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Preface to “Intelligent Optimization Modelling in 

Energy Forecasting” 

Accurate energy forecasting is important to facilitate the decision-making process to 

achieve higher efficiency and reliability in power system operation and security, economic 

energy usages, contingency scheduling, planning, and maintenance of energy supply systems, 

and so on. In recent decades, many energy forecasting models have been continuously 

proposed to improve the forecasting accuracy, including traditional statistical models (such as 

ARIMA, SARIMA, ARMAX, multi-variate regression, exponential smoothing models, Kalman 

filtering, Bayesian estimation models, and so on) and artificial intelligent models (such as 

artificial neural networks (ANNs), knowledge-based expert systems, evolutionary computation 

models, support-vector regression, and so on). Particularly, in the Big Data era, forecasting 

models are always based on a complex function combination, and energy data are always 

complicated, such as seasonality, cyclicity, fluctuation, dynamic nonlinearity, and so on. 

Comprehensively addressing this issue not only involves concentrating on hybridizing 

evolutionary algorithms with each other, or hybridizing chaotic mapping mechanism, quantum 

computing mechanism, recurrent mechanism, seasonal mechanism, and fuzzy inference theory 

with evolutionary algorithms to determine suitable parameters for an existed model, but also on 

hybridizing or combining two or above existed models. These novel hybrid advanced 

techniques can provide better energy forecasting performances.  

Recently, due to the great development of optimization modeling methods (quadratic 

programming method, differential empirical mode method, evolutionary algorithms, meta-

heuristic algorithms, and so on) and intelligent computing mechanisms (e.g., quantum 

computing mechanism, chaotic mapping mechanism, cloud mapping mechanism, seasonal 

mechanism, and so on), many novel hybrid or combined with the mentioned intelligent-

optimization-based models are also proposed to achieve satisfactory forecasting accuracy. It is 

deserved to explore the tendency and development of intelligent-optimization-based modeling 

methodology and to enrich the practical performances, particularly for marine renewable 

energy forecasting. 

This book contains articles from the Special Issue “Intelligent Optimization Modeling in 

Energy Forecasting”, which published articles from researchers with an interest in the research 

areas described. As Zhang and Hong [1] indicate that the research direction of energy 

forecasting in the recent years is concentrated on proposing hybrid or combined models: (1) 

hybridizing or combining these artificial intelligent models with each other; (2) hybridizing or 

combining with traditional statistical tools; and (3) hybridizing or combining with those 

superior evolutionary algorithms. Therefore, the Special Issue contains contributions that 

address recent developments, i.e., hybridizing or combining any advanced techniques in energy 

forecasting. The hybrid forecasting models should have superior capabilities over the 

traditional forecasting approaches, and are able to overcome some embedded drawbacks, and, 

eventually, to significantly improve forecasting accuracy. 

The 11 articles in this compendium all display a broad range of cutting-edge topics in the 

hybrid advanced technologies. The preface author believes that the applications of hybrid 



technologies will play a more important role in energy forecasting accuracy improvements, 

such as hybrid different evolutionary algorithms/models to overcome some critical 

shortcomings of a single evolutionary algorithm/model or directly improve the shortcoming by 

theoretical innovative arrangements. 

Based on these collected articles, an interesting (future research tendency) issue is how to 

guide researchers to employ proper hybrid technology for different data sets. This is because, in 

any analysis models (including classification model, forecasting model, and so on), the most 

important problem is how to catch the data pattern, and applied the learned patterns or rules to 

achieve satisfactory performance, i.e., the key to success is how to suitably look for data 

patterns. However, each model has an excellent ability to catch a specific data pattern. For 

example, exponential smoothing and ARIMA models focus on strict increasing (or decreasing) 

time-series data, i.e., linear pattern, even they have seasonal modification mechanism to analyze 

seasonal (cyclic) change; due to artificial learning function to adjust the suitable training rules, 

the ANN model excels only if historical data pattern has been learned, it lacks the systematic 

explanation of how the accurate forecasting results are obtained; the support-vector regression 

(SVR) model can acquire superior performance only if the proper parameters determination 

search algorithms. Therefore, it is essential to construct an inference system to collect the 

characteristic rules to determine the data pattern category.  

Secondly, it should assign appropriate approach to implement forecasting: for (1) ARIMA 

or exponential smoothing approaches, the only work is to adjust their differential or seasonal 

parameters; (2) ANN or SVR models, the forthcoming problem is how to determine the best 

parameters combination (e.g., numbers of hidden layer, units of each layer, learning rate; or 

hyper-parameters) to acquire superior forecasting performance. Particularly, for the focus of 

this discussion, in order to determine the most proper parameter combination, a series of 

evolutionary algorithms should be employed to test which data pattern the model is familiar 

with. Based on experimental findings, those evolutionary algorithms themselves also have 

merits and drawbacks, for example, GA and IA could handle excellently in a regular trend data 

pattern (real number) [2–5], SA excelled in fluctuation, or noise data pattern (real number) [6], 

and ACO is well done in integer number searching [7]. 

It is possible to build an intelligent support system to improve the efficiency of hybrid 

evolutionary algorithms/models or improving by theoretical innovative arrangements 

(chaotization and cloud theory) in all forecasting/prediction/classification applications. Firstly, 

filter the original data by the database with a well-defined characteristic rule set of data 

patterns, such as linear, logarithmic, inverse, quadratic, cubic, compound, power, growth, 

exponential, etc., to recognize the appropriate data pattern (fluctuation, regular, or noise). The 

recognition decision rules should include two principles: (1) the change rate of two continuous 

data; and (2) the decreasing or increasing trend of the change rate, i.e., the behavior of the 

approached curve. Secondly, adequate improvement tools (hybrid evolutionary algorithms, 

hybrid seasonal mechanism, chaotization of decision variables, cloud theory, and any 

combination of all tolls) should be selected to avoid getting trapped in local optimum, 

improvement tools could be employed in these optimization problems to obtain an improved, 

satisfactory solution. 



This discussion of the work by the author of this preface highlights work in an emerging 

area of hybrid advanced techniques that have come to the forefront over the past decade. The 

collected articles in this text span a great deal more cutting edge areas that are truly 

interdisciplinary in nature. 

 

Wei-Chiang Hong 

Guest Editors 
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Abstract: For operational management of power plants, it is desirable to possess more precise
short-term load forecasting results to guarantee the power supply and load dispatch. The empirical
mode decomposition (EMD) method and the particle swarm optimization (PSO) algorithm have been
successfully hybridized with the support vector regression (SVR) to produce satisfactory forecasting
performance in previous studies. Decomposed intrinsic mode functions (IMFs), could be further
defined as three items: item A contains the random term and the middle term; item B contains the
middle term and the trend (residual) term, and item C contains the middle terms only, where the
random term represents the high-frequency part of the electric load data, the middle term represents
the multiple-frequency part, and the trend term represents the low-frequency part. These three items
would be modeled separately by the SVR-PSO model, and the final forecasting results could be
calculated as A+B-C (the defined item D). Consequently, this paper proposes a novel electric load
forecasting model, namely H-EMD-SVR-PSO model, by hybridizing these three defined items to
improve the forecasting accuracy. Based on electric load data from the Australian electricity market,
the experimental results demonstrate that the proposed H-EMD-SVR-PSO model receives more
satisfied forecasting performance than other compared models.

Keywords: empirical mode decomposition (EMD); particle swarm optimization (PSO) algorithm;
intrinsic mode function (IMF); support vector regression (SVR); short term load forecasting

1. Introduction

Due to the characteristic of being not easy to reserve, electricity suppliers need precise short
term load forecasting results to guarantee the power supply and load dispatch of power plants and
security strategies. On the user side, accurate short term load forecasting guides the user to efficiently
consume (saving electricity usage expenditures) the electricity between peak and valley periods.
As mentioned in a recent paper [1], a 1% improvement in forecasting accuracy would have an annual
operational benefit.

There are abundant studies proposing ways to improve electric load forecasting accuracy in
the literature, which are classified into two categories: statistical models and intelligent models.
Statistical models, including the ARIMA model [2–4], regression model [5–7], exponential smoothing
model [8–10], Kalman filtering model [11,12], and Bayesian estimation models [13,14], etc., are well
known. These statistical models are superior choices to deal with simple linear electric load patterns,
such as their increasing tendency. For example, Scarpa and Bianco [12] applied a Kalman filter to
validate the natural gas consumption forecasting results by a standard regression technique in the
Italian residential sector. Their forecasting results for 2030 indicate that there is only a difference of
about 0.05% with these two models, and even when the forecasting window is extended out to 2040,
the obtained forecasts demonstrate slow divergence. However, as mentioned above, these models

Energies 2019, 12, 1093; doi:10.3390/en12061093 www.mdpi.com/journal/energies1
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are theoretically based on the assumption of linear electric loads, so they can hardly deal well with
more complicated relationships among electric loads. Recently, Bianco et al. [15] proposed a very
different analysis on the inequality of the consumption of electricity in the period 2008–2016 within the
European Union. They used the Theil index as a synthetic measure of the inequality of the electricity
consumption to analyze in detail the sources of inequality according to the level of GDP per capita.
They concluded that as GDP is considered as the weighting variable with an increasing trend, energy
consumption is not equally distributed among the countries according to their GDP; on the contrary,
energy consumption tends to be distributed like the population when population is weighted with the
decreasing trend.

Since the 1980s, intelligent models are also well researched, including artificial neural networks
(ANNs) [16–19], expert system models [20,21], and fuzzy system models [22–24]. These models could
obtain some level of improvement in load forecasting accuracy. However, these models almost all
have inherent drawbacks which limit the scope and breadth of these models’ applications. Recently,
these intelligent models have been hybridized or combined with other superior intelligent techniques
to effectively overcome the inherent shortcomings, and these hybridized or combined methods have
received higher attention [25–30]. As indicated in Fan et al. [31] these hybrid or combined models
have three classic types: (1) hybridizing or combining these intelligent models with each other [25,26];
(2) hybridizing or combining them with statistical models [27,28]; and (3) hybridizing or combining
them with evolutionary algorithms [29,30]. It is feasible to apply one of these three types to achieve
more accurate forecasting results. However, these hybrid or combined models also have several
inherent shortcomings within these hybridized or combined theoretical mechanisms, such as time
consuming searching, and getting trapped into local optima, i.e., prematurity problems [32].

Due to its superior learning capacity for non-linear modelling, the support vector regression (SVR)
model has been successfully used to deal with electric load forecasting [32–37]. In the meanwhile,
to overcome the premature convergence problem during the non-linear optimization process while
its three parameters are determined. Recently, a series of evolutionary algorithms hybridized with
an SVR model have been proposed by Hong and his colleagues [32–39]. Among those employed
algorithms, the particle swarm optimization (PSO) algorithm is not only easily implemented, but
also it is more appropriate to solve real problems. In addition, to allow equal comparison conditions
between this study and Fan et al. [35], this paper also uses the PSO algorithm to determine the three
parameters of each SVR-based model. Recently, the empirical mode decomposition (EMD) method [40]
was employed to effectively extract the basic components from non-linear (or non-stationary) time
series into a series of single and apparent components [41]. The EMD technique has also been used in
many application fields [40–43]; in addition, it is also applied to extract several detailed components
from electric load data sets with several associate intrinsic mode functions (IMFs). Then, for each
IMF, load can be forecast by an SVR model with only one suitable kernel function, hence successfully
improving the forecasting performance, as demonstrated in Fan et al. [35]. However, these IMFs contain
random IMF and residual IMF, respectively. Due to different compositions, these two kind of IMFs
should be modeled by the SVR model separately to effectively improve the forecasting performance.

In this paper, based on the theoretical knowledge of the EMD, the PSO algorithm, and the
SVR-based model, the authors propose a new combined model, namely the hybrid EMD-SVR-PSO
model (H-EMD-SVR-PSO), to achieve a satisfactory improved forecasting performance. The principal
idea is illustrated as follows: Firstly, we apply the EMD to decompose the electric load data into nine
IMFs. Secondly, these IMFs are further divided into three categories, the random term, the middle term,
and the trend (residual) term, respectively; the first term represents the high-frequency part of the
electric load data, the middle term represents the multiple-frequency part, and the trend term represents
the low-frequency part. Thirdly, we define the following items: “A” contains the random term plus the
middle term, “B” contains the middle term plus the trend (residual) term, “C” only contains the middle
term, and “D” contains all decomposed IMFs. Fourthly, items A, B, C, and D are modeled separately
by the SVR-PSO model proposed in [35]. For item A, the middle term contains multiple frequencies,
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so it can effectively neutralize the volatility of the random item, thus, it would have a good effect
by using the SVR-PSO model. For item B, the trend term could be fine-tuned under the non-linear
action of the middle term, it is also very effective by using the SVR-PSO model. For item C, it is
suitably modeled by the SVR-PSO model. Finally, for item D, the electric load forecasting results with
complete decomposed effects are calculated by the forecasting values of A + B − C, i.e., D = A + B − C.
The proposed H-EMD-SVR-PSO model has the following capabilities: (1) the capability of smoothing
and reducing the noise (inherited from EMD); (2) the capability of filtering datasets and improving
microcosmic forecasting performance (inherited from the SVR-PSO model); and (3) the capability of
effectively forecasting the macroscopic outline and future tendencies (inherited from the SVR-PSO
model). The forecasting outputs obtained by using the hybrid method will be described in the
following sections.

In addition, to demonstrate the superiority of the proposed model, the employed electric load data,
collected from New South Wales (Australia) in two different sample sizes with 0.5-h type (i.e., 48 data
points a day), are used to compare the forecasting performance among the proposed model and
other compared models, namely, the original SVR model and the SVR-PSO model (hybridizing
the PSO algorithm with the SVR model). The experimental results indicate that the proposed
H-EMD-SVR-PSO model has the following advantages: (1) it simultaneously satisfies the need for high
accuracy forecasting results and interpretability; (2) the proposed model can tolerate more redundant
information than the original SVR model, thus, it has better generalization ability.

This paper is organized as follows: a brief introduction of the proposed H-EMD-SVR-PSO model
is illustrated in Section 2. Section 3 presents the experimental results among other compared models
proposed in the existing papers. Section 4 concludes this paper.

2. The Proposed H-EMD-SVR-PSO Model

2.1. The Empirical Mode Decomposition (EMD) Technique

The EMD assumes that the original data set is derived from its inherent characteristics, and it can
be decomposed into several intrinsic mode functions (IMFs) [40]. Each decomposed IMF, it should
satisfy these two conditions: (1) each IMF has only one extreme value among continuous zero-crossings;
(2) the mean value of the envelope (see below) of the local maxima and local minima should be zero.
Thus, the EMD can effectively avoid premature convergent problem. For the original data set, x(t),
the detailed decomposition processes of the EMD are briefly described as follows:

Step 1: Recognize. Recognize all maxima and minima of the data set, x(t).
Step 2: Mean Envelope. Use two cubic spline functions to connect all maxima and minima of the

data set, x(t), to fit out the upper envelope and lower envelope, respectively. Then, calculate the mean
envelope, m1, by taking the average value of the upper envelope and the lower envelope.

Step 3: Decomposing. Produce the first IMF candidate, c1, by taking that the data set x(t) subtract m1,
as illustrated in Equation (1):

c1 = x(t)− m1 (1)

If c1 does not meet the two conditions of IMF, then, it could be viewed as the original data set,
and m1 would be zero. Repeat the above evolution k times, the k-th component, c1k, is illustrated by
Equation (2):

c1k = c1(k−1) − m1k (2)

where c1k and c1(k-1) are the data set after k times and k − 1 times evolutions, respectively.
Step 4: IMF Identify. If c1k satisfies the condition of the standard deviation (SD) for the k-th

component, as shown in Equation (3), then, c1k can be identified as the first IMF component, IMF1:

SD =
T

∑
t=1

∣∣∣c1(k−1)(t)− c1k(t)
∣∣∣2

c2
1k(t)

∈ (0.2, 0.3) (3)

3
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where T is the total number of the data set.
After IMF1 is identified, a new series, d1, by subtracting IMF1 (as shown in Equation (4)), would

continue the decomposition procedure:

Sd1 = x(t)− IMF1 (4)

Step 5: IMF Composition. Repeat above Steps 1 to 4, until there are no new IMFs can be decomposed
from dn. The decomposition details of these n IMFs are illustrated in Equation (5). Obviously, as shown
in Equation (6), the series, dn, is the remainder of x(t), i.e., it is also the residual of x(t):

d1 = x(t)− IMF1

d2 = d1 − IMF2

dn = dn−1 − IMFn

(5)

x(t) =
n

∑
i=1

IMFi + dn (6)

2.2. The Hybrid Support Vector Regression with Particle Swarm Optimization (SVR-PSO) Model

The brief modeling processes of the hybrid SVR-PSO model are as follows: the given non-linear
electric load data set, {xi, yi}N

i=1 (where xi ∈ �n and represents the actual electric load data), is mapped
to a high dimensional feature space (�nh ) where theoretically exists a linear function, f (x), the so-called
SVR function (as shown in Equation (7)), to formulate the nonlinear relationship among the electric
load data set:

f (x) = wT ϕ(x) + b (7)

where ϕ(x) : �n → �nh is the mapping function. The w and b are adjustable coefficients; they could
be determined during the SVR optimization modeling process. Based on the SVR theory, it aims to
solve the quadratic optimization problem with inequality constraints as shown in Equation (8):

Min
w,b,ξ,ξ∗

R(w, ξ, ξ∗) =
1
2

wTw + c
N

∑
i=1

(ξi + ξ∗i ) (8)

with the constraints:
yi − wT ϕ(xi)− b ≤ ε+ ξ∗i
−yi + wT ϕ(xi) + b ≤ ε+ ξi
ξi, ξ∗i ≥ 0 i = 1, 2 . . . , N

where 1
2 wTw is used to maximize the distance of two separated training data; C is used to measure the

flatness of the SVR function; ε is the width of the so-called ε-insensitive loss function, which defines
the loss is zero only if the forecasting value is within the range of ε; two positive slack variables, ξ and
ξ∗, are used to demonstrate the training statuses, training error above ε, denotes as ξ∗, training error
below –ε, denotes as ξ. After solving the quadratic problem, Equation (8), the solution of the weight,
w, in Equation (7) is computed by Equation (9):

w =
N

∑
i=1

(αi − α∗i )ϕ(x) (9)

where αi and α∗i are the Lagrangian multipliers.
Eventually, the SVR function is estimated as Equation (10):

f (x) =
N

∑
i=1

(αi − α∗i )K(x, xi) + b (10)

4
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where K(x, xi) is a kernel function, which is computed as K(x, xi) = ϕ(x) ◦ ϕ(xi), the operator, “◦”,
means the inner product of two vectors, x and xi. Any functions that meet Mercer’s condition [44]
can play the role of the kernel function. Because of simply implementation, the Gaussian function,
K(x, xi) = exp

(−||x − xi||2/2σ2), is also employed in this study. Therefore, there are totally three
parameters, ε, σ and C, in the Gaussian kernel-based SVR model, excellent determination of these
three parameters would play the critical role in improving the forecasting accuracy of the SVR model.
Authors have conducted a series of researches using different algorithms to determine these three
parameters. For comparison with Fan et al. [35], this study also uses the PSO algorithm to look for
suitable parameters of the SVR model.

Based on the simple design: each particle flies in the feature space to search for a better position,
by simultaneously adjusting the direction from its local search and the global search of the swarm at
each generation, particle swarm optimization (PSO) algorithm has been widely applied in optimization
modeling process. The modeling processes of the SVR-PSO model are briefly summarized below:

Step 1: Initialization. Randomly initialize the population, the positions, and the velocities of the
three particles (σ, ε, C) in the n-dimensional feature space.

Step 2: Initial fitness. Calculate the fitness using the three initialized particles. The initial local
fitness, f (lo-best)i, is based on the own best position of the three particles. The initial global fitness,
f (glo-best)i, is based on the global best position of the three particles.

Step 3: Position update. Update the velocities and the positions of the three particles by Equations
(11) and (12), the associate fitness is also renewed.

V(k)
i = l(k)i ∗ V(k)

i−1 + q1 ∗ rand(·) ∗
(

p(k)
(lo−best)i−1 − X(k)

i−1

)
+ q2 ∗ Rand(·) ∗

(
P(k)
(glo−best)i−1 − X(k)

i−1

)
(11)

where q1 and q2 are positive constants; rand(·) and Rand(·) are independently uniformly distributed
random variables with range [0, 1]; p(k)

(lo−best)i is the own best position of the kth particle; P(k)
(glo−best)i

is the global best position of the kth particle; X(k)
i is the position of the kth particle; k = σ, ε, C;

i = 1,2, . . . ,N.
X(k)

i = X(k)
i−1 + V(k)

i−1 (12)

The inertia weight is also applied the linear decreasing function [35], as shown in Equation (13).

l(k)i = α∗l(k)i−1 (13)

where α is a constant, it is less than 1 and is approximate to 1.
Step 4: Fitness Value Update. Use the updated positions of the three particles to calculate the

current fitness value, and compare with f (lo-best)i. If the current fitness value is superior, then, update
the new fitness value. In this study, the fitness value (forecasting error) is computed by the mean
absolute percentage error (MAPE) and the root mean square error (RMSE), as shown in Equations (14)
and (15), respectively:

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − fi
yi

∣∣∣∣× 100% (14)

RMSE =

√
∑N

i=1(yi − fi)
2

N
(15)

where N is the total number of electric load data; yi is the actual load at comparing point i; fi is the
forecasted load at comparing point i.

Step 5: Recognize the Best Solution. If the current fitness value is also superior to f (glo-best)i, then,
the best solution is recognized in the current iteration.
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Step 6: Stopping Criteria. The forecasting error indexes (MAPE and RMSE) can be served as the
stopping criteria, if the values of these two indexes are reached the required standards, then, the latest
f (glo-best)i can be recognized as the final solution; otherwise go back to Step 3.

2.3. The Full Procedure of the Proposed H-EMD-PSO-SVR Model

The full procedure of the proposed H-EMD-PSO-SVR model is demonstrated in Figure 1 and is
briefly described as follows:

 
Figure 1. The full flowchart of the proposed H-EMD-SVR-PSO model.

Step 1: Decomposed the input data by EMD. Each electric load data set (i.e., the input data) is
decomposed into a number of IMFs. As mentioned above, these IMFs are further divided into three
categories, the random term, the middle term, and the trend (residual) term, respectively. The first term
represents high-frequency part of the electric load data, the middle term represents multiple-frequency
part, and the trend term represents the low-frequency part.

Furthermore, we define the following items: (1) “A”, which contains the random term plus the
middle term; (2) “B”, which contains the middle term plus the trend (residual) term; (3) “C”, which
only contains the middle term; and (4) “D”, which contains all decomposed IMFs.

Step 2: SVR-PSO modeling. The SVR-PSO model is used to forecast the three items (A, B, C and D)
separately, as shown in Figure 1. For the relevant settings of the SVR-PSO model in the modeling
processes, such as different sizes of fed-in/fed-out subsets, the initial population, the positions, and
the velocities for three particles (parameters) readers may refer to Section 2.2 to receive more details of
the SVR-PSO model.

Step 3: Forecasting by the H-EMD-SVR-PSO model. The forecasting values of the three items (A, B
and C) are received separately from their associated SVR-PSO models. Then, the final electric load
forecasting results (with complete decomposed effects, i.e., the item (D) can be eventually calculated
by the forecasting values of A + B − C.

6
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3. Experimental Examples

3.1. Data Sets of Experimental Examples

The electric load data set is collected from New South Wales (NSW) market in Australia.
It is used to illustrate the superiority and generality of the proposed H-EMD-SVR-PSO model.
In addition, to present the overtraining effect for different data sizes, this paper also divides the
data set into two different data sizes, the small sample and the large sample, respectively.

For the small sample, the proposed model is trained by the collected electric load from 2 to 7 May
2007 (in total 288 load data points), and the testing data is on 8 May 2007 (in total 48 load data points).
As mentioned the load data is based on 0.5-h basis, there are 48 data a day. On the other hand, for the
large sample, there are totally 768 load data from 2 to 17 May 2007 as the training data, the testing load
data is from 18 to 24 May 2007 (in total 336 load data).

3.2. Parameter Settings of the SVR-PSO Model

To be based on the same comparison condition, the controlled parameters in the PSO algorithm
are set as the same in Fan et al. [35] as follows: for the small sample, the maximum iteration number
(itmax) is 50, number of particles is 20, length of particle is 3, weight q1 and q2 are set as 2; for the
large sample, the maximum iteration number (itmax) is 20, number of particles is 5, length of particle
is 3, weight q1 and q2 are also set as 2; for original sample, the maximum iteration number (itmax)
is 300, number of particles is 30, length of particle is 3, weight q1 and q2 are set as 2. The search
ranges of C and σ in the SVR-PSO model, for all sample sizes, are all set as [Cmin, Cmax] = [0, 200] and
[σmin, σmax] = [0, 200], respectively.

3.3. Forecasting Accuracy Indexes

This study uses four forecasting accuracy indexes to evaluate the forecasting performances of
the proposed model against other compared models. These four indexes are: (1) the mean absolute
percentage error (MAPE), the root mean square error (RMSE), the mean absolute error (MAE), and the
correlation coefficient (R). The definitions are shown in Equations (14) to (17), respectively:

MAE =
∑N

i=1|yi − fi|
N

(16)

R =
∑N

i=1(yi − y)
(

fi − f
)

√
∑N

i=1(yi − y)
√

∑N
i=1

(
fi − f

) (17)

where N is the total number of electric load data; yi is the actual load at comparing point i; y is the
average actual load; fi is the forecasted load at comparing point i; f is the average forecasted load.

3.4. Decomposition Results after EMD

After decomposition by the EMD technique, it is obvious that the large sample data can be
classified in nine terms. These nine decomposed terms are demonstrated in Figure 2a–i, in which
the first term, Figure 2a, is the random term, the last term, Figure 2i, is the trend (residual) term.
It is similar to the decomposed results for the small sample data, the detailed results of which can be
seen in Fan et al. [35].
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Figure 2. The decomposed items for the large sample data. (a) IMF1 (the random term); (b) IMF2
(the middle term 1); (c) IMF3 (the middle term 2); (d) IMF4 (the middle term 3); (e) IMF5 (the middle
term 4); (f) IMF6 (the middle term 5); (g) IMF7 (the middle term 6); (h) IMF8 (the middle term 7); and
(i) IMF9 (the trend (residuals) term).

3.5. Forecasting Results by the SVR-PSO Model for Three Defined Items

Figure 3 is the raw data of the large sample. It demonstrates the fluctuation characteristics,
such as non-linearity and multiple peaks and valleys. The trend (residual) term is difficult to capture.
The non-stationarity characteristics of data implies the dynamics between various time periods in the
data sequence, which may change the correlation between the past time period and the future period.
Thus, the dynamic changing process is unable to be dealt well only by a single time series analysis
model. However, it is useful to apply the EMD technique to reduce the non-stationarity. In addition,
the noisy level fluctuation also varies in different time periods in the time series data, particularly
for the random term, which demonstrates the disturbing details of the continuous changes. A single
time series model could encounter local under-fitting or over-fitting problems extracting features from
different time periods with various noisy levels.

The SVR model is very adaptive to solve such continuous changing details of time series
forecasting problems. To reduce the performance volatility with different parameters of the SVR
model, the PSO algorithm is appropriate to optimize the combination of the parameters. Particularly,
the rolling-based procedure [34], is employed in the training stage to assist the PSO algorithm to
find the most appropriate parameters combination of an SVR model. Firstly, as mentioned above,
the decomposed IMFs are defined to form the following items, A, B, C and D. These four items are
simultaneously modeled by the SVR-PSO model, and the suitable parameter combination for the four
items in the small and the large samples are illustrated in Table 1.
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Figure 3. The raw data of the large sample data.

Table 1. The optimized parameters of the SVR-PSO model for different items in both samples.

Sample Size/Defined Items
The Parameters of

an SVR Model

σ C ε

The small sample data
Item A: the random term + the middle term 0.14 89 0.0022

Item B: the middle term + the trend (residual) term 0.14 88 0.0020
Item C: the middle term 0.15 91 0.0025

Item D: A + B − C (all IMFs, i.e., complete decomposed effects) 0.15 92 0.0025
The large sample data

Item A: the random term + the middle term 0.18 95 0.0011
Item B: the middle term + the trend (residual) term 0.18 96 0.0011

Item C: the middle term 0.20 98 0.0013
Item D: A + B − C (all IMFs, i.e., complete decomposed effects) 0.20 98 0.0012

The performances for different defined items in the training and testing (forecasting) sets for the
small and the large samples are demonstrated in Figures 4 and 5, respectively.

(a) (b) 

Figure 4. Cont.
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(c) (d) 

Figure 4. Comparison the forecasting results for different defined items by the SVR-PSO model
(the small sample; one-day ahead forecasting on 8 May 2007). (a) Item A: the random term + the middle
term; (b) Item B: the middle term + the trend (residual) term; (c) Item C: the middle term; (d) Item D:
A + B − C (all IMFs, i.e., complete decomposed effects).

  
(a) (b) 

  
(c) (d) 

Figure 5. Comparison the forecasting results for different defined items by the SVR-PSO model
(the large sample; one-week ahead forecasting on 18 to 24 May 2007). (a) Item A: the random term +
the middle term; (b) Item B: the middle term + the trend (residual) term; (c) Item C: the middle term;
(d) Item D: A + B − C (all IMFs, i.e., complete decomposed effects).
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The values of different forecasting indexes for different defined items in the training and testing
stages for the small and the large samples are illustrated in Table 2. It is obviously that the forecasting
performance of all items are outstanding, particularly for items A and B, whose forecasting accuracies
are almost zero in terms of the square of RMSE. The results imply that the decomposition effects of
the EMD technique are useful to increase the forecasting performance from the data composition
side. In addition, the forecasting accuracy of the item D by the SVR-PSO model is also superior to the
one achieved by the original SVR model. It also indicates that the optimization effects from the PSO
algorithm are helpful to improve the forecasting accuracy from the parameter selection side.

Table 2. Summary of the forecasting results for each defined items.

Forecasting
Accuracy
Indexes

The Defined Items

Item A
(by SVR-PSO)

Item B
(by SVR-PSO)

Item C
(by SVR-PSO)

Item D
(by SVR-PSO)

Item D
(by SVR)

The Small Sample

RMSE2

(training stage)
0.0001936 0.0001635 0.0029 0.0009 0.0021

RMSE2

(testing stage)
0.0001806 0.0001641 0.0033 0.0011 0.0026

R (training stage) 0.9993 0.9995 0.9888 0.9884 0.9871
R (testing stage) 0.9994 0.9995 0.9867 0.9881 0.9890

The Large Sample

RMSE2

(training stage)
0.0001280 0.0001090 0.0007 0.0007 0.0012

RMSE2

(testing stage)
0.0002281 0.0002814 0.0033 0.0096 0.0099

R (training stage) 0.9994 0.9994 0.9962 0.9965 0.9916
R (testing stage) 0.9992 0.9991 0.9982 0.9756 0.9912

3.6. Analyses of Forecasting Accuracy and the Relevant Applications

For the small sample, the forecasting results of the original SVR model, the SVR-PSO model, and
the proposed H-EMD-SVR-PSO model are demonstrated in Figure 6a. It indicates that the forecasting
curve of the proposed H-EMD-SVR-PSO model fits closer than other compared models. For the large
sample, Figure 6b illustrates the forecasting results obtained from the proposed H-EMD-SVR-PSO
model fits better than other compared models, particularly for those peak load values. In addition, from
the local enlarged figure (Figure 7), the peak points of the small and the large samples demonstrate
that the proposed H-EMD-SVR-PSO model can capture the mutative changes of the electric loads
and can provide effective forecasting the reduced situation of electricity demand, thus, successfully
reducing the losses of the power company.
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Figure 6. Comparison of the forecasting results among the H-EMD-SVR-PSO model and other models.
(a) The small sample; (b) The large sample.
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Figure 7. The local enlargement (peak) comparison of the H-EMD-SVR-PSO model and other models.
(a) The small sample; (b) The large sample.

Furthermore, the proposed H-EMD-SVR-PSO model has better generalization ability than other
compared models. The comparison results are summarized in Table 3.

Table 3. Summary of results of the forecasting models.

Compared Models MAPE RMSE MAE Running Time (s)

The Small Sample

Original SVR [32] 11.70 145.87 10.92 180.4
SVR-PSO [32] 11.41 145.69 10.67 165.2
PSO–BP [32] 10.91 142.26 10.14 159.9
SVR-GA [35] 13.52 150.38 11.88 171.3

EMD-SVR-AR [32] 9.86 117.16 9.10 80.7
EMD-PSO-GA-SVR [35] 9.09 123.38 9.19 135.7

H-EMD-SVR-PSO 10.01 125.38 9.75 120.5

The Large Sample

Original SVR [32] 12.88 181.62 12.05 116.8
SVR-PSO [32] 13.50 271.43 13.07 192.7
PSO–BP [32] 12.24 175.24 11.36 163.1
SVR-GA [35] 14.31 183.57 15.31 195.7

EMD-SVR-AR [32] 5.10 134.20 9.82 162.0
EMD-PSO-GA-SVR [35] 3.92 142.41 9.04 179.1

H-EMD-SVR-PSO 5.83 130.17 9.56 167.4

The proposed model is also compared with other alternative models proposed in references [32]
and [35]. Firstly, the general observation in both samples is that the proposed model tends to fit closer
to the actual electric load values with a smaller forecasting error. In addition, it is also found that
proposed model outperforms the compared models (except EMD-SVR-AR and EMD-PSO-GA-SVR
models) in terms of all the used forecasting accuracy indexes and the running times.

For the small sample, the proposed H-EMD-SVR-PSO model outperforms the original SVR model,
SVR-PSO model [32], PSO-BP model [32], and SVR-GA model [35]. A slight forecasting accuracy index
value behind the EMD-SVR-AR model [32] and EMD-PSO-GA-SVR model [35], i.e., the advantages of
this kind of EMD-SVR-based models are superior to other SVR-based models, however, they are
not much different in forecasting performance due to their use of the same hybridization structure.
In the running time comparison, these kinds of EMD-SVR-based models often have high running
speed, however, the running time would increase when the number of hybridizing techniques is large
or the hybridized technique is very complicate in computing terms, such as the EMD-PSO-GA-SVR
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model which is the most time consuming among these three EMD-SVR-based models; on the contrary,
when the number of hybridizing techniques is small or the hybridized technique is easy to model,
such as the EMD-SVR-AR model is the most time saving among these EMD-SVR-based models.

On the other hand, from Table 3, the forecasting accuracy of the SVR-PSO model [32] is not
outstanding when it is applied directly. This results from the interactive effects of the random term
and the trend (residual) term, the so-called inherent non-linearity of the electric load data. After
hybridizing with the EMD technique, the proposed H-EMD-SVR-PSO model is capable of capturing
the inherent non-linearity by separately modeling these decomposed IMFs and these defined items
(A, B, C and D). The forecasting performance of items A and B are significantly improved, which
indicates that the inherent non-linearity of the electric load data can be effectively explained by the
proposed model. In the other words, the proposed H-EMD-SVR-PSO model provides a very powerful
tool to easily implement the electric load forecasting work.

The significance of the forecasting performance from the proposed H-EMD-SVR-PSO model
should be further verified. The recommended statistical test by Derrac et al. [45] and Fan et al. [31],
namely Wilcoxon signed-rank test is used to conduct the forecasting performance comparison among
the proposed H-EMD-SVR-PSO model and the alternative models. The test is based on one-tail-test
and is under two significance levels, α = 0.025 and α = 0.05. The test results are shown in Table 4.
Clearly, the proposed H-EMD-SVR-PSO model significantly outperforms other compared models.
In other words, the hybrid model leads to better accuracy and statistical interpretation.

Table 4. Wilcoxon signed-rank test.

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 4 α = 0.05; W = 6

The Small Sample

H-EMD-SVR-PSO vs. Original SVR 3 * 3 *
H-EMD-SVR-PSO vs. SVR-PSO 2 * 2 *
H-EMD-SVR-PSO vs. PSO–BP 2 * 3 *
H-EMD-SVR-PSO vs. SVR-GA 2 * 3 *

H-EMD-SVR-PSO vs. EMD-SVR-AR 6 4 *
H-EMD-SVR-PSO vs. EMD-PSO-GA-SVR 6 8

The Large Sample

H-EMD-SVR-PSO vs. Original SVR 3 * 2 *
H-EMD-SVR-PSO vs. SVR-PSO 3 * 2 *
H-EMD-SVR-PSO vs. PSO–BP 3 * 2 *
H-EMD-SVR-PSO vs. SVR-GA 3 * 2 *

H-EMD-SVR-PSO vs. EMD-SVR-AR 6 2 *
H-EMD-SVR-PSO vs. EMD-PSO-GA-SVR 6 4 *

Note: * denotes that the H-EMD-SVR-PSO model significantly outperforms other alternative models.

Finally, some real life applications of the proposed methodology could be as followings. Via the
EMD operation, (1) the random (stochastic) volatility term can be obviously revealed, which could
be viewed as the microeconomic behavior; (2) the trend (residual) term is the inertial behavior, i.e.,
the general tendency of the economy, which could be viewed as the macroeconomic behavior; and
(3) the middle term could be expressed from the unique economic behavior or production and living
characteristics of each industry. Thus, the reason that the item A (the random term plus the middle term)
could be well simulated during the modeling processes of the SVR-PSO model is that the characteristics
of economic behaviors in each industry and their interactive influences (i.e., the random fluctuations)
are in line with the modeling rules of the PSO algorithm (i.e., from random solution to adaptability).
On the other hand, while the item B (the middle term plus the trend (residual) term) is characterizing,
the SVR-based model (with the generalized linear capability in the feature space) can reveal the
characteristics of economic behaviors along with the optimization processes of the PSO algorithm.
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Based on the observation from the above two items (items A and B), the proposed H-EMD-SVR-PSO
model is obviously to have superior forecasting results, as shown in Table 2. In addition, the proposed
model can be furtherly applied not only in electricity load forecasting, but also for the disclosure of
other energy consumption behaviors or similar rules.

4. Conclusions

This paper proposes a novel H-EMD-SVR-PSO electric load forecasting model, by classifying the
IMFs decomposed by the EMD technique into four different defined items (A, B, C and D). It is effective
at overcoming the interactive effects of the random term and the trend (residual) term, and the inherent
non-linearity of the electric load data. In addition, by hybridizing the PSO algorithm to optimize
the parameter combination of the SVR model for these four items, respectively, it can effectively
guarantee the better forecasting performance of each item by using the SVR-PSO model. Via two
experiments with different sample sizes from the Australian market data, the proposed model has
obtained significant forecasting results than other alternative models in the existed papers, such as
original SVR, SVR-PSO, PSO-BP, SVR-GA, EMD-SVR-AR and EMD-PSO-GA-SVR models.

The results also verify the feasibility and the generalization capability of the EMD-SVR-based
model to deal with the complicate interactions inherent in the electric load data. Various data
characteristics of electric load are decomposed and identified by the employed EMD technique,
which can guide researchers to select more suitable SVR-based forecasting models. For future research,
the EMD-SVR-based model can be hybridized with other advanced classification tools to further
improve the electric load forecasting accuracy.
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Abstract: In this paper, the historical power load data from the National Electricity Market (Australia)
is used to analyze the characteristics and regulations of electricity (the average value of every eight
hours). Then, considering the inverse of Euclidean distance as the weight, this paper proposes a novel
short-term load forecasting model based on the weighted k-nearest neighbor algorithm to receive
higher satisfied accuracy. In addition, the forecasting errors are compared with the back-propagation
neural network model and the autoregressive moving average model. The comparison results
demonstrate that the proposed forecasting model could reflect variation trend and has good fitting
ability in short-term load forecasting.

Keywords: short-term load forecasting; weighted k-nearest neighbor (W-K-NN) algorithm;
comparative analysis

1. Introduction

Short-term load forecasting is used to forecast the power loads in the coming months, weeks,
or even shorter, with greater accuracy than long-term load forecasting. In the competitive power
market, the forecasting accuracy directly affects the economic cost of operators, so it occupies an
important position in modern power demand management [1]. According to the data of short-term
load forecasting, it not only can optimize the combination of generator sets, economic dispatching,
and the power flow calculation for power generation, but also can guarantee the economical safe
operations of the power system [2].

Classical deterministic theories are mainly applied to conduct the traditional short-term load
forecasting. Such as time series method [3], back-propagation neural network (BPNN) model [4], gray
model [5,6], and support vector regression [7–9], etc. Although these methods are widely adopted,
there are still some outstanding problems, for example, (1) it is difficult to simulate the relationships
between the variables affecting the electricity loads and the loads themselves by accurate mathematical
model; (2) the forecasting accuracy requires improvements; (3) the forecasting effect is not satisfied;
and (4) the real situation of the electricity load cannot be reflected in real time. Therefore, it is of
great practical significance to study and establish a more accurate and intuitive short-term load
forecasting model.

Recently, Martínez-Álvarez et al. [10] indicate the importance of pattern sequence similarity, and
introduce the pattern sequence-based forecasting (PSF) algorithm, which contains clustering (selection
of the optimum number of clusters) and prediction (like optimum window size selection for specific
patterns and prediction of future values). Later, Bokde et al. [11] published the R code for modeling.
Due to the similar theoretical designing of PSF, the k-nearest neighbor (K-NN) algorithm [12] is a
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mature theoretical tool and is easily implemented. It is often used to solve nonlinear problems, such
as credit ratings and bank customer rankings, in which the collected data do not always follow the
theoretical linear assumption, thus it should be one of the first choices when there is little or no
prior knowledge about the distribution data. In addition, it can successfully reduce the influences
of the variables on the experimental processes [13]. It has higher forecasting accuracy and has no
assumptions for the collected data, and particularly, it is not sensitive to the outliers. It has been
widely applied in real-world problems, such as analyzing the structure of the stock market [14],
fault detection and diagnosis for photovoltaic systems [15], and social images recognition in social
networks [16]. In addition, several improved K-NN algorithms have also been explored, for example,
Zhang et al. [17] propose an improved K-NN algorithm by reconstructing a sparse coefficient matrix
between test samples and training data to keep the local structures of data for achieving the efficiency.
Their proposed improved K-NN algorithm is applied to classification, regression, and missing data
imputation with superior results. Bhattacharya et al. [13] employs the weights obtained from the
analytic hierarchy process (AHP) for different features to propose a weighted distance function for the
K-NN algorithm. Their results demonstrate that the performance of the proposed K-NN classifier can
receive improved results in terms of pairwise comparison of features.

The original W-K-NN forecasting algorithm was developed and introduced by Troncoso et al.
in 2007 [18]. Thereafter, several researchers have considered empowering weight for each nearest
neighbor [19], for instance, Chen and Hao [20] proposed a support vector machine (SVM)-based
weighted K-NN algorithm to effectively predict stock market indices by using support vector machines
to obtain the associated weight for each feature. Their forecasting results are better than other models.
Biswas et al. [21] propose the parameter independent fuzzy class-specific feature weighted K-NN
(PIFW-K-NN) classifier, in which, the class dependent optimum weight is based on the distances
from the query point using a fuzzy membership function. Their classification results demonstrate the
improved accuracy of the proposed PIFW-K-NN than other state-of-the-art classifiers. Su [22] proposes
the weighted K-NN (W-K-NN) by hybridizing the genetic algorithm with K-NN (k-nearest neighbor)
to detect large-scale attacks. The weight for each nearest neighbor is weighted by Euclidean distance,
then, the genetic algorithm (GA) is used to find an optimal weight vector for all nearest neighbors.
Their results demonstrate that the detection accuracy is improved significantly. Lei and Zuo [23] also
propose the weighted K-NN (W-K-NN) classification algorithm by using Euclidean distance evaluation
technique (EDET) to select sensitive features and remove fault-unrelated features. The applied results
of the proposed method demonstrate its effectiveness. Ren et al. [24] propose a weighted sparse
neighbor algorithm based on Gaussian kernel function to resolve face recognition problems. In which,
the weights are calculated distance-based on Gaussian kernel to measure the similarity between test
sample and each training sample. Their results demonstrate that the proposed algorithm could reach
a higher recognition rate than other existing alternative models. Recently, Mateos-García et al. [25]
propose the simultaneous weighting of attributes and neighbors (SWAN) to improve the classification
accuracy, by using an evolutionary computation technique to adjust the contribution of the neighbors
and the significance of the features of the data. Their results demonstrate that the proposed SWAN
is superior to other alternative weighted K-NN methods. Llames et al. [26] propose a new approach
for big data forecasting based on the weight K-NN to conduct distributed computing under the
Apache Spark framework, in which four different weight calculations are employed. A Spanish energy
consumption big data time series (measured every 10 min for nine years) has been used to test the
algorithm. The results also support the superiority of the proposed weight K-NN model.

Based on above relevant literature reviews, the inverse of Euclidean distance is employed as the
weight, then, it is hybridized with the K-NN algorithm (namely W-K-NN algorithm) to improve the
forecasting accuracy. Thus, this paper proposes a short-term load forecasting model based on the new
parametrization of the W-K-NN algorithm so that it is adapted to China patterns: (1) According to a
known sample set, forecast the electricity loads at a certain time; (2) calculate the Euclidean distance
using its proximity data, the reciprocal of the calculated distance is used to determine the weight for
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each data point; (3) the closer the distance, the greater the weight, thus the data points can be better
classified and the short-term load can be better forecasted. Comparing the model structure with the
similar works proposed by Llames et al. [26], Rana et al. [27], and Troncoso et al. [28], which use 10-min
electricity demand, hourly electricity load, and price, respectively, for one day ahead to calculate the
weight by the distance of the neighbors. On the contrary, the proposed model in this paper can extract
the inertia of the electricity consumption behaviors from larger historical load data (i.e., the normal
production life cycle in China: three load data patterns for each eight hours in a day) to calculate the
weights by the reciprocal of the distance, which also avoid being bounded in the characteristics of
the short cycle. It can be emphasized that the proposed model is based on the state space and the
production life cycle to determine the weights, which can capture the weight more accurately.

The rest of this paper is organized as follows. In Section 2, the details of the K-NN algorithm
are introduced briefly. In Section 3, a short-term load forecasting model based on the W-K-NN
algorithm is proposed and the main steps of the proposed model are also illustrated. In Section 4,
the proposed model is simulated and compared with two common alternative models (i.e., the
autoregressive-moving average (ARMA) and the BPNN models). In Section 5, a brief conclusion of
this paper and the future research are provided.

2. The K-NN Algorithm

The K-NN algorithm is proposed to find out k training samples that are closest to the target object
in the training set. Furthermore, determine the dominant category from the k training samples; then,
assign this dominant category to the target object, where k is the number of training samples.

Therefore, the principal mechanism of the K-NN algorithm is that all samples have the same
characteristics while they are classified in the same category in a feature space, which the category
contains the k most neighboring samples. In determining the classification decision, the method
determines the category to which the sample belongs only according to the category of the nearest
one or several samples. In addition, the K-NN algorithm is only relevant to a very small number
of adjacent samples in category decision making. Since the K-NN algorithm mainly relies on the
surrounding limited adjacent samples, rather than relying on the method of discriminant domain
method to determine the category, thus the K-NN algorithm is more suitable than other methods for the
pending sample sets where the class domain crosses or overlaps more. The idea of the K-NN algorithm
is demonstrated in Figure 1. In which, Xu belongs to the category (ω1) because four neighboring
samples belong to ω1, only one neighboring sample belongs to ω3.

The specified implementation process of the K-NN algorithm contains the following six steps,

(1) Select the k value;
(2) Calculate the distance between the point in the known category data set and the current point;
(3) Sort in increasing order of distance;
(4) Select k points with the smallest distance from the current point;
(5) Determine the frequency of occurrence of the category in which k points are located;
(6) Return to the category with the highest frequency of occurrence of the first k points as the

predicted classification of the current point.

The K-NN algorithm needs to calculate the distance between the forecasted data point and the
known data point, so as to the select the nearest k labeled data, {y1, y2, . . . , yk}, where y1 represents
the known data point closest to the forecasted point; y2 represents the known data point that is the
second closest to the forecasted point, and so on. Therefore, the short-term load forecasting can be
conducted by the K-NN algorithm regression as Equation (1),

si =
1
k
×

k

∑
j=1

syj (1)
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where si represents the ith forecasted value, which is the average value of syj (j = 1, 2, . . . , k); syj

represents the forecasted value of the jth closest known data point (yj).

Figure 1. K-NN proximity algorithm map.

3. Short-Term Load Forecasting Model Based on W-K-NN

In order to establish the short-term load forecasting model based on the proposed W-K-NN
algorithm, the specified implementation process contains the following three steps, and the associated
flow chart is demonstrated in Figure 2.

 
Figure 2. The flowchart of the proposed W-K-NN algorithm.

(1) Selection of the value of k. For a research sample (S) in its associated feature space, most of the
K nearest adjacent samples belonged to a certain category, and the sample, S, also belonged
to this category. Then, the appropriate nearest neighbor parameter, k, is selected based on
the characteristics of the research samples in this category. In which the characteristics mean
that similar historical electricity consumption behaviors will definitely form agglomeration in a
certain space.
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(2) Construct the theoretical sample set and output set. Based on the principle of random distribution
(to ensure all historical electricity consumption behaviors are likely to be traversed not limited
to the local optima), calculate the Euclidean distance between the forecasted data point and the
known data point. Then, the reciprocal of the distance is used as the weight for each forecasted
data point. Eventually, the forecasted value of each data point could be received (by Equation (6),
refer Section 3.2).

(3) Forecasting accuracy evaluation. To verify the forecasting accuracy, the root mean square error
(RMSE) and the normalized mean square error (NMSE) are employed as the principal evaluation
indexes. They are calculated as Equations (2) and (3), respectively. The smaller the value for
the forecasting errors, the more accurate the forecasting results. Thus, the forecasting results,
computed by MATLAB software R2017a version, would be used to calculate the forecasting
errors with the actual data values, the reliability and the forecasting accuracy of the proposed
model would be further verified.

RMSE =

√
∑N

i=1(ai − si)
2

N − 1
(2)

NMSE =
∑N

i=1(ai − si)
2

√
N ∑N

i=1(ai − a)2 (3)

where si represents the ith forecasted electricity load value; ai represents the ith actual electricity load
value; a represents the mean value of N actual electricity load values; N represents the total number of
forecasted electricity load.

To demonstrate the universal applicability of the proposed model, the data are divided into large
sample and small sample, respectively. The large sample is divided by quarter (i.e., in each quarter, the
data of the first two months are used as the theoretical modeling samples to forecast the electricity
load values of the third month). The small sample is divided by month (i.e., in each month, the data of
the first three weeks are used as the theoretical modeling samples to forecast the electricity load values
of the fourth week).

The following two sub-sections would introduce the details of the first two steps.

3.1. Selection of the Value of k

Based on the K-NN algorithm, k is a user-defined neighbor parameter, which is used to classify
samples to be classified according to the category label with the highest frequency of occurrence among
the k training samples that are closest to the selected data point. If the value of k is too large or too small,
it will increase the interference to the data and reduce the classification accuracy. In the case where the
value of k is small, the complexity of the model is higher (i.e., it is easy to suffer from the over-fitting
problem), and there is an increase of the estimation errors. Eventually, the forecasting results are very
sensitive to the neighbor data points. On the contrary, in the case where the value of k is large, it would
reduce the estimation errors; however, the approximation errors would be simultaneously increased,
and the training data points farther from the input data point will also affect the forecasting results.
Therefore, in general applications of the K-NN algorithm, the value of k is often set as a relatively small
value, but must be an integer.

In this paper, the trial and error method was adopted to observe the experimental results and
to determine the suitable value of k (i.e., the determined value of k were fixed during the forecasting
processes). For example, the determined suitable values of k for small samples and large samples are
illustrated in Tables 1 and 2, respectively. In which, the small samples were based on the electricity
loads for three weeks; the large samples were based on two months.
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Table 1. Comparison of the errors of different nearest neighbor numbers (the value of k) in small
samples (unit: MW).

Forecasting Period
k = 1 k = 2 k = 3

RMSE NMSE RMSE NMSE RMSE NMSE

Jan. 853.27 0.39 586.03 0.18 798.43 0.41
Feb. 367.07 0.08 342.87 0.07 413.52 0.12
Mar. 1081.62 0.95 636.97 0.33 903.17 0.76
Apr. 415.30 0.20 435.60 0.22 466.76 0.25
May. 347.23 0.12 415.28 0.17 423.52 0.17
Jun. 302.43 0.05 230.31 0.03 326.34 0.06
Jul. 571.71 0.32 585.92 0.34 631.41 0.39

Aug. 1146.88 1.24 825.47 0.64 780.13 0.57
Sep. 467.92 0.28 485.79 0.30 554.39 0.51
Oct. 1917.09 0.90 1885.15 0.87 1883.64 0.86
Nov. 343.61 0.10 320.80 0.08 229.73 0.04
Dec. 1324.44 0.89 1106.39 0.62 1111.05 0.63

Table 2. Comparison of the errors of different nearest neighbor numbers (the value of k) in large
samples (unit: MW).

Forecasting Period
k = 1 k = 2 k = 3

RMSE NMSE RMSE NMSE RMSE NMSE

Mar. 868.63 0.48 857.60 0.46 864.07 0.47
Jun. 1433.48 0.56 1369.56 0.45 1458.62 0.51
Sep. 497.69 0.15 553.51 0.18 656.58 0.25
Dec. 1148.63 0.99 814.08 0.50 744.02 0.42

Based on the comparison of the experimental results in Tables 1 and 2, it was found that when k
was determined as 2, the experimental error was relatively small and the fitting effect was good.

3.2. Weights Calculation and New Forecasting Values

As mentioned in Section 3.1, if the nearest neighbor number, k, is determined as 2, then the
Euclidean distance between the forecasted data point (sj) and the known data point (yj) was calculated
by Equation (4).

di,yj =

√√√√ k

∑
j=1

(
sj − yj

)2 (4)

The weight for each forecasted data point was calculated by the reciprocal of the distance, as
shown in Equation (5).

wi,yj =
1

di,yj

(5)

Then, the final forecasted value (s′i) of each data point was calculated by Equation (6).

s′i =
∑k

j=1 wi,yj × syj

∑k
j=1 wi,yj

(6)

Finally, the proposed W-K-NN model was used to forecast the electricity load values of the
third month (for the large sample) and the electricity load values of the fourth week (for the small
sample), respectively.

3.3. Forecasting Accuracy Evaluation Indexes

As mentioned above, RMSE (Equation (2)) and NMSE (Equation (3)) were used to evaluate the
forecasting accurate level in this paper. In addition, for comparing with other models in existing paper,
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two other evaluation indexes were also employed: (1) the mean absolute error (MAE); and (2) the
mean absolute percentage error (MAPE). They are calculated as Equations (7) and (8), respectively.

MAE =
1
N

N

∑
i=1

|ai − si| (7)

MAPE =
1
N

N

∑
i=1

∣∣∣∣ ai − si
ai

∣∣∣∣× 100% (8)

where si represents the ith forecasted electricity load value; ai represents the ith actual electricity load
value; a represents the mean value of N actual electricity load values; N represents the total number of
forecasted electricity load.

Via the accuracy evaluation indexes, such as the RMSE and the NMSE, the degree of variation
and dispersion of the forecasting results could be further explained, and compared, so as to verify the
reliability and accuracy of the model.

4. Results and Discussions

4.1. Forecasting Results and Analysis

The proposed W-K-NN model performed the forecasting processes and the associated results.
The employed electricity load data were acquired from National Electricity Market (NEM, Australia),
in total 1095 electricity load data, and data time period was from 8:00 on 1 January 2007 to 0:00 on
1 January 2008. In this paper, the collected data were based on an eight-hour scale (i.e., mean value
of every eight hours), which often adopts the eight-hour work system (i.e., three shifts), as shown in
Table 3. The electricity load forecasting values of the third month (for the large sample) or of the fourth
week (for the small sample) were obtained by the proposed W-K-NN model, the associated forecasting
results are demonstrated in Figure 3 (large sample) and Figure 4 (small sample), respectively.

Table 3. The eight-hour scale for three stages in a day.

Stages Time Periods Real Statuses Measurements

Stage 1 0:00 to 8:00 The period is at night Mean load value of these
eight hoursStage 2 8:00 to 16:00 The period is the first half of a day

Stage 3 16:00 to 0:00 The period is the next half day

 
(a) 

Figure 3. Cont.
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(l) 

Figure 3. Forecasting results for small sample (from January to December). (a) January; (b) February;
(c) March; (d) April; (e)May; (f) Jun; (g) July; (h) August; (i) September; (j) October; (k) November;
(l) December.

It can be learned from Figure 3 that the forecasting curve changed periodically, due to the
three-stage-division of the data in a day. The first stage was from 0:00 to 8:00 (i.e., the period is at night,
also is the origin in the figures); the second stage was from 8:00 to 16:00 (i.e., that is the first half of a
day, the first point in the figures); and, the third stage was from 16:00 to 0:00 (i.e., that is the next half of
a day, the second point in the figures. The three stages form a cycle (i.e., one activity cycle); in addition,
a work cycle contains a total of seven cycles. The specific characteristics of electricity used in a cycle
could be illustrated as follows: (1) The night was from 0:00 to 8:00, the residents’ daily electricity and
educational electricity were at their lowest valley; the industrial electricity consumption was also small,
so the lowest value of electricity consumption would occur during this period. (2) Start working at
8:00 in the morning, so the electricity consumption would gradually increase, until reaching the peak.
(3) After 16:00, according to the production capacity demand plans, industrial production work load
was generally reduced, so the electricity consumption would gradually decline.

Based on above observations, the trend of the curve variation in Figure 3 is in line with the actual
electricity consumption. The third stage forecasting curve of each cycle in Figure 3a deviates from the
actual curve, it may be caused from: (1) increased demand at this stage; or (2) a sudden increase in
the workload of industrial production. Therefore, it can be learned from Figure 3 that the trend of the
actual data and the forecasting data were generally consistent. Although there were certain errors, it
was in line with the actual situation, and it indicates that the proposed W-K-NN model is suitable
for short-term neighbor behavior detection, impact characterization, and could be weighted by the
collected information, and, eventually, provide more effective and accurate forecasting results.

(a) 

Figure 4. Cont.
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(b) 

 

(c) 

 

(d) 

Figure 4. Forecasting results for large sample. (a) March, (b) June, (c) September, and (d) December.

It can be learned from Figure 4, that the forecasting data curve demonstrates a rising and
downward trend of cyclical variation, and consists of the actual data change trend. Similar to the small
sample, the day data was also divided into three stages: from 0:00 to 8:00 (the first stage), from 8:00 to
16:00 (the second stage); and from 16:00 to 0:00 (the third stage). According to the arrangement of one
day’s workload, it can reflect the cyclical variations, which indicates that this model can effectively
reveal the rules of electricity consumption activities in each divided time period, particularly in the
lowest points (i.e., the valley period). It demonstrates that this model can detect the information of
the demand turning point (i.e., the demand is greater than the production capacity of the enterprise
in this moment). Therefore, at this moment (valley period), for the power sector, it needs to organize
production to simultaneously take into account market’s needs and own resources, managers should
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use their relatively fixed production capacity to meet changing market needs, such as several units are
used to complete the power generation task.

Based on above observations, it can be seen from the Figure 4a,d that their fitting effects were
good, while in Figure 4b,c, the fitting process shows a certain deviation, especially when the demand
was turning to decrease (i.e., the top point, or the peak point), the fitting performance was not good.
It also demonstrates that this model found it difficult to detect the oversupply information from the
market. It was also affected by uncertain factors such as vacation and work plan; however, the error
was not large and was within the controllable range.

4.2. Forecasting Results Comparison

In order to demonstrate the superiority of the proposed model, the ARMA model and BPNN
model were selected for comparison analysis. The comparison results for both small sample and large
sample are shown in Tables 5 and 6, respectively.

The following brief the modeling processes for these two employed models.
ARMA model is one of the most common time series models, it is widely used in economic field

forecasting. The ARMA model principle is to regard the data sequence formed by the forecasting index
over time as a random sequence. The dependence of this random sequence reflects the continuity of
the original data in time. On the one hand, the influencing factors are relatively fixed and are easily
expressed and explained. On the other hand, it has its own regulations of change, and the inertia is
easily described. Therefore, the ARMA model was used to compare with the proposed W-K-NN model.
By using MATLAB software R2017a version, after multiple tests, the AR order was determined to be 3.
The electricity load forecasting values of the third month (for the large sample) could be obtained by
using the data of the first two months, or, of the fourth week (for the small sample) could be obtained
by using the data of the first three weeks. Then, the forecasting accuracy indexes, the RMSE and the
NMSE (Equations (2) and (3)), were employed to calculated the forecasting accuracy for each case.

In general, for the stationary time series, the forecasting model could be determined from the
auto-correlation function (ACF) and the partial auto-correlation function (PACF), the judgment criteria
of the ARMA model are shown in Table 4. The ACF and the PACF graphs for the small sample and
the large sample are illustrated in Figures 5 and 6, respectively. It can be easily found that, in both
samples, the ACF was trailing and the PACF was truncated, and there was a large attenuation after the
third order (Figure 5 is outside the blue circle, while Figure 6 is outside the red circle). Thus, the AR (3)
model was selected.

Table 4. Summary of ARMA model recognition graph judgment method.

Functions AR (p) MA (q) ARMA (p,q)

ACF tailing trailing after q period tailing
PACF trailing after p period tailing tailing
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Figure 5. The ACF and PACF of electricity load sequences for the small sample.

 

Figure 6. The ACF and PACF of electricity load sequences for the large sample.

In Figures 5 and 6, the ACF was defined as the correlation between time series yt and yt−j, as
shown in Equation (9),

ρj =
cov

(
yt − yt−j

)
√

var(yt)var
(
yt−j

) , j = 0, ±1, ±2, . . . . . . (9)

The PACF was defined as the correlation between yt−1, yt−2, . . . , and yt−k+1. Q-statistics was
defined as Equation (10),

Q = n
m

∑
k=1

ρ̂2
k (10)

where n is the number of the forecasting points; m is the delay points.
Q-statistics would be approximated to Chi-square (χ2) distribution with m-degree of freedom;

therefore, the decision rule is “Q-statistics is larger than χ2
1−α(m)” or “p-value is smaller than significant

level (α)”.
As mentioned above, the characteristics of the National Electricity Market (NEM, Australia) data

set obviously reveal that a day can be regarded as a physiological cycle (the so-called micro-production
cycle), and it can be divided into three stages: (1) the first stage, from 0:00 to 8:00; (2) the second stage,
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from 8:00 to 16:00; and (3) the third stage, from 16:00 to 0:00. The electricity load forecasting values in
the third stage can be found by using the electricity load data from the first two stages, it also reflects
the applicability and rationality of this model.

