusion center
is also improved at ith step during time k.This improvement is superior to the distributed multi-sensor
with feedback system for the improvement of local filter filtering performance.

5. Numerical Analysis

To validate the effectiveness of the mathematical proof of relationship of observable degree among
information fusion system, computer simulation was performed to demonstrate the target tracking
with three different observation sensors. The sensors used in this paper are only used to obtain the
speed and displacement of CV models, so we only use the velocity sensor and the displacement sensor.
The target motion is the typical two-dimensional linear discrete motion models as constant velocity
(CV) model.

The state transition matrix is given as:

o = o o

t 0
1 0
0 t
0 1

[

The observation matrix of three different sensors are:

1000 110 0 0100
Hl{o 01 0}’1{2{0 01 1]’H3{ }

The observation covariance matrix of them are:

01 0 /Rz_[o.z 0

Ry = Rr =
! 0 01 0 0272 0 03

03 0}

The subscripts of H and R correspond to same index sensor.

The simulation results are shown in Figures 5-9.

Furthermore, to make the relationship clearer, the observable degree analysis in the normalized
form, as y

!
=y (60)

where the numerator is the observable degree obtained by ODAEPM and the denominator is the sum
of all observable degrees participating in the comparison in the same figure.
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Figure 6. Observable degree comparison between local filter and fusion center in distributed
multi-sensor fusion system with feedback: (a) LOD of Sx; (b) LOD of Vx; (c) GOD.
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Figure 9. Observable degree comparison among different fusion methods for same index 3:(a) LOD of
Sx; (b) LOD of Vx; (c) GOD.

Figure 5a,b shows the LOD of target position Sx and velocity Vx for ODAEPM obtained in
distributed multi-sensor fusion system without feedback, both observable degree of three local
filters and fusion center are contained. The GODs of local filter and fusion center using distributed
multi-sensor fusion method without feedback are shown in Figure 5¢. Similar to Figure 5, Figure 6
shows the condition of LOD and GOD of local filter and fusion center of distributed multi-sensor
fusion system with feedback. In Figures 5 and 6, we can find that both LOD and GOD obtained from
fusion center are greater than those obtained from local filter, whether the fusion method returning
the fusion result to local filter as a feedback. It confirms that the information fusion can obtain better
performance than single sensor observation.

Figure 7 shows the observable degree comparison among different fusion methods for same
index 1, while the index 1 for two distributed multi-sensor fusion method means the observable
degree obtained from the first local sensor, and for centralized multi-sensor sequential fusion system
that means it is the first step of sequential fusion at this period, the fusion method only grabs the
observation data from the first local sensor. Similarly, Figures 8 and 9 show the observable degree
comparison among different fusion methods for same index 2 and 3, for centralized multi-sensor
sequential fusion system increased acquisition the information for the two other local sensors. For each
figure, both LOD and GOD are well compared. With the assumption that the sequence of sequential
fusion system input is the same as the sensor index, the simulation results in Figures 7-9 show that the
obtained observable degree in ascending order is the distributed multi-sensor fusion system without
feedback, the distributed multi-sensor fusion system with feedback, and the centralized multi-sensor
sequential fusion system. It provides the correctness of the derivation for relationship among different
fusion methods in this paper. The obtained observable degree will be the same when obtained from
distributed multi-sensor fusion system with feedback and centralized multi-sensor sequential fusion
system only under the index equal to 1.

Then, to prove the result shown in Equation (43), if the distributed multi-sensor fusion system
consists of the same kind of sensors, the observation degree of fusion center in distributed multi-sensor
fusion system without feedback is the sum of observation degree of its local sensors. We established
the multi-sensor fusion system without feedback with three sensors, the observation matrix and
observation noise covariance matrix of which are H; and R;. The simulation is shown in Table 1 and
Figure 10.
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Table 1. Observable degree of local filter and fusion center with condition that fusion system consists
of the same kind of sensors.

Sensorl Sensor2 Sensor3 Fusion Center

Sx 253.8 253.8 253.8 761.3
Vx 8832.5 8832.5 8832.5 26,497.5
system 246.3 246.3 246.3 738.8
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Figure 10. Observable degree of local filter and fusion center:(a) LOD of Sx; (b) LOD of Vx; (c) GOD.

In Table 1 and Figure 10, we can see the observable degree of fusion center is equal to the sum of
its local sensors.

Based on the simulation results presented in Figures 5-10 and Table 1, our proof of observable
degree relationship among multi-sensor fusion system is verified.

6. Conclusions

In this paper, observable degree analysis for multi sensor fusion system is addressed.
Three different multi-sensor fusion system methods were studied, and the observability of three
different fusion methods was calculated according to the definition of ODAEPM. It is also proved
mathematically that, in two different distributed multi-sensor fusion systems, both GOD and LOD of
their respective fusion centers are higher than their local filter, that is, the filtering performance is also
better, which also illustrates the advantages of multi-sensor fusion system. The local filter performance
of the distributed multi-sensor fusion system with feedback is better than without feedback. This shows
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that the feedback information from the fusion center can effectively improve the performance of the
local filter. To confirm the mathematical proof, we simulated three different kinds of fusion methods
operating on two-dimensional linear discrete motion constant velocity models and established three
different observation sensors. We can verify our mathematical conclusions based on the simulation.
It is clear from simulation that the feedback mechanism for distributed multi-sensor systems can
significantly improve the performance of local filter. Therefore, in a multi-sensor system, the feedback
mechanism should be introduced to the local nodes as much as possible, which can improve the
filtering performance of the local filter.
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Abstract: To deal with the problem of multitarget tracking with measurement origin uncertainty,
the paper presents a multitarget tracking algorithm based on Adaptive Network Graph Segmentation
(ANGS). The multitarget tracking is firstly formulated as an Integer Programming problem for finding
the maximum a posterior probability in a cost flow network. Then, a network structure is partitioned
using an Adaptive Spectral Clustering algorithm based on the Nystrom Method. In order to obtain
the global optimal solution, the parallel A* search algorithm is used to process each sub-network.
Moreover, the trajectory set is extracted by the Track Mosaic technique and Rauch-Tung-Striebel
(RTS) smoother. Finally, the simulation results achieved for different clutter intensity indicate that
the proposed algorithm has better tracking accuracy and robustness compared with the A* search
algorithm, the successive shortest-path (SSP) algorithm and the shortest path faster (SPFA) algorithm.

Keywords: network flow theory; multitarget tracking; spectral clustering; A* search algorithm;
RTS smoother; integer programming

1. Introduction

The purpose of multitarget tracking is to jointly estimate the number of targets and their state
of motion from sensor data [1]. During the past decade, it has developed in a variety of directions,
such as Air-Traffic Control [2], Marine Monitoring [3], Computer Vision [4], Autonomous Vehicle
and Robot [5], etc. At present, multitarget tracking has achieved substantial advances [6]. However,
the measurement origin uncertainty, for instance the unknown and time-varying number of targets,
clutters, jamming signals and so forth seriously deteriorates the performance of the multitarget
tracking system. Resolving the uncertainty of the measurement origin is a computationally expensive
task which relied on the prior information about the target motion. To find the mapping from each
measurement to its origin is often called measurement-to-track association or just data association [7,8].

Markov Chain Monte Carlo Data Association algorithm (MCMCDA) based on Bayesian
Inference [9] and the Probability Hypothesis Density filter (PHD) based on finite set statistics
(FISST) [10] have been proposed to cope with this problem of tracking multiple targets with
measurement uncertainty. The MCMCDA algorithm can be viewed as a deferred-logic method since
a track is decided based on the current and past measurements. It uses the Markov Chain Monte
Carlo sampling instead of enumerating over all possible associations. In a PHD filter, it can estimate
the target states by recursively computing the first-order moment of the multi-target state posterior
probability distribution, without using the complex data association techniques. However, it was not
designed to estimate the trajectories of targets. For this problem, Ba-Ngu Vo [11] proposed a newly
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labeled Random Finite Set (RFS) approach, known as the generalized labeled multi-Bernoulli (GLMB)
filter, it can output trajectories and has a better performance in harsh environments.

Bar-Shalom [12] proposed an multidimensional assignment algorithm for solving the data
association problem. In essence, the data association problem is converted to a combinatorial
optimization problem under certain linear constraints where the total distance /benefit of assigning
targets to measurements is minimized /maximized. There is a wide range of algorithms, such as
Greedy algorithm [13], Genetic algorithm [14] and Lagrange relaxation theory [15], are used to find
the sub-optimum solutions of the multidimensional assignment problem [16]. These approaches,
while effective, need to solve the Non-deterministic Polynomial Complete (NPC) with a large amount
of data. Goldberg [17] constructed an efficient min-cost flow framework. It has applied a scaling
push relabel method to find the optimal solution. Under this framework, Zhang [18] formulated the
multitarget data association problem as a maximum a posteriori (MAP) problem. It is mapped into the
cost flow network and finds the global optimum solution by depending on the min-cost flow algorithm.
An approach combining Dynamic Programming (DP) and Successive Shortest-Path algorithm (SSP)
is presented by using Hidden Markov Model (HMM) in [19]. The multitarget tracking problem is
formulated as an Integer Linear Programming (ILP) problem, and a greedy, successive shortest-path
algorithm is used to reduce the runtime costs. For k = 1, this algorithm can obtain the global optimal
solution. For k > 1, it only obtains the approximate solutions, where k is the unknown number of
targets. The Shortest Path Faster algorithm (SPFA) is used to solve the Integer Programming problem
of the min-cost flow network and quickly obtains the global optimal solution in [20]. The algorithm
improves the robustness and tracking accuracy. In [21], an A* based tracking association algorithm is
presented. The integer assumption is relaxed to the standard Linear Programming (LP) problem so
that the global optimal solution can be obtained by the A* search algorithm.

The above-mentioned approaches are mainly focused on the object tracking based on video
image. The available information of image targets are more than that of point targets. In addition,
less clutter leads to simple network structure so that the aforementioned algorithms have a good
tracking performance. For the problem of multiple point targets tracking in the presence of
measurement origin uncertainty, the network may become more complicated that result in an enormous
computational burden.

In this paper, a multitarget tracking algorithm based on adaptive network graph segmentation
is proposed to address the problem of tracking multitarget with measurement uncertainty. Parallel
search strategy is employed to solve the NP-complete problem. The network flow model of multitarget
tracking is divided into different sub-graphs. The optimal trajectory is extracted by using the A*
search algorithm. Our main contributions are: (1) a parallel network search framework is presented
to cope with the multitarget tracking in the presence of measurement origin uncertainty; and (2) we
proposed a adaptive spectral clustering algorithm based on the Nystrom Method to obtain the network
segmentation results for an unknown cluster number data set.

The rest of paper is organized as follows: the problem of multiple targets tracking is formulated as
a cost flow network, and transform it into an Integer Programming problem in Section 2. In Section 3,
the A* search algorithm is briefly reviewed. The original contribution of the paper is presented in
Section 4, where we describe the adaptive spectral clustering algorithm based on the Nystrom Method.
Simulation results are provided in Section 5. Conclusions and possible extensions appear in Section 6.

2. Problem Formulation

The multitarget data association problem is regarded as a cost flow network. Let Z = {z;} be a set
of measurements, z; = {¢;, ¢;, t;}, where ¢;, ¢; is the position in x and y-axes, respectively. t; is the
time step of the measurement z;. Ty = {zy,, z,, . . -z, } represents a trajectory. The set of trajectories is
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T ={Ty,Tz,..., T}, and the number of trajectories L is unknown. The key of the data association is
to compute the maximum a posteriori (MAP) estimate of 7 given the measurement set Z:
T* = argmaxP(T|Z)
T
= argmax P(Z|T)P(T) 1)
T

= arg;nax HP(z,-|T)P(T).

Assume that tracks are independent from each other. The cost flow network framework of
multitarget tracking is as follows:

P(T)=[] P(T), )
TeT
P(T) = Ps(zx,) Pi(zx, |2x,) - - - Pi(2zx, |2k, ) Pi(zk,), @)

where P(T) is modeled as a Markov Chain. Ps(zy,) is the initialization probability of a track starting at
2y, Pi(2y, ) is the termination probability of a track ending at z,, and P, (2 |z, ) is the transition density
from measurement z;, to measurement zj,. P(z;|T) denotes the likelihood function of measurement z;,
which represents a measurement being a true target or a false alarm. In this paper, all measurements
are regarded as targets; this means that P(z;|7) = 1, and the posterior probability of trajectory set T is
calculated as follows:
T* =argmax [ ] P(T). 4)
T  TeT
To take advantage of the concept of network flow in Network Optimization [22], the indictor
variable f;; is defined as the directed flow variable that from measurement z; to measurement z;.
fs,i and f; ; represent the starting flow variable and terminated flow variable, respectively. Depending
on the flow conversation method [22], for all nodes z;, the sum of flows arriving at node z; is equal to
the sum of outgoing flows from node z;. For any track Ty, it is satisfies the following equation:

fsi+ Zf;z =Y fij+fir ®)
j

i

Moreover, the cost flow network must guarantee that only one node is represented by a target
in a moment. Let the upper bound of the sum of outgoing flows from node z; is 1. For any node,
the constraint is

vziz Y fiy <1 ©)

Taking into account that the target may appear or disappear from any location in the cost flow
network, the source and sink node are introduced in [18], which is connected to each node, respectively.
We transform the Network Optimization problem of Equation (4) into the IP problem, and the logarithm
of the objective function can be rewritten as

T*=argmin Y —logP(T)

T TeT
= arg min Z (Cs,ifs,i + Zci,jfi,]'""cj,tf]',t) @)
T  TeT i

ij

= arg;:nin ch,ifs,i+ Zc,-,]-f,-,jJr ch,tf]',i’
i j

where c; ; is the cost of the flow from the source node to measurement z;, ¢; ; is the cost of the flow from
measurement z; to measurement z;, and c;,; is the cost of the flow from measurement z; to the sink
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node. Figure 1 shows an example of the cost flow network. The IP problem of multitarget tracking
with measurement uncertainty can be described as

min Y cqifsit Y Ciifiit Y Ciifi (8)
i i j

s.t. VZI‘,Z]', Zfi,j <1 )
VZ,‘,Z]‘, fl,] 2 0

The cost can be defined as follows:

csi = —log Ps(z;),

= — log P[(Z]'|Zi), (10)

Cj,t = — 10g Pf(Z]').

o
0
|

Enter/exit edges Association edges

Figure 1. An example of cost flow model with three time steps.

For the IP problem of multitarget tracking, the traditional algorithms have a relatively higher
computational cost due to the large number of network nodes. Hence, a parallel processing technology
based on the A* search algorithm is presented to find the optimal solution.

3. Description of the A* Search Algorithm

The A* search algorithm is a heuristic graph search method which guides the search process by
using the characteristic information of the problem. For the min-cost flow problem, the A* algorithm
searches from the origin node, calculates and estimates the cost of each extended node, chooses the
extended node that has a minimum cost and stops it when the algorithm reaches the destination node.
Assuming that an evaluation function f*(x) is designed to estimate the minimum cost from origin
node s, through node x to destination node s;. The estimated minimum cost is calculated as follows:

fr(x) =g (x) +h*(x), 1n

where ¢*(x) is the cost from origin node s, to the node x, h*(x) is the lower bound on the minimum cost
from node x to destination node s;, and %(x) is the actual value from the node x to destination node
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s4, h*(x) < h(x). In order to ensure the optimality of the algorithm, Admissibility and Consistency
conditions must be satisfied [23]. Admissibility condition: f*(x) never overestimates the true cost
of a solution along the current path through. Consistency condition: A heuristic function h(x) is
consistent if, for every node x and every successor x’ of x, the estimated cost of reaching the goal from
x is no greater than that of the step cost of getting to x’ form x plus the estimated cost of reaching the

goal from x’
I (x) +e(x, x") < h*(x). (12)

In the implementation of the A* search algorithm, two lists need to be built, named Open list
and Close list. Open list is the set of nodes that have been calculated, and that are candidates for the
selection of the next node. Close list is the set of nodes that have been selected, and that are not in
Open list. In the initial stage, Open list contains a source node and Close list is empty. During the
iterative process, the A* search algorithm calculates the evaluation function of each node in Open
list chooses the node with the minimum cost and judges whether it is the termination node. If so,
the algorithm is done. Otherwise, it extends all adjacent nodes and calculates the cost function of each
node. If the solution exists, the A* search algorithm can guarantee obtaining the optimal solution [24].

The A* search algorithm can be expressed as follows: here, the Open list and Close list are denoted
as O and C. E is the set of edges:

Step 1 Initialization:
Set x; = x5, f*(x;) =0; f*(xj) = oo, g*(x]») =00, Vx; # x;;0 = {x;},C=0.
Step 2 Node Selection:
Choose x; € Argminy;cof*(x;), C = CU{x;}, O = O\{x;}.
Step 3 Stop Rule:
If x; = x4, then stop. otherwise, continue.
Step 4 Update f*(x;) and g*(x;):
For each x; € E(x;) : If g*(x;) +e(x;, x;) + 1" (xj) < f*(x;), then g*(x;) = g*(x;) + e(xi, x});
fH(xj) = g5 (xi) +e(xi, xj) + h*(x)).
If x; ¢ O,0 = OU{x;}. Go back to Step 2.

4. Multitarget Tracking Algorithm Based on Adaptive Network Graph Segmentation

Under the multitarget tracking environment, the A* search algorithm have two obvious defects
that long running time and large storage space. To solve the problem, an adaptive spectral clustering
algorithm is presented to segment the cost flow network, and the A* search algorithm is used to find
the optimal track of segmented sub-graph. To take advantage of track mosaic technology, the optimal
track of each sub-graph is combined, and the combined track is smoothed by the Rauch-Tung—Striebel
smoother. The flow chart of the proposed algorithm is depicted in Figure 2.
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Measurements

——
_—

Figure 2. The flow chart of multitarget tracking algorithm based on adaptive network graph segmentation.

4.1. Adaptive Spectral Clustering

The segmentation problem of graph structure represented by the dissimilarity degree between
nodes is the combinatorial optimization problem, which is NP-hard. The general solution is to consider
the continuous relaxation form for this problem. Spectral clustering is an unsupervised learning
method based on graph theory [25] for arbitrary image shapes. It uses the eigenvalue decomposition
of graph matrix to build a spectral mapping space of the original data set, and the new space is
partitioned by the K-means algorithm.

Let G1(V,E, W) be an undirected graph that transforms from the directed graph Gy(Vy, Ep) with
vertex set V.= (v1,02,...,0y) and edge set E = (eif)i,j=1,2,.»»,m’ We assume that the edge-weighted

adjacency matrix of undirected graph W = (wy;), . , which is also called affinity matrix,

i,j=1,2,..,m
is nonnegative, w;; = wj; > 0. If w;; = 0 that means the node v; and v; are not connected. Here,
the weight of two nodes wj; is the cost value c;; in the directed graph model Go(Vo, Ep). The sets
¥1....¥ are the subsets of the graph. For sets ¥1... ¥y, Y1U¥2..UYy = Vand ¥;NY;=09,i # |.

Let cut(¥1, Y2, ..., ¥x) be the sum of the cuts between sets ¥1, ¥y, ..., ¥x:

k
Cut(‘Yl,‘Pz, N ,‘Yk) = Z cut(‘l’i,‘?i), (13)
i=1

where ¥; denotes the complement V\¥;. The purpose of the spectral clustering is to find the sets
Y1, ¥,..., ¥ such that MNcut is minimized. The objective function is given as follows:

n
MNecut = Z ‘Y“‘Z})
u,o

(14)

ue‘l’ ey

In [26], eigenvectors are clustered in the subspace that is generated by the first k eigenvectors of
normalized Laplacian matrix. The degree matrix of the graph D and the normalized Laplacian matrix
Lsym are defined as

Dj; = Y wij,
D= j (15)
D;j=0 i#]j,
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Lyym =1-D /2WD"1/2, (16)

Unfortunately, W grows as the square of the number of elements in the grouping problem, and
it quickly becomes infeasible to fit W in memory. Hence, an adaptive spectral clustering based on the
Nystréom Method is proposed to reduce the complexity of the time and space. The Nystrém Method is
a technique for finding numerical approximations to eigenfunction problems.

Assuming that randomly sample n points from vertex set V and the number of the remaining
points is N — 1. Now, partition the affinity matrix W as

A B

W =
BT C

/ 17)

where A € R"*" represents the sub-block of weights among the random samples, B € R(N-7)x7

contains the weights between the sample points and the rest of points, and C € RIN="*(N=1) denotes
the weights matrix between all of the remaining points. Let U represent the approximate eigenvectors
of W:

_ U
U= . 18
BTUA! (18)
The approximation of W, which we denote W, can be written as
W =U0AUT
U
= A [UT A—1UTB]
BTUA™! (19)
A B
~|BT BTA7'B|°

From Equations (17) and (19), C is approximated by BTA~!B. Therefore, calculating the affinity
matrix between remaining points is avoided. It is noteworthy that the columns of U are not
orthogonal. We need to orthogonalize U. If A is a positive definite matrix, A~/? represents the
symmetric positive definite square root of A. Let Q = A + A~/2BBTA1/2, and diagonalize Q as
Q = U,AUT. If the matrix U, is defined as

Al - -
U, = {BT} AU AT, (20)

then the affinity matrix W is diagonalized by U, and As. Without calculating BTA™!B, a simple
approach is proposed to calculated the row sums of W:

_|ar b,
d= {bc BTAle’ @)

where a,, b, € RN~ denote the rows sum of A and B. b, € R” denotes column sum of B.
The normalized A and B can be obtained by d. The elements of the normalized A and B are given by

A,,
Aj=——L—i,j=1,...n, (22)
dd;
By— 20 i1 i=1,...,N— 23
j=——i=1...nj=1.., . (23)
didjn
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The number of clusters is generally determined by human experience and background knowledge.
Next, the relationship between the spectrum of the weight matrix and the number of clusters can be
obtained by analyzing the affinity matrix of graph.

If v; and v; belong to the same class, then w;; = 1, otherwise w;; = 0. According to perturbation
analysis of spectral clustering [27], a permutation matrix P always exists to make elements of any
node set V in the sequence belongs to a class after the PV transformation. The affinity matrix W is
a block diagonal matrix that consists of 7 all-1 matrices. Thus, the elements of Laplacian matrix
I:sym is divided into k matrix blocks. For each matrix block I:,,,., A =mn;, k=1,2,...n; — 1, where Aj
is the eigenvalues of matrix block ]:n,, and Ay, = 0. In light of Matrix Theory [28], the union of the
eigenvalues of real symmetric matrix equals that of the block diagonal matrix that consists of these real
symmetric matrices. Therefore, the eigenvalues of Laplacian matrix is the union of the eigenvalues of k
matrices. The eigenvalues of Laplacian matrix consists of (n — k)(n; — 1) nonzero eigenvalues and k
zero eigenvalues. The number of clusters is the number of zero eigenvalues of Laplacian matrix Ly

4.2. k-Short Paths Algorithm

In the cost flow network of multitarget tracking, there may be multiple paths that are directed
and paths are edge- and node- disjoint, which means that any two paths cannot share the same edge
and node, and a path visits a node in the sub-graph at most once. Here, a path represents a possible
track. We reformulated the multitarget tracking problem as an edge- and node- disjoint k-shortest
paths problem on a directed acyclic graph. In order to obtain the k-shortest paths, the segmented graph
is transformed into a undirected graph firstly, and then the A* search algorithm is adopted to find the
single shortest path. If the maximum iteration count is not reached, remove nodes except source node
and sink node on the single shortest path, and search for the next path until reaching the maximum
iteration count.

4.3. Track Mosaic

To segment an undirected graph in the multitarget tracking environment using the adaptive
spectral clustering algorithm, it may arise over segmentation. For example, a trajectory may be divided
into several segments. In order to obtain the integral track, the mosaic technique is employed to deal
with these segmented trajectories. Let T; and T; are two trajectories of different sub-graphs. x;, and x;,
are the initial position, and x;; and x;4 are the terminal position, respectively. The Euclidean distance
dp is used to decide whether to mosaic two trajectories. If dp < 7, T; and T; are mosaicked, where 7 is
the mosaic threshold.

4.4. Rauch-Tung-Striebel Smoother

A Rauch-Tung-Striebel (RTS) smoother [29] is used to smooth the extracted tracks. The RTS
smoother consists of two parts. The first part is the Kalman filter, which calculates the state of
target at each time and estimates the corresponding covariance matrix. The second part is backward
recursion [30]. In this process, target state and the covariance matrix are taken as inputs to obtain the
smoother output.

4.5. Time Complexity

The proposed algorithm is parallel processing in that each sub-graph uses the A* search algorithm
to obtain the shortest path. The time complexity of the proposed algorithm is mainly composed of two
parts, which are the time complexity of the adaptive spectral clustering algorithm and the worst time
complexity of searching sub-graph. The time complexity of the adaptive spectral clustering algorithm
isO(n x (N —n)) +0(n®) + O(KNI). O(n x (N —n)), O(n®) and O(KNTI) are the time complexity of
calculating degree d, orthogonal eigenvectors U, and K-means clustering algorithm, respectively. N is
the number of nodes in the undirected graph,  is the sample points, K is the number of trajectories
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and [ is the iteration number of K-means algorithm. The worst time complexity of searching sub-graph
is O(12,,y), and that 71y is less than N. The proposed algorithm is adopted to calculate the k-shortest
pathin O(n x (N —n)) +O(n®) + O(KNI). The A* search algorithm, SPFA and SSP are recognized as
three effective methods to solve the k-shortest path problem. The time complexity of these algorithms
are O(N?), O(NE) and O(KN?), respectively. E is the number of edge in the undirected graph. The
complexity of these algorithms are primarily related to the value of K and N. For multitarget tracking
systems, that is, N is large, and the time complexity of the proposed algorithm is far less than that of
the algorithms mentioned above.

5. Experimental Results

In this section, the proposed algorithm was tested in different tracking scenarios. The optimal
subpattern assignment (OSPA) [31] metric is used for performance assessment. The experiments have
been performed on a computer with an Intel G840 2.8 GHz CPU and 4 GB of memory.

5.1. Clustering Quality Evaluation

To evaluate the clustering quality of the adaptive spectral clustering algorithm, the external quality
measure (F-score) [32] and (MCR) [33] are used. F-score is used in spam detection for documentation
as an overall assessment performance that combines the precision and recall ideas from information
retrieval. F-score is defined as follows:

K 2P¢(i,j)R¢ (i, ]
F-score = Z (N; x M
= Pr(i, ) + Ry (i, )
where Pr(i,j) = Njj/ N; represents the precision of the cluster j for the given class i. R¢(i,j) = N;;/N;
represents the recall of the cluster j for the given class i. N; is the number of the members of class i.
N;jj is the number of numbers of class i in cluster j. The MCR is given by

N, (24)

MCR = &, (25)
G
where Cy; is the number of misclassified targets. C; is the total number of targets.

Figure 3 displays the comparison of classification results with different sampling rates. Since the
sampling rate is 1%, clustering result is seriously affected. When the sampling rate exceeds 1%, it is
clear that the classification results outperform that shown in Figure 3b. The clustering performance
versus sampling rate are shown in Figure 4. It can be noted that F-score increases with increasing
sample rate. Once the sample rate exceeds 30%, the data set can be accurately segmented. This is
because the similarity matrix between the sampling points can be approximated by that of all points.
In Figure 4b, the sampling rate is equal to 1%, MCR is 0.18. The MCR of other sampling rate is equal to
0. Based on the two evaluation criteria above, we choose the sampling rate as 10% in this paper.
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Figure 3. Comparison of classification results. (a) original data set; (b) sampling rate is 1%; (c) sampling
rate is 10%; (d) sampling rate is 50%; (e) sampling rate is 70%; (f) sampling rate is 100%.
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(b) MCR versus sampling rate.

5.2. Performance Analysis

In this subsection, we consider two scenarios for multitarget tracking. There are two types of
dense clutter areas. Inside Type I dense clutter area, clutter points are uniformly distributed in the
surveillance region. While Type II dense clutter area is elliptical and the position of its clutter points
follows a 2D Gaussian distribution, whose mean is target position at k time and the standard deviations
are determined by the major axes of the ellipse. The measurements are obtained from radar which
located at [0, 0] m. The measurement model is described as

Sample rate/%

i_
z, =

(b)

Clustering performance versus sampling rate.

H! + i,
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where @} = [¢}, ¢}, ¢}, ¢}]  is the state variable. The measurement noise v} is zero-mean Gaussian
random vector with covariance matrix R = diag([02,4?]), and § = 10 m in the scenarios 1 and 2.
The target motion can be modeled by combination of constant turn rate (CT) motion and constant

velocity (CV) motion [34]. The dynamistic model of the target is described as follows:
P, = Fi®}_; +wj, @7)

where Fi is the state transition matrix of the target i at the time t. Under the assumption of CV motion,
it is defined as follows:

o O
—H o o

F, = , (28)

o O =~
O = O O

o

1

where T denotes the sampling time. In CT motion, it is defined as

sin(wiT) 0 cos(wiT) — 1

1 - :
w;‘ wj ‘
i 0  cos(wiT) 0 —sin(wiT)
i te Ot
Fi = 0 1- cos(w;T) 1 sin(cqiT) ’ 29)
w;‘ “’i,
0 sin(w;T) 0 cos(wiT)

where w! denotes the turn rate. The process noise w! is zero-mean Gaussian random vector with
covariance matrix
T3/3 T?/2 0 0
T2/2 T 0 0
0 0 T3/3 T?/2
0 0o T2 T

Q= (30)

Scenario 1:

A multiple non-crossing tracking scenario is considered in the surveillance region
[0, 9000] m x [—2000, 5000] m. There are four manoeuvring targets whose initial position are
[8000, 2500] m, [500, 3000] m, [2500, 2000] m and [2500, —1500] m, respectively. Their initial velocities
are [—80, —80] m/s, [50, —130] m/s, [0, 280] m/s and [150, 0] m/s, respectively. The initial and
terminal time are [1, 1, 3, 1] s and [27, 30, 30, 28] s, respectively. The mosaic threshold T = 10.

In this case, the Type I clutter intensity is 7 (zc) = ’;’/—If = ﬁ = 0.79 x 1077, where my, is the
expected number of clutter measurements in this Type I dense clutter area, and V; is the surveillance
region. For the Type II dense clutter, the expected number of clutter measurements in this Type II dense
clutter area is 10, and Vj; = 4.54 x 105 m? is the ‘volume’ of the Type II dense clutter surveillance region.
Therefore, the Type II clutter intensity is x5 (z.) = "‘1/1111” = m = 1.33 x 107°. We perform a total
of 100 Monte-Carlo runs to obtain the average optimal subpattern assignment (OSPA) distance [35]
and average of the estimated number of targets.

Figure 5 shows the average OSPA distances of the proposed algorithm, the A* search algorithm,
SSP and SPFA. It is observed that the average OSPA distance of the proposed algorithm is
approximately equal to that of the A* search algorithm, which are better than that of SPFA and
SSP. Figure 6 shows an average of the estimated number of targets of the proposed algorithm, the A*
search algorithm, SSP and SPFA. It can be seen that the proposed algorithm presents an considerable
performance in the estimation of the target numbers. To make a comparison, set the Type II clutter
intensity x5 (z.) = 1.33 x 107, 6.33 x 107%, 19.89 x 107°, 26.53 x 107, 39.79 x 109, respectively.
The average OSPA distances of the proposed algorithm, the A* search algorithm, SSP and SPFA versus
the Type II clutter intensity are shown in Figure 7.
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Figure 5. The average OSPA distance in scenario 1, with c =10 and p = 2.
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Figure 7. The average OSPA distances versus the Type II clutter intensity in scenario 1.
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The average OSPA distances of the proposed algorithm have a relatively small difference than that
of other algorithms at x(z:) = 1.33 x 107°. The average OSPA distance of other algorithms increase
rapidly with increasing the clutter intensity. The average OSPA distance of the proposed algorithm
is basically no significant change, still at a lower value. When x(z:) = 39.79 x 107, it is obvious
that the average OSPA distances of SSP and SPFA is about 40 and 50 times of that of the proposed
algorithm, respectively.

Scenario 2:

An unknown and time-varying multiple crossing targets scenario is considered in the surveillance
region [0, 10,000] m x [—4000, 5000] m. There are four manoeuvring targets whose initial positions are
[7000, 4500] m, [3500, 4000] m, [1000, —500] m and [7000, —2500] m, respectively. Their initial velocities
are [0, —150] m/s, [200, —20] m/s, [150, 300] m/s and [150, 300] m/s, respectively. The initial and
terminal time are [1, 5, 1, 7] s and [27, 30, 30, 27] s, respectively. The mosaic threshold T = 10.

Trajectories intersect at [7478, 3618] m and [4443, —359] m. The average OSPA distances and
the average of the estimated numbers of targets are shown in Figures 8 and 9. The average OSPA
distances of the proposed algorithm, the A* search algorithm, SSP and SPFA are given in Figure 10.
The Type I clutter intensity is x(zc) = ﬁ = 0.56 x 1077, and the Type II clutter intensity are
x2(z¢) = 1.33 x 107, 6.33 x 107, 19.89 x 107, gaihao26.53 x 107°,39.79 x 10~°, respectively.
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Figure 8. The average OSPA distance in scenario 2, with c =10 and p = 2.
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Figure 9. The average of the estimated numbers of targets in scenario 2.
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Figure 10. The average OSPA distances versus the Type II clutter intensity in scenario 2.

As seen from Figure 8, the SSP and SPFA have a larger average OSPA distances. In Figure 9, it is
apparent that the average target number estimation of the proposed algorithm is exactly the same as
the number of the true targets. In Figure 10, as expected, there is an overall increase of OSPA distances
with with increasing the clutter intensity. The average OSPA distance of the proposed algorithm is at
a lower value. When x(z:) = 39.79 x 107, the average OSPA distances of SSP and SPFA is about 45
and 70 times of that of the proposed algorithm, respectively.

5.3. Run Time

The average running time of different Type II clutter intensity is shown in Figure 11. It clear that
the running time of the A* search algorithm, SSP, and SPFA increase exponentially. The running time
of the proposed algorithm is growing slowly. When #3(z¢) = 2.222 x 1077, the running time of the A*
search algorithm is about 14 times that of the proposed algorithm.
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Figure 11. The comparison of average running time.
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6. Conclusions

In this paper, we have presented a novel data association framework for multitarget tracking with
measurement uncertainty that estimates unknown number and states of targets using the continuous
multi-frame data. The multitarget tracking problem was formulated as network flow optimization
problem for finding k-shortest paths, and an adaptive spectral clustering algorithm was used to
segment the network structure. The optimal solution of each sub-graph can be obtained by the A*
search algorithm. Experiment results indicate that the proposed algorithm is helpful in improving the
accuracy of track extraction and can reduce the computational complexity. Future work will focus on
tracking multitargets with low detection probability.
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Abstract: This paper presents a linear Kalman filter for yaw estimation of land vehicles using
magnetic angular rate and gravity (MARG) sensors. A gyroscope measurement update depending
on the vehicle status and constraining yaw estimation is introduced. To determine the vehicle status,
the correlations between outputs from different sensors are analyzed based on the vehicle kinematic
model and Coriolis theorem, and a vehicle status marker is constructed. In addition, a two-step
measurement update method is designed. The method treats the magnetometer measurement update
separately after the other updates and eliminates its impact on attitude estimation. The performances
of the proposed algorithm are tested in experiments and the results show that: the introduced
measurement update is an effective supplement to the magnetometer measurement update in
magnetically disturbed environments; the two-step measurement update method makes attitude
estimation immune to errors induced by magnetometer measurement update, and the proposed
algorithm provides more reliable yaw estimation for land vehicles than the conventional algorithm.

Keywords: attitude estimation; Kalman filter; land vehicle; magnetic angular rate and gravity
(MARG) sensor; quaternion; yaw estimation

1. Introduction

As a set of Euler angles, the yaw, pitch, and roll represent the orientation of a body frame with respect
to a reference frame. The pitch and roll are also referred to as attitude. Yaw and attitude estimation are
widely used in vehicular technologies including driver assistance [1-3], vehicle safety [4,5], etc. In recent
years, magnetic angular rate and gravity (MARG) sensors [6] are widely used in orientation estimation.
A MARG sensor consists of a triaxis magnetometer, a triaxis gyroscope, and a triaxis accelerometer.
Reasonable installation and calibration make it acceptable to assume that the sensor frames are aligned
with the body frame. Hence, a MARG sensor can measure the geomagnetic field, angular rate of the body
frame, and the gravity resolved in the body frame in undisturbed environments.

In order to obtain an orientation estimation of the body frame, we can integrate the gyroscope
output based on an initial value, but the result will drift away with time because of gyroscope
measurement errors [7]. Alternatively, we can solve the Wahba problem [8] using magnetometer and
accelerometer outputs, but the sensor outputs are apt to be interfered by motion accelerations and
magnetic disturbances [9,10]. Therefore, to make the most of the information from MARG sensors and
obtain robust orientation estimation, many fusion algorithms have been studied. These algorithms
can be classified into two categories: one is based on complementary filters, which realize the
fusion in frequency domain [11-13], and the other is based on Kalman filters, which employ a
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stochastic approach [14-16]. Kalman filter based algorithms consist of two basic processing, i.e., time
propagation and measurement update. In time propagation, the gyroscope output is used to predict
the orientation and the result is called a priori estimation; in measurement update, the magnetometer
and accelerometer outputs are used to correct the a priori estimation and the result is called a
posteriori estimation.

This paper studies on the yaw estimation of land vehicles using MARG sensors and Kalman filter.
Our work is based on the orientation estimation because the yaw can be extracted from orientation
estimation; at the same time, we focus on special problems in yaw estimation.

Many algorithms of orientation estimation have been studied. They are different in terms of the
state vector, filter structure, etc., but they are the same at one point, i.e., the magnetometer output
is used to correct the yaw estimation. In fact, the correction of yaw estimation is implemented only
by magnetometer measurement update because the accelerometer output only provides attitude
information. Hence, one problem in yaw estimation is that it is vulnerable to magnetic disturbances.
Magnetic disturbances include hard iron effects, soft iron effects, and environmental magnetic
disturbances [17]. The hard and soft iron effects can be compensated through magnetometer calibration,
but the environmental magnetic disturbances cannot be effectively compensated because of their
nondeterminacy [18-20]. In the following, the “magnetic disturbances” refers specifically to the
environmental magnetic disturbances.

Methods to handle magnetic disturbances have been proposed. A measurement vector selection
scheme based on norm comparison was designed in [7]. Costanzi et al. [21] scaled down the gain
associated with the magnetometer output when two particular angular constraints are violated.
Wu et al. [22] did not use the magnetometer output if its norm was too big or too small. Tong et al. [23]
developed a hidden Markov Model to identify the measurement disturbances and then adjust the
noise covariance adaptively. Feng et al. [24] proposed a two-step correction scheme, in which the
magnetometer output is used to correct the estimated direction of the magnetic field, but if the
difference between the norm of the sensor output and the reference value is greater than a threshold,
the correction will not be executed. In fact, the above methods apply a same strategy, i.e., detecting
magnetic disturbances according to some feature, e.g., the norm, of the measured magnetic field,
and reducing the measurement update weight in real time when disturbances happen. The drawback
of this strategy is that the magnetometer measurement update cannot provide effective and timely
correction for the yaw estimation if magnetic disturbances last for a long time. In addition, Sabatini [25]
proposed an extended Kalman Filter, which compensated magnetic disturbances by including them in
the state vector. The filter models magnetic disturbances by a first-order Gauss-Markov vector random
process with independent components, and assume the motion acceleration is approximately zero.
In fact, the actual magnetic disturbances can hardly be modelled effectively, and the assumption about
the motion acceleration is not suitable for land vehicles.

Another problem in yaw estimation is its impact on attitude estimation. In some fusion algorithms,
the magnetometer output is also used to correct the attitude estimation, and thus induce estimation
errors caused by magnetic disturbances. To address this problem, some algorithms restrict the use
of the magnetometer output to yaw estimation. In [9,10], orientation quaternion is obtained through
multiplication of a series of decoupled quaternion factors, and the result can be used as the measurement
for a Kalman filter with a two-layer structure [9]. Suh [26] proposed a two-step measurement update for
an indirect Kalman filter, where the magnetometer measurement update only affected the yaw estimation.
Afterwards, Suh et al. [27] proposed a new measurement equation for the indirect Kalman filter, which can
greatly reduce the impact of the magnetometer measurement update on attitude estimation and is easier to
implement than the two-step measurement update algorithm.

Obviously, both of the mentioned problems are due to magnetic disturbances. This paper aims to
enhance the ability of the yaw estimation to deal with magnetic disturbances. One basic idea of this
paper is that use not only the information from the sensors, but also the characters of vehicles motion
to improve yaw estimation. We think motion characters can provide some independent information,
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which can be used as supplement to the sensors information. We note that the yaw of a vehicle running
along a straight road remains basically unchanged, and this character can be utilized to improve the
yaw estimation as a supplement to the magnetometer measurement update. To achieve this, it should
be known whether a vehicle is running straight. A straightforward way to determine the vehicle status
is comparing the gyroscope output against some preset parameters, but the gyroscope output suffers
from various measurement errors and vehicle bumps. Considering the turning motion cause changes
of MARG outputs, we can determine the vehicle status by analyzing the correlation between outputs
from different sensors. In addition, we can reform the measurement update process of a direct Kalman
filter using the condition proved in [26] and thus make the attitude estimation immune to magnetic
disturbances. In fact, more accurate attitude estimation is also helpful to improve the yaw estimation
because they are coupled in the time propagation. Motivated by above discussion, we propose an
improved yaw estimation algorithm, and the main contributions of this paper are as follows:

(1) A new measurement update robust to magnetic disturbances is introduced, and its weight can
be adjusted according to the vehicle status. The correlation coefficients between outputs from a
MARG sensor are analyzed based on the vehicle kinematic model and Coriolis theorem, and a
vehicle status marker is constructed.

(2)  Anew two-step measurement update method is designed. The method implements measurement
updates in two successive steps, and make a special processing of the magnetometer measurement
update to eliminate its impact on attitude estimation.

In this paper, we construct a yaw estimation algorithm using a typical linear Kalman filter
to implement basic quaternion estimation and applying the conventional strategy of reducing the
measurement weight to deal with magnetic disturbances. This algorithm is referred to as conventional
algorithm. Then, the conventional algorithm is improved with the new measurement update and the
new two-step measurement update method. Finally, the performances of the improved algorithm are
evaluated through comparing its results against that of the conventional algorithm in experiments.
The rest of this paper is organized as follows: Section 2 describes a conventional yaw estimation
algorithm. Section 3 details the improved algorithm. Section 4 provides the experiment results and
discussion. Finally, the work is concluded in Section 5.

2. Conventional Algorithm

2.1. Preliminaries

Because of not suffering from the gimbal lock, low dimension, and offering a linear formulation of
the orientation dynamics [9], quaternion is widely used for orientation representation. Any orientation
of a body frame with respect to a reference frame can be represented by a unit quaternion q defined as:

q:[qo q1 92 qg,r:[cosg exsing e, sin% esinﬂr 1)
2 txSInp €ySiny  €:SMj

where g is the scalar part; { a1 92 g3 } ! is the vector part; « is the rotation angle; [ ex ey e ] !
is the unit vector that represents the rotation axis. In quaternion estimation algorithms, the gyroscope
output is used to depict the quaternion dynamics; therefore, the gyroscope bias is an important factor
that affects the estimation accuracy.

In this section, we describe a Kalman filter-based yaw estimation algorithm with the unit
quaternion and gyroscope bias as states. This algorithm, referred to as conventional algorithm,
provides the basement and benchmark for the improved algorithm presented in the next section.
The conventional algorithm is based on a typical linear Kalman filter presented in [16]. In addition,
adaptive measurement weights are applied to deal with measurement disturbances, and the yaw is
computed with the quaternion estimation.
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The detailed derivations of the system model are presented in [16]; for conciseness, we only list
the results and give necessary explanations in this section. Note that we use a different quaternion
definition from that in [16] (The scalar part is the first component of a quaternion, whereas in [16],
the scalar part is the last component); therefore, we rewrite the concerned equations accordingly, which
will not affect the performances of the algorithm.

