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Preface to “New Trends in Quantum Electrodynamics”

Quantum electrodynamics is one of the most successful physical theories, and its predictions
agree with experimental results with exceptional accuracy. Nowadays, after several decades since its
introduction, quantum electrodynamics is still a very active research field from both the theoretical
and experimental points of view. The aim of this Special Issue is to present recent relevant advances
in quantum electrodynamics, both theoretical and experimental, and related aspects in quantum field

theory and quantum optics.
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Abstract: Dispersion interactions are long-range interactions between neutral ground-state atoms
or molecules, or polarizable bodies in general, due to their common interaction with the quantum
electromagnetic field. They arise from the exchange of virtual photons between the atoms, and, in the
case of three or more atoms, are not additive. In this review, after having introduced the relevant
coupling schemes and effective Hamiltonians, as well as properties of the vacuum fluctuations,
we outline the main properties of dispersion interactions, both in the nonretarded (van der Waals)
and retarded (Casimir—Polder) regime. We then discuss their deep relation with the existence of the
vacuum fluctuations of the electromagnetic field and vacuum energy. We describe some transparent
physical models of two- and three-body dispersion interactions, based on dressed vacuum field
energy densities and spatial field correlations, which stress their deep connection with vacuum
fluctuations and vacuum energy. These models give a clear insight of the physical origin of dispersion
interactions, and also provide useful computational tools for their evaluation. We show that this aspect
is particularly relevant in more complicated situations, for example when macroscopic boundaries are
present. We also review recent results on dispersion interactions for atoms moving with noninertial
motions and the strict relation with the Unruh effect, and on resonance interactions between entangled
identical atoms in uniformly accelerated motion.

Keywords: Casimir-Polder interactions; van der Waals forces; vacuum fluctuations; vacuum energy;
many-body dispersion interactions

1. Introduction

Van der Waals and Casimir-Polder dispersion interactions are long-range interactions between
two or more neutral atoms or molecules in the vacuum space, arising from their common interaction
with the quantum electromagnetic field [1-3]. A related effect is the atom-surface Casimir-Polder
force between a neutral atom and a conducting or dielectric surface [4]. A complete description of such
interactions requires a quantum description of both matter and radiation. These forces are non additive,
that is, the interaction between three on more atoms is not simply the sum of pairwise interactions;
non-additive terms are present, involving coordinates of all atoms [5-7]. Nonadditive contributions
are usually small for dilute systems, but they can become relevant for dense systems [8,9]. In this paper,
we review some properties of two- and three-body dispersion interactions between neutral atoms,
both in the nonretarded (van der Waals) and in the retarded (Casimir—Polder) regime, and recent
advances in this subject. We will give a particular emphasis on physical models stressing their relation
with the zero-point fluctuations of the electromagnetic radiation field and vacuum energy. We will
also briefly review some recent results for atoms in an excited state and when a boundary condition
such as a conducting plane boundary is present, as well as dispersion and resonance interactions for
atoms in noninertial motion. All of these results show that zero-point field fluctuations, and their
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change consequent to the presence of macroscopic magnetodielectric bodies or to a noninertial motion,
can be probed through dispersion forces on atoms or, in general, polarizable bodies. This review
mainly deals with two- and three-body dispersion interactions between atoms, in several physical
situations, and their physical origin in terms of the zero-point fluctuations of the electromagnetic field;
other relevant aspects of dispersion interactions, for example the effect of magnetodielectric bodies on
these interactions in the framework of macroscopic quantum electrodynamics, have been reviewed
in [10,11].

This review is organized as follows. In Section 2, we introduce the minimal and multipolar
atom-field coupling schemes, which will be used to calculate the dispersion interactions. In Section 3,
we derive effective Hamiltonians that allow considerable simplification of the calculations, in particular
for three- and many-body dispersion interactions, or in the presence of macroscopic boundaries.
Section 4 is dedicated to a brief discussion of the vacuum fluctuations, and vacuum energy densities,
of the quantum electromagnetic field. Section 5 deals with the two-body van der Waals and
Casimir-Polder dispersion interactions, while Section 6 is dedicated to three-body forces. In Section 7,
two- and three-body dispersion interactions are discussed in detail, in relation to physical models of
dispersion forces based on dressed vacuum field energy densities, and on bare and dressed vacuum
field spatial correlations. In Section 8, these results will be extended to the case in which a reflecting
boundary is present. Finally, in Section 9, dispersion and resonance interactions between atoms in
noninertial motion are discussed, as well as recent proposals to exploit these interactions as an indirect
signature of the Unruh effect. Section 10 is devoted to our final remarks.

2. Atom-Field Interaction Hamiltonian: Minimal and Multipolar Coupling
In nonrelativistic quantum electrodynamics, the (transverse) vector potential field operator, using

Gauss units, is given by [12,13]

27hc?
ka

ék/\ <€lk,\(t)8ikr + uﬂf\(t)e*[k") ’ (1)

A(rt) = %

where we have used the Coulomb gauge, V - A(r, t) = 0, the polarization unit vectors &, (A = 1,2)
are assumed real, w; = ck in the vacuum space, V is the quantization volume, and a;, and ”lt "
are respectively annihilation and creation operators satisfying the usual bosonic commutation rules.
Due to the Coulomb gauge condition V - A = 0, we have k - &, = 0 for all k. The transverse electric
field and the magnetic field are given by

E| (r,t) = _lA(r,t) = iz 2wy %Y <111(;L(t)eik‘r — alt/\(t)e*ik'r> , (2)
c o \%4
B(r,t) = VxA(rt)=i), 2rhc? k x &y, (ak,\(z‘)e"k‘r - ab(t)e”'k“) (3)
PRy ka

where the subscript L indicates the transverse part. The vacuum state is defined by ay, | {Okr}) =0,
for all (kA). In the presence of boundaries or macroscopic bodies, appropriate boundary conditions
must be set on the field operators, and the dispersion relation can change too (in a photonic crystal,
for example). The vacuum state is thus strongly dependent on the presence of microscopic or
macroscopic matter.

The Hamiltonian of the free field is

1 1
Hr = ¢ /‘/dSr[Ei(r) 4 Bz(r)] - %hwk (uhm + E) . (4)

In the presence of neutral atoms, the total Hamiltonian is the sum of three terms, Hr, Hatoms and
Hj, respectively the field, atomic and interaction Hamiltonians. In order to obtain the full Hamiltonian
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and discuss different matter-radiation coupling schemes, we start with the Lagrangian formalism
in the Coulomb gauge. The generalized coordinates are the coordinates r; of the charged particles
(the subscript ¢ indicates the particles present), the vector potential A(r, t) and the scalar potential
¢(r,t). In the Coulomb gauge, only the vector potential is second-quantized, while the scalar potential
is described as a classical function. The Helmholtz theorem allows a unique separation, with given
boundary conditions at infinity, of the electric field E(r, t) in a transverse (solenoidal) part E | (r, t),
with V- E| (r,t) = 0, and a longitudinal (irrotational) part E (r, t), with V x E| (r,#) =0,

E(r,t) =E| (r,t) +E||(r,t); EH(r,t) =-—V¢(r,t); E| (r,t) = —%A(r,t). (5)

The magnetic field is completely transverse, due to the Maxwell’s equation V - B(r, ) = 0.
For point particles with electric charge gz, position rz and mass mg, we define the charge and
current densities

o(r Zq;d r—rg); j(nt) qurgé r—re). 6)

The current density can be separated in its transverse and longitudinal parts, j(r, ) = j (r,) +j) (r, £).
The Lagrangian of the coupled system is [13-15]

/d%min(r) _ ;%mé% + % /'d% (ClZAZ(r) —(V A(r))2>

/d3r | Vo(r) /d3rp /d%’]i (7)

where £™"(r) indicates the Lagrangian density. The last two terms in the second line of Equation (7)
give the matter-field interaction. This Lagrangian yields the correct Maxwell-Lorentz equations of
motion. It defines the so-called minimal coupling scheme. The momenta conjugate to rz and A(r) are

Lmin(rg, A, ¢)

+

9L min ) q
pE" = ar; = mgie + "EA(rg),
: aLmin 1 1
0 = S8 = a0 = g B )

while the momentum conjugate to the scalar potential ¢(r, t) vanishes.
We can now obtain the Hamiltonian of the interacting system in the Coulomb gauge

Hmin<r§,A,Pmm l—[mm mem i‘{,‘ 4 /dSerin<l.> A(l‘) _ Lmin

- ;2;& (b - %A(rg)) + g [@r (RPN + (V% AW + o [Er[VemP . ©)

The last term includes all electrostatic (longitudinal) interactions: in the case of neutral atoms,
they are the interactions between the atomic nucleus and the electrons of the same atom, eventually
included in the Hamiltonians of the single atoms, as well as electrostatic (dipole-dipole, for example)
interactions between different atoms, yielding nonretarded London-van der Waals forces [15,16].
Thus, in the minimal coupling scheme, electromagnetic interactions between atoms are mediated by
both longitudinal and transverse fields.

In the case of two neutral one-electron atoms, A and B, respectively located at the fixed positions
r4 and rg, and within dipole approximation, Equation (9), using Equation (8), assumes the following
form [13,15]:

H™N = HEIN 4 HR o HE 4 HPY o HY, (10)
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where HI" and HT" are respectively the Hamiltonian of atoms A and B, HR™ is the free transverse
field Hamiltonian

Hmin = 8% /d3r (E’j(r) + Bz(r)> , an

and H}“‘h and H?d are, respectively, the interaction terms of the two atoms with the transverse field
and the electrostatic dipole-dipole interaction between the atoms. They are given by

2
min _ €. & A2
Hf'™ = _Z (mcpg Alrg) + 5.5 A (rg)> , (12)
;=AB
prad _ 1 3(ua-R R 13
1= 25 (ma-mp=3(ma-R)(up-R)), 13)
where —e is the electron charge, uy = —ery and up = —erp are respectively the dipole moment

operators of atoms A and B, and R is the distance between the two atoms. Extension to more-electrons
atoms, and to the case of three or more atoms, is straightforward.

A different and useful form of the matter—radiation interaction can be obtained by exploiting
gauge invariance; it is the so-called multipolar coupling scheme, and it is more convenient than the
minimal-coupling one in evaluating radiation-mediated interactions between neutral atoms [14,17-20].
The advantage of the multipolar coupling scheme is that the interaction is expressed in terms of
the transverse displacement field, and not the vector potential, and that the electrostatic interaction
between the atoms is embedded in the coupling with the transverse fields. This in general allows
considerable simplification of the calculations and a clear physical picture. The passage from the
minimal to the multipolar coupling scheme can be obtained in two different, and equivalent, ways:
by adding a total time-derivative to the Lagrangian or through a unitary transformation on the
Hamiltonian [14,17-19,21-23]. In view of the relevance to dispersion interactions, we will now briefly
outline this procedure, within dipole approximation.

We first introduce the atomic polarisation operator, in electric dipole approximation, assuming that
the (multi-electron) atoms are well separated, i.e., their distance is much larger that the Bohr’s radius,

P(r) = —;egrgé(r—rg) = ;ygé(r—rg), (14)

where the subscript ¢ indicates the atomic electrons, with positions rg; with respect to their atomic
nucleus. We have also introduced the atomic dipole moment operator of atom ¢, puy = — Y&, ez xe,,
with rg, the positions of the electrons of atom /. The longitudinal field of the bound charges in the
atoms can be expressed as

EH (1‘) = —V¢(l‘) = —47TPH (1‘), (15)

where P (r) is the longitudinal part of the polarization operator, P(r) = P, (r) + P (r). In addition, in
the electric dipole approximation,
j(r t) = P(r,t). (16)

The new Lagrangian, where a total time-derivative has been added to (7), is given by
m 1d
pmult ./d3r£mull(r) _ pmin _ -= ./d3rP(r) A®r)
1 1 1. 1
= Lyt [+ (&40~ (7 AW2) + g [r] Tplo) P~ [#roteto)

_ %/zﬁm(r) CAr), (17)

where £™Ult(r) is the new Lagrangian density, and we have used Equations (9) and (15). The subscript
¢ identifies the (point-like) atoms located at position r,. The new conjugate momenta are
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aLmult )
Plénult afg = m§r§,
oLmult 1 . 1 1
() = 5= = raAl) - Pu) = — D), 18)

where D | (r) is the transverse part of the electric displacement field D(r) = E(r) +47P(r). Comparison
of (18) with (8) shows that the momenta conjugate to the generalized coordinates, on which canonical
commutation relations are imposed in the quantization procedure, are different in the two coupling
schemes. In the multipolar coupling, the momentum conjugate to the vector potential has a contribution
from the atomic polarization vector.

From the Lagrangian (17), and using (18), we obtain the Hamiltonian in the multipolar scheme
within the dipole approximation,

Hmult(rg,A, p?ult, nmult) _ Zprfnult . f@‘ i /dSrnmult(r> A(r) _ Lmult
T

=T (ﬁ G w) + o [ (DL +(V < AW)?)

a

=L Di(r) + 2L [dr[ P P, (19)
£ l

where V; contains the electrostatic nucleus—electrons interaction of each atom. The term containing the
integral of Pi ;(r) (the squared transverse polarization vector of atom ¢) contributes only to single-atom
self-interactions, and does not contribute to the interatomic interactions we will deal with in the next
sections. Using the Hamiltonian (19), all interatomic interactions are mediated by the transverse field
only, without electrostatic interatomic terms.

The passage from the minimal to the multipolar coupling scheme can be equivalently
accomplished through a unitary transformation, the so-called Power-Zienau-Woolley transformation,
given by [14,15,17-19,21,24]

S=exp (% /.dsrPJ_(r) . A(r)) . (20)
The action of this transformation on the transverse electric field operator is
ST'EL(r)S =E_(r) +47P, (r) = D, (x), (1)

where the equal-time commutator between the transverse electric field and the vector potential has
been used
[A,-(r, t), Elj(r’, t)} = —4nich§# (r— r/), (22)

which can be obtained from the expressions (1) and (2) of the field operators, and where ¢ f (r) is the
transverse Dirac delta function. Transverse and longitudinal Dirac delta functions, which allow for
extracting the transverse and longitudinal parts of a vector field, are defined as

1 fas:
shr) = P [k,
1 N
5 = @ /dsk (85— iy ) e, 23)
In addition,
8;8(x) = 8l (x) + 87 (v). (24)

When comparing the expressions of the minimal coupling Hamiltonian (9) with the multipolar
coupling Hamiltonian (19), some important considerations are in order. As already mentioned,
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in the multipolar scheme, the momentum field conjugate to the vector potential, the transverse
displacement field, is different than that in the minimal coupling scheme (i.e., the transverse electric
field). When these Hamiltonians are quantized, the photons in the two schemes are thus different
objects. In addition, in the multipolar scheme, the transverse displacement field and the magnetic field
appear in the multipolar field Hamiltonian, while the minimal free-field Hamiltonian is expressed in
terms of the transverse electric field and the magnetic field. Finally, only the transverse displacement
field appears in the interaction Hamiltonian, as shown in Equation (19); no electrostatic interactions
are present in the interaction term, contrarily to minimal coupling case (10). When the multipolar
Hamiltonian is used, all interactions among atoms are mediated by the quantized transverse fields
only, and this makes the multipolar coupling scheme much more convenient for calculating dispersion
and resonance interactions between atoms. Another important advantage of the multipolar scheme
is that the transverse displacement field D | (r) is fully retarded, contrarily to the transverse electric
field E | (r), that, as it is well known, contains a non-retarded part [18,25]. This is also evident from the
fact that

D, (r) E| (r) +47P | (r) = E| (r) + 47P(r) — 47P)|(r) = E (r) + E| (r) + 47P(r)

E(r) + 47P(x), (25)

where we have used Equation (15). Taking into account Equation (14), at points r different from the
positions 1, of the (point-like) atoms, we have

Dy (r) = E(r) (r#r). (26)

In other words, the transverse displacement field in all points of space but the atomic positions
coincides with the total (transverse plus longitudinal) electric field, which is a retarded field. This is
particularly relevant when issues related to field propagation and causality are considered [25-27].

3. Effective Hamiltonians

Dispersion interactions between two atoms (van der Waals and Casimir—Polder) are effects
starting at fourth order in the radiation-matter coupling, and three-body dispersion interactions start
at sixth-order [24,28-31]. Application of fourth- or higher-order perturbation theory yields a large
number of diagrams, and considerable amount of calculations. It is therefore desirable obtaining
an effective Hamiltonian that could simplify calculations, reducing the number of diagrams. In this
section, we introduce an effective Hamiltonian, with an interaction term quadratic in the atom-field
coupling (i.e., the electric charge), which thus allows to halve the perturbative order necessary to
evaluate dispersion interactions. For instance, it allows for evaluating the two-body dispersion
potential through a second-order calculation and the non-additive three-body potential through a
third-order calculation, in the case of ground-state atoms or molecules. This effective Hamiltonian is
expressed in terms of the dynamical polarizability of the atoms.

We start with the multipolar Hamiltonian (19), considering for simplicity only one atom (A),
and neglecting the term quadratic in the atomic transverse polarization vector, which does not play any
role for the considerations that follow. Our Hamiltonian is thus H = Hy + Hp — pis - D (r4), where
1, is the position of the atom. We now perform the following transformation on the Hamiltonian

Hpew = ¢@He™'% = Hy+ Hp —pa Dy () +i[Q Ha + H - %[Q, [Q Ha + Hl]
+ Z[Q/ _”A'DL(I'A)]"'_"'/ (27)

where we have used the Baker-Hausdorff relation, and the operator Q is chosen in such a way to
eliminate the term linear in the coupling, that is,
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l'[Q,HA-‘er} :,uA'DL(rA) (28)

This condition allows for obtaining the generic matrix elements of Q between atom-+field states,
except on the energy shell where they are undefined. Substitution of (28) into (27) finally yields
an effective Hamiltonian that is quadratic in the electric charge because the linear terms have been
eliminated by the transformation. For ground-state atoms with random orientations, the effective
Hamiltonian has an interaction term of the following form [32,33]

Hige = —= Y aa(k)D, (kA 14) D (x4), (29)
2 kA

where D | (kA, r) are the Fourier components of the transverse displacement field, D (r) = Y, D, (kA r),

and 2 Eng ’lzg )
apk) =2y rA
Al =31, E2, — HPc2k2

(30)

is the dynamical polarizability of the isotropic atom. In Equation (30), g indicates the ground state of
the atom with energy E¢, m a generic atomic state with energy Ej,. In addition, Eyyg = Ein — Eg, and
#'4% are matrix elements of the dipole moment operator between states 7 and g.

The effective Hamiltonian (29) has a clear classical-type interpretation: any (kA) component of
the field induces a dipole moment in the atom with Fourier components determined by its dynamical
polarizability a 4 (k) at the frequency ck (linear response); this induced dipole moment, then, interacts
with the field at the atom’s position (the factor 1/2 in (29) appears because it is an interaction energy
between induced, and not permanent, dipoles).

If all relevant field modes have a frequency wy = ck much smaller than the relevant atomic
transition frequencies, that is, ck < Epg /T, in (29), after taking into account the expression (30),
we can replace the dynamical polarizability with the static one, a4 = a4 (0), obtaining the so-called
Craig-Power effective Hamiltonian [34]

Hine = —22A D3 (r2). 1)
The effective Hamiltonian (31) is valid whenever only low-frequency field modes are relevant, for
example in the case of dispersion interactions between ground-state atoms in the far zone (retarded
Casimir-Polder regime). In the case of two or more atoms, the effective interaction term in the
Hamiltonian is simply the sum of those relative to the single atoms [32]. An important point for
some following considerations in this review is that Equation (31) shows that, taking also into
account (26), the interaction energy with a polarizable body, in the appropriate limits, involves
the total electric field. This is true when the effective interaction term can be represented by its static
polarizability, that is, when all relevant field modes have frequencies lower than relevant atomic
transition frequencies, allowing us to probe the electric field energy density E?(r) /87, through the
far-zone retarded Casimir-Polder interaction energy. A similar consideration holds for the magnetic
energy density too. This will be an essential point for our following discussion in Section 7.1 on the
relation between retarded Casimir—Polder interactions and vacuum field energies and fluctuations.

4. Vacuum Fluctuations

A striking consequence of the quantum theory of the electromagnetic field is the existence
of zero-point field fluctuations. In the ground state of the field, where the number of photons is
zero, the electric and magnetic field have quantum fluctuations around their average value zero [2].
This means that

{0} [ EL(r,8) | {0a}) #0; (0] B*(x,t) | {Oxa}) #0, (32)
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while ({0ir} | EL (1) | {0ka}) = ({0ka} | B(r, ) | {Okr}) = O, where | {0k, }) indicates the vacuum
state of the field. Field fluctuations are directly related to the field energy density, of course. In addition,
we have i 1
(O} | [dr [B2.0) + B(0)] | {0a}) = 1 5o (33)
kA
Electric and magnetic zero-point fluctuations are a direct consequence of the non-commutativity,
at equal time, of specific components of the transverse electric and magnetic field operators, given by

[ELm (1), Bn(r// t)] = —47Tl'hC€mngairZ(5(l‘ - 1‘/), (34)

where €,,,,¢ is the totally antisymmetric symbol, and the Einstein convention of repeated symbols has
been used. Equation (34) can be directly obtained from the expressions (2) and (3) of the field operators.

The strength of these fluctuations, and the related field energy densities, depends on the
contributions of all field modes, and thus it depends on the presence of boundary conditions,
magnetodielectric bodies or matter in general. Zero-point field fluctuations are infinite and, in the
unbounded space, spatially uniform. In deriving the specific expressions of (32), a sum over all allowed
field modes is involved and, as mentioned, the allowed modes and the dispersion relation depend on
the presence of boundaries, for example metallic or magnetodielectric bodies or even single atoms or
molecules, or a structured environment. Although vacuum fluctuations diverge, their difference for
two different configurations of the boundaries is usually finite, and this leads to the Casimir effect,
which is a tiny force between two neutral macroscopic bodies (two parallel conducting plates, in the
original formulation of the effect), which has no classical analogue [2,35]. In other words, the zero-point
energy is boundary-conditions-dependent, and can be varied by changing the boundary conditions.
The presence of atoms or molecules also changes the vacuum electric and magnetic energy density,
and we will see in the next sections that this is deeply related to van der Waals and Casimir—Polder
forces between neutral atoms, or between atoms and macroscopic objects. This point gives clear
insights on the physical origin of such forces of a pure quantum origin.

Another relevant property of zero-point field fluctuations, strictly related to Casimir—Polder
interactions, is their spatial correlation. Using expression (2) of the transverse electric field operator,
the equal-time spatial correlation function for the (kA) component of the free transverse electric field is

27mhce ,, . k.
({0} [ ELi(lA, X, E (I, A7 1) [ {0 }) = v (811)i (812 jke™ ™S b1, (35)

where r = ¥ — 1/ and the subscripts i,j indicate Cartesian components. The equal-time spatial
correlation of the electric field is [26]

he [ RSN
({0} | EL(e, DEL (0 [{0a}) = o [ ke [d0 (5~ kiky) e
he 5 i [ K 4hc |
= s (5572 Vi) ;/O dkk /dQe’ F= -2 (05— 207) -, (36)
where the differential operators in (36) act on r, and the sum over polarizations has been carried out
by using
Y (exn)i(@in) = dij — kik, (37)
A

and we have also used [dQe’* = 47tsin(kr)/ (kr). Equation (36) shows that vacuum fluctuations of the
electric field have an equal-time spatial correlation scaling with the distance as r—%; as we will discuss
in more detail later on, this implies that vacuum fluctuations are able to induce and correlate dipole
moments in distant atoms, and this eventually leads to their Casimir—Polder interaction energy [36].
Field fluctuations and vacuum energy densities can be modified by the presence of matter—for

example, a metallic or dielectric boundary (they also change in the presence of single atoms or
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molecules, as we will discuss in Section 7). In such cases, they depend on the position, contrarily to the
unbounded-space case, where they are uniform in space.

In the case of perfectly conducting boundaries, appropriate boundary conditions must be set on
the field operators at the boundaries” surface, and the electric and magnetic free field operators assume
the form [2,37]

E () = YE (n)=iY /7 %001 (ma —af ) (38)
kA kA
B . 27thc? +
B(r) = %B(kA;p:% kafo(k/\,r) (am—um), (39)

where f(kA, r) are mode functions, assumed real, which take into account the boundaries present. For
an infinite perfectly conducting plate located in the plane z = 0, renormalized electric and magnetic
energy densities (that is after subtraction of the densities found in the unbounded space) are

(0} 1) [ Oahen = o (O} |EX3) | 10 gt — e (0} | B2 | (Ot P

- (40)
(00} 1B | {0 hen = o ({0} [ B2) | (O P — g ({0t} | B2 | (O P

- (41)

where z is the distance from the plate [38]. Equations (40) and (41) show that the presence of
the (perfectly conducting) boundary decreases the electric zero-point energy density in all space,
while it increases the magnetic one. In Section 7.1, we will show that something similar occurs in
the space around an electric dipolar source of the electromagnetic field. In the expressions above,
the renormalized field energy densities diverges at the surface of the conducting plate, z = 0. This is
due to the unrealistic assumption of a perfectly conducting boundary with a fixed position in space;
it has been shown that these divergences can be cured by assuming a fluctuating position of the
plate [38], or introducing an appropriate cut-off to simulate a non-ideal metal boundary [39,40],
thus allowing to investigate the structure of field fluctuations in the very vicinity of the boundary [39].
Field fluctuations near a conducting boundary that is allowed to move, with its translational degrees
of freedom treated quantum mechanically and thus, with quantum fluctuations of its position, have
been recently considered for both the scalar and the electromagnetic field, also in relation with the
surface divergences of energy densities and field fluctuations [41-43].

In the next sections, we will discuss how vacuum energy densities, and their space dependence in
the presence of matter are strictly related to van der Waals and Casimir-Polder interactions between
atoms and to the atom-surface Casimir-Polder interaction. These considerations will allow us to get
a clear physical interpretation of such pure quantum interactions, as well as useful tools to evaluate
them in different situations.

5. The Van Der Waals and Casimir-Polder Dispersion Interaction between Two Neutral
Ground-State Atoms

Let us consider two ground-state neutral atoms, A and B, located at r4 and rp respectively,
and be r = rp — ry their distance. We assume that the atoms are in the vacuum space at zero
temperature, and at a distance such that there is no overlap between their electronic wavefunctions.
We describe their interaction with the quantum electromagnetic field in the multipolar coupling scheme.
From Equation (19), the Hamiltonian of the system in the multipolar coupling scheme is
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H = Hy+H;j
Hy = Ha+ Hp+ Hp,
Hy = —pa-E(rq) —pp-E(rp), (42)

where H, and Hp are respectively the Hamiltonians of atoms A and B, E(r) indicates the transverse
displacement field operator (coinciding, outside the atoms, with the electric field operator, as shown
by Equation (26)), and we have disregarded the term proportional to P (r), which does not affect
interatomic interaction energies. The unperturbed ground state is | g4, 5, {Oka }), where g4 and g3
respectively indicate the ground state of atoms A and B, and | {0k, }) is the photon vacuum state.
This state is not an eigenstate of the total Hamiltonian H, due to the matter-radiation interaction
Hamiltonian. Thus, there is an energy shift of the bare ground state due to the interaction Hamiltonian.
Evaluating this energy shift by perturbation theory, it is easily found that the second-order energy shift
gives only individual single-atom shifts (the Lamb shift, after mass renormalization), not depending on
the distance between the atoms. The first term yielding an interatomic-distance-dependent contribution
is at fourth order in the matter-radiation coupling. It is given by

(84,88 {0} | Hy | II(IIT | Hy | IDIT | Hy | (I | Hi | 84,88, {0ka })

AE;, = —
! LILII (Er — Eg)(Eqr — Eg)(Eqr — Eg)
| (84,88, {0k} | Hi | 1) [*] (84,88, {0k} | Hi | 1) |
+ 43)
1,);1 (Ey — Eg)*(En — Eg)

where I, II and II] indicate atoms-field intermediate states with energies Ej, E;; and Ejj; (with the
exclusion, in the sums, of the unperturbed state), respectively; E, is the energy of the unperturbed
ground state. The second term in (43) does not contribute to the potential energy, while the first one
gives twelve relevant diagrams, each representing an exchange of two virtual photons between the
atoms. Using the Hamiltonian (42) and the expression (2) of the electric field, the following expression
of the interaction energy between the two atoms is found from (43) [15,24]

2rthck 2rthek’ . .
AE = - vy @)@ () e (G m S )
ps KAK/A!
1 4(kpg +ksg + k) < 11 ) m
h3c3 (kpg +ksg) (kpg + k) (ksg + k) \k+k'  k—k )’
where p, s indicate generic atomic states, r = rg — ry4 is the distance between the two atoms,

hckpg =Ep — Eg, and i, j, £, m are Cartesian components (the Einstein convention of repeated indices
has been used).
After taking the continuum limit y; — (V/(271)3) [dkk* [dQ), next steps in the calculation are
the polarization sum, done using (37), and angular integration.
We define the function
1 ikr

Gylkr) = 5 (V- vv)e7

k
s i 1 ikr
(35 = Fify) ¢ + (@ =37 (2 ~ 183 ) | ¢ “3)
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where the differential operators act on the variable 7, whose real and imaginary parts are

> cos(kr)
WGk} = V) = 5 (zw - V) = =
. cos(kr) . [sin(kr)  cos(kr)
= (0 —#ify) P (05 — 3%:%)) < 2 T es ) (46)
sin(kr) PN
3Gy} = (zsqu viv)) - /dQ i — kiky) e
.~ sin(kr) .. [cos(kr) sm(kr)
= (05— #ify) — = + (0 = 3Fi7)) ( 27 " wes ) (47)

Using the relations above, after lengthy algebraic calculations, Equation (44) yields

_ 4 sp pg. g5 sg 1
AE= - %ZquyA/uB]VBmm

kpe +kso +k
dkk6 —F8 = 28 T = 1Gy (k1) }S{Gii(k, (48)
e e R G (1)) 3Gy k)
With further algebraic manipulation, after averaging over the orientations of the atomic dipoles,
Equation (48) can be cast in the following form, in terms of the atoms’ dynamical polarizability (30)
evaluated at the imaginary wavenumber (k = iu) [15,24,30,44]

o0
AE = fh—; ./o duep (iv)ap (iv)ube 24" (# + % + u‘*% + % + %) . (49)
This expression is valid for any interatomic separation r outside the region of wavefunctions
overlap, and it depends on the relevant atomic transition wavelengths from the ground state, A, =
27rk,g , included in the atoms’ polarizability. Two limiting cases of (49) are particularly relevant,
7 < Arg (near zone), and r > A (far zone).
In the near zone, Equation (49) yields

| b P |2

SEnear = 1PallPp 1
near 3 ; Epg + Esg 1/6,

(50)

which coincides with the London—van der Waals dispersion interaction scaling as r=6 [16,45], as
obtained in the minimal coupling scheme including electrostatic interactions only, i.e., neglecting
contributions from the (quantum) transverse fields. For this reason, this potential is usually called the
nonretarded London-van der Waals potential energy.

In the far zone, Equation (49) yields

()

where a5 = a,(p)(0) is the static polarizability of the atoms [1,46]. Equation (51) shows that
the dispersion energy asymptotically scales with the distance as r~7, thus faster than the London
potential (50). This is usually called the retarded or Casimir—Polder regime of the dispersion interaction
energy, where retardation effects due to the transverse fields, that is, quantum electrodynamical effects,
change the distance dependence of the potential energy from ¢ to =7, at a distance between the
atoms given by the transition wavelength from the ground state to the main excited states. It should
be noted that the calculation to obtain the expression (49) can be simplified by using the effective
Hamiltonian introduced in Section 3 [32,34,47]. The existence of an asymptotic behaviour of the
dispersion interaction falling more rapidly than the London r~® dependence, was inferred for a long
time from the analysis of some macroscopic properties of colloid solutions [48]. In addition, the onset of

11
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the Casimir—Polder retarded regime has been recently related to the bond length of a diatomic helium
molecule [49]. Furthermore, the nonretarded interaction between two single isolated Rydberg atoms,
at a distance of a few nanometers each other, has been recently measured through the measurement of
the single-atom Rabi frequency [50].

We just mention that new features in the distance-dependence of the dispersion energy between
ground-state atoms appear if the atoms are in a thermal bath at finite temperature. In such a case, a new
length scale, related to the temperature T exists, the thermal length pierm = fic/ (27tkT), where kg is
the Boltzmann constant. This defines a very long-distance regime, r >> piherm, Where the interaction
energy is approximately proportional to T and scales with the distance as #~¢ [51-54]. This thermal
regime, usually at a much larger distance than that of the onset of the retarded regime (far zone), has
the same distance-dependence of the nonretarded one.

If one (or both) atoms are in an excited state, the long-distance behaviour of the Casimir—Polder
potential is different compared to that of ground-state atoms, asymptotically scaling as r~2, due to
the possibility of exchange of real photons between the atoms [29,55]. From a mathematical point of
view, this is a consequence of the presence of a resonant pole in the energy shift. Up to very recently,
a long-standing dispute in the literature has been concerned with whether a spatially oscillating
modulation in the interaction energy exists or not: different results (with or without space oscillations),
both mathematically correct but physically different, are obtained according to how the resonant pole
is circumvented in the frequency integral. Recent results, also based on a time-dependent approach,
have given a strong indication that the distance dependence of the force is monotonic, without spatial
oscillations [56-60]. Dispersion interactions, between atoms involving higher-order multipoles [61-63],
or chiral molecules [64-66], have been also investigated in the recent literature.

6. The Three-Body Casimir-Polder Interaction

Let us consider the case of three atoms, A, B and C, respectively located at r4, rg and r¢;
their distances are & =| rc —rg |, B =| rc —r4 |, ¥ =| rg —r4 |, as shown in Figure 1.
The Hamiltonian of the system, in the multipolar coupling scheme, is

H= HA+HB+Hc+H}: —HA -E(I‘A) — UB -E(I‘B) — UC 'E(rc), (52)

with a clear meaning of the various terms. The bare ground state is | g4, ¢85, gc, {Oxa }) that, not being
an eigenstate of the total Hamiltonian H, has an energy shift due to the atoms—field interaction. If this
energy shift is evaluated up to sixth order in the interaction, considering only terms depending on
the atomic coordinates, and neglecting single-atom energy shifts that do not contribute to interatomic
energies, we find

AE = AE(A,B) + AE(B,C) + AE(A,C) + AE3(A, B, C), (53)

where the first three terms are two-body interaction energies, depending on the coordinates of two
atoms only, while A3(A,B,C) is a sixth-order non-additive (three-body) contribution containing
coordinates and physical parameters of all the three atoms [6,24]. For ground-state atoms,
the three-body term can be expressed in terms of the dynamical polarizabilities of the three atoms or
molecules, or polarizable bodies in general.

The effective Hamiltonian (29), introduced in Section 3, is particularly convenient for the
calculation of the three-body interaction between three neutral ground-state atoms, allowing a
third-order calculation in place of a sixth-order one, with a considerable reduction of the number of
diagrams involved. In our case, the effective Hamiltonian is

12
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H = HA+HB+Hc+HF+H1,
H, = 7720([1 l()\ I‘A I‘A - 720{3 k)\ I‘B) (I‘B)
**Zac E(kA, 1c) - E(rc), (54)

where «;(k), with i = A, B,C, is the dynamical polarizability of the atoms. Because our effective
Hamiltonian is quadratic in the coupling, a third-order perturbation theory allows us to obtain the
non-additive term. The general expression of the third-order energy shift is

A=Y (84,88,8c, {0ka} | Hr | IN(IT| Hy | (I'| Hy | 84,88,8c, {0 })
L (Er — Eg)(Eir — Eg)

. )I: (84,88.8c,{0kr} | Hi | 84,88, 8¢, {OM}>E§ 828’; {0k} | Hr | (I | Hr | 84,85,8c, {OkA}> (55)

where I and ] are intermediate atoms-field states, different from the unperturbed state.

Figure 1. Geometrical configuration of the three atoms A, B and C.

Application of (55) with the interaction Hamiltonian H; given by (54), keeping only terms
containing the coordinates of all atoms, after some algebraic calculations, yields [32]

AE3(A,B,C) = 771(31;“1:]@1:&“/8 /duch(zu)ocB(lu)ac(zu) “uatpta), (56)

where, in order to shorten notations, we have defined the differential operator

r
B = (*(Smnvz + van) (57)

13
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(the superscript indicates the space variable upon which the differential operators act). The expression (56),
here obtained by a simpler third-order perturbative approach using the effective Hamiltonian (54),
coincides with the standard sixth-order result obtained from the multipolar Hamiltonian [6].

In the far zone (retarded regime), only low-frequency field modes give a relevant contributions,
and we can replace the dynamical polarizabilities with the static ones. The integral over u is then
straightforward, and we get

AE3(A,B,C) ~ —%aAaBaCF%F?F7 ! (58)

where «; (i = A, B, C) are the atomic static polarizabilities.
In the specific case of three atoms in the far zone of each other, with an equilateral triangle
configuration of side r (« = p = 7 = r), Equation (58) gives [67]

24 -79 % XAXBXC

A3(A,B,C) = 5= — A0

(59)
In the same geometrical configuration, Equation (56) gives the nonretarded result (near zone)
scaling as 7~ [5]. The r~1% and r~* distance scaling of the three-body-component should be compared
with the #=7 and 7~ scaling of the two-body component, respectively in the far and near zone. While
the two-body interaction is always attractive, the three-body component can be attractive or repulsive
according to the geometrical configuration of the three atoms [67]. Three-body interactions between
molecules involving higher-order multipoles have been also considered in the literature [68-70].

7. Two- and Three-Body Dispersion Interactions as a Consequence of Vacuum Field Fluctuations

An important point when dealing with van der Waals and Casimir-Polder dispersion interactions
is the formulation of physical models aiming to explaining their origin, stressing quantum aspects,
and giving physical insights of the processes involved. This is important from two points of view:
they allow for understanding what the basic origin of these interactions is, highlighting quantum
and classical aspects; they can provide useful computational methods to simplify their evaluation,
in particular in more complicated situations such as many-body interactions, or when boundary
conditions are present, as well as when the atoms are in a noninertial motion.

In this section, we describe physical models for dispersion interactions based on the existence
and properties of vacuum field fluctuations. These models clearly show how van der Waals and
Casimir-Polder interactions between atoms, and polarisable bodies in general, in different conditions,
can be attributed to the existence of the zero-point energy and vacuum fluctuations, specifically their
change due to the presence of matter, and/or their spatial correlations. At the end of this review, we
will briefly address the fundamental and conceptually subtle question if all this proves the real existence
of vacuum fluctuations. In fact, although the results discussed in the following give strong support
to the real existence of the zero-point energy, they are not a definitive confirmation of its existence
because all of these effects can in principle be obtained also from considerations based on source fields,
without reference to vacuum fluctuations [2,71,72].

We now introduce and apply two different models, based on the properties of vacuum field
fluctuations and dressed vacuum field fluctuations, to obtain on a physically transparent basis the
two- and three-body dispersion interactions between polarizable bodies, even in the presence of a
boundary such as a reflecting mirror. The first method is based on vacuum field energy densities,
and the second on vacuum field spatial correlations. These models give physical insights on the origin
of the ubiquitous dispersion interactions, and also provide useful tools to calculate them in more
complicated situations, which we will apply in Section 8 when a reflecting mirror close to the atoms
is present.

14
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7.1. Dressed Field Energy Densities

Let us consider two or more atoms, or in general polarizable bodies, in the unbounded space,
at zero temperature, interacting with the quantum electromagnetic field in the vacuum state. The bare
ground state | ), consisting of the ground state of the atoms and the vacuum state of the field, is not an
eigenstate of the total Hamiltonian. The presence of matter perturbs the field [73], due to continuous
emission and absorption of virtual photons [74,75], yielding the dressed ground state | §) of the
system. In such a state, the atoms are dressed by the virtual photons emitted and reabsorbed by them.
The presence of this cloud of virtual photons determines a change of the fluctuations of the electric
and magnetic field around the atoms or, equivalently, of the electric and magnetic energy densities;
the renormalized energy densities (that is, after subtraction of the spatially uniform bare field energy
densities, present even in absence of the atom) are given by

(1 Hale) | Deon = (|0 | 8) — o= (5| () | ), (60)
(8 | Honag(0) | Rren = (8 | B(0) | ) — 5 (5| B0 | ), 61

where | ¢) and | §) are respectively the bare and the dressed ground state of the system.

Let us first consider just one ground-state atom, A, located at r4 = 0. The dressed ground state
can be obtained by perturbation theory; it is convenient to use the multipolar coupling Hamiltonian
obtained in Section 2, or the effective Hamiltonian (29), because in such a case we will get the transverse
displacement field that, according to (26), coincides with the total (longitudinal plus transverse) electric
field E(r) for r # O (this is an essential point because it is the total electric field, and not just its
transverse part, which is involved in the interaction with the other atoms). Thus, the energy density we
will obtain is that associated with the total electric field and to the magnetic field. Applying first-order
perturbation theory to the effective Hamiltonian (29), the dressed ground state at first order in the
polarizability, that is, at second order in the electric charge, is

/

kk
Z tXA(k)ékA B ék/)\/i | SA, 1kA1k’)\’>/ (62)
kAK/A k+ K

7T

|8 =1 8a{0in}) %

showing admixture with two virtual photons. We now evaluate the average value of the electric and
magnetic energy density over the state (62). At first order in a 4 (k), we get [76]

~ _ fic o 0 k3k/3 . )
@1 Ha() | Drn = g5 [k [ awato) s [lotkn)jo (k)
1. . 1. . 3 . )
— (A K D) = oK ke) + im0 (K], (63)
~ _ fic ) ) k3k/3 ) .
(| Hmag(®) | ren = —55 /0 dk /0 Ko (k) g (kP )ja (K'), (64)

where j,(x) are spherical Bessel functions [77]. The integrals over k and k" in (63) and (64) can be
decoupled by using the relation (k+k')~! = [°dy exp(—(k + k')). Explicit evaluation of (63) and (64)
yields a positive value for the renormalized electric electric energy density, and a negative value for the
magnetic one. This means that the presence of an electric dipolar source increases the electric vacuum
energy density, while it decreases the magnetic vacuum energy density, with respect to their value in
the absence of the source (an analogous consideration holds for the field fluctuations, of course). This
is a microscopic analogue of what happens in the case of the plane conducting boundary discussed in
Section 4, as Equations (40) and (41) show.