The BPNN model, also known as the back propagation neural network, which is, through the
training of the sample data, to continuously revise the network weights and thresholds to reduce the
forecasting errors along the negative gradient direction, and eventually approximate the expected
output. BPNN model has been widely applied in function approximation, data compression, and
time series forecasting. In order to reveal the self-adaptability and sensitivity of electricity demanding
behavior, the BP neural training toolbox of the MATLAB software, R2017a version, was implemented
to forecast electricity load values by using the data of the first two months (for the large sample), or
using the data of the first three weeks (for the small sample). In the BPNN modeling process, network
layers were chosen as three, and intermediate neurons were selected as 10. The functions for hidden
layer and output layer function were chosen as follows: Tansig (Tangent S type transfer function) and
Logsig (Logarithmic sigmoid transfer function) were used as the implicit layer node transfer function,
and Trainglx function was selected as the output layer node transfer function. Then, the forecasting
accuracy indexes for each sample were calculated for comparison.

The proposed W-K-NN model not only has several theoretical advantages, such as less training
parameters and good timeliness, but also had higher forecasting accuracy than ARMA and BPNN
models, for both the small sample and large sample, as shown in Tables 5 and 6, respectively. Thus,
it is more suitable for solving the nonlinear problem with time-varying uncertainties in short-term
load forecasting. The error values of RMSE and NMSE, obtained by the proposed W-K-NN model,
in the small and large samples were both relatively small, and from Figures 3 and 4, the stability of
the proposed W-K-NN model had certain volatility. However, with the better performances of these
two evaluation indexes, the proposed W-K-NN model could provide more accurate forecasting results.
For ARMA model, its accuracy may be affected by different parameters, due to the assumptions of
the ARMA model that even if all the errors are completely objective, the forecasting process will still
be affected by some uncertainties. Thus, the forecasting errors were unable to be reduced. However,
the stability of the forecasting errors of the ARMA model was better, which indicates that it has its
own robustness and inherent regularity. For the BPNN model, not only were the forecasting errors
large, but also the stability of the forecasting errors fluctuated largely. This may be caused by the lack
of training set of the BPNN model. After the case comparison and empirical investigation, the specific
reasons for the above situation were found as follows: (1) The summer vacation of Australian schools
is often from the middle of November to the end of February; therefore, the electricity consumption
demonstrates great differences and instabilities from December to January; (2) From the view point of
the annual plan of industrial production, a large amount of industrial production is generally carried
out at the beginning of the year. Principal marketing activities are carried out in the middle of the
year, namely clearance of stock. Additionally, some output may be increased at the end of the year.
Therefore, the differences of the electricity consumption are relatively large between the beginning and
the end of a year, but the middle of the year is relatively stable.

Finally, verification of the significance of the accuracy improvement of the proposed W-K-NN
model was also an important issue. The forecasting accuracy comparisons in both samples among
ARMA, BPNN, and W-K-NN models were implemented by the Wilcoxon signed-rank test under 0.025
and 0.05 significant levels (one-tail), respectively [29,30]. The Wilcoxon signed-rank test is a famous
statistical test tool. It is suitable for pair comparison to evaluate whether their performance is different.
It often uses Student’s t-test as the statistics, particularly for those cases that the associate population
could not be guaranteed to satisfy the normally distributed [31]. The Wilcoxon signed-rank test results
for small and large samples are demonstrated in Tables 7 and 8, respectively. Obviously, the proposed
models all received significant forecasting results, compared with other alternative models, under two
significant levels.
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Table 7. Wilcoxon signed-rank test for the small sample.

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 4 α = 0.05; W = 6

W-K-NN vs. K-NN 2 a 3 a

W-K-NN vs. ARMA 3 a 2 a

W-K-NN vs. BPNN 3 a 3 a

a denotes that the W-K-NN model significantly outperforms other alternative models.

Table 8. Wilcoxon signed-rank test for the large sample.

Compared Models
Wilcoxon Signed-Rank Test

α = 0.025; W = 4 α = 0.05; W = 6

W-K-NN vs. K-NN 3 a 3 a

W-K-NN vs. ARMA 3 a 2 a

W-K-NN vs. BPNN 2 a 2 a

a denotes that the W-K-NN model significantly outperforms other alternative models.

In order to compare the advantages of the proposed model, a similar model (namely recency
effect model) from a published paper [32] in GEFCom2012, was employed. The recency effect model
was also used to extract similar features in time, the more prominent forecasting effect was reflected
in summer and winter. According to [32], in summer, the electricity load data from June 1 to June 17,
2007 (17 days in total) were employed as the training set to forecast the electricity load from June 18 to
June 24 (total 7 days); in winter, the electricity load data from October 21 to November 13, 2007 (24
days in total) to forecast the electricity load from November 14 to November 21, 2007 (total eight days).

The forecasting results of the proposed model are demonstrated in Figure 7. In which, it was found
that the forecasting accuracy was superior at both the peak point and the valley period, particularly
for the valley, its forecasting performances were very prominent. Table 9 shows the forecasting errors
in terms of RMSE, NMSE, MAE, and MAPE. It can be seen that it had the same advantages and effects
as the recency effect model. It was more prominent in summer, which indicates that it was superior in
capturing the laws of summer economic activities.

 
(a) 

 
(b) 

Figure 7. Forecasting results for (a) a week in summer and (b) a week in winter.
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Table 9. The forecasting errors of the proposed model.

Seasons RMSE NMSE MAE MAPE *

Summer 0.0759 0.555 5.50 3.74 (3.86)
Winter 0.0636 0.595 6.71 3.90 (3.86)

*: The MAPE is based on the hourly average error values; and the value inside of () is the average error value from
the recency effect model.

5. Conclusions

In this paper, the nearest neighbor distance algorithm was adopted to give the appropriate
weights for each data point to construct a new short-term load forecasting model (the so-called
W-K-NN model), and this proposed model was then applied to the actual short-term load forecasting
job. Some important conclusions were as follows:

(1) Through the different samples verification and forecasting error analysis, it is found that the
proposed W-K-NN model has higher forecasting accuracy and effectiveness. Additionally, it can
be widely applied in short-term load production decision making, for example, power users can
make efficient energy-saving renovation plans based on the evaluation results, and eventually
improve the electricity efficiency.

(2) Compared with the ARMA model and the BPNN model, the fitting ability of the proposed
W-K-NN model is more superior to these other two models. It can not only objectively and
comprehensively reflect the actual energy efficiency level of power users, but also better meet the
development needs of modern smart grid and intelligent control systems.

(3) In the future, authors will combine the short-term forecasting approach with the
medium-short-term forecasting approach, to detect the market demand shrinking information
problem, particularly for the upper-point point (peak) of the electric behavior regulations.
Meanwhile, authors will also look for an optimized approach to optimize the weight, in order
to improve the forecasting accuracy, for example, for the complete, the same, or very closed
commodities, their weights would be set as huge or even infinite; therefore, when calculating the
reciprocal distance, some constant can be added to revise the distance.
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Nomenclature

Xu an arbitrary data point
ω1 sample category 1
ω2 sample category 2
ω3 sample category 3
k the training samples that are closest to the target object
{y1, y2, . . . , yk} the nearest k labeled data
si the ith forecasted value
syj the forecasted value of the jth closest known data point (yj)
S the research sample
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di,yj the Euclidean distance between sj and yj

wi,yj the weight for each forecasted data point
s′i the final forecasted value of each data point
ai the ith actual electricity load value
a the mean value of N actual electricity load values
N the total number of forecasted electricity load
BPNN the back-propagation neural network
K-NN the k-nearest neighbor
RMSE the root mean square error
NMSE the normalized mean square error
MAE the mean absolute error
MAPE the mean absolute percentage error
NEM National Electricity Market (Australia)
ACF the auto-correlation function
PACF the partial auto-correlation function
ρj the correlation between time series yt and yt−j
Q the Q-statistics
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Abstract: Crude oil is one of the main energy sources and its prices have gained increasing attention
due to its important role in the world economy. Accurate prediction of crude oil prices is an
important issue not only for ordinary investors, but also for the whole society. To achieve the accurate
prediction of nonstationary and nonlinear crude oil price time series, an adaptive hybrid ensemble
learning paradigm integrating complementary ensemble empirical mode decomposition (CEEMD),
autoregressive integrated moving average (ARIMA) and sparse Bayesian learning (SBL), namely
CEEMD-ARIMA&SBL-SBL (CEEMD-A&S-SBL), is developed in this study. Firstly, the decomposition
method CEEMD, which can reduce the end effects and mode mixing, was employed to decompose
the original crude oil price time series into intrinsic mode functions (IMFs) and one residue. Then,
ARIMA and SBL with combined kernels were applied to predict target values for the residue and each
single IMF independently. Finally, the predicted values of the above two models for each component
were adaptively selected based on the training precision, and then aggregated as the final forecasting
results using SBL without kernel-tricks. Experiments were conducted on the crude oil spot prices of
the West Texas Intermediate (WTI) and Brent crude oil to evaluate the performance of the proposed
CEEMD-A&S-SBL. The experimental results demonstrated that, compared with some state-of-the-art
prediction models, CEEMD-A&S-SBL can significantly improve the prediction accuracy of crude oil
prices in terms of the root mean squared error (RMSE), the mean absolute percent error (MAPE), and
the directional statistic (Dstat).

Keywords: crude oil price forecasting; time series forecasting; hybrid model; complementary
ensemble empirical mode decomposition (CEEMD); sparse Bayesian learning (SBL)

1. Introduction

With the increase of global energy consumption, energy demand will continue to grow, according
to the recent British Petroleum (BP) energy outlook 2018 [1]. Crude oil, as one of the fundamental
energies, plays a key role in global economic growth and social development. The tendency of crude
oil price has been paid world-wide attention with the increase of importance of petroleum in the
international political and economic environment. Therefore, the accurate prediction of crude oil
prices would have great economic impacts and practical significance. However, crude oil prices are
influenced by a variety of factors, such as climate change, stock levels, technology development, supply
and demand, market speculation, substitution with other energy forms, geopolitical conflicts and
wars, etc., which cause the high nonstationary and nonlinear characteristics of the price series [2–5].
Therefore, it is a great challenge for the accurate forecast of crude oil prices.
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In the past decades, a variety of models have been proposed for forecasting crude oil prices. These
prediction models can be generally classified into two main categories: (1) statistical /econometric
models and (2) artificial intelligence (AI) models [5,6]. Statistical/econometric models used in
crude oil forecasting include vector autoregressive (VAR) models [7,8], error correction models
(ECM) [9], random walk model (RWM) [10], autoregressive integrated moving average (ARIMA)
model [11,12], generalized autoregressive conditional heteroskedasticity (GARCH) model [13,14], etc.
For instance, Baumeister and Kilian indicated that VAR models were capable of achieving lower
mean squared prediction error (MSPE) at short horizons than autoregressive (AR) and autoregressive
moving average (ARMA) models [7,8]. Lanza et al. investigated crude oil and predicted crude oil
prices from January 2002 to June 2002 using ECM [9]. The ARIMA model was selected to forecast
and analyze the macroeconomic impact of oil price fluctuations in Ghana using annual data from
2000 to 2011 [12]. Morana applied GARCH to crude oil price forecasting and the experimental
results suggested that the forecasting method could gain a performance measure for the forward
price [13]. Furthermore, there are a vast number of studies that assess the volatility of crude oil
market via comparing the statistical/econometric models. For example, Hou and Suardi showed
the nonparametric GARCH model outperformed the commonly used parametric GARCH model
in forecasting accuracy of oil price return volatility [14]. Mohammadi and Su investigated the
forecasting accuracies of four models—GARCH, exponential GRACH (EGARCH), asymmetric power
autoregressive conditional heteroskedasticity model (APARCH) and fractionally integrated GARCH
(FIGARCH) and the forecasting results demonstrated that the APARCH model outperformed the
others in most cases [15]. Wei et al. used linear and nonlinear GARCH-class models and found that
the nonlinear GARCH-class models exhibited better forecasting performance than the linear ones [16].
Generally, the above statistical/econometric models achieve good forecasting accuracies when the
original time series is linear or near linear. However, as we all know, crude oil prices have highly
complex characteristics of nonlinearity and nonstationarity, which makes it hard to employ these
statistical/econometric models to achieve satisfactory forecasting performance.

Due to the drawbacks of the statistical/econometric models, a variety of AI models, including
genetic algorithm (GA), support vector regression (SVR), artificial neural networks (ANN) and sparse
Bayesian learning (SBL), have been increasingly used in crude oil price forecasting. Kulkarni and
Haidar used a multilayer feed forward neural network to forecast the direction of crude oil price
at short horizons [17]. Mirmirani and Li applied VAR and GA-based ANN to forecast the U.S. oil
price movements and the forecasting results suggested that the GA-based ANN model noticeably
outperformed the VAR model [18]. Haidar et al. employed a three-layer feed forward neural network
to predict crude oil prices in the short-term and results showed that feed forward neural networks
were capable of forecasting crude oil prices with high accuracy [19]. Mostafa and El-Masry used ANN
and gene expression programming (GEP) to forecast crude oil prices from January 2, 1986 to June 12,
2012 and the results revealed that the GEP technique outperformed the ANN and ARIMA models [20].
Xie et al. compared the forecasting accuracy of support vector machine (SVM) with those of ARIMA
and back propagation neural network (BPNN) for the crude oil price prediction and the experiment
results showed that SVM outperformed the other two methods [21]. Li and Ge employed SVR with
a dynamic correction factor to predict crude oil prices [22]. Mustaffa et al. presented least squares
support vector machine (LSSVM) with enhanced artificial bee colony (eABC-LSSVM) to predict crude
oil prices and the proposed eABC-LSSVM showed higher prediction accuracy compared with LSSVM,
ABC-LSSVM and GA-LSSVM [23]. Khashman and Nwulu compared the forecasting performance of
SVM with that of neural networks for the crude oil price prediction and the experiment results showed
that the neural networks outperformed SVM with minimal computational expense [24]. Furthermore,
time series forecasting can be seen as a typical problem of regression. Therefore, Li et al. proposed that
any regression approach in the signal recovery and AI could be applied to forecast time series [2]. SBL
without kernel-tricks and SBL with kernel-tricks were utilized to predict crude oil spot prices and the
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experiment results demonstrated that SBL was promising for predicting crude oil prices compared
with traditional econometric models and AI models [2,6].

However, the above AI models also have their own limitations. SVR, GP and ANN are sensitive
to parameter optimization, while the ANN model easily traps into over-fitting and local minima [3].
To address the limitations, some hybrid forecasting models have been proposed to forecast crude
oil prices and achieve promising performance recently. Wang et al. proposed a novel hybrid AI
system framework for crude oil price forecasting by means of ANN and rule based expert system
(RES) [25]. Amin-Naseri and Gharacheh incorporated feed-forward neural networks, k-means
clustering and genetic algorithm, and developed a hybrid AI model for monthly crude oil price
forecasting [26]. Tehrani and Khodayar proposed a novel hybrid optimum model based on GA and
feed forward neural network (FNN) for crude oil spot price forecasting [27]. The advantages of the
above hybrid models are capable of overcoming the weakness of individual models and achieving
better forecasting performance.

Due to the complexity of signal, the scholars in the field of signal processing usually use
signal decomposition approaches to decompose the original signal into several components for
better performance of classification and regression [28–30]. This idea can be used for reference
in crude oil price forecasting because of the nonlinearity and nonstationarity of crude oil price
series. By decomposing an original time series into a group of relatively simple sub-modes with
stationary fluctuation, multiscale ensemble prediction was capable of enhancing the forecasting
performance [31]. A kind of “divide-and-conquer” framework of “decomposition and ensemble” was
introduced to effectively improve prediction accuracy, especially for the series data with nonlinearity
and nonstationarity [32]. The main idea of the “decomposition and ensemble” framework is to
decompose the original complex prediction task into several relatively simple subtasks, then, each
subtask is predicted by a single forecasting method, and finally, these forecasting results are aggregated
as the final forecasting results [3,33,34]. Therefore, the framework of “decomposition and ensemble”
can effectively simplify the modeling complexity. Furthermore, it has been reported that this framework
can achieve higher prediction accuracy, better directional predictions and higher robustness, showing
that it is promising for forecasting complex time series [35–39]. The main data decomposition
techniques include Wavelet Decomposition (WD), empirical mode decomposition (EMD), ensemble
EMD (EEMD), and complete ensemble EMD (CEEMD), independent component analysis (ICA),
etc. For example, Jammazi and Aloui used WD to decompose the crude oil prices into sub-modes,
forecasted the sub-mode prices using neural network model, and assembled the final forecasting
results [35]. Zheng et al. built a hybrid prediction model for short-term load forecasting by means of
EMD, similar days selection and long short-term memory (LSTM) neural networks [36]. Although these
decomposed sub-modes have their own data characteristics, most of the existing “decomposition and
ensemble” models predicted all the sub-modes employing a uniform model rather than choosing an
appropriate one for each sub-mode. Therefore, some studies improved the prediction steps [31,37–39].
The obtained sub-modes are identified as the differentiated components according to their own
characteristics, and then, an appropriate prediction model is chosen to predict these sub-modes.
For instance, Zhu et al. employed LSSVM to predict the low-frequency components and ARIMA
or GARCH to forecast the high-frequency components of energy prices [31,37]. Fan et al. applied
SVR model to forecast the high-frequency components and AR model to forecast the residuals of
electric load series [38]. Zhang et al. presented a particle swarm optimization-based least square
support vector machine (LSSVM–PSO) for nonlinear component forecasting and GARCH model for
time-varying component forecasting respectively [39]. Although the above models achieve better
forecasting performance compared with single prediction models, differentiated components need to
be distinguished before choosing appropriate prediction models. Therefore, model selection for each
component is of utmost importance for the forecasting performance. There are two major drawbacks
in existing studies. First, there is no general rule about how to recognize differentiated components.
The main methods are based on the frequency or linearity of sub-modes. Second, there is no general
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method to choose appropriate forecasting models. For example, Zhu et al. selected ARIMA or GARCH
to predict the high-frequency components and LSSVM to forecast the low-frequency ones [31,37]; while
Fan et al. employed SVR for high-frequency component prediction and AR model for low-frequency
component prediction [38].

To address the existing drawbacks and improve the forecasting performance, this research
proposes an adaptive hybrid ensemble leaning model incorporating CEEMD, ARIMA and SBL with
kernel-tricks, and SBL without kernel-tricks, namely CEEMD-ARIMA&SBL-SBL (CEEMD-A&S-SBL),
to improve the forecasting accuracy of nonstationary and nonlinear crude oil prices. The raw series of
crude oil prices is firstly decomposed into several components using CEEMD, which can effectively
reduce the end effects and mode mixing. Then, without considering the data characteristics of each
component, ARIMA and SBL with combined kernel-tricks are applied to forecast each component
independently. Finally, the two groups of predicted values of each component are selected based on the
training precision, and then aggregated as the final forecasting results using SBL without kernel-tricks,
so as to further improve the prediction accuracy of crude oil prices. Empirically, the proposed
CEEMD-A&S-SBL has been tested with the data of the West Texas Intermediate (WTI) and Brent spot
crude oil prices. Compared with traditional prediction models, the experimental results show that
the proposed model can cope well with the nonlinearity and nonstationarity of crude oil prices and
achieve promising performance. The main contributions of this research lie in three aspects: (1) a novel
adaptive hybrid forecasting model for crude oil prices that integrates CEEMD, ARIMA and SBL
was proposed. The proposed prediction model CEEMD-A&S-SBL adaptively selects an appropriate
prediction model for forecasting each decomposed component without identifying its characteristic in
advance. To our knowledge, it is the first time that adaptive hybrid model selection for the forecasting
of components (IMFs and residue) is developed in crude oil price forecasting. (2) Experiments were
conducted on the WTI and Brent spot crude oil prices, and the experimental results demonstrated that
the proposed prediction model outperformed several state-of-the-art models for forecasting crude oil
prices. (3) We further analyzed some characteristics of the proposed model for forecasting crude oil
prices, including CEEMD parameter settings, individual component prediction model and selection
and the weights of components in aggregation.

The rest of this paper is organized as follows. Section 2 briefly introduces CEEMD and SBL.
Section 3 gives the description of the proposed CEEMD-A&S-SBL method in detail, including CEEMD,
SBL with combined kernel-tricks and the ensemble method based on SBL without kernel-tricks.
Section 4 reports experimental results and evaluates the proposed model using several metrics,
followed by conclusions in Section 5.

2. Preliminaries

2.1. The Framework of Decomposition and Ensemble

In view of the highly complex characteristics of nonlinearity and nonstationarity, it is hard to
achieve satisfactory predictive performance on the original time series. Therefore, the framework of
decomposition and ensemble has been presented for forecasting time series [32]. This framework takes
the idea of divide and conquer, and includes three stages: (1) dividing the original complex prediction
task into several relatively simple subtasks using a data decomposition technique; (2) predicting each
subtask by a single forecasting method individually; and (3) aggregating individual forecasting results
as the final forecasting results.

2.2. Complete Ensemble Empirical Mode Decomposition

Complete ensemble empirical mode decomposition (CEEMD) [40] is proposed from the
decomposition techniques of ensemble empirical mode decomposition (EEMD) [41] and empirical
mode decomposition (EMD) [42]. EMD is a kind of adaptive time-frequency data analysis method
developed for nonlinear and nonstationary signal or time series analysis and has been widely used for
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engineering, sciences, financial data analysis, etc. However, there is a drawback of mode-mixing in
EMD, where widely disparate scales could appear in one intrinsic mode function (IMF) component. In
order to cope with the mode mixing problem, the noise added method of ensemble EMD (EEMD) has
been proposed. Although EEMD has effectively resolved the mode mixing problem, the residue noise
in the signal reconstruction has been raised. Hence, CEEMD was developed, where a different noise
realization is added at each phase of the decomposition process and a unique residue is calculated to
generate each mode. The decomposition result of CEEMD is complete, with a negligible error [40]. Let
us define the operator Ej(·), which generates the j-th mode obtained by EMD when a signal is given.
Let wi be white noise with N(0, 1), and allow the εi coefficients to select the Signal-Noise Ratio (SNR)
at each stage. If x[n] is the original signal, the decomposition procedure of CEEMD method can be
described as follows:

Step 1: repeat the decomposition I times using different noise realizations and calculate the
ensemble average as the first mode of the signal:

IMF1[n] =
1
I

I

∑
i=1

E1

(
x[n] + ε0wi[n]

)
(1)

Step 2: at the first stage (k = 1), compute the first signal residue r1[n]:

r1[n] = x[n]− IMF1[n] (2)

Step 3: decompose realizations r1[n] + ε1E1
(
wi[n]

)
, i = 1, . . . , I, until they satisfy their first IMF

conditions. Define the ensemble average as the second mode:

IMF2[n] =
1
I

I

∑
i=1

E1

(
r1[n] + ε1E1

(
wi[n]

))
(3)

Step 4: For k = 2, . . . , K, calculate the k-th residue:

rk[n] = r(k−1)[n]− IMFk[n] (4)

Step 5: decompose realizations rk[n] + εkEk
(
wi[n]

)
, i = 1, . . . , I, and calculate their

ensemble average:

IMF(k+1)[n] =
1
I

I

∑
i=1

E1

(
rk[n] + εkEk

(
wi[n]

))
(5)

Step 6: The sifting process continues until the residue does not have more than two extrema. The
final residue satisfies:

R[n] = x[n]−
K

∑
k=1

IMFk (6)

Thus, the original signal can be expressed as:

x[n] =
K

∑
k=1

IMFk + R[n] (7)

In summary, the original signal x[n] can be expressed as the sum of K IMFj (j = 1, 2, . . . , K) and one
residue R. Generally, these decomposed components, including K IMFs and one residue, are simpler
than the original complex crude oil price series. Thus the hard forecasting task of crude oil prices is
divided into forecasting relatively simple components.
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2.3. Sparse Bayesian Learning

Sparse Bayesian learning (SBL) [43], a Bayesian competitor of the traditional SVM, was first
developed as a machine learning method with kernel-tricks, which is also known as the relevance
vector machine (RVM). Owing to its good performance in regression and classification, SBL has been
applied in various fields, such as streamflow simulation [44], face recognition [45], fault diagnosis [46],
object localization [47], signal recovery [48], energy price prediction [2,6], etc. Compared with SVM,
SBL not only achieves comparable classification or prediction accuracy, but also performs better in
sparse property, computational cost and generalization ability [49].

Given a set of samples {xi, yi}N
i=1, where xi ∈ Rd represent d-dimensional input vectors and

yi ∈ R indicate real target values, and assuming that ti = f (xi; w) + εi with εi ∼ N
(
0, σ2), the SBL

model for regression can be formulated as:

y = f (x; w) =
N

∑
i=1

wiK(x, xi) + w0 (8)

where K(x, xi) represents a kernel function, and wi denotes the weight of the kernel. The learning
process of SBL is to seek the parameters of the function f (x; w). SBL model usually has the sparsity of
kernel function, because it inducts a priori distribution of the weights.

Assuming the samples {xi, yi}N
i=1 are independently generated, the probability of y is expressed

as follows:

p(y|w, σ2) = (2πσ2)
− N

2 exp (−‖t − Φw‖2

2σ2 ) (9)

where y = (y1, y2, . . . , yN)
T , w = (w1, w2, . . . , wN)

T , and the Φ is a design matrix having the size
N × (N + 1):

Φ = [φ(x1), φ(x2), . . . , φ(xN)]
T (10)

φ(xn) = [1, K(xn, x1), K(xn, x2), . . . , K(xn, xN)]
T (11)

With as many parameters as the training samples, simple making the probability w and σ2

maximum will lead to over-fitting. To deal with this, Tipping imposed a prior probability distribution
over the weight wi ∼ N

(
0, αi

−1), where α is an N + 1 vector named hyperparameters [43]. Assuming
the hyperparameter is Gamma distributed, the associated weights will be concentrated at zero
due to the posteriori distribution of hyperparameters, which will lead to the “irrelevance” of most
input vectors.

Like SVM, the kernel function in SBL plays a key role, which greatly influences the prediction
performance of SBL. Li et al. have indicated that SBL with combined kernels outperformed that with a
single fixed kernel in forecasting crude oil prices [6]. Therefore, SBL with combined kernel-tricks was
adopted to forecast the sub-modes in this study.

In addition, SBL without kernel-tricks has also been proved effective in sparse signal recovery
and time series prediction [2,50]. SBL without kernel-tricks can be formulated by Equation (12):

y = Dw + ε (12)

where D ∈ RN×M is a matrix with N samples and M attributes; y = [y1, y2, . . . , yN]T is a vector of
targets, w = [w1, w2, . . . , wM]T is the weight vector to represent the weights of each column in D. The
training goal of SBL is to seek an optimal vector of weights w [50].

In order to obtain sparse solutions, SBL estimates a parameterized prior over weights, which is
expressed as follows:

p(w; γ) =
M

∏
i=1

(2πγi)
− 1

2 exp (− w2
i

2γi
) (13)

where γ = [γ1, γ2, . . . , γM]T is a vector of M hyperparameters.
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Compared with kernel version, SBL without kernel-tricks has a faster training speed. Furthermore,
the weights found by SBL can reflect the importance of each component for forecasting crude oil prices,
which make the aggregation method better interpretability. Therefore, we chose SBL without the
kernel-trick to aggregate the prediction values of individual components to obtain the final prediction
results of crude oil prices in this study.

3. The Proposed CEEMD-A&S-SBL Model

Inspired by the framework of “decomposition and ensemble”, this study proposes an adaptive
hybrid ensemble model that integrates CEEMD, ARIMA and SBL with combined kernel-tricks, and
SBL without kernel-tricks, termed as CEEMD-A&S-SBL, to forecast crude oil prices. The proposed
model is shown in Figure 1, which includes three stages:

Stage 1: Decomposition. CEEMD is used to decompose the original series of crude oil prices x(n)
into two parts: (1) K IMF components IMFj (j = 1, 2, . . . , K); (2) one residue component R.

Stage 2: Individual forecasting. The data samples in each decomposed component are respectively
divided into a training set and a test set. The prediction models of ARIMA and SBL with combined
kernel-tricks are built on the training set independently, and then, these two prediction models are
applied to the test set separately.

Stage 3: Ensemble forecasting. These two groups of prediction results of all components
are adaptively selected based on the training precision, and then are aggregated by SBL without
kernel-tricks as the final forecasting results.

Original crude oil price series

CEEMD

IMFi Residue

ARIMA SBL with combined 
kernel-tricks ARIMA

Prediction 
result of IMFi

Prediction 
result of IMFi

Prediction 
result of residue 

Prediction 
result of residue 

Select and aggregate using SBL without 
kernel-tricks

final results

Stage 1:
Decomposition

Stage 2:
Individual 
forecasting

Stage 3:
Adaptively 
ensemble

forecasting

SBL with combined 
kernel-tricks 

Figure 1. The flowchart for the CEEMD-A&S-SBL. CEEMD: complete ensemble empirical mode
decomposition; A&S: autoregressive integrated moving average (ARIMA) and sparse Bayesian learning
(SBL); SBL: sparse Bayesian learning.

The proposed CEEMD-A&S-SBL employs the strategy of “divide and conquer”. The complex
task of crude oil price forecasting is divided into a group of relatively simple sub-tasks of forecasting
components independently. The CEEMD-A&S-SBL firstly applies CEEMD to decompose the original
series of crude oil price into several components (IMFs and one residue), and each component contains
some specific characteristics of crude oil prices. Generally, the first several IMFs imply high-frequency
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parts, while the last ones and the residue involve the low-frequency parts of crude oil prices. Secondly,
the ARIMA and SBL with a combined kernel are independently applied to each component without
distinguishing between high- and low-frequency in the prediction stage. We selected these two models
because each belongs to one of the two typical types of differential prediction models (i.e., statistical
method and AI method). ARIMA is one of the most representative statistical methods and SBL with a
combined kernel, as a type of AI method, has been proven promising for crude oil price forecasting [6].
Finally, the predicted values of the above two models for each component are adaptively selected
based on the training precision, and then are aggregated as the final forecasting results of crude oil
prices using SBL without kernel-tricks. This framework of “decomposition and ensemble” makes it
possible for the CEEMD-A&S-SBL to improve the performance of crude oil price forecasting.

Significantly, some recent studies applied differential models to forecast the high-frequency and
low-frequency components separately. These studies obviously differed from the current research
with respect to individual component forecasting and ensemble in that (1) they distinguished
the decomposed crude oil prices into two parts: high-frequency and low-frequency components,
and employed appropriate models to forecast the two parts; (2) they aggregated the prediction results
of all components as the final forecasting results using simple addition or learning methods. In contrast,
the current study uses two kinds of differential prediction models (i.e., ARIMA and SBL with combined
kernel-tricks) to forecast each single component independently without identifying high-frequency
and low-frequency, and then adaptively selects and aggregates the predicted values of two models as
the final forecasting results of crude oil prices.

4. Experimental Results

4.1. Data Description

In order to better evaluate the performance of the proposed CEEMD-A&S-SBL, this study collected
WTI and Brent crude oil spot prices in view of their representative significance in global crude oil
markets. The daily closing price data set is divided into two subsets: the first 80% of sample data for
training and the last 20% for testing. The training set is used to train models and optimize parameters,
and the testing data set is applied to evaluate the performance of established prediction models.
The divided samples of crude oil prices are shown in Table 1.

Table 1. Samples of crude oil prices.

Market Size Date

West Texas Intermediate (WTI)
Sample set 8312 2 January 1986~17 December 2018
Training set 6649 2 January 1986~9 May 2012
Testing set 1663 10 May 2012~17 December 2018

Brent
Sample set 8018 20 May 1987~17 December 2018
Training set 6414 20 May 1987~28 August 2012
Testing set 1604 29 August 2012~17 December 2018

The original crude oil price series and corresponding components (i.e., IMFs and residue)
decomposed by CEEMD of WTI and Brent are demonstrated in Figures 2 and 3, respectively.
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Figure 2. The original series and corresponding components decomposed by complete ensemble
empirical mode decomposition (CEEMD) of WTI crude oil prices.
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Figure 3. The original series and corresponding components decomposed by CEEMD of Brent crude
oil prices.

4.2. Evaluation Measures

In order to evaluate the model from multiple aspects, we employed four frequently used
evaluation metrics, including two error indexes: the mean absolute percent error (MAPE) and the root
mean squared error (RMSE), one direction index: the directional statistic (Dstat) and one statistic index:
the Diebold–Mariano (DM) statistic. Firstly, MAPE and RMSE were selected to evaluate the prediction
accuracy, as defined by Equations (14) and (15), respectively:

MAPE =
1
n

n

∑
t=1

∣∣∣∣yt − ŷt

yt

∣∣∣∣ (14)

RMSE =
1
n

√
n

∑
t=1

(yt − ŷt)
2 (15)

where ŷt is the predicted value and yt is the actual value at time t and n is the total number of data in a
testing data set.
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The Dstat was used to evaluate the ability of direction prediction, which is defined as follow:

Dstat =
1
n

n

∑
t=1

αt × 100% (16)

where αt =

{
1, (yt − yt−1)× (ŷt − yt−1) ≥ 0;

0, otherwise.
.

Generally, the smaller the MAPE and RMSE, the greater the Dstat, which represents a higher
prediction accuracy and a better performance of direction prediction.

In order to better evaluate whether the prediction accuracy of the proposed prediction model
is significantly better than those of previous models or not, the Diebold–Mariano (DM) statistic was
introduced in this study, as defined by Equation (17):

S =
d√

Var(d)
(17)

where d = 1
n ∑n

t=1 dt, dt = (yt − ŷ1t)
2 − (yt − ŷ2t)

2, Var(d) = 1
n (γ0 + 2 ∑n−1

k=1 γk) and
γk = cov(dt − dt−k). ŷ1t are the predicted values of the first prediction model, and ŷ2t are those of
the second prediction model at time t. When the DM statistic is negative, the first prediction model
statistically outperforms the second one.

4.3. Experimental Settings

In this study, the development and evaluation of prediction model included three aspects:
First, previous research has demonstrated that ensemble models outperformed single models

in crude oil price forecasting [6]. Therefore, the overall performance of CEEMD-A&S-SBL was
only compared with that of some state-of-the-art ensemble prediction models in terms of the
above evaluation metrics in this study. Thus, on the basis of the same crude oil price data, we
evaluated whether our proposed CEEMD-A&S-SBL was effective for improving prediction precision.
The compared models included one classical statistical method (ARIMA), three popular AI models
(LSSVR, ANN, CK-SBL) and a hybrid model that forecasts high-frequency, low-frequency and trend
components individually (HLT) [31]. In addition, since SBL with a combined kernel has shown better
prediction performance compared with that with a single kernel, SBL with a combined kernel was
selected as the predict model. Therefore, we had five individual prediction methods (ARIMA, LSSVR,
ANN, CK-SBL and HLT) for each component to compare forecasting with A&S. All prediction methods
are shown in Table 2.

Table 2. Descriptions of all the prediction methods in the experiments.

Method Description

ARIMA Autoregressive integrated moving average
LSSVR Least squares support vector regression
ANN Back propagation neural network

CK-SBL SBL with a combined kernel

HLT ARIMA for high-frequency components and combined kernel LSSVR
for low-frequency and trend components

A&S All component are predicted by ARIMA and CK-SBL independently
and then are aggregated adaptively

Following the previous work [6], an adaptive PSO (APSO) method was used to optimize the
parameters in CK-SBL, which adaptively adjusted the inertia weight of each particle based on the
distance between the global best particle and the current one. In addition, the Akaike information
criterion (AIC) [51] was used to determine the ARIMA parameters (p-d-q). RBF kernel was applied in
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LSSVR and grid search was used to seek the optimal parameters. For ANN, a back propagation neural
network was employed, the number of hidden nodes was set to 10, and the iteration time was set to
10,000. For HLT, the PSO was used for adaptive parameter selection for LSSVR.

Second, we evaluated the three different decomposition methods (EMD, EEMD, CEEMD) for
the proposed model in this study. In this phase, on the basis of same aggregation method (SBL) and
prediction method (A&S), we evaluated the performance of different decomposition methods.

Third, we compared the two different ensemble methods (simple addition and SBL) for the
proposed model in this study. In this phase, on the basis of same decomposition method (CEEMD)
and prediction method (A&S), we evaluated the performance of the SBL ensemble method.

In addition, data normalization is an important work for computational efficiency and fair
comparison of AI-based time series forecasting [6]. In this study, we applied the Min-Max
normalization, a frequently-used normalization method, for AI-based predictors. It is worth pointing
out that inverse normalization needs to be executed after the normalized predicted values are obtained.
We conducted three-step-ahead predictions with horizon h = 1, 2, 3 and lag order lo = 6 in this study.

Especially, in CEEMD-A&S-SBL, the predicted values of the two differential models for each
component were adaptively selected based on the training precision. Therefore, how to accurately
evaluate the training precision is utmost important for adaptive selection of models. RMSE and
MAPE are frequently used evaluation indexes. In this study, we selected RMSE mainly because there
existed some actual zero values after CEEMD, thus RMSE was more effective for reflecting the training
precision than MAPE.

All the experiments were performed by MATLAB R2017a on a 64-bit Microsoft Windows 10 with
an i5-7820X CPU @1.8 GHz and 8 GB RAM.

4.4. Results and Analysis

4.4.1. Experimental Results of Overall Predictive Models

On the basis of same decomposition (i.e., CEEMD), we firstly compared the overall
performance of the five extant prediction models (i.e., CEEMD-ARIMA-ADD, CEEMD-LSSVR-ADD,
CEEMD-ANN-ADD, CEEMD-CK-SBL-ADD, CEEMD-HLT-ADD) with our proposed adaptively
prediction model (CEEMD-A&S-SBL) in terms of MAPE, RMSE, and Dstat. We adopted these five
models because they were the most frequently used and effective prediction methods [2,6,11,12,21–24,31].
Among all these models, ARIMA is one classical statistical method; LSSVR, ANN and CK-SBL are three
popular AI models; HLT is one recent hybrid prediction model. The experimental results are reported in
Tables 3–5, respectively.

Table 3. The mean absolute percent error (MAPE) values of different prediction models on WTI and
Brent crude oil prices.

Market Horizon
CEEMD-

ARIMA-ADD
CEEMD-

LSSVR-ADD
CEEMD-

ANN-ADD
CEEMD-

CK-SBL-ADD
CEEMD-

HLT-ADD
CEEMD-

A&S-SBL

WTI
One 0.0169 0.0063 0.0120 0.0058 0.0049 0.0048
Two 0.0302 0.0080 0.0184 0.0079 0.0075 0.0074

Three 0.0371 0.0111 0.0279 0.0099 0.0082 0.0081

Brent
One 0.0408 0.0057 0.0146 0.0053 0.0044 0.0043
Two 0.0824 0.0080 0.0423 0.0071 0.0066 0.0065

Three 0.1158 0.0106 0.0254 0.0092 0.0075 0.0074

CEEMD: complete ensemble empirical mode decomposition; ARIMA: autoregressive integrated moving average;
LSSVR: least squares support vector regression; ANN: back propagation neural network; SBL: sparse Bayesian
learning; CK-SBL: SBL with a combined kernel; HLT: a hybrid model that forecasts high-frequency, low-frequency
and trend components individually; ADD: addition.

Among all these models, CEEMD-A&S-SBL model achieved the lowest (the best) MAPE values
in all cases on both markets. Although the previous hybrid model CEEMD-HLT-ADD achieved
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the lowest MAPE values compared with the single prediction models, the proposed hybrid model
CEEMD-A&S-SBL outperformed the CEEMD-HLT-ADD model in all cases. For each prediction model,
the MAPE values increased with the horizon.

Table 4 reported the RMSE values of all prediction models on WTI and Brent crude oil prices.
It can be seen that CEEMD-A&S-SBL outperformed the hybrid model CEEMD-HLT-ADD and all
single prediction models in all cases. Of all single models, the statistical model ARIMA obtained
the worst RMSE values in all six cases. For the AI models, LSSVR, ANN and CK-SBL achieved
close RMSE values, and the model CK-SBL was slightly better than others. As to the hybrid models,
CEEMD-A&S-SBL achieved the lower RMSE values than CEEMD-HTL-ADD model, showing that the
former was more powerful for crude oil price forecasting.

Table 4. The root mean squared error (RMSE) values of different prediction models on WTI and Brent
crude oil prices.

Market Horizon
CEEMD-

ARIMA-ADD
CEEMD-

LSSVR-ADD
CEEMD-

ANN-ADD
CEEMD-

CK-SBL-ADD
CEEMD-

HLT-ADD
CEEMD-

A&S-SBL

WTI
One 1.0983 0.5317 0.9536 0.4766 0.3963 0.3878
Two 1.9390 0.6468 1.3625 0.6425 0.6113 0.5977

Three 2.3850 0.9331 2.2405 0.7883 0.6578 0.6474

Brent
One 3.0815 0.4494 1.1034 0.4410 0.3697 0.3590
Two 6.2689 0.6611 3.6149 0.5902 0.5560 0.5424

Three 8.8840 0.8237 2.0899 0.7536 0.6251 0.6111

As to the directional statistics, it can be seen from Table 5 that CEEMD-A&S-SBL model achieved
the highest values in five out of six cases, indicating that the CEEMD-A&S-SBL model had better
performance in the direction forecasting of crude oil prices. For each model, the corresponding Dstat
values decreased with the increase of the horizon. Amongst the single prediction models, ANN, LSSVR
and CK-SBL obtained the higher Dstat values than ARIMA, showing that the AI models were capable
of achieving better directional predictions compared with the statistical model ARIMA. Moreover,
the hybrid models greatly outperformed the single prediction models.

Table 5. The directional statistic (Dstat) values of different prediction models on WTI and Brent crude
oil prices.

Market Horizon
CEEMD-

ARIMA-ADD
CEEMD-

LSSVR-ADD
CEEMD-

ANN-ADD
CEEMD-

CK-SBL-ADD
CEEMD-

HLT-ADD
CEEMD-

A&S-SBL

WTI
One 0.6949 0.8598 0.8147 0.8712 0.8995 0.9007
Two 0.5716 0.8303 0.7244 0.8388 0.8394 0.8418

Three 0.5626 0.7521 0.7118 0.7593 0.8135 0.8147

Brent
One 0.6301 0.8528 0.7511 0.8740 0.8734 0.8784
Two 0.5727 0.7972 0.6925 0.8447 0.8390 0.8422

Three 0.5527 0.7480 0.6881 0.7698 0.8091 0.8185

From the overall results above, it can be seen that the hybrid prediction models consistently
outperformed the single prediction models in all cases in terms of MAPE, RMSE, and Dstat. Between
the two hybrid models, our proposed CEEMD-A&S-SBL achieved better prediction performance
compared with CEEMD-HLT-ADD.

In order to better evaluate whether the prediction accuracy of CEEMD-A&S-SBL is significantly
better than those of other models or not, the Diebold–Mariano (DM) test [52] was used in this study.
The statistics and p-values (in brackets) are reported in Tables 6 and 7.

DM test results on the prediction of WTI and Brent crude oil prices demonstrated that the
CEEMD-A&S-SBL model significantly outperformed CEEMD-ARIMA-ADD, CEEMD-ANN-ADD,
CEEMD-LSSVR-ADD, CEEMD-CK-SBL-ADD and CEEMD-HLT-ADD, and the corresponding p-values
were much less than 0.05 in all cases.
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On one hand, when we chose the single prediction models, including CEEMD-ARIMA-ADD,
CEEMD-ANN-ADD, CEEMD-LSSVR-ADD, CEEMD-CK-SBL-ADD, as the benchmark models,
CEEMD-A&S-SBL was statistically superior to these single prediction models, indicating that the
former was more powerful for nonlinear and nonstationary crude oil price forecasting. On the
other hand, when we chose the hybrid model CEEMD-HLT-ADD as the benchmark model,
the prediction results of CEEMD-A&S-SBL were also significantly better. In summary, the hybrid
model CEEMD-A&S-SBL achieved the best prediction accuracy in all models. The DM test results
further statistically confirmed the conclusion.

4.4.2. Experimental Results of Decomposition Methods

On the basis of same prediction (A&S) and ensemble (SBL) methods, we evaluated the
performance of the various decomposition methods. Tables 8–10 report the corresponding prediction
results in terms of MAPE, RMSE and Dstat, respectively. It can be found that the CEEMD method was
the best decomposition method that achieved the lowest MAPE and RMSE values and the highest
Dstat values at each horizon.

Table 8. The MAPE values of different decomposition methods on WTI and Brent crude oil prices.

Market Horizon EMD EEMD CEEMD

WTI
One 0.0083 0.0079 0.0048
Two 0.0100 0.0095 0.0074

Three 0.0117 0.0097 0.0081

Brent
One 0.0078 0.0079 0.0043
Two 0.0091 0.0089 0.0065

Three 0.0112 0.0091 0.0074

Table 9. The RMSE values of different decomposition methods on WTI and Brent crude oil prices.

Market Horizon EMD EEMD CEEMD

WTI
One 0.6661 0.6225 0.3878
Two 0.8185 0.7511 0.5977

Three 0.9497 0.7758 0.6474

Brent
One 0.6750 0.6447 0.3590
Two 0.7713 0.7274 0.5424

Three 0.9296 0.7456 0.6111

Table 10. The Dstat values of decomposition methods on WTI and Brent crude oil prices.

Market Horizon EMD EEMD CEEMD

WTI
One 0.8189 0.8189 0.9007
Two 0.7966 0.7768 0.8418

Three 0.7341 0.7714 0.8147

Brent
One 0.8341 0.7998 0.8784
Two 0.8035 0.7711 0.8422

Three 0.7299 0.7623 0.8185

In order to better evaluate whether the decomposition method CEEMD is significantly better than
other decomposition methods or not, the DM test was used. The statistics and p-values (in brackets) are
reported in Table 11. DM test results on the prediction of WTI and Brent crude oil prices demonstrated
that the CEEMD decomposition method significantly outperformed EEMD and EMD in all cases,
and the corresponding p-values were much less than 0.05 in all cases.
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Table 11. The Diebold–Mariano (DM) test results on WTI and Brent crude oil prices.

Market Horizon Tested Model
Benchmark Model

EMD EEMD

WTI

One
EEMD −2.373 (0.018)

CEEMD −14.79 (0.000) −15.93 (0.000)

Two
EEMD −3.168 (0.002)

CEEMD −11.63 (0.000) −11.12 (0.000)

Three
EEMD −8.208 (0.000)

CEEMD −14.04 (0.000) −9.944 (0.000)

Brent

One
EEMD −1.143 (0.253)

CEEMD −9.993 (0.000) −18.632 (0.000)

Two
EEMD −2.172 (0.030)

CEEMD −11.296 (0.000) −13.513 (0.000)

Three
EEMD −9.024 (0.000)

CEEMD −14.566 (0.000) −10.694 (0.000)

4.4.3. Experimental Results of Ensemble Methods

Traditional ensemble method uses addition operation. All IMFs and residue are simply added
as the final forecasting results. In order to potentially enhance the prediction precision, SBL without
kernel-tricks was chosen as the ensemble method in our proposed model. We chose SBL without
kernel-tricks mainly because it is a kind of fast and efficient ensemble method. Tables 12–14 show the
corresponding prediction results using addition or SBL ensemble method for A&S model in terms of
MAPE, RMSE and Dstat, respectively. It can be easily seen that the SBL ensemble method outperformed
the simple addition, achieving the lower MAPE and RMSE values, and the highest Dstat values at
each horizon.

Table 12. The MAPE values of different prediction models on WTI and Brent crude oil prices.

Market Horizon CEEMD-A&S-ADD CEEMD-A&S-SBL

WTI
One 0.0049 0.0048
Two 0.0075 0.0074

Three 0.0082 0.0081

Brent
One 0.0044 0.0043
Two 0.0066 0.0065

Three 0.0075 0.0074

Table 13. The RMSE values of different prediction models on WTI and Brent crude oil prices.

Market Horizon CEEMD-A&S-ADD CEEMD-A&S-SBL

WTI
One 0.3955 0.3878
Two 0.6106 0.5977

Three 0.6562 0.6474

Brent
One 0.3659 0.3590
Two 0.5555 0.5424

Three 0.6247 0.6111

Table 14. The Dstat values of different prediction models on WTI and Brent crude oil prices.

Market Horizon CEEMD-A&S-ADD CEEMD-A&S-SBL

WTI
One 0.9001 0.9007
Two 0.8388 0.8418

Three 0.8123 0.8147

Brent
One 0.8727 0.8784
Two 0.8421 0.8422

Three 0.8110 0.8185
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In order to better evaluate whether the SBL ensemble method is significantly better than the
addition ensemble method, the DM test was used. The statistics and p-values (in brackets) are reported
in Table 15. DM test results on the prediction of WTI and Brent crude oil prices showed that the
SBL ensemble method significantly outperformed the simple addition method in all cases, and the
corresponding p-values were much less than 0.05 in all cases.

Table 15. The Diebold–Mariano (DM) test results on WTI and Brent crude oil prices.

Market Horizon Tested Model
Benchmark Model

Addition

WTI
One SBL −3.402 (0.001)
Two SBL −3.764 (0.000)

Three SBL −2.333 (0.020)

Brent
One SBL −2.952 (0.003)
Two SBL −4.336 (0.000)

Three SBL −4.146 (0.000)

4.5. Discussions

In order to better analyze the proposed CEEMD-A&S-SBL, we will further discuss some
characteristics of the proposed model for forecasting crude oil prices, including CEEMD parameter
settings, the impact of the lag order, individual component prediction model and selection and the
weights of components in aggregation.

4.5.1. CEEMD Parameter Settings

In the decomposition of the original series, a particular white noise was added at each stage
of CEEMD. Let the parameter St be the white noise strength and I be the number of realizations in
CEEMD. In order to investigate the impact of these parameters for crude oil price forecasting, we
conducted the experiments on WTI crude oil prices with one-step-ahead forecasting. First, we fixed
I = 100 and ran CEEMD-A&S-SBL with a variable St in the range of {0.01, 0.02, 0.03, 0.05, 0.1, 0.2, 0.3,
0.5}. The results are shown in Figure 4. Second, we fixed St = 0.2 and repeated the experiments with
a variable I in the range of {20, 40, 60, 80, 100, 200, 500, 1000, 2000, 5000}; the results are shown in
Figure 5.

As shown in Figure 4, the values of RMSE, MAPE and Dstat simultaneously achieve the best
values when the noise strength in CEEMD equals to 0.1. When the noise strength is greater or less
than 0.1, the prediction performance becomes worse and worse. This indicates that too much or too
little added noise decreases the forecasting precision. The experimental results show that the noise
strength has a significant impact on forecasting accuracy, and an ideal value of added noise strength
is about 0.1.

On the other hand, with the increase of the number of realizations in CEEMD, the values of both
RMSE and MAPE decrease and Dstat increases when the number of realizations is less than 1000,
showing that the forecasting performance continuously improves as shown in Figure 5. However,
when the number of realizations is greater than 1000, RMSE, MAPE and Dstat tend to be roughly
stable. Therefore, if time cost is considered, 1000 is an appropriate value for the number of realizations
in CEEMD in terms of RMSE, MAPE and Dstat.
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Figure 4. The impact of the noise strength of CEEMD on WTI crude oil prices with one-step-
ahead forecasting.
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Figure 5. The impact of the number of realizations of CEEMD on WTI crude oil prices with one-step-
ahead forecasting.

4.5.2. The Impact of the Lag Order

In order to further investigate the impact of the lag order on our proposed CEEMD-A&S-SBL
model, we conducted the one-step-ahead forecasting experiment on WTI crude oil prices with the
number of lag orders from 1 to 10. The results are shown in Figure 6. It can be seen that the forecasting
performance significantly improves with the increase of the lag order from 1 to 4. Then, RMSE slightly
decreases with the increase of lag order from 5 to 6, while MAPE and Dstat remain unchanged. When
the lag order is greater than 6, all three metrics tend to be stable. The experimental results demonstrate
that the lag order has a significant impact on forecasting accuracy, and an ideal value of lag order is
about 6.
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Figure 6. The impact of lag order on WTI crude oil prices with one-step-ahead forecasting.
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4.5.3. Individual Component Prediction Model and Selection

In the proposed CEEMD-A&S-SBL model, the prediction models of ARIMA and SBL with
combined kernel-tricks are built on the training set independently for each component, and then these
two prediction models are applied to the test set separately. These two groups of prediction results of
all individual components are adaptively selected based on the training precision. Table 16 shows the
prediction model selection results for each component in terms of RMSE.

Table 16. Prediction model selection for each component on WTI and Brent crude oil prices.

Market IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 Residue

WTI ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA CK-SBL CK-SBL ARIMA ARIMA CK-SBL
Brent ARIMA ARIMA ARIMA ARIMA ARIMA CK-SBL CK-SBL CK-SBL ARIMA ARIMA ARIMA ARIMA

From the above table, we can find that ARIMA and CK-SBL were adaptively selected for
forecasting different components. For WTI crude oil data, CK-SBL was chosen for forecasting the IMF8,
IMF9 and residue, while ARIMA was chosen for forecasting the rest of the components. Regarding
Brent crude oil data, CK-SBL was chosen for forecasting the IMF6, IMF7 and IMF8, while ARIMA was
chosen for forecasting the rest of the components. In the previous HTL model, the first IMFs were
identified as low-frequency components and the rest as high-frequency ones, and then the appropriate
models were employed to forecast the two parts respectively. Our proposed CEEMD-A&S-SBL model
is capable to adaptively select appropriate prediction models based on the training precision without
identifying the characteristic of each component. Therefore, the proposed CEEMD-A&S-SBL model is
more flexible and can better adapt to differential components, showing higher forecasting performance
on crude oil prices.

4.5.4. The Weights of Components in Aggregation

Most previous models aggregate the prediction results of all components as the final forecasting
results using simple addition. The proposed CEEMD-A&S-SBL model uses SBL without kernel-tricks
to aggregate the prediction values of individual components to obtain the final prediction results of
crude oil prices. Table 17 shows the weights of components in aggregation using SBL for WTI and
Brent oil price forecasting.

Table 17. Weights of components in aggregation using SBL.

Market IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11 Residue

WTI 0.9296 1.1345 0.9983 1.0038 0.9925 1.0032 0.9969 0.9982 1.0050 0.9938 1.0140 1.0001
Brent 0.9256 1.1440 1.0241 1.0146 1.0004 1.0013 0.9988 1.0001 1.0009 0.9979 1.0035 1.0000

In the ensemble of addition, each component has an equal weight. It can be seen from Table 17
that each component has a differential aggregation weight when using the SBL ensemble. Especially,
IMF1 has a relatively small weight mainly because IMF1 fluctuates dramatically, making it hard to
accurately forecast. Figures 7 and 8 show the prediction result of each component in one-step-ahead
forecasting on WTI and Brent crude oil prices. It can be seen that all components can be accurately
predicted except IMF1. Therefore, each component should have a differential weight in the aggregation
stage. Due to the relatively larger prediction error, the IMF1 should have a relatively smaller weight in
the aggregation stage. Compared with addition and other ensemble methods, ensemble using SBL has
some advantages as follows: (1) good interpretability, (2) better prediction accuracy.
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Figure 7. Prediction result of each component in one-step-ahead forecasting on WTI crude oil prices.
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Figure 8. Prediction result of each component in one-step-ahead forecasting on Brent crude oil prices.

4.6. Summary

From the above results and analysis, some findings can be summarized as follows:

(1) The AI models outperform the traditional statistical/econometric models in terms of MAPE,
RMSE and Dstat, indicating that AI models are much better at forecasting nonlinear and
nonstationary crude oil price series.

(2) The hybrid ensemble models, including CEEMD-HLT-ADD and CEEMD-A&S-SBL, can further
improve the prediction performance.

(3) Our proposed prediction model CEEMD-A&S-SBL adaptively selects an appropriate prediction
model for forecasting each component without identifying high-frequency and low-frequency
in advance, and the adaptive hybrid model significantly outperforms the other compared
hybrid model.

(4) The CEEMD method achieves better prediction results than the counterpart EEMD and EMD
methods, indicating that CEEMD is more suitable for decomposing original crude oil price series.
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(5) The SBL ensemble method outperforms the traditional addition method in terms of MAPE, RMSE
and Dstat, showing that SBL is more suitable for aggregating individual prediction components.

5. Conclusions

It is a great challenge for the accurate forecast of crude oil prices because of its nonlinearity
and nonstationarity. To better forecast the crude oil price time series, this paper proposed a novel
adaptive hybrid ensemble learning paradigm (CEEMD-A&S-SBL) incorporating CEEMD, ARIMA
and SBL. Firstly, the decomposition method CEEMD was employed to decompose the original time
series of crude oil prices into several IMFs and one residue. In the individual forecasting phase,
ARIMA and SBL with combined kernel-tricks were used to predict target values for the residue and
each single IMF independently. Finally, the prediction results of the above two models for each
component were adaptively selected based on the training precision, and then aggregated as the final
forecasting results using SBL without kernel-tricks. To our knowledge, this is the first time that the
adaptive model selection for individual component forecasting has been developed to forecast crude oil
prices. The experimental results show that: (1) compared with five state-of-the-art prediction models,
the proposed model can significantly improve the prediction accuracy of crude oil prices; (2) CEEMD
is superior to EEMD and EMD for decomposing the original time series of crude oil prices; and (3) SBL
outperforms addition method in aggregating the individual forecasting results of components.

Future work could be extended in four aspects: (1) selecting more appropriate prediction
approaches to build the hybrid ensemble model for forecasting crude oil prices; (2) developing more
metrics for evaluating the training precision instead of RMSE only; (3) applying the CEEMD-A&S-SBL
to forecast other time series of energy, such as carbon price, wind speed and electricity load; and (4)
assessing the scaling ability of CEEMD-A&S-SBL to other time series with various volume of data,
such as hourly price series and weekly price series.
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Abstract: It is of great significance for wind power plant to construct an accurate multi-step wind
speed prediction model, especially considering its operations and grid integration. By integrating
with a data pre-processing measure, a parameter optimization algorithm and error correction strategy,
a novel forecasting method for multi-step wind speed in short period is put forward in this article.
In the suggested measure, the EEMD (Ensemble Empirical Mode Decomposition) is applied to
extract a series of IMFs (intrinsic mode functions) from the initial wind data sequence; the LSTM
(Long Short Term Memory) measure is executed as the major forecasting method for each IMF;
the GRNN (general regression neural network) is executed as the secondary forecasting method
to forecast error sequences for each IMF; and the BSO (Brain Storm Optimization) is employed
to optimize the parameter for GRNN during the training process. To verify the validity of the
suggested EEMD-LSTM-GRNN-BSO model, eight models were applied on three different wind
speed sequences. The calculation outcomes reveal that: (1) the EEMD is able to boost the wind speed
prediction capacity and robustness of the LSTM approach effectively; (2) the BSO based parameter
optimization method is effective in finding the optimal parameter for GRNN and improving the
forecasting performance for the EEMD-LSTM-GRNN model; (3) the error correction method based
on the optimized GRNN promotes the forecasting accuracy of the EEMD-LSTM model significantly;
and (4) compared with all models involved, the proposed EEMD-LSTM-GRNN-BSO model is proved
to have the best performance in predicting the short-term wind speed sequence.

Keywords: multi-step wind speed prediction; Ensemble Empirical Mode Decomposition; Long Short
Term Memory; General Regression Neural Network; Brain Storm Optimization

1. Introduction

As the awareness of environmental protection increases, the application and promotion of
renewable energy has attracted worldwide attention. As one type of promising renewable energy,
wind power is experiencing a rapid development [1]. Nevertheless, owning to the instability and
stochastic property of wind power generation, the instability of power system is caused easily when
considering wind power [2]. Therefore, it is imperative to propose an accurate prediction method
for wind speed to reduce the instability risk of the power system and the economic losses for wind
power enterprises.

In recent years, many scholars have done extensive research on predicting the wind speed
sequence. The traditional prediction measures are universally recognized as four kinds: (1) physical
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method; (2) statistical method; (3) intelligent approach; and (4) hybrid model [3]. The physical
method commonly takes advantage of physical data, for example temperature, air density, topographic
information and so on [4], which is mainly obtained through numerical weather prediction [5], to
get the prediction results. However, the physical methods are not good at forecasting wind speed
in short period and the methods also require plenty of time to compute and additional resources [6].
The statistical measures, such as the autoregressive integrated moving average (ARIMA) measure,
are built with easy procedures of pattern recognition, parameter estimation and model checking [7].
However, this kind of methods cannot afford to deal with the non-linear problems [8]. Owning to
the ability to recognize the non-linear characters, the intelligent approaches, for instance artificial
neural networks (ANNs) [9–11], support vector machine (SVM) [12], the genetic algorithm [13] and the
general regression neural network (GRNN) [14], have been utilized to forecast wind speed effectively.
Due to the superior ability to recognize the non-linear structure, intelligent approach is better at
forecasting the wind speed of short period than traditional time series based methods. Nevertheless,
the single intelligent approaches also suffer form certain problems. For example, genetic algorithm
measure has the problem of premature convergence, which limits its searching ability to obtain the
optimal value. Furthermore, with the function to recognize deep characteristics in the data, the deep
learning approaches, for example the deep convolutional neural network [15] and LSTM [16], have
been investigated in the process of prediction for wind speed in recent studies.

However, due to the unstable property of wind speed, a single intelligent model may occasionally
fall into local extremum and result in poor forecasting performance. Hence, to fix this problem, hybrid
models to predict wind speed are put forward. There are four types of hybrid forecasting models [17].