In this paper, the reference frame is the East, North, Up frame; the body frame is the Right,
Forward, Above frame; the sensor frame is assumed aligned with the body frame; the ZXY sequence
of Euler angles is chosen, and the yaw, pitch, and roll are respectively z-axis rotation angle, x-axis
rotation angle, and y-axis rotation angle. For a clear writing, we define some notations that will be
used throughout this paper as follows.

Vectors: x is the state vector; b is the gyroscope bias; m, and g, are respectively the geomagnetic
filed and the gravity resolved in the reference frame; m, w, and a are respectively the output of
magnetometer, gyroscope, and accelerometer.

Matrices: C? is the rotation matrix from the reference frame to the body frame; 0 and I are
respectively null matrices and identity matrices, and their subscripts indicate dimensions, for example,
the dimensions of 034, 03, and 14 are respectively 3 x 4,3 x 3, and 4 X 4; [vX] is the skew-symmetric
matrix of vector v.

Subscripts: x, y, and z denote respectively the x-axis, y-axis, and z-axis component of a vector; k
denotes the time step.

2.2. System Model
The state vector, composed of the unit quaternion and gyroscope bias, is defined as:
T
x=[ql bT] @)

Based on the well-known quaternion dynamics model and state augmentation, the process
equation is written as:

X1 = Fpexg + Tienye (3a)
where:
P(0r) —HE
Y, = 3b
g 034 I3 (5b)
11 0 —of
P (0)) = exp (2 |: 0 —[Bkkx] }) (€]
0 = kat (Sd)
T
- 9y k
Ep= ’ (3e)
[ [Qo e %] + Gokls }
I, — —3Bc —3Er 043 3)
ko 03 03 I

In (3), ¥y is the transition matrix; I'y is the process noise input matrix; At is the sample interval;
qo is the vector part of the quaternion state, and ny is the gyroscope noise with covariance matrix
diag (0?2, 02,02).

The linear pseudo-measurement equation of the accelerometer is:

1_
Ox1 = H oy 1Xk41 — 5 Ekr108641 (4a)
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where:
0 —dT
H,jp = w0y (4b)
okt { |:da,k+1 —[Sak+1x] } :

1
Sak+1 = E(akﬂ +8r) (40)

1
dyji1 = E(akﬂ —gr) (4d)
Sag1 = apq — Clgr (4e)
In (4), H,;,, is the measurement matrix, and _%:k+1§ak+l is the measurement noise.

The covariance matrix of day 1 is 0215.
Similarly, the linear pseudo-measurement equation of the magnetometer is:

1
041 = Hyp 1 X1 — 5 Bir10Miey (5a)
where:
0 —dT
H — mk+1 043 (5b)
m+1 |: |: dm,k+l 7[5m,k+l><] "

1
S k+1 = E(karl +my) (5¢)

1
dyr1 = E(mk-ﬂ —my) (5d)
omy g =my q — Clm, (5e)
In (5), H, ., is the measurement matrix, and —%:k+15mk+1 is the measurement noise.

The covariance matrix of dmy, | is 02 I5.
From (4) and (5), the overall measurement equation can be written as:

1 T — Ll T
01 = Hy X1 — Edlag(.:.kﬂ,.:.kﬂ) [ (Sa[+1 (5m,2rl } (6a)
where:
H
Hk 1= a,k+1 (6b)
’ |: Hm,k+1

The noise covariance matrices of the process and measurement equations are written as:

cov(Iyng) = Qg 7)
1,
cov <— Edk+153k+1> = Pair1Raii1 ®)
1. .
cov (*iﬁkﬂomkﬂ) = P 1Rk ©)

where p, and p,, are adaptive weight coefficients, which can be adjusted in real time. The computation
formulas for Q, R, ,and R, ;; can be found in [16]. From (8) and (9), the noise covariance matrix
of (6a) can be written as:

Rk+1 = diag (pa,k+1Ru,k+1' pm,k+1Rm,k+1) (10)
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2.3. Adaptive Fusion Algorithm Based on Kalman Filter

Filter Initialization: Set initial values for state vector estimation X, i.e., § and b, and error
covariance matrix P.

Time Propagation: The process model, gyroscope output and posteriori estimation (or the initial
estimation) at step k is used to compute the priori estimation at step k + 1 by:

Krr1/k = Yike (11a)

Pei1k = YiPEL 4+ Qx (11b)

Measurement weight adjustment: To deal with motion accelerations and magnetic disturbances,
the weight coefficients p, and p;; are adjust in real time according to the disturbance intensity, which is
equivalent to adjust the measurement weight. The adjusting expressions are:

Pakt1 = exp(Aalllarall = llg- N1/ Mgl (12)

Pmkr1 = exp(Am|[[my 1] — [|my |/ |lme]) (13)

where the relative distances between the norms of measured vectors (aj 1, mg. 1) and reference vectors
(g, m,) are used to represent the disturbance intensity, and the exponential functions are used to map
the disturbance intensity to weight coefficients. The function of the parameters A, and A, is to adjust
the mapping relations. If the weight coefficient should be more sensitive to the disturbance intensity,
the corresponding parameter should be increased, otherwise, it should be reduced. The values used
for A; and Ay, can be determined experimentally. The exponential function instead of a linear function
is applied because the former can reduce the measurement weight more quickly when the relative
distance increases [28].

Measurement Update: The measurement model, magnetometer and accelerometer outputs and
the priori estimation at step k + 1 is used to compute the posteriori estimation at step k + 1 by:

-1
Kiy1 = Prr/cHY (Hy P cHY ) + Ry (14a)
K11 = Xey1/k — KeprHepaRe1 7k (14b)
Pri1 = (I7 — Ky 1 Hi 1) Py (14c)

Unit Constraint: To preserve the unit-norm property of the quaternion estimation, the updated
quaternion is normalized by:

Qir1 = Q1 / N1Grs | (15)

2.4. Yaw Computation

The rotation matrix from the reference frame to the body frame can be represented as a function
of either Euler angles or a unit quaternion, and the expressions are respectively:

cycp +syspsp  —cysyP + sycypsp  —sycp
C,4,7) = spe¢ cpeyp s (16)
sycyp —cyspps¢p  —sysyp —cycps¢p  cycd

. Gra-—B-a 243 +q09) 20193 — 902)
C(@)=| 2n—ds) G- di+am—a 20943 +qom) (17)
23 +q072)  20a203 —dod) 43— 47 — 93+ 43
where ¢, ¢, and 7 are respectively the yaw, pitch, and roll; s and ¢ denote sine and cosine
function, respectively.
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Using the first two elements of the second row of C(q), denoted as Cp; and Cy, respectively,
and defining the range of the yaw as (—180°, 180°], we obtain the following formulas for yaw computation:

arctan(Czl /sz) Cp >0
l/AJ = arctan(C21 /sz) +180° Cx» <0,Cy >0 (18)
arctan(C21 /sz) —180° Cp <0,Cp1 <0

3. Improved Algorithm

In this section, we keep the time propagation step of the conventional algorithm unchanged,
and improve its measurement update step in two ways. Firstly, to improve the accuracy of the yaw
estimation in the presence of magnetic disturbances, a measurement equation of the gyroscope bias is
derived and its weight can be adjusted according to the vehicle status. Secondly, we design a two-step
measurement update method to eliminate the impact of the magnetometer measurement update on
the attitude estimation.

3.1. New Measurement Equation and Its Adaptive Weight

The gyroscope output can be written as:
w:wb+b+n1 (19a)

and its z-axis component is:
Wz = Wy + bz + 11, (19b)

where w), is the angular rate resolved in the body frame, and n; is a white Gaussian noise vector.
When vehicles are running straight, wj, can be regarded as zero and (19b) can be rewritten as:

b, = Hyx + ny, (20a)

where:
Ho = [ 0 1 ] (20b)

Equation (20a) is a new measurement equation named as gyroscope measurement, and its
characters are as follows. Firstly, it only updates the gyroscope bias estimation in measurement
update, but it will affect the quaternion estimation in time propagation through (11); specifically
speaking, it will constrain the yaw estimation from changing by correcting the z-axis angular rate to
zero. Secondly, it is immune to magnetic disturbances because the latter cannot impact the gyroscope
output. Thirdly, the gyroscope measurement only hold true in running straight status, in other words,
its validity depends on the vehicle status.

Note that, the yaw is computed using quaternion estimation, and all the gyroscope bias
components can impact the quaternion propagation. But, in the fusion algorithm, the quaternion
estimation is not only based on propagation, but also on measurement update. The yaw derivative [12]

can be written as: .
sin vy cos 7y

Why —
cos ¢ bx cos ¢

§= Wy @1)

Obviously, the yaw derivative is related to pitch, roll, wyy, and wy,. In the fusion algorithm,
the estimation of pitch and roll will be corrected by the accelerometer measurement (in the form of
correcting quaternion), which is immune to magnetic disturbances. The two-step measurement update
method which will be introduced in Section 3.2 makes pitch and roll estimation immune to the errors
induced by magnetometer measurement update. In addition, generally speaking, the pitch and roll
are small for land vehicles, hence the absolute value of the coefficient of wy, is greater than that of
wpy. Therefore, the z-axis bias component is of more importance, especially in magnetically disturbed
environments. Equation (21) is based on Euler angles, but it should be noted that both quaternion and

67



Sensors 2018, 18, 3251

Euler angles are representation of orientation, and orientation obeys a unique dynamic rule. In other
words, the quaternion propagation models is different from that of Euler angles, but when they are
used to represent a same orientation parameter, for example yaw, the parameter obeys a same dynamic
rule no matter what representation is used.

The above characteristics suggest that the gyroscope measurement can be used to correct the
yaw estimation in the presence of magnetic disturbances when vehicle is running straight. In practice,
a vehicle cannot always run on a straight road, and even on a straight road the yaw may fluctuate.
In order to employ this measurement correctly, we define the covariance of the measurement noise 71,
as p,,0%, where p,,, similar to p, and p,,, works as a adaptive weight coefficient that can be adjusted in
real time. Obviously, the adjusting principle should be that the higher the extent of running straight is,
the smaller the p,, is.

Now, the problem is how to determine the extent of running straight. To address this problem,
we analyze the correlations between different sensor outputs. The accelerometer output can be
written as:

a=a,—Clg +n, (22)

where a;; is the motion acceleration, and n; is a noise vector. According to the vehicle kinematic
model [29], a;, is given by:
ay = Vb + wyp X vy (23)

where vy, is the velocity of the vehicle in the body frame.

The reference fame and body frame are shown in Figure 1. For a land vehicle, the running
direction can be arbitrary in reference frame, but in the body frame, which is attached to the vehicle,
its running direction is always forward, although the forward direction may change in reference frame.
The “forward direction” is the y direction in the body frame defined in this paper. Dissanayake et al. [30]
have pointed out that, when the vehicle does not jump off the ground and does not slide on the ground,
velocity of the vehicle in the plane perpendicular to the forward direction is zero, hence vy, and vy,
can be assumed as zero. Using this assumption and substituting (16) and (23) into (22), we simplify the
x-axis component of (22) as:

Ay = —UpyWp, — §SYCP + Moy (24)

In practical situation, the assumption is somewhat violated due to the presence of side slip during
cornering and vibrations caused by the engine and suspension system [30]. When the assumption is
violated, the side slips and vibrations will cause corresponding accelerations, but these accelerations
can be regarded as noise and a part of 1, in (24).

Yy North

X, ZypAbove
East X, v
Right * Forward

Figure 1. Reference frame o,x,1,z, and body frame o,x,1zj.
The magnetic field resolved in the body frame, denoted as m;, can be written as:

m;, = C(m, +d,) (25)
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where d; is the magnetic disturbances resolved in the reference frame. According to the Coriolis
theorem, the change rate of m;, in body frame can be written as:

my, = Cl(m, +d,) — wp x my (26)
Because m, = 0, the x-axis and y-axis components of m; can be written as:
mbx = Cfl- -dy + WhzMpy — WhyMpz (27a)

Tty = Cly. + dr — WMty + Wpyy (27b)

where C!; and C!, denote the first row and second row of C! respectively. We rewrite (27) as:
My / My, = Wy + Clr’l_ dy /1y, — wyy iy, /1y, (28a)

_mby/mbx = Wpz — Clr724 ) dr/mbx + Wpy Mz /My (28b)

When the angle between the road plane and the horizontal plane remains constant and the vehicle do
not vibrate, wy, and wy, are zero. In practice, the angle between the two planes may change, however,
in general, the rate of change will be small, and the duration of the vehicle attitude change is also very
short. Hence, the corresponding wy,, and wy, will be small and close to zero for most of the time. In the
case of vibration, which can be caused by bumps or ditches, wj,, and wy,, may have large absolute value,
but they will oscillate with high frequency. Hence, regarding the last item of the right side as noise and
using the magnetometer output and difference to approximate the left side of (28), we obtain:

(Mg — Myp1)/ (myAt) = wp, + Cly - dy/my, + n3 (29a)

—(my g — My 1)/ (Mo At) = wpy — Cy. - dy /1y + 114 (29b)

where 13 and 14 are noises. Because m,; and m,; may be equal or close to zero and thus cause
numerical instability, we define Am as:

(e =ty 1)/ (myAt) |y | > ||

Amk =
(” k—m ,k—l)/(”lx,kAt) My k < |”1x,k|
Y 2 Y

(30)

Equations (19b) and (24) show that the correlation between w, and a, will be low if wy, is stable;
otherwise, the correlation will be high. Equations (19b), (29), and (30) show that w, and Am have similar
relationships; more importantly, d, will not affect the correlation between w, and Am if it is constant
and will not affect the correlation markedly except for an abrupt changing. Hence, the correlation
between w, and Am is robust to magnetic disturbances.

Considering wy, is stable in running straight status and unstable in turning status, we construct a
vehicle status marker ¢, whose expression is:

1 1
¢ = max <0, ECOI'(CUZ,N/ Amy) — Ecor(wZ,N, ux,N)> (31)

where cor(-) estimates the correlation coefficient using the samples of the sensor outputs, and subscript
N denotes the N points samples from k — N + 1 to k. In fact, in running straight status, MARG sensor
outputs are stable except for uncorrelated noises; whereas in turning status, the outputs change,
and the output from different sensor is correlative because their changes are caused by the same
reason i.e., the vehicle is turning. The rationale of (31) is that use estimated correlation coefficients to
distinguish status. In (31), the weighted sum combine the two correlation coefficient to make full use
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of the correlation between different sensors, and the second term of the sum is minus because w; is
negatively correlated to a;y when wy, is changing. Considering the sum is theoretically nonnegative,
we set ¢ to zero when correlation coefficient estimation errors result in a negative sum. Similar to p,
and py,;, the adjusting expression for p, is:

Pwk1 = exp(Awc) (32)
where A, is a coefficient that transforms the status marker to a proper range.

3.2. Two-Step Measurement Update Method

This part presents the two-step measurement update method, and the concerned parameters of
the first and second update step are respectively denoted by subscript f and s in the following.

First Step: The accelerometer and gyroscope measurement updates are implemented in this step.
The measurement matrix and noise covariance matrix are respectively:

H

Hppp = { g } (33)

w
Ry i1 = diag (Pa,k+1Ra,k+1er,k+1fo;> (34)

The update expressions are:
-1
Kk = Pk+1/kH},k+1(Hf,k+1Pk+1/kH;,k+1 +Reii1) (35a)
Kp g1 = K17k + Kp g1 (Zg g = HpeprXer1 k) (35b)
Prip1 = (I7 — Kppp1Hpp1)Prya sk (35¢)
where:

041
V4 = 35d
f+1 |: Wy k+1 :| ( )

Second Step: In this step, the magnetometer measurement update is implemented and the ultimate
quaternion estimation is computed. The measurement matrix and noise covariance matrix are respectively:

Hypr = Hypen (36)
Rs k1 = Pmk+1Ru k1 (37)
The update expressions are:
Koi1 = Pt B (Hop Pra Bl + Rogy) (38a)
X1 = Xppr1 — Ko Hs 1% p k1 (38b)
Poji1 = (I7 = Kogr1Ho k1) Prirn (38¢)

Extracting quaternion part of & (k1 and X g1, we obtain § 41 and g k1. Define q, as:

Qo = Qf i1 © ok (39)

where q)’;,k 41 s the conjugate quaternion of §¢ 1 and the symbol @ is the quaternion multiplication
operator. The conjugate quaternion of a unit quaternion represents the inverse rotation and a
sequence of rotations can be represented by quaternion multiplication; therefore, q, can be viewed
as the correction quaternion induced by the magnetometer measurement update. In theory, qo
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should only correct the yaw estimation; however, it also modify the attitude estimation in practice.
The corresponding rotation matrix equation to Equation (39) can be written as:

C(Gsk+1) = C(a0r)C(Gf k1) (40)
The condition for C(§sx1) and C(§y k1) to share a same attitude [26] is:
qoo X C(qf k1) 3 = 0351 (41)

where q,, is the vector part of q, and C(§1) , is the third column of C(§s1). The geometric
meaning of (41) is that the rotation axis of q, should be parallel to the z-axis of the reference frame.
Based on this condition and (1), a new correction quaternion g, is defined as:

N . . T 1T
4o = [ cos(a) sin(a)C(dy k1) 5 } (42a)
where:
& — arceos(qo0)e - (k1) 5 (42b)
e = q,/sin(arccos(qs,0)) (42¢)

Note that g is actually the projection of q, on the direction depicted by C(qf,k_,_l).s, and this
treatment makes § satisfy (41). Finally, the ultimate quaternion estimation is computed by:
Gee+1 = Qf,k+1 ® Qo (43)
3.3. Complete Improved Yaw Estimation Algorithm

Adding the adaptive gyroscope measurement update to the conventional algorithm and adopting the
two-step measurement update method, we obtain the improved algorithm shown in Figure 2. Note that
the improved algorithm preserves the linearity and all its measurement updates have an adaptive weight.

| Initialization ‘
T
o | ko Xk

| Time propagation:(11) ‘

Xpent /Pt ¢

[ Gyroscope

O

Lo First step update

a‘” Weight adjustment:(12) (32)

| Measurement update:(35)

gf ,]c+1:Pfjc+1 ¢

Second step update

m Weight adjustment:(13)
Magnetometer | Measurement update:(38)

Attitude recovery:(43)

(ik+1 i b, 1 B s

| Normalization:(15) ‘

qlwl &

| Yaw computation: (18) ‘

Wi+l
Yaw estimation

Figure 2. Improved yaw estimation algorithm.
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4. Experiments

In this section, we evaluate the performances of the improved algorithm experimentally. The real
data from a MARG sensor mounted on a test vehicle are processed by the conventional and improved
algorithm, respectively. Then, we analyze the performances of the vehicle status marker, gyroscope
measurement update, two-step measurement update method, and yaw estimation by comparing the
results of the improved algorithm against that of the conventional algorithm and reference values.

4.1. Experimental Setup and Parameters

The test vehicle and experimental devices are shown in Figure 3. A Motion Tracker MTi-28A53G35
(Xsens, Enschede, The Netherlands) [31] was used as the MARG sensor. The Global Position System
(GPS) unit (Unicoremm, Beijing, China) provided reference values of longitude, latitude, and forward
velocity. 3-axis gyro module STIM210 (Sensonor AS, Horten, Norway) was used as the attitude and
heading reference system (AHRS), which provided reference values of the yaw and attitude. The initial
value of the AHRS was computed with the static accelerometer and magnetometer outputs [32].
The laptop (Lenovo, Beijing, China) supplied power for the MARG sensor, GPS unit, and the AHRS,
and logged data from them at 100Hz. The GPS unit, MARG sensor, and AHRS were mounted on the
test vehicle with the sensor and AHRS frames aligned with the vehicle body frame. In experiments,
the vehicle was driven along test trajectories, which consisted of straight lines, corners with different
angles and a circular line, involving a full range of yaw. Note that the magnetic sensor had been
calibrated inline according to the sensor manual [20]; hence, we assumed that the impact of the hard
and soft iron effects had been eliminated.

We analyzed the MARG sensor output in static condition, and set the noise parameters as follows:
om = 0.0015, 0, = 0.0056 rad/s, ¢, = 0.008 m/s2. We found the proper values for A, Ay, and A,
by trial and error, and set them to 20, 15, and 50 respectively. The estimation of qp was computed
with the initial outputs of the magnetometer and accelerometer; the estimation of by was set to the
gyroscope output before the vehicle was started, and Py = 10017. The initial values of Q, R, and R,
were computed with qp and Py [16].

Figure 3. Experimental setup. (a) Test vehicle. (b) Experimental devices.

4.2. Experimental Results and Discussion

4.2.1. Vehicle Status Marker

To analyze the experimental results more clearly, we intercepted a piece of the MARG sensor
outputs corresponding to a segment of the test trajectories. Using these data, we computed the
status marker ¢ and the adaptive weight coefficient p.,, which are shown in Figure 4. In Figure 4a,
the reference yaw indicates that the vehicle undergone a turning (about 90°) between 70 s and 80 s,
and mainly run straight with small fluctuation of yaw in other times. Corresponding to the reference
yaw, ¢ increases markedly between 70 s and 80 s; and oscillates with small values in other times.
One key to computing c effectively is to select a proper N, because too many sample points will
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cause severely lagged weight adjustment, whereas too few sample points will reduce the computation
accuracy. In the experiments, we set N = 1/At.
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Figure 4. Adaptive weight coefficient based on the vehicle status. (a) Reference yaw and c. Because the
reference yaw and c have different value range, two vertical axes are used for clarity with the right
one corresponding to c. (b) oy and pw. The magnetometer output norm is also plotted to show the
relationship between magnetic disturbances and p;,;, and, similar to (a), two vertical axes are used with
the right one corresponding to ||m||. To obtain a proper vertical axe limit and thus the trends of curves
can be showed clearly, the maximum value of the weight coefficients is set to 100.

4.2.2. Gyroscope Measurement Update

We processed the sensor outputs using the conventional and improved algorithm, respectively,
and the yaw estimation results are shown in Figure 5. The results demonstrate that the improved
algorithm has better estimation accuracy, and the reasons may be analyzed as follows. In the
conventional algorithm, the magnetometer measurement update corrects the yaw estimation from
drifting, but the measurement weight will be adjusted down in the presence of magnetic disturbances
(Figure 4b shows obvious differences between the norm of magnetometer output and one from about
15 s to 50 s implying the presence of magnetic disturbances). As a result, the correction effect attenuates
and thus the yaw estimation drifts. In contrast, the gyroscope measurement update provides another
correction in the improved algorithm, and more importantly, the correction can hardly be attenuated
by magnetic disturbances as analyzed in Section 3. The adaptive weight coefficients shown in Figure 4b
verify the function of the gyroscope measurement update: p, is much lower than p;, in the presence of
magnetic disturbances. In fact, p,, represent the validity of the gyroscope measurement, which is not
affected by magnetic disturbances. Hence, the gyroscope measurement can be used in magnetically
disturbed environments. The real-time adjusting p,, is critical for the gyroscope measurement to work
effectively. Figure 5 also shows the yaw estimation result when p,, is set to constant 1. The result
demonstrates that the constant p,, causes erroneous correction from the gyroscope measurement when
the vehicle is turning, and hence results in significant estimation errors.
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Figure 5. Yaw estimation.
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The gyroscope bias estimation results are shown in Figure 6. We estimated the reference value of
b, by calculating the mean value of the gyroscope output in a not-moving interval, and the result was
0.00058 rad/s. Obviously, the b, estimation is updated more effectively in the improved algorithm,
which is verified by its better yaw estimation accuracy.
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Figure 6. Gyroscope bias estimation. (a) Conventional algorithm. (b) Improved algorithm.

In Section 3.1, we draw a conclusion based on Equation (21) that b, estimation is more important
than by and by, estimation in the fusion algorithm. To verify this conclusion based on experimental
data, we constructed a conventional adaptive fusion algorithm using quaternion as state variables,
and using Equation (6) as measurement equation. Note that, in this algorithm, the gyroscope bias is not
estimated and compensated, and hence it will always impact the quaternion propagation. To examine
the impact of the gyroscope bias, we added a constant bias on the reference angular rate provided by
the AHRS and used the biased value to realize the quaternion propagation in the fusion algorithm.

We used this algorithm to estimate yaw for three times, and the constant bias were respectively
set to [b, 0, 0], [0, b, 0], and [0, 0, b]. The results were denoted as bx, by, and bz respectively. Note that,
in this process, all the parameters of the algorithm are same except for the constant bias. The root
mean square (RMS) errors of the yaw estimation corresponding to different b are listed in Table 1.
Obviously, b, has a more significant impact on yaw estimation.

Table 1. RMS errors of the yaw estimation corresponding to different b.

Result b =0.005rad/s b = 0.01 rad/s b =0.015 rad/s

bx 6.8° 7.6° 7.9°
by 7.1° 8.3° 9.1°
bz 11.2° 19.4° 29.0°

It should be noted that the gyroscope measurement updates only provide a “partial” correction,
in other words, they cannot provide absolute yaw information but that the yaw is unchanged to some
extent, and the “extent” is indicated by the adaptive weight. Therefore, it is reasonable to employ
the gyroscope measurement updates in combination with the magnetometer measurement updates.
In addition, the gyroscope measurement updates only work effectively in running straight status.
In practice, turning status is inevitable, but the duration of turning is relatively short, and running
along a straight road is a more usual status for most land vehicles.

In practice, a running vehicle cannot avoid bumps and ditches, which will cause oscillations
of ay, wy, and wy,. We assume these oscillations as part of the noise items in Equations (24) and (29)
respectively, and construct the vehicle status marker c based on the correlations between different
sensor outputs. To evaluate these noise assumptions, we analyzed a piece of the sensor outputs
corresponding to a straight road with some bumps and ditches. The raw signals of ay, wy, and wy, are
shown in Figures 7 and 8, respectively. The term ¢ computed by Equation (31) is shown in Figure 9.
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Figure 9. c in bumps and ditches experiment.

The vehicle met a bump or ditch at about 7 s, 19's, 27 s, 45 s, and 58 s. Obviously, the bumps and
ditches cause oscillations of the sensor outputs. Figure 9 demonstrate that the bumps and ditches do
not affect ¢ significantly, which displays small values and is consistent with the running straight status.

4.2.3. Two-Step Measurement Update Method

In the experiments, the test road is basically level except for some speed breaks. To evaluate
the performances of the two-step measurement update method, we computed attitudes using the
quaternion [33] from the first step update, the conventional algorithm and the improved algorithm
respectively, and the results are shown in Figure 10. Obviously, the improved algorithm and the
first step update have the same attitude estimation, which verify that the second step update do not
modify the attitude estimation. In addition, the attitude estimation of the improved algorithm is more
consistent with the reference values than the conventional algorithm. The comparison demonstrates
that the two-step measurement update method eliminates the attitude estimation errors induced by the
magnetometer measurement update. Besides magnetic disturbances, the magnetometer measurement
error can also cause attitude estimation errors. For example, the attitude estimation of the conventional
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algorithm change incorrectly during the turning of the vehicle (70-80 s), and similar phenomena can be
found in other turning processes, which, we think, is due to the dynamic errors of the magnetometer.

It should be noted that modifications of the attitude estimation made by magnetometer
measurement update essentially arise from the disagreements between the accelerometer and
magnetometer outputs, which can also be caused by non-gravitational acceleration and accelerometer
measurement errors. The improved algorithm prevents the magnetometer output from modifying the
attitude estimation because firstly the gravity resolved in the body frame can provide sufficient attitude
information, and secondly the accelerometer output is assumed more reliable than the magnetometer
output in magnetically disturbed environments as has been accepted and verified in many applications.
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Figure 10. Attitude estimation. (a) Pitch estimation. (b) Roll estimation.
4.2.4. Yaw Estimation

We tested two trajectories, which are referred to as A and B. MARG sensor outputs corresponding
to the trajectories were processed. To show the performances of the yaw estimation intuitively, we used
dead reckoning [29] to reproduce the test trajectories based on the yaw estimations and the vehicle
velocity data provided by the GPS unit. The results are shown in Figure 11, where the reference
trajectories recorded by the GPS unit is also plotted. Clearly, the reproduced trajectories from the
improved algorithm are closer to the reference than that from the conventional algorithm.
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Figure 11. Dead reckoning results. The circle represents the start point, and the square represents the
end point. (a) Trajectory A. (b) Trajectory B.

The root mean square (RMS) errors of the improved algorithm in trajectory A and B are
respectively 1.8° and 2.9°. The reason the improved algorithm performed better in A is, as pointed
out earlier, the gyroscope measurement only work effectively in running straight status. A was
approximately rectangular and has longer straight roads, whereas B consisted of more turning road
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with different angles and curvature. Obviously, A was more suitable for the gyroscope measurement to
take effect. It should be noted that vehicle status cannot affect the work of the two-step measurement
update method, which is also helpful for the yaw estimation.

The RMS errors of the yaw and attitude estimation are listed in Table 2. In addition, we used the
Kalman filter with vector selection [7] and the complementary filter with varying gains [21], referred to as
VSKEF and VGCEF respectively, to process the experiment data, and the RMS errors are also listed in Table 2.
Clearly, the improved algorithm performed best in the yaw and attitude estimation. In fact, as pointed out
in the introduction, the VSKF and VGCF essentially use the same strategy as the conventional algorithm to
handle magnetic disturbances: reducing the confidence in the magnetometer measurements, which will
result in poor correction for the yaw estimation. Whereas the improved algorithm not only reduce the
confidence in the disturbed measurements but also introduce new measurements based on vehicle status,
which provide supplemental information for the yaw estimation. In addition, the two-step measurement
update method eliminates the impacts of magnetometer errors and magnetic disturbances on attitude
estimation, which is also helpful for the yaw estimation.

Table 2. RMS errors of the yaw and attitude estimation.

Algorithm Yaw (°)  Pitch (°) Roll (°)

VSKF 49 4.0 3.1
VGCF 5.6 35 3.3
Conventional 5.2 37 29
Improved 2.1 1.8 1.6

Note that the better yaw estimation accuracy of the improved algorithm is due to its enhanced
ability to deal with magnetic disturbances; and it will have the same level of yaw estimation accuracy
as the conventional algorithm in magnetically homogeneous environments.

5. Conclusions

An improved yaw estimation algorithm for land vehicle using a MARG sensor was proposed
in this paper. Under running straight assumption, we derived the gyroscope measurement equation,
which update the gyroscope bias and thus constrain the yaw estimation from changing. The validity
of the gyroscope measurement depends on the vehicle status; to determine the vehicle status,
we analyzed the correlations between different sensors based on the vehicle kinematic model
and Coriolis theorem, and constructed a vehicle status marker used to adjust the weight of the
gyroscope measurement. In addition, we designed a two-step measurement update method, which
implements the magnetometer measurement update separately and eliminates its impact on attitude
estimation. Adopting the gyroscope measurement update and the two-step measurement update
method, we improved the conventional yaw estimation algorithm. The improved algorithm was
tested in experiments and compared against the conventional algorithm. Based on the experiment
results, the performances and characters of the improved algorithm were discussed and the conclusion
is as follows. The gyroscope measurement update is an effective supplement to the magnetometer
measurement update in magnetically disturbed environments; the two-step measurement update
methods make attitude estimation immune to the errors induced by magnetometer measurement
update; and the improved algorithm provides more reliable yaw estimation for land vehicles than the
conventional algorithm. Finally, it should be noted that the vehicle status marker is based on statistic
characteristics between different sensors, which make it robust to disturbances, but on the other hand,
insensitive to the varying status. The improvements of its real-time performance and ability to detect
the turning status with small angular rates will be the topics of further work.
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Abstract: In this paper, a novel semi-supervised segmentation framework based on a spot-divergence
supervoxelization of multi-sensor fusion data is proposed for autonomous forest machine (AFMs)
applications in complex environments. Given the multi-sensor measuring system, our framework
addresses three successive steps: firstly, the relationship of multi-sensor coordinates is jointly
calibrated to form higher-dimensional fusion data. Then, spot-divergence supervoxels representing
the size-change property are given to produce feature vectors covering comprehensive information
of multi-sensors at a time. Finally, the Gaussian density peak clustering is proposed to segment
supervoxels into sematic objects in the semi-supervised way, which non-requires parameters preset in
manual. It is demonstrated that the proposed framework achieves a balancing act both for supervoxel
generation and sematic segmentation. Comparative experiments show that the well performance of
segmenting various objects in terms of segmentation accuracy (F-score up to 95.6%) and operation
time, which would improve intelligent capability of AFMs.

Keywords: multi-sensor joint calibration; high-dimensional fusion data (HFD); supervoxel; Gaussian
density peak clustering; sematic segmentation

1. Introduction

For the foreseeable future, autonomous forest machines (AFMs) will play a central role in
harvesting, tending and forest management because lots of artificial and natural forests are facing with
poor forest quality on a large-scale [1]. Currently, the proportion of good quality forest resources is
very small, which directly affects the economic potential and ecological value of the whole forestry
industry. Scientific tending and harvesting operations, which rationally adjust the mixed structure
and wood quality of forest, can improve the level of forestry production in a relatively short time [2].
However, traditional artificial technology relying on the high-cost and low-efficiency labor could
not meet the urgent quality improvement of modern forestry. Therefore, replacing human beings
with AFMs rapidly to engage in dangerous and heavy works including tending and harvesting have
been a core focus, which will increase the efficiency and value of unit labor in handing with quality
promotion of large-scale forest lands. Nevertheless, the automatic or semiautonomous ways presented
that can work without operators cannot perceive the complex forest environments accurately as drivers,
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because so many complex factors need to be considered in the maneuvering of forest machines in
harvesting operations that full automation would be extremely difficult. Many problems still remain
to be addressed before the field of AFMs can be widely expanded including: which trees should be
harvested or tended, where the harvester should be positioned and what suitable driving routes should
be taken? To this end, an efficient environment-aware system that could facilitate decision-making
in those complex work described above should be constructed before a forest machine can fully and
authentically automate the harvesting and tending process, which will relieve fatigue and stress of
drivers and improve overall productivity and efficiency of forestry workload [3].

In comparison to the structured environment in agriculture or the semi-structured outdoor
environment in urban traffic, the forest environment is much more challenging for operation and
perception of AFMs since the various objects of interest are surrounded by massive areas of dense
shrubs, dead trees and fallen objects. In addition, forest trails are rarely straight or flat, and obstacles
are common, the AFM itself has more problems in the process of moving due to high amount of
logging residues on the ground surface and sometimes high variability of the soil-bearing capacity [4].
In order to improve the capacity of environmental perception and complex decisions in forest
operations, most of the current AFMs combine several sensors to compensate for the drawbacks of
each sensor and to merge various information into a single percept about the nearby environment [5].
Although multi-sensor fusion technology has become the standard techniques for AFMs to identify
objects, select roads and decide to execute the best operation, separating individual objects and
backgrounds from forest environments is extremely demanding and raises problems that have not yet
been satisfactorily resolved, which becomes the main challenge in forestry autonomous awareness and
navigation systems [6].

Many previous works dealing with this perception issue did so by solving a semantic segmentation
problem, aimed at determining which objects of the input data correspond to harvesting and tending
operation, and detecting which areas and trails are suitable for driving. Segmentation of images and
point clouds is an important capability for AFMs in unstructured forestry scene, which is a prerequisite
for solving subsequent tasks such as navigation or reconstruction. The basic process of segmentation
is labeling each measurement unit, so that the pixels or points belonging to the same surface or region
are given the same label [7]. However, processing unstructured and massive data (including laser
point clouds, visible images, thermal infrared photos etc.) obtained by different sensors is a much
harder problem.

On one hand, most of segmentation methods are proposed to handle with a single type of sensor
data (images or point clouds), which does not take full advantage of higher-dimensional fusion data
(HFD) captured by the multi-sensor measuring system of AFMs. Additionally, those algorithms are
focusing on point-level data or patch-level supervoxel with a fixed size, which is not suitable for the size
change of HFD caused by the occurrence of spot-divergence in complex forestry scenes. Thus, finding
approaches that can directly operate on size-changed HFD in an effective and affordable way is still
largely open in application requirements of AFMs. On the other hand, the existing segmentation works
falling into the cluster category in Euclidean space are supervised-based methods, which encourages
users to try many different input thresholds, therefore, increases the chance of selecting good input
values for better results. Consequently, such a process usually requires numerous parameters of
human intervention and can be quite time consuming. This strategy may perform well in simple and
sparse datum obtained from the city vehicles or indoor robots in structured environment. However,
it is difficult to deal with the noise-filled HFD of forest environment in real-time, which even lead to
inaccurate results of segmentation.

Aiming to improve the segmentation performance of the multi-sensor measuring system for
AFMs, we propose a semi-supervised segmentation framework based on a size-changed supervoxel,
which takes the spot divergence of each HFD into account and produces the valid feature vector
covering the spatial, visual and thermal information at a time. On the basis of precomputed
supervoxelization, we further extend the traditional density peak clustering method in Gaussian
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constraint to solve the sematic segment problem of different objects in complex scenes. This framework
has two major benefits: (a) it provides a patch-level process that every supervoxel can describe
the variational size of HFD; (b) sematic objects can be segmented without the artificially preset of
clustering central number or convergence thresholds, which gives an opportunity to promote the
segment performance in the term of accuracy and operation time.

The rest of this paper is organized as follows: some related works are introduced in Section 2.
Section 3 briefly presents our multi-sensor measuring system of AFMs. Section 4 presents the principle
and notations of our segmentation framework. Experiments are conducted in Section 5. Finally,
we conclude our work in Section 6.

2. Related Works

Focusing on HFD, there is a growing tendency of innovative methods for the treatment and
analysis of these data, aimed ultimately to exploit in-depth the informative value of semantic
segmentation. The early attempt to group segmentation methods followed the works of spatial
transformation by converting 3D/2.5D point clouds into 2D depth images, which could be deposed
with proven image segmentation techniques [8]. However, those methods lacked the geospatial
information of 3D point clouds. Consequently, many further research paid attention on 3D-based
segmentation methods able to understand a complex scene directly [9]. Those algorithms fell into the
basic combination of the original point-level data and model-fitting method, which did take visual
information and reflectivity intensity of HFD in account. In order to promote the segment performance
processed in a point-wise manner, the following works of extracting supervoxels for 3D point clouds
began to take multi-sensor information fusion and machine learning methods into account [10,11].
In this section, we will review some representative algorithms that are related to sematic segmentation
of HFD.

2.1. Point Clouds-Based Segmentation Method

The traditional segmentation methods are dividing large amount of unstructured 3D point
clouds into a certain number of independent objects with special semantics according to spatial
distribution characteristics. Over the past decade, several algorithms for object extraction from 3D
point clouds have been reported by researchers. Euclidean clustering segmentation was based on
defining a neighbourhood of radius and all the points within the sphere of radius are belong to one
cluster [12]. Although such methods allow a fast segmentation, they may produce inaccurate results in
case of noise and uneven density of point clouds, which commonly occur in point clouds.

For higher accuracy, model-fitting methods were proposed with the observation that many objects
could be decomposed into geometric primitives like planes, cylinders and spheres [13]. For example,
the cylinder was usually fitted onto point clouds of forest scenes to distinguish the trunks which were
conform to the mathematical representation of the primitive shape. As part of the model fitting-based
category, two widely employed algorithms were the Hough Transform (HT) and the Random Sample
Consensus (RANSAC) approach. Compared to the HT only detects fixed shapes, the RANSAC method
was used to extract shapes by randomly drawing minimal data points to construct candidate shape
primitives, which were checked against all points of dataset to determine the appropriate value.
The model-fitting method has been adapted to segment tree stems in forestry scene. Ref. [14] proposed
hierarchical minimum cut method based on that the detected trunk points are recognized according
to pole-like shape. By detecting the repetitive appearance of cylindrical segment units, this method
isolated individual trees from point clouds of forest scene and achieved good balance in terms of
accuracy and correctness. However, the segmentation quality of the model fitting-based algorithms is
sensitive to the point clouds characteristics (density, positional accuracy, and noise) and is over-reliance
on predictive shapes and parameters, which lack of adaptability to segment for various objects in
forest scenes.
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An alternative was the region growing approach involving two stages: identification of the seed
points based on the curvature of each point, and growing them based on predefined criteria such as
proximity of points and planarity of surfaces. This method and several variations were presented
for 3D point clouds segmentation. For example, [15] performed a marker-controlled region growing
segmentation using a treetop as the seed surface and the angle and height between the neighboring
triangles for the growing. However, the region growing methods strongly depends on multiple
criteria, such as the location of initial seed regions and curvatures of points near region boundaries.
Moreover, the high point density requires a large amount of computer resources for spatial searching
if the original LiDAR points are processed directly in those methods. Thus, octree construction
providing an efficient spatial index with high position accuracy was combined with the region growing
methods to detect planar segments, which realized better point cloud management and provided
faster refinement process [16]. Similarly, [17] proposed an initial-to-fine algorithm performed on an
octree-based representation of the input point cloud to extract stem-based initial segments. Then the
output was then passed through a refinement segmentation of overlapped canopy, which can reduce
technical difficulties and effectively separate neighboring trees even if their canopies are overlapped.
In these works, the partition of a point cloud was achieved by an octree structure. Local patches were
then extracted according to the leaves of the octree. The number of local patches is related to the
number of whole points and the size of octree leaves. A major limitation of this method is that the
interior shape structure is discarded. Further, those methods are not particularly robust as has been
shown experimentally in part because the segmentation quality strongly depends both on multiple
criteria and the selection of seed points/regions.

As demonstrated above, point clouds-based algorithms are well established as robust methods
for segmenting dense 3D point clouds in acquired in urban areas. However, these works have
some disadvantages in dealing with large 3D data sets or scenes with complex geometries. As these
algorithms only use all individual points, the computational cost and significant processing time
are very high, making it impractical for real time applications. Besides, the raw point clouds from
terrestrial laser scanner (TLS) or mobile laser scanner (MLS) often exhibit unorganized stripe structures
due to the rotary scanning mechanism. These structures make the point clouds difficult in providing
any information on local surfaces, which help extracting the inside/outside of the underlying feature
for efficient segmentation. Since point clouds are unstructured and often massive, it is sought to
reduce these points by grouping together or removing redundant or un-useful points for improving
the segmentation quality.

2.2. Supervoxel Process

In order to accelerate the existing segmentation with 3D point clouds processed directly in
a point-wise manner, the patch-level methods have been proposed by clustering the individual 3D
points together to form over-segmented voxels. In order to create the voxels, a 3D point is selected
as center and all 3D points in the vicinity are selected with a fixed diameter (equal to maximum
voxel size) to determine an actual voxel. With the voxel representation, the point clouds can first be
divided into a number of patches and the processing can then be operated in a patch-wise manner.
After the voxelized process, the 3D model can not only maintain the surface shape of the object,
but also effectively describe the internal distribution. Since the number of patches is much smaller than
the number of points in a point cloud, the efficiency of point clouds processing can be significantly
improved. In the work of [18], volumetric 3D model was proposed to explicitly representing the
forestry scenes, with the details of the trees and the surrounding unknown areas represented accurately.
However, the voxelization of point clouds lacks of the fusion information including color, texture,
thermal and reflectivity obtained by other sensors. This make the local description capabilities of each
voxel degraded and limit the segmentation performance in complex applications of forest environment.

To gaining the higher representation than the voxel, some patch-wise segmentation applied
supervoxels as basic elements to cope with HFD of complex tasks. These methods are inspired
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by the superpixel approaches that have been widely used in image analysis and processing.
A typically superpixel method was the SLIC (Simple Linear Iterative Clustering) algorithm based on
gradient-ascent theory in which the relationship between the color similarity and the spatial distance
was used to form the cluster centers of superpixels [19]. Another representative method was the
Superpixels Extracted via Energy-Driven Sampling (SEEDS) algorithm based on graph-based theory,
which started with the color distribution and discriminates edge shape of each superpixel iteratively
to achieve superpixel partitioning [20].