Two limiting cases of (63) and (64) are particularly relevant, according to the distance r from the
atom in comparison with a relevant atomic transition wavelength Ay from the ground state, similarly
to the dispersion energy between two ground-state atoms. In the far zone, r > A, it is easy to show
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that only small-frequency field modes significantly contribute to the k, k" integrals in Equations (63)
and (64), and we can approximate the (electric) dynamic polarizability with the static electric one,
w4 (0) = afi. We thus obtain

3 B 23hcal 1 B 3 7heak 1
(8| Her(r) | §)ren = (47)2[‘77" (8 | Himag(r) | §)ren =~ *ﬁfy- (65)

In the near zone, r < Ag, we find that the renormalized electric energy density scales as 1/7,
and the magnetic one as 1/ > [78,79]. In this limit, the electric energy density is essentially due to
the electrostatic (longitudinal) field, as an explicit calculation in the minimal coupling scheme, where
longitudinal and transverse contributions are separated (see Section 2), shows [78].

The results above clearly point out how the presence of a field source, a dipolar atom in our
case, changes zero-point energy densities and field fluctuations in the space around it, and, more in
general, that matter can influence the properties of the quantum vacuum. This is the microscopic
analogue of the change of the vacuum energy densities due to a boundary discussed in Section 4,
or in the two-plate case of the Casimir effect [35]; the essential difference is that in the present case,
matter is described through its Hamiltonian, with its internal degrees of freedom, while in the case
of macroscopic boundaries its presence is introduced by a (classical) boundary condition on the
field operators.

In the far zone, the change of the zero-point energy due to the presence of atom A can be probed
through a second atom, B, considered a polarizable body with static electric polarizability af and
located at rp. Its interaction energy with field fluctuations can be written as AE = —aE(E?(rp)) /2,
as indicated by the existence of an effective Hamiltonian of the form (31); this is also supported by
the classical expression of the interaction energy of an electric field with an induced electric dipole
moment. Similarly, in the far zone, the magnetic energy density can be probed through a magnetically
polarizable body with static magnetic polarizability a}!. We stress that this is rigorously valid only in
the far zone because, in the near zone, where the contribution of high-frequency photons is relevant [78],
the test atom B responds differently to each Fourier component of the field, according to its dynamical
polarizability ap (k) (see Equation (29)). The distance-dependent part of the interaction energy is then

1 _ . 23hc 1

AEFE(r) = —Eﬂég(g | E*(r5) | §)ren = —H“iagﬁ/ (66)
1 N N 7he 1

AEFM(r) = *Q“QAQQ | B3(5) | §)ren = E“E\f"g/{ﬁ/ (67)

where r is the distance between the two atoms, and the subscript ren indicates that spatially uniform
bare terms have been subtracted. These expressions coincide with the dispersion interaction energy
in the far-zone as obtained by a fourth-order perturbative calculation, as discussed in Section 5
(see, for example, [78,80]); from the signs of (66) and (67), it should be noted that the electric-electric
dispersion force is attractive (because the presence of the electric dipolar atom decreases the electric
energy density), and the electric-magnetic dispersion force is repulsive (because the presence of the
electric dipolar atom increases the magnetic energy density).

This approach shows the strict relation between (renormalized) electric and magnetic vacuum
energy densities and the far-zone dispersion interaction energy; moreover, it allows considerable
simplification of the calculations, that in this way is split in two independent steps: evaluation of the
renormalized energy densities of the field first, and then the evaluation of their interaction with the
other electrically or magnetically polarizable body. This finding, besides giving a sharp insight on the
origin of the retarded dispersion interaction, can be particularly useful in more complicated cases such
as many-body dispersion interactions, or in the presence of boundary conditions (see Section 8).

Let us now consider the dispersion interaction between three ground-state atoms, A, B and
C, respectively located at positions ry4, rp and rc. We concentrate on the three-body component of
their interaction, discussed in Section 6. We will show that, analogously to the case of the two-body
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potential, the physical origin of the retarded (far zone) three-body component can be clearly attributed
to vacuum fluctuations and field energy densities, as modified by the presence of the atoms [81].
The Hamiltonian of our system is given by (54); because we are limiting our considerations to the far
zone only, the interaction term can be more simply expressed in terms of the Craig-Power effective

Hamiltonian (31); thus, we have
1

Hi=-5 Y B () (68)
i=A,B,C

(this expression can be straightforwardly obtained from (54) by replacing the dynamical polarizabilities
with the corresponding static ones). The first step is to obtain the dressed ground state of the pair of
atoms A and B, up to second order in the polarizabilities, i.e., up to the fourth order in the electronic
charge. Writing down only terms relevant for the subsequent calculation of the three-body interaction,
that is, only terms that at the end of the calculation yield contributions containing the polarizabilities
of all atoms, we have

5 T PO VWkWK —i(k+K)r '\
= ,{0 — | =a 81 ey ) V——e A L KAK'A
| $4B) | 8488, {0ka}) (V Ak/\Zk’:/\’( 1 k)x)warwk, | 8488 )
8712 o R R Wi /@
+(A = B)) - <7V2 XAXp 2 (81 - ) (B - &geran)

KAK A (wir + wyr) (Wi + wyr)

s TR wa i)t | o on AR 4 (pp ¢ rB)) (69)

We now evaluate the average value of the electric field fluctuations at the position r¢ of atom C
on the dressed state (69), which is the quantity (ap | E*(rc) | §4p). After multiplying times —ac/2,
it gives the interaction energy of atom C with the (renormalized) field fluctuations generated by atoms
A and B. This quantity contains a term proportional to the atomic polarizability of the three atoms,
yielding the three-body component of the dispersion interaction. After lengthy algebraic calculations,
we finally obtain

1 5 5 he 1
— 5&c(8as | E*(rc) | §ap) = —;/XADélanCP“'FﬁF7 (70)

ij et e m 4
where the distances a, f and y have been defined in Section 6, and the superscripts indicate the
variables the differential operators act on. Two analogous expressions are obtained by exchanging the
role of the atoms. The total interaction energy is then obtained by averaging on these three (equal)
contributions: the same expression obtained by a direct application of perturbation theory, given
by (56), is thus obtained [81]. This shows that the three-body component of the retarded dispersion
interaction between three atoms (far zone, Casimir—Polder regime) at sixth order in the electron charge,
can be directly and more easily obtained as the interaction energy of one atom with the renormalized
electric field fluctuations generated by the other two atoms, that, at the fourth order in the charge,
show a sort of interference effect. In other words, at the fourth order, the fluctuations in the presence of
two atoms are not simply the sum of those due to the individual atoms [82]. This approach, similarly
to the two-body case previously analyzed, has two remarkable features: firstly, it gives a physically
transparent insight on the origin of three-body dispersion interactions, particularly significant in the
retarded regime; secondly, it allows a considerable simplification of the calculation, which is separated
in two successive steps: evaluation of the renormalized field energy density due to the presence of the
“source” atoms A and B, and successive interaction of them with the third atom (C).

The approach outlined in this section can be directly applied also to the retarded Casimir—Polder
interaction between an atom and a perfectly reflecting wall. Renormalized electric vacuum fluctuations
are given by (40) and (41). If an electrically polarizible body A, such as an atom or a molecule, is placed
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at a distance z from the conducting wall at z = 0, the second-order interaction energy in the far zone is
given by
1 > h 1
AEatom—wall(z) - 7“A {Ok)t} | E | {Ok)\} D‘A A (71)
where « 4 is the electric static polarizability of the atom. In a quasi-static approach (as that we are
assuming for the dispersion force between atoms, t0o), the Casimir-Polder force on the atom is given by

3hc 1

E’XA 25 (72)

d
Fatom-wanl(2) = T iz (AEatom—waH(Z)) =
where the minus sign implies that the force is attractive [1,83-85]. Similar considerations allow us to
evaluate the far-zone magnetic interaction, starting from (41). Nonperturbative methods to evaluate
the atom-wall Casimir—Polder interaction, based on Bogoliubov-type transformations and modelling
the atoms as harmonic oscillators, have been also proposed in the recent literature [86,87].

7.2. Vacuum Field Correlations

A different approach showing the deep relation between dispersion interactions and zero-point
field fluctuations involves the spatial correlation function of vacuum fluctuations, which, in the
unbounded vacuum space is given by (35), for a single field mode, and by (36) for the field operator.
Let us assume considering two isotropic ground-state atoms or molecules, A and B, respectively
located at r4 and rp. Zero-point fluctuations induce instantaneous dipole moments in the two atoms
according to

PR (kA) = ag (k) Ei(kA, xy), (73)

where pi2d(kA) is the (kA) Fourier component of the i cartesian component of the induced dipole
moment py of atom ¢ = A, B, and wy(k) is the isotropic dynamical polarizability of atom ¢. Because,
according to (35), vacuum fluctuations are space-correlated, the induced dipole moments in atoms A
and B will be correlated too. Their dipole-dipole interaction then yields an energy shift given by [36]

AE = Zub?f‘ M (A)) Vij (k¥ = 15 — 14), (74)

where V;;(k, 1) is the potential tensor for oscillating dipoles at frequency ck, whose expression is given
by (46) [88,89]. Substitution of (73) into (74) yields

AE =Y wa(k)ap(k) ({0} | Ei(kA, 1) Ei(KkA, 1) | {0 }) Vij(k,¥), (75)
I

where r = rp — 14 is the distance between the two atoms. In (75), the vacuum spatial correlation
for the electric field explicitly appears. After some algebraic calculation involving polarization sum
and angular integration, evaluation of (75) gives, both in the nonretarded and retarded regime,
the result (49) of Section 5, as obtained by a fourth-order perturbation theory, or by a second-order
perturbation theory if the effective Hamiltonian (29) is used [36,90].

In this approach, the origin of dispersion interaction is evident from a physical point of view:
vacuum fluctuations, being spatially correlated, induce correlated dipole moments in the two atoms,
which then interact with each other through a (classical) oscillating dipolar term. In this approach,
the only quantum aspect of the electromagnetic field is the existence of the spatially correlated vacuum
fluctuations. All other aspects involved are just classical ones. The interaction between the two induced
dipoles, expressed by Vij(k, r), has, in fact, an essentially classical origin. The r~7 behaviour in the
retarded Casimir-Polder regime (far zone) can be now easily understood: the spatial field correlation
function behaves as r—#, as Equation (36) shows, and thus the correlation function of the induced
dipole moments has the same space dependence. By taking into account that the (classical) interaction
energy between the induced dipoles depends as 7~ from 7, the 77 far-zone interaction energy is
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immediately obtained. In the near zone, the situation is a bit different and somehow more complicated
because the atoms respond to the field fluctuations differently for any Fourier component, according
to their frequency-dependent dynamical polarizability.

This approach, based on spatial field correlations, can be generalized to three-body van der Waals
and Casimir-Polder interactions; in such case, the key element are the dressed vacuum fluctuations [91-93].
We consider three isotropic ground-state atoms or molecules (or polarizable bodies), A, B, and C,
respectively located at r4, rg and rc. In order to generalize the method outlined before to the three-body
interaction, we first consider how the presence of one of the three atoms, A, changes the spatial
correlation function of the electric field, yielding dressed field correlations. The multipolar-coupling
interaction Hamiltonian of atom A is

Hf' = —ps - E(rp). (76)

The second-order dressed ground state of atom A (as atoms B and C were absent) is

_ 1 (m, kA | H' | 4, {0k })
= N 0 - — L kA
[8a) [ $4{0kr}) cm;% K+ Fng | m, kA)
1 (n, KAK'A" | Hi* | m,KA) (m, kA | H | ga, {0 }) rat
+—(hc)2 manA%/ K+ Fong) K+ K+ Fong) | n, KAK'A'), (77)

where N is a normalization factor, fickyg = Ein — Eg, and m, n are basis states of atom A. This state
has virtual admixtures with one- and two-photon states, which, in the space around atom A, modify
vacuum fluctuations, specifically their spatial correlations. We can now evaluate the average value of
the electric-field correlation function on the dressed ground state (77), at the positions rp and rc of
atoms B and C, respectively. It can be expressed in the form

(84 | Ei(kA,x)E;j(KN, xc) | §a) = (Ei(kA,1p)E; (KA, xc))o + (Ei(kA, 1) E;j(K'\, 1c))%.  (78)

The first term on the right-hand-side of (78) is the same of the bare vacuum, as given by
Equation (35), and it is independent from the position of atom A; thus, it does not contribute to
the three-body interaction, and we disregard it. The second term is the second-order correction to the
field correlation due to the presence of the ground-state atom A, and contains correlation between
different modes of the field; its explicit expression is [92]

472Kk A N\ .
(Ei(kA, 15)E;(K' N, 1)) = —~7 Y @a) (15 - &) (1) (Baon ),
m
e—ik-(rp—14) pik'-(rc—14) ik (rp—r) pik’-(rc—14) 1 1
.C. ¢ 79
x{ k+ ko) (K o) T KK (k+kn,g+k’+kmg>+cc} 79)

After some algebraic manipulation, this expression can be also cast in terms of the dynamic
polarizability of atom A.

The dressed correlated vacuum field induces and correlates dipole moments in atoms B and C
according to (73), and this gives an interaction energy between B and C that, for the part depending
from the presence of A (see Equation (79)), is

AEgc = Y ap(k)ac(K')(Ei(kA, xp)Ej(K' A, xc))§ Vij(krg, K'rc), (80)
KAK/ A

where Vj;(krp, k'rc) is an appropriate generalization, to the present case of dipoles oscillating at
frequencies ck and ck’, of the potential tensor previously introduced for the two-body potential.
We assume the symmetric expression
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1
Vij(krg, k'rc) = 3

The quantity AEpc in (80) is the interaction between B and C in the presence of A. If we symmetrize
on the role of the three atoms, after some algebraic calculations, we obtain the correct expression of the
three-body potential energy in the far zone,

(Vij(k,x) + Vi (K, xc)) . (81)

2
AEE, . = g(AEAB+A}53C+Al—jAc)
_ he a P Y 1
= e ) "2

where the distances &, f and <y between the atoms have been defined in Section 6 (see also Figure 1).
This expression coincides with the interaction energy AE3(A, B, C) of Equation (58), originally obtained
through a sixth-order perturbative calculation based on the multipolar Hamiltonian [6], or a third-order
calculation using the effective Hamiltonian (29) [32]. This gives a new physical picture of the three-body
interaction: it originates from the interaction of two atoms (B and C), whose dipole moments have
been induced and correlated by the spatially correlated electric field fluctuations, as modified (dressed)
by atom A.

The physical picture of the three-body dispersion interaction for ground-state atoms outlined
above, based on dressed vacuum field correlations, can be extended to atoms in excited states too,
both in static and dynamical (time-dependent) situations. Let us consider one excited atom (A),
approximated as a two-level system with frequency wy = cko, and two ground-state atoms (B and C),
interacting with the quantum electromagnetic field in the vacuum state. We proceed similarly to the
case of three ground-state atoms, taking the atom A as a sort of source atom; firstly, we evaluate its
dressed ground state, and then the dressed spatial correlation on this state of the electric field at the
position of the other two atoms. We use the multipolar coupling Hamiltonian (we cannot use the
effective Hamiltonian (29) for the excited atom A because it is not valid on the energy shell, and we
are now dealing with an excited state). The main difference, with respect to the previous case of a
ground-state atom, is that a pole at ckg is now present in the frequency integration, and this yields an
extra (resonant) term in the correlation function. After some algebra, we obtain [94]

A A o -
_ ZkO‘u[ Hin ijF,'B i du e u(ﬁ+'y)
n By Jo e

s (53

(Ei(kA, 1p)Ej (KN, 10))5

where the bare term, independent of the position of atom A, has been disregarded because it does not
contribute to the three-body interaction (it only contributes to the two-body components, as previously
shown in this section). In the first term of (83), we recognize the quantity —2kg ;4?;42 /(he(k3 + u?)) =
uci‘s(i u) as the dynamical polarizability for the excited state of the two-level atom A, evaluated
at imaginary frequencies. It is easy to see that this term is the same of the ground-state case
(see Equation (79)), except for the presence of the excited-state polarizability of atom A. The second
term is new, and originates from the presence of a resonant pole at k = kg in the integration over k;
it contains contributions from only the frequency ckq. With a procedure analogue to that leading to (82)
for ground-state atoms, including appropriate symmetrization over the atoms, for the three-body
interaction energy of one excited- and two ground-state atoms, we finally obtain [94],

1
0EFpc = —HiHpas (ko)“c(ko)ﬁ’}‘ﬂiﬁ?% [cos(ko(B — 7 +a)) +cos(ko(p — 7 —a))]
fic 1 (> ; . N
*;“?“B“CE?F]@FZE/O dua (iu)ap (iv)ac (in)e "), (84)
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The second term in (84) has the same structure of the ground-state three-body dispersion energy
discussed previously, except for the presence of the excited-state polarizability of atom A in place of
the ground-state polarizability. The first term is a new one, arising from the resonant photon exchange,
characterized by a different scaling with the distance and by the presence of space oscillations with
frequency cky, the transition frequency of the excited two-level atom [94-96]. Although this result,
analogously to (82), can be also obtained by a perturbative approach, the derivation outlined in
this section gives a clear and transparent physical insight of the three-body interaction as due to
the modification of zero-point field correlations due to the presence of one atom, or in general a
polarizable body. It should be noted that, in the present case of one excited atom, we have neglected
its spontaneous decay, and thus are assuming that the times considered are shorter than its decay time.
The method used can be usefully extended also to dynamical (i.e., time-dependent) situations, in order
to investigate dynamical many-body dispersion (van der Waals and Casimir-Polder) interactions
between atoms [97-99], as well as dynamical atom-surface interactions [100-106], for example during
the dynamical dressing of one atom starting from a nonequilibrium situation.

8. Casimir-Polder Forces between Atoms Nearby Macroscopic Boundaries

In this section, we show that the methods discussed in the previous section, based on the properties
of the quantum electrodynamical vacuum, can be extended to dispersion interactions between atoms
or molecules in the presence of a macroscopic body, specifically an infinite plate of a perfectly reflecting
material. This is relevant because it shows that dispersion interactions can be manipulated (enhanced
or inhibited) through the environment—for example, a cavity [37] or a metallic waveguide [107,108],
similarly also to other radiative procsses such as, for example, the radiative energy transfer [109,110].

We consider two neutral atoms, A and B, in the vacuum space at zero temperature, near a perfectly
conducting infinite plate located at z = 0; r4 and rp are respectively the positions of atoms A and
B. We have already seen in Section 4 that the presence of the plate changes vacuum fluctuations;
mathematically, this is due to the necessity of setting appropriate boundary conditions on the field
operators at the plate surface. Due to the deep relation of dispersion interactions to field fluctuations,
shown in Section 7, we must expect that also the van der Waals and Casimir-Polder force (and any
other radiation-mediated interaction) will change due to the plate [7,43]. A fourth-order perturbative
calculation has been done in Ref. [37], using the multipolar coupling Hamiltonian with the appropriate
mode functions of the field in the presence of the infinite reflecting plate; in the far zone, the result is

23hc 1 23hc 1  8hic wpap

AE(r,7) = —" adp g — @Al -
«(1:7) arr “ANBT T g MM T T BB (4 7)p

X [r4 sin @ + 537 sin® @ + 1?72 (6 + sin” @ + sin? §) + 5r7° sin” § + 7* sin” (-_)] , (85)

where r = rg — ry is the distance between the atoms, ¥ = rg — 0ry is the distance of atom B from
the image of atom A (at point or4) with respect to the plate, having defined the reflection matrix
o = diag(1,1,—1); 6 and 0 are, respectively, the angles of r and ¥ with respect to the normal to the
plate. The geometrical configuration is illustrated in Figure 2. This well-known expression shows that
the retarded Casimir-Polder potential between the two atoms consists of three terms: the potential
between A and B, scaling as 77, as in absence of the plate; the potential between an atom and the
reflected image of the other atom, scaling as 7~7; a term involving both distances r and 7.

We now show that the potential (85) can also be obtained in a simpler way through the same
methods used in Section 7 for atoms in the unbounded space, based on dressed energy densities and
vacuum field correleations, stressing new physical insights on the origin of this potential.
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Image of atom A

Figure 2. Two atoms, A and B, nearby a reflecting plane boundary at z = 0.

We use the effective Hamiltonian (29) with the electric field operator given by (38), using the
appropriate mode functions f(kA, r) for a single infinite perfectly reflecting wall [2,12,37]. The outline
of the calculation is the same as in the case of atoms in free space (see Section 7.1): we evaluate the
renormalized dressed electric energy density due to one atom (A), and then its interaction energy with
the other atom (B). The dressed ground state of atom A, as if atom B were absent, is given by

N T Vkk'
18a) =184 A0 }) = D walk) (kA ra) - £(K'A1a) | g4, Tialien)- (86)
\%4 k+k
AR A

We now evaluate the average value of the effective interaction Hamiltonian relative to atom B on
this state, disregarding bare terms that do not depend on the atomic distances, which is [47]

1
AEAB = —= Z ocB(k)<g"A | E(k)\,I'B) . E(k')\',rg) ‘ gA> (87)
2 kAK/A

Using the expression (38) of the electric field operator with the appropriate mode functions f(kA, r)
relative to the reflecting plate, polarization sum in (87) yields

Y fillA,xa) fi(kA, 1p) = (51',‘ - ’Afz‘lz;) ek tra=ms) _ gy, (5@' - fwffj) el lra=ors), (88)
B

where i, j, ¢ are Cartesian components, and ¢ is the reflection matrix defined above. A comparison
with (37) immediately shows an extra term due to the reflecting plate. Explicit evaluation of (87)
in the far zone (x4 p(k) ~ a4 p), using (88), after some algebra finally yields the correct result (85),
originally obtained in Ref. [37] from a fourth-order calculation. The present approach, besides stressing
the role of (dressed) vacuum fluctuations and their modification due to the plate, has allowed to
obtain the same result through a simpler first-order calculation with the effective Hamiltonian given in
Equation (29) [47].
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In addition, the method based on vacuum spatial correlations of the electric field operator, outlined
in Section 7.2, can be extended to the case when boundaries are present. Following the approach used
in Section 7.2, we need to evaluate the following quantity

AEAB(I’,I_’) = Z<{Ok}\} | Ei(k/\,l‘A)E]‘(k/\,l‘B) ‘ {OkA})‘/ij(k,Y,f), (89)
kA

where | {0, }) is the vacuum state of the field when the plate is present, and Vj;(k, r, 7) is the potential
tensor giving the interaction energy for oscillating (induced) dipoles. In the present case, however,
the expression of V;;(k, r,7) differs from (46), valid for dipoles in the free space, because of the effect of
the image dipoles. We thus take

Vij(k,1,7) = Vij(k, 1) — 03V (k, 7), (90)

where the second term takes into account the image dipole, reflected on the plate. Substitution of the
appropriate spatial field correlation function (obtained using (88)) and (90) into (89), after algebraic
calculations, finally yields the correct expression (85) for the retarded dispersion for two atoms nearby
the conducting plate [47]. This finding indicates that the method based on field correlations can be
directly extended to the case when boundary conditions are present, provided the appropriate field
correlation function is used and the images dipole(s) are included in the classical potential tensor.
It can be shown that this method is valid also for evaluating the dispersion interaction with boundary
conditions and at a finite temperature [111]. All this is relevant because these methods can provide
very useful computational tools to evaluate dispersion interactions in complicated geometries, also
allowing the possibility to change and manipulate radiation-mediated interactions between atoms or
molecules through the environment. This is still more striking for the resonance interaction, where the
exchange of real photons is also present [43,112,113].

In the system considered above, we have assumed that the boundary is a perfectly reflecting one.
This is an idealised situation, of course, because any real dielectric or metal material is characterised by
specific magnetodielectric properies. For example, a real metal can be described with the plasma or the
Drude-Lorentz model [114,115]. In the plasma model, the metal is transparent for frequencies above
its plasma frequency wy, and this can affect renormalized vacuum fluctuations and the dispersion
interaction energy between atoms nearby the boundary. It is expected that in general the corrections to
vacuum fluctuations can be relevant only for short distances from the boundary [39], and the same
is also expected for atom—surface and atom-atom interactions, similarly to the Casimir effect for
dielectrics, as obtained through the Lifshits formula [116,117]. Indeed, the van der Waals interaction
between an atom and a metallic plasma surface has been calculated, showing relevant corrections
due to the finite plasma frequency in the short distance regime [118]. In addition, the dispersion
interaction between a ground-state atom and a dielectric surface, and between two atoms nearby a
dielectric surface, have been evaluated in terms of the dielectric constant of the surface at imaginary
frequencies, using the theory of electrical images [119]. In the case of the atom-atom interaction,
a strong dependence (suppression or enhancement) of the interaction on the geometry of the two atoms
with respect to the surface has been found using the linear response theory [120]; enhanced dispersion
interaction between two atoms in a dielectric slab between two different dielectric media has also been
found [121]. The effect of real boundaries on atom—surface and atom-atom dispersion interactions
can be conveniently included through appropriate body-assisted quantization of the electromagnetic
field, based on the Green’s functions technique [28,29,122-126]. In this approach, medium-assisted
bosonic operators for the field are introduced, which take into account all magnetodielectric (dispersive
and dissipative) properties of the linear macroscopic boundaries through their frequency-dependent
complex electric permittivity and magnetic permeability; then, expressions of dispersion interactions
for atoms or molecules nearby a generic linear environment can be obtained [10,11,28,124], as well as
expressions of the intermolecular energy transfer [127].
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9. Casimir-Polder and Resonance Interactions between Uniformly Accelerated Atoms

The results reviewed in the previous sections have shown the deep relation between renormalized
vacuum energy densities, and zero-point field fluctuations, with dispersion interactions, in particular
in the retarded Casimir—Polder regime. All these results and effects have been obtained for atoms and
boundaries at rest. New phenomena appear when they are set in motion. In the case of a uniformly
accelerated motion, the well-known Fulling-Davies-Unruh effect predicts that the accelerated observer
perceives vacuum fluctuations as a thermal bath with the Unruh temperature Ty = ha/2mckg,
where 4 is its proper acceleration and kg is the Boltzmann constant [2,128-131]. This effect leads,
for example, to a change of the Lamb shift for atoms in uniformly accelerated motion [132,133], as well
as to spontaneous excitation of an accelerating atom due to its interaction with the Unruh thermal
quanta [134-136]. For a boundary moving with a nonuniform acceleration (a single oscillating reflecting
plate, or a metal cavity with an oscillating wall, for example), the dynamical Casimir effect occurs,
consisting of the emission of pairs of real photons from the vacuum [137,138]. Theoretical analysis of
the dynamical Casimir effect involves quantization of the scalar or electromagnetic field with a moving
boundary [137,139,140]. Analogous effects related to Casimir energies occur in the case of a metallic
cavity with a movable wall, whose mechanical degrees of freedom are described quantum-mechanically,
and thus subject to quantum fluctuations of its position [41-43,141,142]. Another relevant effect
involving atoms in motion, extensively investigated in the literature, is the quantum friction of an
atom moving at uniform speed parallel to a surface [29,143-146]. An important question that can be
asked, and that we shall address in this section, is what is the effect of a non inertial motion in the
vacuum space of two or more atoms on their dispersion interaction. We should expect a change of the
dispersion interaction between the atoms because of their accelerated motion; in fact, they perceive
a different vacuum, equivalent to a thermal bath, and in view of the temperature dependence of the
dispersion interactions, mentioned in Section 5, their interaction energy should change. However,
the Unruh effect is a very tiny effect, and an acceleration of the order of 102 m/s? is necessary to
get a Unruh temperature around 1 K. Spontaneous excitation of a uniformly accelerated atom has
been predicted [134], as well as changes of the Lamb shift of atomic levels and of the atom-surface
Casimir-Polder force [133,147,148]. Although some experimental setups to detect the Unruh effect have
been proposed [149], this effect has not been observed yet (a related effect, the Hawking radiation has
been recently observed in analogue systems, specifically in an acoustical black hole [150]). The change
of dispersion interactions due to a uniformly accelerated motion of the atoms, if observed, could
provide a signature of the Unruh effect [151].

For the sake of simplicity, we consider two two-level atoms of frequency wy, separated by a
distance z, and interacting with the massless relativistic scalar field. For atoms at rest and at zero
temperature, the scalar Casimir-Polder interaction at zero temperature behaves as 272 in the near
zone (z < ¢/ wy), and as z~2 in the far zone (z >> ¢/wy). At a finite temperature T, after defining the
thermal length pthe™ — fic / (27tkpT) and assuming z >> ¢/ wy, the interaction for z < pthe™ has the
same behaviour as at zero temperature, with a subleading thermal correction proportional to T?/z,
both in the near and in the far zone. At very large distances, z > ptherm, the interaction energy is
proportional to T/z2, thus scaling with the distance as in the near zone at zero temperature (this should
also be compared to the case of atoms interacting with the electromagnetic field at a finite temperature,
mentioned in Section 5). We note that the scaling with the distance z is different compared with the
cases considered in the previous sections because we are now considering the scalar rather than the
electromagnetic field.

We describe the two identical atoms, A and B, as two-level systems of frequency wy, using in the
Dicke formalism [152]. They interact with the relativistic massless scalar field ¢(x), and move in the
vacuum space with the same constant proper acceleration a along the direction x, perpendicular to
their distance (along z), so that their separation is constant.
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The Hamiltonian of this system, in the comoving frame, which is the system in which the atoms
are instantaneously at rest, is

H = hwyS2(t) + hawoSE (1) + Zhwkaltukj—i + /\Sf(r)<p[xA(T)] + /\Sf('r)gb[xg('r)], (91)
k

where S; (i = x,y,z) are pseudospin operators, T is the proper time, shared by both atoms in our
hypothesis, A is a coupling constant, and x () (7) are the atomic trajectories

2

c ., ,art c art
ta(t) = Esmh(T), xa(T) = ;cosh(7); ya(T) =0; z4(T) = z4,

c . . ,at c? art
tp(7) = Esmh(T), xp(T) = ;cosh(7); y(1) =0; za(T) =24 +2, (92)

with 74 = 13 = 7 the common proper time of the atoms, and z the (constant) distance between
them [153,154]. The massless scalar field operator is

p(rt) =Y —zvhw [ake"(k"‘wk”+a§e"'<““‘wk”], (93)
K k

with the dispersion relation wy = ¢ | k |. The Casimir—Polder energy is the distance-dependent energy
shift due to the atoms-field interaction, and it is a fourth-order effect in the coupling constant A.
The calculation of the relevant part of the energy shift can be done using a method, originally
introduced by Dupont-Roc et al. to separate vacuum fluctuations and radiation reaction contributions
to second-order radiative shifts [155,156], even in accelerated frames [157,158], and recently generalized
to fourth-order processes [159,160]. We find that a new distance scale, related to the acceleration,
zq = ¢?/a, appears. For z < z,, the dispersion interaction for atoms with the same uniform acceleration
a is the same as that for atoms at rest in a thermal bath with the Unruh temperature Ty; = fia/2mckp.
In this regime, our extended system of two atoms exhibits the Unruh equivalence between acceleration
and temperature, similarly to a point-like detector. However, for larger distances, z > z,, we have

A% 1

AEaccel ~ _ iy
512 hew?a 24

64

In this regime, the interaction energy decays with the distance faster than in the near and far
zone, showing lack of the equivalence between acceleration and temperature [159]. In addition, the
dispersion interaction between accelerating atoms has qualitative features, specifically its distance
dependence, different from those of inertial atoms; measure of the dispersion force between atoms
subjected to a uniform acceleration could thus give an indirect signature of the Unruh effect.

The non-thermal behaviour of acceleration at large distances is obtained also for the resonant
interaction energy between two identical accelerating atoms, one excited and the other in the ground
state, prepared in an entangled symmetric or antisymmetric Bell-type state

[94) = = (eags, (0D | gaes, 10w })), %)
V2

where e 4 () and g 4(p) respectively represent the excited and the ground state of the atoms. In this case,
a resonance interaction energy between the two correlated atom exists, due to the exchange of one real
or virtual photon between them.

We consider two identical two-level atoms, A and B, with frequency wy = cko, and interacting
with the electromagnetic field through the multipolar coupling Hamiltonian. p is the dipole moment
operator. In the unbounded space, at zero temperature, the resonance interaction energy for atoms
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at rest, obtained by evaluating the second-order energy shift due to the interaction Hamiltonian (42),
is given by

AETSS = :‘:]Ji‘iyg [((511 — 3?1'?]') (COS(kOr) + kQT Sin(kol’)) - ((51] - f’,f’j) k%rz COS(kO}’)] ! (96)

73/
where the + or — sign respectively refers to the symmetric or antisymmetric state in (95), r is the
distance between the atoms, and yff( B)i is the matrix element of (y14(p)); between the excited and

the ground state, assumed real. In the near zone (ko < 1), the interaction energy (96) scales as rs,

while in the far zone (kor > 1) it scales as r~! with space oscillations [15,112].

We now assume that the two atoms are moving with a uniform proper acceleration along x,
and that their distance is along z, so that it is constant in time; their trajectory is given by Equation (92).
The Hamiltonian, similarly to Equation (91) of the scalar field case, within dipole approximation and
in the comoving frame, is

dt
H = Hp+ Hp + Ehwkaﬁwmﬂ —pa(T) - E(xa(7)) — pp(7) - E(x5(7)), 97)
kA
where H ) is the Hamiltonian of atom A (B), and p 43, is their dipole moment operator.

After lengthy algebraic calculations, for z >> z, = ¢?/a, the following expression for the resonant
interaction energy between the two accelerating atoms, in the comoving frame, is obtained

e 1 2woz 2wqpc az
o e 0Z . 0
AE?tcce ~ :ty;‘g/y%i”z—s { ((ng —qeqdm — 271{71;11) [ c sm < 2 10g (;))

2,2 2 2
wyz© [ 2c 2wc az 8c 2wpc az
2 (z7>“’s< a 1°g(72>>}+wm (E)COS( a 10%(72)) }'(98>

where ¢, m are Cartesian components, n = (0,0, 1) is a unit vector along z (the direction of the distance
between the atoms), q = (1,0,0) is a unit vector along x (the direction of the acceleration), and =+ refers
to the symmetric or antisymmetric superposition in (95) [161]. Comparison of (98) with (96) shows
that the acceleration of the atoms can significantly change the distance-dependence of the resonance
interaction, with respect to inertial atoms. For atoms at rest, Equation (96) gives a far-zone dependence
as z~!, while for accelerating atoms Equation (98) asymptotically gives a more rapid decrease of the
interaction with the distance: z~2 if the two dipoles are along z or y, and 274 for dipole oriented along
the direction of the acceleration, x. This change in the dependence of the interaction energy from the
interatomic distance is a signature of the noninertial motion of the atoms, and ultimately related to the
Unruh effect (even if, in this case, the change of the interaction energy is not equivalent to that due to
a thermal field). Moreover, Equation (98) shows striking features of the accelerated-atoms case with
respect to the orientation of the atomic dipole moments. For example, if the two dipoles are orthogonal
to each other, with one along z and the other in the plane (x, y), the interaction energy vanishes for
inertial atoms, as immediately follows from (96); on the other hand, Equation (98) shows that it is
different from zero when a # 0. In such a case, the resonance interaction is a unique signature of the
accelerated motion of the atoms [161]. Similar results are also found in the coaccelerated frame [162],
and for atoms nearby a reflecting boundary [163]. Finally, we wish to mention that very recently the
Casimir-Polder and resonance interactions between atoms has been also investigated in the case of a
curved-spacetime background [164-166].

In conclusion, the results outlined in this section give a strong indication that the radiation-mediated
interactions, specifically dispersion and resonance interactions, between uniformly accelerated atoms
could provide a promising setup to detect the effect of a noninertial motion on radiative processes,
possibly allowing an indirect detection of the Unruh effect through the measurement of dispersion or
resonance interaction between accelerating atoms [151,159,161,163].
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10. Conclusions

In this review, we have discussed recent developments on radiation-mediated interactions
between atoms or molecules, in the framework of nonrelativistic quantum electrodynamics. Major
emphasis has been on stressing the role of zero-point field fluctuations and (dressed) vacuum
field energy densities and spatial correlations. This has allowed us to give a transparent physical
interpretation of dispersion (van der Waals and Casimir-Polder) and resonance interactions, as well
as useful computational tools for their evaluation, even in more complicated situations, for example
in the presence of boundaries or for uniformly accelerating atoms. We have shown that dispersion
interactions can be seen as a direct consequence of the existence of vacuum fluctuations, with features
directly related to their physical properties. We have also discussed how dispersion and resonance
interactions could provide an experimental setup to get an indirect evidence of the Unruh effect, also
testing the Unruh acceleration-temperature equivalence.

A fundamental final question arises: are van der Waals and Casimir-Polder dispersion interactions
a definitive proof of the real existence of vacuum fluctuations and zero-point energy? In the author’s
opinion, the answer is yes and no. As clearly shown by all physical systems and situations discussed
in this review, the results here reviewed are certainly fully consistent with the existence of vacuum
fluctuations. Assuming the existence of vacuum fluctuations of the electromagnetic field, as predicted
by nonrelativistic quantum electrodynamics, we can derive these observable phenomena, using clear
and transparent physical models. However, the same results can be also obtained in a different
way, that is, from source fields, without invoking vacuum fluctuations [71]. A similar consideration
applies to the Lamb shift, for example [2]. This approach is based on the solution of the Heisenberg
equations of motion for the field operators, which contains a free (vacuum) term and a source term,
the latter depending on the presence of matter, while the former is related to the vacuum field. Using
a specific ordering, specifically the normal ordering, between field and atomic operators (while the
atomic operators commute with the full field operators, in general they do not commute with the
single parts of field operators related to vacuum and source terms [167,168]); it is possible to show
that only the radiation reaction term contributes to dispersion interactions when this ordering of
operators is chosen [71,169]. Thus, it seems that a deep dichotomy between vacuum fluctuations
and source fields exists in nature. As pointed out and stressed by P.W. Milonni, the two physical
models and interpretations of several radiative processes, in terms of vacuum fluctuations or source
fields (radiation reaction), should be considered as the two sides of a coin [72]. In conclusion, we just
wish to mention that, probably, a definitive and unambiguous confirmation of the existence of the
zero-point energy (density) can be obtained only from its gravitational effects, it being a component of
the energy-momentum tensor, and thus a source term for the gravitational field [170-172]. The essential
point is that Casimir and Casimir-Polder forces are always related to differences of vacuum energies
for different configurations of the system; necessarily, this involves the presence of matter and thus
of both vacuum and source fields. On the contrary, gravitational effects are related to the absolute
value of the vacuum energy density [173]. In any case, as we have pointed out above, dispersion
interactions between atoms, also in the presence of macroscopic bodies or for accelerated systems,
are observable physical effects fully consistent with the real existence of the zero-point energy of the
quantum electromagnetic theory, even if they cannot be considered as a definitive proof of the existence
of the vacuum energy.
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Abstract: In the wide realm of applications of quantum electrodynamics, a non-covariant formulation
of theory is particularly well suited to describing the interactions of light with molecular matter.
The robust framework upon which this formulation is built, fully accounting for the intrinsically
quantum nature of both light and the molecular states, enables powerful symmetry principles to be
applied. With their origins in the fundamental transformation properties of the electromagnetic field,
the application of these principles can readily resolve issues concerning the validity of mechanisms,
as well as facilitate the identification of conditions for widely ranging forms of linear and nonlinear
optics. Considerations of temporal, structural, and tensorial symmetry offer significant additional
advantages in correctly registering chiral forms of interaction. More generally, the implementation
of symmetry principles can considerably simplify analysis by reducing the number of independent
quantities necessary to relate to experimental results to a minimum. In this account, a variety of
such principles are drawn out with reference to applications, including recent advances. Connections
are established with parity, duality, angular momentum, continuity equations, conservation laws,
chirality, and spectroscopic selection rules. Particular attention is paid to the optical interactions of
molecules as they are commonly studied, in fluids and randomly organised media.

Keywords: symmetry; parity; quantum electrodynamics; optics; nanophotonics; chirality; helicity;
optical activity; optical angular momentum; dual transform; electromagnetic duality; irreducible
tensor; multiphoton process; quantum information

1. Introduction

It is a truism that principles of symmetry lie at the heart of modern physics. Indeed, it is perhaps
to be expected, when scientific reductionism demands fundamental theory to be valid at every level
from the smallest subatomic particle upwards. A well-known illustration is afforded by the symmetry
principles associated with spherical geometry, which largely determine the character of electronic
transitions in atoms—and thereby the form of each atomic spectrum. By contrast, it might be supposed
that in the realm of the larger agglomerations we designate as molecules, with a vast multitude of
shapes and structures, the operation of symmetry principles would be less prominent. Yet, a moment’s
reflection tells us this is not so. Consider, for example, the lowly water molecule: it is only because
its three atoms, as a result of their intrinsic electronic structure, form a bent rather than a linear
arrangement (Schoenflies point group Cy, as opposed to D) that H,O possesses an electric dipole
moment—and every life as we know it could not exist otherwise.

The interactions of light with matter exhibit a range of especially puissant symmetry principles,
many owing their origin to the intrinsic features of electromagnetism as one of the four fundamental
forces of nature. Just as the atoms in a molecule are primarily held together by electrical forces,
molecules engage with light by primarily electrical—and to some extent, magnetic—forms of coupling.
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At this level, where the quantum nature of the world is very evident, the one theory that correctly
accounts for the optical properties of both molecules and light, in their mutual interactions, is molecular
quantum electrodynamics (QED) [1-8]. It draws on principles that operate at the deepest fundamental
level; QED is widely known as the most successful theory in physics, unsurpassed in the precision of
its agreement with experiment. However, it is not simply quantitative accuracy for which the theory
has value; it has a robust character of immense power for determining absolutely the validity, viability,
and necessary conditions for optical interactions of a wide-ranging nature, based on principles of
structural and mathematical symmetry.

In the concise overview that follows, a range of such principles is drawn out with reference to some
of the most recent applications. Connections are established with continuity equations, conservation
laws, and spectroscopic selection rules, and particular attention is paid to the optical interactions of
molecules in fluids (gas, liquid, or solution phases) or randomly organised media—which together
account for most common molecular systems. Although, with relatively little reformulation, almost the
same framework has been shown to apply to dielectric solids, quantum dots, and quantum wells,
those are excluded from the analysis that follows, simply for the sake of brevity. The article substantially
builds upon a recent review of the role of symmetry in the quantum theory of nanoscale optical
and material chirality [9]; the expanded scope of the present work more widely addresses optical
phenomena in molecular systems, with a particular focus on optical transitions. A differently
formulated group theoretical approach is necessary to address non-molecular, effectively continuous
materials [10].