(1) The hybrid methods involving weighting approaches give a weighing parameter to each
single approach based on their forecasting performance and then add the weighted forecasting results
together. For example, Shi et al. [18] put forward a weighting based hybrid approach involving
grey relational analysis as well as the distribution characteristics of wind velocity, which integrates
the LSSVM (least square support vector machine) and the RBFNN (Radial Basis Function Neural
Networks). The weighting parameters in the approach can be calculated based on data sequences
in each month. The results reveal that the suggested combination measure effectively promotes
the performance in forecasting the wind speed in very short term. Xiao et al. [10] utilized the
nonnegative constraint theory and hybrid smart approaches to obtain the wind speed prediction, in
which the importance degrees of the latter combined approaches are decided utilizing the chaos particle
optimization algorithm as well as the genetic algorithm. The afore-mentioned hybrid approaches take
advantage of the strength of single forecasting methods, thus the forecasting accuracy is significantly
improved.

(2) The signal pre-processing measure is executed to obtain a collection of sub-sequences, which
are stationary and regular, from the initial non-linear time series. Different decomposition approaches
have been utilized in latest hybrid prediction approaches extensively. For instance, in [19], the raw data
series is preprocessed by wavelet transform (WT) before being brought into the forecasting procedure
of SVM. The final outcomes indicate that the suggested approach consisting of WT and SVM is superior
to the single SVM approach in prediction accuracy. Fan [20] used a combination measure integrating
the empirical mode decomposition (EMD) and SVM, in which the initial wind speed data are processed
with EMD for the purpose of fluctuation deduction. However, the EMD method cannot afford to
dispose the problem of mode mixing. Therefore, to compensate for the disadvantage of EMD, the
ensemble empirical mode decomposition (EEMD) measure is utilized in [21]. Cheng [22] utilized a
hybrid model integrated with the EEMD approach to construct the forecasting process for wind speed,
where the EEMD is applied for information extraction from the raw wind speed series. The final
outcomes reveal that the suggested approach with EEMD shows a better prediction performance than
the EMD or LSSVM method.

(3) Hybrid models integrating parameter optimization, which applies the optimization methods
to find optimal setting for the prediction models in the training procedure, are investigated recently.
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Chitsaz et al. [23] presented a novel prediction measure which has the structure of the Wavelet
Neural Network (WNN) as well as multi-dimensional Morlet wavelet. The modified Clonal selection
method is used for finding the optimal parameters in WNN with the training criterion of Maximum
Correntropy Criterion. The final outcomes demonstrate the validity of the suggested method. In
[24], a novel hybrid wind speed prediction measure in short period consisting of mutual information,
wavelet transform, evolutionary particle swarm optimization (EPSO) and the adaptive neuro-fuzzy
inference system (ANFIS) is developed, in which the EPSO is utilized to search the optimal parameter
for ANFIS. The final results reveal that the suggested measure has advantages in forecasting accuracy
over the other comparison models. Yuan et al. [25] presented the gravitational search algorithm
(GSA) for searching the best parameter for LSSVM model. The experiment outcomes show that the
suggested LSSVM-GSA combination measure have the highest forecasting accuracy, compared with
other models. The Brain Storm Optimization (BSO) approach, which is enlightened from the process
of brainstorming for people, is put forward in [26]. Modeling BSO algorithm requires simulating the
form of gathering various experts together to propose potential solutions for the current problem [27].
Each individual is grouped into different teams for collaborative investigation. Various teams are
able to locate different answer space areas to promote the possibility to find the best solution, which
possesses an excellent global exploration ability [28]. The significance of BSO has been validated by
numerous scholars [29,30].

(4) Unlike the aforementioned hybrid methods, the hybrid models based on the data
post-processing technique emphasize using the error correction method to reduce the adverse effect
brought by the forecasting error. For instance, Liang et al. [31] put forward a novel hybrid model,
in which the forecasting step for the raw data sequence of wind power is conducted with the SVM,
and then the prediction error for the SVM is forecasted utilizing the SVM together with the ELM. The
numerical outcomes demonstrate that the proposed combination measure with error correction can
promote the wind power prediction performance effectively. Jiang et al. [32] put forward a combined
structure, in which the EEMD is executed to pre-process the wind speed sequences with mean
zero, and the chosen sub-layers are forecasted using LSSVM. Then, the LSSVM and the Generalized
Auto-Regressive Conditionally Heteroscedastic (GARCH) measure are applied for forecasting the error
sequences. The outcomes demonstrate that the error correction method contributes to the forecasting
accuracy improvement. Moreover, in [33], the prediction errors of the wind speed series in short
period, which are acquired by the measure of grey forecasting, are forecasted utilizing the Markov
method for wind speed forecasting error correction before it is turned into wind power forecasting,
and the results show the superiorities of the proposed approach in forecasting accuracy improvement.

All four types of hybrid forecasting model mentioned above can contribute to the improvement of
forecasting performance. In this paper, the signal pre-processing technique, the parameter optimization
algorithm and the error correction method are considered. The suggested combination model involving
the signal decomposition technique, the parameter optimization algorithm and the error correction
method is built as follow: (1) The EEMD is applied to extract a collection of IMFs from the raw wind
speed sequence. (2) The LSTM network is used to forecast each IMF. (3) The GRNN is conducted
to predict the error sequence for each IMF (intrinsic mode function). (4) The BSO is executed to
optimize the parameter for GRNN. (5) The ultimate prediction result is obtained through merging all
the predictions of IMFs.

The major contribution in the article is proposing a novel multi-step wind speed prediction
structure combining the data pre-processing technique, the parameter optimization algorithm and
the error correction method to achieve a satisfactory forecasting performance, and to analyze the
influences of every element of the proposed hybrid model in forecasting accuracy contribution. As
far as we know, the potential performance of the suggested structure, which integrates three kinds of
improvements in one hybrid model, has not been studied in the prediction for short-term wind speed.
Thus, aiming at investigating the effectiveness of each component, the overall prediction performance
and the generalization of the suggested combination measure, eight diverse approaches were applied
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to forecast two different 5-min wind speed sequences and one 30-min wind speed sequence. Finally,
the prediction accuracy of all the approaches involved in this paper were estimated utilizing different
evaluating indicators.

The structure for this article is described as below. Section 2 describes the application process of
the suggested hybrid measure and the single models required. Section 3 introduces the evaluation
criteria for prediction capacity. Section 4 presents two 5-min wind speed forecasting case studies
to prove the forecasting capacity of the suggested hybrid measure. Section 5 presents an additional
30-min case to further validate the generalization of the suggested measure. Finally, the conclusions
are drawn in Section 6.

2. Methodology

2.1. The Overall Structure of the Suggested Combination Measure

The structure of the suggested EEMD-LSTM-GRNN-BSO approach is shown in Figure 1.
The specific processes are described below:

(1) The EEMD method is executed to extract a collection of IMFs from the wind speed observations.
The ratio of the standard deviation of the added noise takes 0.01 and the ensemble number for
the EEMD takes 100. Finally, 11 IMFs are obtained utilizing EEMD. The process of the EEMD
measure are shown in Section 2.2.

(2) The IMFs are classified into two training sets. The input matrixes and output matrixes are formed
with data in each set based on the procedures described in Figure 2 to train the forecasting models.

(3) The LSTM network is trained with the data in Training Set 1 to predict each IMF; the trained
LSTM networks are tested with data in Training Set 2; the forecasting error series are obtained by
finding the difference between the observations and predictions of Training Set 2. The procedures
of the LSTM models are described in Section 2.3.

(4) The GRNN approach is trained with the error sequence of the Training Set 2 to model the
prediction errors for the LSTM network. The BSO algorithm is executed to search the optimal
smooth factor for further prediction accuracy improvement, in which the smooth factor is treated
as the variable to be optimized and the mean absolute error (MAE) calculated with the predictions
and observations is considered as the fitness function of BSO. Each value of smooth factor in
the searching space is brought in to the GRNN to obtain the predictions and the corresponding
fitness, until the optimal value is found. Sections 2.4 and 2.5 describe the details of GRNN and
BSO, respectively.

(5) The LSTM network and the GRNN model optimized by BSO are combined to construct the
proposed hybrid forecasting measure. The suggested combination measure is validated using the
test set for getting each IMF predictions and the error predictions. The overall prediction for each
IMF can be obtained with the equation below:

Pcorrected
IMFi

= PIMFi + PERRi (1)

where i is the number of IMF determined by the EEMD method. Pcorrected
IMFi

stands for the corrected
prediction for each IMF. PIMFi represents the original predictions for each IMF forecasted by BSO.
PERRi stands for the error prediction for each IMF forecasted by optimized GRNN. The final
predicted wind speed sequences are gained by means of merging all the corrected predictions of
IMF together.

(6) To test and verify the wind speed prediction performance of the suggested combination
EEMD-LSTM-GRNN-BSO approach, seven other prediction methods were used as comparisons.
The comparison models involved in this study are the ARIMA measure, the BP network, the
GRNN measure, the LSTM measure, the LSTM-GRNN-BSO measure, the EEMD-LSTM measure,
and the EEMD-LSTM-GRNN measure. Comparisons between models were also utilized to reveal
the effectiveness of each component in forecasting accuracy improvement.
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Figure 1. The whole process of the EEMD-LSTM-GRNN-BSO.

Figure 2. The structure of the multi-step forecasting strategy.
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2.2. Ensemble Empirical Mode Decomposition

Being a valid data series disposing measure, empirical mode decomposition (EMD) can draw
the feature information from the raw data series [34]. Utilizing the EMD approach, a collection of
intrinsic mode functions (IMFs) are acquired. Following the EMD measure, the ensemble empirical
mode decomposition (EEMD) was studied to handle the mode mixing issue, which cannot be solved
by the EMD approach. The main process for the EEMD measure [22] is described as follows:

(1) Create a novel data series y(t) by adding white noise into the raw data series x(t).
(2) Recognize all the local extremum values for the data series y(t).
(3) Construct the upper envelopes eu(t) and lower envelopes el(t) for y(t)
(4) Generate the average value m(t) with the upper envelope and the lower envelope.

m(t) =
eu(t) + el(t)

2
(2)

(5) Calculate the distinction between the raw data series y(t) and m(t) as the first part h(t):

y(t)− m(t) = h(t) (3)

(6) Iterated the sifting procedure several times. The iterative process continues for k times until h(t)
is an IMF. After that the first IMF part c1 is shown as follow:

y(t)− c1 = r1 (4)

(7) The residue r1 is considered as a new series, and Steps (2)–(6) are repeated to get all rj and a
residue cn. Finally, by adding up all the IMFs and the residue obtained, the following is acquired:

y(t) =
n

∑
j=1

cj + rn (5)

EEMD is regarded as an approach to help analyze data with noise by means of mixing white
noise into the raw series, and it is useful to mitigate the problem caused by mode mixing.

2.3. Long Short Term Memory Measure

Improved from Recurrent Neural Network (RNN), the LSTM measure was put forward by
Hochreiter and Schmidhuber [35] in 1997. The important parts of the LSTM network are its memory
cells, which make it different from the traditional RNN. Graves and Schmidhuber [36] explained that
three types of multiplicative units exist in the structure of LSTM model: the input gate, the output gate
and the forget gate in the memory cells. These gates change the state of the memory cells following the
steps below [37]: (a) by activating the input gate, as the latest data enters, the input message is able to
be accumulated to the cell; (b) by activating the forget gate, the former cell states are to be abandoned
during the procedure; and (3) the output gate is responsible for deciding if the latest cell output is
propagated to the final state.

In terms of short wind speed forecasting, x = (x1, x2, · · · , xT) is the historical wind speed series
and y = (y1, y2, · · · , yT) is the forecasting value. The prediction of the wind speed sequence is
computed as below [38]:

it = σ(Wixxt + Wimmt−1 + Wicct−1 + bi) (6)

ft = σ(Wf xxt + Wf mmt−1 + Wf cct−1 + b f ) (7)

ct = ft · ct−1 + it · g(Wcxxt + Wcmmt−1 + bc) (8)

ot = σ(Woxxt + Wommt−1 + Wocct + bo) (9)
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mt = ot · h(ct) (10)

yt = Wymmt + by (11)

where it represents the input gate, ft represents the forget gate, ct represents the activation vector for
every cell, ot stands for the output gate, mt stands for the activation vectors for every memory block,
W represents the weigh matrices, b represents the bias vectors and the mathematical symbol “·” stands
for the scalar product.

σ(·) stands for the standard logistic function:

σ(x) =
1

1 + e−x (12)

g(·) stands for the centered logistic function:

g(x) =
4

1 + e−x − 2x ∈ [−2, 2] (13)

h(·) stands for the centered logistic function:

h(x) =
2

1 + e−x − 1x ∈ [−1, 1] (14)

2.4. General Regression Neural Network

Specht put forward the GRNN method in 1991 [39]. The GRNN has many advantages such as
strong non-linear mapping abilities, flexible network framework and satisfactory robustness, which
makes it a perfect choice to deal with non-linear problems. Although the GRNN has a similar structure
to the RBFNN, its approaching ability and learning speed is better. The structure of GRNN includes
the input layer, the pattern layer, the summation layer and the output layer. The framework of
GRNN is described in Figure 1C. The input for GRNN is X = [X1, X2, · · · , Xn]T and the output is
Y = [Y1, Y2, · · · , Yk]

T . The following descriptions explains the detailed process of GRNN:

(1) Input layer: The amount of neurons and the dimension of the input data of the training set
should be kept consistent. Every neuron denotes an easy distribution unit that delivers the input
information straightly to the pattern layer.

(2) Pattern layer: The number of neurons equals the number of training data. Every neuron denotes
a diverse sample. The calculation for the neuron transfer function of the pattern layer pi is shown
below:

pi = exp[− f rac(X − Xi)
T(X − Xi)2σ2], i = 1, 2, · · · , n (15)

where X stands for the input variables for the model and Xi stands for the training data of neuron
i. The width parameter of the Gaussian function is controlled by smoothing factor σ.

(3) Summation layer: The procedure of summation is calculated with two kinds of neurons.
One way is to merge the output of each neuron in pattern layer with the formula of
∑n

i=1 exp[− f rac(X − Xi)
T(X − Xi)2σ2] to obtain the summation SD for the summation layer.

The combination weighting parameter connecting the pattern layer and each neuron is equal to
one, and the transfer formula is shown below:

SD =
n

∑
i=1

pi (16)

The other way is to conduct the summation SNj of all the neurons in the pattern layer with
different weights, whose formula is represented by ∑n

i=1 Υiexp[− f rac(X − Xi)
T(X − Xi)2σ2].

The jth component of ith output sample Υi defines the weighting parameter connecting the ith
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neuron in the pattern layer and the jth molecule in the summation layer. The corresponding
transfer formula is as follow.

SNj =
n

∑
i=1

yij pi, j = 1, 2, · · · , k (17)

(4) Output layer: The amount of neurons and the dimension of the output vector in the sample
should be kept consistent. The output of neuron j is equal to the jth component of the calculated
outcome Υ̂(X), which is calculated as:

yj =
SNj

SD
, j = 1, 2, · · · , k (18)

As the parameter σ takes a great value, Υ̂(X) is closer to the average value of all the sample based
variables. Conversely, as the value of parameter σ is closer to zero, Υ̂(X) is similar to the training
set. Under the situation that the predicted point are part of the training set, the prediction for the
dependent variable is rather similar to the corresponding dependent variable of the training set. When
this happens, the corresponding sample cannot be considered, which may lead to unsatisfactory
forecasting performance and generalization. When the smooth factor σ takes a proper value, the
calculation of Υ̂(X) includes the dependent variable of all training data, and the distance between the
dependent variable and the corresponding forecasting point is assigned with a larger weight. Thus,
based on the significant influence of smooth factor σ on the forecasting performance of GRNN, the
BSO is utilized to search the optima value for GRNN during the training process.

2.5. Brain Storm Optimization

The BSO [40,41] is an algorithm based on population aiming at mimicking brainstorming meetings
conducted by people. In the process of BSO, each population can be considered as a set of ideas. Each
idea stands for a solution for the issue. In every iteration, a population of ideas (solutions) is renewed.
At first, ideas are allocated to search space randomly. Every single idea ideai is renewed by the
following steps.

• Firstly, k-means clustering can be utilized to identify similar solutions and the optimal idea of
each cluster is marked as the cluster center.

• Secondly, BSO creates a novel idea nideai by making it equal to one of options mentioned below.

- A probabilistically chosen cluster center
- A randomly chosen idea from a probabilistically selected cluster
- The stochastic integration of two probabilistically chosen cluster centers
- The stochastic integration of two randomly chosen ideas from two probabilistically

chosen clusters

One of the options is randomly chosen according to several parameters, pone−cluster, pone−center,
and ptwo−centers. Besides, a cluster is probabilistically chosen based on its scale, which reflects the
amount of ideas in the cluster.

• Thirdly, the created nideai is perturbed utilizing a step-size parameter ξ and Gaussian distribution.
• Finally, nideai substitutes the current ideai if its fitness is better. If not, it is abandoned.

The main steps of BSO algorithm [42] is described in Figure 3, where n represents the population
scale, m represents the amount of clusters, and N(0, 1) stands for a normal distribution in which the
average value is 0 and the standard deviation is 1. ξ represents a dynamically updated step-size and
k is for altering the slope of the logsig function. As the special evolution of BSO, making diverse
groups to explore wide solution space area helps BSO to avoid local extremum trap and increase the
probability to find the optimal value, thus making BSO a good choice to optimize the smooth factor
for GRNN.
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Figure 3. The main procedure of BSO.

3. Evaluation Criteria for Prediction Capacity

Aiming to investigate the forecasting capacity of the suggested combination forecasting model,
three widely used evaluation indexes were applied to compare the prediction capacity: mean absolute
error (MAE), root mean square error (RMSE), and mean absolute percent error (MAPE). The indicators
are described as below:

MAE =
1
T

T

∑
t=1

|pture
t − p f orecast| (19)

MAPE =
1
T

T

∑
t=1

| pture(t)− p f orecast(t)
pture(t)

| × 100% (20)

RMSE =

√√√√ 1
T

T

∑
t=1

|pture(t)− p f orecast(t)|2 (21)

where pture(t) represents the actual observation data of the moment t and p f orecast(t) represents the
value of prediction for the corresponding moment. T is the number of predicted points. Moreover,
aiming at analyzing the forecasting capacity increase of the suggested measure, the percentage
improvements of MAE, MAPE and RMSE, which are represented by PMAE, PMAPE, PRMSE, respectively,
were also used in this study. These evaluation indexes can be defined as follows:

PMAE =
|MAE1 − MAE2|

MAE1
× 100% (22)
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PMAPE =
|MAPE1 − MAPE2|

MAPE1
× 100% (23)

PRMSE =
|RMSE1 − RMSE2|

RMSE1
× 100% (24)

4. Case Study

4.1. Datasets

Figures 4 and 5 demonstrate two different datasets with a time interval of 5 min collected from 1
January 2018 to 7 January 2018 and from 1 May 2018 to 7 May 2018 at different wind power plants in
Zhang Jiakou, Hebei, China. Training Set 1, including samples from 1 to 800 of each sequence, were
applied to train the LSTM network; and Training Set 2, including samples from 801 to 1600 of each
sequence, were applied to create the error series and train the GRNN model, which was optimized by
BSO. Samples 1601–2000 of each sequence were executed to test and estimate the prediction capacity
of the models mentioned in this study.

Figure 4. The observations for Wind Speed Sequence I.

Figure 5. The observations for Wind Speed Sequence II.

4.2. Experiments

Aiming at validating the prediction capacity of the EEMD-LSTM-GRNN-BSO method, the
suggested combination approach together with seven comparison methods were conducted on the
two different datasets of wind speed. The comparison approaches were the ARIMA method, the BP
method, the GRNN method, the LSTM method, the LSTM-GRNN-BSO measure, the EEMD-LSTM
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measure, and the EEMD-LSTM-GRNN measure. The actual wind speed sequence and the forecasting
values of all involved approaches are presented in Figures 6 and 7. The calculation outcomes of
evaluation indicators for the involved wind speed forecasting approaches are demonstrated in Tables 1
and 2.

Figure 6. The comparisons between the observations and the predictions for Wind Speed Sequence I.

Figure 7. The comparisons between the observations and the predictions for Wind Speed Sequence II.

71



Energies 2019, 12, 1822

Table 1. The multi-step calculation results for evaluation indicators of involved approaches on Wind
Speed Sequence I.

Prediction Approaches Step MAE (m/s) MAPE (%) RMSE (m/s)

EEMD-LSTM-GRNN-BSO 1 0.6052 0.0927 0.8025
2 0.6649 0.1193 0.9286
3 0.6644 0.1209 0.8991
4 0.7838 0.1461 1.0246
5 0.9113 0.1745 1.2160

EEMD-LSTM-GRNN 1 0.6195 0.1107 0.8293
2 0.7038 0.1274 0.9598
3 1.7694 0.3085 2.2488
4 1.2821 0.2455 1.7051
5 2.4081 0.4735 2.9840

EEMD-LSTM 1 0.6948 0.1055 0.8405
2 0.7188 0.1429 0.9868
3 1.5129 0.2657 1.9925
4 1.5783 0.3143 2.0888
5 2.6381 0.5188 3.2775

LSTM-GRNN-BSO 1 1.0445 0.2028 1.3149
2 1.0845 0.2091 1.3628
3 1.0855 0.2087 1.3749
4 1.0747 0.2121 1.3699
5 1.0210 0.2049 1.2979

LSTM 1 0.9138 0.1949 1.1499
2 0.9910 0.2100 1.2299
3 0.9637 0.1907 1.2330
4 1.1164 0.2387 1.3970
5 1.1484 0.2427 1.4212

GRNN 1 1.0490 0.1994 1.3159
2 1.2893 0.2452 1.6017
3 1.4521 0.2771 1.8032
4 1.7666 0.3723 2.2328
5 1.8136 0.3886 2.2956

BP 1 0.8109 0.1596 1.0438
2 0.9709 0.1906 1.2429
3 1.0365 0.2044 1.3238
4 1.6595 0.3727 2.0423
5 1.5991 0.3590 1.9573

ARIMA 1 1.1181 0.1997 1.5232
2 1.7480 0.3160 2.3384
3 2.2404 0.4093 2.9810
4 2.8068 0.5142 3.6921
5 3.3562 0.6153 4.4892
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Table 2. The multi-step calculation results for evaluation indicators of involved approaches on Wind
Speed Sequence II.

Prediction Approaches Step MAE (m/s) MAPE (%) RMSE (m/s)

EEMD-LSTM-GRNN-BSO 1 0.5749 0.1011 0.7241
2 0.6818 0.1310 0.8750
3 0.9345 0.1742 1.2028
4 0.7572 0.1464 0.9812
5 0.9239 0.1180 1.2261

EEMD-LSTM-GRNN 1 0.6004 0.1155 0.7539
2 0.6953 0.1439 0.8909
3 1.4508 0.2752 1.8090
4 1.9493 0.3799 2.5754
5 2.1149 0.4187 2.9147

EEMD-LSTM 1 0.7179 0.1530 0.8745
2 0.9628 0.2039 1.1752
3 2.0698 0.3929 2.5547
4 2.3148 0.4569 2.8876
5 3.7747 0.7488 4.7338

LSTM-GRNN-BSO 1 0.8960 0.1681 1.1275
2 0.9132 0.1760 1.1789
3 0.9542 0.1976 1.3128
4 0.9043 0.1727 1.2007
5 0.9848 0.1881 1.4490

LSTM 1 0.8545 0.1730 1.0871
2 1.3254 0.2937 1.5884
3 1.1863 0.2523 1.4632
4 1.2628 0.2694 1.5758
5 1.2905 0.2700 1.6110

GRNN 1 0.9569 0.1796 1.2244
2 1.1424 0.2154 1.4702
3 1.2899 0.2415 1.6464
4 1.5085 0.3018 1.9219
5 1.6906 0.3359 2.1260

BP 1 0.7674 0.1444 0.9793
2 0.9225 0.1767 1.1698
3 1.1302 0.2176 1.4051
4 1.2835 0.2488 1.5905
5 1.4013 0.2729 1.7293

ARIMA 1 1.0206 0.1884 1.3139
2 1.3918 0.2624 1.7979
3 1.7594 0.3355 2.2971
4 2.1526 0.4130 2.7701
5 2.5383 0.4864 3.2606

4.3. Comparison and Analysis

As shown in the above two tables, the calculation outcomes for evaluation indicators of the
two wind speed sequences forecasting cases demonstrate the same trend. Tables 3 and 4 provide
the percentage improvements for the three evaluation indicators of the suggested combination
EEMD-LSTM-GRNN-BSO approach on the two different datasets in comparison with the other
measures mentioned.
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Table 3. The multi-step percentage improvements of the suggested EEMD-LSTM-GRNN-BSO approach
in comparison with the other measures on Wind Speed Sequence I.

Prediction Approaches Step PMAE (%) PMAPE (%) PRMSE (%)

EEMD-LSTM-GRNN 1 2.31 16.19 3.22
2 5.52 6.32 3.25
3 62.45 60.79 60.02
4 38.86 40.51 39.91
5 62.16 63.15 59.25

EEMD-LSTM 1 12.89 12.09 4.52
2 7.50 16.51 5.89
3 56.08 54.48 54.88
4 50.34 53.52 50.95
5 65.46 66.37 62.90

LSTM-GRNN-BSO 1 42.05 54.26 38.97
2 38.69 42.93 31.86
3 38.80 42.04 34.61
4 27.07 31.14 25.20
5 10.75 14.86 6.31

LSTM 1 33.77 52.42 30.21
2 32.90 43.18 24.50
3 31.06 36.59 27.08
4 29.79 38.81 26.66
5 20.65 28.11 14.44

GRNN 1 42.30 53.49 39.01
2 48.43 51.33 42.02
3 54.24 56.36 50.14
4 55.63 60.77 54.11
5 49.75 55.10 47.03

BP 1 25.37 41.89 23.12
2 31.51 37.41 25.29
3 35.90 40.83 32.08
4 52.77 60.80 49.83
5 43.01 51.41 37.87

ARIMA 1 45.87 53.56 47.31
2 61.96 62.24 60.29
3 70.35 70.45 69.84
4 72.07 71.59 72.25
5 72.85 71.65 72.91

Table 4. The multi-step percentage improvements of the suggested EEMD-LSTM-GRNN-BSO approach
in comparison with the other measures on Wind Speed Sequence II.

Prediction Approaches Step PMAE (%) PMAPE (%) PRMSE (%)

EEMD-LSTM-GRNN 1 4.25 12.50 3.96
2 1.93 8.99 1.78
3 35.59 36.72 33.51
4 61.15 61.45 61.90
5 56.31 47.93 57.93

EEMD-LSTM 1 19.93 33.94 17.20
2 29.18 35.75 25.54
3 54.85 55.67 52.92
4 67.29 67.95 66.02
5 75.52 70.88 74.10

LSTM-GRNN-BSO 1 35.84 39.87 35.78
2 25.34 25.58 25.78
3 2.07 11.87 8.37
4 16.26 15.19 18.27
5 6.18 37.25 15.38
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Table 4. Cont.

Prediction Approaches Step PMAE (%) PMAPE (%) PRMSE (%)

LSTM 1 32.73 41.58 33.39
2 48.56 55.40 44.91
3 21.23 30.98 17.79
4 40.04 45.64 37.73
5 28.41 19.26 23.89

GRNN 1 39.93 43.73 40.86
2 40.32 39.20 40.48
3 27.55 27.88 26.94
4 49.80 51.48 48.94
5 45.35 35.09 42.33

BP 1 25.09 30.00 26.06
2 26.09 25.87 25.20
3 17.32 19.98 14.39
4 41.00 41.14 38.31
5 34.07 20.12 29.10

ARIMA 1 43.68 46.36 44.89
2 51.01 50.07 51.33
3 46.89 48.09 47.64
4 64.82 64.54 64.58
5 63.60 55.18 62.40

From the results in Tables 1–4 and Figures 6 and 7, some analyses could be obtained. Take Wind
Speed Sequence I as an example.

(a) The forecasting capacity of the EEMD-LSTM-GRNN-BSO approach was obviously superior to
that of the ARIMA method. For example, in Case 1, the percentage improvement of MAE for the
EEMD-LSTM-GRNN-BSO model, compared with the ARIMA approach, in 1–5-step predictions
were 45.87%, 61.96%, 70.35%, 72.07% and 72.85%, respectively; the percentage improvement of
MAPE for the EEMD-LSTM-GRNN-BSO model, compared with the ARIMA approach, in 1–5-step
predictions were 53.56%, 62.24%, 70.45%, 71.59% and 71.65%, respectively; and the percentage
improvement of RMSE for the EEMD-LSTM-GRNN-BSO model, compared with the ARIMA
approach, in 1–5-step predictions were 47.31%, 60.29%, 69.84%, 72.25% and 72.91%, respectively.

(b) The forecasting capacity of the EEMD-LSTM-GRNN-BSO approach was obviously superior to
that of the BP method. For example, in Case 1, the percentage improvement of MAE for the
EEMD-LSTM-GRNN-BSO model, compared with the BP approach, in 1–5-step predictions were
25.37%, 31.51%, 35.90%, 52.77% and 43.01%, respectively; the percentage improvement of MAPE
for the EEMD-LSTM-GRNN-BSO model, compared with the BP approach, in 1–5-step predictions
were 41.89%, 37.41%, 40.83%, 60.80% and 51.41%, respectively; and the percentage improvement
of RMSE for the EEMD-LSTM-GRNN-BSO model, compared with the BP approach, in 1–5-step
predictions were 23.12%, 25.29%, 32.08%, 49.83%, and 37.87%, respectively.

(c) The forecasting capacity of the EEMD-LSTM-GRNN-BSO approach was obviously superior to
that of the GRNN method. For example, in Case 1, the percentage improvement of MAE for the
EEMD-LSTM-GRNN-BSO model, compared with the GRNN approach, in 1–5-step predictions
were 42.30%, 48.43%, 54.24%, 55.63% and 49.75%, respectively; the percentage improvement of
MAPE for the EEMD-LSTM-GRNN-BSO model, compared with the GRNN approach, in 1–5-step
predictions were 53.49%, 51.33%, 56.36%, 60.77% and 55.10%, respectively; and the percentage
improvement of RMSE for the EEMD-LSTM-GRNN-BSO model, compared with the GRNN
approach, in 1–5-step predictions were 39.01%, 42.02%, 50.14%, 54.11% and 47.03%, respectively.

(d) The forecasting capacity of the EEMD-LSTM-GRNN-BSO approach was obviously superior to
that of the LSTM method. For example, in Case 1, the percentage improvement of MAE for the
EEMD-LSTM-GRNN-BSO model, compared with the LSTM approach, in 1–5-step predictions
were 33.77%, 32.90%, 31.06%, 29.79% and 20.65%, respectively; the percentage improvement of
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MAPE for the EEMD-LSTM-GRNN-BSO model, compared with the LSTM approach, in 1–5-step
predictions were 52.42%, 43.18%, 36.59%, 38.81% and 28.11%, respectively; and the percentage
improvement of RMSE for the EEMD-LSTM-GRNN-BSO model, compared with the LSTM
approach, in 1–5-step predictions were 30.21%, 24.50%, 27.08%, 26.66% and 14.44%, respectively.

(e) The forecasting capacity of the EEMD-LSTM-GRNN-BSO approach was obviously superior to
that of the LSTM-GRNN-BSO method. For example, in Case 1, the percentage improvement
of MAE for the EEMD-LSTM-GRNN-BSO model, compared with the LSTM-GRNN-BSO
approach, in 1–5-step predictions were 42.05%, 38.69%, 38.80%, 27.07% and 10.75%, respectively;
the percentage improvement of MAPE for the EEMD-LSTM-GRNN-BSO model, compared with
the LSTM-GRNN-BSO approach, in 1–5-step predictions were 54.26%, 42.93%, 42.04%, 31.14% and
14.86%, respectively; and the percentage improvement of RMSE for the EEMD-LSTM-GRNN-BSO
model, compared with the LSTM-GRNN-BSO approach, in 1–5-step predictions were 38.97%,
31.86%, 34.61%, 25.20% and 6.31%, respectively.

(f) The forecasting capacity of the EEMD-LSTM-GRNN-BSO approach was obviously superior to
that of the EEMD-LSTM method. For example, in Case 1, the percentage improvement of MAE
for the EEMD-LSTM-GRNN-BSO model, compared with the EEMD-LSTM approach, in 1–3-step
predictions were 32.44%, 21.44% and 20.60%, respectively; the percentage improvement of MAPE
for the EEMD-LSTM-GRNN-BSO model, compared with the EEMD-LSTM approach, in 1–3-step
predictions were 33.08%, 22.92% and 21.97%, respectively; and the percentage improvement of
RMSE for the EEMD-LSTM-GRNN-BSO model, compared with the EEMD-LSTM approach, in
1–3-step predictions were 23.45%, 22.49% and 13.23%, respectively.

(g) The forecasting capacity of the EEMD-LSTM-GRNN-BSO approach was obviously superior to that
of the EEMD-LSTM-GRNN method. For example, in Case 1, the percentage improvement of MAE
for the EEMD-LSTM-GRNN-BSO model, compared with the EEMD-LSTM-GRNN approach,
in 1–5-step predictions were 12.89%, 7.50%, 56.08%, 50.34% and 65.46%, respectively; the
percentage improvement of MAPE for the EEMD-LSTM-GRNN-BSO model, compared with the
EEMD-LSTM-GRNN approach, in 1–5-step predictions were 12.09%, 16.51%, 54.48%, 53.52% and
66.37%, respectively; and the percentage improvement of RMSE for the EEMD-LSTM-GRNN-BSO
model, compared with the EEMD-LSTM-GRNN approach, in 1–5-step predictions were 4.52%,
5.89%, 54.88%, 50.95% and 62.90%, respectively.

(h) Among all the wind speed forecasting models involved in 1–5-step predictions, the proposed
EEMD-LSTM-GRNN-BSO hybrid model showed the highest forecasting accuracy. For example,
the error statistical estimation for one-step forecast of Wind Speed Sequence I are shown in
Figure 8, which shows that most errors of the proposed method were less than 10%. The
reasons for the satisfactory forecasting accuracy improvement were as follows: (1) In terms
of the data pre-processing method, EEMD method could recognize the non-linear features
of the dataset well and effectively decompose the original wind speed series effectively to
provide abundant information to the forecasting model, which contributed to the forecasting
accuracy improvements. (2) In terms of the parameter optimization algorithm, the BSO approach
could effectively optimize the parameter of GRNN in the training process, which improved
the performance of GRNN on error series forecasting. However, the forecasting performance
might become worse if the parameter in GRNN were not set properly. (3) Combined with the
error correction of the GRNN optimized by BSO, the forecasting accuracy of EEMD-LSTM was
significantly improved. The accuracy improvements of data preprocess, error correction and
parameter optimization in 1–5-step wind speed predictions for case one are shown in Table 5.
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Figure 8. The error statistical estimation for one step forecast of Wind Speed Sequence I.

Table 5. The accuracy improvements of data preprocess, error correction and parameter optimization
in 1–5-step prediction for Wind Speed Sequence I.

Prediction Approaches Step MAE (m/s) MAPE (%) RMSE (m/s)

data preprocessing 1 42.05 54.26 38.97
2 38.69 42.93 31.86
3 38.80 42.04 34.61
4 27.07 31.14 25.20
5 10.75 14.86 6.31

error correction 1 12.89 12.09 4.52
2 7.50 16.51 5.89
3 56.08 54.48 54.88
4 50.34 53.52 50.95
5 65.46 66.37 62.90

parameter optimization 1 2.31 16.19 3.22
2 5.52 6.32 3.25
3 62.45 60.79 60.02
4 38.86 40.51 39.91
5 62.16 63.15 59.25

5. Additional Prediction Case

Aiming at further studying the generalization capacity of the suggested hybrid measure,
the proposed EEMD-LSTM-GRNN-BSO hybrid model was conducted on am additional case with
30-min interval: Wind Speed Sequence III. The actual data of Wind Speed Sequence III, taken
from 1 October 2018 to 10 November 2018, are shown in Figure 9. The additional experiment was
conducted with the same procedure of the aforementioned three experiments, and the forecasting
results are shown in Figure 10. Table 6 demonstrates the multi-step calculation outcomes for evaluation
indicators of all the models involved. Table 6 illustrates the multi-step percentage improvements of
the three evaluation indices for the suggested EEMD-LSTM-GRNN-BSO approach compared with
other comparison models on wind speed series III. It is observed in Tables 6 and 7 that the calculation
outcomes of the evaluation indicators on the additional prediction case showed the same basic behavior
as the the two aforementioned forecasting cases in Section 4. Again, the suggested combination

77



Energies 2019, 12, 1822

EEMD-LSTM-GRNN-BSO approach demonstrated the highest forecasting accuracy compared with
all the other models mentioned. This additional case witnessed the generalization and validity of the
suggested combination model on wind speed series with longer time interval.

Figure 9. The observation values of Wind Speed Sequence III.

Figure 10. The comparisons between the observations and the predictions for Wind Speed Sequence III.
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Table 6. The multi-step calculation results for evaluation indicators of involved approaches on Wind
Speed Sequence II.

Prediction Approaches Step MAE (m/s) MAPE (%) RMSE (m/s)

EEMD-LSTM-GRNN-BSO 1 1.1553 0.1631 1.4812
2 1.2928 0.1816 1.6554
3 1.4338 0.2024 1.8314
4 1.3277 0.1851 1.7075
5 1.4870 0.2148 1.9070

EEMD-LSTM-GRNN 1 1.3137 0.2025 1.5879
2 1.3249 0.1961 1.7026
3 2.3211 0.3382 2.8471
4 2.3920 0.3484 2.9433
5 3.2694 0.4691 3.9644

EEMD-LSTM 1 2.1615 0.3299 2.4162
2 2.2684 0.3437 2.5935
3 2.4573 0.3723 3.0113
4 3.2568 0.4846 3.8875
5 4.0145 0.5730 4.8096

LSTM-GRNN-BSO 1 1.4949 0.2099 1.9741
2 1.4677 0.2061 1.9411
3 1.4970 0.2118 1.9690
4 1.5179 0.2139 2.0147
5 1.5380 0.2327 1.9915

LSTM 1 2.0185 0.3194 2.3705
2 2.3486 0.3729 2.7340
3 2.5871 0.4105 2.9903
4 2.6391 0.4187 3.0463
5 2.5679 0.4081 2.9729

GRNN 1 2.6329 0.3909 3.3579
2 3.2111 0.4827 3.9924
3 3.7123 0.5555 4.5100
4 3.2417 0.4966 3.9374
5 3.3656 0.5102 4.0175

BP 1 1.6059 0.2268 2.0372
2 2.1095 0.3160 2.7228
3 2.1614 0.3275 2.7456
4 2.4640 0.3829 3.0138
5 2.6728 0.4167 3.2329

ARIMA 1 1.4814 0.2022 1.9437
2 2.2673 0.3117 2.9676
3 3.0135 0.4298 3.8870
4 3.7842 0.5379 4.9303
5 4.4219 0.6265 5.8160

Table 7. The multi-step percentage improvements of the suggested EEMD-LSTM-GRNN-BSO approach
in comparison with the other measures on Wind Speed Sequence III.

Prediction Approaches Step PMAE (%) PMAPE (%) PRMSE (%)

EEMD-LSTM-GRNN 1 12.06 19.43 6.72
2 2.42 7.43 2.78
3 38.23 40.15 35.67
4 44.49 46.88 41.99
5 54.52 54.21 51.90

EEMD-LSTM 1 46.55 50.55 38.70
2 43.01 47.18 36.17
3 41.65 45.64 39.18
4 59.23 61.81 56.08
5 62.96 62.51 60.35
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Table 7. Cont.

Prediction Approaches Step PMAE (%) PMAPE (%) PRMSE (%)

LSTM-GRNN-BSO 1 22.72 22.28 24.97
2 11.92 11.92 14.72
3 4.22 4.45 6.99
4 12.53 13.47 15.25
5 3.31 7.67 4.24

LSTM 1 42.76 48.92 37.52
2 44.96 51.31 39.45
3 44.58 50.69 38.75
4 49.69 55.80 43.95
5 42.09 47.36 35.85

GRNN 1 56.12 58.27 55.89
2 59.74 62.39 58.54
3 61.38 63.56 59.39
4 59.04 62.73 56.63
5 55.82 57.89 52.53

BP 1 28.06 28.08 27.29
2 38.72 42.54 39.21
3 33.66 38.20 33.30
4 46.12 51.67 43.34
5 44.36 48.44 41.01

ARIMA 1 22.02 19.33 23.80
2 42.98 41.75 44.22
3 52.42 52.90 52.88
4 64.92 65.59 65.37
5 66.37 65.71 67.21

6. Conclusions

A new combination approach integrated with signal pre-processing, parameter optimization and
the error correction strategy is proposed in this article. The combination approach consists of the EEMD
measure, the LSTM algorithm, the GRNN measure and the BSO measure. The EEMD is executed
to decomposed the original dataset into a collection of IMFs. The LSTM algorithm is applied as the
major forecasting method of each IMF. The GRNN model is used as the secondary forecasting method
to forecast error sequences for each IMF. The BSO algorithm is executed to optimize the parameter
of GRNN during the training procedure. Aiming at validating the effectiveness and generalization
of the suggested combination EEMD-LSTM-GRNN-BSO approach, seven other forecasting methods
were conducted on three different datasets as comparisons: the ARIMA measure, the BP measure, the
GRNN measure, the LSTM measure, the LSTM-GRNN-BSO measure, the EEMD-LSTM measure, and
the EEMD-LSTM-GRNN measure. According to the calculation outcomes, the following conclusions
are drawn: (1) the EEMD can contribute to the promotion of the wind speed prediction capacity and
robustness of the LSTM approach effectively; (2) the BSO based parameter optimization method is
effective in finding the optimal parameter for GRNN and improving the forecasting performance for
the EEMD-LSTM-GRNN model; (3) the error correction based on the optimized GRNN promotes
the prediction ability of the EEMD-LSTM method obviously; and (4) in comparison with all other
measures involved, the suggested EEMD-LSTM-GRNN-BSO measure is certified to demonstrate the
best prediction ability on wind speed forecasting in short period.
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Abstract: Precise and steady substation project cost forecasting is of great significance to guarantee the
economic construction and valid administration of electric power engineering. This paper develops a
novel hybrid approach for cost forecasting based on a data inconsistency rate (DIR), a modified fruit fly
optimization algorithm (MFOA) and a deep convolutional neural network (DCNN). Firstly, the DIR
integrated with the MFOA is adopted for input feature selection. Simultaneously, the MFOA is
utilized to realize parameter optimization in the DCNN. The effectiveness of the MFOA–DIR–DCNN
has been validated by a case study that selects 128 substation projects in different regions for training
and testing. The modeling results demonstrate that this established approach is better than the
contrast methods with regard to forecasting accuracy and robustness. Thus, the developed technique
is feasible for the cost prediction of substation projects in various voltage levels.

Keywords: substation project cost forecasting model; feature selection; data inconsistency rate;
modified fruit fly optimization algorithm; deep convolutional neural network

1. Introduction

The inadequate management and supervision of substation projects tend to bring about high cost,
which has critical effects on the economy and sustainability of power engineering. Thus, cost prediction
is of great importance for expense saving [1]. However, the comparable projects are hard to collect due
to limited engineering in the same period as well as various influential factors such as the overall plan
of the power grid, total capacity, terrain features, design and construction level, and local economy [2].
Along with the less sample data, the difficulty of cost forecasting for substation projects has been
increased. Therefore, it is of great significance for the sustainability of electric power engineering
investment to study and construct the substation cost forecasting model and accurately forecast the
substation cost.

Nowadays, many scholars have published their momentous work to handle the cost forecasting
of engineering, but few studies have focused on substation projects. The approaches in regard to
engineering cost prediction are primarily separated into two kinds—traditional prediction methods
and intelligent algorithms. Traditional forecasting techniques primarily consist of time series [3],
grey prediction [4], regression analysis [5] and so on. Reference [3] designed a time series prediction
model for engineering cost based on bills of quantities and evaluation. The results indicated that this
proposed model controlled the error range within 5%. Reference [4] put forward an improved grey
forecasting method optimized by a time response function to predict main construction cost indicators
in power projects, where the constant C was determined through the minimum Euclidean distance
of an original series and constraints of simulation values. In reference [6], a forecasting technique
grounded on multiple structure integral linear regression was established in line with the characteristics
of engineering cost composition. Principal component analysis was introduced here to address the
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multicollinearity. In spite of their mature theories and simple calculations, the defects of these methods,
including narrow application scope and unideal forecasting accuracy, cannot be ignored.

With the burgeoning development of artificial intelligence, the application of intelligent algorithms
in the cost prediction of substation projects is of great significance. This kind of model is chiefly
composed of artificial neural networks (ANNs) and a support vector machine (SVM) [6], wherein
some ANNs are applicable to forecasting fields including a back propagation neural network (BPNN),
an extreme learning machine (ELM), a radial basis function neural network (RBFNN), and a general
regression neural network (GRNN) [7]. Reference [8] executed a three-layer BPNN to forecast the
cost of a transmission line project where the related influential factors were taken as the input.
The model was validated on the foundation of actual data. Reference [9] put up with an ELM-based
approach for medium and long term electricity demand prediction with the target of a low carbon
economy. Reference [10] evaluated the effectiveness of a BPNN and a RBFNN for engineering cost
prediction. The case study indicated that the RBFNN had a better performance in terms of forecasting
accuracy. In literature [11], a hybrid model which combined a GRNN with a fruit fly optimization
algorithm (FOA) was utilized in wind speed prediction, and good prediction results were obtained.
Nevertheless, the defects of slow convergence and getting stuck in local best in a BPNN brought
about a decrease of forecasting accuracy. To this end, an SVM was applied to refrain from network
structure selection and mitigate the premature convergence to local optimization in engineering
cost prediction [12]. Reference [13] investigated an SVM integrated with adaptive particle swarm
optimization (APSO) to forecast the cost of a practical substation project. In reference [14], a cuckoo
search algorithm (CS) was introduced to optimize the parameters in an SVM. The results showed that
the forecasting precision was obviously enhanced. Compared with a BPNN, the application of an SVM
can achieve better performance in cost prediction, but the transformation that converts the solution
into a quadratic programming problem by the use of a kernel function in an SVM resulted in the
decrease of efficiency and precision [15]. The aforementioned approaches belong to shallow learning
algorithms, whose ability to cope with complex function problems is limited. In addition, these models
cannot fully reflect information features in virtue of prior knowledge. Hence, some scholars tried to
develop a deep neural network (DNN) for prediction [16].

The real powerful computing capability of neural networks has been brought into play since the
creation of a DNN with “multi-layer structure and learning ability layer by layer” by Professor Hinton,
University of Toronto in Canada in 2006. The DNN has aroused great concern in both academia and
industry and has become a hot tool for data analysis in the big data era [17]. Additionally, this technique
has made breakthroughs in the fields of signal recognition, natural language processing, and so on;
it has also kept updating all kinds of records with amazing speed in diverse application areas [18].
In 2012, Krizhevsky et al. [19] put forward the concept of depth into traditional a convolutional neural
network (CNN) and proposed a deep convolutional neural network (DCNN). The DCNN, as the first
approach that successfully trains multi-layer networks, has been widely used owing to self-study of
data characteristics [20]. Thereinto, the CNN model realizes the optimization of a neural network
structure by self-convolution for local features, weight sharing, subsampling and multiple perception
layers. Additionally, the CNN technique not only reduces the number of neurons and weights but
also uses pooling operation to make input features invariable in displacement, scaling and distortion,
which contributes to the improvement of accuracy and robustness for network training [21]. The DCNN
has been employed in the area of prediction [22–25]. For instance, an original hybrid model on the basis
of the DCNN was built to forecast the deterministic photovoltaic power in reference [22], where the
DCNN was applied to nonlinear feature and invariant structure extraction presented in every frequency.
The computing results indicate that the novel models can improve forecasting precision with respect to
seasons along with various prediction horizons in contrast with conventional forecasting approaches.
In reference [24], the DCNN integrated with a concretely ordered feature came up for the intraday
direction forecasting of Borsa Istanbul 100 stocks. The results displayed that this established classifier
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is superior to logistic regression and the CNN in use of randomly ordered features. Thus, for the
purpose of training time and model complexity reduction, feature selection models can be employed.

Considering the influence of parameter selection on prediction performance of the DCNN,
it is indispensable to select a proper intelligent algorithm to optimize parameters [26]. The fruit
fly optimization algorithm (FOA), proposed by Dr. Pan Wenchao in June 2011, is a novel global
optimization algorithm on the foundation of swarm intelligence [27]. This technique is derived from
the simulation of foraging behaviors and is similar to the ant colony algorithm [28] and particle
swarm optimization [29]. Due to its simple structure, few parameters, and easy realization, scholars at
home and abroad have focused on this method and applied it to forecasting [30–35]. For example,
reference [31] combined the improved FOA with a wavelet least square support vector machine.
The case studies verified that the proposed method presents strong validity and feasibility in mid–long
term power load prediction compared with other alternative approaches. Reference [33] studied
monthly electricity consumption forecasting on the basis of a hybrid model that integrates the
support vector regression method with an FOA with a seasonal index adjustment. The experimental
results demonstrated this approach can be effectively utilized in the field of electricity consumption
forecasting. A novel hybrid forecasting model was constructed in reference [35] for annual electric
load prediction; here, an FOA was applied to automatically determine the appropriate parameter
values in the proposed approach. In reference [36], the authors applied a modified firefly algorithm
and a support vector machine to predict substation engineering cost. The case study of substation
engineering in Guangdong Province proved that the proposed model has a higher forecasting accuracy
and effectiveness. Remarkably, the potential weaknesses of premature convergence and easily trapping
into local optimum make a certain restriction in the performance of an FOA. Thus, quantum behavior
was utilized in this paper to modify the basic FOA. This improved approach, namely the MFOA,
was exploited to select features with a data inconsistency rate (DIR) and optimize parameters for the
DCNN model.

In view of the various influential factors of substation project cost, it is necessary to identify and
select proper features as the input to avoid data redundancy and increase computation efficiency [37].
The filter method gives a score to each feature by statistical methods, sorts the features by score,
and then selects the subset with the highest score. This method is only for each feature to be considered
independently, without considering the feature, dependence or correlation. Compared with the filter
method, the wrapper method takes the correlation between features into account by considering the
effect of the combination of features on the performance of the model. It compares the differences
between different combinations and selects the best combination of performance. The DIR model
determines complete characteristic selection by dividing the feature set and calculating the minimum
inconsistency of the subsets, as presented in reference [38]. The authors in reference [39] thought
that the key sequential of features could be identified by selecting the minimum inconsistency rate,
and the optimized feature subset could also be efficiently achieved based on the sequence forward
search strategy. The experiments showed that the proposed data classification scheme obtains good
performance. In reference [40], a discrete wavelet transform in combination with an inconsistency
rate model was designed to achieve optimal feature selection. The experiment verified that this
approach contributes to the reduction of redundancy in input vectors and outperforms other models
in short-term power load prediction. It can be seen the DIR takes advantage of data inconsistency to
eliminate redundant features. Furthermore, it allows for a correlation such that the selected optimal
characteristics are able to cover all data information. As a result, the DIR method is introduced for
feature selection in this paper.

Based on the aforementioned studies, this paper develops a novel hybrid approach for cost
forecasting based on the DIR, the DCNN and the MFOA. Firstly, the DIR integrated with the MFOA
is adopted for input feature selection. Simultaneously, the MFOA is utilized to realize parameter
optimization in the DCNN. Thus, the proposed method can be applied to cost forecasting of substation
projects on the foundation of the optimized input subset as well as the best parameters. The rest of the
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paper is organized as follows: Section 2 briefly introduces the established hybrid model including the
MFOA, the DIR, the DCNN, and the concrete structure. Section 3 verifies the developed technique via
a case study. Section 4 draws conclusions.

2. Methodology

2.1. Modified FOA

2.1.1. FOA

The FOA is a new optimization approach that simulates the foraging behaviors of a fruit fly
swarm [27,41]. Their sensitive smell and sharp vision contribute to the discovery of food sources over
40 km and correct flight to the location [42,43]. The food searching procedure of a fruit fly swarm can
be seen from Figure 1.

Fruit fly group
X,Y)

Fruit fly1
X1,Y1)

Fruit fly2
X2,Y2)

Fruit fly3
X3,Y3)

Dist2

Dist1

Dist3

Food

Iterative
evolution

path

X_axis

Y_axis

Figure 1. Food searching procedure of a fruit fly swarm.

According to the food searching features, the following is the specific description of the FOA:

(1) Initialize the location of the fruit fly swarm according to Equation (1).

InitX_axis; InitY_axis (1)

(2) For an individual fruit fly, set the random direction and distance for food finding, as shown in
Equations (2) and (3):

Xi = InitX_axis + random() (2)

Yi = InitY_axis + random() (3)

(3) Estimate the distance between the origin point and the smell concentration of each individual
fruit fly Si as follows:

Disti =
√

X2
i + Y2

i (4)

Si = 1/Disti (5)

(4) Take the value of smell concentration into its judgement function; then, in light of Equation (6),
obtain the smell concentration Smelli at each location

Smelli = Function(Si) (6)
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(5) Find out the optimal smell concentration among the fruit fly swarm:

[bestSmell bestIndex] = max[Smelli] (7)

(6) Keep a record of the optimal smell concentration as well as its x, y coordinates. Afterwards, the
fruit flies can fly to the destination by the use of vision.

Smellbest = bestSmell, X_axis = X(bestIndex), Y_axis = Y(bestIndex) (8)

(7) The iterative optimization is carried out by a repeat of Step (2) to Step (5). At each iteration,
determine whether the smell concentration shows an advantage over the former one. If so, follow
Step (6).

2.1.2. MFOA

(1) The development of quantum mechanics has greatly promoted the application of quantum
computation in diverse fields. In quantum computation, a quantum bit is utilized to represent
quantum state, and the 0 and 1 binary method is adopted to express quantum information.
Here, the basic quantum state consists of the “0” and “1” states, and the state is able to achieve
random linear superposition between “0” and “1.” Therefore, these two states are allowed to exist
simultaneously, which issues a large challenge to the classic bit expression approach in classical
mechanics. The superposition of quantum state is described as Equation (9)∣∣∣ψ >= α

∣∣∣0 > +β|1 > , |α|2 +
∣∣∣β∣∣∣2 = 1 (9)

where |0 > and |1 > indicate two kinds of quantum states, α, and β is the probability amplitude.

The possibility at quantum state of |0 > and |1 > are expressed by |α|2 and
∣∣∣β∣∣∣2, respectively.

The update can be achieved through quantum rotating gate in the MFOA, and the adjustment is
expressed as Equation (10): (

α′i
β′i

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
αi
βi

)
(10)

Here, suppose U =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
. From there, U and θ represent the quantum rotating

gate and the angle, respectively. θ = arctan(α/β).
(2) Initialize the location of fruit fly. Additionally, take advantage of the probability amplitude of

the quantum bit to code the current location of the individual fruit fly, as shown in Equation (11):

Pi =

[
cos(θi1) cos(θi2) · · · cos(θin)

sin(θi1) sin(θi2) · · · sin(θin)

]
(11)

where θi j = 2πrand(); rand() is equivalent to a random number between 0 and 1; i = 1, 2, · · · , m;
j = 1, 2, · · · , n; m represents the number of fruit flies; and n is the quantity of space.

As a result, the homologous probability amplitudes of the quantum state |0 > and |1 > are
presented in Equations (12) and (13).

Pic = (cos(θi1), cos(θi2) · · · cos(θin)) (12)

Pis = (sin(θi1), sin(θi2) · · · sin(θin)) (13)

(3) In the MFOA, the search is implemented in the actual space [a, b], while the position probability
amplitude is set in [0, 1]. Thus, it is indispensable to decode the probability amplitude into [a, b].
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Suppose
[
α

j
i , β

j
i

]T
represents the jth quantum bit of the individual fruit fly Pi; then, the related solution

space is converted in accordance with Equation (14):

Xj
ic =

1
2
[bi(1 + α

j
i ) + ai(1− α j

i )] i f rand() < Pid (14)

Xj
is =

1
2
[bi(1 + β

j
i ) + ai(1− β j

i )] i f rand() ≥ Pid (15)

where rand() is the random value in the range of [0, 1], Xj
ic and Xj

is partly equal the actual value of the
parameter in jth dimensional location when the quantum state of ith individual reaches |0 > or |1 > . ai
and bi represent the upper and lower limit, respectively.

Suppose the search of the MFOA is conducted in a two-dimensional space, namely j = 1, 2.
InitX_axis and InitY_axis represent the initialization of the location. The solution space is described in
Equations (16)–(19).

i f rand() < Pid:

Xi = X_axis +
1
2
[bi(1 + α1

i ) + ai(1− α1
i )] (16)

Yi = Y_axis +
1
2
[bi(1 + α2

i ) + ai(1− α2
i )] (17)

i f rand() ≥ Pid:

Xi = X_axis +
1
2
[bi(1 + β2

i ) + ai(1− β2
i )] (18)

Yi = Y_axis +
1
2
[bi(1 + β2

i ) + ai(1− β2
i )] (19)

(4) The distance Dist between the origin and location is estimated, and the judgement value

of smell concentration S(i), namely the reciprocal of distance, can be obtained—Disti =
√

X2
i + Y2

i ,
Si = 1/Disti.

(5) In accordance with Equation (20), the smell concentration Smelli of each fruit fly location
is acquired:

[bestSmell bestindex] = min(Smelli) (20)

(6) A quantum rotating gate is employed to update the individual location, as shown in
Equation (21): ⎡⎢⎢⎢⎢⎢⎣ αk+1

jd

βk+1
jd

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ cosθk+1

jd − sinθk+1
jd

sinθk+1
jd cosθk+1

jd

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ αk

jd
βk

jd

⎤⎥⎥⎥⎥⎥⎦ (21)

where αk+1
jd and βk+1

jd represent the probability amplitude of jth fruit fly at k + 1th iteration in

d-dimensional space and θk+1
jd equals the rotating angle, as presented in Equation(22):

θk+1
jd = s(αk

jd, βk
jd)Δθ

k+1
jd (22)

where s(αk
jd, βk

jd) and Δθk+1
jd are equivalent to the direction and increment of the rotating

angle, respectively.
Here, the updated αk+1

jd and βk+1
jd need to be converted to solution space to conform with the

operation mechanism.

Xd
jc =

1
2
[bj(1 + αk+1

jd ) + aj(1− αk+1
jd )] i f rand() < Pid (23)

Xd
js =

1
2
[bj(1 + βk+1

jd ) + aj(1− βk+1
jd )] i f rand() ≥ Pid (24)

88



Energies 2019, 12, 3043

i f rand() < Pid, d = 1

Xj = X_axis +
1
2
[bj(1 + αk+1

jd ) + aj(1− αk+1
jd )] (25)

Yj = Y_axis +
1
2
[bj(1 + αk+1

jd ) + ai(1− αk+1
jd )] (26)

i f rand() ≥ Pid, d = 2

Xj = X_axis +
1
2
[bj(1 + βk+1

jd ) + aj(1− βk+1
jd )] (27)

Yj = Y_axis +
1
2
[bj(1 + βk+1

jd ) + aj(1− βk+1
jd )] (28)

(7) The loss of population diversity during searching leads to a premature convergence, together
with an easy trapping into a local optimum. Thus, individual mutation is introduced in the MFOA to
address this problem, as presented in Equation (29):[

01
10

][
cos(θi j)

sin(θi j)

]
=

[
sin(θi j)

cos(θi j)

]
=

[
cos(π2 − θi j)

sin(π2 − θi j)

]
(29)

where Pm means the mutation probability and rand() equals a random number in [0, 1]. If rand() < Pm,
carry out mutation and make a change for the probability amplitude in the quantum bit. Thus,
the mutated individual is successfully converted into the solution space.

(8) Keep a record of the individual with the optimal concentration value as well as the
homologous coordinates.

X_axis = X(bestindex); Y_axis = Y(bestindex) (30)

Smellbest = bestSmell (31)

(9) Repeat Steps (4)–(7). If the smell concentration shows an advantage over the previous one,
go to Step (8).

2.2. DIR

In the light of various characteristics of the substation project cost, it is of great necessity to
select the most correlated features as the input to refrain from information redundancy and increase
cost forecasting precision. The discrete features of input can be accurately displayed via data
inconsistency [39]. Distinct features are divided into diverse patterns with corresponding frequency.
The value of the DIR is able to discriminate the classification capability of data categories. The value of
the DIR is positively correlated with the assortment ability of the feature vector.

Suppose there exist g features in substation project cost (e.g., main transformer capacity, area,
price), expressed as G1, G2, . . . , Gg. L represents the subset of the feature set Γ. According to the level
of substation project cost, set the standard M with c classifications and N as data instances. zji and λi

equal the values of feature and classification M, respectively. Data instances are represented by
[
zj,λi

]
,

zj = [zj1, zj2, zj3, · · · , zjg]. According to Equation (32), the DIR can be derived by

τ =

p∑
k=1

(
c∑

l=1
fkl −max

l
{ fkl}

)
N

(32)

where fkl equals the number of data instances that belongs to the feature subset of xk and xk implies that
the number of feature division interval patterns existing in the data set equals p (k = 1, 2, . . . , p; p ≤ N).
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The steps of feature selection by the DIR are shown as follows:

(1) Initialize the best subset as Γ = {}, namely an empty set.
(2) Estimate the DIR of G1, G2, . . . , Gg that are made up of Γ subset with each residual feature.
(3) Select the feature with minimum inconsistency rate Gi as the optimal one. Then, update it in the

light of Γ = {Γ, Gi}.
(4) Make a list of the inconsistency rates of the feature subsets. After that, sort them in ascending order.
(5) Choose the feature subset L with fewer characteristics. If τL ≈ τΓ or τL′/τL is the minimum ratio

of all the adjacent feature subsets, L is able to be screened as the optimal one, where L′ represents
the adjacent previous subset.

Through the estimation of the inconsistency rate, the redundant features can be effectively
eliminated. Meanwhile, correlation can be considered, which guarantees the selected features on
behalf of all information.