Currently, many supervoxel-based segmentation methods are the simply extension of 2D
superpixel segmentation to the domain of 3D volumes. Reference [21] proposed a Voxel Cloud
Connectivity Segmentation (VCCS) method to take full advantage of 3D geometry information.
In this work, the points with similar normals, colors, and Fast Point Feature Histograms (FPFHs)
were clustered into a supervoxel. Similarly, the proposed SEED-3D algorithm was designed to
minimise the cost of the shortest path in the weighted graph with consideration of characteristics
of the sensor for complex urban environment. The performance showed the better boundary recall
and under-segmentation result [22]. These kinds of supervoxel methods seem to not only be suitable
for real 3D volumetric data, but also be appropriate for video with object occlusion and moving
objects. Similarly, [23] proposed a novel voxel-related Gaussian mixture model for supervoxel
segmentation to address the problem of new and moving objects in continuous frames. According to the
experiments, the proposed method performed well in terms of segmentation accuracy while possessing
a competitive computing. In particular, the supervoxels have showed as the best processing unit for
the individual tree segmentation from LiDAR point clouds in urban environments. Reference [24]
proposed an automatic method for the individual tree segmentation (ATS) based supervoxel generation.
With the preprocessing of extracting tree points, the supervoxel was defined as a polyhedral region
consisting of homogeneous points. Then assigning other points to optimize centers obtained complete
supervoxels and delineate trees from complex scenes. This method overcame two main drawbacks in
the commonly used tree point assignment strategy, including the low efficiency caused by assigning
the index to each point and the assignment of different tree indexes for homogeneous points.

2.3. Supervoxel-Based Segmentation Method

As describing the local characteristics of point clouds effectively and reducing the processing time
of segmentation, the supervoxels are selected as the basic processing unit for patch extraction of HFD in
this paper. When the 3D point clouds or HFD are converted into some supervoxels, the next issue is to
group these patches to segment into distinct objects. Usually for such task, [25] proposed a link-chain
method instead to group these s-voxels together into segmented objects. However, this method has
many features and parameters which need to be adjusted manually in order to obtain better results
with very long computational time. Therefore, segmentation algorithms based on K-means clustering
were applied to group set of supervoxels into different objects using few attributes/features. In [26],
the feature distances between cluster centers and the neighborhood supervoxels are minimized to
segment street trees from 3D point clouds. Since the choice of neighborhood strongly influences
segmentation results of the K-means clustering methods, it is difficult to segment the boundary
supervoxels with abundant features. Thus, a refinement phase was necessary to test whether the
supervoxel was within the same cluster. The extracted segmentation based on hierarchical clustering
was proposed to compute geometrical and radiometric characteristics (position, surface normals,
reflectance etc.) of each supervoxel for forestry scene segmentation [27]. Similarly, a novel Density
Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm was presented to
cluster any dimensional data including terrestrial point clouds and HFD [28].

As described previously, those clustering segmentation methods require artificially determining
the number of cluster centers or selecting convergence thresholds, which lacks automatic adaptability.
Furthermore, these methods are all supervised model as they rely on a set of provided training
examples (features) to learn how to correctly perform a task. While high-quality features can enhance
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algorithm performance, and can also causing computationally expensive in large datasets [29]. Hence,
the partially un-supervised extraction of scene structures from 3D point clouds or HFD has been found
to be an attractive approach to urban and forestry scene analysis, because it can tremendously reduce
the resources and time consumption of data analyzing for subsequent tasks and other applications of
AFM in forest environments. Consequently, the density peak clustering (DPC) algorithm is adopted
to construct our proposed segmentation method on the basis of the idea that cluster centers are
characterized by a higher density than their neighbors and by a relatively large distance from data
with higher densities. The DPC has been widely applied to the problem of classification as the clusters
are recognized automatically regardless of their shape and of the dimensionality of the space [30].
However, it cannot be directly applied to supervoxel segmentation because its accuracy excessively
depended on the suitable threshold estimated on the basis of empirical experience [31]. What’s worse,
it does not encode the constraint on dimensional consistency of feature vector for each supervoxel.
Thus, a new Gaussian way is proposed to automatically extract the optimal value of threshold by using
the normalized feature distance. For any multi-sensor fusion data of forestry scenes to be clustered,
our proposed method can extract sematic objects with semi-supervised way from the supervoxels
dataset objectively instead of empirical estimation. The details of the algorithm process are explained
in the following sections.

3. Multi-Sensor Measuring System

According to the environmental characteristics of AFMs’ operation, the vehicle-mounted holder
is designed to carry a moving 2D laser scanner, thermal infrared camera and visual camera to build the
real-time measuring and perception systems as shown in Figure 1. The camera could obtain real-time
visible light information in the forest environment. This sensor has a wide-angle view field with
75° x 75° and a focal length with 0.1 m to 10 m, which has produced images with the resolution
of 1920 x 1080 pixels at 20 frames/second speed. An ARTCAM-320-THERMO (ARTRAY CO.,
LTD, Tokyo, Japan) is selected as the thermal infrared device. Its measurement temperature range is
from —40 to 150 °C. We set image resolution as 480 x 640 and the speed rate as 20 frames/second
to detect the forestry objects. Finally, the LMS511-20100 PRO type laser scanner produced by SICK
Corporation (Waldkirch, Germany) is used as a non-contact scanner. Its wavelength is 905 nm, which is
safe and reliable for the human eye. To acquire abundant tree features with adequate resolution
from the laser scanning measurements taken in the forest, the scanning angular resolution is set to its
minimum value 0.1667°. Then the scanning angle is set to —5° to 185° and maximum scanning distance
is 50 m. The measurement points corresponding to the surrounding contour is output in hexadecimal
format to form the raw point clouds via the Ethernet interface at the frequency of 100 Hz. In this
study, we extended the 2D scanning model to 3D scanning model combining the pan/tilt motion of the
vehicle-mounted holder with the internal motor motion of 2D laser device. Therefore, the horizontal
direction parameter of 3D points depended on the setting result of the laser scanner above, and the
vertical direction parameter was determined by the vehicle-mounted holder. Here, we set the scanning
angular resolution as 0.1°. Similarly, the scanning angle is set to —70° to 70° (0° is parallel to the
ground) and the scanning frequency is set to 10 Hz.

Through multi-sensor cooperation, information such as distance, position distribution, color and
surface temperature of objects in the forest area can be directly obtained and stored through the host
control software in the data acquisition and processing module. This software also was used to control
the working states of all sensors, vehicle-mounted holder and the system display module. The whole
system was equipped on different forest machines (including forestry firefighting vehicles, forestry
cutting and harvesting equipment, forestry tending and breeding equipment as shown in Figure 2)
with proof level of IP67, which can effectively prevent the entry of rain or dust and be adapted to the
damage conditions in the actual forestry areas.
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Figure 1. The AFM multi-sensor measuring system.

Figure 2. Measuring system installed at different forestry machines for operations experiment.

The multi-sensor data acquisition experiment of forest scenes was conducted in southern and
northern forest farms in different seasons. The southern experiment was conducted in the artificial
eucalyptus area of Qinzhou (Guangxi Province, China) where the diameter at breast height (DBH) was
more than 16 cm and the height was more than 15 m. The experiment was carried out from July to
November with the high temperature above 35-42 °C. In order to further enrich the measurement
objects and scenes, we also selected the Jiufeng forest farm in Beijing for experimentation with
various tree species including larch, fir, birch, etc. The experiments were carried in typical cold
northern weather conditions with temperatures from —21 °C and 9 °C. 3D point clouds, visible
images, and thermal infrared images of various objects and obstacles under different scenarios were
acquired to form the multi-modal database of the forest environment. Based on the multi-sensor
technology foundation, we focused on practical issues for AFM application in complex environments
and carried out the sematic segmentation framework including subsequent four steps: multi-sensor
joint calibration, spot-divergence supervoxelization, feature vector extraction and Gaussian density
peak clustering as described in the following sections.
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4. Methodology

4.1. Multi-Sensor Joint Calibration

Each sensors’ data in the multi-model database has its own characteristics. Compared with the
visible and thermal infrared images, the 3D point clouds have a larger field of view, but the density
of point clouds is relatively sparse and noisy compared to images. To integrate the advantages of
different sensors for segmentation, it is necessary to perform multi-sensor data preprocessing and
fusion on the basis of analyzing the various sensors’ conditions. According to the working principle
of laser scanners, the measuring value of a laser beam is influenced by the reflectance of objects
and the returned energy of the laser beams, which makes laser point clouds filled with discrete and
systematic noise. Therefore, this paper uses a Gaussian weighted filter for removing discrete points in
the laser scanner data which have the farther distance from all nearby point clouds. Then the average
smoothing filter is following to suppress the systematic noise in the point clouds, making the surface
of the object much smooth. Based on the noise processing, this paper conducts a joint calibration study
of multiple sensors. Its purpose is to realize the original data conversion relationship between various
sensor coordinate systems and achieve pixel-level data fusion. The joint calibration schematic is shown
in Figure 3.

Tree Targets
-
ol Calibmtion Bomd
;s P
_________ —
T W
NG Iw
3 Xv
Vehicle-mounted Holder ™
rennd * Yw

Thermography

Figure 3. The joint calibration schematic of the thermal infrared camera, visible camera and 3D laser
scanner for HFD.

The entire multi-sensor joint calibration process consisted of two stages: internal calibration of
each sensor and external calibration between them. In the internal calibration stage, we applied the
linear pinhole imaging model on the basis of the nonlinear distortion to descript the internal geometric
projection process in the visible and thermal infrared cameras. We took an octagonal calibration plate
with checkerboard to calculate the internal parameters including focal length, distortion etc. By using
the Zhang calibration method of [33], the visible camera’s coordinate X“" = [X,,Y,, ZC}T and the
thermal infrared camera’s coordinate Y*"? = X, Yy, Zt]T projected by the corresponding point in the
world coordinate were confirmed to construct the joint calibration model. Meanwhile, the internal
coordinate relationship of 3D point clouds by combining the pan/tilt motion of the vehicle-mounted
holder with the 2D laser device needs to be analyzed. Since the center of the 2D laser scanner O; and
the pan/tilt center Oy, did not coincide, which leaded the laser scanning plane rotated around O;, with
a certain distance d and angle 6. We defined the initial position of the 3D laser device when the plane
of the Oy center is parallel to the ground. Then the internal calibration expression of 3D laser device is
modeled as:

Xp D cos(n1n 4 6p)e sin(nae + 6))
Jlse = | yp | = | [Dsin(n15 +0p) — dy]esin(npe + 6) 1)
Zr (H +dy)e cos(nze 4 6)
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where d, and dy, are the horizontal and vertical offset of d, D is the distance value measured by the point
cloud, and 6 = nyy + 6 is the horizontal distribution angle of the laser beam formed by the horizontal
angular resolution 7 and the horizontal laser beam sequence 11, 6y represents the initial angle of the
working range of the 2D laser scanner. n,¢ is formed by the tilt angle resolution ¢ and the sequence of
scan plane layers 1;. According to the parameters of the laser scanner and the vehicle-mounted holder
preset in Section 3, we acquired the quantitates 7 = 0.1667, ¢ = 0.1, 8 = —5, H = 1.6. Applied the
method in [33], we used the outer edge characteristics of the calibration plate consisted of the points
(D, nq,n7) to confirm the internal parameters dy, dy, ¢ in 3D laser scanner coordinate. With the internal
parameters of three sensors determined, we established fusion coordinate system based on the 3D
laser scanner, and built a joint calibration parameter solving model between multiple sensors:

Ly Drase— fuse 0 0 wl.Ilﬂse Dlase— fuse
L, | = 0 Deam-—fuse 0 o wyeXUM | + Acam—fuse 2
Ly 0 0 Dremp— fuse wyeY!MP Atemp—fuse

where w1, wy and w3 respectively represent the weights of 3D point clouds, visible images and thermal
infrared images in the joint calibration process under the same scene. @5 sy, is an 3 x 3 orthogonal
matrix representing the rotation relationship between the laser scanning coordinate and the fusion
coordinate, and Ay, fyse 18 a corresponding 3 X 1 translation matrix. Similarly, @cap— fuses Deam— fuses
Diemp— fuser Dtemp— fuse represent the spatial rotation and translation matrix from the visible and thermal
infrared camera coordinate to the fusion coordinate. After the correction of the weights of each sensor,
different kinds of information in forest environment can be merged in the fusion coordinate through
rotation and translation parameters of each sensor are calibrated.

In this paper, the internal calibration of each sensor and the joint external calibration process
are accomplished simultaneously with calibration plate placed at different distances and locations.
Then, the corresponding linear equations of multiple edges of the calibration plate are selected to
model a PNP problem. In the conditional constraint of n > 36, there is a least-squares solution as the
initial result for parameters of the multi-sensor joint calibration. In order to eliminate the nonlinear
errors caused by human intervention, the Levenberg-Marquardt (LM) method [34] was applied to
optimize the joint calibration parameters with the following expression:

i

Lé wlq)luse—fuse.jlusg + Dlase—fuse
E= argmin Z a; le - wZ(bcamffuse.Xmm + Acamffuse (3)
=3 Ly w3q>ff"’.”*fuse’ytgmp + Dremp— fuse

where a; represents the weight effect of each edge obtained by the three sensors on the of the objective
function E. After the transformation relationship between different sensors are determined, the HFD
dominated by 3D point clouds is obtained, in which each point has properties including distance,
angle, reflectivity, as well as color and temperature.

4.2. Spot-Divergence Supervoxelization

As traditional segmentation method based on supervoxels are unsuitable for the complex
application of AFMs in face with HFD, of which size is changed due to the occurrence of
spot-divergence in complex forestry scenes. Therefore, this paper started with the inherent working
principle of laser scanner and proposed the spot-divergence supervoxel representing size-changed
character of HFD. In this work, we used 26-neighborhood region constraint to construct mutual
topological relationship from the high-dimensional fusion data to supervoxels. Assume that there are
n HFD in a forestry scene, which form the origin dataset S : {P;, P», - - - , P, }. Then the dataset has been
divided into K supervoxels, which constitutes the sets V : {V3, ..., Vk }. The detail of supervoxelization
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process is divided into the four steps: supervoxel space division, spot-divergence process of HFD,
center selection and adjacent partition, and extracting feature vector of supervoxel as following.

4.2.1. Supervoxel Space Division

In the fusion coordinate system, the fusion dataset S : {P;, P, - - - , P, } with the largest spatial
coordinate value in Pmax(Xmax, Ymax, Zmax) and the smallest Poin (Xmin, Ymin, Zmin) Value are selected
as the two vertices of the entire cuboid space. The length, height and height of the cuboid space are
Ly = [Xmax — Xmin|, Ly = [Vmax — Ymin|, and Lz = |Zmax — Zmin|, Tespectively. According to actual
requirements, we divide all HFD into presupposition spaces of supervoxel with the even length Ry per-
Set the supervoxel spaces along the x, y, z direction divided by the number of ny, ny, n., we can
initially determine the number of preset supervoxels:

Lx L Lz
K=mnyxnyxn; = X Y X 4)
Rsuper Rsuper Rsuper
The minimum size of supervoxel space must satisfy the constraint conditions:
Rsuper > N.Rvaxel(max) (5)

where N is the constant coefficient, which is set to 4 in this paper. Ry (max) denotes the largest edge
length of P, in the fusion dataset, which is proposed on account of the laser beam divergence principle.

4.2.2. Spot-Divergence Process of HFD

The basic starting point is: each laser beam has a divergence angle. As surface reflectivity, texture,
roughness, etc. of the object change, the spot-divergence phenomenon of multi-sensor fusion data
occurs when the laser beam is reflected back over a long distance. As a result, the spot area of the
measured point on the surface of the object is much larger than ever and continuously changes with
increasing distance from the laser scanner as shown in Figure 4a. Therefore, describing each HFD
with a fixed area size does not meet the actual situation of supervoxels, which leads to inaccurate
results of segmentation. Moreover, with increasing distance from the object, the distance between
the individual measured points also increases. The distance between the measured points is also
dependent on the angular resolution selected. With a coarser resolution (e.g., 0.1667°), the distance is
larger, with a finer resolution (e.g., 0.1°) the distance is smaller. To reliably detect an object, the valid
area of laser beam with concentrated energy must be fully incident on it once. If the measured laser
beam is only partially incident, less energy could be reflected by the object and be disturbed by adjacent
beams as shown in see Figure 4b. The size of valid area is proportional to the degree of spot divergence,
which represents a lower energy remission than the measured laser beam actually [35]. Therefore,
the valid area is applied to describe the size change of each HFD due to spot divergence of 3D point
clouds. Based on this idea, a novel supervoxel process was proposed to determine the supervoxel
center and adjacent areas.

The distance-dependent spacing between the measured points is the tangent of the angular
resolution x distance. The initial size D7 of the laser beam launched from the emitter with the inherent
divergence angle 6 to the surface of the object. After the transmission distance L, the diameter of spot
area representing the actual size of each HFD is obtained by the principle of trigonometry as:

6
d= D1+cot(51)L (6)
As shown in Figure 4b, the diameter of each spot area will increase with the distance increases,
which leads to overlap of adjacent spot areas. Assume that the center distance of adjacent spot areas is

H, which is calculated as: .
H:2><L><tan(§) (7)
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where ¢ represents the smallest angle of the adjacent spot areas, which is equal to the pan/tilt angular
resolution captured by 3D laser scanner. According to the laser energy distribution, the overlap causes
the measurement interference of adjacent laser beam. Therefore, we choose the center area (blue area)
as the valid area where there is not mutual overlap and interference of the adjacent beam. The diameter
of valid area is defined as:

B:Hfd/2:2><than(%)f(D1+cot(%)L)/2 ®)

~
J

D] »_,.,-«"""’"Jg[.)((»)t Area
e l l
a v od T |
(a) Spot divergence principle (b) Valid area of laser beam

Figure 4. (a) Schematic of spot divergence principle with increasing distance. (b) The valid area of
laser beam is layout of the distance between measured points at different angular resolutions.

According to space division in Section 4.2.1, the cube is the basic computation unit of supervoxel.
Therefore, extend the valid area of the laser beam to the 3D space expression, which conform to the
realistic geometric distribution of HFD. Then the 2D valid area of each laser beam becomes a 3D sphere
with a radius Rg = B/2. Then, we selected the inscribed cube inside the sphere as the basic element to
construct the supervoxel (as shown in Figure 5).

Figure 5. Inscribed cube inside the spheres represents the 3D extension of the valid area of HFD.

The edge length R, of every cube obtained is:

2 2x L x tan(§) — (Dy +cot(%)L) /2
Ruyoxel = TRE = )
3 V3
Calculate the lengths of all HFD in S : {P;, P,,---,P,} and select the maximum value as
Ryoxer(max). Taking Equation (9) into Equation (5), the size of each HFD and the total number
of supervoxels were preset with the practical physical meaning with the spot divergence constraint,
which improve the effect of supervoxelization.
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4.2.3. Center Selection and Adjacent Partition

Based on spot-divergence process, the HFD near the regional center of the supervoxel space is
generally selected as the initial seeds. However, in order to avoid the unreasonable situation that the
selected data is a noise point or an outlier on the edge position of objects, it is necessary to calculate the
size gradient function between the initial seeds and the neighborhood HFD within the search radius

super

R
Rsearch =3 as follows:

NSL’E i — j
G(i) _ Zd 2 (HRlseed Rvoxel” + HRi o Rk ”) (10)
- ) N, - seed seed
k=1 jEN; adj

where Ré ocq TEpTesents the size of the i-th initial seed, RZ] oxel TEPTESENtS the size value of j-th neighboring
HFD around this seed. Ny is the number of HFD available in 26-field. N, represents the number
of initial seeds in this supervoxel space, and Rl;ee 4 represents the k-th initial seed within the search
range. When G (i) is less than the preset threshold, it indicates that the i-th seed meet the constraint
requirements and is selected as the central seed of this supervoxel. If the result does not satisfy the
constraint, it means that the i-th initial seed is invalid. Then the gradient values of different size
seeds need to be calculated sequentially until the smallest gradient is selected as the supervoxel center.
Subsequently, calculate the spatial distances d;jd i between other HFD and different supervoxel centers
for adjacent partition:

ij 2 2 2 . .
di = (i )% + i~ y)* + (= — 2+ [Gl) — ()| an
By comparing the distance thresholds 1, all HFD are allocated to the nearest supervoxel. In order
to facilitate the display, this paper uses a schematic diagram to show the partitioning process of two
adjacent supervoxels as shown in Figure 6:

(a) HFD distribution (b) Adjacent partition

Figure 6. (a) Schematic of HFD distribution in two neighbouring supervoxels; (b) Schematic of adjacent
partition and search process for supervoxels (b).

4.2.4. Supervoxel Feature Vector

With the seed of each supervoxel and neighbouring HFD divided, the large-volume and dense
HFD can be divided into small-volume supervoxels distributed sparsely. Each supervoxel can be
regarded as a cluster collection of similarity HFD with local characterization, including spatial relations,
color, temperature, reflectivity, normal vector and size similarity. Those features are extracted to
construct the feature vectors of K supervoxels in high dimensional space as follows:

T T T
xl~K L1~l< N;NK
~ ~ 1~K 1/1~K y,1~K 1~K ~ 1~K
F= yEe L e v v R vt varg S L N T (12)
ZlNK b1~K NZI~K
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The detail properties of each feature mainly include:

1)  Spatial coordinates of supervoxel center: V)fyz = [k, y¥, 2¥)

2)  CIELAB color average of n HED in the supervoxel: Vi, = [EL—, 51— =L

n n n

n n n
LL La Lb

n
3) Temperature average of the supervoxel: Vy = ) T;/n
i=1

n
4)  Reflectance average of the supervoxel: Vi = ). r;/n
i=1

n .
5)  Edge length Ry, mean of n HFD in the supervoxel: Vs = ¥ R} . /n
i=1

6)  Absolute range between maximum and minimum of Rooxel
Varg = |Rvoxel (max) — Ryoxel (min)|
7)  Surface normal vector of supervoxel: N = Nyvg + Nyv1 + N,v; with N2 + N; +N2=1

In this paper, principal component analysis (PCA) is used to calculate the surface normal vector
of each supervoxel. The basic principle is calculating the surface normal vector of the approximate
plane by minimizing the distance from the surrounding data to the center of supervoxel:

n

)y

2 =1

T

2 n
(po=P)'N| NToL |(pi—=P)" (pi—P)|oN
. ==t 5 (13)
IN| ne|[NJ|

where 7 is the local center of supervoxel, and the approximate normal is associated with the smallest
eigenvalue (vg, v1,v;) of the symmetric positive semi-definite matrix. Searching n HFD to determine
a local surface normal vector of each supervoxel.

[ngeny|

8) Comprehensive dissimilarity of vectors: Tj, = #; - arccos 7 + #2][no — n||
where 6, = arccos ;Z(‘J’mi “ indicates the angle between the normal vector of k-th supervoxel and the

Z-axis of the fusion coordinate system. |19 — ny|| indicates the numerical vector deviation of k-th
supervoxel. 771 and 7, are weights applied to balance the relationship between angle and deviation of
normal vector.

4.3. Gaussian Density Peak Clustering

Compared to traditional clustering methods requiring the artificially preset of clustering central
number or convergence thresholds, the density peak clustering (DPC) accomplishes semantic object
segmentation adapting to arbitrary shapes and feature types. However, the segment result of
DPC excessively depended on the suitable threshold including truncation distance, local density
and the minimum higher-density distance, which were all estimated on the basis of empirical
experience. This was difficult to segment objects from supervoxels automatically in forestry scenes.
Thus, this paper used the normalized feature to construct Gaussian density peak clustering model.
With semi-supervised way for extracting threshold, the proposed method can cluster different objects
in the forestry environment, which improves accuracy and timeliness of segmentation.

4.3.1. Feature Normalization

As the feature units and quantity levels of supervoxels are very different, each feature channel
needs to be normalized by the central regularization process. The Euclidean distance of the supervoxels
Fy and F; in each feature space is calculated as:
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dy = (3 =2 (g ) (o 29)?
dz:\ALk—Lﬂ2+oﬁ—aﬂz+Uﬁ—bﬂ2
= [V~ VA, + (V- V) 19

dy = \/(Vé‘ - Vg)2 + (Vark — Varg)z

2 2 2
d5 = /(N — NI + (Nf — NJ)” + (N§ = ND)

de = ||Tj = Tyl

After the weights of the influence of spatial distribution, color difference, temperature and
reflection difference, edge length difference, normal vector difference, and synthetic similarity are
assigned, all different features are set in the range 0-1, then the high-dimensional distance Dy,
is obtained:

Dy = (15)

6
Y 5df
j=1

4.3.2. Gaussian Local Density Distribution

According to the density peak clustering, we define the local density of the k-th supervoxel as
px, which is obtained by the interaction between the high-dimensional distance space Dy, and the
truncation distance D. The following relationship exists:

Pk = H(Dg, Dc) (16)

This paper assumes that the local density of all supervoxels conforms to a specific Gaussian distribution:

K-1 T
| 27 2D,

When the D, is small, the local density distribution of F; shows the prominent form of the
middle peak. Only supervoxels that are especially close to F; can play a role, which limits the local
density function performance range to a small area. With the increase of D, the distribution of
local density function also tends to be flattened, making it possible to influence the local densities of
different supervoxels. However, the smooth also inhibits the fact that the contribution degree of p; on
divergence of supervoxels with different feature association. Therefore, the selection of D, affect the
segmentation results and needed to be preset in fixed value [30]. In this paper, a proportional coefficient
t = Dyy/ Dc is chosen to select the D, value, which represents the proportion of the neighbors number
of each supervoxel in the entire HFD dataset. While taking into account the dimension coefficient
w = 1, the non-parametric the rule of thumb method was used to determine the D, of Gaussian local
density function. In order to meet 98% confidence, the ratio 2.58% is selected as the optimal choice
according to the actual requirement of AFMs in forestry environmental. The probability strategy of
determining the truncation distance through the proportional coefficient reduces the dependence of the
parameter on the specific problem to some extent, and the choice of this ratio is simple and applicable
to other problems.

4.3.3. Clustering Supervoxels as Objects

Assume that there are K — k supervoxels with higher local density than the k-th supervoxel.
Apply the expression (15) to calculate the distance between these supervoxels and F, and form the
distance vector:

W = [Da—g, -+, Dkl (18)
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Subsequently, the minimum value Wy, is selected to calculate the minimum higher-density
distance of F:

Wmin/k <K
= 1
O { maxp, (Dy,), k = K (19)
If k = K, the super voxel F; is the maximum in the local density ranking, its minimum

higher-density distance needs to be redefined. Calculate the higher-density distance from this
supervoxel to other supervoxels and select the maximum value as J;. Then each supervoxel can
be expressed as Fi(p, 6¢) with two novel parameters. Draw the distribution schematic of different
supervoxels with J; as horizontal axis and py as vertical axis:

As shown in Figure 7 above, there are 22 supervoxels with two actual classifications A and B
projection to 2D feature space. In the distribution schematic, the partitioning coefficient pa, Ja can
be set according to the actual situation to determine the corresponding clustering center. When the
Ok > pa, 0k > J constraints are satisfied, the supervoxel can be considered as a clustering center.
If there is a case where the minimum distance is large but its density value is less than the threshold,
it is defined as an outlier noise point and it needs to be eliminated. By selecting the density threshold
and the higher-density distance threshold dynamically, the cluster centers are determined without the
number preset of clusters in advance. However, the preferable thresholds pj, dp need to be selected by
human observation and intervention. Thus, a novel comprehensive evaluation expression v, = J;epj
is proposed to select the cluster centers in semi-supervised way as follows:

Fo = Fe(7c > 7a) (20
p
A o, @

>

max

(a) 2D feature plane (b) Distribution schematic of F, (p,,0,)

Figure 7. (a) Supervoxels projection to 2D feature space data with two clusters; (b) The corresponding
distribution schematic with F(py, 6).

Through this optimization process, the 7, of all supervoxels are calculated and ranked in
descending order of density values:

VK> > VKem > YA > M (1)

where 7, is judgment threshold, which equivalent to finding the number of supervoxels significant
improved than other supervoxels. Through this semi-supervised method without manually observe,
the number of clusters can be achieved automatically. When m supervoxels are identified as cluster
centers, supervoxels close to each center are selected in density ordering and divided into different
areas of several objects C : {Cy,...,Cy}. For any supervoxels F,, of a non-clustered center, a cluster
center with a larger density is sought in the local density arrangement. The higher-dimensional
distance between F,, and these center {peaky, ..., peak,, } is calculated, and the cluster center peak;,
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with the smallest distance is selected as its cluster center, which defines F,, as the corresponding
neighborhood. In order to determine the classification of different super voxels:

{peaky, ..., peaky|pcenter,, > pr,} — D(Fw, {peak, ..., peak,,}) = min (22)

Cy = near(Fy, ..., Fy) — peaky (23)

Compared with the way that all supervoxels need to traverse the calculation relationship with
all center, this method only calculates the relationship between centers and adjacent higher-density
super voxels, which can reduce calculated quantity effectively and improve the speed of neighborhood
division. Finally, the overall analysis flow of our segmentation framework is shown in Figure 8, and is
mainly divided into three consecutive phases as following:

g )| [———

)
— == - | | |
I F— —I Spot-divergence process of HFD Gaussian local density distribution
——
| ) | . — |
(s )| (it | (conm i mt s )| (e (o) | (St
(HFD) |
| LM nonlinear optimization | |—> | T | [ >| @eicing mrevedb e = \—>

| Spot-divergence supervoxelization J | Gaussian density peak clustering |

Multi-sen sor joint calibration

Figure 8. The analysis flow of semi-supervised segmentation framework for AFMs.

5. Results and Analysis

5.1. Multi-Sensor Fusion Evaluation

The multi-sensor joint calibration process presented in the previous section was programmed with
the octagonal calibration plate. The calibration experiment was accomplished in indoor scene as shown
in Figure 9a. By posing the calibration plate in different positions and distances, the internal and mutual
relationship of multi-sensor coordinates were confirmed to fuse visible images and thermal infrared
images with 3D laser point clouds. On this basis of joint calibration process, the coordinate relationship
of the three measuring devices was kept constant, then the multi-sensor measuring system was directly
mounted in various AFMs to capture high-quality HFD in urban and forest scenes without repeating
calibration. As the result, objects with fused information including 3D space, color, temperature etc.
could be displayed on a human-computer interface of the measuring system for AFMs operation.

In order to illustrate the performance of HFD, this study selected partial data of the urban
environments in Figure 9b to define Scene A, which was captured in the Jiufeng forest farm during
the cold winter season. As a comparison, Scene B was extracted from the forest environments in the
artificial eucalyptus farm of Qinzhou during the hot summer and autumn. Both Scene A and Scene
B contain six objects such as tree, shrub, pedestrian, stone, building and ground, which were more
complicated. In general, Scene A was large-scale displayed in the range of 0.7 m to 40 m with horizontal
angle ranging from —5° to 185° and vertical angle ranging from —70° to 70°. Since the measured object
was relatively obvious mutual occlusion and measuring temperature is relatively low, the multi-sensor
data were well fused in relatively tight form. It’s proved that the measuring system constructed in this
paper could cope well with the perception task of urban environment. In order to show the fusing
performance of the proposed calibration work in more complex environments, fractional HDF of
Scene B were selected to display in Figure 9c at extreme distances ranging 45 m to 50 m (the preset
maximum distance of laser scanner). As a result, the HFD were relatively sparsely arranged subject
to limitations of laser scanner with spot-divergence. And the visual information was ambiguous
during to collective effects of high temperature, low reflectivity of objects and background interference.
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However, such fusion effect has met the application requirements of AFMs in the forest scenes, and it
also proved the necessity of subsequent supervoxels based on spot divergence in this paper.

(c) Scene B in forest environment

Figure 9. (a) Joint calibration experiment was accomplished in indoor scene with well fusion
performance; (b) HFD of Scene A were obtained in urban environment without extra calibration
process; (c¢) HFD were obtained in Scene B of forest environment at extreme distances.

To objectively evaluate the fusion performance of calibration process optimized by the LM
nonlinear method, some analysis results are presented in Table 1. Compared with the calibration
method in our previous work [33], the edges relationship of the octagonal plate based on the
LM method reduced the calculated value of the average calibration offset error to 2.764 cm and
repressed the average angle error to 0.553° effectively with better calibration accuracy, which made
HFD suitable for segment application in forest environment. Moreover, the root mean square error
(RMSE) in this paper was closed to 5.126, which showed the obvious improvement of nonlinear
optimization. Then the corresponding Standard Deviation (STD) was 13.032, which mean that the
error distribution was not very discrete and the calibration process was much stable and robust for the
following supervoxelization.

Table 1. Analysis result of multi-sensor joint calibration.

Parameters Calibration Work in [33] Proposed Calibration Work
Average calibration offset error 5.819 (cm) 2.764 (cm)
Average angular error 1.164° 0.553°
RMSE 8.232 5.126
STD 19.823 13.032

5.2. Supervoxelization Evaluation

We conducted experiments on Scene A and Scene B to evaluate the quality of the supervoxels
generated by the proposed spot-divergence algorithms. There were 318,331 original HFD in Scene
A and 339,547 original HFD in Scene B, which is a relatively large computation for the workload of
point-level segmentation. Based on the obtained HFD, the proposed supervoxelization method based
on the laser divergence scale change were applied to determine the supervoxel center and search
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relationship of adjacent areas. With the large-volume and dense HFD divided into small-volume
supervoxels sparsely, each supervoxel contains HFD with similar properties of local features. In order
to execute and run the supervoxelization method of this article, a workstation machine with 32 GB
memory, 500 G SSD and the Intel Core 7 core processor was chosen for model calculation. Then the
software platform Point Cloud Library (PCL) for supervoxelization [36], which was an open source
programming library run on Ubuntu system.

After the changes from HFD to supervoxels, non-ground 135,369 HFD were converted to
14,240 supervoxels, and other 155,040 HFD on the ground were converted to 7602 supervoxels.
The remaining 27,922 HFD were discriminated as noise and deleted in the Scene A. Similarly, the round
of Scene B originally had 200,985 HFD, and after the change, 8357 supervoxels were obtained, while the
non-ground was converted from 127,546 HFD to 10,714 supervoxels, and the remaining 11,016 HFD
were identified as noise. Obviously, supervoxelization could reduce the amount of computation and
improve the efficiency of segmentation.

To evaluate the performance of our algorithm, it is reasonable to compare the proposed method
with algorithms that were also designed to generate supervoxels. We compared our method with three
of these kinds of algorithms, including VCCS [21], (vSLIC), SEED-3D [22], and ATS [24], whose source
codes were publicly available at their respective research websites. We used the default parameters
provided by their authors for all the compared methods. Comparisons of some early methods
that segment fusion data without considering the property of spot-divergence could be found in
Figure 10. As shown, a further analysis on the ability adhere to object boundaries was developed.
Under-segmentation error was chosen as the standard measure for boundary adherence (namely,
the error between the given region from the ground truth segmentation and the set of supervoxels
required to cover it in minimum number). Then the relationship between the under-segmentation
error and the number of supervoxels was shown as following:

—#—Proposed method === SEED-3D VCCS ATS

UNER-SEGMENTATION ERROR

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

NUMBER OF SUPERVOXELS

Figure 10. Relationship between under-segmentation error and the number of supervoxels for VCCS
(gray), SEED-3D (orange), ATS (yellow) and the proposed method (blue).

Since the number of super voxels increased, the over-segmentation errors of the four methods
show a decreasing trend. As plotted above, the blue curve repressing the proposed supervoxelization
outperforms the other methods in under-segmentation error, showing the lowest undersegmentation
error for most of the useful operating regime. It also means the supervoxel partitioning based on the
spot divergence constraints is a better approach, which tightly fitted the ground truth result of object
edge in complex scenes.

Further, supervoxels were often proposed to replace the point-wise operation to help speed up
segmentation algorithms, which mean that it is important to generate lots of supervoxels efficiently in
the first place. Thus, we compared the operational time required for the various methods to segment
HFD with the same hardware platform in Figure 11.
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Figure 11. Relationship between the operation time and the supervoxel number.

With increasing size on number of supervoxels, the operation time curves of all methods increased
with the corresponding O(N) complexity. Comparing with curves of VCCS (gray), SEED-3D (orange)
and ATS (yellow), the spot-divergence-based algorithm was the fastest supervoxel method, and its
advantage increased with the size of supervoxel magnitude. While the operation time of other methods
were greatly affected by the increasing trend of supervoxels” number, especially in the range of 9000 to
12,000. It showed a significant gap in processing speed and memory efficient in order to handle large
multi-sensor fusion data, which can not only reduce the redundancy in subsequent data processing,
but also facilitate the feature extraction of complex environment.

5.3. Semantic Segmentation Evaluation

This section tested the semantic segmentation based on density peaks clustering for Scene
A and Scene B. as shown in Figure 12. With the supervoxel features. Scene A was segmented
semantically as 13 categories, including four trees, three shrubs, one building, two pedestrians,
one stone, and two grounds respectively. Scene A was divided into 11 objects, including seven trees,
one shrub, one building, one pedestrian, and one ground. Each target is randomly assigned a color
to distinguish. Obviously, this algorithm can effectively segment supervoxels as different types of
independent objects with small error, as shown in Figure 13.

(a) Scene A (b) Scene B

Figure 12. Semantic segmentation of independent objects in Scene A (a) and Scene B (b).
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(a) Pedstrian (b) Stone (c) Tree (d) Shrub (e) Building

Figure 13. Five types of objects segmented from Scene A and B.

In order to further evaluate the segmentation performance, the artificial manual segmentation
was used as the standard segmentation results, and compared with the segmentation results obtained
by the proposed segmentation method. The association matrix of segmentation results for Scene A
and Scene B were shown in Tables 2 and 3. Each element in the table represents the corresponding
supervoxels of the actual output label. If a supervoxel is segmented to the correct target, it is called true
positive TP; if a supervoxel is not segmented but assigned to a nearby target, it is called false negative
FN; if a target does not exist but a supervoxel is wrongly segmented to it, it is called false positive
FP. Calculate the precision rate Per, recall rate Rec, and Fl-score value F of each scene separately to
achieve the evaluation of the segmentation effect:

TP 2 X Per x Rec

Per = T TPLFP’" " Per+ Rec

C

TPS—PFN’ Re @9
where Per measures the probability between the number of supervoxels correctly segmented for
a certain class and the true total number belonging to that class in the artificial standard results.
And Rec is the ratio between the number of supervoxels correctly segmented and the total number
of supervoxels assigned to the class in this segmentation methods, which describes the probability
of objects that can be extracted from supervoxel feature by our method. The F value indicates the
harmonic mean evaluation of precision and recall.

Table 2. Evaluation results of six objects segmentation in Scene A.

Ground  Pedestrian Tree Shrub Building Stone Average
Ground 14048 12 17 63 76 24
Pedestrian 6 410 5 1 0 11
Tree 13 2 2208 65 3 5
Shrub 19 4 35 1526 13 6
Building 26 0 9 12 2672 15
Stone 15 16 0 4 9 492
Precision 0.987 0.947 0.962 0.952 0.977 0.918 0.957
Recall 0.994 0.923 0.971 0.913 0.964 0.890 0.943
F value 0.990 0.935 0.966 0.932 0.970 0.904 0.950

Experiments showed that the proposed algorithm achieved very competitive results in the
individual objects segmentation in complicated scenes. From the result in Table 2, it was concluded
that the accuracy and recall of stones were slightly poorer because supervoxels of stones were partly
divided into ground and pedestrian in many cases. However, the comprehensive segmentation of
all objects maintained a high value, which validated the performance and stability of the proposed
segmentation method. Table 3 showed that Scene B had one less category of stone than Scene A,
which improved the evaluation results of segmentation with small amplitude. Moreover, the excellent
performance proved that the algorithm retained the characteristics of the original HFD, which were
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adaptable to both urban and forest environments. Nevertheless, the comparison result also indicated
that the semantic categories and individual number of objects affected directly segmentation capability
of this proposed method, which were associated with environmental distribution and various attributes
of raw datum obtained by the multi-sensor measuring system. The detail results of the proposed
algorithm were shown as following.

Table 3. Evaluation results of five objects segmentation in Scene B.

Ground Pedestrian Tree Shrub Building Average
Ground 8145 24 26 149 13
Pedestrian 32 710 4 19 1
Tree 66 7 5341 65 6
Shrub 19 4 35 3476 1
Building 44 11 29 12 832
Precision 0.975 0.927 0.974 0.983 0.897 0.951
Recall 0.981 0.939 0.983 0.934 0.975 0.962
F value 0.978 0.933 0.978 0.958 0.934 0.956

In order to further verify the applicability and robustness of the proposed pipeline, we conducted
a comparative trial on the Scene C extracted from forestry environment. The scene was relatively
complex manually judged as 43 sematic objects. The proposed method automatically divided Scene
C into 44 objects including four big stones, six pedestrians, one ground, 27 trees, two buildings and
four shrubs, which was close to the result of manual segmentation with one more tree. Looking in
the scene, we found that too many objects were obtained at once, resulting in mutual occlusion and
data interference, which was the source of this problem. Wherever, this method still maintained better
segmentation performance than comparison methods as shown in Figure 14:

(c) SEED-3D

Figure 14. Comparison of segmentation results with the method of VCCS, ATS, SEED-3D in K-means
clustering, and the proposed method in Gaussian density peak clustering.
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The K-means clustering was combined with supervoxel for sematic segmentation in VCCS,
SEED-and ATS to construct the comparison methods respectively. With the preset parameters of
43 clusting centers and 2 m search radius, we could see the segmentation performance among different
approaches displayed intuitively. As can be seen, the results of VCCS was presented as 39 final
spectral classes different objects, resulting in severe over-segmentation and poor performance even
with supervoxels. In Figure 14b, using supervoxel as the neighborhood allowed one to better discern
differences inside and between tree areas. Results showed that, despite the ATS method taking only
3D point clouds for supervoxel generation, the subtle differences associated with the main trees
and the other objects were properly represented. However, due to the lack of other information
in HFD, the method easily divided the discrete data into more object classes or noise clusters in
large-scope. With fusing various information of HDF, SEED-3D achieved a better performance of
sematic segmentation presented in the complex environment. Although SEED-3D also correctly
detected the various objects closing to manual results, this algorithm was easy to assign the same
object with different labels in Figure 14c. The main reason was that the features of SEED-3D cannot
represent the size-changed character of HFD due to the spot divergence and this process required
the presetting parameters of K-mean under human intervention consequently, which needed to be
tuned by experiments for achieving the optimal results in different scenes. As a consequence, for both
supervoxelization and sematic segmentation, the proposed method better reflected the distribution
and features of objects in the HFD, showing a notable variety in a semi-supervised way. In order
to compare the overall performance among different approaches in a statistically-rigorous fashion,
the statistical significance of differences in terms of accuracy and operation time were evaluated in
Table 4 as following:

Table 4. The segmentation evaluation of four segmentation algorithms.

. . Integrated Discrete Time Effective
Segmentation Algorithm Clusters Clusters F Value (Approximate) HDF
VCCS [21] + K-mean 39 317 0.893 92 min 803,252
SEED-3D [22] + K-mean 45 382 0.938 51 min 756,328
ATS [24] + K-mean 48 426 0.920 65 min 983,174
Proposed method 44 125 0.942 34 min 1,139,829

Note: Effective HDF means Number of data for all integrated clusters (larger the value, less data is lost).

As the results summarized in Table 4 show, the proposed segmentation framework accounted
for an accuracy improvement of the overall sematic segmentation performance in many forest
stands. Obviously, the integrated clusters and discrete clusters showed the segmentation work can
be performed reasonably according to the environmental characteristic in the semi-supervised case.
Another strength of the proposed techniques was that the accuracy and quantity utilization of HFD
was significantly improved (see F value). This is mainly due to the fact that the spot-divergence
supervoxel must be more precise than the stationary supervoxel or point clouds. The performance
of supervoxel-based sematic segment depends on the multi-sensor data density and the forest type.
Thought the proposed approach achieve an improvement in operation time, the major limitation of our
work is that the whole time cannot meet real-time applications of AFMs. Thus, however, the achieved
improvement of the overall time would be the focus of subsequent work, which is necessary to the
real-time perception of AFMs in forest environment.