The following analysis begins in Section 2 with a brief review of charge-parity-time (CPT)
symmetry with conservation laws and electro-magnetic dual symmetry discussed in Section 3.
(By happy coincidence, the initials CP7 are shared by three pioneers in this field: Craig, Power, and
Thiru (as Thirunamachandran insisted he be called, for ease to Westerners). The three worked together
extensively, though seldom publishing as a threesome; they were very well known to both the present
author and the editor of this special issue. Sadly, all three have departed this life since the millennium).
The subsequent Section 4 introduces the full foundation for a detailed analysis of various forms of
photon-molecule interaction—those explicitly involving real quantum transitions in the material
medium, with directly associated selection rules. In Section 5, the further development of the theory
for multiphoton processes then introduces the construction of a convenient representation for radiation
and molecular tensors, whose structure and permutational symmetry receives detailed attention in
Section 6. After a focus on the general form of observables in Section 7, Section 8 introduces Cartesian
tensors of irreducible form, facilitating identification of the dependencies of multiphoton processes on
experimental configurations—such as beam geometries and polarization—and on molecular structure.
Here, the group theoretical connection with angular momentum coupling comes to the fore. On this
basis, Section 9 develops a symmetry categorisation of transition classes, establishing a connection
to information content. Then, in Section 10, it is shown how, as a result of effecting isotropic or
axial averaging procedures, dramatic simplification ensues when the theory is further developed for
application to measurements on fluids, or indeed any substantially or partially disordered molecular
system. To illustrate the application and significance of several principles outlined within this paper,
Section 11 provides a concise illustration of how they apply to the elucidation of some interesting
dichroic effects in the simple case of single-photon absorption. The paper ends in Section 12 with a
brief discussion of recent applications.

2. Charge-Parity-Time Symmetry in Molecular Electrodynamics

Symmetry principles are powerfully operative in determining the allowed or forbidden character
of optical processes in molecular systems. To fully appreciate the origin of the detailed rules that
emerge from such considerations, in each form of interaction, it is necessary to formulate theory that
treats both matter and light with full quantum rigour. The wide variety of symmetry types into which
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molecules fall affords an even greater variety regarding their individual electronic and vibrational
quantum states.

The realm of optics and electrodynamics generally addresses mechanisms that fundamentally
involve the positions and motions of electrical charges. Accordingly, it is the symmetry laws associated
with charge, spatial position, and time that are of primary significance, that is, the operations of charge,
space, and time inversion denoted by C, P, and T, respectively [11-13]. Each is formally represented
by the Abelian group Z,, whose +1 eigenvalues signify even or odd parity. All optical phenomena
preserve symmetry under the product operation CP7T—a proof of this universality and analysis of
its implications has been authoritatively presented in a recent review by Lehnert [12], and a broad
spectroscopic perspective on the topic has been given by Lazzeretti [14]. Nonetheless, considerations
of charge conjugation symmetry are seldom relevant for conventional electrodynamic phenomena, as
the mathematical operation C is never physically realized; clouds of negative charge always surround
positively charged nuclei. Accordingly, in the consideration of optical effects, it is usually sufficient to
restrict consideration to the P7 product, which, through the constraints of Lorentz invariance, ensures
Hamiltonian operators of Hermitian form. Moreover, P7T -symmetric quantum theory has been shown
to be exactly equivalent to standard (Hermitian) quantum mechanics in terms of all observables [15].

It is worth emphasizing that applying the symmetry operation of time reversal to any
mathematical representation both changes the sign of any explicitly occurring time variable, and it
effects Hermitian conjugation—which also subsumes complex variable conjugation. In terms of
relativity theory, this is consistent with the four-vector symmetry for Lorentz transformations on the
Minkowski space (ict, x, y, z); in the sphere of quantum mechanics, it also ensures, for example, that the
Hamiltonian operator ihd/dt is itself time-even [16,17]. An extensive summary of the properties,
physical significance, and interpretation of P and T within the framework of molecular QED is given
in the literature [9]. Other issues of non-Hermitian photonics and P7 symmetry, which specifically
relate to non-molecular media, and are therefore beyond the scope of the present article, are notably
discussed in two other recent references [18,19].

3. Dual Symmetry and Conservation Laws in Quantum Electromagnetism

To proceed, it is appropriate to recall that for the constituent fields of electromagnetic radiation,
the electric field e is formally of odd parity under P as well as under 7 the converse applies to
the magnetic induction field b. This symmetry is indeed required by the structure of the Faraday
and Ampeére Laws. Nonetheless, these and the other two Maxwell’s equations also support another
well-known, fundamental symmetry, registering a dual complementarity between the electric and
magnetic fields of optical radiation in free space. It is a symmetry that is compromised in the presence
of electric charge, owing to the asymmetry in existence of electric but not magnetic monopoles;
for the electric field, a charge-driven source term accordingly appears in Gauss’s Law, but there
is no counterpart in the expression for divergence of the magnetic field. Nonetheless, there is
sufficient interest and power in the underlying free-space symmetry that there is recurrent attention
in electromagnetic duality. Indeed, much of the recent interest—largely centred on structured and
singular light, with associated momentum and angular momentum issues—does concern essentially
free-space propagation.

In a range of acceptable formulations for the Poynting vector, for example, Berry advocates an
‘electric-magnetic democracy’ [20]. This is a feature that is evident not only the classical formulation,
but also in the operator formulation due to Power and Thirunamachandran;

p(rt) = %so[e(r,t) x b(r,t) —b(r,t) x e(r,t)] 1)

which is Equation (3.1) in the literature [21], here recast in SI units: r and t are space and time
coordinates. For more general application, it is the transverse electric displacement field d* that
should feature in (1), rather than the electric field e, but in source- and current-free regions, there is
no physical distinction (the symbol d is also commonly used in entirely different connections). Here,
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too, with a view to the microscopic formulation that is appropriate for application to systems on the
molecular scale, the standard lower-case symbols are used; the context will generally make it clear if
quantum operators are signified. Notably, in the above Equation (1), symmetrisation is necessary to
ensure Hermiticity, because of the non-commutativity of the electric and magnetic field operators at a
common point in space [4,22]:
ei(r), bj(+)] = geijk%ﬂr —7) ()

here and henceforth, there is implied summation over repeated tensor indices; Eijk is the Levi—Civita
antisymmetric tensor. Equation (2) immediately exhibits quantum uncertainty in optics, manifested at
the photon level; it signifies that the electric and magnetic fields cannot be simultaneously determined
at any single position.

Another aspect of the free-space relationship between e and b is manifested in the form of the
duality transformation under which Maxwell’s source-free equations prove invariant:

(e, cb) — (ecosf + bcsin®, becosh — esinf) (3)

where the brackets simply denote the orthogonally paired fields. Here, 6 is an arbitrary pseudoscalar,
signifying that it changes sign under spatial parity inversion. The odd parity of the electric field, and the
even parity of the magnetic field, both under P, are thus preserved in the transformation; temporal
parity is compromised, except in the case of 6 = 77/2 (or, trivially, multiples of 71/2). In anticipation of
later details, it is worth noting that casting equations in units such as the commonly used c = h =1
can obscure any connection between the transformation properties under P and 7. For example, in the
above equation, every element necessarily has the same units, but c clearly does not change under any
such transformation; the e and b fields exhibit different spatial and temporal parities because they
have different physical dimensions.

Equation (3), known as a Heaviside-Larmor transformation, has the specific form of a 2D rotation,
with symmetry SO(2). In some accounts, it is misleadingly described as a Lorentz boost, because an
expression of Lorentz transformation equations in terms of hyperbolic (cosh and sinh) functions of
rapidity has a similar cast [23], and those functions convert to their trigonometric counterparts when
their argument is imaginary. However, the signs in (3) are not consistent with this interpretation;
moreover, the Lorentz transform necessarily engages time with one physical dimension. A useful
account of the Lorentz transforms of electric and magnetic fields is given by Ivezi¢ [24].

The textbook compartmentalisation of optical angular momentum j into spin and orbital parts,
s and I, respectively, proceeds along the following lines [25]:

jz/r><pd3rzl+s (4)
1= eo?{/ ej(rx V)iajd3r )
s = So?i/ (e x u)id3r (6)

where g is the vacuum permittivity and a is the vector potential field. Quite apart from the
gauge-dependence of g, it is well known that this separation is beset with problems; the spin operator
s does not satisfy the necessary commutation relations amongst its Cartesian components, to be
acceptable as a true quantum mechanical operator [26]. As pointed out by Barnett et al., the same
conclusion therefore necessarily applies to the counterpart orbital angular momentum [, as the sum of
the two does constitute a mathematically correct formulation of the orbital momentum from the vector
product r x p. [27]. Their work nonetheless exhibits the dual transformation as essentially consistent,
within the paraxial approximation, to the rotations generated by treating I and s as infinitesimal
angle generators.

In an incisive analysis by Cameron et al. [28], it has been shown how, through application of
Noether’s theorem [29] to the appropriate symmetries of Maxwell’s equations, it is possible to secure
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a refined form of angular momentum conservation laws, revealing a subtle interplay of spin and
orbital angular momentum features. Further manipulation of the Maxwell equations in terms of
vector and scalar potentials, exploiting dual symmetry, has also been shown to reveal a cascade of
mathematically equivalent formulations, [30] though with a caveat that application in the presence
of charge will introduce complications. For any non-paraxial beam, it is possible to secure exact,
self-consistent operator descriptions of the spin and orbital angular momenta in both quantum and
classical energy-flow formulations [31]. The ultimately incomplete separability of spin and orbital
angular momenta for structured light is essentially connected to the spatial variation of momentum
flux, which undermines canonical separation [32]. Accordingly, there is a host of optical phenomena
that manifest optical spin-orbit coupling, as shown and summarised in a commendable review [33].
Not surprisingly, the extent and nature of such coupling is compounded when knotted fields are
entertained [34].

Bliokh et al. have highlighted problems with exploiting electromagnetic duality in standard
electromagnetic field theory, as its association with an incontrovertibly non-dual Lagrangian [35] leads
to conflicts in the associated conservation laws. Of course, for any dynamic system, the Lagrangian
is not unique; observables relate to equations of motion that are at least invariant to the addition to
the Lagrangian of any total time-derivative. However, by recasting the formulation in terms of a
dual field tensor, Bliokh’s work has shown how it is possible to resolve the issues, and also to afford
a more robust method for separately identifying spin and orbital parts of the angular momentum.
The analysis engages another field vector with a significant symmetry role, now usually known as the
Riemann-Silberstein vector f [36-38]:

f(r,t) = e(r,t) +icb(r,t) (7)

together with its Hermitian conjugate, this field also serves as a suitable basis for representing
electromagnetic fields. Fernandez-Corbaton and Molina-Terriza favour the Riemann-Silberstein (RS)
formulation in their account of duality symmetry in transformation optics [39], for the transformation
Equation (3) can then be cast as follows:

f(r) = exp(i0)f(r) ®)

In a detailed analysis of the parity and general symmetry properties of dual symmetry, duality
transformations, and helicity density associated with electromagnetic waves in widely-ranging
dispersive media, it has recently been noted that the generator of the dual transformation has
eigenmodes that are fields of well-defined () helicity [40]. In earlier work, Bialynicki-Birula
proposed that the RS field vector fulfils the function of a photon wavefunction. [41] However, there
are obstacles to such an interpretation. Consider any specific radiation mode (k, 77), for wave-vector k
and polarization 7; there is no way to represent the wavefunction for the two-photon state, [2(k, 7)),
as any kind of combination or product of one-photon |1(k, 7)) state functions (just as it is not possible
to represent the wavefunction for a 2s electron in hydrogen in simple terms of 1s wavefunctions).
The notion of a photon wavefunction can serve as a workable pragmatism when single photons are
involved, and the distinction from a state vector poses less of a problem, but for states with two or
more identical photons, there is no conventional sense in which any one photon can be considered to
have its own wavefunction [42].

A range of conservation principles also relates to the symmetry properties of electromagnetic
radiation. However, the engagement of light with matter undermines the applicability in most
cases. For example, although energy is conserved between matter and radiation as an overall
quantity in any optical interaction, for any measurement that is made beyond a near-field region
of quantum uncertainty, the same cannot necessarily be asserted for all other quantities conserved
in freely propagating radiation. A key illustration, to be examined below, is afforded by an optical
chirality measure known after its originator as the Lipkin zilch. Associated with conservation of
polarization [43—46], this is just one of a group of properties that is conserved in free electromagnetic
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fields, representative of a group whose invariance under the space-time Poincaré group is associated
with an eight-dimensional Lie algebra of non-geometric symmetry transformations.

Work by Bliokh and Nori has uncovered close connections between the optical chirality density
and such measures as polarization helicity and energy density [47], and the results have been shown
to have a direct dependence on a difference in the photon number operators for left- and right- handed
modes [48]. For example, the helicity operator for the free field, defined by the volume integral of a.b
emerges as follows:

k= [abdr= iZ[n“)(k) ~n®) (k) ©)
P Cep %
where the brackets on the right contain a difference of the number operators for left- and right-handed
circularly polarized photons. Locally, the appropriate operators for measures of radiation helicity
are a chirality flux ¢(r, t) and chirality density x(r, t), which together satisfy a continuity (helicity
conservation) equation [48];

X _
m +V.p=0 (10)
with the defining equations
X = %0 [e.(V x €) + 2b.(V x b)] an
CZEO
= e x (Vxb) = bx (Vxe) (12)

in terms of fundamental symmetries, the matrix elements of x are pseudoscalar fields, odd with
respect to the operator for space inversion (or parity), P, but even under time reversal, 7; ¢ is a polar
vector field, even under P and odd under 7. Together, the operators defined by Equations (11) and
(12) represent components of a four-vector (cy, ¢) in Minkowski space [49], signifying the conserved
Lipkin ‘zilch” [43].

The issues of electromagnetic helicity become considerably more intricate for radiation passively
propagating within complex media; the subject is thoroughly explored in a recent paper by Alpeggiani
et al. [50]. However, the pursuit of conservation laws in connection with active processes, where real
electronic transitions occur and energy is exchanged between radiation and matter, is a fundamentally
different proposition [51]. In this respect, helicity-related aspects of optical radiation behave quite
differently from energy, linear momentum, and angular momentum, to which global conservation laws
apply. For example, when any molecule absorbs a circularly polarized photon, it does not thereby gain
in helicity, nor does circularly polarized emission deplete any measurable chiral character in the emitter.
Fundamentally, there is no quantum operator for helicity/chirality in a material system—nor can there
be. The spectroscopic study of circular dichroism (CD), that is, circularly differential single-photon
absorption, manifests the implausibility of any such measure, for quantitative measurements exhibit
a dependence on optical wavelength that is far from absolute; generally, the CD rate differential is a
sensitive and intricate function of the electronic wavefunctions, excited state energies, and transition
dipoles for each material.

4. Symmetry Principles for Photon-Molecule Interactions

Having outlined the symmetry principles that apply for free radiation, we can now undertake
a review of the principles that apply to photon—molecule interactions, with a particular view to
electronic transitions. Accordingly, this section begins with a concise summary of key equations that
will underpin any conventional deployment of QED, in deriving expressions for the observables in
optical transitions. The generic framework described in previous work [9,52], which provides a basis for
describing both processes and electrodynamic properties based on the Power—Zienau-Woolley (PZW)
Hamiltonian [1,53-55], is here consolidated for specific application to electronic transitions—facilitating
simplification by excluding features that would only feature in the theory of optically parametric
processes, or in the representation of static quantities such as permanent dipoles or susceptibilities.
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The approach to be taken allows provision for the full symmetry of the free electromagnetic field to
engage with the full symmetry of the molecular system. In this respect, it substantially differs in its
approach from complementary forms of analysis considering direct reductions of electromagnetic field
symmetry through propagation within gyrotropic media, for example [56].

Although the principles to be enunciated are in principle applicable to ‘photonic molecules’—a
term that was introduced to highlight a similarity between the optical modes in simple cavity photonics
and those of diatomic molecules [57]—the former constructs generally lack the rich diversity of
symmetry elements afforded by real molecular systems, and in this respect, a more general use of the
term is perhaps misleading. Equally, the fabrication of structures to impose excitation symmetry in
surface plasmonics has no real connection with the intrinsic selection rules for electronic transitions [58].
However, applications of the symmetry framework to be developed in the following analysis do invite
extension to nanofabricated dielectric structures, where transition processes such as circular dichroism
occur, even as specifically quantum aspects of the radiation become less prominent. An example of
recent work in this area is a fine combination of theory and experimental work on dichroism in chiral
sculptured thin films [59].

The key observable for optical transitions is a signal proportional to the rate '—which may
directly represent a rate of transition, or equally a rate of change in the energy, linear or angular
momentum content of the radiation fields that are responsible. Unless saturation occurs, the rate is
usually cast in terms of Fermi’s Golden Rule:

27,
r=2F|mp P (13)

if either saturation or oscillatory behaviour occurs, the detailed dynamics is still essentially determined
by the matrix element for the process The density of states p exhibited in this equation is in principle
a convolution of functions representing the number of states per unit energy interval for each of the
light-matter system components; in practice, one component usually dominates, and for the many
applications (including almost all multiphoton processes) that involve narrow linewidth lasers, it is
usually the molecular excited state whose linewidth effectively determines the value. The core of
Equation (13) is Mgy, the matrix element of an operator M that couples an initial state |I) to a final state
|F) in a composite system (i.e., molecule plus radiation). In the present connection, with a focus on
processes in which energy is exchanged between the radiation and matter, the final state is presumed
to be measurably different from, though necessarily isoenergetic with, the initial state of energy E;.
The operator M may itself be cast in the following resolvent operator form [22]:

M = Z Hint(GOHint)p (14)
p=0
where the propagator is given by
GO ~ (E] - H0)71 (15)
Hy = Hiol + Hrad (16)

Here, H) is the basis Hamiltonian, comprising the unperturbed molecular and radiation operators.
Implementing the completeness relation delivers the system matrix element (Mp I)sys in the form
of a familiar expansion in the light-matter interaction operator Hijn, representing a time-dependent

perturbation:

(F|Hint|R)(R|Hint|I) +Z F|H1m|S (S|Hint|R) (R|Hint|I)
(El ER RS ER)(EI ES)

7

(Mr1)gys = (F|Hint|I) +) +... 1)
R

the intermediate states |R), |S) associated with energies Eg, Es, and so on, are also cast in the system

basis. Each Dirac bracket featured in the numerators of terms in Equation (17), and thus entails both

matter and radiation components—and to identify symmetry aspects, both must be brought into

explicit consideration.
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It is the structure of the operator M, given by Equation (14), that proves a key to unlocking the
symmetry aspects of light-matter interactions examined in the following section. As the system basis
comprises products of molecular and radiation states, the symmetry of the propagator Gy is separable
in each component. Clearly, all energies are scalar quantities, and H, is invariant under the same
full set of symmetry operations as the molecule, whose symmetry class is always identified with the
ground state (or higher, in the case of chiral species [60]—where the ground state wavefunction lacks a
two-fold permutational symmetry that is present in the molecular Hamiltonian).

As noted above, it is most expedient to deploy the PZW form of interaction Hamiltonian, cast
as multipolar coupling in terms of a transverse electric field operator e* and a counterpart magnetic
induction operator b. This affords major calculational advantages and insights; expressing the
couplings between the optical fields and charges directly in terms of experimentally meaningful electric
and magnetic fields also highlights their involvement with corresponding multipole moments and
optical response tensors in Cartesian form, thus elucidating their connection to molecular symmetry.
Strictly, when casting theory in terms of a PZW Hamiltonian formulation, all orders of the electric
multipole coupling should be cast in terms of a transverse electric displacement d*, rather than the
electric field e* [4,61]. However, in isotropic media such as gases, and all conventional liquids and
solutions, the two quantities are related by a scalar, so precisely the same symmetry arguments apply.
The equations here are written in terms of the electric field for simplicity, and consistency with previous
work. The leading terms of Hjy are thus expressible as follows:

1 €1
Hine = —pie; —QiVje;, —...— mib;— ... (18)

where p is the electric dipole operator, Q is the (second rank tensor) electric quadrupole operator, and m
is the magnetic dipole operator. The first and third of these are vectors; the quadrupole operator is a
second rank tensor; and the indices i, j represent coordinates in any consistent frame of spatial reference
with orthonormal axes—usually Cartesian, but not necessarily so (see Section 11). Every index that is
repeated signifies an implied summation over the 3D basis set.

For concise reference in the text, the three consecutive terms in the above Equation (18) will be
referred to as E1, E2, and M1, respectively, and as a rule, the first of these represents a coupling that is
significantly stronger than the other two—where selection rules permit them all to occur (see later).
It is important to recognize that the E2 and M1 forms of coupling may in principle constitute equally
significant contributions to the light-matter coupling, together representing a leading correction to the
E1 term. The proof of this connection is straightforward; both terms emerge from the same level of
approximation in transforming between minimal coupling and multipolar Hamiltonian forms [62].

In addition to the terms explicitly exhibited in Equation (18), there are further terms of higher
order—which generally indicates that they will be responsible for much weaker effects. These include
a diamagnetisation contribution that has recently attracted fresh interest. As this term is quadratic in
the optical magnetic field, it is of even parity with respect to both space and time, and may therefore
in principle be considered pervasive (in this respect it is like the conventional polarizability, which is
non-zero for every material). However, the same property also renders this form of coupling less
potentially useful as a tool of symmetry analysis. Thus, although it is now recognized that in some
connections, diamagnetisation coupling may prove quantitatively more significant than warrants its
usual disregard [63-65], it is not a concern in a primary focus on symmetry features.

For most optical applications—the majority, which do not specifically concern the confined
geometries of a fabricated microcavity, or an exotic beam structure as such may be imparted by
optical elements—electromagnetic fields are most expediently commonly cast in terms of plane waves;
these represent propagation modes whose wave-fronts are perpendicular to a single director in all
cases. Moreover, in order to accommodate multimode radiation fields, the field operators are best
expressed as mode expansions in the form of Fourier representations. Promoting the two fields to
operator status leads to the following standard expansions [4]:
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el (r) = Z{i < Z’ZE’;) 7s<v>(k)a<ﬂ>(k) exp(ik - r) + h.c.} (19)

1
b(r) = g{z < 28?;/) ’ (i x &) (k) )™ (k) exp(ik - ) + h.c.} (20)
where Ji.c. denotes Hermitian conjugate. The above equations express the fields at position r, within
an arbitrary quantization volume V, in terms of sums over wave-vector k and polarization state 7.
The latter sum may in principle be taken on a basis comprising any two states that are represented by
opposing points on the Poincaré sphere; [66] commonly, those chosen are either left and right circular
polarizations, or horizontal and vertical plane polarizations. The circularly polarized basis can in fact be
expressed in terms of the following unit vectors:

k) = 0+ ) N0 = L) e
where i and } are Cartesian unit vectors such that (;, }', fc) comprise a right-handed orthogonal
group. The quantum optical features of Equations (19) and (20) reside in the photon annihilation
operators a() (k) for each mode (k, 77), and in their counterpart creation operators a' (") (k) implicit
in the Hermitian conjugate part of each expression. In passing, it is interesting to observe that the
RS field vectors, constructed from (19) and (20) using the defining Equation (7), have the particular
property that f annihilates a left-handed photon and creates a right-handed photon, whereas its
Hermitian conjugate f* does the opposite [37]. An important corollary follows; noting the linearity of
the electromagnetic fields in Hjy (a feature that also carries through to the RS expression of coupling,
see below), it becomes evident from the above sequence of expressions that the 7 term in the matrix
element Mrj, Equation (17), delivers the leading contribution for any process involving 1 photons.

We can now introduce symmetry principles—but first, a caveat. A difference in the symmetry
behaviour of electric and magnetic transition moments is sometimes expressed in terms of their being
orthogonal to each other—presumably an inference derived from that feature of the relationship
between the vector characters of the electric and magnetic fields, exhibited by the cross-product in
Equation (20). Others write of the difference as signifying the two kinds of moments are out of
phase, as indeed the counterpart fields are out of phase in circularly polarised radiation. In certain
applications to atoms, such essentially classical arguments may appear superficially credible, but in
general, such inferences are very misleading—not least, because transition moments are very different
from induced moments. Moreover, quadrupole and higher moments cease to be amenable to such
straightforward unidirectional interpretations. In molecules, more significantly, both static and
transition moments are quantities whose vector or tensor components relate specifically to directions
with a fixed and specific relation to the internal molecular geometry.

To establish the ensuing analysis on a firm footing, we first recall that the electric field of the
radiation is formally odd with respect to parity P, and even with respect to 7; the magnetic field has
the opposite character in both respects. Individual modes of the radiation field need not conform to
either parity, but in the sum over all modes, this is the definitive character [17]. Clearly, since Hint
is an energy operator, and therefore even in both space and time, the electric dipole operator y is
necessarily also odd with respect to parity P, and even with respect to 7, its magnetic counterpart
m is even in P and odd in 7. Accounting for the gradient operator featured in the second term
of (18), the electric quadrupole operator Q has to be even in both forms of parity. To illustrate the
significance of a difference in spatial parity, it emerges that the difference between electric and magnetic
transition moments is the key to most common forms of chirality-sensitive response. As the former
are polar vectors (odd in P), and the latter are axial vectors (even in P), it takes a molecule with no
center of symmetry—that is, one that is not invariant under P, such as a chiral molecule—to support
an electronic transition involving both electric and magnetic transition moments. It is indeed an
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interference of these two kinds of coupling that proves to supply the main mechanism for chiroptical
differentiation—see the literature for an example [67].

Before proceeding further, it is worth returning to the Riemann-Silberstein formulation introduced
in Section 3, to observing a superficial appeal in connecting creation and annihilation operations with
photons of a specific handedness. To this end, for processes of potentially chiroptical significance,
the interaction Hamiltonian is, in some accounts, written as follows:

Hipe = 5 [d"f+ d f' 22)

where

d=pu+ic'm (23)
this cast of the interaction operator is readily shown to precisely replicate the E1 and M1 terms in
Equation (18). Although electric quadrupole interactions are thereby excluded from consideration,
it transpires for phenomena such as circular dichroism and optical rotation that the absent E2 term
in fact plays no role in randomly oriented media; in conjunction with E1 coupling, it generates only
terms that vanish on orientational averaging (see Section 10).

The combination of electric and magnetic dipole operators in (23) is real (the former involves
only charge positions, and the latter only the corresponding angular momenta operators) and it is
of even temporal parity, but it is not an eigenfunction of P; spatial parity is not a good quantum
number. The same, of course, is true for f. So although, for chiral molecules, transition dipoles
based on Equation (23) may comprise non-vanishing contributions from both its electric and magnetic
components, the difference in selection rules that applies for most other materials means that d itself
cannot be regarded as a secure gauge of chiral propensity. Moreover, for many chiroptical processes,
E2 contributions do not indeed disappear on orientational averaging; Raman optical activity is a
familiar example [68,69]. Any advantage of deploying the RS formulation for light-matter coupling is
therefore circumscribed; the representation is not generally applicable.

5. The Coupling of Radiation and Molecular Tensors

When we consider any multiphoton process involving n > 2 photons, the detailed structure
of the relevant term in Equation (17) generates tensorial forms of interaction, coupling the material
response to elements of the optical fields. Because the denominators of each term in (18) are scalars,
symmetry aspects of the result are entirely associated with the products of Dirac brackets in numerator
expressions. The rule for each Dirac bracket is that the product of the irreducible representations
(irreps) of the states of the molecule at each end of the bracket must be spanned by one or more
components of the appropriate multipole operator. With regard to the initial and final states for the
overall process, the same rule applies with respect to the operator M, introduced in Equation (14).
From earlier observations on the symmetry of the associated propagator Gy, it follows that the irrep
X(M) for M is a product of the individual irreps for each of the multipoles involved in the whole
process. Attending to the leading multipole terms given in Equation (18), we can write the following:

3 q
x(M) =TTTTTTxi(e)x;(m)xe(q) 24

where labels e, m, and g represent the number of E1, M1, and E2 interactions, respectively, whose sum
n = (e + m + q) is the total number of photon interactions. For most absorption or scattering
processes—and also emission to the ground state—the irreducible representation of the transition
specifies the extent of symmetry difference between the relevant molecular excited state and the stable,
ground state.

Commonly, excited state wavefunctions lack invariance under the full set of operations
corresponding to symmetry elements of the ground state function. For example, in centrosymmetric
molecules, whose equilibrium nuclear coordinates from a suitable point of origin represent a set that

44



Symmetry 2018, 10, 298

is even under parity P, some excited states will also be even; others will display odd parity. Often,
under C, rotations to which a ground state is invariant, excited states acquire an integer power of the
phase factor exp(27ti/n). Consider, for example, each term of the matrix element for a two-interaction
process (noting that more than one term will usually arise, because all sequences of interaction are
accommodated in the theory). Each term may entail one Dirac bracket of E1 form and the other of
M1 form; all combinations of multipoles are possible in principle, though not all will necessarily be
symmetry-allowed. Nonetheless, a first step is to consider what constraints are imposed on each
individual interaction, as a result of the group theoretical rules imposed by molecular symmetry [70].
The matrix element Mr; for any specific #n-photon interaction now emerges in the form of a linear
combination of terms, each of which entails vector and tensor interactions between molecule-based and
radiation-based properties. The molecular system is cast in terms of products of transition moments,
and the corresponding radiation constructs comprise products of components of the field vectors.
The general form can be expressed as follows:
n n n
My ~ 2 Z Z S(e+m+2q) ®(e+m+24) T(e+m+2q) (25)

e;mn—e—m e;mn—e—m
e=0g=0m=n—e—q

which is Equation (25) in the literature [9], without the phase factor that becomes redundant for
transition processes—where it disappears in the Fermi rate equation. Here, the result comprises the
inner product, signified by ®, of a radiation tensor S and a molecular response tensor T. Specifically,
s = Sijiy...i comprises an outer product of components of the electric field and the magnetic field
(and in addition, where quadrupoles are involved, the field wave-vector); the corresponding molecular
tensor T() = Tiiy..i, entails products of n Dirac brackets, and its spatial symmetry properties are
determined by Equation (24). Each tensor has a rank r given by r = (e + m + 24) so that the inner
product contrasts this number of indices; the molecular tensor T\") specifically incorporates (e + 11 + q)
products of transition multipole moments.

Because their product Mg has the physical dimensions of energy, the S and T(") tensors must
have identical signatures of parity for each separate parity operation, P and 7. The respective
eigenvalues are (-1)° and (-1)", as determined by the space-odd, time-even character of the electric
field, and the space-even, time-odd character of the magnetic field. Any electric quadrupole, having
even parity under both P and 7, plays no part in this determination. If, for example, the s) and
T") tensors are odd with respect to both parity operations, their product will remain the same if both
radiation and matter are inverted in space, physically representing opposite parity enantiomers, and
also opposite helicity radiation.

In this connection, it is worth briefly noting certain aspects of the physics relating to molecular
orientation, with an important bearing on chirality principles. The angular disposition of molecules
with respect to any propagating stimulus can play a role in the exhibition of chiral differentiation;
the commonly long lifetime for quantum tunneling between oppositely handed enantiomeric forms
(which are usually high orders of magnitude greater than optical interaction times) may also be a
significant factor. Consider, as a counterexample, a molecule of hydrogen peroxide, H,O,; in its
ground electronic state, it has only C, rotational symmetry and is therefore chiral in principle, but it
is not normally regarded as such—because at common ambient temperatures, where the substance
is a liquid, thermal energy is sufficient to provide equilibration between the two oppositely handed
forms. Relatively low potential energy barriers must be surmounted for interconversion to occur [71];
in this case, evidence is readily afforded by the significant energy splitting between even and odd
parity combinations of the two enantiomeric state functions [72].

Conversely, consider a molecule such as boric acid, B(OH)3, which possesses, in addition to a pure
rotational (C3) axis, a plane of symmetry (it belongs to the Cs}, point group); it is not intrinsically chiral,
but if the molecule is held at a fixed angle with respect to any transversely propagating signal beam of
light, it has the capacity to differentiate between circular polarizations. This type of effect—essentially
2D chirality—is more commonly encountered (and more easily registered) in the surface features of
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suitably fabricated metamaterials—gammadion structures are a well-studied example—where even
in the absence of an external stimulus, there is a clear disparity across the planar interface between
physically dissimilar regions. In this way, effects more commonly associated with optical activity
may be exhibited by an intrinsically achiral material or metamaterial [73]. Nonetheless, consideration
of the complete light-matter system reveals that chiroptical differentiation will only be manifest in
optical fields with a helical character—either through circular polarizations, in chirally configured
beams, or within optical nanofibres [74]. When circularly polarized light impinges upon a suitably
nanostructured surface, propagation by reflection or transmission may exhibit differences according
to direction of travel, as opposite directions are not equivalent under the operations of spatial parity

P [75].

6. Structure and Permutation Symmetry in Material and Radiation Tensors

It is easy to recognise, in the general tensor form of light-matter coupling for nonlinear optical
interactions, a potential for the theory to deliver expressions of great complexity, rapidly increasing with
the number of photons involved. It will emerge that three-photon absorption, for example, in its most
general formulation, leads to a rate equation with 225 independent terms; for four-photon absorption,
the figure is 8281 (the explanation of these figures will emerge in Section 10). Such complicated
results are of little practical value, and only narrow academic interest. However, a raft of symmetry
considerations dramatically redeems the situation. The features discussed below will often reduce the
number of independent parameters to a mere handful. The implementation of symmetry principles
thus not only lends important physical insights, it also leads to equations that are realistic for
experimental application and data interpretation.

There are three distinct structure and geometry-related symmetry properties that can produce
major simplifications; in each case, considerations of symmetry lead to a reduction in the number of
independent variables. One aspect concerns the inherent photonic character of the nonlinear process
itself, reflected in a permutational symmetry between equivalent photon interactions. Another is
the possibility of polarization-configured symmetry, which is directly under experimental control.
Finally, there are symmetry features determined by the intrinsic symmetry of the molecular component,
dependent upon the geometry of its nuclear framework and the spatial symmetry of the transition
taking place. We are now in a position to address the first two of these, and in the following section,
each feature is illustrated by a specific, typical case: the hyper-Raman effect. Issues associated with
molecular structural symmetry are deferred to Sections 8 and 9, pending the further development of
the tensor formulation that next ensues.

First, we consider the photonic symmetry that may be intrinsic in the nature of any optical
process. The hyper-Raman effect [76] is an inelastic scattering effect in which an intense input beam of
optical frequency w produces scattering, Stokes-shifted (slightly lowered in frequency) from the second
harmonic 2w by a vibrational frequency wy;, for one of the normal modes of the molecule. Thus, it is a
three-photon process, detectable in the optical output of a frequency w’ = 2w — wy;p. Recognising that
the leading form of coupling is associated with E1 transitions alone, Equation (25) casts the matrix
element as Sg?o);o 3 Té;%);o The detailed structure of the molecular tensor Té?g;o—a form of transition
hyperpolarizability—is usually determined through the construction of time-ordered diagrams [77],
which represent every topologically distinct sequence of the individual photon interactions—three in
this case; see Figure 1. The same information is in fact conveyed by a single state-sequence diagram,
Figure 2 [78,79]. Each path in a state-sequence diagram is in a fopological sense a dual transform of
one of the time-ordered diagrams, interchanging vertices with line segments. The complications that
arise in this case, when other multipoles are entertained, will be considered subsequently. The explicit
expression for the E1% molecular tensor, written as a sum of three corresponding terms, accounting for
overall energy conservation in each case, is as follows:
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m oy " " ey
A | (Egm — 2hw) (Epm — hw) " (Esn + hw) (Epm — fiw)  (Esn + hew) (Epn + 2hw)

(26)

where 7 is the reduced Planck’s constant /1/27, subscript Greek indices denote Cartesian indices
referring to a molecule-fixed reference frame, vector components of the form y%’ and so on refer to
electric dipole transition moments for transition a < b, and E,, denotes an energy difference E; — Ej,.
Three terms arise because this is the order of index permutations given by the symmetric group product
S3 % Sp.

It will be evident on inspection that Equation (26) does not exhibit the permutational symmetry
between the indices y and v connected with the two physically indistinguishable input photons
(vertices coloured red in Figure 1). However, the radiation tensor with which it forms an inner product,
does so as follows:

S/\yv = Ei\e;afv (27)
where an overbar (on the polarization vector for the emitted photon) denotes complex conjugation. This
same permutational symmetry can therefore be accommodated in a symmetrized tensor, expediently
identified by bracketing the relevant index pair:

k'

k'

Figure 1. Three topologically distinct time-ordered diagrams (time progressing upwards) for
hyper-Raman scattering from an input mode k into an output mode k’: the molecule undergoes
a transition n < m via two virtual intermediate states r and s.

Figure 2. State-sequence diagram (time progressing to the right) for hyper-Raman scattering,
subsuming all three pathways exhibited in Figure 1. Here, the interactions denoted by line sequences
are colour-coded to highlight the input and output modes.

1
Bty = 5 (B + B30, ) (28)
it is readily shown that this serves to deliver the same completely correct result when it is implemented
as Tg?(;;o in Equation (25).
In general, for any multiphoton process in which two or more of the photons derive from the

same monochromatic beam, a corresponding permutational symmetry will be latent in the radiation
tensor. This symmetry is ensured if the corresponding photon interactions engage the same level if
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multipole interaction—usually E1; it is potentially compromised by admitting mixtures of different
multipoles. For example, in any form of frequency-doubling conversion—including second harmonic
generation (SHG) and elastic second harmonic (hyper-Rayleigh) scattering, as well as the hyper-Raman
effect—the substitution of one E1 interaction by M1 or E2 gives the leading correction terms of the form
E1?2M1 and E1?E2. The associated ‘J’ and ‘K’ tensors molecular tensors retain index permutational
symmetry if the M1 or E2 interaction is involved in the output emission, but not if it is linked with one
of the two input photon annihilation events [80,81].

The second form of index symmetry is now easily identified. Again, consider the hyper-Raman
case, exhibited in (27). There need not be any correlation between the polarizations of the two input
and single output photons—but in an experiment, it may prove useful to make a measurement (using
polarizing optics) in which the polarizations are identical. One example for the commonly studied
case of right-angle scattering is if all polarizations are linear and perpendicular to the scattering plane;
another is if a forward-scattering geometry is used and the input and output photons are circularly
polarized with opposite helicity, as follows from the form of Equation (21). In either case, the S tensor
acquires full permutational symmetry amongst all three of its indices—and by similar arguments to
those presented above, the same index symmetry is effectively conferred upon the molecular tensor.

To address The third symmetry feature, associated with molecular symmetry and the nature of
transitions, will become more accessible on the introduction of an irreducible form of tensor analysis
in Section 8. As will emerge, there are further considerations that can serve to very substantially
ameliorate the complexity of analysis in the case of more complex forms of optical interaction; to secure
their application, there are additional symmetry principles that first need to be developed.

7. Observables

At this stage, it becomes important to return to the generalized matrix elements Mgy to
distinguish expectation values (signifying identical initial and final system states) from the off-diagonal
matrix elements that feature as modulus squares in process observables. The distinction, recently
re-emphasized by Stokes [82], becomes especially important when physically identifiable effects arise
from the interference between terms involving different kinds of multipolar coupling—chiral and
mechanical effects in particular, as shown in other recent work [83-85] To secure an expression for the
rate of an observable transition process, we now work from Equation (13) to arrive at the following:

noon n n n n

I~y % y Y Y y yletm+2q+e'+m'+2q") o (e+m+2q-+e'+m'+2q') pple+m+2q-+e'+m'+2q") (29)
e=0g=0m=n—e—qe¢'=0q'=0m'=n—e'—q'
where .
etmt2qte +m'+2q) — (pletm+2q) o pe(e +m'+2q")
H( d 7) = Te;m;n—e—m ® Te’;m/;rtfe’fm’ (30)
Fletm+2q+c+m'+29') _ (gletmt2q) ®t§(e’+m’+2q’> @31)
- e;mn—e—m e';m'in—e' —m'

Here, the superscript ¢ denotes ‘total'—signifying that in the outer product, @' effects no index
contractions and therefore generates a tensor product whose rank is the sum of ranks for its tensor
multiplicands. In Equation (30), the shorter representation of the outer product ") may be
regarded as a material tensor IT (r+1"); the 535" construct in (31) may equally be regarded as a
radiation tensor £ ") It is evident that for the terms with r = 7 , each 2(+") and counterpart IT (r+r)
tensor product in (29) will have even parity with respect to both P and 7. However, in the quantum
interference terms, r # 1/, some products may have odd parity.

The alarming complexity of the above equations primarily reflects the generality of form in which
they are cast; major simplifications arise in almost every specific application. Consider, for example,

’

2
a single-photon transition a < 0. In the leading E1? contribution to the rate equation, I' = ’MSU

is expressible in terms of the product ngﬂ ® 5(}0);0 ©? Tﬁ}o ® Tg;lo);o. Here, the material and radiation

48



Symmetry 2018, 10, 298

tensor constructs, as defined above, take the form of a transition electric dipole product 4 y;'jo and a

polarization component product eye;, (where these subscript indices imply components in principle
referred to the molecule-fixed Cartesian frame—with implications to be addressed in the following
sections). This rate contribution, which even for chiral molecules retains its sign irrespective of the
enantiomeric form or the circular handedness of the input radiation, is almost invariably the term that
generates the largest contribution to the absorption rate. However, attending to the terms beyond E1
in the coupling delivers a corrected rate equation of the form

2 .
r= M+ mEMEY + Mg M - (32)

in which the EIM1 correction terms—which may be non-zero for transitions in chiral media—deliver

(r+r") _S( )

odd-parity X 1,00 @ Sl 00 ©? Tg 00® T, 1) .- and its conjugate, both of which clearly change sign

either on substituting enantiomers (necessarily changing the sign of T§<())-0 ® TO,1 o)—or, alternatively,

by inverting the circularity of the input (producing the same effect on Sﬁg;o ® gé?l)’.o)). In either case, the

absolute value of the sum (32) changes, resulting in circular dichroic absorption. [84] In the less familiar

case, of the hyper-Raman effect, Equation (29) delivers the product 55?0);0 ® gﬁ;;o ° Tf’o);o ® ng;o.

8. Irreducible Cartesian Tensor Framework for Multiphoton Interactions

Molecules, necessarily of less than spherical symmetry, may possess no other symmetry elements
than those that can together constitute a subset of the orthogonal group O(3) [86]. Mapping the
irreducible representations of this group onto any lower symmetry is surjective, and the physical
consequence is to permit transitions to occur between states of more than one symmetry class.
The irreducible representations of any molecular point group are therefore related through chain
decomposition to irreps of O(3) associated with odd or even parity representations of quantum
angular momentum states S, P, D, and so on [87]. Functional expressions of the latter are, of course,
the vector spherical harmonics, which thereby constitute a natural choice for describing atomic
transitions [88,89]. However, with the lower symmetry of molecules, at least one direction within the
structure is commonly distinct—usually an axis with the highest level rotational symmetry. The nature
of most commonly arising symmetry elements then generally favors a representation of molecular
vector or tensor properties in terms of a Cartesian basis. In fact, the advantage often carries over to the
representation of the radiation field too.