2.3. DCNN

The DCNN is a kind of ANN with deep learning capability whose main characteristics are the
local connection and weight sharing of neurons in the same layer [44]. Multiple feature extraction
layers and the fully connected one are typically included in the network. Each feature extraction layer
consists of two units, that is a convolutional layer and a subsampling one. The framework of the
DCNN is shown in Figure 2. In the DCNN, the neural nodes between two layers are no longer fully
connected. Instead, layer spatial correlation is adopted to link the neuron nodes of each layer merely
to the ones in the adjacent upper layer. Hence, local connection is completed, and the parameter size of
the network is greatly reduced.

Input
C1 S1 C2 S2 Cn Sn

Output

Figure 2. The typical structure of a deep convolutional neural network (DCNN).

The typical CNN is made up of four layers, namely the input layer, the convolutional layer,
the subsampling layer and the full connection layer. In the convolutional layer, the convolutional
kernel is used for feature extraction, and the corresponding output can be obtained by a weighted
calculation through the activation function, as expressed in Equation (33)

xl
j = f

⎛⎜⎜⎜⎜⎜⎜⎝ k∑
j=m

xl−1
j wl

j + θl
j

⎞⎟⎟⎟⎟⎟⎟⎠ ( j = 1, 2, . . . , n; 0 < m ≤ k ≤ n) (33)

where f (I) = 1
1+e−I , I =

k∑
j=m

xl−1
j wl

j + bl
j( j = 1, 2, . . . , n; 0 < m ≤ k ≤ n), xl

j and xl−1
j equal the output in

Layer 1 and the input in Layer l− 1, respectively. j represents the local connection from the range of m
to k; wl

j and θl
j equal the weight and bias, respectively.
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The subsampling process is implemented on the features of the convolutional layer for
dimension-reduction. The characteristics are extracted from each n × n sampling pool by “pool
average” or “pool maximum,” as described in Equation (34):

xl
j = g(xl−1

j ) + θl
j (34)

where g(∼) is the function that completes the selection of the average or maximum value. The operation
of pooling is conducive to the complexity reduction of the convolutional layer and the avoidance of over
fitting. In addition, it ameliorates the fault tolerance ability of feature vectors for data-characteristic
micro deformation, and it enhances computational performance and robustness.

Finally, the attained data are linked to the fully connected layer, as expressed in Equation (35):

xl = f (Il), Il = Wlxl−1 + θl (35)

where Wl equals the weight from Layer l− 1 to Layer l and xl is the output.
In the aforementioned computation, every convolutional kernel acts on all the input through slide.

Multiple sets of output data are derived from the effects of diverse convolutional kernels in which the
same kernel corresponds to the uniform weight. Conflate the output of diverse groups. Afterwards,
transfer them to the subsampling layer. The range of values is further set, and the average or maximum
value can be treated as the specific one in the scope through slide. In the end, the data are integrated to
achieve dimension reduction, and the results are output through the full connection layer.

The application of the DCNN approach for cost prediction presents two merits: (i) The existence
of deformed data is permitted, and (ii) the quantity of parameters decreases by local connection
and weight sharing, so the efficiency and accuracy of cost prediction can be significantly improved.
Nevertheless, in substation project cost prediction, the constancy of the forecasting results cannot be
assured in virtue of the subjective determination of parameters. Thus, the MFOA is introduced here to
optimize the parameters in the DCNN.

2.4. Approach of MFOA–DIR–DCNN

The framework of the established technique MFOA–DIR–DCNN for substation project cost
prediction is displayed in Figure 3. The specific procedures of this novel method can be explained at
length as follows:

(1) Determine the initial candidate features of substation project cost. In the DIR, initialize the
optimal subset as an empty set Γ = {}.

(2) Complete parameter initialization in the MFOA. By trying a combination of multiple parameter
settings, the best parameter initialization supposes that the maximum iteration number equals
200; the scope of the fruit fly position and random flight distance are set as [0, 10] and [−1,
1], respectively.

(3) Calculate inconsistency. Compute the inconsistency of G1, G2, . . . , Gg that is made up of Γ subsets
with each residual feature. The feature with minimum inconsistency rate Gi is selected as the best
one, and the updated optimal feature is set as Γ = {Γ, Gi}.

(4) Derive the optimal feature subset along with the best values of parameters in the DCNN.
The feature subset at current iteration is brought into the DCNN, and both prediction accuracy
r( j) and fitness value Fitness( j) can be calculated for this training process. Then, determine
whether each iteration satisfies the termination requirements (reach the target error value or the
maximum number of iterations). If not, reinitialize the feature subset and repeat the above steps
until the conditions are met. It is noteworthy that the parameters in the DCNN also need to be
optimized, and the initial values of weight w and threshold θ are randomly assigned. Therefore,
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a fitness function based on both forecasting precision and feature selection quantity is set up,
as shown in Equation (36):

Fitness( j) = −(a + r( j) +
b

Num f eature( j)
) (36)

where Num f eature( j) represents the quantity of selected best characteristics in each iteration,
and a and b equal the constants in [0, 1].

(5) Forecast via the DCNN. When the iterative number reaches the maximum, the estimation stops.
Here, the optimal feature subset, the best values of w, and θ are taken into the DCNN model for
substation project cost forecasting.

Start

Candidate features

Substation cost data

Initialize the optimal subset as
an empty set ={ }

Calculate G1, G2, , Gg that are made
up of subset with each residual

feature

Select the feature with minimum
inconsistency rate Gi as the best one and
update optimal feature set as ={ , Gi}

Make a list of the inconsistency rates of
the feature subsets and arrange them

in the ascending order

Select the feature subset L with fewer
characteristics

Fruit fly position initialization

Solution space conversion

CalculateDisti and gain the smell
concentration discriminant value Si

Take Si into the smell concentration
discriminant function, and obtain the smell
concentration Smelli for fruit fly individual

position.

Individual position update

Individual mutation operation

Obtain better
individual?

Retain the individual with the best smell
concentration value and the corresponding

coordinate values

Training data

Test data

Obtain the optimized parameter
in DCNN

DCNN

Substation cost forecasting

End

Obtain the final input of DCNN

DIR

MFOA

DCNN

Yes

No

Figure 3. The flow chart of the modified fruit fly optimization algorithm– data inconsistency rate– deep
convolutional neural network (MFOA–DIR–DCNN).
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3. Case Study

3.1. Data Processing

This paper selected the cost data of 128 substation projects in various voltage levels and in different
areas from 2015 to 2018, as shown in Table 1; the statistics of the substation features are shown in
Table A1. In this paper, we selected the cost and corresponding influential factors of the first 66 projects
as a training set. Correspondingly, the remaining data were employed as a testing set.

Table 1. Original cost data of projects (Unit: CNY/kV·A).

Serial
Number

Cost
Serial

Number
Cost

Serial
Number

Cost
Serial

Number
Cost

1 358.3 33 980.6 65 336.8 97 317.1
2 324.2 34 286.8 66 339.5 98 308.0
3 368.9 35 279.5 67 342.1 99 298.9
4 370.2 36 308.6 68 344.7 100 289.9
5 450.1 37 312.8 69 244.2 101 280.8
6 266.5 38 315.9 70 346.8 102 271.7
7 301.6 39 364.2 71 349.5 103 262.6
8 325.8 40 361.3 72 352.1 104 253.5
9 310.3 41 375.6 73 394.7 105 244.5
10 405.6 42 389.9 74 405.6 106 235.4
11 392.5 43 372.5 75 428.2 107 326.3
12 448.2 44 383.9 76 443.0 108 217.2
13 305.8 45 295.6 77 459.8 109 208.1
14 356.9 46 270.2 78 493.3 110 199.1
15 1058.6 47 260.8 79 289.4 111 390.0
16 501.2 48 240.7 80 293.7 112 280.9
17 337.1 49 223.3 81 297.9 113 285.1
18 304.5 50 239.3 82 402.2 114 476.5
19 291.8 51 381.7 83 491.5 115 449.3
20 279.2 52 406.9 84 491.3 116 470.4
21 299.3 53 315.6 85 212.6 117 491.8
22 285.6 54 285.5 86 452.6 118 306.4
23 305.5 55 252.5 87 353.7 119 310.7
24 208.6 56 214.5 88 254.8 120 274.9
25 356.2 57 325.8 89 155.9 121 319.2
26 401.5 58 328.4 90 375.9 122 283.4
27 378.6 59 311.1 91 375.9 123 369.5
28 369.5 60 333.7 92 397.0 124 373.8
29 253.8 61 336.3 93 418.1 125 398.6
30 300.5 62 309.0 94 344.3 126 244.8
31 272.7 63 341.6 95 335.3 127 256.9
32 423.4 64 334.2 96 326.2 128 472.9

Here, the construction types of substation projects can be divided into three categories:
New substation, extended main transformer, and extended interval engineering are valued at 1,
2 and 3, respectively. The substation types were decomposed into three types where the indoor,
the semi-indoor, and the outdoor were set as 1, 2 and 3, respectively. The landforms were parted into
eight kinds, namely hillock, hillside field, flat, plain, paddy field, rainfed cropland, mountainous region
and depression—these were valued at {1, 2, 3, 4, 5, 6, 7, 8}. In addition, the local GDP was employed
to represent the economic development level of the construction area. The proportion of bachelor
degree or above in the staff stood for the technical level of the designers. The difference between actual
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progress and the schedule stipulated in the contract was utilized on behalf of construction progress
level. The data needed to be normalized with Equation (37).

Y =
{
yi
}
=

xi − xmin

xmax − xmin
i = 1, 2, 3, . . . , n (37)

where xi and yi represent the actual value and normalized value, respectively, while xmin and xmax

equal the minimum and maximum of the sample data, respectively.

3.2. Model Performance Evaluation

Four commonly adopted error criteria are presented in this paper to measure the forecasting
precision of substation project cost obtained by all involved approaches.

(1) Relative error (RE)

RE =
xi − x̂i

xi
× 100% (38)

(2) Root mean square error (RMSE)

RMSE =

√√
1
n

n∑
i=1

(
xi − x̂i

xi
)

2
(39)

(3) Mean absolute percentage error (MAPE)

MAPE =
1
n

n∑
i=1

∣∣∣(xi − x̂i)/xi
∣∣∣ · 100% (40)

(4) Average absolute error (AAE)

AAE =
1
n
(

n∑
i=1

|xi − x̂i|)/( 1
n

n∑
i=1

xi) (41)

where n is the number of testing samples, while x and x̂ represent the actual value and predictive
value of substation project cost, respectively. The aforementioned indicators are negatively
correlated with forecasting precision.

3.3. Feature Selection

The input of the forecasting techniques was determined on the basis of optimal feature subset
selection by the DIR. In reference [45], the authors divided the substation project cost into two main
types: Primary and secondary production cost and individual project costs associated with site, totaling
more than 20 factors. In reference [46], authors selected more than 26 variables including the area and
main transformer capacity as the influencing factors of substation cost. Based on the research of the
above references, this paper screened 33 variables as the main influencing factors of substation cost,
including area, construction type, voltage level of substation, main transformer capacity, transmission
line circuits in the low and high voltage sides, topography, schedule, substation type, the number
of transformers, the economic development level of the construction area, inflation rate, the price
and number of the circuit breaker in the high voltage side, the quantity of low-voltage capacitors,
the price of single main transformer, high-voltage fuse, current transformer, power capacitor, reactor,
electric buses, arrester, measuring instrument, relay protection device, signal system, automatic device,
the expense of site leveling and foundation treatment, the technical level of the designers, the number
of accidents, engineering deviation rate, construction progress level, rainy days, and snowy days.
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The program in this paper was run in MATLAB R2018b under Intel Core i5-6300U, 4 G and a Windows
10 system.

The iterative process of feature extraction is displayed in Figure 4, where the accuracy curve and
the fitness curve show the forecasting precision of the DCNN and fitness values in different iterations,
respectively, while option number indicates the quantity of best characteristics derived from the DIR
model, and feature reduction refers to the number of characteristics eliminated by the MFOA.
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Figure 4. Convergence curves for feature selection. Note: (a) represents the fitness value, (b) represents
the forecasting accuracy, (c) represents the reduced number of candidate feature, and (d) represents the
selected number of optimization feature.

As we can see, the MFOA converged at the 39th iteration, and the homologous optimal fitness value
and prediction accuracy equaled −0.91% and 98.9%, respectively, This indicates that the fitting ability of
the DCNN can be enhanced, and the forecasting precision is able to reach the highest through learning
and training. Furthermore, the quantity of chosen characteristics was inclined to be steady when
the MFOA ran to the 51th time. Ultimately, the final selected characteristics embodied construction
type, voltage level, main transformer capacity, substation type, the number of transformers, the price
of single main transformer, and the area by eliminating 26 redundant features from 33 candidates.
The importance of these seven features derived from the DIR was ordered as (from important to
unimportant): The price of single main transformer, the number of transformers, main transformer
capacity, construction type, area, substation type, and voltage level.

3.4. Results and Discussion

After the accomplishment of feature selection, the input vector was brought into the DCNN model
for training and testing. Here, the wavelet kernel function [47], one of the most widely used kernel
functions, was applied, and the parameters optimized by MFOA equaled: γ = 43.0126, σ = 19.0382.

For the purpose of verifying the performance of the established approach, four other methods
incorporating the MFOA–DCNN, the DCNN, an SVM and the BPNN were used for comparison. In the
BPNN, the topology was set as 9-7-1. Tansig and purelin were exploited as the transfer function in
the hidden layer and the transfer function in the output layer, respectively. In this paper, we set the
maximum number of convergence as 200, while the learning rate and the error equaled 0.1 and 0.0001,
respectively. The initial values of weights and thresholds were decided by their own training. In the
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SVM, the penalty parameter c and kernel parameter σ were valued at 10.276 and 0.0013, respectively,
and ε in the loss function equaled 2.4375. In the DCNN, γ = 15, σ = 5. Table 2 lists the prediction
results of the substation project cost achieved by five different models.

Table 2. Actual and predicted values of the testing sample (Unit: CNY/kV·A).

Serial
Number

Actual
Value

BPNN SVM DCNN
MFOA–
DCNN

MFOA–DIR–
DCNN

97 317.1 335.3 298.3 324.3 326.7 308.0
98 308.0 292.9 322.4 318.8 298.7 298.8
99 298.9 316.3 283.1 310.5 308.7 305.9
100 289.9 306.6 273.4 278.8 298.9 297.2
101 280.8 265.2 273.0 270.9 290.1 286.5
102 271.7 288.0 284.7 266.1 281.1 278.0
103 262.6 281.0 271.5 253.2 257.3 269.0
104 253.5 270.9 259.8 257.5 261.9 251.6
105 244.5 261.1 230.3 234.7 253.5 240.9
106 235.4 248.7 244.8 229.6 243.1 230.2
107 326.3 312.0 334.1 314.3 337.9 330.8
108 217.2 232.5 222.4 225.9 203.9 222.5
109 208.1 222.8 199.6 216.0 215.1 203.8
110 199.1 212.8 191.0 191.2 205.4 194.7
111 390.0 412.0 372.3 403.8 383.8 393.9
112 280.9 297.5 273.8 290.7 271.2 273.3
113 285.1 300.8 271.1 295.3 294.6 293.1
114 476.5 504.8 495.9 459.6 492.4 490.0
115 449.3 424.1 469.9 456.0 456.9 462.7
116 470.4 479.0 493.3 453.7 484.6 468.8
117 491.8 465.7 466.3 511.1 507.0 503.6
118 306.4 328.1 292.3 317.4 316.8 298.0
119 310.7 328.0 323.9 298.3 300.6 309.1
120 274.9 294.0 286.4 285.3 277.1 275.6
121 319.2 340.2 305.5 323.8 308.8 309.7
122 283.4 303.3 271.2 294.7 292.6 291.4
123 369.5 396.0 352.3 383.5 381.0 373.7
124 373.8 399.2 351.6 382.3 385.1 363.1
125 398.6 426.2 415.1 413.6 401.8 399.5
126 244.8 260.9 234.3 248.3 236.9 237.5
127 256.9 274.9 245.8 267.2 265.2 264.2
128 472.9 506.9 451.0 490.8 487.6 478.4

For a more intuitive analysis, Figure 5 presents the predictive values and Figure 6 exhibits the values
of RE derived from the forecasting techniques. The forecasting error range of the MFOA–DIR–DCNN
was within [−3%, 3%], while the number of error points of the MFOA–DCNN and the DCNN in this
scope was 5 and 3 (that is, No.102, RE = −2.07%; No.121, RE = 1.44%; No.124, RE = 2.28%), respectively.
Among them, the number of error points obtained from the MFOA–DIR–DCNN controlled in [−1%,
1%] equaled 5 (namely No.104, RE = −0.77%; No.116, RE = −0.35%; No.119, RE = −0.50%; No.120,
RE= 0.23%; No.125, RE= 0.23%), while the corresponding number of the MFOA–DCNN and the DCNN
was 2 (No.120, RE = 0.79%; No.125, RE = −0.82%) and 0, respectively. It can be seen the error points of
the SVM mostly ranged in [−6%, −4%] and [4%, 6%], while there existed a large fluctuation in the errors
of the BPNN, mainly in [−7%, −5%] and [5%, 7%]. In addition, the minimum absolute values of RE for
the MFOA–DIR–DCNN, the MFOA–DCNN, the DCNN, the SVM and the BPNN were 0.23%, 0.79%,
1.44%, −2.52%, 2.83%, respectively, and the maximum absolute values of RE correspondingly equaled
2.99%, 6.12%, 6.51%, −6.94% and 7.17%, respectively. In this respect, these models can be sorted by the
forecasting accuracy from the superior to the inferior: the MFOA–DIR–DCNN, the MFOA–DCNN,
the DCNN, the SVM and the BPNN. This demonstrates that the application of the MFOA contributes
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to the enhancement of training and learning process as well as the improvement of global searching
ability for the DCNN. Simultaneously, the input derived from the MFOA–DIR can obtain satisfactory
prediction results. In contrast with the SVM and the BPNN, this indicates that the DCNN can achieve
a better forecasting performance than shallow learning algorithms.

Figure 5. Forecasting results.

Figure 6. Relative error (RE) of prediction methods.

Figure 7 illustrates the comparative results gauged by the RMSE, the MAPE, and the AAE.
THis proves that the established hybrid model is superior to the other four techniques from the
perspective of the aforementioned error criteria. Concretely, the RMSE, the MAPE and the AAE of the
MFOA–DIR–DCNN were 2.2345%, 2.1721% and 2.1700%, respectively. Additionally, the RMSEs of the
MFOA–DCNN, the DCNN, the SVM and the BPNN were 3.1818%, 3.7103%, 4.5659%, and 6.2336%,
respectively, while the MAPE of the corresponding methods equaled 3.2073%, 3.7148%, 4.4318% and
5.8772%, respectively. Accordingly, the AAE of the MFOA–DCNN, the DCNN, the SVM and the
BPNN was equivalent to 3.1251%, 3.7253%, 4.4956% and 5.7347%, respectively. Owing to the fact
that the DCNN has advantages over shallow learning algorithms, the MFOA was able to complete
parameter optimization of the DCNN, and the DIR approach guarantees the completeness of the
input information while reducing the redundant data, which ameliorates the prediction accuracy
and robustness.
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Figure 7. Root mean square error (RMSE), mean absolute percentage error (MAPE) and average
absolute error (AAE) of the prediction techniques.

For further verification that the proposed method is better, the case was predicted by the methods
proposed in Reference [8] (BP neural network), [14] (cuckoo search algorithm and support vector
machine), and [36] (modified firefly algorithm and support vector machine). The input of these three
models was 33—that is 33 candidate features—and the parameter settings were consistent with those
mentioned in the text. Table 3 displays the comparative forecasting results.

Table 3. Comparison with the prediction results of the references’ models.

Model RMSE MAPE AAE

Proposed model 2.2345 2.1721 2.1700
Ref. [8] 6.2336 5.8772 5.7347

Ref. [14] 3.3641 3.4502 3.3122
Ref. [36] 3.2794 3.3471 3.2098

According to Table 3, it can be concluded that the forecasting precision of the established approach
outperforms that of References [8,14,36]. The main reasons consist of three points. First, the feature
selection process can remove the low correlation factors, thereby reducing the input of the model and
reducing the training error of the model. Second, optimizing the parameters of the neural network or
the support vector machine can provide the training accuracy of the model. For example, the prediction
results of References [14] and [36] were superior to the prediction results of the SVM (mentioned in
Figure 7). Third, the DCNN model not only reduces the number of neurons and weights, it also uses
the pooling operation to make the input features have displacement, scaling and distortion invariance,
thus improving the accuracy and robustness of network training, which is better than the SVM and
the BPNN.

However, when training and testing the proposed model, it was found that the amount of sample
data in the training set had a relatively large impact on the test results. The larger the sample size of
the training set, the better the test results. Due to the limited number of new substation projects each
year, when applying the proposed model, it is necessary to collect more data on the cost of the previous
substation project cost to ensure that the DCNN can be fully trained.
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4. Conclusions

This paper developed a novel hybrid approach for cost forecasting based on the DIR, the DCNN
and the MFOA. Firstly, the DIR integrated with the MFOA was adopted for input feature selection.
Simultaneously, the MFOA was utilized to realize parameter optimization in the DCNN. Thus,
the proposed method could be applied to cost forecasting of substation projects on the foundation of
the optimized input subset, as well as the best value of γ and σ. The proposed model outperformed
the comparative approaches in terms of prediction precision. The case studies demonstrated that:
(a) The use of the DIR is conducive to the elimination of unrelated noises and the improvement of
prediction performance. (b) Improving the DCNN with the MFOA presents good performance mainly
due to the fact that the MFOA enhances the global searching capability of the method. (c) The ideal
prediction results were obtained by numerical examples of substation projects in different regions,
different voltage levels, and different scales, which shows that the adaptability and stability of the
proposed model are also strong. Therefore, this established approach for cost forecasting based on the
MFOA–DIR–DCNN, considering its effectiveness and feasibility, provides an alternative for this field
in the electric-power industry.

However, the feature selection methods have been researched more and more recently, and it is
very important for substation project cost forecasting. Thus, the new feature selection method will be
will be a research focus in the future.
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Abbreviations

Abbreviation Meaning

MFOA modified fruit fly optimization algorithm
FOA fruit fly optimization algorithm
DIR data inconsistency rate
DCNN deep convolutional neural network
ANNs artificial neural networks
SVM support vector machine
BPNN back propagation neural network
ELM extreme learning machine
RBFNN radial basis function neural network
GRNN general regression neural network
APSO adaptive particle swarm optimization
CS cuckoo search algorithm
DNN deep neural network
CNN convolutional neural network
RE relative error
RMSE root mean square error
MAPE mean absolute percentage error
AAE average absolute error
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Appendix A

Table A1. The statistics of substation feature.

Candidate Features Statistic Information

Area
Type <2000 m2 >2000 m2 and <4000 m2 >4000 m2

Statistics 26 78 24

Construction type Type New substation Extended main transformer Extended interval
engineering

Statistics 56 48 24

Voltage level Type 35 kV 110 kV 220 kV
Statistics 27 82 19

Main transformer
capacity

Type <30 MVA >30 MVA and <50 MVA >50 MVA
Statistics 32 78 18

High-voltage side
outlet number

Type <4 >4
Statistics 64 64

Low-voltage side
outlet number

Type <4 >4
Statistics 86 42

Topography Type Hillock, hillside
field and flat Plain, paddy field and rainfed cropland mountainous region

and depression
Statistics 64 52 10

Schedule
Type <90 days >90 days and <180 days >180 days

Statistics 57 35 36

Substation type Type Indoor Semi-indoor Outdoor
Statistics 82 20 26

Number of transformers
Type 1 2

Statistics 27 101

Economic
development level

Type <200 billion
CNY >200 billion CNY and <400 billion CNY >400 billion CNY

Statistics 16 92 20

Inflation rate
Type <2% <2% and >4% >4%

Statistics 11 111 6

Main transformer price Type <100,000 CNY >100,000 CNY
Statistics 26 102

High-voltage side circuit
breaker price

Type <10,000 CNY >10,000 CNY
Statistics 45 83

Number of high-voltage
side breakers

Type <2 >2
Statistics 68 60

Number of low
voltage capacitors

Type 1 >1
Statistics 56 72

High voltage fuse price Type <500 CNY >500 CNY
Statistics 59 69

Current
transformer price

Type <10,000 CNY >10,000 CNY
Statistics 23 105

Power capacitor price Type <100,000 CNY >100,000 CNY
Statistics 89 39

Reactor price Type <5000 CNY >5000 CNY
Statistics 57 71

Power bus price Type <2000 CNY/m >2000 CNY/m
Statistics 69 59

Arrester price Type <2000 CNY >2000 CNY
Statistics 76 52

Measuring
instrument price

Type <10,000 CNY >10,000 CNY
Statistics 39 89

Relay protection
device price

Type <10,000 CNY >10,000 CNY
Statistics 40 88

Signal system price Type <100,000 CNY >100,000 CNY
Statistics 44 84

Automatic device price Type <20,000 CNY >20,000 CNY
Statistics 90 38
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Table A1. Cont.

Candidate Features Statistic Information

Site leveling cost Type <500,000 CNY >500,000 CNY
Statistics 65 63

Foundation
treatment cost

Type <1,000,000 CNY >1,000,000 CNY
Statistics 76 52

Technical level of the
designers

Type <50% >50% and >80% >80%
Statistics 19 83 26

Number of accidents
Type 0 >0

Statistics 122 6

Engineering
deviatio rate

Type <15% >15%
Statistics 107 21

Construction
progress level

Type 0 day >0 day and <15 days >15 days
Statistics 96 15 17

Rainy and snowy days Type <7 days >7 days and <14 days >14 days
Statistics 48 67 13
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Abstract: In recent years, although deep learning algorithms have been widely applied to various
fields, ranging from translation to time series forecasting, researchers paid limited attention to
modelling parameter optimization and the combination of the fuzzy time series. In this paper, a novel
hybrid forecasting system, named CFML (complementary ensemble empirical mode decomposition
(CEEMD)-fuzzy time series (FTS)-multi-objective grey wolf optimizer (MOGWO)-long short-term
memory (LSTM)), is proposed and tested. This model is based on the LSTM model with parameters
optimized by MOGWO, before which a fuzzy time series method involving the LEM2 (learning from
examples module version two) algorithm is adopted to generate the final input data of the optimized
LSTM model. In addition, the CEEMD algorithm is also used to de-noise and decompose the raw
data. The CFML model successfully overcomes the nonstationary and irregular features of wind
speed data and electrical power load series. Several experimental results covering four wind speed
datasets and two electrical power load datasets indicate that our hybrid forecasting system achieves
average improvements of 49% and 70% in wind speed and electrical power load, respectively, under
the metric MAPE (mean absolute percentage error).

Keywords: multi-objective grey wolf optimizer; long short-term memory; fuzzy time series; LEM2;
combination forecasting; wind speed; electrical power load

1. Introduction

Effective forecasting plays an essential role in various aspects, such as energy application, economic
risk management, standardized management, policy making, and so on. Forecasting helps corporations,
governments, and other organizations and institutions to evaluate the market and to make relative
predictions to better understand potential relations among entities and to plan for the future, which is
a useful way to make policies on both the private and the social levels. As a result, many forecasting
methods have been proposed during the past decades. Among these, there are two different categories:
time series forecasting and causal forecasting. Since causal forecasting has some inherent limitations,
including the reliability and availability of independent variables, time series forecasting has been
applied much more widely due to its convenience for data collection and its high accuracy as well as
stability. Time series forecasting methods presume that history will repeat itself, which means that the
forecasting of future values is based on present values and past observations. Nowadays, time series
forecasting has achieved great success in many industries, especially in the energy industry.

With the rapid development of the energy industry and increasing demand for high-level
management and application, its infrastructure has been upgraded by a great extent, as a result of
which the prices, supply, as well as demand have oscillated to a greater extent and have become more
unpredictable than ever before. This has posed a great challenge to the forecasting method in terms of
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accuracy and stability, since forecasting plays an essential role in qualifying those unfortune features
by which people are able to gain more accurate forecasts that can be applied to risk management,
energy planning, industry configuration, and so on. In previous years, electrical power load forecasting
has been an important part of power system planning and the basis of the economic operation of
power systems. Unfortunately, we have to confront several difficulties, such as meteorological factors,
development speed, and some cases of unpredictable natural devastation, if we want to take good
advantage of power load data. Researchers have focused on exploring nonsymmetrical faults [1],
ground faults [2], microgrid distributions [3], etc. For instance, Qu et al. [4] explored and developed
an intelligent damping controller which can reduce power fluctuations in hybrid power systems.
Ye et al. [5] studied long-term load forecasting based on support vector regression (SVR) and explored
nonlinear relationships between economic growth in terms of GDP and power load requirements.
On the other hand, with the inadequate implementation of corresponding emission and environmental
protection policies [6], wind power has attracted many scientists and researchers [7]. Currently, wind
power accounts for roughly 10% of the total consumption of energy in Europe—15% more than
that of Spain and Germany [8]. To utilize the wind more effectively and efficiently, we need to get
accurate forecasts of the wind speed. Nevertheless, as for wind speed, it has an inherently volatile and
irregular quality and is considered a fairly tricky weather element to predict accurately as a result of its
randomness and nonlinearity [9]. Numerous researchers and scientists have made great contributions
to the development of effective and robust wind speed forecasting models, which can also be used
to forecast electrical power load data. According to time horizons, there are four different types of
forecasting methods: long-range forecasting, medium-range forecasting, short-time-period forecasting,
and very-short-term forecasting. Moreover, it can also be divided into the following four types: artificial
intelligence methods, statistical methods, spatial correlation methods, and physical methods [10].

Physical models containing parameters ranging from temperature to topography to pressure
are usually used on a massive scale for long-term wind speed prediction with multiple weather
parameters [11]. On the contrary, statistical models, such as the autoregressive (AR) model,
Auto-Regressive Average (ARMA) [12], Autoregressive Integrated Moving Average (ARIMA) [13],
fractional ARIMA (FARIMA) [14], exponential smoothing (ES) [15], and grey prediction (GP) [16],
are developed on the basis of the relationships among variables through mathematical statistics to
illustrate the potential correlations within the historical data sampled from the observed wind speed
data. Spatial correlation methods mainly take into account the other factors, such as the direction of
the wind, the terrain roughness, and the height above the horizon. Sometimes, this kind of method
achieves high accuracy [17].

With the rapid development of and increasing research on computer science, the performance
of complex calculations in less time has become possible. Consequently, in the past few years, a
large number of statistical learning models have been recorded, which eventually formed a mature
theoretical system. The renowned ANN (artificial neurol network) is widely utilized for wind speed
forecasting fields, which have the ability to carry on the parallel processing and to deliver nonlinear
maps. This mainly includes back propagation (BP) [18], the radial basis function (RBF) [19], the Elman
neural network (ENN) [20], the wavelet neural network (WNN) [21,22], and others. In addition, during
the past twenty years, the neural network field has experienced some innovations which have resulted
in well-known deep learning (DL) models [23]. Particularly, the large computational cost has been the
largest drawback of conventional neural network algorithms. However, greedy layer-wise pretraining
is able to train the so-called deep belief network (DBN) more efficiently [24,25]. Following pertinent
progresses, scientists are now able to create and train neural networks with not only one hidden layer,
which, in turn, has increased generalization capabilities and allowed better outcomes. This field has also
been renamed “in-depth learning” to assess the depth of progress made [26]. The success of DL models
can be seen in computer science applications, such as image recognition [27], speech recognition [28],
and machine translation [29]. Moreover, the benefits have also spread to energy-related fields, such
as wind power forecasting, which especially refers to wind speed forecasting. In the same field,
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Wang et al. [30] proposed the convolutional neural networks (CNNs) to acquire precise probability
prediction of wind power. However, there is still relatively less research about the DL-related models
being applied in wind speed forecasting fields compared with the most active part of this technology.
In Reference [31], a deep autoencoder (DAC) combined with extreme gradient boosting (XGB) was
proposed to forecast the building cooling load; A deep neural network (DNN) was also applied to
get the forecasting results; this method was more accurate than the other methods presented in the
same paper. In Reference [32], the DL model was also shown to discern the islanding highly accurately.
Therefore, regarding this point, we considered the application of these kinds of technologies in wind
speed forecasting in an effort to get a higher accuracy. Furthermore, the authors of Reference [33]
proposed a DL strategy applied to time series forecasting and demonstrated how it can be successfully
used in electricity consumption forecasting, which correlates with the wind speed data to some extent.
Except for ANNs, fuzzy logic methods [34] as well as support vector machine (SVM) [35]-related
methods, such as least-squares support vector machines (LSSVMs) [36], Gaussian processes [37], and
others, are also commonly applied in the forecasting of wind speed.

However, each method has different drawbacks and disadvantages as a result of its inherent
nature. The drawbacks of the aforementioned models are summarized as follows:

(1) Because physical algorithms are very sensitive to market information, they need a long run time
and a large amount of computing resources. In addition, these models have shortcomings in
dealing with short-term forecasting problems and they do not have high accuracy and validity in
short-term forecasting.

(2) Traditional statistical arithmetic methods fail to manage forecasting with fluctuations and high
levels of noise, nonlinear and irregular trends, or other inherent characteristics of wind speed
data that are primarily confined by the premise of a linear pattern along a time series. Moreover,
oftentimes, these methods require a large amount of historical data on which they deeply depend
in realistic cases. This means that once there is an abrupt and unexpected change in the original
data as a result of social or environmental factors, prediction errors will proliferate all at once [38].

(3) Spatial correlation arithmetic methods based on vast quantities of information, for example,
the wind speed information of many spatially correlated sites which is difficult to collect and
analyze, makes it hard to perform perfect wind speed forecasting [39].

(4) Artificial intelligence arithmetic methods, different from other approaches, are able to deal with
nonlinear features which are hidden among historical wind speed data. Although many studies
have been carried out and the methods have been successfully applied to address complex
data patterns, there are also some defects and drawbacks within artificial intelligence methods,
such as showing a relatively low convergence rate and over-fitting, easily getting into a local
optimum, etc.

(5) Individual forecasting models are good at forecasting to some extent, but they rarely focus on the
importance and necessity of data preprocessing; therefore, these approaches cannot always get a
good forecasting outcome.

Hence, with the objective of combining all the advantages and of avoiding the weaknesses, a
number of combined forecasting methods have been proposed [40]. Bates and Granger proposed the
combination prediction theory and showed promising outcomes in 1969 [41]. Since then, research
on combinatorial forecasting theory has attracted extensive attention [42]. Xiao et al. developed two
combined models for wind speed sequence prediction: the AI combination model [43–45] and NNCT
(no negative constraint theory). The results indicate that more reliable and accurate forecasts are
attained when the combined models are applied.
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In addition, with the purpose of achieving highly accurate forecasting, some types of time series
preprocessing techniques, such as wavelet packet decomposition (WPD) [46], fast ensemble empirical
mode decomposition (FEEMD) [47], and singular spectrum analysis (SSA) [48] techniques, have been
effectively applied in the data preprocessing stages of time series forecasting fields in an effort to
decrease the random disturbance traits of the original windspeed data. Similarly, techniques have been
widely used in such hybrid models to get a higher forecasting accuracy. Thus, the complementary
ensemble empirical mode decomposition (CEEMD) that is modified from the ensemble empirical mode
decomposition (EEMD) is applied in this paper.

Thus, in this study, the CEEMD-FTS (fuzzy time series)-MOGWO (multi-objective grey wolf
optimizer)-long short-term memory (LSTM), a combined model with CEEMD as the preprocessing
part, is based on LSTM, which belongs to the RNNs (recurrent neurol networks) within the DL field,
but a modified version with less disadvantages and more powerful memorizing capability and the
meritorious multi-objective optimization algorithm MOGWO is developed. Subsequently, to deal with
the uncertain forecasting problems and to dig out more useful and constructive information hidden
within the history data to get a better forecasting result, we also combine the aforementioned model
with the fuzzy time series analyzing method based on rough set rule induction which contains the
LEM2 (learning from examples module version two).

Generally, the innovations of this study can be summarized as follows:

(1). This study proposes a hybrid forecasting model which can take advantage of deep learning
networks as well as the fuzzy time analysis technique based on the LEM2 rule-generating
algorithm, which increases the forecasting accuracy obviously. To our knowledge, it has not
been found that deep leaning neural networks are combined with the rough set induction
theory. Hence, our study develops a hybrid model combining LSTM with the fuzzy time
series analysis technique that uses rough sets to generate rules as a replacement for traditional
rule-generating methods.

(2). This study improves the forecasting stability and accuracy simultaneously with the deep
learning neural network through the weight-determining method called MOGWO based on the
leave-one-out strategy and swarm intelligence, which helps to find best weighting parameters
for the LSTM neural network. Most previous studies just paid attention to one aim (stability
or accuracy). Therefore, to achieve high accuracy and stability, a multi-objective optimization
algorithm, MOGWO, is successfully applied in this study.

(3). This study provides a scientific and reasonable evaluation of the new hybrid forecasting model
made to verify the forecasting performance of the combined forecasting model proposed in this
paper. Three experiments are carried out in this paper, including comparisons between different
deep learning neutral networks, efficiency and effectiveness tests among various models in four
different wind sites, and a contrast experiment in which the proposed hybrid forecasting system
is applied to electrical load forecasting with two different electrical power load data series on
Wednesday and Sunday. The outcome illustrates that this proposed system performs well.

(4). This study delivers an insightful discussion about the developed forecasting system, illustrating
the improvements brought about by different parts of the proposed forecasting model as well
as the multistep forecasting ability. Five discussion topics are presented in this paper, namely
statistical significance, association strength, improvement percentage, multistep ahead forecasting,
and sensitivity analysis. Through these discussions, the effectiveness of the hybrid forecasting
framework is verified.
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The remainder of this paper is organized as follows:
Section 2 gives the profile of principles of methods corresponding to the proposed hybrid models,

namely the CFML model (CEEMD-FTS-MOGWO-LSTM). Relevant methodology is shown Also, in this
section, including the data preprocessing method, the fuzzy time series technique with LEM2, the MOGWO,
and the long short-term memory algorithm. Moreover, several evaluations and experiments that help to
demonstrate the performance of the CFML model are presented in Section 3. Moreover, Section 4 gives a
discussion about different comparison outcomes. Finally, Section 5 concludes this study.

2. Methodology

An innovative hybrid forecasting model is successfully developed and the corresponding
components are introduced briefly in this section, including the data preprocessing technique named
complementary ensemble empirical mode decomposition (CEEMD), the fuzzy analyzing part based
on rough sets induction theory, the forecasting algorithm named LSTM, and the multi-objective
optimization algorithm MOGWO.

2.1. Hybrid Forecasting Framework

Figures 1 and 2 shows combined the CFML forecasting model, from which the CFML system can
be expounded as follows:

1. The original wind speed data is decomposed by applying the CEEMD method into several
subseries named Intrinsic Mode Functions (IMFs).

2. The fuzzy analysis method is applied using the rough set induction LEM2 algorithm to generate the
forecasting rules, and raw data are applied to these rules to generate preliminary forecasts. These
forecasts obtained by fuzzy time series forecasting are not precise enough, but the difference between
these forecasts and the actual values can demonstrate potential forecasting biases that are useful for
modifying the learning process of the following neural network, namely the LSTM model optimized
with MOGWO. As for the raw input data, we accept five dimensions for each forecast, including lag1,
lag2, lag3, slope, and the present data, in order to forecast the following one for each subseries (Figure 2).

3. The output data generated from the previous steps is used as the input data for the LSTM forecasting
module, which is optimized by the multi-objective optimization algorithm called MOGWO for each
subseries. Specifically, real values of Xt lag1, and lag2 and their differences, including D1, D2, and
D3, are adopted as input data of the LSTM model modified by MOGWO (Table 1).

4. The forecasting outcomes of each subseries generated from the preprocessing part named CEEMD
are aggregated to obtain the eventual forecasting results of CFML.
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Figure 1. Explicit processes of data input and complementary ensemble empirical mode decomposition
(CEEMD) parts of the CEEMD-fuzzy time series (FTS) multi-objective grey wolf optimizer (MOGWO)-LSTM
(CFML) model.

Table 1. The selected input variables for long short-term memory (LSTM).

Factors Explanation

Xt The present value
LAG1 first-order lagged period Xt−1
LAG2 second-order lagged period Xt−2

D1 difference 1: Dt = Xt − f orecasted Xt
D2 difference 2: Dt−1 = Xt−1 − f orecasted Xt−1
D2 difference 3: Dt−2 = Xt−2 − f orecasted Xt−2
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Figure 2. Flowchart of the paper and the input data of the first forecasting.

2.2. Data Preprocessing Module

The CEEMD algorithm, proposed by Yeh et al. [49], is the modified version of the EEMD and
EMD. According to Anbazhagan et al. [50], the primary steps of this algorithm are as follows:

Step 1: Add white noise pairwise with the identical amplitude and the opposite phase to the raw data
sequence v(t), after which we can obtain a pair of polluted signals:

{
Pni = v(t) + Wni(t)
Nni = v(t) −Wni(t)

(1)

where Pni denotes the positive noise of i-th trial, Nni is the negative noise of i-th trial, and Wni represents
the noise with identical amplitude and phase.

Step 2: Decompose the polluted signal pairs (Pni, Nni) into a finite set including IMF components:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Pni(t) =

M∑
j=1

u+
i j (t)

Nni(t) =
M∑

j=1
u−i j(t)

(2)

where u−i j and u+
i j are the j-th intrinsic mode functions of the i-th trial with negative and positive noise.

Furthermore, M signifies the number of IMFs.
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Step 3: Two sets of IMF components, i.e., the negative noise set of the first IMF component
{
u−i j(t)

}T,M

i=1, j=1

and positive noises
{
u+

i j (t)
}T,M

i=1, j=1
, are obtained by performing the above two steps T times

with different amounts of white noise.
Step 4: The component of the j-th IMF uj(t) can be calculated as follows in order to get the ensemble

means of whole IMFs:

uj(t) =
1

2T

T∑
i=1

(
u+

i j (t) + u−i j(t)
)

(3)

2.3. Rough Set Theory (RST) and LEM2

In this part, the fuzzy forecasting module of the proposed new hybrid model CFML which contains
the rough set theory and the more detailed rule induction algorithm called LEM2 is introduced in brief.

Pawlak and Skoworn proposed RST [51], and it has been acknowledged as one of the most
effective mathematical techniques for dealing with uncertainty as well as vagueness. The premise of
Rough Set Philosophy is that, due to the lack of information in the discourse space related to each
object, the few information objects distinguished by the same information cannot be distinguished.
The set of all indistinguishable objects is regarded as the basic set and creates the basic particles of
cosmic knowledge. Any union of elementary sets is accepted as an exact set; otherwise, the set is
called a rough set. RST includes the utilization of indiscernibility relations to approximately approach
the sets of objects by upper and lower approximations [52]. This rough set theory is widely used to
acquire more accurate rules to predict objects, and the LEM2 algorithm is usually adopted as a way of
applying rough set theory to the induction of rules.

LEM2 [53], a rough set rule induction algorithm, is most frequently adopted as it has better results
in most cases. In this study, the formed rules are generated in an “if-then” manner through composing
several fuzzy decision values as well as fuzzy conditional values. Moreover, “supports” indicate how
many records are archived in the dataset that matches the generated decision rules. LEM2 computes
a local covering and then converts it into a rule set. LEM2 learns a discriminant rule set; it learns
the smallest set of minimal rules describing a concept. This algorithm can generate both certain and
possible rules from a decision table. The rough set induction LEM2 algorithm has several advantages
because of the application of rough set theory, as follows:

1. Rough sets can discern hidden facts and make it possible for us to understand these facts in
natural language, which contributes a great deal to decision making;

2. Rough sets take the background information of decision makers into account;
3. Rough sets can deal with both qualitative and quantitative attributes;
4. Rough sets enable machines to extract certain rules in a relatively short time, which means it

reduces the time cost of discovering hidden rules.

The detailed process of how LEM2 works is briefly demonstrated as follows: For an attribute–value
pair (e; u) = o, a block of n which is signified by [o], is a set of instances belonging to H so that, for an
attribute, e has a value u. For a concept represented by the decision–value pair (n; p), B is a nonempty
upper or lower approximation of it. Set K consists of a set of attribute–value pairs o = (e; u), which is
called set T only under the condition that ∅ � [T] = ∩o∈T[o] ⊆ K, where set T is a minimal complex of K
only under the condition that K depends on set T and that there are no subsets of T such that K depends
on the subset. Symbol C is a nonempty collection of nonempty attribute–value pair sets, and L is the
local covering of K. A more detailed explanation can be found in the work of Grzymala-Busse [53].

Figure 3 demonstrates the pseudocode of LEM2 based on the study of Liu et al. [54].

Step 1. Compute all attribute–value pair blocks.
Step 2. Identify attribute–value pairs with the largest

∣∣∣[(e; u)] ∩G
∣∣∣.
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Step 3. If the cardinality of the set
∣∣∣[(e; u)] ∩G

∣∣∣ is equal to another one, then select the attribute pair
with the smallest block size.

Step 4. If necessary, we have to go through an additional internal loop in order to find the candidates
for the minimal complex.

Step 5. Then, the following steps are used to find the second minimal complex and so on.
Step 6. Finally, we can get the local covering of a hidden fact, which may reveal the

decision-making process.

Figure 3. Flowchart of fuzzy time series forecasting.

2.4. Multi-Objective Grey Wolf Optimizer (MOGWO)

To get more accurate forecasts, we adopt the GWO (grey wolf optimizer) algorithm which is
modified to deal with the multi-objective problems to optimize the main forecasting model LSTM.
By using the multi-objective optimization theory, we can achieve both an accurate and a stable
forecasting quality.

Mirjalili et al. proposed the grey wolf optimization algorithm [55], which was based on grey
wolves’ social leadership and hunting skills. In addition, the hunting process is led by three wolves (α,
β, and δ). The rest of the wolves follow these three leaders throughout the whole search process to
approach the global best solution.

The following formulas were proposed in an effort to emulate the encircling behaviors of
grey wolves:

K =
∣∣∣B×Rp(ite) −R(ite)

∣∣∣ (4)

R(ite + 1) = Rp(ite) −M×K (5)

where K denotes the distance between the prey and the predator, ite refers to the current iteration, R
denotes the position vector of wolves, Rp is the prey’s position vector, and M and B are coefficient vectors:

M = 2c× e1 − c (6)

B = 2c× e2 − c (7)
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where e1 and e2 are random vectors in [0, 1] and the elements of c decrease linearly from 2 to 0 across
all iterations.

The GWO algorithm archives the first three best results gained so far in each iteration and then
imposes other agents, namely the rest of the wolves, to update the positions with respect to them.
The following formulas are calculated constantly for each search agent [55] in order to mimic the
hunting process, and the promising regions of the search space are also found in this process:

Kα =|B1 ×Rα −R| (8)

Kβ =
∣∣∣B2 ×Rβ −R

∣∣∣ (9)

Kδ =|B3 ×Rδ −R| (10)

R1 = Rα −M1 × (Kα) (11)

R2 = Rβ −M2 × (Kβ) (12)

R3 = Rδ −M3 × (Kδ) (13)

R(t + 1) =
R1 + R2 + R3

3
(14)

The B vector produces random values in [0, 2]. This will help the GWO algorithm show increased
behavior in the whole optimization process and help to avoid and explore the local optimum. All these
steps are illustrated in Figure 4. Ri is the position of wolf i, which also represents the initial weight and
threshold of the LSTM model. That is to say, Ri is a vector and its dimension is determined by the
number of initial weights and thresholds of the LSTM model and each element in this vector is a value
of a threshold or a weight of LSTM.

Figure 4. Position updating mechanism of search agents and the effects of A on it.
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Attacking is the final stage of hunting, in which the wolf pack catches the prey and the prey stops
moving. The process is determined by D. Grey wolves will continue to hunt when |D| < 1, and the
wolves are obliged to leave the prey when |D| > 1.

2.5. Long Short-Term Memory (LSTM)

The LSTM model was developed by Schmidhuber and Horchreiter [56]. The harmless gradient
in the network is truncated by forcing constant error flow through the constant error turntable in a
special multiplication unit. In order to cope with these constant error flows, all of the nonlinear units
are able to learn to close or open gates in this network.

The cell state is the key part of the LSTM structure. It runs directly along the entire chain, deleting
or adding information to the cell state, carefully adjusted by structures called gates. These gates serve
as optional entry points for this information. They consist of a pointwise multiplication operation and
a sigmoid neural net layer (Figure 5).

Figure 5. LSTM (long-short-term memory) structure.

An input at time i is (Xi), and the following formulas are used to compute the hidden state (Si):

1. In the LSTM module, the first step is to determine which information will be discarded from the
cell state. The forget gate ( fi) is in charge of making decisions, as follows:

f = σ(Xi × T f + Si−1 × Vi + bi) (15)

where σ is the sigmoid function which turns the input value into an outcome between 0 and 1.
T signifies weight parameters, and b denotes bias parameters (i.e., T f , Tj, Tc, and To and bii,bj,
bc, and bo). In this part, the exponents of T and V are not power values; they are just notations
used to illustrate which gate the parameters belong to. For instance, T f represents the weight
parameters belonging to the forget gate, namely gate f.

2. The next step is to determine which new information will be selected and stored in the cell state.
This step has two sub-steps: The first one is the input gate (Inputi) layer that helps to determine
which value is going to be updated. A tanh layer is the second one, which produces a vector
composed of new candidate values Ci. Calculations are demonstrated as follows:

Inputi = σ(Xi · Tinput + Si−1 ·Vinput + bj) (16)
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C̃i = tanh(Xi · Tc + Si−1 ·Vc + bc) (17)

where C̃i is a candidate memory cell, which is similar to a memory cell, but uses a tanh function.
3. The next step is to update the old cell state Ci−1 into the new cell state Ci, which can be described

as follows:
Ci = Ci−1 ⊗ fi ⊗ Inputi ⊗ C̃i (18)

In Equation (26), the symbol ⊗ represents pointwise multiplication.
4. The final step is to determine what is about to be generated and selected as the output. This

output is a filtered version which is predicated on the cell state, during which the output gate (oi)
determines which final output will consist of a specific part of the cell state. After, the cell state
runs through the tanh layer, which is multiplied by the output gate as follows:

oi = σ(Xi · To + Si−1 ·Vo + bo) (19)

Si = oi ⊗ tanh(Ci) (20)

Algorithm: MOGWO-LSTM

Objective function

min
{

f itness1 =
∣∣∣Bias(x̂)

∣∣∣
f itness2 = Std(x− x̂)

Input:

Training data: x(0)t =
(
x(0)(1), x(0)(2), . . . , x(0)(p)

)
Testing data: x(0)f =

(
x(0)(p + 1), x(0)(p + 2), . . . , x(0)(p + l)

)
Output:

ŷ(0)f =
(
ŷ(0)f (p + 1), ŷ(0)f (p + 2), . . . , ŷ(0)f (p + l)

)
—a series of forecasting data

Parameters of MOGWO:
Iter—the maximum number of iterations n—the number of grey wolves
t—the current iteration number Ri—the position of wolf i
e1—the random vector in [0, 1] c—the constant vector in [0, 2]
Parameters of LSTM:
Iteration—the maximum number of iterations Bias_input—the bias vector of the input gate in [0, 1]
Input_num—the knots of the input Bias_forget—the bias vector of the forget gate in [0, 1]
Cell_num—the knots of the cell Bias_output—the bias vector of the output gate in [0, 1]

Output_num—the knots of the output
Cost_gate—the termination error cost

yita—the rate of adjustment for the weight at each
time
data_num-the number of columns of training data.

1:/*Set the parameters of MOGWO and LSTM*/
2:/*Initialize the grey wolf population Ri (i = 1, 2, ..., n) randomly*/
3:/*Initialize c, M, and B*/
4:/*Define the archive size*/
5: FOR EACH i: 1 ≤ i ≤ n DO

6: Evaluate the corresponding fitness function Fi for each search agent
7: END FOR
8: /*Find the non-dominated solutions and initialize the archive with them*/
9: Rα, Rβ, Rδ= SelectLeader(archive)
10: WHILE (t < Iter) DO
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11: FOR EACH i: 1 ≤ i ≤ n DO

12: /*Update the position of the current search agent*/
13: Kj = |Bi · Rj−R|, i = 1, 2, 3; j = α, β, δ
14: Ri = Rj−Mi · Kj, i = 1, 2, 3; j = α, β, δ
15: R(t + 1) = (R1 + R2 + R3)/3
16: END FOR

17: /*Update c, M, and B*/
18: M = 2 · c · e1−c; B = 2 · c · e2−c
19: /*Evaluate the corresponding fitness function Fi for each search agent*/
20: /*Find the non-dominated solutions*/
21: /*Update the archive with regard to the obtained non-dominated solutions*/
22: IF the archive is full DO

23: /*Delete one solution from the current archive members*/
24: /*Add the new solution to the archive*/
25: END IF

26: IF any newly added solutions to the archive are outside the hypercubes DO

27: /*Update the grids to cover the new solution(s)*/
28: END IF

29: Rα, Rβ, Rδ = SelectLeader(archive)
30: t = t + 1
31: END WHILE

32: RETURN archive
33: OBTAIN R* = SelectLeader(archive)
34: Set R* as the initial weight and threshold of LSTM

35: /*Standardize the training data and testing data*/
36: /*Initialize the structure of the LSTM network*/
37:/*Initialize cost_gate, bias_input, bias_forget, bias_output and the weight of the LSTM network*/
38: FOR EACH i: 1 ≤ i ≤ Iteration DO

39: yita=0.01

40: FOR EACH m: 1 ≤ m ≤ data_num DO

41: Equation (15) to Equation (20)

42: /*Calculate the error cost of this round*/

43: error cost =
l∑

t=1
( f orecasted x̂t − actual xt)

2, l is the dimension of testing data

44: IF error cost < cost_gate DO

45: Break

46: END IF

47: /*Update the weight of all gates*/
48: END FOR

49: IF error cost < cost_gate DO

50: Break

51: END IF

52: END FOR

53: /* Learning process has been done/
54: Input the standardized historical data into LSTM to forecast the future changes
55: De-normalize the obtained forecasting outcomes and generate the final forecasting results

117



Energies 2019, 12, 3588

There are two commonly adopted criteria for verifying forecasting effectiveness, accuracy and
stability. Also, we should not just focus on one objective. Both objectives—high accuracy and
stability—should be studied simultaneously and implemented in the optimization part. Therefore,
based on bias-variance framework, the fitness function should be defined as follows:

E(x̂− x)2 = E[x̂− E(x̂) + E(x̂) − x]2

= E[x̂− E(x̂)]2 + [E(x̂) − E(x)]2

= Var(x̂) + Bias2(x̂)
(21)

where x is the actual value, x̂ is the forecasted value, and E is the expectation value of the
corresponding variable.

The bias equals the average difference between the actual and forecasted values, which represents
forecasting accuracy. A smaller absolute value of the bias demonstrates a more accurate forecasting
accuracy. A smaller variance value indicates a more stable forecasting performance. However, in the
conduct of most experiments, it was found that the criteria are not suitable for issues that this paper
seeks to address. Thus, the standard deviation of forecasting errors is selected as a substitute for fitness
2. Therefore, the fitness function in this paper is formulated as follows:

min
{

f itness1 =
∣∣∣Bias(x̂)

∣∣∣
f itness2 = Std(x− x̂)

(22)

Hence, the objectives of multi-objective optimization problems are usually conflicting. In that
regard, the Pareto optimal solution set provides an answer since it represents the best trade-offs
between different objectives. Our optimization problem in this study is a minimization issue, so the
way we choose suitable solutions can be formulated as follows:

Minimize the following:
F(x) =

{
f1(x), f2(x), · · ·, fo(x)

}
(23)

Subject to the following:
gi(x) ≥ 0, i = 1, 2, · · ·, m (24)

hi(x) ≥ 0, i = 1, 2, · · ·, p (25)

Li ≤ xi ≤ Ui, i = 1, 2, · · ·, n (26)

where o denotes the number of objectives, m is the number of inequality constraints, p is the number of
equality constraints, and Li and Ui are the lower and upper boundaries of the i-th variables, respectively.

Also, several definitions regarding this problem is listed as follows:

Definition 1. Pareto dominance.

Suppose that there are two vectors: x = (x1, x2, · · ·, xk) and y = (y1, y2, · · ·, yk). Vector x dominates
y, denoted as x � y, if

∀i{1, 2, · · ·, k}, [ fi(x) ≥ fi(y)] ∧ [i ∈ 1, 2, · · ·, k : fi(x)] (27)

Definition 2. Pareto optimality.

The solution x ∈ X is named a Pareto optimal if

�y ∈ X
∣∣∣F(y) � F(x) (28)

Two solutions are non-dominated with respect to each other if neither of them dominates the other.
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Definition 3. Pareto optimal set.

The set including all non-dominated solutions is named a Pareto set as follows:

Ps :=
{
x, y ∈ X

∣∣∣∃F(y) � F(x)
}

(29)

Definition 4. Pareto optimal front.

A set containing the corresponding values of Pareto optimal solutions in a Pareto optimal set is
defined as a Pareto optimal front:

P f :=
{
F(x)|x ∈ Ps

}
(30)

2.6. Evaluation Module

This section illustrates reasonable and scientific evaluating modules. In addition, some typical
evaluation metric rules that are usually adopted in the relevant research are adopted to verify the
forecasting performance; R2 (Pearson’s correlation coefficient) and DM test methods are also exploited
in this paper.

2.6.1. Typical Performance Metric

As far as we know, there are no uniform and consistent criteria to test the validity of the prediction
results or to compare the results with those of other models. In this study, we adopt lots of multifarious
methods and metrics, which are all shown in Table 2. Here, N is the length of the dataset, A denotes
the actual value, whereas F represents the forecasting value.

Table 2. Performance metric rules.

Metric Definition Equation

AE Average error of N forecasting results AE = 1
N

N∑
i=1

(Ai−Fi)

MAE Mean absolute error of N forecasting results MAE = 1
N

N∑
i=1
|Ai−Fi|

RMSE Square root of average of the error squares RMSE =

√
1
N

N∑
i=1

(Ai−Fi)
2

NMSE
The normalized average of the squares of

the errors NMSE = 1
N

N∑
i=1

(Ai−Fi)
2

FiAi

MAPE Average of N absolute percentage error 0MAPE = 1
N

N∑
i=1

∣∣∣∣Ai−Fi
Ai

∣∣∣∣× 100%

IA Index of agreement of the forecasting results IA = 1−
∑N

i=1(Ai−Fi)
2∑N

i=1(
∣∣∣Fi−A

∣∣∣+∣∣∣Ai+A
∣∣∣)2

FB Fractional bias of N forecasting results FB = 2× A−F
A+F

U1 Theil U statistics 1 of forecasting results U1 =

√
1
N
∑N

i=1(Ai−Fi)
2√

1
N
∑N

i=1 Ai2+
√

1
N
∑N

i=1 Fi2

U2 Theil U statistics 2 of forecasting results U2 =

√
1
N
∑N

i=1

(
Ai+1−Fi+1

Ai

)2

√
1
N
∑N

i=1

(
Ai+1−Fi

Ai

)2

DA Direction accuracy of the forecasting results
DA = 1

l

l∑
i=1

wi, wi ={
1,i f (Ai+1−Ai)·(Fi+1−Ai)>0
0,otherwise

INDEX
Improvement ratio of the index among

different models INDEX =
|Fi−Ai |compared−|Fi−Ai |proposed

|Fi−Ai |proposed

R Pearson’s correlation coefficient R =
∑N

i (Ai−A)(Fi−F)√∑N
i (Ai−A)

2 ∑N
i (Fi−F)

2
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2.6.2. Diebold–Mariano Test

Considering α as the significance level, the null hypothesis H0 indicates that there are no significant
differences between the two different forecasting models. Otherwise, H1 denotes the disagreement
with H0. The following formulas indicate the related hypotheses:

H0 : E
[
Loss

(
e1

i

)]
= E

[
Loss

(
e2

i

)]
(31)

H1 : E
[
Loss

(
e1

i

)]
� E

[
Loss

(
e2

i

)]
(32)

where Loss represents the loss function of forecasting errors and ep
i (p = 1, 2) are the forecasting errors

of two comparison models.
Furthermore, the DM test statistics can be calculated as follows:

DM value =

∑n
i=1

(
Loss

(
e1

i

)
− Loss

(
e2

i

))
/n√

S2/n
s2 (33)

where s2 is an estimation for the variance of di = Loss
(
e1

i

)
− Loss

(
e2

i

)
.

The DM test value is compared with Zα/2. H0 will be rejected under the circumstance that the DM
statistic falls outside the acceptance interval [−Zα/2, Zα/2], which indicates that there is a significant
difference between the comparison models and the forecasting performances of the proposed model,
meaning we accept H1.

3. Analysis and Experiments

In this part, three different experiments using four different wind speed datasets acquired from
Liaotung peninsula and two different electrical power load datasets collected from QLD (Queensland)
are carried out to test the proposed hybrid system.

3.1. Raw Data Description

In this study, four different 10-min wind speed datasets were collected from four sites (Figure 6),
namely the four wind pour plants in the Liaotung peninsula: the Hengshan site (40◦, 120◦), Xianren
island (40◦, 122.5◦), the Donggang site (42.5◦, 122.5◦), and the Danton site (40◦, 125◦).

Also, two additional electrical load datasets were applied to demonstrate the efficiency of the
hybrid forecasting model. The total number of data points in each wind speed dataset was 9488,
and that of the electrical load was 2544. Only the first 1000 observations were adopted to verify the
model. Of the total 1000 observations, the first 900 observations were used as the training set, while
the testing set contained the remaining 100 observations (Figure 6). Furthermore, some basic statistical
information, i.e., minimum, average values, as well as maximum values, etc. of the dataset referred to
above are demonstrated in Table 3.
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Figure 6. Four wind speed datasets with 10-min time intervals.

Table 3. Statistical values of each experiment dataset.