6. Conclusions

In this paper, we have focused on a semi-supervised segmentation framework based on
a spot-divergence supervoxelization of multi-sensor fusion data acquired by AFMs in complex
environments. On the basis of multi-sensor measuring system, we have presented a novel three-step
segmentation framework representing a semi-supervised processing workflow: Firstly, the relationship
of multi-sensor coordinates was joint calibrated to form higher-dimensional fusion data. Secord is
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given by a spot-divergence supervoxelization instead of producing immutable supervoxels. The novel
supervoxel took the size change of each HFD into account to produce feature vectors covering the
valid information at a time. Finally, the Gaussian density peak clustering was proposed to segment
supervoxels into sematic objects in the semi-supervised way, which non-required the artificially preset
of clustering central number or convergence thresholds. Experiments demonstrated that the proposed
framework performed well in terms of segmentation accuracy and operation time, which was much
appropriate to applications of AFMs. For future research, we would focus on real-time improvement
in sematic segmentation of objects. We would also like to extend the method to a more complex scene
such as the food security of the grain & oil supply chain.
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Abstract: Advanced technology for process monitoring and fault diagnosis is widely used in complex
industrial processes. An important issue that needs to be considered is the ability to monitor key
performance indicators (KPIs), which often cannot be measured sufficiently quickly or accurately.
This paper proposes a data-driven approach based on maximizing the coefficient of determination
for probabilistic soft sensor development when data are missing. Firstly, the problem of missing
data in the training sample set is solved using the expectation maximization (EM) algorithm. Then,
by maximizing the coefficient of determination, a probability model between secondary variables
and the KPIs is developed. Finally, a Gaussian mixture model (GMM) is used to estimate the joint
probability distribution in the probabilistic soft sensor model, whose parameters are estimated using
the EM algorithm. An experimental case study on the alumina concentration in the aluminum
electrolysis industry is investigated to demonstrate the advantages and the performance of the
proposed approach.

Keywords: soft sensor; coefficient of determination maximization strategy; expectation maximization
(EM) algorithm; Gaussian mixture model (GMM); alumina concentration

1. Introduction

With the increasing demands placed on industry, requiring a decrease in the defective rate of
products, better economic efficiency, and improved safety, there has been a growing demand to develop
and implement approaches that can improve the overall control strategy [1]. The first issue that needs
to be solved is achieving accurate and real-time estimation of key performance indicators (KPIs) [2].
The difficulty is that these KPIs are usually not easy to measure, or the measurement has significant
time delay. Even if some KPIs are measurable, due to the complexity and nonlinearity of modern
industrial systems and their complex working conditions, the KPIs may be extremely unreliable [3].
One way to solve the above problems is to develop a soft sensor, which seeks to select a group of
easier-to-measure secondary variables that are correlated with the required primary variables (i.e., KPIs
in this paper), so that the system is capable of providing process information as often as necessary
for control [4,5]. In the development of a successful soft sensor, a good process model is required.
The process models can be divided into two major categories: first principles models and data-driven
models [6,7]. Although it is desirable to apply mass and energy balances to build a complete first
principles model, lack of process knowledge, plant-model mismatch, and nonlinear characteristics
limit the applicability of such an approach to the simplest processes. As an alternative, data-driven
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soft sensors are developed from historical data without necessarily considering any outside process
knowledge. Data-driven soft sensors, which solely use available process data to develop a model
of the process, have recently attracted considerable attention and have been successfully applied in
many fields [8], such as fault detection (FD) and process monitoring, that are important for many
industrial processes. Serdio [9] introduced an improved fault detection approach based on residual
signals extracted online from system models identified by high-dimensional measurements provided
by the multisensor network. The data-driven system identification model can also be combined
using multivariate orthogonal space transformations and vectorized time-series models to achieve
enhanced residual-based fault detection in condition monitoring systems equipped with a multisensor
network [10]. Shardt [11] proposed a data-driven design of a diagnostic-observer-based process
monitoring method, which was extended to include the ability to detect changes given infrequent
KPI measurements. Yan [12] and Gabrys [13] introduced the most popular data-driven soft sensor
modelling techniques, as well as discussing some issues in soft sensor development and maintenance
and their possible solutions. Data-driven methods can be divided into three categories: models based
on statistical analysis, models based on statistical learning theory [14], and models based on artificial
intelligence [15].

Of interest for this paper are models developed using statistical methods to extract the relevant
information from the large amounts of industrial data that are produced by the complex processes.
Statistical methods have been developed that can handle such large datasets and develop useful
models. Common methods include principal component analysis (PCA) [16] and partial least squares
(PLS) [17]. PCA is a powerful tool for data compression and information extraction that can simplify
the model structure and improve the speed of operations. However, PCA can only deal with the
correlations between vectors in the same matrix. To overcome this limitation, PLS was developed
as an approach that models the correlation between independent variables and dependent variables.
Since PLS only applies to linear systems or weakly nonlinear systems, many nonlinear PLS algorithms
have been developed to handle nonlinear systems. The neural-network-based PLS algorithm [18] uses
the nonlinear processing capability of a neural network to describe the relationship between variables.
However, the determination of the network structure and the selection of network training algorithms
are difficult problems. In addition, if there are too many datapoints, the model structure will be very
complex and the accuracy will be difficult to guarantee.

On the other hand, considering that data-driven modeling methods use historical data for training,
this raises the question of how to handle missing data. Along with issues such as the reliability
of sensors and multirate sampling, missing data is common in practical industry process [19,20].
For example, in the aluminum electrolysis process, the alumina concentration is usually obtained
manually by laboratory staff. Considering human factors and chemical examination equipment
reliability, data loss occurs from time to time. In this case, this type of measurement has different effects
on the soft sensor modeling process and state estimation performance. Therefore, in order to make
the soft sensor more suitable for practical, complex industrial processes, the missing data problem
needs to be taken seriously. Compared with the direct deletion of missing data, the data interpolation
method [21] is better able to restore the real situation. Currently, data interpolation methods include
the mean substitution method, the regression interpolation method, and the expectation maximization
(EM) algorithm. Of these, the mean substitution method can cause biased estimates, and the regression
interpolation method is built based on a complete data set, where the linear relationship between
the variables with missing values and other variables is necessary, which, in many cases, cannot be
satisfied. In fact, the EM algorithm has good practical value as an iterative algorithm for simplifying
the maximum likelihood estimation when dealing with missing data in sample sets [22].

Recently, in order to evaluate the accuracy of the model output, the coefficient of determination
approach has been considered. The coefficient of determination is the measurement of how well
the regression model fits the data [23]. Feng [24] introduced the coefficient of determination as a
criterion for comparing the best-wavelength partial least squares regression (PLSR) model with the
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full-wavelength model. Boyaci [25] used the coefficient of determination to evaluate the adulteration
rate of coffee beans, thus ensuring coffee quality. However, these applications only consider the
coefficient of determination as an evaluation index without applying it for the modeling process.
In general, the coefficient of determination is a criterion that can evaluate the quality of a model
and has a concise structure, so it is appropriate to apply it to the soft sensor development process to
establish a simpler and more accurate model for complex industrial process.

Therefore, this paper develops a KPI-based soft sensor model with simple structure and high
accuracy, using the coefficient of determination method, which also solves the missing data issue using
the EM algorithm.

2. Background

2.1. The Gaussian Mixture Model

As a flexible and efficient tool for probabilistic data models, a Gaussian mixture model (GMM)
can be used to define any complex probability distribution function and is, therefore widely used in
many statistical data modelling applications. In this paper, GMM is used to approximate the joint
probability distribution in the soft sensor probability model. The reason for introducing GMM is that,
theoretically, any probability distribution can be approximated using the joint weighted Gaussian
distribution [26].

If x represents a multidimensional random variable, then the joint probability distribution of the
GMM is expressed as

M
p(x|®) :IZMPI(XWI) e
=1
where g is the mixing coefficient, which represents the prior probability of each mixed component;

M
M is the number of mixed components; and ) a; = 1. © = (61,65, - - ,0p) is the parameter vector

=1
of each mixed component, and each Gaussian probability density function p;(x) is determined by the
parameter 6; = (ny, %), where ; is the mean and % is the covariance matrix. The GMM parameters «;,
w,and X; (I=1,2,..., M) are estimated using the EM algorithm.

2.2. The Expectation Maximization Algorithm

The EM algorithm is a maximum likelihood estimation method for solving model distribution
parameters from “incomplete data” and was first introduced in [27]. Each iteration of the algorithm
involves two steps, called the expectation step (E-step) and the maximization step (M-step).

2.2.1. E-Step

Given the observation data set X and the current parameters [V, the expectation of the
log-likelihood function is called the Q-function which can be written as

Q(r, 1) = E[log p(X, 1) |X,1] @

where 1y can represent missing data due to observational conditions and other reasons, and can also
refer to hidden variables. Since the direct optimization of the likelihood function is usually very
difficult, the relationship between X, I, and -y can be established by introducing an additional variable
< to achieve the purpose of simplifying the likelihood function.

2.2.2. M-Step

A new parameter @1 is calculated by maximizing Q(I', I'®) which was obtained from the E-step;
that is,
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ri+h = argmaxQ(F,l"(i)) . 3)
r

The iteration between the E- and M-steps continues until the elements of I' are less than a
given value.

2.3. The Coefficient of Determination

Analysis of variance is an approach for determining the significance and validity of a regression
model using variances obtained from the data and model. The coefficient of determination is an
analysis of variance approach that seeks to decompose the total variability in the data into various
orthogonal components that can then be independently analyzed [23]. For the purposes of analyzing
the regression, let the total sum of squares, denoted by TSS, be defined as

n

7SS =Y (yi—7) @)

i=1

where the real data set is represented as y = <y1, 2, .. . , y»> and y refers to the average of y;. Let the
sum of squares due to regression, SSR, be defined as

SSR=Y_ (i —7)° 5)
i=1

where 7; denotes the predicted value of the regression model for y;. The coefficient of determination
R? represents the ratio of SSR to TSS, that is,

x2_ SSR

= 755 - (6)

Let the sum of squares due to the error, SSE, be defined as
n >
SSE=) (vi—1:)" @)

i=1
It can be proved that TSS = SSR + SSE [23,28], so R? can also be expressed as
SSE

2 _q1_ 29" _q_
R =1 TGS 1

M=| L=
—
Q0
=

Il
—_

3. Development of the Probabilistic Soft Sensor Model

In this section, in order to obtain more accurate KPI estimates, a soft sensor development approach
based on maximizing the coefficient of determination is proposed. In addition, the problem of missing
data in the training sample set is also considered. In order to more clearly describe the soft sensor
development process, Figure 1 shows the modeling flow chart.
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Industrial field raw data collection ‘
Gaussian mixture model (GMM)
# gives the joint probability
distribution for the system
Expectation maximization (EM)
algorithm L
estimates any missing data
EM algorithm estimates
L unknown parameters of GMM
Development of a probabilistic #
soft sensor model by maximizing
the coefficient of determination End
I

Figure 1. The flow chart of soft sensor development process.

3.1. EM Algorithm Handing Missing Data

Let X3, Xp, ... , X, be a random sample from a p-variate normal population, where Xj = (le, Xj2,
., xjp), 1 <j < n, so the training sample set X can be written as

X1 X11, X2, v, X1p
Xo Xo1, X2, v, X2p

X = = . . - &)
Xn Xnl, Xn2, 0, Xnp

The basic steps for processing missing data using the EM algorithm are given in [29].

3.1.1. E-Step: Prediction

For each sample X; containing missing values, X; = (m;, 4;), where m; is the missing value and 4; is
~i

~i
the available values. Given the population mean and variance, y and X, from the ith iteration and a;,
we use the expectation of the conditional normal distribution of m; as the estimate of the missing value.
The (i + 1)th iteration is
~it1 T I < N ~i
m/ = E(mj|aj’u’2) = Hm +Zma(2au) (uj_ uﬂ) (10)

~i . o ,
where 1 isap x 1 matrix defined as i = [ﬁ’m, ﬁ;] , I, is the mean of the missing part, and [}, is the
~i

mean of the available part. In addition, ¥ can be written as
i ii ii
Z — |: ~r;zm~;7m :| . (11)
Eam Eﬂﬂ
3.1.2. M-Step: Estimation
We compute the maximum likelihood estimates as follows:
ﬁi+l _ YHJ (12)

—it1 _ i+1
i _ (n 117)5 (13)
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where X' is the mean of the samples and S'*! is the sample standard deviation, and they are all
sufficient statistics. For a normal population, the importance of sufficient statistics is that the total
information about y and ¥ in the data matrix X is contained in X and S, regardless of the sample size
n. By transforming X and S, two new sufficient statistics Ty and T, [29], given by

T, = nX (14)

T, = (n—1)S + nXX (15)

are obtained. Combining Equations (14) and (15) with Equations (12) and (13) gives

) Ti+1
~i+1 1
= 16
it " (16)
—itl 1 . WIPPIPN
Z — ;T21+1 o u'+1(pl+1) (17)
where
i+1 PRI S i1 (s
mjmi’ = E(mmi|a;, 78,3 ) =Y wm =Y ma(} aa) am + 111} (mj ) (18)
——it1 o o /
mju]-’ = E(mja]-’\aj, Yy )= m}“ (aj> . (19)

The iteration between the E- and M-steps continues until the elements of i and . are less than
a given value. Therefore, the iteration result m is the optimal substitution for the missing values,
resulting in a complete training sample set X.

3.2. Soft Sensor Development Approach Based on the Coefficient of Determination Maximization Strategy

For the complete training sample set X obtained from Section 3.1, which can be written as

X11,  X12, o, Xip
X21, X22, v, X2p

X = . ) . (20)
Xnl, Xn2, s Xnp

let (xl, Xp, - xp,l) denote the secondary variables, and x;, denote the KPI. Our objective is to estimate
xp from (x1,22,- -+ xp_1).

R? measures the fraction of the total variance in the model explained by the regression with
the given variables [23]. The range of R? is [0,1]. Let xp be the y mentioned in Section 2.3.
Then, the coefficient of determination is

(xip — fip)2

2
—Xp)

@n

=
N
Il
L
|
™=[I=

I
L
—
=
=

If the secondary variables in the soft sensor model do not account for the variance of x,
the estimate of x;,, denoted %;,, is exactly equal to the sample mean of x;,, denoted ¥;,. In this
case, SSR is 0 and SSE equal to TSS, so R? = 0. On the other hand, if (x,-l, Xip,* e xi(p_l)) fully explains
the variance of Xips fori=1,2,...,n,it follows that Xip = Xjp, e, each error is zero and SSR = TSS,
soR?=1.In general, R? does not take the extreme values 0 or 1, but instead takes a certain value
between the two [28]. For the case where the number of variables, p, is much smaller than the sample
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number 7, the closer R? is to 1, the better the model. Therefore, when the model for the KPI maximizes
R?, it becomes the best estimate of the KPI, that is,

A
2
=
Zz
N
N

2
— Xip)
= max

—
2
<=
—
|

(22)

H
|
11=|ID=

Il
-

—
Rl
e
|
=
<
N
—
2
<
|
=l
<
N
o

Lt=| L=

where ;ip is the best estimate of x;,, and K; represents all possible estimates of x;,. Simplifying the
above equation gives

L 2 [ & 2
Zl(xlp — %ip) Z (xip — Ki)
1= . i=1
= - =min |~ — (23)
L (xip —%p) L (xip = %p)
i=1 Li=1
where x;, and X, are both computed values. Equation (23) can then be written as
“ =2 [ 2
Y (xip = Xip)” = min | ) (x;, — Ki) (24)
i1 Li=1
Multiplying Equation (24) on both sides by n~! gives
1¢ 2 . (1 2
=Y (xip —%ip)" =min| =Y (x;, —Ki)7| . (25)
ni3 =
Considering that the mathematical expectation of a discrete random variable is
x) =Y xip;i (26)
i

where x; represents the ith value of the random variable x and p; represents its probability, Equation (26)
can be expressed as

E{prfa?puz} :minE{prfKHz} @7)

where K denotes all possible estimates of the KPI x,, and ;p represents the best estimate of the KPI
when the coefficient of determination R? is maximized. Since Xp is derived from the soft sensor models
and secondary variables, the above equation can be written as

Xy :argminE[pr —K|\2|(x1,x2,...xp71)] . (28)
K

In order to establish a more direct connection between ;p and (x;1, Xj2, - - -, Xj(p-1)), the left-hand
side of Equation (28) will be simplified further. Firstly, it can be noted that K does not have an impact
on the simplification, that is,

E Hxﬂ_KHZ‘(XIrXZ/“'Xp 1)]
= E|ltp — E(xp] (x1,02 - 2p-1) ) + E(xp| (31,32, xp1) ) = KIP| (31,2, }
= E[lxp — E(xp| (o132, )l |(x1,xZ,...x,,,1)}+E[|\E(x,,|<xl,xb xp)) =~ K (e xp) | (29)
+E | [xp — E(xp| (1,22, xp )T [E (xp| (1,22, - xp1) ) = K] (21,22, - 1)
] )

HE|[E(xp (x1yx2, - xp1) ) = K] [ = E(xp| (1,02 xp0) )] (1,32,

In order to minimize the above equation, the following should hold:

K = E[xp|(x1, %2, xp_1) ] (30)
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which can be rewritten as
Xp = Exp|(x1,x2,- - xp1) ] - (31)

Furthermore, E[xp‘ (xl,x2,~ . ~xp,1)} can be expanded according to the definition of
expectation, giving
Xp = Exp|(x1, %2 xp-1) ]
= [xpp[xp|(x1, 32, - xp1) Jdacp . (32)
_ px1x2,xp-1,Xp
= fxpip(xl,xbmxpfl)

dxp

Thus, this establishes the basic framework of the probabilistic soft sensor model with KPI
optimal estimation.

The next part is to solve the joint probability distribution in the model.

In this paper, GMM is used to approximate the joint probability distribution. Let p(x.) =
p(x1,%2,- - xp_1); that is,

M
plxe) =Y ajp(xe|6f) (33)
=
M
p(xe,xp) = Z“lp(xlerxlplel) . (34)
i1

In order to deduce the specific representation of the KPI optimal estimation Zp under the proposed
probabilistic soft sensor model, we first introduce Lemma 1.

Lemma 1. [30] Let G(x; p, %) be a multidimensional normal density function with mean y and covariance

matrix T Let xT = (xT, x2T), ul = (ulT, uQT), and ¥ = gllglz ; then, the joint probability density is
21222
p(x) = G(x1; |,L1,211)G<XZ,' uxz|x1/2xz\x1> (35)
where
oyl = M2 — o1 X (g — x1) (36)
Tl = 222 — Zn1Zq1'T1a - (37)
Proof. The details of the proof can be found in [30].
Using Lemma 1, it follows that
P (xler xlp)
= G(xl; Hy, Zl) (38)

G(X1e; Mier Zigee) G <x[p; Hiples le\e)

Yoo
where ; = (pITE, ulTp) and X, = lee=lep | Therefore, Equations (33) and (34) can be written as
Ipe=Ilpp
M
plxe) = E“jc (xje/' Hjelzjee> (39)
i=
M
P(xer xp) = Z alG(xle; Hies Zlee)G <xlp; Hiples le\e) . (40)

I=1
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Substituting Equations (39) and (40) into Equation (32) gives

~ XC,Yp)
X = ]xp rdxp
. > azG(«’fze;uzg/zzfe)c(xzp;uzp\e,zzp\e) [€3))
= [ pr*] M d.’Xp .

21 D‘jc(xje;U/erZ/Be)
=

Extracting the sum in the numerator to outside the integral gives

_ M / ;G (Xpe; Mes Zlee)G(xlp; ”lp\eiz‘lphz)
X
r

n dxp . (42)
Zl ’XjG (xje; Hjer 2]’32)
=

In order to make the derivation more concise, the positions of some factors in the integral are
changed as follows:

&1 G (X e, X .
f MI (X105 M10, Z1ee) xPG<xlp/ulp‘e/Z/p‘8)de
‘):ll"jG(xje}ijZjee)
j=

@G (Xjerte Elee) .
MI lesMles=lee fxpG xlp/ ulp\erz‘lp\e pr .
glajG(Xje;M/a,ije)

‘52
|
Mz

(43)

Mz

When the integral part is the conditional expectation, the above equation can be simplified to

M

~ 2 G (X5 Mo, g

Xy = E = ( es e ee) Miple - (44)
=y lXjG<xje; Hjmzjee>

j=1

Therefore, the detailed soft sensor model expression of the KPI optimal estimation is obtained.
In this paper, unknown parameters in the model are estimated using the EM algorithm.
The iterative equations of the EM algorithm for estimating the GMM parameters are [31]

i 1+1 X; i 7](4lz'+1> (Xj _ u(i))z i WﬂlH
ll(f+1) j=1 s (i+1) _ j=1 L) — j=1 (45)
! i ,+1 P §- (D) ool n
=1 =

where 7j represents the responsivity of the mixed component / on the training sample data X;. It can

be written as

i X0
6+ N‘:zlﬂ( o) 46)

£ ap(x10)
Consequently, the above steps give the GMM parameters, and the KPI optimal estimate ;p follows.

4. Case Study

In this section, the effectiveness and feasibility of the proposed soft sensor model approach
based on maximizing the coefficient of determination are evaluated through an industrial aluminum
electrolytic production process. To show the advantages of the probabilistic soft sensor framework,
the estimations are compared with the real values. For performance evaluation, the root-mean-squared
error (RMSE) index is used.
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4.1. Soft Sensor Development for Industrial Aluminum Electrolytic Process

Aluminum is widely used in construction and electrical industries [32]. The main method
currently chosen for smelting aluminum plants is the cryolite—alumina molten salt electrolysis process,
in which the electrochemical reaction process takes place in an electrolytic cell. Figure 2 shows the
internal structure of the electrolytic cell.

Gas-Collecting Hood Anode
] T u
Unloader for g l
Aluminium Electrobath % P Anode Rod
Alumina Shell ~—_ / )
| Pot Shell
Electrolyte Sol
. — Side Carbon Block
Molten Aluminium
Cathode Carbon Block
C= —]
Cathode Bus-Bar I -I-I— Brick Lining

Figure 2. The internal structure of the aluminum electrolytic cell.

Molten cryolite is a solvent in which aluminum oxide is dissolved as a solute, forming a melt
with good electrical conductivity. Carbon materials are used as cathodes and anodes, and a direct
current is passed through them. The thermal energy of the direct current is used to melt the cryolite
and maintain a constant electrolysis temperature. Furthermore, the electrochemical reaction occurs
between the two electrodes, where the product at the cathode is aluminum liquid, and carbon dioxide
and other gases are generated at the anode. The chemical reaction of the electrolytic process is

2A1,03 + 3C — 4Al + 3COy;.

The chemical reaction can produce gases other than carbon dioxide and carbon monoxide, as well
as fluorocarbon gases. The gas purifying device uses alumina and fluorine generated in the mixed gas
to produce fluorinated alumina, and the fluorinated alumina is then recycled to the electrolytic cell for
chemical reaction. Figure 3 shows the process flow diagram of the aluminum electrolysis process.

TFluoride Salt Alumina

Pre-baked
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Rectifier Purified Flue Gas

Residual Anode
Cleaning
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Electrolysis Process
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Material Block
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Fluorinated Alumina

Electrolytic Flue Gas
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Figure 3. The process flow diagram of the aluminum electrolysis process.

The main control goal of the aluminum electrolysis process is to keep the alumina concentration
in the electrolysis cell stable within a certain range, preferably between 1.5% and 3.5% [33]. The control
of alumina concentration relates to energy consumption and economic benefits of the aluminum
electrolytic production process. On one hand, when the alumina concentration is too low, an additional
chemical reaction occurs at the anode, which can easily cause a sudden rise in the cell voltage and the
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energy balance of the cell is destroyed. On the other hand, when the concentration reaches saturation,
if the feeder continues to add alumina at the time, the raw material will be deposited at the bottom
of the cell, so that the resistance increases and the current efficiency becomes low. Therefore, it is
necessary to keep the alumina concentration in the proper range.

In soft sensor development for the aluminum electrolytic process, the measurable variables,
the voltage x1 between the two electrodes obtained by the first voltage measuring instrument; the anode
conductor current x,; the voltage x3 between the two electrodes obtained by the second voltage
measuring instrument; and the alumina concentration x4 provided by an electrochemical analyzer,
were selected as the secondary variables. The interelectrode voltage refers to the voltage between
the anode guide and the corresponding cathode steel bar. The alumina concentration y provided
by the laboratory is the primary variable for the model. Figure 4 shows a diagram of the process
measurement system.

Anode Rod 7] | m [ [1
| Anode Bus |
’y ‘ AnodeRod | | || || ...
pu Current

Voltage Between } f } f } T
Two Electrodes Y Electrolyzer

Y

___. . . . ......

hode Bus-B: . .
Cathode Bus-Bar Alumina Concentration

Sampling Point

Figure 4. Schematic diagram of the variable collection system.

The variables x;(k), x2(k), x3(k), x4(k), and y(k) form the joint probability distribution
p(x(k)) = p(x1(k), x2(k), x3(k), x4(k), y (k)) . 47)

The soft sensor was then developed according to the process described in Section 3 of this paper.
It is assumed that M = 2.

4.2. Experimental Results

4.2.1. EM Algorithm and Missing Values

We took 600 complete data groups from the training sample set, and deleted 10%, 20%, or 30%
of the alumina concentration variable data. Then, the mean substitution method, the regression
interpolation method, and the EM algorithm were used to process the sample set with missing values.
Tables 1-3 show the mean and RMSE of the alumina concentration sample set for the three method
simulations for missing ratios of 10%, 20%, and 30%.

Table 1. Comparison of three data interpolation methods for a 10% missing rate.

Mean Substitution Method Regression Interpolation Method ~ EM Algorithm  Real Value

Mean 2.4133 2.4225 2.4225 2.4259
RMSE 0.0867 0.4209 0.0698 0

Table 2. Comparison of three data interpolation methods for a 20% missing rate.

Mean Substitution Method Regression Interpolation Method ~ EM Algorithm  Real Value

Mean 2.4139 2.4217 2.4215 2.4259
RMSE 0.1451 0.4075 0.1361 0
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Table 3. Comparison of three data interpolation methods for a 30% missing rate.

Mean Substitution Method Regression Interpolation Method ~ EM Algorithm  Real Value
Mean 2.4140 2.4204 241198 2.4259
RMSE 0.1700 0.4068 0

First, comparing the mean value, we can see from the above tables that the means of the regression
interpolation method and the EM data interpolation method are closer to the mean of the real value set,
and the mean substitution method is less effective. Obviously, the RMSE of the EM data interpolation
method is much smaller than that of the regression interpolation method. Therefore, the accuracy and
effectiveness of the EM data interpolation method in processing missing values is verified. Further,
if there is a problem with missing values in the practical industrial process, the EM algorithm can be
selected for data interpolation.

4.2.2. Experimental Results of the Soft Sensor Model Based on Maximizing the Coefficient of
Determination

In order to verify the feasibility of the proposed approach, a test sample set was used to validate
the designed soft sensor model. The test sample set was divided into four subsets of 100 samples.
The actual alumina concentration measurement obtained from the laboratory was compared with
the output of the soft sensor model to acquire an estimated performance evaluation of the model.
The results are shown in Figure 5. Figure 5a—d show the estimated alumina concentrations based on
the first, second, third, and fourth test subsets, respectively. Table 4 shows the root-mean-square errors
(RMSE) of the four test subsets. It can be seen that, overall, the soft sensor model based on maximizing
the coefficient of determination can accurately track the overall trends in the process. The alumina
concentration output by the model is approximately the same as the actual laboratory measurement.

3.2
—— Laborston Measurement —— Laborston Measurement
3 —%— Soft sensor based on maximizing coefficient of 3 —%— Soft sensor based on maximizing coefficient of
& 28 s 28
526 hi g ﬁ £ f&
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32 32 \i\
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Figure 5. The soft-sensor-estimated alumina concentrations, based on maximizing the coefficient of

determination, compared with the actual laboratory measurement using (a) the first test subset, (b) the
second test subset, (c) the third test subset, and (d) the fourth test subset.

Sample

(0)
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Table 4. The RMSE values of the four test subsets.

Test Subset RMSE

First 0.0231
Second 0.0145
Third 0.0209
Fourth 0.0155

4.2.3. Comparison with BP and LSSVM

The backpropagation (BP) neural network and the least-squares, support vector machine (LSSVM)
model were applied to the test sample set, and the first test subset was used for performance
comparison. The parameters of the comparison algorithms were determined as follows: The number of
hidden layer nodes in the BP neural network model was 100 and the activation function of the hidden
layer was a sigmoid [34]. The kernel function of the LSSVM model was the radial basis function (RBF),
and the kernel parameter and regular parameter were 1 and 20, respectively [34]. For each model,
the number of secondary variables was 4, and the number of primary variables was 1. It could be seen
that the two comparison models need different parameters in order to achieve an accurate estimation
performance, while this is not necessary for the soft sensor model based on maximizing the coefficient
of determination. The estimated results are shown in Figures 6 and 7. Figure 6 shows the estimated
values of the soft sensor based on the BP neural network for the first test subset, and Figure 7 shows
the estimated values of the soft sensor based on the LSSVM for the first test subset. It can be seen
from Figure 6 that the soft sensor based on a BP neural network can roughly follow the trend of the
laboratory measurements, but the error is still large at many points. It can be seen from Figure 7 that
the overall performance of the soft sensor based on LSSVM is better than that based on a BP neural
network, but compared with Figure 5a, it is obvious that the estimation of some extreme points is not
as accurate as that given by the soft sensor based on maximizing the coefficient of determination.

3.2 T T T T
—+— Laboratory Measurement
3 —=— Soft sensor based on BP network | |
2.8

2.6

24

2.2

Alumina Concentration (%)

0 20 40 60 80
Sample

Figure 6. The estimated values of the soft sensor based on a backpropagation (BP) network compared
with actual laboratory measurements.

Figures 8-10 show the soft sensor estimates based on different modelling methods as a function
of the laboratory measurements. The green circles show the BP neural network model; the purple
circles the LSSVM model; and the red circles the proposed coefficient of determination maximization
model. In the ideal case, the circles should lie on the blue y = x line. In practice, deviations from this
behavior can provide information about the accuracy of the models. The BP neural network soft sensor
produces a soft sensor system that has a consistent bias, since the values are consistently located above
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the y = x line. Furthermore, the bias in the LSSVM soft sensor model is smaller, but there also seems to
be a calibration issue, since the data does not lie parallel to the y = x line. Finally, the proposed model
has the smallest deviations and the most ideal performance.
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Figure 7. The estimated values of the soft sensor based on LSSVM compared with actual
laboratory measurements.
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Figure 8. Comparison between the soft sensor based on a BP neural network and
laboratory measurements.
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Figure 9. Comparison between the soft sensor based on LSSVM and laboratory measurements.
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Figure 10. Comparison between the soft sensor based on maximizing the coefficient of determination
and laboratory measurements.

To better illustrate the performance of the proposed soft sensor model, Table 5 shows the RMSE
values for the different methods. As can be seen from Table 5, the RMSE of the proposed method is
smallest, which means that the estimation effect of the proposed model is better than those of the BP
neural network model and the LSSVM model.

Table 5. The comparison of the RMSE between the three modelling methods.

Method RMSE
BP neural network 0.0616
LSSVM 0.0431

Maximizing the Coefficient of Determination 0.0231

5. Conclusions

In this paper, a new KPI estimation method for probabilistic soft sensor development is proposed
based on maximizing the coefficient of determination. The joint probability distribution in the
probability model is approximated using GMM, while the EM algorithm is used to estimate the GMM
parameters. In addition to providing accurate, real-time estimates of the KPIs, this paper also considers
the missing values that training sample sets often face and uses the EM algorithm for processing.
The resulting soft sensor design method was tested on a case study of the alumina extraction process,
which shows that the proposed method can provide alumina concentration estimations that are
consistent with the actual measurements obtained from laboratory tests. Future work will focus on

applying the proposed soft sensor development approach to solving various problems such as dealing
with dynamic, non-Gaussian, or batch processes.
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Abstract: Data-driven methods with multi-sensor time series data are the most promising approaches
for monitoring machine health. Extracting fault-sensitive features from multi-sensor time series
is a daunting task for both traditional data-driven methods and current deep learning models.
A novel hybrid end-to-end deep learning framework named Time-distributed ConvLSTM model
(TDConvLSTM) is proposed in the paper for machine health monitoring, which works directly on raw
multi-sensor time series. In TDConvLSTM, the normalized multi-sensor data is first segmented into
a collection of subsequences by a sliding window along the temporal dimension. Time-distributed
local feature extractors are simultaneously applied to each subsequence to extract local spatiotemporal
features. Then a holistic ConvLSTM layer is designed to extract holistic spatiotemporal features
between subsequences. At last, a fully-connected layer and a supervised learning layer are stacked
on the top of the model to obtain the target. TDConvLSTM can extract spatiotemporal features on
different time scales without any handcrafted feature engineering. The proposed model can achieve
better performance in both time series classification tasks and regression prediction tasks than some
state-of-the-art models, which has been verified in the gearbox fault diagnosis experiment and the
tool wear prediction experiment.

Keywords: multi-sensor time series; deep learning; machine health monitoring; time-distributed
ConvLSTM model; spatiotemporal feature learning

1. Introduction

Accurate and real-time monitoring of machine health status has great significance. Appropriate
maintenance strategies can be adopted depending on the real-time health status of the machine to
avoid catastrophic failures, shorten downtime and reduce economic losses. Machine health monitoring
(MHM) is of great significance to ensure the safety and reliability of equipment operation. Modern
complex machinery systems, such as CNC machining equipment and trains, are moving in the
direction of large-scale, complex, high-precision, reliable and intelligent. Moreover, the features of
the signal to be processed vary with different devices, different operating conditions and different
fault conditions [1]. Therefore, it puts forward higher requirements for the accuracy, efficiency and
versatility of condition monitoring and fault diagnosis methods.

With the rapid development of advanced sensing technology and affordable storage, it is much
easier to acquire mechanical condition data, enabling large scale collection of time series data. With the
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massive monitoring data, data-driven methods have been greatly developed and applied in the field
of MHM. The framework of the traditional data-driven MHM system includes four steps: signal
acquisition, feature extraction, feature reduction and condition classification or prediction [2,3].

The types of sensor signal commonly used in MHM systems include: vibration signal, acoustic
emission signal, force, rotational speed, current signal, power signal, temperature and so forth.
Different types of sensors and measuring positions are sensitive to different types of damage and
have different advantages and limitations. Multi-sensor fusion data that contains redundant and
complementary mechanical health information can help the MHM system to achieve higher diagnostic
accuracy and detect more failures than a single type of sensor data [4]. The monitoring values of
each sensor channel constitute a 1D temporal sequence in chronological order. If the outputs of
a plurality of sensor channels are arranged in parallel and all channels have the same sampling rate,
a 2D spatiotemporal sequence data is formed. Since multiple measuring channels with high sampling
frequency and long data collection period are required for each mechanical functional component,
the 2D spatiotemporal sequence not only includes the local spatial-domain dependency between
different channels but also includes the time-domain dependency of each channel data, which presents
complex temporal correlation and spatial correlation. In addition, the 2D spatiotemporal sequence is
dynamic, non-linear, multivariable, high redundant and strong noisy, which poses a huge challenge to
feature extraction.

Many studies have made great efforts in handcrafted feature extraction methods and feature
reduction methods. However, conventional handcrafted methods still suffer from weaknesses in
the following areas: (1) The handcrafted feature extraction and feature reduction methods need to
be designed according to different kinds of monitored objects and signal sources, which depend
on prior domain knowledge and expert experience [2]. As a result, these methods present low
efficiency and poor generalization performance [5]. Especially when facing multi-sensor based
condition monitoring tasks, due to the influence of noise and a large amount of redundant information,
the feature engineering is more difficult and labor-intensive. It is difficult to select the suitable data
fusion method and extract sparse features, which directly affects the performance MHM models [6].
(2) Considering that feature extraction and machine learning models that work in a cascaded way
are independent of each other, without considering the relationship between them, so it is impossible
to jointly optimize them [7]. The extracted features of input data determine the performance of the
subsequent classification or prediction models [8], therefore, it is necessary to explore an effective
method for multi-sensor time series feature extraction.

Deep learning (DL) [9] provides a powerful solution to above weaknesses. Unlike traditional
models that are mostly based on handcrafted features, Deep neural network (DNN) can operate
directly on raw data and learn features from a low level to a higher level to represent the distributed
characteristics of data [10], which doesn’t require additional domain knowledge. After the layer-wise
feature learning, DNN can adaptively extract deep and essential features according to the internal
structure of massive data without domain knowledge. DNN has been successfully applied in speech
recognition [11], image classification [12], motion recognition [13], text processing [14] and many other
domains. In the past few years, the typical deep learning frameworks including deep autoencoder
(DAE), deep belief network (DBN), deep convolutional neural network (DCNN), deep recurrent
neural network (DRNN) and their variants have been developed in the field of machine health
monitoring [15,16].

The unsupervised layer-by-layer pre-training process of DAE and DBN can reduce the need for
labeled training samples and facilitate the training of DNN [15]. However, these fully-connected
structures of DAE and DBN may lead to heavy computation cost and overfitting problems caused
by huge model parameters, so DAE and DBN are not suitable for processing raw data, especially
multi-sensor raw data.

The Convolutional neural network (CNN) is now the most prominent framework, which is usually
used for learning spatial distribution of data. In the CNN model, the local connection mechanism
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between layers allows CNN to learn the local features of the data and the weight sharing mechanism
can reduce model parameters. As a method to prevent overfitting, the spatial pooling layer of CNN
can help the model learn more significant and robust features. The special structure of CNN can reduce
the complication as well as the training time of the model. CNN has also been introduced to address
time series data for mechanical fault diagnosis or remaining useful life estimation [17-19]. However,
since the time series data is treated as static spatial data in CNN, where the sequential and temporal
dependency are not taken into account, it may lead to the loss of most information between time
steps [20].

The sensor data in the MHM system is usually a natural time series. Opposed to CNN,
Long Short-Term Memory (LSTM) working in temporal domain is capable of sequence processing.
As an advanced RNN variant, LSTM can adaptively capture long-term dependencies and nonlinear
dynamics of time series data [21]. Although LSTM can directly receive raw data as input [20,22]
and has been proven to be powerful for modeling time series data in MHM tasks, it does not take
spatial correlation into consideration and easily leads to overfitting for multi-channel time series data
containing crucial temporal and spatial dependencies.

Given the complementary strengths of CNN and LSTM, ConvLSTM is proposed for
spatiotemporal sequence forecasting in [23]. Compared with LSTM, ConvLSTM preserves the
spatial information [24], therefore it facilitates the spatiotemporal feature learning. Multi-sensor
time series data in MHM tasks usually have high sampling rate (such as vibration signals and acoustic
emission signals), so the 2D time series are sequential with long-term temporal dependency. The input
sample always contains thousands of timestamps. The information of single timestamp may not
be discriminative enough. Therefore, extracting local features in a short period of time can make it
easier to learn long temporal dependencies between successive timestamps and often produce a better
performance [7,25].

In this paper, a novel framework named Time-distributed ConvLSTM (TDConvLSTM) is proposed
for intelligent MHM, which is powerful for learning spatiotemporal features of multi-sensor time series
data on different time scales. TDConvLSTM is a hybrid end-to-end deep learning model, which has
5 main components: a data segmentation layer, time-distributed local spatiotemporal feature extractors,
a holistic ConvLSTM layer, a fully-connected (FC) layer and a supervised learning layer. Firstly, the data
segmentation layer utilizes a sliding window strategy along the temporal dimension to segment the
normalized multi-sensor time series data into a collection of subsequences. Each subsequence is a 2D
tensor and is taken as one time step in the holistic ConvLSTM layer. Then, all the subsequences are
arranged in sequence and transformed into a 3D tensor. The local spatiotemporal feature extractor is
applied to each time step to extract local spatiotemporal features inside a subsequence. The Holistic
ConvLSTM layer can extract holistic spatiotemporal features between subsequences based on the local
spatiotemporal features. Then a FC layer and a softmax or regression layer are stacked on the top of the
model for classification or regression prediction. The main contributions of this paper are summarized
as follows:

1.  The ConvLSTM is first applied to extract spatiotemporal features of multi-sensor time series for
real-time machine health monitoring tasks. It can learn both the complex temporal dependency
and spatial dependency of multi-sensor time series, enabling the ConvLSTM to discover more
hidden information than CNN and LSTM.

2. The time-distributed structure is proposed to learn both short-term and long-term features of
time series. Therefore, it can make full use of information on different time scales.

3.  The proposed end-to-end TDConvLSTM model directly works on raw time series data
of multi-sensor and can automatically extract optimal discriminative features without any
handcrafted features or expert experience. The time-distributed spatiotemporal feature learning
method is not limited to a specific machine type or a fault type. Therefore, TDConvLSTM has
wide applicability in MHM systems.
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4. The proposed model is suitable for multisensory scenario and achieves better performance in
both time series classification tasks and regression prediction tasks than some state-of-the-art
models, which has been verified in the gearbox fault diagnosis experiment and the tool wear
prediction experiment.

The remainder of the paper is organized as follows: In Section 2, machine health monitoring
method based on CNN and LSTM are reviewed. In Section 3, the typical architecture of LSTM
and ConvLSTM are briefly described. Section 4 illustrates the procedures of the proposed method.
In Section 5, a gearbox fault diagnosis experiment and a tool wear prediction experiment are used to
validate the effectiveness of the proposed method. Finally, conclusions are drawn in Section 6.

2. Related Work

2.1. Machine Health Monitoring Based on CNN

In some works, the raw sensor data in time domain has been transformed to frequency spectrum
or time-frequency spectrum before being input to CNN models. The spectral energy maps of the
acoustic emission signals are utilized as the input of CNN to automatically learn the optimal features
for bearing fault diagnosis in [26]. Ding et al. proposed a deep CNN where wavelet packet energy
images were used as input for spindle bearing fault diagnosis [27]. The methods presented above
that indirectly processing time series data using CNN are time-consuming and limited by frequency
domain and time-frequency domain transformation methods.

CNN can also directly address raw temporal signals in MHM tasks without any time-consuming
preliminary frequency or time-frequency transformation. Zhang et al. presented a novel rolling
element bearings fault diagnosis algorithm based on CNN, which performs all the operation on
the raw temporal vibration signals without any other transformation [28]. Lee et al. addressed
a CNN model for fault classification and diagnosis in semiconductor manufacturing processes with
multivariate time-series data as the input [29]. In [19], CNN was first adopted as a regression approach
for remaining useful life (RUL) estimation with multi-sensor raw data as model input. The raw time
series data is treated as static spatial distribution data in CNN and its long temporal dependency
information is lost, which makes CNN models perform poorly and error-prone.

2.2. Machine Health Monitoring Based on LSTM

A LSTM based encoder-decoder scheme was proposed in [30] for anomaly detection, which can
learn to reconstruct the “normal” time-series and thereafter the reconstruction error was used to detect
anomalies. Based on the work in [30], an advanced LSTM encoder-decoder was proposed to obtain
a health index in an unsupervised manner using multi-sensor time series data as input and thereafter
the health index was used to learn a model for estimation of remaining useful life [31]. Bruin et al.
utilized a LSTM network to timely detect faults in railway track circuits [32]. They compared the LSTM
network with a convolutional network on the same task. It was concluded that the LSTM network
outperforms the convolutional network for the track circuit case, while the convolutional networks are
easier to train. Zhao et al. applied LSTM model encoded the raw sensory data into embedding and
predicted the corresponding tool wear [22].

Due to the fact that multi-sensor time series data of mechanical equipment usually have high
sampling rate, the input sequence may contain thousands of timestamps. Although the LSTM can
directly work on raw time series data, the high dimensionality of input data will increase model size
and make the model hard to train.

2.3. Hybrid Models Based on CNN and LSTM for Machine Health Monitoring

The hybrid models connecting CNN layers and LSTM layers in order, which expressed as
CNN-LSTM in this paper, have been designed to extract both spatial and temporal features for
speech recognition [33], emotion recognition in video [34] and gesture recognition [35] and so forth.
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A deep architecture was proposed for automatic stereotypical motor movements (SMM) detection by
stacking an LSTM layer on top of the CNN architecture in [36]. Based on the work in [36], a further
research that enhancing the performance of SMM detectors was presented in [37]. In the research,
CNN was used for parameter transfer learning to enhance the detection rate on longitudinal data and
ensemble learning was employed to combine multiple LSTM learners into a more robust SMM detector.
In MHM tasks, the sensor data is often a multi-channel time series, which contains both temporal
and spatial dependencies. The combination of CNN and LSTM has achieved higher performance
on MHM tasks than single CNN and single LSTM [32]. Zhao et al. [38] designed a deep neural
network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM).
One-layer CNN was applied in the model to extract local and discriminative features from raw
input sequence, after which, two-layer bi-directional LSTMs were built on top of the previous CNN
to encode the temporal information. The CBLSTM was able to outperform several state-of-the-art
baseline methods in the tool wear estimation task.