In principle, the derivation and expression of selection rules for molecular transition moments
and other properties can therefore benefit from expression in either a spherical tensor or a Cartesian
basis. The deployment of spherical tensors [90] most clearly exhibits angular momentum aspects;
it can, for example, elicit important physical insights with regard to angular momentum transfer and
multipolar forms of interaction in single-photon processes [91,92]. However, developing an equivalent
irreducible Cartesian basis can also establish connections with aspects of beam geometry and molecular
shape; it is much more directly suited to analyzing multiphoton processes with regard to optical
selection rules, because molecular symmetry properties are also usually registered in Cartesian form [70,
93-97]. This is especially important because, in the nonlinear optical spectroscopy of molecules,
different lines or bands in the spectrum will commonly be associated with transitions of disparate
symmetry, and it is possible, by judicious experimentation based on multiple polarization studies,
to elicit their individual character. It is also notable that optical beam configurations are most readily
specified in an (x, y, z) form. For example, in a conventional geometry optical table set up for scattering
or fluorescence measurements, a Cartesian basis is the standard for describing the orientations of
beam propagation and polarization vectors. It has furthermore been shown how the applicability of
Cartesian bases extends to beams of complex Gaussian-weighted structure [98].

The two distinct formalisms, spherical and Cartesian—which are, of course, rigorously
equivalent—both have an intricacy that rapidly escalates with the tensor rank. However,
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while conversion between the two forms is not simple [90,93,94,96,99], it is rarely necessary, and the
power of analysis that they afford proves its value in processes of more complex photonic interactions.
Because the detailed forms of results for arbitrary tensors of up to fourth rank have been calculated,
the necessary formulae can be directly deployed [95,97,100,101]. Most of the original QED work on
multiphoton electronic processes in molecules was conducted using such an irreducible Cartesian
framework [102-106], as well as subsequent studies based on a semiclassical formulation [107]; it is
this Cartesian cast of theory that most readily establishes connections between the angular momentum
properties of electromagnetic radiation and the multipoles or nonlinear response tensors of molecules,
with which the light engages in any particular form of interaction.

The starting point for constructing an irreducible Cartesian calculus is to identify a natural tensor
basis. Natural tensors are tensors that are fully symmetric under interchange of any (Cartesian) index
pair, and are also fully traceless with respect to each such pair. Any such tensor of rank n can be
expressed in terms of exactly (21 + 1) linearly independent, non-zero components. In the more general
case, a reducible Cartesian tensor of a given rank n comprises a sum of irreducible constituent tensors
of the same rank 7, individually distinguished by weights j = 0 ... n. Each irreducible tensor of
weight j and rank 7 thus represents a natural tensor of rank j embedded in a space of rank n. [70]
The advantages of connection to an angular momentum basis are retained in the Cartesian basis,
as the coupling between irreducible tensors follows the usual rules of angular momentum coupling.
For tensors or rank greater than two, individual weights may have a degenerate representation;
in general, the multiplicity of weights j for a tensor of rank 7 is given by the following [108,109];

¢ DB —1)(2n — 3k — j — 2)!

o= kgo S A 7 Yo [ 1 (33)

in which the upper limit on the summation is cast in terms of the floor function (signifying the highest
integer no greater than the argument). The above result necessarily satisfies the following formula for
the total number of independent components:

2j+1)QY =3 (34)

=

j=0

-
Il

the factor of (2j + 1) accounts for the fact that, for even parity tensors, any j = 0 term transforms
under the symmetry operations of the molecular point group as a scalar, any j = 1 term as a vector
(three independent components), j = 2 as a deviator (a traceless symmetric second rank tensor with five
independent components), and so on. For odd parity tensors, j = 0 represents a pseudoscalar (odd under
P) and so on. However, when any degree of index symmetry is present in the tensor, the number of
independent components is obviously decreased, and accordingly the multiplicities in representation
of each weight are also subject to reductions.

Table 1 lists the structure of decomposition into weights relevant for the most extensively studied
kinds of optical interaction; the most prevalent forms of index symmetry are accommodated in tensors
up to rank n = 6 (which, though less familiar, arise, for example, for six-wave mixing). [110-114]
In this table, the tilde on ésf ) indicates that index symmetry is taken into account. Other cases of
index permutational symmetry are possible, and most can be identified from the distinct partitions
of n; although additional possibilities such as T((,,)(,)) are possible in principle, no experimental

implementations of such cases are evident in the optics literature as yet. The parameters t, and ¢,
listed in the right-hand pair of columns will be introduced in Section 10.
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Table 1. Maximum number of independent components for the tensors T\") that most
commonly arise in n-photon molecular interactions, brackets embracing indices with permutational
symmetry. Illustrative examples: Abs—single photon absorption; nPA—n-photon absorption
(single-beam); RRE—resonance Raman effect; HR—hyper-Raman effect; HS—second harmonic
scattering; SFG—sum-frequency generation; SFS—sum-frequency scattering; 4WM—four-wave mixing;
OKE—optical Kerr effect; THS—third harmonic scattering; SWM—six-wave mixing.

G 56 1 7

g NooF @ @) o) @' @) o t
n=1
Ty Abs 3 0 1 1 1
n=2
Tay RRE 9 1 1 1 3 3
T 2PA 6 1 0 1 2 2
n=3
Tauw SFG/SFS 27 1 3 2 1 15 11
Tywy HR/SHS 18 0 2 1 1 6
Tow) 3PA 10 0 1 0 1 2 2
n=4
Tau(vm) AWM 54 2 3 4 2 1 34 23
Towwn) — OKE 36 2 1 3 1 1 16 12
T (o) THS 30 1 1 2 1 1 8 7
T 4PA 15 1 0 1 0 1 3 3
n=>5
T i) 5PA 21 0 1 0 1 0 1 3 3
n==6
Towm)pe) SWM 90 2 1 4 2 3 1 1 36 25
T(pwmpo) 6PA 28 1 0 1 0 1 0 1 4 4

Returning once again to the hyper-Raman effect to provide an example, it is immediately evident
from the above that considerable simplification ensues in the response tensor on taking account of the
pair index symmetry in 7" V) observed in Section 6. The number of independent tensor elements is
reduced from 27 to 18; just as significantly, weight 0 contributions fall away entirely; weights 1,2, and 3
are sustained. So the conclusion is that transitions are only allowed when the product of irreducible
representations for the initial and final state—which in the hyper-Raman case, equates to the symmetry
of the molecular vibration excited in its course—must span one or more of the irreps for weights 1, 2,
and/or 3 in the relevant molecular point group. The odd parity of the E13 coupling also applies.

Tt is relatively straightforward to derive the transformation properties for successive weights of
either even or odd parity, and an extensive tabulation of the results is available in the literature. [17,70]
Earlier work identified specific components rather than weights, [115] but these prove unnecessary for
effective conclusions to be drawn on the simple basis of considering symmetry. Consider, for example,
the case of the octahedral molecule sulfur hexafluoride, SF¢; the Schoenflies point group is Oy, and
the odd-parity representations of weights 1, 2, and 3 are Ty, (Eu+T2y), (Agu+T1u+T2y), respectively.
This signifies that only vibrations of Ay, Ey, T1y, or Tp, symmetry can produce a hyper-Raman
signal. For vibrations of all other symmetries, the process is forbidden. It is to be emphasized that the
symmetry properties of the transition are key here—not the permanent properties of the molecule itself.
Again, taking the instance of SFs; because it is octahedral, it has no permanent hyperpolarizability—and
as such, it cannot exhibit the elastic frequency doubling process of second harmonic generation (SHG).
Nonetheless, the molecule can produce a hyper-Raman spectrum.

In other connections, decomposition into irreducible terms still has considerable value and power
when it is applied to static tensor properties—in which case the rule for a non-vanishing response
is simply that one or more of the irreps for non-vanishing weights must transform under the totally
symmetric representation of the relevant molecular point group. In a classic paper, Zyss showed
in clear and elaborate detail how such principles provide a basis for the molecular engineering of
nonlinear optical materials [116]. (In that and subsequent work, the term with weight j is referred to as

51



Symmetry 2018, 10, 298

a 2/-pole, e.g., a deviator is identified as quadrupolar. In its own specific context, where it is implicit
that every photon interaction in fact has E1 form, there is no likelihood of confusion, but the potential
ambiguity is noted.)

At this juncture, however, it needs to be pointed out that erroneous deductions can be (and
some studies have been) made if complete tensor index symmetry is assumed. Such an approach,
which became widespread owing to its appealing simplicity, is largely credited to Kleinman [117],
whose expressly limited intention was indeed to make the interpretation of early experiments in
nonlinear optics more tractable. The slender argument, not to be pursued in detail here, is based on
a case that in expressions such as Equation (26), photon energy terms such as fiw and 2fiw are small
compared with the electronic energy differences that arise in the sum over states. Appeals to such
arguments led to a supposition that the hyper-Raman and analogous tensors could effectively be
treated as fully index-symmetric. As Table 1 shows, in its entry for T ,;,), one hidden implication
was that weight 2 contributions could not arise. In the SF4 case examined above, this would wrongly
suggest that E, vibrations are also forbidden. The essential flaws and general inapplicability of
Kleinman symmetry were in fact quickly pointed out by Wagniere [118]. Recent work on third
harmonic scattering has again shown that emphatic differences arise, according to whether or not full
index symmetry is assumed [119]. As a corollary to all such cases, however, it is of interest that in a
specific case where all the photons involved in the interaction have identical polarization, then, for the
same reasons discussed in Section 6, the results will indeed be consistent with Kleinman symmetry.

9. Transition Classes and Information Content

The various combinations of weight that are possible for each order n have been used to designate
classes of transition symmetry, which are individually discernible with suitably configured polarization
measurements in principle. For n > 2, the permissible classes are essentially the partitions of 7,
subject to the exclusion rules: 2 = 4, and the combination pl = p + 1 for any integer p. For example,
the pairing 01, equivalent to 10, implies the additional presence of weight 2. Then, allowing weight 2
serve to introduce the pair 21, which in turn implies weight 3 (rank allowing), and so forth. While not
excluded by these rules, in rank 4, there are no known occurrences of 41 or 30. Classes up to
n = 4, with known implementations among the commonly listed molecular point groups, are shown
in Table 2.

Table 2. Combinations of weight that arise in processes involving up to four photons, in all common
molecular point groups (those with up to six-fold rotational symmetry, and also the linear groups).

T, 210 21 20 2 1 0
T 20 2 0
Tye 3210 321 320 32 31 30 20 3 2 1 0
Ty u) 321 32 3 2 1
T 31 3 1
Tywmy 43210 4321 4320 432 431 430 420 43 42 40 4 3 1 0
Toam) 420 4 4 0

Every one of the classes exhibited in Table 2 is represented in different point group/irrep
combinations. More strikingly, any transition, in a molecule of any known symmetry, must conform
to one of them; extensive listings are given elsewhere [70]. There are no known materials in which
every class arises, however. In the octahedral group Oy, for example, the following classes arise for
any even-parity, fourth rank tensor lacking full index symmetry: (432)—Tog; (431)—T1g; (42)—Ey;
(40)—A1g; and (3)—Apg. As shown in the Table, the number of classes is generally diminished by any
admission of tensor index symmetry. Specific processes for which classification schemes based on these
principles have been introduced are hyper-Raman scattering, [84] multiphoton absorption [85-88], and
third harmonic scattering [96].
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It is interesting to observe the growth in order of the number of classes, which can be considered
physical (i.e., excited state) implementations of symmetry properties conferred through multiphoton
excitation. Given the associated experimental difficulty, it is evident that there is only a marginal
advantage to be gained in progressing from n = 3 to 4. The number of distinctly identifiable classes in
either instance might nonetheless appear to present a potential prospect for high-dimensional data,
with a capacity to exceed the second order of a simple binary basis per photon. However, a single
n-photon experiment cannot provide an unequivocal basis for class assignment. To achieve that end,
in general, requires a complete polarization study—a term and concept enunciated by McClain [120,121].
As will become evident in the next section, the number of such experiments required always exceeds
the number of distinct classes.

Before moving on to consider fluid media, it is noteworthy that casting electrodynamic
theory in terms of irreducible Cartesian tensors proves its value in a variety of other connections.
One clever example is afforded by Bancewicz’s work on two-centre (collisional) corrections to
molecular hyperpolarizabilities, [122] and there are several applications connected with multipole
coupling in intermolecular energy transfer [123-125]. The same formalism also facilitates the
derivation of analytically tractable formulations for the properties of optically ordered anisotropic
nanoparticles [126].

10. Isotropic and Axial Invariants and Ensemble Averages

The majority of optical phenomena in molecules are registered in liquid or solution, where individual
molecular constituents are orientationally unconstrained over the timespan for most experimental
measurements. The molecules’ effective symmetry can then accurately be identified with the properties
of their intrinsic nuclear framework in the ground state equilibrium. To secure the appropriate forms
of results for experiments on such systems, it therefore becomes necessary to account for an optical
response whose time-average, for any individual molecule, will equate to the ensemble average, based
on the ergodic theorem. Moreover, the distribution of orientations within the ensemble is usually
isotropic (unless orienting fields are present; a case to be considered shortly). The analysis that follows,
pursuing the irreducible tensor formulation, represents an alternative perspective to the one given in

detail in Section 9 of Ruggenthaler [9].

(m)
i
and B](.ZHZ) may entail a fully outer product, in which case it generates a result of the highest possible
rank, or at the other extreme, a fully inner product (if the two have the same rank), thus generating a
tensor of rank 0—that is, a scalar. In the most general case comprising p inner products (tensor index

contractions, p < min(ny, 1)), the result may be expressed as follows:

To begin, a general result can be noted. In general, the product of two irreducible tensors A

(m1) ®n1+nzf2p () _ Tmax (m+1—2p)
Afl 04 B/'z - E)C\h —hl+r (35)

where rmax = min(2jy, 2jp, (11 +n2 —2p — |ji — j2|)]. The principles involved in this coupling are
illustrated in Figure 3. Relation (35) proves to be extremely important for the simplifications that it can
effect as we consider isotropic fluids. To this end, consider the constructs for the product tensors IT as
given by Equation (30). To most simply illustrate the implementation of an orientational average, let us
restrict consideration to dipole (allowing for both E1 and M1) coupling—that is, the representation
of E2 couplings, g = 0. The product tensor thus has rank e + m + ¢’ + m’, which equates to 2n. Again,

one example from hyper-Raman scattering is the sixth rank term ﬁxf(”w)ﬁgfnp).
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Figure 3. Illustration of coupling weights j; and j,, in a partially inner, partially outer products of two
tensors, of respective ranks 17 and 1y, as given by Equation (35). Assuming j; > jp, the span of weights
in the product may range from j; — j» to j; + jo, capped by an upper limit 77 + 1, — 2p that is the rank
of the product tensor.

Now, as follows from a theorem by Jeffreys [127], orientation-averaged parameters (in the present
application both molecular and radiation forms) must have the transformation properties of scalars
under the full rotation group SO(3). As such, they can only be cast as scalar multiples of isotropic
tensors g with the same, even rank (r + ' = 2n), which comprise products of Kronecker deltas.
Averaging can proceed on this basis using Equation (32) in the literature [9]—which also provides for
more complicated cases—but by utilising irreducible forms, we now take a different tack. The inner
product of the IT and g tensors generates results of the following form, utilizing Equation (35) from
the present section and the defining Equation (30) for the explicit form of IT (while the X tensors are
treated in the same way):

(n)7=(n) ~2n _(2n
T o2 gl (36)

M

non
H(Zn) ®2n g(Zn) _ Z 2 T](ln)TJ(Z") ®2n g(Zn) _
1=02=0 0

]

the simplification in the second step, which enforces j; = jp, is a consequence of the range for the
coupled weights being subject to an upper limit of 0—as the isotropic tensors are weight 0 alone,
and the whole expression (which results in a scalar, i.e., a tensor of rank zero) must itself result in
weight 0.

Averaging can now proceed on the basis of the above Equation (36), as shown by Andrews and
Blake [128]. It then follows that the emerging rate equation will be cast in terms of molecular invariants
generated by this equation. These comprise a set of t, linearly independent set of parameters whose
number follows from the multiplicity QJ, of each weight, as listed in Table 1; each weight only couples
with itself, and hence we have the following:

no, N2
t= E) (Q;) (37)

this is the result for the general case (complex T); if the molecular tensor can be treated as real (which
generally applies for E1 coupling in regions far from optical resonance), then it follows that the number
of invariants reduces to the following:

T %};O (1) +al] (38)

therefore, for example, the orientationally averaged rate equation for a three-photon process entailing
the index non-symmetric tensor Ty, is cast in terms of t, = 15 molecular invariants. Because, in general,
the radiation tensor is subject to the same development, the rate (29) in principle accommodates
£2 =152 = 225 terms (for four-photon processes lacking permutational symmetry, the corresponding
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number is ti = 8281). However, if the molecular tensor is real, ?3 = 11 and the number of terms in the
rate is almost halved.

In practice, because the set of molecular invariants in any case constitutes a complete, linearly
independent set, it is equally possible to express results in terms of any other set obtained by injective
linear transform—and these are the invariants that emerge from the direct averaging process [127,129].
McClain’s approach to securing the maximum information from multiphoton studies of fluids is

fundamentally based on the premise of conducting a number ?,, of experiments with polarization
conditions ensuring linearly independent radiation terms. In general, it is not possible to configure
the radiation tensor constructs X, using electromagnetic fields of conventional, plane wave form
to only comprise any chosen, arbitrary combination of weights. By exploiting the orbital angular
momentum of structured beams, Molina-Terriza et al. have shown that it is in fact possible to
prepare photons in multidimensional vector states of angular momentum [130]—but orbital angular
momentum is known not to engage with the leading E1 form of coupling for electronic transitions [131].
In consequence, as observed earlier, to secure the fullest information from separate experiments with
different polarization conditions, the required number of studies always exceeds the number of distinct
symmetry classes. Whichever method of tensor representation is deployed (reducible or irreducible),
it is noteworthy that it is unnecessary to derive expressions for individual tensor components; they are
not required, nor are they measurable in fluid media.

The same kinds of approaches as those considered above can be applied to molecular systems
with partial orientational order—one familiar example being cholesteric liquid crystals under the
influence of a static electric field acting as a director vector. In the most general case, the distribution of
molecular orientations is no longer isotropic, but residual degrees of freedom provide for an axially
weighted distribution. In the dipole approximation, the associated orientational averaging procedure
then requires contracting the radiation and material constructs IT and X with isotropic tensors of rank
(2n + 1), as shown in Andrews [9] and detailed in reference Wagniere [132].

Although the focus through much of this account is on processes involving up to four photons,
it is interesting to note that some theory has been developed for absorption processes of higher
order—notably by Wagniere [133] and Friese [134], the latter recently providing remarkable results for
five-, six-, and seven-photon excitations. Those calculations make explicit use of index symmetry from
the outset, so the results are not claimed to have general applicability for multiphoton interactions.
It does not appear that group theoretical methods have as yet been applied to such cases—but the
degree of experimental challenge in resolving the associated spectra suggests that such a symmetry
analysis would not serve any immediately practicable purpose.

11. Intricate Aspects of Dichroism

To illustrate the principles, and to highlight the powerful significance of orientational
averaging, it proves salutary to consider some potentially circular dichroic aspects of single photon
absorption—where, despite the simplicity, some recent developments invite such a perspective. At its
simplest, there is only a single interaction to consider, as given by Equation (18); the interference terms
between forms of coupling with different parity signatures can only be elicited in chiral materials,
and using radiation with a degree of helicity—which, as we observed earlier, generally indicates the
use of circular polarizations. The original case of circular dichroism (CD), introduced at the end of
Section 7, has been addressed in numerous works—see, for example, the treatment given in Craig and
Thirunamachandran [4].

One of the features of conventional CD is that in leading order, it entails E1-M1, but not E1-E2,
interference terms. The reason for the exclusion of the latter, which also satisfies the spatial symmetry
criterion for eliciting chiral response, is that in a fluid, the associated orientational average entails
isotopic tensors of rank 3—which are scalar multiples of a Levi-Civita antisymmetric tensor. The inner
product of this tensor with the E1-E2 molecular tensor product vanishes, because of the index symmetry
in the quadrupole transition moment. However, the fact that this situation changes when orientational
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order is present, has invited study of the possible engagement of E2 terms in chirality associated with
vortex beams (whose photons convey the orbital angular momentum introduced in Section 3). A recent
analysis has shown that this is indeed the case, leading to a distinctive circular vortex dichroism (CVD)
provided orientational order is present [135]. It nonetheless emerges, by applying the orientational
average in a cylindrical coordinate basis (in which the local orthonormality of the basis unit vectors
still applies), that the effect once more disappears in isotropic media.

Now, returning to the case of conventional radiation, let us consider that a static magnetic field is
introduced. As discussed by Andrews [9], the presence of a static magnetic field is often described
as ‘symmetry breaking’. When it engages with any optical interaction linearly (or indeed in any
odd power), its time-odd character imparts a propensity to undermine Helmholtz reciprocity (i.e.,
forward-backward equivalence), as, for example, in the familiar Faraday effect. However, due inclusion
of the field as a full component of the light-matter system confirms that its involvement is entirely
consistent with P77 symmetry. In principle, a static magnetic field might engage with electron spin,
in molecules or radicals with one (or more) unpaired electron. In such cases, strong magnetic fields
can lift the degeneracy of spin states to a photophysically significant degree, and the result is to permit
circularly polarized photons of opposite handedness to excite each component of any resulting spin
doublet. However, there are other more interesting, and more general mechanisms that may come
into play where magnetic fields are involved, where the significance of both molecular symmetry and
rotational averaging become especially evident. In the following section, we assume ‘closed-shell’
states of time-even parity, for simplicity excluding states with unpaired electron spin. By far the
majority of stable molecules and larger assemblies are known to be of this kind.

To suitably develop the theory, we now extend the single-interaction Equation (18) by writing the
following:

Mg =Y M) (Q=E1, E2, M1, EIM01, E2M01, MIMOL,....) (39)
Q

where the first three terms can be identified in explicit form with those given in Equation (18), and the
second three are double-interaction terms engaging each multipolar form of photon interaction,
along with a static magnetic field dipole interaction denoted M01. Figure 4 shows the salient
forms of time-ordered diagram, for the influence of the magnetic field on single-photon absorption,
with the static (i.e., non-propagating) field depicted by a horizontal line; Figure 5 is the corresponding
state-sequence diagram, accommodating all time-orderings to this level of interaction.
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Figure 4. Key time-ordered diagrams for engaging a static magnetic field B in the absorption of a single
photon of wave-vector k. The diagram on the left represents the leading term, where the red circles
denote E1, E2, or M1 coupling. Additional coupling with the static field (empty blue circle) engages
two distinct time-orderings.
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Figure 5. State-sequence diagram for magnetic field engagement in single-photon absorption,
connectors coloured to match the time-ordered representations of Figure 4.

Before proceeding further, it is worth noting that the present method of dealing with the
engagement in an optical process of any static field, whether magnetic or electric, is a pragmatic
shortcut to correct results. Formally, although static fields are absent in the PZW Hamitonian, their
effect on a system of interest can be introduced either by applying time-independent perturbation
theory to establish static field-modified basis states for a standard time-dependent perturbation
theoretic treatment of the optical process [136], or equally by including, as a source, a static dipole
whose influence on the system is mediated by E1-E1 or M1-M1 virtual photon coupling; the former
has been demonstrated in several connections—see the literature for an example [137].

Now, applying Equation (13) to secure an observable, the rate of absorption, Equation (39)
yields a series of terms; details have been reported elsewhere [138]. The leading term is quadratic in
E1 (assuming the transition is conventionally allowed); then follow cross-terms such as E1-E1MO01,
and so on. Suppose we look for terms that will exhibit involvement with the magnetic field, but which
are allowed only by non-centrosymmetric molecules. As E1 is of odd parity under P, but E2, M1,
and MO1 are even, the leading terms of interest are E1-E2M01 and E1-M1MO01. The significance of
these was first considered by Wagniere and Meier [139], whose depiction of the former cross-term
deploys another diagrammatic form shown in Figure 6.

M Q

0 I o T (24 0

Figure 6. Cross-term for magnetic field engagement in single-photon absorption (Wagniere and Meier
depiction). Such diagrams signify partial rate contributions, as compared with the individual matrix

element depictions in Figures 4 and 5.

Consider first the E1-E2MO01 term. This generates fourth rank IT and X tensors constructed
according to Equations (30) and (31), each to be contracted with an isotropic tensor of the same
rank that is, a product of two Kronecker deltas. In particular, the field tensor X comprises products
of components of 8(’7)(k), ) (k), k, and B (one component of the polarization vector, one of its
complex conjugate, one of the wave-vector, and one of the magnetic field). Therefore, the result of
contraction with two deltas, which produces two scalar products, may appear to be non-zero and
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acquire its maximum value if the static field is aligned with the direction of beam input; because
e (k) -2 (k) = 1 for any polarization, the result is ostensibly non-zero. An interesting aspect
for chiral molecules is that the two opposite enantiomeric forms would appear to produce opposite
E1-E2MO01 contributions of opposite signs, even when linearly polarized light is deployed. However,
the molecular part IT of this result involves two terms, each one entailing a transition magnetic dipole
moment—one with the transition dipole m*" and the other m'®, corresponding to the interaction
vertices denoted by empty blue circles in the middle and right-hand diagrams in Figure 4. With real
wavefunctions, the values of these moments are imaginary, because the angular momentum operator
implicit in a magnetic moment operator is itself imaginary; hence, the associated rate contribution in
fact vanishes (the rate equation entails twice the real part of this imaginary cross-term contribution).

A similar logic, but with a different outcome, applies to the E1I-M1MO01 term. Here, the IT and
X tensors that arise are third rank, and accordingly, each demands contraction with the isotropic
tensor of rank 3, that is, the Levi-Civita tensor. For X, comprising a product of components of &) (k),
k x €1 (k), and B, this generates a vector triple product that can again be non-zero if B is aligned with k.
In this case, the molecular part IT of the result again entails two terms, from the middle and right-hand
diagrams in Figure 4, but now each one comprises two magnetic moments, so that the molecular part
of the rate contribution is real. The result persists for both linearly and circularly polarized light;
the vector triple product entails the cross-product of &(7) (k) with k x € (k), which equals k for any
polarization state—which, therefore, also includes the case of unpolarized light. This distinct difference
in physical significance, compared with E1-E2M01, appears not to have been noted before.

It can, therefore, be directly concluded that the presence of a static magnetic field, with any
non-zero component along the propagation axis of incident light, enables chiral molecules to exhibit
a differential response according to the handedness of the enantiomer. The involement of this
phenomenon, which has been categorised as one aspect of a magnetochiral anisotropy [140], has been
suggested as being responsible for magneto-chiral enantioselective photochemistry [141]. It is now
conjectured that it may also play a role in recent reports of enantioselective adsorption onto a magnetic
substrate [142], interpreted using CD measurements.

12. Discussion

This account has aimed to exemplify symmetry principles that can profitably be applied to
secure information of various kinds, in the context of molecular photonics. Over and above its
well-known relevance to material properties, symmetry considerations most obviously provide a
basis for determining whether any specific form of optical effect is allowed or forbidden. This kind of
criterion has comprehensive application to optical phenomena of all kinds; furthermore, it extends
to individual optical transitions. Using a quantum electrodynamical basis for the physics provides a
framework of equations in which the interplay of radiation and material symmetries becomes especially
lucid, as the molecules and radiation are treated as twin components of a fully quantized system.
QED methods also facilitate the identification of information content relating to transition symmetry
classes, and they provide a framework for devising or interpreting the relevant optical experiments.
In this connection, an emphasis on observables—generally process rates and signal intensities—has
additional impact; it affords advantages over semiclassical equations whose potentiality in representing
observables can be obscure. The distinction is especially important in dealing with theory for systems
in which the molecules are randomly oriented, as the implementation of orientational averaging can
itself have major implications for the viability of the mechanism. The results of averaging provide a
means for establishing rigorous conditions under which processes may be detected. The spheres of
optical and material chirality provide numerous examples of how all these principles lend insights
into the prospects and possibilities for achieving chiroptical differentiation.
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Abstract: Many open quantum systems encountered in both natural and synthetic situations are
embedded in classical-like baths. Often, the bath degrees of freedom may be represented in terms
of canonically conjugate coordinates, but in some cases they may require a non-canonical or
non-Hamiltonian representation. Herein, we review an approach to the dynamics and statistical
mechanics of quantum subsystems embedded in either non-canonical or non-Hamiltonian
classical-like baths which is based on operator-valued quasi-probability functions. These functions
typically evolve through the action of quasi-Lie brackets and their associated Quantum-Classical
Liouville Equations, or through quasi-Lie brackets augmented by dissipative terms. Quasi-Lie
brackets possess the unique feature that, while conserving the energy (which the Noether theorem
links to time-translation symmetry), they violate the time-translation symmetry of their algebra.
This fact can be heuristically understood in terms of the dynamics of the open quantum subsystem.
We then describe an example in which a quantum subsystem is embedded in a bath of classical
spins, which are described by non-canonical coordinates. In this case, it has been shown that
an off-diagonal open-bath geometric phase enters into the propagation of the quantum-classical
dynamics. Next, we discuss how non-Hamiltonian dynamics may be employed to generate the
constant-temperature evolution of phase space degrees of freedom coupled to the quantum subsystem.
Constant-temperature dynamics may be generated by either a classical Langevin stochastic process or
a Nosé-Hoover deterministic thermostat. These two approaches are not equivalent but have different
advantages and drawbacks. In all cases, the calculation of the operator-valued quasi-probability
function allows one to compute time-dependent statistical averages of observables. This may be
accomplished in practice using a hybrid Molecular Dynamics/Monte Carlo algorithms, which we
outline herein.

Keywords: quasi-lie brackets; quantum-classical Liouville equation; hybrid quantum-classical
systems; breaking of time-translation symmetry; classical spin dynamics; Langevin dynamics;
Nosé-Hoover dynamics
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1. Introduction

A growing community of physicists is interested in both monitoring and controlling the time
evolution of small numbers of quantum degrees of freedom (DOF) that are embedded in noisy
and uncontrollable environments [1-3]. A specific case of such a system is encountered when the
environment is classical-like in nature. This situation is one of fundamental importance because,
ultimately, we and our experimental tools behave classically, at least from a coarse-grained perspective.
In recent years, we have also witnessed a rising interest in nano-mechanical, opto-mechanical and other
types of hybrid quantum systems [4-26]. Such systems often exhibit an interplay between classical
and quantum effects, allowing them to be modeled by means of hybrid quantum-classical methods.

It has been known for a long time, that the dynamics and statistical mechanics of
a quantum subsystem coupled to classical-like DOF can be formulated in terms of operator-valued
quasi-probability functions in phase space [27-32]. For example, the dynamics of nano-mechanical
oscillators has been previously described by one of the authors in terms of operator-valued
quasi-probability functions [33]. Such functions evolve through quasi-Lie brackets [34—43], which can
also be augmented by dissipative terms when the energy is not conserved [44,45]. When the bath
is described by canonically conjugate variables (and only in this case), a hybrid quantum-classical
formalism may be derived. Starting from a fully quantum representation of the subsystem and
bath DOF, one can perform a partial Wigner transform [46] (over the bath DOF) and then
take its semiclassical limit [47]. The resulting equation of motion is commonly known as the
quantum-classical Liouville equation (QCLE) [48-60]. The QCLE has been used to study a wide
variety of problems [61-75] and a number of in-depth reviews on the basic formulation of the
theory exist [76-89]. The mathematical structure underlying the QCLE is dictated by a quasi-Lie
bracket [42,43,90,91]. Quasi Lie brackets are known within the community of classical molecular
dynamics simulators as non-Hamiltonian brackets [92-94]. Mathematicians have also studied very
similar structures known as almost Poisson brackets or quasi-Lie algebras [95-99]. It is interesting to
note that the quasi-Lie (or non-Hamiltonian) structure of the QCLE [30,31,34-43] has both favorable
and unfavorable aspects associated with it. Because the antisymmetry of the quasi-Lie bracket ensures
energy conservation, one is able to verify the stability of numerical integration algorithms. However,
because the quasi-Lie algebra is not invariant under time translation, the initially classical DOF
acquire a quantum character as time flows, implying that one never has a true dynamical theory of
quantum and classical DOF but only an approximated dynamics of a full quantum system [100]. This is
somewhat paradoxical because energy conservation is linked to time-translation symmetry through
the Noether theorem; nevertheless, quasi-Lie brackets break the time-translation symmetry of the
algebra (which can be seen as a signature of the effect of the classical bath on the quantum subsystem).

This review deals with situations where the bath DOF are described in terms of non-canonical
coordinates [101,102] or non-Hamiltonian coordinates [92-94], and situations where dissipation must
be taken explicitly into account [44,45]. In all these cases, we will see that the operator-valued
probability functions will develop new functional dependences and novel definitions of the quasi-Lie
brackets will have to be introduced. In particular, we will first describe the case of a classical spin
bath [90,91], as an example of a bath described by non-canonical coordinates [101,102]. It has been
shown that for such a bath an off-diagonal [103] open-path [104-106] geometric phase [107-109]
enters into the propagation of the quantum-classical dynamics. We will then describe the case
of a non-Hamiltonian bath, which arises when the bath coordinates coupled to the quantum
subsystem are also coupled to a large bath (which does not directly interact with the quantum
subsystem and whose detailed dynamics is not of interest). In such cases, the secondary bath
acts as a thermal reservoir and can be described either by means of stochastic processes [110]
(e.g., Langevin dynamics [45]), or by means of non-Hamiltonian fictitious coordinates acting
as deterministic thermostats (e.g., the Nosé-Hoover thermostat [111,112]). Both Langevin and
Nosé-Hoover deterministic time evolutions are examples of non-Hamiltonian dynamics. However,
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only Nosé-Hoover dynamics is defined solely in terms of a quasi-Lie bracket [42,43]. Instead, explicit
dissipative dynamics requires that diffusive terms be added to the bracket.

The quantum-classical equations of motion herein discussed can be implemented in silico using
a variety of simulation algorithms [78,113-123]. We will sketch out one such integration algorithm,
which unfolds the quantum-classical dynamics of the operator-valued quasi-probability function in
terms of piecewise-deterministic trajectories evolving on the adiabatic energy surfaces of the system
under study [78,113].

The structure of this review is as follows. In Section 2, we illustrate the algebraic approach used
to formulate the dynamics of a quantum subsystem embedded in a classical-like environment with
canonically conjugate coordinates. In Section 3, we show how this formalism can be generalized
to the case of a bath described by non-canonical variables, namely a collection of classical spins.
Here, we will also show how an off-diagonal open-path geometric phase enters into the time evolution
of the operator-valued quasi-probability function of the system. In Section 4, we show how the
formalism allows us to also treat stochastic classical-like baths undergoing Langevin dynamics.
Finally, in Section 5, we shed light on the quasi-Lie algebra established by the quantum-classical
brackets and show how their antisymmetric structure is exploited to achieve thermal control of the
bath DOF by means of deterministic thermostats such as the Nosé-Hoover and Nosé-Hoover chain
thermostats. Our conclusions and perspectives are given in Section 6.

2. Quasi-Lie Brackets and Hybrid Quantum-Classical Systems

Classical and quantum dynamics share the same algebraic structure [124,125], which is realized
by means of Poisson brackets in the classical case and commutators in the quantum theory.
Poisson brackets have a symplectic structure that is easily represented in matrix form [102,126].
Both Poisson brackets and commutators define Lie algebras. In terms of commutators, a Lie algebra
possesses the following properties:

X1, %] = —[X2 %] 1
X1k k3] = Xilke k3] + (%1 K3l X2, )
[e.%] =0 ©)

where c is a so-called c-number and Xjr j =1,2,3 are quantum operators. In order to have a Lie algebra,
together with Equations (1)—(3), the Jacobi relation must also hold

J = [R1 [R2, %3]l + (K3, [X1, R2l] + (X2, (X3, Xa]] = 0. 4)

The time-translation invariance of the commutator algebra follows from the Jacobi relation, which
therefore states an integrability condition. If H is not explicitly time-dependent, the antisymmetry
of the commutator (1), arising from the antisymmetry of the symplectic matrix 13, ensures that the
energy is a constant of motion: dH/dt = iLH = 0. Energy conservation under time-translation is
a fundamental property shared by the algebra of Poisson brackets and the algebra of commutators
that is in agreement with Noether theorem.

Now, let us consider a hybrid quantum-classical system, in which the quantum subsystem,
described by a few canonically conjugate operators (4, p) = £ is embedded in a classical bath with
many DOF, described by many canonically conjugate phase space coordinates, X = (Q, P). We will
assume that the Hamiltonian of this hybrid system has the form

) P2 P
Hw(X) = T+%+VW(‘?/Q)
o )
= m+hW(Q)r
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where m and M are the masses of the subsystem and bath DOF, respectively, and Viy is the
potential energy describing the interactions among the subsystem DOF, among the bath DOEF,
and between these two sets of DOF. The last equality on the right-hand side of Equation (5)
defines the adiabatic Hamiltonian /iy (Q) of the system. It has been known for many years that
the statistical mechanics of such hybrid quantum-classical systems may be formulated in terms of
an operator-valued quasi-probability function W(X, t) [27-32]. Specifically, the statistical average
of hybrid quantum-classical operators, representing a dynamical property of the system, may be
calculated according to

R0 =T [ XWX, 5w (), ©

where Tt’ denotes the partial trace involving a complete set of states of the quantum subsystem.
The operator-valued quasi-probability function in phase space evolves according to
Fly
W(X,t)

%W(X,t) = —% [ Ay WX, 1) ]D

= — [Aw WX, )] p = -i£Px, @)

where D is an antisymmetric matrix super-operator defined by

0 |- VBY
D= ,(1,M> g” , ®)

with V = (3/0Q,9/0P) = 8/0X, and

$BY - 3 §.8,7, ©)

LJ=1

denotes the Poisson bracket operator. The last equality on the right-hand side of Equation (7) defines
the quantum-classical Liouville operator itD. Equation (7) is the QCLE [48-60] of the system.
The QCLE in Equation (7) is founded upon a quasi-Lie bracket, which we may write explicitly as

i (X)

2% | ao

210, 2X)p = [ 11X %(X) | P

where D is the antisymmetric matrix operator defined in Equation (8). However, in contrast to the Lie
brackets of quantum and classical mechanics, the quasi-Lie bracket defined in Equation (10) violates
the Jacobi relation (4):

Ip = [21(X), [22(X), (X plp + [#3(X), 11 (X), 22(X)]p] p + [£2(X), [#3(X), 1 ()] p] p # 0. (11)
The failure of the Jacobi implies that the algebra of quasi-Lie brackets is not invariant under
time-translation. For example, it can be generally proven that

P (13,0, 2200) # (€7 110,667 220 (12

On the other hand, the quasi-Lie bracket conserves the energy e”LD Aw(X) = Aw(X). Hence,
the dynamics generated by the QCLE displays energy conservation and lack of time-translation
invariance of the bracket algebra. The situation is surprising because one does not expect a broken
time-translation invariance symmetry in an isolated system. However, while a total hybrid
quantum-classical system is closed from the point of view of energy conservation, the quasi-Lie
bracket describes the irreversible transfer of quantum information from the subsystem to the classical
DOF, which acquire a quantum character as the time flows. In this sense, one can heuristically argue
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that the lack of time-translation invariance or the algebra is a mere consequence of the open dynamics
of the quantum subsystem.

2.1. Derivation of the QCLE through a Partial Wigner Transform

When the bath DOF are described by canonically conjugate variables (and only in this case),
the hybrid quantum can be derived by performing a partial Wigner transform of the quantum Liouville
equation (QLE) over the bath DOF and taking a semiclassical limit of the resulting equations. To this
end, let us consider the fully quantum counterpart to the Hamiltonian in Equation (5):

H:ﬁ+ﬁ—2+v(4Q). (13)
2M ' 2m ’

The quantum statistical state of the system is described by the density matrix (or statistical
operator) g(t). The time dependence of the density matrix is dictated by the QLE:

Sl
>
=3

=
=
Il
S|~

T 5
[Ap®] = o H}B{H}, (14)
where |..., ...] denotes the commutator, and B is the symplectic matrix [102,126]:

0 1
B:{_“)}. (15)

The average of an operator X defined on the same Hilbert space of the system is calculated by

R =T (p(HX) , (16)

where Tr denotes the trace operation. Now, in order to derive a classical-like description of the bath,
one introduces the partial Wigner transform of the density matrix ¢ over the X’s:

WH = o [aze2MQ - Zipwi+ 2) . (7)

The symbol W denotes an operator-valued Wigner function (also known as the partially-Wigner
transformed density matrix), which is both an operator in the Hilbert space of the 4’s and a function
of the bath coordinates X. The partial Wigner transform of an arbitrary operator { is analogously
given by

() = [aze"? Mo - Zigl0+3) . 1s)

Taking the partial Wigner transform of Equation (16) leads to the expression for the average of
X given in Equation (6). The partial Wigner transform of the Hamiltonian in Equation (13) is given
in Equation (5).

Upon taking the partial Wigner transform of the QLE, Equation (14), and truncating the resulting
equation after first order in /1, one arrives at the QCLE

%W(X,t) _ _%[qu,vi/(x,t)]+%HW$B?W(XJ)—%W(X,tﬁB?Hw (19)
= LiILW(X,1),
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where the last equality defines the quantum Liouville operator iL = (i/h)[Hw,-] — (1/2)
(ngB?) +(1/2)(- B?HW). To arrive at Equation (19), we have used the partial Wigner
transform of a product of operators,

Gt () = w018V e ), (20)

and truncated the exponential after first order in 71, i.e.,
AVBY g %?B? . 1)

It should be noted that Equation (21) is exact for Hamiltonians with quadratic bath terms and
bilinear coupling between the £ and X DOF. In Ref. [47], it is shown how the linear expansion can be
performed in terms of the parameter y = /m/M, which is small in cases where the bath DOF are
much more massive than those of the subsystem. Equation (19) is exactly equivalent to Equation (7).

2.2. Integration Algorithm

A number of algorithms, which depend on the basis representation, exist for approximately
solving the QCLE [50,51,54-56,60,78,113-123]. Herein, we illustrate the so-called Sequential Short-Time
Propagation (SSTP) algorithm [78,113], which offers a good compromise between accuracy and
simplicity of implementation. The SSTP algorithm is based on the representation of the QCLE in the
adiabatic basis, which is defined by the eigenvalue equation

hwla; Q) = Ex(Q)|a; Q) - (22)

The representation of the QCLE in the adiabatic basis is sketched in Appendix A. In the adiabatic
basis, the QCLE is given by Equation (A1) and the quantum-classical Liouville super-operator matrix
elements are given in Equation (A4).