Data Set
Statistical Indicator

Data Set
Statistical Indicator

Mid. Max. Min. Std Mean Mid. Max. Min. Std Mean

Dataset A Dataset D
All samples 4.9391 17.200 0.1000 2.7072 4.6000 All samples 4.8754 17.700 0.1000 2.6413 4.6000

Training 5.7401 11.800 1.2000 2.0136 5.8000 Training 5.6011 12.500 0.9000 1.8937 5.8000
Testing 4.9750 7.1000 2.8000 0.7774 5.0000 Testing 5.1120 6.7000 3.1000 0.7983 5.2500

Dataset B Dataset E
All samples 5.2674 28.800 0.1000 2.9040 4.9000 All samples 6043.4 8180.7 4488.0 841.07 6189.2

Training 6.1190 12.700 1.3000 2.0481 6.2000 Training 6065.9 8180.7 4488.0 849.28 6214.1
Testing 5.6190 7.1000 3.1000 0.8237 5.7000 Testing 5840.7 7221.2 4515.0 736.47 5981.9

Dataset C Dataset F
All samples 5.0718 22.100 0.1000 2.9000 4.6000 All samples 5515.5 7780.5 4357.8 684.29 5444.2

Training 5.8262 12.300 1.3000 2.0946 5.8000 Training 5542.3 7780.5 4357.8 693.79 5472.0
Testing 5.0920 6.5000 2.9000 0.7108 5.1000 Testing 5273.9 6416.3 4447.3 537.19 5170.9

3.2. Experiment I: Tests of MOGWO and LSTM

In this experiment, we present two subparts to verify the superiority of the MOGWO and LSTM
forecasting algorithm, respectively.

3.2.1. Test of MOGWO

The four typical test functions that are demonstrated in Table 4 are commonly used to
verify the superiority of the proposed optimizer and to deal with the multi-objective optimization
issues [57–59]. NSGA-II and multi-objective dragonfly (MODA) were used in this study for comparison.
The experimental parameters were as follows: the search agents’ total number was 50, the archive size
was 50, and the iteration number was 100. The inverted generational distance (IGD), a widely used
metric, was adopted in this paper for the evaluation. Each test function was tested fifty times, and
Table 5 shows the statistical values of the IGD. Moreover, Figure 7 demonstrates the Pareto optimal
solutions which were acquired by different algorithms.
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Table 4. Four test benchmark functions.

Kursawe ZDT1

Minimize f1(x) =
2∑

i=1

[
−10 exp

[
−0.2

√
x2

1 + x2
2

]]
Minimize f1(x) = xi

Minimize f2(x) =
3∑

i=1

[
|xi|0.8 + 5 sin

(
x3

i

)]
Minimize f2(x) = g(x) × h( f1(x), g(x))

where −5 ≤ xi ≤ 5, 1 ≤ i ≤ 3 where

G(x) = 1 + 9
N−1

N∑
i=2

xi

h( f1(x), g(x)) = 1−
√

f1(x)
g(x)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

ZDT2 ZDT3

Minimize f1(x) = xi Minimize f1(x) = xi
Minimize f2(x) = g(x) × h( f1(x), g(x)) Minimize f2(x) = g(x) × h( f1(x), g(x))

where

G(x) = 1 + 9
N−1

N∑
i=2

xi

h( f1(x), g(x)) = 1−
(

f1(x)
g(x)

)2
0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

where

G(x) = 1 + 9
29

N∑
i=2

xi

h( f1(x), g(x)) = 1−
√

f1(x)
g(x)

0 ≤ xi ≤ 1, 1 ≤ i ≤ 30

Table 5. Statistical values of the inverted generational distance (IGD) for four test functions.

Test Functions
IGD Values

Mean Max. Min. Std. Med.

Kursawe
MODA 0.012500 0.021500 0.008500 0.003600 0.011500

NSGA-II 0.006500 0.015500 0.004500 0.002800 0.005900
MOGWO 0.005200 0.005800 0.004900 0.000251 0.005200

ZDT1
MODA 0.014600 0.022300 0.007900 0.004800 0.014400

NSGA-II 0.015800 0.036400 0.000375 0.008800 0.013500
MOGWO 0.006800 0.016400 0.002100 0.003800 0.005900

ZDT2
MODA 0.013900 0.022100 0.006900 0.004600 0.012100

NSGA-II 0.029200 0.060400 0.003300 0.013500 0.025600
MOGWO 0.009000 0.019400 0.001200 0.005500 0.008100

ZDT3
MODA 0.018700 0.025900 0.007000 0.005200 0.019300

NSGA-II 0.011500 0.021500 0.004700 0.004700 0.011000
MOGWO 0.005600 0.015000 0.001000 0.003000 0.005600

The values in bold indicate the best value of each benchmark function.
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Figure 7. Obtained Pareto optimal solutions by NSGA-II, MODA, and MOGWO for the test functions:
Kursawe, ZDT1, ZDT2, and ZDT3.

Based on the outcomes, two conclusions were made as follows:

1. The MOGWO algorithm obtained the best IGD outcomes among almost all optimizers for four
test functions (Kursawe, ZDT1, ZDT2, and ZDT3) while performing worse than the Kursawe as
well as ZDT1 algorithms in terms of the minimum value and worse than MODA regarding the
standard deviation. From a whole perspective, these outcomes are strong enough to demonstrate
the superior optimization ability of MOGWO algorithms compared with the others.

2. Figure 7 shows that the MOGWO algorithm was able to obtain more Pareto optimal solutions.
In addition, the solutions found by the MOGWO algorithm were more evenly distributed on the
true PF (pareto front) curve and were closer to the real Pareto optimal solutions.
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Remark: The optimizing ability of MOGWO has been proven through the results and discussions
of the aforementioned experiment comparison. Thus, MOGWO can be widely used to cope with
multi-objective problems, thus being adopted as the best optimization model in the proposed
CFML system.

3.2.2. Test of LSTM in CEEMD-FTS-MOGWO-LSTM

This subsection aims to compare LSTM, DBN, CNN, and SAE for the four wind speed datasets
collected from four different wind farms with 10-min data. We set the parameters for each model based
on the error and bias since there are no previous studies on how to set the optimal parameters. Also, to
reduce the impact of randomness, we took the mean value of the experiments performed 50 times.
The relative results and detailed values are listed in Table 6, and Figure 8 demonstrates the prediction
outcomes of the aforementioned four models at the four wind speed sites. From the forecasting data,
we drew several conclusions:

1. The LSTM model achieved almost the best results and the most accurate predictions of all
four wind speed datasets with roughly the same run time and identical training and testing
datasets. Namely, the adopted LSTM model outperformed the CNN, DBN, and SAE from a
whole perspective and provided fairly competitive results.

2. For the data collected from the four different wind farms, the LSTM model worked better than
the other three deep learning models, which means that the superiority of the LSTM forecasting
algorithm remained, regardless of the different geographical distribution, to some extent.

3. The forecasting performance of different models was adequately reflected by the error metrics
adopted by us in this part. That is to say, error measurement is effective and can be used to
accurately evaluate the ability of the prediction models.

Table 6. Forecasting results of the four deep learning algorithms at four sites.

Sites Models AE MAE RMSE NMSE MAPE IA FB r U1 U2

Dataset A CNN −0.1466 0.5558 0.6871 0.0215 0.1143 0.9958 0.0299 0.5871 0.0693 0.845
DBN −0.2578 0.4917 0.6105 0.0169 0.0988 0.9967 0.0528 0.7122 0.0618 0.8078
SAE −0.2431 0.4891 0.6084 0.0165 0.0982 0.9967 0.0501 0.7083 0.062 0.7952

LSTM 0.2706 0.4364 0.5462 0.0138 0.0948 0.9973 −0.0530 0.7915 0.0529 0.6470

Dataset B CNN 0.1251 0.5515 0.7198 0.0191 0.1063 0.9963 −0.0220 0.5558 0.0628 0.8427
DBN 0.2338 0.4853 0.6111 0.0115 0.0885 0.9974 −0.0402 0.7284 0.0521 0.8130
SAE −0.01814 0.5077 0.6337 0.0146 0.0947 0.9971 0.0032 0.6608 0.0560 0.7455

LSTM 0.2034 0.4448 0.5677 0.0122 0.0863 0.9977 −0.0356 0.7645 0.0492 0.6598

Dataset C CNN −0.1974 0.5585 0.7095 0.0221 0.1288 0.9957 0.0394 0.5892 0.0700 0.8672
DBN 0.1024 0.4765 0.6138 0.0154 0.0981 0.9968 −0.0197 0.5589 0.0587 0.7241
SAE −0.0451 0.4538 0.5808 0.0145 0.0936 0.9971 0.0089 0.6481 0.0568 0.6088

LSTM 0.0131 0.4419 0.5731 0.0146 0.0928 0.9971 −0.0026 0.6241 0.0557 0.6151
Dataset D CNN −0.1974 0.5585 0.7095 0.0221 0.1132 0.9957 0.0394 0.5892 0.0700 0.8672

DBN −0.3784 0.5490 0.6827 0.0202 0.1077 0.9960 0.0772 0.7419 0.0688 0.8875
SAE −0.1586 0.4776 0.6025 0.0154 0.0958 0.9969 0.0315 0.7227 0.0592 0.7510

LSTM −0.1168 0.4295 0.5565 0.0131 0.0868 0.9974 0.0231 0.7488 0.0544 0.7198

The values in bold indicate the best values of each benchmark function.
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Figure 8. Forecasting results of the four deep learning algorithms.

Remark: For all four datasets, although the LSTM model performed more poorly than the other
models on some metrics, the best values of the majority of error metrics, such as mean absolute error
(MAE), square root of average of the error squares (RMSE), mean absolute percentage error (MAPE),
index of agreement (IA), and so on, indicate that the adopted LSTM model can achieve excellent
forecasting accuracy. That is also the reason why we chose LSTM as the main forecasting model in our
proposed hybrid forecasting model.

3.3. Experiment II

The comparisons made in this experiment were conducted to demonstrate the specific
improvements brought by the fuzzy time series forecasting part and the optimizer algorithm as
well as the combination of MOGWO and FTS. Furthermore, an experiment to prove the enhancement
in the forecasting ability of the combined model brought by CEEMD was made as well. Moreover,
the comparisons between the proposed hybrid forecasting model and all the other models are also
listed and analyzed in this part. Table 7 and Figure 9 demonstrate the relevant error metric values of
the models mentioned above.
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(1) For the first comparison, WNN, GRNN, ARIMA, and the LSTM models were built and compared
with each other in order to determine the best one for performing wind speed forecasting, which
was found to be the ARIMA. However, of all the neural network algorithms, LSTM was shown to
be the best one, and Experiment I proved that LSTM is better than the other three deep learning
models as well. Hence, the following steps and comparisons are all based on the basic and regular
forecasting model—LSTM.

(2) In terms of R (Pearson’s correlation coefficient), ARIMA failed to outdo LSTM in datasets A and B.
In addition, we tried AR, MA, ARMA, and ARIMA with different parameters each, and we found
that of all these settings, ARMA(2,1), ARIMA(3,1,2), and ARIMA(3,2,2), achieved almost the same
forecasting accuracy at about 8% MAPE, which is apparently better than that of the other neural
networks. The reason for this phenomenon is that the moving-average model that includes AR
requires clear rhythm patterns and fairly linear data series trends, whereas wind speed datasets
are neither seasonal nor regular, so all of these irregular features were almost removed by the
moving-average method as a result of the differencing operation.

(3) From Table 7, for example, the MOGWO-LSTM achieved a MAPE value of 8.64%, while the basic
LSTM model only achieved a MAPE value of 9.48% in the case of site A. Moreover, we tested the
effectiveness of the fuzzy time series forecasting part. For example, in the case of site B, the MAPE
value of FTS-LSTM was 7.91%, 8.34% lower than that of the LSTM model.

(4) According to Figure 8, the FTS-MOGWO-LSTM model achieved 8.02% in MAPE and 75.34%
in r2 from a mean perspective, although it failed to reach the highest r2 value in datasets A
and B. Next, the separate improvement on the forecasting ability brought by FTS or MOGWO
varied in different datasets. For example, in the case of dataset A, FTS-LSTM was higher than
MOGWO-LSTM, which means that MOGWO contributes more to forecasting.

(5) Apart from these comparisons, the decomposition algorithm was also tested in this part. In this
paper, we tested several parameter configurations regarding the Nstd (signal noise ratio), NR
(noise addition number), Maxiter (maximum number of iterations), and modes (number of IMFs)
in the CEEMD algorithm. We tested the Nstd (0.05–0.4), NR (10–500), Maxiter (100–1000), and
modes (9–13) to find the best configuration. Detailed parameter settings vary from dataset to
dataset, so settings should be changed at any time when the dataset is changed. In this part,
for instance, the best settings for dataset A were as follows: an Nstd of 0.2, an NR of 50, and a
Maxiter of 500. The total IMF number was 12, and the best accuracy is acquired by 11 IMFs. Also,
Table 8 shows that the CFML model achieved the highest r2 value and the lowest MAPE in all
four data sites, which demonstrates the improvements brought by CEEMD.

Remark: Through the aforementioned comparisons and conclusions, it is apparent that the
proposed hybrid forecasting model achieves the best values in all the applied error metrics. Moreover,
the outcomes prove that the adopted multi-objective optimizer MOGWO, the data decomposition
approach CEEMD, and the fuzzy time series part can improve the forecasting ability of the original
forecasting model LSTM to a great extent.
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Figure 9. Forecasting results of the developed forecasting system and the other compared models
(Experiment II).
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3.4. Experiment III: Tested with Electrical Load Data

The third experiment aims to verify the performance of the proposed CFML forecasting model in
QLD (Queensland) electrical power load forecasting (Figure 10). Due to the similarity in weekdays or
weekends and the noticeable differences between the load data from weekdays and weekends, the data
from Wednesday was randomly selected as a representative of weekdays and the data from Sunday
was chosen to represent weekends [60]. Tables 8 and 10 list the experimental outcomes. All forecasting
results from Wednesday and Sunday are depicted in Figure 10. In addition, the basic datasets from
Wednesday and Sunday in QLD are shown in Figure 10, and both of these datasets were collected
from Queensland in Australia. The specific results of electrical load forecasts are presented and shown
clearly in this subsection, from which the following conclusions were drawn:

(1) Regarding the electrical power load data from Wednesday and all forecasting steps, the proposed
hybrid forecasting system performed the best among all the other models. Moreover, among
all the single models involved in this experiment, the single model that performed best was the
WNN algorithm, while the worst was the CNN model. However, this may be a result of the data
features, which does not mean that the CNN constantly performs more poorly than the WNN
model. Since the regular form of the CNN model is designed to deal with figure data, to perform
unidimensional time series forecasting, it should be first transformed into a matrix in which each
row contains many observations, such as 128 or 256, just like the grey scale image data to some
extent. Otherwise, it is also reasonable and practical to let each row represent the number you
would like to use as input data, but a compromise in the accuracy may arise on some occasions.

(2) For the test of the optimization part and the verification of the fuzzy forecasting part,
comparisons between MOGWO-LSTM and LSTM and comparisons between FTS-LSTM and
LSTM are obviously shown in the aforementioned tables and figures, respectively. For instance,
on Wednesday, the regular LSTM model achieved a MAPE of 2.81%, which is higher than the
MAPE of FTS-LSTM by 39.14%. Moreover, the MOGWO-LSTM increased by 37.36% in terms of
the MAPE of 1.76%. Also, the FTS-MOGWO-LSTM model possessed a MAPE of 1.46%, lower
than that of the single LSTM combined with FTS or MOGWO. Noticeably, although this combined
model did not have that highest r2, it was not obviously lower than that of other compared
models. Moreover, it was apparently higher than that of regular networks such as GRNN, WNN,
DBN, SAE, and so on.

(3) All comparisons for the electrical power load data on Wednesday and Sunday demonstrate
that the decomposition methods achieved the best forecasting results. In this study, we tested
different parameter settings regarding the Nstd, NR, Maxiter, and modes for EMD, EEMD, and
CEEMD. The following outcomes were all acquired based on the best parameter settings for each
decomposition algorithm. Tables 9 and 10 show that the CEEMD method apparently outweighs
the EEMD and EMD methods, which explains why the CEEMD was selected by us and employed
in this research. Also, from Figure 10, the forecasts gained by the CEEMD model corresponded
most to the real data on both Wednesday and Sunday.

Remark: Based on the three experiments mentioned above, the strong applicability of
the developed model in these two electrical power load signals and in different wind data
sites, which feature different characteristics, reasonably and convincingly demonstrates that the
CEEMD-FTS-MOGWO-LSTM model has universal applicability. Also, the CFML model performs
better than all other compared benchmark models.
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Figure 10. The forecasting results from Wednesday and Sunday as well as the basic data descriptions.

Table 9. Results for the Diebold–Mariano (DM) test.

Models Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F Average

GRNN 3.9575 3.6231 * 4.0912 * 5.1216 * 6.8446 * 6.3102 * 7.4871 *

WNN 4.2354 * 3.8835 * 4.0655 * 5.3478 * 7.0481 * 5.5907 * 5.0285 *

CNN 6.4340 * 4.4792 * 5.4704 * 5.1895 * 6.6125 * 6.8757 * 5.8436 *

DBN 5.8905 * 5.1538 * 4.0607 * 5.7001 * 5.7287 * 6.2989 * 5.4721 *

SAE 5.9415 * 4.7566 * 4.7852 * 5.5428 * 7.7388 * 6.3725 * 5.8563 *

LSTM 4.0334 * 3.8478 * 4.3132 * 4.4067 * 7.9982 * 6.4910 * 5.1817 *

FTS-LSTM 4.9204 * 4.6690 * 5.3686 * 4.1885 * 5.1504 * 4.8412 * 4.8064 *

MOGWO-LSTM 3.6338 * 3.8032 * 3.9883 * 4.0228 * 5.4912 * 5.5515 * 4.4151 *

FTS-MOGWO-LSTM 4.4712 * 4.1507 * 3.8489 * 3.8727 * 4.0104 * 4.5032 * 4.1429 *

EMD-FTS-MOGWO-LSTM - - - - 1.9867 * 4.7634 * 3.3751 *

EEMD-FTS-MOGWO-LSTM - - - - 0.8353 2.5458 * 1.6901 *

CEEMD-FTS-MOGWO-LSTM - - - - - - -

* Indicates the 1% significance level.
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4. Discussion

In this section, based on the Diebold–Mariano test (DM test), we discuss and analyze the forecasting
model’s statistical significance, after which we adopt the Pearson’s correlation coefficient to discuss
the association strength. Then, to verify the contributions of our CFML model, the improvement
percentages between different combinations of basic models are also discussed in this section. Also,
the multistep-ahead forecasting of the developed model and a sensitivity analysis are conducted.

4.1. Discussion I: Statistical Significance

The DM test is widely used to demonstrate the significance of the improvement brought by
the developed CFML forecasting system compared with other algorithms. Table 9 lists the specific
DM test outcomes, which demonstrates that we are able to reject the null hypothesis at the 1%
significance level because all of the compared models’ DM test outcomes were greater than the critical
1% significance value for all four wind speed datasets and the two electrical power load data series.
Hence, we are convinced that the proposed CFML forecasting system obviously outweighs the other
compared algorithms. According to this, we are able to conclude reasonably that the hybrid forecasting
framework displays a significant difference in terms of the statistical level. Furthermore, this proves
that the proposed CFML model is superior to the other models mentioned above and involved in wind
speed forecasting.

4.2. Discussion II: Association Strength

The Pearson test can reveal the correlation strength between the predicted and actual values,
which was proposed by scientist Karl Pearson. In this section, the correlation strength is discussed
based on the Pearson test to prove the superiority of the proposed hybrid prediction model and all other
comparative models. Specifically, if the Pearson’s correlation coefficient is equal to 0, there is no linear
relationship between the two sets of data and, if the Pearson’s correlation coefficient is equal to 1, there
is a linear relationship between the actual value and the predicted value. Table 11 demonstrates the
outcomes of the Pearson’s test, from which we were able to obtain the conclusion that the values of all
other comparative models were lower than that of the proposed CFML forecasting model, which shows
that the forecasting values of the CFML model possess higher association strengths to some extent.

Table 11. Results for the Pearson’s test.

Models Dataset A Dataset B Dataset C Dataset D Dataset E Dataset F Average

GRNN 0.7830 0.7252 0.5105 0.6845 0.9478 0.9376 0.7648
WNN 0.6738 0.7726 0.5528 0.7516 0.9504 0.9711 0.7787
CNN 0.5871 0.5558 0.2078 0.5892 0.9362 0.9308 0.6345
DBN 0.7122 0.7284 0.5589 0.7419 0.9444 0.9234 0.7682
SAE 0.7083 0.6608 0.6481 0.7227 0.9652 0.9487 0.7756

LSTM 0.7915 0.7855 0.6241 0.7488 0.9916 0.9916 0.8221
FTS-LSTM 0.7822 0.7632 0.6515 0.7582 0.9904 0.9910 0.8228

MOGWO-LSTM 0.7848 0.7663 0.6341 0.7515 0.9918 0.9917 0.8200
FTS-MOGWO-LSTM 0.7828 0.7663 0.6905 0.7740 0.9903 0.9907 0.8324

EMD-FTS-MOGWO-LSTM - - - - 0.9968 0.9904 0.9936
EEMD-FTS-MOGWO-LSTM - - - - 0.9957 0.9960 0.9959

CEEMD-FTS-MOGWO-LSTM 0.9369 0.9737 0.9154 0.928 0.9970 0.9990 0.9583

The values in bold indicate the best values of each benchmark function.
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4.3. Discussion III: Improvement Percentage

In order to fully and clearly demonstrate the superiority of the proposed hybrid prediction system,
this section discusses the percentage improvements in MAPE, RMSE, MAE, and direction accuracy
(DA) between the developed system and other comparative models. These comparisons analyze and
quantify how each component works in the overall prediction framework. Table 12 demonstrates
the outcomes of the improvement percentages, taking dataset B and the electrical load power on
Wednesday as examples, which shows the following conclusions:

(1) By contrasting the improvement percentage between FTS-MOGWO-LSTM with FTS-LSTM and
MOGWO-LSTM, we drew the conclusion that the combination of MOGWO and FTS contributes
more than either FTS-LSTM or MOGWO-LSTM to the forecasting ability of the whole presented
hybrid CFML forecasting model.

(2) The comparison between the CEEMD-FTS-MOGWO-LSTM and the FTS-MOGWO-LSTM
models obviously revealed the improvement brought by the addition of the decomposition
approach CEEMD.

(3) On average, all improvement percentages were positive and significant, except for the percentages
of FTS-MOGWO-LSTM, as it fluctuated according to different datasets with different features.
This can be studied in the future. Regardless of the fluctuations, all values revealed that
FTS-MOGWO-LSTM does perform better than the regular one.

Table 12. Results for the discussion of improvement percentages.

Improvement Percentages Dataset B Wednesday Average Dataset B Wednesday Average

MOGWO-LSTM vs. LSTM FTS-LSTM vs. LSTM

MAE −1.568719 38.387067 18.409174 −2.973542 43.953213 20.489836
RMSE −0.619646 36.98742 18.183887 −3.881903 43.697567 19.907832
MAPE 6.952491 37.366548 22.15952 8.34299 39.145907 23.744449

U2 10.180262 24.983165 17.581714 0.791078 28.242424 14.516751

Improvement Percentages FTS-MOGWO-LSTM vs. LSTM FTS-MOGWO-LSTM vs. MOGWO-LSTM

MAE 1.568719 50.741294 26.155007 3.088981 20.051354 11.570168
RMSE 2.387461 49.442711 25.915086 2.988589 19.766357 11.377473
MAPE 10.428737 48.042705 29.235721 3.73599 17.045455 10.390723

U2 6.76955 37.656566 22.213058 −3.797286 16.894075 6.5483945

Improvement Percentages FTS-MOGWO-LSTM vs. FTS-LSTM CEEMD-FTS-MOGWO-LSTM vs.
MOGWO-LSTM

MAE 4.411096 12.111454 8.261275 45.94283 55.224528 50.58368
RMSE 6.035088 10.204078 8.119583 48.37892 50.396098 49.387508
MAPE 2.275601 14.619883 8.447742 45.33001 52.840909 49.085461

U2 5.804507 13.119369 9.461938 11.27635 27.648115 19.462233

Improvement Percentages CEEMD-FTS-MOGWO-LSTM vs.
FTS-MOGWO-LSTM CEEMD-FTS-MOGWO-LSTM vs. LSTM

MAE 44.219791 43.99471 44.107251 45.09483 72.412519 58.753673
RMSE 46.788648 38.175683 42.482166 48.05905 68.743301 58.401175
MAPE 43.208279 43.150685 43.179482 49.13094 70.462633 59.796786

U2 14.522187 12.94016 13.731174 20.30865 45.723906 33.016278
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4.4. Discussion IV: Multistep-Ahead Forecasting

Now, we consider that the one-step forecasting model is sometimes insufficient to ensure the
controllability and reliability of the electrical power load or wind speed forecasting system. Therefore,
to test the multistep performance of the developed CFML system, the multistep prediction in this
study used the two datasets listed in Table 3 (i.e., dataset A and the electrical power load on Sunday as
representatives).

Table 13 illustrates the forecasting outcomes of those comparative models (i.e., GRNN, LSTM, and
EEMD-FTS-MOGWO-LSTM) and the proposed CEEMD-FTS-MOGWO-LSTM forecasting model. It
can be observed that for one-step, two-step, and three-step predictions using electrical power load data
or wind speed data, the proposed model always achieved the lowest MAPE value in the test models.
That is to say, the developed framework effectively carried out multistep-ahead forecasting in electrical
power load prediction or wind speed prediction (through effective error index measurements).

4.5. Discussion V: Sensitivity Analysis

The hybrid forecasting model has two essential parameters, namely the number of iterations and
the number of search agents. Hence, in this subsection, we explore the effects of these two parameters
on the prediction performance of wind speed dataset A. That is, the other parameters’ values were
unchanged, while the number of search agents and iterations changed. Specifically, we set the search
agents as 5, 10, 15, 20, 25, and 30, and then, we kept the search agent at the value of 10, changing the
values of iterations to 5, 10, 20, 30, 40, and 50. Tables 14 and 15 illustrate the experimental outcomes of
dataset A. The following conclusions were drawn:

(1) The value of MAPE first decreased as the number of search agents increased. Then, it declined to
the minimum value with 10 search agents, after which it started increasing and fluctuated at a
high level except for a decrease at 25 search agents. Overall, we can see that the proposed hybrid
CFML forecasting model performed the best with 10 search agents.

(2) Keeping the number of search agents at the best value of 10, we changed the number of iterations
in order to check the influence caused by the iterations on the performance of the presented model.
We almost drew a similar conclusion to that of the search agents to some degree. We can see that,
as the number of iterations increased from 5 to 30, the accuracy measured by various metrics,
especially MAPE, first fell to the minimum value with 10 iterations and then rose gradually as the
number of iteration increased. According to these two conclusions, we set the number of search
agents and the number of iterations to 10 in our experiment.

(3) It was found through the comparisons that the number of those two parameters would worsen
the performance of the CEEMD-FTS-MOGWO-LSTM system proposed in this study if either they
were too small or too big. In addition, different prediction conditions were shown to depend to a
large extent on the decision-making process. Therefore, it is important to figure out the optimal
parameters under different application conditions.
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Table 14. Sensitivity analysis of different search agent numbers based on MOGWO.

Metrics
The Value of Search Agent Number

5 10 15 20 25 30

AE −0.583443 −0.020492 −0.480544 −1.462529 −0.670987 −1.334932
MAE 0.613591 0.231376 0.492307 1.462529 0.680333 1.334932
RMSE 0.680007 0.296408 0.540443 1.483524 0.730494 1.349639
NMSE 0.019238 0.004058 0.011898 0.127156 0.022886 0.105523
MAPE 0.119743 0.048723 0.096181 0.294995 0.133244 0.271309

IA 0.995908 0.999202 0.997397 0.983123 0.995343 0.985745
FB 0.124580 0.004128 0.101493 0.344632 0.144625 0.309906
U1 0.071900 0.029562 0.056484 0.172524 0.077915 0.154459
U2 0.974610 0.743881 0.851054 1.010876 0.974186 1.003426
DA 0.575758 0.737374 0.626263 0.484848 0.565657 0.484848

r 0.925713 0.935871 0.969081 0.964314 0.955029 0.970766

The values in bold indicate the best values of each benchmark function.

Table 15. Sensitivity analysis of the different iteration numbers based on MOGWO.

Metrics
The Value of Iteration Number

5 10 20 30 40 50

AE −0.372790 −0.020492 0.288276 0.091318 0.133480 −0.398180
MAE 0.40222 0.231376 0.310034 0.350980 0.355459 0.409639
RMSE 0.474841 0.296408 0.362281 0.419625 0.438289 0.464493
NMSE 0.008926 0.004058 0.006453 0.008568 0.009241 0.009084
MAPE 0.077856 0.048723 0.068445 0.076189 0.077642 0.080769

IA 0.997962 0.999202 0.998823 0.998390 0.998213 0.998088
FB 0.077850 0.004128 −0.05631 −0.01819 −0.02647 0.083373
U1 0.049091 0.029562 0.035048 0.041391 0.043116 0.048082
U2 0.767918 0.743881 0.716270 0.726236 0.744410 0.779216

DA 0.656566 0.737374 0.666667 0.666667 0.646465 0.676768
r 0.947467 0.935871 0.969309 0.850194 0.883903 0.955046

The values in bold indicate the best values of each benchmark function.

Remark: According to Discussions I to V, we can draw the conclusion that the proposed hybrid
forecasting system, namely CEEMD-FTS-MOGWO-LSTM, possesses a more effective and stable
forecasting ability, regarding not only the wind speed but also the electrical power load, than other
models in terms of a lot of aspects, such as the correlation strength, statistical significance, and
forecasting accuracy. Also, the small number of iterations and search agents demonstrates the
superiority and convenience of the proposed model.
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5. Conclusions

Accurate wind speed electrical power load forecasting is crucial for power grid safety management,
power system operation, and the power market. However, due to the nonlinearity and randomness
of wind speed data and electrical power load series, it is still a difficult and challenging task to
establish an effective forecasting framework to deal with this problem. In this study, a new hybrid
prediction system was developed in order to obtain stability and accuracy simultaneously. Four wind
speed datasets and two electrical power load datasets were adopted to test the effectiveness of the
hybrid forecasting framework. The outcomes show that our proposed system outperformed all other
comparative benchmark models on many indicators. Firstly, a data preprocessing decomposition
approach, named CEEMD, was successfully applied in this study to enhance the forecasting ability of
the CFML forecasting model. Secondly, an effective multi-objective optimization algorithm, MOGWO,
was successfully combined and used to find out the optimal initial parameters. It not only achieved
better results in testing functions than the other two optimization models (NSGA-II and MODA) but
also showed the best optimization capability. Moreover, fuzzy time series forecasting with the rough
set induction rule, which is based on the LEM2 algorithm to build rule sets, was successfully combined
with MOGWO and the deep learning algorithm, called LSTM, in this paper. It was shown that the
addition of the FTS part, the MOGWO part, and the data decomposition part all bring improvements in
the performance of the hybrid forecasting framework. Also, a similar method can be applied in other
fields, for example, the electrical power load, which was verified in this paper. Finally, the forecasting
models CEEMD, FTS, and MOGWO showed the ability to carry the strength of each component
and to effectively improve the forecasting ability of the CFML forecasting model in terms of stability
and accuracy.
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List of Abbreviations
FB The fractional bias
U1 The Theil U statistic 1

CFML CEEMD-FTS-MOGWO-LSTM U2 The Theil U statistic 2
WNN Wavelet Neutral Network DA The direction accuracy

GRNN
Generalized Regression Neural
Network

INDEX
The improvement ratio of the index among
different models

SAE Sparse Autoencoder R2 The Pearson’s correlation coefficient
LSTM Long Short-Term Memory DM Diebold–Mariano test
DBN Deep Belief Network H0 The null hypothesis
CNN Convolutional Neural Network H1 The alternative hypothesis
IGD The inverted generational distance α The confidence level
FTS Fuzzy time series Xt An input at time t

LEM2
Learning from examples module
version two

St The hidden state
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AR Autoregressive model MA Moving-average model

ARIMA
Autoregressive Integrated Moving
Average

ARMA Autoregressive moving average model

MODA Multi-objective dragonfly St−1 The previous time step
MOGWO Multi-objective grey wolf f t The forget gate

NSGA-II
Non-dominated sorted genetic
algorithm-II

it The input gate

Kα The distance between wolf α and the
prey

R1 The position of wolf α at time ite+1

Kβ The distance between wolf β and the
prey

R2 The position of wolf β at time ite+1

Kδ The distance between wolf δ and the
prey

R3 The position of wolf δ at time ite+1

QLD Queensland Ct−1 The old cell state
Pni Positive noise Nni Negative noise
AE The average error Wni Noise with identical amplitude and phase
MAE The mean absolute error Ot The output gate
RMSE The root-mean-square error gj The j-th inequality constraint

NMSE
The normalized average of the squares
of error

hj The j-th equality constraint

MAPE The mean absolute percentage error RST Rough set theory
IMF Intrinsic mode function IA The index of agreement
ZDT2 Zitzler–Deb–Thiele’s function N. 2 ZDT1 Zitzler–Deb–Thiele’s function N. 1
Kursawe Kursawe function ZDT3 Zitzler–Deb–Thiele’s function N. 3
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
CEEMD Complete Ensemble Empirical Mode Decomposition
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Abstract: As one of the leading types of energy, crude oil plays a crucial role in the global economy.
Understanding the movement of crude oil prices is very attractive for producers, consumers and
even researchers. However, due to its complex features of nonlinearity and nonstationarity, it is
a very challenging task to accurately forecasting crude oil prices. Inspired by the well-known
framework “decomposition and ensemble” in signal processing and/or time series forecasting,
we propose a new approach that integrates the improved complete ensemble empirical mode
decomposition with adaptive noise (ICEEMDAN), differential evolution (DE) and several types
of ridge regression (RR), namely, ICEEMDAN-DE-RR, for more accurate crude oil price forecasting
in this paper. The proposed approach consists of three steps. First, we use the ICEEMDAN to
decompose the complex daily crude oil price series into several relatively simple components. Second,
ridge regression or kernel ridge regression is employed to forecast each decomposed component.
To enhance the accuracy of ridge regression, DE is used to jointly optimize the regularization
item, the weights and parameters of each single kernel for each component. Finally, the predicted
results of all components are aggregated as the final predicted results. The publicly available West
Texas Intermediate (WTI) daily crude oil spot prices are used to validate the performance of the
proposed approach. The experimental results indicate that the proposed approach can achieve
better performance than some state-of-the-art approaches in terms of several evaluation criteria,
demonstrating that the proposed ICEEMDAN-DE-RR is very promising for daily crude oil price
forecasting.

Keywords: crude oil prices; time series forecasting; improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN); kernel learning; kernel ridge regression;
differential evolution (DE)

1. Introduction

Crude oil is one of the leading types of energy that has great impacts on the global economy.
Trying to accurately expect changes in crude oil prices benefits the producers and consumers of crude
oil. However, the prices are affected by many factors, such as climate, exchange rate, supply and
demand, speculation activities, geopolitics and so on, and they have fluctuated drastically in the last
decades [1,2]. For example, the prices of West Texas Intermediate (WTI) reached over 145 USD/barrel
in July 2008 and then quickly reduced to about 30 USD/barrel in the next five months. Crude oil
prices have shown significant nonlinearity and nonstationarity in the last three decades. The complex
fluctuation of crude oil prices makes it a very challenging task to accurately predict crude oil prices.
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Despite this, many researchers have contributed to building automatic models to forecast crude oil
prices accurately.

The task of forecasting crude oil prices is to expect future prices using existing data. From the
perspective of the input of the forecasting task, it can be divided into two groups: multivariate
forecasting and univariate forecasting. The former usually feeds the data associated with types of
variables, such as macroeconomic variables, exchange rates, sentiment analysis, inventory variables,
previous crude oil prices, and so on, to the predictors [1–7], while the latter uses the previous
prices only [8–12]. These are two different perspectives for studying crude oil price forecasting.
In practical applications, the former is usually used to forecast long-term crude oil prices, for example,
monthly prices or weekly prices, while the latter is for daily prices in most cases. In the task of
forecasting crude oil prices, the predictors can be mainly categorized into two classes: statistical
models (econometric models) and artificial intelligence (AI) models. Mirmirani and Li employed
vector auto-regression (VAR) to forecast the movements of U.S. oil prices [13]. Murat and Tokat
found that a vector error correction model (VECM) with crack spread futures outperformed the
traditional random walk (RW) model [14]. Moshiri and Foroutan applied auto-regressive integrated
moving average (ARIMA) and another statistical model, generalized autoregressive conditional
heteroskedasticity (GARCH), to forecasting daily crude oil futures prices [15]. Some extensions of
GARCH have also been employed in recent years [16–18]. In Lyocsa and Molnar’s study, the authors
investigated whether the heterogeneous autoregressive (HAR) model can improve the results of
forecasting the volatility of crude oil prices by using information from related energy commodity,
and the experimental results demonstrated that such information can not improve the volatility
forecasting [19]. Lv studied the performance of the HAR model of realized volatility (HAR-RV) for
forecasting crude oil futures price volatility [20]. Naser found that the dynamic model averaging
(DMA) model showed better performance in forecasting crude oil prices than all the other alternative
models, and it could also achieve better results of forecasting spot prices than futures prices [21].
Azevedo and Campos combined ARIMA, exponential smoothing, and dynamic regression to forecast
WTI and Brent crude oil spot prices, and the experimental results indicated that the combined model
was promising for crude oil price forecasting [22].

The statistical models are usually built on the assumption of linearity and stationarity of the
predicted time series. However, most research has shown that crude oil prices are highly nonlinear and
nonstationary [8,12,23], so such characteristics limit the accuracy of statistical models for forecasting
crude oil prices. To cope with the complex characteristics of crude oil prices, more and more scholars
use AI models to forecast crude oil prices. The most popular AI models include artificial neural network
(ANN) [12,24–27], support vector regression (SVR) [28,29] and least squares SVR (LSSVR) [2,10,30],
sparse Bayesian learning (SBL) [31,32], extreme learning machine (ELM) [23,33,34], extreme gradient
boosting (XGBoost) [8], random vector functional link (RVFL) network [11], long short-term memory
(LSTM) [35], and so on. Yu et al. used a feed-forward neural network (FNN) to forecast each
decomposed component from the raw series of crude oil prices, and then integrated the results
of all components as the final forecasting result by an adaptive linear neural network (ALNN) [12].
Xiong et al. also used FNN to conduct multi-step-ahead weekly crude oil spot price forecasting [25].
Barunik and Malinska found that a focused time-delay NN could achieve higher accuracy than the
compared models when forecasting monthly crude oil prices [26]. Extensive research has demonstrated
that the kernel-based methods, such as SVR, LSSVR and relevance vector machine, are promising
for forecasting crude oil prices [2,10,28–30,36]. Very recently, the LSTM, an artificial recurrent NN
architecture widely used in deep learning, has been applied to forecasting crude oil prices. Owing to
its power in processing sequences of data, the LSTM-based approach has yielded very promising
forecasting results [35]. Chiroma et al. presented an extensive review of the research that applied
AI-based models to crude oil price forecasting [37].

Due to the nonlinearity and nonstationarity of crude oil price series, statistical models and AI
models usually cannot achieve satisfactory results by conducting forecasting with the raw crude oil
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prices directly. A simple but effective way is to adopt the “divide and conquer” strategy, that is,
to decompose the complex signal into several relatively simple components and then extract relevant
features or handle each component for further work. Typical applications of such strategy include
fault diagnosis [38,39], biosignal analysis [40,41], time series forecasting [42,43], and so on [44–46].
Following this strategy, a “decomposition and ensemble” framework has become very popular in
the field of energy forecasting, such as wind speed forecasting [47,48], load forecasting [49–51] and
price forecasting [8,11,52,53] in recent years. Ren et al. integrated empirical mode decomposition
(EMD) and SVR to forecast wind speed. Specifically, EMD was used to decompose the raw wind speed
series into a couple of components (a residue and a few intrinsic mode functions (IMFs)). After that,
SVR was used to build an individual forecasting model for each component. At last, the predicted
values of all the components were aggregated as the final forecasting result [47]. Similarly, Li et al.
utilized an extended EMD, namely, ensemble EMD (EEMD), and random forests (RF) for electricity
consumption forecasting [31], and Yang and Wang applied complementary EEMD (CEEMD) and back
propagation NN (BPNN) to forecast wind speed [54]. All the research indicates that the approaches
following the framework of “decomposition and ensemble” is capable of significantly improving the
accuracy of energy forecasting.

Regarding the decomposition methods, although EMD, EEMD and CEEMD have the ability of
improving accuracy, they may introduce new noise into the recovered signal and still suffer from
the “mode mixing” problem [55,56]. To solve this problem, a complete EEMD with adaptive noise
(CEEMDAN) and an improved CEEMDAN (ICEEMDAN) were proposed [57,58]. The existing study
has demonstrated the power of CEEMDAN/ICEEMDAN in energy forecasting [8,59]. As far as the
forecasting method for each component, so-called individual forecasting, any regression methods
can be selected for this purpose in theory. Besides the above-mentioned methods such as SVR, ANN,
ELM, LSTM and so on, ridge regression (RR) is a simple but powerful regression for forecasting.
Moreover, the accuracy of regression can be further improved by introducing kernels into RR (KRR),
and the KRR has been successfully applied in wind speed forecasting [60,61], object tracking [62],
and preheat temperature prediction [63]. The basic idea of the kernel trick is to map the features
of the low-dimensional space to the high-dimensional space to obtain more representative features.
Naik et al. used wavelet kernel RR and low rank multi-kernel RR to forecast the components of
wind speed and wind power decomposed by EMD and variational mode decomposition (VMD),
respectively [61,64]. The low rank multi-kernel RR in their approach was a simple linear combination
by a polynomial kernel and a wavelet kernel, that is to say, the multi-kernel was actually a combination
of two simple kernels [64]. The number and type of kernels may limit the performance of the proposed
approach. Qian et al. used multi-kernel RR for object tracking, where the final kernel included one
linear kernel, five polynomial kernels and five Gaussian kernels, and the parameter of each kernel was
specified in advance and the optimization process was only to optimize the weight of each kernel [62].
Regarding multi-kernel learning, an ideal way is to optimize the weights and the parameters of each
kernel together. The nature-inspired algorithms, such as particle swarm optimization (PSO) [65–67],
differential evolution (DE) [68,69], ant colony optimization [70,71] and so on, can be applied to
optimizing both the weights and the parameters of the multi-kernel learning. Among the algorithms,
DE has proven to be very powerful for numerical optimization.

Motivated by the potential of ICEEMDAN in signal decomposition, RR in regression and DE in
numerical optimization, we proposed a novel approach integrating ICEEMDAN, DE and RR, namely,
ICEEMDAN-DE-RR, for crude oil price forecasting in this paper. Specifically, the ICEEMDAN-DE-RR
consists of three steps. First, ICEEMDAN is employed to decompose the raw daily crude oil price series
into several relatively simple components. Second, we use RR or KRR optimized by DE to forecast
each component individually. Finally, the predicted results from each component are aggregated as
the final forecasting result.

The main contributions of this paper lie in the following:
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(1) We propose a new framework of multiple kernel learning, which simultaneously optimizes the
weights and parameters of kernels using nature-inspired optimization.

(2) We forecast crude oil prices by integrating ICEEMDAN, DE and RR, following the “decomposition
and ensemble” framework. To the best of our knowledge, it is the first time that this combination
is used for forecasting tasks.

(3) The experimental results indicate that the proposed approach is effective for crude oil
price forecasting.

It is worth pointing out that although there have existed lots of models following the
“decomposition and ensemble” framework for energy forecasting, the proposed models are different
from them in several aspects. First, it is an attempt to use RR to forecast crude oil prices for the first
time. Existing research focuses on using RR to forecast wind speed, hydrologic time series, real estate
appraisal and so on [60,72,73], not including crude oil prices. Second, a new multiple kernel learning
framework is proposed using DE to optimize the parameters and/or weight of each base kernel, as well
as the regularization item simultaneously. The experimental results demonstrate the effectiveness of
the proposed approach. Third, the integration of ICEEMDAN, DE and RR is used to forecast time
series for the first time.

The novelty of this paper is three-fold: (1) Based on the power of ICEEMDAN, DE, and RR in
signal decomposition, numerical optimization, and regression, respectively, a novel combination of
these three methods is proposed for time series forecasting; (2) To improve the representability of
kernels, a novel multiple kernel learning framework using DE to simultaneously optimize the weights
and parameters of every single kernel is proposed, which can be applied to both classification and
regression; (3) The proposed ICEEMDAN-DE-RR approaches are firstly applied to forecasting crude
oil prices and the results demonstrate the effectiveness of the approaches.

The remainder of this paper is structured as follows. In Section 2, we briefly introduce
ICEEMDAN, DE and RR. Section 3 formulates the proposed ICEEMDAN-DE-RR method in detail.
To evaluate the proposed ICEEMDAN-DE-RR, we report and analyze the experimental results in
Section 4. Finally, we conclude the paper in Section 5.

2. Methods

2.1. Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN)

ICEEMDAN was originated from EMD proposed by Huang et al. [55–58]. EMD is an adaptive
method for time-space analysis, which decomposes a raw sequence that is non-linear and non-stationary
into several IMFs and one residue. The main steps of EMD are described as follows:

Step 1: Find out all local extrema of the raw data x(t), t = 1, 2, 3, · · · , T;
Step 2: Link all local minima and local maxima to construct the lower envelopes xlow(t) and upper

envelopes xup(t), respectively;

Step 3: Compute the local mean, i.e., m(t) = xup(t)+xlow(t)
2 ;

Step 4: Extract the first IMF and residue by IMF1(t) = x(t)− m(t) and R1(t) = m(t), respectively;
Step 5: For i = 1, 2, 3, · · · , n, if find out more than two local extrema of Ri(t), go back to step 2 and

get IMFi+1(t) and Ri+1(t).

In EMD, it was found that there were similar parts of signals existing at the same corresponding
position in different IMFs, which was called mode mixing. Because of it, IMFs have lost their
physical meanings [55]. To cope with this issue, Wu and Huang proposed Ensemble EMD (EEMD) by
performing EMD many times on the time series with added white noises [56]. The new time series
with white noises xi(t) can be formulated as Equation (1):

xi(t) = x(t) + wi(t), (1)
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where x(t) represents the raw data series and wi(t) is the i-th white noise, i = 1, 2, 3, · · · , n.
Then, when every xi(t) is decomposed, we can get the corresponding IMFi

k(t). To compute the
real k-th IMF, IMFk, EEMD calculates the average of the IMFi

k(t), which can remove the effect of
the white noises. However, in practice, one of the limitations of EEMD is that the recovered signal
will include residual noise. To solve this problem, Torres et al. proposed a new extension of EEMD,
termed as CEEMDAN for signal decomposition [57]. For k = 2, 3, · · · , K, the k-th IMF and residue can
be computed as Equations (2) and (3):

IMFk = 1/I
I

∑
i=1

(E1(rk−1[t] + εk−1E1(wi[t])), (2)

rk[t] = rk−1[t]− IMFk, (3)

where E1(.) represents the first IMF decomposed from the series, and εi is used to set the signal-to-noise
(SNR) at each stage.

In 2014, Colominas et al. found that the IMFs of CEEMDAN contained some residual noise
and some “spurious” modes. Thus, they further proposed a method to improve CEEMDAN
(ICEEMDAN) [57,58], whose main steps can be described as follows:

Step 1: Add the first IMF of the given white noises to the original series x(t), as shown in following:

xi(t) = x(t) + β0E1(wi(t)), (4)

where β0 is the level of noise.
Step 2: Find out the local means M(.) of xi(t) and calculate the average of local means to get the

following residue:

r1(t) =
1
N

N

∑
i=1

M(xi(t)). (5)

Step 3: Then, we can get the first IMF, as shown in Equation (6):

IMF1 = x(t)− r1(t). (6)

Step 4: For k = 2, 3, · · · , K, the residue and the k-th IMF can be computed by Equation (7) and
Equation (8):

rk(t) =
1
N

N

∑
i=1

M(rk−1(t) + εk−1Ek(wi(t))), (7)

IMFk = rk−1[t]− rk[t], (8)

In this paper, the ICEEMDAN is used to decompose the original data series into several IMFs and
one residue, standing for local physical features of original signals. The difficult task of forecasting the
original signals is now becoming several relatively simple sub-tasks.

2.2. Kernel Ridge Regression (KRR)

Ridge regression (RR) is a typical linear regression that uses a sum-of-squares error function and
regularization technique to control the bias variance trade-off, whose purpose is to discover the linear
structures hidden in the data [74]. Kernel ridge regression (KRR) is an extension of RR by introducing
a kernel function that maps the input data in a low dimensional space to a high one. The kernel
function k is defined on an input space X ⊆ Rd and is with the formula: k : X ×X → R. The kernel
function is actually a feature map from d dimensional space into a high-dimensional Hilbert Space Hk,
Ψ : X → Hk such that k(xi, xj) = 〈Ψ(xi), Ψ(xj)〉Hk [75–77]. The most popular kernel functions include:
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• Linear kernel: kL(xi, xj) = xT
i xj.

• Polynomial kernel: kP(xi, xj) = (a(xT
i xj) + b)c, where a, b, and c are the coefficient, constant and

degree of kP, respectively..
• Sigmoid kernel: kS(xi, xj) = tanh(d(xT

i xj) + e), where d and e are the coefficient and
constant, respectively.

• Radial basis function (RBF) kernel: kR(xi, xj) = e− f ‖xi−xj‖2
, where f is related to the width of

the kernel.

With the kernel functions and n data samples (x1, y1), (x2, y2), · · · , (xn, yn) ∈ X × Y (yi is the
target value of corresponding xi, i = 1, 2, · · · , n), we can construct the kernel matrix as Equation (9):

K =

⎡
⎢⎢⎢⎣

k (x1, x1) k (x1, x2) . . . k (x1, xn)

k (x2, x1) k (x2, x2) . . . k (x2, xn)

. . . . . . . . . . . .
k (xn, x1) k (xn, x2) . . . k (xn, xn)

⎤
⎥⎥⎥⎦ . (9)

Then the KRR problem can be formulated as Equation (10):

min
w

‖Y − Kw‖2 + λ‖w‖2, (10)

where Y is the target vector of all the n data samples, w is the unknown vector to be found, and λ ≥ 0
is a regularization item to avoid a large range of w. The solution in terms of w can be easily given in
a closed-from manner as Equation (11):

w = (K + λIn)
−1 Y, (11)

where In is an n × n identity matrix with ones on the main diagonal and zeros elsewhere.
Kernel types and parameters are two important factors for KRR. Some existing research used

only a single kernel with specified parameters or simple combinations of several kernels with a fixed
weight of every kernel in practical problems, limiting the forecasting performance of KRR. To improve
the performance, an ideal solution is to adaptively optimize the weight and/or the parameters of each
single kernel using some nature-inspired optimization algorithms. In this paper, we use differential
evolution (DE) to optimize such weights and/or parameters for kernels.

2.3. Differential Evolution (DE)

Differential evolution (DE) is a member of the family of nature-inspired algorithms, and it has
been demonstrated that DE is very powerful in solving various science and engineering problems [68].
The main idea of DE is to optimize a problem by using a few operations to iteratively improve a set of
candidate solutions with evaluation criteria. Basically, the evolutionary process of DE consists of four
stages/operations: initialization, mutation, crossover, and selection.

2.3.1. Initialization

For a D-dimensional optimization problem, given the population size P, evolutionary generation
G, and the lower and upper bounds of each decision variable Xmin = [x1,min, x2,min, · · · , xD,min] and
Xmax = [x1,max, x2,max, · · · , xD,max] respectively, the d−th decision variable of the i−th individual
(i = 1, 2, · · · , P) can be initialized as Equation (12):

I1
i,d = xd,min + rand(0, 1)× (xd,max − xd,min), (12)

where the “1” at the right-up corner of I represents the current evolutionary generation, and rand(0, 1)
generates a random real number between 0 and 1.
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The initialization produces a population with P individuals/solutions/vectors, and the d−th
decision variable in each individual is in the range of [xd,min, xd,max].

2.3.2. Mutation

The purpose of mutation is to generate a new vector Vg
i , so-called mutant vector, from several

existing vectors/individuals with respect to each vector Ig
i , so-called target vector, in the population of

the g−th generation. Some popular mutation strategies are shown as follows:

Vg
i = Ig

r1 + F × (Ig
r2 − Ig

r3), (13)

Vg
i = Ig

b + F × (Ig
r1 − Ig

r2), (14)

Vg
i = Ig

b + F × (Ig
r1 − Ig

r2) + F × (Ig
r3 − Ig

r4), (15)

Vg
i = Ig

i + F × (Ig
b − Ig

i ) + F × (Ig
r1 − Ig

r2), (16)

where r1 − r4 are mutually random indices of the individuals, F is a preset parameter for scaling the
difference vector, and Ig

b is the best individual at the g−th generation.

2.3.3. Crossover

The purpose of crossover is to generate a trial vector Ug
i = {Ug

i,1, Ug
i,2, · · · , Ug

i,D} from the target
vector Ig

i and its corresponding mutant vector Vg
i with the following strategy:

Ug
i,j =

{
Vg

i,j, if rand(0, 1) ≤ Cr or j = jrand

Ig
i,j, otherwise

, (17)

where Cr is a user-defined crossover rate that satisfies Cr ∈ [0, 1], and jrand is a random integer in [1, D]

to ensure that at least one decision variable in Vg
i can be passed to Ug

i directly.

2.3.4. Selection

The selection operation is to select the better vector from the target vector Ig
i and its corresponding

trial vector Ug
i for the next generation with evaluation by fitness function f . The selection strategy is

mathematically shown in Equation (18):

Ig
i =

{
Ug

i , if f
(

Ug
i

)
≤ f

(
Ig
i

)
Ig
i , otherwise

. (18)

3. The Proposed ICEEMDAN-DE-RR Approach

3.1. Ridge Regression by DE

For any types of RR, the regularization item is an important parameter to be optimized. Kernel is
a very powerful trick in machine learning, which maps the data that are linearly inseparable in the
input space into a higher dimensional space where the mapped data are linearly separable using kernel
functions. Regarding kernel Ridge regression (KRR), besides the regularization item in Equation (10),
the parameters a − f for the single kernels kP, kS and kR need to be optimized. To further explore the
ability of multiple kernel RR (MKRR) for crude oil price forecasting, we build a multiple kernel that
consists of one kL, one kP, one kS and n kRs, as shown in Equation (19),
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kM(xi, xj) = w1kL(xi, xj) + w2kP(xi, xj) + w3kS(xi, xj) +
n+3

∑
l=4

wlkR(xi, xj)

= w1xT
i xj + w2(a(xT

i xj) + b)c + w3 tanh(d(xT
i xj) + e) +

n+3

∑
l=4

wle
− fl−3‖xi−xj‖2

,

(19)

where w1, w2, · · · , wn+3 are the weights of each single kernel, and a − e and f1 − fn are parameters for
each single kernel.

In our approach, we use DE to optimize the regularization item λ in RR, λ and a− f for each single
kernel, and λ, weights and a− e, f1 − fn for kM, respectively. The weights for kM, wi(i = 1, 2, · · · , n− 3),
are generated from n + 3 real values xj(j = 1, 2, · · · , n − 3) optimized by DE to meet ∑n+3

i=1 = 1 by
Equation (20):

wi =
xi

∑n+3
j=1 xj

. (20)

3.2. The Proposed ICEEMDAN-DE-RR Approach

The proposed ICEEMDAN-DE-RR approach is a typical form of “decomposition and ensemble”,
which consists of three stages, i.e., decomposition, individual forecasting, and ensemble forecasting,
as shown in Figure 1.

Figure 1. The flowchart of the proposed ICEEMDAN-DE-KRR.

The details of each stage are as follows:

Stage 1: Decomposition. The daily raw crude oil price series is decomposed into two groups of
components: several IMFs and one residue.

Stage 2: Individual forecasting. The data samples in each component are divided into training set,
validation set, and test set. The training set and validation set are used to build RR models,
and then the test set is applied to evaluate the models. For each model, we use DE to
optimize the regularization item, corresponding kernel parameters, and possible weights.

Stage 3: Ensemble forecasting. The individual forecasting results of all the components in Stage 2
are aggregated as the final forecasting results by addition.
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The proposed ICEEMDAN-DE-RR adopts the typical “divide-and-conquer” strategy,
which divides the complexly non-linear and non-stationary crude oil prices into several relatively
simple components and then handles each component with a relatively simple DE-based RR predictor.
With the strategy, the tough task of forecasting raw crude oil price series becomes several relatively
simple sub-tasks of forecasting each component.

It is worth pointing out that although there is a lot of work on energy forecasting following the
framework of “decomposition and ensemble”, our proposed work is very different from the work in
several aspects: (1) RR and KRR are first applied to crude oil forecasting; (2) a novel multiple kernel
RR (MKRR) optimized by DE is proposed and it can be applied in other fields; and (3) the ICEEMDAN,
DE and RR are integrated to forecast daily crude oil prices for the first time.

4. Experimental Results and Comparative Analysis

4.1. Data Description

To validate the effectiveness of the proposed approach, we select the West Texas Intermediate
(WTI) daily crude oil spot closing prices from 2 January 1986 to 4 February 2019 as an experimental
dataset. There are 8342 samples in total, and the daily crude oil prices from 2 January 1986 to
14 June 2012, with 6673 samples accounting for 80% of the total samples, are chosen as the training set,
while the rest are for testing. Within the training set, 5338 (80%) and 1335 (20%) samples are used for
training and validation, respectively.

The WTI daily crude oil spot prices and corresponding decomposed components by ICEEMDAN
are shown in Figure 2. We can see that the complex raw crude oil prices are decomposed into two
groups: high-frequency group (IMF1-IMF5) and low-frequency group (IMF6-IMF11 and residue).
The high-frequency components fluctuate within a narrow range of amplitude while the low-frequency
ones fluctuate within a wide range of amplitude, making forecasting crude oil prices with the
components easier than with the raw crude oil prices.

We conduct several types of multi-step-ahead forecasting with a lag of L in the experiments.
A type of m-step-ahead prediction means forecasting the crude oil prices on the (t + m)-th day with
the L price samples before the t-th day but including the t-th day.

For a fair comparison, each decomposed component is scaled to [0, 1] using the min-max
normalization, as formulated by Equation (21).

x
′
t =

xt − xmin
xmax − xmin

, (21)

where xt and x
′
t are crude oil price series before and after normalization respectively, and xmax and

xmin are the maximum value and the minimum value of the time series, respectively.

4.2. Evaluation Criteria

We use a set of criteria to evaluate the proposed approach as well as the compared models.
Specifically, the selected criteria include the mean absolute percent error (MAPE), the root-mean-square
error (RMSE), and the directional statistic (Dstat). The MAPE, RMSE and Dstat are defined as
Equations (22)–(24):

MAPE =
1
N

N

∑
i=1

|yt − ŷt

yt
|, (22)

RMSE =

√√√√ 1
N

N

∑
i=1

(yt − ŷt)2, (23)

Dstat =
1
N

N

∑
i=1

di × 100%, (24)
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where yt and ŷt are the actual and predicted values at time t respectively, N is the size of the prediction,
and di = 1 if (ŷt+1 − yt)(yt+1 − yt) ≥ 0; otherwise di = 0. The smaller the values of MAPE and RMSE,
the better the model. In contrast, a higher Dstat means a better forecasting model.

Figure 2. The daily WTI crude oil prices and the corresponding decomposed components by
ICEEMDAN.
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Besides, we take the Diebold–Mariano (DM) test to compare the statistic difference of the accuracy
of prediction between pairs of models. At first, we compute the difference of the prediction of pairs of
models at time t as Equation (25):

dt =
N

∑
t=1

(yt − ˆyt,a)
2 −

N

∑
t=1

(yt − ˆyt,b)
2, (25)

where ˆyt,a is the prediction of model a at time t and ˆyt,b is the prediction of model b at time t. Then,
the DM statistic can be defined as Equation (26):

DM =
d̄√

Vd/N
, (26)

where

d̄ =
1
N

N

∑
t=1

dt, (27)

Vd = cov(dt, dt) + 2
∞

∑
l=1

cov(dt, dt−l), (28)

where cov is a covariance matrix.
If the value of the DM test is negative and statistically significant (e.g., p-value ≤ 0.05), it is proven

that there is a significant difference between the predictive accuracy of pairs of models [78].

4.3. Experimental Settings

We forecast daily crude oil prices from the raw price series and decomposed components, so-called
single models and ensemble models, respectively. As for single models, we compare the RR-based
methods (RR, LinRR, PolyRR, SigRR, RbfRR and MKRR in Table 1) with two state-of-the-art AI
models: LSSVR and BPNN, as well as two classical statistical methods: ARIMA and RW. Regarding
ensemble models, we compare ICEEMDAN with EEMD to show the power of decomposition, and all
the forecasting methods with single models except for ARIMA are applied to ensemble models.
The parameters in the experiments are shown in detail in Table 1. Note that for the MKRR, we use
23 single kernels, i.e., one linear kernel, one polynomial kernel, one Sigmoid kernel and 20 RBF kernels,
to build the multiple kernel, and both the weight and parameters of each single kernel are optimized
by DE. The values or the ranges of some parameters are from existing literature [8,31]. In addition,
we use RMSE as the fitness function to evaluate the individuals in DE.

All the experiments were performed by Matlab R2016b on a PC with 64-bit Windows 10, a 3.6 GHz
i7 CPU and 32 GB RAM.

4.4. Results and Analysis

4.4.1. Single Models

The single models are performed on the raw daily crude oil prices directly. We compared the
RR-based methods with LSSVR, BPNN and ARIMA. The experimental results are reported in Table 2,
with the best and the worst results being shown in bold and underline, respectively, in terms of each
criterion with each horizon.
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Table 1. The settings for the parameters.

Method Description Parameters

EEMD Ensemble empirical mode decomposition Noise standard deviation: 0.2;
Number of realizations: 100.

ICEEMDAN Improved complete EEMD with adaptive noise Noise standard deviation: 0.05;
Number of realizations: 500;
Maximum number of sifting iterations allowed: 5000.