CNN-LSTM models usually learn spatial features first and thereafter learn temporal features.
However, one layer in ConvLSTM can learn the temporal features and spatial features simultaneously
by using convolutions operation to replace the matrix multiplication within the LSTM unit and
pay more attention to how data changes between time steps. ConvLSTM has been used to extract
spatiotemporal features of weather radar maps [23] and videos [39,40] but no application of ConvLSTM
in MHM tasks has been found so far.

3. Introduction of ConvLSTM

3.1. Convolutional Operation

The convolutional layer and the activation layer are the most central parts of the CNN. Input data
is first convoluted with the convolution kernel and the convolutional output is added with an offset.
Then the following activation unit is used to generate the output features. The convolutional operation
uses a local connected and weight shared method. Compared with traditional fully-connected layers,
the convolutional layer can reduce model parameters and improve model calculation speed, which is
more suitable for directly processing complex input data and extracting local features.

A convolutional layer usually contains multiple convolution kernels, that is, multiple filters.
Assuming that the number of convolution kernels is k, each convolution kernel is used to extract one
type of feature, corresponding to one feature matrix and k convolution kernels can output a total of k
feature matrices. The convolutional operation can be expressed by:

Zy = f(Wk* X +1D) M

where X is the input data with size of m x n. Wx is the Kth convolution kernel with size of k1 x kj.
b denotes the offset. “+” denotes the convolution operator. The stride and the padding method in
convolutional operation together determine the size of the Kth feature matrix Z;. For example, when
stride is (1,1) and using no padding during convolution, the size of Z; is (m —k; +1) x (n —ky + 1).
f is the nonlinear activation function which performs nonlinear transformation on the output of the
convolutional layer. The commonly used activation functions are sigmoid, tanh and ReLu.

3.2. From LSTM to ConvLSTM

LSTM has been proven to be the most stable and powerful model to learn long-range temporal
dependences in practical applications as compared to standard RNNs or other variants. The structure
of the repeating module in the LSTM is shown in Figure 1. The LSTM uses three ‘gate’ structures to
control the status of the memory cell ¢;. The three gates have the ability to remove or add information
to the cell state. The three gates are input gate i;, forget gate f; and output gate o;, which can be
understood as a way to optionally allow information to pass through [41]. The process of information
passing and updating in LSTM can be described by the equations shown in (2)-(7), where "’ denotes
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the Hadamard product. At each time step t, the memory cell state c; and the hidden state h; can be
update by the current input x;, the hidden state at previous time step /;_1 and the memory cell state at
previous time step ¢;—. When a new input comes, f; can decide how many information in ¢;_; should
be forgotten. Then, i; and ¢; will decide what new information can be store in the cell state. The next
step is to update the old cell state ¢;_; into the new cell state c;. Finally, x4, ;1 and ¢; determine
the output h;. The input, cell state and output of the LSTM are all 1D vectors. The LSTM uses full
connections in input-to-state and state-to-state transitions.

Figure 1. The structure of three gates in the Long Short-Term Memory (LSTM) cell.

fi = a(fo Xt + W1 + bf) 2)
it = o(Wyixt + Wil 1 + bi) 3
¢t = tanh(Wyext + Wychi—q + be) 4)
et = ficp 1 + it ®)

0t = 0(Wxo x¢t + Wyohy_1 + bo) (6)
ht = ostanh(cy ) ()

LSTM is capable of modeling time series data with long-term dependency in MHM
tasks. Although LSTM can also be applied on multi-dimensional sequence by reshaping the
multi-dimensional input to a 1D vector but it fails to maintain structural locality [39] and contains too
much redundancy [23].

To exploit both spatial and temporal information in multi-sensor time series data, we proposed
a model based on ConvLSTM. ConvLSTM is an extension of LSTM, which replaces the matrix
multiplication in LSTM with convolutional operation [23]. The equations of ConvLSTM are shown in
(8)—(13), where ‘+” denotes the convolution operator. The input x; , cell state ¢; and hidden output hy are
all 3D tensors, where the first two dimensions are spatiotemporal information and the last dimension is
the number of convolutional filters. The convolutional operation of ConvLSTM can reduce the number
of model parameters and prevent overfitting [42]. ConvLSTM retains the advantages of learning
temporal dependency between different time steps, in addition to this, it can capture the local spatial
information. Therefore, ConvLSTM can learn more discriminative features from multi-sensor time
series data.

ft:U(fo*xt—‘rwhf*ht,]‘f‘bf) (8)
i = 0 (Wyi * Xp -+ Wiy by + bi) ©)
Ct = tanh(Wye * xp + Wi * hy_1 + be) (10)
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¢t = ficp—1 +irCt (11)
o = 0(Wyo * Xt + Wi % I1y_1 + bo) (12)
he = ostanh(cy ) (13)

4. Methods

4.1. Notation

In the multisensory MHM scenario, the time series collected from monitored machine is a sequence
of real-valued data points generated by M different sensor channels. The input sample of the model
can be represented as a 2D matrix, which is denoted as X = {xy, x,- - -, x }, where L is the length of
the sample and the input data x; at the ith timestamp is a vector with M elements. Each training sample
has a corresponding target value Y. Y is a categorical value that has been encoded to a one-hot vector
in the fault classification task or a real-valued data in the regression prediction task. The machine
health monitoring task is defined to obtain the target value Y based on multi-sensor time series data
X. In the following text, we divide X into N local subsequences, then, the input can be denoted
as X = {Pry, Pra,- -+, Prn}, each subsequence Pr; € RMxI is denoted as Pri = {xlTi, szl-, cee ,xlTi},
where xl%i € RM is the kth timestamp in the ith subsequence. [ is the length of each subsequence.
Further, (A,B) represents the shape of a tensor with A rows and B columns.

4.2. The Proposed TDConvLSTM Model

In this section, a time-distributed ConvLSTM model (TDConvLSTM) is presented for multi-sensor
time series based machine health monitoring. TDConvLSTM is a hybrid end-to-end framework that
focuses on time-distributed spatiotemporal feature learning which is an extension method of basic
ConvLSTM. The basic ConvLSTM model are consists of only a few ConvLSTM layers, a FC layer and
a supervised learning layer, which is shown in Figure 2. ConvLSTM directly extract spatiotemporal
features in the whole range of the multi-sensory input data. Although ConvLSTM can directly work
on multi-sensor time series data to simultaneously capture the temporal dependencies and spatial
dependencies, the input time series in the MHM task always contains thousands of timestamps,
which will make the model size too large and make it difficult to train the model. The basic ConvLSTM
model cannot learn long temporal dependencies well. Therefore, extracting local features in a local
range of the input data before extracting features in the whole range can make it easier to learn long
temporal dependencies between successive timestamps and promote the model for better performance.

T
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Figure 2. The framework of the basic ConvLSTM model.
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Considering the above shortcomings of basic ConvLSTM, a time-distributed ConvLSTM
model (TDConvLSTM) is proposed. The proposed TDConvLSTM has three major procedures:
data segmentation, time-distributed local spatiotemporal features extraction and holistic
spatiotemporal features extraction. The framework of the TDConvLSTM model is shown in Figure 3.
Firstly, the normalized multi-sensor time series is segmented into a collection of subsequences using
a sliding window along the time dimension. Then all the subsequences are reorganized into the shape
that fit into the subsequent time-distributed local spatiotemporal feature extraction layers. Holistic
ConvLSTM layers stacked on the top of time-distributed local spatiotemporal feature extraction layers
are used to extract holistic spatiotemporal features between subsequences based on the time-distributed
local spatiotemporal features. At last, a FC layer and a supervised learning layer are stacked on the
top of the model to obtain the target value Y. The local spatiotemporal features extracted in each
subsequence only contain the features of a part of the input data. The holistic features are extracted
from local features of all subsequences to learn the long temporal spatiotemporal dependencies
between subsequences. So, the holistic features contain the spatiotemporal features of the whole input
data. Local spatiotemporal features are extracted before extracting holistic spatiotemporal features,
which can make it easier to learn long temporal dependencies between successive timestamps and

enable the TDConvLSTM to get better performance.

I Supervised learning layer ‘
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calculation

Holistic features

Holistic ConvLSTM
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Figure 3. The framework of the proposed TDConvLSTM model (TDConvLSTM).
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4.2.1. Data Normalization and Segmentation

Each channel of the multi-sensor time series data may come from different kinds of sensors and the
order of magnitude of each channel may be different. If the raw multi-sensor time series data is used
directly to train the model, the model will be difficult to converge. Therefore, the raw multi-sensor time
series data is normalized by the z-score method before being input to the model. The main purpose
of z-score is to convert data of different magnitudes into the same order of magnitude to ensure the
comparability between the data. The conversion function can be expressed as:

xF = "107”1 (14)
]
where, x; is the time series of the jth sensor channel. y; and o; are the mean and standard deviation of
X;j. x]? is the time series data after z-score normalization.

The input of the model X € RM*L is segmented into N local subsequences by a sliding window
along the time dimension. All subsequences have the same length / and N = L. Setting [ to a value
that makes L divisible by [ is more appropriate. If L cannot be divisible by /, the remainder part will
be discarded. In other words, just the integer part of N will be retained. The demonstration of data
segmentation is shown in Figure 3. Each subsequence Pr; € RM*! is a window of the multi-sensor
input signal and is regarded as one-time step in the holistic ConvLSTM layer.

The length [ of each subsequence is a hyperparameter of the TDConvLSTM model, which controls
the number of subsequences, that is, the number of time steps in the holistic ConvLSTM layer.
It is obvious that a small / may not be able to obtain discriminative local features. Oppositely,
if I is large, the number of time steps of the holistic ConvLSTM layer will be decreased, so that much
holistic spatiotemporal information will be lost. A suitable I can be selected by comparing experiments.

4.2.2. Time-Distributed Local Spatiotemporal Feature Extraction

After data segmentation, a local feature extractor is used to extract spatiotemporal features of
each subsequence. The local feature extractor is applied to each subsequence Pr; simultaneously using
a “TimeDistributed wrapper,” which is shown in Figure 3. N local feature extraction processes are
performed simultaneously and independently of each other.

Since local feature extractors of different time steps have the same structure, we focus on one
local feature extractor with the input subsequence Pr; = {xlTi, X2, ,xZTi}, which is a (I x M)

tensor. Pr; is divided into # slices, each slice f;, (g=1,2,---n)is a (I x M) tensor, where Iy = %

As a result, the input Pr; is transformed into a 3D tensor with shape of (1, M, Iy). We can think of the
3D tensor as a movie and f; is a frame in the movie. Then the 3D tensor will be input to the local
feature extractor.

The local feature extractor consists of a time-distributed local convolutional layer and a local
ConvLSTM layer, which is shown in Figure 4. There are two types of features embedded in Pr;, that is,
temporal features inside a sensor channel and spatial features between different sensor channels.
We applied the convolutional operation to each frame f; simultaneously using a local “TimeDistributed
wrapper.” 2D kernels with shape (kq,1) are applied in the first local convolutional layer to extract
features inside a sensor channel and preserve the independence of each channel. In addition, we
choose a larger convolution stride (ki,1) than conventional (1,1) used in image recognition. The large
convolutional stride can reduce the dimensionality of the input data and keep the timing unchanged.
We apply c filter channels to each of the first three layers, which enable the model to get more non-linear
functions and learn more information of the current sequence. The local convolutional layer returns
a feature with shape of (1,13, M, ¢), which is thereafter served as the input of the local ConvLSTM
layer. In the local ConvLSTM layer, 2D kernels with shape (k,, M) and convolutional stride (1,1) are
adopted to learn deeper temporal features and the dependencies between different sensor channels.
The local ConvLSTM layer returns a feature L fr; with shape of (1,15, ¢).

133



Sensors 2018, 18, 2932

Local features ? ? \;I hr“
Local ConvLSTM

ol gl gl g (o cf;

Contt(:lfxﬂonal Conv ] [Conv ] vos [Conv ] \f

layer
............. X
heg a| [g] hy
t=n Time step
_

| = o e o d Tl | @
@ (b)

v

Figure 4. Local spatiotemporal feature extractor: (a) Structure of the local spatiotemporal feature
extractor; (b) Diagram of the recurrent cell in ConvLSTM.

After two local feature extraction layers, local spatiotemporal features inside each subsequence
Pr; are extracted and the noise of the raw input data is eliminated. The time-distributed local feature
extractors turn the raw input time series into a shorter sequence, which make it easier to learn long
temporal dependencies.

4.2.3. Holistic Spatiotemporal Feature Extraction

After N time-distributed local spatiotemporal feature extractors, a local feature sequence with N
time steps is returned with shape of (N, 1, I, ¢). A holistic ConvLSTM layer is applied on the local
feature sequence to extract holistic spatiotemporal features. There are N time steps in the holistic
ConvLSTM layer and the local feature Lff; = (1, I, c) is the input at time step Ti. Small 2D kernels
(k3, k3) and convolution stride (1,1) are adopted to further learn deeper and sparser spatiotemporal
features. After holistic spatiotemporal feature extraction, holistic spatiotemporal feature at each time
step is flattened into a 1D tensor, whose length is I3. Then spatiotemporal features of N time steps are
concatenated into a 1D feature vector v with length of N x [3.

4.2.4. Supervised Learning Layer

At last, the feature vector v is passed into another FC layer and a supervised learning layer. If the
targets are discrete labels such as fault types, the supervised learning layer is a softmax layer, which is

defined as:

T
eﬂj 14

Ply=j)=——r
Zszl 69ij

(15)
where K is the number of labels and 6 denotes parameters of softmax layer.

If the targets are continuous values such as remaining useful life (RUL) and tool wear,
the supervised learning layer can be a linear-regression layer given by:

y=Wo+b (16)

where W and b denote the transformation matrix and the offset in the linear regression layer.

The error between predicted values and truth values in training data can be calculated and back
propagated to train the parameters of the whole model. Then, the trained model can be applied to
monitor machine health condition.
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4.2.5. Batch Normalization

The proposed model has a multi-layer structure. The model parameters change continuously in
the training process, resulting in continuous changes in the input distribution of each subsequent layer.
The learning process has to adapt each layer to the new input distribution, so the learning rate has
to be reduced, resulting in a slow model converge rate. The batch normalization (BN) layer [43] is
designed to reduce the shift of internal covariance and accelerate the training process of deep model
by normalizing the output of each layer to obey the normal distribution. In our model, BN layers are
added right after the local convolutional layer, the local ConvLSTM layer and the FC layer and before
the activation unit. Assume that the input vector of the BN layer is x, x € R™, then the output of the
BN layer can be calculated by:

yi=7xi+B (17)
= KB (18)
\Joa+e
1 m
ug = — X; 19
B m i; i ( )

of = (x; — up)” (20)

M=

1

m !
1

where yup is the mean of x;, Ul% is the variance of x;, € is a small constant, v and B are parameters

that need to be learned in the model. BN can accelerate the convergence of the model and prevent
overfitting. With BN layers, we can reduce the use of Dropout and adopt a large learning rate.

5. Experiments and Discussion

To verify the effectiveness of our proposed TDConvLSTM model, two experiments about gearbox
fault diagnosis and real industrial milling tool wear monitoring were conducted.

5.1. Case Study 1: Gearbox Fault Diagnosis

5.1.1. Data Collection

To verify the effectiveness of the proposed TDConvLSTM model for gearbox fault diagnosis,
an experiment was conducted on a gearbox test rig as shown in Figure 5a. The gearbox test rig is
composed of three main units including the motor, the parallel gearbox and the magnetic powder
brake. Four single-axis accelerometers were mounted vertically on the upper surface of the gearbox.
Figure 5b shows the locations of sensors. The gearbox test rig has been operated under 4 different
health conditions. The descriptions of different health conditions are listed in Table 1. Gearbox in
each health condition has been operated at three speeds (280 rpm, 860 rpm and 1450 rpm) of the
pinion. Vibration signals of 4 channels under each speed were acquired synchronously through a data
acquisition box. The sampling frequency was 10.24 kHz and the sample time was 5s.

The acquired signals are first normalized as described in Section 4.2.1. Then, a sliding window
with length of 5120 is used to slice the signals with overlap. There are 450 samples for each health
condition under each identical operating speed. According to the operating speeds, all samples
are grouped into four datasets (D1-D4) to test the performance of the proposed model respectively.
D1, D2 and D3 contain samples at speeds of 280 rpm, 860 rpm and 1450 rpm, respectively. D1, D2
and D3 are brought together to form dataset D4. The samples at the three rotational speeds for each
health condition are taken together as the same class in D4. There are 1800 samples in D1, D2 and
D3, respectively. We first shuffle the sample order of D1, then, two-thirds of the 1800 samples are
selected as the training dataset and the remaining one-third samples are selected as the testing dataset.
The same processing procedure is used for D2 and D3. Finally, there are 1200 training samples and
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600 testing samples in dataset D1, D2 and D3, respectively. There are 3600 training samples and
1800 testing samples in dataset D4.
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Figure 5. Gearbox test rig: (a) Main units: (1) Motor (2) Parallel gearbox (3) Magnetic powder brake (b)
Locations of sensors.

Table 1. Description of four gearbox health conditions.

Label Condition Description Speed (rpm)
0 FT A root fracture tooth in the big gear 280, 860 and 1450
1 CT A root crack tooth in the big gear 280, 860 and 1450
A root crack tooth in the big gear and a
2 CTFT half fracture tooth in the small gear 280,860 and 1450
3 CIB A crack on the inner race of the bearing 280, 860 and 1450

5.1.2. Parameters of the Proposed TDConvLSTM

The architecture of the proposed TDConvLSTM model used in experiments is built according
the procedures described in Section 4. It should be noted that the hyperparameters of the model are
selected through cross-validated experiments. The hyperparameters such as the kernels, strides and
channels in main layers with the best performance are displayed in Table 2. Batch normalization is used
right after each main layer to improve the performance of the model. The batch normalization axis is
set to the channel axis. The activation function of the last layer is softmax and activation functions of
other layers are all set to sigmoid. The categorical cross-entropy is adopted as the loss function and
Adam is employed for model training. The dropout rate is set to 0.2.

As stated in Section 4.2.1, the length of subsequence [ is a crucial hyperparameter of the
TDConvLSTM model, so it is meaningful to research the influence of different / on the performance of
the proposed model. In this research, we set [ to 64, 128, 160, 256, 320, 512, 640 and 1024 respectively
to test the performance of the model. Each subsequence Pr; in the test model is divided into 8 slices.
The other parameters of the model are same as shown before. An appropriate / is needed to fit the
signals under different operating conditions, so the dataset acquired under nonstationary condition is
suitable to test the performance of the model with different [. Dataset D4 is used to train the model
for 15 epochs with the batch size of 20. The fault classification accuracy and the model training time
are used to evaluate the model performance. The performances of the model with different I are
compared and shown in Figure 6. It can be seen that when the length of the subsequence ! is set to
256, the proposed model has the best performance in both fault classification accuracy and model
training speed. Smaller and larger I would decline the performance of the proposed model. The model
with a small I cannot learn discriminative local features. A large | would decrease the time steps of

136



Sensors 2018, 18, 2932

the holistic ConvLSTM layer, as a result, the model cannot obtain effective holistic spatiotemporal
information. Therefore, [ is set to 256 in the following experiments.

Table 2. Parameters of the proposed model used in gearbox fault diagnosis experiments.

No. Layer Type Kernel Stride Channel BN Axis Activation
1 Local Convolution (4,1) 4,1) 4 4 sigmoid
2 Local ConvLSTM (1,4) 1,1 4 5 tanh
3 Holistic ConvLSTM (2,2) (1,1) 4 4 tanh
4 FC layer 100 - 1 -1 sigmoid
5 Supervised learning layer 4 - 1 - softmax
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Figure 6. Accuracy and training time under different length of the subsequence.

5.1.3. Results and Discussion

To prove the advantage of the proposed TDConvLSTM, the same multi-sensor data is processed
by some comparative models: empirical mode decomposition and support vector machine method
(EMD-SVM), convolutional neural network (CNN), long short-term memory neural network (LSTM),
a hybrid model that series connects CNN and LSTM (CNN-LSTM) and the proposed TDConvLSTM
model without batch normalization (TDConvLSTM without BN).

To compare the performance of traditional machine learning models based on handcrafted features
with the deep learning models based on raw sensor data, EMD-SVM is adopted as a comparative model.
In EMD-SVM, the data of each sensor channel is decomposed by EMD firstly and the normalized energy,
kurtosis, kurtosis and variance of the top five intrinsic mode functions are extracted as handcrafted
features. A total of 80 features are obtained from four sensor channels to constitute a feature vector,
which is used as the input of the SVM.

It should be noted that, all the deep learning models in this experiment are consist of five main
layers. The last two layers in each model are a FC layer with size of [100] with dropout and a softmax
layer with size of [4]. In CNN, three pairs of convolutional layers and pooling layers are stacked.
The filter size, stride, channel and pooling size of three pairs of layers are set to [(4, 1), (4, 1), 10, (2, 1)],
[(1,4),(1,1),10, (2, D] and [(2, 1), (1, 1), 10, (2, 1)] respectively. In LSTM, the raw data with size of
(5120, 4) is divided into 20 time steps firstly. Each time step is a 2D tensor with size of (256, 4). Then we
flatten the 2D tensor into a 1D tensor (1024). As a result, the raw data is reshaped to (20, 1024). For the
LSTM model, three LSTM layers with sizes of [500], [100] and [10] are stacked. In the CNN-LSTM
model, two CNN layers with size of [(4, 1), (4, 1), 10] and [(1, 4), (1, 1), 10] are firstly designed, which is
followed by a LSTM layer with size of [50]. Between the two CNN layers, a pooling layer with size
of (2, 1) is adopted. Except the softmax layer, the activation function of each layer in CNN model
and CNN-LSTM model are set to ReLu and activation functions in LSTM model are set to sigmoid.
Parameters of the proposed TDConvLSTM are shown in Section 5.1.2. The Parameter settings of
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the TDConvLSTM without BN keep the same as the proposed TDConvLSTM model, except that
all the batch normalization layers are removed. Dataset D1, D2, D3 and D4 are used to test all the
comparative models respectively. The testing results are listed in Table 3. It is shown that our proposed
TDConvLSTM model can diagnose the faults of the gearbox effectively with the highest test accuracy
both under constant rotation speed and nonstationary rotation speed.

As shown in Table 3, all the deep learning models based on raw sensor data can achieve better
performance than the handcrafted features based model EMD-SVM. Under constant rotation speed,
the proposed TDConvLSTM model can achieve higher test accuracy than CNN and LSTM, which can
be explained that the proposed TDConvLSTM model can both extract temporal features and spatial
features of multi-sensor time series, which enables the TDConvLSTM layer to discover more hidden
information than CNN and LSTM. The ConvLSTM structure can simultaneously learn the temporal
features and spatial features and pay more attention to how data changes between time steps, so it can
obtain better performance that CNN-LSTM structure. Under nonstationary rotation speed, the features
that related to faults are hidden on different time scales. The proposed time-distributed structure
can learn both short-term and long-term spatiotemporal features of time series, that is, it can make
full use of the information on different time scales in the signal. Therefore, the proposed model can
deliver better performance under nonstationary rotation speed. The comparison of TDConvLSTM
and TDConvLSTM without BN proves that BN can improve the fault diagnose accuracy of the
TDConvLSTM model. In addition to this, BN can improve the speed of model convergence, which is
corroborated in Figure 7. The time required to calculate each sample is just 0.006s with i5-4570
CPU, which proves that the proposed TDConvLSTM model can be used for real-time mechanical
fault diagnosis.

Table 3. Testing accuracy of comparative methods.

Model Constant Rotation Speed Nonstationary Rotation Speed
odel
D1 D2 D3 D4
TDConvLSTM 100% 100% 100% 97.56%
TDConvLSTM o o o o
Without BN 100% 99.5% 99.78% 93.11%
CNN-LSTM 98.67% 97% 98.33% 91.89%
CNN 96.83% 99.5% 98.17% 86.78%
LSTM 96.67% 99.83% 100% 80.94%
EMD-SVM 90.67% 89.67% 91.33% 75.67%
—— TDConvLSTM
1.0 —— TDConvLSTM_ withoutBN
0.8
B
= 06
& 04
0.2
0.0
0 2 4 6 8 10 12 14
Epoch number

Figure 7. The effect of batch normalization (BN) on model training.

5.1.4. Feature Visualization

As we know, deep learning models work like a black box, so it is hard to understand its process of
extracting features. In this section, the t-SNE method [44] is used to show the features extracted by each
layer in our proposed TDConvLSTM model. T-SNE is an effective dimensionality reduction method,
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which can help us to visualize high-dimensional data by mapping the data from high-dimensional
space to a two-dimensional space. Features extracted by each layer are respectively converted to
a two-dimensional feature map. The feature maps of raw data, the local convolutional layer, the local
ConvLSTM layer, the holistic ConvLSTM layer and the FC layer are shown in Figure 8, in which
features of different fault types are distinguished by different colors. It can be seen that as the layers
get deeper and deeper, the features of different fault types become more and more separate. As shown
in the Figure 8a, raw data of four fault types are all mix together. Then the local convolutional layer
disperses all features, which is shown in Figure 8b. Starting from the local ConvLSTM layer, the
features of the same fault type begin to cluster. In the Figure 8c, we can see that the FT type and the
CIB type start clustering first, while the CT type and FTCT type are still mix together. It is because
that both the CT type and FTCT type have a root crack tooth in the big gear, so they have some same
features. As we can see in Figure 8d, after the local ConvLSTM layer, the features of four fault types
are almost separated. At last, the FC layer further separates the features of the four fault types and
further clusters the features of the same fault type.
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Figure 8. Feature visualization: (a) Raw data; (b) Local Convolutional layer; (c) Local ConvLSTM layer;
(d) Holistic ConvLSTM layer; (e) Fully-connected (FC) layer.

5.2. Case Study 2: Tool Wear Monitoring

5.2.1. Experiment Setup and Data Description

The experiment was implemented on a high-speed CNC machine with a spindle speed of
10,400 rpm [45]. The experiment setup is illustrated in Figure 9. The material of the work-piece
is Inconel 718. Ball-nose cutting tools of tungsten carbide with 3 flutes were used to mill the work-piece.
The operation parameters are as follows: the feed rate in the x direction was 1555 mm /min; the depth
of cut in the y direction (radial) was 0.125 mm; the depth of cut in the z direction (axial) was
0.2 mm. During the milling process, a Kistler quartz 3-component platform dynamometer, three Kistler
Piezo accelerometers and a Kistler acoustic emission (AE) sensor were used to measure the cutting
force, machine tool vibration and the high frequency stress wave generated by the cutting process,
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respectively. Seven channels of signals (force_x, force_y, force_z, vibration_x, vibration_y, vibration_z,
AE_RMS) were acquired by DAQ NI PCI1200 with a sampling frequency of 50 kHz. After completing
one surface milling, which was regarded as one cut, the corresponding flank wear of the three flutes
were measured offline using a LEICA MZ12 microscope. The tool wear is the average wear of the
three flutes. There are 300 cuts in each tool life and the multi-sensor data of one cut is regarded as
a sample. The target value of a sample is the corresponding tool wear. Finally, three tool life dataset
C1, C4 and C6 are selected to test our model. Due to the high sampling rate of raw data, the length of
each sample is up to 200 thousand. The raw data is first downsampled; as a result, the length of each
sample is reduced to 20,000. The acquired signals are first normalized as described in Section 4.2.1.
In each testing case, two of the datasets are selected as the training dataset and the other one is used as
the testing dataset. There are three model testing cases and according to the testing dataset, they are
marked as C1, C4 and C6, respectively.

LEICA MZ12
microscope

=

NI PCI1200 /

—

Data acquisition Data acquisition
High speed milling machine equipment software

Figure 9. The experiment setup for tool wear monitoring

5.2.2. Model Settings

For our proposed TDConvLSTM model tested in tool wear monitoring experiments, the main
parameters in main layers are listed in Table 4. The subsequence length [ of the proposed model
in this experiment is set to 500. The mean squared error is adopted as the loss function and
the Nesterov-accelerated adaptive moment estimation (Nadam) algorithm [46] is employed as the
optimizer for model training. It should be noted that, we formulate the tool wear prediction task as
a regression prediction problem, so the supervised learning layer is a linear-regression layer and the
activation in this layer is set to linear. The dropout rate of the FC layer is set to 0.5. Other parameters
keep the same as stated in Section 5.1.2.

5.2.3. Results and Discussion

Three models including CNN, LSTM and CNN-LSTM are compared with the proposed model.
Their structures are same as that described in Section 5.1.3, except that some parameter settings are
changed. In CNN, the filter size, stride, filter number and pooling size of three pairs of convolutional
and pooling layers are set to [(500, 3), (250, 3), 10, (2, 1)], [(4, 2), (1, 1), 10, (2, 1)] and [(2, 1), (1, 1),
10, (2, 1)], respectively. The activation functions of CNN models are all set to ReLu. In LSTM, the raw
data with size of (20,000, 7) is divided into 40 time steps along the temporal dimension firstly. The data
of each time step is reshaped to a 1D tensor and the raw data finally reshaped to (40, 3500). The output
size of the three LSTM layers are [1000], [100] and [10] respectively. All the activation functions in
LSTM model are set to tanh. In the CNN-LSTM model, the filter size, stride, filter number of two CNN
layers are set to [(500, 3), (250, 3), 10] and [(500, 3), (1, 1), 10], respectively. The pooling size in the
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pooling layer is (2, 1). The size of the LSTM layer is set to [10]. The settings of the last two layers of the
three models are same as the TDConvLSTM model described in Section 5.2.2.

Table 4. Parameters of the proposed model used in tool wear monitoring experiments

No. LAYER TYPE Kernel Stride Channel BN Axis Activation
1 Local Convolution (10,3) (5,3) 4 4 ReLu
2 Local ConvLSTM 2,2) (1,1) 4 5 tanh
3 Holistic ConvLSTM 44) (1,1) 1 4 tanh
4 FC layer 10 - 1 -1 ReLu
5 Supervised learning layer 1 - 1 - linear

Mean absolute error (MAE) and root mean squared error (RMSE) of the true targets and the
predicted targets are adopted as the indicators of model performance. The corresponding equations
for the calculations of MAE and RMSE are given as follows:

n
MAE = % Y ly_test —y_pre| (21)
i=1
1 & 2
RMSE =, |- Y (y_test — y_pre) (22)
i-1

where y_test is the true tool wear value in the test dataset and y_pre is the predicted tool wear value,
n is the number of testing samples.

MAE and RMSE of all models in three different model testing cases are shown in Table 5. As we
can see in the table, the TDConvLSTM model and the CNN-LSTM model both perform better than
CNN and LSTM. The result can be explained that the TDConvLSTM model and the CNN-LSTM model
can extract spatiotemporal features, while, the CNN model discards the long-term temporal correlation
information in each channel data and the LSTM model discards the spatial correlation information
between different channels. The hybrid models can discover more hidden information than CNN
and LSTM.

It is shown that our proposed TDConvLSTM model achieves the best performance among all
compared models. The most competitive CNN-LSTM model independently extracts the spatial features
and the temporal features in succession, while, the TDConvLSTM model can simultaneously learn the
temporal features and spatial features and pay more attention to capture the data changing features
between time steps. The time-distributed structure can prompt the TDConvLSTM model make full
use of information on different time scales. The above two advantages make the proposed model get
better performance. The regression performances of TDConvLSTM in three different testing cases are
illustrated in Figure 10. It is found that the predicted tool wear values are able to follow the trend
of true tool wear values well with very small error. The testing time for each sample is 0.013s with
i5-4570 CPU, which proves that the proposed TDConvLSTM model can be used for real-time tool
wear monitoring.

Table 5. Mean absolute error (MAE) and root mean square error (RMSE) of models.

Model MAE RMSE
ode
C4,C6/C11 C1,C6/C4 2 C1,C4/C6 3 C4,C6/C1 C1,C6/C4 C1,C4/C6
TDConvLSTM 6.99 6.96 7.50 8.33 8.39 10.22
CNN-LSTM 11.18 9.39 11.34 13.77 11.85 14.33
CNN 15.32 14.34 17.36 18.50 18.80 21.85
LSTM 19.09 16.00 2261 21.42 17.78 25.81

14C4,C6/C1” denote that C4 and C6 are the training datasets, C1 is the testing dataset. 2 #C1,C6/C4” denote that
C1 and C6 are the training datasets, C4 is the testing dataset. 3 #C1,C4/C6” denote that C1 and C4 are the training
datasets, C6 is the testing dataset.
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Figure 10. Regression performances of TDConvLSTM for three different testing cases: (a) C1; (b) C4;
(c) Cé.

6. Conclusions

The TDConvLSTM model has been proposed in this paper to extract spatiotemporal features
of multi-sensor time series for machine health monitoring. The TDConvLSTM model is suitable
for raw multi-sensor data and does not require any expert knowledge and feature engineering.
In TDConvLSTM, the normalized multi-sensor time series is first segmented into a collection of
subsequences using a sliding window. Then a time-distributed local feature extractor is designed with
a time-distributed convolution layer and a ConvLSTM layer, which is employed in each subsequence to
extract local spatiotemporal features inside a subsequence. The holistic ConvLSTM layer that stacked
on the top of time-distributed local feature extractors can extract holistic spatiotemporal features
between subsequences. At last, the fully-connected layer and the supervised learning layer can further
reduce the feature dimension and obtain the machine health condition. The time-distributed structure
can learn both short-term and long-term spatiotemporal features of multi-sensor time series. Therefore,
it can make full use of information on different time scales. In the gearbox fault diagnosis experiment
and the tool wear monitoring experiment, the results have confirmed the superior performance of the
proposed TDConvLSTM model.

In future work, we plan to apply the proposed time-distributed spatiotemporal feature learning
method in machine remaining useful life prediction tasks and continue to optimize our model to get
better performance.
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Abstract: A hybrid particle swarm optimization (PSO), able to overcome the large-scale nonlinearity
or heavily correlation in the data fusion model of multiple sensing information, is proposed in this
paper. In recent smart convergence technology, multiple similar and/or dissimilar sensors are widely
used to support precisely sensing information from different perspectives, and these are integrated
with data fusion algorithms to get synergistic effects. However, the construction of the data fusion
model is not trivial because of difficulties to meet under the restricted conditions of a multi-sensor
system such as its limited options for deploying sensors and nonlinear characteristics, or correlation
errors of multiple sensors. This paper presents a hybrid PSO to facilitate the construction of robust
data fusion model based on neural network while ensuring the balance between exploration and
exploitation. The performance of the proposed model was evaluated by benchmarks composed of
representative datasets. The well-optimized data fusion model is expected to provide an enhancement
in the synergistic accuracy.

Keywords: multi-sensor system; multi-sensor information fusion; particle swarm optimization;
sensor data fusion algorithm; distributed intelligence system

1. Introduction

A moment of evolution is now emerging toward a new paradigm known as smart convergence,
which is bringing together both heterogeneous and information communication technologies.
These emerging phenomena have prompted researchers to explore new possibilities for sophisticated
smart devices [1] to be embedded in various real objects and to cope with various environmental
changes. Recently, multiple similar and/or dissimilar sensors, as shown in Figure 1, have been
widely used to provide precise sensing information from different viewpoints [2,3] and to realize
the Internet of Things in a cyber-physical system [4]. Given that the accuracy of a sensor system is
dictated by the degree to which repeated measurements under unchanging conditions are able to
produce the same results, a multi-sensor system has typically been thought of as a way to guarantee
the accuracy of a measurement system [5]. Hence, multi-sensor systems are an emerging research topic
that is becoming increasingly important in various environmental perception activities. Nevertheless,
challenging problems of multisensory data fusion algorithms are still far from accomplished [6].
Evolutionary computation methods [7] recently seem to be making a comeback in order to solve
real-world problems concerning typically not iid (independent and identically distributed) data or
sparse labeled data, and these methods are expected to help such a fusion model enhanced.

Because a single sensor usually only recognizes a limited set of partial information about the
environment, multiple similar and/or dissimilar sensors are needed to provide accurate sensing
information from a variety of perspective in an integrated manner [8]. Such multiple-sensing
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information is combined depending on data fusion algorithms to achieve synergistic effects. However,
the construction of a data fusion model is not trivial because of difficulties in meeting the restricted
conditions of a multi-sensor system such as its limited options for deploying sensors and nonlinear
characteristics or correlation errors of multiple sensors. Such a nonlinearity optimization problem in
a data fusion model can be solved by a neural network algorithm with an effective back propagation
method ensuring the best performance of the network [9]. In recent multi-sensor fusion research [10,11],
neural networks (including deep neural networks) play a major role in feature classification and
decision making. However, difficulties for the efficient and high accurate multisensory fusion
model remain.
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Figure 1. A multi-sensor system.

As is well known, maintaining the balance between the exploration of new possibilities and the
exploitation of old certainties [12,13] has been considered a priority in designing an optimization
scheme. As one of latest evolutionary approaches, particle swarm optimization (PSO) uses randomly
placed particles on the search-space to explore new possibilities toward a global best position as
a new solution to solve real-world problems [14-16]. PSO can be utilized in training a neural
network by a population based stochastic back-propagation technique [17]. The randomly placed
particles are more likely to find the global minimum than neural networks using a single particle.
Venu et al. [18] showed that the parameters of feed-forward neural network converge faster using
PSO than any other algorithm based on back-propagation methods, e.g., stochastic gradient descent,
scaled gradient descent, or Levenberg-Marquardt (LM) [19]. They adopted PSO as a training algorithm
involving adjusting the parameters (i.e., weights and biases) to optimize performance of the neural
network. Kim et al. [20] suggested the PSO proportional-integral-derivative (PSOpid) which is one
of the enhanced PSO algorithms through the stabilization of particle movement. Although a particle
can be used as one of the solutions to regulate the parameters of neural network, it is necessary to
constrain the range of search space for quicker convergence and higher fitness in PSO.

This paper proposes a hybrid PSO capable of overcoming large-scale nonlinearity or heavy
correlation in the sensing data fusion and facilitates the construction of a robust data fusion model
while maintaining the balance between the exploration of new possibilities and the exploitation of
old certainties. The proposed algorithm was evaluated by benchmarks composed of representative
datasets and the well-optimized data fusion model is expected to provide an enhancement in synergistic
accuracy. In this paper, the neural network is used as a basic model and different backpropagation
methods such as PSO, LM, and PSOpid are considered, thus the expression of neural network is
simply omitted.

Section 2 discusses the problem of data fusion model and previous methods such as ordinary
LM and PSO. We then propose a hybrid PSO, LM, and PSOpid in Section 3, and Section 4 describes
how evaluation is performed for the proposed approach with the different weighing participants in
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diverse user-scenarios and with the different exemplary datasets from MATLAB. Section 5 concludes
the research and describe possible future works.

2. Data Fusion Model Using Neural Network and PSO

Compared to a single sensor system, multiple sensor systems have the advantage of broadening
the sensing range and improving the perception of environmental conditions [8]. In addition,
a multi-sensor system allows information from a set of homogeneous sensors to be combined using
a data fusion model. Thus, a multi-sensor system represents a proven method for enhancing the
accuracy of a measurement system.

Figure 2 shows the case of using multiple Force Sensitive Resistor (FSR) sensors on a smart floor
block [16]. FSRs is one of best solutions to meet multi-dimensional requirements such as maintaining
visibility; holding weights of standing, moving, or jumping user; avoiding occlusion in sensing
area; and reducing production cost. In this paper, an FSR is composed of two substrate layers with
a conductive core, and, when pressure is applied to the FSR, the substrate moves, compressing the
conductive core to detect the weight on the smart floor. The pressure changes are measured by the
analog output from the FSR resistive divider. The weight is dispersed to the corner based on the
approximate inverse power law which is the relation between distance and force of the FSR [21].
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Figure 2. Example of user localization using a multi-sensor system.

In [16], a neural network adopting three layers is used, and we can clarify our notation
and describe it as follows. Each four-dimensional vector is applied to the input layer as
s=[ s1 s s3 84 }T, where {s € R:0 <5 <21%}. An output produced by a non-linear
activation function at each hidden unit, g(net), that is, a hyperbolic tangent sigmoid as,

enet _ e—m’t

enet + e—net

g(net) = 1
where the net is the inner product of inputs with weights at each neural network unit.

Each output of the neural network as p = [p1 p2] T
hidden units described in Equation (2):

calculates the activation function based on the

ng d
pi(s) =Y 0k <2 0jisi + 9;0) + 6ko )

j=1 i=1

where the subscript i indexes units in the input layer and j indexes units in the hidden layer; 6; denotes
the input-to-hidden layer parameters at the hidden unit j; and the dimension of input vector is d.
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In addition, the subscript k indexes units in the output layer, ny indicates the number of hidden units
and 0; denotes the hidden-to-output layer weights. 6;p and 6o are mathematically treated as the bias
of the layer. We refer to its output, p = [p1 pz]T, as the user’s estimated 2D position (x, y) on the
screen, respectively. The authors in [16] regarded the cost function as the sum of the output units of
the squared difference between the target f; and the actual output ay.
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where t and a are the target and actual output vectors of length c (e.g., ¢ is 2 in this experiment), the
batch size is m and © represents all weights and biases.

FSRs show nonlinear issues or problems of correlation errors. It can be caused by instability of
the glass or metal frame, response time of the sensor, errors in manufacturing, assembly processes,
the sensor placement, and human errors. Therefore, Kim et al. [16] suggested a PSO-based neural
network model, namely PSO, which can be used as alternatives method to the gradient-descent
algorithm by randomly spreading multiple particles capable of finding each optimum and being
converged toward the global optima. However, if a system needs many parameters that should be
adjusted for many epochs and other potential parameters, then the system needs to be improved.

3. A Hybrid PSO Model for Multi-Sensor Data Fusion

Since March [12] proposed the balancing between exploration and exploitation in learning, it has
been extensively researched and widely applied to various domains [13]. In this paper, the PSO first
explores possibilities as a global search, the LM then exploits certainties as a local search, and the
PSOpid suggested in [20] lastly explores a new possibility within the range-optimized search space.
The PSOpid is one of the enhanced PSO algorithms and each particle finds the global optimum securely
while preventing a particle from becoming unstable or exploding. In addition, the algorithm can
converge more quickly and get high fitness values compare to other algorithms in the range-optimized
search space.

3.1. Improved Exploitation of Neural Network Using Ordinary PSO

The idea of PSO allows particles randomly placed on the search-space to explore new possibilities
to the best global position. PSO is used to train a neural network with back propagation
method considering a population based stochastic optimization technique [17]. On the other hand,
the randomly placed particles will have a high probability of discovering the global minimum in
comparison with the ordinary LM using a single particle. In this method, PSO can be alternatively used
as the training algorithm at each iteration #, including parameter tuning to optimize the performance
of the neural network. In addition, a particle is used to determine the value of parameters in the neural
network. The magnitude of vectors 0; and v; are equivalent to the dimension of the weights and biases.
The velocity and position of the i-th particle after the n-th iteration are shown in Equations (4) and (5).

w-vi[n —1]
vi[n] = K{ +er-randy-(p;, [n—1] — 0;[n —1] 4)
+oy-randy- (gyoq[n — 1] — 0;[n — 1]

0i[n] = 6i[n — 1] +vi[n] ®)

The previous best position is selected using Equation (6), and the global best position is decided
by Equation (7).

P [1] :_{ 0; if J(8;[n]) < J(@i[n — 1)) .

P, [ — 1] otherwise
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8best1] = {Pj,. [ Vi : J(py, . [n]) <T(p; [n])} )

where the number of particles is Z; (= 10 + 2 x (the dimension of the weights and biases)’?) and the
inertia weight is w, which dynamically adjusts the velocity. Moreover, the cognitive component ¢y
and the social component c; change the particles’ velocity toward the previous best and global best
position, respectively. The PSO uses random numbers determined from a uniform distribution rand;
and rand, to avoid unfortunate states in which all particles quickly settle into an unchanging direction.
Consequently, the parameters are updated in accordance with the found global best position.

This paper proposes a hybrid LM and PSO scheme, namely LM-PSO, based on the concept
of two-phase evolutionary programming [22]: First, PSO is used to explore a new possibility for
overcoming multiple minima, and second, the initial value of the weights and biases of LM-based
neural network, namely LM, is set—in other words, the neural network is trained—to the optimal
configuration derived in the PSO phase. Consequently, the proposed LM-PSO can derive more
accurately a globally optimal solution compared to LM.