To derive the SSTP algorithm, we divide the time interval ¢ into n equal small steps T = t/n.
If one is able to calculate the propagation over a single 7, the dynamics over the whole interval can
be reconstructed by sequential iteration of the procedure. Let us then consider the quantum-classical
propagator over a small step 7 for the matrix elements of the operator-valued quasi-probability function
W(X) in the adiabatic basis. Such a propagator is written as

—itL ~ —i [ dsw, s (5) ,—iTL
(e )mw N Gupburpe 0 50w O (14 T 1) (23)

On the right-hand side of Equation (23), we have introduced w,,/, the Bohr frequency defined in
Equation (A3), iL,y is a classical-like Liouville operator, defined in Equation (A5), and 7, g is the
transition operator defined in Equation (A7). The SSTP dynamics of the matrix elements of W(X, t) is
given by

Waa (X, 7) = Y Gupbupet o 856 9=ty (1 + Tﬁa',ﬁﬁ/) W (X) - (4)
BE'

When 7 is infinitesimal, the right-hand side of Equations (23) and (24), become essentially equal
to the left-hand side, as can be seen from the Dyson identity [113].

The transition operator is purely off-diagonal. Its action generates quantum transitions in the
subsystems and changes the bath momenta accordingly. Upon setting the transition operator to zero,
we obtain an adiabatic expression for the propagator. If the non-adiabatic effects are not too strong, they
may be treated in a perturbative fashion by sampling the action of the transition operator in a stochastic
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fashion. Typically, researchers have used [43,62,64-75,78,82,85,87-91,113,118-122] the following
expressions for the probabilities of making a transition (jump) and not-making a transition, respectively:

P
T - d
,P] _ ‘ MP oc,B‘ , (25)
1
_ _ 26
Qno-J 15 [ -dop] (26)

Another important technical ingredient of the algorithm is the approximation of the transition
operator in Equation (A7) with its momentum-jump form:

(E;*E;})Ma/a(lj“i:/ﬂ/)z

M P A Ep)M/2(P-dg 4 5 P
Ea{ﬁﬁ, _ (sa 'da‘Be(E Eg)M/9(P-dyp) +5aﬁﬁ.d3‘(,ﬁ,g 27)

/ﬁ/M

where tfaﬁ is the normalized coupling vector. Within the momentum-jump approximation [77,78],
the action of the transition operator on the bath momenta can be easily obtained in closed form:

) ~ ~ ~ 2
oEx—Eg)M3/o(P-dys)’p _ p_ p (P . daﬁ) + da/g\/(P . duﬁ) + M (Ex — Eg) . (28)

Considering Equations (6) and (24), together with its SSTP implementation just described, one can
see that the solution of the QCLE can be obtained from an ensemble of classical-like trajectories,
where each trajectory (whose initial conditions arise from a Monte Carlo sampling [127] of the Xs),
involves deterministic evolution segments on a given adiabatic energy surfaces interspersed with
stochastic quantum transitions, caused by the momentum-jump operator in Equation (27).

The SSTP algorithm [78,113] maps the calculation of averages through the QCLE (19) onto a stochastic
process. It is a hybrid Molecular Dynamics/Monte Carlo procedure suffering from two main problems.
The first is given by the momentum-jump approximation, which is not valid in general. One can
avoid this approximation by devising different integration schemes, but usually at the expense of other
approximations [123]. The second problem is not just associated with the SSTP algorithm, but it is
common to all Monte Carlo approaches to the calculation of quantum averages: the infamous sign-problem.
The sign-problem is one of the major unsolved problems in the physics of quantum systems. Within
the SSTP algorithm, it manifests itself both through the oscillating phase factors associated with the
propagation on mean-energy surfaces and through the accumulation of fluctuating weights associated
with the Monte Carlo sampling of the quantum transitions. In practice, upon analyzing the results
obtained by means of this algorithm [43,62,64-75,78,82,85,87-91,113,115-122], we can conclude that
the more quantum is the character of the bath the greater is the error in the calculation of the averages.

The mapping of the calculation of averages via the SSTP algorithm onto a stochastic process is
reminiscent of the approach to open quantum system dynamics provided by the Stochastic Liouville
Equation (SLE) [128-131]. However, in contrast to the SLE, the QCLE is a deterministic equation
that explicitly takes into account all the DOF of the system without approximating the memory of
the total hybrid quantum-classical system. The stochastic process only enters through the specific
hybrid Molecular Dynamics/Monte Carlo implementation provided by the SSTP algorithm. Indeed,
a recently proposed scheme of integration [123] does not involve any stochastic process whatsoever.

3. Classical Spin Baths

Contrary to what some books in quantum mechanics state (in the authors’s knowledge,
an exception is Schulman’s book [132]), the concept of spin can be defined in an entirely classical
way [132-136]. In practice, spinors provide a more fundamental representation of the rotation group
than that given by tensors [132-136]. Hence, one can think of a collection, e.g., a bath, of DOF
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comprising classical spinors (or, for brevity, spins): a classical spin-bath. An example of a classical spin
baths is given by the Classical Heisenberg Model [137], whose Hamiltonian is

N
Hews= Y. Y.skcgsh, (29)
a=xy,z L]

where S' are N classical vectors obeying the constraint

(Si)z + (S;)z + (S§)2 =1, (30)

for I = 1,...,N, and the C}’] are coupling constants. However, since the generalization to baths
with many spins is straightforward, in the following, we will illustrate the theory using a bath
comprising a single classical spin. Consider a classical spin vector S, with components S;, 4 = x,¥,z,
and Hamiltonian H3(S). Let us define the spin gradient as VS = 9/9S, which in terms of the spin
components is written as Vg = 0/0S,, with a = x,y, z. The equations of motion of the spin are then
written as

S =BSVSHg, (31)
where
0 S =S
BS=|-s. 0 S |. (32)
S, —Sx 0

One can also adopt the compact form BS, = ¥ vy, €abcSc and a,b = x,y, z of the antisymmetric
matrix BS, where e, is the Levi-Civita pseudo-tensor. The Casimir C, = S - S is preserved by the
equations of motion (31), independently of the form of the spin Hamiltonian H5(S). In addition,
the dynamics has a zero phase space compressibility x5 = VS - § = 0. The classical phase space flow
of the spin is defined through the non-canonical bracket

Y A(S) V3B, VSB(S) = A(S) VSBSVSH(S), (33)
ab

where A = A(S) and B = B(S) are arbitrary functions of the spin DOF.
Consider now the hybrid quantum-classical Hamiltonian of a quantum subsystem coupled to the
classical spin

H(S)

(34)

H({z}) + Ve({1},8) + HS(S)
hs(S) + H3(S) ,

describing a quantum subsystem in terms of the Hamiltonian H({%}), depending on the operators
{%}, V({x},S) is the subsystem-spin interaction potential, and the second line of the equation
defines the adiabatic Hamiltonian fig. The quantum-classical dynamics of the operator-valued
quasi-probability function (defined in the spinor space of the total system), W5(S, t), is dictated
by the spin-bath QCLE [90,91]

%Ws(s,t) - _% [ H(S) WS(S,t) }DS{ ZZ((;)Q } -
- ,% [H(S), WS(S,1)] s,
where
0 1 ﬁ%BS?
. [ RSN } (36)
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We next set out to represent Equation (35) in the adiabatic basis |¢;S) defined by the
eigenvalue equation
hs(S)|a;S) = Ea(S)|a;S) . (37)

It should be noted that, in contrast to the case of canonically conjugate phase space coordinates
which depends only on the positions Q and not on the conjugate momenta P, this adiabatic basis
depends on all the non-canonical spin coordinates S. In this basis, Equation (35) becomes

;’W;ﬂ, = i WS, — HSVSBS (a| VSWS|) a5
1 (alhs TSBSTSWS|a') — L (ol WS T3B5T Shsla)
where w, = E4(S) — Ey(S)/h is the Bohr frequency. Defining the spin coupling vector
Sy = (wS|VI;s), (39)
one finds the two identities
(;8] (?Sws ) lisS) = VSWS () + Zd WS, (S 2 (S)d%,, (40)
(a;8] (?szs(s)) W;S) = VSH — AE.dS, 1)

where AE, s = E, — E,. Using Equations (40) and (41), the spin-bath QCLE may be rewritten as

aWS

SV (S = =% (ionaGupduas + iLaawapdows + Too gy + Sawrpp ) Wi (5.5, (42)

BE

where we have defined the classical-like spin-Liouville operator

L = HS<€SBS?S+ E, %535?%25,‘%585?5

(43)
s
_ (59 T,
with the average adiabatic Hamiltonian
Hyy = Hs+ 5 (Ea+Ey) . (44)
The transition operator for the spin bath is given by
1
TS = & (BS?SHS) Sy + —AEuﬁds : (Bﬁ*) S

Sk S?S S?S (45)

Sy - (B Hs) o+ AE wpdSy (B ) Sup

The limit d$, — 0 of the spin transition operator in Equation (45) provides the form of the standard
transition operator for canonical conjugate coordinates, given in Equation (A7). Finally, because of the
spin nature of the bath, one finds a higher order transition operator (which does not appear in the case
of canonical conjugate bath coordinates):

S S
lXﬁB d /ﬁ/

1 1
+5 AE oy B Oup + 5 AEwpdyy B3,

1
—5 (Ea+Ey) ) SB5 . d45, w — 5 (Ea+ Ey) ) USB® - %005

1 1
S ppy = 5 OEacdieBdogdup + S AEupd
(46)
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The adiabatic limit of the spin-bath QCLE in (42) can be taken by setting to zero the off-diagonal
elements of d,,/, which appear in the operators in Equations (45) and (46). This is physically reasonable
whenever the coupling between the different adiabatic energy surfaces is negligible. One obtains

S, _ S
TS, = (5 +d5,) BV S Hsdupdp )
= —i ((wa (Pa’tx’) BS?S%“S&‘BIM .
The geometric phase
Pin = —idy (48)

has been introduced exploiting the purely imaginary character of d$,. Similarly, the higher order
transition operator becomes

i
Sty = 3L (68— #30) BV (Bt Eu) Guadiv 49)

Putting everything together, the adiabatic approximation of the spin-bath QCLE may be written as

; WS(S,0) = [—icwnw —i (48— 950) BYSHY — g TSBVS [WS(s,0. (50

In Equation (50), the phase w,, has a dynamical nature while the phase ¢, is of a geometric origin
and it can be considered an instance of the famous Berry phase [107-109]. Interestingly, Equation (35)
predicts that the geometric phase ¢$, can be non-zero also for open paths of the classical spins of the
bath (open-path Berry phases were discussed in Ref. [104]). Moreover, the phase factor ¢$, — ¢S !
is purely off-diagonal (off-diagonal Berry phases for environments described by canonically conjugate
variables were discussed in Refs. [103,105,106]). It is worth mentioning that the geometric phase ¢S, is
predicted also for non-adiabatic dynamics.

When the total Hamiltonian is time-independent, as the one in Equation (34), the adiabatic
evolution of the matrix elements of the spin-bath operator-valued quasi-probability function, given by
Equation (50), can be rewritten as

9

=W

5 S.(S,t) = {—iwm, - ((zx S|4l S) — (a',5|%|¢x’ S) ) H&" %SBSVS} $.(S,t).  (51)

Using the Dyson identity, one can obtain the following form for WS(S,t) in terms of the
adiabatic propagator:

Wfa’(s't) = exp {ﬂ'ﬁt‘ At Wy () %exp { ft dt' ( a,5|dir|(x,5> - <M,S\%\0¢/,5>>] (52)

Xexp[ (t—to)H M, SBSQ] (S, to) -

Equation (52) provides a convenient starting point for devising numerical integration schemes
based on the SSTP propagation scheme [113].
In Ref. [91], the following model Hamiltonian was considered:

mx’

2
A(S) = —Qby—c1bo; — uS -0 — cobS; + %‘Z (53)
N N s2

H(S) = hs(S)—eabS:+ =, (54)

where ), ¢1, and ¢; are real parameters, b is the z component of the magnetic field B = (0,0, b),
while o = (0, oy, 03) is a vector having the Pauli matrices oy, 0y, and o; as components. The SSTP
algorithm was applied to Equation (52) and the action of the classical like Liouville operator
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HDSM,, TSB5VS was evaluated using time reversible integration algorithms based on the symmetric
break-up of the Liouville propagator [138-140].

4. Stochastic Classical Baths

Consider a quantum-classical system comprising a quantum subsystem and a classical
environment whose classical phase space coordinates are partitioned into two sets: one set X = (Q, P)
interacts directly with the quantum subsystem while the second set X’ = (Q’, P’) interacts only with
the coordinates X (and therefore is not directly coupled to the quantum subsystem). We assume that
the detailed dynamics of the coordinates X’ is not interesting: their function is just that of working as
a thermal bath, leading to dissipative dynamics [44].

An equation of motion for the hybrid quantum-classical system composed of the quantum
subsystem and the classical DOF X only has been derived using projection operator methods [44].
It takes the form,

9 I N Hy
S = — [ Aw Wxh D WD
v Y <% +kBT?p> W(X,t),= —iLPW(X, 1), (55)

where Vp = 9/9P, { is the friction constant, kp is the Boltzmann constant, and T is the temperature of
the bath. The Hamiltonian in Equation (55) is defined in Equation (5). However, in the present case,
we must interpret Viy (4, Q) as the potential of mean force arising from the average over the primed bath
variables Q'. The Liouville operator i£P, defined on the right-hand side of Equation (55), determines
the dissipative dynamics of the system. This Fokker—Planck-like operator and the potential of mean
force make the dissipative quantum-classical Liouville operator in Equation (55) different from that
describing an isolated quantum-classical system [47]. In particular, the term { ? P [(P /M) + kBTg p]
directly breaks the time-translation symmetry leading to diffusive motion and energy dissipation.
The dissipative Liouville operator can be written in the adiabatic basis as

iﬁaDa"Bﬁ’ = <ia},m/(R) + iLEg(’) 5,1‘35“//5/ + 7;“/15/5/ , (56)

where we have defined the Kramers operator as

iK, = {ﬂ?QJr%(Pgﬁng’)?p—g?p(P kBT?pﬂ. (57)

M M7
The quantum-classical average of any operator or dynamical variable {(X) can be written as

X)) = Tawpp deXara(X)exp[fiﬁfu,ﬁﬁ,t]Wﬁﬂ’(X)

’ . (58)
= Tawpp | AXWPF(X) explil)h, Xara(R, P),
where iﬂg,% ' 18 the backward operator, defined as
iLDh,, = (z’wml (R) + z'L{ff,) SupPurp + Taatpp (59)
The backward Kramers iLEB operator is written as
. P 1 . ' P
iLKB — [M?Q 5 (Fiy +F3) Vr-0 <M - kBT?P> Vp] Supbupy (60)
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According to the classical theory of random processes [110], the time evolution under the
backward Kramers operator iLXE pp can be unfolded it via an average over realizations of stochastic
Langevin trajectories. In such a picture, the classical trajectory segments obey the Langevin equations

of motion,
. P
0 - (61)
p = f%P+ (RNW“+FW)+R() (62)

where R (t) is a Gaussian white noise process with the properties,

(R(t)) = 0, (63)
(R(HR(Y)) = 2kgTZé(t—t'). (64)

To Equations (61) and (62), one can associate a time-dependent Langevin-Liouville operator

p ¢
Ly (1) M?Q"‘ ( AR (R + Fy) + R (¢ )) Ve, (65)
and a time-ordered propagator
UL (t,0) = Texp {/ dt'iLL (¢ )} . (66)

In order to generate the stochastic Langevin trajectories, we can use a total time-dependent
Langevin-Liouville super-operator

iLlypp(H) = (iwm/(Q) + iL{;a,(t)) SupOurpy + Taatpp (67)

and the associated propagator

t
Uprpp (1,0) = T exp { /O dt/illf;arﬁﬁ,(t’)} : (68)

Within such a Langevin picture, the quantum-classical average of any operator {(X) can be
calculated as

@O = L [ axw QU Oxe(Q (69)
B

where the over-line denotes an average over an ensemble of stochastic Langevin trajectories. Since they
are independent from each other, the order in which the average over phase space and the average
over the stochastic Langevin process are performed can be permuted. Hence, one can write

F(X1) = / dRAPWHE (X)L, (1), (XP).
aaTp
(70)

Equation (70) allows one to calculate averages in a quantum-classical dissipative system as phase
space weighted averages over many Langevin trajectories.

76



Symmetry 2018, 10, 518

In Ref. [45], a quantum subsystem with two energy levels interacting with a dissipative classical
quartic oscillator was considered. The Hamiltonian of the hybrid quantum-classical system reads

2
Bu(X) = 50+ Vy(Q) —hO0, — o Q0, @)

where Vq(Q) = %R‘l — %Rz, 0, a, b, and 7y are real parameters, M is the mass of the quartic oscillator,
and 0, and ¢, are Pauli matrices.

The calculation of quantum-classical averages using the dynamics defined by the time-dependent
Langevin-Liouville propagator U SLS, (t) in Equation (68) is no more complicated than that for
deterministic quantum-classical dynamics. The momentum-jump approximation [77,78] and a simple
generalization of the SSTP algorithm [78,113] to the time dependent propagator were used in Ref. [45].
The explicitly time-dependent propagator ¢/, SLS, (t) must be defined as a time ordered product. A simple
way to achieve that is to employ the decomposition scheme devised by Suzuki [141]. Details of the
numerical procedures are found in Ref. [45]

5. Non-Hamiltonian Dynamics in Thermal Baths

By exploiting the antisymmetric structure of the quantum-classical commutator, arising from the
matrix operator D given in Equation (8), one can impose the thermodynamic constraints of constant
temperature on the classical-like DOF [42,43]. Following Refs. [92-94], constant-temperature dynamics
for the classical bath coordinates, as defined through the non-Hamiltonian Nosé-Hoover equations of
motion, can be introduced by modifying the matrix 8 and augmenting in a minimal way the dimension
of the phase space bath. The classical Nosé-Hoover thermostat is briefly discussed in Appendix B.

As in the classical case, the Nosé variables are

XN=(Q,Qy PP, (72)

where Q and P; are the Nosé coordinate and momentum. The Nosé quantum-classical Hamiltonian
is obtained by adding the Nosé kinetic energy P,% /2M,, and potential energy NkgTQ, to Hy
in Equation (5)

N P2 P .
H™ = M + M + NkgTQy +hw(Q) , (73)
Ul

where M}, is the Nosé inertial parameter, kg is the Boltzmann constant, T is the constant temperature,
and N is the number of Q coordinates. Using the matrix BN in Equation (A13), the classical phase
space quasi-Hamiltonian bracket of two variables A; and A, can be defined as

2(N+1)
A VNBNYNA, = Y A, UNBNTNA, . (74)
Lj=1

The explicit form of the matrix operator, which defines the quantum-classical bracket and the law
of motion through Equation (19), is then given by

0 1_ %NBN?N
N T
D= _ <1 _ $N3N6N> 01 : (75)
2in~"
The Nosé-Hoover QCLE for the operator-valued quasi-probability function WN(XN, t) is given by
AWN(XN 1) = —itNWN(XN, #) — N (xXN)WN(xN, 1)
T AN (76)
— i N WN(xN .DN.| . — N xNYWN (xN
— h[H WN(X ,t)] DY g | K (XNYWN (XN, 1) .
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The presence of the term —xN(XN)WN (XN, t) in the left-hand side of Equation (76) derives from
the passage from the Heisenberg to the Schrodinger picture, as it is explained in Appendix C.
Upon considering the term in the right-hand side of (76), one obtains

vV ax(xXN,t) ax(XN,t)av
NN NN N NN TN _ gV ox ’ X ,b)ov
ANTNBNTNg(xN, ¢ %B?HfaQ i a0
RN P ag(XN, 1)
— 2F —-2— 77
Ry aP,7 M aQ @7)
P, P, P(XN
_ ot ax(xN )+21P3X(X /f)’
My E)Q,7 My opP
where FQ;7 = sz — NkgT. Finally, using the above result, the Nosé-Hoover QCLE reads
d N (N _ NN (YN N N IWNXNH v | v ag (XNt
AWN(XN, ) = i (HNWN(XN, £) — g(xN, ) HN) + ( A1 3% 4 90 HCC >) -
pOWNXNY Py oag(xNy + Py Pax(x b _f AWN (XN )
TMT QT M, 09, M, or QT op,
In the adiabatic states defined in Equation (22), Equation (78) reads
d AN (vN WN (xN
dtWazx’(X ) Z [:zm BB ﬂﬁ’(X ,t) ’ (79)
Bp'
where
ZLM(, By = zwm/éaﬁé W' B +5M;5 /ﬂ/ller 7;‘,(/[5‘5/ . (80)

We have used the definition of the Bohr frequency w,, in Equation (A3) and of the
transition operator 7, g in Equation (A7) in Appendix A. We have introduced a classical-like
Nosé-Liouville operator

J 9 (81)

P, 1

N _ ')

o= st (7 )
2 29
o T 3P, 9P °

—-P

Q
1 i
My My

The existence of the stationary operator-valued Nosé quasi-probability function WN<(XN) is
discussed in Appendix C.

Nosé-Hoover Chain Thermal Baths

The Nosé-Hoover thermostat suffers from lack of ergodic dynamics when the bath has high
frequencies of motion. The Nose-Hoover chain [142] is a more general non-Hamiltonian thermostat
that solves the ergodicity problems suffered by the standard Nosé-Hoover thermostat in the case
of stiff variables. The Nose-Hoover chain thermostat can also be formulated in a quantum-classical
framework with minimal changes with respect to what is shown in Section 5. To this end, considering
for simplicity a chain of just two thermostat coordinates, one can define the classical phase space
point as

XNHC (R Q771f Q’?z'P P’71'P712) (82)

R 2 2

FINHC _ LZ+L2+ Py Py,
2M ' 2M,, ' 2M,, (83)

"rV(q, ) + I\U(;_L;TQ;71 + kBTQVZ ,
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where My, and My, are the inertial parameters of the thermostat variables. As shown in Ref. [92,93],
one can define an antisymmetric matrix

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 O 1
NHC _
B | -1 0 0 0 -P 0 (®4)
0 1.0 P 0 —Py
0 0 -1 0 P, O
The matrix BNHC can be used to define the quasi-Hamiltonian bracket according to Equation (9).

The Nosé-Hoover chain classical equations of motion in phase space [92] are then given by
X — _ xNHC {7 NHC gNHC T/ NHC fyNHC (85)

Quantum-classical dynamics is then introduced using the matrix super-operator

0 1 {7 NHC gNHC T/NHC
_ YRV
DNHC — {7 NHC gNHC T/NHC 2in : (86)
- (1= ) 0
The quantum-classical equations of motion can then be written as
At _ i gmc o . pnuc | ANEC
ﬁ_E[H X}.p SRPEE 87)

The equations of motion can be represented using the adiabatic basis obtaining the Liouville
super-operator

Loy = (i@aw +1LGI)oupbup — Tow ppr
(88)
where
Pa 1 N 2 P 9 d P ]
i1 NHC " " i '
' = ——+-(F'+F" )= E _ )
e MR " 2( " )aP Jrk:zl(MWk 9Qy, +ra aPﬂk) My, n Py, ®9)

with Fo, = = (P,%1 /My, ) — kpT. The proof of the existence of stationary density matrix in the case of
Nosé-Hoover chains follows the same logic of the simpler Nosé-Hoover case. In the adiabatic basis,
the density matrix stationary up to order bar has the same form as that given in Equations (A50)
and (A52). One has just to replace Equation (A50) for the order zero term with

-

2
P2 2 Py
WaNHC,0) 1 S +E(R)+X7, <2M5k >+NkBTQ,71+kBTQ,,2
aaNHCe,(0)

= JNAct (90)

with an obvious definition of ZNHC,

6. Conclusions and Perspectives

In this review, we discussed how to mathematically describe the dynamics and statistical
mechanics of quantum subsystems embedded in classical baths. The formalism is founded on
an operator-valued quasi-probability function evolving through a QCLE defined in terms of a quasi-Lie
bracket. It is worth emphasizing that the QCLE is a fully deterministic equation that takes into account
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explicitly all the DOF of the system, i.e., it describes the quantum and classical DOF of the total hybrid
system. Hence, the QCLE generates a unitary dynamics, conserving both the system'’s probability
and energy. However, the time-translation invariance of the quasi-Lie bracket algebra is broken.
This situation is surprising: one does not expect a broken time-translation invariance symmetry
in an isolated system when all its degrees of freedom are taken into account. This can be seen as
a signature of the effect of the classical bath on the quantum subsystem, and of the back-reaction
of the subsystem onto the bath. In other words, the total hybrid system is closed from the point
of view of energy and probability conservation but, because of the above mentioned back-reaction,
itis also open: the quasi-Lie bracket describes the irreversible transfer of quantum information onto the
classical DOF. We also reviewed how the hybrid quantum-classical theory can be derived from a partial
Wigner transform and a semiclassical limit of the QLE only in the case when the bath is described
by canonically conjugate coordinates. After this, we discussed how to treat quantum subsystems
embedded in both non-canonical and non-Hamiltonian bath. In all cases, the mathematical object
representing the state of the system is an operator-valued quasi-probability function that depend on
the coordinates of the bath and whose equation of motion depends on the specific case under study.
It is explained how classical spin baths are described in terms of non-canonical coordinates and how
this fact leads to the appearance of an off-diagonal open-path geometric phase in the dynamics of the
operator-valued quasi-probability function of the system. We then discussed how the effect of thermal
baths can be implemented by means of a stochastic, quantum-classical Langevin dynamics and by
means of a deterministic, non-Hamiltonian Nosé-Hoover thermostatted dynamics. The formulation
of the dynamics in both the spin and Nosé-Hoover case was achieved by generalizing the quasi-Lie
bracket of the canonical case.

The formalisms were presented in such a way to shed light on practical implementation via
computer simulation algorithms. The particular class of algorithms upon which we focused is
based on the unfolding of the evolution of the operator-valued quasi-probability function in terms
of piecewise-deterministic trajectories evolving on the adiabatic energy surfaces of the system.
These methods scales favorably in terms of bath DOF but, to date, have been limited to relatively
short time intervals and Markovian systems. When the dynamics is non-Markovian, the memory
function, i.e., the autocorrelation function of the random force [3,110], cannot be approximated by
a delta function. The memory function of the bath can be expected to become more and more different
from a delta function as the quantum character of the bath becomes more pronounced (for example,
at low temperature) and as the subsystem-bath coupling grows in strength.

The QCLE discussed herein constitutes an approach to open quantum system dynamics (in the
case of hybrid quantum-classical systems) that is both distinct and complementary to that given by
master equations [3,110]. Within the QCLE approach, the degrees of freedom of the bath are not
integrated out of the dynamics but are explicitly taken into account at every time step. Hence, there is
no memory function to be approximated and bath properties can be calculated with the same ease
with which subsystem properties are computed. The limitations of the QCLE approach are mostly
numerical in character and arise in the SSTP algorithm, herein discussed, from the momentum-jump
approximation and the accumulation of fluctuating statistical weights associated with the Monte Carlo
sampling of the quantum transitions of the subsystem.

The QCLE-based approach to quantum dynamics in classical baths has proven to be successful
in modeling a variety of quantum processes in the condensed phase. Nevertheless, the currently
algorithms also present significant challenges, necessitating the need for further improvements and
developments. In light of the above, we hope that this review will attract the attention of a broad
community of researchers and spur further work along this direction. In addition to further algorithm
developments, we are interested in broadening the scope of applications studied by this approach.
For example, based on preliminary results, we believe that this approach can be successfully applied
to studying the interplay between quantum and classical fluctuations in hybrid nanoscale devices.
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SSTP  Sequential Short-Time Propagation

Appendix A. Representation in the Adiabatic Basis

In the adiabatic basis, Equation (19) reads

d )
EWMC/(X,t) = — Zlﬁaa/,ﬁﬁrwﬁﬁ/(x,t) , (Al)
g’
where
Wow (X, 1) = (0 QIW(X,1)|a’;Q) (A2)

are the matrix elements of the density matrix. Upon defining the Bohr frequency as

Ey — Ey
Wyp! = % ’ (A3)
the Liouville super-operator may be written as
i‘ca’a’,ﬁﬁ’ = iwaa"saﬁ‘sa’ﬁ’ + 5aﬁ5a’ﬁ’iLm’ + na’,ﬁﬁ’ . (A4)
We have also introduced a classical-like Liouville operator
. P o 1/, W\ O
iLw = 330" 2 (R +Fy) a5 (A5)
where
oE
[ SR
Fy = 20 (A6)
is the Hellmann-Feynman force.
In Equation (A4), the transition operator T, gg is defined as
P 1 9 P, 1., 9
7;“/’5/;/ = éu/ﬁ/ﬂ . da/g <1 + ESMS N ﬁ) + ‘)D‘ﬁM N da/ﬁ/ (1 + Esa/ﬁ/ N ﬁ) . (A7)
In turn, the transition operator is defined in terms of the shift vector
Ey —Ey
Seat = %drxﬂ (A8)
M Y%aa’
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and of the coupling vector
Aot = {5 Q‘ "X Q). (A9)

Appendix B. The Nosé-Hoover Thermostat

The Nose-Hoover thermostat was originally formulated in Refs. [111,112]. Herein, we follow

Refs. [92-94]. The Hamiltonian of the subsystem with phase space coordinates (R, P) is:
B p?

H> = —+V(R A10

S HV(R), (A10)

where V(R) is the potential energy. One can introduce an extended system comprised by the

coordinates of the original subsystem augmented with the additional variables Q, and conjugate

momentum P;. The dimension of such an extended phase space is obviously 2N + 2, which is

computationally tractable whenever N is computationally tractable. As a consequence, the phase space

point of the extended system is

R
xN = %’7 , (A11)
P n
while the energy reads:
2
HN = H°+3NkgTQ, + ZM, (A12)

where M is a fictitious mass associated with the additional degree of freedom, kp is Boltzmann
constant, and T the bath constant temperature. In order to define time evolution, we abandon
the Hamiltonian structure of the theory. To this end, using the general formalism of Refs. [92-94],
we introduce the antisymmetric matrix:

0 0 1 0
0 0 0 1
N
= Al
B -1 0 0 —-P |’ (AL3)
0 -1 P 0
so that Nosé’s equations of motion can be written as
) 2(N+1)
XN = 1121 XYUNBYVNHN = 2 BY, VNHN, (A14)

where the first equality on the right-hand side of Equations (A14) introduces the Nosé bracket, while the
extended phase space gradient is denoted as V]N =09/ ax}“. We remark here that the Nosé bracket does
not satisfy the Jacobi relation [92-94], and thus defines a quasi-Hamiltonian algebra. The Liouville
equation for the Nosé distribution function is

9 .
SWNGN = =T IR (RN (XN )

ot (A15)
— (DR X TR - N ) WN(XN, 1) =0,
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where the compressibility of the phase space reads:
2(N+1) 2(N+1)
No= Y WK = Y BN UNVNEN. (A16)
k=1

kj=1

As implied by Equation (A16), Nosé’s phase space flow has a non-zero compressibility (however,
this does not always occur for a quasi-Hamiltonian dynamics). In terms of the Nosé bracket,
the equilibrium Liouville equation for Nosé distribution function reads:

WN(XN)TNBNTNEN = NyN(xNy (A17)

By direct substitution, one can verify that the solution of Equation (A17) is:
WN(XN)  « exp[-w]d(E—HY), (A18)
where w is defined by the equation dw/dt = xN. Equations (A14) can be written explicitly in the form:

P

R = — Al
M (A19)

. oV P,

p = _ﬁ_PNTW' (A20)

5, — i A21

Qq - mr ( )

. p2

p, = MkaBT. (A22)

In order to write explicitly the Nosé distribution function, it is useful to introduce the following

extended phase space function:
P2

H'=HBP 4+ L. A2
+ oM, (A23)
Using the equations of motion, one finds
— == T— A24
i = Nk (A24)
which is related to the compressibility by
P, dHT
N_ 5
=—-N— M, =p—— T (A25)

At this point, we have all the ingredients that are needed to prove that extended phase space
averages of functions of the subsystem coordinates (R, P) can be written as canonical averages. We start
by considering

(AR, P))x o /dXNe’f"Ndfé(EfHN)A(R,P)

T
/ dRAPAQ,dP,e P i 5(E — HN)A(R, P) (A26)

/ dRdPAQ,dP,ePH' 5(E — HN)A(R, P) .
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The integral
/dQ,?(S(E — N (A27)

is calculated by using the identity

2 5(Qi] - Qﬂo)

5(f(Qy)) =
! {Qz/g} %(QVO)

(A28)

where the sum runs over the zeros Qy, of f(Q,). Upon identifying f(Q,) = E — HY, one gets
Qyo = HT — E/N and

s(r(Qy) = (@ =b0r ZEN)

with the above results, the integral over Q, becomes a trivial Gaussian integral over P:

g
/dPne Pty — /M, ks T . (A30)

(A29)

Finally, one obtains:
(AR, P))y o /dePe’/SHBA(R, P) = (A(R,P))can - (A31)

Hence, averages in the canonical ensemble can be calculated by letting the trajectories evolve
according to Nosé’s dynamics.

The quasi-Hamiltonian Nos¢ dynamics is a well-established tool of molecular dynamics
simulations. In practice, it is adopted whenever one wants to calculate dynamical properties at constant
temperature and/or study phase transitions. Discussions and pointers to the relevant literature on the
subject can be found in Ref. [127].

Appendix C. Stationary Operator-Valued Nosé Quasi-Probability Function
The quantum average of any operator WN(XN), in a dynamics where the temperature of the X
degrees of freedom is controlled by the Nose-Hoover thermostat can be calculated as

(ROXN, 1) = Tr’/de WN (XN, )2 (xXN) . (A32)

The action of exp (i£Nt) can be transferred from (XN) to WN(XN) by using the cyclic invariance
of the trace and integrating by parts the terms coming from the classical brackets. One can write

icN = % [N, - %QNV\TB?N — UNBYNANY . (A33)
The action of i£N on an arbitrary operator §(XV) is defined by

N = AN A] - AN ENETNG - TNE TN (a3t

when integrating by parts the right-hand side, one obtains a term proportional to the compressibility

N — UYNBNYNAN. As a result, the quantum Liouville operator, partially depending on phase space

variables, is non-Hermitian

K

(i[ZN>+ — N kN (A35)
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The average value can then be written as
) =T / aX R(XN)exp [~ (LN + kM)t WN(xN) . (A36)

The operator-valued Nose quasi-probability function evolves under the equation:

GWNCN ) = —f [N AN, 1] + § (ENONBNININ (N, 1) — N (N, 1 TNBNTNAN) (A37)
—kN(X)Wn (X, t) .
The stationary operator-valued Nosé quasi-probability function WN* is defined by
(LN +KNYWNe =0, (A38)

To find the explicit expression, one can follow Ref. [41]: the density matrix is expanded in powers of /1

e _ Z nr AN (k) (A39)
k=0

and an explicit solution in the adiabatic basis is searched for. On such a basis, the Nosé-Liouville
operator is expressed by Equation (80) and the Nosé Hamiltonian is given by

P2 P
HY =
NT oMt 2M,,

+ NksTQy + Ex(R)
2 (A40)

= HI(R,P)+ =+ NkgTQy .
1

2M

One obtains an infinite set of equations corresponding to the various power of /

iYW = 0 (A41)
iHN, W = LN, N +ZTM e Wa ™ (> 1) . (A42)

In order to ensure that a solution can be found by recursion, one must discuss the solution of

Equation (A42) when calculating the diagonal elements WI(\I”E)M in terms of the off-diagonal ones

WIS;?M/. To this end, using W;\i",e k) — (WI\,I’e’<k))*, ﬂa,ﬁﬁ, = wa, 8 and the fact that 7;%% = 0 when

(a4 [
a real basis is chosen, it is useful to re-write Equation (A42) in the form

Le(k
(ZLo.a + K Ij;ﬁ/ 2Re < an ﬁﬁ/ ,;IB'( >) . (A43)

One has [92] (—iLY, — xN)" = iLY,. The right-hand side of this equation is expressed by means of
the generalized bracket in Equation (74): Hy; and any general function f(H;) are constants of motion
under the action of iLl,. The phase space compressibility N associated with the generalized bracket
in the case of Nosé dynamics is

2 pZ
= ﬁdt (P oM, (R)>

_ by d 7
= —ﬁNE*—ﬁNEHu,

(Ad4)

where N is the number of classical momenta P in the Hamiltonian.
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To ensure that a solution to Equation (A43) exists, one must invoke the theorem of Fredholm
alternative, requiring that the right-hand side of Equation (A43) is orthogonal to the null space
of (iLN)t = —iLN, — «N [143]. The null-space of this operator is defined by the equation
(LY, + tN) G (X) = 0, with G4 (X) = f(HY) exp(—w}). Hence, the condition to be satisfied is

' - Ne,(k
/dXNe “ Y 2Re (TaapWps ™) F(HY) =0 (Ad5)
B>p
The fact that 2exp(—w,)Re (7;“,/5’3/ W;I;\/I;e’<k)
function of P guarantees the validity of Equation (A45).
The formal solution of Equation (A43) can then be written as

) and f(HY,) are, respectively, an odd and an even

Ne,(k) _ (rN Ny—1 N,e, (k)
Wi ® = GIN 4 xN) ﬁglzr{e (m,ﬁﬁ/wﬂﬂ, ) , (A46)

and the formal solution of Equation (A42) for & # &’ as

Ne,(n+1 i Ne,(k i Ne,(k
W) . (zLaNa,HN)wm,e(LTZm,ﬁﬂ,wﬁ;(). (A47)
an’ HMc’ﬁﬁ’

Equations (A46) and (A47) allow one to calculate Wolc\gf to all orders in /i once Wx’,e (0) is given.

This order zero term is obtained by the solution of (iLY, + NWRO = 0. All higher order terms
are obtained by the action of H;\L,, the imaginary unit i and 7,ugp (involving factors of d,, P and

derivatives with respect to P. Hence, one can conclude that functional dependence of WI(\?E) e

(" One can find a stationary
solution to order /1 by considering the first two equations of the set given by Equations (A41) and (A42):

on

the Nose variables Q; and Py is preserved in higher order terms Waljf ’

0 (fork=0), (A48)

+% (HN‘€BNVWN£'<°) + WNref<°><€BN?HN) (fork=1). (A49)

[ aNy WN,e,(O)]

i [HN, WN,e,(l)]

For the #° term, one can make the ansatz

ANe© _ 1 N N
O~ K (5 ) . w0
where ZN is
ZN = Z/d/vl 5 (€0~ HY) (A51)
®
and obtain
A Ne,(1 P A Ne(0) |1 — e PEE) _B(E,—
Wlm/e( ) = *lﬂdmx/ Mée( ) |:EaEa/ +§ <1 +e ’B(E"‘ Eﬂ‘)) (A52)

for the 71 term.

Equations (A50) and (A52) give the explicit form of the stationary solution of the Nose-Liouville
equation up to order O(). One can now prove that, when calculating averages of quantum-classical
operators depending only on physical phase space variables, G, (R, P), the canonical form of the
stationary density is obtained. It can be noted that it will suffice to prove this result for the
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70 term since, as discussed before, the differences with the standard case are contained therein.
Indeed, when calculating

G(RP) & =Y [axNe G, (R, P)3(E — HE - NksTQ,), (A53)

considering the integral of the delta function over Nose variables, one has

/ dP,dQy e N15(E, — HT — NksTQy) = const x exp[—BH]] , (A54)

where the property 6(f(s)) = [df/ds]s_:lSO(S(s — 50) has been used (s is the zero of f(s)).
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Abstract: We studied the high-harmonic generation (HHG) of a two-level-system (TLS) driven by
an intense monochromatic phase-locked laser based on complex spectral analysis with the Floquet
method. In contrast with phenomenological approaches, this analysis deals with the whole process as
a coherent quantum process based on microscopic dynamics. We have obtained the time-frequency
resolved spectrum of spontaneous HHG single-photon emission from an excited TLS driven by a
laser field. Characteristic spectral features of the HHG, such as the plateau and cutoff, are reproduced
by the present model. Because the emitted high-harmonic photon is represented as a superposition of
different frequencies, the Fano profile appears in the long-time spectrum as a result of the quantum
interference of the emitted photon. We reveal that the condition of the quantum interference depends
on the initial phase of the driving laser field. We have also clarified that the change in spectral features
from the short-time regime to the long-time regime is attributed to the interference between the
interference from the Floquet resonance states and the dressed radiation field.

Keywords: high-harmonic generation; fano effect; quantum interference; Floquet method; complex
spectral analysis

1. Introduction

The advent of ultrafast strong light sources has opened up a new era of optical science,
called attosecond physics [1,2]. Recent advances in the manipulation techniques of a laser light
pulse, such as carrier-envelope-phase (CEP) control, has enabled us to induce coherent electron motion
with sub-femtosecond precision. The well-controlled coherent electron motion is a source of the
high-harmonic pulse in the XUV region to the X-ray region [3-10]. These attosecond light pulses are
now the most powerful tool to explore the real-time dynamics of electronic motions in atoms and
molecules on the attosecond time scale [11-16].

Recently, HHG has been experimentally observed also from solids, such as in
semiconductors [17-21], topological phase materials [22], low-dimensional materials [23], thin films [24],
and amorphous solids [25]. Some have used two-color light beams, such as near infrared and far infrared,
to clearly distinguish the different electronic excitations, which are sometimes called high-order sideband
generation (HSG) [26-29]. Even though coherent electronic motion in solids is different from that of
atoms and molecules, characteristic features of the HHG spectrum, such as the plateau and cutoff,
are common to those from atoms and molecules. These experiments indicate that the fundamental
mechanism of the HHG photon emission is the same, whether from atoms, molecules, or solids [30].
Therefore, it is essential to clarify the microscopic mechanism that determines how the quantum
coherence of an electron induced by the driving field is transferred to a high-harmonic photon through
nonlinear interaction between the electron and the driving field. Developing the microscopic theory of
HHG, one has to keep in mind that HHG photon emission is a spontaneous photon emission because the
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radiation field with the high-harmonic frequency is initially in the quantum vacuum [31,32]. For a precise
argument, it is necessary to include the entire HHG process as a coherent quantum process, including the
free radiation field as an environment.

Most conventional theories, however, have employed phenomenological treatments that may
terminate the quantum coherence in the HHG process: for example, the HHG emission spectrum
is calculated classically based on Maxwell’s equation [2,6,33-35], or the Markov approximation is
used in a master equation with a phenomenological parameter [18,27,30,36]. In fact, how to interpret
the dissipative spontaneous photon emission within the framework of quantum mechanics has been
a debate since the early days of the theory [37—40], as an irreversible decay process contradicts the
time-reversible quantum dynamics. As a solution to the problem, a new formalism, i.e., complex spectral
analysis, has been explored over the last two decades, so that the Hamiltonian can take complex
eigenvalues by expanding the vector space to the extended Hilbert space [41-48].

