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1. Introduction

Mathematical optimization is the selection of the best element in a set with respect to a given
criterion. Optimization has become one of the most commonly used tools in modern control theory
to compute control laws, adjust the controller parameters (tuning), estimate unmeasured states, find
suitable conditions to fulfill a given closed-loop property, carry out model fitting, among others.
Optimization is also used in the design of fault detection and isolation systems, due to the complexity
of automated installations and to prevent safety hazards and huge production losses that require
the detection and identification of any kind of fault, as early as possible, as well as the minimization
of their impacts by implementing real-time fault detection and fault-tolerant operations systems
where optimization algorithms play an important role. Recently, it has been proved that many
optimization problems with convex objective functions and linear matrix inequality (LMI) constraints
can be solved efficiently using existing software, which increases the flexibility and applicability of the
control algorithms. Therefore, real-world control systems need to comply with several conditions and
constraints that have to be taken into account in the problem formulation, which represents a challenge
in the application of the optimization algorithms.

This special issue aims at offering an overview of the state-of-the-art of the most advanced (online
and offline) optimization techniques and their applications in control engineering.

2. Papers Presented in the Special Issue

The first paper, presented by Lopez-Estrada et al. [1], offers an extensive review of the three
main topics covered in this special issue. This literature survey presents different methodologies for
analysis and control, observer synthesis, and fault-related strategies for convex systems under different
representations: Takagi-Sugeno fuzzy models, linear parameter varying (LPV), and quasi-LPV systems.

Zhao et al. [2] perform an analysis on the selection of the length of the control horizon for a linear
model predictive control, with application to steam/water loops in large-scale watercraft/ships, with
an emphasis on the performance and computational complexity of the algorithm.

Aydmn Miihtircii [3] considers a combination of a feed-forward artificial neural network (FFANN)
and an artificial bee colony (ABC) optimization algorithm to ensure the settling time of a second-order
system. The FFANN is the nonlinear control structure adopted for a buck converter and its parameters
are optimized using the ABC algorithm.

Processes 2020, 8, 201; doi:10.3390/pr8020201 1 www.mdpi.com/journal/processes
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Gutierrez-Carmona et al. [4] analyze the performance of a nonlinear dissipative observer
for a tubular reactor. They show that, by simple considerations in the boundary conditions,
the observer’s convergence is improved regardless of the presence of perturbations. The sensor
locations acquire physical meaning, and by simple numerical manipulations, the inflow perturbations
can be estimated numerically.

Son and Du [5] develop a reliable thermal management system to predict and monitor precisely
the thermal behavior of lithium-ion batteries. First, an iterative optimization algorithm corrects
the model by incorporating the errors between the measured quantities and the model predictions.
Then, an optimization-based fault detection and diagnosis algorithm provide a probabilistic description
of the occurrence of possible faults, while taking into account the uncertainties.

Fan et al. [6] present a profile monitoring methodology that includes model fitting and
statistical process (SP) control. In this paper, the authors consider non-linear profiles with correlated
within-the-profile observations. Three profile models were studied: a traditional one (polynomial
regression) but with added autoregression structure, and two known from the theory of non-linear
regression, but relatively unknown for SPC practitioners.

Dong et al. [7] present a methodology to assess a specific critical avionic system: the integrated
modular avionics (IMA) system. This methodology is derived from a model-based safety analysis
performed using the AltaRica 3.0 modeling language. Moreover, the authors present a design
optimization of the IMA system.

Zeng et al. [8] present a fault diagnosis and isolation method for gas turbines. First, the measured
aerodynamic parameters are decomposed using the kernel principal component analysis. Then, they
construct the Hotelling-T? (T?) statistic, which is the application of the T-statistic in multivariate
analysis in the principal space and squared prediction error (SPE) statistics in the residual space. Finally,
they calculate the parameters’ sensitivity to the T2 and SPE statistics to locate the fault.

Piprek et al. [9] provide a sampling approach to approximate the chance constraints in the
formulation of optimal control problems for stochastic dynamical systems to capture rare events.
The applicability of the proposed approach is demonstrated in a battery charging-discharging problem.

Khanum et al. [10] describe an interesting algorithm approach for improving global search
minimum optimizations and compare multiple existing algorithms to assess their ability to find optimal
parameters for various functions.

Moran-Duran et al. [11] propose the use of a trained neural network to predict and control the
voltage of a proton-exchange membrane (PEM) fuel cell. The approach uses principal component
analysis (PCA) to reduce the dimensionality, aiming to eliminate non-significant variables with respect
to the control objective.

Nguyen et al. [12] present the design of a bilinear model-based predictive control for the
three-degrees-of-freedom model of an underactuated ship affected by uncertain disturbances.
The bilinear model of the ship is obtained by linearizing each nonlinear model section and the
uncertain components and random disturbances of the model are compensated with a state estimator.

Allawi et al. [13] report a novel fine-tuning meta-heuristic algorithm to solve global optimization
problems. Also, the proposed algorithm has been validated by comparing it with some featured
meta-heuristic optimization algorithms over different benchmark test functions.

Shin et al. [14] discuss a holonic-based mechanism for self-learning factories based on
a hybrid-learning approach which is designed to obtain predictive modeling ability in both data-existent
and data-absent environments via accommodating machine learning and transfer learning.

Ionescu et al. [15] study the case of an optimization method that considers short-term and
long-term cost objectives. The problem of cost-effective optimization of the system’s output is studied
in a multi-objective predictive control formulation and applied to a windmill park case study.

Zeng et al. [16] provide a method that uses a hybrid filter for fault diagnosis in a gas turbine.
The hybrid filter is based on the unscented Kalman filter and a particle filter with optimized weight.
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It estimates the health parameters of the rotor components and builds a model in order to give
a prediction for fault diagnosis.

Hernéndez et al. [17] characterize the high viscosity gas-liquid intermittent flows by detrended
fluctuation analysis. Specifically, the authors investigated the long-term evolution of highly viscous
two-phase pipe flows of glycerin/air blends. Then they apply a detrended fluctuation analysis of
pressure measurements at various positions along the flow line to extract long-range correlations.

Albalawi and Zaid [18] introduce the application of a model-based predictive control algorithm to
control and improve the performance of a grid-tied neutral-point-clamped 3-¢ transformerless inverter
powered by a photo-voltaic panel. The controller considers the filter elements, as well as the internal
impedance of the grid.

Zheng et al. [19] establish a generalized proportional hazard model to exploit the monitoring
condition information of a relay protection equipment to ensure the safe and stable operation of
a power system.

Navarro et al. [20] propose a method to detect, locate, and estimate the magnitude of leaks in
a pipeline using only flow rate and pressure head measurements at both ends of the pipe. The method
develops a mathematical model that builds an observer ensemble using genetic algorithms.

Liuand Lii [21] focus on an approach for fault diagnosis of the blocking diesel particulate filter based
on spectral analysis of the instantaneous exhaust pressure. The method is validated experimentally.

Kaid et al. [22] develop a two-step robust deadlock control approach based on Petri nets for
automated manufacturing systems where the structural complexity of the Petri net supervisors
is minimized.

Cui et al. [23] provide the infrastructure and mathematical tools necessary to face the detection
of active distribution networks faults with a wide range of converter interfaces and, therefore,
their protection.

Pour et al. [24] present an economic reliability-aware model predictive control based on a finite
horizon stochastic optimization problem with joint probabilistic constraints for the management of
drinking water transport networks.

Martinez-Garcia et al. [25] propose a discrete-time interval observer for a class of discrete-time
parametric uncertain systems modeled in the Takagi-Sugeno form, where the perturbation vector is
considered to be unknown but bounded, to estimate state variables and actuator faults.

Tran et al. [26] provide a tuning method for a fuzzy proportional-integral-derivative controller
based on a modified genetic algorithm that can speed up convergence and save operation time by
neglecting the chromosome decoding step.

Lu et al. [27] study the safety performance of the fly-by-wire system of an aircraft. The safety
analysis is based on stochastic simulations of a Simulink model. The Simulink model represents the
nominal operation of the system, extended with failure mode. The safety requirements of the system
are defined by presenting the thresholds of system performance metrics.

3. Conclusions

We believe that the papers in this special issue reveal an exciting area that can be expected to
continue to grow in the very near future, namely, the use of advanced optimization strategies in
engineering applications. The pursuit of work in this area requires expertise in control engineering
as well as in systems design and numerical analysis. We hope that this issue helps to bring these
communities into closer contact with each other, as the fruitfulness of collaboration across these areas
becomes clear.

Finally, we would like to acknowledge the enthusiastic effort of all the authors, reviewers and
editorial staff who have participated in this special issue.

Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.
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Abstract: This paper provides a review about the concept of convex systems based on Takagi-Sugeno,
linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the
nonlinearities by means of an equivalent description which uses a set of linear models interpolated
by appropriately defined weighing functions. Convex systems have become very popular since they
allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex
nonlinear systems. This survey aims at providing the reader with a significant overview of the
existing LMI-based techniques for convex systems in the fields of control, observation and safety.
Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex
controllers is considered. Secondly, the problem of state estimation is addressed through the design
of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of
convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant
control (FTC).

Keywords: linear parameter varying (LPV) systems; Takagi-Sugeno systems; convex systems; linear
matrix inequalities (LMIs); fault diagnosis; fault tolerant control (FTC)

1. Introduction

Confucius once said “the beginning of wisdom is to call things by their proper name”. In this regard,
it can be noticed that within the control community there is a big disagreement to call a certain class
of multiple model systems by its proper name, in other words, to call a spade a spade. Multiple
models were proposed in order to reduce the complexity of controller design for nonlinear systems
by describing the latter as a combination of local linear models. To this end, several approaches have
been proposed in the literature to deal with this problem, such as the linear parameter varying (LPV),
the quasi-LPV (qLPV) and the Takagi-Sugeno (TS).

LPV systems were introduced by Refs. [1,2] as models used to design controllers that guarantee
a suitable closed-loop performance for nonlinear plants working under time-varying operating
conditions. This was achieved by embedding the plant’s nonlinearities inside the so-called scheduling
parameters. The term LPV was coined to differentiate the resulting class of systems from both linear
time invariant (LTI) and linear time varying (LTV) systems. The difference with respect to LTI systems
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is clear because LPV systems are non-stationary. On the other hand, LPV systems are distinguished
from LTV systems in the perspective taken on both analysis and synthesis. LPV systems can be seen as
a generalization of a group of LTV systems, each one obtained by means of a predetermined trajectory
of the weighing functions. Therefore, properties such as stability, disturbance rejection and tracking,
among others, hold for a family of LTV systems, rather than for a single LTV system [3]. A typical LPV
system is described by:

x(t) = A(0())x () + B(6(¢))u(t) @
y(£) = C(0(1)x(t) @

where x(t) € R denotes the state vector, u(t) € R™ is the input vector, y(t) € R™ is the output
vector and 0(t) € R™ is the vector of varying parameters, which can be a function of exogenous or
endogenous variables (in the latter case, the system is referred to as quasi-LPV) and that takes values
within a region ©, that is, 6(t) € © C R".

TS models are similar to LPV systems, since they are obtained by considering some collection
of linear models, although their overall blending is obtained by means of a set of fuzzy IF ... THEN
rules [4]. At first, they were obtained by performing linearization of the nonlinear plant about different
operating points [5]. Nevertheless, this conception was changed in the work by Ohtake et al. [6], who
proposed a convex modeling technique via the so-called sector nonlinearity approach. In this case,
the main idea is to obtain a convex system such that the global model matches the nonlinear system
exactly in a compact subset of the state space. The number of sub-models is directly related to the
number of nonlinear terms. For each nonlinear term, two sub-models are obtained such that for k
nonlinear terms, the global model is composed of /i = 2¥ sub-models. Therefore, the bigger is the
number of nonlinear terms, the bigger becomes the conservatism of the global convex system and the
computational burden of both analysis and synthesis.

The TS approach was adopted rapidly by the control community and was applied to
state estimation [7], control [8], fault detection [7], descriptor systems [9], state observers [10],
waste-water treatment plants [11], bioreactors [12], process industry [13,14], mechatronics [15,16],
aeronautics [17,18] and automotive [19,20], among others. Comprehensive material about the topic
can be found in Refs. [8,21-23] and the references therein. On the other hand, another school of
thought named these approaches as quasi-LPV (qLPV) in order to differentiate fuzzy approaches
from model-based approaches. Nonetheless, models obtained by means of the sector nonlinearity
approach are not fuzzy, since the weighting functions are completely deterministic, as detailed in
Ref. [24]. Literature on qLPV systems can be found in Refs. [25-33], just to mention a few.

It is clear that LPV and TS systems have been developed independently but recently some works
have started discussing about the analogies between these paradigms [23,34,35]. For this reason, we
find it appropriate to consider a terminology that includes both schools of thought and in this review
we propose to denote both LPV and TS systems as convex systems. The idea of unifying these two
paradigms under a single name is not new, as it was originally proposed in Ref. [36] and retaken in
Refs. [37-40]. Nonetheless, in spite of the success of these paradigms, there is no literature review that
allows tasting all the flavors offered by the vastness of convex approaches. Therefore, in this paper,
three main aspects of convex systems are reviewed: control, observation and safety. The objective is to
help the reader to locate themselves in the area of convex systems by learning about the main used
techniques. It is worth highlighting that, although real-life applications of the reviewed methods are
discussed whenever appropriate, the level of detail is kept low, since the main focus of this review
is theoretical. The reader interested in a more extensive survey of experimental applications and
validations based on high-fidelity simulations is referred to the excellent work in Ref. [41] and the
references therein.

The overall structure of this review is provided in Figure 1.
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1. INTRODUCTION

2. CONTROL OF CONVEX SYSTEMS: it is dedicated to discuss
advances and control techniques for convex systems

2.1 Convex state-feedback control

2.2 Convex output-feedback control
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2.4 Model predictive control fo convex systems
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Figure 1. Structure of the review.
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Notation: The notation used in this article is quite standard. R”*" denotes the set of all matrices
with m rows and n columns. If a square matrix A € R"*" is symmetric, this fact will be denoted
by A € S". Given a matrix A € S", A > 0 (A < 0) denotes positive (negative) definiteness, that
is, that all its eigenvalues are positive (negative). Similarly, A >~ 0 (A < 0) denotes positive (negative)
semi-definiteness. For a matrix A € R™*", AT and At denote its transpose and pseudo-inverse,
respectively. If A € R"*" is non-singular, A~! will denote its inverse. The symbol * denotes the
transposed element in a symmetric position of a matrix. Finally, He{ A} is used as a shorthand notation
for A+ AT.

2. Control of Convex Systems

Convex systems can arise from three possible interpretations [42]: (i) they can be seen as linear
systems subject to uncertainties for which the synthesis of a controller must be approached from a
robust control perspective; (ii) they can be seen as a family of parameter varying systems, for which the
instantaneous value of the varying parameters can be injected directly in the control structure, leading
to a gain scheduled control [43,44]; and (iii) the two previous situations can be combined, as suggested
by Ref. [45], where a double-layer polytopic framework was considered to this end.

In the last years, significant progress has been made in the control of convex systems. For
example, in the presence of uncertainties or disturbances, LPV robust control techniques have shown to
provide better performance than robust LTI controllers [46,47]. Indeed, many linear matrix inequality
(LMI)-based solutions for LTI systems have been extended to LPV systems, for example, an LPV
stabilizing controller was proposed for an arm-driven inverted pendulum in Ref. [48] and was shown
to outperform classical robust control techniques, such as Heo and pi-synthesis. However, the method in
Ref. [48] does not guarantee that the closed-loop system exhibits a robust performance. To handle this
problem, a parametrized LPV H,, control was presented in Ref. [49], which showed good performance
when applied to a turbofan jet engine. Other Ho, controllers for systems affected by time-varying
parametric uncertainties can be consulted in Refs. [50,51]. In order to improve the performance of
He, controllers, a switching controller designed with multiple Lyapunov functions was proposed by
Ref. [52]. Similarly, an LPV control for switched systems with slow-varying parameters was proposed
for an F-16 aircraft model in Ref. [53] by adopting the blending method developed by Ref. [54], which
achieves the separation of the entire parameter set into overlapped subsets, such that the overall
LPV controller can be blended over the entire region by means of regional controllers. In spite of the
good achieved performance, the method is applicable only under the assumption that the scheduling
parameters can be measured on-line, which is often difficult to satisfy in practice. To solve this problem,
a robust compensator which considers prior and non-real-time knowledge of the varying parameters
was proposed by Ref. [55] for stable polytopic LPV plants. Robust convex controllers have been also
proposed in the context of networked nonlinear systems [56,57] where the communication channel is
affected by package dropouts intermittently.

2.1. Convex State-Feedback Control

The first convex developments were proposed in Ref. [58] and subsequent papers [2,44,59].
The main difference with respect to the robust control theory is that the varying parameters are
assumed to be known and they can be used to schedule the time-varying controller gain. The most
widely applied control approach is the state-feedback, for which a conceptual scheme is given in
Figure 2. This approach computes the control law as follows:

u(t) = K(6(t))x(t) ©)

where K(6(t)) € R™*"x denotes the controller gain. It is the simplest control law that can be
considered but its implementation requires knowing the full state of the system. Combining (1)
and (3), the closed-loop system is described by the following autonomous convex system:

10
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x(t) = [A0(1) + BOM)K(O(1)] x(1) @

Hence, by using the Lyapunov candidate function V(x(t)) = xT(t)Px(t) > 0, with P € S
and requiring V(x(#)) < 0, the so-called quadratic stability condition is obtained, as follows:

He{PA(6) + PB(6)K(6)} < 0 V6 € ® ®)

o(t)

Convex u(t)

Convex plant x(t)
—

controller A(8),B(0)

K(6)

Figure 2. Conceptual scheme of convex control.

Equation (5) is a bilinear matrix inequality (BMI) as the unknown variables K(0) and P appear in
the same product of matrices PB(6)K(6). However, it is possible to transform (5) into an LMI by pre-
and post-multipliying (5) by Q = P!, thus obtaining [60] (similarity transformations do not change
the eigenvalues of a matrix, hence its positive/negative definiteness):

He{QPA(6)Q + QPB(6)K(6)Q} < 0 Vo € © (6)
Note that in this case PQ = (PQ)T = I and therefore the following is obtained:
He{A(0)Q+ B(0)K(0)Q} <0 Vo € © (7)

Finally, the quadratic term is eliminated by using the change of variables I'(8) = K(6)Q, so
that (7) becomes:

He{A(0)Q+ B(O)[(6)} <0 Voe® ®)

which is in an LMI form. It is important to mention that, in the case that multiple specifications are
desired, the above change of variables introduces some conservatism, since it forces to use the same
Lyapunov matrix Q for all specifications, whereas using different matrices for different specifications
would lead to better performance. However, using LMIs instead of BMIs is convenient due to the
computational efficiency of available LMI solvers, whereas BMIs are non-convex, so that there is no
guarantee of obtaining a global minimum. Equation (8) represents an infinite number of constraints,
therefore it presents a computational problem. Unfortunately, the direct application of a polytopic
approach is not straightforward. One could rewrite (8) as:

M,’j = He{A,—QJrB]-F,-} <0 Vi,jz 1,...,h 9)
and achieve stabilization by using u(t) = K(6(t))x(t), with the feedback controller gain obtained as

K(0()) = T(8(t))Q1, where T(8(t)) = Y, p:(6(+))T; and p;(8(t)) denotes the coefficients of the
following polytopic decomposition:

11
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o) | _ & 4 _
B(Q(t))}— izlp,-w(t)){g}, L) =1, pe) 20 veco (0

1

However, this solution has the drawback that a vertex gain K; must be robust with respect to all
possible values of B(0(t)), which corresponds to a high degree of conservatism. For this reason,
alternative solutions can be found in the literature, such as that proposed by Ref. [61] which consists
in pre-filtering the control input u(t). The combination of the filter and the system (1) leads to a
convex system with constant input matrix since B(6(t)) appears embedded into the state matrix of
the augmented system. However, it must be mentioned that some recent work has questioned the
advantages of the pre-filter against using directly the LMIs (9) for the controller design [62,63].
Other alternative solutions aim at relaxing (9), although usually the requirement of low
conservatism is associated with an increase in the computational load. Among these solutions, it is
worth mentioning the conditions proposed by Ref. [64], who presented a fuzzy control application
of the Polya’s theorems on positive forms in the standard simplex. The result is a set of sufficient
conditions to prove the positiveness of double sums, which are progressively less conservative as a
complexity parameter n increases. These conditions are asymptotically exact, that is, necessary and
sufficient when 7 tends to infinity. Other conditions are those obtained by generating partitions of the
polytope through the triangulation method [65], which allows to obtain a family of sufficient conditions
for positivity /negativity of double sums and, in parallel, another family of necessary conditions, which
become asymptotically exact by decreasing the size of the partitions. In addition, one can recall the
conditions proposed by Ref. [66], that allow to relax the conditions of double polytopic sum to take
into account, for example, the existence of gaps in the set ©. Nonetheless, the most popular relaxation
is the one proposed by Tuan et al. [67], which considers that an LMI in the form of (9) is equivalent to:

M;; <0 ie[l,2,..h (11)
2 L,
mMi,'JrMi]‘Jer,‘jO 1<i#j<h (12)

which reduces the conservatism and increases the applicability of the controller.

For convex qLPV and TS systems, Equations (9) and (11) are also known as parallel distributed
compensation (PDC) [68]. In this case, the feedback controller and the convex system share the same
weighting functions and the LMI conditions are obtained with the direct Lyapunov method. However,
the more local models the convex representation has, the greater is the conservatism of the LMI solution.
This fact follows from the necessity of finding a feasible solution that employs a common matrix P for all
the local models. A possible strategy to reduce the conservatism is to consider nonquadratic Lyapunov
functions (NQLFs) as done, for example, in Refs. [69-72]. The solution obtained through NQLFs,
which is also known as non-PDC [73,74], reduces considerably the conservatism and maintains the
same weighting functions for both the convex model and the controller. However, non-PDC controllers
are harder to design than PDC controllers, since the weighting functions involve time derivatives of
the NLQF, leading to local results [75]. This problem does not arise in convex systems dependent on
exogenous time-varying parameters, because the NLQLF would not involve time derivatives of the
states, hence global solutions can be obtained for this case [72,76-78].

2.2. Convex Output-Feedback Control

A variant of the state-feedback control strategy previously described consists in using directly
the output y(t) for feedback, which is easier to implement in cases where the state is unavailable for
measurement. Nevertheless, some conditions have to be ensured to make it possible to synthesize
these controllers, by means of approaches initially developed in the robust context and later extended
to the LPV framework [79-82].

12
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The next result allows the quadratic stabilization of a convex system of the form (1)—(2) using a
convex dynamic output-feedback controller defined as:

2k () = Ax(6(8))xk (t) + Br (6(£))y(t) (13)

K
u(t) = Cx(0(t))xk (t) + Dk (6())y(t) (14)

where xg (t) € R"r is the internal state of the controller and A (6(t)), Bx(6(t)), Cx(6(t)), Dx(6(t)) are
matrix-valued functions, such that the closed-loop system obtained by the connection of (1)-(2) and
(13)—(14) is stable. In particular, the closed-loop system is described by the following autonomous
convex system:

x(H) | _

ax(t) |

Due to the presence of C(6(t)) post-multiplying Bx (6(t)) and Dk (6(t)) in (15), the procedure to
obtain LMIs for design of the controller’s matrices is somehow more complex. The system (1)-(2) is
quadratically stabilizable using the convex controller (13)—(14) if there exist a positive definite matrix
P € §? such that A, (0)P + PA(8) < 0,8 € ©, where A, (6) is the state matrix of the autonomous

system (15). Following Refs. [83,84], this condition is achieved if and only if there exist matrices Q >~ 0
and S > 0 and matrix-valued functions Cx () and Bx(6) such that the following holds V0 € @:

t
By (0(#))C(6(t)) Ak(0(1)) xk(t)

A(0(1)) + B(O(1)Dx(6()C(6(1)) - B(O(1))Cx(B(1)) } { x(t) } a5

He{A(6)Q + B(8)Cx(8)} <0 (16)
He{SA(8) + Bx(8)C(8)} <0 (17)

A possible methodology to obtain the controller’s matrices after solving (16)—(17) is described
hereafter [85]. If (16)—(17) and the following condition hold:

(9 4] as)

then, by letting M, N be non-singular matrices such that MNT = I — SQ and choosing D (8(t)) =0,
the controller’s matrices Ak (6(t)), Bk (6(t)) and Ck (6(t)) can be computed as follows:

Bi(0(r)) = M~ [Bi(8(1)) — SB(8(1)) Dx(0(¢))] (19)
Cr(6(1)) = [C(@(6)) — Dx(8(1))C(6(1))Q] N~ 20)
AR(0(0)) = M [Ac(610)) ~ SB(6(1))Cel6(1))NT ~ MB(6(1)C(6(1))Q 1)

—s(A@) + B(eu))DK(e(t))C(e(t»)Q] NT

On the other hand, if (18) does not hold, then the matrices have to be adjusted using Q) = AQ,
Sx = AS, Bxa(8(t)) = ABg(6(t)) and Cx (8(t)) = ACk(6(t)), where A > 1, until (18) holds with these
new variables and the controller’s matrices can be computed.

Equation (18) guarantees the existence of the invertible matrices M and N used for controller
computation. In the same way, the conditions to perform He control, control with guaranteed cost
or to achieve other specifications can be obtained. Note that double polytopic sums appear due to
the terms B(6)Ck(0) and By (8)C(0) in (16)~(17). If the controller is restricted to the case where By (6)
and Cy(#) are constant, then the LMIs (16)—(17) can be reduced to a finite number of conditions easily,
otherwise the discussion provided in the previous section about possible relaxations would apply
with slight modifications. It is worth remarking that in convex systems in which 6(t) depends on

13
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unmeasured states, the analysis and design of the output feedback control become more complicated,
see for example, Ref. [86].

2.3. Convex Tracking Controller

Consider a convex system subject to unknown inputs ans sensor noise, described by (for the sake
of simplicity, the output matrix is assumed to be constant):

() = A(0(8))x(t) + B(0(£))u(t) + R(6())d(t) 22
y(t) = Cx(t) + Gd(t) (23)

where d(t) € R" is the disturbance vector comprising both unknown inputs and noise and R(6(t))
and G are matrices of appropriate dimensions. As illustrated in Figure 3, a convex tracking controller
can be considered for this system, with control law:

u(t) = Ka(0(6))x(8) + Ka(O(1))e(t) = K(0(0) [ x() e(t) | (24)

where K;(6(t)) and Ky (6(t)) are the gains to be designed and e(¢) is the integration error, added to
compensate steady-state errors and reach the desired output w(t):

é(t) = w(t) —y(t) = w(t) — Cx(t) — Gd(t) (25)

Proportional

Eladlely]
K1(6)
B 1S (t) Integral
w(t) +C ) :
— action
K>(6)
integrator
comparator

Figure 3. Convex tracking controller scheme.

The system augmented with the integrator can be rewritten in a compact form by introducing the

augmented state vector x.(t) = [xT(t) €T (1)]T:
te(t) = Ac(0(t))xc(t) + Be(0(t))u(t) + Re(6(£))d(t) + Bow(t) (26)
with:
Acore)) = |00 8} Be(6(t)) = {B((’O“”} Bo= || Retor) = [R‘fg”] @7
The closed loop system has the form:
h h
Ze(t) = Z;Pi((’(t)) Y 0i(0(1)) [(Aci — Beik)) xc(t) + Braide(1)] (28)
i= j=1

14
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with:

Brai= (R Bu], du()=[ d(t) w(®) }T 29)

Sufficient conditions for the existence of the controller are given in Ref. [35] and presented
hereafter. Consider the system (22)—(23), the feedback control law defined by (24), the integrator, and
let the attenuation level be given by . > 0. The closed loop system error (25) is globally stable with Heo
performance if || x¢(t) ||3< 72 || dw(t) ||3 and if there exists a matrix X > 0 such that Vi, j € [1,2,..., h],
the following holds:

AT =TRT B .pT
He (XAci + =i Bci) + BroiBro X

<0 (30)
* -1l

. . o _ “1m,
Then, the controller gain matrices are computed by K i = [Kl j Kz]} =X"g;.

This is possible because if we consider the £;-gain from d,,(t) to x(f) such that:
Jred = V(1) +x ()xe(t) = 72 (Ddao(t) <0 (31

where V(t) is a quadratic Lyapunov function, the LMI (30) is obtained after solving the performance
criteria (31). Complete procedures are described in detail in Ref. [35].

An alternative approach is to use a reference model as originally proposed by Ref. [87] and later
applied by Refs. [26,88], which has the advantage that the tracking error is described by an autonomous
system, so its convergence to zero can be guaranteed even without the use of an integrator.

2.4. Model Predictive Control for Convex Systems

Model predictive control (MPC) is a control strategy that is based on the use of a mathematical
model to predict the system’s behavior in a future time window and then finds the optimal input
sequence by minimizing a cost function [89,90]. Only the first calculated input is applied to the system
and the remaining are discarded, repeating this prediction-optimization process at every sample. This
control technique is popular because it can take into account systematically complex dynamics, as well
as physical and process quality constraints [91].