In the first stage, normally a PSO has the initial parameters shown in Table 1 for a multiple FSR
system. As illustrated in Figure 3, PSO finds suboptimal range of parameters which can reduce the
configuration space for LM’s parameters.

Huge Search-Space Find Suboptimal I}én e

position
position

100

particles dimension particles dimension
(a) (b)

Figure 3. PSO alone: (a) Initial position of the particles within a hypercube using a uniform random
distribution; and (b) converged position of the particles.

Table 1. Parameter information of the PSO method alone.

Parameters Value
Swarm size (Z) 28
Initial Position of Particles Spread within a hypercube using a uniform random distribution
Minimum velocity norm 0.05
Inertial weight (w) 1
Minimum position (min_pos) —100
Maximum position (max_pos) 100

In the second stage, the proposed LM-PSO is trained with the optimal initial weight and bias
values derived during the PSO stage. Although PSO is implausible on its own as a solution for the
convergence rate and solution accuracy as illustrated in Figure 3, the proposed hybrid LM-PSO shows
an enhanced performance of both accuracy and convergence rate as compared to conventional LM.
However, hope remains for new possibilities for deriving an ultimate global optimum.

3.2. Exploration Toward Ultimate Goals for the Use of Enhanced PSO

Ordinary PSO alone has difficulty negotiating the tradeoff between global and local search because
particles are initially deployed following a uniform random distribution in a hypercube big enough
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to contain a prospective global optimum. When the particle position range is not limited within
the minimum and maximum positions or is too broad, the swarm can become unstable or explode,
resulting in a slow convergence. Therefore, a novel approach is necessary for each particle to discover
the global optimal solution securely, preventing the particles from becoming unstable or exploding.

The proportional-integral-derivative (PID) is widely applied in a feedback control loop
technology [23]. The major advantages of the PID are easy to be implemented as well as only
three parameters, i.e., proportional, integral and derivative terms, are required to be adjusted.
The proportional gain is subject to the current error, the integral gain varies in proportion to both the
magnitude and the duration error, and the derivative gain represents a prediction of future errors [24].
In [20], Kim et al. proposed a new approach using PSOpid as described in Equation (8) to change the
particle’s position of PSO with less oscillation.

Kp-v;[n]
0;[n] = 0;[n—1] + +K1 L vi (k] ®)
+Kp+(viln] —vi[n —1])

where Kp is the proportional term, Kj is integral term, and Kp is the derivative term, and they are
selected through trial and error operations, as shown in Table 2.

Table 2. Parameter information of the PSOpid-based method alone.

Parameters Value
Minimum position (min_pos) 1.2 X min (LM-PSO)
Maximum position (max_pos) 1.2 x max (LM-PSO)

Proportional term (Kp) 0.5 (fixed)
Integral term (Kj) 0.5 (fixed)
Derivative term (Kp) 0.6 (fixed)

Adjustment of the velocity is calculated from the acceleration with respect to the distance
error produced by both present and its previous best position compared to the global best solution.
Furthermore, two random, uniformly distributed variables are utilized in preserving the diversity.
The position of each particle is updated according to the multiplying the velocity with the three PID
terms, which are described in Table 2. In addition, it is necessary to restrain the dynamic range of each
particle position to prevent a swarm from exploding or unstable conditions.

The position of each particle is initialized to the range between maximum and minimum derived
from the output of the precedent LM-PSO technique. The initial global best position is optimally
configured in accordance with the LM-PSO method. Consequently, particles randomly distributed
can better guarantee an accurate global optimal solution than they can through either method alone,
as shown in Figure 4.
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Figure 4. A hybridization of PSOpid, LM and PSO, namely PSOpid-LM-PSO: (a) initial position of
particles within a shrunk hypercube; and (b) convergence position of the particles.

The stabilized PSOpid, in which each particle is evaluated by using a fitness function and update,
is located in an enhanced location to discover the best optimal solution without local minimum.
The convergence rate of the proposed PSOpid is faster and it has much higher performance than
previous methods. This technique enables efficient implementation because of its small number of
parameters, which both shortens the training time and reduces overfitting compared to ordinary PSO.

3.3. Three-Phase Hybrid PSO Method Balancing between Exploration and Exploitation

The proposed PSOpid-LM-PSO, as shown in Figure 5, assigns each particle a position calculated
based on the output of the LM-PSO phase to initialize an optimal configuration of a global best position.
The swarm intelligence technology, in which each individual evaluates, compares, and imitates one
another, is a better way to find the best optimum with no local minima. Importantly, the dynamic range
of each particle position is limited to prevent a swarm from becoming unstable or exploding. In the
three-phase hybrid optimization method, PSO-based exploration of new possibilities is firstly executed
for the configuration space of parameters in the multi-sensor data fusion model. Secondly, ordinary
LM configured with the sub-optimized range can focus on the exploitation of old certainties. Finally,
PSOpid can explore the ultimate goal with more accuracy and faster convergence rate. As a result of
the hybrid method, the time needed for convergence is also shorter than that of an ordinary method.
Thus, the number of iterations required for convergence counts in comparing speed of convergence.
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Figure 5. Three-phase hybrid optimization method.

In the case of PSO and PSOpid alone, the range of each particle position become unstable or
explodes; therefore, the hybrid of three algorithms can be used to not only exploit old certainty
optimum but also to explore new possibilities. Through all evaluative processes, this paper
shows the enhanced performance by a hybrid scheme of ordinary PSO, LM, and PSOpid, namely
PSOpid-LM-PSO. The results showed that the proposed PSOpid-LM-PSO provides faster convergence
and better fitness than other algorithms within the range-optimized search space, as shown in Figure 6.
Each coordinate in Figure 6 indicates the minimum and maximum of the range for parameters in
multi-sensor data fusion model. This well-optimized data fusion model for the sensing information of
a set of homogeneous FSRs is expected to provide an enhancement in synergistic accuracy.
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Figure 6. Exploration of a new possibility. Each (x,y) coordinate indicates the minimum and maximum
of all parameters such as weights and biases, and the outcomes are from each independent trial.

4. Performance Analysis

We first evaluated the experimental dataset of the touch floor system in [16] and selected men and
women from 58 kg to 90 kg as participants. While a user is standing on the floor, the user weight is
distributed to four corners according to the inverse power-law in the distance vs. force relation, and the
force on each FSRs is sampled through a resistive divider with noise filters. Therefore, it is reasonable
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to perform experiments with various weighing participants. In this experiment, we evaluated the
mean distance error between prediction user location and test set location. As shown in Figure 7,
five different algorithms, geometrical trilateration [25], ordinary LM-based neural network (LM),
PSO-based neural network (PSO), two phases method (LM-PSO), and the proposed three-phase hybrid
method (PSOpid-LM-PSO), are evaluated to investigate whether the suggested method is sufficiently
robust to identify the position of differently weighing participants in realistic indoor conditions. In the
evaluation, each algorithm was trained with same sized learning data consisting of 100 steps per each
participant with 4 x 185 matrix. In addition, these algorithms used the same normalized input data
via preprocessing with mean cancellation, principle component analysis and covariance equalization.
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Figure 7. Performance analysis.

Table 3 presents the results from a comparison test consisting of 100 independent trials. In each
trial, an inner random number generator was initialized with a nonnegative integer based on the
current clock time, and, thus, the randomized functions can produce a predictable sequence of
numbers. As described in Table 3, the estimation error of the proposed PSOpid-LM-PSO is reduced by
approximately 88.77% in comparison with the trilateration method. (e.g., in 58 kg case, error reduction
is calculated as follows: (1.0 — 23.18 mm /546.07 mm) x 100 = 95.76%).

Table 3. Comparison results of the algorithm enhancement rates (out of 100 independent runs).

Single-Subject Evaluation: Mean Distance Error [mm]

PSOpid-LM-PSO

Weight Trilateration LM alone LM-PSO PSOpid-LM-PSO Error Reduction
58 kg 546.07 26.28 24.85 23.18 95.76%
64 kg 213.54 30.39 27.01 25.14 88.23%
72 kg 637.15 31.34 30.07 24.76 96.11%
85kg 160.16 50.14 44.02 41.48 74.10%
90 kg 196.56 27.32 24.96 20.35 89.65%

Figure 8 shows the rate of enhancement under the PSOpid-LM-PSO in comparison with the classic
LM. The PSOpid-LM-PSO method decreased the mean location error by about 18.57% compared to the
LM alone case and the overall performance was enhanced [16].
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Figure 8. Enhancement graph of each algorithm as compared to the classic LM-based
backpropagation algorithm.

In contrast, a performance analysis was performed using different exemplary datasets from
MATLARB [26], which are widely used to evaluate the performance of machine learning, to confirm
that the proposed method is robust enough to improve stability, robustness and convergence speed in
terms of neural network training. In this study, we used the three values of the PID (Kp, K}, and Kp)
which are fixed to 0.5, 0.4, and 0.3, respectively to verify the reliability of performance evaluation
of the proposed methodology in different exemplar datasets. Other parameters were used in the
same manner with the generic PSO and the PSOpid approach. Figure 9 shows the enhancement of
hybridizations among PSOpid-LM-PSO and the other algorithms. The results are summarized with
the best, median, and worst results (out of 100 independent runs) reported. In the case of PSO and
PSOpid, the range of each particle position becomes unstable or explodes; therefore, neither algorithm
alone can be used to exploit the old certainty optimum as well as explore new possibilities. Through all
evaluative processes, the proposed PSOpid-LM-PSO showed enhanced performance by using a hybrid
scheme of ordinary PSO, LM, and PSOpid.
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Figure 9. Performance test using a sample dataset.

5. Conclusions

This study proposed a hybridization of enhanced particle swarm optimization (PSO) and a classic
neural network to build a multi-sensor data fusion model. The results show that the proposed
PSOpid-LM-PSO provides a faster convergence and better fitness than other algorithms within
the range-optimized search space with the system accuracy improved by approximately 18.6%
compared to the classic LM algorithm. The contributions of this paper will reduce human effort
in training the data fusion model using an on-line adaptation approach based on small changes
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from a prior trained model, or by using support vector machines for the one-to-many mapping
approximation [27,28]. Another important area for further investigation is to explore the universal
approximation capabilities of a standard multi-layer feed-forward neural network in most applications
where numerous input samples need to be processed. Specifically, a two-hidden-layer feed-forward
network using Kolmogorov’s theorem can be considered for approximating the high-dimensional
data fusion model [29,30]. This well-optimized model for data fusing from the sensing information of
homogeneous sensors is expected to support an enhancement in the synergistic accuracy.
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Abstract: Metal Oxide Semiconductor (MOS) gas sensor has been widely used in sensor systems for
the advantages of fast response, high sensitivity, low cost, and so on. But, limited to the properties of
materials, the phenomenon, such as aging, poisoning, and damage of the gas sensitive material will
affect the measurement quality of MOS gas sensor array. To ensure the stability of the system, a health
management decision strategy for the prognostics and health management (PHM) of a sensor system
that is based on health reliability degree (HRD) and grey group decision-making (GGD) is proposed
in this paper. The health management decision-making model is presented to choose the best health
management strategy. Specially, GGD is utilized to provide health management suggestions for
the sensor system. To evaluate the status of the sensor system, a joint HRD-GGD framework is
declared as the health management decision-making. In this method, HRD of sensor system is
obtained by fusing the output data of each sensor. The optimal decision-making recommendations
for health management of the system is proposed by combining historical health reliability degree,
maintenance probability, and overhaul rate. Experimental results on four different kinds of health
levels demonstrate that the HRD-GGD method outperforms other methods in decision-making
accuracy of sensor system. Particularly, the proposed HRD-GGD decision-making method achieves
the best decision accuracy of 98.25%.

Keywords: health management decision; grey group decision-making; health reliability degree;
maintenance decision; sensor system

1. Introduction

Sensor systems are extensively used in many fields, such as industry, manufacturing, aviation,
and aerospace. Metal Oxide Semiconductor (MOS) gas sensor has become the most common gas sensor
in sensor system at present because it has the advantages of fast response to target gas, high sensitivity,
simple structure, easy to operation, low cost, and so on. Limited to the properties of metal oxide
gas sensitive materials, the phenomenon such as aging, poisoning and damage of the gas sensitive
material will affect the measurement quality of MOS gas sensor array. As a result, the trained pattern
recognition method greatly degrades the performance of odor detection and analysis to target gases [1].
The influence of the work state and measurement quality of MOS gas sensor array to the performance
of sensor system cannot be ignored.

At present, the following three ways are used to improve the fallen performance of the odor
detection and analysis for sensor system that is caused by the decrease of reliability of the measurement
value of the MOS gas sensor array.
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(1) Improve the material, structure and technology of gas sensor to optimize the stability of gas
sensor [2,3].

(2)  Take high redundancy gas sensor array for data acquisition to minimize the impact of fault sensor
on the detection and analysis effect of pattern recognition methods subsequently [4].

(3) Adopt periodic calibration and maintenance for sensor to replace the gas sensor whose
performance decrease obviously [5,6].

Although the above methods can improve the reliability of sensor system to some extent, there are
their own application limitations still existing. Due to the inherent characteristics of MOS gas-sensing
materials, the current technology cannot completely solve the problem of stability of gas-sensing
materials. The high redundancy gas sensor array can only reduce the influence of the fault sensor, but
it cannot completely eliminate the effect of fault gas sensor on the detection and analysis results of the
sensor system. Regular calibration and maintenance not only consume a lot of manpower and material
resources, but they also cannot determine the working state and measurement quality of the sensor
system during the period between twice calibration and maintenance consequently [7-10]. There are
numerous sensitive elements and components in a sensor system and relationships among certain
components that influence each other. Sensitive elements and components often exposed to harsh
environments (high temperature, high pressure, and strong corrosion), which cause the system to fail.
In the past, when one or several sensors faulted in sensor arrays, changing the failure sensors is often
applied. However, it is difficult to guarantee that the consistency of sensors is exactly all the same in
replacement. It is necessary to rectify the parameters of the concentration output model. Sometimes,
there are no standby sensors when the sensor is failure. Therefore, it is necessary to apply health
management decision-making to the sensor system. To ensure the stability of the system, a suitable
solution must be determined to make the health status of all the sensors in the system more clear.

Prognostics and health management (PHM) is used widely in a great number of fields [11-13].
Prognostics and health management decision is a synthesis technique that includes data acquisition,
failure detection, failure diagnosis, failure recovery, health evaluation, failure prediction, maintenance
decision-making, and any other aspect [14-16]. The purpose of health management decision is to
improve the safety and reliability of systems. Health management decision can achieve an evaluation
and prediction of system health status according to the collected data [17]. According to the health
management decision-making method, maintenance recommendations are provided. In other words,
choosing the corresponding measures to reduce the failure level or to prevent the occurrence of a
fault. In this way, system state is clearer and the maintenance times are reduced accordingly [18-20].
The PHM structure of sensor system is shown in Figure 1. Based on some previous work [21-27],
the research of condition monitoring and health evaluation has been completed. This paper will focus
on health management decision-making on the basis of condition monitoring and health evaluation
methods. The purpose of this paper is not to separate the other parts of PHM from health management
decision-making, but to increase the reliability of the system combined with the other parts.

The current health management decision method, according to the theory and technical application
in research, can be divided into three categories: model-based maintenance decision-making [28],
data-based maintenance decision-making [29,30] and reliability-based decision-making [31,32].

The sensor system has a complex structure and changeable working condition and is easily
affected by the environment. The outputs of sensors are greatly influenced by the environment.
The baselines of the same concentrations are different at different times. Itis difficult to define the failure
range. As a result, it is hard to build an appropriate model for maintenance decision-making of sensor
system. Data-based maintenance decision-making method is difficult to build for the same reason.
The traditional reliability-based method, such as D-S evidence theory [33-36], Bayes theory [37,38],
and fuzzy set theory [39-43], will face severe challenges with the uncertainty of information and
variety of data types. When provided with conflicting evidence, the D-S evidence theory results tend
to deviate from the understanding of the user. Under system failure, using D-S evidence theory to
meet the conflict changing from health status to failure status is difficult. Priori probability is essential
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for the Bayes decision method. Accuracy results are easily obtained when priori probability is known.
However, obtaining priori probability is difficult. The application will be limited to some extent.
Fuzzy set theory is a great data fusion method, but when handling maintenance decision-making, there
are many subjective factors in the description of information because of its logical reasoning. Therefore,
the representation and processing of information lacks objectivity. The three types of maintenance
decision-making methods are difficult to apply for such systems. In order to evaluate the work status of
the sensor, Shen et al. proposed the concept of health reliability degree of multi-functional sensors [25].
Health Reliability Degree (HRD) is a quantitative description of heath information. However, when
there are too many sensors, a single sensor failure cannot be effectively reflected [26].
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Figure 1. Prognostics and health management (PHM) structure of sensor system.

In recent years, group decision-making technology has rapidly developed [44-47]. The main
research content of group decision-making is making effective decisions when multiple decision
makers make decisions simultaneously. The main problem that must be solved is how to aggregate
the decision information of different experts with different preferences to obtain consistent decision
results. By fusing the decision objective of each expert, the accuracy of the system can be improved.
However, group decision-making technology research is undeveloped. The methods of correctly
obtaining decision information, including property value, property weight, and decision maker weight
information have not been established.

In this paper, a method for health management and maintenance decision based on health
reliability degree and grey group decision-making (HRD-GGD) is proposed. In this method, HRD
of sensor system is obtained by fusing the output data of each sensor. The optimal decision-making
recommendations for health management of the system is proposed by combining historical health
reliability degree, maintenance probability, and overhaul rate. The HRD-GGD is proposed to realize
the maintenance of the sensor system by comprehensively considering the decision results of multiple
expert sets. Not only can the system give out the system state, but also provide the maintenance
suggestion for each failure mode after the system working and give the confidence degree of each
maintenance proposal.

The rest of this paper is organized as follows. In Section 2, the framework of health management
and maintenance decision and the corresponding methods are presented. In Section 3, the experimental
setup and analytical discussion are introduced. In Section 4, two situations are presented and
400 different health status level samples are analyzed to give the results of health management
decision. Finally, the conclusion is accounted in Section 5.

159



Sensors 2018, 18, 2316

2. Health Management Decision

2.1. Implementation Framework of Health Management and Maintenance Decision

The main purpose of the health management decision is to obtain the working state of sensor
system quantitatively and to provide the maintenance decision for the system at this status. In order
to evaluate the state of the sensor system, the historical failure information, historical maintenance
records, and trends of historical health status for the system is used in order to model the health
management mode. As the state of the system is clearer, it is easy to reduce the proportion of
unscheduled maintenance in the maintenance plan and change the unscheduled maintenance to
predictive maintenance (scheduled maintenance).

The establishment of framework is the core of health management decision theory. The health
management suggestion is dynamically obtained by collecting fault information, health status, failure
prediction conclusion, and historical maintenance situation. The framework is shown in Figure 2.
The system input vector is composed of three parameters: historical health trend, maintenance
probability, and overhaul rate. The historical health trend indicates the working state of the system
during the last period of time. The parameter is acquired by fusing the historical HRD during
this period. Maintenance probability is obtained from historical maintenance records. The value is
equal to history maintenance times/total test times. The more frequent maintenance of the system,
the greater the probability of failure. The value of maintenance probability is larger at this condition.
Overhaul rate is the parameter of unpredictable maintenance task. The value is equal to the next
inspection time/overhaul cycle. The longer the overhaul time, the greater the uncertainty of the system.
The system is inclined to failure in this way.
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Figure 2. Framework of the health management decision.

There are three experts in the expert set. The experts can be changed when facing different
problems. In the system, three algorithms are used as the experts, namely D-S evidence theory,
Bayes theory, and fuzzy set theory. Three experts give their suggestion, respectively, according to
the above three parameters. It can be found from the experiment that these three methods have their
limitations, respectively, which will be discussed in Section 4.

The second part is the group decision-making. This part is responsible for data fusion of the
decisions of the expert set to obtain the final decision result. The decision information is recorded as part
of the next decision. The decision information is recorded and used as the basis for the next decision.
The solution set of grey group decision-making is {A1, Ay, A3, A4}, the corresponding decision
frameworks are A; {no maintenance}, A, {preventive maintenance}, A3 {corrective maintenance},
and Ay {immediate maintenance}. The decision expert set is {ej, €2, e3 }, which represent three experts,
respectively. The decision index set is {u1, 1, u3}. The corresponding evidences are u; {historical
health reliability degree}, 1, {unpredictable maintenance task}, and w3 {historical maintenance record}.
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The evidence property weight vector for three evidences is w = {wq,wy, w3}. The size of decision
framework is four. The decision framework and its corresponding health status levels and maintenance
levels are shown in Table 1.

The state description and corresponding maintenance suggestion are shown, as follows:

1. Health: The whole system is very healthy. All of the sensors are also healthy. Their measurements
are close to the expected value. There is no need to repair the system.

2. Subhealth: The system is working at subhealthy status. The output of the system is within a
normal range. All of the parameters may fluctuate near their expected value. It is essential to
execute preventive maintenance regularly. Failure detection and failure isolation methods should
be used in this situation.

3.  Failure Edge: The system is nearly failure. Their actual measurements have deviated from the
expected value, but they have not deviated completely. In this status some sensors may be faulty,
but the system can work effectively when fault recovery is performed. Corrective maintenance is
needed after experiment [25]. Failure recovery method will be applied in this status to improve
the work status sometimes.

4. Failure: The system is failure. Most of sensors are failure. The actual output has completely
deviated from its expected results. Immediate repaired the failure components or replacement
failure components immediately may be the best choice.

Maintenance decision method can provide the maintenance suggestion for each failure mode and
give the confidence degree of each maintenance proposal.

Table 1. Maintenance level of health and maintenance decision fault preventive measures.

Solution Set Health Status Level Health Description Maintenance Level
Aq Health (HS) healthy condition No maintenance
Ay Subhealth (SHS) normal range Preventive maintenance
As failure edge (FES) fault edge Corrective maintenance
Ay Failure (FS) fault condition Immediate maintenance

2.2. Health Reliability Degree (HRD)

HRD is a novel conception to define a quantitative health level. HRD represents the health level
of whole system. The HRD of the system is fused by the health level of all the sensitive elements in
the system. The value ranges from 0 to 1. When the value is 0, the system works at a severe failure
state. When the value is 1, the system works at 100% healthy state. The larger the HRD, the higher the
health level. The relationship between HRD and health level is defined as Table 2. When to evaluate
the health status of the system, the four health status levels, healthy status (HS), subhealthy status
(SHS), failure edge status (FES), and failure status (FS). The specific values vary according to different
application objects [26].

Table 2. Health status level.

Solution Set Range of Health Reliability Degree Health Status Level
Ay 09<HRD<1 Healthy
Ay 0.6 <HRD < 0.9 Subhealthy
As 02 < HRD<0.6 Failure edge
Ay 0<HRD<0.2 Failure

HRD is fused of four belonging relationship degree (brd) of sensor system by applying grey theory.
The four parameters brd are the keys to computation HRD. The values can be expressed in a simplified
way, as shown in Figure 3. If the brd is equal to 1, then the current working status is completely
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belonged to its corresponding status completely. If the brd is equal to 0, then the current status is
completely not belonged to its corresponding status. The brd is changed with the fluctuation of HRD.

In order to map the relationship between HRD and brd, Relevance Vector Machine (RVM) is used to
fuse four brd to HRD.

brd brd b;dSHS b;d

HS

brd

0 0.05 0.25 0.5 0.8 0.90.95 1

Figure 3. The relationship between Health Reliability Degree (HRD) and Belonging Relationship
Degree (brd).

The relationship of brds and output parameters are shown in Figure 4. In summary, the whitening
function of four grey sets are obtained by Equations (1)-(4).

fus(x) = exp|~llx—ul*/26?] M

exp[f”xf ;4+<5H2/252] x<pu
fsns(x) =

@
exp[—”x— u —5\\2/252] x>

exp{—”x —u+362/282] x<u
fres(x) =

]
exp{—”x—y—SéHz/Zéz] x> u ©

1 x<u—5 or x> pu—>5
—1/0-[x—pu+46] pu—5<x<pu—45
1/6-[x —pu—46] p+46<x<pu+56
0 u—40<x<pu+46

frs(x) = *)

For the all of the components in sensor system, the grey sample evaluation (GSE) matrix at the
single time point can be expressed as GSE; = (gsei]-k)mxr1(i =12---,mk =12, ,n),whichis
shown in (5).

L L I L

51 qj1 A2 413 A1j4
GSE; = S2 Apj1  Gpjp  A2j3  Aja 5)
Sm Amjl  Amj2 Amj3  Amjd

where j represents the time point, S; indicates all the elements in sensor system. I is the
evaluating criterion.
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Figure 4. The relationship between the output and brd.

The decision weight vector of different elements in sensor system is obtained by using information
entropy method. The probabilistic proportion of kth assessment criterion of ith elements is shown
in (6).

Py = £ (i =1,2,--,m)

L gsen ©)
=1
Then compute the information the information entropy of the ith elements by (7).
n
Ei = —ﬁkxlpik]npik (i=12-,m) @)
The weight vector W; = {wij, wyj, - -+ , iy} is determined by
1-E .
Wi = ——— (i = 1,2,---,m
gl g (1-E) ( ) (8)

i=1

After obtaining the decision weight, the comprehensive grey assessment values (CGAV) are

calculated by (9).
CGAV = W x GSE )

where CGAV = [ brdSH brdSHs hrdpgg bi’dl:s ]

The flowchart of the HRD methodology is shown in Figure 5 and the detail steps are shown
in Table 3. The correlation among multiple parameters has been fully considered for the weight
distribution of different sensors.

Sensor array

Sensor n status level

C ti i
Determine orgfel; e Computing
i, 1 sample o (SN o
unctlondo ! evaluating 6 s
grey mode s . Health

Figure 5. The flowchart of HRD methodology.

163



Sensors 2018, 18, 2316

Table 3. HRD computing procedure.

HRD Based on Grey Theory

Input:

Output of the sensor system

Output:

Health Reliability Degree

Procedure:

Step 1: Establish the grey evaluating criterions, which is shown as (HS, SHS, FES, FS).
Step 2: Determine the whitening function of the grey model according to Equations (1)—(4).
Step 3: Compute decision weights by using information entropy method.

Step 4: Compute Grey Sample Evaluating (GSE) Matrix by (5).

Step 5: Calculate the CGAV under evaluating criterion sets.

Step 6: Calculate HRD by RVM.

2.3. Grey Group Decision-Making

2.3.1. Grey Risk Decision-Making

The scheme-set of grey risk group decision-making problem is (A, Ay, ..., A;), the decision
indicator set is (u1,15,..., Uy ), and the decision group set is (e1, e, .. .,€5) (9 > 2), where e, represents
the s-th decision maker. For each decision indicator u i there are [ possible states = {601,6,,...,6;}.
The probability of the state 6; occurring is pfj(l < t < 1) for the decision maker e; under the

decision indicator u;, which fits (0 < p;‘j <1, Z pt] = [. The attribute value of plan A; is
a3y (®) € [ajy,, @] [48]. The expert dec151on-mak1ng is d1V1ded into f-levels. The grey expert attribute

setis denoted as M = {Al,Az,. .., Af}.

For the decision expert attribute set M of level f, the decision expert fuzzy attribute value is
ms = k(1 <k < f). Define the deviation coefficient a5, which indicates the difference between
and the s-th expert actual importance of the expert and a5 € [—0.5,0.5].

Theindex w = (w1, wy, ..., wn) weight is obtained while using the reciprocal of entropy weight
method to increase the experts weight with higher accuracy. If the information entropy index is smaller,
the more information it provides. The greater the role that it plays in the comprehensive evaluation,
the greater the weight of the index. In order to reduce the effluence, the reciprocal was used in this
way. The weight of the decision-maker s is

m ! 1
= Z Z Pt] Inp};) tj (10)
j=1 t=
where pfj is the input data. Deviation factor is

_ Hs —0.5(minH; + maxH;)
s = minH; — maxH (1)

where a; € [—0.5,05]. Let Hs = minH;, as = 0.5. If Hf = maxH,, as = —0.5. Therefore,
the decision-making expert attributes after recuperation are m, = mis + as.
The expert weight is obtained, as follows:

(12)
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As Hj increases, more right information included in the decision maker s increases the effectiveness
and increases the weight. Thus, it is more realistic to correct the importance of the decision maker
using entropy to obtain the decision maker weights.

q
Letz;(®) = ¥ rfj(®))\s, the standardized synthesis decision matrix can be obtained [49].
s=1

Z(®) = (fo(®))n><nz - ([Zij'zij}>nxm )

2.3.2. Grey Group Decision Model for Decision-Making

The grey group decision-making theory is used to make the effective choice of the three decision
algorithms and the final comprehensive decision is made by fusing the three types of algorithms.
The specific process is shown in Figure 6. The comprehensive step of the grey group decision-making
theory is shown in Table 4. In summary, the maintenance decision results and the comprehensive
confidence of the system failure modes can be obtained while using the grey group decision-making
method, and the dynamic maintenance plan can be formulated on this basis.

Table 4. The comprehensive decision-making step of grey group decision-making theory.

Grey Group Decision-Making Algorithm

Input:

Historical Health Reliability Degree (HHRD): The parameter is composed of the last n HRDs.

Maintenance Probability (MP): Maintenance probability is equal to history maintenance times/total test times.

Overhaul Rate (OR): Overhaul rate is equal to the next inspection time/overhaul cycle.

Output:

Decision Result: The parameter is the level of the maintenance decision-making. The size of the framework
is four: {no maintenance, preventive maintenance, corrective maintenance, immediate maintenance}

Confidence: The parameter is output vector of the maintenance decision-making confidence.

Procedure:

Step 1: Calculate the interval grey numbers of each decision result for each evidence in the decision framework
under each decision method. The interval grey number is expressed as af/-(®), afj(®) S [gfj,ﬁf-j]. gfj represents the
grey number lower limit and Efj is the grey number upper limit (i=1,2,3,4,j=1,2,3,5s=1,2,3).

Step 2: According to the upper-lower limit [a},, Ef]-] in the interval grey number u‘;j (®) in Step 1, establish the
comprehensive decision matrix (CDM) of each decision method as shown in Table 5.

Step 3: By utilizing the interval grey number weakening transformation, the decision matrix of three decision
methods is initialized and transformed to obtain the standardized decision matrix.

Step 4: Calculate the weight of each decision method. First, determine the effect vector of the three decision
methods for all decision frameworks according to the standardized decision matrix in Step 3. The matrix elements
are the effect vectors of the three decision methods for each decision result in the decision framework. Then,
according to the interval grey number vector distance formula and the weight of each evidence attribute
wj(j =1, 2,3), the space projector distance of each effect vector is calculated. Finally, the ratio between the vector
distance of a decision method and the sum of effect vector distance for the other decision methods is the weight
coefficient As(s = 1, 2, 3, 4) of the decision method.

Step 5: Calculate the comprehensive decision results. According to the maintenance decision result of the
experts, the confidence of each decision result corresponding to the four decision frames can be obtained. Finally,
according to the weight coefficients of each decision method that were obtained in Step 4, the final decision result is
obtained by applying weighted averaging to the confidence.

Table 5. Comprehensive decision matrix of decision method es(s = 1, 2, 3).

uy 1 u3
S el S a8 S el
A o n 2 "2 13 "3
Az 991 921 99 92 3 92
As 31 31 T3 I3 33 33
Ay Iy a4 5] A4 A3 243
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Calculate interval grey
number of each evidence

Establish decision matrix of each
decision method

interval grey number weakening transform standardization decision
matrix

Y v v
Determine the effect vector || Calculate the spatial projection || Determine the weight of each
of each decision method distance of each effect vector evidence attribute
Y v v

| The weight of each decision method

for maintenance decision result

(]

‘ Comprehensive decision results ‘

’ Weighted mean of 3 decision method ‘

Figure 6. Decision diagram of grey group decision-making theory.

2.4. The Process of Health Management Decision Method Based on Grey Group Decision

In order to improve the accuracy of the evaluation. The health management decision method
combines grey group decision making and HRD theory to implement health management decision to
sensor system. The detail steps of HRD-GGD are shown, as follows.

Step 1: To obtain the system measurement point parameters of the sensor or network interface,
the data acquisition device is used to collect data.

Step 2: Pre-process the parameters collected by each measuring point in the system.
Pre-processing includes abnormal value elimination, filtering noise reduction, calculating average
value, and 30 standard deviation.

Step 3: Failure detection, isolation, and diagnostic algorithms should be applied to determine the
location of and the type of failure [21,22].

Step 4: If there is no failure in the array, give out the best estimation value of each sensor, according
to the correlation of sensor array. If failure occurs in the sensor array, the best estimation value of
failure sensor can be obtained, according to the normal data and the value of normal sensor can be got
from the best estimation value of failure sensor and the other normal sensors.

Step 5: Establish the health reliability degree evaluation mode. The results of HRD are used as
the inputs of the historical health status trend. The calculation steps of HRD are thoroughly introduced
in Section 2.2.

Step 6: Establish a health management decision model based on grey group decision-making
theory. Make maintenance decision on various failure modes and give out the corresponding
maintenance suggestion.

Firstly, obtain the evidences for each expert.

The number of evidence is three, expressed as 11, 1, u3, known, as follows:

u1: Analysis of health reliability degree and historical health reliability degree;

uy: Historical failure information and corresponding maintenance records; and,

u3: Prepared system maintenance program.

Evidence u; is fused according to three decision methods. Evidence u; and uj is obtained by
using the whitening function as shown in Figure 7. brd is grey parameters. HS represents Health
Status. SHS represents Subhealth Status. FES represents Failure Edge Status and FS represents Failure
Status Level.

The size of the decision framework is 4. The framework is expressed with a 4-bit binary number:

A1: no maintenance, 0001,
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Aj: preventive maintenance, 0010,
Aj: corrective maintenance, 0100, and
Ay immediate maintenance, 1000.

brd

Figure 7. Whitening function of evidence u; and u3.

Utilizing the historical experiment data in Step 4. Analysis and prediction of the trend of the
historical health parameters is based on the set of data. Determine the weight of each evidence attribute
w = (w1, wy, ws) based on historical failure information and maintenance records combined with
the prepared maintenance program. w; indicates that maintenance probability is equal to history
maintenance times/total test times. w3 is the overhaul rate, which is equal to the next inspection
time/overhaul cycle. wy =1 — wy — w3.

Secondly, to process the input data and turn the data to grey numbers. Calculate the confidence
intervals of each evidence with a significance level of 0.05.

Thirdly, establish the comprehensive decision matrix (CDM) of each decision method. The CDM
of the three experts is calculated for each failure model. Then, the decision matrix is standardized to
calculate the standardization comprehensive decision matrix. Finally, the final comprehensive decision
results are obtained. The matrix includes upper bound evaluation matrices, lower bound evaluation
matrices, and whitening evaluation matrices. The upper bound evaluation matrices are coMH),
CDM<2+), and CDMG™). The lower bound evaluation matrices are CDM(P), CDMQ*), and CDM®™),
The whitening evaluation matrices are coMM, cDM?), and CDM®). The upper bound evaluation
matrices represent the maximum confidence of three evidences in the system. The lower bound
evaluation matrices represent the minimum confidence of three evidences in the system. Whitening
evaluation matrixes represent the confidence of three evidences for whitening degree in the system.
The matrices are shown as (14):

011 012 013 014
COMW = | o3 o o3 om (14)

031 032 033 034

where k represents the expert (k =1, e1; k =2, ep; k =3, e3). 0;; represents the confidence of each evidence.
i is the health level of the decision framework (i =1, Ay;i=2, Ay ;i=3, A3; i =4, Ay). j is the evidence
(j = 1, historical health trends; j = 2, maintenance probability; j = 3, overhaul rate).

The steps to calculate the health status level using CDM are shown in Table 6.
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Table 6. Procedure of calculating health status level.

Health Status Level

Step 1: to calculate the health level of the decision framework and the confidence of every evidence.
Step 2: In grey group decision, the weight vector of each evidence attribute is w = (wy, wy, w3)

Step 3: calculate the decision confidence for the expert set by confidence; = w-CDM.

Step 4: the weight vector for each experts we = (We1, Wep, We3) is obtained by entropy weight method.

3 .
Step 5: calculate the confidence of the final health status level by confidence = . we-CDM),
i=1

Finally, ranking all of the alternative health status levels in accordance with the confidence and
choosing the optimal health management suggestion with largest confidence.

3. Experimental Setup and Analytical Discussion

The detailed HRD-GGD process is given in Section 2.4. In this part, the problem of health
management decision for an atmosphere pollution gas sensor system is taken as an example to verify
the HRD-GGD method.

3.1. Sensor System Experimental System

The sensor system used for testing atmosphere pollution gas was mainly composed of gas source,
MEFCs, gas chamber, sensor array, heater driver circuit, signal conditional circuit, data acquisition
circuit, power supply, and laptop PC. The sensor array that consisted of four different types of gas
sensors (CO, NO,, O3, SO,) and temperature, humidity, and pressure sensors, was fixed in the gas
chamber. The number of each type gas sensor is three. The gas chamber temperature was maintained
at 30 °C by constant temperature control. The structure of sensor system is shown in Figure 8 and the
physical picture of sensor system is shown in Figure 9. The normal working ranges and units for the
15 sensors (three CO sensors, three NO, sensors, three O3 sensors, three SO, sensors, one temperature,
one humidity, and one pressure sensor) are given in the Table 7. The health management decision
platform is applied to the system. In the experiment, QT is used as the experimental software platform
combined with SQL server software to realize database storage function. The HRD-GGD algorithm is
implemented using Visual Studio.

Table 7. Failure type of senor system and its form.

. Failure Feature and . Failure Prevention and
Failure Name Failure Place
Form Control Measures

Step Response. Lower Check the sensor pin,

Fl Sensor disconnect than lower threshold Target gas sensor change the target sensor
P Sensor overload Step Response. Above Target gas sensor Check the sensor pin,
upper threshold change the target sensor
. No response or
F3 Sensor poisoned irregular fluctuation Target gas sensor Change the target sensor
F4 Sensor drift Slowly varying. Target gas sensor Increase the preheating time,
Baseline offset et s change the target sensor
Check and replace the filter
F5 Abnormal changed Output fluctuation Target gas sensor capacitor, check and replace
the power supply module,
change the target sensor
6 Heater circuit failure Sensor has no response. Target 8as. Circuit connectloq check,
Heater has no input. sensor circuit change the chips
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Figure 8. The model of the sensor system.
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Figure 9. (a) Physical picture of sensor system; and, (b) display interface.

The system is used in the laboratory. The acquisition device utilized USB-bus cards (USB-2089,
Art Technology Development Co. Ltd., Beijing, China) with 16 analog inputs at up to 400 KHz and a
14-bit A/D conversion accuracy. The sampling period is once per second. The failure data is generated
by the failure simulating software. By analysis of the feature of historical failure data, the failure forms
of different failures are summarized in the software. The maintenance suggestions are given according
to practical experience. The failure information and maintenance suggestions are given in Table 7.

3.2. Experiment Data

The data of each sensor are the voltage values collected by the 15 sensors in Table 8. Both the test
and training samples include normal samples and fault samples. The normal samples are historical
experimental data, i.e., system history experimental samples. The major frequent failure part in the
sensor system is the sensor array. So, the failure type is mainly aimed at sensor array and heater
drive circuit. The system HRD is the HRD of sensor array. The fault samples are analysed using fault

169



Sensors 2018, 18, 2316

simulation software, according to the fault modes. Figure 10 illustrates the sensor response process
when exposed to 50 ppm CO in experiment. Each set of data includes 15 measurement points, with a
sampling time of 1 s. The experiment involved 2 min for sensor to response completely and 2 min for
the sensor to recover. When the system works for a long time, the performance of the sensor system
will decrease with the increasing of running time. The historical HRD of the sensor system in 200 h is
shown in Figure 11.

F1-F5 are the failure of sensors, F6 is the failure of heater circuit. Because of the correlation among
components, the output tends to be abnormal when the system fails. F1 to F6 are both sensors or circuit
faults for single sensor. Every sensor fault can be diagnosed as a kind of failure. Due to the same form
of expression and different location, it can be classified as a kind of failure. When multiple failures
occur, which is to say that different sensors have different failures at the same time. This situation can
be understood as multiple fault superposition, not as new failure. 200 sets of historical data are used
for obtaining the best work state. 400 groups data of different health status level (each type of health
status level contains 100 groups data) are used for testing.

Table 8. The scope of all the sensors.

Sensor Range Unit Sensor Range Unit
CO-1 14 \ 03-1 0.15-1.8 \
CO-2 14 A% 03-2 0.15-0.9 v
CO-3 0.3-1.8 Vv 03-3 0.15-0.4 A%
NO,-1 0.3-5 Vv SO,-1 2-5 v
NO,-2 0.3-5 Vv S0,-2 1.3-5 A
NO,-3 0.1-1.5 Vv S0,-3 1.3-3.7 \4
T 15-50 °C H 20-65 %RH
P 0.09-0.12 Kpa

Voltage(V)

T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600

time (s)
Figure 10. Response of the sensor system for 50 ppm CO.
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Figure 11. The historical HRD of the sensor system.
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4. Results and Analysis

The health management decision of sensor system means that the maintenance suggestion is
implemented in a global way and it refers to all of the sensors and components. In this section,
two situations that represent different health levels are introduced to interpret the proposed strategy.

Situation 1: all the sensor and components are fault free

The collected data is processed using the grey data fusion method to obtain the historical health
reliability degree, the details are shown in Section 2.2. The last seven health reliability degrees are
used as the reference historical health parameter. The analysis and prediction of the historical health
parameters trend are performed based on a data set. Historical failure information, maintenance
records, and the established maintenance program are also considered.

Consider a random experiment as an example. The size of decision framework is 4. The framework
is expressed as: {no maintenance}: A;, {preventive maintenance}: Ay, {corrective maintenance}: As,
{immediate maintenance}: A4. Regard a series of historical health reliability degree as evidence. First,
obtain the series of experimental data and the previous seven series. The historical health parameters
are shown in Table 9 and are fused by three experts” decision methods. Deal with data by grey
processing to obtain the grey interval and calculate separately. Deal with data by grey processing to
obtain the grey interval and calculate the confidence of each level separately. The decision result of
evidence 1: historical health trends are shown as (15).

Table 9. Historical health parameters for situation 1.

Evidence Aq Ay Az Ayq
1 0.8150 0.3930 0.0039 0
2 0.8648 0.3357 0.0029 0
3 0.8568 0.3447 0.0029 0
4 0.8556 0.3457 0.0031 0
5 0.7337 0.4792 0.0057 0
6 0.9388 0.2373 0.0014 0
7 0.9393 0.2449 0.0014 0

According to detection conditions, the historical maintenance number is selected as five and
the total experiment time is 100 times. The next inspection time is set as 300 days and the overhaul
cycle is 365 days. Attribute weights are determined as w = (wy, wy, w3) = (0.7719, 0.05, 0.1781).
wy = 0.05 is the maintenance probability, which is equal to historical maintenance times/total test
times. w3 =0.1781 is the overhaul rate, which is equal to the next inspection time/overhaul cycle. In the
example, the historical maintenance times are five and total test times are 100. The next inspection
time is 300 days and the overhaul cycle are 365 days. The decision matrix that was established by
the fusion of each decision method is shown from Tables 10-12. The attribute weights of these three
decision methods are (0.4158, 0.3467, 0.2375), which is attained by (10)~(12). The whitening degree
is the mathematical expression of whitening rules in the grey set under the existing information.
Whitening degree is obtained by whitening function, which is shown in Figure 7. The comprehensive
decision matrixes that were obtained using the three decision methods by using (14).

Table 10. Comprehensive decision matrix of decision method e;.