In this contribution, we apply complex spectral analysis to study the HHG, using the Floquet
method to take into account a non-perturbative interaction between the electron and the driving
field. The total system under consideration consists of not only the strongly coupled matter and
driving laser field, but also the free radiation field with a continuous spectrum. We solve the complex
eigenvalue problem of the Floquet Hamiltonian of the total system in the extended Hilbert space.
The time evolution of the quantum state is then described by the eigenstate expansion of the total
system, and thereby the quantum coherence is retained. We study the HHG of a two-level system
(TLS) driven by an intense monochromatic phase-locked laser and obtain the analytical expression for
the time-frequency resolved spectral amplitude for a HHG single-photon observation.

We show that the calculated HHG spectrum exhibits the characteristic features of HHG from
solids. We reveal that the quantum interference of the Floquet resonance states causes a Fano-type dip
structure in the HHG spectrum. Moreover, we show that quantum interference between the Floquet
resonance states and the dressed field states are responsible for the temporal change in the HHG
spectrum from the adiabatic regime to the stationary regime. Because the superposition of the photon
states with different frequencies depends on the initial phase of the driving laser, we can quantum
mechanically control the HHG photon emission by changing the phase of the laser.

2. Model

We consider spontaneous emission from a TLS excited by a delta-function pulse. The excited TLS
is driven by a monochromatic phase-locked laser field with amplitude &, and frequency w/2 with a
phase 6 relative to the excitation delta-pulse as shown in Figure 1. Starting from the minimal coupling
Hamiltonian under the dipole approximation, the total Hamiltonian, composed of the electronic system
and the radiation field, is represented by [31].

driving laser field -
excitation pulse

lg)

Figure 1. High-harmonic generation of a driven TLS.

H(t) = Ex|1)(1] + (E1 + 80)[2) (2] + £(#) (11) (2] + [2){1)

1
+/wka;ﬁkdk+A/ck(|1><z|+ 12)(1]) (4 + af)dk , ™
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where |1) and |2) represent the ground and excited states with energies E; and Ej, respectively, and
Ao = E; — Eq. We classically describe the monochromatic phase-locked laser field as

E(t) = &ycos < 2

wt + 6)
Conversely, the scattered bosonic radiation field is dealt with quantum mechanically: a4 (12;;)
represents the free radiation field with energy wy = c|k|, and A is a dimensionless coupling constant,
where we consider ¢ = 1. The coupling coefficient Cy is given by C; = v/w) except for a constant
factor [31].
As shown in Appendix A, under the condition of

52
ZZO > Ao > &, 3)

the Hamiltonian H(t) can be written in terms of the adiabatic basis of |¢) and |e) given in
Equation (A12). Under the rotating wave approximation, the Hamiltonian is given by

Baa(t) = Bolg) (g] + (Be + Acos(wt + ) [e) (e + [ cndfandk+ A [ ¢ (le)(glaw +1)elaf) dk, (@)

where we have defined the renormalized amplitude as
A= ——. ®)

In this paper, we consider a one-dimensional system for simplicity, which does not influence our
main results. Hereafter, we simply write H,q(t) as F(t).

Because the number of elementary excitations does not change in H(t), the evolution of the
state is closed in a single-excitation subspace of the dressed atom states of |¢) ® |0) = |d) and
|9) @ [1;) = |k) [49]. Then, the Hamiltonian FI(t) in this subspace is represented by

H(t) = (Mg + Acos(wt +0)) |d) (d] +/wk|k>(k|dk+)\/ck(|d>(k| + [k)(d|)dk , (6)

where the energy difference is defined by Ag = E, — Eg, and we take Ey as the origin of energy. In terms
of the renormalized amplitude, the intensity of the driving field is given by | A cos(wt + 6)|?, so that
the maximum intensity is AZ.

Because the Hamiltonian is time-periodic, H(t + T) = H(t) with T = 27t/ w, the Floquet theorem
may be applied: the wave vector can be written as

¥ (1) = ;cge*"zﬁlcbg(t» , @)

with a periodic Floquet eigenfunction [®¢(t + T)) = |®g(t)) with the Floquet quasi-energy z¢ [50-52].
The composite space F = R ® T is made up of the configuration space R and the space 7 of periodic
functions in time with period T [50]. The conjugate basis set {|x,)} to the time basis set {|t)} is
constructed as

k) = T/ dte™|t), (8)
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where k, = nw =2n/T (n=0,1,---) [53]. It is well known that the Floquet eigenstate possesses
mode-translational symmetry [50]

@0 (1)) = explirat][@L) (1)) , 20" =2 +nw, ©)
where (1) denotes the Floquet mode index and ¢ classifies a state within a Floquet mode space of ().
In terms of the conjugate basis set, the Floquet Hamiltonian is represented by

0

A= 3 B0+ n@)ldm) (@il + 5 5 [ ) (@ sl + e 1m0 (4w

0 0 (10)
+ ¥ @t ne)llmn) (ol + A Y[ Cullka) (@l + 1)  ldk

n=—oo n=—oo

where |-)) denotes the vector in the composite space F.

In Equation (10), the first two terms represent the strong coupling between the TLS and the
driving field in the Floquet composite basis. We note that the first two terms can be diagonalized in
terms of the Wannier-Stark basis [50] given by

) = X e @)ld, k) v

m=—0o0

where J,,(x) is the n-th order Bessel function of the first kind and « = A/w. Please note that the
Stark state is represented as a coherent sum of the bare discrete states in terms of the Floquet modes.
Then, the Floquet Hamiltonian Hp can be rewritten as

A= 3 {0t nlof ) (0f” 1+ [ (r-t nll xo) (k|
— (12)
A Y [ umn@) () (0 90 (k) i,

where the first and second terms represent the diagonal Floquet energies for the Stark states and the
continuous states, respectively. The last term of Equation (12) shows that that the TLS couples with the
radiation field with different Floquet modes and the nonlinear interaction depends on the initial phase
of the driving field. Please note that this coupling represented by the Bessel function is nonlinear in
terms of the driving field amplitude a.

3. Complex Eigenvalue Problem of the Floquet Hamiltonian

The original time-dependent problem now becomes a time-independent eigenvalue problem,
where we may employ the established method to solve the complex eigenvalue problem of the
Hamiltonian. The difficulty arises, however, when we try to solve the eigenvalue problem by keeping
the unstable discrete states in the spectrum in ordinary Hilbert space in the composite space because
of the resonance singularity in the interaction between the TLS and the free radiation field [54].

To solve the problem of the resonance singularity, we extend the eigenvector subspace to the
extended Hilbert space, where the norm of the eigenvector vanishes [41,42,44,46-48,55]. The complex
eigenvalue problems of A read

Ap@l) = 2" o), (@A = 2 (@], (13)

where the right-eigenstate \CD,(;") )) and left-eigenstate ((@é") | have the same complex eigenvalue zé").
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The complex eigenbasis of |d>én) ) and ((&Dé"” satisfy the bi-completeness and bi-orthonormal
relation [41,46,53]:

;@f;)» (@ =1, (14)
|®

é ))) = 5§¢,5n I (15)

where 5K]r is the Kronecker delta.
The eigenvalue problem of the Floquet Hamiltonian was solved in terms of the
Brillouin-Wigner-Feshbach projection method, as shown in Appendix B [46-48,53].

In the weak coupling case A < 1, the right-resonance eigenstate is given by

]” m( ) —i(n—m)o

(wi + mw)}t -
2=2

@) = (910”0 g™ + AL [ dkcg kxa) ¢, (16)

where the + sign in the denominator of Equation (16) indicates the analytic continuation of z from
the upper half of the complex energy plane [41]. The second term of the curl bracket shows that the
resonance states are given by the superposition of the discrete Stark state \(pl(in) )) and the free radiation
field |k, x, )) belonging to the different Floquet modes with the laser phase-dependent weighted sum
of the Bessel function. The left-resonance eigenstates are also obtained by first taking the Hermite
conjugate, and then the same analytic continuation with the + index instead of the opposite analytic
continuation [41,46,53]. The complex eigenvalue of the resonance state is obtained by solving the
nonlinear dispersion equation

+o00
o) = xiu(e) = B0t nw+ 22 Y o (@) —m@)fiu(a) (7)
m=-—00

where the dynamical self-energy )(;r/n(z;n)) is defined by Equation (A17) and the scalar self-energy
function is given by Equation (A18). Of special importance is the fact that the self-energy in the
right-hand-side depends on the eigenvalues, which originate in the nonlinearity of the eigenvalue
problem of the effective Hamiltonian, as shown in Equation (A19). It should be emphasized that only if
we take into account this nonlinearity will the eigenvalues of the non-Hermitian effective Hamiltonian
coincide with the Hermitian total Hamiltonian [41]. We have solved this dispersion equation iteratively
to obtain the complex eigenvalues of the Floquet Hamiltonian, and we have thereby considered the
nonlinearity of the eigenvalue problem of the effective Hamiltonian, as shown in Equation (A14).
The resonance state decays exponentially, with the decay rate given by the imaginary part of Z,(;n>~
The dressed continuous right-eigenstates are also obtained in Appendix B.2 as

) = [k, k) + ACK Y Jnn(@)e
k T kL wk+nw+10+—xn1mD(wk+nw)

m Cio o (@)™ "MK ) K
{¢d +AZ/ wkfwkr (nfm’)cu+10+ ’

m’

(18)

where Xn*/n/D(e) is the dynamical self-energy, defined by Equation (A17), with the delayed analytic
continuation from the upper half plane [41,46]. The continuous left-eigenstate has been similarly
obtained without taking the delayed analytic continuation. The dressed continuous right-eigenstate

(m)

@,((n))) and the left-eigenstate <(<i>,((n>\ have the same real eigenvalues of z; ' = wj + nw that is
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equivalent to unperturbed energy. The right- and left-eigenstates of the resonance states and the
dressed continuous states satisfy the bi-completeness relation in the composite space F as

= {1 (871 [ axie ({1} (19
n

This decomposition of the identity makes it possible to represent any state vector of the total
system in terms of the complex spectral expansion.

Using Equation (14), the state vector at time ¢ in the R space is given by the Floquet eigenstates
as [50]

0) = ¥ 5 0l ()@ (0)[¥(0)) 20)
i; n

:;Ze et i) (1)) (&0 (0)]¥(0) (1)

= ; =100 (1) @ (0)¥(0)) (22)

where we have used the Floquet mode-translational symmetry Equation (9). Using Equation (19),
the state vector is given by

¥(0) = e =0 (1)@ 0)[¥(0) + [ake 0" (1)@ O)[¥(©) . @)

It should be noted that the wave function of the emitted single photon is described as the
superposition of the single photon states with different frequencies, as shown in the second term of
Equation (23).

4. HHG Spectrum

In this work, the HHG spectrum is studied in the case where the TLS is excited from |g) to |e) at
t = 0 by a single-photon pulse. In this case, the spontaneous HHG single-photon emission spectrum,
defined as the probability of detecting an emitted photon with frequency wy during the observation
interval t, is obtained by

S(wi 1) = (afag), = |(kIE (), (24)

with |[¥(0)) = |d) [31,56,57]. Substituting the right- and left-eigenstates of Hp in Equation (23),
the analytical expression for the spectral amplitude is obtained as

— —12 ]m( ) —iwyt o ]m(a)e—imﬂ
(k[¥(t)) = —ACk m;we s 7[% T + ACre ™"k m;w P o o
d
L , , J] ( ) —i(w' —mw)t
- znw"nz,,./r R Y I (OGS Py
1 ]I n( ) iI-n)e

= Xlr,l(w/) w' +i0F — (wy + nw) )

= sp(k,t) +sc(k,t) +sgr(k, t), (26)

where p(w) is the density of states of the free radiation field, and Czdk = C?(w)p(w)dw with w = clk|.
Equation (25) is the principal result of this paper: the contributions of the resonance state and
the dressed continuous states are analytically decomposed in the first (sg) and second (sc) terms,
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respectively. While the first term decays exponentially with time, the second term does not decay over
time, giving a stationary HHG spectrum. The third term (sgr) represents the branch point effect [41,44],
where the contour of the integral denoted by I' is taken in the different Riemann sheets at the branch
point. This term represents the non-Markovian effect, only contributing to the very short time known
as Zeno time, or the very long time known as the long-time tale [44]. The contribution of the third term
is very small in the present case, with a large amplitude of the driving laser field.

In Figure 2, we show the -calculated results of the long-time HHG spectrum
Seo(wk) = limy—00 S(wy, t) for the following parameters: Ay = 20,4 = 10, A = 0.06, and 6 = 0 in (a)
and 6 = —7r/2 in (b). We take these parameters to approximately represent the experiments of WSe,,
such as the driving laser field frequency 271/w ~ 20 THz, the band gap between the valence and the
conduction bands Ay ~ 400 THz [27]. The driving laser amplitude s = A/w is determined so as to
agree with the cutoff energy of the experiments 71of¢/ficv >~ 10.

(@) 9=0 (b)yg
1074 1074
10-3 103
30 3 10
o 8
@ 407 @107
108 10-8
107 [ 109 B
0 10 20 30 40 50 0 10 20 30 40 50
Photon energy wy Photon energy wy

Figure 2. Stationary HHG spectrum Seo (wy) for Ag = 20,2 = 10,A = 0.06. (a) = 0 and (b) 6 = —71/2.
The fundamental spontaneous emission spectrum at wy = 20 is shown by the dashed lines. The red
marks indicate the absolute value of the Bessel function |J;(a)|?.

The intensity of the mth-order high-harmonics of the long-time HHG spectrum is mostly
determined by the absolute values of the Bessel function |J,;(a)|?, as shown by the red marks in the
figures. The characteristic features of the HHG spectrum, such as the plateau and cutoff, are explained
by the behavior of the Bessel functions. Because the ratio of the successive order of the Bessel function
is evaluated as | [, (a)/J—1(a)|? =~ (a/2m)? for m 2 a, the intensity of the high-harmonics sharply
drops at m ~ a. Consequently, the cutoff energy is determined by the amplitude of the laser field a, and
not by the intensity a2, underlining the typical feature of the HHG spectrum from solids [17-19,21].

The cross terms of the different Floquet modes in Seo (wy ) represent the quantum interferences of
the photon emissions from them. Because of this interference effect, Fano-type dip structures appear
in the plateau region, as shown in Figure 2. Because the coefficients in the summation in Equation (25)
include the initial phase of the laser, the spectral profile of the stationary HHG spectrum is also affected,
as shown in Figure 2a,b. Hence, it is possible to quantum mechanically control the HHG photon
emission by changing the initial phase of the driving laser field.

Within the decay time of an excited state, the resonance state components crucially contribute to
the temporal profile of the HHG spectrum. As seen from Equation (25) the first and second terms have
opposite signs; hence, the spectral amplitude cancels out at t = 0, except for the small branch point
effect. As the resonance component decays exponentially with time, the spectral cancellation weakens,
approaching the stationary HHG spectrum. In Figure 3, the temporal change of the HHG spectrum
is shown, where the components of the resonance and dressed-continuous states are separately
depicted. Although spectral cancellation of the resonance and dressed field states has been studied in
configurational space for a simple spontaneous emission system [44], the present result demonstrates
spectral cancellation in the frequency domain under a strong driving field.
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Figure 3. The temporal spectral profile of HHG S(wy, t) (black line) for wt = 7t/4 (a), /2 (b), 7 (c),
and 27 (d), where the same parameters of Figure 2a are used. The resonance state [sg (k, t)|*> and the
dressed continuous state (—1)|sc (k, t)|> components are depicted by blue and red lines, respectively.
The excited state energies E,(t) = Ag + A cos(wt + 0) are indicated by the arrows.

The resonance state components of the HHG not only reduce its intensity in time, but also
change its spectral shape as a result of the interference of the Floquet resonance modes, as shown
by the blue curves in Figure 3, while the dressed-continuous state components retain their spectral
shape. Because of the interference of the Floquet resonance states, the peak position of the HHG
spectrum adiabatically follows the temporal excited state energy E.(t) = Ag + A cos(wt + 6), as shown
in Figure 4. In time, the adiabatic behavior of the transient HHG asymptotically approaches the
stationary HHG spectrum.

0.0004

I 00010
0.0008
0.0006
0.0004

0.0002
0.0002

0 0
0 10 20 30 40 0 10 20 30 40

W W

Figure 4. The transient HHG spectrum for 6 = 0 (a,c), and 6§ = —71/2 (b,d). The parameters are the
same as in Figure 2. The red curves in the contour maps (¢,d) indicate E,(t).
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5. Concluding Remarks

We have studied the HHG from a TLS driven by a monochromatic phase-locked laser field in
terms of complex spectral analysis for the total system, including the free radiation field, where we
have treated the spontaneous HHG photon emission as a coherent quantum process. We have obtained
the complex eigenstates of the Floquet Hamiltonian in the extended Hilbert space with the use of the
Wannier-Stark basis, going far beyond the ordinary perturbation method. The decomposition of the
identity in the extended Hilbert space is represented by the exponentially decaying Floquet resonance
states, with complex eigenvalues, and the stable dressed radiation field, with real eigenvalues.
These eigenstates are written as a superposition of the different Floquet mode states. The time
evolution of the quantum state is then described by the eigenstate expansion of the total system;
thereby, the quantum coherence is retained.

We have obtained the analytical expression of the time-frequency resolved spectral amplitude for
a HHG single-photon observation. The amplitude is decomposed into the Floquet resonance states and
the dressed radiation field, where the former and the latter give the transient and the long-time HHG
spectra, respectively. The calculated long-time spectrum shows a typical HHG spectral feature with
the plateau and the cutoff, where the spectral cutoff is not proportional to the driving field intensity
but the amplitude, as seen in the HHG from solids [17-21]. It is interesting to see that the simple TLS
system captures the characteristics of the HHG from solids that possess various electronic excitations.
It is likely that the two-level state excitation corresponds to the optically allowed excitation at the I’
point from a valence band to a conduction band [58,59].

Recent experiments have observed multiple plateau structures in the HHG spectrum from solids
as a consequence of the quantum interference of the different electronic excitations in solids [18,19].
In this work, we have revealed the other type of quantum interference in the HHG process:
the Fano interference between the different Floquet modes, i.e., different high-order harmonics.
This quantum interference is caused when a single emitted photon with different frequencies interferes
via a common free radiation field, similar to the quantum interference involving different energy
states of a single quanta of light [60,61]. This type of interference might be smeared out under a
phenomenological assumption.

Within the decay time, the Floquet resonance states contribute to the transient behavior of the
HHG spectrum. The transient HHG spectrum changes as if a photon emission occurs from the driven
excited state, and the emitted photon energy adiabatically follows the temporal change of the excitation
energy. We have shown that this temporal behavior of HHG is understood as a result of the quantum
interference between the Floquet resonance states and the dressed field states. Our calculation also
shows that the spectrum asymptotically approaches the long-time HHG spectrum, as the resonance
state contribution decays exponentially over time.

In the present method, the decay process of the excited state is consistently described with the
HHG process because the whole process is treated as a coherent quantum process. We find that the
decay rate increases with the amplitude of the driving field, as shown in Figure A1. This is because more
Floquet resonance is involved in the decaying process as the amplitude of the driving field increases.
In our calculation of the HHG spectrum, we have used the decay rate Z\Imzéo) (a = 10)| ~ 0.2885,
which corresponds to the lifetime of the excited state of 22 fs. (Please note that the radiative lifetime is
considered to be much longer than this value [62]). This is much shorter than the pulse width of the
driving laser used in the experiments (~100 fs) [27]. As long as the pulse width of the driving field is
longer than the lifetime of the excited state, the HHG spectrum does not depend on its pulse width.

The conventional theories of the HHG are attempting to solve the time-dependent coupled
Schrodinger equation of the electron and the radiation field as an initial value problem [31,37,57].
The problem with these theories is the validity of the Markovian approximation in deriving the kinetic
equation of the electron, as its applicability remains uncertain for the far-from-equilibrium situation
caused by the driving field [63]. Conversely, the present method attempts to solve the stationary
eigenvalue problem in the Floquet space, independent of the initial condition [46,53], where the
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irreversible time-symmetry breaking is not derived as a result of the Markov approximation for the
equation but as a rigorous result of the dynamics caused by the resonance singularity [41,42,44,55].
The present method is an extension of the complex eigenvalue problem of the total Hamiltonian to
the Floquet space. Because we have dealt with the HHG photon emission as a coherent quantum
process including the radiation field, we may study the time evolution of the quantum coherence of a
single photon with different modes (ﬁ;fzk)t, in terms of which we analyze the creation of the quantum
coherence through the nonlinear interaction of the electron and the driving field.

In this work, we have assumed the delta-pulse for the excitation pump pulse, which equally
excites all the Floquet modes by white excitation. In a real situation, the excitation pulse has a finite
pulse width that is as long as 10~100 fs. It will be interesting to study the effect of a finite pulse width
of the excitation, whereby the frequency correlation between the excitation light and the HHG photon
can be clarified. Another interesting subject is the competition between the Raman scattering process
and the luminescence process in coherent resonant scattering spectroscopy under an intense driving
laser field [64-67]. A study of the effect of the excitation pulse width on the HHG is now underway.
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The following abbreviations are used in this manuscript:

HHG  High-Harmonic Generation

TLS Two-Level System

CEP  Carrier-Envelope-Phase

Appendix A. Hamiltonian of the Driven TLS

In this section, we shall derive the driven TLS Hamiltonian Equation (4) starting from an
off-diagonal coupling of the TLS with the radiation field.

We consider spontaneous photon emission from a driven two-level system (TLS) consisting of the
ground state |1) and an excited state |2) with the excitation energy Ag = E; — E;. The TLS is driven
energetically by a monochromatic phase-locked laser field, as shown in Figure 1. The TLS is excited
from the ground state to the excited state at t = 0 by a delta-function pulse, followed by spontaneous
emission under the energy driving. The Hamiltonian is given by Equation (1):

H(t) = E1[1) (1] + (E1 + A0)[2)(2] + £(#) (11)(2 + [2)(1])
+ [tk e+ [ (1)@ +12) (1) (a5 + )k (a1
= Hris(t) + Ag + Arisr (A2)

We solve the adiabatic eigenvalue problem of the driven TLS:

Hris(8)lg;(1)) = Ai(Dle(D) , (j=+) . (A3)
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The adiabatic eigenvalues are given by

As(t) = %i%‘mgﬂgzu), (A4)

and the corresponding eigenstates are

|9+ (£)) = cos @(t)[1) +sinp()[2) ,

l¢—(t)) = —sing@(t)[1) +cos (t)[2) , (A5)
where
tan (t) = —%;) (A6)

We consider the situation where the energy gap between the ground state and the excited state is
much larger than the amplitude of the driving field:

Ay > |El, (A7)
and the amplitude is much larger than the energy quanta of the driving field,
o> w. (A8)

Under these conditions, we can rewrite H(t) in terms of the adiabatic eigenstates as

o 2E3(1) 282(t)
H(t) = A o (£) (¢ (1) + (Ao+ A ) |9+ (£)) (P (B)] (A9)
+ [tttk + A [ € (04O (0] + 16~ (1) (91 () (a1 +af ) dkc
Shifting the energy origin to —2E2(t)/Ag, we have
2 2
H(t) = (Ao + 4% + ZAﬁ cos(wt + 9)) |9+ (£)) (P (B)]
0 0 (A10)

+ [ i+ [ C(1g+ () (-] +1¢-(1) (@ ()]) (e + a) ak

With the use of the rotating wave approximation for the TLS and the free radiation field
and defining

_ _ 265 _
le) = |p+ (1)), [8) = p-()), A (A11)
we have
Aaa(t) = Folg) 8] + (E.+ Acos(wt + ) le)(e] + [ wxatardk +A [ Ce (Ie) (gl +Ig) elaf) dk.  (A12)

With the definition of Equation (A11), the above conditions for Equations (A7) and (A8) reduce to
Equation (3).
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Appendix B. Complex Eigenvalue Problem of the Floquet Hamiltonian

Appendix B.1. Discrete Floquet Resonance State

To solve the complex eigenvalue problem for the atom in the F-space, we use the
Feshbach—Brilloiun-Wigner projection method with the projection operators

mzi|wm@w

n=—oo

Os=1 2/ Ik, 100 ) (k, K dk, (A13)

n=-—00

where P, is the projection operators on the Stark basis set {\47[(1") ) }. Acting these projection operators
on Equation (13), we have a closed form of the eigenvalue problem of the effective Hamiltonian in the
P-subspace as

Fegta (28" Ba| @) = 20" Byl (A14)

(B |y a(2") = 20 (DL |8y, (A15)

where the effective Hamiltonian 4 4(z) is given by

N N A A A Ao 1
effd(z) = PyHePy + Py FQdZ_QHQQd FPi

" iHr Q4 (A16)

= Z Kb @18 (9]

nn/=—co
The dynamical self-energy x,, ,»(2) is given by
X?Jir,n/( z) = (Ao +1nw)dy, w + A2 Z]n (@) Ly —m (@)™ (z — mw)ei(n—n’)e , (A17)
with the self-energy 0" (z) represented as the Cauchy integral,

N

o) = [k (A18)

Because of the resonance singularity in the self-energy, the effective Hamiltonian becomes
non-Hermitian with the complex eigenvalues. We would emphasize that the eigenvalue problem
is nonlinear because the effective Hamiltonian depends on its own eigenvalue in the eigenvalue
problem Equation (A19). When this nonlinearity is taken into account, the eigenvalues of the effective
Hamiltonian are the same as those of the total Hamiltonian [41,47].

In our previous work, we have solved the eigenvalue problem of the Floquet Hamiltonian using
the continued fraction expansion [46]; here, the strong coupling with the driving field has been fully
incorporated in the Stark basis. With the Floquet translational symmetry Equation (9), it is enough to
consider the eigenstates for the principal mode n = 0. In the week coupling case A < 1, we can neglect
the off-diagonal component of x,, ,(z) so that the eigenvalue problem of H. 4(z) has been solved as

Fera(2)957) = 219, (A19)

where the complex eigenvalue of the resonance state is obtained by iteratively solving the nonlinear
dispersion equation
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—+o0
2V = xto @) =80+ 22 L ot (@) — mw) P (a) (A20)

m=—

The imaginary part of z‘go) is given by the decay rate of the excited state.

It should be noted that the decay rate is given by the weighted sum of the self-energy with the
Bessel function. In Figure A1, we show the calculated results of the decay rate as a functionof a = A/w.
It can be shown that if the bandwidth of the free radiation field is on the same order as w, such as for a
photonic crystal, the decay rate may completely vanish as the coherent destruction tunneling from |e)

to |g) [46].

6 s 10 ud
— 014420
~0.14425

-0.14430

Decay rate Tm[z{"]

-0.14435

Figure Al. Im [zgo) | as a function of the driving field amplitude for A = 0.06, Ag = 20, w = 1.

Now that we have solved the eigenvalue problem of . 4(z) in the P-subspace, the eigenstate of
the fotal Hamiltonian with the same eigenvalue is obtained by adding the Q-component.

1 N A A
96" = 1080+ oy Qafielul#y”)

Z; — QuHrQu
(A21)

imo
(@0 Sl +r ¥ [0 ) ¢

m=—oo wk + mw)} (0)
=z

where we take the analytic continuation toward these complex poles from the upper complex plane in
the Cauchy integral [41]. The left resonance state is similarly obtained as

39 = (69 4 (6915, A0 1
(@571 = (9| + (@ |PaHFQa RNy
(A22)

OO J—m(a)e~im?
B <(q>d ‘de )> ¢d ‘ * /\m;oo/dka [Z - wk + mw)}+zz(0) <(k, Km‘ '

d

where it should be noted that we need to take the same direction in the analytic continuation of the
Cauchy integral as with the right-resonance state to obtain the same complex eigenvalue.

The normalization constants of ((4);0) |<I>;0> )) and <(<f>;0) \4)1(10) )) are determined so as to satisfy the
bi-normalization condition of

(@y|®g) =1. (A23)

With use of Equations (A17), (A21), and (A22), the bi-normalization condition reads
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2 a
1= (70" (@10 {1 w2y [k L) } (a21)
= (@12 (I (1 - %Xo,o(z)‘ . (0)> : (A25)

Appendix B.2. Dressed Radiation Field

We take the same procedure for the radiation field of the Floquet Hamiltonian. The projection for
the continuum state is taken as

Be =Y [k ) (K, K,
n

Q=Y (|¢d’” M@ 1+ T K m) (K ) : (A26)
n k' (#k)

The effective Hamiltonian can be obtained as with the resonant state,

ot = Y_(ex + nw) |k, ) (k, % . (A27)

n

Therefore, we get the eigenvalue problem of the effective Hamiltonian (A27)

Hetixlk, kn) = (ex + nw) |k, ), (A28a)
((k, 1en| Hegte = (ex + new)((k, xa. (A28b)

We have obtained the expression for the dressed radiation field as

0) 1 5 fp
[ = |k, &, ———————QrHpP |k, ,
|2 = | K'»+wk+nw7QkaQka F Pk, wn))
= [k k) + ACk ¥ Ji—n(@)e = Y2 R (o + ) ") (A29)
i I
i(1-n)0 AVy ) k(dd) /
FAC L@ Y ) (a1 07 g ()G ) )

k(dd)
I

where Green'’s function G,

is determined by

m 1 1
Gk(dd)(z) = <(¢151 )‘Z_ _

0y _ (k)
1 OcHr O 1947 = z— (8 +1w) {5’”’1 +%XWW (2)G (Z)} - (A30)

In the weak coupling case, we may neglect the off-diagonal terms, approximating

5Kr
Gk(dd) (Z) ~ m,l

ml Tz x(z) (A31)

Therefore, we finally obtain
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AC]1n(a)e'="°
T W+ nw +i0t — XIJ,rI,DL(“’k + nw)

) )‘Ck’]lfm(a)e_i(l_m)g /
R kl(z#:k) ; Wy +nw +i0% — (wy + mw) Womn] (A32)
ACkJ_n(a)e "= mP
wi +nw +i07 — x; (wi + nw)

10" = |k, k) +

«ﬁW:%mH;

(K, xm|| (A33)

) /\Ck’]lfm(a)ei(lim)e
x| (971 + k/gk) ; Wi+ nw +i07 — (wp + mw)

which give Equation (18).
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Abstract: Non-pairwise additive three-body dispersion potentials dependent upon one or more
electric octupole moments are evaluated using the theory of molecular quantum electrodynamics.
To simplify the perturbation theory calculations, an effective two-photon interaction Hamiltonian
operator is employed. This leads to only third-order theory being required to evaluate energy shifts
instead of the usual sixth-order formula, and the summation over six time-ordered sequences of
virtual photon creation and annihilation events. Specific energy shifts computed include DD-DD-DO,
DD-DO-DO, DO-DO-DO, and DD-DO-OO0 terms, where D and O are electric dipole and octupole
moments, respectively. The formulae obtained are applicable to an arbitrary arrangement of the
three particles, and we present explicit results for the equilateral triangle and collinear configurations,
which complements the recently published DD-DD-OO potential. In this last case it was found
that the contribution from the octupole weight-1 term could be viewed as a higher-order correction
to the triple-dipole dispersion potential DD-DD-DD. In a similar fashion the octupole moment is
decomposed into its irreducible components of weights-1 and -3, enabling insight to be gained
into the potentials obtained in this study. Dispersion interaction energies proportional to mixed
dipole-octupole polarisabilities, for example, are found to depend only on the weight-1 octupole
moment for isotropic species and are retarded. Additional approximations are necessary in the
evaluation of wave vector integrals for these cases in order to yield energy shifts that are valid in
the near-zone.
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1. Introduction

It is well-known that the contribution to the total interaction energy arising from the non-pairwise
additive three-body van der Waals dispersion potential is very small [1]. In a few cases, however, it
can be significant enough to warrant consideration and eventual inclusion [2,3], as sometimes also
occurs in Casimir-Polder [4] and Casimir-Lifshitz [5] interactions. One of the best-known examples is
provided by the crystal energy of rare gas atoms, in which the closely packed structure found in the
solid phase is stabilised by an additional 5-10% of the total energy when the triple-dipole dispersion
energy term is accounted for. Another area, of wider applicability, in which many-body effects are
known to be important, is the design and computation of inter-particle potential energy functions.
This is motivated by the desire for ever-greater accuracy, and incorporating a host of chemical and
physical phenomena in order to improve the transferability of the surface generated. Recent efforts
have been spurred on by advances in ultracold spectroscopy and dynamics, especially three-atom and

Symmetry 2018, 10, 343; doi:10.3390/sym10080343 111 www.mdpi.com/journal /symmetry



Symmetry 2018, 10, 343

atom-molecule collisional processes involving alkali and alkaline Earth elements [6]. In a similar vein,
interaction potentials among three Group 8 elements have been studied [7]. In this last work, the electric
dipole approximation was relaxed and dispersion energies in which the perturbation operator included
electric quadrupole and octupole coupling were computed. These couplings were taken to be static,
and therefore applicable in the near-zone, that is, for separation distances between pairs of species that
are a lot smaller than characteristic reduced transition wavelengths in atomic and molecular systems.
Because the signal propagating between individual centres is instantaneous in this approximation,
the coupling is unphysical and unable to treat dispersion interactions at larger separation distances,
where the finite speed of light must be properly accounted for since inter-atomic/molecular forces
are fundamentally a manifestation of electromagnetic effects. This means that the correct form of
perturbation operator coupling centres should represent the intrinsic electrodynamic nature of the
interaction between particles.

A physical theory that furnishes a description in terms of photons and includes the electromagnetic
field from the outset is quantum electrodynamics (QED) [8]. Its non-relativistic formulation applicable
to slowly moving bound electrons in atoms and molecules, and termed molecular QED, has been
rigorously developed and applied with success to linear and nonlinear spectroscopic processes and
inter-particle interactions [9-12]. A macroscopic version [13] has been used to calculate dispersion forces
between objects such as plates, surfaces, slabs, spheres and bodies with other geometries so as to
better understand Casimir effects, as well as Casimir-Polder and van der Waals forces that respectively
involve one or two microscopic particles interacting with a body. A key difference between QED and
various semi-classical theories of radiation-matter interaction is that both the electromagnetic field
and the system of particles is subject to quantum mechanical laws in the former, with light taken to be
a classical external perturbation in the latter treatment.

Very recently, molecular QED theory has been applied to calculate higher-electric multipole
moment contributions to the dispersion energy shift between three particles [14-16]. These have
included potentials between two electric dipole polarisable species, and a third that is either electric
quadrupole or electric octupole polarisable, as well as the interaction energy of an electric dipole
polarisable molecule with two electric quadrupole polarisable molecules. The potentials obtained
hold for all separation distances outside the region of wave function overlap and extending out to
infinity, for oriented and isotropic systems. Approximating the speed of light to be infinite resulted
in the reproduction of the potentials computed using static multipolar couplings, applicable in the
near-zone [6,7]. Retardation corrected forms, applicable at very long-range, were obtained on taking
the far-zone asymptote, in which virtual photons with low frequency contribute most significantly in
mediating the interaction. In addition to formulae being given for arbitrary triangular arrangements of
the three bodies, energy shifts for particular configurations were evaluated. These included equilateral
triangle geometry, and when all three particles lie on the same line. Taken together, these works
extended the leading contribution to the non-pairwise additive dispersion energy, namely the retarded
triple dipole dispersion potential, first calculated by Aub and Zienau in 1960 [17], and rederived by
others [18-23], and extended to systems containing excited atoms [24,25]. It is worth pointing out that
these genuine non-pairwise additive three-body contributions to the dispersion interaction energy
are distinct from the sum of the three pair dispersion energy shifts that also contribute to the total
interaction energy in the pairwise additive approximation. The three-body term is expected to grow
in importance as the density of the ensemble increases. Of historical interest is that the non-retarded
result for atoms in the ground state, obtained via third-order perturbation theory and static dipolar
coupling operators, was first computed by Axilrod and Teller [26], and by Muto [27]. Their energy shift
exhibited inverse cubic separation distance dependence on each inter-particle displacement, and hence
inverse ninth power law behaviour in the case of an equilateral triangle set up. Results were also given
for right-angled triangle and collinear geometries. Interestingly, the sign of three-body dispersion
potentials is geometry dependent. Much later this non-retarded three-body shift was related to the
polarisation [28].
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A particularly interesting feature arises in dispersion potentials when the electric octupole
coupling term is included in the perturbation operator [14,15,29,30], and is revealed on decomposing
the octupole moment into irreducible components of weights-1 and -3. It was found that the weight-1
term is only present when the interaction is retarded, unlike the weight-3 component, which appears
in both static and retarded couplings. Furthermore, because the weight-1 octupole moment has three
independent components, and transformation properties similar to that of a vector, the weight-1
dependent part of the dipole-dipole-octupole energy shift was interpreted as a higher-order correction
to the triple dipole dispersion potential. This aspect was actually first noticed on computation of the
pair dispersion potential between an electric dipole polarisable molecule and an electric octupole
polarisable one [29], and in a recent study of dispersion interaction energies involving a DD-DO,
and a DO-DO pair [30]. Similar features were also found in the rate of resonant transfer of excitation
energy between an electric dipole donor moiety and an electric octupole acceptor species [31]. While the
electric octupole moment is a factor of the fine structure constant squared smaller than the dipole
moment, and gives rise to weak spectroscopic signals, selection rules will ultimately determine whether
transitions vanish or not.

In the case of three bodies that are in fixed orientation with respect to each other, the dispersion
energy when two of them, A and B, are electric dipole polarisable, and the third, C, is electric octupole
polarisable, is given by [14,15]
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In expression (1), the pure electric dipole polarisability tensor of species A evaluated at the
imaginary frequency w = icu is defined by
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where u%%(A) = (0| u;(A)|x) is the i-th Cartesian component of the transition electric dipole moment,
ﬁ(A), taken between ground |0) and virtual excited state |x) of particle A, with difference in energy
between these states denoted by E,y = Ex — Ep. A similar definition holds for the electric dipole
polarisability tensor of particle B, whose complete set of intermediate electronic levels is denoted
by |y). The Roman sub-scripts denote Cartesian tensor components in the space-fixed frame of
reference. Einstein summation convention is assumed for repeating indices. Analogously to formula (2),
the sixth-rank pure electric octupole polarisability tensor of molecule C is defined as
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expressed in terms of transition electric octupole moments, whose reducible component operator form
is defined as

Oy (C) = ——.(q —Re)i(9 = Re)i(q — Re)y, 4

where —e is the electronic charge, ? is the generalised electron coordinate, and ﬁc is the point in
centre C about which the multipolar expansion is made. Virtual electronic states of C are designated
by |z). Also appearing in the result (1) are two geometric tensors, F;;(#R) and L;j (#R), which will
feature later on in this work, and whose definitions are now conveniently introduced as
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and
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The distances a, b and c appearing implicitly in the energy shift formula (1) are the side lengths
of the scalene triangle formed by the three objects A, B and C. They are defined as a = |E3 — Ed,
b= \EC — E Alandc = \E A— E |- Multiplying the geometric tensors in Equation (1) using formula (5)
and (6) gives the potential for an arbitrary triangular configuration, from which specific geometrical
arrangements then follow on inserting the appropriate distance and angular variables. These have
been obtained for equilateral triangle and collinear geometries [14].

The three-body dispersion potentials considered in the literature thus far have all been between
species that are characterised by electric polarisability tensors that contain multipole moments of
one particular type, for example pure electric dipole or pure electric quadrupole moments. In this
paper we aim to study dispersion forces among three particles in which one or more entities is
described by mixed electric dipole-octupole polarisability. This quantity is non-vanishing for all
molecules but is zero for atoms that undergo transitions via these two multipole moments from the
ground state to the same virtual electronic level. For instance, an interaction of identical order of
magnitude to Equation (1) would occur between an electric dipole polarisable molecule, and two
species with mixed electric dipole-octupole polarisability. A systematic series of calculations are carried
out in this work, progressing from one, to two, to three molecules possessing mixed dipole-octupole
polarisable characteristics, with the other entities or entity in the first two cases being purely electric
dipole polarisable. We also compute the dispersion potential between an electric dipole polarisable
molecule, an electric octupole polarisable one, and a species with mixed dipole-octupole polarisability,
since this is of the same order as that arising between three species with mixed dipole-octupole
polarisability. This complements previous studies [14,15] wherein the effect of including electric
quadrupole (Q) coupling was accounted for by evaluating the DD-DD-QQ and the DD-QQ-QQ
three-body dispersion energy shifts. The first of these is comparable to the DD-DD-DO potential
and the second is of the same order of magnitude as the DD-DO-DO energy shift, both of which
are to be calculated in what follows, and the previously computed DD-DD-OO interaction energy
given by Equation (1). While all molecules possess a non-zero pure electric quadrupole polarisability,
symmetry dictates that only non-centrosymmetric species will support a non-vanishing mixed electric
dipole-quadrupole polarisability tensor. Key questions to be answered include whether higher-order
corrections to the triple-dipole potential arise from energy shifts involving mixed multipole moment
polarisabilities, and the role played by octupole weight-1 and -3 components in such interactions.
While the magnetic dipole moment, which is a similar order of magnitude to the electric quadrupole
moment, and which features in the paramagnetic susceptibility tensor, " (w), i.e., the magnetic
dipole analogue of Equation (2), and the magnetic quadrupole moment, which is comparable in
magnitude to O, magnetic couplings have been excluded from the present work since they are difficult
to measure and to compute. Whether, and to what extent, magnetic transitions need to be accounted
for in a given case depends not only on the general order of magnitude, but also more importantly on
the specific atomic species involved and their electronic wave functions. Attention is therefore confined
to electric dipole and octupole contributions to facilitate ready comparison with previous work.

The paper is structured as follows. A very brief summary of molecular QED theory is given
in Section 2, along with the form of the interaction Hamiltonian when electric octupole coupling
is accounted for, and the calculation of the non-pairwise additive three-body dispersion potential.
The next four sections contain specific results for dispersion energy shifts for each of the four cases
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mentioned above. Potentials applicable to equilateral triangle and collinear arrangements are also
presented in the respective section devoted to each specific interaction. A summary is given in Section 7.
Useful integrals required to obtain asymptotically limiting forms of energy shifts dependent upon one,
two or three atomic polarisabilities applicable at short-range are given in the Appendices.