RR Ridge Regression λ: [0.001, 0.2].
LinRR RR with a linear kernel λ: [0.001, 0.2].
PolyRR RR with a polynomial kernel λ: [0.001, 0.2]; a: [0, 2]; b: [0, 10]; c: {1,2,3,4} .
SigRR RR with a Sigmoid kernel λ: [0.001, 0.2]; d: [0, 4]; e: [0, 8].
RbfRR RR with a radial basis functional kernel λ: [0.001, 0.2]; f : [2−10, 212].
MKRR RR with multiple kernels as formulated

in Equation (19)
λ: [0.001, 0.2];
a − e: the same as the above single kernel;
n: 20, number of the RBF kernels;
f1 − f20: [2−10, 212]; w1 − w23: [0, 1] s.t. ∑23

i=1 wi = 1.
LSSVR Least square support vector regression

with a RBF kernel
Regularization parameter: 2{−10,−9,··· ,11,12};
Width of the RBF kernel: 2{−10,−9,··· ,11,12}.

BPNN Back propagation neural network Size of the hidden layer: {10, 20, 50, 100};
Maximum training epochs: {100, 1000, 10000};
Learning rate: {0.001, 0.01, 0.05, 0.1}.

ARIMA Autoregressive integrated moving average Akaike information criterion (AIC) to
determine parameters (p-d-q) [79].

DE Differential Evolution Population size: 20; Number of iterations: 40;
Crossover probability: 0.2.

Table 2. Results of single models.

Horizon Criterion RR LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN ARIMA RW

1

MAPE 0.0154 0.0154 0.0154 0.0154 0.0156 0.0154 0.0154 0.0161 0.0157 0.0156
RMSE 1.2454 1.2462 1.2473 1.2483 1.2567 1.2472 1.2481 1.3050 1.2701 1.2700
Dstat 0.5000 0.4940 0.5132 0.5156 0.5186 0.5162 0.5102 0.5132 0.4868 0.5054

3

MAPE 0.0262 0.0263 0.0264 0.0264 0.0265 0.0263 0.0266 0.0264 0.0274 0.0272
RMSE 2.0627 2.0689 2.0708 2.0701 2.0754 2.0767 2.0801 2.0797 2.1713 2.1645
Dstat 0.4988 0.4988 0.4964 0.4958 0.5000 0.5090 0.4952 0.4994 0.4982 0.4952

6

MAPE 0.0377 0.0379 0.0381 0.0381 0.0381 0.0380 0.0379 0.0394 0.0408 0.0401
RMSE 2.8977 2.9101 2.9209 2.9208 2.9239 2.9149 2.9128 2.9943 3.1824 3.1195
Dstat 0.4952 0.4958 0.4862 0.4898 0.4922 0.4964 0.4910 0.4976 0.4916 0.4928

From the table, we can find that the AI models outperform the statistical models in 6 out of 9 cases.
Among the AI models, BPNN obtains two worst results: the MAPE value of 0.0161 as well as the RMSE
value of 1.3050 with Horizon 1, while LSSVR and PolyRR obtain the worst values once: the Dstat
value of 0.4592 and 0.4862 with Horizon 3 and 6, respectively. Overall, the RR-based single models
outperform other models in most cases. In particular, RR achieves the best results in 6 out of 9 cases,
showing that it is superior to other single models. Regarding the statistical models, RW is very close
to but slightly better than ARIMA. In terms of MAPE and RMSE, for each model, the results become
worse and worse when the horizon increases.

Regarding directional statistics, RbfRR, MKRR and BPNN achieve the highest values of 0.5186,
0.5090 and 0.4976 with Horizon 1, 3, and 6, respectively. In contrast, ARIMA and PolyRR obtain the
worst values of 0.4868 and 0.4862 with Horizon 1 and 6, respectively. For Horizon 3, both LSSVR and
RW obtain the worst Dstat values of 0.4952. The intervals of the best values and the corresponding
worst values are so narrow that all the results of all cases are around 0.5, just like the result of random
guessing, showing that it is a tough task to forecast the direction using single models.

To further compare the single models, we report the DM test results in Table 3, with the statistics
and the corresponding p-values (in brackets). From this table, we have some findings. First, compared
with the statistical model ARIMA and RW, the statistics of all the AI models in all cases except for
BPNN with Horizon 1 are far below −2.000 and the corresponding p-values are much less than 0.01,
indicating that the AI models significantly outperform ARIMA and RW. ARIMA and RW have very
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similar results. Second, LSSVM and BPNN underperform RR-based approaches in most cases, showing
that the RR-based predictors are more effective than the statistical AI models (LSSVM and BPNN) for
forecasting raw crude oil prices, to some extent. Third, as for RR-based models, the RR, PolyRR and
MKRR have very close performance, which are superior to LinRR, SigRR and RbfRR. All the findings
confirm the analysis on MAPE, RMSE and Dstat.

Table 3. The Diebold-Mariano (DM) test results of single models.

Horizon Tested Model LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN ARIMA RW

1

RR −1.1025
(0.2704)

−0.7203
(0.4714)

−1.5290
(0.1265)

−2.0533
(0.0402)

−0.6405
(0.5219)

−1.3788
(0.1681)

−5.5601
(0.0000)

−3.4678
(0.0005)

−3.4585
(0.0004)

LinRR −0.4701
(0.6383)

−1.3435
(0.1793)

−1.6807
(0.0930)

−0.3852
(0.7001)

−1.3221
(0.1863)

−5.6817
(0.0000)

−3.3577
(0.0008)

−3.2647
(0.0007)

PolyRR −0.4864
(0.6268)

−1.3044
(0.1923)

0.2103
(0.8334)

−0.4205
(0.6742)

−5.7019
(0.0000)

−2.8226
(0.0048)

−2.7642
(0.0000)

SigRR −1.2372
(0.2162)

0.5057
(0.6132)

0.1453
(0.8845)

−5.7208
(0.0000)

−2.8937
(0.0039)

−2.3072
(0.0002)

RbfRR 1.3294
(0.1839)

1.2083
(0.2271)

−3.4277
(0.0006)

−1.3067
(0.1915)

−1.2796
(0.0142)

MKRR −0.4335
(0.6647)

−5.7099
(0.0000)

−2.8012
(0.0052)

−2.7326
(0.0312)

LSSVR −5.8110
(0.0000)

−2.8584
(0.0043)

−2.6057
(0.0147)

BPNN 2.6579
(0.0079)

2.1439
(0.0001)

ARIMA 0.0996
(0.1206)

3

RR −2.4997
(0.0125)

−1.6877
(0.0916)

−2.0321
(0.0423)

−2.8803
(0.0040)

−2.3015
(0.0215)

−3.2386
(0.0012)

−2.7039
(0.0069)

−5.6427
(0.0000)

−4.9664
(0.0000)

LinRR −0.2930
(0.7696)

−0.2368
(0.8129)

−2.0401
(0.0415)

−1.0401
(0.2984)

−2.9172
(0.0036)

−1.3601
(0.1740)

−5.1351
(0.0000)

−5.1652
(0.0000)

PolyRR 0.1966
(0.8442)

−0.6415
(0.5213)

−1.6590
(0.0973)

−1.1121
(0.2662)

−2.1367
(0.0328)

−4.6340
(0.0000)

−4.9189
(0.0000)

SigRR −1.0601
(0.2893)

−1.6399
(0.1012)

−1.6464
(0.0999)

−1.8857
(0.0595)

−4.8619
(0.0000)

−4.6375
(0.0000)

RbfRR −0.1690
(0.8658)

−3.6421
(0.0003)

−0.5004
(0.6169)

−4.4865
(0.0000)

−4.4237
(0.0000)

MKRR −0.4004
(0.6889)

−0.5933
(0.5530)

−4.3286
(0.0000)

−3.3925
(0.0000)

LSSVR 0.0403
(0.9679)

−4.2520
(0.0000)

−3.8976
(0.0000)

BPNN −4.4861
(0.0000)

−4.3547
(0.0001)

ARIMA 0.7708
(0.1300)

6

RR −2.6901
(0.0072)

−3.0491
(0.0023)

−3.1495
(0.0017)

−3.2282
(0.0013)

−1.4575
(0.1452)

−2.4926
(0.0128)

−5.1039
(0.0000)

−7.6069
(0.0000)

−7.9403
(0.0000)

LinRR −1.3345
(0.1822)

−1.2552
(0.2096)

−2.1339
(0.0330)

−0.3964
(0.6919)

−0.3807
(0.7035)

−4.2189
(0.0000)

−7.0961
(0.0000)

−6.8125
(0.0000)

PolyRR 0.0718
(0.9428)

−0.6199
(0.5354)

0.6465
(0.5180)

2.4994
(0.0125)

−4.9939
(0.0000)

−6.4072
(0.0000)

−6.0013
(0.0000)

SigRR −0.5182
(0.6044)

0.6242
(0.5326)

2.2295
(0.0259)

−5.2852
(0.0000)

−6.3341
(0.0000)

−6.1752
(0.0000)

RbfRR 0.8653
(0.3870)

2.6871
(0.0073)

−4.0728
(0.0000)

−6.3042
(0.0000)

−6.4841
(0.0000)

MKRR 0.2139
(0.8307)

−4.9976
(0.0000)

−6.4398
(0.0000)

−5.8925
(0.0000)

LSSVR −5.0705
(0.0000)

−6.6890
(0.0000)

−6.5482
(0.0001)

BPNN −4.0592
(0.0001)

−3.7692
(0.0002)

ARIMA 0.7134
(0.2304)
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Due to the nonlinearity and nonstationarity, the performance of directly forecasting on raw crude
oil price series needs to be improved. To cope with this issue, we use ICEEMDAN to decompose
the raw series into several components each of which shows relatively simple characteristics when
compared with the raw series, and then each component is predicted using an AI model individually.
At last, the predicted results of all components are aggregated as the final result.

4.4.2. Ensemble Models

To demonstrate the effectiveness of ICEEMDAN, we also use EEMD as one of the decomposition
methods for comparison. For the forecasting methods, we compare RR-base predictors with two
state-of-the-art AI methods: LSSVR and BPNN. The values of MAPE, RMSE and Dstat with ensemble
models are shown in Table 4.

Table 4. Results of ensemble models.

Decomposition Horizon Criterion RR LinRR PolyRR SigRR RbfRR MKRR LSSVR BPNN RW

EEMD

1

MAPE 0.0084 0.0089 0.0084 0.0084 0.0088 0.0085 0.0090 0.0200 0.0186
RMSE 0.6401 0.6827 0.6399 0.6399 0.6799 0.6467 0.6805 1.6044 1.7455
Dstat 0.8213 0.8112 0.8231 0.8189 0.7980 0.8135 0.8076 0.7344 0.5084

3

MAPE 0.0096 0.0111 0.0097 0.0097 0.0107 0.0100 0.0118 0.0195 0.0296
RMSE 0.7569 0.8702 0.7583 0.7560 0.8410 0.7803 0.9406 1.5599 2.5344
Dstat 0.7746 0.7314 0.7728 0.7794 0.7500 0.7710 0.7272 0.6847 0.5000

6

MAPE 0.0120 0.0146 0.0121 0.0122 0.0147 0.0122 0.0126 0.0210 0.0396
RMSE 0.9440 1.1602 0.9547 0.9704 1.1560 0.9666 0.9896 1.6297 3.1068
Dstat 0.7146 0.6607 0.7140 0.7002 0.6625 0.7290 0.6924 0.6265 0.4976

ICEEMDAN

1

MAPE 0.0043 0.0050 0.0043 0.0043 0.0048 0.0043 0.0044 0.0051 0.0175
RMSE 0.3458 0.4039 0.3469 0.3441 0.3901 0.3505 0.3528 0.3964 1.6209
Dstat 0.9101 0.8939 0.9101 0.9113 0.8975 0.9083 0.9071 0.8945 0.5228

3

MAPE 0.0073 0.0089 0.0074 0.0076 0.0087 0.0074 0.0075 0.0092 0.0286
RMSE 0.5926 0.7170 0.5953 0.6067 0.7001 0.5984 0.6044 0.7022 2.4296
Dstat 0.8453 0.8040 0.8399 0.8417 0.8124 0.8393 0.8333 0.8100 0.4862

6

MAPE 0.0102 0.0138 0.0102 0.0107 0.0130 0.0103 0.0104 0.0187 0.0400
RMSE 0.8027 1.0977 0.8100 0.8513 1.0276 0.8137 0.8236 1.3531 3.1926
Dstat 0.7590 0.6661 0.7584 0.7530 0.6847 0.7626 0.7578 0.6865 0.4982

As far as MAPE and RMSE with EEMD are concerned, the results of different forecasting models
except for BPNN and RW are significantly superior to those of the corresponding single models.
For example, the best (lowest) MAPE, and RMSE with Horizon 1 are improved from 0.0154 to 0.0084,
and from 1.2454 to 0.6399, respectively. Regarding Dstat, the best/worst value except those by RW is
0.8231/0.7344, which is far greater than the values of single models. Among the forecasting methods,
RR-based predictors achieve all the best values while BPNN and RW obtain all the worst results.
Specifically, RR, SigRR and PolyRR achieve the best values 4, 4 and 3 out of 9 times, respectively.
Except for the values of MAPE and RMSE with Horizon 1, the ensemble models by BPNN are
advantageous over single BPNN. Another finding is that RW obtains the worst values 8 out of 9 times.
In particular, the Dstat values by RW are always around 0.5, and the possible reason is that RW
performs poorly in forecasting high-frequency components. The experimental results indicate that
the ensemble models except for RW can significantly improve the forecasting effectiveness when
compared with the single models.

When we look at the results with ICEEMDAN and AI models in Table 4, we can see a significant
improvement in the forecasting ability. As for MAPE, the value of each model with ICEEMDAN is
superior to that of its competitor with EEMD. Specifically, RR achieves the best (lowest) MAPE for
all the horizons, while BPNN obtains the worst values for the same horizons. For Horizon 1, PolyRR,
SigRR and MKRR also achieve the best MAPE (0.0043) as RR does. The results of RMSE show similar
characteristics that all the models with ICEEMDAN exceed those with EEMD. The best values of RMSE
with Horizon 1, 3, and 6 are achieved by SigRR, RR, and RR, respectively. In contrast, LinRR, LinRR
and BPNN obtain the worst RMSEs with Horizon 1, 3 and 6, respectively. It is worth pointing out that
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the directional statistics is significantly improved by ICEEMDAN. The best Dstat (0.9113) is achieved
by SigRR with Horizon 1, and the other models achieve very close Dstat, indicating that this metric is
very stable with ICEEMDAN. The worst (lowest) value of Dstat is 0.6661, which is much higher than
the best one by single models (0.5186). Therefore, the models with ICEEMDAN and AI models are
able to effectively improve the results of directional statistics. Regarding the results with ICEEMDAN
and RW models, they still perform poorly and obtain the nine worst values, although RW models with
ICEEMDAN perform slightly better than those with EEMD for Horizon 1 and 2.

For the models with both EEMD and ICEEMDAN, most results of MAPE, RMSE and Dstat will
become worse when the horizon increases, showing that it is more difficult to forecast crude oil prices
with a long horizon than with a short one.

We still apply the DM test to compare the ensemble models, and the results are shown in Table 5.
From this table, we can see that when the forecasting methods with ICEEMDAN are compared with
those with EEMD, the statistical values are far below zero and the p-value is very close to zero
(usually less than 0.0001) with Horizon 1 and 3, indicating that the former significantly outperforms
the latter with these two horizons. Regarding Horizon 6, the forecasting methods, except for BPNN
with ICEEMDAN, still outperform the corresponding methods with EEMD. For each decomposition,
the RR-based methods are usually superior to LSSVR and BPNN. Among the RR-based predictors,
RR and SigRR have the best forecasting ability, followed by MKRR and PolyRR, while RbfRR and
LinRR have a slightly worse predictive power. In addition, the models with AI are all superior to
the corresponding models with RW, showing that the forecasting effectiveness does not stem from
luck but by the forecasting superiority of the proposed approaches. All the DM test results confirm
that ICEEMDAN and RR-based predictors are very effective for forecasting daily crude oil prices.
The proposed approach that integrates ICEEMDAN and RR is capable of improving the results of
crude oil price forecasting.

4.5. Discussion

In this subsection, we will discuss the impact of the parameter settings of the ICEEMDAN,
the impact of the lag orders and the result of each individual component. Since the above results and
analysis have shown that RR and SigRR usually outperform the other models, we will take both RR
and SigRR as examples to discuss the following.

4.5.1. The Impact of the Parameter Settings of the ICEEMDAN

When we use the ICEEMDAN to decompose the daily crude oil price series, we need to add
noises to the series and decompose the series many times. Therefore, the noise standard deviation
nsd and the number of realizations nr are two important parameters. To study the impact of nsd on
forecasting, we run the proposed approach with a variable nsd in the range of {0.01, 0.03, 0.05, 0.08,
0.1, 0.15, 0.2, 0.3, 0.4} while fixing other parameters. The experimental results are shown in Figure 3.
Likewise, we use a variable nr in the range of {20, 50, 100, 200, 300, 500, 800, 1000, 1500, 2000} and fixed
other parameters to study the impact of the number of realizations, as shown in Figure 4.
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Figure 3. The impact of the white noise strength in the ICEEMDAN by RR and SigRR.

Figure 4. The impact of the number of the realizations in the ICEEMDAN by RR and SigRR.

It can be seen from Figure 3 that the results in terms of RMSE, MAPE and Dstat are gradually
improved when nsd increases from 0.01 to 0.08. In contrast, after that, all the evaluation indicators are
getting worse and worse with the increase of noise strength when nsd is greater than 0.1. Both RR and
SigRR have similar trends, and one of the two models is alternatively better than the other. The results
show that the white noise strength has great impact on the forecasting performance and an ideal white
noise strength is between 0.05 and 0.1.

When we look at Figure 4, we can find that when the number of the realization is 20, the results
of RMSE, MAPE and Dstat are all rather bad. When the number of realization increases from 20 to
500, all the results become better and better. Specifically, the Dstat reaches the best values for both
RR and SigRR when the number of realization equals 500, while the results of RMSE and MAPE are
very close to the best values. After that, the values of the three indicators are very stable when the
number of realization varies from 500 to 2000. The results indicate that 500 is very ideal for the number
of realizations.
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4.5.2. The Impact of the Lag Orders

Lag orders refer to the length of recent data points treated as explanatory variables to build time
series models. We further investigate the impact of variable lag orders from 1 to 20 with horizon 1,
and the results are shown in Figure 5. When the lag order is equal to 1, the results of the evaluation
indicators are the worst. However, when it varies from 1 to 6, the corresponding results are all
becoming better and better. After that, the results have remained almost unchanged for the lag order
from 6 to 20. Therefore, the best lag order is 6 because it can provide satisfactory results with less input,
which confirms the previous study [12,31].

Figure 5. The impact of the lag orders by RR and SigRR.

4.5.3. The Result of Each Individual Component

Each decomposed component by the ICEEMDAN shows either high-frequency or low-frequency
characteristics. In general, it is harder to forecasting a high-frequency component than a low-frequency
one. We plot the predicted values and raw data of each component and the raw crude oil prices by RR
and sigRR in Figures 6 and 7, respectively.

Figure 6. The individual and final forecasting results by RR.
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Figure 7. The individual and final forecasting results by SigRR.

It can be seen from these figures that both RR and SigRR are able to forecast the high-frequency
components (IMF6-IMF11 as well as the residue) very well, and the predicted errors mainly come
from the high-frequency components (IMF1-IMF5), especially from IMF1. Since the volatility of the
hight-frequency components is relatively narrow, the forecasting errors from such components might
be restricted. This is one of the possible reasons why the framework of “decomposition and ensemble”
is effective for time series forecasting.

5. Summary and Conclusions

Forecasting daily crude oil prices is an important but challenging task. To improve the forecasting
performance, a series of approaches using ICEEMDAN, DE and RR, termed as ICEEMDAN-DE-RR,
are proposed in this paper. The proposed approaches firstly use ICEEMDAN to decompose the complex
original crude oil prices into several components, and then each component is forecasted individually
by DE-based RR predictors. In the end, the sum of the predicted results of all the components is taken
as the final result. The extensive experiments demonstrated the proposed approaches can outperform
some state-of-the-art methods.

Especially from the experimental results, we have the following interesting findings: (1) It is
a very difficult task to accurately forecast daily crude oil prices with the raw price series because
of its nonlinearity and nonstationarity; (2) AI-models usually outperform statistical methods when
forecasting crude oil prices; (3) RR-based predictors with DE optimizing the parameters have good
forecasting ability; (4) The framework of “decomposition and ensemble” can significantly improve
the performance of forecasting daily crude oil prices; ICEEMDAN is advantageous over EEMD for
the forecasting tasks; (5) The proposed ICEEMDAN-DE-RR approach outperforms the competitive
methods in terms of several evaluation metrics, indicating that it is promising for daily crude oil price
forecasting. (6) Regarding RR-based predictors, RR and SigRR with DE optimizing parameters can
achieve very promising forecasting results in terms of several criteria.

In the future, we will apply the proposed approaches to forecasting other types of energy time
series, such as natural gas prices, wind speed, wind power and electricity load.
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Abstract: Energy consumption issues are important factors concerning the achievement of sustainable
social development and also have a significant impact on energy security, particularly for China whose
energy structure is experiencing a transformation. Construction of an accurate and reliable prediction
model for the volatility changes in energy consumption can provide valuable reference information
for policy makers of the government and for the energy industry. In view of this, a novel improved
model is developed in this article by integrating the modified state transition algorithm (MSTA) with
the Gaussian processes regression (GPR) approach for non-fossil energy consumption predictions for
China at the end of the 13th Five-Year Project, in which the MSTA is utilized for effective optimization
of hyper-parameters in GPR. Aiming for validating the superiority of MSTA, several comparisons
are conducted on two well-known functions and the optimization results show the effectiveness of
modification in the state transition algorithm (STA). Then, based on the latest statistical renewable
energy consumption data, the MSTA-GPR model is utilized to generate consumption predictions for
overall renewable energy and each single renewable energy source, including hydropower, wind,
solar, geothermal, biomass and other energies, respectively. The forecasting results reveal that
the proposed improved GPR can promote the forecasting ability of basic GPR and obtain the best
prediction effect among all the other comparison models. Finally, combined with the forecasting
results, the trend of each renewable energy source is analyzed.

Keywords: renewable energy consumption; Gaussian processes regression; state transition algorithm;
five-year project; forecasting

1. Introduction

The energy industry provides an important impetus for the advancement of society and has
a significant impact on sustainable development [1–5], power safety [6,7], and environmental
changes [8,9]. Aiming to alleviate the pressure brought by energy problems, developing renewable
energy has been considered as an effective approach by more and more scholars at home and abroad [10].
In China, renewable energies refer to the energies that can be continuously regenerated in nature,
for instance, hydropower, wind, solar, biomass, geothermal and so on. The latest statistics obtained
form British Petroleum (BP) Statistical Review of World Energy 2019 displays that the renewable
energy consumption in China has reached the amount of 391.67 million tons oil equivalent (Mtoe),
which experienced a huge promotion over the past decades. China’s overall non-fossil energy
consumption in 2018 increased 8.1% compared with that of 2017. During the past year, the hydropower
has promoted by 3.2%, the wind energy consumption has increased by 24.1%, the solar energy
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consumption has grown by 50.7%, and geothermal, biomass and other energy has been promoted by
14%. According to the collected data, the consumption and the corresponding proportion of different
renewable energies in the past ten years are exhibited in Figure 1.

Figure 1. The composition of renewable energy consumption in China.

As displayed in Figure 1, dramatic changes can be observed in the composition of non-fossil energy
consumption of China during the past few years owing to a series of incentive policies implementations,
especially during the twelfth Five-Year Project which was from 2011 to 2015. Hydropower, with the
consumption of 144.1 Mtoe, accounts for 95.77% of the overall renewable energy consumption in
2008. However, due to the development of other renewable energies, the share of hydropower has
fallen to 79.73% during the late years of the twelfth Five-Year Project, and further decreased to 69.47%
by the year-end of 2018. Meanwhile, the wind energy accounts for the biggest growth share in
renewable consumption, which increased from 1.97% in 2008 to 10.93% in 2018, and the corresponding
consumption amount increased from 2.96 Mtoe to 82.82 Mtoe. The share of solar energy in the overall
renewable consumption grew from 0.02% in 2008 to 9.66% in 2018, with the corresponding growth from
0.03 Mtoe to 40.16 Mtoe. The share of geothermal, biomass and other energy consumption in the overall
renewable consumption grew from 2.24% in 2008 to 4.94% in 2018, with the corresponding growth from
3.37 Mtoe to 20.53 Mtoe. Presently, aiming at realizing sustainable development, China is focusing
on modifying the traditional energy supply structure dominated by fossil fuels and encouraging
the utilization of non-fossil energy in power generation. Thus, the establishment of a reliable and
accurate foreseeing for China’s non-fossil energy consumption at the end of thirteenth Five-Year Project
(2016–2020) and afterwards is of practical significance, offering valuable references to contribute for
the healthy and steady growth of China’s energy and economy.

In aiming for obtaining a satisfactory forecasting performance, a number of approaches have
been developed to predict energy consumption, for instance: time series analysis [11], the Long-range
Energy Alternatives Planning System (LEAP) [12,13], the Nanoelectromechanical systems approach
(NEMS) [14,15], computational intelligence technology [16] and hybrid forecasting systems [17,18].
However, although the models listed above have strong non-linear modeling ability, they cannot capture
the characteristics of small-scale samples very well. Aiming to solve this problem, Gaussian process
regression is developed as the perfect intelligence approach for low-dimensional and small sample
regression problems [19].

Owing to the properties of flexibility, non-linearity, inherent non-parametric factors, and so on,
GPR has been utilized by numerous scholars in various fields including chemistry [20], astrophysics [21],
materials [22], and so on. For example, estimation of diffusion coefficients in the voltammetric signals
was obtained by Bogdan et al., [23] with the application of GPR which is utilized to analyze the
electroanalytical experimental data. In aiming to forecast the export content of the flue gas, GPR was
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conducted to obtain the design optimization of combustion systems utilizing real time flame figures
in [24]. Furthermore, there are also researches involving GPR in the prediction of wind speed [25].
Wang et al. [26] proposed a hybrid approach which combines four different models including Extreme
Learning Machine, Support Vector Machine, Least Squares Support Vector Machine and GPR to gain the
probabilistic predictions for wind speed in the short term. Based on the features of renewable energy
consumption, it is appropriate to utilize GPR for the acquirement of renewable energy consumption
prediction. Nevertheless, through the review of the previous studies, it can be noticed that few
researches have been investigated in this domain by now.

In the construction of GPR, the choice of hyper-parameters is of great influence on the forecasting
capacity. Thus, it is of extreme significance to find a proper value for the hyper-parameter of GPR. As a
traditional measure, the conjugate gradient (CG) has been conducted as the optimization operator for
parameters selection [27]. Nevertheless, the performance of this measure is affected by the basic guess
selection, and it is hard to determine the proper iteration amount. Furthermore, in most instances,
the estimation of hyper-parameters for GPR is a non-convex issue, where measures on basis of the
gradient have troubles in finding the global optimal value [28,29]. To aim at solving this problem,
intelligent optimization measures, including the particle swarm optimization (PSO) [30–32] and the
genetic algorithm (GA) [33–35], are found to be better choices for optimal parameters selection in model
training process. Among these models mentioned, it is validated that the state transition algorithm
(STA) is effective in numerous complicated optimization issues and shows wonderful ability for
nonlinear optimization in contrast with GA and PSO [36]. However, the original STA utilizes the space
framework of objective function and seeks the best answers with the application of its unique state
transformation operators. Additionally, the seeking range of state transformation operators is primarily
decided by the corresponding transformation factors. If the transformation factor takes a large value,
the global search ability of the model will be stronger. Conversely, as the value of the transformation
factor is small, the local search ability of the model will be better. The transformation factor in the
traditional structure of STA often takes an invariant value, which will add extra computations in the
later period of optimization and cannot contribute for the optimization result improvement. Aiming for
calculation complexity reduction and optimization result promotion, it is needed to consider parameter
optimization for the transformation factor to find harmony between the global search and local search
for the basic STA.

According to the analysis above, in this paper, a GPR model integrated with modified STA is
put forward to make predictions of China’s overall renewable energy consumption and its respective
components consumption. In the proposed model, the parameter selection for STA and the parameter
optimization for GPR are considered at the same time. Additionally, the latest renewable energy
consumption data published by the BP statistical Review of World Energy 2019 are utilized to test the
proposed model. The prediction outcomes prove that the proposed modified state transition algorithm
(MSTA)-GRP model displays the optimal prediction effect in contrast with all the other prediction
approaches. The major contributions can be described as follows: (1) A novel integration forecasting
model MSTA-GPR model is proposed. The MSTA is integrated into the GPR for the hyper-parameters
optimization to improve the forecasting performance. (2) Two well-known functions are utilized to
validate the optimization effect against traditional optimization algorithms, such as GA and PSO.
(3) The proposed MSTA-GPR is utilized to make consumption predictions of China’s renewable energy
at the end of the thirteenth Five-Year Project. The final result proves the satisfactory forecasting
performance of the MSTA-GPR model and provides both a deterministic and an interval prediction for
the renewable energy consumption development.

This passage is arranged with the following framework: Section 2 provides the description of the
GPR, MSTA and the proposed MSTA-GPR model; Section 3 provides two validation cases to test the
optimization performance of the modification in the basic STA; Section 4 shows applications of the
proposed MSTA-GPR model for the consumption prediction of the overall renewable energy and its
corresponding components; finally, the conclusions are obtained in Section 5.
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2. Methodology

2.1. Gaussian Process Regression

Gaussian process (GP) is a kind of stochastic process in probability theory and mathematical
statistics. It is a combination of a series of random variables obeying normal distribution in an
exponential set. GP has two important components, one is the average function, and the other is the
covariance function, which can describe the GP in form of Equation (1).

f (x) ∼ GP(a(x), C(x, x′)) (1)

The form of average function is described in Equation (2), and the form of covariance equation is
represented by Equation (3) [37].

a(x) = E[ f (x)], (2)

C(x, x′) = E[( f (x) − a(x))( f (x′) − a(x′))]. (3)

Generally, the squared-exponential covariance equation is considered as a widely applied
covariance function. Assume that there is a data set with noise for training, which is in form of
Equation (4):

D = {x (i), y(i)
∣∣∣∣i = 1, 2, . . . , n

}
(4)

then, we apply the GPR method to make predictions for the output value of y∗ with the future input
value x∗ in way of studying a function from the data set given, which relates to a presupposed prior
Gaussian function.

The posterior distribution can be acquired for the (n + 1) GP results according to Bayers
rule, when the distribution for a novel value is calculated. As an examination input xn+1 and the
corresponding training set D are given, the forecasting outcomes follow normal distribution by
adjusting the observed values of the training set, which is shown from Equation (4) to Equation (6).

P(y(n+1)
∣∣∣D, x(n+1)) ∼ N(μy(n+1) , σ2

y(n+1) ), (4)

μy(n+1) = aTQ−1y, (5)

σ2
y(n+1) = C(x(n+1), x(n+1)) − αTQ−1α. (6)

In the above equations, μy(n+1) represents the mean, and σ2
y(n+1) means the variance. Qpq and αp

are given in equations below:
Qpq = C(x(p), x(q)) + r2θpq, (7)

αp = C(x(n+1), x(q)), p = 1, 2, . . . , n. (8)

Mentioned by the previous paragraphs, covariance function C(xp, xq; Θ) along with
hyper-parameters Θ has a great effect in GPR as it decides the smoothness of the data in evaluating
the new function. As mentioned in [38], the log likelihood can be maximized to choose the optimal
hyper-parameters for GPR, which is described in Equation (9):

log P(D
∣∣∣Θ) = log P(y(1), y(2), . . . , y(n)

∣∣∣x(1), x(2), . . . , x(n), Θ)

= − 1
2 log detC− 1

2 yTC−1y− n
2 log 2π (9)
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2.2. Improved State Transition Algorithm

2.2.1. Original State Transition Algorithm

Firstly, an equation to be optimized with no limitations is described as follow:

min
x∈Rn

f (x) (10)

where, f (x) denotes an objective function mapping from Rn to R. Assume the potential solution as a
state, and the objective problem is solved through updating the optimal solution found by now with
iterations, which is considered as sate transition. The procedure of STA is expressed as below:{

sk+1 = Aksk + Bkuk
yk+1 = f (sk+1)

(11)

where, a state is represented by sk; the state transition matrices are represented by Ak and Bk; the function
of sk and the previous states are represented by uk; and the objective function is described utilizing the
symbol of f . Additionally, the solutions of the continuous objective function of the STA are searched
for with four different state transformation operators below.

(1) Rotation transformation:

sk+1 = sk + α
1

n‖sk‖2 Rrsk (12)

where, the rotation factor is positive and represented by α. A random matrix which belongs to
Rn×n is denoted by Rr with elements distributed in [−1,1]. ‖×‖ defines the L2-norm of a vector.
Utilization of the rotation transformation can contribute to the search in the hypersphere.

(2) Translation transformation:

sk+1 = sk + βRt
sk − sk−1

‖sk − sk−1‖2 (13)

where, the translation factor is a fixed positive value and represented by β. Rt belonging to
R defines a stochastic variable and the corresponding elements of Rt take value between [0,1].
Application of the translation transformation can contribute to the line search along between xk−1
and xk.

(3) Expansion transformation:
sk+1 = sk + γRexk (14)

where, the expansion factor is a fixed positive value which is represented by γ. A stochastic
diagonal matrix is represented by Re ∈ Rn×n with elements obeying normal distribution.
Application of expansion transformation can contribute to the whole space search which spreads
the element in xk to the range of infinite.

(4) Axesion transformation:
sk+1 = sk + δRaxk (15)

where, the axesion factor is a fixed positive value and defined by δ; a stochastic diagonal matrix
which is represented by Ra ∈ Rn×n with elements generated form normal distribution. Moreover,
these is only one nonzero stochastic element in Ra. Utilization of the axesion transformation can
contribute to the search along the direction of axes.

Furthermore, the search enforcement (SE) is a parameter which is utilized to control the amount
of each transformation during the implementation of four different transformation operators.
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The major steps of the basic STA can be described as follow [39]:

1: repeat
2: repeat if α < αmin then
3: α← αmin

4: end if
5: Optimal← exp ansion( f un, Optimal, SE, β,γ)
6: Optimal← rotation( f un, Optimal, SE,α, β)
7: Optimal← axesion( f un, Optimal, SE, β, δ)
8: α← α

f c

where, lessening of the coefficient α is decided by f c which takes a fixed value. Once a better solution
is found, the translation operator will be activated.

2.2.2. Modification for the Original State Transition Algorithm

Compared with models on basis of the gradient, the STA has one advantage which is
to search in all orientations and at any length. But there are also limitations for the STA.
For example, decided by the transformation factor, the search area of the rotation and translation
transformation is limited in a hpersphere or a line. To improve this situation, a parameter set
Ω = {1 , 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8

}
is considered in the basic STA for the optimal

value selection of transformation factor [40]. The parameter which can obtain the best value for the
objective function is selected as the optimal parameter. The optimal parameter ã∗ is given as the
equation below:

ã∗ = argmin
ã∗∈ Ω

f (xk + ãkd̃k). (16)

Aiming for a more complete utilization of the parameters, each parameter chosen is held for a
certain period, which is represented as Tp. Then the rotation function in the modified STA is described
as follow:

1: [Optimal,α]← update_alpha( f un, Optimal, SE, Ω)

2: for i← 1 , Tp do
3: Optimal← rotation( f un, Optimal, SE,α)
4: end for

where, the realization of optimal parameter selection for the rotation factor is conducted by equation
update alpha. In this way, the common periodical reduction of the transformation factors is abandoned.
The parameter to be optimized is chosen for each state transformation with the exception of the
translation operator and the best parameter selected is held within a certain period.

2.2.3. Prediction Process of Improved GPR on Basis of Modified STA (MSTA-GPR)

Three steps are carried out to realize the proposed MSTA-GPR model: Step 1. Initialization;
Step 2. The selection of optimal hyper-parameters. The description of the fitness function is shown as
Equation (9); Step 3. Forecasting. The flowchart of MSTA-GPR is shown in Figure 2.
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Figure 2. The implementation steps of the proposed modified state transition algorithm-Gaussian
processes regression model (MSTA-GPR).

The details of each step are described as follow:

Step 1. (Initialization): The training set is built to form the input and the covariance function is
selected for GPR.

Step 2. (Selection of optimal hyper-parameters):

Step 2.1. Parameter setting: A random initial solution Optimal0 is created in the searching
space. Parameters for MSTA are set: α = αmax,αmin, β = βmax, βmin, γ, Tp,
f un, and SE. The max function estimations are set to 5e4 ∗ n ∗ log(n) and n is
the amount of the decision variables.

Step 2.2. Expansion: Create SE potential solutions with the expansion transformation
operator on basis of the optimal solution Optimalk found so far. Renew the
optimal solution when Optimalk is promoted. After that, translation transformation
operator is applied and the optimal solution is renewed; otherwise not.

Step 2.3. Rotation: Create SE potential solutions with the rotation transformation
operator on basis of the optimal solution Optimalk found so far. Renew the
optimal solution when Optimalk is promoted. After that, the translation
transformation operator is applied and the optimal solution is renewed;
otherwise not.

Step 2.4. Optimal parameter selection for STA: the optimal transformation factors are
selected for STA according to the description in Section 2.2.2.

Step 2.5. Termination: If α or β is beyond the upper or lower bound, they will be
set as the corresponding value of the upper or lower bound. The iteration
continues until the corresponding termination is achieved. Thus, the optimal
hyper-parameters of GPR are found.
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Step 3. (Prediction): The new data are introduced to form the corresponding input of the
MSTA-GPR model for prediction. Finally, the forecasting results are obtained.

3. Validation of MSTA Optimization

In this section, the global optimization ability of MSTA is investigated with two famous equations,
which can validate the effectiveness of the modification in basic STA. The test equations are shown as
follow:

(1) Rosenbrock function:

f1 =
n∑

i=1

(100(xi+1 − x2
i )

2
+ (xi − 1)2). (17)

The constrain for the equation above is xi ∈ [0,π], i = 1, 2, . . . , n. The optimal solution is
xop = (0, . . . , 0) and the corresponding optimal value for the function is 0.

(2) Michalewicz function:

f2 = −
n∑

i=1

sin(xi) sin(
ix2

i
π

)

20

. (18)

The constrain for the equation above is that xi ∈ [0,π],i = 1, 2, . . . , n. And the corresponding
optimal value for the equation is not known.

The basic STA and two widely used optimization approaches, which are PSO and GA, are utilized
to form comparisons for MSTA. The corresponding parameter setting recommended for the algorithms
involved are shown in Table 1. The dimension for decision variable is investigated at 20, 30, and 50.
Aiming for comparisons in the same situation, all programs are coded in Matlab 2018a on a personal
computer with 8 GB RAM under a Windows environment and the computation procedures are
conducted 20 times.

Table 1. Parameter setting for each optimization model involved. GA, genetic algorithm; PSO,
particle swarm optimization.

Prediction Approaches Parameter Value

MSTA SE 20
Tp 10

Range [10−3 × Dim,1000 × Dim]
STA [36] SE 20

Rotation factor scope [10−4,1]
Translation factor 1
Expansion factor 1

Axesion factor 1
GA [41] Population 20

Crossover rate 0.95
Tournament size 2

Mutation rate 0.05
PSO [42] Swarm size 30

Inertia range [0.1,1.1]
Self-adjustment weight 1.49

Social-adjustment weight 1.49
Minimum neighborhood size 0.25 × swam size

It can be known from Table 2 that, in the case of the Rosenbrock function, the optimization
performance of MSTA is validated to be the best compared with the other three comparison optimization
algorithms regardless of the best, worst, or mean situation. And even as the dimension of the
independent variable increases, the MSTA can still achieve a satisfactory result which is superior to
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the optimization outcomes of STA, GA, or PSO. Moreover, in the case of the Michalewicz function, as
the global optimal solution is not known, the optimization capacity of each algorithm can be better
explored one step further on. It can still be seen that from Table 2, the optimal outcomes obtained by
MSTA are the best among all the optimization algorithms under different situations and dimensions,
which again proves the superiority of MSTA optimization. For example, when the dimension takes 20,
compared with STA, GA, and PSO, the mean optimal value promotion of MSTA is 8.15%, 9.94% and
97.32%, respectively. Conclusively, the two validation cases show the effectiveness of the modification
for the basic STA. Integrated with the optimal parameter selection, the performance of MSTA is
thus improved significantly and is better than that of the basic STA and the two traditional optimal
algorithms, which makes it a better choice for hyper parameter optimization in GPR.

Table 2. Validation comparisons of different optimization algorithms.

Fun f1 f2
Dim 20 30 50 20 30 50

MSTA Best 6.06 × 10−7 8.40 × 10−7 1.84 × 10−6 −19.96 −29.95 −49.97
Worst 1.10 × 10−6 1.88 × 10−6 2.87 × 10−6 −19.78 −29.87 −49.93
Mean 8.03 × 10−7 1.26 × 10−6 2.16 × 10−6 −19.91 −29.91 −49.95

STA Best 11.17 23.75 36.91 −19.60 −29.53 −49.39
Worst 13.57 24.66 45.34 −17.60 −27.51 −46.51
Mean 12.94 24.10 42.34 −18.41 −28.82 −47.85

GA Best 0.49 0.04 0.08 −18.11 −28.86 −41.26
Worst 0.49 0.04 0.08 −18.11 −28.86 −41.26
Mean 0.49 0.04 0.08 −18.11 −28.86 −41.26

PSO Best 13.26 1.48 13.24 10.09 −15.76 −7.97
Worst 13.26 1.48 13.24 10.09 −15.76 −7.97
Mean 13.26 1.48 13.24 10.09 −15.76 −7.97

4. Application of MSTA-GPR for Overall Renewable Energy Consumption Prediction in China

In this Section, the MSTA-GPR approach is applied for the renewable energy consumption
prediction in China. Aiming for validation of the superiority of MSTA-GPR approach, the corresponding
forecasting results are compared with that of PSO-GPR [43], GPR [44] and the autoregressive integrated
moving average ARIMA model [45]. The basic data are offered by the BP statistical Review of World
Energy 2019. The training set is formed utilizing observations obtained from 2008 to 2015 to train each
forecasting model involved, and the first three years of the thirteenth Five-Year Project (2016–2020) are
considered to validate the corresponding prediction effect. All the original data are listed in Table 3.

Table 3. The consumption data for China’s renewable energy from 2006 to 2018.

Year Overall Hydropower Wind Solar
Geothermal

Biomass and Other

2006 101.08 98.61 0.84 0.02 1.61
2007 113.30 109.80 1.24 0.03 2.23
2008 150.49 144.13 2.96 0.03 3.36
2009 150.33 139.30 6.25 0.06 4.72
2010 176.86 160.97 10.10 0.16 5.63
2011 178.46 155.69 15.91 0.59 6.27
2012 224.66 195.23 21.72 0.81 6.90
2013 248.10 205.82 31.95 1.89 8.44
2014 288.99 237.85 35.32 5.32 10.50
2015 316.31 252.19 42.03 9.86 12.23
2016 342.62 260.96 53.64 13.96 14.06
2017 375.04 263.63 66.75 26.65 18.01
2018 415.59 272.08 82.82 40.16 20.53
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Besides, aiming for the prediction performance evaluation, the mean absolute percent error
(MAPE) is computed for the forecasting outcome of each model involved. The equation of MAPE is
described as follow:

MAPE =
1
Y

Y∑
y=1

∣∣∣∣∣∣ptrue(y) − p f orecast(y)
ptrue(y)

∣∣∣∣∣∣× 100% (19)

where, ptrue(y) means the data recorded at year y, p f orecast(y) means the prediction of year y, and Y is
the amount of all the values to be predicted.

4.1. Overall Renewable Energy Consumption

The suggested MSTA-GPR approach is utilized in this part to investigate the overall renewable
energy consumption prediction in China. The predictions and corresponding indexes are displayed in
Table 4. Figure 3 displays the interval prediction for the overall renewable energy consumption in
China from 2016 to 2018. And in the interval prediction, the 95% upper bound and the 95% lower
bound reveal the maximum values and minimum values respectively that can be obtained by GPR
when the confidence level of the regression prediction result is 95%.

Table 4. Consumption prediction for overall renewable energy of China from 2006 to 2018 (Mtoe).
ARIMA, autoregressive integrated moving average; MAPE, mean absolute percent error.

Year
Real
Data

MSTA-GPR PSO-GPR GPR ARIMA

Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 342.62 347.08 1.30 348.39 1.68 348.88 1.83 343.72 0.32
2017 375.04 375.04 0.00 374.40 0.17 374.70 0.09 371.17 1.03
2018 415.59 405.29 2.48 401.07 3.49 400.94 3.53 398.66 4.07

MAPE 1.26 1.78 1.81 1.81

Figure 3. The interval prediction result of MSTA-GPR for overall renewable energy consumption
in China.

From Table 4 and Figure 3, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting accuracy than the other approaches in
consumption predicting of the overall renewable energy in China. It can be obtained from the historical
data that in recent years, the development of China’s overall renewable energy consumption is close
to linear growth. Hence, GPR and ARIMA have similar prediction performance. Compared with
GPR and ARIMA, the MSTA-GPR approach has promoted each forecasting accuracy by 30.39%.
Optimized by PSO, the prediction performance of PSO-GPR is slightly better than that of basic GPR.
Compared with PSO-GPR, the MSTA-GPR approach has promoted the forecasting accuracy by 29.21%.
This comparison result indicates that the global ability of MSTA is better than that of PSO. As can
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be seen from Table 4, the trend of overall renewable energy consumption in China keeps growing
in the last few years and will continue to maintain in the future. According to the latest published
statistics, by the first half of 2019, the amount of electricity generated by renewable energy has reached
887.9 billion kWh, which increases 14% compared with that of last year.

4.2. Hydroelectricity Consumption in China

This part investigates the prediction of China’s hydroelectricity consumption. The prediction
outcomes of each model and corresponding errors are displayed in Table A1 of Appendix A.
Furthermore, the interval prediction for China’s hydroelectricity consumption is described in Figure A1
of Appendix A.

From Table A1 and Figure A1, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting performance than the other approaches in
predicting the hydroelectricity consumption of China. As can be obtained from the historical data,
the growth trend of hydroelectricity is not continuous. The forecasting performance of ARIMA is the
worst of all. Compared with ARIMA, the MSTA-GPR approach has promoted the forecasting accuracy
by 91.08%. GPR offers a better forecasting result than that of ARIMA by recognizing the non-linear
features in the historical data. However, the prediction performance of GPR is not the best because the
hyper-parameters are not optimized. Compared with GPR, the MSTA-GPR approach has promoted
the forecasting accuracy by 66.67%. Combined with PSO, the forecasting accuracy of PSO-GPR is
further promoted than basic GPR. But PSO is easy to fall into the local optimum in the process of
searching the optimal solution. Compared with PSO-GPR, the MSTA-GPR approach has promoted the
forecasting accuracy by 29.54%. In recent years, the growth rate of hydropower has slowed down,
but still accounts for the largest proportion of renewable energy consumption in China. The latest
published statistics shows that, by the first half year of 2019, the amount of electricity generated by
hydropower is 513.8 billion kWh, which has promoted by 11.8% compared with that of last year.

4.3. Wind Power Consumption in China

This Section explores the prediction of China’s wind power consumption. Prediction outcome
of each model and corresponding errors are displayed in Table A2 of Appendix A. Additionally, the
interval prediction for China’s wind power consumption is described in Figure A2 of Appendix A.

From Table A2 and Figure A2, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting performance than the other approaches in
predicting the wind power consumption of China. According to historical data, the consumption of
wind power has increased rapidly in recent years. As a traditional time series forecasting method,
ARIMA cannot capture the nonlinear growth trend of wind power consumption well, which results
in a poor forecasting result. Compared with ARIMA, the MSTA-GPR approach has promoted the
forecasting accuracy by 36.81%. Owning to the advantage of recognizing non-linear features in data,
both PSO-GPR and GPR can obtain better forecasting results than ARIMA. However, due to the lack of
a more effective hyper parameter optimization method, their forecasting performances are not good as
that of MSTA-GPR. Compared with PSO-GPR and GPR, the MSTA-GPR approach has promoted the
forecasting accuracy by 7.98% and 25.07%, respectively. In recent years, with the gradual maturity of
technology, wind power generation has been vigorously developed, and the amount generated by
wind power is increasing year by year. By the first half year of 2019, the wind power generation in
China has achieved 214.5 billion kWh, which has promoted by 11.5% compared with that of last year.

4.4. Solar Power Consumption in China

The solar power consumption prediction of China is investigated in this Section utilizing the
MSTA-GPR approach. The prediction outcomes of each model and corresponding errors are displayed
in Table A3 of Appendix A. Additionally, the interval prediction for China’s solar power consumption
is described in Figure A3 of Appendix A.
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From Table A3 and Figure A3, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting performance than the other approaches in
predicting the solar power consumption of China. The solar power consumption experiences a rapid
growth in recent years. But ARIMA cannot follow the rapid changes of solar power consumption,
which results in a low prediction accuracy. Compared with ARIMA, the MSTA-GPR approach has
promoted the forecasting accuracy by 63.15%. In contrast, PSO-GPR and GPR can adapt to the rapid
changes of solar power consumption in the short term and get better prediction results. But their
forecasting accuracy is not the best. Compared with PSO-GPR and GPR, the MSTA-GPR approach has
promoted the forecasting accuracy by 0.58% and 29.89%, respectively. With the implementation of
the renewable energy incentive policy, solar power generation has been vigorously promoted, and its
proportion in renewable energy consumption has also increased year by year. According to the latest
data published, by the first half year of 2019, the solar power generation has reached 106.7 billion kWh,
which has promoted by 30% compared with that of last year.

4.5. Geothermal, Biomass and Other Energy Consumption Prediction in China

This Section explores the predictions of China’s geothermal, biomass and other energy
consumption. The prediction outcomes of each model and corresponding errors are displayed in
Table A4 of Appendix A. Additionally, the corresponding interval prediction is described in Figure A4
of Appendix A.

From Table A4 and Figure A4, it can be observed that the prediction outcomes reveal that the
MSTA-GPR approach offers a more satisfactory forecasting performance than the other approaches in
predicting the geothermal, biomass and other types of energy consumption of China. Compared with
PSO-GPR, GPR and ARIMA, the MSTA-GPR approach has promoted the forecasting accuracy by
1.94%, 20.98% and 67.49%, respectively. The results show that, compared with the other models,
the proposed MSTA-GPR model has better nonlinear feature recognition ability and more effective
parameter optimization ability in small sample data set. The geothermal, biomass and other types of
energy consumption in China have enriched the diversity of the energy supply structure and have
experienced steady development in recent years. For example, biomass power generation has reached
52.9 billion kWh, which has increased 21.3% compared with that of last year.

4.6. Discussion

In contrast with PSO-GPR, GPR and ARIMA, the proposed MSTA-GPR displays a better forecasting
result, owning to the effective parameter optimization of MSTA in hyper parameter selection for
GPR. The forecasting outcomes reveal the changes of future energy consumption development in
China. As obtained from the data in previous sections, the overall renewable energy consumption will
grow at a mean rate of 8.25% during the thirteenth Five-Year Project, and the consumption of China’s
hydroelectricity will slightly grow at a mean rate of 1.60%. Additionally, the mean increase rate for
China’s wind power, solar power and geothermal, biomass and other types of energy consumption are
20.36%, 58.76% and 16.73%, respectively.

As far as we know, with the steady and rapid development of the economy, China’s energy
consumption will maintain a sustained growth momentum in the future. However, China’s energy
consumption system is still dominated by fossil fuels right now. The dependency on fossil fuel
consumption is not sustainable, and serious environmental problems may occur owing to fossil
fuel combustion, such as the greenhouse effect, acid rain, and others. China’s renewable energy
consumption will continue to grow at a steady speed, and the composition of the overall energy
consumption will be more reasonable and balanced along with the application of corresponding
energy policies. The prediction outcomes of this paper can offer useful information for the decision
maker to foresee the future changes of renewable energy development and handle the environmental
pollution problems, which can contribute for a smooth transition towards the 14th Five-Year Project
and sustainable development in the future.
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5. Conclusions

By integrating the modified state transition algorithm into Gaussian process regression, a novel
approach MSTA-GPR is developed to make predictions more effective for China’s renewable energy
consumption. The main contribution of this article is to promote the forecasting performance of GPR
with the application of MSTA in optimal hyper parameter selection. The superiority of MSTA in
global optimization is validated with two well-known functions against the basic STA, GA and PSO.
The suggested MSTA-GPR model is applied with the real data from 2008 to 2015 to make predictions of
renewable energy consumption in China for the first three years of 13th Five-Year Project (2016–2020)
to test the prediction performance.

The suggested approach can be easily applied and proved to be effective for short period prediction
of time series. The forecasting outcomes reveal that compared with PSO-GPR, GPR and ARIMA,
the MAPE of forecasting outcomes obtained by MSTA-GPR is superior to that of the other forecasting
methods. This proves that the proposed MSTA-GPR is a better approach for renewable energy
consumption and the forecasting performance of MSTA-GPR is better than hybrid model PSO-GPR,
the basic GPR, and the traditional time series forecasting method ARIMA. Furthermore, the proposed
MSTA-GPR approach is also supposed to deal with other complicated energy problems with various
influence factors, for instance the price of electricity [46], solar radiation [47], and so on.
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Appendix A

Table A1. Consumption prediction for hydroelectricity of China from 2016 to 2018 (Mtoe).

Year
Real
Data

MSTA-GPR PSO-GPR GPR ARIMA

Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 260.96 260.96 0.00 257.65 1.27 261.97 0.39 267.82 2.63
2017 263.63 268.54 1.86 267.27 1.38 272.20 3.25 284.06 7.75
2018 272.08 272.08 0.00 272.08 0.00 277.34 1.93 300.58 10.47

MAPE 0.62 0.88 1.86 6.95

Figure A1. The interval prediction result of MSTA-GPR for China’s hydroelectricity consumption.
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Table A2. Wind power consumption data for China from 2016 to 2018 (Mtoe).

Year
Real
Data

MSTA-GPR PSO-GPR GPR ARIMA

Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 53.64 49.81 7.15 49.65 7.45 48.92 8.80 49.03 8.59
2017 66.75 61.32 8.14 60.79 8.94 59.59 10.74 56.28 15.69
2018 82.82 75.42 8.93 74.59 9.94 73.36 11.42 63.72 23.06

MAPE 8.07 8.77 10.32 15.78

Figure A2. The interval prediction result of MSTA-GPR for China’s wind power consumption.

Table A3. Solar power consumption data for China from 2016 to 2018 (Mtoe).

Year
Real
Data

MSTA-GPR PSO-GPR GPR ARIMA

Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 13.96 15.40 10.36 15.47 10.84 16.71 19.72 14.60 4.62
2017 26.66 22.58 15.31 22.66 15.00 24.61 7.68 19.56 26.62
2018 40.16 40.16 0.00 40.16 0.00 43.88 9.26 24.73 38.44

MAPE 8.56 8.61 12.21 23.23

Figure A3. The interval prediction result of MSTA-GPR for China’s solar power consumption.
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Table A4. Consumption prediction for geothermal, biomass and other energy from 2016 to 2018 (Mtoe).

Year
Real
Data

MSTA-GPR PSO-GPR GPR ARIMA

Value Error (%) Value Error (%) Value Error (%) Value Error (%)

2016 14.06 14.22 1.13 14.08 0.17 14.36 2.13 13.88 1.28
2017 18.01 16.30 9.48 16.09 10.66 16.54 8.14 15.46 14.16
2018 20.53 20.53 0.00 20.53 0.00 21.18 3.19 16.99 17.22

MAPE 3.54 3.61 4.48 10.89

Figure A4. The interval prediction result of MSTA-GPR for China’s geothermal, biomass and other
energy consumption.
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Abstract: In this paper, we test the use of Markov-switching (MS) GARCH (MSGARCH) models for
trading either oil or natural gas futures. Using weekly data from 7 January 1994 to 31 May 2019,
we tested the next trading rule: to invest in the simulated commodity if the investor expects to be in the
low-volatility regime at t + 1 or to otherwise hold the risk-free asset. Assumptions for our simulations
included the following: (1) we assumed that the investors trade in a homogeneous (Gaussian or
t-Student) two regime context and (2) the investor used a time-fixed, ARCH, or GARCH variance in
each regime. Our results suggest that the use of the MS Gaussian model, with time-fixed variance,
leads to the best performance in the oil market. For the case of natural gas, we found no benefit of
using our trading rule against a buy-and-hold strategy in the three-month U.S. Treasury bills.

Keywords: Markov-switching; Markov-switching GARCH; energy futures; commodities; portfolio
management; active investment; diversification; institutional investors; energy price hedging

1. Introduction

Energy futures, such as oil and natural gas, are a widely used means for hedging the commodity
price risk and also for investing and speculation. Given their close relationship with economic
activity and general prices, energy commodities (especially oil) have also been a source of portfolio
diversification. Nowadays, given electronic trading, as well as global flow of capital, it is possible for
institutional investors to diversify their investments, given the expected correlations of commodities
with securities such as stocks and bonds. Some related tests about the benefits of diversification with
alternative assets (such as commodities) are found in [1–3]. Nevertheless, there are some issues with
the correlations between commodities and conventional assets that need to be addressed. The first
issue is the level of the contagion effect (i.e., higher positive correlations), given the corresponding
increase of the demand in alternative assets such as commodities [4,5]. An alternative asset, in terms
of the investment industry, is different from the three types of conventional securities which include:
money market instrument, fixed income, and equity. The second issue to be addressed is that
investing in a commodity index adds little mean-variance efficiency to a portfolio [6]. In other words,
the diversification benefit for a portfolio is observed only with agricultural commodities [4] and other
types of alternative assets, such as real estate [5], hedge funds [6], volatility futures [3], or clean-energy
(technology) stocks [7]. Despite this, the issue of a diversified portfolio has been tested in several
academic reviews, such as in [2,8,9] which are some of the most recent ones.

Among the potential causes of limited diversification benefits in commodities, is the fact that the
correlation between the commodities and conventional securities increases significantly in distress
time periods. This is a phenomenon known as “correlation clustering” and implies that the correlation
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levels are not always negative or close to zero and tend to increase during bad-performing time periods
in financial markets.

Confirmation of the presence of correlation clustering has been probed by several studies
such as [10–14] which are some of the most recent and closely related studies to this paper.
Additionally, [15–17] found evidence of correlation clustering, by measuring this effect in two regimes.
In these cases, similar to this paper, the authors split the states of nature (or regimes) into two regimes,
as follows:

1. A k = 1, “normal”, good-performing, or low volatility regime, in which the price fluctuations are
narrow, and the expected returns tend to be positive;

2. A k = 2, “distress”, bad-performing, or high volatility regime, in which the price fluctuations
tend to be wider than the ones in k = 1. In addition, it is expected to have negative returns in
this regime.

Therefore, and as detailed in the methodology section, it is expected that the standard deviation
in the second regime is higher than the observed in the first regime: σk = 2 > σs = 1.

Given the marginal diversification benefits of commodities in a portfolio, trading activities in energy
commodities could be more appropriate for active trading purposes. Therefore, we aim to test a trading
strategy in the following most traded energy commodities futures in the U.S. [18]: The one-month
West Texas Intermediate (henceforth OIL) and Henry Hub delivered natural gas (NATGAS).

Departing from the motivation that an energy commodity index in a portfolio could lead to
marginal risk-return benefits [4,5], an interesting question to answer is, “What would the performance
of a given investor have been if she followed the next active trading strategy at t?”

1. To invest in a risk-free asset (such as three-month U.S. Treasury bill or USTBILL) if the investor
expects to be in the “distress” (k = 2) regime at T + 1;

2. To otherwise invest in an energy commodity (OIL or NATGAS).

Our position is that an investor could achieve an outstanding performance if this strategy was
followed as compared with a “buy-and-hold” or “passive” strategy, that is, a strategy in which the
investor holds her proceedings unchanged in the OIL, the NATGAS, or the USTBILL through time.
In addition, we assume that an active trading strategy, such as the previous one, could help to reduce
risk exposure and increase mean-variance (i.e., risk-return) efficiency.

A key step, in the previous trading strategy, is to estimate the probability, ξk = 2,T+1, of being in the
distress (k = 2) regime at T + 1. For this purpose, we suggest the use of a time series method known as
Markov-switching (MS) model [19,20]. Sometimes this model is also known as Hamilton’s filter. With
this type of model, the returns’ (rt) generating stochastic process can be estimated with a K, location
(mean) and scale (standard deviation) parameters. Another interesting feature of the MS model is
the fact that the investor or trader can estimate the smoothed probability, ξk = i,t, of being in each k
regime at t. In addition, the transition probabilities, πk = j,k = i, of changing (or staying) from regime
k = i at t, to regime k = j at t + 1 are part of this model’s outputs. With these transition probabilities,
the investor is able to forecast the smoothed probabilities for t + s (s ≥ 1) and to perform the previous
investment strategy.

As described below, MS models, as originally proposed by Hamilton, assume a time-fixed scale
(standard deviation, σk = i) parameter in each regime. Given this, some extensions [21–24] have been
made in order to incorporate a generalized, autoregressive conditional heteroskedastic (GARCH)
process [25,26] in a MS model. This led to the development of the Markov-switching GARCH
(MSGARCH) model, a model that allows a more precise estimation of the time-varying standard
deviations, σk = i,t, in each regime at t.

The trading strategy that we propose herein is based on the one proposed by Brooks and
Persand [27] for U.K. equities and fixed income securities (as risk-free assets). This trading strategy
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and the use of MS models for trading have been extended and tested in other equity markets [28–31]
or in the optimal pension fund selection in Mexico [32].

To our knowledge and based on a detailed literature review of the most important and well-known
academic journal databases, nothing has been written about the practical use of MS models for trading
in energy commodity markets. The only related reference to this work is a very interesting paper
by Alizadeh et al. [33], who proposed the calculation of MS hedge ratios. They proposed to use MS
models in order to determine how much of the portfolio must be placed in OIL, gasoline, or heating oil
futures and how much of it in the corresponding spot delivered underlying commodity. Although this
interesting work is somewhat related to the present one, our purposes are different. We state this due
to the fact that our trading strategy is to buy the energy commodity if the investor expects a “normal”
or low volatility regime at T + 1, or otherwise buy a risk-free asset. As a research method, we started
from the databases of Scopus and the Web of Science and continued with other repositories such as
EBSCO, Jstor, Econpapers, Ideas-Repec, and finally, Google scholar.