1 73 u3

Grey Interval Whitening Degree Grey Interval Whitening Degree Grey Interval Whitening Degree

Ay [0.8562, 0.8617] 0.8589 [0.8690, 0.8707] 0.8698 [1,1] 1

Ay [0.1383, 0.1438] 0.1411 [0.5853, 0.5920] 0.5937 [0.1650, 0.1683] 0.1667

Az [0,0] 0 [0,0] 0 [0,0] 0

Ay [0,0] 0 [0,0] 0 [0, 0] 0
weight 0.7719 0.05 0.1781
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Table 11. Comprehensive decision matrix of decision method e,.

u uz us

Grey Interval Whitening Degree Grey Interval Whitening Degree Grey Interval Whitening Degree

A [0.8860, 0.9026] 0.8943 [0.8690, 0.8707] 0.8698 [1,1] 1

Ay [0.0974, 0.1140] 0.1057 [0.5853, 0.5920] 0.5937 [0.1650, 0.1683] 0.1667

Az [0,0] 0 [0,0] 0 [0,0] 0

Ay [0,0] 0 [0,0] 0 [0,0] 0
weight 0.7719 0.05 0.1781

Table 12. Comprehensive decision matrix of decision method e;.

uy uy usz

Grey Interval Whitening Degree Grey Interval Whitening Degree Grey Interval Whitening Degree

Ay [0.6579,0.6611] 0.6595 [0.8690, 0.8707] 0.8698 [1,1] 1

A, [0.3348,0.3381] 0.3364 [0.5853, 0.5920] 0.5937 [0.1650, 0.1683] 0.1667

A;  [0.0040,0.0041] 0.0040 [0, 0] 0 [0, 0] 0

Ay [0, 0] 0 [0, 0] 0 [0, 0] 0
weight 0.7719 0.05 0.1781

Since the results of the matrix are floating from 0 to 1, normalization is not required. The final
grey group decision-making result can be obtained by directly fusing with the weight. For another
decision-making method, such as D-S evidence theory, Bayes theory, and fuzzy set theory are used as
the off-the-shelf maintenance decision-making method. The decision results are shown in Figure 12.
According to descending order of the maintenance confidence, the ranks and maintenance suggestions
that are based on grey group decision and another three comparative decision methods are shown in
Table 13, the rank of four methods are shown as A; > Ay > Az > Ay, the final maintenance suggestion
of four methods are all A;: no maintenance, which is suitable to the status description.

- No Maintenance

Preventive Maintenance
- Collective Maintenance
D Immediate Maintenance|

0.9270

Confidence

Grey group decision D-S Evidence Theor

Maintenance Decision

Figure 12. The confidence to 4 health status level of Situation 1 based on 4 decision methods.

In order to verify the evaluation ability of maintenance decision method for health status,
100 groups of health status data at different times were used to test the accuracy of evaluation.
The confidence of the 100 groups health state data to four health status level are shown in Figure 13.
False alarm occurred when using Bayes theory. The accuracy for the four methods is shown in
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Table 14. Grey group decision ignores the disadvantage of Bayes theory for this situation to improve
the decision accuracy.

Table 13. The rank and maintenance suggestion of Situation 1.

Method Rank Maintenance Suggestion
Grey Group Decision A1 >Ap>A3> Ay Ajq: No Maintenance
D-S evidence Theory A1 >Ap>A3> Ay Aq: No Maintenance
Bayes Theory A1 >Ap>A3> Ay Aq: No Maintenance
Fuzzy Set Theory A1>Ar > A3 > Ay Aq: No Maintenance

_ Grey Group Decision  D-S Evidence Theory Bayes Theory Fuzzy Set Theory

No maintenance

1.0 | L | L
g

0.8 — ;
‘ indistinguishable

L 4

*

*

@ Preventive maintenance
- PR TP P

¥  Coliective maintenance

Immediate maintenane

Y T

0.6 —

*
“w »\ 5
T 4
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-

.

3
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Figure 13. The confidence of 100 groups health state data to different health status level.

Situation 2: single sensor is failure

To verify the effectiveness of the grey group maintenance decision method, situation 2 is used to
verify the versatility and correctness of the method. In situation 2, the data of each group are all kinds
of failures simulated by fault simulation software. The attribute weights are w = (w1, wy, w3) = (0.0932,
0.4, 0.5068). In this example, the historical maintenance times are 40 and the total test times are 100.
The next inspection time is 250 days and the overhaul cycle is 365 days.

The decision results of four methods are shown in Figure 14. All of the decision results are
immediate maintenance except for the fuzzy set. The ranks and maintenance suggestions based on
grey group decision and other three comparative decision methods are shown in Table 15.

Table 14. The accuracy of maintenance decision-making.

Health Status Level ~ Grey Group Decision  D-S Evidence Theory =~ Bayes Theory = Fuzzy Set Theory

Ay 100% 100% 94% 100%
Ay 100% 93% 100% 94%
Aj 95% 40% 95% 60%
Ay 98% 49% 98% 93%
average 98.25% 65.5% 96.75% 85.75%
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Figure 14. The confidence to 4 health status level of Situation 2 based on four decision methods.

To verify the effectiveness of the grey group maintenance decision method for single failure.
100 groups of failure status data are used for testing. The decision results are shown in Figure 15.
The decision accuracies are shown in Table 14. The result of grey group decision is the same as Bayes
theory and it is superior to the other algorithm. The result of D-S evidence theory is fluctuated and it
is hard to distinguish the optimal maintenance result. The confidences of four health status level of
fuzzy set theory are almost at the same level and it is difficult to realize the optimal maintenance result
Grey group decision utilizes the advantage of Bayes theory for this situation to ignore the inaccuracy
result of the other experts.

Grey Group Decision D-S Evidence Theory Bayes Theory Fuzzy Set Theory
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Figure 15. The decision result of 100 group failure state data.

The accuracy of maintenance decision-making which is verified by 400 groups different health
status level samples (100 groups for each health status level) are shown in Table 14. It is not difficult
to find out from the above test that D-S evidence theory has good detection results at health state.
However, it cannot be detected effectively at the failure state because of the large range data fluctuation.
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Bayes theory has a good decision-making result for the failure status, but false alarm will appear at
health state. The fuzzy set theory is very good in the health state. But, in the case of failure, the health
statuses often appear with a similar confidence, and cannot be effectively evaluated. According to the
group decision method, the grey group decision exerts the advantage of the D-S evidence theory and
fuzzy set theory in the health state and it reduces the missing alarm rate. In the case of failure, it plays
the advantage of the Bayes theory and it reduces the probability of false alarm.

Table 15. The rank and maintenance suggestion of Situation 2.

Method Rank Maintenance Suggestion
Grey Group Decision Ag>A3>Ay > A Ay: Immediate Maintenance
D-S evidence Theory Ag>A3>Ay > A Ay: Immediate Maintenance
Bayes Theory Ay >A3>Ay=A1 Ay: Immediate Maintenance
Fuzzy Set Theory Az >Ag> Ay > A Aj: Collective Maintenance

5. Conclusions

In this paper, a method of health management decision strategy of a sensor system is proposed by
utilizing HRD-GGD theory. Health reliability degree strategy is utilized to quantify system state and to
provide support for decision making. The system can provide the maintenance suggestion after the
system runs and give the confidence degree of each maintenance proposal. The experimental results
show that this method can evaluate the system state effectively, and the accuracy rate of maintenance
recommendation is 98.25%. The result proves that the accuracy is improved over 2% when compared
with the other methods and the decision results are optimal under all health status levels.

In the future, we will investigate the remain life of sensor system and failure prediction by analysis
of the historical trend of MOS sensor degradation in the sensor system.
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Abstract: Motorcycle drivers are considered among the most vulnerable road users, as attested by
the number of crashes increasing every year. The significant part of the fatalities relates to “single
vehicle” loss of control in bends. During this investigation, a system based on an instrumented
multi-sensor platform and an algorithmic study was developed to accurately reconstruct motorcycle
trajectories achieved when negotiating bends. This system is used by the French Gendarmerie in
order to objectively evaluate and to examine the way riders take their bends in order to better train
riders to adopt a safe trajectory and to improve road safety. Data required for the reconstruction
are acquired using a motorcycle that has been fully instrumented (in VIROLO++ Project) with
several redundant sensors (reference sensors and low-cost sensors) which measure the rider actions
(roll, steering) and the motorcycle behavior (position, velocity, acceleration, odometry, heading, and
attitude). The proposed solution allowed the reconstruction of motorcycle trajectories in bends with
a high accuracy (equal to that of fixed point positioning). The developed algorithm will be used
by the French Gendarmerie in order to objectively evaluate and examine the way riders negotiate
bends. It will also be used for initial training and retraining in order to better train riders to learn and
estimate a safe trajectory and to increase the safety, efficiency and comfort of motorcycle riders.

Keywords: trajectory reconstruction; low-cost sensors; embedded systems; powered two wheels
(PTW); safe trajectory; data fusion

1. Introduction

Motorcycle drivers are considered the most vulnerable road users. In France, such riders account
for more than 20% of all road fatalities (compared with 15% in Europe as a whole) and 43% of road
injuries (ONISR, 2014). For the same distance traveled, the risk to be killed in a fatal crash is 35 times
higher for a motorcyclist than for an automobilist [1]. More than 50% of individual motorcycle crashes
are due to loss of control in bends (including crossroads and intersections) because of the complexity
of motorcycle dynamics and the intrinsic instability of such vehicles. In 2012, in France, more than a
third of all the powered two wheels (PTW) fatalities occurred in bends (248 killed).

Counter-measures are needed to improve road safety and decrease the risk of crashes in bends.
In order to do so, it is necessary to better train riders to learn, estimate, and adopt a safe trajectory [2,3].
Motorcycle trajectory reconstruction represents a fairly important tool for an objective evaluation of
bend taking practices and the characterization of the achieved trajectories compared to a safe trajectory.
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The main idea of the safe trajectory is to “dive” towards the bend tangent point only when the
driver sees the whole of the bend, up to its exit. This technique, if applied correctly, allows the rider
to drive fast and safe because it allows him to anticipate dangers and potential hazards. Until today,
no system exists to objectively evaluate bend-taking maneuvers. This evaluation is subject to an
instructor’s “imprecise” appreciation of the French Gendarmerie.

In this context, the purpose of this work is to develop an algorithm using low-cost sensors to
accurately reconstruct motorcycle trajectories in order to develop a tool for the objective evaluation of
the achieved trajectory and that allow PTW riders to receive better training or retraining that focuses
on “safe” cornering. The challenge is to achieve a high accuracy trajectory reconstruction by using a
system that can be embedded implementing low-cost sensors and proposing an alternative solution to
the traditional INS/GPS systems. The powered two wheels (PTW) used for this study is a motorcycle
instrumented by the VIROLO++ Project team. Thanks to experienced and inexperienced (trainee)
French national gendarmerie drivers, a very large dataset was acquired at the “La Ferté Gaucher”
circuit by the VIROLO++ team [3,4].

The main contributions of our work are summarized below:

- A trajectory reconstruction study involving algorithms and ad hoc sensors. Bend trajectory
reconstruction is highlighted namely for driver safety.

- Identification of an optimal low-cost system further to a multi-sensor instrumentation and
different approaches for trajectory reconstruction, beyond simulation.

- An alternative solution to the INS/GPS systems, that allows a high-precision trajectory
reconstruction. Results are given using a real dataset provided by various drivers.

This paper is organized in two major sections. The first one is dedicated to the literature
survey, the description of the multi-sensor system used, the circuit-based experiments, and the
major data adjustment. In the second section, we firstly explore and evaluate the usual methods
of trajectory reconstruction. Then, we demonstrate the gain obtained with our proposed fusion method
comparatively to the best of the usual method of reconstruction.

2. Literature Survey

Among the existing literature about motorcycle trajectory reconstruction, there is no work that
addresses the problem of “safe trajectory”. In addition, motorcycle trajectory is usually reconstructed
using traditional GPS/INS systems that can achieve good accuracy only if the GPS signal is available.
However, during a GPS outage, the accuracy is degraded. Some works proposed an alternative
solution based on vision systems, but the accuracy obtained is far from the expected objectives.

It is also worth noting that works about motorcycle trajectory reconstruction are limited compared
to cars because the dynamics of a two-wheeled vehicle represents a higher level of complexity. In this
section, we present research works that deal with motorcycle trajectory reconstruction.

In [5], Yuichiro Koyama presents a new algorithm (as he cited) for motorcycle trajectory
reconstruction using GPS only. This algorithm is based on the interpolation of satellites positions
that cannot provide adequate data within a few seconds (missing observation data) using polynomial
curves calculated by the least-squares method and the calculation of the motorcycle coordinates based
on interpolated pseudoranges. The obtained trajectory is smoothed using an extended Kalman filter.
This method allowed obtaining a trajectory with an accuracy of less than one meter. This precision is
obtained only if the observed data are absent for less than 7 s. No hardware realization was described.

Luca Gasbbaro et al. [6] presented an algorithm for the precise (as mentioned) reconstruction of
the motorcycle trajectory based on vision integration and miniaturized MEMS accelerometers, using
an extended Kalman filter and a dynamic model of the bike. The constraints of the model act as virtual
measurements and make it possible to estimate the biases and drifts of the accelerometers. The visual
reference marks were used to estimate the biases and drifts of the navigation sensors. The idea is
to distribute a number, more than six, of accelerometers in specific locations on the chassis of the

180



Sensors 2018, 18, 2282

motorcycle and then use the shape invariance of the rigid body motion to estimate the trajectory.
The data acquisition system uses a basic processing unit; a PC-104 industrial computer (266 MHz
Geode, 256 MB RAM). A Compact Flash card was used to store the recorded data, as well as a Linux
operating system and user’s programs.

The same idea involved in [6] was applied in [7], where the authors proposed a low-cost system
based on micro electro-mechanical systems (MEMS) technology coupled with images through the
Whipple model [8] and a cascade of a Kalman filter and a Bayesian particle filter to reconstruct the
“Vespa” scooter trajectory. The authors used an Xsens MTi-G IMU, a 1.3 megapixel progressive scan
color SONY CCD camera and a notebook computer for data acquisition. The reference trajectory
was determined by a Novatel DL-4 double frequency GPS receiver. Their method provides relatively
acceptable accuracy (mean error: 1.033 m, max error: 10.12 m, absolute mean: 3.2 m, and standard
deviation: 2.53 m). However, the application of this method depends on the environmental conditions.
The roll angle estimation in this work is based on the Hough transform, which necessitates a
minimal amount of linear elements in the scene, and their absence can degrade the achievable results.
For instance, a complex skyline and low contrast between the road segment and neighboring object
can be problematic, even if not common.

In [9], the authors proposed an experimental low-cost differential GPS/MEMS-IMU system, using
an extended Kalman filter approach in a loosely coupled mode to accurately (as cited) reconstruct the
trajectory and the orientation of a motorcycle. The system performance was evaluated through a set of
experiments using a motorbike-embedded MEMS-IMU (Xsens MTi), rigidly fixed to the GPS antenna.
A low-cost mono-frequency GPS receiver (u-blox AEK4) was used with a dual-frequency GPS receiver
from Javard as a reference. The proposed system provided an absolute position accuracy of 0.5 m and
an orientation accuracy of 1°-2°.

The advantage of [5] is the accuracy of the trajectory reconstruction obtained using only a GPS.
However, the developed algorithm is applied only to data lost within a few seconds (7 s according to
authors). Beyond the given loss time, the efficiency of the interpolation is reduced and the accuracy
is degraded.

In [6,7], authors succeeded in reconstructing the motorcycle trajectory using a system based on
vision (camera), MEMS technology and a computer (industrial computer in [6] and a notebook PC
in [7]) for data processing. This system is complex, not embeddable, and depends on the environmental
conditions. Additionally, the obtained accuracy was not mentioned in [6], the maximum error achieved
in [7]is 10.11 m.

In [9], a high accuracy was achieved (50 cm) using a GPS/INS integration algorithm.
The traditional GPS/INS systems can achieve great accuracies when the GPS signal is available.
However, during GPS outage the accuracy is degraded.

From an application point of view, the main objective of [5] is the simulation of the motorcycle
dynamics to analyze the behavior of both the motorcycle and the rider in a virtual three-dimensional
space that correlates strongly with real driving tests. In [6], the authors consider the trajectory
reconstruction as estimation techniques for the full reconstruction of the dynamical vehicle state.
Their algorithm is used in racing applications. In [7], the authors aim to identify the vehicle
position in a mapping reference frame for driving directions and best-route analysis with significant
accuracy. In addition, in [9] the designed system is used in sport applications. The precise trajectory
reconstruction is used to determine tire slips of a motorcycle.

The challenge in our work is to study several motorcycle trajectory reconstruction algorithms
in order to design an embedded system, with an optimal set of low-cost sensors that allows the
reconstruction of the motorcycle trajectory with high precision without using GPS (due to drawbacks
of signal loss). This system can then be used to better train riders to adopt a safe trajectory in order to
reduce the risk of crashes in bends and to improve road safety.
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3. Multi-Sensor System and Circuit-Based Experiments Description

A multi-sensor architecture and an embedded data-logger have been designed by the VIROLO++
Project team [4]. The system allowed acquiring and recording data related to the rider behavior, actions,
and to the motorcycle dynamics [10]. The system architecture is based on a CAN (controller area
network) bus that interfaces multiple sensors and a data logger. This architecture makes it possible to
add or remove one or more devices (sensors or recorders), without interrupting tasks of the others
nodes. This offers an essential flexibility in the development phase of the multi-sensor system.

3.1. Embedded Sensors

The instrumented PTW (Figure 1) integrates redundant sensors, “low-cost” sensors and
“reference” sensors, in order to compare data measurements and to identify the subset of sensors
necessary for each reconstruction method.

- Standard GPS receiver (7): a GPS module was designed, using an A2200-A circuit [11] of Maestro
Wireless Solutions, to reduce the costs and to have a completely mastered GPS (sampling time:
200 ms);

- (10Dof) Inertial navigation system (5): The low-cost INS MPU9250 [12] of InvenSense was
implemented in the motorcycle in order to acquire inertial movements and data required for the
trajectory reconstruction (sampling time: 10 ms);

- Handlebar sensor (3): The magnetic sensor AS5047P of AMS is used to recover the absolute angle
of the handlebar. The angle is coded on 14 bits which allows a maximum resolution of 2048 steps
per complete rotation (0.176° /step) [13] (sampling time: 1 ms);

- Wheel tire sensors (1): Two Hall effect sensors in quadrature are attached to the front and rear
wheels to measure the distance travelled by the motorcycle, used in trajectory reconstruction
(sampling time: 1 ms);

- GPS RTK (6): The position delivered by the GPS RTK is used only as a reference to evaluate
the accuracy of the reconstructed trajectory. The two (rover and base) GPS “Altus APS-3" of
Septentrio are used to obtain real-time kinematic positioning [14] (sampling time: 40 ms);

- Inertial navigation system “Xsens” (4): The MTi Xsens [15] is used as a (redundant) reference
system in order to check the degradation induced by others sensors. (sampling time: 10 ms); and

- Tilt sensors (2): To measure the roll angle, two identical (laser) optical distance sensors are placed
on both sides (right and left) of the motorbike (sampling time: 10 ms).

Figure 1. The ANR team instrumented motorcycle.

182



Sensors 2018, 18, 2282

3.2. Data Logger

The data logger (recording node 8 in Figure 1) is based on a BECK programmable microcontroller
and a CAN interface. The main function of the recorder is to collect messages sent on the CAN bus,
put them in a specific format according to the identifier of the message, and place them in a specific
file on the embedded memory storage. When receiving a CAN frame, the data logger writes a new
block of data to a specific file containing the CAN frames and the reception times (time stamping task).
The purpose of this instrumented architecture (Figure 2) is to have a variety of sensors in order to
choose the optimal match algorithm sensors (allowing the best accuracy with low-cost sensors).

Low cost sensors
e e e et '
i 10Dof ‘ | Stan;:lard‘ ‘Handlebar‘ ‘Odometers H
i GPS sensor '
[ e s g pp—
SPI UART SPI DAC .
Duala Visualization
Data Logger
ne itel ‘ nc ‘ L T mobile platform
I I ‘ c ‘ ‘ Masse (Tablet/Smartphone)
CAN Bus | M TGS | Storage ‘
_____________________ | Our proposed |
c | lwe ] [uc] o
M K i | algorithm |
ADC UART lUART
:""'L""""" 1 T Grs |
|
i
H Laser ‘ Xsens ‘ RTK i
Ve e e
Reference sensors

Figure 2. System architecture.

3.3. Circuit-Based Experiments

In order to evaluate the motorcycle trajectory reconstruction methods, several experiments were
conducted. In this work, we have used the experiences carried out at the “La Ferté Gaucher” circuit
(Figure 3) which is composed of different types of bends (right, left, 90°, and 180° bends with large or
small curvature). The experimental data have been collected with a Honda CBF 1000 (Figure 1) which
was driven on a 1.9 km loop. The departure point and the arrival point are identified. The motorcycle
speed varies up to 110 km/h.

Figure 3. The “Ferté Gaucher” circuit mapped on IGN.

4. Sensor Data Correction

4.1. Reference Trajectory Correction

Sensors were embedded in different positions on the motorcycle. As a consequence, the sensors’
measurements are in different references, especially in turning, as shown in Figure 4. Therefore, before
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evaluating the trajectory reconstruction methods, and in order to improve the accuracy, we considered
the rear wheel contact point “P,” as a reference point and we brought all sensors” data back to this
reference point. Our reference frame, in this case, is the mobile triad (P;, x, y, z), specified by the Society
of Automotive Engineers (SAE) [16]. The origin is established at the rear wheel contact point “P,”

7

with the road plane. The “x” axis is horizontal and parallel to the rear wheel plane. The “z” axis is

vertical and directed downward while the “y” axis lies on the road plane. The road surface is, therefore,
represented by the plane z = 0.

Figure 4. Sensor positioning.

Positions of the sensors installed on the motorcycle are known. The GPS RTK position with respect
to the reference point “P,” is given by the coordinates (dx, dy, dz). Thus, the reference trajectory of
the rear contact point “P,” is calculated from the “RTK” trajectory using the following equation:

Xpr XRrK dx
Ypr | = | Yrrx | —Rp-| dy o
Zpy ZRTK dz

Figure 5 shows the RTK reference trajectory before and after bringing it to the reference point.

8 RTK trajectory brought back to point Pr
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Figure 5. The reference trajectory brought back to the rear contact point.
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It is clear that the main difference between the two trajectories exists in turns. When negotiating a
bend, the motorcycle tilts to the inside bend direction. Thus, since the GPS RTK is installed on the bike
trunk, its trajectory is always in the inside bend direction with respect to the rear contact point where
the trajectory is in the outside bend direction.

4.2. Odometry Correction

Odometers are one of the sensors used to measure the motorcycle’s traveled distance
independently from GPS. They work by counting wheel rotations and assume that the distance
traveled is the number of wheel rotations times the tire circumference (tire diameter times pi).

According to our expertise, the wheel radius is not constant; it varies according to the roll angle.
Therefore, a wheel radius model is required to correct the traveled distance estimated by odometers.

4.2.1. Proposed Wheel Radius Model

When negotiating a bend, the motorcycle passes from a vertical position to a tilted position with a
roll angle “¢” in order to stay balanced. Following the roll motion, the contact point of the wheel with
the road plane is displaced and the wheel radius is changed. Thus, in order to accurately estimate the
motorcycle traveled distance, we propose the rear wheel radius model illustrated in Figure 6.

T ¢roll angle 5

A

h

P
/

Figure 6. Lateral displacement of the rear contact point in a curve.

In a vertical position, the wheel radius of the motorcycle is R. However, when the motorcycle tilts,
assuming a lateral roll without slippage on the road plane, the contact point of the rear tire “P” moves
laterally, as illustrated in Figure 6, in the “Y” direction over a distance “f,¢” which is proportional to
the radius of the tire cross section “t,” and the roll angle “¢” of the rear frame. The wheel radius in
this case is R:

R = Rg — ty cos(¢) )
where Rp = (R — t,): is the radius of the torus center circle.

4.2.2. Validation of the Correction Model

In order to validate our correction model, we measured the difference between the real traveled
distance and the one given by the odometers using a constant wheel radius, Figure 7a, and using our
proposed wheel radius model, Figure 7b. From Figure 7, it is clear that our proposed model greatly
ameliorates the estimation of the distance and minimizes the error from (10 m) to (1 m with zero
mean error).

From Figure 8, we can clearly see that, in straight line trajectories, there is no difference between
the real distance and the one estimated by the odometers using a fixed wheel radius, while in turns,
where the roll angle is important, this difference increases (the colored zones, Figure 8) which confirms
that the wheel radius changes according to the roll angle.
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Figure 7. Difference between the real traveled distance and the one given by the odometers using a
fixed wheel radius (a) and our proposed wheel radius model (b).
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Figure 8. Location of the distance error (fixed radius) of each zone of Figure 7a on the trajectory (a) and
the corresponding roll angle (b).

4.3. Data Preprocessing

During the data acquisition phase, no filter is applied [17] because the aim is to achieve a real
dataset that can be used for other studies. Therefore, the sensors’ measurements are affected by
noise (due mainly to engine vibrations) and a filtering step appeared necessary. In the first step,
we proceeded to spectrally analyze the all IMU signals in static conditions (motorbike immobile and
motor on). All the analyses exhibit two singular frequencies; less than 2 Hz and around 40 Hz. The two
figures bellow (Figure 9a,b) illustrate our assertions.

Then, “wavelet” filter was chosen to denoise the data because of its advantage compared to
conventional filters listed below.

- Little to no signal leakage or phase shifting of the original signal.

- The ability to denoise complex signals far better than conventional filters that are based on the
Fourier transform.

- Wavelets are efficient for removing noise where the noise and signal spectra overlap.
Conventional filters are efficient in removing out-of-band signals. However, if applied to in-band
signals, wavelets will also remove the signal of interest.
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To validate and confirm our choice, three filtering techniques were synthetized:

- Low-pass Butterworth filter with a 10 Hz cut-off (sixth order)

- Median filter (with a window of 20 points)

- Wavelet filter with a Daubechies mother wavelet of Db20. Six levels of decomposition have been
considered as enough to provide a significant reduction of the high-frequency noise components.

Comparing the signal-to-noise ratio (SNR) of the three filtering techniques in Table 1, the “wavelet”
has given better performances.

A static test was carried out in order to estimate and eliminate the static bias of sensors from the
data before using them in the trajectory reconstruction algorithms.
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Figure 9. Illustration of spectrograms of “Ax” (a) and “Az” (b) IMU signals (signal on the top, power
spectral density in the middle, and the signal spectrogram at the bottom).
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Table 1. Comparison of the signal-to-noise ratio (SNR) of the three filters.

SNR (dB) Wavelet Filter Median Filter Butterworth Filter
Ax 4.77 3.83 2.26
Ay 8.65 7.13 3.91
Az 27.41 19.51 11.29
Rx 1.45 0.42 0.13
Ry 3.80 2.90 1.74
Rz 0.24 0.05 0.01
Mx 1.18 1.20 1.02
My 0.27 0.18 0.19
Mz 2.19 2.04 1.83

Handelbar 0.38 0.04 -0.17

Laser 0.38 0.35 0.17

5. Evaluation of the Usual Methods of PTW Trajectory Reconstruction: A Comparative Study

The developed multi-sensor architecture allows for evaluating several models of trajectory
reconstruction. Depending on the nature of sensor information and the model used to reconstruct
the motorcycle trajectories, we can distinguish four methods: kinematic models, absolute localization,
relative localization, and data fusion-based localization.

5.1. Kinematic Model

Several motorcycle kinematic models exist in the literature and give the position of the motorcycle
according to a certain number of input data (sensor data). Among these models, we note the Cossalter
model [16] and the bicycle model [17] (Figure 10).
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—— Reference
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Figure 10. Trajectory reconstruction from kinematic models.

In the literature, no dynamic model allowing the passage of the motorcycle position or the
trajectory reconstruction exist, a reason why we used only the kinematic models.

5.2. Data Fusion Methods

This approach consists of a fusion of sensor data that presents measurement uncertainties for a
“sufficiently accurate” positioning. Different approaches exist in the literature to fuse data delivered by
sensors. A very good bibliographical study is presented in [18].

This solution is based on the idea of jointly using both localization methods: relative and absolute
poses in order to take advantage of the complementarity of proprioceptive and exteroceptive sensors.
Indeed, the absolute localization system is generally dedicated to regularly correct the estimate of the
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relative localization system in order to remedy the drift problems encountered with it. Dead reckoning
provides measurements at a very high frequency, but requires initialization. Absolute localization
provides long-term precision, but it suffers from problems of availability, latency and, often, insufficient
frequency for some applications. Therefore, to reap the benefits and complementarities of the two
localization systems, researchers paired these two families, giving birth to the data fusion approach
like GPS/INS systems.

5.2.1. GPS/INS Data Fusion

In the literature, several techniques are suggested to fuse GPS and INS data. The Kalman filter
is the most used algorithm with, typically, three main strategies: namely loose integration, tight
integration, and deep (or ultra-tight) integration. In this work, we have chosen to use a loosely-coupled
implementation mode in a closed loop (Figure 11). This mode allows control of the navigation accuracy
and reduces the cost of the design [19].

Due to the non-linearity of the process model, an extended Kalman filter of 15 states was built in
this work using the dynamic equations of the error (the filter update is based on an error state vector
which includes error vectors for position, velocity, attitude, accelerometer bias, and gyrometer bias,
as explained in [20]).

In this method, the GPS measurements are used to correct data of the INS and to eliminate bias
and drifts. However, the GPS accuracy is degraded because of multiple routes and for the small
number of visible satellites (low availability). Sometimes GPS data are absent for a long time (if the
satellites visibility conditions are degraded, the reception of the signals is blocked), which affects the
accuracy of this method.

Bias Correction 2418 210 Trajectory
2.4182
NS Mechanization 24181
Algorithms i
£
-E 2418 -
n Nav1ga.t10n -
Prediction Solution 24170l
EKF ——
- 2.4178 -
GPS 24177
GPS Observatlon 6.692 8.693 8.694 6.695 6.698 8.697 6.698
Xin"m" 100

Figure 11. Loose coupling integration scheme (INS/GPS).

5.2.2. INS/Odometer Data Fusion

In the literature [21,22], different configurations are proposed to integrate odometer and INS data.
In our work, we have chosen the RISS configuration (reduced inertial sensor system) (Figure 12).
The discrete form of the mechanization algorithm of this system is:

x(k+1) = x(k) + T, V(k) cos(6(k))
y(k+1) = y(k) + T V(k) sin(0(k)) ®)
0k+1)=0(k)+T, W,

where W, is the gyroscope measurement (rad/s).
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Two main errors influence the trajectory reconstruction:

- odometer errors, which come from the inaccuracy of the vehicle’s geometrical parameters; and
- heading errors, which come from the drifts in the gyroscopes data (accumulation of errors during
the integration of the gyrometer’s data).
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Figure 12. Schematic diagram of the INS/Odo integration.

From Table 2, it is clear that the GPS/INS data fusion solution gives a precise reconstruction
and good accuracy. However, this accuracy is obtained in good conditions (no GPS outage and the
number of visible satellites is more than four). Contrariwise, during GPS outage, the accuracy of the
reconstructed trajectory will strongly decrease. Therefore, in order to propose an alternative to the
GPS/INS solution, we propose in this work to improve the INS/odometer data fusion method rather
than kinematic models for two reasons:

- The first objective is the design of a motorcycle trajectory reconstruction system with an optimal
set of low-cost sensors. In other words, we want to develop an algorithm that uses as few sensors
as possible: in kinematic models three sensors (steering, roll, and odometer) are used, while in
the INS/odometer method, only two sensors are involved (INS and odometer).

- The second objective is the use of a non-invasive approach. In our work, we aim to propose an
algorithm that can be used and implemented without changing the basic design of the motorcycle.
Thus, the INS/odometer algorithm can be used either directly if the commercial PTW contains
an M-ABS or MTC, or by adding low-cost sensors. While in the case of kinematic models, adding
a steering sensor may require some changes to the handlebar.

Table 2. Resulting precision of trajectory reconstruction methods.

Method Error RMS
Bicycle Model 90.86 m
Kinematic Models

Cossalter Model 26.70 m

INS 83 m
GPS 1.42m
GPS/INS 0.51 m
INS/Odo 49.39 m

6. Our Proposal: Enhanced INS/Odometer Data Fusion

The trajectory reconstruction in the INS/GPS method is mainly based on two parameters, as
illustrated in Equation (12): heading angle (yaw) and the traveled distance. In this work:
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- in order to accurately estimate the traveled distance, the odometer measurements are improved
using the wheel radius model that we proposed in Section 4.2; and

- in order to accurately estimate the heading angle, we propose to use the “INS” with the
“Madgwick filter” algorithm [23].

The Madgwick filter is based on a quaternion representation, allowing the use of accelerometer
and magnetometer measurements in an analytically-derived and optimized gradient descent algorithm
to compute the direction of the gyroscope measurement errors as a quaternion derivative and to
accurately estimate the attitude of the moving object.

In ideal conditions, i.e., absence of noise and magnetic deviation, the relation between the
acceleration in the Earth frame “af” and the acceleration in the sensor frame “a%” is given by
Equation (4):

ay =g ©a; ®q (4)

where:

- ®: is the quaternion multiplication.

T
- a?: is the quaternion form of “4%”, which can be written such as: a; = [ 0 a$ a; af]

T
- a§ : is the quaternion form of “af”. In static cases, a§ = [ 00 g ] where g is the acceleration

due to the gravity at the Earth’s surface (¢ ~ 9.8 m.s~2).

En

The relation between “mE” and “m>” is as follows:

s_ -1 E
my =4 @mgRq ©®)
where
S. i ; $7 whi : s S S S|t
- my: is the quaternion form of “m>”, which can be written such as: m; = [ 0 my my mz]
- qu: is the quaternion form of “mE”.

The kinematic equation of a rigid body that describes the variation of the attitude in terms of the
quaternion, defined from the angular rate measurements delivered by the gyroscope, is given by the
following equation:

i= 510 ©
where ”w? ” is the quaternion form of “w

We have chosen the Madgwick filter (Algorithm 1) rather than Kalman algorithm because their
performances were compared in [23] and the results indicate that the Madgwick filter reaches levels of
accuracy exceeding that of the Kalman algorithm; <0.6° static RMS error, <1.7° dynamic RMS error.
Hence, the new system model of the INS/odometer integration is depicted in Figure 13.

Figure 14 represents the results of the INS/odometer data fusion method before and after the
improvements that we propose. From this figure, we can clearly see that the approach we proposed
greatly ameliorates the trajectory reconstruction, especially in bends.

Sn
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Algorithm 1. Gradient descent-based orientation filter.
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T
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W3y =241 @ et
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cf)f = w,s - Cswh,, where {° is the integral gain

qe,i
Il et I

.1, N
4= 501 ®ds, — B

B is the divergence rate of q; expressed as the magnitude of quaternion derivative corresponding to the
gyroscope measurement error.
e, w, are the quaternion and angular rate errors.
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Figure 13. Schematic diagram of the new INS/odometer integration model.
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Figure 14. The results of our proposal compared to the traditional method INS/odo.
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From Table 2 and Figure 14, it is clear that the integration of GPS/INS data and the proposed
integration of odometer/INS data methods give the best reconstruction.

We are mainly interested in the reconstruction of bends instead of the whole trajectory in order to
evaluate the behavior of the driver in bends and to compare it with a “safe trajectory”. For this reason,
the second step consisted of evaluating the accuracy of the motorcycle trajectory in bends achieved by
the proposed method and the traditional “GPS/INS integration” method. The two algorithms were
tested to reconstruct bends, as shown in Figure 3, with six drivers. Each driver realized three complete
trajectories (in total, 18 are achieved). Three indices were used for the quantitative evaluation [5]: bias
error, error variance, and maximum error.

The three indices are defined by the following equations:

Bias error = |/E2 + E; 7)

1 tmax 1 fmax
E,= ; ) Ax(t)and E, = ; Y Ay(t) 8)
max ;—q max y—1

where Ax(t) and Ay(t) are the positioning error in the east and north directions at epoch t
(t=1, 2, ..., tmax) respectively and:

Error variance = \/m )

1 tmax 1 fmax
Ve=— ) (Bx(t) —Ex)and Vy = — ) (Ay(t) — Ey)? (10)
max j—| max ;—1
Maximum error = max{ Ax(f)2 + Ay(t)z} (11)

According to Table 3 and Figure 15, the proposed method is more efficient than the traditional
INS/GPS system. The accuracy of the proposed system is equal to the accuracy of a DGPS. The accuracy
of the reconstruction is evaluated according to variance of the error, i.e., the precision varies between
“Bias error £ Error variance”. The accuracy obtained with the proposed method varies between
23 cm £ 25.20 cm and 36.32 cm + 31.38 cm with a maximum error of 89.41 cm obtained in bend 2
while the accuracy obtained using the INS/GPS integration varies between 64.93 cm = 34.56 cm and
83.15 cm =+ 44.62 cm with a maximum error of 1.3085 m obtained in bend 4. An improvement of 61%
in the accuracy is achieved compared to the INS/GPS method.

Bias error of the Enhanced INS/Odom and
INS/GPS methods
1 0.8315 0.7893
B 0.6493 0.636
5
0.363
£ 05
3 Ui 0.23 0.236
w
8
m
0
Bendl Bend2 Bend3 Bend4
Bend
M Enhanced INS/Odo  m INS/GPS

Figure 15. Bias error comparison.
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Table 3. Experimental results of the enhanced INS/Odo and INS/GPS methods for four bends.

Bend 1 Bend 2 Bend 3 Bend 4
Enhanced Enhanced Enhanced Enhanced
INs/Odom  "NS/CFSiNsiodom  INS/GPS INsiodom  INS/CPS Nsiodom  INS/GPS
Bias error 0.3077 0.6493 0.3632 0.8315 0.2300 0.7893 0.2361 0.6960
Error variance 0.1869 0.3456 0.3138 0.4462 0.2520 0.4194 0.2605 0.3908
Max error 0.5603 1.1426 0.8941 1.2192 0. 6927 1.1210 0.6927 1.3085
Improvement ratio 53% 56% 71% 66%

Figure 16 shows bend measurement using the GPS/INS method (red curve) and its measurement
using the proposed INS/odometer system (blue curve) in “Géoportail” compared to the reference
bend given by “GPS RTK” (black curve). We can distinguish that the proposed method gives higher
accuracy than the standard GPS/INS method.

- &

Bend 1 Bend 2

Bend 3 Bend 4

Figure 16. Comparison between the reference trajectory (black curve), GPS/ INS solution (red curve),
and the proposed method (blue curve) in the four bends (Bend 1 to 4) showed in Figure 3.

7. Conclusions and Perspectives

In this paper, a comparative study of motorcycle trajectory reconstruction involving algorithms
and ad hoc sensors was realized at a sampling time of 10 ms. Several methods and algorithms were
evaluated in order to identify an optimal low-cost system further to a multi-sensor instrumentation for
an accurate motorcycle bend reconstruction with high accuracy. We provide an experimental setup
with a precise ground truth obtained through a GPS RTK.
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An enhanced navigation system was proposed using INS/odometer data fusion combined with a
Madgwick filter and a wheel radius calculation. The proposed approach represents a good alternative
to the traditional INS/GPS system, especially during GPS outage where the accuracy of the GPS/INS
solution is degraded. The results are given using a real dataset provided by different drivers.

The obtained accuracy is equal to that of a DGPS. However, the DGPS suffers from
several problems:

- Poor dynamic characteristics: the GPS has a low frequency, thus, it provides the state information
at low update rates.

- Low availability: accuracy is degraded for a small number of visible satellites (error can achieve
10 m).

- Data latency.

- Multipath errors: these errors occur when the GPS signal is reflected by objects such as large
buildings or large areas of obstacles before it reaches the receiver antenna which increases the
signal propagation time. This causes an overvaluation of the flight time and, therefore, generates
positioning errors.

Our approach overcomes all of these problems and ensures accurate results at high frequency,
availability, and solution continuity, which allows to objectively evaluate bend-taking maneuvers and
to better train riders to adopt a secure bend.

The designed system will be used by the French Gendarmerie in order to objectively evaluate
bend-taking practices. High precision is required to accurately reconstruct bends achieved by
gendarmes and to compare them to safe bends. It can also be used for the initial training and
retraining in order to better train riders to learn and estimate a safe trajectory.

As a perspective to this work, the proposed algorithm could be investigated to:

- Identify areas for the design and/or assessment of driving assistance devices dedicated to PTWs.

- Improve the positioning accuracy more by combining models (GPS-RTK, IMU/odo).

- Test and validate our proposed algorithm in M-ABS and MTC (motorcycle traction
control) systems.
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Abstract: According to the Industry 4.0 paradigm, all objects in a factory, including people,
are equipped with communication capabilities and integrated into cyber-physical systems (CPS).
Human activity recognition (HAR) based on wearable sensors provides a method to connect people
to CPS. Deep learning has shown surpassing performance in HAR. Data preprocessing is an
important part of deep learning projects and takes up a large part of the whole analytical pipeline.
Data segmentation and data transformation are two critical steps of data preprocessing. This study
analyzes the impact of segmentation methods on deep learning model performance, and compares
four data transformation approaches. An experiment with HAR based on acceleration data from
multiple wearable devices was conducted. The multichannel method, which treats the data for the
three axes as three overlapped color channels, produced the best performance. The highest overall
recognition accuracy achieved was 97.20% for eight daily activities, based on the data from seven
wearable sensors, which outperformed most of the other machine learning techniques. Moreover,
the multichannel approach was applied to three public datasets and produced satisfying results for
multi-source acceleration data. The proposed method can help better analyze workers” activities and
help to integrate people into CPS.

Keywords: deep learning; data preprocessing; Human Activity Recognition (HAR); Internet of things
(IoT); Industry 4.0

1. Introduction

Recent advances in manufacturing industry and Internet of Things (IoT) technology have paved
the way for a systematical deployment of cyber-physical systems (CPS), making networked machines
perform more efficiently, collaboratively, and resiliently, and transforming manufacturing industries to
the Industry 4.0 era [1,2]. According to the Industry 4.0 paradigm, all objects of the factory world are
equipped with integrated processing and communication capabilities. This facilitates the vision of the
“smart factory”, which enables centralized decision-making while requiring distributed manufacturing
equipment and resources [3,4]. More “things”, even people, need to be connected to the system [5].
In contrast to computer-integrated manufacturing (CIM), the Industry 4.0 movement is not gravitating
towards workerless production facilities. Instead, people should be integrated into the cyber-physical
structure in such a way that their individual skills and talents can be fully realized [6,7].

The development of IoT technology has also promoted the improvement of Human Activity
Recognition (HAR), which is based on copious sensors. HAR has been widely applied in surveillance-
based security, context-aware computing, ambient assistive living, and assembly tasks analysis [8-14].
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A variety of machine learning algorithms have been used to process human activity data in the big
data environment [15-20]. In a recently reported study [8], the performance of several common
classification methods were compared for recognizing eight daily activities, using the acceleration
data collected from wearable sensors in seven different body positions. An overall accuracy of 89%
was achieved using the random forest (RF) method, which outperformed artificial neural network
(ANN), decision tree (DT), k-nearest neighbors (k-NN), naive Bayes (NB), and support vector machine
(SVM) methods.

Deep learning is a paradigm of machine learning that enables computational models consisting
of multiple processing layers to learn representations of data with multiple levels of abstraction [21].
Many studies have proven that the use of deep learning can improve the performance of many
applications, especially speech and visual object recognition, in addition to many other domains [21,22].
As a powerful feature extraction mechanism, deep learning has also been used to perform HAR in
recent years, and significant improvement has been achieved [23,24]. The convolutional neural network
(CNN) is one of the most important deep learning approaches that has been used to perform HAR,
and has produced satisfying results in a number of studies [25].

Data preprocessing plays an important role in machine learning and deep learning algorithms,
and proper preprocessing of data is compulsory for achieving better HAR performance [26,27].
Kotsiantis et al. [26] defined data preprocessing as including data cleaning, normalization,
transformation, feature extraction, and selection. Some of the most well-known algorithms for each
step of data preprocessing are presented in their study. More specifically, when performing HAR tasks
using inertial data from wearable devices, a segmentation operation is necessary, because raw inertial
data fluctuate greatly over time. The segmented data should be transformed into proper formats
as the inputs of the deep learning models. Spectrograms are a commonly used data preprocessing
method for acceleration data. A spectrogram of an inertial signal is a new representation of the
signal as a function of frequency and time. Previous studies [23] have shown that spectrogram
representation is essential for extracting interpretable features that represent the intensity differences
among nearest inertial data points. A method that combines shallow features and those obtained
from deep learning models, in order to overcome the defects that resource limitations cause and the
simple design of the deep learning models, was proposed in [23]. However, during our experiment
it was found that the spectrogram representation of the acceleration signal does not always produce
better classification results, and introducing shallow features does not always improve the overall
performance, especially when the dataset is sufficiently large and contains multi-source sensor data.