Consider the discrete-time convex system:

x(k+1) = A(6(k))x(k) + B(6(k))u(k) (32)

where A(0(k)) = E 0;(k)A; and B(6(k)) = Z 0;(k)B;. Therefore, 0(k) belongs to a convex
polytope © defined by the values 6;(k) such that Z;Z i(k) = 1, with, 0 < 6;(k) < 1. On the
other hand, when 6(k) varies in the polytope ©, the system matrices vary in the polytope Q) defined
as follows:

[A(0(k)), B(0(k))] € Q = Co{[A1,B1],[A2 Ba], ..., [A1 Bi]} (33)

where [A;, Bj] are the vertex matrices obtained when 6; = 1 and 6; = 0 for j # i. Hereafter,
for illustrative purposes, it is assumed that there is no model uncertainty and that both the scheduling
variable (k) and the state x(k) are known at time k. However, the future evolution of the model is
uncertain since future values of §(k) are unknown.

Let us define the following quadratic cost function:

=)

J(k) = x(k[k)T Qux(klk) + u(k|k)" Ru(k|k) + Y x(k +i|k)T Qx(k + i|k) + u(k +i|k) Ru(k +i|k) (34)

i=1
Jo(k)

J1(k)
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where Q, R are weighting matrices with appropriate dimensions and the notation x(k + i|k) represents
the predicted value for the state variable x at the future sample k + i calculated at sample k. Hence,
Jo(k) correspond to the first prediction step and J; (k) correspond to the remaining of the prediction.

Let U(k) be the sequence of inputs computed at sample k, that is, U(k) = [u(k|k), Uy (k)] =
(1u(k|k), u(k +1]k),...]. Then, the optimal control sequence is obtained by minimizing the maximum
value that the cost function (34) can take for all the possible future trajectories of the parameter
6(k), that is,

u* (k) = min max k) (35)
Uk)  [AO(k+i)),B(8(k+i))]eQ i>0

where * denotes optimality. The first element of U* (k), that is, u* (k|k), is applied to the system, while
the remaining of the sequence U (k) can be proven to be equivalent to a state feedback control law
whose gain does not depend on the instantaneous value of 6(k) (see Ref. [92] for further details), that is,

U (k) = {u(k +i]k) = K(k)x(k +|k),i > 1} (36)

Following Ref. [92], instead of solving (35), an upper bound for the term J; (k) can be defined,
as follows:

k) < V(x(k+1]k)) = x(k+1/k)TPx(k +1]k) P(k)=0. (37
0 B8 o 0 Ji(k) < V(x(k+1Jk)) = x(k+1[k)" Px(k +1]k) P(k) = (37)

Then, an upper bound of the worst case of J(k) is minimized instead of (35), as follows:

u*(k) = (kr‘%irll(k) x(k|k)TQx (k|k)T + 1 (k|k) T Ru(k|k)T + x(k + 1]k) " Px(k + 1]k) (38)

The optimization problem (38) can be reformulated as the following minimization problem:

min v (39)
7,1 (K[K),Q k), Y (k)
subject to LMIs:
T 2(k+ 10T 2(kk)TQ?  u(k|k)TRE
2(k+ 1|k Ik 0 0
k1K) Q(k) -0 (40)
Q2 x(k[k) 0 I 0
| Rzu(klk) 0 0 I

i 0
N =0 Vi=1,...,1 41
Qo) 0 o o |- ! @D
| R2Y(K) 0 0 I

k) + B(6(k))u(k|k)], Tj(k) = A;Q(k) + B;Y (k) and Q(k) = 0. The gain

with £(k + 1|k) = [A(8(k))x(k
= Y(k)Q~1(k), which guarantees that the state evolves in an ellipsoidal

in (36) is computed as K(k)
invariant set.

Considering the system output as y(k) = Cx(k), the cost function (34) may be subject to
constraints [93]:

‘u(k‘k)‘ < Umax (42)

| CLA®®)x(klK) + BEK) (kO] ||, < Yo @)
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Constraints on the inputs are satisfied if there exists a matrix X = 0 such that:

X Y

: 2
YT 6 =0 with  X;; <u (44)

max

In a similar way, the constraints on the outputs are equivalent to the LMI:

Q [A;Q+ BjY]TCT

! =0  j=1,...,1 (45)
C[AjQJFBjY} ygnax J

The constrained MPC algorithm with control law (36) can be obtained by solving the optimization
problem (39) subject to the LMIs (40), (41), (44), (45) and constraints (42) and (43). However,
although this algorithm does not impose u(k|k) and y(k + 1|k) to invariant ellipsoid constraints, still
includes constraints on all future inputs and outputs. A method to improve the conservatism is to relax
the future constraints (44) and (45) and bound only u(k|k) and y(k + 1|k) [93]. To guarantee stability
an additional constraint that ensures that the cost function decreases monotonously (¢p(k) < ¢(k —1)
with ¢(k) = x(k|k)TQx(k|k)T + u(k|k)TRu(k|k)™ + x(k + 1|k)TPx(k + 1]k)) has to be included in
the optimization:

min ¥ (46)
(K1), Q(K), Y (k)
subject to LMIs:
[y 2(k+ 10T x(klk)TQZ  u(k|k)TR2
£(k+1Jk) Q(k) 0 0 - @)
Q2 x(kk) 0 I 0 =
| R2u(k|k) 0 0 I
[9(k—1) BT Q)QE Y(K)'R?
£k k 0 0
Q%J(A()k) Q(()) } 0 =0 Vji=1,...,1 (48)
| RZY(K) 0 0 I
[ u(klk) = s
R )
- CLA®K)x(klK) + BOR)ukD)] —ymax | _ 50
| —Ymax — C[A(B(K))x(K|K) + BO(k))u(klk)] | =

with f/-(k) = AjQ(k) + B;Y(k) and Q(k) = 0. The gain of the control law (36) is computed as
K(k) = Y(k)Q~ (k). To initialize the algorithm, in k = 0, the Lyapunov constraint (k) < ¢(k — 1)
is not taken into account. The resulting control strategy, which is depicted in Figure 4, provides
guaranteed closed-loop stability provided that a feasible solution has been found. A parameter

dependant feedback law instead of (36) can also be considered as in Ref. [93].
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ﬂODEL PREDICTIVE comaou.h

Convex model y
A(6),B(6) P

Online

Convex plant

op'zilinﬂ/ilzlit)ion u*(klk)' A(6),B(6) x(k|k)

Figure 4. Convex model predictive control scheme.

Most of the MPC strategies for convex systems are based on the algorithm proposed by Ref. [92]
since it stabilises robustly an LPV system for all possible parameter variations. However, such
algorithm was not thought for application to LPV systems and therefore it suffers from being
conservative and computationally demanding. The strategies proposed by Refs. [93,94], which consider
bounds in the parameter variations, show less conservatism and a decreased computational load when
compared to Ref. [92]. A modification of Ref. [93] that involves updating the polytope () while keeping
it defined by the least possible number of vertices has been presented in Ref. [95]. This innovation is
motivated by the fact that the fewer vertices are used to describe (), the less likely it is that infeasibility
problems could occur. In Ref. [96], an extension to nonlinear systems has been presented, where a
linearized model is obtained from the nonlinear model at each sample and then an LPV model that
varies in a politope () is used for obtaining the state prediction. Other existing approaches are focused
on the use of Lyapunov functions that depend on 6(k) that enlarge the feasible region [97,98]. In line
with this work, an algorithm that uses closed-loop predictions with good achieved performance and
low computational requirements was presented in Ref. [99]. More recently, Ref. [100] has presented
a class of nonlinearly parameterized Lyapunov functions to achieve more efficient relaxed stability
conditions. A robust MPC scheme for LPV systems where the varying parameters are assumed to
be measured online and exploited for feedback has been derived in Ref. [101]. Explicit MPC for
convex systems has been also proposed in order to avoid the need of online optimization [102,103].
In general, MPC for convex systems has been a topic that has received an intense interest by the
research community in the last few years, for which the interested reader is referred to Refs. [104-107]
and the references therein.

2.5. Final Comments on Control of Convex Systems

It is worth noting that what has been discussed in this section about the control of convex systems
does not apply only to the problem of controller design for quadratic stabilization but also to the
case of other specifications, such as D-stabilization [108], He control [109], control with guaranteed
cost [110] and many more. The described methods can be adapted to deal with convex systems with
piecewise constant parameters, which provide a unifying concept lying in between the robust and the
gain-scheduled perspectives, including both as extremal cases [111].

On the other hand, there are some cases in which the direct application of the convex techniques
described so far would not work, for example, due to the loss of controllability for some points of the
design polytope, so that alternative strategies must be employed. For instance, consider the following
simplified model of a unicycle mobile robot
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x(t) cos(a(t)) O v
i) | = | sin(a() o { Y } (51)
i(t) 0 1

where x,y are the spacial 2D coordinates, v and w are the mobile robot translational and angular
velocities, respectively and « denotes the orientation with respect to the fixed frame. If « € [—7, 71|
were considered, one would get a non-controllable convex models in the vertices although the
underlying nonlinear system is actually controllable. For example, the solution proposed in Ref. [88]
was based on dividing the parameter space in regions and use a switched approach in order to avoid
the above-mentioned singularities.

Another important theoretical point to be remarked is that the LMI-based assessment of stability
(or some other goal) in convex systems arising from an underlying nonlinear system could mislead to
believe that global stability (or performance) would hold for the original system. This fact is in general
not true, as shown remarkably by Ref. [112] with a simple second order autonomous nonlinear system,
that is, the well known Van der Pol equation. Fortunately, Ref. [112] also shows that it is possible to
estimate the region of attraction for the nonlinear system, based on the Lyapunov function obtained
for the convex system. This fact was further studied by Refs. [113-115] and was used by Ref. [34] to
create a metric to compose different convex models obtained for the same nonlinear system.

Finally, it is worth mentioning that analysis and control problems for convex systems with
delays have also attracted some recent interest [116,117]. These systems belong to the intersection
of convex systems and time-delay systems, so they inherit the difficulties of each one. In particular,
the stability analysis of these systems must be performed using tools such as Lyapunov-Razumikhin
functions and Lyapunov-Krasovskii functionals, which increase the number of decision variables [118].
The interested reader is referred to the monograph [119] and the references therein.

3. Observation of Convex Systems

In many real-world applications there are some internal state variables that cannot be measured
with the available sensors. Nevertheless, many control techniques are based on the assumption that
the whole state is available, which is not always true. In practice, the available information concerns
the input u(t) and the output y(t), rather than the state x(t). In such case, the observability properties
state that when the system is observable, the initial state can be determined and, therefore, the state
trajectory can be reconstructed from input and output measurements, by means of the so-called state
observer. State observers are dynamical systems that are designed to estimate asymptotically the
state vector x(t). Applications of convex observers can be found in UAVs [120], electric vehicles [121],
networked systems [122], DC motors [123], wind turbines [124], riderless bicycles [125], to mention
a few.

3.1. Convex Observers

The most common state observer is the one named after Luenberger, which for a convex systems
has the following form [126] (see Figure 5):
£(t) = A(0(1))£(£) + B(O())u(t) + L(6(1)) (y(t) = 9(1)) (52)
y(t) = Cx(t) (53)
where £(t) € R™ denotes the state estimate, () € R" denotes the output estimate and the meaning

of the remaining variables can be inferred from the previous section. The scheduled observer gains
L(6(t)) are designed to guarantee closed-loop stability of the estimation error dynamics for all values
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of 6(t), such that the estimation error between the observer (52)-(53) and the system (1)—(2) converges
towards zero. Let us define the estimation error as follows:

e(t) == x(t) — 2(b). (54)

Convex plant
A(6),B(0),C

Convex observer
A(6),B(6),C,L(B)

Figure 5. Convex state observer scheme.

Then, the estimation error dynamics is defined as:

é(t) = (A(0(t)) — L(6(t)C))e(t) (55)

The stability condition of the above differential equation can be obtained by means of LMI-based
techniques, for example by considering the quadratic stability concept. In this case, one seeks the
existence of a quadratic Lyapunov function V(e(t)) = e(t)TPe(t) > 0, P = 0, whose derivative over
the error dynamics is given by:

V(e(t)) =¢(t)TPe(t) +e(t)TPé(t) = e(t)T (He{PA (8(t)) — PL(6()) C})e(t) < 0

In order to eliminate the quadratic term, the change of variable W(6(t) = PL(6(t) is considered,
such that the following LMI is obtained:

He{PA(6) — W(6)C} < 0 V6 € © (56)

where the observer gain matrix can be computed later from its solution as L(0(t)) = P~TW(0(t)).
Furthermore, to improve the speed convergence of the state observer, a decay rate « < 0 can be
added as requirement, by asking that:

Ve(t)) +2aP <0 (57)

which is also known in the literature as a-stabilization. As a result, the LMI (56) is replaced by
the following:
He{PA(0) —W(0)C} +2aP <0 Vo € © (58)

It should be noticed that the stability of a state observer is guaranteed if the LMI (58) has a solution.
Nevertheless, the approach described so far does not consider disturbances or measurement noise,
which affect all physical systems.
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3.2. Robust Observers

Dynamical systems can be affected by external disturbances and measurement noise and,
moreover, there exists always a mismatch between the real plant and its model used for control. These
effects can lead to the loss of stability or performance if not taken into account appropriately. A control
system that remains stable and with none (or little) performance loss despite the disturbances/noise is
said to be robust. In other words, robustness means that the system remains stable and with almost
the same performance even in the presence of disturbance, model mismatches or noise. For example,
a wind turbine system must keep its efficiency even in the presence of air velocity changes. In contrast,
an example of unwanted disturbance amplification is the Tacoma Narrows suspension bridge, where
strong winds caused resonant oscillations of increasing magnitude in the bridge structure, which
ultimately led to its destruction.

In particular, the robust state observer design problem is related to finding the observer gains
such that it is always possible to estimate the real states within prescribed tolerances, despite the effects
of uncertainties.

A possible technique to deal with uncertainties is by means of the robust He, approach, which
has been developed since the beginning of the eighties and has been applied intensely, with successful
results, to convex systems [11,120,127,128].

The He approach assumes that the disturbance d(t) € R" belongs to a set of norm bounded
functions. The idea is to minimize the worst error that can arise from any disturbance in the
following set:

o0 1/2
) o= ( [t (e)d(ryie 9
0
For instance, let us consider a convex model affected by the above sources of uncertainty:
() =A(0(8))x(t) + B(O(£))u(t) + R(6(£))d(t) (60)
y(t) =Cx(t) + Gd(t) (61)

where the meaning of each variable and matrix is kept as previously and the matrices A (6(t)), B (6(t)),
R (6(t)) satisfy the polytopic property:

h
BO() | =Y pi(0®) | Bi |, Y pi(6(t) =1, pi(6(t) >0 VocO (62)
i=1 i

Let us consider the Luenberger observer given by (52)—(53), for which the dynamics of the
estimation error defined as in (55), can be described after some algebraic manipulations as follows:

é(t) = (A(6(£)) — L(6(£))C) e(t) + (R(6(£)) + L(6(£))G)d(t) (63)

Then, the design problem can be formulated as the one of guaranteeing asymptotic stability of
the estimation error (63) while at the same time minimizing, by means of the Hy, technique, the ratio
between the ¢, norm of the output vector and the ¢, norm of the disturbance vector against the
disturbance vector d(t), that is,

e
miny s Al <, Jldl]g, #0 (64)
o Il

where v > 0 is the prescribed attenuation level (upper bound on the above mentioned ratio).
Then, by considering a bound on the .%5 gain from d(t) to e(t) given by the Lyapunov function
V(e(t)) = e(t)TPe(t), P = 0, the above performance criterion is satisfied if the following holds:
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Vie(t)) +e(t)Te(t) —y2d()Td(t) <0 (65)

Similarly to the procedure described above in Section 3.1, the following LMI is obtained from
manipulations on (65):
He{PA; — E; I PE;—E&;
e{ 1 IC} + 1 ~ lG < O (66)
* -1
Once solved the above LMI, the observer gain matrix can be computed as L; = P~'E;, which achieves
an attenuation level ¥ = /7.

3.3. Proportional-Integral Observers

Proportional-integral observers (PIOs) have become popular in recent years due to their
robustness against constant or slowly varying disturbances. In a PIO an additional term, which is
proportional to the integral of the output estimation error, is added in order to increase the robustness
performance [129], as depicted in Figure 6. This term gives an additional degree of freedom that can
be used for the estimation of unknown inputs such as disturbances [130,131], battery charge [132] and
faults [133,134], among others.

d(t)

Convex plant
A(6),B(0),R(0),C,G

6(t)

Proportional observer
A(6),B(6),C,L(6),K,(6)

n f d(e)

Figure 6. Convex proportional integral observer (PIO) scheme.

A PIO for a system in the form (60)—(61) is described by the following equations:

£(£) = A(0(t)) x () + B (O(t)) u(t) + L(6(£)) (CR(E) — y () + Kp(O(t))d () (67)
d(t) = @(y(t) — C2(t)) (68)

where £ and d denote the estimated state and unknown input vectors, respectively and L(6(t)),
K,(6(t)), and @ are the observer gain matrices to be computed. The addition of an integrator provides
more robustness to the observer so that it can deal with measurement noise or modeling uncertainties.
Let us define the estimation errors as (55) and e4(t) = d(t) — d(t). In order to get a suitable design
procedure, it can be considered that the unknown input d(t) is varying slowly, which means that
d(t) & 0. Then, the dynamics of the estimation errors can be computed as:
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é(t) = (A(B(t)) — L(8(£))C)e(t) + (R(8(t)) — L(8(£))G)d(t) — K, (6(#))d(t) (69)
é4(t) = —®Ce(t) — DGA(t) (70)

By considering:

R(6(1)) — L(6(£))G = Kp(6(1)) 1)

®G =0 72)

and an extended error vector defined as ¢’ (t) := [eT(t)e;(t)]T, the overall error dynamics is
rewritten as:

é(t) = (Ae(6(t)) — Le(0(t))Co)e(t) 73)

with:

A(0(1)) = Ce=1[C, 0] (74)

0 0

A((t) pr(t)} L(0(t)) = {L(@(t))

Then, by considering a Lyapunov equation V(2(t)) = &' (t) 2?¢(t), the solution is obtained in the LMI
formulation, similarly to (56), as:

He{ 2 A,(0) — W(6)C,} < 0 S RRC) (75)

where & = diag(P,Q), P,Q > 0and W,(0(t)) = PL.(6(t)). The observer gain matrices are obtained
from the solution of (75) as L (6(t)) = 27 1W,(6(t)).

It is worth remarking that the slow variation assumption is very common in the literature. From a
practical point of view, it can be relaxed, as done for example in Ref. [135]. It is also worth noticing that
later, in Section 4.2, unknown input observers, which allow to obtain asymptotic convergence of the
estimation error despite the presence of d(t) without making the assumption that d(t) is approximately
constant, will be reviewed.

3.4. Descriptor Observers

The observers discussed above are designed for regular systems whose dynamics are represented
only by ordinary differential equations. Nevertheless, some mathematical models are composed of both
differential and static (algebraic) equations. Designing state observers for descriptor systems is harder
than for regular systems because descriptor systems usually have three types of modes (finite dynamic,
impulsive and non-dynamic [136]) and the observer must deal with all of them. Nonetheless, there are
plenty of fields in which descriptor systems are applied, for example, aircraft modeling [137], complex
systems [11], microgrids [138], electrical [9], mechanical and hydraulic systems [136] and biological
processes [12], among others. Furthermore, there are some mechanical systems for which possible
variations in time of masses and/or inertias rely on a natural descriptor model as in Refs. [139-141].
In these cases, although convex systems can be transformed into a regular system, it has been proved
that it is possible to reduce the number of linear models by considering a descriptor representation,
which in general makes the LMI-based constraints less conservative [142,143].

A convex descriptor system affected by disturbances is described by

m

=

Pas

-

=
I

A(O(#)x(t) + B(O(#))u(t) + R(6(t))d(t) (76)
y(t) = Cx(t)+Gd(t) (77)

where E is a constant matrix with rank(E) = r < ny. Note that in the particular case of E = I,
the descriptor system becomes a regular system and the observer can be computed as described
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previously. On the other hand, unlike regular systems, a descriptor system has different modes that
are given by differential and algebraic equations. As a result, different types of observability condition
should be verified such as R-observability [144], which means that:

rank | F 41| — o, Vi€ [1,2,..N] (78)
and I-observability [144], that is,
E A
rank [0 E| =ny+r  Vie[l,2,..,N] (79)
0 C

R-observability characterizes the ability to reconstruct only the reachable state from the output
data. However, due to the algebraic equations, impulsive terms can appear, which are not desirable
since they can saturate the state response or, in general, have negative effects on the system. On the
other hand, I-observability guarantees the ability to estimate impulse terms given by the algebraic
equations [12].

Then if the convex descriptor system is both R- and I-observable, the following observer can
be proposed:

2(t) = N(O(t))z(t) + J(0(£) )u(t) + L(6(£))y(t) (80)
2(t) = z(t) + Tay(t) (81)
j(t) = Cx(t) (82)

where z(t) represents the observer state and £(t) stands for the estimated states. N(6(t)), J(6(t)),
L(0(t)) and T, are unknown gain matrices of appropriate dimensions to be computed. Based
on (76)-(77) and (80)—(82), the estimation error e(t) is:

e(t) = x(t) — 2(t) = (I = TLC)x(t) — z(t) — TLGd(t) (83)
Assuming that there exists a matrix T; € R™*"+ such that:
[-T,C=TiE (84)
the estimation error becomes:
e(t) = ThEx(t) — z(t) — ToGd(t). (85)
Assuming that the disturbances is slowly varying, d(t) = 0, the dynamics of e(t) is given by:

e(t) =T Ex(t) —2(t) (86)
=T (A(0(8))x(t) + B(O(£))u(t) + R(0(t))d(t)) — (N(6(£))z(t) + J(0(£))u(t) + L(6(t))y(t))
=(T1A(6(t)) — L(0(t))C — N(6(£)) TLE)x(t) + (T B(6(t)) — J(6(£)))u(t)

+ (TiR(6()) = L(0(1))G + N(0(1)) T2G)d(t) + N(6(t))e(t) (87)

In order to guarantee convergence to zero of the estimation error, the following conditions
are considered:
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TyA(6(t)) — L(6(t))C — N(6(t))TLE =0 (88)
TiB(6(t)) — J(6(t)) =0 (89)

After some algebraic manipulations, the following equations equivalences are obtained:

N(6(t)) = TLA(6(1)) + K(6(1))C (90)
I(6(t)) = L(6(t)) — N(6(£)) T ©1)
R(0(t)) = TiR(6(t)) —T(6(+))G 92)

A particular solution of both matrices T} and T; is computed as:

T B = [h 0] Hf (93)

The estimation error becomes:

and, in order to guarantee robustness, the following He, performance criterion is considered:
Vie(t)) +e(t)Te(t) —42d(t)Td(t) <0 (94)

with attenuation level ¢ > 0 and quadratic Lyapunov function V (e(t)) := e(t)TPe(t), P > 0, such that
the following BMI is obtained:
He{PT; A(6(t)) + PK(6(t))C} +1 PTiR(6(t)) — PT(6(t))G
. L <0 (95)

Then, by considering the change of variable E(6(t)) = PK(6(t)) and QO = PI'(6(t)), the above
LMI becomes:

<0 (96)

{He{PTlA(G(t)) FE@B(H))C)+1 PTiR(6(1)) — Q(6())G
* 77[

4. Safety in Convex Systems

Due to the increased demand of safety and reliability in complex systems, fault diagnosis
techniques have attracted a great amount of attention in the past few decades. Concerning the recent
developments of fault diagnosis for convex systems, hereafter we will review: (i) residual generation
for fault detection; (ii) unknown input observers (UIO)-based fault isolation; (iii) observer-based
fault estimation; and (iv) multiple model adaptive estimators (MMAEs). Fault tolerant control (FTC)
systems aim at maintaining closed-loop stability and desired performances in the face of faults in some
components, for example, actuators or sensors. The majority of the literature has focused the attention
on LTI systems, although one can find ad-hoc approaches developed for nonlinear systems, see for
example, Ref. [145]. It should not be surprising that some recent research has attempted to extend FTC
strategies developed originally for LTI systems to the convex case, in order to enlarge their applicability
to a wider class of nonlinear systems. This research has focused mainly on the following techniques,
which will be reviewed in the following: (i) sliding mode control (SMC); (ii) control reconfiguration;
and (iii) virtual actuators/sensors.
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4.1. Residual Generation for Fault Detection

Fault detection aims at detecting accurately the appearance of a fault and is usually performed
generating residual signals which act as fault indicators [146]. For the following convex system with
unknown disturbances d(t) and faults f(¢):

=

Pa
-

=
Il

A(0(t)) x(t) + B (6(t)) u(t) + R (O(t)) d(t) + F (6()) f(t) 97)
Cx(t) + Gd(t) + Hf (1) (98)

<

=~
=

=
Il

z(t) = N (0(t)) z(t) + T (0()) u(t) + L (8(t)) y(t) (99)
2(t) = =2(t) — Ey(t) (100)
9(t) = (1) (101)

where N (0(t)), ] (6(t)), L (6(t)) are filter gains to be determined through design. By defining the

estimation error signal e(t) = x(t) — £(t), the residual signal r(t) = y(t) — §(¢) and the matrix
T = I + EC, if the following constraints hold:

TA(8(t)) — N (8(t)) T — L (8(t)) C =0 (102)
TB(0(t)) —J(6(t)) =0 (103)
E[ G H } =0 (104)

then one obtains that the residual has a dynamics described by:

é(t) = N (6(t)) e(t) + By (6(t)) d(t) + By (6(1)) f(t) (105)
r(t) = Ce(t) + Dd(t) + Hf (t) (106)

with:
By (6(t)) = [TR(6(t) — L (6(t)) G — N (6(t)) EG)]

By (6(t)) = [TF (6(t) — L (6(t)) H— N (6(t)) EH)]

Then, in order to achieve the fault detection goal, one must ensure the asymptotic stability of the error
system while making the signal r(¢) as sensitive as possible to faults and as insensitive as possible to
disturbances, which is usually achieved by means of a mix of He, and H_ index optimization. This
approach was initially proposed for filter design in the full-frequency domain, see for example, Refs. [147,
148]. However, for some practical systems, fault and disturbance frequencies ranges are known
beforehand, which motivated recent research on filter design in a finite-frequency domain [149-151],
using the so-called generalized Kalman-Yakubovich-Popov (GKYP) lemma [152]. Another recent line of
research worth of mentioning is the one that investigates the behavior of the fault detection observer
when unmeasurable scheduling parameters are considered, see for example, Ref. [153].

4.2. Unknown Input Observers-Based Fault Isolation

In the last years, UIOs have shown to be a promising technique for fault detection purposes, due
to their ability to provide the system state estimate even in the presence of unknown inputs, such as
faults and disturbances. The approaches proposed for UIO design can be basically split into two classes:
in the first one, the state estimation is decoupled from the unknown inputs, for example, by means of
some structural conditions [154]. In the second case, joint estimation of the state and unknown inputs
is achieved [155].
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Let us consider the following convex system (for the sake of simplicity, the whole state is assumed
to be measured):

x(t) = A(0()) x(t) + B(0(t)) u(t) + F (6(t)) f(t) (107)
y(t) = x(t) (108)

T(6(t)) =1—-R(6(t)) (109)
S1(0(t)) = R(0(t)) A(6(t)) — H(6(t)) (110)
S2(0(t)) = H (6(1)) T (6(t)) (111)
then:
2(t) = H(0(t)) z(t) + R (6(t)) B (6(t)) u(t) + [S (6(+)) — T (6(t))] y(t) (112)
£(t) = 2(0) + T (6(8)) y(1) (113)

where T (6(t)) is the time derivative of T (6(t)) and:
5(6(t)) = S1(8(t)) + 52 (6(1)) (114)

is an unknown input observer for (107)~(108) [156], for which the dynamics of the estimation error
e(t) = x(t) — £(t) is given by:

é(t) = H (6(1)) e(t) + R(0(t)) F (6(t)) f(t) (115)
In fact, taking into account (107)-(108) and (112)—(113), one finds:
é(t) =[A(6(1)) — S (6(1)) — T (0(t)) A(0(1))] x(t) — H (6(£)) z(t) (116)

+ L= R(0(t)) = T(6(£))] B(6(£)) u(t) + [I = T (6(£))] F (6(£)) f(#)

which, using (109)—(111), can be rewritten as follows:

é(t) = [H (0(t)) = H(0()T (6(£)))] x(£) — H (6(£)) z(£) + R (6(¢)) F (6(£)) f(#) (117)

Then, it is easy to check that (115) follows from (117) taking into account (113).

The main feature of the estimation error dynamics in (115) is that convergence of ¢(t) to zero
when f(t) = 0 can be ensured by a proper choice of the matrix H (6(t)) (for example, as a diagonal
matrix with strictly negative parameter-varying elements on the main diagonal). Moreover, the matrix
R (6(t)) can be used to constrain the range of the matrix R (6(t)) F (6(t)), in such a way that different
directions of ¢(t) can be assigned to different faults, such that not only fault detection but also fault
isolation can be achieved.