Our results contribute significantly to the existing literature because almost all previous studies
(including [27]) use a time-fixed or “constant” variance scale parameter and do not use MSGARCH
models. Our first purpose is to determine if it is more appropriate to use MSGARCH models instead
of the time-fixed MS models. In addition, we extend the literature by testing the potential use of this
trading strategy in other types of markets such as OIL and NATGAS.

Among the potential benefits of our results among practitioners, we find that an energy commodity
trader could decide to hold a long position from t to T + 1, or liquidate the commodity if the probability,
ξs = 2,t+1, of being in a distress regime at T + 1 is known. In addition, an institutional investor could
use our results in order to enhance portfolio energy commodity positions, more specifically, to enhance
total portfolio performance. In a similar manner, a futures trader or underwriter could use this strategy
to determine if it is necessary to hold OIL, or NATGAS positions, during low volatility periods, as a
coverage of the issued OIL or NATGAS derivatives.

Given the theoretical and practical goals of this paper, we tested, from a U.S. dollar-based
agent’s point of view, the following hypothesis: “The use of the suggested trading strategy with
MSGARCH models leads to a better performance in the OIL and NATGAS market as compared with a
buy-and-hold strategy”.

For a more detailed and introductory review about the difference between a trader, speculator,
or investor, please refer to [34].

Having presented our main goals and purposes, we organized the remainder of this paper as
follows: In the next section, we present our literature review and an introductory review of MSGARCH
models, for the unrelated reader and to link the use of MSGARCH models in the simulated trading
rule. In Section 3, we describe the MS model fitting of the input data and we present the pseudocode
used in our simulations, followed by a review of the simulation results in OIL and NATGAS. Finally,
in the last section, we present our concluding remarks and guidelines for further research.

2. Literature Review and the Use of MSGARCH Models in Our Simulations

2.1. Review of the Previous Literature That Motivates Our Tests

The use of MS models has been tested and suggested in several fields of research in economics,
finance, and even meteorology or energy (turbine) engineering [10,11,35,36]. The first test was the
estimation of the probabilities that a given country is in a recession regime (k = 2) or expansion
regime (k = 1) at t + n [12,13] and, closely related, these models were used to test the potential
presence of common changes in economic cycles [13,15–17]. Other noneconomic applications are the
modeling of temperature or wind speed modeling and forecasting [37–40]. From the studies more
related to the present one and, as an application of MS models in financial time series, we mention
the tests made in developed countries’ stock markets. A good example is by Klein [41], who tested
the presence of time-varying herd behavior in the U.S. and Euro area stock markets. With the use of
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MS models, the author found that there is a notable deviation from rational asset pricing in distress
or periods of high volatility, because the behavior of market agents was more rational in normal or
low volatility periods than during distress periods. Another related paper is by Areal et al. [42] who
tested the performance of a “vice” or non-socially responsible portfolio against a socially responsible
portfolio, in the U.S. stock markets. Contrary to the claims in the literature, they found that the vice
fund is an underperformer during distress or high volatility time periods. Finally, for the developing
stock markets case, we mention the work of Zheng and Zuo [43] who used MS models to measure the
“spillover” or contagion effect between stock markets of the U.S., the U.K., Germany, Japan, and Hong
Kong and found that there is a spillover effect between markets, and that this effect is higher during
distress time periods.

In our literature review, we also found increasing literature related to testing the use of MS,
GARCH, and MSGARCH models in European and emerging stock markets [41,44,45] (Reference [28]
makes a first review of the benefits of time-varying GARCH variances in the European Emerging stock
markets and found the benefits of their use in Value at Risk calculation.). For a more detailed definition
of the typology of markets (i.e., frontier, emerging, or developed), please refer to the classification and
methodology document of MSCI [46]. This document is made in association with Standard & Poor
Dow Jones LLC.

Among the closely-related works that test the use of MS models in emerging markets, we mention
Rotta and Valls Pereira [14] who extended the regime-switching dynamic conditional correlation model
with asymmetric GARCH variances. By using the model in the U.S., the U.K., Brazil, and South
Korea, they found that their model was appropriate to model the volatility clustering effect, due to the
time-varying properties of the correlation among markets, but also given their tested regime-switching
framework. With respect to emerging stock markets, we mention the works of Cabrera et al. [47] and
Sosa, Ortiz and Cabello [48] who tested the use of either MS or MSGARCH models in Latin American
stock markets. Their results were in agreement in that it was appropriate to use either two regime MS
models [48] or three regime MSGARCH models [47] in order to characterize the performance of these
markets. In addition, they suggested that these models could be useful to measure the spillover effect
and the potential presence of a “Latin American stock market common cycle”.

For the specific case of the use of MS models in Asian stock markets, we mention the work of
Lin [49] who tested the co-movements of some of the main Asian stock markets (India, Indonesia,
Korea, the Philippines, Thailand, and Taiwan) as well as their currencies. The author found that
the co-movement is higher during distress time periods. Related also to this paper and as a test
to the random walk stochastic process, the study by Shen and Holmes [50] showed that the use of
non-switching unit root tests is not appropriate in the Asian stock markets. They favored the use of a
two-regime switching test and suggested the presence of a higher mean-reverting effect in normal or
low-volatility time periods.

For the midwest stock markets, Balcilar et al. [51] showed the presence of three regimes (low,
high, and crash volatilities) in the integration of the stock markets of Abu Dhabi, Dubai, Kuwait, Qatar,
and Saudi Arabia. In a similar fashion, the works of Boamah [52] and Bundoo [53] tested the presence
of herding and stock market integration during non-normal or high volatility time periods, in a two or
three regime context.

Up to this point we have presented literature that mostly relates to the use of MS models for time
series characterization. The characterization of the stock index time series in two or more regimes
is crucial for the appropriateness of MS models in investment decisions. Up to now, the previous
references have shown the benefits of using MS models in these stock markets. Given this, we found
strong evidence in favor of these models. Next, we continue with the literature review related to the
proper use of MS models in other types of time series.

From the perspective of the use of MS and MSGARCH models in other types of time series,
we found the works of Alexander and Kaeck [54] and Ma and Deng [55]. These authors searched
for the determinants of credit default swaps (CDS), in developed or emerging economies, and their
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behavior in the context of two regimes. Both papers characterized properly the two-regime behavior of
CDS and found a close relationship of CDS with interest rate levels and stock index performance.

For the specific case of the use of MS or MSGARCH models in commodity markets, we can
mention the paper of Valera and Lee [56] who also tested the random-walk and informational efficiency
hypothesis in the rice market of the following six Asian countries: China, Hong Kong, Indonesia,
Malaysia, Philippines, and Singapore. Their test also showed that the use of a single regime unit root
test is not appropriate, and therefore the Asian rice prices do not follow a conventional (single regime)
random walk. Instead, the authors found that it is appropriate to model the stochastic process with
a MS random walk, that is, to use the assumption that the random walk process is generated and
inferred with a two regime MS model.

Among all the references mentioned herein, the previous study relates closely to this paper because
it reviews the benefits of MS models for commodity time series characterization in commodities.
However, the paper does not review the use of MS models in an investment decision process. Next,
we mention some of the works that review this use of MS models (investment decisions).

As noted in this detailed but not exhaustive literature review, due to issues of space, most of
the literature related to the benefits of MS or MSGARCH models focused on determining if these
appropriately characterize the number of regimes, to measure contagion (spillover) effects between
markets or to estimate the risk exposure. For the specific case of using MS models in investment
decisions, little has been written. Brooks and Persand [27] were the first to propose using MS models for
investment decisions. In a Gaussian, two regime context and by using the T + 1 forecasted smoothed
probabilities (ξk,T+1) of the gilt-equity ratio, the authors determined how much to invest, (ωGilt), at t,
in the U.K. gilts (as the risk-free asset) or in the FTSE-100 (ωFTSE100, as the risky one). In order to
determine this investment level (ωi), they used the aforementioned probabilities as follows:

w =

[
ωGilt

ωFTSE100

]
=

[
ξk = 2,T+1
ξk = 1,T+1

]
(1)

Their simulations show that their active trading strategy in these two assets lead to a better
performance than a passive or buy-and-hold strategy in the gilts or the FTSE-100.

It is worth noting that this paper was the main motivation for this review. The key difference
between the tests made in [27] and this paper, is the fact that the simulated trader decides to invest in
the risky asset only if a normal or low volatility time period is expected at T + 1. In addition, we test
the use of MS and MSGARCH models with Gaussian and t-Student probability density functions
(pdfs), whereas [27] uses only a time-fixed variance, i.e., MS model with Gaussian pdf.

After the original proposal by [27], little has been written about the use of MS or MSGARCH
models for investment purposes [57–59]. Only the works of Hauptmann et al. [28] and Engel, Wahl and
Zagst [31] extended the use of MS models with time-varying (logit regression) smoothed probabilities.
More specifically, these works estimated sequentially three regime MS models. Given the influence
of economic and financial factors, they forecasted the probability of being in each regime and made
investment decisions with these forecasts. Their results in the U.S., Euro, and Asian markets showed an
overperformance of their simulated portfolio against a buy-and-hold strategy. A result that is related
to the results of our paper.

Following a rationale similar to that of [27], De la Torre, Galeana-Figueroa, and Álvarez-García [29]
extended the use of the Gaussian and t-Student MS models to the U.K., U.S., Italian, and Mexican stock
markets. In addition, [30] extended the use of the test of MS to MSGARCH models in the Andean
region countries (Chile, Colombia, and Peru) and [32] to the informed and mean-variance efficient
pension fund selection in Mexico.

Despite these extensions, nothing has been written about the use of MS or MSGARCH models
in commodities and, more specifically, energy commodities. With this in mind, it is necessary to
review the benefits of using the Gaussian or t-Student MS or MSGARCH in the active trading of
these commodities.
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As previously mentioned in the introduction, Alizadeh et al. [33] tested the use of MS models for
the calculation of hedge ratios in the OIL futures market, as a hedging strategy that was tested only for
fitting purposes and not for active trading activities.

On the basis of this literature review, we want to explain the rationale behind MS and MSGARCH
models and how we used these in our simulations.

As mentioned previously, the active trading strategy that we test in this paper uses the forecast of
the smoothed probability, ξk = 2,t+1, of the high volatility regime. Because this is the key parameter to
use in the decision process, it is of interest for us to present a brief and introductory review of MS and
MSGARCH models for the unrelated reader.

2.2. The Rationale of MS and MSGARCH Models and Their Use in Our Simulations

MS models were primarily proposed by Hamilton [19,20,60] using a straightforward rationale, i.e.,
“the stochastic process of a (return) time series rt can be modeled with a set of K number of location
(mean) and scale (variance) parameters. This, given the k probability density functions (pdf) of k
hidden and unobserved regimes”. Because these k number of regimes are unobserved, they can be
modeled with a Markovian chain with k number of states (or regimes), a chain that has a k × k transition
probability matrix Π. Each entrance of this matrix corresponds to the transition probability (πi, j) of
transiting from one state k = i, at t − 1, to another one k = j at t. This means that, as is the case of a
non-absorbing Markovian chain, there is a probability of migrating from one regime to another (πi, j or
π j,i) or staying in it (πi,i or π j, j). For the case of interest (a two-regime scenario) we represent the 2 × 2
transition probability matrix Π as follows:

Π =

[
πi,i πi, j
π j,i π j, j

]
, πi, j = P(kt+1 = j|kt = i, rt,θ) (2)

where θ is the likelihood function parameter set and θ is estimated using a Bayesian method known as
the E-M algorithm [61], in which the analyst starts with an assumed value of θ and the pdf parameters
(including Π). Then, the algorithm maximizes the log-likelihood function (the sum of natural logarithm
of the assumed pdf in each regime at t) and, then, filters the maximized parameters with the data.
This last step is done in order to have more suitable (better fitted) parameters for the data. For further
reference and for a straight-forward review of the estimation algorithm of the MS models, please
refer to [60].

In order to estimate the transition probability matrix in the second step (the filtering process),
Hamilton proposes to filter (from the time series rt) the probability that a given realization of rt is
generated from regime k. This can be done with a Gaussian or a t-Student pdf for the purposes of
this paper:

pk,t =
1√

2πσk
e
−1
2 (

εt
σk
)

2

(3)

pk,t =
Γ
(
νk+1

2

)
√
(νk − 2)πΓ

(
νk
2

)
⎛⎜⎜⎜⎜⎜⎜⎜⎝1 +

(
εt
σk

)2
(νk − 2)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
−νk+1

2

(4)

Once the filtered probabilities have been estimated for each regime in each realization, one can
estimate the location (μk = i) and scale (σk = i) parameters for each regime and also the transition
probability matrix Π in Equation (2). As a complementary estimation, the k-th regime filtered
probabilities can be smoothed (by using Kim’s [62] algorithm) to avoid abrupt changes in the regime
probability at t. This last process leads to a smoothed regime probability, ξk = i,t, for each regime and each
realization of rt. These are presented in a T × K smoothed probability matrix p =

[
ξk = 1,t, ξk = 2,t,

]
.
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With this matrix, the application of a MS model to the time series rt leads to the next parameter set:

θ =
[
μk = i, σk = i, Π, p =

[
ξk = i,t, ξk = i,t,

]]
(5)

From this set, the transition probability matrix Π and the last realization of the smoothed regime
probabilities matrix (p) at t = T, spT =

[
ξk = i,T, ξk = i,T,

]
are of primary interest. These two

parameters allowed us to forecast the probability of being in each regime at T + 1 as shown next:[
ξk = 1,T+1
ξk = 2,T+1

]
= Π · sp′T = Π ·

[
ξk = 1,T
ξk = 2,T

]
(6)

Finally, from this vector, we are interested in the forecasted smoothed probability of the distress
(k = 2) regime ξk = 2,T+1, in order to determine the probability of being in this regime at T + 1.

Among the assumptions of the MS model, as originally proposed by Hamilton [19,20], we mention
that the transition probability matrix Π and the location (μk = i) and scale (σk = i) parameters are
time fixed.

Despite this, some extensions were made to the original MS model in order to allow the scale
(σk = i) parameter to be a time-varying parameter. The need for time-varying variances has two
practical motivations as follows:

1. Because one of the applications of MS models is market risk measurement, the assumption of a
time-fixed standard deviation through time is very limiting for risk management. As an example,
an OIL futures trader could incorporate the effect of the change of regime, but the estimation of
potential losses could be over or underestimated if the variance is time fixed, which causes the
trader’s financial institution to save higher or lower risk capital reserves than needed.

2. An energy derivatives trader or a clearance chamber in an energy derivatives market needs a
more reliable risk measure (i.e., a proper variance), given the actual state of nature (or regime) in
the market. This suggest, as appropriate for derivatives pricing and clearance, the use of a regime
dependent time-varying scale parameter (σk = i,t).

As one answer to these previous practical needs, the generalized autoregressive conditional
heteroskedastic (GARCH) models were proposed by Engle [63] and Bollerslev [64]. These models
estimate the variance as a time-varying one and also forecast it in future time periods (T + n).
The general functional form of a GARCH model is the following:

σ2
t = ω+

∑P

p = 1
βp · ε2

t−p +
∑Q

q
γq · σ2

i,t−q + νt (7)

In the previous expression, the actual (or even forecasted) value of the volatility σ2
t depends of

the squared lagged values of the residuals (εt = rt − r) and also from past values of the estimated
volatility. The lagged squared values in the second term of (7) correspond to the ARCH (autoregressive
conditional heteroskedastic) effect and the lagged values of the estimated variance to the generalization
of the ARCH equation (GARCH term). This is a necessary generalization for faster and more efficient
estimation purposes. The limitation of the GARCH model and his extensions such as the ones proposed
by [65–67], is the presence of the persistence effect. This means that

∑P
p = 1 βp +

∑Q
q γq ≈ 1 in some

market circumstances, leads also to an over estimation of the variance and the risk exposure.
On the basis of the previous motivations and the persistence effect in GARCH models, a potential

solution to this effect is to estimate the GARCH model (7) in a Markov-switching context. This is
supported by the fact that the potential presence of the persistence effect is due to the presence of breaks
or regimes in the behavior of the time series [21–24]. With this in mind, Markov-switching models
with GARCH variance (henceforth MSGARCH) are a natural extension of the GARCH model in (6):

σ2
i,t,k = ωk +

∑P

p = 1
βp,k · ε2

t−p +
∑Q

q
γq,k · σ2

i,t−q,k + νt (8)
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Given this, the theoretical and practical motivation of this paper is to determine if it is appropriate
to use either MS or MSGARCH models to estimate the expected variance (or standard deviation). This,
in order to estimate a more accurate forecast of the smoothed probability at T + 1. It is necessary to test
this because the use of a time-fixed (σk) or a time-varying GARCH (σk,t) standard deviation leads to
different estimations of the smoothed probabilities with (3) or (4).

Given the previous review of MS and MSGARCH models, if a trader estimates the forecasted
second regime smoothed probability (ξk = 2,T+1) with a time-fixed or a GARCH variance, it is expected
to have different probability values. Given these different probability values, the trader could perform
a different trading decision in each case. With this rationale, there are practical and theoretical reasons
to test our two aforementioned hypotheses, that is, to demonstrate that it is better to use a MSGARCH
model, than a MS model for trading decisions in the OIL and NATGAS markets.

As a methodological note, the MSARCH or MSGARCH model can be estimated with the following
two possible Bayesian inference methods [25,26,68]: The E-M [61] algorithm previously described or
Makov chain Monte Carlo simulation methods such as the Metropoli–Hastings [69] sampler. In our
simulations, we estimated the three types of models (MS, MSARCH, and MSGARCH) with the E-M
algorithm, through the simplification suggested by Viterbi [70] (please refer to Ardia [25] for further
details of the algorithm). We estimated the models with the MSGARCH R library [71].

Next, we review the input data, how we conducted our simulations, and the main findings in
our results.

3. Methodology

3.1. Input Data Processing and Simulation Dates

Since we have reviewed how the MSGARCH models are used in the simulated decision-making
process, next, we briefly describe the input data. First, we will start with a description of our sources,
along with the input data processing, followed by a fitting test of the MS and MSGARCH models in
the time series of interest.

For the intended purposes, we used the weekly historical data of the OIL and NATGAS continuous
one-month future price, as summarized in Table 1. We used these historical weekly close prices from 6
April 1990 to 31 May 2019.

Table 1. Summary of the time series used as input in our simulations, their tickers, price-contract size
relation and source.

Refinitiv™ RIC® Source Index Name
Ticker in the

Paper
Trading Units

CLc1 Refinitiv™ Eikon™
CME-NYMEX WTI
continous 1-month
commodity future

Oil USD per barrel

NGc1 Refinitiv™ Eikon™

CME-NYMEX Henry
Hub Natural Gas

continous 1-month
commodity future

Natural gas
USD per BTU (1

BTU = 27.05
cubic meters)

UST3MT = RR Refinitiv™ Eikon™ US 3-month treasury bill USTBILL USD

Source: Own elaboration with data of Refinitiv Eikon [72].

With the historical price (pt) of each simulated commodity, we calculated the continuous time
return or continuous time percentage variation of each energy future each week (leading to a total of
1521 observations):

ri,t = ln(Pi,t) − ln(Pi,t−1) (9)
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Our portfolio trading simulations started from 7 January 1994 and ended 31 May 2019 (T = 1326
weeks) but we used the historical return data from 7 April 1990 to the simulated date (t) for
estimation purposes.

Once we simulated all six aforementioned scenarios in the 1326 weeks of interest, we compared
the performance of the simulated portfolio with the “buy-and-hold” strategy, in OIL, NATGAS,
and USTBILL.

We calculated the accumulated return of the simulated portfolios and the buy-and-hold strategies
as follows:

Δ%accumulated =

((
Portfolio, commodity or USTBILL fund value at T

Portfolio, commodity or USTBILL fund value at t = 1

)
− 1

)
× 100 (10)

We also summarized the performance of the portfolios by calculating the
continuous time percentage variation return (Δ%portfolio,commodity or USTBILL at t =

ln(Portfolio, commodity or USTBILL fund value at t)
ln(Portfolio, commodity or USTBILL fund value at t−1) ). With these returns, we calculated the observed
mean return, its standard deviation, the maximum potential loss (defined as the minimum or lowest
return value), the Sharpe [73] ratio (SR) as in (11) and the 95% and 98% confidence conditional value at
risk (CVaR) as in (12). The Sharpe ratio (SR) is a performance measure that estimates how much risk
premia (extra return from a risk-free asset) the investor receives, given each 1.00% of risk exposure
taken in a given investment. The higher the SR, the better.

SR =
mean(Δ%Portfolioi,t − r ft)
σ(Δ%Portfolioi,t − r ft)

(11)

In the previous expression, Δ%Port f olioi,t is the percentage variation of the portfolio value at t
and r ft represents the corresponding observed weekly equivalent rate of the USTBILL.

CVaR =

∫ q = α

−∞
Δ%Portfolioi,q · P

(
Δ%Portfolioi,q

)
dΔ%Portfolioi,tq, Δ%Portfolioi,tq ≤ α (12)

As an additional methodology note, we ran our simulations in the following six scenarios:

1. The simulation of the two commodities of interest using the MS model with homogeneous Gaussian
pdf and time-fixed variance. We denote this scenario as [commodity name]-MS-Gaussian (e.g.,
“Oil-MS-Gaussian”);

2. The use of the MS model with homogeneous t-Student pdf and time-fixed variance
([commodity]-MS-tStud);

3. The simulation with a MS model with homogeneous Gaussian pdf and ARCH variance
([commodity]-MSARCH-Gaussian);

4. The use of a t-Student MSARCH model ([commodity]-MSARCH-tStud);
5. The scenario of the MS model with homogeneous Gaussian pdf and GARCH variance as (4).

Denoted as [commodity]-MSGARCH-Gaussian;
6. The simulation of the homogeneous t-student MSGARCH ([commodity]-MSGARCH-tStud).

First, we explain the simulation process and data processing and, then, review the appropriateness
of using MS or MSGARCH models in the two commodities. For this purpose, we estimated the models
in the entire time series of both commodities (the 1521 dates) and then we estimated the LLF in each of
the six scenarios as follows:

LLF =
∑T

t
ln
(∑K

k = 1
πk · pk,t

)
(13)

In the previous expression, pk,t is the filtered Gaussian (3) or t-Student (4) pdf and πk is a regime
mixture law that measures the proportion of the k-th regime in the entire LLF (πk =

(∑T
t = 1 pk,t

)
· T−1).
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With these LLF values, we estimated the Akaike information criterion (AIC) [14] and determined,
as “the best” model or scenario, the one with lowest AIC. Our results are summarized in Table 2.

Table 2. Single and multiple regime AIC fitting test for the three commodities’ time series of interest.

Model or Scenario Oil Natural Gas

Single-Gaussian −4840.63 −3750.07
Single-tStud −4992.30 −3824.21
MS-Gaussian −5054.02 −3882.19

MS-tStud −5048.80 −3873.38
MSARCH-Gaussian −5044.06 −3870.25

MSARCH-tStud −5043.92 −3861.60
MSGARCH-Gaussian −5067.62 [Best fit] −3885.0747 [Best fit]

MSGARCH-tStud −5053.89 −3875.72

Source: Own elaboration with results of our simulations and data from Refinitiv Eikon [72].

The results, shown in Table 2, suggest that the two regime, Gaussian MSGARCH, is the best model
to fit the time series of the two simulated commodities. A result that preliminarily confirms our first
hypothesis. In order to test the validity of this result through time, we ran the recursive estimation of
the six MS tested models (with constant, ARCH or GARCH variance). This, in each of the 1326 weeks
of the simulation since 7 January 2000 to 31 May 2019. After this, we calculated the mean AIC value.
The results are summarized in Table 3.

Table 3. Single and multiple regime recursive AIC fitting test for the three commodities’ time series
of interest.

Model or Scenario Oil Natural Gas

Single-Gaussian −2711.1544 −2077.9385
Single-tStud −2807.7203 −2127.7972
MS-Gaussian −2841.9781 [Best fit] −2147.2707 [Best fit]

MS-tStud Not feasible Not feasible
MSARCH-Gaussian −2829.7621 −2135.5721

MSARCH-tStud −2823.6334 −2127.4305
MSGARCH-Gaussian −2825.6056 −2133.9354

MSGARCH-tStud −2818.5195 −2125.1552

Source: Own elaboration with results of our simulations and data from Refinitiv Eikon [72].

As noted, given the inference algorithm used for estimation purposes and the nature of the data,
the MS-tStud scenario in both commodities is marked as “not feasible”. This is because, in some of the
dates (The unfeasible dates are 24 April 2009 and 19 June 2009 in the OIL market and 31st December
2010 and 12 June 2015 for the NATGAS.), the use of Hamilton’s [19,20] filter with the Viterbi [70]
algorithm did not converge and it did not found a feasible solution. For this reason, we excluded, from
our trading simulations, the MS-tStud scenario.

In addition, from Table 3, we found a result that looks contradictory to the results in Table 2,
in terms of fitting. If we compared the results of Table 3 with those of Table 2, the MS model with
Gaussian pdf and constant variance showed the best fit in oil and natural gas.

Despite these contradictory results, we ran our investment simulations in the feasible scenarios
of Table 3. Up to this review of results, the full time series and the recursive MS and MSGARCH
analysis prove that the time series of the three commodities can be modeled with two regime MS,
or MSGARCH models.

Next, we provide a brief description of the pseudocode used in our simulations.
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3.2. The Pseudocode and Assumptions Used in Our Simulations

As previously mentioned, from all the parameters in the parameter set of MS or MSGARCH
models, we are interested in the smoothed probabilities of being in each regime, ξk = 1,t, and also in
the transition probability matrix Π. With these two parameters and by using (8), we can forecast the
smoothed probability of being in both regimes at T + 1. Contrary to [27], we do not use both regimes’
smoothed probabilities. We pay special attention to the forecasted smoothed probability of the second
regime, (Sξk = 2,T+1). As a methodological note, the MSGARCH library sorts the k regimes from the
regime with the lowest (k = 1) to the highest (k = 2) standard deviation, in order to perform the
next indicator function of the forecasted regime at T + 1 as follows:

kT+1 =

{
1, i fξk = 2,T+1 ≤ 0.5
2, i fξk = 2,T+1 > 0.5

(14)

It is of methodological importance to mention that we estimated the MSGARCH, MSARCH,
and MS models only with the residuals as recommended by Haas et al. [24]. In order to estimate
these residuals, we detrended the historical return time series with the arithmetic single regime mean
as follows:

εi,t = ri,t − ri (15)

With the forecasted regime at T + 1 (kT+1), we ran the simulations of the investment process by
following the next pseudocode in each simulation date (t = 7 January 1994 and T = 31 May 31
2019) as follows:
For date 1 to T in the simulation:

1. To determine the actual balance in the portfolio (cash balance and market value of holdings);
2. To execute the Markov-switching model analysis in (4) with either GARCH, ARCH, or constant

variance and also a Gaussian (6) or t-Student (7) pdf;
3. To determine the expected regime (kT+1) at t + 1 with (9);
4. With kT+1, to perform the next trading decision rule:

a. To invest in the energy commodity if kT+1 = 1,
b. To invest in the risk-free asset if kT+1 = 2 ;

5. To value the portfolio with a mark-to-market procedure.

End

In order to run our simulations, we used the following assumptions in the portfolio and its trading
activities:

1. We simulated the performance of a USD 100,000.00 theoretical fund that only invests in the
following two possible assets:

a. A theoretical ETF that tracks the performance of the simulated energy commodity. An ETF
that has a starting value of USD 100.00 and zero tracking error as assumption.

b. A theoretical fund that pays the three-month U.S. Treasury bill rate each week. This fund
also has a USD 100.00 theoretical starting value.

2. This portfolio is not allowed to make short sales and only has the following two accounts:

a. A cash balance account,
b. A security custody account in which the energy commodity futures are saved.

3. In order to simplify the simulations and given the potential heterogeneity in the trading fees
among institutional investors, we are assuming that the simulated portfolio has no trading costs
or taxes to pay.
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Next, we review of our simulations, starting with the buy-and-hold strategy.

3.3. Passive or “Buy-and-Hold” Investment Strategy Results

In Table 4, we present the results that a given investor or commodity trader would have had,
had she performed a “buy-and-hold” strategy during the simulated period. As noted, the passive
investment strategy in OIL paid an accumulated return of 249.21%. A return that is equivalent to a
yearly return (in brackets) of 9.77%. As noted, this value is higher than the 90.50% accumulated return
paid by the USTBILL (3.54% yearly). With this in mind, investing in OIL has a proper risk return or
mean-variance relation as shown in the Sharpe ratio. The result of this measure suggests that investing
in OIL paid a weekly 0.0097% (0.13% yearly) of risk premium for each 1.00% risk exposure in this
energy commodity.

Table 4. Performance of a passive or “buy-and-hold” investment strategy in the two simulated energy
commodities and the U.S. Treasury bills.

Model or Scenario Accumulated Return Mean Return Return Std. Dev. Max Drawdown

Oil 249.2167 [9.7732] 0.0944 [4.9088] 4.9222 [35.4945] −31.218
Natural Gas 13.8219 [0.542] 0.0098 [0.5096] 7.125 [51.3791] −42.6905

USTBILL 90.502 [3.5491] 0.0546 [2.8392] 0.0449 [0.3238] -

Model or scenario CVaR (95%) CVaR (98%) Sharpe ratio

Oil −11.8377 [−85.3629] −15.3773
[−110.8873] 0.0097 [0.1383]

Natural Gas −15.7226 [−113.3773] −19.8391
[−143.0618] −0.0052 [0.0099]

USTBILL - - -

Note: All the values are presented in % with the exception of the Sharpe ratio. In addition, all the values are shown
in weekly terms with the exception of the accumulated return that is measured for the whole simulation period.
The equivalent yearly values are presented in brackets. Source: Own elaboration with results of our simulations and
data from Refinitiv Eikon [72].

A different situation is observed in the passive investment in NATGAS. As noted in the same
table, the passive investment strategy in this commodity paid only a 13.82% of accumulated return in
the whole simulation period (a 0.54% in a yearly basis). This return is lower than the observed one
in USTBILL.

For the case of the risk measures (max drawdown and CVaR) in the two simulated commodities,
we compared the observed results for these two passive strategies with their corresponding active
trading scenarios in OIL and NATGAS.

3.4. Results of the Markov-Switching Active Investment Strategy in the WTI Oil Market

For the particular case of OIL futures, we present the performance results of our simulations in
Table 5. As noted, all the simulated scenarios paid a higher accumulated return than their corresponding
passive or buy-and-hold strategy.

In addition, the MS and MSGARCH models led to better results if they are used in active
investment strategies, with the Gaussian MS scenario paying the highest return. This result does not
entirely fulfill our first hypothesis, due to the fact that the best model for the intended purposes is not
an MSGARCH.

Had an investor used this type of MS model in their investment strategy, they would have earned
a 1097.49% return (43.03% in yearly basis). This result is higher than the Gaussian MSGARCH that
paid the second-best accumulated return in our simulations (788.00% or 30.90% yearly).

By comparing the risk exposure measures in Table 4 (buy-and-hold strategy), it can be observed
that the max drawdown and the potential loss (CVaR) in the simulated portfolios are lower than the
ones in Table 4 for OIL.
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Table 5. Performance of the Markov-switching active investment strategy applied in the continuous
one-month WTI oil future price contract.

Model or Scenario Accumulated Return Mean Return Return Std. Dev. Max Drawdown

Oil-MS-Gaussian 1097.49 [43.0388] 0.1874 [9.7448] 3.7326 [26.9162] −13.7099

Oil-MS-tStud Not feasible Not feasible Not feasible Not feasible

Oil-MSARCH-Gaussian 762.0588 [29.8847] 0.1626 [8.4552] 3.5678 [25.7278] −13.7099

Oil-MSARCH-tStud 123.3836 [4.8386] 0.0607 [3.1564] 3.1883 [22.9912] −15.8776

Oil-MSGARCH-Gaussian 788.0043 [30.9021] 0.1648 [8.5696] 3.8678 [27.8911] −27.353

Oil-MSGARCH-tStud 624.3021 [24.4824] 0.1494 [7.7688] 3.2428 [23.3842] −17.9683

Model or scenario CVaR (95%) CVaR (98%) Sharpe ratio
Mean risky

exposure

Oil-MS-Gaussian −8.4109 [−60.6519] −10.1399
[−73.1199] 0.0252 [0.3620] 0.902

Oil-MS-tStud Not feasible Not feasible Not feasible Not feasible

Oil-MSARCH-Gaussian −8.124 [−58.583] −9.7196 [−70.089] 0.0206 [0.3286] 0.8808

Oil-MSARCH-tStud −7.9165 [−57.0867] −9.7627 [−70.3998] 0.0041 [0.1378] 0.7323

Oil-MSGARCH-Gaussian −9.2385 [−66.6198] −12.0042
[−86.5635] 0.0256 [0.3072] 0.8032

Oil-MSGARCH-tStud −8.052 [−58.0638] −10.3119
[−74.3602] 0.0182 [0.3322] 0.6305

Note: The same presentation format as in Table 4. Source: Own elaboration with results of our simulations and data
from Refinitiv Eikon [72].

Despite this, it is noted that the Gaussian MS scenario shows higher CVaR values than the
MSGARCH scenarios. This result is important because, if a trader wants to use an MS or MSGARCH
model for trading purposes, it is preferable to use a Gaussian time-fixed variance MS one. But, if a
futures trader or a risk manager wants to measure more appropriately the risk exposure in the OIL
position, it is better to use a Gaussian MSGARCH model.

This preliminary conclusion (the use of MS models for trading and the use of MSGARCH for
risk management) is explained by the fact that the Gaussian (constant variance) MS model is more
appropriate to make forecasts of the second regime at T + 1, leading to a proper trading sign of buying
(selling) the OIL future during “calm” (“distress”) forecasted periods. This statement is supported by
the “mean risky exposure” field of Table 5, a result that shows a less conservative strategy than the one
made in the other scenarios or MS models.

In Figure 1, we present the historical performance of the five simulated portfolios (lines),
together with the performance of the passive or buy-and-hold portfolio in the simulated commodity
(shaded area).

As noted, practically all the portfolios were sensitive to the increase in volatility in the next distress
periods such as: the 2000 to 2001 technology companies crisis, the reputational and accounting issues
of companies such as Enron (a closely-related event with these two commodities); the subprime credit
crisis of 2007 to 2008, the European debt issues of 2011 to 2013, and the most recent issues of the U.S.
negotiations with key trade partners (2018 to 2019). From the simulated scenarios, the one that used the
Gaussian MS model was the most parsimonious in the rebalancing activities and the one that showed
a good fit for these crisis episodes. This is noted in the “almost straight” behavior of the simulated
portfolio during these periods. The bottom panel of the same Figure 1 shows the investment level in
the simulated commodity at t. We present this panel in order to show the benefits of the use of MS,
MSARCH, or MSGARCH modes. As noted, there are some differences in the estimation of the forecast
of the second regime and this leads to different decisions in each simulated portfolio. More specifically,
the reader can note that three best performing portfolios reduced to 0.00% their holdings in the oil
futures in distress time periods. Examples of this are the subprime crisis of October 2008 to February
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2009 or the mid 2013 European debt issues. For the specific case of the time-fixed variance MS model
(with Gaussian pdf), this model was less sensitive to the changes on the volatility levels. The use of
this model allowed long positions in the oil futures to be held when the most sensitive MSARCH and
MSGARCH did not. This difference led the simulated oil trader to have a better performance result.

 
Figure 1. Historical performance of the five simulated scenarios of the investment strategy in the WTI
oil continuous price one-month future and its historical investment level. Source: Own elaboration
with results of our simulations and data from Refinitiv Eikon [72].

In order to strengthen the performance review of the simulated portfolios, we performed a
one-way ANOVA test and a nonparametric Kruskal–Wallis test, with the five simulated portfolios and
the performance of the buy-and-hold ones in OIL and USTBILL. The results of these two tests are shown
in Table 6. As noted, the results of these tests suggest that there is no significant difference. This issue
is due to the fact that the previous tests make a mean or median comparison between the simulated
portfolios and do not differentiate the performance fluctuations and risk exposure. In addition, these
tests do not differentiate the distance between the highest to the lowest observed return in each case.

Table 6. ANOVA and Kruskal–Wallis test of the observed weekly returns in the simulated portfolios of
the OIL price and the USTBILL portfolio.

One-Way ANOVA Test

Degrees of Freedom Squred Sums Squared Means F Value Pr (>F)

5.0000 0.0016 0.0003 0.2162 0.9558

7944.0000 11.4572 0.0014

Kruskal-Wallis test
K-W statistic Degrees of Freedom Pr (>Xi2)

2.7928 5.0000 0.7319

Source: Own elaboration with results of our simulations and data from Refinitiv Eikon [72].
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In order to complete a deeper performance review of the simulated portfolios, we present the
box plots of Figure 2. As noted by the reader, the box plots of the simulated portfolios are narrower
than those of the buy-and-hold strategy in OIL. This gives support to our position that the use of
our trading rule with MS models leads to a better performance, due to a lower risk exposure of the
simulated portfolios and a potential good market timing.

 
Figure 2. Box plot of the returns of five simulated scenarios in the WTI oil continuous. Source: Own
elaboration with results of our simulations and data from Refinitiv Eikon [72].

In order to strengthen our position that the Gaussian MS model led to the best performance,
we ran the next attribution and market timing test:

ri,t = α+ β1 · rcommodity,t + β2 · r2
commodity,t + εt commodity (16)

In the previous expression, rcommodity,t is the percentage variation of the buy-and-hold portfolio.
With this term, we measured how much the commodity performance contributed to the simulated
return each week. In the second term we added a nonlinearity to the generated return. This second
term measures the market timing of the simulated portfolio. If the β2 value is greater than zero,
the trading rule enhanced market timing skills (our main purpose herein). The previous regression
was made in the risk premiums of the simulated portfolios and OIL, that is, we are regressing only the
difference between the return paid by the USTBILL and by each commodity and simulated portfolio.
The results of this attribution and market timing test are shown in Table 7.

This test gives a stronger support to our results by the fact that, as expected, the α value is not
significant, whereas that of β2 is positive and significant. For the specific case of the Gaussian MS
portfolio (the best performer from the simulated ones), we found evidence of good market timing. This,
with a 0.9731 β2 value that suggests that for each 1.00% increase in the OIL risk premium, the simulated
trading rule generated an extra 0.9731%, given a good market timing. This is higher than the 0.6049%
explained by β1. This last constant suggests that each 0.6049% of the returns paid by the simulated
portfolios is explained by a 1.00% OIL price increase.

Next, we proceed to the observed results in the NATGAS.
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Table 7. Attribution and market timing test of the five simulated portfolios in the OIL market.

Simulated Portfolio α α p-Value β1 β1 p-Value

Oil-MS-Gaussian −0.0012 0.0794 0.6049 0.0000
Oil-MSARCH-Gaussian −0.0012 0.1095 0.5511 0.0000

Oil-MSARCH-tStud −0.0014 0.0593 0.4358 0.0000
Oil-MSGARCH-Gaussian −0.0005 0.4508 0.6356 0.0000
Oil-MSGARCH-tStud −0.0009 0.2301 0.4552 0.0000

Simulated portfolio β2 β2 p-Value R2

Oil-MS-Gaussian 0.9731 0.0000 0.5982
Oil-MSARCH-Gaussian 0.8441 0.0000 0.5443

Oil-MSARCH-tStud 0.5300 0.0000 0.4293
Oil-MSGARCH-Gaussian 0.5807 0.0000 0.6262
Oil-MSGARCH-tStud 0.6881 0.0000 0.4495

Source: Own elaboration with results of our simulations and data from Refinitiv Eikon [72].

3.5. Results of the Markov-Switching Active Investment Strategy in the Natural Gas Market

In the case of the NATGAS trading simulations, no useful results were found for a NATGAS
trader. We mention this due to the fact that the results are not as attractive as the ones observed in the
OIL market. In Table 8, we present the performance results of the five feasible simulated scenarios.
As noted, only the use of Gaussian MS or MS-ARCH models led to a positive accumulated return.
Even if these two simulated portfolios generate alpha (higher returns than the buy-and-hold strategy),
the observed values are not higher than the ones observed in the passive USTBILL portfolio (Table 4).

Table 8. Performance of the Markov-switching active investment strategy applied in the continuous
one-month natural gas future price contract.

Model or Scenario Accumulated Return Mean Return Return Std. Dev. Max Drawdown

Natural gas-MS-Gaussian 80.607 [3.1611] 0.0446 [2.3192] 2.473 [17.8331] −10.3716

Natural gas-MS-tStud Not feasible Not feasible Not feasible Not feasible

Natural
gas-MSARCH-Gaussian 41.3346 [1.621] 0.0261 [1.3572] 2.4053 [17.3449] −10.3692

Natural gas-MSARCH-tStud −12.3048 [−0.4825] −0.0099 [−0.5148] 2.4059 [17.3492] −14.6584

Natural
gas-MSGARCH-Gaussian −61.2853 [−2.4033] −0.0716 [−3.7232] 3.986 [28.7435] −42.6652

Natural
gas-MSGARCH-tStud −3.8858 [−0.1524] −0.003 [−0.156] 1.9494 [14.0573] −9.642

Model or Scenario CVaR (95%) CVaR (98%) Sharpe Ratio
Mean risky
Exposure

Natural gas-MS-Gaussian −6.4364 [−46.4135] −7.9449 [−57.2915] 0.0027 [0.1301] 0.4412

Natural gas-MS-tStud Not feasible Not feasible Not feasible Not feasible

Natural
gas-MSARCH-Gaussian −6.383 [−46.0285] −7.9212 [−57.1206] −0.0005 [0.0782] 0.4118

Natural gas-MSARCH-tStud −6.5453 [−47.1988] −8.5821 [−61.8864] −0.008 [−0.0297] 0.3145

Natural
gas-MSGARCH-Gaussian −9.572 [−69.0247] −12.0872 [−87.162] −0.0162 [−0.1295] 0.6599

Natural
gas-MSGARCH-tStud −5.4323 [−39.1729] −6.8775 [−49.5944] −0.0041 [−0.0111] 0.2481

Note: The same presentation format as in Tables 4 and 5. Source: Own elaboration with results of our simulations
and data from Refinitiv Eikon [72].

Even if this result supports part of our working hypothesis of alpha generation, it is preferable to
invest in a buy-and-hold strategy in USTBILL than trading with our strategy in natural gas.
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We observe that this result is not due to the active investment strategy proposed herein, but
because the NATGAS did not paid a higher return than the USTBILL. This leads us to observe that this
commodity is not appropriate for trading purposes with a quantitative strategy.

For the specific case of the risk exposure in this commodity, practically all the scenarios show a
significant reduction from the observed values in the buy-and-hold strategy and the CVaR values are
lower than the ones of the passive investment scenario.

Figure 2 shows the historical performance of the simulated portfolios, along with the historical
investment level in the NATGAS future. Even if the Gaussian MS model is the best for fitting the data
recursively (Table 3), the accumulated return is not so attractive. As Figure 2 and Table 8 show, the mean
risky investment level (or exposure) is lower than 50.00% in the simulations. This produced a more
conservative strategy. In addition, in some periods, such as July 2007 to October 2008, the presence
of the distress or high volatility periods was higher, and the price was subject to wider fluctuations.
This led our trading algorithm to invest in the risk-free asset.

This last statement is proven in the historical investment level in the natural gas future, as shown
in the lower panel of Figure 3. As noted, the Gaussian time-fixed and ARCH variance MS models were
highly sensitive to changes in the high-volatility regime probability. This led to a sell of the natural gas
futures position and to an increase in the risk-free asset. This behavior was of practical use in the 2009
to 2010 period in which the quantitative easing program of the U.S. Federal Reserve took effect which
allowed a reduction in the speculative positions in this commodity and a price downfall. This change
of regime was noted by these two models, resulting in a sell of the risky position in this future. This last
decision was crucial, in order to generate an overperformance against the buy-and-hold strategy
(shaded area). Despite the performance results observed in our simulations, the performance of the
five simulated portfolios is not better than that of the USTBILL.

 
Figure 3. Historical performance of the five simulated scenarios of the investment strategy in the
natural gas price one-month future and its historical investment level. Source: Own elaboration with
results of our simulations and data from Refinitiv Eikon [72].
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In order to make a more consistent review, we performed the one-way ANOVA and Kruskal–Wallis
tests, along with the review of the returns box plots. The results are shown in Table 9 and Figure 4.
As noted, there is no significant difference in the performance of the five simulated portfolios, even if
the return fluctuation is narrower in these. This last result suggests that, even if the risk exposure is
lower in the simulated portfolios, their performance is not so different between them.

Table 9. ANOVA and Kruskal–Wallis test of the observed weekly returns in the simulated portfolios of
the NATGAS price and the USTBILL portfolio.

One-Way ANOVA Test

Degrees of Freedom Squred Sums Squared Means F Value Pr (>F)

5 0.0010 0.0002 0.1444 0.9817

7944 11.6639 0.0014

Kruskal–Wallis test
K-W statistic Degrees of Freedom Pr (>Xi2)

10.8893 5.000 0.0536

Source: Own elaboration with results of our simulations and data from Refinitiv Eikon [72].

 
Figure 4. Box plot of the returns of five simulated scenarios in the natural gas continuous. Source:
Own elaboration with results of our simulations and data from Refinitiv Eikon [72].

In order to verify if the observed performance results in the NATGAS are due to market timing
skills with the simulated trading rule, we present the proper test results in Table 10. As noted, the values
suggest that the performance in the simulations made in this commodity is due only to NATGAS price
fluctuations. Only the β1 values are significant and low. This gives stronger support to our conclusions
related to this commodity; the commodity did not have a better performance than the USTBILL and,
complementary to this our trading rule did not generate good market timing, that is, it did not work
for the intended purposes.
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Table 10. Attribution and market timing test of the five simulated portfolios in the NATGAS market.

Simulated Portfolio α α p-Value β1 β1 p-Value

Oil-MS-Gaussian −0.0001 0.8563 0.0402 0.0047
Oil-MSARCH-Gaussian −0.0003 0.6503 0.0405 0.0034

Oil-MSARCH-tStud −0.0007 0.3583 0.0415 0.0027
Oil-MSGARCH-Gaussian −0.0019 0.1157 0.1455 0.0000
Oil-MSGARCH-tStud −0.0006 0.2841 0.0270 0.0158

Simulated portfolio β2 β2 p-value R2

Oil-MS-Gaussian 0.0230 0.8485 0.0062
Oil-MSARCH-Gaussian 0.0257 0.8261 0.0067

Oil-MSARCH-tStud 0.0147 0.8998 0.0071
Oil-MSGARCH-Gaussian 0.2118 0.2698 0.0305
Oil-MSGARCH-tStud 0.0341 0.7194 0.0044

Source: Own elaboration with results of our simulations and data from Refinitiv Eikon [72].

As a corollary of results, the use of MS models leads to a better performance if these are used for
trading decision purposes in the oil market only. More specifically, the use of Gaussian, time-fixed
variance MS models lead to the best performance in both commodities. This is an issue that does not
completely fulfill our working hypothesis because the best performing model is the Gaussian with
time-fixed variance and not a MSGARCH model. Despite this, we found that the use of MS models for
trading is useful only in the oil market. We mention this, given the poor performance of the natural
gas simulations against the U.S. Treasury bills and the poor market timing of the simulated trading
rule in this case.

4. Concluding Remarks and Guidelines for Further Research

Markov-switching (MS) models have been used in several applications since their first proposal
in [19,20]. From all these, we were interested in their use for active trading in the most traded energy
commodities [18]: The West Texas Intermediate oil (OIL) and the Henry Hub delivered natural gas
(NATGAS). More specifically, we were interested, for trading decision purposes, in the forecast of the
distress or high volatility regime or time period for these two commodities.

The use of MS models for active trading was originally proposed by Brooks and Persand [27]
in the U.K. gilt and stock markets, in a two regime and Gaussian probability density function (pdf)
context. This test was later extended to other stock markets by [28,31,57–59] in a Gaussian, constant
(or time-fixed) variance, and in a two or three-regime context. Only the work of [30] extend the
use of MS models with a time-varying autoregressive conditional heteroscedasticity (ARCH) or a
generalized autoregressive conditional heteroscedasticity (GARCH) variance (henceforth MSARCH
and MASGARCH models, respectively).

By the fact there is no literature on studies that test the use of MS, MSARCH, or MSGARCH
models for commodity trading, we extended the review of the practical usefulness of MS models in the
following three ways:

1. The use of MS models for trading in the OIL and NATGAS markets;
2. The use of a two regime, t-Student pdf by comparing the observed results with the ones in a

Gaussian context;
3. By using an ARCH or GARCH variance for the estimation of the MS model.

These energy commodities were of special interest to us, given their direct link in the economic
activity and their use in the diversification practices in institutional investors such as mutual funds,
pension funds, or insurance companies.

With weekly data from 6 April 1990 to 31 May 2019, we performed weekly simulations (from 7
January 1994 to the end of the dataset) of the next investment strategy which included:
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1. To invest in the commodity future of interest if the investor expects to be in the “normal” or
“calm” regime (k = 1) at T + 1 ;

2. To invest in the risk-free asset (the three-month U.S. Treasury bill or USTBILL) if the investor
expects to be in the “distress” or “high volatility” time period.

This led us to test the following working hypotheses:

1. It is better to use a MSARCH or MSGARCH model in order to forecast the T + 1 the probability,
ξk = 2,t+1, of being in the distress regime in the OIL or NATGAS market;

2. The use of the suggested trading strategy with MS-GARCH models leads to a better performance
in the OIL and NATGAS market. This compared with a passive or “buy-and-hold” one.

As a corollary of results of the simulations performed herein, we want to highlight that our first
working hypothesis partially holds for OIL. That is, the use of MS models is appropriate for an active
investment in the OIL market. We concluded this because the use of MS models leads to a proper
T + 1 forecast of the distress regime probability and to a proper investment decision (proper market
timing). Despite this, our position in our first hypothesis was that it is preferable to use a MSARCH
or MSGARCH model instead. As part of our results, it is important to mention that the t-Student
MSGARCH model is the best one for risk measurement (that is for energy market risk management
purposes) but the constant variance MS model with Gaussian pdf is the best option for active trading
in the OIL market. This last result is due to the 1097.49% accumulated return observed in this scenario.

For the specific case of the NATGAS market, we found that the accumulated results are lower than
those of a buy-and-hold strategy in USTBILL, due to the fact that the NATGAS had a lower performance
(accumulated return) than the USTBILL during the simulation period. Therefore, we conclude that the
use of Gaussian or t-Student MS, MSARCH, or MSGARCH models does not lead to good performance
results in this market, given the performance of the simulated commodity.

We believe that our results contribute to the existing literature about the practical usefulness of
Markov-switching (MS) models in trading activities. In addition, our simulations lead us to suggest
that the use of the proposed active investment strategy could help portfolio managers, energy traders,
or individual investors to invest in these types of commodities, with an acceptable level of accuracy in
the forecast of distress time periods.

Limitantions Found in Our Simulations and Guidelines for Further Research

Among the limitations (opportunity areas) that we found in our simulations is the fact that we
used (due to space restrictions and for simplicity in the rhetoric situation) symmetric and homogeneous
Gaussian and t-Student pdfs and, for the same exposition reasons, we used a two regime assumption
and symmetric ARCH and GARCH models. Had we made our test in a symmetric vs. asymmetric
pdf and GARCH models, we would have needed to present the results of not six but of 18 scenarios.
This number of scenarios is reached had we used asymmetric Gaussian and t-Student pdfs [74] and the
two most used asymmetric GARCH models, the T-GARCH [67] and the GJR-GARCH [66]. Related to
this issue, we suggest testing the use of these pdfs and GARCH variances in similar simulations and to
extend the study to the use of the generalized error distribution (GED) pdf.

Another limitation in our test is the fact that the MSARCH or MSGARCH can be estimated only
in the residuals, because we estimated these with the arithmetic mean of the returns. We suggest
extending our test by using other nonlinear mean models such as the ARMA model.

Finally, we used the assumption that the transition probability matrix (Π) is time fixed, the extension
to time-varying transition probabilities and also the incorporation of external factors in the estimation
of the MS models could be of potential interest.
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Abstract: Within the field of soft computing, intelligent optimization modelling techniques include
various major techniques in artificial intelligence. These techniques pretend to generate new business
knowledge transforming sets of "raw data" into business value. One of the principal applications of
these techniques is related to the design of predictive analytics for the improvement of advanced
CBM (condition-based maintenance) strategies and energy production forecasting. These advanced
techniques can be used to transform control system data, operational data and maintenance event data
to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation.
One of the systems where these techniques can be applied with massive potential impact are the
legacy monitoring systems existing in solar PV energy generation plants. These systems produce a
great amount of data over time, while at the same time they demand an important effort in order to
increase their performance through the use of more accurate predictive analytics to reduce production
losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of
the problems to address. This paper presents a review and a comparative analysis of six intelligent
optimization modelling techniques, which have been applied on a PV plant case study, using the
energy production forecast as the decision variable. The methodology proposed not only pretends
to elicit the most accurate solution but also validates the results, in comparison with the different
outputs for the different techniques.

Keywords: artificial intelligence techniques; energy forecasting; condition-based maintenance;
asset management

1. Introduction

Within the field of soft computing, intelligent optimization modelling techniques include various
major techniques in artificial intelligence [1] pretending to generate new business data knowledge
transforming sets of "raw data" into business value. In the Merriam-Webster dictionary data mining
is defined as “the practice of searching through large amounts of computerized data to find useful
patterns or trends”, so we can then say that intelligent optimization modelling techniques are data
mining techniques.

Nowadays, connections among industrial assets and integrating information systems, processes and
operative technicians [2] are the core of the next-generation of industrial management. Based on
the industrial Internet of Things (IoT), companies have to seek intelligent optimization modelling

Energies 2019, 12, 4163; doi:10.3390/en12214163 www.mdpi.com/journal/energies211
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techniques (advanced analytics) [3] in order to optimize decision-making, business and social value.
These techniques are preferred to fall inside the soft computing category, with the idea of solving real
complex problems with inductive reasoning like humans, searching for probable patterns, being less
precise, but adaptable to reasonable changes and easily applicable and obtainable [4].

To be able to implement these advanced techniques requires a comprehensive process sometimes
named “intelligent data analysis” (IDA) [5], which is a more extensive and non-trivial process to
identify understandable patterns from data. Within this process, the main difficulty is to identify valid
and correct data for the analysis [3] from the different sources in the company. Second, efforts must be
developed to create analytic models that provide value by improving performance. Third, a cultural
change has to be embraced for companies to facilitate the implementation of the analytical results.
In addition to this, since accumulation of data is too large and complex to be processed by traditional
database management tools (the definition of “big data” in the Merriam-Webster dictionary), new tools
to manage big data must be taking into consideration [6].

Under these considerations IDA can be applied to renewable energy production, as one of the most
promising fields of application of these techniques [7]. The stochastic nature of these energy sources,
and the lack of a consolidated technical background in most of these technologies, make this sector
very susceptible for the application of intelligent optimization modelling techniques. The referred
stochastic nature is determined by circumstances in the generation sources, but also by the existing
operational conditions. That is, the natural resources have variations according to weather with a certain
stationarity but with difficulties in forecasting behaviours. In addition, depending on the operational
and environmental stresses in the activities, they will be more likely to fail. Consequently, the analysis of
renewable energy production must consider adaptability to dynamic changes that can yield results [8].

The identification and prediction of potential failures can be improved using advanced analytics
as a way to search proactively and reduce risk in order to improve efficiency in energy generation.
Algorithms, such as machine learning, are now quite extended in renewable energy control systems.
These kinds of facilities are characterized by the presence of a great number of sensors feeding the
SCADA systems (supervisory control and data acquisition systems), usually very sophisticated systems
including a control interface and a client interface (the plant’s owner, distribution electric network
administrator, etc.). Power and energy production measures are two of the most important variables
managed by the SCADA. As principal system performance outputs, they can be exploited through
data mining techniques to control system failures, since most of the systems failures directly affect the
output power and the energy production efficiency [7].

A sample process for a comprehensive IDA, applied to the improvement of assets management in
renewable energy, is presented in Figure 1.

In Figure 1 the green box describes the generic IDA process phases, phases which need to be
managed inside an asset management condition-based maintenance (CBM) framework, in order to
make sustainable and well-structured decisions, to obtain developments and to keep and improve
solutions over time. In order to take rapid and optimal decisions, the challenge is to structure the
information from different sources, synchronizing it properly in time, in a sustainable and easily
assimilable way, reducing the errors (avoiding dependencies among variables, noise, and interferences)
and valuing real risks. A clear conceptual framework allows the permanent development of current
and new algorithms, corresponding to distinct data behaviour-anomalies with physical degradation
patterns of assets according to their operation and operation environment conditions and their effects
on the whole plant [11].
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Figure 1. IDA phases for a renewable energy case study [9,10].

Each one of these IDA phases are interpreted, in the red boxes, for a PV energy production data
system [9,10] showing a flow-chart for practical implementation. In this paper we will focus on the
central phase in Figure 1, the analysis of different techniques of data mining (DM). Different techniques
can be applied. We will concentrate in the selection of advanced DM techniques, comparing their
results when applied to a similar case study. This issue is often not addressed when applying certain
complex intelligent optimization modelling techniques, and no discussion emerges concerning this
issue. This is because, often, the computational effort to apply a certain method is very important
in order to be able to benchmark the results of several methods [12]. In the future, assuming more
mature IDA application scenarios, the selection of DM techniques will likely be crucial to generating
well-informed decisions.

Accepting this challenge, a review of the literature, the selection of techniques and a benchmark
of their results are presented in this paper. According to the previous literature, most representative
techniques of data mining [13,14] are presented and applied to a case study in a photovoltaic plant (see
other examples where these techniques were applied in Table 1).

Artificial neural networks (ANN) have been largely developed in recent years. Some authors [15–20]
have focused on obtaining PV production predictions through a behavioural pattern that is modelled
by selected predictor variables. A very interesting topic is how these results can be applied in predictive
maintenance solutions. In [7] these models are used to predict PV system’s faults before they occur,
improving the efficiency of PV installations, allowing programming in advance of suitable maintenance
tasks. Following a similar approach, the rest of DM techniques are implemented to validate, or even
improve, the good results obtained with the ANN in terms of asset maintenance and management.

Table 1. References of DM techniques analysed.

Techniques References

Data mining [13,21–25]

Artificial neural networks [7,26–32]

Support vector machine [33–37]

Decision trees [14,21,38–43]
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In general terms, the results obtained using DM or machine learning to follow and predict
PV critical variables, like solar radiation [21], are good enough to use as inputs in decision-making
processes, like maintenance decisions [7]. However, not all of the techniques have the same maturity
level as ANNs. SVM, Random Forest and Boosting, as techniques to predict the yield of a PV plant,
should be studied in greater depth in the coming years [22].

2. Background

2.1. Data Mining Techniques

Data mining techniques are in constant development by combining the use of the diverse
techniques available over a wide range of application fields. The search of behavioural patterns or
predictions based on various predictive variables that allow us to know the future or expected outcome
to improve key decision-making is being extended by researching the most diverse application fields.
For example, in [23] the assessment of credit ratings from a risk perspective, using different data mining
techniques and hybrid models, are proposed, analysing the advantages and disadvantages of each. In a
completely different application field, [24,25] present models of distribution of solar spectral radiation
based on data mining techniques, using solar irradiance, temperature and humidity as input variables.

In [14] a classification of predictive techniques in the photovoltaic sector is presented (Figure 2).
These results show how data mining techniques are becoming increasingly relevant, since they represent
61% (ANN, SVM, RF) of the total of the studies. Another interesting classification study is included
in [25].

 

Figure 2. Predictive technique type classification [14].

For their part, the authors [21] make a review of the different techniques of machine learning
for predicting solar radiation, which depends on the accuracy of the data. Although these are recent
techniques that require more research, they are improving the conventional methods, concluding that
the ones that should be used in the future are those of SVM, decision trees and Random Forest.

Making a general and deep presentation of different predictive and DM techniques is a very
interesting task that goes well beyond the aims of this paper. Figure 3 presents a basic classification of
the data mining techniques, including those that are going to be compared in this paper by applying
them to the same case study. In the section below a brief literature review introducing these techniques
is included.
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Figure 3. Classification of DM techniques included in this paper.

Table 1 summarize employed references in the paper corresponding to DM techniques analysed.
A comparison of techniques is made using the values of the correlation coefficient and the mean

square error to measure the quality of the results of alternative models and techniques [34,43].

2.1.1. Artificial Neural Networks (ANN)

In estimations about renewable energies, ANN techniques are widely utilized and, more
particularly, the field of photovoltaic systems has been continuously developing them in recent
years [26–28]. There are various ANN models, and a particular architecture widely extended is
multilayer perceptron (MLP) [44].

In [29] a study is presented to obtain with greater precision the production of electrical and thermal
energy from a photovoltaic and thermal concentration system, using a neural network (multilayer
perceptron) to predict solar radiation and irradiance. In a maintenance application, in [7] the authors
go further in their study using the predictive model obtained with the multilayer perceptron neuronal
network trained with the backpropagation algorithm to anticipate the occurrence of failures and,
thus, improve the efficiency of the final production.

Deep learning neural networks are multilayer and feedforward neural networks that consist
of multiple layers of interconnected neuron units with the aim of construing better level features,
from lower layers to a proper output space. The application of deep learning techniques provides
a fairly accurate prediction in renewable energies, and the authors [31] use a deep learning model
to try to mitigate the risks of uncertainty in the production of a wind farm, testing this model in
several wind farms in China. The result obtained with this technique improves those obtained with
others, and avoids the uncertainty of energy production due to climate change. As for hydrological
predictions, there are few studies using deep learning techniques, and the authors present their
results [32]; while they are a beginning, the results are promising.