2. Molecular QED Calculation of the 3-Body Dispersion Potential

- = —
Consider three ground state atoms or molecules A, B and C, positioned at R4, Rp and R,
respectively. The total molecular QED Hamiltonian operator, for which the electromagnetic field forms
an intrinsic part of the complete system, is given by [9-11]

H =Y Hno(¢) + Hraa + ), Hint(¢), ¢ = A,B,C. @)
¢ 4

Hpo1(&) is the familiar molecular Hamiltonian of quantum chemistry. The second term of
Equation (7) signifies the radiation field Hamiltonian. The energy of the electromagnetic field is
represented by a sum of independent simple harmonic oscillators, whose quantisation is rudimentary.
Photons are the resulting particles that describe the elementary excitations of the radiation field.
In the occupation number representation that follows from effecting second quantisation techniques,

— —
bosonic annihilation and creation operators, a(*) (k) and a"()( k), are introduced and are used to
express Hy,q as

- — 1
Hrad = E{u+(A)( )a(A)(k) + E}ﬁw/ (8)
kA

where the sum is taken over radiation field modes denoted by ?, A corresponding to the direction of
propagation and index of polarisation, respectively. Quantisation of the radiation field is carried
out in a cube of volume V, thereby restricting the possible modes. w is the circular frequency,
defined according to w = ck; k is the modulus of the wave vector. One possible choice of
eigenstates for the radiation field is number states, \n(z, A)), with the number operator 1 defined as
at® (z)a(’\) (;) such that n|n(z, A)) =at) (?)aW (?) |n(z, A)). Thus the creation and annihilation
operators respectively increase or decrease by one the number of photons of a particular mode in
the electromagnetic field. As expected, the eigenvalues of the radiation field are identical to those of
the harmonic oscillator, namely E,.q = (1 + %)hw, n=0,1,2,.., with n restricted to positive integer
values and zero. This last value of 1 corresponds to the vacuum state of the field, that is, all modes
have vanishing occupation number. This is an important feature of the theory, giving rise to observable
phenomena [32], one of the best known being the dispersion force.

The final term of Equation (7) designates the interaction Hamiltonian, representing the coupling
between radiation and matter. In the multipolar version of molecular QED theory, atoms and molecules
engage with Maxwell field operators via their electric, magnetic and diamagnetic multipole moment
distributions. Restricting to the first few moments of the electric polarisation field, in light of the
applications to follow, the interaction Hamiltonian is written as

HESS(8) = —eg mi(@)d (Rg) — 65 Q4 (&) Vi (Re) — 5 0@ V;VidH (Re) + .y (9)

in which #;(¢), Q;j(¢), and O;j(¢) are the electric dipole, quadrupole and octupole moment operators
of particle §. These moments couple directly, or through the application of one or more gradient

=
operators, to the transverse electric displacement field operator, d (7), whose Fourier series mode
expansion is of the form
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Rather than the electric field, ¢ (7 ), matter couples to E)L (7) in the multipolar framework
because the field momentum canonically conjugate to the coordinate variable is proportional to the
transverse electric displacement field in this coupling scheme. The field operator Equation (10) is linear
in the photon creation and annihilation operators, and the normalisation pre-factor ensures that the

A) —
operator correctly reproduces the energy of the electromagnetic field. In Equation (10), ?( )(k) is

the complex unit electric polarisation vector for mode (?, A) radiation, and the overbar denotes the
complex conjugate quantity.

Solutions to the Schrodinger equation with Equation (7) as the Hamiltonian operator are frequently
derived via perturbation theory, with the sum of the molecular and radiation field Hamiltonians
constituting the unperturbed Hamiltonian. Solutions to each sub-system are taken to be known,
and because the unperturbed Hamiltonian is itself separable, the base states employed to study the
influence of the perturbatlon operator on the coupled system are product molecule-radiation field

states |E y E ( A),n'( k A'),...), in which lEg‘) and |E‘: ) are energy eigenstates for spec1es ¢and
¢’ when in electromc states labelled by quantum numbers p and g, respectively, and 1 and n’ denote

the number of photons of mode (k A) and (k A') present in the electromagnetic field. The effect of
the perturbation is to cause transitions between states or a shift in energy. Standard time-dependent
perturbation theory yields a series expansion in powers of Hjy; for the probability amplitude for
a process to occur between specified initial and final total system states.

For the particular problem at hand, namely the dispersion interaction between three molecules,
the initial and final states are identical to one another and represent each of the three species in the
ground electronic state, with no photons of any mode being present in the electromagnetic field.
Hence the ket [0) = |E4, EF, E§) may be employed unambiguously. As for dispersion interactions
between pairs of particles [9-11], the three-body term contributing to the interaction energy is mediated
by the exchange of two virtual photons between each coupled centre. Hence the use of Equation (9)
requires that the sixth-order term in the perturbation theory expansion of the energy shift in series of
powers of Hi,; be employed in the computation. A consequence is that the number of contributory
terms that arise from Feynman-like diagrams that have to be evaluated and then summed over is
excessively large, amounting to 360 time-ordered sequences in the case where each species is electric
dipole polarisable. To circumvent such aspects, the Craig-Power Hamiltonian [33], which is quadratic
in the displacement field, has been used to compute the leading and first few higher-order corrections
to the retarded three-body dispersion energy [14,15,22]. In the electric dipole approximation the
coupling Hamiltonian for species A is of the form

HEP(A) = 5 ¥ alP(A)d (Ra)d} (Ra), )
0

modes
where the dynamic electric dipole polarisability in Equation (11) is evaluated at the real frequency
w = ck. The coupling Hamiltonian Equation (11) was first used to calculate the Casimir-Polder

potential [10,33]. It may be obtained by carrying out a unitary transformation with the generator chosen
-1l
such that the —e;"! Z(C )-d (Rg) term is cancelled except on the energy shell. Explicit demonstrations

have been given in the Appendix of the paper by E. A. Power and T. Thirunamachandran, Chem. Phys.
171, 1 (1993) and in Ref [22]. Higher-order multipole terms may be derived in a similar manner.
Because Equation (11) represents an effective two-photon coupling vertex, second rather than
fourth-order perturbation theory could be employed together with two instead of twelve time-ordered
diagrams to yield the pair dispersion energy shift. Even greater advantages accrue on using the
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interaction Hamiltonian (11) to compute the potential between three atoms or molecules [22]. Only six
topologically distinct diagrams are required to be summed over at third-order of perturbation theory
using the formula

(O HP (&) [ 1) (11| HigP () [ ) (1| HiP (8)]0)

AE = int int ; (12)
1; EioEro

where the sums are taken over complete sets of intermediate states that result on excitation due to
virtual transitions and return the total system to the ground state. Denominators signify differences
between intermediate and ground energy levels. Overall, three different virtual photons are exchanged
between the interacting particles. The collapsed two-photon coupling vertex at each centre accounts for
absorption of two different virtual photons, or emission of two different virtual photons, or emission
of one type of virtual photon and absorption of another mode or vice versa [34]. One of the
six possible time-ordered sequences containing effective two-photon interaction vertices is shown
in Figure 1. As characteristic of field theories, particles with zero or integer spin—the bosons,
mediate interactions between material particles possessing half-integer spin—the fermions. In the
case of QED, the electromagnetic force is mediated between electrons by the exchange of virtual
photons [35,36]. By definition these types of photons are unobservable. They appear from and
return to the electromagnetic vacuum with energy and lifetime dictated by Heisenberg’s time-energy
uncertainty relation.

H int ©

@ s _ y

A B ¢

Figure 1. One of the six possible time-ordered sequences containing effective two-photon interaction vertices.

For the particular three-body dispersion interactions involving electric octupole coupling to be
studied in the remaining, the appropriate effective two-photon interaction Hamiltonians to be used
in the diagrammatic perturbation theory calculation are as follows. For a molecule ¢ that is mixed
electric dipole-octupole polarisable, coupling to the electromagnetic field occurs via the two-photon
interaction operator

1

T 92
280 modes

HDO (&) = WDO(& R (R) ViV (Re), (13)
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where the mixed dipole-octupole polarisability tensor at real wave number is given by

{u?f@)o;gl(f;) O%,(&)u0(&) }

’]kl (g k) Z EtO — fLCk EtO + fLCk

t

(14)

For the same molecule that is pure electric octupole polarisable, the Craig-Power form of the
interaction Hamiltonian is

1
HOP@) = — 55 ¥ a9, @0V, Vidt (R VoV adi-(Re), (15)
0 modes

with a9 ]k[ ' (& k) defined for molecule C by Equation (3).
At this stage it is convenient to introduce the decomposition of the octupole moment into its
irreducible components of weights-1 and -3. Whence

O =0 +05, (16)
where
Of,—? = *%;2(%5]} + 3]-51% + ;k%‘)r (17)
and
Of) = —~S[4d,dx— 50 45+ 1,00+ 4,0) s)

for the multipole moment defined with respect to the origin. Ol%() has three independent components

®)

and the transformation properties of a vector, while O; ik has seven independent components.
When any two of the Cartesian tensor components are equal, Equation (18) vanishes. Similarly,
from the form of the electric octupole coupling to the electric displacement field in either form of
interaction Hamiltonian, be it Equation (9) or Equation (13) or Equation (15), the contribution is zero
when the suffix of the field is equal to that of any of the gradient operators immediately preceding it.
This is because for a neutral entity, the electric displacement field is exclusively transverse in nature
outside of the source. It is for the same reason that the trace of the electric quadrupole moment does

not contribute to the coupling in the interaction term —¢; | Qij(&)V;d + (B,;x)

It is clear from the partitioning Equation (16) that any mixed polarisability tensor containing
an electric octupole moment, or pure electric octupole polarisability Equation (3), may also be separated
into contributions that are explicitly dependent upon scalar weight-1 and -3 octupole moment
terms. For instance, inserting Equation (16) into the mixed electric dipole-octupole polarisability
Equation (14) produces

aDQ (&K) = D' (k) + DT (E:K)
_ {ui <z:>o§;,>‘°<c> o @) <c>} +Z{;¢?f(<’;>o§£ﬁ°<¢> o}i}”‘(zwg)} (19)

Ero—Tick Ero T Tick Fo=fick T = Eothck

Analogously, the pure electric octupole polarisability tensor ucl(.]).gmn(g;k), Equation (3),
has octupole weight 1-1, 1-3, 3-1 and 3-3 dependent contributions,

zjklmn(é k) zjklmln(g k) + al]klmn(g k) + “z]klmn(é k) + “z/klmn (é k) (20)

3. DD-DD-DO Energy Shift

The first dispersion potential to be evaluated is the leading correction involving the octupole
interaction term, namely that between two electric dipole polarisable molecules A and B, and a third, C,
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that is mixed electric dipole-octupole polarisable and characterised by Equation (14) or Equation (19).
Hence the interaction Hamiltonian for the system of three coupled ground state particles is

Hine = Hop (A) + HOP(B) + HR? (C), 1)

int

with the pure electric dipole Craig-Power coupling Hamiltonian given by Equation (11). Emulating the
calculational procedure recently employed in evaluating three-body energy shifts [14,15] yields

AEPP~PD-DO — 76471423( v? Sk + vkvm) ( v251’;9 + Vivp)b(qur)b

(22)
fdurxDD A;iu)aP (B;iu)aps,, (C;iu)e —u(atbic),

X (=Y + V,; V)"

abc

for an arbitrary triangular configuration of the three particles, with side lengths a, b and ¢ defined
earlier. Each polarisability is evaluated at the imaginary frequency. Utilising the definitions of F;;(uR)
and Ljj (uR) introduced in Equations (5) and (6), allows the energy shift Equation (22) to be written
more succinctly as

(=5}

_DD- he .
AEPP~DPP-DO _ 764714% / duzx}?D(A;zu)ak, (B; zu)ocmpq,(C i1t) Figyy (4a) Lipgr (ub) Fyy (uc).  (23)
0

Both expressions for the energy shift hold for molecules in fixed relative orientation to one another.

To obtain the potential applicable to isotropic molecules, a rotational average of Equation (23) is
required. This may be done as separate averages over each particle. For electric dipole polarisable
species A and B, the randomly averaged tensor, enclosed in angular brackets, is given by

a}?D(g; iu) > 351}5917“;717 (&iu) = 6;aPP(&iu), £ = A,B, (24)

where the Greek subscripts denote Cartesian tensor components in the molecule-fixed frame of
reference, and a factor of 1/3 has been absorbed into the definition of the isotropic polarisability.
From expression (19) it is seen that the mixed dipole-octupole polarisability is a sum of weight-1 and
-3 octupole moments, and overall is a Cartesian tensor of rank four. An orientational average of such
an object is obtained via [37]

< Tl]kl >= It(]k3 AyvnTAW”’ (25)

where Ty is a fourth-rank tensor, and | z(]kg A

is given by
Ii(jzll(;;)nyvﬂ = 3]70[51‘]'5]‘1 (45AP‘(5WT - (5,\1/(5]47-( - (5/\7751“/)
+5ik5ﬂ (—5/\;,(51/7{ + 4§Av§]47r — 5/\,—((5}”1) (26)
+5i15jk(_‘5/\;45v7r - (5/\,,5}”7 + 4‘5/\775;w)]‘

From the form of the mixed dipole-octupole coupling Equation (13), it is seen that H2O(C)
vanishes when j = k and when j = I. Hence the second and third terms within square brackets of
Equation (26) do not contribute. Similarly, the mixed dipole-octupole coupling is zero when y = v and
when y = 7, so that the second and third terms within each of the three terms written in parentheses
do not contribute to the orientational average. Therefore the orientationally averaged mixed electric
dipole-octupole polarisability of molecule C appearing in formula (23) is

< ocB%,(C; iu) > 15(5n1p5qr(5,\]451,nawm(C iu) = 15(5mp(5qroc/\/w¢(C iu). (27)
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From relation (16) it is seen that the octupole moment appearing in Equation (27) is composed
only of the weight-1 term, with the weight-3 contribution vanishing identically. The superscript “1”
serves to label the contributing weight, as in expression (19). On employing relation (24) twice and
Equation (27) in Equation (23) yields the energy shift for isotropic molecules

— DD-DO! he [ . . 1 .
AEPP-DPD-DO" _ it /dulxDD(A;zu)(xDD(B;zu)zx??W(C;zu)F]-k(uu)Lij”(ub)Fik(uc), (28)
0
0

where a factor of 2/15 has been absorbed into the definition of the isotropic mixed dipole-octupole
polarisability. Multiplying the geometric tensors using Equations (5) and (6) produces for the
dispersion potential.

AEPP-DD-DO' 6426483 o Idue’“(”+h+c)aDD(A;iu)aDD(B,‘iu)ocMW(C i)

) {[(@-5)° + (b-&) + (¢-a)% — (a-b)(b-e)(¢ - a)|uba2bic?

=24 @5 +3[(h-&)" + (¢- )2 —3(a-b)(b- &) (¢ &) (7 aPbc + uba2bt)

H=243[@- b)Y + (b &)+ (682 —3(a-b)(b - &) (¢ &) (W a2b3? + uba2b2c?)

F[=243[@-5) + (-2 + (b-2)" —3(a-b)(b- 6)(¢ - a)] (W abc® + ubbc?) (29)
F[=a+3[a-5) +3(b-6) + (¢-a)7) —9(a-b)(b-&)(e - )] (uba?b3e + uBa?b? (b + c) + uta?b?)
F=4+3[(a-5) + (b &) +3(¢-2)%] —9(a-b)(b-e)(¢ - )] (ubabc + ub4(a + c) + u'b?)
F[=4+3[3(a-5) + (b-6) + (¢-a)% —9(a-b)(b-&)(¢ - )] (ubabdc® + uSbPc2(a + b) + utb?c?)
H=6+9[(@-b) + (b &) + (6-2)2) —27(a-b)(b-e)(e - a)]

x (uPab3c + utb?(ab + bc + ac) + ub?(a + b +¢)) },

which applies to a scalene triangle geometry. The circumflex denotes a unit vector. It is interesting to
note that each of the eight terms contained within square brackets inside the braces, namely involving
direction cosines, appears distinctly in the corresponding expression for the triple dipole dispersion
potential (Equation (57) from Ref. [15]). Because Of]%{) (&) has transformation properties equivalent to
that of an electric dipole, result (29) may be interpreted as a higher-order correction to AEPP~PP~DD,
Expressions for specific conﬁguratlons follow stralghtforwardly from Equation (29).

For an equilateral triangle,a =b=c=R,and 4-b =b-¢ =¢-4 = — cos60° = 1. Whence

1

A EEDqD—DD—DO —

W fdue‘S“R DPD(A;iu)aPP(B; zu)(xMW(C iu)

x[7(uR)® +3(uR) +24(uR)® 4 75(uR)® + 120(uR)* + 99(uR)%),

(30)

whose coefficients preceding each power of uR are identical to corresponding terms appearing in the
triple dipole energy shift when the triangle is equilateral (see Equation (48) of Ref. [14]).

Another noteworthy feature of Equation (29) (and consequently result (30)), is that there is no
term independent of u, leading to no direct near-zone asymptote. This is due to its dependence
solely upon the octupole weight-1 term, and the absence of a contribution from the weight-3 term.
Nevertheless, by making the following approximations we may arrive at a short-range limiting form
for the interaction energy. Retaining the (uR)? term, with e 3R ~ 1 for uR << 1, and using result
(A15) from Appendix C, we see that Equation (30) results in an R~8 near-zone limiting dependence on
separation distance for an equilateral triangle arrangement:

DD-DD-DO! 11 =0 212 hyi20 0 (1)20
AEgg (NZ) ~ T RO TSRE E I (A |n ( )13 (C)O gt (C)ExoEyoEz0
y E3o(EJy—EZ)In(3ExoR/ hic)+Ejo (EZ)—E3 )ln(3E},0R/ﬁc)+E§0(EEO—EyO)ln(3EzgR/hc)
(Ejo—E2) (X —E%0) (Ey—Eyp) '

€]
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This compares with an inverse ninth power dependence on R in a true near-zone limit for the
triple-dipole potential.

The far-zone limiting form of the interaction energy for an equilateral triangle configuration
follows directly from Equation (30) on taking the polarisabilities to be static, corresponding to the zero
frequency limit w = icu — 0, since in the far-zone uR >> 1 with R — oo, and evaluating the ensuing
u-integral using the standard integral

/x"e*”" dx = nly~""1, Re>0. (32)
0

This leads to the far-zone asymptote

122638hc

AEDD-DD-DO' (g7 _ «
Eq (F2) 512 x 377r4e) R12

DD (A;0)aPP (B; O)aMW(C 0), (33)

and which exhibits inverse twelfth power separation distance dependence. Note that for this particular
three-particle configuration, the force is repulsive.

For a collinear arrangement, in which the mixed dipole-octupole polarisable species C lies
mid-way between A and B, 22 =2b=c =R, and 65 = g = 0°, and 6c = 180°, so that 4 - h=1,

and b-¢ = ¢-a = —1, the dispersion energy shift from Equation (29) is
1 ® . .
AEQH-PD—DO Sngﬁbfdue’Z”RaDD(A;1u)ucDD(B,'zu)aMW(C siu) 34)

x[(uR)® +5(uR)” +17(uR)® +16(uR)® — 36(uR)* — 96(uR)?].

Again the coefficients appearing in the polynomial function are identical to that found for the
collinear geometry of three dipole polarisable molecules (Equation (52) of Ref. [14]), as well as in
the weight-1 dependent contribution to the DD-DD-OO dispersion energy shift (see Equation (51) of
Ref. [14]). As for the equilateral triangle case, inverse eighth power law behaviour is found in the
near-zone on using result (A15). It is given by

1 2 —0y 2
AEcDgl pp=bo (NZ) ~ 45h3C36i4 IR Z |H ( by ( ) OZ( )O /\]4)}, (C)EYOEyOEZO

E2(E2,—EZ )ln(ZEXOR/hc)JrEz (E%,— )ln(ZEyQR/hc)+E§0(Efonyo)ln(ZEzgR/ﬁc) (35)
. By B2 (B ) By Bl '
In the radiation zone Equation (34) reduces to
_DD-_DO! 3837hc
AERHPD=DO (F7) = a3 RE aPP(A;0)aPP (B; O)aMW(C 0), (36)
0

which varies as R!2. The potentials for the collinear arrangement are positive in sign.

4. DD-DO-DO Dispersion Potential

The next dispersion energy involving octupole moments to be examined is that between an electric
dipole polarisable molecule, A, and two mixed electric dipole-octupole polarisable species, B and C.
This interaction is of the same order of magnitude as that between two electric dipole polarisable
particles, and a third that is pure electric octupole polarisable, and which has previously been
published [14,15]. The calculation is similar to that outlined in the last section and to other dispersion
interactions between three bodies.

Relative to Equation (21) the interaction Hamiltonian is

Hine = Hip?

int

(A) + H2O(B) + HPO(C). (37)

int int
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Summing over the six time-ordered diagrams at third-order of perturbation theory produces
the following result for molecules in fixed relative orientation to one another, and which depends on
octupole weight-1 and -3 terms:

[}

_po— he . . .
AEPP~DO-DO ~eia /dua}?D(A;zu)sz%(B;zu)ar]?q%(C;zu)Fk,,(ua)L,-q,S(uh)Lﬂmn(uc). (38)
00

Orientational averaging using Equations (24) and (27) produces the energy shift expression for
isotropic molecules

A EanDo1 -DO! _

6471’4 3 /duaDD(A ”‘)‘XAAM;(B Zu)‘xl?vnn(c lu) l](ua) ]kll(ub)lemm(uc) (39)

on absorbing factors of 2/15 into each of the isotropic mixed dipole-octupole polarisabilities, and on
making use of the relation Ly (uR) = Lk (uR). After averaging, the weight-3 octupole moment makes
no further contribution to the interaction energy, with only the weight-1 term in play. The product
of geometrical tensors produces a result identical in form to that occurring in the octupole weight-1
dependent term of the DD-DD-OO potential given in Equation (54) of Ref. [15] for a scalene
triangle, and to the geometrical part of the triple dipole result, given by Equation (57) of Ref. [15].
Thus AEPP-DO'-DO" s another higher-order correction to the AEPPPPDD energy shift. Explicitly,

AEDD-DO 1-DO! _ 64%5 a3b5c3 fdueiu(a+b+(:)aDD(A;iu)“/\/\‘u”(B m)lwim(c i)
){l@-b)* + (b2 + (- a) (@-b)(b-0)(¢-a)]u0ab*c*
=24 (-5 +3[(h- &) + (6-2)%) —3(a-b)(b-&)(¢ - )] (u2aPb e + uaPbic?)
F[=243[(a- ) + (b &)+ (¢-2)> —3(a-b)(b-&)(¢ - 2)] (u0aPB3c* + uBa2bct)
H=243[(a- b)Y + (- 2)) + (b- ) —3(a-b)(h-e)(e- &) (Pabdc* + ubbic?) (40)
H=4+3[(a- b)Y +3(b- )+ (¢-2)2) —9(a-b)(b- o) (¢ a)](uPa2b3c® + w7 a2b2cA (b + c) + ubab?c?)
F=4+3[(a- b)Y+ (b-&)° +3(¢-2)2) —9(a-b)(b- 6)(¢ - &) (uBab P + u7b e (a + ¢) + ub4c?)
=443 b+ (b-e) + (6 2)2) —9(a-b)(b- &) (¢ a)] (uPabPct + u"bcH(a + b) + ubb2c?)

(b6 (e a)Y) —27(a- B)(b-&)(¢- &)] (w7 abde3 + ubbRe (ab + be + ac)

From this last equation, which applies to a scalene triangle arrangement of the three atoms,
the dispersion potential for an equilateral triangle geometry is readily found to be

— 1_ 1 _
AEED(;D DO -DO" 7512_(49[{13 fdue SuREDD(A; zu)aMW(B i1)aPO! (C; i) @)

x[7(uR)" + 3(uR) +24(uR)® + 75(uR)” +120(uR)® +99(uR)® 4 33(uR)*].

Because there is no u-independent term, a true near-zone limit does not exist. One may be found
by retaining the (uR)* term and using the integral result (A16). This gives a potential with an R~°
short-range dependence,

—DO!'—-DO! 2 0 0 1)z0
SERYPOPOND) & it T () Pl (B0 (B) = ()0 LK () o
[EonyaJrEonzoJrE}/oEzo]

X ExoEyoE .
0 yo z0 (EXU+EyU)(EJ(U+EZO)(Ey0+EZU)
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At very large separation distances between nuclei, Equation (41) reduces to the far-zone asymptote

DD-DO! ~DO! 716608h¢ DD . 0y,DO (B. 0140 (C-
AEg, (Fz) = W‘" (A;0)a33,,, (B; 0)ayy7er (C;0), (43)
displaying R~!* behaviour, and for which the polarisabilities are static.
For three molecules in a straight line, C lying in the centre,
_DpO'-po! T .
AECDBI DO!'-DO!  _ 8n4?§R13 [ due ZuRlXDD(A;ZM)DLAMW(B zu)amm(c iu) (44)

x[(uR)" +5(uR)’ +17(uR)® +16(uR)” — 36(uR)® — 96(uR)® — 48(uR)*,

whose near-zone limiting form exhibits inverse ninth power dependence on using Equation (A16),

_pol_po! —0x 2.0
AEZH PO PO (NZ) ~ *m E [ (A)[ ) (B )0} AW 10 (B)ul% (C)ORZ (C)

(45)
[ ;OE 0+ExoEz0+EyoEzo]
*ExoEyoEz0 (E XO+EV:)/)(EXO+EZO)(gyO+EzO) ’
In the far-zone Equation (44) gives rise to an asymptotic energy shift
1 1 48114hc 1
AED(]):il poT=bo (FZ) (A O)a/\/\]ty(B 0) ]VDV(?TT((C/ 0), (46)

128743 R1E"

with identical power law dependence to that found for an equilateral triangle geometry, Equation (43).
It is interesting to note that the polynomial terms within square brackets of the u-integrals (41) and
(44) are identical to the octupole weight-1 dependent terms occurring in the DD-DD-OO dispersion
potential, given by the first integral terms of Equations (47) and (51) of Ref. [14], respectively, and are
therefore necessarily higher-order corrections to the triple dipole potential, as seen by comparing
Equations (41) and (44) with Equations (48) and (52) of Ref. [15].

5. DO-DO-DO Interaction Energy

The next three-body dispersion energy shift involving electric octupole coupling to be studied is
that between three mixed electric dipole-octupole polarisable species. The interaction Hamiltonian is
the same for each centre, namely

Hine= Y. HRP(), 47)
f=AB,C

with HPO(¢) given explicitly by Equation (13). Standard calculational procedure leads to the following

int
formula applicable for molecules with locked-in relative configurations,

[}

_pO-— hc " . . .
AEPO-DO-DO _ i /dual%’(A;zu)szSW(B;zu)a?sg,(C;zu)anq(ua)Listu(ub)ijk,(uc), (48)
09

and is dependent upon octupole weight-1 and -3 contributions. After random orientational averaging

there is no dependence on Ofﬁ{) (&), ¢ = A,B,C, and the energy shift simplifies to

1 1 1 O? 1 . 1 .

AEDO'-DO'-DO' _ _ 64%53 J dua%?W(A; in)aD9. (B;iu)a pW(C i) Ljggy (4a0) Liggym (4b) Lijun (uc), (49)
0

exhibiting a dependence solely on octupole weight-1 moment as found in each of the previous cases

involving mixed dipole-octupole polarisability. A factor of 2/15 has been taken into each of the

isotropic mixed polarisability tensors of Equation (49). On multiplying the product of L;j tensors

using Equation (6), the isotropic potential for a scalene triangle is
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[e°]

DO '-DO'-DO' _ _fic 1 +b+ DO DO' (B.i1)aPO" (C- i

AE = g PP [ due=1(atbre)D WA i) oy (B i) o, (C iu)
0

<{[(@-5)° + (b-o)° +<@~ﬁ>2—(ﬁ'm(ﬂ@)(w)}u atbict
=2+ @B +3[(b-2)" + (¢-a)2] —3(a-b)(b- o) (¢~ )] (u a*b*e® + ul0ab4e?)
F=243[a- 5 + (b)) + (¢-a)% —3(a-b)(b-e)(¢- )] (u'a*B3ct + ul0atb?ch)
H=2+3[@-b)° + (- a2+ (b-&) —3(a-b)(h-e)(e-a)] (u" a¥bhct + ul0a2b4ct) (50)
=4 +3[@-B)* +3(b- &)+ (¢-2)%] —9(a-b) (b &) (¢ - &) (u0a*b3c3 + u0a B2 (b + ¢) + ua*b2c?)
[—4+3[(a-5)° + (b-&)° +3(¢-8)%] —9(a-b)(b-6)(¢ - &) (u'® a3b 3 + u9ab*c2(a + ¢) + uba2b*c?)
44335+ (b-8) + (¢-2)2) — 9(a-b) (b~ &)(¢- )] (u0aPb3ct + 1u0a2b2c4 (a + b) + uBa2b2ch)
+] 6+9[(ﬁ )? (E 24 (e-a)Y —27(a-b)(b- o) (¢ a)]) (a3 + uBaPb2c (ab + be + ac)
1

The eight individual direction cosine terms within braces are identical to those featuring in the
triple dipole dispersion potential between three particles in arbitrary geometrical arrangement.

For three atoms or molecules positioned in an equilateral triangle configuration, Equation (50)
yields the potential

1 1 1 —
AEDO ~bO'-DO m [due SuR DO (A i1)aPO._(B;iu)a pp(m(C iu) 51)

x[7(uR)" +3(uR)" +24(uR)10 +75(uR)’ +120(uR)® + 99(uR)” + 33(uR)®).

The coefficients match those computed in Equation (41). Even though there is no u-independent
term, a short-range asymptote may nonetheless be extracted from Equation (51). This is done by
substituting Equation (19) for the octupole weight-1 contribution to the mixed dipole-octupole
polarisability evaluated at imaginary frequency and making the approximation Exo, Eyo, Ez0 << ficu,
so that the product of energy denominators simplifies to (ficu)®. The u-integral in Equation (51)
therefore becomes

/du

which may be evaluated using the integral result (32). This produces 10112R%/243, yielding a near-
zone asymptote

[7 (uR)™? 4+ 3(uR)™ +24(uR)" + 75(uR)’ + 120(uR)® + 99(uR)” +33(uR)®],  (52)

DO!-DO! -DO! ~ 10112 1 1
AEEq (NZ) = 23 (15 (fic)® R0 ng ExoEyoEzo )
’ 1)x0 0 1)y0 1)20
X0 (M) (A (B)OLRE (B)uY* (C)OLs” (),
which exhibits R~1° behaviour.
At very long-range, the limiting form of the energy shift is
DO DO! POl 23709440hc  pol ;4 A\ .DO! /p. DO /.
AEgg (FZ) = m“)mw (A5 0) 77 (B; 0) e (C50) (54)
with inverse separation distance exponent of sixteen.
For a collinear arrangement, the energy shift is
1_Ppol_pol . e , Ol ,
AECDgl DO'-DO! _ MAZIW Of due— ZILR,X]}?}(?} ”(A; iu)a W,m(B iu)a pW(C; iu) (55)

X [(uR)"? +5(uR)" +17(uR)" 4+ 16(uR)’ — 36(uR)® — 96(uR)” — 48(uR)®],
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with identical coefficients to that given in Equation (44). A limiting form of the energy shift which is
dominant at short-range may be obtained in an identical manner to that carried out for the equilateral
triangle case. Approximating (k2 + u?) (ki() + u2) (k% + u?) in the energy denominators of the
polarisabilities by 1, the u-integral in Equation (55) is evaluated using Equation (32) to give

2uR

;fdue [(uR)™* +5(uR)™ +17(uR)™ +16(uR)’ — 36(uR)® — 96(uR)” — 48(uR)®] = —%R5,  (56)

and a near-zone asymptote

DO'-DO!-DO! 186 8
Ao (N2~ 555 (e ey x§z ExoByoFa0 (57)
X O( )x0 A Oy B O<1)y0 B 0z C O(l)ZO C
XY (A) /\W( v (B) v (B)Hp*( )O0p (C).
From Equation (55) the far-zone limit of the potential is
1 1 1 2207925hc 1 1 1
AEZS PO PO (Fz) = 1283 RE a0 (A3 0)api ) (B; 0) a2, (C; 0) (58)

which displays an R~1¢ dependence.

6. DD-DO-00 Dispersion Potential

The final dispersion interaction energy to be computed involving the electric octupole moment is
that between an electric dipole polarisable molecule, A, an electric dipole-octupole polarisable species,
B, and a purely electric octupole polarisable particle, C. This potential is of the same order of magnitude
as the energy shift considered in the previous section between three mixed electric dipole-octupole
polarisable objects. In the present case the interaction Hamiltonian is

Hine = Hig? (A) + Hi¢ (B) + HYP (C), (59)
with the last contribution given by Equation (15). From third-order perturbation theory and
summing the contributions from six time-ordered graphs, the potential for molecules in fixed mutual
orientation is

AEDD-DO-00 _ ,64%% Ofduzx}]?D(A; iu)aggSy, (B i) a0, (C i) Ligpgr () Listy () Lty (), (60)
where ucpqmu (C;iu) is the pure electric octupole polarisability of C, Equation (3).

To obtain the interaction energy for randomly oriented molecules requires an average of
oc%%m(C; iu), a sixth-rank Cartesian tensor. Utilising the form of the octupole moment and the
nature of its coupling to the transverse electric displacement field, the averaged quantity is [37]

< D‘pqrstu (C Zu) >= 21() [5P95ﬁ77‘5tl‘a2\yy/\w(c Zu)

61
+2(8psbg1ru + OpsSqudr + Sprdysru + OptSqudrs + Opuysdr + Spudyrys)aQ,y 1 (C i) 61)

Contracting tensor indices after multiplying factors from the average over each molecule,
. . . ol ) ) 101
and using the relation a?’?w\w(c;m) = agm%w(c;lu) and ”‘A;th;tv(C;l”) = 3ot?yw\w(C iu) +
/\ oA W(C iu), which follow from Equations (16)—(18), an explicit expression for the energy shift
(60) in terms of octupole weights is
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AEDPD-DO-00 — 77210;;27;423 fduzx (A;iu)a pW(B iu)
. 303 .
x [“S\);;;?/\W (C Zu)ijll(ua)szmm (ub) zjnn(uc) + 4[; S\)}IP(I)/\VV (C} ZM) + oc%%w(c;zu)} (62)

x {L]klm(””) [Likim (1b) + Litgen (ub) + L (b)) Lijn (1) }]~

It is interesting to note that apart from pre-factors, Equation (62) is identical to the DD-DD-OO
dispersion potential given by Equation (53) of Ref. [15], or if expressed in terms of reducible components
of the octupole moment, is equivalent to Equation (46) of Ref. [15]. This recognition is arrived
at on realising that Lij,(«R) = u?Fjj(uR). Thus energy shift formulae for particular geometrical
arrangements may be written down immediately from the results presented in Section VI of Ref. [14].

For the pure electric octupole polarisability having implicit dependence upon octupole weight-1
and -3 dependent terms, where 1/3 is factored into IXDD(A iu), a factor of 2/15 is absorbed into

PPW (B iu), but the factor 14/210 is retained explicitly, the dispersion energy for an equilateral triangle
configuration is

DD DO! - :
AE 0'—00 _ 2 ,—3uR DD(A;IM)

.
mf dui’e a2 (B i)a§0,, (C i)

><[7(uR) +3(uR) +24(uR)® +75(uR)7+120(uR) +99(uR)® +33(uR)*]

2¢-3uR4DD (A i) (63)

+7128><607T4 375 fduu ppw(B zu)a/\w/\W(C i)
% [13(uR)' + 119(uR)9 +785(uR)® + 2784(uR)” + 5307 (uR)® + 3789(uR)’
—1446(uR)* 4 9441(uR)® 4 46332(uR)? + 58725uR + 19575,

with coefficients identical to that found in the DD-DD-OQ interaction energy. The additional factor
u?/R? in each integral term of Equation (63) ensures the potential is entirely retarded, containing no
uR-independent terms, as expected since the mixed dipole-octupole polarisability of B is independent
of the octupole weight-3 term. A form applicable at very short range may be obtained on retaining the
u-independent term in the second integral of Equation (63) and using the integral result (A14). This is
found to be

ol —0x 20

AERYPOOONZ) s T [ () (BORE (B)OS;, ()03, (€)
% E\’OEy(]EZO
(Ex0+Ey0)(Ex0+E20>(EyO+EZO)’

(64)

displaying inverse fifteenth power dependence.
With similar definitions for the isotropic polarisabilities, the dispersion potential for collinear
geometry is

DD- DO'-00 _ _ o
AEC 1207145*1{15 f‘im‘z 2RaP(A, i) oD (B; i) afy o (G 1)

x[(uR)" +5(MR) +17(uR) +16(uR)” — 36(uR)® — 96(uR)® — 48(uR)*]
-‘rwfduu e ZRaPD(A; i )a pw(B lu)fowa(C iu) (65)

x[(uR)'® +21(uR)’ + 273(uR)® + 2498(uR)” 4 14790(uR)® + 352880 (uR)®
+127576(uR)* + 50688(uR)> — 57344(uR)? — 1382400uR — 691200],
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which also contains no uR-independent term. Using the result (A14) a short-range limiting form of
Equation (65) may be obtained as

_pol_ —0x 2.0 1)y0
AERD DO -00(NZ) ~ — 96 5 |1 (A) Py (B)Oped” (B)OY:,, (C)OF0,,(C)
0 XY,z
x ExOEyOEZO
(EXO+EyO)(EX0+EZD)(Ey0+EZO)/

(66)

which has identical power law behaviour as result Equation (64).

7. Summary

A systematic study has been peformed of dispersion interactions between three molecules when
the effects of electric octupole coupling have been accounted for, supplementing a previously published
result involving two electric dipole polarisable species, and a third that is pure electric octupole
polarisable. This has been carried out using the theory of molecular QED, in which the electromagnetic
field is quantised and interactions between non-relativistic microscopic particles take place via the
exchange of one or more virtual photons. As in the case of pair dispersion potentials, the transfer of
two virtual photons between each interacting pair mediates coupling between three molecules in the
ground electronic state, with the radiation field in the vacuum state. To simplify the computations,
for instance by considerably reducing the number of time-ordered diagrams that have to be summed
over, an extension to higher multipoles of the Craig-Power Hamiltonian operator was adopted instead
of the usual interaction Hamiltonian that is linear in the Maxwell field operator. This alternate
perturbation operator, which has the form of an effective two-photon coupling operator, enables third-
order perturbation theory to be used in the evaluation of the three-body dispersion potential.

Specific energy shifts calculated include that between two electric dipole polarisable molecules
and one that is mixed electric dipole-octupole polarisable; one electric dipole polarisable molecule
and two mixed dipole-octupole polarisable molecules; and three mixed electric dipole-octupole
polarisable molecules. Also computed was the potential between an electric dipole polarisable
molecule, an octupole polarisable species, and a mixed dipole-octupole polarisable molecule, which is
of the same order as the DO-DO-DO interaction. Important insight into the results obtained was
gained by decomposing the octupole moment into its irreducible components of weights-1 and -3.
The weight-1 dependent contributions to each of the potentials contained sums of direction cosine
terms that preceded polynomial terms in various powers of u, a, b, and ¢ that were identical to that
found in the leading non-pairwise additive triple-dipole contribution to the energy shift, with the
DD-DO!-DO! and previously obtained DD-DD-O'O! contributions being viewed as higher-order
correction terms to the DD-DD-DD potential.

Interestingly, for isotropic energy shifts involving mixed dipole-octupole polarisable species,
the interaction energies are wholly retarded, containing no static terms. Furthermore, the octupole
weight-3 term of this tensor vanishes on random orientational averaging, leaving a dependence solely
on the weight-1 contribution. Nevertheless, evaluation of the u-integral for small displacements of the
three particles may be used to obtain an energy shift valid in the near-zone. Explicit expressions for
dispersion potentials were also given for equilateral triangle and collinear arrangements of the three
molecules for each of the multipole moment combinations considered. The hierarchy of emerging
power laws in the near-zone can be understood from the fact that the nonretarded DD-DD-DD potential
is proportional to R~%, where each replacement of a dipole with an octupole leads to a factor of the
order (a/R)? << 1, where a represents the extent of the electronic wave function. On top of this,
the absence of true static terms leads to factors (kR)" << 1, where m is zero or a positive integer
and k is the wave number of the radiation exchanged between the molecules. Note that DO-DO
and DO-DO-DO interactions are special cases where the exact balance between (a/ R)* and (a/R)°,
respectively with (kR)* and (kR)® leads to an additional factor R~ arising from a Casimir-Polder type
integral. The emerging power laws for pair and three-body interactions are shown in Table 1.
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Table 1. Short-range dependences of dispersion potentials: Near-zone limiting behaviour of
various equally displaced two- and three-body dispersion energy shifts involving electric dipole
(D), quadrupole (Q) and octupole (O) couplings.

Multipole Coupling Near-Zone Power Law Ref.
DD-DD R™6 [9-11]
DD-QQ R6 x (a/R)? x (kR)°~R~8 [29]
DD-DO R~ x (a/R)? x (kR)2~R~° [30]
DO-DO R0 x (a/R)* x (kR)* x R-1~R~7  [30]
DD-00 R® x (a/R)* x (kR)®~R~7 [29]
DD-DD-DD R [26]
DD-DD-QQ R~ x (a/R)? x (kR)°~R~11 [14]
DD-DD-DO R™? x (a/R)? x (kR)®~R~8

DD-QQ-QQ R~ x (a/R)* x (kR)P~R~13 [14]
DD-DO-DO R~ x (a/R)* x (kR)*~R~?

DO-DO-DO R™2 x (a/R)® x (kR)® x R~1~R~10
DD-DO-00 R~ x (a/R)° x (kR)O~R~15

It is also worth highlighting that the integrals over imaginary wave vector evaluated in the
Appendices may be used to calculate the sub-dominant contribution to the near-zone potential between
an electric dipole polarisable molecule and an electric octupole polarisable one. This two-body potential
has been calculated previously [29], and is

AEPD-00 _

(o)
he 4.,—2uR ,, DD
=~ imors | Aute e (A )

a)\}l}u\vv(B 11‘)[(1‘1{)4 + 2(uR)3 + 5(”R)2 +6(uR) +3]

- mie fdue’z”R DD (A iu)a0y, (B; i) [(uR)® +12(uR)” +90(uR)° + 486(uR)’ (67)

+1863(uR)* +4950(uR) +8775(uR)* + 9450(uR) + 4725).

Strictly speaking there is no contribution to the conventional near-zone limit arising from the first
term of Equation (67), that dependent upon octupole weight-1, because there is no #R-independent
term. A short-range asymptote may be arrived at by approximating ficu >> Eyg, Eyo in the
polarisabilities and using Equation (32) to evaluate the resulting u-integral, giving

23

AEDD*O]Ol NZ) Ay —— == k
(NZ) 3600AcT3e3R7 ny:

0x
kol (A)205)Y (B)OL(B), (68)

exhibiting a Casimir-like inverse seventh power dependence. The typical near-zone limit, arising from
the second term of Equation (67), that dependent upon octupole weight-3, in contrast displays
R~10 behaviour. Again, the unexpected behaviour stems from an additional small factor (kR)?,
as shown in Table 1. In this context it is useful to remark that short- and long-range expansions
of the Casimir-Polder dispersion potential, as well as all correction terms up to second order in the
fine structure constant have been performed from consideration of the orbit-orbit contribution due to
the Breit-Pauli Hamiltonian, including relativistic effects [38,39], and compared with recent molecular
QED calculations [30].