In the last years, one can recognize a trend in research that goes towards robustification of this
technique, which was started by Ref. [157]. For instance, a few recent works have merged UIOs with
interval observers [158-160], in such a way that instead of a single trajectory for the estimation error,
lower and upper bounds which are compatible with the uncertainty are computed. On the other hand,
other works have considered the case in which the scheduling variables are measured inexactly, see for
example, Refs. [128,161,162]. Further improvements have been provided by Ref. [163], who have not
restricted the parameter dependency of the UIO to mimic the one of the system, so that the decoupling
conditions can be relaxed and have also considered the case in which the output equation of the convex
system is not restricted to be parameter-independent.
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4.3. Observer-Based Fault Estimation

As the name itself suggests, in observer-based fault estimation techniques, an observer is used
to estimate the fault as though as if it were another (unmeasurable) state of the system. In order to
exemplify the main idea behind these techniques, let us consider the following convex system:

=
=

-
=

Il

A(0(t)) x(t) + B (8(t)) u(t) + F (0(t)) f(1) (118)
y(t) = Cx(t) (119)

and let us assume that the dynamics of f(t) is described by:

f(t) = Apf(t) (120)
with known matrix A (this assumption can be relaxed using, for example, an interval formulation).

Then, it is possible to consider an augmented state ¥(t) = [x(t)T, f(t)T] " such that the resulting
augmented system is described by:

x(t) = A(6(t) x(t) + B (6(t)) u(t) (121)
y(t) = Cx(t) 122)
with:

A6(1) = ;

B(Q(t))—{B(e(t))} c=[c o]

Hence, a state observer designed to provide an estimate %(#) of () would provide an estimate f(t)
of f(t).

Among recent works developing further this concept, an adaptive polytopic observer which
could estimated time-varying actuator faults was presented in Ref. [164] for convex descriptor systems,
differing from most of other papers which assume generally that the actuator faults are constant.
Sliding mode observers have been investigated by Refs. [165,166], which have considered the case of
erroneous scheduling parameters. The case in which the fault’s frequency content is not distributed
within the whole frequency domain but in a finite interval of frequencies was addressed by Ref. [167]
based on the GKYP lemma. An improvement of the design conditions has been brought by Ref. [168],
which have developed a robust fault estimator via homogeneous polynomially parameter-dependent
Lyapunov functions. It is worth highlighting that, although the majority of the results found in the
literature consider the case of additive faults, some recent work has proposed a switched observer
formulation to estimate actuator multiplicative faults in discrete-time convex systems [135]. Successful
applications of observer-based fault estimation, either using high-fidelity simulations or through
experimental validation, can be found in the areas of aviation [165,166], bioreactors [12], distillation
columns [169], automotive suspension systems [170] and renewable microgrids [171,172].

4.4. Multiple Model Adaptive Estimators

The main idea behind MMAE:s is to choose a set of models that represent the possible system
behavior patterns and to obtain the state estimate as a combination of the estimates obtained from
local state observers which run in parallel, each one based on the individual models that match these
patterns [173,174]. The above mentioned combination is achieved as a weighted sum, where the
weights represent the likelihood that the corresponding model is indeed true. Under certain conditions,
the weight associated with the correct model converges to 1, while the other weights converge to 0,
which allows an adaptive identification of the correct model [175]. This approach has been developed
for discrete-time systems and it is exemplified hereafter.
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Following Ref. [176], let us consider the discrete-time convex system:

0(k)) x(k) + B (C(k), 6(k)) u(k) (123)
) x(k) (124)

where using standard notation, k € Z denotes a sample. Moreover, (k) denotes an uncertain
parameter, for which a finite set of candidate parameter values {{1, (2, ...,{n} is considered.

For the system (123)—(124), state estimation is achieved by means of the following convex
MMAE [176]:

Zpl 2(k|Z:) (125)
Zp, 9(k|Z;) (126)
L) = oy, i7(k) = arg T, }p,(k) (127)

where (k), §(k) and (k) denote the estimates of the state x(k), the output y(k) and the unknown
parameter vector {, respectively and p;(k) are dynamic weights, which can be interpreted as a
time-varying indicator of how likely it is that { = ;. In (125)~(126), each £(k|;), #(k|{;) correspond to
local estimates, obtained under the assumption that { = {;.

The dynamic weights p;(k) appearing in (125)—(127) can be generated as follows:

pi(k+1) = M .
pj(k)B;(k)e i ®)

[‘12

j=1

where B;(k) is a positive weighting matrix function and w;(k) is the error measuring function, which
describes how different is each local output estimate §(k|{;) from the observed output y(k).

The above described convex MMAE, for which a conceptual scheme is provided in Figure 7,
has some relevant properties. First of all, if p;(0) > 0Vi € {1,...,h}, it can be proven that all
the weights p;(k) generated by (128) are non-negative, uniformly bounded and contained in [0, 1],
with Z?:l pi(k) = 1, Vk > 0. Moreover, it can be demonstrated that under some conditions the
parameter estimate {(k) will converge to a value {} with p¥ (k) — 1 as k — oo, which corresponds to
the local estimate that exhibits the smallest error measuring function.

These properties have been exploited for fault identification purposes by Ref. [177], where it was
shown that a convex MMAE could be used to achieve icing diagnosis in unmanned aerial vehicles
(UAVs) with the relevant feature that information about the icing location could be obtained. In this
case, the idea is to assign different faulty models to different parameters (;, in such a way that the
dynamic weights would suggest which model is the one that fits data coming from the sensors the
best. A similar idea was employed in Ref. [178], where a bank of observers, each one corresponding to
a system description taking into account the presence of a particular fault, was used to address the
problem of fault detection and isolation in near-space vehicles (NSVs) with actuator faults.
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Figure 7. Multiple model adaptive estimator (MMAE) conceptual scheme.
4.5. Sliding Mode Fault Tolerant Control

The robustness of sliding mode control (SMC) against matched uncertainties makes it an
interesting choice for FTC [179], although its direct application is impeded by the loss of regularity of
the sliding mode when complete losses of actuators are considered. In fact, the first applications of
SMC to convex systems were in a fault-free context [180]. The above mentioned problem was solved
for overactuated systems by Ref. [181] by means of control allocation (CA), which provides an effective
mechanism for distributing a virtual control signal among the available actuators.

More specifically, a convex plant subject to actuator faults represented by a diagonal semipositive
definite matrix W(t) with diagonal entries that represent the effectiveness level of actuators was
considered in Ref. [181], as follows:

#(t) = A (8(1)) x(t) + BSE (8(£)) W(t)u(t) (129)

where E(0) is invertible for all § € © and By is factored as By = [By, BZ]T with ByB) = I),1 < n,
and ||By|| > ||B1, so that B, represents the dominant contribution of the distribution of the control
action within the channels of the system.

For the system (129), the control law is chosen as (see Figure 8 for an illustrative scheme):

u(t) = — (E0(0) ™" B (BaE (6(0) W(H) (B 0() ' B) () +wae))  (130)

where W (t) is an estimate of W(t), v(t) is the linear component of the virtual control, chosen to be a
standard state-feedback v;(t) = —Fx(t) and v, () is the nonlinear discontinuous part, which induces
sliding and provides robustness:

Va(t) = —x(t) ”58;” foro(t) # 0 (131)

where «(t) is an adaptive modulation function given by:

K(8) = [[E Ix(8) [ %) + 1 (132)
K(t) = —pr(t) +veo [[E| [Ix(B)[ lo (B)]] (133)
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with B, v, €, 17 positive scalars and ¢ defines the sliding surface o(t) = 0:

o(t) = By (B}Bf) - BT (x(t) —x(0) — /Ot <A (1)) — { BfZT } F) x(T)dT) (134)

Finally, Ref. [145] shows that if F is designed such that the fault-free closed-loop system is quadratically
stable, then it is possible to prove that for any faults/failures inside the set:

We = {(w1,...,w,,) €[0,1] x...x [0,1] : HO)TH(0) > eI} (135)

with e small scalar which satisfies 0 < € < 1and H(6) = BoE(0)W(t) (E(6)) " BT, the sliding motion
will be stable if:

yom (l + %) <1 (136)
where 1 is the £, gain of G(s) = F (s] — A(0) + B,F) ' [L,_1,01%, v1 = |By| (which, by assumption
is small) and ¢ represents the worst-case condition number (over ®) of E(6).

The design of the state-feedback controller in Ref. [181] was based on the assumption that all the
plant states are available. This assumption was later relaxed by Ref. [182], where an unknown input
observer (UIO) was used to estimate the unavailable plant states. Further research has led to develop
some conditions based on the Lyapunov-Krasovskii functional approach that do not only guarantee
the passivity and asymptotical stability of the closed-loop system but also cover the issue of actuator
saturation and the existence of time-varying delays [183].

W (b

N

Actuators

Baseline

Controller F
Control

Allocation

Sliding mode
control

Figure 8. Sliding mode fault tolerant control (FTC) scheme.
4.6. Fault Tolerant Control Based on Controller Reconfiguration

On the other hand, as the name itself suggests, in controller reconfiguration, some modification of
the control law is performed in order to compensate for the fault effect and make the faulty system
behave as close as possible to the nominal system. The reconfiguration can be performed either by
considering the fault estimation f(t) as an additional scheduling variable 6 £(t), as in Refs. [26,184,185]
or by introducing a component in the control law, which is responsible to achieve fault tolerance,
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as proposed by Refs. [186-189]. In the first case, if we restrict our attention to a state-feedback control
law (for the sake of simplicity), then it would have the following structure:

u(t) = K <9(t),9f(t)> x(t) (137)

with the advantage that fault tolerance would be achieved employing exactly the same LMI-based
techniques employed for standard control design. On the other hand, in the second case, the control
law is obtained as follows (see Figure 9):

u(t) = un(t) +up(t) (138)

where u,(t) is the nominal state-feedback controller in fault-free condition and us(t) is used to
accommodate the faults. The advantage of this approach lies in that it eases the integrated design of
fault estimator and fault tolerant controller, as discussed deeply in Ref. [188]. In order to illustrate
this fact, let us consider the following convex system, which is a simplification of the class of systems
considered in Ref. [188] by neglecting disturbances and parametric uncertainties in the state matrix:

x(t) = A(0(t) x(t) + B (0(t)) u(t) + F (0(t)) falt) (139)
y(t) = Cx(t) + Efs(t) (140)

where f,(t) and f;(t) denote actuator and sensor faults, respectively. By augmenting the state as
T(t) = [x(b), falt), f5(£)]", the system (139)~(140) becomes:

(t) = A(6(t)) x(£) + B (6(t)) u(t) (141)
y(t) = Cx(t) (142)

for which an observer can be proposed, as follows:

2(t) = M(6(¢)) z(£) + ] (0(t)) u(t) + L (0(8)) y(t) (143)
R(t) = z(t) + Hy(t) (144)

where z(t) and £(t) are the observer internal state and the estimate of %(t), respectively. Under the
assumption that:

L(0(t)) = Ly (6(£)) + L (6(1)) (145)
Ly (0(t)) = (BA(0(t)) — L1 (6(+)) C) H (146)
M(6(t)) = ZA(6(t)) — L1 (6(£)) C (147)
J(6(t)) = =B (6(t)) (148)
with & = I — HC, the dynamics of the estimation error ¢(t) = x(t) — £(#) is described by:
é(t) = M(0(t)) e(t) = [EA (6(t) — Ly (6(t)) C)] e(t) (149)
If the control law is chosen as:
u(t) = K (0() () = [ Ky (6(1)) Ky (0(1)) ] (1) (150)

where Ky (6(t)) and K (6(t)) are the state-feedback and actuator fault compensation gains respectively,

then if Ky (6(t)) is chosen as K¢ (6(t)) = —B (6(t))" F(8(t)) (under the assumption that the actuator
fault f,(t) is in the range space of the control input), one obtains:
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%(t) = [A (B(1)) + B (0(1)) Kx (6(1))] x(t) + E (6(1)) e(®) (151)
with:
E(6(t) = [ —B(8() Ke (0() F(6() 0 | (152)

On the other hand, the sensor fault can be compensated as:
ye(t) = y(t) = Fsfs() (153)

where y,(t) is the compensated system output and f;(t) is the sensor fault estimate. Since (149) and
(151) describe an autonomous convex system, the integrated FE/FTC design can be formulated as an
LMlI-based stabilization problem (He, optimization if there are uncertainties and/or disturbances).

Fault
compensator

Nominal
controller

Figure 9. Controller reconfiguration FTC scheme.
4.7. Fault-Hiding via Virtual Actuators and Virtual Sensors

Contrarily to the previously described approach, the fault-hiding paradigm aims at reconfiguring
the faulty plant instead of the controller/observer when a fault occurs [88]. The reconfiguration block
hides the fault from the controller/observer point of view, such that it will see the same plant as
before the fault and thus can be kept without modifying or retuning it (see Figure 10). The advantage
of doing so is that fault tolerance can be added to an already existing control scheme by means of
a plug-and-play philosophy. In case of actuator faults, the reconfiguration block is named virtual
actuator [190], whereas it is named virtual sensor in the case of sensor faults [191]. Although virtual
sensors and virtual actuators were initially considered separately, an overall scheme that employs both
of them in order to tolerate simultaneous actuator and sensor faults was later developed [192,193].
Some recent work has also studied issues related to the existence of input constraints (saturations) and
fault isolation delays [194].

Let us consider the following convex system:

x(t) = A(6(£)) x() + B (6(£)) W(t) (u(t) + fa(t)) (154)
y(t) = V(£)Cx(t) + fs(t) (155)
where, consistently with the previously described approaches, W(t) and V(t) denote losses of

effectiveness in the actuators and sensors, respectively, whereas f,(t) and f;(t) denote additive
actuator/sensor faults.
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Figure 10. FTC using virtual sensors and virtual actuators.

The structure of the convex virtual actuator depends on the following rank condition (W denotes
an estimation of W) [192]:

rank (B (0(t)W(t))) = rank (B (8(t))) VO € © (156)

which describes whether fault tolerance can be achieved through a simple redistribution of the control
inputs. In the first case, the reconfiguration structure is as follows:

u(t) = Noa (8(t)) ue(t) = fa(t) (157)
where f,(t) is an estimation of f,(¢) and Ny, (6(t)) is given by:
Na (6()) = [B(6(£)) W(t)] " B (6(t) (158)
In case (156) does not hold, the virtual actuator becomes a dynamical system with state equation:
Xoa(t) = [A (6(£)) + B* (6(t)) Moa (6(£))] x0a(t) + [B(0(t) — B (6(¢)))] uec(t) (159)

and output equation (reconfiguration structure):
u(t) = Noa (6(t)) [”C(t) = Moq (6(t)) xoa(t) — fu(t)] (160)

where x,(t) is the virtual actuator state, My, (6(t)) denotes the virtual actuator gain and the matrix
B* (0(t)) is obtained as:
B (6(t)) = B (6(t)) W(t)Noa (6()) (161)

Similarly, the structure of the virtual sensor depends on the following rank condition (V is the
estimation of V) [192]:
rank (V(#)C) = rank(C) (162)

so that if it holds, then the virtual sensor is a static block, whereas if the above condition does not hold,
then it is a dynamical system with internal state x,s(#) and dynamics described by the equations:
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Xos () = [A(0(F)) + Mos (0(¢)) C*] x0s(t) + B (0(t)) uc(t) (163)
— Mos (B(5)) Nox (1) (y(£) + V() Caroa () — 1))
Ye(t) = Nos(t) (y(t) + V(#)Coxoalt) *ﬁ:(t)> +(C—C7) xos(t) (164)

where f;(t) denotes an estimation of f;(t), Mys (8(t)) is the virtual sensor gain and:

Nus(t) = C [P(£)C]’ (165)
C* = Nos(H)V(t)C (166)

Then, it is possible to show that if the control loop consists of a state-feedback law with controller
gain K (6(t)) and a Luenberger observer with gain L (6(t)), then thanks to the introduction of the
virtual actuator/sensor in the loop, one can find an appropriate similarity transformation of the overall
augmented state such that the dynamics in the new state coordinates ¥ is described by:

A(0) + Mys (8)C* 0 0 0
L N A(0) + L(8)C 0 0 .
*t) = x X A(6) + B(O)K(6) 0 X(1) (e7)
* * * A(0) + B*(6) My (0)

where x denotes some generic non-zero terms, which is in a block-triangular structure. Then, since
A(0) + L(0)C and A(0) + B(0)K(0) are already stable due to the stability of the faultless system,
one can ensure overall stability under fault occurrence by designing the gains My, (0) and My, (6)
so that A(6) + Mys(0)C* and A(0) + B*(0) My,(0) are stable (the reader is referred to Ref. [192] for
further details on the method, along with a discussion about the quadratic stability of block-triangular
convex systems).

Finally, it is worth mentioning that some recent works have combined model predictive control
(MPC) with the convex formulation in order to take into account possible input and state constraints
associated to actuator saturation and other physical limitations [195,196]. The convex MPC framework
has been used to go one step further than FTC, that is, to perform health-aware control on the basis
of the information about the system reliability provided by a prognosis and health management
(PHM) module [197,198]. This type of control strategy increases the overall reliability, anticipates the
apparition of faults and reduces the operational costs.

5. Conclusions

In this paper, we have performed a review of the most applied techniques in control, observation
and safety of convex systems. With this terminology we have wished to unify the concepts of linear
parameter varying and Takagi-Sugeno systems, with the purpose of allowing the reader to taste all the
flavors of techniques offered by the humongous existing literature about these classes of systems. Due
to the huge amount of papers, the review is in no way meant to be exhaustive but it is meant to be a
helpful document to look for any reader who wishes to locate himself /herself in this field and learn
about the main used techniques. We feel that we have done our best to provide a discussion about
the state-of-the-art of the topic. However, in spite of our best efforts, many publications could not be
included and for this reason, we would like to apologize in advance for any omission.

In addition, it is important to mention that this paper is mainly focused on discussing the
advances of polytopic convex systems. However, it is acknowledged that other approaches that lead to
an LPV representation exist, such as grid-based LPV [199], linear fractional transformation (LFT)-based
LPV [200,201], polynomial LPV approaches [202] and tensor model-based transformation [203,204],
among others. Also, the reader should note that, throughout the review, only methods based on
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quadratic Lyapunov functions have been discussed. Nevertheless, less conservative solutions can be
obtained based on non-quadratic Lyapunov functions, for example, the polyquadratic, as proposed
in Refs. [69-71]. In general, all these topics are currently investigated and, therefore, the above
references are recommended to the interested reader.
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Abstract: This paper presents an extensive analysis of the properties of different control horizon
sets in an Extended Prediction Self-Adaptive Control (EPSAC) model predictive control framework.
Analysis is performed on the linear multivariable model of the steam/water loop in large-scale
watercraft/ships. The results indicate that larger control horizon values lead to better loop
performance, at the cost of computational complexity. Hence, it is necessary to find a good trade-off
between the performance of the system and allocated or available computational complexity. In this
original work, this problem is explicitly treated as an optimization task, leading to the optimal control
horizon sets for the steam/water loop example. Based on simulation results, it is concluded that
specific tuning of control horizons outperforms the case when only a single valued control horizon is
used for all the loops.

Keywords: model predictive control; control horizon; steam power plant; steam/water loop;
multi-input and multi-output system; loop design

1. Introduction

The steam /water loop is a water supply process in a steam power plant with highly interconnected
equipment. Good steam/water loop performance is a prerequisite for the steam power plant to operate
properly [1]. However, due to the complicated interactions between the dynamic variables and the
harsh working environment of the watercraft, there are difficulties in obtaining satisfying performance
for the complex dynamics of such a steam/water loop [2]. The ever-increasing system complexity and
demand for high performance of this sub-system within the broader operation system of the watercraft
also pose challenges to operations. In this context, an effective control method is required to guarantee
safe operation of the steam /water loop.

In order to design an effective controller for the steam/water loop, constraints such as:
input saturations or rate limits have to be taken into consideration. There are several possibilities to
deal with the constraints in the literature [3-6], including also model predictive control (MPC) [7,8],
applied specifically in steam power plants. For example, an economic model predictive control
was developed for the boiler-turbine system [9]. The economic index was utilized directly as a cost
function, and the economic model predictive control realized the economic optimization as well
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as the dynamic tracking. In order to guarantee the stability of the closed loop system, a Sontage
controller and corresponding region were designed. A stable model predictive tracking controller
(SMPTC) for coordinated control of a large-scale power plant was proposed [10]. By using fuzzy
clustering and a subspace identification method, a Takagi-Sugeno (TS) fuzzy model was established.
Then, through the SMPTC method, the system obtained good set-point tracking performance while
guaranteeing input-to-state stability and the input constraints of the system. A non-linear generalized
predictive controller based on neuro-fuzzy network (NFGPC) is proposed in [11], which consists
of local generalized predictive controllers (GPCs) designed using the local linear models of the
neuro-fuzzy network that models the plant. Liu discussed the performance of coordinated control
on the steam-boiler generation plant using two non-linear model predictive control methods [12].
One of these methods is the input output feedback linearization technique based on a suitably chosen
approximated linear model. The other method is based on neuro-fuzzy networks to represent a
non-linear dynamic process using a set of local models. To improve the learning ability of the MPC
method, Liu proposed a non-linear model predictive controller based on iterative learning control [13].
In practice, the MPC method was also applied to the boiler control system to enable tight dynamical
coordination of selected controlled variables, particularly the coordination of air and fuel flows during
transients [14].

The works introduced above are mainly about the application of model predictive control on the
boiler-turbine system installed on land. However, the steam power plants installed on the large-scale
watercraft or ships have more differences compared to those installed on land. Some of these are:
(i) receiving more disturbances from the ocean waves; (ii) of smaller capacity; (iii) used at multiple
operation points with varying state processes. According to these characteristics, there is a need to
develop more effective control methods for the steam /water loop.

The impact of tuning different prediction horizon sets on the steam/water loop has already been
studied in our previous work, and an optimized prediction horizon set was obtained according to the
specific dynamics of this complex system [15].

However, in the present paper, we summarize our findings upon the effect of tuning different
control horizon sets. In [16], Rossiter analyzed the effect of varying the control horizon, and he
summarized that as control horizon increases, the nominal closed-loop performance improves if the
prediction horizon is large enough. However, for many models, there is not much change beyond a
control horizon equal to 3 samples. For a system with an unstable equilibrium point, the sensitivity of
the trajectory sometimes is very high if the input sequence and the initial state are near the unstable
equilibrium point. In this case, it is necessary to reduce the sensitivity by choosing a shorter horizon
length [17], while ignoring the performance increase with large control horizon length. Cortés proposed
that larger values for the control horizon length will, in general, provide better performance [18].
However, the computational complexity will also increase with the horizon length.

In this paper, a comprehensive analysis was made, studying the effect of different control horizons
in a linear Extended Predictive Self-Adaptive Control (EPSAC) MPC framework [19]. The results were
obtained on the steam/water loop in a large-scale ship. It was found that larger control horizon values
improve the loop performance, at the cost of computational complexity. Consequently, an optimization
scheme was designed by minimizing an optimal performance index consisting of the tracking error and
the computing time for solving the MPC problem. In the end, the best control horizon set was obtained
which provides a good trade-off between the closed-loop performance and allocated or available
computational complexity. According to the simulation results, there are always ripples in the system’s
outputs when applying different control horizon sets, with N. > 2. Hence, a modified cost function
penalizing both the control effort and the tracking error was imposed in EPSAC, which effectively
removed the ripple.

The rest of the paper is structured as follows: A description of the steam/water loop is given
in Section 2. In Section 3, a brief introduction of the proposed EPSAC strategy with optimized
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control horizon is described. The simulation results and analysis are shown in Section 4. Finally,

the conclusions are given in Section 5.

2. Description of the Steam/Water Loop

In the steam/water loop, there are mainly five loops, as briefly introduced in Figure 1: (i) drum
water level control loop, (ii) deaerator water level control loop, (iii) deaerator pressure control loop,
(iv) condenser water level control loop, and (v) exhaust manifold pressure control loop.

Water tank 5
<=
Output y; and y,
X X water level and
ll Recirculation Input u; pressure in deaerator
valve
ﬁ ﬂ Deaerator
>X Outgut Vs
water level in condensor
Condenser Jl
777777 I
Inputus T — — — — — —_
’ ‘Water
Condensate | | Boostes Feed
pump pump | pump Input u;
Replenishment valve ﬁ Output y;

water level in drum

supply Valvex.

Deaerator
Exhaust Ot.h.er pressure valve
valve auxiliary Input us
Input u, machine ?
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manifold
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steam unit pipe turbine Fu.el Furnac
manifold oil urnace

Figure 1. Scheme of complete steam/water loop investigated in this paper.

There are two main loops, one for steam indicated by red line, and another for water indicated
by the green line. The system works as follows. Firstly, the water from the water tank goes to the
condenser. Secondly, the water will be deoxygenated in the deaerator and be pumped to boiler. Due to
a higher density of feed water, it goes into the mud drum. After being heated in the risers, the feed
water turns into a mixture of steam and water. Thirdly, steam gets separated from the mixture and
heated in the superheater. Finally, the steam with a certain pressure and temperature services the steam
turbine. The used steam will be sent back to exhaust manifold and most of the steam gets condensed
in the condenser, while the remainder services the deaerator for deoxygenation.

The references of these models for each equipment are described as follows. The model of
the boiler comes from [20]; the model of exhaust manifold is approximated as a second-order
model according to [21]; the models of the deaerator and condenser are obtained according to [22].
Through linearization around the operating point, the overall model shown in Equation (1) is obtained.
The input vector u = [uy,uy,u3,u4,us] contains the positions of the valves that control the flow rates
of feedwater to the drum (11), exhaust steam from the exhaust manifold (1), exhaust steam to the
deaerator (u3), water from the deaerator (14) and water to the condenser (u5), respectively. The output
vector y = [y1,¥2,43,¥4,y5] contains the values of the water level in drum (y;), pressure in exhaust
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manifold (y,), water level (y3) and pressure (y4) in the deaerator, and water level of the condenser (y5),
respectively. Table 1 includes the ranges and operating points of the output variables.

n G Gz -+ Gis Uy

v2 Gy G -+ Gos Uy

.| = . .. . . 1)

Y5 Gs1 Gsa -+ Gss us

_ 0.0000987 _ 0.7254
where Gy = (5T 0.1131) (57 0.0085-+0.032)) (7000650032 ”  O22 = (5+1.2497) (5-+0.0223) /
_ —05 _ 00132
Gos - (s+1.9747)(s+0.0253) / Gss - (5+0.0265-+0.0244/) (s+0.0265—0.0244j) /
_ —0. _ —0. _ 0005152
Gy = (5+0.0997) (s-+0.0411) / Gy = (5+0.012+0.126/) (s-+0.012—0.126)) / Gy = (s+0.012-+0.038;) (s+0.012—0.038;) /
—0.00015 0014

Gsa (540.0175+0.0179;) (s+0.0175—0.0179j) / Gss (5-+0.02510.06547) (5-+0.025—0.0654]) / and other transfer
functions G1p = Gi3 = ... = Gs3 = 0.

Table 1. Parameters used in steam/water loop.

Output Variables Operating Points Range Units
Drum water level 1.79 1.39-2.19 m

Exhaust manifold pressure 100.03 87.03-133.8 MPa

Deaerator pressure 30 24.9-43.86 KPa
Deaerator water level 0.7 0.489-0.882 m
Condenser water level 0.5 0.32-0.63 m

The rates and amplitudes of the five inputs are constrained to:

—0.007 < 1 <0007 0<uy <1
—001 <% <001 0<u, <1
—001 <% <001 0<uz <1 )

—0.007 < M4 <0007 0<uy <1

—0.007 < s <0007 0<us<1

The inputs units are normalized percentage values of the valve opening (i.e., 0 represents a fully
closed valve, and 1 is completely opened). Additionally, the input rates are measured in percentage
per second.

3. Model Predictive Control with Optimized Control Horizon

3.1. Brief Introduction to Extended Prediction Self-Adaptive Control (EPSAC)

The following is a short summary of EPSAC and more details can be found in [23]. Consider a
linear system described below:

y(t) = x(t) +n(t) ®

where y(t) indicates the measured output of system; x(t) is the output of model and n(t) is the
model/process disturbance. The output of the model x(t) depends on the past outputs and inputs,
and can be expressed generically as:

x(h) = flx(t—=1),x(t—=2),...,u(t=1),u(t—2),...] 4)
In EPSAC, the future input consists of two parts:

u(t + k|t) = tpgse(t + k|t) + 6u(t + k|t) (5)
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where 11,5, (t + k|t) indicates basic future control scenario and du(t + k|t) indicates the optimizing
future control actions. Then following results will be obtained by applying Equation (5) as the
control effort.

y(t+k|t):ybaSE(t+k|t)+yopt(t+k‘t) (6)

where Yy (t + k|t) is the effect of base future control and yop:(t + k| t) is the effect of optimizing
future control actions du(t|t), ..., u(t + N. — 1|t). The part of yopt(t + k|t) can be expressed as a
discrete time convolution as follows:

Yopt (t + k[t) = hgdu(t[t) + he_10u(t+ 1|t) + ... + kN, +16u(t + N — 1]#) )

where Iy, ... th are impulse response coefficients; g1, ... §N, are the step response coefficients; N,
N, are control horizon and prediction horizon, respectively. Thus the following formulation can
be obtained:

Y=Y+GU (8)
with, Y = yE+N ).yt + N 1), U = [Su(t]t)...ou(t + N.—1]8)]7,
Y = [Ypase(t + Ni|t) . Ypase (£ + Np|#)] T and

hng o hnp—1 o 8NN
o | Mt )
hng  ANp-1 o+ ENp-Ne+1

where N indicates the time-delay in the system.