2.1.2. Support Vector Machine (SVM)

Inside the supervised machine learning techniques, support vector machines (SVM) [45] are
properly related to classification and regression problems, representing in a space two classes,
maximally separated through a hyperplane with high dimensionality (defined as a vector between two
points of each class), that permit the classification of new data in one or both classes. Regarding the
application of SVM techniques, the authors [33] present a study on the prediction for cooling of an office
building in Guangzhou, China. For this purpose, they use the comparison of different neural network
techniques (NNBR, NRBR, NRBR, NRBR) and NSRV, based on the results obtained in each of them
from the mean square error and the relative mean (RMSE and MRE). This model of artificial intelligence
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(SVM) is, in this case, the one that provides the best result, obtaining a high precision in the hourly
prediction of the building’s cooling and significantly improving the results of the neural networks.

Likewise, there are numerous references for the application of this technique in the renewable
energy sector due to the good results obtained with them. The authors [34] use this technique to
predict the average daily solar radiation using air temperature and analysing the result obtained by
the highest correlation coefficient (0.969) and the lowest mean square error (0.833), which shows the
promise of this new technique compared to traditional methods. The authors [35] attempt to predict
the production of a wind farm in the short term, through wind speed, wind direction and humidity.
They compare SVR techniques (multi-scale support vector regression) with a multilayer perceptron
neural network, obtaining better results with SVR due to its speed and robustness. With regard to
hydrological forecasting, there are also references, such as the [39], that use the RSVMG (recurrent
support vector model) technique to predict the volume of rainfall during the typhoon season in Taiwan.
Shi, J. in [36], for their part, use this technique to predict the output of a photovoltaic installation in
China and verify the result through the RSME. Although it is a relatively recent technique, the results
obtained are very promising and encourage further research in this field.

2.1.3. Decision Trees (DT)

As previously included, RF (Random Forest) is one of the most recent techniques we will apply in
our case study and has obtained very good results. Some examples are presented below:

• Elyan, E. in [39] uses the RF technique to classify data, demonstrating that it is a very accurate
method of classifying and obtaining results that improve accuracy over other techniques.

• Lin, Y. in [40] uses RF to improve the prediction of wind production in the short term, which is
complicated by the stochastic nature of the wind and using the effects of seasonality. RF modelling
obtains accurate results in this case.

• Moutis, P. [41] presents two applications of decision tree techniques: the planning of organized
energy storage in microgrids and energy control within a PC through the optimal use of local
energy resources, demonstrating through a case study the feasibility of this technique.

• Ren, L. in [42] use the DT technique to predict surface currents in a marine renewable energy
environment in Galway Bay. The results obtained are very promising, obtaining a correlation
coefficient higher than 0.89.

2.2. IDA for Maintenance Purposes: CBM Based on PHM

As we have mentioned, failure control based on condition monitoring needs to follow a sustainable
and structured procedure in order to keep and improve solutions on time. Thus, failure detection,
diagnostics and prediction, in networks of assets which co-operate among them to produce a certain
purpose, demand an integrated approach, but that distinguish individual asset degradation behaviours.
The logic of failure control has to manage not only reliability data but also operation and real-time
internal and locational variables [11].

The use of CBM has increased significantly since the end of the 20th century, leading to
more effective maintenance concepts [46]. The evolution of ICTs (intelligent sensors, digital devices,
IoT, etc.), which have become more powerful and reliable technologies, while also becoming cheaper,
has contributed to improving the performance of CBM plans [47,48]. The recent consolidation of
PHM (prognostics and health management) as an engineering discipline, including the application
of analytical techniques, such as data mining techniques, has promoted a new CBM by providing
new capabilities and unprecedented potential to understand and obtain useful information on the
deterioration of systems and their behaviour patterns over their lifetime [49–51], moreover deepening
more effective and adaptable solutions according to changes [52]. In this evolution, new terms
such as CBM + [53], CBM/PHM [50], or PdM (predictive maintenance) appear, differentiating
predictive maintenance from CBM. In any case, this new vision of CBM, together with the concept
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of E-maintenance—which marks how the use of ICTs introduces the principles of collaboration,
condition knowledge, intelligence, etc., constituting a vision focused on the new maintenance processes
to which technology can give rise [54]—are the pillars of the development of modern maintenance [55].
In the current situation, despite this capacity development, there is still a significant gap for the
implementation of this type of solution in an intensive manner in the industry, largely due to their
complexity throughout their entire life cycle [48]. On the other hand, holistic models and frameworks
are needed [51] that consider: the knowledge available on the degradation of systems and their
behaviour in the face of failures, their dependencies on other systems, their external influences and the
associated uncertainty.

Prognosis Approaches

An important aspect of describing PHM techniques is to analyse the types of approaches that can
address the problem of prognosis. Three main types of prognostic approaches are recognized: physical
model-based forecasting, data-based forecasting and hybrid forecasting [51]:

• Approaches based on physical models are focused on mathematical modelling of physical
interactions between system components and the business processes. They also incorporate
failure physics models (POF, physics of failure or PBM, physics-based model), searching the
remaining useful life forecast (RUL) based on the degradation due to the participation in a
determined processes.

• Data-based approaches (data-driven) use the recognition of statistical and learning patterns
to detect changes in the data of descriptive process parameters, thus enabling diagnosis and
prognosis. Behavioural patterns are recognized in the data monitoring to evaluate the health
status of the system and the time to failure. Data mining techniques as are treated in this paper
are the bases of this type of PHM method.

• Mergers or hybrids are forecasting methodologies that combine the strengths of the two previous
approaches in order to estimate RUL, detect abnormal behaviour, identify failure precursors,
etc. These methods have the greatest potential. Their application requires the definition of an
application framework that supports the integration of physical models with data-driven models,
simulating based on historical data to forecast in advance the remaining life according to each
failure mode’s circumstances.

All three models are useful. The current trend is very much towards the use of data-only models.
This has undeniable benefits, but also many risks (lack of reliable data, lack of physical contrast and
disconnection with the engineering interpretation of the problems raised, among others). In this sense a
method allowing the understanding of the model is required and, in particular, the employed technique
is valid or the results should, or can, be improved by the use of different techniques. The use of a single
DM technique cannot be enough. The use of different technologies over the same data and use case
could give us interesting results.

3. Election of DM Techniques: A Practical Methodology

PV plant maintenance management includes a large number of technical assets. If we think in
real industrial cases, the technician is responsible for a large number of different PV plants’ assets.
Thus, the final goal of PHM DM solution development is to apply extensively to all the plants.
Then, this paper’s methodology objective is the use of more than one DM technique in order to show
that can serve:

1. To know which technique produces better results depending on the application case.
The application use case is composed by the following principal components:

- Type of CBM output: Detection, diagnosis or prognosis;
- Type of asset;
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- Type of failure mode;
- Type of data available.

2. To co-validate the results of the different techniques. In other word, considering different
techniques it is possible to detect uncertainties derived from our own mathematical models.

3. To extend the final results over the plant level or fleet level

The following figure (Figure 4) shows the methodology that we will apply for the selection of
techniques whose behaviour pattern best suits the productive model of a given facility. To do this,
we relate the different phases of the IDA (Figure 1) with the techniques of data mining (Figure 2),
as well as the values for the best decision-making technique.

 

Figure 4. Methodology for using alternative DM techniques.

4. Case Study

We will apply the methodology set out on a photovoltaic installation with 6.1 Mw of rated power
that is located in Córdoba and has been in operation since 2008. This facility is divided in 61,100 kW
solar orchards. Applying the study on three of these orchards it has been verified that the results in
all three are analogous, so we set out only one of them. Tables 2–4 show the information taken for
the study.

Table 2. Temporary period for data collection for study.

Start Date End Date Data Collection From Until Frequency

01/06/2011 30/09/2015 Hourly 8:00 17:00 10 daily data for each variable

Table 3. Selected variables/data for training and validation.

Inputs Variables Outputs Variables Selected Values
Training Set
Percentage

Testing Set
Percentage

Outdoor temperature,
radiation, inside

inverter temperature,
operation hours

Time, production In the absence of
failures

75% 25%

Same criteria for all techniques in order
to establish the same comparison

environment
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Table 4. Collected data in the study (treated and validated).

Outdoor Temp Radiation Indoor Temp Operating Time Production

303.25 490.3 312.1 9900 52

313.25 756.0 311 9901 74

319.25 860.8 314.7 9902 80

323.25 901.8 313.9 9903 82

325.25 918.0 315.5 9904 83

327.98 990.3 316.8 25,716 81

320.77 520.0 315.6 25,717 53

311.43 454.5 317.1 25,718 39

305.98 777.3 317.8 25,719 66

5. Employed DM Techniques

The employed DM techniques, for failure prediction, are presented below, using for comparison
the mean square error to measure the quality of the results:

- ANN Models:

� Multilayer Perceptron
� Deep Learning

- Support Vector Machines:

� SVM non-linear
� SVM Lineal (Lib Linear)

- Random Forest
- Boosting

The practical implementation for each one of these techniques will now be introduced,
describing the employed libraries, functions and transformation variables.

It is important to mention that unless learning is applied we cannot say that any DM model is
intelligent. Therefore, for those situations when new data arrives after significant changes in an asset’s
location or operation, a learning period for the algorithms is required.

The error predicted by the model can also offer a good clue regarding potential scenario
modifications and can be used to trigger and lead to a new phase of model actualization, or learning
period. This will reduce reasonable worries about model validation and will give more confidence
to support asset managers’ decision-making regarding prediction and time estimation for the next
failures. These ideas can also be programmed and automatically put into operation in the SCADA.

5.1. ANN Models: Multilayer Perceptron

For the case study, first, a three-layer perceptron is employed with the following activation
functions: logistic and identity in the hidden layer (g(u) = eu/(eu + 1)) and in the output layer,
respectively. If we denote wh synaptic weights between the hidden layer and the output layer {wh, h =
0, 1, 2, ..., H}, H as the size of the hidden layer, and vih synaptic weights of connections between the
input layer (p size) and the hidden layer {vih, i = 0, 1, 2, . . . , p, h = 1, 2, . . . , H}, thus, with a vector of
inputs (x1, . . . , xp), the output of the neural network could be represented by the following function (1):

o = w0 +
H∑

h=1

whg(v0h +

p∑
i=1

vihxi) (1)
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We have used the R library nnet [56], where multilayer perceptrons with one hidden layer are
implemented. The nnet function needs, as parameters, the decay parameter (λ) to prevent overfitting
in the optimization problem, and the size of the hidden layer (H). Therefore, providing the vector of all
M coefficients of the neural net W = (W1, . . . , WM), and specified n targets y1, . . . , yn, the following
optimization problem (Equation (2)) is (L2 regularization):

Min
W

n∑
i=i

‖yi − ŷi‖2 + λ

⎛⎜⎜⎜⎜⎜⎝ M∑
i=i

W2
i

⎞⎟⎟⎟⎟⎟⎠ (2)

A quasi-Newton method, namely the BFGS (Broyden-Fletcher-Goldfarb-Shanno) training
algorithm [44], is employed by nnet, in R with e1071 library using the tune function [57], determining the
decay parameter (λ) as {1, 2, . . . , 15} × {0, 0.05, 0.1} by a ten-fold cross-validation search.

The λ parameter obtained for the two transformations presented below has been zero in all the
models built, the logical value considering the sample size and the reduced number of predictor
variables, which carries little risk of overfitting.

Through prior normalization of the input variables, the performance could be enhanced in the
model. For that, we have considered two normalization procedures, a first transformation that subtracts
each variable predictor X from its mean, and the centred variable is divided by the standard deviation of
X. In this way we manage to normalize with a 0 mean and a standard deviation equal to 1. The second
lineal normalization transforms the range of X values into the range (0, 1). We design, respectively,
the values of the standards Z1 and Z2, which are calculated as follow:

Z1 =
X − x

sx
Z2 =

X −minx

maxx −minx
(3)

These transformations have used the mean, standard deviation, maximums and minimums
calculated in the network training dataset, and these same values have been used for the test set,
thus avoiding the intervention of the test set in the training of the neural network.

Since the range of values provided by the logistic function is in the range (0, 1) and the
dependent variable Y takes values in the range (0, 99). We transform this with the Y/100 calculation.
However, after obtaining the predictions, the output values obtained in the original range were
transformed back to the original range of values by multiplying by 100 to bring it back to the interval
(0, 99).

5.2. ANN Models: Deep Learning

We have used the R package h2o [58] to prevent overfitting with several regularization terms,
building a neural network with four layers, and with two hidden layers formed by 200 nodes each.

First, L1 and L2 regression terms are both included in the objective function to be minimized in
the parameter estimation process (Equation (4)):

Min
W

n∑
i=i

‖yi − ŷi‖2 + λ1

⎛⎜⎜⎜⎜⎜⎝ M∑
i=i

|Wi|
⎞⎟⎟⎟⎟⎟⎠+ λ2

⎛⎜⎜⎜⎜⎜⎝ M∑
i=i

W2
i

⎞⎟⎟⎟⎟⎟⎠ (4)

Another regularization type to prevent overfitting is dropout, which averages a high number of
models as a set with the same global parameters. In this type, during the training, in the forward
propagation the activation of each neuron is supressed less than 0.2 in the input layer and up to 0.5 in
the hidden layers, and provoking that weights of the network will be scaled towards 0.

The two normalization procedures used with nnet have also been used with h2o.
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5.3. Alternative Models (SVM): Support Vector Machines (Non-Linear SVM)

Now, we have used the svm function of the R system library e1071 [57] for the development of
the SVM models and, concretely, the ε-classification with the radial basis Gaussian kernel function
(5); by n training compound vectors {xi, yi}, i = 1, 2, . . . , n as the dataset, where xi incorporates the
predictor features and yi ∈ {−1, 1} are the results of each vector:

K(u, v) = exp
(
−γ‖u− v‖2

)
(5)

Therefore, it is solved by quadratic programming optimization (Equation (6)):

Min
w,b,ξ,ξ∗

1
2 wtw + C

n∑
i=1

ξi + C
n∑

i=1
ξ∗i

wtϕ(xi) + b− yi ≤ ε+ ξi
yi −wtϕ(xi) + b ≤ ε+ ξ∗i

with ξi, ξ∗i ≥ 0, i = 1, 2, . . . , n

(6)

With the parameter C > 0 to delimit the tolerated deviations from the desired ε accuracy.
The additional slack variables ξi, ξ∗i allows the existence of points outside the ε-tube. The dual problem
is given by Equation (7):

Min
α,α∗

1
2 (α−α∗)tQ(α−α∗) + ε

n∑
i=1

(
αi + α∗i

)
+ yi

n∑
i=1

(
αi − α∗i

)
0 ≤ αi,α∗i ≤ C, i = 1, 2, . . . , n

n∑
i=1

(
αi − α∗i

)
= 0

(7)

with K(xi, xj) = ϕ(xi)tϕ(xj) being the kernel function, a positive semi-definite matrix Q is employed by
Qij = K(xi, xj), i,j = 1, 2, . . . , n,. The prediction for a vector x (Equation (8)) is computed by:

n∑
i=1

(
−αi + α∗i

)
K(xi, x) + b (8)

depending on the margins mi =
∑n

i=1 yiαiK(xi, x) + b, i = 1, 2, . . . , n.
A cross-validation grid search for C and γ over the set {1, 5, 50, 100, 150, . . . , 1000} × {0.1, 0.2, 0.3,

0.4} was conducted by the R e1071 tune function, while the parameter ε was maintained at its default
value, 0.1.

We have built this SVM model with the original input variables, and with the two normalization
procedures previously described in the multilayer perceptron description.

5.4. Alternative Models (SVM): LibLineaR (Linear SVM)

A library for linear support vector machines is LIBLINEAR [59] for the case of large-scale linear
prediction. We have used the version used in [60], with fast searching estimation (in comparison
with other libraries) through the heuristicC function for C and based on the default values for ε,
and employing L2-regularized support vector regression (with L1- and L2-loss).

5.5. Alternative Models (DT): Random Forests

The Random Forests (RF) algorithm [61] combines different predictor trees, each one fitted on a
bootstrap sample of the training dataset. Each tree is grown by binary recursive partitioning, where each
split is determined by a search procedure aimed to find the variable of a partition rule which provides
the maximum reduction in the sum of the squared error. This process is repeated until the terminal
nodes are too small to be partitioned. In each terminal node, the average of response variable is the

221



Energies 2019, 12, 4163

prediction. RF is similar to bagging [39], with an important difference: the search for each split is
limited to a random selection of variables, improving the computational cost. We have used the R
package Random Forest [62]. By default, p/3 variables (p being the predictor’s number) are randomly
selected in each split, and 500 trees are grown.

5.6. Alternative Models (DT): Boosting

From the different boosting models depending on the used loss functions, base models,
and optimization schemes, we have employed one based on Friedman´s gradient boosting machine
of the R gbm package [63] where the target is to boost the performance of a single tree with the
following parameters:

- The squared error as a loss function ψ (distribution),
- T (n.trees) as the number of iterations,
- The depth of each tree, K (interaction.depth),
- The learning rate parameter, λ (shrinkage), and
- The subsampling rate, p (bag.fraction).

The function f̂ (x) = arg minρ
∑n

i=1 ψ(yi,ρ) is initialized to be a constant. For t in 1, 2, . . . , T do
the following:

1. Compute the negative gradient as the working response:

zi = − ∂

∂ f (xi)
ψ(yi, f (xi))

∣∣∣∣∣∣
f (xi)= f̂ (xi)

(9)

2. Randomly select pxn cases from the dataset.
3. Fit a regression tree with K terminal nodes and using only those randomly selected observations.
4. Compute the optimal terminal node predictions ρ1, . . . , ρk, as:

ρk = arg minρ
∑
xiεSk

ψ
(
yi, f̂ (xi) + ρ

)
(10)

where Sk is the set of cases that define terminal node k, using again only the randomly
selected observations.

5. Update f̂ (x) as:
f̂ (x) = f̂ (x) + λρk(x) (11)

where k(x) indicates the index of the terminal node into which an observation with features x
would fall.

Following the suggestions of Ridgeway in his R package, our work considered the following values:
shrinkage = 0.001; bag.fraction = 0.5; interaction.depth = 4; n.trees = 5000, but cv.folds 10

performed a cross-validation search for the effective number of trees.

6. Results

The obtained results for each technique are shown below (Table 5), as well as the different
transformations made (different ways to normalize variables and to estimate parameters), shading in
each technique the one that gives us the best solution.
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Table 5. Results of the different techniques.

Models Analysis Results

Multilayer Perceptron

Transformation 1 Coefficient Correlation RMSE

Test 0.886 9.64

Training 0.897 9.15

Transformation 2 Coefficient Correlation RMSE

Test 0.883 9.76

Training 0.895 9.26

Deep Learning

Transformation 1 Coefficient Correlation RMSE

Test 0.839 11.5

Training 0.855 10.93

Transformation 2 Coefficient Correlation RMSE

Test 0.838 11.72

Training 0.853 11.19

SVM Nonlinear

Transformation 1, 2 and 3 Coefficient Correlation RMSE

Test 0.881 10.01

Training 0.894 9.46

SVM Linear (Lib
Linear)

Transformation 1 Coefficient Correlation RMSE

Test 0.836 11.57

Training 0.848 11.1

Transformation 2 Coefficient Correlation RMSE

Test 0.821 13.54

Training 0.834 13.07

Random Forest

Coefficient Correlation RMSE

Test 0.909 8.63

Training 0.916 8.3

Boosting
Coefficient Correlation RMSE

Test 0.856 10.87

Training 0.868 10.41

We graphically represent (Figure 5) the best result obtained for each of the techniques in order
to visualize the one that gives us the best solution for the behaviour pattern of the production of the
photovoltaic installation.

A point cloud chart (Figure 6) of the predicted (test) production is shown for the model that give
us the best solution (Random Forest).

This model tells us the importance of variables in the result, which shows that all of them are
valid and necessary. The higher the percentage, the higher the importance variable (see Table 6).
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Figure 5. Graphical comparison of the different techniques results.

Figure 6. Point cloud (test) Random Forest.

Table 6. Importance of the variables.

VARIABLE % INC_MSE

TEMP_EXT 49.10

RADIACIÓN 155.63

TEMP_INT 41.60

H. FUNCIONAMIENTO 34.37

The prediction error based on %INC_MSE is estimated by out-of-bag (OOB) for each tree and
after permuting each predictor variable, until the difference between them has a standard deviation
equal to 0.

7. Conclusions

In this paper a methodology to introduce the use of different data mining techniques for energy
forecasting and condition-based maintenance was followed. These techniques compete for the best
possible replica of the production behaviour patterns.

224



Energies 2019, 12, 4163

A relevant set of DM techniques have been applied (ANN, SVM, DT), and after their introduction
to the readers, they were compared when applied to a renewable energy (PV installation) case study.

In this paper a very large sample of data has been considered. This data spans from 1 June 2011 to
30 September 2015.

All of the models for the different techniques offered very encouraging results, with correlation
coefficients greater than 0.82. Coincident with other referenced authors’ results, Random Forest was
the technique providing the best fit, with a linear correlation coefficient of 0.9092 (followed by ANN
and SVM). In turn, this technique (RF) gave us as a differential value of the importance of the input
variables used in the model, which somehow validates the use of all these variables. In the case study,
and by far, the variable resulting with the most affection to production was radiation, followed by
the outside temperature, the inverter internal temperature and, finally, the operating hours (which
somehow reflects the asset degradation over time).

It is important to mention that these results were obtained using different methods (2) to normalize
the variables and to estimate parameters.

Future work could be devoted to the validation of these results by replicating the study at other
renewable energy facilities to determine how the improvement in ECM and R2 values affects early
detection of failures by quantifying their economic value.

The implementation of these techniques is feasible today thanks to existing computational capacity,
so the effort to use any of them is very similar.
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Acronyms

ANN Artificial neural networks
CBM Condition-based maintenance
DM Data mining
DP Deep learning
DT Decision trees
IDA Intelligent data analysis
IoT Internet of Things
MP Multilayer perceptron
MSE Mean square error
OOB Out-of-Bag
PBM Physics-based model
PdM Predictive maintenance
PHM Prognostics and health management
POF Physics of failure
PV Photovoltaic
RMSE Root mean square error
RF Random Forest
ROI Return on investment
RSVMG Recurrent support vector model
RUL Remaining useful life forecast
SCADA Supervisory control and data acquisition
SVM Support vector machine
SVR Support vector regression
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Abstract: Metamodels have become increasingly popular in the field of energy sources because of
their significant advantages in reducing the computational cost of time-consuming tasks. Lacking the
prior knowledge of actual physical systems, it may be difficult to find an appropriate metamodel
in advance for a new task. A favorite way of overcoming this difficulty is to construct an ensemble
metamodel by assembling two or more individual metamodels. Motivated by the existing works,
a novel metamodeling approach for building the ensemble metamodels is proposed in this paper.
By thoroughly exploring the characteristics of regression-type and interpolation-type metamodels,
some useful information is extracted from the feedback of the regression-type metamodels to further
improve the functional fitting capability of the ensemble metamodels. Four types of ensemble
metamodels were constructed by choosing four individual metamodels. Common benchmark
problems are chosen to compare the performance of the individual and ensemble metamodels.
The results show that the proposed metamodeling approach reduces the risk of selecting the worst
individual metamodel and improves the accuracy of the used individual metamodels.

Keywords: metamodel; ensemble; individual; regression; interpolation

1. Introduction

Metamodels, which are also referred to as surrogate models, are essentially approximate
mathematical models of real physical systems. In the past decade, metamodels have become
increasingly popular in the field of energy sources because of their significant advantages in reducing
the computational cost of time-consuming tasks [1,2]. Melo et al. [3] pointed out that researchers
in many countries are developing metamodels to estimate the energy performance of the building
stock. Bornatico et al. [4] used a kind of metamodel to optimize energy systems, and found that the
metamodel converged to the same solution at 150 times the speed of the fine model. Westermann and
Evins [5] summarized and discussed recent studies on the application of metamodels in sustainable
building design. Ferrero Bermejo et al. [6] reviewed and compared two typical metamodels, namely the
artificial neural networks and the support vector machine, for energy forecasting and condition-based
maintenance in PV plants.

Actually, a good metamodel mainly depends on its accuracy and generality for different design
tasks. To enhance the performance of metamodels, researchers have carried out a lot of studies over
the past few decades [7–11]. As a result, a large number of metamodels have been proposed, of which
several types have gained wide acceptance in various applications. They are polynomial response
surface (PRS) [12–14], support vector regression (SVR) [15–17], radial basis functions (RBF) [18,19],
extended radial basis functions (E-RBF) [20], moving least squares (MLS) [21], artificial neural networks
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(ANN) [22,23], multivariate adaptive regressive splines (MARS) [24] and Kriging (KRG) [25,26].
These different metamodels give us more options for different tasks. However, lacking the prior
knowledge of the actual physical systems, it is challenging to find a suitable metamodel in advance for
a new task. In particular, the worst metamodel may be chosen for the task.

A simple way to overcome the difficulty is to build a series of metamodels based on a given
training dataset at first, and then select the best one on the basis of some statistical techniques like
the cross-validation method. Another favorite way is to construct an ensemble metamodel, which
assembles two or more individual metamodels by introducing weight factors. The basic idea of such
an ensemble metamodel can be traced back to 1990s [27,28], and currently it has become a research
hotspot [8,29]. According to the characteristics of the weight factors, the techniques for building the
ensemble metamodels can be mainly categorized into methods based on local errors, methods based
on global errors, and methods based on regression.

In the first category, the weight factors (ωi = ωi(x)) are functions of design space, which are
determined by the local errors of individual metamodels at the point of interest. Zerpa et al. [30]
introduced a local weighted average model for the optimization of alkaline-surfactant-polymer
flooding processes by using the prediction variances of three individual metamodels (PRS, KRG,
and RBF). Sanchez, Pintos, and Queipo [31] proposed a general approach toward the ensemble of
kernel-based models based on the local prediction variances. Acar [32] investigated the efficiency of
methods based on the local errors, and developed a new approach to determine the weight factors by
using the pointwise cross-validation errors instead of the prediction variances. Zhang, Chowdhury,
and Messac [33] proposed a new metamodeling technique called adaptively hybrid functions, whose
weight factors are determined based on the local measure of accuracy in the pertinent trust region.
Lee and Choi [34] presented a new pointwise ensemble of metamodels, of which the weight factors
are calculated by using the v nearest points cross-validation errors.

In the second category, the weight factors (ωi = Ci, ∀x) are constant values in the entire design
space, which are determined by the global errors of individual metamodels. Goel et al. [35] studied
a global weight factor selection approach based on the generalized mean square cross-validation
errors (GMSE). Acar and Rais-Rohani [36] developed an accurate ensemble of metamodels by solving
an optimization problem that minimizes GMSE or root mean square errors (RMSE). Viana, Haftka,
and Steffen [37] obtained the optimal weight factors of the optimization problem by using the Lagrange
multipliers. This method was also employed by Toal and Keane [38] to construct an ensemble of
ordinary, universal, non-stationary and limit KRG models. Additionally, Acar [39] performed the
simultaneous optimization of the weight factors and the shape parameters in the ensemble of RBFs.

It should be noted that in the first two categories the weight factors of individual metamodels
are restricted to a positive range (ωi > 0) and the sum of these factors is equal to 1

(
∑M

i=1 ωi = 1
)

.
Since they are different from the first two categories, the techniques in the third category mainly use the
regression methods (like least squares) to determine the weight factors. Accordingly, there is no longer
any restriction on the weight factors, which may even have negative values. Polynkin and Toropov [40]
introduced a novel mid-range metamodel assembly for the large-scale optimization problems, which
is constructed based on the linear regression method. Ferreira and Serpa [41] developed an augmented
least-square approach for creating the ensemble of metamodels, which can be extended to the efficient
global optimization. Zhou and Jiang [42] constructed an ensemble of four individual metamodels
(PRS, KRG, SVR, and RBF) from the view of the polynomial regression, and proposed a metamodel
selection method on the basis of the stepwise regression to eliminate the redundant ones from the set
of the candidate metamodels.

Motivated by these existing works, this paper proposes a different method for constructing the
ensemble metamodels, which combines the advantages of regression-type and interpolation-type
metamodels. The regression-type metamodels have better global trend fitting capacity than the
interpolation-type metamodels, while the interpolation-type metamodels perform better than the
regression-type metamodels in the vicinity of the sampling locations. By thoroughly exploring the
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characteristics of regression-type and interpolation-type metamodels, the proposed method could
extract some useful information from the feedback of the regression-type metamodels to further
improve the functional fitting capability of the ensemble metamodels.

2. Proposed Ensemble of Metamodels

2.1. Motivation and Basic Characteristics

The existing individual metamodels can be classified into regression-type and interpolation-type
metamodels. The regression-type metamodels aim to fit the global trend of the underlying
functions of the real physical systems in the entire design space, while the interpolation-type
metamodels aim to achieve the local accuracy in the vicinity of the sampling locations. Accordingly,
the regression-type metamodels can build smooth surfaces that pass across all the training points, while
the interpolation-type metamodels can construct models that go through each training point. That is to
say, for the regression-type metamodels there may be obvious deviations between the actual responses
and the approximate responses at the sampling locations, while for the interpolation-type metamodels
there is no deviation. These different characteristics make the two types of metamodels possess different
advantages and limitations. For example: (i) the regression-type metamodels have better global trend
fitting capacity than the interpolation-type metamodels, while (ii) the interpolation-type metamodels
perform better than the regression-type metamodels in the vicinity of the sampling locations.

It should be noted that obtaining the training dataset required for constructing the metamodels
may be time-consuming. Therefore, as much information as possible should be extracted from these
data. However, for the regression-type metamodels, there are apparent deviations between the
actual responses and the approximate responses at the sampling locations, from where some useful
information may be still extracted to further improve the performance of these metamodels. Exploring
the underlying knowledge of the training dataset and combining the characteristics of regression-type
and interpolation-type metamodels, this paper proposes a novel metamodeling approach for the
ensemble metamodels. The flowchart of the proposed metamodeling technique is shown in Figure 1,
which involves four main steps as follows.

. 

Step 1 Step 2 Step 3 Step 4 

Figure 1. Flowchart of the proposed approach for building ensembles of regression-type and
interpolation-type metamodels.

Step 1: An appropriate design of experiment (DOE) should be first chosen to generate n sampling
locations (x1, x2, . . . , xn), at where the actual responses (y1, y2, . . . , yn) are obtained by
conducting experiments or simulations. By using the initial training dataset (xi, yi) (i =
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1, . . . , n), a regression-type metamodel ŷ1(x) in Equation (1) is subsequently constructed to
approximate the actual model y(x).

ŷ1(x) ≈ y(x), x = (x1, x2, . . . , xk)
T (1)

where x denotes any point of interest.
Step 2: We suppose that there is a deviation function yd(x). It is obtained by subtracting the

approximate model ŷ1(x) from the actual model y(x).

yd(x) = y(x)− ŷ1(x) (2)

Some useful information may be still extracted from the deviation function yd(x).
To approximate the deviation function, the training dataset should be updated. In detail,
this paper first uses the established regression-type metamodel in Equation (1) to predict
the approximate responses (ŷ1

1, ŷ2
1, . . . , ŷn

1 ) at the initial sampling locations. Subsequently,
the deviations (y1

d, y2
d, . . . , yn

d) between the actual responses and approximate responses at
these locations are calculated as the updated training dataset.

{
(x1, y1

d), (x
2, y2

d), . . . , (xn, yn
d)
}
={

(x1, y1 − ŷ1
1), (x

2, y2 − ŷ2
1), . . . , (xn, yn − ŷn

1 )
} (3)

Step 3: By using the updated training dataset in Equation (3), an interpolation-type metamodel ŷ2(x)

in Equation (4) is constructed to approximate the deviation function yd(x).

ŷ2(x) ≈ yd(x) (4)

Step 4: Finally, the ensemble metamodel ŷens(x) in Equation (5) is constructed by adding the
established regression-type metamodel ŷ1(x) and interpolation-type metamodel ŷ2(x) together.
By using Equations (1), (4) and (5), the established ensemble metamodel ŷens(x) can be used to
predict the response at any point of interest in the entire design space.

ŷens(x) = ŷ1(x) + ŷ2(x) ≈ ŷ1(x) + yd(x) ≈ y(x) (5)

2.2. Detailed Modeling Process

To clearly illustrate the proposed metamodeling technique, this paper selects two common
regression-type metamodels (PRS and SVR) and two popular interpolation-type metamodels, namely
RBFM (RBF with multiquadric-form basis function) and RBFI (RBF with inverse multiquadric-form
basis function). Accordingly, four types of ensemble metamodels can be obtained, which are PrsRbfm
(Ensemble Scheme 1, ensemble of PRS and RBFM), PrsRbfi (Ensemble Scheme 2, ensemble of PRS and
RBFI), SvrRbfm (Ensemble Scheme 3, ensemble of SVR and RBFM) and SvrRbfi (Ensemble Scheme 4,
ensemble of SVR and RBFI). The detailed modeling processes of these involved metamodels are
introduced as follows.
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2.2.1. Step 1: Construction of Regression-Type Metamodels

PRS is a general designation of a series of polynomial regression functions, of which the most
popular one is the second-order polynomial model. This paper adopts the second-order polynomial
model ŷ1,prs(x), which can be written as

ŷ1,prs(x) = zTβ = β0 +
k

∑
i=1

βixi +
k

∑
i=1

k

∑
j=i

β 2j+i(2k−i+1)
2

xixj (6)

where β = (β0, β1, . . . , β k2+3k
2

)T denotes a coefficient vector, z = (1, x1, x2, . . . , xk−1xk, xkxk)
T denotes a

polynomial basis-function vector.
To estimate β, the regression problem in Equation (6) can be transformed as follows by using the

initial training dataset.

⎡
⎢⎢⎢⎢⎣

y1

y2

...
yn

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

y1
d,prs

y2
d,prs
...

yn
d,prs

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

1 x1
1 . . . x1

k . . . x1
1x1

1 . . . x1
k−1x1

k x1
k x1

k
1 x2

1 . . . x2
k . . . x2

1x2
1 . . . x2

k−1x2
k x2

k x2
k

...
...

...
...

. . .
...

. . .
...

...
1 xn

1 . . . xn
k . . . xn

1 xn
1 . . . xn

k−1xn
k xn

k xn
k

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

β0

β1
...

β k2+3k
2

⎤
⎥⎥⎥⎥⎦ (7)

where yd,prs = (y1
d,prs, y2

d,prs, . . . , yn
d,prs)

T denotes the deviation vector.
Equation (7) can be also expressed as

y = Xβ + yd,prs (8)

According to the least squares method, β can be calculated as follows.

β = (XTX)−1XTy (9)

SVR is a regression function ŷ1,svr(x) in the high-dimensional space, as shown in Equation (10).

ŷ1,svr(x) = ωTψ(x) + b (10)

where ω denotes the weight vector, ψ(x) denotes the mapping function, and b denotes the bias.
To estimate ω and b, the regression problem in Equation (10) can be transformed as an optimization

problem in Equation (11) by introducing ε-insensitive loss function.

min
1
2
||ω||2

subject to

⎧⎪⎪⎨
⎪⎪⎩

ωTψ(xi) + b − yi ≤ ε

yi − ωTψ(xi)− b ≤ ε

i = 1, . . . , n

(11)
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To solve Equation (11), the regularization parameter, C (> 0), and the slack variables, ξ+(i) and
ξ−(i), are introduced. In addition, Equation (12) can be obtained

min
1
2
||ω||2 + C

n

∑
i=1

(ξ+(i) + ξ−(i))

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ωTψ(xi) + b − yi ≤ ε + ξ+(i)

yi − ωTψ(xi)− b ≤ ε + ξ−(i)

ξ+(i), ξ−(i) ≥ 0

i = 1, . . . , n

(12)

The Lagrange dual model of Equation (12) can be expressed as

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2

n

∑
i,j=1

(α+(i) − α−(i))(α+(j) − α−(j))

k
〈

xi, xj
〉
+

n

∑
i=1

(α+(i) − α−(i))yi

−
n

∑
i=1

(α+(i) + α−(i))ε

subject to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n

∑
i=1

(α+(i) − α−(i)) = 0

0 ≤ α+(i), α−(i) ≤ C

i = 1, . . . , n

(13)

where α+(i) and α−(i) denote the Lagrange multipliers, k
〈
xi, xj〉 = ψ(xi)Tψ(xj) denotes a kernel

function, which has several different forms. This paper chooses the Gaussian kernel function, which
can be expressed as

k
〈

x, xi
〉
= exp(−γ||x − xi||2) (14)

According to Equation (13), α+(i) and α−(i) can be first obtained. According to KKT conditions [43],
ω and b can be then calculated.

2.2.2. Step 2: Update of Training Dataset

First, β calculated by Equation (9) can be used to substitute the one in Equation (6). Second,
the approximate responses of established PRS (ŷ1

1,prs, ŷ2
1,prs, . . . , ŷn

1,prs) at the initial sampling locations

(x1, x2, . . . , xn) can be calculated according to Equation (6). Then, the updated training dataset of PRS
can be expressed as

{
(x1, y1

d,prs), (x
2, y2

d,prs), . . . , (xn, yn
d,prs)

}
={

(x1, y1 − ŷ1
1,prs), (x

2, y2 − ŷ2
1,prs), . . . , (xn, yn − ŷn

1,prs)
} (15)

Similarly, according to Equation (10), the updated training dataset of SVR can be obtained and
expressed as {

(x1, y1
d,svr), (x

2, y2
d,svr), . . . , (xn, yn

d,svr)
}
={

(x1, y1 − ŷ1
1,svr), (x

2, y2 − ŷ2
1,svr), . . . , (xn, yn − ŷn

1,svr)
} (16)
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2.2.3. Step 3: Construction of Interpolation-Type Metamodels

The general form of RBF can be expressed as

ŷrb f (x) =
n

∑
i=1

λiφ
(
||x − xi||

)
(17)

where λi denotes an interpolation coefficient, r = ||x − xi|| = √
(x − xi)T(x − xi) denotes the distance

between points x and xi. φ(r) denotes a radially symmetric basis function, which has several different
forms, such as:

• Gaussian φ(r) = e(−r2/c2)

• Multiquadric φ(r) = (r2 + c2)
1
2

• Inverse multiquadric φ(r) = (r2 + c2)− 1
2

• Thin plate spline φ(r) = (r2) log(r)

The interpolation coefficient λi can be calculated by using the given training dataset (xi, yi)

(i = 1, . . . , n).
λ = A−1y (18)

where
λ =

[
λ1, λ2, . . . , λn

]T

A =

⎡
⎢⎢⎢⎢⎣

φ
(||x1 − x1||) , φ

(||x1 − x2||) . . . φ
(||x1 − xn||)

φ
(||x2 − x1||) , φ

(||x2 − x2||) . . . φ
(||x2 − xn||)

...
...

. . .
...

φ
(||xn − x1||) , φ

(||xn − x2||) . . . φ (||xn − xn||)

⎤
⎥⎥⎥⎥⎦

After choosing the multiquadric-form basis function, RBFM (ŷrb f m(x)) can be constructed to
approximate the actual model y(x) by replacing ŷrb f (x) and λi in Equation (17) with ŷrb f m(x) and
λi,rb f m. The coefficient λi,rb f m can be calculated based on Equation (18). Similarly, after choosing the
inverse multiquadric-form basis function, RBFI (ŷrb f i(x)) can be constructed to approximate the actual
model y(x). The coefficient λi,rb f i of ŷrb f i(x) can be calculated based on Equation (18).

Additionally, by choosing the multiquadric-form basis function, a model ŷ2,rb f m1(x) can be
constructed to approximate the deviation function of PRS yd,prs. By replacing the initial training dataset
(xi, yi) (i = 1, . . . , n) with the updated training dataset of PRS (xi, yi

d,prs) (i = 1, . . . , n), the coefficient
λi,2rb f m1 of ŷ2,rb f m1(x) can be calculated on the basis of Equation (18). Similarly, by choosing the inverse
multiquadric-form basis function, a model ŷ2,rb f i1(x) can be constructed to approximate the deviation
function of PRS yd,prs.

Finally, by choosing the multiquadric-form basis function, a model ŷ2,rb f m2(x) can be constructed
to approximate the deviation function of SVR yd,svr. By choosing the interpolation-type metamodel,
a model ŷ2,rb f i2(x) can be constructed to approximate the deviation function of SVR yd,svr.

2.2.4. Step 4: Construction of Ensemble Metamodels

By adding the established ŷ1,prs(x) and ŷ2,rb f m1(x) together, PrsRbfm (ŷprsrb f m(x)) can be
subsequently constructed as follows.

ŷprsrb f m(x) = ŷ1,prs(x) + ŷ2,rb f m1(x) (19)

Being similar to PrsRbfm, PrsRbfi (ŷprsrb f i(x)) can be constructed as follows.

ŷprsrb f i(x) = ŷ1,prs(x) + ŷ2,rb f i1(x) (20)
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SvrRbfm (ŷsvrrb f m(x)) can be constructed as follows.

ŷsvrrb f m(x) = ŷ1,svr(x) + ŷ2,rb f m2(x) (21)

SvrRbfi (ŷsvrrb f i(x)) can be constructed as follows.

ŷsvrrb f i(x) = ŷ1,svr(x) + ŷ2,rb f i2(x) (22)

The established ensemble metamodels, namely PrsRbfm, PrsRbfi, SvrRbfm, and SvrRbfi,
can be used to predict the response at any point of interest in the entire design space by using
Equations (19)–(22).

3. Numerical Experiments

3.1. Benchmark Problems

Referred to the website (http://www.sfu.ca/~ssurjano/index.html) and relevant literature [32],
six common benchmark problems (BPs) are selected to compare the performance of the individual
metamodels (PRS, SVR, RBFM, and RBFI) and the ensemble metamodels (PrsRbfm, PrsRbfi, SvrRbfm,
and SvrRbfi).

BP1: Goldstein Price Function

f (x) =
[
1 + (x1 + x2 + 1)2 × (19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)
]
×[

30 + (2x1 − 3x2)
2 × (18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)
] (23)

where xi ∈ [−2, 2], for i = 1, 2.
BP2: Friedman Function

f (x) =10 sin (πx1x2) + 20 (x3 − 0.5)2 + 10x4 + 5x5 (24)

where xi ∈ [0, 1], for all i = 1, . . . , 5.
BP3: Power Sum Function

f (x) =
6

∑
j=1

[(
−

6

∑
i=1

xj
i

)
− 36

]2

(25)

where xi ∈ [0, 6], for all i = 1, . . . , 6.
BP4: Rosenbrock Function

f (x) =
6

∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
(26)

where xi ∈ [−5, 10], for all i = 1, . . . , 7.
BP5: Zakharov Function

f (x) =
9

∑
i=1

x2
i +

(
9

∑
i=1

0.5ixi

)2

+

(
9

∑
i=1

0.5ixi

)4

(27)

where xi ∈ [−5, 10], for all i = 1, . . . , 9.
BP6: Powell Function

f (x) =
2

∑
i=1

[
(x4i−3 + 10x4i−2)

2 + 5 (x4i−1 − x4i)
2 + (x4i−2 − 2x4i−1)

4 + 10 (x4i−3 − x4i)
4
]

(28)

where xi ∈ [−4, 5], for all i = 1, . . . , 10.
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3.2. Numerical Setting

For all the benchmark problems, the MATLAB routine “lhsdesign” is used to generate training
points and test points. Referred to Jin, Chen, and Simpson [44], n = 3(k+1)(k+2)

2 training points are
selected for a k-dimension problem. Moreover, as many test points as possible should be used in
practice, since insufficient test points may increase the uncertainty of the results. This paper selects
ntst = 20,000 test points for each benchmark problem. Since the DOE sampling scheme may have
an obvious influence on the performance of the metamodels, 100 different training and test sets are
selected for each problem. The detailed numerical settings for all the benchmark problems are listed in
Table 1. The shape parameters (c) of RBFM and RBFI are both selected as 1 by referring to relevant
literature [34,45,46]. The parameters (ε, C, and γ) of SVR are selected by using the cross-validation
method, which was introduced in detail in the published paper of the authors [47].

Table 1. Detailed numerical settings for the benchmark problems.

Benchmark Problem NO. of Variables NO. of Training Points NO. of Test Points NO. of Training and Test Sets

BP1 2 18 20,000 100
BP2 5 63 20,000 100
BP3 6 84 20,000 100
BP4 7 108 20,000 100
BP5 9 165 20,000 100
BP6 10 198 20,000 100

3.3. Performance Criteria

The root mean square error (RMSE) and the max absolute error (MAE) are selected as the
performance criteria.

RMSE can be expressed as

RMSE =

√
∑ntst

i=1 (y
i − ŷi)2

ntst
(29)

where ntst denotes the number of test points.
MAE can be expressed as

MAE = max |yi − ŷi|, i = 1, 2, . . . , ntst (30)

4. Results and Discussion

4.1. RMSE

Figure 2 shows the boxplots of RMSE of the metamodels over 100 test sets for each benchmark
problem with 3(k+1)(k+2)

2 training points. It can be seen that: (1) for all the benchmark problems,
the most accurate ensemble metamodels outperform the most accurate individual metamodels;
(2) without exception, the least accurate individual metamodels perform worse than the least accurate
ensemble metamodels; (3) for each benchmark problem, the performance differences among the four
individual metamodels are greater than that among the four ensemble metamodels.
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Figure 2. Boxplots of RMSE of the metamodels over 100 test sets for each benchmark problem with
3(k+1)(k+2)

2 training points.

To provide a better comparison for these metamodels, the error values are normalized with
respect to the most accurate individual metamodel for each benchmark problem. Table 2 shows the
normalized means of RMSE of the metamodels for each benchmark problem with 3(k+1)(k+2)

2 training
points. The bold values in Table 2 are the most accurate individual/ensemble metamodels, the italic
values are the least accurate individual/ensemble metamodels, the underlined values are the ensemble
metamodels that perform better than all the individual metamodels, the “Best & Best” values denote
the differences between the most accurate ensemble metamodels and individual metamodels, and the
“Worst & Worst” values denote the differences between the least accurate ensemble metamodels and
individual metamodels. From Table 2, it can be seen that: (1) compared with the most accurate
individual metamodels, the means of RMSE of the most accurate ensemble metamodels are reduced,
ranging from 1.1% to 22.2%; (2) compared with the least accurate individual metamodels, the means of
RMSE of the least accurate ensemble metamodels are reduced, ranging from 21.1% to 52.5%; (3) except
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for BP3, more than two ensemble metamodels perform better than the most accurate individual
metamodels; (4) for BP5, all the four ensemble metamodels perform better than the most accurate
individual metamodel.

Table 2. Normalized means of RMSE of the metamodels for each benchmark problem with 3(k+1)(k+2)
2

training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.280 1.866 1.113 1.000 1.000 1.000
SVR 1.224 1.000 1.262 1.149 1.006 1.133
RBFM 1.000 1.108 1.000 1.001 1.123 1.385
RBFI 1.133 1.261 1.536 2.175 2.073 2.166
PrsRbfm 0.929 1.043 0.981 0.957 0.889 0.989
PrsRbfi 0.977 1.173 1.062 0.990 0.985 0.994
SvrRbfm 0.968 0.922 1.039 1.006 0.778 1.080
SvrRbfi 1.010 0.937 1.176 1.102 0.910 1.109
Best & Best −7.1% −7.8% −1.9% −4.3% −22.2% −1.1%
Worst & Worst −21.1% −37.1% −23.5% −49.3% −52.5% −48.8%

Table 3 shows the frequency of the accuracy ranking (using RMSE) of the metamodels for the
six benchmark problems with 3(k+1)(k+2)

2 training points. It can be seen that: (1) the frequency of the
ensemble metamodels that rank 1st or 2nd is 11, yet the frequency of the individual metamodels is
only one; (2) the frequency of the individual metamodels that rank 7th or 8th is 12, yet the frequency
of the ensemble metamodels is zero; (3) considered the frequency of the metamodels that rank
the top/bottom two, all the ensemble metamodels have better performance than the individual
metamodels; (4) PrsRbfm performs best among the four ensemble metamodels, followed by SvrRbfm,
PrsRbfi, and SvrRbfi.

Table 3. Frequency of the accuracy ranking (using RMSE) of the metamodels for the six benchmark
problems with 3(k+1)(k+2)

2 training points.

Ranking 1st 2nd 3rd 4th 5th 6th 7th 8th

PRS 0 0 2 0 2 0 0 2
SVR 0 0 1 0 0 2 3 0
RBFM 0 1 0 2 1 0 2 0
RBFI 0 0 0 0 0 1 1 4
Total 0 1 3 2 3 3 6 6

PrsRbfm 4 1 0 1 0 0 0 0
PrsRbfi 0 2 1 2 0 1 0 0
SvrRbfm 2 1 1 1 1 0 0 0
SvrRbfi 0 1 1 0 2 2 0 0
Total 6 5 3 4 3 3 0 0

To clearly compare the accuracy of each ensemble metamodel with their corresponding individual
metamodels, Figure 3 shows the normalized means of RMSE of each ensemble scheme for the six
benchmark problems with 3(k+1)(k+2)

2 training points. It can be seen that: (1) in Scheme 1, PrsRbfm
ranks 1st among PRS, RBFM, and PrsRbfm for all the benchmark problems; (2) in Scheme 2, PrsRbfi
ranks 1st for all the benchmark problems; (3) in Scheme 3, SvrRbfm ranks 1st for four benchmark
problems and 2nd for two benchmark problems; although RBFM ranks 1st for two benchmark
problems, it is the worst performer for three benchmark problems; (4) in Scheme 4, without exception,
the accuracy of SvrRbfi outperforms that of SVR and RBFI.
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Figure 3. Normalized means of RMSE of each ensemble scheme for the six benchmark problems with
3(k+1)(k+2)

2 training points.

Table 4 shows the normalized standard deviations of RMSE of the metamodels for each benchmark
problem with 3(k+1)(k+2)

2 training points. It can be seen that: (1) compared with the most accurate
individual metamodels, the standard deviations of RMSE of the most accurate ensemble metamodels
are reduced for BP5 and BP6, yet the standard deviations are increased for the other four benchmark
problems; (2) compared with the least accurate individual metamodels, the standard deviations of
RMSE of the least accurate ensemble metamodels are reduced, ranging from 8.4% to 35.5%.

According to the above experimental results, we think the proposed metamodeling approach
could reduce the risk of selecting the worst individual metamodel, and the constructed ensemble
metamodels perform better than the used individual metamodels in terms of accuracy. In particular,
PrsRbfm performs best among the four ensemble metamodels, followed by SvrRbfm, PrsRbfi,
and SvrRbfi.

To provide an explicit explanation for the better performance of the proposed approach,
a low-dimensional problem (BP1) and an ensemble scheme (ensemble of SVR and RBFM) are selected
as examples. Figure 4 shows the contour plot of the actual function and the approximate functions of
SVR, RBFM, and SvrRbfm. It can be seen that: (1) SVR has better global trend fitting capacity than
RBFM, such as in the red box area; (2) RBFM performs better in the vicinity of the sampling locations,
such as in the red ellipse region; (3) SvrRbfm combines the global trend of SVR and the local accuracy
of RBFM, such as in the red box area and the red ellipse region.
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Table 4. Normalized standard deviations of RMSE of the metamodels for each benchmark problem
with 3(k+1)(k+2)

2 training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.000 1.000 1.646 1.566 1.001 1.072
SVR 2.067 1.542 1.121 10.663 6.188 6.844
RBFM 1.462 1.167 1.000 1.000 1.204 1.488
RBFI 1.660 1.100 1.235 1.117 1.000 1.000

PrsRbfm 1.397 1.185 1.304 1.592 0.744 0.995
PrsRbfi 1.423 1.193 1.493 1.577 0.953 1.055
SvrRbfm 1.581 1.143 1.509 2.021 1.427 3.714
SvrRbfi 1.696 1.199 1.123 7.041 3.991 5.542
Best & Best 39.7% 14.3% 12.3% 57.7% −25.6% −0.5%
Worst & Worst −17.9% −22.2% −8.4% −34.0% −35.5% −19.0%

Therefore, the reason for the better performance of the ensemble metamodels may be
that the proposed metamodeling approach combines the advantages of the regression-type and
interpolation-type metamodels. The actual model is regarded as the sum of a regression-type model
and a deviation function. Some useful information is first extracted by the regression-type metamodel
to capture the global trend of the actual model in the entire design space. Then, some other information
is extracted from the deviations at the sampling locations by using the interpolation-type metamodel
to achieve the local accuracy in the vicinity of sampling locations.

x1

x2

x1

x2

x1

x2

x1

x2

Figure 4. Contour plot of the actual function and the approximate functions of SVR, RBFM,
and SvrRbfm.
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4.2. Effect of Performance Criteria

The choice of different performance criteria may influence the results of the metamodels. To reduce
the source of uncertainty in the results as much as possible, the max absolute error (MAE) is selected
as another performance criterion.

Figure 5 shows the boxplots of MAE of the metamodels over 100 test sets for each benchmark
problem with 3(k+1)(k+2)

2 training points. Table 5 shows the normalized means of MAE of the

metamodels for each benchmark problem with 3(k+1)(k+2)
2 training points. From Figure 5 and Table 5,

it can be seen that: (1) for each benchmark problem, the performance differences among the four
ensemble metamodels are less than that among the four individual metamodels; (2) except for BP6,
more than two ensemble metamodels perform better than the most accurate individual metamodels;
(3) compared with the most accurate individual metamodels, the means of MAE of the most accurate
ensemble metamodels are reduced for five benchmark problems; (4) compared with the least accurate
individual metamodels, the means of MAE of the least accurate ensemble metamodels are reduced,
ranging from 14.2% to 48.9%.

Table 5. Normalized means of MAE of the metamodels for each benchmark problem with 3(k+1)(k+2)
2

training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.055 1.583 1.000 1.000 1.000 1.000
SVR 1.149 1.000 1.405 1.312 1.080 1.325
RBFM 1.000 1.148 1.165 1.174 1.385 1.708
RBFI 1.189 1.200 1.626 2.515 1.939 2.353
PrsRbfm 0.910 1.111 0.952 0.980 0.944 1.015
PrsRbfi 0.965 1.278 0.999 0.999 0.996 1.002
SvrRbfm 0.950 0.933 1.164 1.168 0.957 1.244
SvrRbfi 1.021 0.956 1.338 1.285 1.052 1.302
Best & Best −9.0% −6.7% −4.8% −2.0% −5.6% 0.2%
Worst & Worst −14.2% −19.3% −17.7% −48.9% −45.7% −44.7%

Table 6 shows the frequency of the accuracy ranking (using MAE) of the metamodels for the six
benchmark problems with 3(k+1)(k+2)

2 training points. It can be seen that: (1) considered the frequency
of the metamodels that rank the top/bottom two, PrsRbfm, PrsRbfi, and SvrRbfm outperform all the
individual metamodels; (2) although SvrRbfi is a little worse than PRS, it still performs better than its
corresponding individual metamodels (SVR and RBFI); (3) PrsRbfm is the best performer of the four
ensemble metamodels, followed by SvrRbfm, PrsRbfi, and SvrRbfi.

Table 6. Frequency of the accuracy ranking (using MAE) of the metamodels for the six benchmark
problems with 3(k+1)(k+2)

2 training points.

Ranking 1st 2nd 3rd 4th 5th 6th 7th 8th

PRS 1 0 2 1 0 1 0 1
SVR 0 0 1 0 0 2 3 0
RBFM 0 0 0 1 3 0 2 0
RBFI 0 0 0 0 0 1 0 5
Total 1 0 3 2 3 4 5 6

PrsRbfm 4 0 1 1 0 0 0 0
PrsRbfi 0 3 2 0 0 0 1 0
SvrRbfm 1 2 0 3 0 0 0 0
SvrRbfi 0 1 0 0 3 2 0 0
Total 5 6 3 4 3 2 1 0

In summary, the choice of the performance criteria influence the results slightly, but the
conclusions obtained by the two criteria remain unchanged.
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Figure 5. Boxplots of MAE of the metamodels over 100 test sets for each benchmark problem with
3(k+1)(k+2)

2 training points.

4.3. Effect of Sampling Densities

The choice of different sampling densities may also influence the results of the metamodels.
To investigate the effect of the sampling densities, this paper selects another two schemes with different
sampling densities, which are n = 5(k+1)(k+2)

4 and n = 7(k+1)(k+2)
4 .

Table 7 shows the normalized means of RMSE of the metamodels for each benchmark problem
with 7(k+1)(k+2)

4 training points. It can be seen that: (1) compared with the most accurate individual
metamodels, the means of RMSE of the most accurate ensemble metamodels are reduced, ranging
from 0.9% to 8.1%; (2) compared with the least accurate individual metamodels, the means of RMSE of
the least accurate ensemble metamodels are reduced, ranging from 23.4% to 53.8%; (3) except for BP3,
more than two ensemble metamodels perform better than the most accurate individual metamodels;
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(4) all the ensemble metamodels perform better than the four individual metamodels; (5) PrsRbfm is
the best performer among the four metamodels, while SvrRbfi is the worst performer.

Table 7. Normalized means of RMSE of the metamodels for each benchmark problem with 7(k+1)(k+2)
4

training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.400 2.282 1.104 1.000 1.342 1.000
SVR 1.209 1.000 1.283 1.154 1.000 1.130
RBFM 1.000 1.186 1.000 1.012 1.496 1.371
RBFI 1.174 1.383 1.555 2.188 2.847 2.195
PrsRbfm 0.921 1.102 0.952 0.946 1.158 0.991
PrsRbfi 0.985 1.271 1.044 0.987 1.316 0.992
SvrRbfm 0.958 0.937 1.040 1.000 0.919 1.076
SvrRbfi 1.014 0.949 1.191 1.102 0.972 1.105
Best & Best −7.9% −6.3% −4.8% −5.4% −8.1% −0.9%
Worst & Worst −27.6% −44.3% −23.4% −49.6% −53.8% −49.7%

Table 8 shows the normalized means of RMSE of the metamodels for each benchmark problem
with 5(k+1)(k+2)

4 training points. It can be seen that: (1) compared with the most accurate individual
metamodels, the means of RMSE of the most accurate ensemble metamodels are reduced for five
benchmark problems, ranging from 0.9% to 16.9%; (2) compared with the least accurate individual
metamodels, the means of RMSE of the least accurate ensemble metamodels are reduced, ranging
from 20.9% to 51.3%; (3) all the ensemble metamodels have better performance than the four
individual metamodels.

Table 8. Normalized means of RMSE of the metamodels for each benchmark problem with 5(k+1)(k+2)
4

training points.

BPs BP1 BP2 BP3 BP4 BP5 BP6

PRS 1.268 1.577 1.115 1.022 1.000 1.000
SVR 1.248 1.000 1.242 1.206 1.027 1.174
RBFM 1.000 1.020 1.000 1.000 1.134 1.379
RBFI 1.100 1.126 1.517 2.151 2.030 2.093
PrsRbfm 0.937 1.008 1.015 0.991 0.918 0.991
PrsRbfi 0.980 1.098 1.079 1.014 0.989 0.995
SvrRbfm 0.965 0.924 1.053 1.035 0.831 1.073
SvrRbfi 1.002 0.938 1.167 1.152 0.951 1.139
Best & Best −6.3% −7.6% 1.5% −0.9% −16.9% −0.9%
Worst & Worst −20.9% −30.4% −23.1% −46.4% −51.3% −45.6%

In summary, the choice of different sampling densities influences the results slightly, but the
conclusions obtained by the three schemes with different sampling densities remain unchanged.

4.4. Significance of Results

The results above have proven the effectiveness of the proposed method to some extent. To further
demonstrate the advantages, the proposed method is compared with some other popular ensemble
metamodels, which are BPS (Best PRESS surrogate), PWS (PRESS weighted average surrogate),
and OWSD (Optimal weighted surrogate using the diagonal elements). The detailed descriptions of
these ensemble metamodels can be found in relevant literature [35,37]. Additionally, Kriging with first
order polynomial regression function (KRG1) and Kriging with second-order polynomial regression
function (KRG2) are also included in the performance comparison. To be noted, the principle and
modeling process of Kriging are different from that of the proposed metamodeling approach in
this paper.
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Figure 6 compares the performance of PrsRbfm, SvrRbfm, KRG1, KRG2, BPS, PWS, and OWSD.
It can be seen that: (1) for BP1, PrsRbfm and SvrRbfm perform better than the other five metamodels;
(2) for BP2, SvrRbfm and BPS are the best two performers; (3) for BP3, the accuracy of PrsRbfm and
BPS are better than that of the other metamodels; (4) for BP4, PrsRbfm and KRG2 are the best two
performers; (5) for BP5, SvrRbfm and BPS are more accurate than other metamodels; (6) for BP6,
PrsRbfm and KRG2 perform better the other metamodels.

In summary, the proposed metamodeling approach possesses some advantages when compared
with KRG1, KRG2, BPS, PWS, and OWSD.

Figure 6. Boxplots of RMSE of PrsRbfm, SvrRbfm, KRG1, KRG2, BPS, PWS, and OWSD for the
benchmark problems.

5. Conclusions

This paper proposed a novel metamodeling approach for building ensemble metamodels.
Four types of ensemble metamodels, namely PrsRbfm, PrsRbfi, SvrRbfm, and SvrRbfi, were constructed
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by choosing four individual metamodels, namely PRS, SVR, RBFM, and RBFI. The performance of
these metamodels was investigated through six popular benchmark problems. The effects of the
performance criteria and sampling densities on the performance of the metamodels were studied.
Additionally, the significance of the results was discussed by comparing the proposed method with
some other popular ensemble metamodels. According to the results, some findings of this work could
be concluded as follows:

(1) According to the experimental results, the proposed metamodeling approach could reduce the
risk of choosing the worst individual metamodel, and the constructed ensemble metamodels
perform better than the selected individual metamodels in terms of accuracy.

(2) The reason for the better performance of the ensemble metamodels may be that the proposed
metamodeling approach combines the advantages of the regression-type and interpolation-type
metamodels. The ensemble metamodels not only capture the global trend of the actual model in
the entire design space, but also achieve the local accuracy in the vicinity of sampling locations.

(3) The choices of different performance criteria and sampling densities influence the results slightly,
but the obtained conclusions remain unchanged.

(4) The proposed metamodeling approach possesses some advantages when compared with some
other popular ensemble metamodels.
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