The aim of this study is to compare different data preprocessing approaches for deep leaning
supported HAR tasks in different scenarios, like single or multiple sensors, and provide references for
future studies. In this paper, a deep learning algorithm was used to classify daily human activities
on the basis of the acceleration data that has been provided by wearable devices in different body
positions. The study focused on two important steps—data segmentation and data transformation—of
preprocessing acceleration data for deep learning algorithms. A comparison among five data
segmentation options was undertaken and the impact of segment length on activity recognition
accuracy was analyzed. Four different data transformation methods were compared, including raw
acceleration data, the multichannel method, the spectrogram method, and the spectrogram integrated
with shallow features method. The highest overall recognition accuracy achieved in this study was
99.42% for eight daily activities, based on the data from seven wearable sensors, which outperformed
most traditional machine learning techniques. Beside the above-mentioned dataset, the chosen
multichannel method was also applied to three public HAR datasets, and the results were compared
against existing studies.

2. Materials and Methods

The framework of the study is illustrated in Figure 1. The proposed method includes data
segmentation, data transformation, deep learning model training, and testing. Human activities are

198



Sensors 2018, 18, 2146

time-dependent, and the raw acceleration data from wearable sensors fluctuates greatly over time,
making classification impossible when using a single data point [28]. Most HAR methods are based
on a series of data collected in a certain time interval. A segmentation operation is necessary before
applying any classification method [8]. The data segments are then transformed into images with
four different methods, in order to produce the inputs for the deep learning module. Each input
corresponds to a specific deep CNN model and generates a specific classifier. The preprocessed data
samples are separated into training and testing samples before the training process. The testing
samples are selected randomly. Their quantity depends on the segment options and the total number
of samples. More details of each step of the workflow are provided in the following sections.

Hardware Software Method
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Figure 1. Framework of the proposed method.

2.1. Data Segmentation

The raw time-dependent acceleration dataset is separated into segments during the data
segmentation process. All of the following HAR-related operations, including feature extraction,
classification and validation, etc., are based on these segments. The length of the segments depends on
the application context and sampling rate of the sensors. Increasing the length of the segments can
improve recognition accuracy, but the training time will be increased and more time will be required to
obtain sufficient data. This will cause a delay in response for real-time applications [23] and restrict the
application scenarios. In most of the existing studies, segments of 1 to 10 s are considered for HAR [29].

2.2. Data Transformation

In order to generate the proper inputs for the deep learning models, four different data
transformation methods were adopted in this study. These methods transform the raw data segments
into different type of representations, from which the deep learning models can extract features
automatically. The four methods are explained in detail below.

2.2.1. Raw Plot

The raw plot method transforms the acceleration data directly to time series images. The three
axes are grouped by column, and the data collected from different positions are grouped by row on the
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same image, if applicable. Both the x-axis and y-axis resolution of the produced image are the same as
the length of the segment, and the color is black and white. For example, Figure 2 shows the image that
is generated from an acceleration data segment, which contains 21 separate sub-images that correspond
to three axes (by column) and seven sensors (by row). In this plot, the length of the segments represents
the number of values included in this segment. The image resolution (512 x 512 pixels) is not related
to the lengths (512 x 3) of segments. Higher resolutions may produce better results, but the training
time will also increase. This method can represent the temporal acceleration variance. The deep
learning models are able to extract activity features based on the intensity and shape of the plot at
different locations and on different levels.

Axis X Axis Y Axis Z

Number of samples (length: 512 x 3)

Figure 2. Raw acceleration plot of time domain: segment length 512 and sampling rate 50 Hz (the dotted
lines are added manually for better clarification; image resolution is 512 x 512 pixels).

2.2.2. Multichannel Method

Unlike the raw plot method, the multichannel method treats the data for the three axes as three
overlapped color channels that correspond to red, green, and blue components in the RGB color format.
The amplitude of the acceleration signal, which is in the range (—20,20), is projected to a corresponding
color value, which is in the range (0,1). In this case, the temporal variance of the acceleration data is
transformed into color variance. The three acceleration values of each point are represented as one
pixel in the image. The x-axis resolution of the image is the same as the length of the segment, and the
y-axis resolution is the number of sensors. The data collected from different sensors are grouped by
row. The advantage of this method is that it reduces the image size enormously and results in a much
less training time than the raw plot method. Figure 3 illustrates the principle of this method and an
example image produced with this method. The data segment used in this figure is the same as the
one used in Figure 2.

2.2.3. Spectrogram

The spectrogram of an inertial signal represents the frequency features of the signal in the time
domain. It is the magnitude squared of the short-time Fourier transform (STFT). STFT is used to
determine the sinusoidal frequency and phase content of local sections of a signal that changes over
time [23,30]. The procedure for computing the spectrogram is to divide a longer time signal into
short windows of equal lengths, and then compute the Fourier transform separately for each shorter
window. The study by Ravi et al. [23] proved that the spectrogram representation is essential for
extracting interpretable features to capture the intensity differences between the nearest inertial data
points. The spectrogram representation also provides a form of time and sampling rate invariance.
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This enables the classification to be more robust against data shifting in time and against changes in
the amplitude of the signal and sampling rate.

Figure 4 shows the spectrogram generated from the same data segment that is used in
Figures 2 and 3. Here, the resolution of y-axis is 350 pixels and the resolution of x-axis is determined
by the segment length (L), STFT window length (W), and overlap length (P) by the following equation:

Resy, =3 x (L — W)/(W — P), 1)

The spectrograms of different axes and sensors exhibit different patterns. There is also a difference
between different activities.

i)
eo$°‘ |
B B: acc. Z axis
G: acc. Y axis
R: acc. X axis

©
se“(’o‘

se“(’o‘

1 Pixel

Number of samples (length: 512)

Figure 3. Multichannel RGB color plot on time domain. The segment length is 512 and the sampling
rate is 50 Hz (image resolution 512 x 7 pixels).

Axis X Axis Y Axis Z

Figure 4. Spectrogram plot of the acceleration data. The segment length is 512 and the sampling rate is
50 Hz, with a short-time Fourier transform (STFT) window length of 64 STFT and an overlap length of
60 STFT (image resolution 336 x 350 pixels).

2.2.4. Spectrogram Combined with Shallow Features

Previous studies [23] have shown that when data resources are limited, the features that are
derived from a deep learning method are sometimes less discriminating than a complete set of
predefined shallow features. To overcome this problem, a method of combining both shallow and
deep-learned features was proposed in [23], in order to provide complementary information for the
classification. This method was also used in this paper, to compare the results against those of the other
three methods. The aim is to determine if this method outperforms other methods for multi-source
acceleration data. As suggested in [23], 15 shallow features are extracted from the raw acceleration
data of each axis and each sensor, as shown in Table 1. These shallow features are combined with the
deep-learned features to form the last layer of the deep CNN model.
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Table 1. Shallow features extracted from acceleration data.

Data Features

max, min, mean, median, variance, kurtosis, skewness, zero-cross,
root mean square, standard deviation, interquartile range
First derivative mean, variance, root mean square, standard deviation

Raw signal

2.3. Deep Learning Method

After preprocessing, the original acceleration data segments are transformed into different types of
images, to which the deep learning methods are applied. In this study, the deep CNN algorithm [21-31]
is used. Figure 5 shows the overall workflow of the proposed deep CNN method. Different models
were built that correspond to the outputs of the four data transformation methods. Each model has
its own parameters, such as the number of convolutional layers, the learning rate, pooling size, etc.
Following the approach in [23], the shallow features are merged with the deep-learned features on the
last fully connected layer, as shown in Figure 5. More details of the deep learning models are available
online [32].

257
V5 M A S I

Inputs

Convolutional
layers

More layers ...

Fully connected

layer * . ..

Output ®

Figure 5. Workflow of deep convolutional neural network (CNN) models.

3. Results

3.1. Dataset and Experimental Setup

The dataset contributed by Sztyler et al. [8] was adopted to test the proposed methods. The reasons
for this were that it is up-to-date and, according to the authors, is the most complete, realistic,
and transparent dataset for on-body position detection that is currently available [8]. This dataset
contains the acceleration data of eight activities—climbing stairs down (A1), climbing stairs up (A2),
jumping (A3), lying (A4), jogging (A5), standing (A6), sitting (A7), and walking (A8)—of 15 subjects
(age 31.9 4 12.4, height 173.1 £ 6.9, and weight 74.1 & 13.8, with eight males and seven females).
For each activity, the acceleration of seven body positions—chest (P1), forearm (P2), head (P3), shin (P4),
thigh (P5), upper arm (P6), and waist (P7)—were recorded simultaneously. The subjects performed
each activity for roughly 10 min, except for jumping (about 1.7 min) due to the physical exertion.
In total, the dataset covers 1065 min of acceleration data for each position and axes, with a sampling
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rate of 50 Hz. We filtered and reorganized the dataset to make it suitable for training deep learning
models. The detailed processing method and the prepared datasets are available online [32].

As shown in Figure 1, the experiments in this study were implemented with a computer equipped
with a four-core Intel Core i5-4460 3.2GHz CPU, an AMD Barts Pro Radeon HD 6850 Graphic Processing
Unit (GPU) and a 12 GB of random-access memory (RAM). The operating system is Ubuntu Linux
16.04 64-bit version. Built on top of these is a software combination of RStudio and TensorFlow.

The data preprocessing was performed with RStudio, including data segmentation,
data transformation, and shallow feature extracting. The details and complete code is also available
in R-markdown format [32]. The deep learning model training and testing were conducted with
TensorFlow (Version 1.0), and the model was built in Python (Version 2.7) language. TensorFlow is an
interface for expressing machine learning algorithms, and an application for executing such algorithms,
including training and inference algorithms for deep neural network models. More specifically,
the TE.Learn module of TensorFlow was adopted for creating, configuring, training, and evaluating
the deep learning model. TE.Learn is a high-level Python module for distributed machine learning
inside TensorFlow. It integrates a wide range of state-of-art machine learning algorithms built on
top of TensorFlow’s low-level APIs for small- to large-scale supervised and unsupervised problems.
The details of building deep learning models with TensorFlow are provided online, and some of the
trained models are also available [32].

3.2. Results and Discussion

There are two evaluation schemes for the activity recognition model, which are a person-
dependent method and a person-independent, leave-one-out method [17]. For person-dependent
evaluation, the data from the same subject are separated to training samples and testing samples.
For person-independent evaluation, the data of one or more subjects are excluded from the training
process and used for testing. In our study, considering the small number of subjects we have, and in
order to compare with a previous study [8], we used the person-dependent method. The classifiers
were trained and evaluated for each subject individually. The data of each subject were segmented
with a non-overlapping method to avoid over-fitting caused by data duplication in training and testing
datasets. Ten percent of the segmented samples were used as testing data, and the remaining samples
were used as training data. Sequential selection of samples in time was applied in order to avoid the
over-fitting caused by predicting past based on future. All segment lengths were power values of 2 in
order to better perform STFT when generating spectrogram images.

These segments were transformed into raw acceleration plots, multichannel plots and spectrogram
images, according to the preprocessing methods that were introduced above. For each segment,
the 15 shallow features that appear in Table 1 were extracted for each position and axis. Since each
segment contains the acceleration data of three axis and seven positions, 315 shallow features were
extracted for each segment. The details of data transformation and feature extracting are available [32].

Different deep learning models were built and trained for each combination of the five
segmentation options and four data transformation methods. The introduced methods were evaluated
for each individual subject. Table 2 presents the aggregated classification results of all 15 subjects,
based on different segmentation and transformation combinations. The highest overall accuracy was
97.19%, using the multichannel method based on a segment length of 512 (10.24 s).

Table 2. Overall accuracy (%) of the four data transformation methods, based on five segmentation options.

Segment Length Raw Plot  Multichannel Spectrogram  Spectrogram and Shallow Features

64 92.44 94.60 92.86 90.39
128 93.05 96.14 93.37 90.42
256 93.45 96.58 93.94 92.02
512 94.97 97.19 95.56 93.58

1024 82.13 92.81 91.54 85.55
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The results show that the multichannel method achieved the best performance for all segment
lengths. For each of these four transformation methods, the performance improved with the increase
of the segment length, from segment length 64 (2.56 s) to 512 (10.24 s). There is an accuracy decrease
from segment length 512 (10.24 s) to 1024 (20.48 s). A possible explanation is the significant drop of
training sample numbers. The accuracy of the multichannel method is more stable than other methods,
among different segment lengths. This means that the performance variance of the multichannel
method is less than that of others, and its classification accuracy is less dependent on segment lengths,
which implies that this method is more suitable for short-time HAR tasks. Moreover, the introduction
of shallow features did not increase performance as expected. In fact, it slightly decreased performance
compared to the spectrogram method. One possible explanation is that the number of shallow
features, which was 315, was too many, and they were confused with features extracted by the deep
learning models.

With the same data preprocessing method, the classification accuracies of different individuals
were different due to the variation of data quality, dataset size, and individual behaviors. Table 3
summarizes the overall classification accuracies of the 15 subjects, based on a segment length of
512 (10.24 s) with the four data preprocessing methods.

Table 3. Variation of overall classification accuracies (%) of 15 subjects based on a segment length of
512 (10.24 s) with four preprocessing methods.

Subject Raw Plot  Multichannel Spectrogram  Spectrogram & Shallow Features

Mean 95.25 97.58 95.81 93.92
Min. 92.42 93.91 91.61 88.46
Max. 97.22 99.56 98.57 97.18

Sd. 1.72 2.11 2.35 2.74

Leaving out the impact of the segment length, the four models that were based on the segment
length of 512 (10.24 s) were compared in detail. Table 4 presents the classification accuracy of each of
the eight activities that the four models produced.

Table 4. Performance of each model based on a segment length of 512 (10.24 s). Al: climbing down;
A2: climbing up; A3: jumping; A4: lying; A5: running; A6: sitting; A7: standing; and A8: walking.

Al A2 A3 A4 A5 A6 A7 A8

Precision (%) 9716 97.99 99.61 99.59 9518  99.15 92.06 99.49

Raw plot Recall (%) 9541 96.89 9878 99.18 9140 9853 8524 99.08
Overall Acc. (%) 94.97 95% CI: (0.9434, 0.9556)

Precision (%)  97.65 97.96 99.74 99.89 9629  99.63 9699 99.72

Multichannel Recall (%) 9556 9653 9949 100.00 9333  99.34 9504 99.53
Overall Acc. (%) 97.19 95% CTI: (0.9670, 0.9763)

Precision (%)  97.65 97.23 99.92 9860 98.84 9747 9118 97.76

Spectrogram Recall (%) 95.65 96.05 100.00 97.56  98.96 96.55 82.73 96.08
Overall Acc. (%) 94.56 95% CI: (0.9251, 0.9618)

s & Precision (%) 9492 9825 9151 9860 9592  96.60 9339 9538

Shp;ctrogfrain Recall (%) 91.05 9859 8333 9756 9314 9375 8842 9151
atlow Ieatures  Gyerall Acc. (%) 93.58 95% CI: (0.9157, 0.9512)

Regarding to training time, the multichannel method also achieved outstanding performance.
As shown in Figure 6, the multichannel model took only 40 min to reach the highest accuracy,
whereas the other methods required at least 360 min. This proved that the multichannel method
provided the best performance, in this case from both accuracy and training time points of view.
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Figure 6. Classification accuracy and training time of the four data transformation methods.

Considering the classification accuracy of each activity, the multichannel method perfectly
classified the 68 climbing down (A1) samples, as presented in Table 5. It produced a relatively
lower accuracy for running activity (A5), where 5 out of 105 running samples were misclassified as
standing activity (A7).

Table 5. Confusion matrix generated by the multichannel model based on a segment length of 512 (Al:
climbing down; A2: climbing up; A3: jumping; A4: lying; A5: running; A6: sitting; A7: standing; and
A8: walking).

Prediction
Original

Al A2 A3 A4 A5 A6 A7 A8
Al 68 0 0 0 0 0 0 0
A2 0 78 2 0 1 0 0 1
A3 0 3 22 0 0 0 0 0
A4 0 0 0 81 1 0 0 0
A5 0 6 0 0 98 1 3 0
A6 0 0 0 0 0 92 1 0
A7 0 0 0 1 5 1 86 0
A8 0 1 0 0 0 0 2 100

The classification above is based on the acceleration data that were collected from seven
body positions. In real life scenarios, it is difficult to obtain such a complete dataset. Therefore,
activity classification using the data from each single position was also undertaken in this study.
The combination of segment length 512 (10.24 s) and the multichannel method was used to better
compare with the above-mentioned results. Figure 7 shows the overall classification accuracy for the
eight activities. The data from the head produced the lowest accuracy (79.32%), whereas the data
collected from the shin provided the highest accuracy (90.51%). This result agrees with practical
experience that the movements of the head are more stable than other body positions, whereas the
movements of the shin are more closely related to different activities, especially to such dynamic ones
such as running, jumping, climbing up, and climbing down. By combining the data from the two
positions with the data of highest accuracies, the shin and forearm, an overall accuracy of 93.00% was
achieved. This is close to the result that was obtained based on the data from all of the seven positions,
which was 97.20%.
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Figure 7. Overall classification accuracies of eight activities based on data from seven single positions
and two combined positions.

Compared to other traditional classification techniques, such as ANN, DT, k-NN, NB, SVM,
and RF, deep learning methods improved the classification accuracy significantly. Figure 8 shows a
comparison of the results achieved by the proposed multichannel deep learning method (marked as
DL) based on the segment length of 64 (1.28 s) and the results reported in [8], using the same dataset
with a similar segment length of one second. It is shown that the deep learning method achieved an
overall classification accuracy that was 7.22% higher than RE.
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Figure 8. Accuracy of different classification methods [8].

Beside the dataset used above, in order to testify its feasibility, the proposed multichannel data
preprocessing method was also applied to another three public HAR datasets, which are WISDM v1.1
(daily activity data collected by a smartphone in a laboratory, with a sampling rate of 20 Hz) [33],
WISDM v2.0 (daily activity data collected by a smartphone in an uncontrolled environment, with a
sampling rate of 20 Hz) [34,35], and Skoda (manipulative gestures performed in a car maintenance
scenario, with sampling rate of 98 Hz) [36]. These datasets were used by Ravi et al. [23], and we used
the same segment length as they did, which is a non-overlapping window size of 4 s (for the Skoda
dataset) and 10 s (for the WISDM v1.1 and WISDM v2.0 datasets).
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The comparison about the per-class precision and recall values obtained by the proposed
multichannel transformation method (abbreviated as MCT in the tables) against the results produced
by [23] is presented in Table 6. The result shows that the proposed method outperforms the spectrogram
integrated with shallow features method in most activities, except the walking and jogging in the
WISDM v1.1 dataset and walking in the WISDM v2.0 dataset. In terms of the multi-sensor Skoda
dataset, the proposed method perfectly classified most activities, except the open and close left front
door activities. This comparison result reveals that the proposed multichannel method is more suitable
for multi-source data, although it can also achieve good results for singular sensor data.

Table 6. Precision (%) and recall (%) obtained by the proposed multichannel (MCT) method and
existing study [23] in three public datasets.

Dataset 1: WISDM v1.1

Walking Jogging Sitting Standing Upstairs Downstairs
Ravietal. Prec. 99.37 99.64 97.85 98.15 95.52 94.44
[23] Rec. 99.37 99.40 98.56 97.25 95.13 95.90
MCT Prec. 98.34 98.11 100.00 100.00 96.14 98.44
Rec. 97.31 97.53 100.00 100.00 93.10 97.67
Dataset 2: WISDM v2.0
Jogging Lying Down Sitting Stairs Standing Walking
Ravietal. Prec. 98.01 88.65 87.32 85.00 82.05 97.17
[23] Rec. 97.73 85.85 89.28 76.98 82.11 97.19
MCT Prec. 98.76 96.85 90.25 87.03 91.02 95.85
Rec. 97.95 94.96 82.05 75.00 85.94 94.81
Dataset 3: Skoda
Write on Notepad Open Hood Close Hood Check Gaps Open Left Front
Front Door
Ravietal. Prec. 96.67 97.78 89.47 91.15 100.00
[23] Rec. 91.34 97.78 94.44 92.79 100.00
MCT Prec. 100.00 99.54 100.00 100.00 80.00
Rec. 100.00 100.00 100.00 100.00 60.00
Close Left Front Close Both Left Check Trunk Open and Close Check Steer
Door Door Gaps Trunk Wheel
Ravietal. Prec. 88.89 92.86 98.78 100.00 93.55
[23] Rec. 80.00 94.20 97.59 98.04 100.00
MCT Prec. 99.18 100.00 100.00 100.00 94.44
Rec. 100.00 100.00 100.00 100.00 88.89

4. Discussions and Conclusions

In this paper, preprocessing techniques in human activity recognition tasks by deep learning
have been considered as a design parameter, and they were shown to be relevant. By comparing
different data preprocessing approaches, we came to the following conclusions. Firstly, the length
of data segment significantly impacts the final classification accuracy of the deep learning model.
The accuracy improves with the increasing of the segment length, and the increasing rate is slower
when the segment length is longer. This result agrees with the findings of previous studies that HAR
are usually based on data segments of 1 to 10 s. Secondly, four different data transformation methods
were compared, and the multichannel method achieved the best performance in both classification
accuracy and training time. Unlike the reports of previous studies, we found that the introducing
of shallow features did not increase the final accuracy when the experiments were based on a large
and multisource dataset. By comparing the classification accuracy based on the data from seven
different body positions, it was found that the acceleration data from the shin produced the highest
accuracy of 90.51%. A satisfactory accuracy of 93.00% was achieved by combining the data from the
shin and forearm. Moreover, we compared the proposed method against some of other common
machine learning methods, based on the same dataset, and it was proven that the deep learning
method outperforms others impressively. Finally, we applied the proposed multichannel method to
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three more public datasets, including the car maintenance activity data in a workshop. The results
proved that our method can achieve satisfying recognition accuracy. It can help better analyze workers’
activities in a factory environment and help integrate people into the cyber-physical structure in an
Industry 4.0 context.
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Abstract: This paper is concerned to the fire localization problem for large-space buildings. Two kinds
of circular fire source arrangement localization methods are proposed on the basis of the dynamic
optimization technology. In the Range-Point-Range frame, a dynamic optimization localization is
proposed to globally estimate the circle center of the circular arrangement to be determined based on
all the point estimates of the fire source. In the Range-Range-Range frame, a dynamic optimization
localization method is developed by solving a non-convex optimization problem. In this way,
the circle center and the radius are obtained simultaneously. Additionally, the dynamic angle bisector
method is evaluated. Finally, a simulation with three simulation scenes is provided to illustrate the
effectiveness and availability of the proposed methods.

Keywords: fire source localization; dynamic optimization; global information; the Range-Point-Range
frame; the Range-Range-Range frame; sensor array

1. Introduction

In recent decades, more and more large-space buildings have been utilized as product storage
and manufacture places, which are usually designed with complicated structures and are crowded
with many kinds of materials and products. For these places, fire safety has become one of the most
important and difficult problems, and increasing attention has been by governments, factories, firemen,
researchers, and engineers [1-6]. For fighting against fire disasters, a critical important issue is how
to determine the location of a fire source, in order to provide accurate information and necessary
guidance for firefighting. Therefore, it is necessary to develop fire location methods to determine
the fire source location as quickly and accurately as possible, for intelligent firefighting, especially in
large-space buildings.

In fact, the fire source location method is one kind of wireless indoor positioning technique [7-11].
The existing fire source location methods are mainly developed on the basis of image processing
technology, fiber-optic temperature measurement, temperature sensor arrays, and smoke sensor arrays.
The fire location systems based on image information are commonly used for the large open spaces,
and are easy impacted by barriers [12-14]. The fiber-based temperature measurement methods utilize
the impacts of temperature on the anti-Stokes spectral lines in the Raman scattering process in an
optical fiber to determine the fire sources position, which is suitable for tunnels and other such scenes,
however, the cost of installation and maintenance of optical fiber is too expensive [15-18]. Moreover,
several temperature field-based positioning methods aiming at environments, such as mines and
forests, are given in [19-22]. These methods usually require that the fire releases more heat. Recently,
the fire monitoring and location methods based on temperature/smoke sensor arrays have been paid
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increasing attention, in which the measurements are sometimes non-line-of-sight propagated. The fire
source burning process produces the hot gases or smoke, which rise up to the ceiling and spread in a
nearly circular shape [23-28]. With two temperature sensor arrays, a prototype system for determining
the fire location was proposed in [18], in which three temperature sensors of a four-sensor array
were utilized to estimate the angle of the fire source to the sensor array, and the fire source location
can be obtained with the help of two estimated angles and the distance between two sensor arrays.
This method was identified as the far-field mode in [24], due to the assumption that the distance
between the fire source and the sensor array is much large than the distance intervals in the sensor
array. In [24], a far-field fire location approach and a near-field method were presented and compared.
In the near-field fire location method, the distance and the angle of the fire source to the sensor array
were estimated simultaneously, with signal source localization of the planar wave fronts, but not
the planar wave fronts, which was utilized in the far-field approach. The position estimation of the
smolder source was realized in [28], using the smoke sensor arrays arranged in the planar circular
mode. In [25], a fire location position algorithm was also developed with the signal source localization
of a bilinear sensor array. As shown in [27,29], the output results of the above fire source location
methods were a number of dispersedly estimated point coordinates of the fire source. The fire source
point coordinate estimates were solved locally and independently with the sensor data sampled in
the current time, but not the global sensor data sampled in the time series. Therefore, the clustering
algorithm was introduced in the fire source localization method in the Range-Point-Range (RPR)
frame in [27]. Additionally, two effective fire range estimation approaches were proposed in the
Range-Range-Range (RRR) frame in [29]. The circle range estimates were obtained globally in the
form of the inscribed circle and the circum-circle of a quadrangle, which was solved recursively using
a dynamic angular bisector method. However, it did not discuss the optimality of the circle ranges
solved by the dynamic angular bisector method in [29].

Inspired by the above discussion, in this paper, the method of determining the circle range which
covers the fire source is developed based on the dynamic optimization theory. Firstly, in the RPR
frame, all the point estimates of the fire source obtained by the fire source point location method
are considering to obtain a circle center of the circular fire source range to be determined, the sum
distance from which each fire point estimate is minimizes. The radius is the standard deviation of the
distances from the circle center to every fire point estimate. Actually, compared with to the clustering
algorithm in [27], this method determines the circle center and radius based on all the fire point
estimates. Therefore, the circular fire source range is determined globally, according to [29]. However,
the dynamic optimization problem solved in this algorithm is not recursive. When several new fire
point estimates are obtained by using the current measurements of sensor arrays, all the obtained fire
point estimates in the time series should be considered to determine the circle center and radius of the
circular fire source range to be determined. Although the location accuracy can be improved along
with the fire source range determining process, the computing complexity is increasing poor. In order
to reduce the computing complexity of the dynamic optimization problem, a circular fire source range
location method is also developed in the RRR frame. In [29], the quadrang]le is solved by using the
dynamic angle bisector method with global information, which, in this paper, is utilized to determine
a new circum-circle, the circle center and radius of which is solved by minimizing the distances of the
circle center to the four vertices of the given quadrangle. An interesting discovery is that the circle
center is similar to the one obtained by the dynamic angle bisector method. It seems that the circle
center obtained by using the dynamic angle bisector method is optimal in the sense of minimizing the
distances of the circle center to the four vertices of the quadrangle solved with the global information.

The major contributions of this paper are three-fold. First, with all the fire point estimates,
a circular fire source range estimation method is proposed in the RPR frame. As shown in [27],
the clustering algorithms used to obtain the circular fire source range inevitably discard some fire
point estimates. However, in this paper, the circular fire source range is solved globally by using a
dynamic optimization algorithm based on all the point estimates of the fire source. Secondly, the above
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circular fire source range location method is developed in the RRR frame to reduce the computational
complexity. The global angle information in time series are recursively utilized to obtain a quadrangle
by using the dynamic angle bisector method. What is different with the method in [29] is that the
circle center and the radius are determined by solving a non-convex optimization problem. In fact,
the non-convex optimal problem can be treated as a standard to evaluate the dynamic angle bisector
method. Additionally, the optimality of the dynamic angle bisector method is analyzed by the numeric
examples in the simulation section.

It should be noted that, for the case where the angle information are not uniform on the two sides
of the bisectors, the proposed circular fire source arrangement methods have better location results
than the dynamic angle bisector method in [29], as illustrated in the simulation.

The rest of this paper is organized as follows: In Section 2, the fire location problem is presented,
and a fire source point localization principle is briefly introduced. On this basis, two fire source
range localization methods based on the dynamic optimization algorithm are proposed in Section 3.
The first one is designed with the help of the fire point estimates in the RPR frame in Section 3.1, and in
Section 3.2, the second method is developed with the quadrangle solved by the dynamic angle bisector
method, which is studied in the RRR frame. In Section 4, a simulation with three different simulation
scenes are provided to prove the effectiveness of the proposed methods. Finally, the conclusion of this
paper is given in Section 5.

2. Problem Formulation

The structured fire scene studied in this paper is similar to the ones in [6,12,29]. An ignition
fire source is considered in a large-space building with static wind. The fire source burning process
produces the hot gases, which rise up to the ceiling and spread in a nearly circular shape at a constant
current velocity from, and around, the center and form a hot upper layer [6,12,29], as shown in Figure 1.
In Figure 1, two temperature sensor arrays are placed in different locations on the ceiling to monitor
the air temperature. In each sensor array, four homogeneous temperature sensors are arranged in a
square shape with the side length d. The distance between the two sensor arrays is L. The distances
from the fire source to the two sensor arrays are Dj and D;, respectively. Then the expectation of the
temperature field around the fire source can be described as [12]:

E{T(xry/t)}‘(x_,(o)2+(y_y0)2:cz =f(t) )

where (x, /o) is the point coordinate of fire source and f(t) is the temperature function at location
(x,y), the distance from which to the fire source is c.

For the structured fire scene described above, several effective fire source point location methods
are proposed in [6]. Taking the famous far-field algorithm as an example, the main steps of the fire
source point location scheme can be sketched as follows:

(1)  Delay Estimation. As shown in Figure 1, there are different distances from the fire source to
different temperature sensors. According to the temperature field expectation in Equation (1),
the delay time of the same temperature time series spread to different sensors can be estimated
by the correlation function method [12], or the gray relation analysis method [29].

(2)  Angle Estimation. Denote Tijs (i,j = 1,2,3,4) as the delay time from S; to S i fa as the sample rate
of the temperature sensors, a(k) is an intersection angle crossed by the horizontal line and the
line from the sensor array to the fire source, as shown in Figure 1. Based on the planar waves
assumption of the far-field algorithm, for the sensor set {51, S, S3}, one can obtain:

0] 2 = dcos(a(k) @)
Fa

o] = dsin(a(k)) 3)
fa
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then:
dcos(a(k))

T2

a(k) = arctan<2>,ﬁ = fa 4)
T3
Similarly, for different sensor sets in the same sensor array, such as {51, S2, S4} and {51, S3, Sa},
different estimates of (k) can also be obtained. In the sensor array, the sensor at S; is the reference
node. For the sake of convenience, the angle estimate is denoted as &;j(k), in which k indicates the
sampled times, i € {A, B} represents the different sensor arrays, and j = 1,2, 3 signifies the different
sensor sets.

(3)  Fire Source Point Estimation. For every combination {& ;(k), &g (k)}, (j,I = 1,2,3), the fire source
point can be estimated as follows [12]:

tan(dp(k))
tan(&,,j(k)) + tan(ap,(k))

tan (g, (k))
tan(&4,;(k)) + tan(ag;(k))

Ro,1(k) =L +x ®)

Jo,1(k) =L +1 (6)

where (x1, 1) is the coordinate of Sp in the sensor array A.

According to the fire source point estimation method given in Equations (5) and (6), nine estimates
of the fire source can be solved at one time. Afterward, one can obtain a great deal of discretely ruleless
estimate points. This kind of result limits the ability to guide firefighters. Therefore, some modified
fire location methods are developed based on the fusion method [12,29]: the clustering algorithms [27].
In the next section, two kinds of location methods are designed to determine more accurate and
compact ranges of the fire source, based on the above fire source point estimation method.

Figure 1. The fire source localization scene.

3. Main Results

3.1. Dynamic Optimization Localization Method in the RPR Frame

According to the fire source point estimation method mentioned in the above section, several
ruleless discrete location points can be solved at one time. In order to fuse this location information
into one estimate point, the mean of the three angle estimates for each sensor array is taken as the final
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angle estimate at one time, then the fusion fire source points are solved by Equations (5) and (6) in [12].
As noted in [29], this fusion result is solved only based on the sensor data at the current time, but not
all of the sensor data in the time series. Therefore, in [27], a fire source range location method in the
RPR frame is proposed based on an improved clustering algorithm. The fire source point estimates in
the time series are utilized to determine a circular range which contains the real fire source with a large
probability. However, this fire source circle range does not contain all the fire source point estimates in
the clustering algorithm [29].

In this section, a fire source range location method is studied in the RPR frame, based on the
dynamic optimization algorithm. All the estimates (J?O,j,[ (1), Po,j, (t)) Ll =1,23t=12--,k
obtained by Equations (5) and (6) contain some information of the fire source. Thus, all of them should
be considered to deal with the globally determined circular range. Therefore, in this section, the circle
center of the circular sharp arrangement to be determined is considered as the solution of the following
optimization problem:

min sum ((9?16 - xo)2 + (95 - y0)2> @)

where (92]5, y’é) is the matrix including all the fire source point estimates in the time series obtained by
the fire source point estimation method mentioned in the above section.

It is indicated in Equation (7) that the sum of the distances between the circle center to be solved
and every fire source point estimates in the time series should be the minimum.

Denote the solution of the optimization problem of Equation (1) as (£o(k), 7o(k)). Take it as the
circle center of the circular range to be determined, and take the standard deviation of the distances
from (£ (k), Jo(k)) to every fire source point estimate (J?O,j,l(t),yo,j,l(t)), 1=1231t=12--,kas
the radius of the circular range to be determined. Namely:

r(k) = sta{ (%o,,(8) = 20(K)* + (Jo1(t) = f0(K)* ) jol =1,2,3;t = 1,2, k ®)

where, (ﬁo,]-,,(t),yo,/,,(t»,j,l = 1,2,3;t = 1,2,---,k are just the constituent elements of the
matrix (25, 75).

In this way, a circular fire source range is determined by solving the optimization problem in
Equation (7).

Remark 1. All the fire source point estimates in the time series are utilized to solve the dynamic optimization
problem in Equation (7). Therefore, the circle center is solved based on the global information.

However, the dynamic optimization problem solved in this algorithm is not recursive.
When several new fire point estimates are obtained by using the current measurements of sensor arrays,
all the obtained fire point estimates in the time series should be considered to determine the circle
center and radius of the circular fire source range to be determined. Although the location accuracy
can be improved along with the fire source range determining process, the computing complexity is
increasing poor. In order to reduce the computing complexity of the dynamic optimization problem in
the RPR frame, a circular fire source range location method is also developed in the RRR frame in the
next subsection.

3.2. Dynamic Optimization Localization Method in the RRR Frame

In the fire source localization scene shown in Figure 1, for each sensor array i, i € {A, B},
three angle estimates can be obtained at each time k, according to Equations (2) and (3). In the RRR
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frame [29], the up and down bounds of the angle estimate range can be obtained by using the statistical
mean and variance of the three angle estimates:

A 13, , 13, ) 2
&i(k) = 3 ) &ij(k), 67 = 52(%‘,;(1{) — &;(k)) )
= j=
&f (k) = &;(k) +6;, &f (k) = &;(k) — ¢ (10)

For the global angle estimates in the time series, the corresponding statistical mean and variance
can be recursively calculated by:

ok

1

TR (80 —a)" + k=) (31

P 11)
Then, the up and down bounds of global angle estimate range can be given by:
& (k) = ak (k) + oF, &b (k) = ak (k) — of (12)

The overlapped area of the global angle estimate ranges of the two sensor arrays contains the
fire source with large probability, as shown in Figure 2. In [29], a dynamic angle bisector method
was proposed to determine a circular fire source arrange, the circle center and radius of which were
calculated on the basis of this overlapped area, which is a quadrangle. Actually, using the statistical
features of the global data to obtain the quadrangle which contains the fire source with large probability
is an excellent data compression method, which can also be used to reduce the computing complexity
of the dynamic optimization problem in the proposed fire source range location method in Section 3.1.

Figure 2. The fire source arrangement localization principle in the RRR frame.

As show in Figure 2, set the reference vertices’ coordinates of two sensor arrays as
(x4,y4), (xB,yp), then the four vertices Cj(c;-‘,d}‘), (j = 1,2,3,4) of the quadrangle overlapped by
the two global angle estimate ranges can be solved by [29]:
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Ck _ tan(&ﬁL)vlftan(&%H)xzfyl Y2 gk Y2/ tan( oc ) 1/tan(u¢A )—xp+x7
1 tan(:xl;‘ )— tan(&kH) 1 l/tan(ﬁ(}éH) l/tan(zx’;[)
}é _ tan(al;‘ )x1— tan(a}g )X2—y1t+ys | dk _ yz/'can(o(’[‘3 )—yl/tan(txA )—xp+x1

tan( IA )—tan(& kH) 1/tan(5¢ Hy— 1/tan(54’xH)

k tan(ocA )x1— tan(a’g )Xo—y1t+ys | dk - jz/tan(agl“) yl/tan(&‘;\'L)—xz-#xl
3 tan(aA )— tan(akL) - l/tan(aB )— l/tan(aA )

Ck tan(vz’;i )x1— tan(utB )X2—y1+y2 . dk _ yz/tan(a ) yl/tan(zxA )—x2+x;
47 tan(ﬂci‘qH) tan(och) 4 1/tan(aB )— l/tan(a“)

(13)

On this basis, the fire localization problem can be formulated to the following dynamic
optimization problem, in which the circle center and radius of the circular fire region to be determined
can be solved simultaneously:

min r2

- <2 =1,2,3,4)

s.t (xy — c;‘) (14)

where (xg, 1/0) and r are the center’s coordinate to be solved, respectively.

It should be noted that Equation (14) is only one of many optimization formulations and not the
one and only. It is noted that Equation (14) is a non-convex optimization problem and it is difficult
to solve. Thereby, in order to successfully solve this non-convex optimization, there is an available
method to transform it to a set of convex optimization problems. In fact, the non-convex optimization
problem given by Equation (14) can be expressed equivalently as the following set of four convex
optimization problems, namely:

. 2 2
min (xo )"+ (yo —db)

2, 2 2, (15)
st (39— )+ (v — 4 < (xg — &)+ (yp — )’ (= 2,3,4)
. 2 2
min (g = ¢§)" + (¥ — d3)
2 2 2 02 (16)
st (xg—c) + (Yo —df) < (xg—c3)" + (yp—d3) (j =1,3,4)
. 2 2
, min (xo &)+ (yo —db) , a7)
4. (x — & 4 (99 — )" < (x — )” + (99— 57 (1= 1,2,9)
. 2 2
, minby - ) -
st (g = ) + (g — )" < (9 — &) + (o — d5)°( = 1,2,3)
Denote the optimal solutions of Equations (15)—(18) as ( x’é/ i y’érj), (j=1,2,3,4), and set:
rk,:\/(xk — Y (yk — k), i =1,2,3,4 19)
0,j 0,j 1 yorj 1) 7 ] 74,9,
Then, the optimal global solution on the radius of the circle to be determined is:
A5 = minob o bk} = o,
where p € {1,2,3,4}. The corresponding estimate of center’s coordinate of the expected circle is:
92]6 = x}(g/p'])}(c) = yl(g,p (20)

Therefore, in the RRR frame, a fire source localization arrangement covering the fire source is
presented with the dynamic optimization theory and the data compression method based on the
statistical features of the global data.
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Remark 2. Although the set of four convex optimization problems shown in Equations (15)—(18) can equivalently
transform the non-convex optimization problem of Equation (14), but it cannot be directly solved with the CVX
software package, which requires that constraints must be in the most simplified form. Thus, the optimization
problems in (15)—(18) should be equivalently expressed as:

. 2 2
min (x, — cf) ‘25‘ (yo — )

2 2 2 2,. (21)
5.£.2 (e — &)+ 2k — )" < () + (@) — (&) — (@)1 =2,3,4)
. 2 2
mm(xozfcli) j(yo*flﬁ) 5 5 22)
5.£.2%y(ch — o) + 290 — )" < () + (d5)” — (¢8) — (251 = 1,3,4)
. 2 2
min(rg— )’ + (o -5 )
.20k — )+ 2y — )" < ()7 + () — (&) + (@) = 1,2,4)
. k2 K\ 2
min (x, —¢3) + —d
(xg —c3)” + (yo —d}) ) (24)

2 2 2 2,.
58,220 (¢ — ) + 29y (d — d5)” < () + (@) — () + (@)1 =1,2,3)

which can be directly solved with the CVX software package.

Remark 3. Theoretically speaking, the angle bisector method in [29] subjectively fixes the circle center and
the radius of the circular fire source arrangement to be determined, while the dynamic optimization method
looks more reasonable because it can obtain a dynamic optimal solution of the estimate of circle center and the
radius which, in the meantime, is also global. Clearly, there is a question that the subjective circle center cannot
theoretically be guaranteed to be reasonable and perfect. The optimization problem in this section can be taken as
a standard to evaluate the effectiveness of the angle bisector method. It should be noted that the circle center and
the radius are estimated, respectively, although they have a very close connection. In fact, the circle center can be
considered as a solution of the optimization problem that the minimum distance from a point to be determined
in the quadrangle to cover all the four vertices, and the circum-circle radius estimated by the angle bisector
method is the shortest one of the four distances from the vertices to the determined circle center, but not the
distance solved by the last optimization problem. Therefore, there are some areas in the quadrangle that cannot be
covered by the circum-circle estimated by the angle bisector method. For the dynamic optimal method in the RRR
frame, the circle center and radius are estimated simultaneously in a consistent optimization standard. Thus,
the circum-circle determined by the estimated circle center and radius cover the whole quadrangle. Therefore,
the output of the dynamic optimization localization method in the RRR frame is another kind of circum-circle,
which covers the whole quadrangle. It differs from the output of the angle bisector method with the circum-circle.

Remark 4. Similar to the angle bisector method in [29], the dynamic optimal localization method in the RRR
frame is sensitive to the statistical character of the measurement data on the fire position. For cases where the
mean of the fire source point estimates are not zero, the location performances will be reduced to some extent.
Nevertheless, the dynamic optimization localization method in the RPR frame has stronger robustness for the
change of statistical characters of the measurement data.

4. Simulation

In this section, a numerical simulation with three different simulation scenes are provided to
prove the effectiveness and availability of the two proposed dynamic optimal localization methods.
The simulation settings are similar to those set in [12,29], as shown in Tables 1 and 2.

No matter the localization methods designed in the RPR frame or the RRR frame, the processes of
delay time estimation and angle estimation are coincident, even for the principle of fire source point
estimation. Therefore, the simulation of angle estimates do not influence the validity of the simulation
results. The angle estimate simulation method in [29] is adopted to simplify the simulation process.
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Namely, several fire source point estimates are simulated firstly, and then the angle estimates can be

computed according to the triangle principle.

Table 1. The simulation settings.

Simulation Background Simulation Setting
The length of the buildings 11 m (meters)
The width of the buildings 11m
the real point of fire source (5m,5m)
The distance between the two temperature sensor arrays L=9m
The distance between the two sensors in a array dp=0.1m
The coordinate of the reference node of sensor array A (0.5m,1m)
The coordinate of the reference node of sensor array B (I m, 10 m)
The sampling frequency 500 Hz

Table 2. The abbreviations of the algorithms used in this section.

The Algorithms Abbreviations
The angle bisector method with the circum-circle Algorithm A
The dynamic optimization localization method in the RPR frame Algorithm B1
The dynamic optimization localization method in the RRR frame Algorithm B2
The localization method based on VB-ASCKEF in the RRR frame Algorithm C
The localization method in the RRR frame with clustering technology Algorithm D

In order to show the effectiveness and robustness of the proposed fire localization methods,
they are compared with three other kinds of fire location methods in three different fire source

localization simulation scenes.

Simulation Scene 1. The fire source point estimates are simulated based on the real fire coordinate
by adding Gaussian noise. The estimation results of Algorithm A and Algorithm B1 are compared

in Figure 3.
10 . . . : .
O Real fire point
sl % Fire point esti