The disturbance term n(t) is defined as a filtered white noise signal [19]. When there is no
information concerning the noise, the disturbance model used in Equation (3) can be chosen as an
integrator, to ensure zero steady-state error in the reference tracking experiment:

L e (10)

n(t):1 p

where e(f) denotes the white noise; qfl is the backward shift operator.

In order to apply EPSAC for a MIMO (multiple-input and multiple-output) system, the individual
error of each output is minimized separately. The cost function for the steam/water system with five
sub-loops is as follows:

Np
Ji= Y It k) —yilt + kD)% =1,2,...,5) an
k=N
By defining Gjx as the influence from kth input to ith output, Equation (11) can be rewritten as:
r 5 , 5
Ri—Y) (Ri—Y;) = (Ri—Y; = ) GyUp) (R = Yi — )_ Gy Uy) (12)
k=1 k=1

with R; denoting the reference for loop i, and Y; denotes the predicted output for loop i.
Taking constraints from inputs and outputs into account, the process to find the minimum cost
function becomes an optimization problem which is called quadratic programming.
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nbinJi(Ui(: U;TH;U; + 2£;,TU; + ¢; subject to AU < b
I T T v >
H; = G;Gif; = -G;(R; - Y; — kglcikUk) (13)

with B 5 " 5
q=mﬁnfﬁmemﬁnfngo

where A is a matrix; b is a vector according to the constraints and U; is the input for sub loop i.
By solving the quadratic problem, the optimal U = [Uy Uz U3 Uyg Us] can be obtained.

3.2. Ripple-Free Model Predictive Control (MPC)

Since MPC uses a discrete-time model, it is easy to get ripples in the system output when
controlling a continuous system with periodic control effort during the sampling time. According to
the simulation results of the steam /water loop in large-scale ships, there always exists ripple when
applying a control horizon N. > 2. To remove the ripple in the control effort, an alternative cost
function which also penalizes the control effort imposed in the EPSAC strategy [15], obtaining:

A
Ji = I+ T (14)

where A € [0; 1) is a weighting parameter, and,

N, Ne¢
o= Yo ket KD, = Y (e KD — e+ k- 1]1)? (15
k=1 k=1

are the cumulative sum that penalizes the predicted tracking error ¢;(t + k1t) over the prediction
horizon, and the cumulative term which corrects the deviations in postulated control effort u;(t + k1 t)
over the control horizon, for each loop i, respectively.

In order to minimize the Ji in Equation (15), the tracking error must converge to zero rapidly.
However, the J# term has a negative impact on the tracking error. By choosing an appropriate value
for A, a good trade-off between the closed-loop performance and the control effort can be made.

3.3. Optimized Control Horizon

To our knowledge, the longer control horizon values can result in better performance, albeit the
computational complexity will also increase, which makes it more difficult to realize online
optimization. The relationship between performance, computational complexity and control horizon
can be described by Figure 2.

-------- Computational complexity

Tracking performance

Index

Control Horizon N,

Figure 2. The relationship between tracking performance, computational complexity and
control horizon.
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According to Figure 2, it is possible to find a good trade-off between the tracking performance and
computational complexity. In this paper, the problem is explicitly treated as an optimization problem,
and the following index is applied to obtain the point of compromise for the five loops [24]:

I; = T; + 1;E; (i=1,2,...,5)

Ng Ns (16)
Ti= Y tis(k)  Ei= ¥ [ri(k) —yi(k)[ /ri(k)

k=1 k=0
where T is the total simulation computation time, with t;; the length of time required to perform the
optimization at each sampling time and N, the number of total simulation samples; E; is the integrated
absolute normalized tracking error; #; denotes the weighting factor.

In order to obtain the optimal control horizon N, for loop i, experiments are required to be
conducted with different control horizons. After minimizing the index I;, the optimal control horizon
can be obtained. The value of 77 should be chosen according to the dynamic of the system. For example,
the dynamic of the system is slow in the steam/water loop, hence a large value of 7 should be chosen
to focus more on the error than the computation time.

4. Simulation Results and Analysis

In this section, the proposed EPSAC method is applied to the steam/water loop. Firstly,
the performance is shown after applying the cost function focus on penalizing the control effort
by tracking several step set points in different loops. Secondly, different control horizon sets are
imposed in the ripple-free EPSAC to verify their effect, and the optimal control horizon set is obtained
by minimizing the index in Equation (16).

4.1. Ripple-Free Validation

According to our previous work, the parameter configuration for the EPSAC method is shown in
Table 2, where the T; is the sampling time; N1, Nj, . .. , Nps are prediction horizons of the five loops,
respectively. (The prediction horizons were selected taking into account the specific transient dynamic
for each loop). The step set points are provided in Table 3. In the experiments, the initial condition was
set at the operating point of the steam/water loop.

Table 2. Parameters applied in Extended Prediction Self-Adaptive Control (EPSAC) controller.

Controllers N, Ts Np A Ny N
EPSAC Ny1 =20; Ny =15; N3 = 15; 0

_ 10 5s N b N b ——— 1 300
Ripple-free EPSAC pa = AV ps = 0.3

Table 3. Step set points changes in the experiments.

Time (s) 2-300 300-600 600-900  900-1200 1200-1500
Drum Water Level (m) 2 2 2 2 2
Exhaust Manifold Pressure (MPa) 100.03 116 116 116 116
Deaerator Pressure (KPa) 30 30 35 35 35
Deaerator Water Level (m) 0.7 0.7 0.7 0.8 0.8
Condenser Water Level (m) 0.5 0.5 0.5 0.5 0.6

The simulation results are shown in Figure 3, including the system outputs and the corresponding
control efforts. Note that the EPSAC performs better, with the cost function given in Section 3.2 that
also penalizes the control effort variations, thus eliminating the severe ripples on each loop input. Also,
it is noteworthy to mention that the output steady state error from loops 1, 4 and 5 is removed.

When only the tracking error is penalized in the cost function, there are ripples with N. > 2,
which means that the controller is allowed to give at least two different control values, to ensure
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that the predicted output reaches the imposed reference, within the prediction window. In order to
minimize the cost function, the first value of control effort will be optimized as large as possible under
the constraint of the system. Hence, the inputs of the system are aggressive which results in the ripples.
The amplitude of the ripples is influenced by the control horizon and the sampling time. By choosing
an appropriate A value in Equation (14), the ripples can be effectively removed. It is worth mentioning
that when the control horizon is N, = 1, there are no ripples.

In the ship’s steam/water loop, the condenser and the deaerator have smaller capacity when
compared with the boiler. Therefore, as seen in Figure 3, there are large overshoot values at the
condenser water level and the deaerator water level when the setpoint is changing for the drum water
level. The steady errors exhibited in loops 1, 4 and 5 as shown in Figure 3, are caused by the intrinsic
coupling between the respective loops. The input 17 has a large influence on the deaerator water level
Y4, which is controlled by u4. However, input 14 also modifies the condenser water level y5. On the
other hand, the inputs for each loop are calculated according to the cost function shown in Equation
(12), where the past sample time input values for the coupling variables are used.
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Figure 3. Responses of the steam/water loop under the EPSAC and ripple-free EPSAC for (a) drum
water level control loop, (b) deaerator water level control loop, (c) deaerator pressure control loop,
(d) condenser water level control loop and (e) exhaust manifold pressure control loop (The figures on

left-hand indicate the outputs, and on the right-hand indicate the inputs).
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4.2. Influence of Different Control Horizon Sets
This section summarizes the results for the five loops with different control horizon values.

The simulation study cases are described as follows:

Case 1: N¢q, ... ,Nes5 = 1 sample;

Case 2: Ny, ... ,N¢s5 =2 samples;

Case 3: N¢q, ... ,N¢s5 = 5 samples;

Case 4: N, ... ,N¢5 = 10 samples.

The responses of the steam/water loop with different control horizon values, are shown in Figure 4
(left-hand side), whereas the corresponding control efforts are given in Figure 4 (right-hand side).
From the simulation results, one can remark that increasing the control horizon value in the proposed
ripple-free EPSAC leads to better tracking performance, with a smaller overshoot and settling-time

response, but with a higher control effort.
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Figure 4. Responses of the steam /water loop under the ripple-free EPSAC for different control horizons
for (a) drum water level control loop, (b) deaerator water level control loop, (c) deaerator pressure
control loop, (d) condenser water level control loop and (e) exhaust manifold pressure control loop
(The figures on left-hand indicate the outputs, and on the right-hand indicate the inputs).

57



Processes 2018, 6, 265

The performance of the proposed ripple-free EPSAC algorithm was also analyzed in terms of the
integrated absolute normalized tracking error (E;) and computation time (T};) defined in Section 3.3,
in index (15). The numerical values are listed in Tables 4 and 5 respectively, and their relationship is
graphically depicted in Figure 5 (for different control horizon values).

Table 4. Normalized tracking error with different control horizon sets.

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5
Ne=1 1.342 2.039 2.08 1.933 4.603
=2 1.294 2.007 2.063 2.04 5.595
Ne = 1.242 1.976 2.038 1.999 5.012
N.=10 1.215 1.957 2.015 1.919 4.147

Table 5. Computing time in seconds with different control horizon sets.

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5
Ne=1 3.384 2.687 3.182 2.584 2.79
Ne=2 4.778 3.217 4.083 4.432 4.297
Nc=5 6.058 4.456 5.716 5.757 5.822
N:=10 5.959 4.393 5.195 5.332 5.455
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Figure 5. Computation time T; (blue line) and integrated absolute normalized tracking error E; (red line)
in the five loops i (i = 1,2, ... ,5) for different control horizon values.

Next, the information from Tables 4 and 5 is combined, and the index (16) is calculated,
with #; = 0.76, for each loop i (i = 1,2, ... ,5). Note that this value compromises the computational
complexity (i.e., the required computation time) in favor of a better tracking error. Given the graphical
results plotted in Figure 6 and their significance, the optimal N, set is selected as N =4, Np =1,
N3 =1, Ny =4, N5 = 6 samples, which gives a good trade-off between the two components from
index (15).
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Figure 6. Optimization index for different control horizon values.
5. Conclusions

In this paper, the effect of control horizon is studied for an EPSAC model predictive control
framework, and the results are validated on a complex steam/water loop process example. Since a
larger control horizon improves the performance of the system at the price of a higher computational
complexity and control effort, a trade-off is required. By minimizing an objective function defined as a
combination between the system error and computational time, the best control horizon set of values
is obtained. According to the simulation results, when applying different control horizon sets (N, > 2)
in the steam/water loop, there are always ripples in the output of the system. Hence, a cost function in
terms of tracking error and deviations in the control effort was imposed in EPSAC. The simulation
results show the effectiveness of the alternative cost function from EPSAC.
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Abstract: In this study, a control strategy is aimed to ensure the settling time of a 2nd order system’s
output value while its input reference value is changed. Here, Feed Forward Artificial Neural Network
(FFANN) nonlinear structure has been chosen as a control algorithm. In order to implement the
intended control strategy, FFANN’s normalization coefficient (K), learning coefficients (1), momentum
coefficients (y) and the sampling time (T5) were optimized by Artificial Bee Colony (ABC) but
FFANN's values of weights were chosen arbitrary on start time of control system. After optimization
phase, the FEANN behaves as an adaptive optimal discrete time non-linear controller that forces
the system output to take the same value with the input reference for a desired settling time (ts).
The success of the optimization algorithm was proved with close loop feedback control simulations on
Matlab’s Simulink platform based on 2nd order transfer functions. Also, the success was proved with
a 2nd order physical system (buck converter) that was structured with power electronics elements on
Simulink platform. Finally, the success of the control process was discussed by observing results.

Keywords: FFANN; control; optimization; ABC; modeling; buck converter; settling time

1. Introduction

Nowadays, optimization of controllers” parameters is preferred for obtaining a better cost-effective
control strategies. In the last two decades, researchers have developed different types of optimization
algorithms that may be used by scientists in control area. Bee [1], Firefly [2], Bat [3], Virus [4], Genetic [5],
Cuckoo [6], Particle Swarm [7], Gravitation [8] and Biogeography [9] may be given for example.

The mathematical algorithms called controller are used for shaping the output variable of a
physical system according to a desired behavior [10]. These mathematical algorithms are run using
discrete or continuous time hardware [11]. Controller’s parameters are calculated with analysis of
rules sequences developed for related control algorithms [12].

Owing to the fact that the Artificial Intelligence algorithms are versatile, with the same type of
structure they may be used for solving more than one type of problems such as control, prediction,
estimation and modelling [13]. Using the same type of Artificial Neural Network structure, different
researches have solved different type of problems. For example, Erkaymaz et al. estimate the thermal
performance of a solar air collectors and predicted the modules of rupture values of oriented strand
boards [14], Beg et al. proposed a discrete wavelet transform approach to classify power system
transient analysis [15], Zounemat-Kermani et al. developed models to predict one day ahead stream
flow of the Marion Junction station in Cahaba watershed [16] and Ardestani et al. suggested to predict
contact force at the medial knee joint [17].

The most popular type of Artificial Neural Networks (ANN) are illustrated like Feed Forward,
Kohonen, Radial Basis, Dynamic Neural, Multilayer Perceptron, Neural-Fuzzy, Cascading Neural and
Stochastic Neural [13-17].
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There are several studies in the literature that combine heuristic-based optimization algorithms
with ANN based algorithms. In some studies, the optimized ANN algorithm is asked to model a
system [18,19]. In another type of work, the optimized ANN is expected to work as a predictor [20,21].
There are also several studies in the estimation and control field performed by the ANN algorithm
which has been optimized by heuristic algorithms [22-24]. The common point of the study types
mentioned above is the optimization of the weights of the ANN algorithm. In these works, external
parameters of the ANN are not put into optimization. They are fixed in arbitrary way.

In this study, the external parameters that are Kout, 7, y and T5 of the Feed Forward
Artificial Neural Network (FFANN) were optimized using the Artificial Bee Colony (ABC) algorithm.
The weights, which are the internal parameters of the FFANN algorithm, were randomly assigned and
continuously recalculated using the Back-Propagation method in the control process. Thus, the FFANN
algorithm is adapted to adaptive and optimal operation.

There are various swarm-based optimization methods in the literature. Such methods present
extremely superiority in obtaining the global optimum and in handling discontinuous and non-convex
objectives. However, many of these methods are not effective in managing optimization problems of
integer and discrete nature. Such optimization problems can be solved by approximating the discrete and
integer variables by continuous variables. Thus, the problem becomes an ordinary nonlinear programming
one with continuous control parameters and the continuous values are reduced to the closest possible
discrete or integer variable values. In practice, this method generally causes to the solutions that may be far
from the globally optimal solution. ABC algorithm is a search method, which is inspired by the foraging
behavior of honey bee swarming, and target discrete optimization problems [25].

2. The Feed Forward Artificial Neural Network (FFANN) Model

Block diagram belongs to FFANN that was used in this study is given in Figure 1.
Here, the FFANN controller has 3 layers called input, hidden and output. Each layer quantity is 1.

s

R(k)

input hidden layer output later
layer i i

Figure 1. The Feed Forward Artificial Neural Network (FEANN) ontroller block diagram chosen for
this study.

Variables in Figure 1 are described as,

St sh,..., St Addition centers of hidden (h) layer

why, wh,, ..., whs: Weights between FFANN input and hidden layer addition centers

why, why, ..., whs: Weights, between bias input and hidden layer addition centers, belong to input layer
R(k): FFANN input

U(k): FFANN output
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S$¥: Addition center of FFANN output layer

wl, Wy, .. .,wglz Weights between output of hidden layer and output layer addition center
of FFANN

wzlz Weight between bias input of output layer and addition center of output layer

f(x): Activation function

In the literature, there is not any rule for numbering of hidden layers and for numbering of hidden
layer’s neurons [26]. On one hand, if number of hidden layers or neurons is chosen more than needed,
the trading volume would be increased unnecessarily while optimizing the weights; on the other hand,
if they were chosen less than needed, probability of reaching the level of acceptable minimum error
would be decreased.

In this study, the control structure shown in Figure 2 was constructed. FFANN hidden layers and
neurons count were determined by experimental observation. To this end, FFANN was optimized
by ABC by selecting the hidden layer and the number of neurons high. Then, the optimization
process was repeated by selecting the hidden layer and the number of neurons low. Fault-based cost
function value was observed by running the control system after optimization process, Equation (11).
The results of the experiment showed that the FFANN-based control process involved a high number
of hidden layers and neurons, and the cost value of the FFANN-based control process with a low
amount of hidden layer and neuron was similar, Figure 8. Considering the cost function values of the
experimental processes, the numbers of hidden layers were chosen as 1 and the numbers of neurons
belonging to the hidden layer were chosen as 5, Figure 1.

Another important variable is the activation function. The function type has also effects on weight
optimization [27]. The FFANN controller in the closed loop negative feedback control system generates
the control signal, u(k), based on error signal, e(k), Figure 2. The error during the control process may
be greater, lower or equal to zero. Therefore, the activation function with limit values [-1, +1] of
tangent sigmoid is chosen in the FFANN structure, Equation (1).

eX—e ™
eX+e

f(x) = )

3. The Control System

Block diagram of close loop negative feedback control system based on FFANN controller is
shown on Figure 2. Here, the controller is a discrete time algorithm but the system that is under control
has continuous time structure.

2nd order system

as+b |Y(s)

es?+ds+e

|
| back
propogation;
|
|

Figure 2. FFANN-based close loop control structure for controlling a 2nd order system.

For this study, a Digital to Analog Converter (DAC) was chosen, with a 1st order holder transfer
function, as seen Equation (2).
1— EST
s

@
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Since operation range of a FFANN is between [—1, +1] [28], input signals have to be involved into
FFANN algorithm only after multiply by normalization coefficient (Kin). FFANN’s output signal is
turned back using de-normalization coefficient (Kout) as shown in Figure 2.

FFANN algorithm is a two-step mathematical algorithm. In the first step, optimization of FFANN
weights is done. In literature, this step is named as “learning process”. In this study, “Steepest Descent”
method has been used for weight optimization. This optimization method is simple structured and
fast [28]. Renewal of weights based on this method is given in Equation (3) and Equations (3) and (4).

E(k) = ~(R(k) = Y (k))? ®)

JE(K)

w(k+1) =w(k) — 50

+ plw(k) —w(k —1)] *)

Here, 7 is learning coefficient and is chosen randomly in the range of (0, 1]. Another coefficient,
i, is momentum coefficient. Momentum coefficient does not only ensure to pass the local gradients
but also helps to decrease the proportion of the error. The network may have an oscillation without
momentum. Momentum coefficient usage prevents the network from oscillation during learning
process, [28]. In literature momentum coefficient is chosen randomly between (0, 1].

At the second step of FFANN, output calculation is realized for sampling moment (5 x k, k=0, 1,
2 ... ) as shown in Equations (5)-(7).

sl — i (R(k)wh.)+wh» i=12...,5 )
j = ji 2 ] RNy
St =1 (#(st)wh )+t ©
=

u=f(s)) @)
4. Artificial Bee Colony (ABC) Algorithm

A bee transforms itself into a scout bee in order to find new sources when the food source is
exhausted. Food source represents cost function in ABC algorithm. Therefore, the lowest cost function
value represents the richest food source [29].

Food sources are created randomly in the first step of the algorithm. The bees that go directly to source
of food are known as worker bees. Onlooker bees live in colony that they are directed to food sources
based on the signs of worker bees. Onlooker bees go to food sources. They chose and store food like
worker bees and return to the colony, Figure 3. Worker bees who consume food resources within a certain
number of trials turn into scout bees to search for new food sources. When scout bees reach a random food
source, process of food storage restart. These steps, continue until end criterion is satisfied [29].

“limits” and “popsize” is two fundamental variables in ABC algorithm. “popsize” is number of
individuals in algorithm. The “limit” is number of trials for worker bees to leave food source. If it is not
possible to develop as much as the limit value for a solution that represents a resource it is abandoned [29].

1

- A
- |
S AR v

Figure 3. Bees in the hive.
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The bee that abandoned food source becomes a scout bee. In the ABC algorithm, the number of
onlooker bees, number of worker bees and number of food sources equal to each other. Number of
food sources is half of the population [29].

First, food sources are created randomly for starting to run ABC algorithm, as seen in Equation (8).

Xij = x;nm +rand(0,1) (x}“a" - x}“in) (8)

The new solution that is found by worker bees is compared with the old one. If the new solution
is better, it keeps this solution and deletes the old solution from memory. If the new solution is not
better than before, the previously defined abandonment counter is incremented. Searching food source
by worker bees is shown in Equation (9).

vij = Xij+ @i (xi,j - Xk,j) )

After the worker bees have completed their food scan, onlooker bees go to random analysis so
that they can select of food sources for bees, Equation (10).

0i =

fiti
NS (10)
Y fit;
i=1

The p value is obtained for each solution. Worker bees compare p,,r that are randomly selected
and used as threshold value with p;. If the probability of selecting p; is larger than p,s onlooker bee is
moved toward this source of food and starts searching for a new solution by rerunning Equation (8).

The variables in Equations (8)-(10) are

NS: Number of food sources

D: Number of parameters that are optimized

xmax’

v;: New food location in relation to x;

xi: Randomly food location that is different from x;

¢i,;: Random value between —1to 1

fit;: Normalized cost function

k: Solution in the neighborhood of i

All worker and onlooker bees check the abandonment counter for each solution after completing
of food searching. If counter value reaches to limit value, the worker bee turns into a scout bee and
run Equation (8). The process steps continue until the maximum number of cycles or the lowest value
of the cost function value is reached.

A™IN: T imit values of parameters that will be optimized

5. Parameter Optimization by ABC

The FFANN weights in the closed-loop control system projected in Figure 2 are optimized during
the control process by running the Back-Propagation algorithm. Before starting the control process,
the parameters of Kout, 77, ¢ and Ts should be optimized. They are optimized by the heuristic ABC
algorithm. In the optimization process, the control system given in Figure 2 is used, too. During the
process, the FFANN weights are randomly assigned for each optimization simulation, as in the
beginning of the control process, Figure 2.

The implementation of the block diagram of the optimization process described in flow diagram
below is given in detail in “Appendix A”. As seen in the block diagram, the FEANN parameters are
randomly assigned before the 1st run is performed. Then, the closed loop control system runs up to
the simulation time period, Figure 5.

The input reference voltage applied to the control system has square waveform, Figure 4.
The corners of the square wave are rounded off using the 1st order transfer function. The square wave
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is defined as the high and low time interval ts of the reference input voltage. In this way, the ABC
algorithm optimizes FFANN parameters for the time interval of the closed-loop control system for the
time period specified by ts.

Errors calculated by running the cost function during the simulation are collected. The total error
obtained after the simulation is transferred to the ABC algorithm. The ABC algorithm calculates the
new Kout, 7, u and T parameters by processing the total error within the framework of its mathematical
algorithm. Next, the new parameters are replaced with the old ones for use in the next simulation. Prior to
running the control system with the new parameters, the weights of FFANN are randomly assigned.

The potential solutions performed by the ABC algorithm, as in other heuristic algorithms, tries to
find the closest value to the global solution by moving around instead of finding the most optimal
solution available in the problem space [28]. It was also tried to be eliminated by the simulation
technique in order to keep the algorithm around a certain local minimum. Therefore, FFANN weights
are assigned randomly before running the required simulation for each new cost function account.

\

WL

Figure 4. Vref voltage used in the optimization process as input of control system in Figure 2.

Discrete time cost function of Integral Squar Error (ISE) was benefited to determining cost belong
to process of control [28]. Mathematical equation belong to discrete ISE is given in Equation (11).

_ tsim / Ts 5
ISE(e) = Y ¢ (11)
k=0

ABC optimization process “run ABC” belongs to flow chart in Figure 5 is summarized as:
Initialize the population of solutions.

Evaluate the population.

cycle =1

repeat

SU IR

Produce new solution (food-source positions) v; j in the neighborhood of x; ; for the employed
bees using Equation (9).

>

Apply the greedy selection process between x; and v;.

7.  Calculate the probability values of p; for the solutions x; by means of their fitness values,
Equation (10).

8. Produce the new solutions (new positions) v; for the onlookers from the solutions x; selected
depending on p; and evaluate them.

9. Apply the greedy selection process for the onlookers between x; and v;.

10. Determine the abandoned solution (source), if exists, and replace it with a new randomly
produced solution x; for the scout, Equation (8).

11.  Memorize the best food source position (solution) achieved so far.

12.  cycle = cycle + 1.

13.  until cycle = Maximum Cycle Number.
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create the close loop

control system
(Figure 2)

create the referance
input voltage
generator(Figure 4)

chose
a cost function
(Equation 11)

assigne random
values to
Kout, n, pand T

assigne random
values to
FFANN's weights

|}

run the close loop
control system

assigne new k = sim.time/Ts

K
values to
V.. = ISE(e,
Kout, 1, pand T new ZD: (e‘)

v,

new

- Vald

Kout, 1, pand T
optimum values
has been reached

Figure 5. Artificial Bee Colony (ABC) based optimization process of system in Figure 2.
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6. Control Simulations with Transfer Functions

The 2nd order transfer function belongs to a buck converter, Figure 6, can be derived using

circuit theory.

. (73 +74)//75
Vou(8) = Vin &) 73 22y 4 (23 4 24017125 2
73+724)7Z5
Vout(s) _ T(S) _ % (13)
Vin(s) (71 + 72) + BHZZ5

where,

Z1 = jwL = sL: Impedance of coil

Z2 = Rp: Serial equivalent resistance of coil

Z3 = Re: Serial equivalent resistance of capacitor
Z4 = ]wic = %: Impedance of capacitor

Z5 = Rjyu4: Load resistance

denotes.

If the impedances are changed with S-domain parameters, the new transfer function takes shape

as shown below:

T(s) = SCRcRLoap + Rroap 14)
§2(CLR¢c + CLR1oap) +8(L+ CRLR¢c 4+ CRLRr0ap + CRcRoaD) + (RL + Rroap)

If variables of T(s) are replaced with parameter values that are used for T,(s), Table 1, it will be
seen that T(s) output signal values are the same with the buck converter output voltage for the same
input control signal, U(s), Figure 6.

(945108544
P
ﬁ_' {4 185107 s34 4 Dp*me s+4.05
L
= Trarder Font
7i 72 71 ;.
Vin Vout
. 'AVA\‘AV*W
Uts) RL=50m T.=22u1 l l v
d
e @ Re= 32,31{19% J-
Rlnad 4>75
H k=]
H E Codrur L
]
g
Q
2 =
£ [v=300v l L L
—_ ‘l‘

Figure 6. Simulation of models with the same input control signal, U(s).

In this study, transfer functions with 3 different time constant (t) were chosen for control

application experience, Equations (15)-(18).

Ty(s) = (1.25x107°)s+25
1) = (2.505x10~11)524(3.502x 10~6)s+25.05” (15)

roots = (—0.6991 F 9.9755j) x 10>, T = 14.3 x 107°

B (94x1076)s+4
Ds) = (4188x109)s2+(4.092x10 5)5+4.05" (16)

roots = (—0.4885 T 3.0712j) x 10%, T = 204.69 x 10~6
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~ (825x107%)s+50
T3(s) = pacaaaai7s 50057

17)
roots = ( —3.0500 F 11.3331j), T = 327.9 x 103

Table 1, indicates the component values of buck converter circuits belong to transfer functions of
T1(s), T2(s) and T3(s).

Table 1. Buck converters’ parameters.

Equation L (uH) R; (mohm) C (uF) Rc (mohm) Rload (ohm)

6.4 1 50 1 6.6 25
6.5 22 50 47 32.8 4
6.6 2200 50 3300 327.9 50

Chosen 3 systems have been adjusted as to have large difference between T of each other’s.
The behaviors of systems’ output signals based on unit step input function have been represented on
Figure 7.

On Figure 7, it's seen that when a unit input signal is applied to transfer functions, overshoot of
output signals is different from each other’s. Here the settling times are different for about 1000 times
with each other’s. Control success for these 3 transfer functions, whose settling time values are very
different from each other will show that the FFANN control logic based on the proposed ABC heuristic
optimization method is applicable to all 2nd order systems.

Timing of ABC algorithm was defined by transfer functions’ time constants, Table 2.

Table 2. Initialization ABC’s timing parameters.

T. Functions Simulation Time Iteration
T (S) tsy x 5 100
To(s) ts) x 5 100
T5(s) ts3 X 5 100

On Figure 8, ISE(e) decreasing is shown for optimization process with ABC for Tj(s) and for
settling time ts; = 57. On Figure 8, it is seen that after 14th iteration the cost function becomes stable
and so it’s found out the optimum parameters’ values according to ABC algorithm.

5
%10

(@)

Figure 7. Cont.
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Figure 7. Systems’ outputs for unit step input, (a) Ty (s), (b) T2(s), (c) T5(s).
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Figure 8. Decrease of Integral Squar Error (ISE (e)), optimizing FFANN's output parameters for fs = 5t
of T1(s).

In this study, fs values have been chosen according to time constant of systems, Tables 3-5.
FFANN’s optimized parameter values by ABC belong to three different transfer functions for 5 different
settling times as shown in Tables 3-5. Parameter values of Kin for normalization had been fixed to
1/450 before optimization process was started. Value 450 is 3 times bigger than maximum input
reference value (R(k)) that will be applied to the input of the control system, Figure 2.