Finally, it is worth pointing out that the ratio of the limiting forms of the triple dipole dispersion
potential for an equilateral triangle configuration to the pair potential is AE3/AE; = a(0)ey 1IR3,
where a(0) is the static polarisability, indicating that for small values of this quantity and large
separations the triple dipole energy shift is appreciably weaker than the corresponding two-body
contribution. Interestingly, taking the electric dipole moment to be eag, where ¢ is the proton charge and
ap is the Bohr radius, and the transition energy to be of the order of one Rydberg, the ratio AE3/AE; is
unity at distances of around 34y, with AE3 increasing in importance at larger distances.
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Appendix A. Wave Vector Integrals Involving Single Polarisability

When calculating Casimir—Polder energy shifts between an atom and a macroscopic object such
as a plate or a slab, wave vector integrals that feature a single atomic polarisability are encountered of

the form
(o]

u —uRr/
./dua2+u2e CP(uR/c), (A1)

with .
n
x)= Y Pux", (A2)
n=0

and where Py = 1. Then for aR/c << 1, corresponding to the near-zone, we have for:
(H)n=0,

e UuR/c T
/du R P(uR/c) =~ /du el (A3)
()n=1,
—uR/c < —x R
/du T2 P(uR/c) =~ /dx# ~ —ln(a—), (A4)
+u (AR)" 4 x2 c
on letting x = uR/c and with P(x) ~1.
(i) n =2,
/duM P(uR/c) ~ /due’“R/cP(uR/c) (A5)
. a2 + u? . !
since u? >> a2, and which may be evaluated using Equation (32). Hence on collecting results,
* n,—uR/c %/ 12 —0
u'e” —In(aR/c), n =1
/du 252 PuR/c) = ’ (A6)

)" [dxx"2e7*P(x), n > 2
0

with n > 2 evaluated using Equation (32).

Appendix B. Two Polarisabilities

In calculations of the Casimir-Polder dispersion interaction between two atoms, wave vector
integrals involving two polarisbilities are encountered of the form

n

° u vy
/dume u CP(MR/C). (A7)
0

On letting aR/c and bR/c << 1, we have for:

Hn=0,

1 —uR/c ~ / 1 _ T
O/du (a2 + u?) (b + u?) P(uR/c) ~ ) du (a2 +u2)(b2 +u?)  2ab(a+b)’

(A8)
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and which is 77/443, for b = a.
(iyn=1,

- 2% -
b[dume uR/ep(uR/c) = (R) bfdxxe 1~ ﬁln(%), (A9)

[ERRICES

on substituting x = uR/c. For b = a, (A9) becomes 1/24? by L'Hopital’s Rule.
(iii) n =2,

oy

2 R/ ~ () faxxtet— 1
du Gyt e PuR/C) = (£) [ dxxe R[]

(A10)
~ R 1 _
= ] T
where the last integral is evaluated via
/du u? . on
S @) (0 ) 2t b)
For b = a (A10) simplifies to 7r/4a.
(i) n =3,
Ood u? —uR/cp(yR — ood 3a—x 1
of U ) ) © (uR/c) Of xx3e (& [(2)+2] (A11)
~ gz [a?n(aR/c) — b*In(bR/c)],
which tends to —In(aR/c) for b = a.
(iv)n > 4,
[ W oukrep R/c) dxx"4e*P A12
] M@+ ud) (uR/e) a (x), (A12)

which may be evaluated using

/dxx"e*”x = nly™"1, Reyy > 0.

The approximation u? >> a2, b? has been made.

Appendix C. Three Polarisabilities

In three-body energy shifts involving an electric octupole moment, to arrive at a short-range limit
we are required to evaluate integrals of the form

=S}

na—uR/c

u-e
O/du s TR (A13)

where P(uR/c) is the polynomial function, and whose constant, u-independent term is kept, i.e.,
P(uR/c) = 1. u is transformed to x = uR /¢, so that for n = 2 (A13) becomes

w2e "R/C P(uR/c) (R 3% o 1 - 1
fdll—ﬂz+;z ) (g (f) Ofdxx e ¥ [(“T)Z+Y2] [(bTR)ZerZ} [(d?R)2+x2] ~ % (@tb)(a+d)(b+d)’ (A14)
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and which tends to 77/16a° fora = b = d.
Forn=3

2 2(p2_ g2 2042 _ a2 2052 _p2
R 3,—X 1 ~ _ Ja?(®—d*)In(aR/c)+b*(d*—a®)In(bR/c)+d*(a*—b*)In(dR/c)
(&) oo Gy ~ P J @9

which equals 1/ 402 fora=b=d.
For n = 4, we have '0[ du%l’(ul{ /c). Taking the leading term of the polynomial

expansion, and transforming to x, we have

R fq e [ abtad+bd
OO O s

(A16)

T
and which equals 377/16a fora=b =d.
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Abstract: We study the resonant dipole-dipole interaction energy between two non-inertial identical
atoms, one excited and the other in the ground state, prepared in a correlated Bell-type state,
and interacting with the scalar field or the electromagnetic field nearby a perfectly reflecting
plate. We suppose the two atoms move with the same uniform acceleration, parallel to the plane
boundary, and that their separation is constant during the motion. By separating the contributions
of radiation reaction field and vacuum fluctuations to the resonance energy shift of the two-atom
system, we show that Unruh thermal fluctuations do not affect the resonance interaction, which is
exclusively related to the radiation reaction field. However, non-thermal effects of acceleration
in the radiation-reaction contribution, beyond the Unruh acceleration-temperature equivalence,
affect the resonance interaction energy. By considering specific geometric configurations of the
two-atom system relative to the plate, we show that the presence of the mirror significantly modifies
the resonance interaction energy between the two accelerated atoms. In particular, we find that
new and different features appear with respect to the case of atoms in the free-space, related to the
presence of the boundary and to the peculiar structure of the quantum electromagnetic field vacuum
in the locally inertial frame. Our results suggest the possibility to exploit the resonance interaction
between accelerated atoms as a probe for detecting the elusive effects of atomic acceleration on
radiative processes.

Keywords: dipole-dipole interaction; Unruh effect; quantum field theory in curved space

1. Introduction

Quantum field theory in accelerated backgrounds has led to deep insights into the fundamental
notions of vacuum and particles, forcing us to reconsider these basic concepts as observer-dependent
notions. A prominent example of this feature is given by the Unruh effect [1], affirming that an
observer moving with constant acceleration in the Minkowski vacuum feels a thermal bath at an Unruh
temperature proportional to its proper acceleration, a:

I

T, =
u 27mkpe

a, M
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where c is the speed of light, 1 the Planck constant, and kp is the Boltzmann constant.

An analogous effect, in a curved space-time, is the Hawking radiation from a black hole:
a free-falling observer outside a black hole should experience a bath of thermal radiation at the
temperature Ty = hig/(27tkpc), g being the local acceleration due to gravity at the event horizon [2].

As paradoxical as the concept of thermal radiation from vacuum may appear, the Unruh effect
is a clear manifestation of the non-unicity of the notion of quantum vacuum (and of particles),
as extensively discussed in the seminal paper by Fulling [3] and in following papers on the subject [4,5].
This conceptually subtle effect, merging classical general relativity and quantum field theory, has been
the object of intense investigations in the literature, with different and sometimes conflicting
conclusions on its physical interpretation [6-12]. Additionally, from Equation (1) (cgs units), we have

Tu~ (107%a) K, @)
and therefore extremely high accelerations, of the order of 102 ¢cm/s?, are necessary to obtain an
Unruh thermal bath of a few kelvin, thus making the detection of this effect in the laboratory drastically
difficult [6,8,13-18]. Whilst the absence of any experimental observation of the Unruh effect has led
to question the reality of the effect [12], it has been argued that the Unruh effect is a fundamental
requirement to ensure the consistency of quantum field theory [19]. In any case, a direct verification of
the effect, and in general of acceleration-dependent effects, could allow us to solve some fundamental
controversies about its physical interpretation.

Recently, the effects of an accelerated motion on the radiative properties of atoms/molecules
in vacuum have been discussed in the literature [20-26]. Changes in the spontaneous emission
rate [20,27-29] or in the Lamb shift of single uniformly accelerating atoms [21,22], as well as
the dispersion Casimir-Polder interaction between a uniformly accelerated atom and a reflecting
plate [30-34] or between two uniformly accelerated atoms [35,36], have been investigated, and their
relation with the Unruh effect was discussed. The effect of non-equilibrium boundaries on radiative
properties of atoms has been also considered [37,38].

Another, albeit related, problem, recently addressed in the literature, concerns the equivalence
between acceleration and temperature. For example, it has been discussed that non-thermal features
(related to a uniform acceleration) manifest in the dispersion (van der Waals/Casimir-Polder) and
resonance interaction between non inertial atoms in the free-space [25,26,36,39]. These investigations
reveal that the effects of a uniform acceleration are not always equivalent to Unruh thermal effects.

Motivated by these issues, in this paper, we investigate the effect of a non-inertial motion on the
resonance interaction between two atoms, that accelerate with the same constant acceleration, parallel
to a reflecting plate. The imposition of boundary conditions on the quantum field on the plate changes
vacuum field fluctuations and the density of states of the quantized radiation field, and, thus, it can
significantly influence radiative properties of atoms placed nearby [40-45]. Our aim is to investigate in
detail physical manifestations of atomic acceleration in the radiation-mediated resonance interaction
between the two atoms located in the proximity of a reflecting plate.

Resonance and dispersion Casimir-Polder interactions are long-range interactions involving
neutral objects such as atoms or molecules [46,47], due to the zero-point fluctuations of the quantum
electromagnetic field or to the source field [47-49]. When one or more atoms are in their excited
state, a resonance interaction between the atoms can occur, as a result of the exchange of real photons
between them. If the two atoms are prepared in a factorized state, the resonance interaction is a
fourth-order effect in the coupling and scales as R~2 in the far-zone limit, R > A (A is the wavelength
associated to the main atomic transition, and R is the interatomic distance) [50]. These interactions,
for atoms in a factorized state, have been recently investigated in the literature, also in connection with
some controversial results concerning the presence or not of space oscillating terms [51-54]. Recent
results show that the force on the excited state is oscillatory in space, while that on the ground state is
monotonic [52,53]. A different physical phenomenon occurs if two identical atoms are prepared in a
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superradiant (or subradiant) Dicke-state. In this case, the resonance interaction energy is obtained at
the second-order in the coupling, and it shows space oscillations in the far-zone limit. Such interaction
is usually stronger than dispersion interactions and scales as R~?, for very large separations (R > A).
Resonance interactions, and the related Forster energy transfer [55], have been extensively investigated
in the literature [56]. The possibility to manipulate (enhance or inhibit) the dispersion and resonance
interactions through a structured environment has been also recently investigated [57-61].

We consider two atoms moving with the same uniform proper acceleration in a direction
parallel to a reflecting boundary and interacting with the quantum scalar and the electromagnetic
field in the vacuum state. Following a procedure originally introduced by Dalibard, Dupont-Roc,
and Cohen-Tannoudji [62,63], we identify the contribution of self reaction and vacuum fluctuations to
the resonance energy shift of the two accelerated atoms [25,39,44,64]. This approach has been recently
used to investigate radiative process of atoms at rest in the presence of a boundary [44,65] or in a
cosmic string spacetime [66], and it has been recently generalized to the fourth order to evaluate
the dispersion Casimir—Polder interaction between two atoms accelerating in the vacuum space [36].
We show that only the radiation reaction field (source field) contributes to the interatomic resonance
interaction energy, while vacuum field fluctuations do not. Consequently, the resonance interaction
does not show Unruh thermal-like terms (which are related to vacuum field fluctuations). However,
non-thermal effects of acceleration appear in the source field contribution, which significantly affect the
resonance interaction energy between the two accelerated atoms. To explore these effects, we consider
two distinct geometric configurations of the two-atom-plate system: atoms aligned perpendicular or
parallel to the plane boundary. We show that the presence of the mirror significantly modifies the
character of the resonance interaction energy between the two accelerated atoms. By an appropriate
choice of the orientation of the two dipole moments, we show that new effects of atomic acceleration
(not present for atoms at rest) appear, yielding a non-vanishing resonance interaction energy even for
specific configurations in which the interaction for stationary atoms is zero. This result also suggests
new possibilities of observing the effects of a uniform acceleration through a modification of the
resonance interatomic interaction between two identical entangled atoms. Thus, our findings could
have relevance for a possible detection of the effect of an accelerated motion in radiation-mediated
interactions between non-inertial atoms.

The paper is structured as follows. In Section 2, we briefly introduce the method used, and discuss
the resonance interaction energy between two accelerating atoms interacting with a massless relativistic
scalar field nearby a reflecting mirror. In Section 3, we extend our investigation for atoms interacting
with the vacuum electromagnetic field. Final remarks and conclusions are given in Section 4.

Throughout the paper, we adopt units such that i = c = kg = 1.

2. Resonance Interaction between Two Uniformly Accelerating Atoms: The Scalar Field Case

We consider two identical atoms, A and B, interacting with a massless relativistic scalar field
in the vacuum state and in the presence of a perfectly reflecting plate satisfying Dirichlet boundary
conditions. The two atoms are modeled as point-like systems with two internal energy levels, Fwg/2,
associated with the eigenstates | g) and | e), respectively. We suppose that the mirror is located
at z = 0 and that the two atoms move in a direction parallel to the mirror, with the same uniform
proper acceleration, perpendicular to their (constant) separation. The atom-field Hamiltonian in the
multipolar coupling scheme and within the dipole approximation, in the locally inertial frame of the
two atoms (comoving frame), is as follows [25,36,48,67]:

H = wpof(n) +wod(0) + Dwala ot~ 1 (of (0)9(xa(1) + A (p(xs(1))), ()
k
where 03 = 1(le)(e| — |g)(g]) and o» = %(|g> (e] —|e)(g]) are the pseudospin atomic operators,

a} and ay are the creation and annihilation operators of the scalar field, A is the coupling constant,
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and x¢(7)(¢ = A, B) is the trajectory of atom & (7 is the proper time of the atoms); ¢(x(7)) is the scalar
field operator, with Dirichlet boundary conditions at the surface of the plate. Equation (3) is expressed
in the comoving frame of the two atoms, and we use the Heisenberg representation.

We assume two identical atoms prepared in one of the two correlated, symmetrical (superradiant),
or antisymmetrical (subradiant) states (|i4) or | ), respectively):

lps) = %(lgA,em + lea,gs)- @

To investigate the interatomic resonance dipole-dipole interaction energy, we exploit the
procedure originally introduced in Refs. [62,63], allowing to identify the contributions of the source
field and vacuum fluctuations to the interaction energy. As discussed in [25,36,62,63], this leads to the
introduction of an effective Hamiltonian that governs the time evolution of the atomic observables,
pertaining to atom A (B), given by the sum of two terms (similar expressions are obtained for atom B,
by exchange of A and B):

(H o = =302 [ av'CT(aa(o), xa () ()07 (7)), ®
(H{ Do = =32 [Td0'xF (xa(1), 2a() {03 (1), 037 (T)} = §A% [T a7 [xF (xa(T), x5(T")) ©

x {3/ (0), 03" ()}

where the functions CF(x4(7),x4(7')) and xF(xa(T),xa(7")) are the field statistical function
(symmetric correlation function and the linear susceptibility), respectively:

(0H{¢(x()), ¢(x(7")}|0), @)
(0l (x(1)), ¢ (x(x'))]0). ®)

N =N =

To obtain the contributions of source field and vacuum fluctuations to the energy shift of the
system, we take the average values of the effective Hamiltonians (H;f(];))v ¢ and (Hi{(%))s, on the

correlated state (4):
T
(6Ea)oy = —ir? [ dr'CF(xa(m), xa(¥)x (5,7, ©)
0

and
(6EA)sr = —iA? /T At xF (xa (1), x4(T")CA (1, T') — iA? /TdT’XF(xA(T),xB(T’))CAB(T,T’), (10)

where ) — —oo and T — oo are the initial and final times (similar expressions are obtained for atom B);
xAB) (7, 7') and CAB) (1, 7) are respectively the antisymmetric and symmetric statistical functions of
atom A (B), while x4B(t,7’) and CAB (7, 1*) refer to the collective two-atom system:

W) = Swelio (2,08 (@)llps), ay
1

CBr,t) = Sl (0,0 (T)}Hys)- (12)

From expressions above, it is clear that the resonance interaction is entirely due to the source field
contribution [25]. In fact, Equation (9) does not depend on the interatomic distance; it only gives the
vacuum fluctuations contribution to the Lamb shift of each atom (A or B). Hence, this term does not
contribute to the resonance force between the atoms. Similar considerations apply to the first term
on the right-hand side of Equation (10). On the contrary, the second term on the right-hand side of
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Equation (10), which depends on the distance between the two atoms, is the only contribution relevant
at the second order to the interatomic interaction energy. Therefore, the interatomic resonant energy
shift is obtained as

- —i/: v xF (xa (1), x5(7))C4B(1,7') + (A = B). (13)

This conclusion is indeed expected on a physical ground, as the resonance interaction is due to
the exchange of a (real and virtual) scalar quantum between the two correlated atoms. It is thus related
to the field emitted by the two atoms (source field). This property has important consequences when
we consider the interaction between accelerated atoms. In fact, as discussed in [25,26], this interaction
energy does not show signatures of the Unruh thermal effect (which is exclusively related to the
vacuum field correlations in the locally inertial frame). However, we find that the atomic acceleration
can determine a qualitative change of the interaction between the two atoms, even if not equivalent to
a thermal effect.

We now apply the procedure discussed above to evaluate the resonance interaction energy
between two atoms moving with uniform acceleration, interacting with the vacuum scalar field nearby
a reflecting plate. We first evaluate the field’s linear susceptibility. In the presence of a reflecting
boundary, it can be expressed as the sum of two terms, a free term (x}) that coincides with that
obtained in free-space, and a boundary-dependent term (xT), related to the presence of the reflecting
plate [68]:

X" (xa(t),xp(t') = x6 (x4 (1), x8(7")) + xp (xa (1), x8(7)), (14)

with
X0 (xa(0),xp()) = SH‘A ‘[(5(Af+|AX ) —o(at —[Ax_|)], (15)
Xb (xa(),xp(1')) = 8n\A ‘[5 At + |Axy[) — 0(At — [Axi])], (16)

where x4(7) = (t,x,,2), xp(7") = (', x,y,2/), At =t — ¥, and |Axz| = [(x = x>+ (y— ¥ )* + (= F
Z/)Z]I/Z.

The atomic statistical function C48(t, T') can also be easily obtained [25]:
4B (r,7) = i%(ef%(f*f’) +e (T, (17)

where the =+ sign respectively refers to the symmetric or antisymmetric states (Equation (4)).

Equation (14) has a general validity and can be applied to different situations, for example,
two atoms at rest in the presence of a mirror or uniformly accelerating near a plane boundary, provided
the appropriate atomic trajectories, x4 (7) and xg(7), are given.

We now specialize our considerations to two specific cases. We suppose a mirror located at

= 0 and assume that the two atoms accelerate in the half-space z > 0, with the same uniform

proper acceleration, parallel to the reflecting plate. The distance between the atoms is thus constant.
We consider two different geometric configurations of the two-atom system relative to the plate:
two atoms aligned along the z-axis, perpendicular to the boundary, and two atoms aligned in a
direction parallel to the plate. This permits us to simplify our calculation and to discuss some
relevant effects of the presence of the plate on the resonant interaction energy between the two
accelerating atoms.

We first consider both atoms located along the z-direction, perpendicular to the mirror,
and uniformly accelerating along the x-direction, perpendicular to their (constant) separation, as shown
in Figure 1.

137



Symmetry 2018, 10, 185

Figure 1. Pictorial description of the first geometrical configuration considered for the physical
system: two atoms placed on the z-axis, perpendicular to the plate, and uniformly accelerating along
the x-direction.

In the locally inertial frame of the two-atom system, the atomic trajectories, as a function of the
proper time T of both atoms, are

ta (T) = tp (T) = %Sinh(ll'f), XA(T) = xB(T) = %COSh({ZT), (18)
ya=yp=0, za=z2z3=2+L.

In order to obtain the distance-dependent energy shift of the two-atom system, we first give the
linear susceptibility of the scalar field on the trajectories (Equation (18)) of the two atoms. Substituting
Equation (18) into the expressions of the scalar-field linear susceptibility (Equations (15) and (16)),
we obtain

s (2w it —1al s (2w il aR
F(x0(T), 15(T") = — L [ deo(elhT _ gitodt (sm(TSmh (4)) _ sin(%sinh <T>>), "
XL( A(7), xp(T")) 82 fo ( ) L\/l+%a2L2 R\/l+%a2R2 (19)

where AT = T — 7/, L is the interatomic distance, and R = z4 + zg = L + 2z is the distance between
one atom and the image of the second atom relative to the mirror.

The resonance dipole-dipole interaction energy is then obtained using Equations (17) and (19) in
Equation (13). We obtain

L A2 | cos(Pisinh (%)) cos(%30 sinh (7))
167 | i e 11 R

where the F sign refers to the symmetric or antisymmetric superposition of the atomic states, respectively.

0E|(z,L,a) = (20)

The expression above describes the resonance dipole-dipole interaction energy in terms of the
proper acceleration of the two atoms and the atom-plate distances. In the limit 2 — 0, it reduces to that
for atoms at rest. It consists of two terms: a term coinciding with the resonance interaction energy for
two accelerating atoms in the free-space, discussed in [25], and a new term, depending on R, related
to the presence of the mirror. The latter term, describing the effect of the boundary on the energy
shift, originates from the interaction of one atom (e.g., atom A) with the image of the other atom (B).
When both atoms are very distant from the reflecting boundary, the boundary-dependent term in
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Equation (20) goes to zero, and we recover the resonance interaction between two atoms accelerating
in free-space [25]. On the other hand, when the atoms are very close to the mirror, we can approximate
R ~ L, and the resonance interaction is strongly suppressed. Thus, in this limit, the interaction
between the two entangled atoms can be strongly inhibited by means of the nearby plate, analogously
to the case of atoms at rest discussed in [44].

Most importantly, Equation (20) shows that the effects of the atomic acceleration are not
thermal-like. Nevertheless, the relativistic acceleration significantly affects the interaction energy,
giving a different scaling of it with the interatomic distance. In fact, similarly to the results in [25,36]
for atoms accelerating in the unbounded space, we can identify a characteristic length scale related
to the acceleration, z, = 1/a. For distances larger than z,, the effects of relativistic acceleration can
significantly change the interaction between the two non-inertial atoms; in fact, when R > L >> z,,
we obtain

A2 1 2wq , aL 1 2wy, aR

SE (z,L,a) ~ 3 {ﬁCOS(Tln(T)) - ﬁcos(Tln(T))} , (21)
giving a different scaling law of the interaction compared to the case of inertial atoms. In the near-zone
limit, R, L < z,, we recover the well-known result for inertial (static) atoms:

A% (1 1
0E (z,L,a) ~ Fien [Ecos(woL) - ﬁcos(wo’R)} . (22)
In the intermediate zone, R > z, > L, when the distance between the two atoms is smaller than

the characteristic length z, but their distance from the mirror is such that R >> z,, we obtain

2
SE | (z,L,a) ~ I/\— {icos(a)oL) -

&= |30 os(%ln(@))} . (23)

1
aR2 € 2

Thus the relativistic acceleration and the presence of the boundary affect the qualitative features
of the resonance interaction, in particular, its power-law distance dependence, decreasing at large
distances more rapidly than in the inertial case. Additionally, in the presence of a boundary,
the non-inertial character of acceleration modifies the interatomic interaction energy, even when
the separation between the two atoms is much smaller then z,. In fact, such a result can be expected on
a physical ground: the boundary-dependent term, as mentioned, can be interpreted as the interaction
of one atom with the image of the other atom with respect to the plate. When the atoms are accelerating,
the distance traveled by the photon emitted by one atom to reach the other one, after reflection from
the mirror, increases with time; if R > z,, this effect becomes relevant and causes an overall decrease
of the interaction strength between the two atoms.

We now investigate whether similar effects manifest also for a different geometric configuration
of the atom-plate system. Specifically, we consider two atoms aligned in the y-direction, parallel to
the mirror, as shown in Figure 2, and uniformly accelerating in the x-direction, perpendicular to their
(constant) separation. In this case, the atomic trajectories are

ta(t) = tg(t) = Lsinh(at), x4(7) = x5(7) = L cosh(at), 8
ya=0, yp=D, zp=2z3=13,

with D > 0.
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Figure 2. Pictorial description of the second geometrical configuration considered for the physical
system: two atoms aligned along the y-axis, parallel to the plate, and uniformly accelerating along
the x-direction.

Following the same procedure as before, we first obtain the scalar-field linear susceptibility:

F Ny — 1o iwhT _ —icwhry [ (3 sinh (%)) sin(% sinh (%))
K0 05(7) = gl 7 (e — i) (b bl ),

where D is the interatomic distance, AT = T — 7/, and we have defined R = R(z, D) = v/ D? 4 4z2.
The substitution of Equations (25) and (17) into Equation (13) yields, after algebraic calculations,
the resonance dipole-dipole interaction for accelerating atoms:

:FLZ cos(z% sinhfl(g)) B cos(a% sinh’l(%))
167 | p\/1+ la2D2 R\/1+ la2R2

As before, we find that the resonance interaction energy consists of two terms. The first term
on the right-hand side of Equation (26) coincides with that for atoms uniformly accelerating in
free-space [25], while the second new term is related to the boundary. In the static (inertial) limit,
we recover the expression of the resonance interaction for atoms at rest near the mirror for the

5EH(Z, D,ﬂ) (26)

configuration considered [44]:

5E|(2,D) = :FLZ cos(woD)  cos(wpv/'D? + 422)
= 167 D VD? 1 422

It is worth noting that the expression of JE(z, D, a) given by Equation (26) is formally equal to
that obtained for 6E | (z, L,a) in Equation (20), provided R is replaced by R. This is indeed expected,
as the distance R = v/D? + 422 is the distance between one atom and the image of the other. In order to
compare the results obtained in the two geometric configurations, in Figure 3 are plotted Equations (20)
and (26) of the resonance interaction energy (in units of eV /A?), as a function of the atomic acceleration.
In the plots, the value used for wy is the ionization energy of 8Rb, and the distances L = D and
z have been chosen in such a way that the plots cover near, intermediate, and far zones, for both
perpendicular and parallel alignments of the atoms. The plots show that the resonance interaction
energy depends on the acceleration and the geometric configuration of the two atoms with respect to

27)
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the plate (perpendicular or parallel alignment) and that it can be enhanced or inhibited, depending on
the atomic acceleration.

6E.(a)

nTaTa

..... - OE, (static)
0.02f | e OE (static)

0.00

resonance interaction energy (€V/A?)

a(eV)

Figure 3. Resonance interaction energy between the two atoms (units: eV/A?, where the coupling
constant A in our units is dimensionless), as a function of the atomic acceleration, for two different
geometric configurations. Blue continuous line: atoms positioned on the z-axis, which is perpendicular
to the plate. Green dashed line: atoms along the y-axis, which is parallel to the plate. For comparison,
the yellow dot-dashed line and the red dotted line respectively refer to the case of inertial atoms aligned
in a perpendicular or parallel direction relative to the plate. The plots show that the interaction depends
on the acceleration and on the geometric configuration of the two-atom system relative to the mirror.
Parameters, in the units used, are chosen such that L = D = 7.5 x 10 2eV~1,z = 2.0 x 1072eV 1,
and wy = 4.17 eV.

3. Resonance Interaction for Two Accelerating Atoms Interacting with the Electromagnetic Field

In this section, we extend our investigations to two uniformly accelerated identical atoms
interacting with the vacuum electromagnetic field, placed nearby a perfectly reflecting plate. As before,
the atoms move with a uniform proper acceleration 4 in a direction parallel to the plane, located at z = 0,
and their distance is constant. Our aim is to discuss whether new and further effects of acceleration
may manifest in their interaction, as a consequence of the vector nature of the electromagnetic field.

We adopt the Hamiltonian in the Coulomb gauge and in the multipolar coupling scheme,
within dipole approximation. In the comoving reference frame of both atoms, this is

H = worf (1) + wook (1) + Z‘Uk“k)\ak)\;i —pa(7) - E(xa(7)) — pp(7) - E(x5(7)). (28)

A = 1,2 indicates the polarization , u = er is the dipole moment operator of the atoms (restricted to
the subspace of the two atomic levels considered), and E(x (7)) is the electric field operator, with the
appropriate boundary conditions on the reflecting plate.

As shown in the previous section, the resonance interaction energy is due only to the
radiation-reaction term and can be obtained through the effective Hamiltonian (Hi{f )sr + (Hgf f )sr
(terms referring to atoms A and B, respectively) on the correlated state |i+) (see Equations (4)—(6)),
taking only terms depending on the interatomic distance:

71/ d Xt (xa (1), 2 (7)) CAB (1, 7)) + (A = B), (29)
where 7,j = x,,z. We first evaluate the electromagnetic field susceptibility )(f';-(x A(T),xp(T")) = $(0 |
[Ei(xa(7)),Ej(xp(1"))] | 0) and the atomic symmetric correlation function C{?B (T, 7).

The field susceptibility in the comoving frame can be obtained from the two-point correlation

function of the field [68]. The two-point correlation function of the electric field operator in the
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presence of the reflecting boundary, is the following (for brevity, we omit the time-dependence in the
following expressions):
ij(xa,xB) = (0|E;(x4)Ej(xp)|0). (30)

It can be written as the sum of a free part, gI(]Q)(x A,xg), and a boundary-dependent term,
()

8ij (xa,xp):
8ij(xa,x8) = &1 (xa,x8) + 83" (x4, %), (31)
where 1 1
(0) - (5. — 9.9y -
gij (xA/ xB) 42 (5118080’ ala] )(At — i€)2 — ‘AX,‘Z, (32)
(b) 1 . . ) 1
8ij (xa,xp) = 5 [(6ij — 2nin;)0ody — ala]"]m/ (33)

and # is the unit vector along the line joining the two atoms.

We now specialize our considerations to the two specific configurations considered for the
scalar-field case in Section 2 and illustrated in Figures 1 and 2, that is, atoms aligned in a direction
perpendicular or parallel to the plate, respectively.

3.1. Atoms Aligned Perpendicularly to the Plate

We first consider two atoms aligned along the z-direction, perpendicular to the boundary,
and uniformly accelerating along the x-direction, as shown in Figure 1. Thus they move on the
trajectory given by Equation (18). Because of the vector structure of the electromagnetic field, the
calculation of the field susceptibility turns out to be more complicated than for the scalar field [68].
After lengthy algebraic calculations, involving a Lorentz transformation of the fields to the comoving
frame, we obtain the following (in the locally inertial frame):

(0) (b)

81,(xa,x8) = gli}.(XA,XB) +8Lij(xA/xB)/ (34)
where
(0) _ 1 1271205 — 2
81, (¥axs) = gm (s (3 (Ar—ie)) 122128 * {1“ L*(8ij — 2min;)
(35)
+ |:5,] + %aZLZ((S,-]' — klk] — 2711'1’1]') + ﬂL(k,'I’Z]' — k]n,):| sinh? (%AT) }
is the two-point correlation function of two atoms uniformly accelerated in vacuum [25], and
(b) _ 4 (1-2n;n;) 1,.2p2(5.. .
giij(xA’ xB) - 712’7 <Sinh2<%(AT—iE))j—_}Iﬂ2R2)3 X za R (51] - 21’11}1]) (36)

+ {5,‘]‘ + %LZZRZ((SZ']* — k,‘k]* — 2111‘71]‘) + ll'R,(k,‘ﬂj + kj”i)} sinh? (%AT) }

is the contribution due to the presence of the boundary. In the equations above, k = (1,0, 0) is a unit
vector along the acceleration. As discussed in [25], the function g 1y (x4, xp) is not isotropic, displaying
a non-diagonal component. In fact, in the present case, we have two specific directions in space:
the direction perpendicular to the plate and that of the acceleration. Similar anisotropies were already
found for a single uniformly accelerated atom near a boundary [31] or for two accelerated atoms in the
free-space [25]. They arise from the spatially extended structure of the two-atom-plate system here
considered, as well as from the vector character of the electromagnetic field. This peculiarity, as we
now show, has deep consequences for the interaction energy between the two atoms.
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In order to evaluate the resonance energy, we first focus our attention on the boundary-dependent
term and calculate the linear susceptibility of the electric field. Using Equation (36), after lengthly
algebraic calculations, involving a Fourier transform of the statistical function of the field,
we finally obtain

xi(:) (xa(1),xp(7")) = 81? f0°° dw (AT — piwhT) <fl.]+(b) (a,R,w) cos <27‘*’ sinh ™! (%))

(37)
+h$(b) (a,R,w) sin(ZT‘” sinh ! (%) )),

where we have introduced the functions fi]%(b)(a, R,w) and h#b) (a,R,w) given in Appendix A
(see Equations (A1) and (A2)).
Substituting Equation (37) and the atomic symmetric statistical function:

1 . »
CHP (T 7) = 5 (Hge)ipge) (€007 + e70%T), (38)

into Equation (29), we finally obtain the boundary-dependent contribution to the resonant energy shift
of the two accelerating atoms:

1
OB = F [0 )i (uly) P (0, Ry o) & (i )s ()= + ()= (b)) P (a, R, )], (39)

where we have introduced the function Pl.j.'(b) (a, R, wp):

Pj(m (a,R,wp) = f,']“b) (a,R,wp) sin(z% sinh ™! (%) ) — h#b) (a, R, wp) cos <2% sinh ! <§> ) , (40)

modulating the interaction as a function of R and of the atomic acceleration.
With a similar procedure, evaluation of the boundary-independent contribution, 5ET), to the
resonance interaction energy yields the following [25]:

1
OET = [0y (it )i(nE) P 0, L coo) = (o) (y)z = (e): (ub) )P, L o)), (4)

where

P#O) (a,L,wp) = f#o)(a, L,wy) sin(z% sinh ! (%)) — h#o)(a, L,wp) cos(z% sinh ™! (%) ), (42)

and the functions f#o) (a,L,w) and h; © (a, L, w) are given by Equations (A3) and (A4) of Appendix A.
The complete resonance interaction energy of the accelerated two-atom system is then obtained
by summing Equations (39) and (41):
oE, = W 4 £ (43)
The result (Equation (43)) is valid for any value of the parameters a, L, and R. It is easy to show that
in the near-zone limit, L < a1 and R < a1, the linear susceptibility is well described by its stationary
counterpart, and we recover the expression of the resonance interaction for two atoms at rest [25,44].
However, at higher orders in 4R (and/or aL), corrections related to the accelerated motion of the
two atoms become relevant, yielding a different scaling of the interaction energy with the distance,
in analogy to the scalar-field case discussed in the previous section. Interestingly, a comparison with
the scalar-field case shows the emergence of new features in the resonance interaction, due to the
boundary, and related to the anisotropic structure of the electromagnetic field susceptibility. Indeed,
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from Equation (39), it follows that the effect of the acceleration on the interaction can be controlled by
an appropriate choice of the dipoles” orientations and of the distance of the two atoms from the plate.
For example, when the dipole moments are orthogonal to each other, with one along x and the other
along z, the diagonal term in Equation (39) vanishes, and only the second (non-diagonal) term survives.
The non-diagonal term is present only for a # 0, and its contribution is a peculiar characteristic
of the non inertial atomic motion, giving a non-vanishing interaction energy, in a configuration
where that for static atoms is zero. This term is thus a sharp signature of an accelerated motion.
To numerically estimate this energy shift, we can assume a = 1018 m/s? (2.2 x 10% eV, in our units),
z=108m (~5x1072eV1), L =15%x 108 m (~ 7.5 x 1072 eV~1), and hwy = 4.17 eV, obtaining
OE ~ 4.4 x 10710 eV. This energy shift is about 4 orders of magnitude smaller than the Lamb shift
for the n = 2 level of the hydrogen atom. Although quite small, we expect that such an energy shift
should be measurable using high-resolution spectroscopy, provided the assumed constant acceleration
could be reached.

The results above suggest investigation of whether analogous effects of acceleration manifest also
for other geometric configurations of the two atoms system, for example, when both atoms are aligned
parallel to the reflecting plane boundary. This configuration is considered in the next subsection.

3.2. Atoms Aligned Parallel to the Plate

We now consider the configuration of two atoms aligned along the y-direction, parallel to
the boundary, which move with uniform proper acceleration along the x-direction, such that their
trajectories are those given by Equation (24). As before, the distance between the two atoms remains
constant during their motion. This configuration is illustrated in Figure 2.

The two-point correlation function of the field in the locally inertial frame of both atoms is

g“ij(xA/xB) = g‘(‘?;(x/ipr) +g|<‘l:])(xA/xB) 7 (44)

where g‘(‘(_)_) (x4,xp) is the
ij

boundary-dependent contribution, which consists of a diagonal term:

(x4,xp) is the two-point correlation function in free-space [25] and g@
ij

b 4 (6;i—2n;n;) -
gl(\i;)(xA’xB) = v (sinhz(ﬂ(A]T—ie))/_la2R2)3 {%“ZRZ(”I'”J' ~pipj)
2 1 (45)
+ 102 R%kikj + {1 + 3a*R*(1 — kik; — Zp,'pj)} sinh? (gm) } (i=7)
that is non-vanishing only for i = j, and a non-diagonal term:
(b) —_ 1 2 e — Do
g”t‘j (xA'xB) - 71&17 (sinhz(%(Arfie))*%uZRZ)S {75[ ZD(p,?’l] p]nl) )

+[aD(kip; — kjpi) + 2az(kin; + kin;) — 2a®zD(p;n; — pjn;)] sinh? (%AT) } (i #7)
that is different from zero only for i # j. We have here introduced the unit vector p = (0,1,0) and the

distances R = v'D2 +4z2 and R = v/D? — 422). The boundary-dependent contribution to the linear
susceptibility of the field is then obtained as

A a0 am() = gha S5 e = e (100, D,2,0)cos( % sinn 1 () )

! (47)
+th]-(b> (a,D,z,w)sin <27“’ sinh ™! (%) >>,
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where the functions fig(b)(a, D,z,w) and hyb)(a, D,z,w), given in Equations (A5) and (A6) of
Appendix A, modulate the resonance interaction energy with the distance D and the atomic
acceleration a.

Substituting Equations (47) and (38) into Equation (29), we find the boundary-dependent
contribution to the resonant energy shift:

55\(\b) =~ [6;,'(u§,)f(ngg);P,-']‘-<b) (a,D,z,wy) + ((;lj?g)x(}t%)y - (;t;?g)y(;tfg)x> Pjy(b) (a,D,z,wyp)

(48)
(e (b= + ()= ) ) P (0, Dz, e00) + (()y (W)= = ()= (uf)y) B (a,D,2,00)
where
Piu(b) (a,D,z,wp) = fiu(b) (a,D,z,wp) sin (2% sinh ™! (%))
(49)

e e CI))]

The resonance interaction energy between the accelerating atoms is finally obtained by adding
Equation (48) to the free-space interaction energy & Eﬁo), given by the following [25]:

1
OE(” = [0 () P (@, D, o) + ((uge)x (el )y = (e (e)e ) P (0, D, )], (50)

Pyj(o) (a,D,wg) = fl‘.lj(O) (a, D, wp) sin (2% sinh~1 (%) )
7h1”j(0) (a,D, wy) cos ({% sinh ! (%) )

(the functions fl‘.‘j(o)(a, D,w) and hyj(o) (a,D,w) can be obtained from Equations (A3) and (A4) in
Appendix A by exchanging subscripts z and v).

A comparison with the case of accelerated atoms aligned along the z-axis, considered in
the previous subsection, shows the emergence of a new effect, related to the specific geometric
configuration of the two-atom system with respect to the plane boundary. In fact, from the equations
above, it follows that when the dipole moments are orthogonal to each other, one of them along y and
the other in the plane xz, a new non-vanishing contribution to the interaction energy (not present for
atoms located perpendicular to the boundary) arises. This contribution exists only when a # 0,
and thus it is a peculiarity of an accelerated motion. This gives new additional possibilities to
exploit the resonance interaction between accelerated atoms for detecting (non-thermal) effects
of acceleration and, in general, physical effects of the accelerated motion on radiation-mediated
interactions between atoms.

G

4. Summary

We have discussed the resonance energy shift of two identical atoms, one excited and the other in
the ground state, prepared in a correlated (superradiant or subradiant) state, and moving with uniform
acceleration near a perfectly reflecting plate. The atoms interact with the massless scalar field or the
electromagnetic field in the vacuum state. Following the approach in Refs. [62,63], we have identified
the contributions of source field and vacuum fluctuations to the resonance interaction. We have shown
that Unruh thermal fluctuations do not influence the resonance interatomic interaction, which is
obtained from the source-field term only. We show that, in cases of both the scalar and electromagnetic
field, the presence of the plane boundary significantly affects the resonance interaction between the
accelerated atoms. Non-thermal effects of acceleration appear, yielding a change in the distance
dependence of the interaction. Finally, in the case of the electromagnetic field, we show, for different
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configurations of the two-atom-plate system, the emergence of new and different effects in the
resonance interaction energy, for example, a non-vanishing interaction energy in configurations/dipole
orientations for which the interaction is zero for inertial atoms. These effects, not present for atoms
at rest, therefore provide a sharp signature of the non-inertial motion of the atoms. These findings could
be exploited for the detection of the non-thermal effects of atomic acceleration in radiation-mediated
interactions between non-inertial atoms.
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Appendix A
(

In this Appendix, we give the expressions of the functions fi]%(m and hi I ised in Section 3.

The explicit expressions of the functions f;(b) (a, R,w) and h#w (a, R, w) are

L(b) _ w(1+a*R?)
S
1(b) _ w(1+3a*R?)
fow = =R
fZLZ(b) _ w(2+%ti/7§;§a4n4)’ (A1)
L(b L(b 1-4a®R?
fxz( ) = fzx( ) = _uw(z/\[a;la )’/
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wo T TSR T AR
L) _ 1 2
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pL®) _ _20430RY) | 2R (A2)
y74 - NR3 AN3 7
L(b L(b 2R2 2
hxz( ) = hzx( ) = a(;;\r/gkz ) + %,
with N = N(a,R) = /1+ %quz.
Explicit expressions of fiJ].'(O> (a,L,w) and hf].'(m (a,L,w) are
fJ_(O) _ w(144%1?)
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1(0) 1+ 1a21%+ Lot Lt 2
hxx =——1=s N5L34 — JF*I\%U
L1(0) _ 1 W?
hyy " = =g + N A4
hi@ _ 2(1+3a%L2) 212 (A4)
zz T TONPLS T aNs
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with N = N(a,L) = 4/1+ a2L2.
Explicit expressions of fiu(h)(a, D,z,w) and hl‘.‘j(b)(a, D,z,w) are
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with N = N(a,R) = /1 + 1a2R2.
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