Table 3. Feed Forward Artificial Neural Network (FFANN) parameter optimization for T+ (s).

Setling Time ny, ny U1, Mo Kout Tsample
5t 0.0018 0.038 4725 286 ns
25t 0.0022 0.052 4455 1.36 ps
250t 0.0012 0.027 4275 12.584 us
10,000t 0.0033 0.041 3825 572.16 ps
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Table 4. FFANN parameter optimization for T(s).

Setling Time ng, ny Uy, U2 Kout Tsample
5t 0.0011 0.029 4630 4.094 ps

251 0.0034 0.024 4316 20.47 us
250t 0.0016 0.028 3804 198.7 us
10,000t 0.0027 0.033 3710 8.26 ms

Table 5. FFANN parameter optimization for T5(s).

Setling Time ny, ny U1, Mo Kout Tsample
5t 0.0021 0.027 4722 6.6 ms

25t 0.0024 0.021 4386 32.8 ms
250t 0.0019 0.034 3854 319 ms
10,000t 0.0031 0.028 3635 13.11s

Control simulations of Figure 2 for T;(s), T(s) and T3(s) are shown on Figures 9-11. It’s seen that
success of control with optimal FFANN's parameters (red output line) is much better than those of
with classical chosen FFANN's parameters (green output line). Here, n; =ny = 0.1, iy = pp = 0.1, Kout
=1/Kin = 450 and Tsample = 1/10 were chosen as un-optimal FFANN'’s parameters.
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Figure 9. Cont.
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Figure 9. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for T1(s).
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Figure 10. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for Ta(s).
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Figure 11. Control success of FFANN controller with optimal (red) and classical (green) chosen output
parameters for T3(s).
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The control success of the FFANN based controller assigned with the traditional method depends
on the roots of the system it is going to control and therefore the time constant exists, see Figures 9-11.
The response rate of the controller for some systems is sufficient and the system output is close to
the input reference value as soon as possible. However, the settlement time of this convergence
varies depending on whether the reference step takes up or downward value, Figure 9. The FANN
based controller, whose parameters are assigned in the traditional way, can transform the controlled
system output into a highly oscillating or marginal stable structure, as shown in Figures 10 and 11.
However, the FFANN parameters will be optimized by ABC and the control processes to be performed
will be determined in a stable manner. By running the optimization algorithm over the linking
strategies of the control process, such as settlement time, more functional output signals based on
simpler structured input reference value can be obtained, see Figures 9-11.

7. Control Simulations with Power Electronics Components

In Figure 12, a buck converter circuit based on feedback control system is shown. Here, the buck
converter transfer function is 2nd order as shown in Section 6, Figure 6. So, Figure 12 shows FFANN
based controller for a feedback control system with 2nd order model constructed by hardware on
simulation platform.

Control system given in Figure 12 is similar to system given in Figure 2. The difference is that in
Figure 2, the system that is under control has been given mathematically as transfer function but in
Figure 12, it’s been expressed using power electronic components.

Component values for 3 different bucks are given in Table 1. Optimal output parameter values
of FFANN are shown on Tables 3-5. Control success of the FFANN is shown on Figures 13-15.
Again, n; =np = 0.1, iy = pp = 0.1, Kout = 1/Kin = 450 and Tg;yp1e = T/10 were chosen as un-optimal
FFANN's parameters.

Another difference of the control system on Figure 12 from Figure 2 is that control signals are
input to buck converter as Pulse Width Modulation (PWM) signals. Frequency of the PWM signals
was chosen as fpwm = 2/ Tsample-

Vout(s) e

w},uf

z5

E )
T

e AN

Figure 12. Hardware settings for control simulation on Matlab’s Simulink.
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Figure 13. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for T (s).
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Figure 14. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for Ta(s).
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Figure 15. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for T3(s).

The control success of the FFANN controller, whose parameters were determined by the
conventional method, was further reduced by the conversion of the output signal to the PWM-based
signal. During the control process based on Pulse Width Modulation (PWM) technique has been
seen oscillations that had not been seen before in the continuous time simulations, Figures 13-15.
The oscillation amplitude is related to the time constant of the controlled system. If FFANN output
parameters are optimized by ABC it will be seen that the control process will be operated in a stable
manner even if the output control signal is PWM structured.

8. Discussion

In this study, parameter optimization of a FFANN based controller was demonstrated. Different ANN
structures should be optimized in their output parameters if they are targeted to control the 2nd order
systems in an optimal and stable manner. Otherwise, high oscillation or marginal stability of the controlled
system’s output may be encountered, as in the case of FFANN based control. The weight of the ANN
control algorithm whose parameters will be optimized can also be included in the optimization process.
Thus, the ANN based controller will achieve the minimum control cost from the moment the control
starts. Another optimization approach can be to change the optimization parameters. That is, the output
parameters optimized in this study will be fixed based on the traditional method and only FFANN weights
will be optimized. This means that during the control process, no Back-Propagation algorithm will be
required and so mathematical operations would be minimized throughout the process.

9. Conclusions

In this study, artificial intelligence algorithm in FFANN structure has been transformed into a
successful controller by using a heuristic algorithm. The ABC heuristic algorithm has been used in
the optimization process of FFANN parameters. The reason for choosing ABC is explained in the
introduction section. It has been proven by simulations that the control success of the FFANN based
controller whose parameters are created by conventional methods is low and may vary even in the
same control process. For a successful control process, FFANN parameters have been shown to require
an optimization based on system parameters to be controlled. The optimization strategy may be
developed in the form of minimum settling time or it may be improved by monitoring a desired
settlement time. In this study, FFANN parameters which are optimized by observing the settlement
time, in order to achieve the reference step input changes, the approximations of the input sizes of the
outputs of the 2nd order systems have been achieved. The FFANN based controller has succeeded to
converge of the system output value for the reference step input changes inside the prescribed time.
The control simulations with transfer function and hardware-based control have proved the accuracy
of the FFANN parameters to be optimized with a heuristic optimization algorithm such as ABC.
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Appendix A

ABC optimization process for the system that is shown on Figure 2 is given below as a Matlab's
function (*.m) file. The optimization process optimizes output parameters of FFANN.

%ABC optimization process for the system shown in Figure 2.

%Problem Definition

CostFunction = @(x) Run_Fig2(x); % first simulate Figure 3 to find out cost function
nVar = 4;% number of decision variables K; for n; 5, K; for p; 5, K3 for Tsmpl, K4 for Kout
VarSize = [1 nVar];% decision variables matrix size
VarMin = 0.001; % decision variables lower bound
VarMax = 10000; %decision variables upper bound, chosen acording to T
% ABC Settings
MaxIt = 40; % maximum number of iterations
nPop = 40; % population size (colony size)
nOnlooker = nPop; %number of onlooker bees
L =round(0.0025 x nVar x nPop); % abandonment limit parameter (trial limit)
H = 0.025; % acceleration coefficient upper bound
% Initialization
empty_bee.Position = [];
empty_bee.Cost = []; % empty bee structure
Pop = repmat(empty_beenPop,1); % mitialize population array
BestSol.Cost = inf; % initialize best solution ever found
for i = 1:nPop % create initial population, startl
pop(i).Position = unifrnd(VarMin,VarMax, VarSize);
pop(i).Cost = Run_Fig2 (pop(i).Position);
if pop(i).Cost <= BestSol.Cost
BestSol = pop(i);
end
end % create initial population, end1
C = zeros(nPop,1); % abandonment counter
BestCost = zeros(Maxlt,1); % hold best cost values
% ABC Main Loop
for it = 1:MaxIt % abc main loop, start2
for i= 1:nPop % recruited bees, start3
% Choose k randomly, not equal to i
K =[1:i-1 i+1:nPop];
K = K(randi([1 numel(K)]));
% Define Acceleration Coeff.
phi =h X unifrnd(—1,+1,VarSize);
% New Bee Position
newbee Position = pop(i).Position+
phi. x (pop(i).Position-pop(k).Position);
% Evaluation
newbee.Cost = Run_Fig2(newbee.Position);
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% Comparision
if newbee.Cost <= pop(i).Cost
pop(i) = newbee;
else
C(i) = C(i)+1;
end
end % recruited bees, end3
% Calculate Fitness Values and Selection Probabilities
F = zeros(nPop,1);
MeanCost = mean([pop.Cost]);
fori=1mnPop % convert cost to fitness
F(i) = exp( —pop(i).Cost/MeanCost );
end
P = F/sum(F); % probability calculation
for m = 1:nOnlooker % onlooker bees, start4
% Select Source Site
i = RouletteWheelSelection(P);
% Choose k randomly, not equal to i
K =[1:i-1 i+1:nPop];
k = K(randi([1 numel(K)]));
% Define Acceleration Coeff.
phi = h x unifrnd(—1,+1,VarSize);
% New Bee Position
newbee.Position=
pop(i).Position+phi. x (pop(i).Position-pop(k).Position);
% Evaluation
newbee.Cost = Run_Fig2 (newbee.Position);
% Comparision
if newbee.Cost <= pop(i).Cost
pop(i) = newbee;
else
C(@i) = C@)+1;
end
end % onlooker bees, end4
for I = 1:nPop % scout bees

if Cd)>=L pop(i).Position = unifrnd(VarMin,VarMax, VarSize);
pop(i).Cost = Run_Fig2 (pop(i).Position);
C(i)=0;
end
end

for I = 1:nPop % update best solution ever found
if pop(i).Cost <= BestSol.Cost
BestSol = pop(i);
end
end
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% Store Best Cost Ever Found
BestCost(it) = BestSol.Cost;

end

% abc main loop, stop2

% Results
figure(1);

xlabel(‘Iteration’);

ylabel(‘Best Cost’);

plot(BestCost);

hold on;

grid on;

semilogy(BestCost, ‘LineWidth’,2);
K1=BestSol.Position(1) % nj »
K2=BestSol.Position(2) % 111 »
K3=BestSol.Position(3) % Tsample
K4=BestSol.Position(4) % Kout

Inside the algorithm it is used “Roulette Wheel Selection” function that is described below.
function i = RouletteWheelSelection (P)

T

=rand;

C = cumsum(P);
i=find(r <= C,1, first’);

end

Refe
1.

10.

11.

12.

rences

Gholipour, R.; Khosravi, A.; Mojallali, H. Multi-objective optimal backstepping controller design for chaos
control in a rod-type plasma torch system using Bees algorithm. Appl. Math. Modell. 2015, 39, 4432-4444.
[CrossRef]

Sekhar, G.C.; Sahu, RK.; Baliarsingh, AK.; Panda, S. Load frequency control of power system under
deregulated environment using optimal firefly algorithm. Int. ]. Electr. Power Energy Syst. 2016, 74, 195-211.
[CrossRef]

Veysi, M.; Soltanpour, M.R.; Khooban, M.H. A novel self-adaptive modified bat fuzzy sliding mode control
of robot manipulator in presence of uncertainties in task space. ROBOTICA 2015, 33, 2045-2064. [CrossRef]
Liang, Y.C.; Cuevas Juarez, ].R. A novel metaheuristic for continuous optimization problems: Virus
optimization algorithm. Eng. Optim. 2016, 48, 73-93. [CrossRef]

Kose, E.; Abaci, K; Kizmaz, H.; Aksoy, S.; Yalgin, M.A. Sliding mode control based on genetic algorithm for
WSCC systems include of SVC. Elektron. Elektrotech. 2013, 19, 25-28. [CrossRef]

Sekhar, P.; Mohanty, S. An enhanced cuckoo search algorithm based contingency constrained economic load
dispatch for security enhancement. Int. J. Electr. Power Energy Syst. 2016, 75, 303-310. [CrossRef]
Moharam, A.; El-Hosseini, M.A.; Ali, H.A. Design of optimal PID controller using hybrid differential
evolution and particle swarm optimization with an aging leader and challengers. Appl. Soft Comput. 2016,
38,727-737. [CrossRef]

Das, S.; Chatterjee, D.; Goswami, S.K. A Gravitational Search Algorithm Based Static VAR Compensator
Switching Function Optimization Technique for Minimum Harmonic Injection. Electr. Power Compon. Syst.
2015, 43, 2297-2310. [CrossRef]

Kumar, A.R.; Premalatha, L. Optimal power flow for a deregulated power system using adaptive real coded
biogeography-based optimization. Int. J. Electr. Power Energy Syst. 2015, 73, 393-399. [CrossRef]

Ang, K.H.; Chong, G. PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol.
2005, 13, 559-576.

Hallworth, M.; Shirsavar, S.A. Microcontroller based peak current mode control using digital slope
compensation. IEEE Trans. Power Electron. 2012, 27, 3340-3351. [CrossRef]

Aksoy, S.; Miihiircii, A. PI Elman neural network based nonlinear state estimation for induction motors.
IREE 2011, 6, 706-718.

80



Processes 2019, 7, 4

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Okan, E.; Mahmut, O.; Nejat, Y. Impact of small-world topology on the performance of a feed-forward
articial neural network based on 2 different real-life problems. Turk. ]. Elect. Eng. Comp Sci. 2014, 22, 708-718.
Beg, M.A_; Khedkar, M.K.; Paraskar, S.R.; Dhole, G.M. Feed-forward Artificial Neural Network-Discrete
Wavelet Transform Approach to Classify Power System Transients. Electr. Power Compon. Syst. 2013, 41,
586-604. [CrossRef]

Kermani, M.Z.; Kisi, O.; Rajaee, T. Performance of radial basis and LM-feed forward artificial neural networks
for predicting daily watershed runoff. Appl. Soft Comput. 2013, 13, 4633-4644. [CrossRef]

Nabiyev, V. Yapay Zeka, 1st ed.; Segkin: Istanbul, Turkey, 2012.

Nourmohammadzadeh, A.; Hartmann, S. Fault Classification of a Centrifugal Pump in Normal and Noisy
Environment with Artificial Neural Network and Support Vector Machine Enhanced by a Genetic Algorithm.
In International Conference on Theory and Practice of Natural Computing; Springer: Cham, Switzerland, 2015;
pp. 58-70.

Yu, Y,; Li, Y;; Li, ]. Nonparametric modeling of magneto rheological elastomeric base isolator based on
artificial neural network optimized by ant colony algorithm. J. Intell. Mater. Syst. Struct. Rep. 2015, 26.
[CrossRef]

Zhu, C.; Zhao, X.; Zhou, J. ANN based on PSO for Surface Water Quality Evaluation Model and Its
Application. Chin. Control Decision Conf. Rep. 2009, 6, 3264. [CrossRef]

Chang, J.; Xu, X. Applying Neural Network with Particle Swarm Optimization for Energy Requirement
Prediction. In Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongging,
China, 25-27 June 2008.

Ma, L.; Lee, KY.; Ge, G. An Improved Predictive Optimal Controller with Elastic Search Space for Steam
Temperature Control of Large-Scale Supercritical Power Unit. In Proceedings of the 51st IEEE Conference on
Decision and Control, Maui, HI, USA, 10-13 December 2012.

Deepa, P.; Sivakumar, R. Synthesis of Heuristic Control Strategies for Liquid Level Control in Spherical
Tank. In Proceedings of the 3rd International Conference on Advances in Electrical, Electronics, Information,
Communication and Bio-Informatics, Chennai, India, 27-28 February 2017.

Ma, L.; Cao, P; Gao, Z.; Lee, K.Y. ANN and PSO Based Intelligent Model Predictive Optimal Control
for Large-Scale Supercritical Power Unit. In Proceedings of the 2016 IEEE International Conference on
Information and Automation, Ningbo, China, 1-3 August 2016.

Lin, X;; Li, A.; Zhang, W. Application of PSO-based ANN in Knowledge Acquisition for the Selection
of Optimal Milling Parameters. In Proceedings of the 6th World Congress on Intelligent Control and
Automation, Dalian, China, 21-23 June 2006.

Ayan, K.; Kilig, U. Artificial bee colony algorithm solution for optimal reactive power flow. Appl. Soft
Comput. Rep. 2012, 12, 1477. [CrossRef]

Wani, S.M.A. Comparative study of back propagation learning algorithms for neural networks. Int. ]. Res.
Comput. Commun. Eng. 2013, 3, 1151-1156.

Smola, A.; Vishwanathan, S.V.N. Introduction to Machine Learning, 1st ed.; Cambridge University Press:
Cambridge, UK, 2008.

Kose, E.; Muhurcu, A. The control of a non-linear chaotic system using genetic and particle swarm based on
optimization algorithms. Int. . Intell. Syst. Appl. Eng. 2016, 4, 145-149. [CrossRef]

Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Computers Engineering
Department, Engineering Faculty, Erciyes University: Kayseri, Turkey, 2005.

® © 2018 by the author. Licensee MDP]I, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

81






S M processes MBPY

Article
On the Boundary Conditions in a Non-Linear
Dissipative Observer for Tubular Reactors

Irandi Gutierrez-Carmona !, Jaime A. Moreno 2 and H.E Abundis-Fong 3%

1
2

Departamento de Control Automatico, Cinvestav, Mexico City 07360, Mexico; igutierrez@ctrl.cinvestav.mx
Instituto de Ingenieria, Universidad Nacional Auténoma de México, Mexico City 04510, Mexico;
jmorenop@iingen.unam.mx

Tecnolégico Nacional de México/1.T. Laguna, Torreén, Coah. 27000, Mexico

*  Correspondence: habundis@correo.itlalaguna.edu.mx; Tel.: +52-871-705-1324

3

Received: 28 November 2018; Accepted: 21 December 2018; Published: 28 December 2018

Abstract: The modal injection mechanism ensures the exponential convergence of an observer in a
continuous tubular reactor in dependence with the system parameters, the sensor location, and the
observer gains. In this paper, it is shown that by simple considerations in the boundary conditions,
the observer convergence is improved regardless of the presence of perturbations, the sensor locations
acquire a meaningful physical meaning, and by simple numerical manipulations, the perturbations
in the inflow can be numerically estimated.
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1. Introduction

Tubular reactors are of great importance in chemical and biochemical processes, specially those
with non-monotonic kinetics [1], e.g., catalytic reactors with Langmuir-Hinshelwood kinetics [2,3] or
bioreactors with Haldane kinetics [4]. The tubular reactors are continuous systems where the mass
concentration in some inner point depends on the spatial and temporal coordinates (see Figure 1).

X ‘= 0 b ‘Z 4 X :‘ L
/) i
. i
s % |l
7 ‘

\/
| Yy
\ L \

Figure 1. Simplified model of a tubular reactor.

In this kind of reactors, it is almost impossible to measure the concentration along the reactor;
it is usually found that only a finite set of points can be measured, and the system states must be
reconstructed from this information. The necessity to measure or estimate the system states has
motivated the design of observers for this distributed parameter system, including absolute stability
results [5], adaptive switching observers [6], Lyapunov-based approaches [7], backstepping designs [8],
sliding modes observers [9], kalman schemes [10,11], interval observers [12], and finally (the main
interest of this work) dissipative approaches [13].

Dissipative observers deal with a Luenberger-type observer; this is, the observer may be
understood as a copy of the original system, plus correction terms to adjust the system response.
The observer dynamic in the infinite—dimensional space is studied using the Garlekin’s method, where
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the orthonormal basis is defined by the eigenfunctions, which in turn may be divided into slow
eigenfunctions and fast eigenfunctions that describe, correspondingly, the slow and fast dynamics of
the system [14-16].

The main idea of the dissipative observers is, through a modal injection mechanism, to move
the slow eigenfunctions sufficiently far into the left-half complex plane to ensure that the potentially
destabilising effects of the non-linear reaction terms are compensated [13,16]. The effect of the fast
eigenfunctions, corresponding to fast dynamics, is assumed stable and disappears rapidly.

In the non-linear dissipative observer [17], three measurements of the concentration are made
in the reactor: In some inner point and in both boundaries. The observer behaviour depends on
the position of the inner measurement point but not explicitly on the boundary measurements [18];
thus, the boundary measurements can be used for other purposes rather than stability—for example,
to provide further information for the sensor allocation or improve the observer performance in the
presence of inflow uncertainties.

In this paper, we propose a simple but meaningful way to select the boundary gains in order to
improve the observer convergence, provide a physical meaning for the sensor position, and allow the
estimation of the input uncertainties in the inflow. The results are shown in a numerical example.

This paper is organised as follows: In Section 2, the previous results and inconvenience of
neglecting the effects of the boundary gains are described; in Section 3, the advantages of a correct
selection of the boundary gains are proposed; in Section 4, the numerical results are shown; and in
Section 5, the conclusions are presented.

2. Problem Formulation

Consider the tubular reactor depicted in Figure 1, where ¢ (x, t) is the mass concentration at the
spatial coordinate x € [0, 1] at time ¢. For this tubular reactor, the dynamical equations are given as:

%}
-
Qv
o
o
s
%)
S
sl

ot
. = oo . ~Dar(c(xt),
ac(x,t
Piec Cgfc ) =0 = ¢ (0, t) — Cin (t) s (l)
1 de(xt) o
P Ox =1 0,

where P, is the system Peclet number, r (x, t) is the non-linear reaction rate, D, is a constant reaction
rate, and c;, (t) is the inflow mass concentration.

The mass concentration ¢ (x, t) can be measured by sensors located at the positions x = {0,¢,1},
for some ¢ € (0,1); this is, the mass concentration is measured in the inflow, some inner point of
the reactor and outflow. To estimate the complete mass concentration in the distributed system, the
Luenberger-type observer may be used [13]:

el i%_%—azr(é(nt))
. -715(3() (CA(glt)iC(C’t))’ 2)
A= 00 ()~ (60,1 ¢ (0,1),
P%acg,i,t) = —l (e(Lt)—c(1,1)).

Note that the observer is a copy of the original system (Equation (1)), plus the distributed
correction term [¢ (x) and the boundary correction terms {ly, /1 }. The observation error

e(x,t) :=¢(xt)—c(xt), 3

is the difference between the real and the estimated mass concentration, with a dynamical evolution
given as:
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de(x, Pe(x, de(x,
ae( t>eg§t> = A T D (v ) — e (e (@)
e(x,
B S|, = (1-h)e(0), )
de(x,t
| = —he(Lp),

where the non-linear term p (x, ) = r (¢ (x,t)) — r (c (x, t)) is the difference between the reaction rate
in the system and the observer. In Reference [18], the following theorem is described.

Theorem 1. If in the observer (Equation (2)), the boundary correction terms are set to zero, and using the
correction term:

N
lg (x) = Z lg’k(bk (X), (5)
k=1

where ¢y (x) are the solutions of the Sturm—Liouville problem:

10 0
<P7gcﬁ - a) CDk (x) = /\kq)k (x) ’ (6)
then the weighted error norm:
1
le(x,8)ll e = | exp P (x,t)dx = E (1), )
0

converges exponentially to zero; this is:

E(t) <E(0)exp ™, ®)

for some positive constant A, if the following conditions are met:

(i)

(ii)

(iii)

(iv)

The non-linear term p (x, t) satisfies the sector condition:

o e@d] [ s suts)
Sy = ./0 w (x) 1

p(x,t) (su+31) -1 p(xt)

[e (x’t)} dx >0, ©)

where s) = min %, and s,; = max % are, respectively, the minimal and maximal slope of the reaction rate

with respect to the concentration;
the sensor location x = ¢ does not correspond to any root of the first N eigenfunctions @y, (x), this is,

Dy (5) £0;

noticing that the eigenvalues Ay, given as:
PZ + 4w}
k= (10)
4P,
are real, negative, and form a discrete monotonically decreasing series [19], Ay > Ay > ... > Ay >

AN+1 > ..., forsome (k — 1) 71 < wy < 71, see Equation (20). Then, the modal correction dimension N is
chosen such that: 5
(2Da — [su + 1))

—2A
N+1 > 1

— 5,51 + 2A, (11)

and finally;
the maximal eigenvalue of the matrix (An — LC®), where:
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Mo 00 e ¢1(¢)
0 A 0 !

N R L=, c= (29, w
(') 0o - A'N lf:,N PN (C)

is smaller than Ay 1.

Remark 1. The eigenvalues Ay are functions of the Peclet number Py, determining the convergence rate of the
weighted error norm (Equation (7)), and the dimension N of the modal correction mechanism (Equation (11)).
A small Peclet number produces a high diffusion term, whereas a big Peclet number produces a small
diffusion term.

The basic idea of the observer is to accelerate the convergence rate of the slowest N—
eigenfunctions. Noticing that the observer stability proof does not depend on the boundary conditions
(see Appendix A), the pair {ly,[; } is selected to improve the observer performance, without seemingly
any restriction on the pair {lo, /1 }. In similar works [16], solely the boundary conditions in the observer
convergence are studied, leading to restrictive conditions.

In this work, as an extension of the previous theorem, we show that the gains {lo,l;} can be
selected to:

(a) Improve the observer convergence;

(b) provide more information about the sensor position;
(c) facilitate tuning the observer parameters;

(d) and allow the estimation of the inflow perturbation.

3. Main Results

The gains {lp, Iy } are not required directly in the proof of Theorem 1, but they certainly modify
the eigenvalues @y (x) used to design the correction term (Equation (5)) and play an important role in
the observation error (see Equations (3) and (16)). In the following corollary, we show how the correct
gains {lp, 11 } simplify the observer design and constrain the error behaviour in a suitable way.

Corollary 1. Assume conditions of Theorem 1 are fulfilled, but consider the boundary conditions:

|lo| >1 and Lh=1ly—2, (13)
then:

(i) The correction term Iz (x) in Equation (5) simplifies to:

N
I (x) = V2expP*/2 Y Iz sin (kntx), (14)
k=1

(ii)  the feasible sensor positions are given by all points in the set:
n
@z{ye(o,l):y#E for k=1,--,N and neN}, (15)
(iii) and the observation error in the boundaries is close to zero or converges rapidly to zero.

The proof of this corollary is given along this section. First recall that the solution for the error
Equation (4) may be decomposed as:
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agk

e(x,t) =) e (t) D (x), (16)

k=1

where the set {¢ (x)}|;c defines a basis for the spatial distribution and {ey ()} |;cy defines the time
evolution of the system. From Equation (6), it follows that the eigenfunctions {¢ (x)}|;cy are of
the form:

Dy (x) = exp’e*/2 (Agsin (wix) + By cos (wix)) . (17)

The eigenfrequencies {wy}|;cy and the amplitudes { A, By}, are obtained, substituting the
eigenfunctions from Equation (17) in the Sturm-Liouville boundary conditions:

A = (1-1) ¢ (0),
L apo [ (18)
o 5,; = —h¢e (1),
x=1
as:
(1 2Io) PucBy — 203 Ay = 0, (19)
and: 1 1 (1+428)2o—1)P,
-1 _ 1 +2ly) (2o — 1) Pec
(an () = =7 (oo : ). 20)

From Equations (19) and (20), it follows that numerical approximations are required to build
the inyection term (Equation (5)). From Equation (13), for example, [y —Ip+1 = —1 and |lp| > 1,
Equation (20) becomes:

1, (1 2 Pec
(an (w0)) ™ = = -+ 0P LE ). @

The right-hand side is a concave function with upper bound:

- (oo + 0P ) < ~2la, 22
and Equation (20) simply becomes:
(tan (@)™ < =2ho], (23)
and using |lo| > 1, we find:
wg ~km forall keN. (24)

In Figure 2, the left and right-hand sides of Equation (20) are plotted for Iy = 12 and /; = 10,
where the intersection points are the solutions of the equation, which verifies Equation (24).
Once the eigenfrequencies wy are fixed, Equation (19) becomes:

2k7‘l.’Ak
By = —+—F~- 25
KT (1= 2l) Pec @)
and for |lp| large enough, the first N terms may be neglected, this is:
{Bi}H=1,... n = 0. (26)
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Figure 2. Numerical approximation for Equation(20).

Therefore, the first N eigenfunctions are:
O (x) = Agexp™*/?sin (knx) k= {1,--- ,N}. (27)

To satisfy the orthogonal condition depicted in the Appendix A (see Equation (A3)), Ay = /2 is
selected for k = {1,---, N}, and the first N eigenfunctions become:

¢r (x) = \fZexpP"f’(/2 sin (krrx)  for k={1,---,N}, (28)

From where Equation (14) follows. In Figure 3, the first four eigenvalues for /p = 12 and /; = 10
are shown. Increasing |ly| will make Equation (28) a better approximation to the real eigenvalues.

251

0 0.2 0.4 0.6 0.8 1
x - Displacement

Figure 3. First four eigenvalues ¢y (x).

From Equation (28), it is immediately obvious that the sensor should avoid any position ¢ € (0,1)
such that:
sin ({rrx) =0 for k={1,---,N}, (29)

and Equation (15) follows.
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Now, noticing that the slowest N eigenfunctions are approximated by sine functions, the error
decomposition e (x,t) = Y32 ; e (t) ¢k (x) may be written as:

[=S)

N
e(x,t) =) e () Agsin (kmx) + Y e (t) ¢y (x) (30)
k=1 k=N+1
Therefore, at the boundaries:
e(x o= 2 e()¢p(x), (31)
k=N+1

the error depends only of fastest modes {¢y (¥)}|,_ {N+1,...y that converges rapidly to zero.

Remark 2. If the values of By for k = {1,2,..., N'} are not negligible, this may occur for small Peclet numbers
or Iy close to § (see Equation (19)); then, a peaking phenomenon may arise. This is exemplified in the numerical
simulation section.

Remark 3. Equation (13), say ly = lo — 2 is an algebraic condition, not the only one, proposed to preserve the
right-hand side of Equation (20) as a concave function, keeping valid the approximation wy =~ k.

The precise sensor position is something that should be discussed more carefully; however,
noticing that the sensor position ¢ should be selected to increase the effect of the correction mechanism,
given by the product Iz (x)e (¢, t) in Equation (4), the sensor position can be proposed to satisfy
the relation:

N N
&= {y: Yo l9j (y)| = max Z|4’j(x)|}~ (32)
=1 xe(O,l)]»:l

4. Numerical Simulation

In this section, a tubular reactor with a non-monotonic Langmuir-Hinshelwood type kinematics
is considered [2,3], where the reaction rate is given by:
c(x,t
re(nt) = —b )
(1+oc(x,t))
where the constant coefficient ¢ denotes some inhibition parameter. Simulation studies were carried
out, considering a diffusion dominated behaviour corresponding to (P, 0, D) = (6,3,4), and an
inflow as the sum of a nominal and a perturbation term:

5
cin (1) = 03 +0.1 (Z cos (6m7rt)>. (34)
nominal m=0
perturbation

Figure 4 shows the error surface when no correction mechanism is applied, thisis, Iy = I; = l; =0.
The behaviour at x = 0 is due to the inflow perturbations.
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Figure 4. Error surface without boundary feedback.

By setting {lp, 11} = {102,100}, the error in the boundaries can be brought to values close to
zero rapidly (see Figure 5); even the effect of the inflow perturbations is reduced. Note that without
the modal injection mechanism /¢ (x), at t = 0.6 (s), the spatial behaviour of the error resembles the
behaviour of the first and slowest eigenfunction ¢ (x) = /2 exp=*/2 sin (7rx).

Estimation Error

Space (m) 1 o

Time (s)

Figure 5. Error surface with only boundary feedback.

Now, it is straightforward to verify condition (iii) of Theorem 1; this is, the eigenvalues form the
decreasing series:
A =-315 A= -808, A3=-1630, --- (35)

and Equation (11) is fulfilled for N = 1:

(2D, — [s4 +51])?

—2A
N+1 > Z

—sus; -+ 2A = 12.41 + 24, (36)
and any A € (0,1.87). It is proposed the modal correction mechanism:

Ie (x) = lzagn (x) = Iz 1 V2 exple*/?sin (7x), (37)
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that will affect the slowest eigenfunction, allowing a better convergence of the error surface to zero.
Using Equation (32) to fix the sensor position to § = 0.74, and by setting Iz ; = 2.87, condition (iv) of
the Theorem 1 is fulfilled:

A —lz1¢ (8) = =30 < A (38)
In Figure 6, the error surface with the the boundary feedback and the correction mechanism is

shown. The effect of the modal injection mechanism is immediate.
Figure 7 shows the error norm E (t) for all different feedback conditions:

(a) No feedback;
(b) only boundary feedback;
(c) only modal correction mechanism;

(d) both boundary and modal correction mechanism.

Estimation Error

0.2
0.15
1o 0.05 0-1

Space (m) Time (s)

Figure 6. Error surface with boundary and the first mode feedback.

4t No Feedback

g 3 Boundary Feedback

\2: Inner Feedback

2

= Complete Feedback
S

0 0.2 0.4 0.6 0.8 1
Time (s)

Figure 7. Error comparison.
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The combination of a modal injection mechanism with boundary feedback increases the convergence
rate without compromising stability. To improve the observer convergence, more modes can be added
to the modal correction mechanism; for example, consider the modal correction mechanism:

3 3
le (x) = Y Ie @ (x) = V2exp™/2 Y Iz sin (kmx). (39)
k=1~ k=1~

It is immediate to verify that setting:

leq =126, ler =62, les =03, (40)
then:
315 0 0 e
maxJeig( | 0 808 0 ||l [ ) $@)]]p=-20<% @)
0 0 —1630| |lz3

and the convergence rate of the three slowest modes is increased. In Figure 8, the corresponding error
surface is shown. Comparing Figures 6 and 8, the effect of adding more modes in the modal correction
mechanism is immediate.

N
~\\\\\

\

\ N
O
\\\\\\\\\\§

Estimation Error

Space (m) Time (s)

Figure 8. Error surface with boundary and three modal correction mechanism.

Now, using the fact that the error in the boundaries is close to zero, this is:
e(x,t)|,g=0 = ¢(0,t) = c(0,t), (42)

simple numeric manipulations will allow the estimation of the inflow perturbation. From the
boundary conditions:
1 dc(0,t)
PTC ax

and the corresponding discrete approximation:

=c(0,t) = {cin () + Oper (1) }, (43)

Pecle (C (AX/ t) —C (0, t)) =c (0, t) — {Cin (t) =+ gper (t)} , (44)
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a non-rigorous estimation of the perturbation is obtained by replacing the actual concentration with
the estimated concentration, this is, c (Ax, t) — ¢ (Ax, t), and solving for fpe as:

Bper (1) ~ ﬁ (14 Pucdx) ¢ (0, £) — & (A%, £)) — cin (£). (45)

The estimation of the inflow perturbation is shown in Figure 9.
Finally, and for completeness, an example is presented of the peaking phenomenon that commonly
occurs when high gains are implemented.

—Actual perturbation
1.5 —Estimation with inner feedback
| —Estimation with complete feedback

Inflow perturbation

0 0.2 0.4 0.6 0.8 1
Time (s)

Figure 9. Perturbation estimation in the concentration input.
Peaking Phenomenon

Consider a tubular reactor with a small Peclet number, for example, (P, 0, D;) = (2,3,4), and
the boundary gains (Io,I;) = (12,10). The corresponding error surface is depicted in Figure 10, where
a peak in the spatial boundary appears. Contrary to what is thought, this peak is reduced when the
boundary gains are increased, making this peaking phenomenon something that should be more
carefully analysed, especially when the observer data will be used for feedback control [20].

Peaking phenomena

Estimation Error

Space (m) 1 0

Figure 10. Peaking phenomena is the error surface.
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5. Conclusions

In this work, we extend some results of the non-linear dissipative observer to show that correctly
chosen boundary gains allow a simple tuning of the observer and its parameters, improving the
observer convergence, and allowing the estimation of the inflow perturbations. Numerical validation
of the presented algorithm shows the validity of the proposed approach.
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Appendix A

Proof of Theorem 2.1. In this section, a simplified proof is provided. First recall that the error norm
(see Equation (7)) may be equivalently written as:

le(eDlleg =) = [ @) (x 0, (A1)

where w (x) = expp /2 [21,22]. Combining Equations (16) and (A1), we have:
[ee] [ee] 1
E) =Y Yot [ @) ()e(x)dx, (42)
k=1j=1 0

selecting the eigenfuntions {¢y (x)} |y in such a way that:

1
[ @@ ()¢ () dx = (49
where:
[0 if k#j
Okj = {1 if k=7 (Ad)
then the error norm can be written as:
Et)y=Y Y e(t)ej(t)or; =Y i (t), (A5)
k=1j=1 k=1
and deriving the error norm E (t), we obtain:
4E(M) = 4 (folw (x)e? (x,t) dx) = 2];)1w(x)e(x,t) de, (A6)
and substituting (4) we have:
d
%E (t) = Dt + D, (A7)
with: . .
Dr = 2[lw(x)e(xt) ((PLBB? %) e(x,t)—Ig (x)e (g,t)) dx "
Dk = =2 fol w (x)e(x,t) Dap (x,t) dx
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Now, using Equations (16) and (6), we rewrite Dr as:

DT = 2 Z ; )\ke] fO ‘1)] (x)dx
s (A9)
-2 Z Z‘, lg,je (&, b)ex (¢ fo (%) dx,
and using the orthogonality condition (Equation (A3)), we have:
m_zqu %étZ%m (A10)
k=1
since e (¢, 1) = Y52 ek (t) ¢ (&), then:
Dr=2Y" At (t) 22{}k &)z jej (1), (A11)
k=1
which can be written in the quadratic form:
—LCS f
Dy = 2¢" (1) Ay—LC | LC e(t) (A12)
0 ‘ AN+1
where: .
et = e(t) en(t) exia(t) - |, (A13)
and:
M 0 AN+1 0
Ay = , ANt 0 Ang2 (A14)
0 AN
lea P1(8) Dn+1(8)
L=1| - |, cs . , Cf = | dnp2(8) (A15)
len PN (£) o
If ¢ () #0fork = {1,---, N}, then the pair { Ay, C°} is observable and there exists a vector L
such that:
AN+1 < maxo (Ay — LC%), (Al6)
so Dr is bounded by:
Dr < Ansie’ (e (t) = AnaE (8). (A17)

The perturbation term Dy is bounded using the sector condition S, > 0 (see Equation (9)) so:

Dy < 2/

or, regrouping terms:

DKS—/Olw(x){p

Ye(x,t) Dap (x,t)dx + Sy, (A18)

! s Dy — 1 (su+s)) e(x,t)
SuS| — 2 \Su I , dx. A19
Dy — 3 (su+sp) 1 [p(c,e) } (AL9)
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Equation (A7) is then bounded as:

T
Tew < f/o'lw(x) { ;(("'t; } p { e(’é'? ]dx, (A20)

where P = PT € R?*2 js given by:

Sus; — 2A Do — (s S
pP— Ml] N+1 a 2(M+ Z) . (A21)
Da — 3 (Su + Sl) 1
Now, P is positive definite if for some positive scalar A > 0:
1 2
Sus;] — 2AN+1 — <Da — 3 (Su + Sl)> = A, (A22)
or, equivalently:
2D, — [su +51])?
—2ANi1 = w —sus|+ A, (A23)
Therefore:
d 1 H 1 et
- [ e(x e(x, < .
LE®) g—A/ w(x) | C&h) 0 Nix A =mino(P) (A24)
dt 0 p(xe) | | plxe)
d e 5 .
SE() < —A/ w (x) e (x,t)dx = —AE (1), (A25)
0
and: ~
E(t) < E(0)exp™™. (A26)
O
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Abstract: The Lithium-ion battery (Li-ion) has become the dominant energy storage solution in many
applications, such as hybrid electric and electric vehicles, due to its higher energy density and longer
life cycle. For these applications, the battery should perform reliably and pose no safety threats.
However, the performance of Li-ion batteries can be affected by abnormal thermal behaviors, defined
as faults. It is essential to develop a reliable thermal management system to accurately predict and
monitor thermal behavior of a Li-ion battery. Using the first-principle models of batteries, this work
presents a stochastic fault detection and diagnosis (FDD) algorithm to identify two particular faults in
Li-ion battery cells, using easily measured quantities such as temperatures. In addition, models used
for FDD are typically derived from the underlying physical phenomena. To make a model tractable
and useful, it is common to make simplifications during the development of the model, which may
consequently introduce a mismatch between models and battery cells. Further, FDD algorithms can
be affected by uncertainty, which may originate from either intrinsic time varying phenomena or
model calibration with noisy data. A two-step FDD algorithm is developed in this work to correct
a model of Li-ion battery cells and to identify faulty operations in a normal operating condition.
An iterative optimization problem is proposed to correct the model by incorporating the errors
between the measured quantities and model predictions, which is followed by an optimization-based
FDD to provide a probabilistic description of the occurrence of possible faults, while taking the
uncertainty into account. The two-step stochastic FDD algorithm is shown to be efficient in terms of
the fault detection rate for both individual and simultaneous faults in Li-ion batteries, as compared
to Monte Carlo (MC) simulations.

Keywords: fault detection and classification; uncertainty analysis; lithium-ion battery; optimization;
thermal management; polynomial chaos expansion

1. Introduction

Lithium-ion (Li-ion) batteries are widely used in many applications, such as cell phones, electric
and hybrid electric vehicles, since they exhibit a higher energy density and have a relatively longer life
compared to other batteries [1]. In these systems, Li-ion batteries must possess a high reliability and
pose no safety threats [2]. However, the thermal behavior can greatly affect the safety, durability, and
performance of Li-ion batteries [3]. For example, fire and explosions caused by thermal runaway were
reported [4]. Thus, reliable battery management systems are essential to mitigate negative effects (e.g.,
thermal runaway) and avoid catastrophic failures [5]. As a key component of the battery management
system, fault detection and diagnosis play an important role in the management of Li-ion batteries [6].

Fault detection and diagnosis (FDD) methods generally can be classified into two major groups,
i.e., first-principle model-based methods and data driven (or empirical) methods [7]. For the former,
models describing the physical mechanisms of the fault dynamics are oftentimes used, while historical
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data are typically collected for data driven methods to derive empirical models. Each of these
approaches has its own advantage and drawback depending on the specific problems. It is recognized
that first-principle model-based methods exhibit a better extrapolation ability, whereas data-driven
methods are easier to design [8]. This work focuses on the use of the first-principle models for FDD,
since these models provide a fundamental understanding of the thermal physics of batteries [9].

Several first-principle thermal models have been previously developed for Li-ion batteries.
For example, a three-dimensional thermal finite element model was developed to investigate the
cell behavior under abnormal events such as overheating and external short circuits [10]. This model
requires high computational capabilities, and its application is limited to stationary storage [11].
Compared to the three-dimensional models, the one-dimensional model of Li-ion batteries, developed
using the average lumped temperature of the cell, is viable for real-time applications and can enable
online battery management [12]. However, such a model may fail to provide insights into the thermal
(fault) dynamics due to its simplicity [13]. As a trade-off, a two-dimensional thermal model was
developed, which can predict the core and the surface temperature of Li-ion battery cells [3,13]. Since
the two-dimensional model can provide a better understanding of the thermal dynamics of battery
cells, while maintaining the computational complexity, it is used in this work for the design of a
stochastic FDD scheme.

Measurements of temperatures such as surface and core temperatures are often used for FDD
in Li-ion batteries, but there is no direct measurement of the core temperature. To take the core
temperature into account, estimation techniques are often required. In the literature, several estimation
techniques have been developed. For example, an adaptive observer based on the lumped thermal
model [14] and state observer using partial differential algebraic equations [15] were proposed to
estimate the temperature. Compared to these estimation techniques, the real-time monitoring and
diagnosis of faults in batteries are less explored. Although there have been several proposed works
related to diagnostic algorithms for internal faults in Li-ion batteries [3,16,17], it is important to note that
previously reported FDD work mostly investigated sensor or actuator fault detection problems [18-20].

In this work, we propose to estimate the core temperature and use the estimation results to
identify and classify two sets of faults. That is, faults that can introduce dynamic changes in core
temperatures and faults that can affect the surface temperatures. The FDD scheme in this work can
potentially provide more information about the thermal dynamics of batteries and enable an internal
thermal fault detection to improve the performance of the Li-ion battery.

For FDD, the available algorithms compare the observed behavior to the corresponding model
results, estimated from first-principle models [21]. When a fault is detectable, the FDD scheme will
generate fault signatures, which in turn can be referred to an FDD scheme to identify the root cause of
faults using a threshold [22]. However, the main restrictive factor for the first-principle model-based
FDD is the model uncertainty [23]. The accuracy of the fault detection algorithm can be affected by
any uncertainty in the model parameters. Such an uncertainty may result from intrinsic time varying
phenomena or originate from the model calibration with noisy measurements [24]. The uncertainty
can be quantitatively approximated by a calibration with experimental data, which include principles
such as least squares errors or the Delphi method [25,26].

The procedures that firstly quantify the uncertainty and then propagate the uncertainty onto the
FDD scheme are typically omitted in previously reported works. This subsequently may lead to a
loss of information about the effect of uncertainty on FDD performance. Recently, several techniques,
such as the adaptive observer [27,28] and the sliding mode observer [29], were developed for FDD
in the presence of uncertainty. However, most of these methods cannot provide information, such as
the probability that a fault has occurred. In addition, since the faults in the batteries may happen in a
stochastic fashion, the use of fixed thresholds to identify the root cause of faults may not be effective.

There are differences between the actual thermal dynamics of Li-ion batteries and fundamental
models derived from physical phenomena. For example, to make models tractable and useful, it is
common to make simplifications during the model development, which will introduce a mismatch
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between the model and the Li-ion battery system of interest. Thus, the first principle model-based
FDD scheme should be designed to compensate the mismatch. Specifically, a set of fixed model
parameters may not be accurate enough for estimating the core temperature in the presence of a model
mismatch. Consequently, any inaccuracy in the temperature estimation may potentially lead to a low
fault detection rate. To ensure the accuracy of FDD, it is essential to simultaneously calibrate the model
parameters and adjust the FDD scheme. However, this is generally challenging due to the presence of
uncertainty such as the measurement noise and an unknown model mismatch.

In this work, we propose to address these aforementioned limitations by developing an FDD
scheme for Li-ion batteries described by a two-dimensional first-principle thermal dynamic model,
for which both model parameters and faults are of a stochastic nature. Specifically, the faults considered
in this work, such as the thermal runaway, are stochastic perturbations superimposed on step changes
in the specific thermal dynamic parameter and electric current. The objective is to identify the
changes in the mean values of the thermal dynamic parameter and current in the presence of random
perturbations, the measurement noise, and a model mismatch. As compared to other existing thermal
diagnostic techniques, the main feature of the FDD scheme is the efficient quantification of the effect
of stochastic changes in model parameters on fault detection, and the rapid propagation of the
stochasticity onto the estimation of temperatures that are required for FDD.

Note that one possible way to propagate uncertainty in model parameters onto temperature
estimates is the use of Monte Carlo (MC) simulations [30]. However, methods such as MC may be
computationally demanding, since they often require a larger number of simulations in order to
obtain accurate results. It is worth mentioning that although the calibration of an FDD scheme can be
performed offline, the online re-calibration of the model in the presence of a model mismatch with MC
as shown later in current work is computationally prohibitive. Recently, the uncertainty propagation
with generalized Polynomial Chaos (gPC) expansion has been studied in different modelling [31],
optimization [32], and fault detection problems [24]. As compared to MC, the advantage of gPC is that
it can propagate a complex probability distribution of uncertainty in model parameters onto model
predictions rapidly and can analytically approximate the statistical moments of model predictions in
a computationally efficient manner [31]. The improvement in computational time may facilitate its
application in the real-time model adjustment for improved FDD.

The FDD algorithm in this work is specifically targeted to identify and diagnose stochastic thermal
faults consisting of uncertainty around a set of mean values of thermal properties in the presence of a
model mismatch. In summary, the contributions in this work include: (i) The use of an intrusive gPC
model for stochastic FDD of Li-ion batteries by approximating the uncertainty in thermal dynamics
with gPCs and by propagating the uncertainty directly onto temperatures that can be used for FDD;
(ii) the identification and classification of a fault based on the probability information of temperatures
other than a single point estimate or threshold; (iii) the formulation of an optimization to account for a
model mismatch and adjust the thermal dynamic models by incorporating the discrepancy between
model predictions and measurements.

This paper is organized as follows. Section 2 presents the theoretical background and the principal
methodologies in this work, including a two-dimensional thermal dynamic model, the introduction of
generalized polynomial chaos (gPC) expansion, and the formulation of the stochastic fault detection
and diagnosis (FDD) problem. The methodology for FDD and the formulation of an optimization
for model correction to account for the model mismatch is presented in Section 3. The analysis and
discussion of the results are given in Section 4, followed by conclusions in Section 5.

2. Theoretical Backgrounds

2.1. Thermal Model of Lithium-ion Battery

The two-dimensional deterministic thermal dynamic model is used to describe a cylindrical
Li-ion battery cell in this work [3,13]. A schematic diagram of the Li-ion battery cell is shown in
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Figure 1. This model can provide information about the heat source of the battery and estimate the
core temperature based on measurements of the surface temperature. The surface temperature Ts and
the core temperature T, can be defined as:

CCTC = IzRe + ﬁ (1)
R.
- Ir-Ts T,-T,
SIS @
R, = ﬁo + ﬁlsoc + ,32T5 3)

where I is the current, Ty represents the surrounding air temperature, R, is the internal (or electrical)
resistance, R, is the thermal resistance between the surface and core of the battery, R, denotes the
convection resistance between the surface and the surroundings of the battery, C. and Cs represent the
heat capacity of the internal battery material and the surface battery material, respectively. The internal
resistance R, is given in Equation (3) which consists of state of charge (SOC), core temperature T,, and
parameters B, B1, B2 that can be pre-estimated by an offline estimation scheme [3].

Surface

Coolant Convection

Figure 1. Schematic of thermal model of Li-ion battery cell.

For the Li-ion battery cell model given in Equations (1) and (2), model parameters including R,
are generally assigned with constant values. A set of parameters used in the two-dimensional thermal
dynamic model is given in Table 1 [33].

Table 1. Parameter declaration for the thermal model of Li-ion battery cell.

Model Parameters Ce Cs R, R, Ry,
Units JK1 JK1 mQ Kw-1 Kw-1
Value 268 18.8 10 2 1.5

It is important to note that the model of the battery and the model parameters may involve
uncertainty. For example, the thermal dynamics of a Li-ion battery cell can change with respect to
time, which may be caused by factors such as the surrounding temperature and the state of charge.
In addition, the estimates of model parameters can be affected by noisy data used for model calibration.
These possible sources of uncertainty can be briefly categorized into three groups as follows.

1. Observational uncertainty: This includes measurement errors in experimental data, such as the
measurements of voltage, current, and surface temperatures.

2. Parametric uncertainty: This refers to uncertainty in parameters, which may originate from the
observational uncertainty or result from lack of information. It may be advantageous to represent
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a model parameter, e.g., R, in Equation (1), as a random variable with a distribution other than a
fixed value.

3. Structural uncertainty: This describes the differences between a model and the actual Li-ion
battery system. For example, models in Equations (1) and (2) may not be an exact representation
of the thermal dynamics of a Li-ion battery cell.

In this current work, we focus on the development of FDD algorithms in the presence of these
uncertainties. Specifically, the conduction resistance R, in Equations (1) and (2) is considered as an
uncertain parameter and changes in R, are defined as stochastic faults. The conduction resistance
R, is often used to incorporate conduction and thermal resistance across materials with compact
and inhomogeneous properties. It is difficult to accurately estimate the exact parameter value of R,
since the rolled electrodes consist of the cathode, anode, separator, and current collectors, which may
complicate the parameter estimation and reduce the estimation accuracy [14]. Any variations in R,
may significantly affect the performance of the battery. In addition, it is assumed that the current I
in Equation (1) is the second uncertainty in this work, since the internal state of the battery can be
affected by the current [34]. For example, as previously reported [14] current variations may lead to
the fluctuation in temperatures of the battery. Furthermore, the electric current of the battery can be
time-varying in practice and can be corrupted by measurement errors. Thus, the exact value of current
can be an unknown prior.

Since the convection resistance R, is related to the surrounding coolant flowrate [35], which
is oftentimes tightly controlled to maintain a consistent battery temperature, R, is assumed to be
a constant rather than a parametric uncertainty. For the internal resistance R, in Equation (1), it
can be affected by various conditions such as the state of charge of battery, temperature, and drive
cycle [14,36,37] leading to the changes in model predictions such as temperature. However, this
thermal parameter in Li-ion battery has been investigated by many researchers and is well formulated
with the state of charge and temperatures as shown in Equation (3) [3,14,38]. For example, it can
be estimated offline with experimental data or determined online with SOC estimation based on an
equivalent circuit model (ECM) [38]. In this work, it is assumed that R, is a constant rather than a
time-varying parameter and it is not considered as a parametric uncertainty for simplicity. However,
the proposed uncertainty propagation and diagnostic scheme can be extended to R, and R, according
to their intrinsic properties when there is evidence to support a significant variation in R, and R,.

In this work, sudden changes of temperatures in the Li-ion battery caused by the current I and
resistance R, will be diagnosed and classified by the proposed method. Additionally, to introduce
structural uncertainty, it is assumed that the exact statistical moments of uncertainties, such as the
actual mean value of R. is unknown to the modelers, which will be corrected by incorporating the
differences between model predictions and the measurement of temperatures. Further, it should be
noted that only the surface temperature of the battery can be directly measured, thus the estimations
of the core temperatures will be used in the model correction.

2.2. Generalized Polynomial Choas Expansion

The generalized polynomial chaos (gPC) expansion approximates a random variable with an
arbitrary probability density function (PDF) of another random variable (e.g., £) with a known prior
distribution. For brevity, suppose that the battery thermal models in Equations (1) and (2) can be
described by a set of ordinary differential equations (ODEs) as:

x=f(txup) @

where the vector x = {xj} (j=1,2,..., n) represents the core and the surface temperatures, i.e., T¢
and T, with initial values xg at t = 0, u is deterministic parameters, i.e., fixed constant values, while
p is a vector of uncertainties, i.e., I and R, in this work, which will be approximated with PDFs. To
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evaluate the effect of uncertainty on temperatures, a key step is to approximate each parameter in
p=1{pit (=12,...,mn) as a function of a set of the independent random variable ¢ = {¢;} as:

pi = pi(&i) 5)

where ¢; denotes the ith independent random variable following a standard PDF [31]. Based on the
definition of gPC expansion, each parametric uncertainty {p;} and the model predictions x can be
defined using the orthogonal polynomial basis functions {¢y (&)} as:

pi(&i)= kz Pidr (i) (6)
=0
xi(t, §) = kiofj,k’(f)ka/(ﬁ) ?)

where { ﬁi,k} denote the gPC coefficients of the ith parametric uncertainty, {fj,k’} are the gPC
coefficients of the jth model predictions at time instant ¢, and { ¢y (&)} are the orthogonal polynomial
basis functions of random variables & [31]. When the PDFs of p are a given prior, a set of coefficients
{ ﬁ,',k} in Equation (6) can be determined such that p;(¢;) follows a prior known distribution. Otherwise,
optimization techniques can be used to estimate { ﬁi,k}~ As compared to p, the gPC coefficients of x are
unknown and have to be calculated. To calculate {fj/kr }, Equations (6) and (7) are firstly substituted
into Equation (4), which is followed by applying a Galerkin projection and by projecting Equation (4)
onto each of the polynomial chaos basis function { ¢y (&)} as:

(xj(t, &), 9 (8)) = (f(t, x;(t, &), u, p(8)), 9w (8)) ®)

For practical application, truncation, i.e., a finite number of terms, is often used other than infinite
terms in Equations (6) and (7). For example, the total number of approximation terms (i.e., Q) that can
be used for {x;} in Equation (7) can be calculated as:

Q = ((np + )t /(mplg!)) =1 ©)

where g is the number of terms that is necessary to approximate an arbitrary uncertainty with a prior
known PDF in Equation (6), and 1y, is the total number of parametric uncertainties in p. As seen in
Equation (9), the number of terms required for the gPC approximation of x = {x;} depends on the order
of polynomial g and/or the number of unknown parametric uncertainty 7.

The inner product between any two vectors in Equation (8) can be calculated as [31]:

W@ v@) = [ @y @Weae (10)

where the integral is calculated over the entire domain defined by random variables ¢ in the
Wiener-Askey framework, W(¢) is the PDF of ¢ that is defined as a weighting function in gPC theory.
For example, Hermite polynomial basis functions can be used for normal distributions [31]. Using
gPC coefficients of model predictions x in Equation (7), the statistical moments of x at a given time ¢
can be quickly estimated as follows:

Q Q
E(xj(t)) = E LZ fj,k’(t)(l)k’:| = %j0(t)E(¢o) +k2 E[pi] = %j0(t) (11)
= /=1
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2 Q ?
Var(x;(1)) = E[(x;(t) — E[x(1)])*] = E ( Y 2 (tgw - ae]-,k/ou))
5 (12)

£ % twer] | = X 5@

W k' L) Pr/ ik P

In addition, the PDF of model predictions x can be estimated by sampling from the PDF of ¢ and
by substituting samples into the gPC expressions of x in Equation (7). The calculation of statistical
moments with the analytical formulae in Equations (11) and (12) and the rapidly approximation of
the PDF of x are the main rationale of using the gPC in this current work, since it can reduce the
computational burden involved in the model correction in the presence of structural and parametric
uncertainty. Note that the FDD procedure in this work consists of the inverse of the procedures
summarized above, i.e., the identification of the PDFs (e.g., mean values) of parametric uncertainty
using the measurements and model predictions of x. The details concerning the FDD will be discussed
in Section 3.

2.3. Formulation of FDD Problem

The faults considered in this work consist of stochastic perturbations superimposed on a particular
set of mean values of these two aforementioned uncertainties, i.e., current I and conduction resistance
R.. For example, Figure 2 shows a possible fault profile (Figure 2a) and the resulting noise-free
temperature responses (Figure 2b). For clarity, two mean values of each faults in Figure 2 are presented.
As can be seen, any changes in the mean values of faults can induce variations in temperatures.
The objective is to use the measurements of the temperature to identify the step changes between
different mean values of the current (I) and the thermal resistance R..

A mathematical description of stochastic faults is defined as:

pi=pi+Api(i=1,..., np) (13)

where p; e p (i=12,...,np), {p;} denotes a set of mean values, and {Ap;} represents the variation
around each mean value of the ith uncertainty. For example, the solid bold lines (blue and red) in
Figure 2a are the mean values of current (I) and thermal resistance R, while the purple and green lines
are the perturbations around each of the mean values. It is assumed in this work that the statistical
moment of {Ap;} is time-invariant for simplicity and can be estimated with offline model calibration
algorithms. In addition, the total number of possible mean values of p; can be experimentally inferred
from the constancy of measured quantities such as the surface temperature as shown in Figure 2b, but
the exact mean values can be unknown to the modelers.
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Figure 2. Profiles of faults (a) and the corresponding noise-free temperature (b). Note that the purple
and green lines in (a) represent the perturbations around the mean values of possible faults, and noise
free measurements of temperatures are used in (b) for clarity.
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As seen in Figure 2b, the core temperature is higher, when the mean values of I and R, are larger.
Since any significant changes in the core temperatures are harmful and may cause catastrophic failures
in Li-ion batteries [4], the smaller mean values of I and R. are used to represent the normal operating
mode of Li-ion battery in this work, while the larger mean value in either I and R, is used to represent
the faulty operating modes. Thus, the objective is to identify the mean value (or mean value changes)
of I and R, in the presence of uncertainty.

To summarize, two types of faults are considered. (i) Fault 1: Current fault (I), representing the
switch between two mean values of I, which can affect the core temperature dynamics and further
induce thermal runaway faults. (i) Fault 2: Thermal resistance fault (R.), representing a significant
deviation in the mean value of thermal resistance R., which may result from battery aging and can
affect both the core and temperatures. Based on the definition of the faults, the setting of normal and
faulty operating modes in this work is given in Table 2, respectively.

Table 2. Faults definition and description.

Modes Description Type
Normal I = T], Re = ﬁl No fault
Faulty 1 I=T R =R Individual fault
Faulty 2 I = 71, Re = ﬁ? Individual fault
Faulty 3 I = TZ, Re = ﬁ? Simultaneous faults

3. Methodology of Fault Detection and Diagnosis

The objective of the FDD algorithm is to identify a change in the mean values of I and R. and
classify an operating condition as a normal or faulty mode described in Table 2, using measurements
of temperatures. A Joint Confidence Region (JCR) based FDD algorithm is first presented in Section 3.1,
which is followed by an optimization-based model correction method in Section 3.2 for improved FDD
in the presence of a model mismatch.

3.1. Fault Detection Algorithm Using JCR Profiles

In Section 2, the propagation of uncertainty onto model predictions was discussed, from which
the PDF profile of each model prediction can be approximated using the gPC models. The main idea
of the FDD algorithm in this work is to solve the inverse problem, i.e., to identify the mean values of
uncertainty with gPC models. The FDD method consists of three steps. (a) The stochasticity in faults
(i.e., I and R;) is propagated onto model predictions, thus producing a family of gPC models of the
core and surface temperatures around each mean value of faults considered in this work. (b) Since
two uncertainties (faults) are studied, a set of joint confidence region (JCR) profiles of the core and
surface temperatures is used to infer the possible mean values or any changes in mean values of
faults. The generation of the JCR, which predicts the probability that a pair of measurements belongs
to a particular JCR, will be discussed later. (c) Because of the measurement noise and the overlaps
among JCRs, the JCR-based FDD may provide a lower fault detection rate. Thus, a gPC model-based
minimum distance optimization is developed to improve the FDD performance.

Step a

The formulation of the gPC models for the core and surface temperatures follows the procedures as
outlined in Section 2. It is assumed that the stochastic perturbations in faults I and R are independent
stochastic events, thus a two-dimensional random space is used, i.e., ¢ = {1, {2}. Consequently, the
predictions of temperatures obtained from Equation (7) are functions of { = {1, {2}, i.e.,, any changes in
faults can affect both the core and surface temperatures.
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Step b

Since two faults are studied, JCR profiles of the core and surface temperatures are used to infer
mean value changes in faults  and R.. Figure 3 shows a schematic of generated JCRs from gPC models.
The generation of JCRs proceeds as follows.

¥ CGid phintd Probability 0f0.3

Probability of 0.9

Surface Temperature

0 1 2 3 4 5 6 7 8 9 10
Core Temperature
Figure 3. Schematic of joint confidence regions (JCRs) with different probabilities. Note that the units
of temperatures in this work is Celsius degree (°C).

(i) In the case of stochastic perturbations in both I and R, the maximum variations of core and
surface temperatures are first estimated. (ii) A two-dimensional discrete domain made of combinations
of core and surface temperature values can be generated based on the temperature estimations in
Step i. (iii) Random samples of ¢; and ¢, are substituted into the gPC models of the core and surface
temperatures as defined in Equation (7), which can provide the temperatures values. (iv) Each pair
of the core and surface temperatures is assigned to a particular grid generated in Step ii, and the
total number of temperature pairs can be calculated when all the samples from Step iii have been
assigned. (v) The probability at each discrete grid is calculated as the ratio between the number of
temperature pairs at a particular grid point and the total number of temperature pairs (i.e., the number
of combinations of ¢; and ¢, that are used in Step iii). (vi) A JCR can be generated by connecting
discrete grid points with the same probability (see Figure 3).

Step ¢

Following the procedures above, a family of JCR profiles can be generated for each pair of mean
values of I and R, as shown in Table 2, which can be used for FDD. However, as seen in Figure 4a,
the JCRs used to infer faults can be misleading, when a pair of measurements (red star) is found to
be in the overlap of JCRs. In addition, the measurements may lay outside of JCR profiles due to the
measurement noise, as shown in Figure 4b. Thus, a gPC model-based minimum distance criterion is
used to improve the FDD performance, which is explained below.

z JCR1 JCR2 £t JCR1 JCR2

g g

@ Y

£ £

] g ‘

S ]

: ; \/

£ &
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Core Temperature Core temperature

Figure 4. Visual interpretation of fault detection and diagnosis (FDD) algorithm using JCRs. Note that
(a) represents that a pair of measurements can be found in the overlap of the JCRs, and (b) represent
that a pair of measurements can be found outside the JCRs due to measurement noise. In addition, d;
and d; in (b) represent the distance between the measurements and the centers of JCRs, which can be
used for FDD with a minimum distance criterion as defined in Equations (14) and (15).
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As seen in Equation (7), the gPC models of the core and surface temperatures are functions
of random variables ¢ = {{;, {2}, which can provide the statistical information of temperatures
resulting from stochasticity in faults I and R.. The combination of gPC models of the core and surface
temperatures can provide the mathematical description of JCRs. When a pair of temperatures is
available, e.g., red star in Figure 4, it is possible to calculate the distance between a pair of temperatures
and the center of a JCR. For a prescribed confidence region (or specific probability), the shortest
distance between the measurements and a specific JCR can then be used to infer the mean values of
faults. For example, as seen in Figure 4b, the distance d, is smaller than dy, thus indicating that the
mean values of faults, used to generate JCR-2, are the most probable operating mode. To analytically
decide the Euclidean distance between a pair of measurements and a JCR, an optimization problem is
developed as:

minf; = (To; = Tep)* + (Toi = Top)? (14)

Operatingmode : Mpcg = arg min{J;} (15)

where i is the total number of combination of mean values of faults I and R. as shown in Table 2, T ;,
and T ; are the gPC models for a particular set of mean value I and R, which are functions of & given
in Equation (7), T, and T p. are the core and surface temperatures that are used for FDD. Note that
Megcr in Equation (15) is the identified operating mode defined in Table 2 based on the minimum
distance criterion. It should be noted that there is no direct measurement of the core temperatures of
the battery, thus models, i.e., Equations (1) and (2), are used to estimate the core temperature with the
measurement of the surface temperature. The decision variable A is a vector of random samples of
¢ =1{C1, C2) from the sample domain defined by the three-sigma rules [39]. This optimization problem
in Equation (14) will be performed for each pair of core and surface temperature measurements and
combination of mean values of faults I and R, that are defined in Table 2. Then, the minimum distance
as defined in Equation (15) can be used to identify an operating mode as defined in Table 2.

3.2. Optimization-Based Model Correction

The FDD algorithm in Section 3.1 assumes that the exact statistical moments of I and R, are given
priors, which can be propagated onto the temperatures to formulate the JCR profiles of temperatures.
However, it cannot account for the discrepancy between the model and the actual thermal dynamics of
the Li-ion battery. For example, a model calibration with noisy data can introduce model uncertainty.
Further, model assumptions and simplifications are often made to make a model tractable, which may
result in structural uncertainty. To account for uncertainty (and/or mismatch) between the model and
the actual battery cells, we propose to correct the model by incorporating the error between model
predictions and available measurements. The correction criterion is formulated as follows:

X=f(t % u p)+pE—7%) (16)

where g = {§;} (G=1,2,...,n)is a vector of correction gains, ¥ is model predictions, and % is the
measurements of temperatures. To implement Equation (16), it is assumed that the measurements
of the surface temperature are available, and the core temperature can be estimated with the model
that is being corrected. It is also assumed that the exact statistical information, such as mean value of
the uncertainty, is not available for the user, in order to represent a model involving model mismatch.
Such a difference will be compensated using correction gains  in Equation (16).

To calculate the correction gains, a set of measurements inside a sliding time window will be
used in this work. A schematic of the sliding time moving window is shown in Figure 5, where L
represents the size of the moving window and M is the moving rate, i.e., L determines a total number
of required temperatures and M decides the overlap between the windows. A smaller window size
can be less accurate and may be time consuming, but it can be sensitive as it would better capture the
thermal dynamics of battery. A larger window size can reduce the computational burden, but it may
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lead to a coarse estimation. The moving rate decides the number of measurements changed at a time.
For example, when 1 is used for M, which means that the one measurement is changed at a time, i.e.,
the first measurement in L will be removed and one new measurement will be appended to L. When
M is larger, it may produce poor model correction result, while it will increase the computational load
when M is smaller. The choice of L and M is problem specific and requires a trade-off, which can be
determined with insights of the dynamic natures of batteries.
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Figure 5. Schematic of sliding time moving windows for model correction.

For a sliding time moving window with temperature measurements, the correction gains ¢ can be
optimized with an optimization as:

L L

min | = Y (Tei = Top)” + 1o (Toi = Top)’ (17)
o i=1 i=1

where T,;, and T,; are gPC model predictions of core and surface temperatures obtained from
Equation (16), T,y and Ts, denotes the temperatures inside moving windows that are used for the
model correction. Note that core temperatures are estimated from the deterministic models that are
being corrected based on the measurements of the surface temperatures. The decision variable A in
Equation (17) is the correction gain that can be recursively updated with moving time windows. It will
be shown in the results section that the model correction can be executed at each time interval in a
real-time fashion, and the fault detection results can be greatly improved with the recursively-updated
gPC model.

3.3. Summary of FDD Algorithm

An overview of the proposed model correction and FDD is shown in Figure 6. In summary,
the algorithm proceeds as follows.
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Figure 6. Overview of the proposed FDD algorithm.
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Step i—Collect measurements of surface temperatures as a training set when the battery is
operated at normal and faulty operating modes, described in Table 2. Using the optimization defined
as Equation (17), the models of Li-ion battery cells can be corrected around each pair of the mean
values of I and R.. Note that the measurements of the temperatures for faults can be obtained from
either a historical database or designed experiments.

Step ii—Using the corrected models, the JCR profiles of the core and surface temperatures for
each operating mode can be generated following the procedures described in Section 3.1.

Step ili—When a sample of surface temperature is available, the core temperature will be firstly
estimated, and the minimum distance can be calculated with Equations (14) and (15), which can be
used to infer a particular set of mean values of I and R..

To evaluate the performance of the proposed FDD approach, the fault classification rate (rgcr)

defined as below is used: "
id

TFCR = (18)

Niotal
where 1, represents the total number of testing samples used for algorithm verification, and n;; is
the number of samples that have been correctly identified and classified.

4. Results and Discussion

4.1. Uncertainty Propagation and Model Predictions

The FDD algorithm is applied to the Li-ion battery cells as explained in Section 2.1. For clarity,
two mean values of fault I and R, are considered, respectively. For the current fault, I, these mean
valuesare I' =162 Aand I° = 13.8 A, respectively. It is assumed that the stochastic perturbations in I
around each of these mean values follow a normal distribution with a mean of zero and a standard
deviation of 0.45 A. For the conduction resistance R., two mean values are Fﬁ =1.68 KW~1 and
E? =228 KW, respectively. In addition, the random variations around each mean value are normally
distributed, which has a mean value of zero and a standard deviation of 0.066 KW 1, i.e., a 5% variation
with respect to the average of two mean values. Since the perturbations around the mean values
follow a normal distribution, Hermite polynomial basis functions are used for gPC models in this
work. It is important to note that for arbitrary distributions, the polynomial basis functions from the
Askey-Wiener scheme other than Hermite polynomial basis functions can be used to improve the
convergence of the gPC approximation in Equation (6) [31].

Following the uncertainty propagation procedures described in Section 2.2, Figure 7 shows the
mean of temperatures and the corresponding variance around the mean values at each time interval,
when the battery is operated at the normal mode. Since two sources of uncertainty are studied
(i.e., ny = 2 in Equation (9)), and two terms can be used to approximate a normally distributed I or
R. (i.e., p = 1), six terms are required to approximate each temperature (i.e., Q = 5 in Equation (9)).
The gPC coefficients of the temperatures can be solved by substituting the gPC models of uncertainties
and temperatures into the Li-ion battery model (Equations (1) and (2)), which can then be solved by a
Galerkin projection as explained in Section 2.2. This will produce a set of coupled equations to describe
the stochastic thermal dynamics of Li-ion battery cells. The resulting gPC models of the core and the
surface temperatures are given by Equations (A1)—(A12) in Appendix A for brevity.

As seen in Figure 7, T¢g and Ty represent the mean values of the rcore and surface temperatures,
and the bar-plots represent the variances around the mean values which can be calculated from the
higher order gPC coefficients, using Equation (12) in Section 2.2. Additionally, it was found that the
core temperature can be significantly affected by variations in I and R, as compared to the surface
temperature, i.e., a larger variance as seen in Figure 7.
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Figure 7. Uncertainty propagation in the lumped thermal models of the Li-ion battery cell at the normal
operating mode, (mean value of temperatures and the variance at a few particular time intervals).

4.2. FDD Using JCR Profiles and Computational Efficiency

Based on the gPC model developed with each pair of the mean values of I and R, a family of
JCRs can be generated following the procedures as explained in Section 3. Figure 8 shows the JCRs for
a set of specific confidence regions, where 1000 pairs of temperature samples are used. Based on the
JCRs profile, the mean values of I and R, can be inferred by solving the optimization problem defined
in Equations (14) and (15) for a pair of temperatures. Taking a pair of temperatures as given in Figure 8
(the star) as an example, it can be concluded that the battery system is operated around the second set
of mean values of I and R, since the distance between the given samples of temperatures and JCR-2 is
minimal. It should be noted that the JCR profiles can not only distinguish a specific faulty operating
mode from the normal operation, but also provide the probability information of occurred faults.

In addition, comparison studies were conducted to compare the gPC-based FDD with Monte
Carlo (MC) simulations-based method. For MC, a similar optimization problem as done for the gPC is
defined as:

z

i 2
(T = Tep) (19)

M=

i 2
min] =} (T¢ = Tep) +
]

)

Il
—_
Il
-

where A’ is the decision variables, i.e., the mean and the standard deviation of I and R, that have to be
determined with respect to a given pair of measurements of temperature, i.e., T¢p, and Tsp. Also, N
is the total number of samples used in the MC simulations in each iteration of the optimization, TZ
and T/ are a particular set of core and surface temperatures simulated with respect to the decision
variables. When the optimization of Equation (19) is finished, the optimization results A" are compared
with mean values defined in Table 2 based on a minimum distance criterion, which can identify a
corresponding operating mode.
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Figure 8. JCRs generated with a set of specific mean values of I and R., which are summarized in
Table Al in Appendix B. (i) JCR 1: 16.2 and 1.68 for I and R¢; (ii) JCR 2: 16.2 and 2.28 for I and R,; (iii)
JCR 3: 13.8 and 1.68 for I and Rg; (iv) JCR 4: 13.8 and 2.28 for [ and R..
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For the gPC-based FDD, it was found that the optimization problem described in Equations (14)
and (15) can be finished within an average of 5 seconds. However, for the MC-based method, the
calculation of the mean values of I and R; on average requires approximately 321 seconds, when
100 pairs of samples of I and R. were used to simulate Tg and Tg in each optimization iteration. This
clearly shows the computational efficacy of gPC, compared with that of MC. In addition, it was found
that MC with 100 samples cannot provide as accurate results as gPC. For example, it was found
that the fault classification rate rpcr of gPC and MC is ~0.94 and ~0.75, respectively. To improve the
FDD performance, a larger number of samples are required in each iteration of the optimization with
MC. However, this may significantly increase the computational burden. Especially, for the real-time
model correction that will be discussed in next section, it can be computationally prohibitive with MC.
A summary of the comparison between gPC and MC is given in Appendix C.

4.3. FDD Results Using JCRs in Combination with Model Correction

In previous case studies, it is assumed that the models of a battery are accurate, and JCR profiles
are used for FDD. In this section, the JCR profiles-based FDD algorithm is integrated with a model
correction procedure to deal with the FDD problem in the presence of a model mismatch. For clarity, it
is assumed that the exact mean values of I and R. for each operating modes (JCRs) are unknown to the
modeler, thus a set of correction gains will be used to compensate the effect of a model mismatch on
FDD. Since the exact mean values of faults are unknown, the mean values in the gPC models of the
core and surface temperature are corrected using model predictions and measurements collected at
each time interval inside the time moving windows, which can be described as:

drT, 1 1 ~
d;(J = 6 <IOZRE + IlzRE + Rio((TsO - TCO)A + (TSZ - TEZ)B + (Ts4 - TC4)C)> + .ul(TEO - Tc) (20)
C !
dT. 1 1 1 ~
0 = (o (Tp = Too) = 5 ((Teo — Teo) A+ (Tea — T2) B+ (Tea — Tes)C) | + pi2(Too — T) (21)
dt Cs \ Ry, Reo

where T,y and Ty are the first coefficients (i.e., mean values) in gPC models of the core and surface
temperatures, Iy and R, are the gPC coefficients in Equation (6) used to approximate the mean values
of I and R, T, and T are the measurements of temperatures. Note that y1 and y; are correction gains
which will be recursively optimized with the optimization defined in Equation (17), Ts2, Tc2, Ts4, and
T4 are higher order gPC coefficients of the core and surface temperatures, which can be determined
with gPC models as given in Appendix A. In addition, A, B, and C are constants calculated using gPC
models with the Galerkin projection. For illustration, Figure 9 shows the model correction results of 1
and 1o, when the system is operated at different operating modes as defined in Tables 2 and Al in
Appendix B. To introduce the model mismatch, a £10% change was randomly added to these mean
values given in Table A1.

For different JCR profiles, the first column in Figure 9 represents the correction gains of the core
temperature calculated at each time instant, whereas the second column is the correction gain of the
surface temperature. As can be seen in Figure 9, the profiles of correction gains y/; and y; fluctuated
within a certain range when the optimization of Equation (17) was executed, and eventually reached a
plateau. For example, the correction gain of the core temperature, i.e., j, varied significantly when
the optimization was initially executed, e.g., 0 to ~80 min. In contrast, the changes in correction
gains appear to be smaller after approximately 80 min of simulations. It is important to note that the
perturbations in correction gains may either result from measurement noises or stochasticity in the
current ] and conduction resistance R.. In addition, it was found that the correction gain i, of the
surface temperature stabilizes faster than the correction gain of core temperature ;. This is due to
the fact that random variations in I and R, can significantly affect core temperatures as previously
discussed in Section 4.1 (see Figure 7). Note that the size of moving time window (L) is set to 80 for
simulations as shown in Figure 9, i.e., 80 measurements were used to optimize the correction gains at
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each time instant. The moving rate M is set to 1 in this case study. In addition, random noise was added
to the surface temperatures, which was further used to estimate core temperatures for optimization as
defined in Equation (17).
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Figure 9. Correction gains y; and p for different operating modes, where solid lines (blue) are
the correction gain used for core temperatures and the dash-dotted line (red) are the results of
surface temperature.

Using these correction gains and the gPC coefficients, the distributions of the core and surface
temperatures as each time interval can be rapidly estimated. For example, Figure 10 shows the
simulation results of temperatures for the normal operation. Based on the corrected gPC models and
the distributions of temperatures, a set of JCR profiles can be formulated and used for FDD following
the steps as explained in Section 3.1.
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Figure 10. Distribution of temperatures for a few time intervals estimated with the generalized
polynomial chaos (gPC) coefficients and the correction gains, which can be used to define a
two-dimensional domain to generate JCR profiles for FDD: (a) Core temperature approximated with
gPC and correction gains and (b) surface temperature approximated with gPC and correction gains.

To evaluate the efficiency of the correction and its effect on FDD, two case scenarios were
investigated. For the first one, JCR profiles generated with the inaccurate mean values of I and
R, were used, whereas the correction algorithm was combined with the JCR-based FDD in the second
case scenario. Table 3 shows the results of FDD for both case studies.

As seen in Table 3, the fault classification rate rgcr can be improved approximately by 25% on
average with the correction algorithm defined in Equation (17). In addition, study was conducted to
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investigate the effect of measurement noise on the accuracy of FDD, and Table 4 shows the results of
rpcr With respect to different levels of measurement noise. It can be seen that the measurement noise
can significantly affect the accuracy of FDD. For instance, the fault classification rate rpcr is about
73% with a 5% measurement noise in the surface temperatures, which has been decreased about 22%,
as compared with the case where the measurement noise is 1%.

Table 3. Faults classification rate with different joint confidence region (JCR) profiles.

rgcr (%) JCR1 JCR 2 JCR 3 JCR4
without correction 59.1 62.3 59.9 69.7
with correction 89.6 89.7 82.7 88.4

Table 4. Faults classification rate of the model corrected by optimization-based model correction.

1% 2% 3% 4% 5%
7ECR (%) 95 89.6 845 782 72.7

Using the gPC models, it was found that the optimization of Equation (17) for one function
evaluation can be completed in ~1 second on average and the optimum can be achieved in about
30 iterations, which results in an overall simulation time of about ~30 seconds. On the other hand, it was
found that if Monte Carlo simulations were used for updating the correction gains with 100 samples,
~5 min were required for one evaluation of the optimization in Equation (17). Thus, 30 iterations
would take ~2.5 h. This is significantly higher than the gPC-based FDD method, which may be
computationally prohibitive for a real-time application of model correction with MC.

5. Conclusions

Lithium-ion (Li-ion) batteries are widely used due to their higher energy density and longer life
as compared to other batteries. However, the thermal behavior can greatly affect the safety, durability,
and performance of Li-ion batteries. Fault detection and diagnosis (FDD), as a key component of the
battery management system, play an important role in the management of Li-ion batteries. This paper
presents a stochastic FDD algorithm to identify thermal dynamic faults such as the thermal runaway
fault in a Li-ion battery using generalized polynomial chaos (gPC) expansion models. The proposed
algorithm consists of three consecutive procedures: (i) Uncertainty propagation with gPC models to
evaluate the effect of uncertainty on measured quantities, which can be used for FDD; (ii) accurate
fault diagnosis with JCR profiles, which can provide the probabilistic information of being in a faulty
operating mode; (iii) recursive optimization to adjust the FDD algorithm to account for a mismatch
between models and thermal dynamics of Li-ion battery cells. It was found that the gPC-based FDD
method can outperform sampling-based techniques such as Monte Carlo (MC) simulations in terms
of computational efficiency and FDD accuracy. This ensures its on-line applications in Li-ion battery
systems such as electric and hybrid electric vehicles. However, the application of the proposed FDD
algorithm in complex systems is not pursued for brevity and left for future study. In addition, it is
assumed that the uncertainty in this work follows the standard distribution in the Askey—Wiener
scheme for algorithm clarity. For other distributions, the arbitrary gPC algorithm as explained in our
previous work can be used to improve the computational efficiency [40].
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Appendix A. Results of the gPC Expansion for the Lumped Thermal Model of Li-Ion Battery

d;tco = cic <102RE + %R, + R%O((Tso — Te)A+ (Toz = Te2) B+ (Toa — Tf4)c)> (A1)
dgio _ Cis (Riu (Tf _ Tso) _ R%()((TSO —Teo)A+ (Tey — Tp) B+ (Tog — TC4)C)> (A2)
d;? - C%(ZIOhRE + R%O((Tﬂ ~Ta)A+ (Tes — Tcs)B)) (A3)

o _ Ci (Riw((no —Te) B+ (T — T2)C + (Teg — Tc4)D>) (A5

dﬁz _ é(Riu(fTsz) - R%O((Tso — Too)B+ (Tea — Ta)C + (Teg — Tc4)D)) (A6)
Mo _ Ci <112RQE + R%O((ng - TC3)FA)> (A7)

o (g TP~ o (Ta - Ta)En)) (A8)

d;f _ cic (RLCO((TS() — To0)C+ (Teg — Tea) D + (Teg — Tc4)G)> (A9)

d;f _ Clc (R%O((Tsl —T4)B + (Tus — Tcs)C)) (AlD)

djf = Ci (Ri“<—n5> - R%O«Tsl —Ta)B+ (Tis — Tcs>C>) (AL2)

where A, B, C, D, E, F, G, and H are all constants calculated with the Galerkin Projection.

Appendix B. Definition and Description of Faults and Their Mean Values

Table A1. Faults Definition and Description.

JCRs (Mode) Mean Values Type
JCR 1 (Faulty 1) [=16.2,R. =1.68 Individual fault
JCR 2 (Faulty 3) I=162,R, =228 Simultaneous faults
JCR 3 (Normal) I=13.8, R, =1.68 No fault
JCR 4 (Faulty 2) I=13.8, R, =2.28 Individual fault

Appendix C. Summary of Comparison between gPC and MC

Table A2. Comparison results between gPC and MC.

Method Classification Rate Computational Time
gPC 0.94 5s
MC (100 samples) 0.75 324s*

* Per optimization iteration of Equation (17).
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Abstract: The methodology of profile monitoring combines both the model fitting and statistical
process control (SPC) techniques. Over the past ten years, a variety of profile monitoring methods
have been proposed and extensively investigated in terms of different process profiles. However,
monitoring tasks still exhibit a primary problem in that the errors surrounding the functional
relationship are frequently assumed to be independent within every single profile. However, the
assumption of independence is an unrealistic assumption in many practical instances. In particular,
within-profile autocorrelation often occurs in the profile data. To mitigate the within-profile
autocorrelation, a monitoring method incorporating an autoregressive (AR)(1) model to cope
with autocorrelation is proposed. In this paper, the reflow process with small samples in surface
mount technology (SMT) is investigated. In Phase I, three different process models are compared
in combination with the first-order autoregressive model, while an appropriate profile model is
sought. The Hotelling T2 and exponentially weighted moving average (EWMA) control charts are
used together to monitor the parameter estimates (i.e., profile shape) and residuals (i.e., profile
variability), respectively.

Keywords: profile monitoring; polynomial regression model; sum of sine function; Hotelling’s T2
control chart; EWMA control chart

1. Introduction

Statistical process control (SPC) has globally been applied for dealing with process monitoring
in a variety of manufacturing processes [1]. The control charting technique is typically designed to
monitor a univariate statistic, e.g., the sample average, standard deviation, range of a sequence of
sample data, among others. However, several productive processes (e.g., reflow oven, heat treatment,
etc.) have proven difficult to manage with a traditional SPC operation. The difficulty in these cases
arises because a quality characteristic cannot be suitably characterized. If the quality characteristic of
a product or process can be represented by a functional form between the quality characteristic and
the input variable, then effective monitoring can be established. This scenario is the so-called “profile
monitoring”.

A major problem for many profile monitoring models lies in the dependence of within-profile
residuals, i.e., within-profile autocorrelation. This problem may cause the parameter estimates of
the fitted model to be unstable or it might make monitoring performance unsatisfactory. By this
account, within-profile autocorrelation is often present and it should not be intentionally ignored.
Jensen et al. [2] applied a mixed model to monitor nonlinear profiles in order to account for the
correlation structure. Chicken et al. [3] has proposed a semiparametric wavelet method for monitoring
the changes in sequences of nonlinear profiles. In their paper, no assumptions are made on the nature
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of form or the changes between the profiles other than finite square-integrability. Based on a likelihood
ratio test involving a change-point model, the method uses the spatial adaptability properties of
wavelets to detect the profile changes. Qiu et al. [4] proposed a new control chart to deal with
the within-profile autocorrelation. Hung et al. [5] used support vector regression to describe the
within-profile relationship. In [6], a B-spline approach was presented for process profile modeling.
To mitigate the dependency of the process data, the bootstrap method was utilized. Ghahyazi et al. [7]
used a multistage process in phase II to monitor a simple linear profile. In that paper, a first-order
autoregressive correlation model was first modeled. Subsequently, a U statistic is utilized to eliminate
the cascade effect and the control scheme is modified accordingly. Zhang et al. [8] proposed that a
Gaussian process model be applied to the characterization of the within-profile correlation. Herein,
two multivariate control charts (Hotelling T2 and multivariate EWMA) were proposed to monitor the
linear trend term and the within-profile correlation separately in phase II. Khedmati and Niaki [9]
proposed using the U statistic for the general linear profiles to eliminate the effect of between-profile
autocorrelation of error terms in phase-II monitoring. Based on the simulation results, this proposed
method could provide a significantly better result in detecting shifts in the regression parameters.
Jensen et al. [10] used a nonlinear model for fitting the profiles, thus reducing the profiles to a smaller
set of parameter estimates. In that paper, a T? control chart using the difference-covariance matrix is
employed to perform profile monitoring. The proposed statistic that was based on the differences was
modified to account for the correlation between the profiles in phase I and phase II analysis.

The main objective of this research is to construct a monitoring system that can compensate for
the one-step-ahead residuals, particularly for the reflow process with small samples in surface mount
technology (SMT). In the reflow process, it is of critical importance to monitor the oven temperature
condition and to identify potential process irregularity before the product quality becomes worse.
In this paper, 15 profiles of the reflow process from [11] will be investigated.

The three different parametric models will be considered as the modeling candidates. Afterwards,
the different fitted models are evaluated by means of R% a7 Akaike information criterion (AIC), and
Schwarz information criterion (SIC). Next, in terms of the best-fitted model, phase I and II process
monitoring is performed.

The remainder of this paper is organized, as follows. Section 2 presents the three different fitting
models, together with the autocorrelation effect. The basic engineering details of the reflow process
will be elaborated in Section 3. Simulation results of profile monitoring are presented to demonstrate
the performance of different fitting models. Lastly, the conclusions of the paper and the summary of
our findings are remarked in Section 4.

2. The Proposed Method for Monitoring Process Profiles

In the proposed framework, three different models are investigated to seek an appropriate profile
model. Additionally, the Hotelling T? and the EWMA control charts are employed in order to monitor
the profile shape and the profile residual, respectively. The flowchart is shown in Figure 1. First, the
different process models are compared on the basis of Rﬁ djr AICc, and SICc. According to the parameter
estimates of the profile model, the nonlinear profile can be monitored and analyzed. In phase I, the
Hotelling T? control chart is used to evaluate the process stability and remove any outlying profiles.
The Hotelling T? control chart is also considered for phase I analysis via the out-of-control average
run length (ARLoyT). An EWMA control chart is utilized to check the residuals of the fitted model if

the autocorrelation effect is changed or not.
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Figure 1. Flow chart for the proposed framework.
2.1. Constructing the Profile Model

To evaluate and determine an appropriate process model, R?, j is firstly considered to be an
immediate measure so that the fitted performance can be more quickly compared. However, the
performance evaluation of model fitting merely considers R2,. that can cause the problem of overfitting.
Hurvich and Tsai [12] had pointed out that the AIC would generate the overfitting problem when the
fitting samples belong to a smaller number. Although Hurvich and Tsai [12] claimed that the AICc
could enhance the accuracy of model selection, the overfitting problem can still occur to circumvent
better estimation solutions. When referring to [13], we can find that the SIC¢ seems to be able to deal
with the overfitting problem for the small sample case. To deal with the accuracy of model selection
and the overfitting problem, in this paper, the AICc and SICc are simultaneously adopted, with the
expectation of obtaining adequate results. The small sample SIC. and AIC. criteria derived by [13] are

described, as follows:
log(n)k

SIC, = log(67) + P 1)
R n+k
AIC, = log(02) + — )

n
In (1) and (2), the variance estimate is denoted by ﬁ}? =X (- yj)z/ (n —1). Here, k is the
=1

number of the parameters in the process model. The number of measurement points that are in the
profile is denoted by n. It is of particular importance to note that the variance estimate ff,? is calculated
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after the autocorrelation effect has been discounted by using the first-order autoregressive model,
which will be addressed shortly.

2.1.1. Polynomial Model

The polynomial model with one input variable can be defined by
y]-p:B/pxj+17jp,p:1,...,q;j:l,...,n 3)

where the first-order autoregressive model is defined by #;, = ¢#;_1, + ¢j,, which is logical in
deeming the profile as a time series data set. Since the autocorrelation effect often occurs in profile
monitoring, the first-order autoregressive model (i.e., AR(1)) is considered as the disturbance term, 7,
and is incorporated into the profile model. Therefore, the profile model will include the first-order
autoregressive parameter to compensate. The parameter ¢ is the first-order autoregressive (AR(1))
coefficient. The noise ¢ i is the error term of white noise and its variance estimate is indicated by ff,f, as
in Equations (1) and (2). Also, B’p = [/Sop, Bips--s Brp] is the vector of unknown parameters in the

polynomial function, the vector of regressors is denoted by x'; = [1, xj, xlz, e, xﬂ and r denotes the
order of the model in (3). Note that all of the parameters in Equation (3) are estimated by using the

ordinary least squares estimation method (see [11]).

2.1.2. Model of the Modified Sum of Sine Functions in two Different Forms

The modified sum of sine functions is represented in the original form as

k
Yjp = Zarpsin(brpx]'Jrcrp) +ijpr=1,..., kp=1..,qj=1...,n (4)
r=1
where a, is the amplitude, b; is the frequency, and ¢, is the horizontal phase constant at each sine wave
term. For example, when the profile model is considered as the modified sum of two-sine functions,
then the model can be defined by

Yjp = a1p sin(blpxj + Clp) + azp Sin(bsz]‘ + Czp) +jp (5)

where x; denotes the input variable for the jth measurement, 3, denotes the parameter vector in profile
p (B’p = [a1p, a2p, b1p, bap, c1p, c2p]), and the 77, term is defined, as in Equation (3). As mentioned
above, the parameters a1 and a; are the amplitude of the function, b; and b, determine the period, and
c¢1 and cp influences the horizontal shift. The parameter estimation is performed by using the nonlinear
least squares estimation method (see [11]).

To strengthen the fitting of nonlinear models by means of the modified sum of sine functions,
we also use the nonlinear mixed effects model (NLME) to test the fitted performance, which then is
extended into a nonlinear model with random effects. The generic form of NLME is given by the
following equation:

Yip = f(BjpXj) +€jp, Bjp = Ajp® +Bjprjp, p=1,...,q,j=1,...,m ©)

In (6), f is the function governing within-profile behavior, 8, is a vector of group-specific model
parameters, A, is a design matrix for combining fixed effects, 0 is a vector of fixed effects, Bj, is
a design matrix for combining random effects, 7;, is a vector of multivariate normally distributed
random effects with Yip ~ N (0,D), where D is a covariance matrix for the random effects, and
¢jp is a vector of errors, which is assumed to be independent, identically, normally distributed, and
independent of 7;,, ¢j, ~ N(0, a?).
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According to the mixed model that 3 = A - Fixed ef fect + B - Random ef fect, the estimated
profile parameters () of the two-sine function in terms of the NLME model can be described in
Equation (7):

aip a a1p =y
b1y by by — b
S I O N (- )
azp a2 Azp — a2
bap by bop — b2
C2p C2 Cop —C2

In Equation (7), the A and B are assumed to be the 1 matrix, the bar symbol refers to an average.
The NLME form can then be represented, as follows:

Yjip = [a1 + (a1p — a1)] sin[(by + (b1p — b1)x;) + (@1 + (c1p — 1)) ]+
(@2 + (a2p — a2)]sin[(ba + (b2p — ba)xj) + (€2 4 (c2p — ©2))] +¢jp
= (al,fixed + alp,rundonl) Sin((bl,fixed + blp,randnm)xij + (Cl,fixed + Clp,randum))+
(u2,fixed + ”2p,mnd0m) Sin((bZ,fixed + pr,mndam)xij + C2,fixed) + €jp

®)

The parameter estimates are obtained by using the maximum likelihood estimation method
(see [2]). Herein, it should be noted that the NLME model does not include the AR(1) term. In previous
literature (see [2]), the NLME model has been used to solve the problem of autocorrelation. Therefore,
the two fitting models together with AR(1) and the NLME model are compared in phase I analysis.

2.2. Phase I and 11 Monitoring and Analysis

In phases I and II, the parametric T control chart is used to check whether the process is in the
statistical control status and to identify potential outliers. Here, 3 p is the estimate of the parameter

vector. Over the entire profile data, the sample mean vector 3 and the sample variance-covariance
matrix S = s2{3} can be computed by using the parameter estimates that were obtained from different
fitting models. For example, the estimate of the parameter vector for the fourth order polynomial with

AR(1) is defined as { Bo B1 B2 B3 PBs ¢ } ; the estimate of the parameter vector for the sum of

two-sine functions with AR(1) is defined as [ ap by by & & §
According to the aforementioned parameter estimates, the T2 control chart (Brill, 2001) is
described by

12, = (B, —B)ST'(B,—B)p=12....49 ©)
where S, is the sample variance-covariance estimator, as defined by

q _
Sc= )" (B, B)(B, — B 10
9-17

In (10), g is the number of profiles in the process data. The approximate upper control limit (UCL),
as derived by [14], is as follows:

—1)?
UCL. = (g p ) Bykso,3-k-1)/2 (11)

In Equation (11), By /2 (;-k-1)/2 is the upper a percentage point of a beta distribution with
parameters k/2 and (g — k — 1) /2, where k is the number of parameter estimates. According to [15],
the T2 control chart in (9) is shown to be ineffective in detecting sustained shifts in the mean vector.
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In this regard, the alternative T2 control chart that was proposed by [16] is also considered. The control
chart is defined by

13, = (By— BYS5 By~ Bhp =12, q (12)
In (12), the variance-covariance estimator (Sp) is calculated by using successive differences in the
following;:

\AY
2(g—1)
where ¥, = G;H—l -B pforp=1,..., q—1and the transpose of these g — 1 difference vectors are
stacked into the (g — 1) x k matrix V, as follows:

Sp = (13)

V=09 - ) (14)
In [17], the approximate UCLD for a large sample size (g > k2 + 3k) can be estimated according to
UCLp = x*(1—w, k), (15)

where k denotes the degrees of freedom and a denotes the significance level. Sullivan and Woodall [15]
argue that the simulation results can be used to discover that the Té control chart (see Equation (9))
performs worse in detecting the step change and the ramp shift in the mean vector during phase I than
the Tf—, chart, as shown in (12). Based on this fact, in this paper, the TIZD control chart is employed to
evaluate the different fitting models while identifying the outlying profiles.

While phase [ is executed, the process should be able to achieve a stable situation. Subsequently,
the data of the in-control profiles is employed to estimate the unknown parameters. In phase II,
the exponentially weighted moving average (EWMA) chart is additionally used for detecting the
autoregressive (AR) effect in residuals in order to determine whether the AR parameter in the process
model should be re-estimated. In sum, the Té control chart is used to monitor the parameters of the
model (i.e., profile shape). In the meantime, the EWMA control chart is used to monitor the residuals
(i.e., profile variability). The EWMA statistic is computed by

EWMA,(j) = fej + (1 — 0)EWMA.(j — 1), j=1,2,..., n, (16)

where ¢; is the jth residual; 6(0 < 6 < 1) is a smoothing constant and the starting value is assumed
EWMA,(0) = 0. An out-of-control signal is issued as soon as EWMA(j) < LCL or EWMA(j) > UCL,

where
. |0 . N 0
LCL =0— L0 P UCL =0+ L¢0e =8 17)

In (17), 0¢ denotes the standard error of the residual as 6} in Equations (1) and (2); L¢(> 0) is a
half-length that is designed to generate a specific in-control ARL. Under this monitoring framework,
the ARLoyr performance of the T2 control chart, together with the EWMA chart, is evaluated for
phase II analysis in the next section. In terms of the aforementioned methods, the proposed monitoring
framework can be formalized as pseudo-code 1 in the appendix.

3. Experimental Results for Profile Monitoring

In this section, the proposed monitoring framework is illustrated and evaluated while using the
simulated reflow process in SMT. The application domains of the monitoring system and some
implementation issues are discussed. In terms of the simulation results, the analysis of profile
monitoring can be done in three parts: (i) making a comparison of the fitting performance between
the polynomial regression with AR(1), the modified sum of sine functions with AR(1), and the NLME
model; (ii) screening the outlying profiles by means of the T3 control chart for phase I analysis; and,
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(iii) testing the proposed T? control chart with the EWMA control chart, while also monitoring the
process parameters and the residual in phase II analysis.

3.1. Fundamentals of Reflow Process

The operation of the reflow process is the heating sequence for assembling printed circuit boards
(PCB) using solder paste at successively higher temperatures. As an assembly moves through a
soldering system, it will perform a controlled temperature curve in order to achieve the required
quality. Such a temperature curve is also called a “temperature profile”. The temperature profile is
often measured along a variety of technical dimensions, such as slope, soak, time above liquidus, and
peak. In general, reflow soldering processes contain four stages. Each operation presents a unique
temperature profile: preheat, thermal soak (dwell), reflow (liquidus), and cooling. Figure 2 shows a
typical example of a schematic temperature profile.

Liquidus Time BB T
1 45-75 Seconds "\, OOMIE T p foimum Peak
153%C8ec N1 2508 |
]I‘ :1- ------- % * Temperature
**************** A~~~ °°T
2 ________________________ Ty,
] B ety B e T 5
Nt ~
~ o
s Minimum Peak
E" Temperature
o Dwell Time
=~ 150°C + 10°C/See

60-120 Seconds

Preheat Time

1.5-3°C/8ec

Time
Figure 2. A typical temperature profile.

In the preheat zone step, the changes of the temperature curve can be described as an ascending
tendency from normal temperature to approximately 150 °C. In this step, the ascending temperature
facilitates the removal of solvent and water vapor in the solder paste. Rapid heating helps the flux
softening temperature to be reached quickly, so the flux can spread quickly and cover the maximum
area of solder joints. It also integrates some activator into the actual alloy liquid. Furthermore, because
some parts of the motherboard cannot deal with the sharp temperature changes, the rate of temperature
change in the preheating zone is set to between 1.5 °C/s and 3 °C/s.

When the operation approaches the thermostatic zone, the temperature is usually maintained in a
region of 150 # 10 °C. This operational zone is a flat temperature profile to enhance the effect of the
soldering, and it especially prevents tombstoning. The reflow zone is also called Time Above Liquidus
(TAL). The TAL is the period of time above the maximum temperature at which crystals can coexist
with the melt in thermodynamic equilibrium. The peak of reflow temperature usually depends on
the melting temperature of the solder, while also taking into account the temperature that assembled
components can endure. For instance, a typical lead-free manufacturing process must not exceed the
limit of 260 °C, which is the highest temperature that tantalum capacitors can endure.

Following the reflow zone, the product is cooled and the solder joints are solidified so that it
can rejoin the assembly process. Note that Figure 2 only provides an overall, schematic diagram of
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the temperature profile of the reflow process. In fact, the temperature control in the reflow process
belongs to a nonlinear profile pattern. Hence, any linear approximation approach will not be suited
to this research. The high nonlinearity and curvature somewhat warrants the need for a new profile
monitoring approach. In this paper, the practical data of the same product type is gathered so as to
form individual profiles for process monitoring. The production line in the SMT practice is essentially
constructed with high flexibility to deal with the different types of products. Hence, to perform profile
monitoring of a wide variety of low-volume products in small-to-moderate batches is our research
target. Note that the data set that was used in this research is available upon request.

3.2. Comparing and Evaluating the Different Profile Models

In this section, the polynomial regression model, the modified sum of sine functions, and the
NLME model are first used to fit the reflow process data. The polynomial models of orders 3-5 and
the modified sum of 1-3 sine functions are selected for model fitting. In every profile, n measurements
in the ith random profile are collected over time, as indicated by (x;,, y;,), for p =1, 2,..., g and
j =1,2,..., n. The polynomial models are as shown in Equation (3). The modified sum of sine
functions and the nonlinear mixed effects models are as shown in Equations (4)—(7).

In here, seven models, including the polynomial model of different orders with AR(1), the
modified sum of sine functions with AR(1), and the NLME model, are tested. Fifteen profiles of 48
data points that were collected each in the reflow process are individually modelled by using the seven
different models, and the parameter estimates are utilized for phase I monitoring. To compare the
fitting results, four performance measures (R% djr RSS, SIC:, and AIC,) are selected as the performance
measures. Moreover, the number of times that each model is chosen best over 15 profiles is also
reported. The computational results are displayed in Table 1 and Figures 3-5. From the fitting results in
Table 1, it can be seen that the modified sum of two-sine functions exhibits a better fitting performance
(with less SIC and AIC) than the other fitted models. Typically, using a large sample of profiles for
parameter estimation in the phase I analysis is necessary, especially for nonlinear profiles. In this study,
only fifteen profiles can be obtained due to a technical limitation. The excellent fitting performance that
is shown in Table 1 and Figures 3-5 must be attributed to the appropriateness of model selection and
the flexibility of the chosen models under investigation. If the fitting performance is not satisfactory,
then more profile data need to be collected for the estimation purpose before proceeding to the phase
II analysis.

The particularly high performance based on the four measures arises from the suitability of
the modified sum of two-sines with AR(1) for the reflow process data. Thus, the model previously
mentioned is considered to be the best model to undertake research. The polynomial model of order 4
with AR(1) outperforms the other polynomial models, thus being considered as the benchmark model.
These two process models with AR(1) show great flexibility in dealing with complex model-building
situations, and therefore they are also expected to be extensively applied in a wide variety of nonlinear
processes. They will be selected for evaluation in phase I and II monitoring.
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Table 1. The fitting performances for polynomial, sum of sine, and nonlinear mixed effects model
(NLME) models. (a) The fitting performances of the polynomial with first-order autoregressive (AR(1))
model; (b) The fitting performances of the sum of sine with AR(1) model; (¢) The number of times
each model was chosen best over 15 profiles; (d) The fitting performances of NLME model based on
two-sine function.

The Different Order The Fitting Performance for Polynomial with AR(1) Model
Ragj AICc SICc RSS
3rd order 0.9873 4.6003 3.7309 1522.7104
4th order 0.9904 4.3485 3.5279 1126.4767
5th order 0.9908 4.3158 3.5465 1048.1086
The Different Order The Fitting Performance for Sum of Sine with AR(1) Model
Regi AICc SIcc RSS
One-sine model 0.9863 4.6576 3.7417 1677.0915
Two-sine model 0.9955 3.1722 2.4029 517.3413
Three-sine model 0.9909 3.4961 2.8972 994.5594
Models Ry AICc SICc RSS
3rd order polynomial
with AR(1) 0 0 0 0
4th order polynomial
with AR(1) 0 0 0 0
5th order polynomial
with AR(1) 0 0 0 0
One-sine with AR(1) 0 0 0 0
Two-sine with AR(1) 9 9 10 7
Three-sine with AR(1) 6 6 5 8
% AIC SIC RSS
Ragj ¢ ¢
NLME model 0.9929 3.9730 3.5039 718.9822
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Figure 3. The fitting profile using the polynomial with AR(1) model. (a) The third-order model; (b)
The fourth-order model; and, (c) The fifth-order model.
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Figure 4. The fitting profile using the sum of sine model with AR(1) model. (a) The one-sine model; (b)
The two-sine model; a d, (c) The three-sine model.
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Figure 5. The fitted profiles of the nonlinear mixed effects model (NLME).
3.3. Simulations for Phase I Analyses

In phase I, following [18] and [16], the T3 chart is used for identifying the outlying profiles. First,
the statistic TE, of the parameter estimates (including the AR(1) parameter) is calculated based on
Equation (12). Based on the polynomial regression model of order 4 and the modified sum of two-sines,
the control limit of T2 control chart is plotted in Figure 6. Since no outlying profiles are found in the
15 phase I runs, as in the common SPC practice, no profiles need to be removed prior to the phase II.

129



Processes 2019, 7, 104

On the other hand, three types of the hypothetical process abnormalities are also tested in order to
assess and compare the performance of phase I monitoring. The first scenario assumes that the preheat
zone has a lower temperature slope. The maintenance of temperature in the dwell zone is assumed to
be unstable for the second scenario, and in the third scenario the temperature is set to over-heating in
the reflow zone. Figure 7 shows the three outlying profiles along with the average baseline using 15
in-control profiles. In common practice, these three types of abnormality will not happen at the same
time. Accordingly, in our paper, we test each abnormal profile separately.
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Figure 6. TE) control chart of the sum of two-sine function by using the fifteen in-control profiles.
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Figure 7. The simulations of abnormal profiles.

In this simulation, the significance level of # = 0.05 is used as the significance level for any
individual profile, i.e., Tg, p=1,..., 15, and to construct the control limits [14,17]. The three simulated
abnormal profiles are individually added to the 15 in-control profiles. The T3 statistic is computed
for the polynomial regression and the modified sum of two-sine functions with the AR(1) model.
Figures 8 and 9 show the monitoring results of the lej control charts for abnormal profiles 1, 2, and 3.
The simulated results reveal that the T? control charts are able to identify the outlying situations if the

130



Processes 2019, 7, 104

abnormal profiles are present. It is worth to note that the T% control chart is like a moving range with
individual observations, and it is not affected by shifts in the mean vector, and as a result of which it
has greater power.
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Figure 8. Detect the abnormal profiles using the polynomial model with the 16 profiles (fifteen
in-control and one out-of-control for each scenario). (a) Detecting the abnormal profile 1; (b) Detecting
the abnormal profile 2; and, (c) Detecting the abnormal profile 3.
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Figure 9. Detect the abnormal profiles using the sum of sine function with the 15 in-control profiles. (a)
Detecting the abnormal profile 1; (b) Detecting the abnormal profile 2; and, (c) Detecting the abnormal
profile 3.

The polynomial model of order 4 with AR(1) and the modified sum of two-sine functions with
AR(1) can account for the autocorrelation effects appropriately, so the simulated abnormal profiles can
be successfully detected. From a fitting performance viewpoint based on Table 1, the modified sum
of two-sine functions with AR(1) takes the lead between the compared models. From an operational
point of view, the polynomial model of order 4 can be adopted, since it contains fewer unknown
parameters to be estimated and it is easier to implement in practice than the modified sum of two-sine
functions. By contrast, the modified sum of two-sine functions explains the data variance better and
is more powerful than the polynomial model of order 4. Therefore, during the pre-production stage
where the process insights should be fully gained for the purpose of process adjustment/optimization,
the modified sum of two-sine functions can be considered instead.
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3.4. Simulation Results for Phase II Monitoring

The objective of phase Il is to detect shifts quickly in the process. The reliable control limits can
be established to achieve effective on-line monitoring in phase II when the in-control process data
is stable. The proposed monitoring framework uses the composite method to monitor two possible
process irregularities. First, the T3 control chart is applied, so that the profile shape of the fitted model
can be monitored. Second, the autocorrelation of residuals is monitored by using the EWMA control
chart. If the process has been confirmed to be stable, then the 15 in-control profiles will be employed in
order to estimate the parameters of the fitted model, the mean vector, and the variance-covariance.
The parameter estimates are used to replace the unknown parameters in Equations (3)-(7), plus an
error term to simulate the profile data. The practical process is assumed to follow the modified sum
of two-sine functions with the error term to simulate the process changes. The variance of the fitted
model is estimated by using the mean square error (MSE), over the 15 in-control profiles, from the
model-building stage. The error term of the process model is assumed to be normally distributed
with zero mean and constant variance. Next, the T3 and EWMA control charts are employed to
implement the phase II analysis, evaluating the detection performance as the process parameters shift.
The control limits are constructed using the parameter estimates of the three different fitting models
(the polynomial regression model of order 4 with AR(1), the modified sum of two-sine functions
with AR(1), and the traditional polynomial regression model of order 4) to evaluate and compare
the monitoring performances. The traditional polynomial regression model of order 4 is only used
as a benchmark. To monitor the process shape on a fair basis, in each fitting model the different
control limits should be particularly designed to have an approximately equal in-control ARL (i.e.,
ARLyN = 100) when using 10,000 simulation cycles. Moreover, the smoothing constant (¢) in the ENMA
chart is set to 0.02, as in [11] and [19]. Here, in each experiment, 20,000 profiles are simulated for
ARLqyr evaluation in terms of the shifts of different scales in the six parameters of the modified sum
of two-sine functions. Note that, based on an earlier experiment, using a typical ARLyy in our study,
like 370 or even larger, will cause indistinguishable performance in ARLoyr in the presence of a small
scale of parameter change. The formal procedure in the Phase II analysis is represented as pseudo-code
2 in the Appendix A.

In the ordinary SMT operation, if the process recipe is suitably tuned before volume production,
then the profile specification should be pre-determined and only subjected to a minuscule adjustment
as a result of product changes. Therefore, seven different types of shifts are considered in our simulation
study. The shifts of these process parameters are applied to the amplitude, the frequency, and the
horizontal phase constant in the model, as shown in Equation (5). The simulation results of ARLoyt
can be used to evaluate the on-line monitoring capability. These ARLoyt values are calculated by
setting equally spaced parameter shifts every 100 simulated profiles (maximum ARLpy = 100) and
then averaging across 20,000 simulation cycles. The parameter shift in the scale of cg ranges from
0.5 to 3 for the six process parameters. Any parameter shift will cause the change of curve shape that
is closest to the type of sustained shift in SPC practice. Figure 10a shows the comparative profiles
under various shifts of different process parameters. In order to detect the autocorrelation effect in the
residuals of each profile, the EWMA control chart is used to implement the related monitoring tasks
using the different scales of the autocorrelation coefficient, from 0.1 to 0.9 (see Figure 10b).
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Figure 10. Phase Il analysis. (a) Detecting the curve changes using different shifts of process parameters;
and, (b) Detecting the autocorrelation effect of residuals using exponentially weighted moving average
(EWMA) control chart.

Table 2 gives the ARLoyr estimates for shifts of the six parameters. The experimental results
indicate that, for monitoring the shape of the model, both of the composite models perform reasonably
well regardless of whether the data is modeled by the modified sum of two-sine functions or the
polynomial regression model. We also use the EWMA control chart to monitor residuals if any
autocorrelation effect in addition to the AR(1) already included in the model is exhibited. The results
show that the modified sum of two-sine functions, combined with AR(1), performs much better
than the pure polynomial regression model as A > 1.5. Even so, it is very difficult to compare the
modified sum of two-sine functions and the polynomial regression model in the composite approach,
although the former performs slightly better than the latter. In a word, it is reasonable to allege that the
modified sum of two-sine functions can be a viable modeling option for nonlinear profiling monitoring
circumstances where only small samples are available for the reflow process.
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Table 2. The average run length (ARL) comparison for different parameter shifts using three different
models. (a) a; from a; to a; + Acy,; (b) by from by to by + Ay, ; (¢) ¢1 from ¢q to ¢ + Acg;; (d) a2 from
a3 to ap + Aoy, ; (€) by from by to by + Aoy, ; (f) c2 from c; to ¢z + Aog,; (g) The ARL for monitoring the

autocorrelation of residuals.

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

A 0.5 1 15 2 25 3
ARLoyr (TIZJ) 72.7286 40.0651 18.9343 9.2455 4.8773 2.8661
Control Chart Based on the Sum of Two-sine Functions with AR(1) Model
A 0.5 1 15 2 25 3
ARLoyr (T%) 71.0655 40.0492 18.6020 9.0533 4.7834 2.8495
Control Chart Based on the Polynomial Regression of Order 4
A 0.5 1 15 2 25 3
ARLoyt(T3) 75.8772 45.8895 21.2343 10.5677 7.0577 3.0632
Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)
A 0.5 1 15 2 25 3
ARLOUT(T%) 73.5965 41.9621 19.6273 8.9772 4.8677 2.9916
Control Chart Based on the Sum of Two-sine Functions with AR(1)
A 0.5 1 15 2 25 3
ARLoyt(T3) 73.5521 40.9701 18.2644 8.7256 4.7681 2.8211
Control Chart Based on Polynomial Regression of Order 4
A 0.5 1 15 2 25 3
ARLoyt(T3) 74.9043 52.3352 21.2921 10.8889 7.8225 4.5232
Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)
A 0.5 1 15 2 25 3
ARLoyt(T3) 74.8687 40.2647 18.5716 9.0064 4.9945 2.8466
Control Chart Based on the Sum of Two-sine Functions with AR(1)
A 0.5 1 15 2 25 3
ARLoyr(T3) 74.4160 40.1462 18.3835 8.8046 4.6832 2.7475
Control Chart Based on the Polynomial Regression of Order 4
A 0.5 1 15 2 2.5 3
ARLoyr(T3) 78.3815 55.6741 22.7029 15.3900 6.3135 3.6904
Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)
A 0.5 1 15 2 25 3
ARLoyr(T3) 71.2188 40.5620 19.4892 9.1471 5.0632 2.9617
Control Chart Based on the Sum of Two-sine Functions with AR(1)
A 0.5 1 15 2 2.5 3
ARLoyr(T3) 70.7991 39.8413 19.2414 8.7882 4.7695 2.8921
Control Chart Based on the Polynomial Regression of Order 4
A 0.5 1 15 2 2.5 3
ARLour( T%) 79.4577 59.0987 21.8773 9.9247 6.9499 3.1433
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Table 2. Cont.

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

A 0.5 1 15 2 25 3

ARLoyr(T3) 77.9581 40.7159 17.8598 9.5453 5.2117 2.9759
Control Chart Based on the Sum of Two-sine Functions with AR(1)

A 0.5 1 15 2 25 3

ARLoyr(T3) 77.6478 40.7232 17.7346 9.0055 4.9806 2.8821
Control Chart Based on the Polynomial Regression of Order 4

A 0.5 1 15 2 25 3

ARLoyr(T3) 80.9116 51.3598 25.5898 11.8557 6.0081 4.3123
Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

A 0.5 1 15 2 25 3

ARLoyr(T?) 72.7417 41.3423 18.8105 9.0889 4.9321 2.8128
Control Chart Based on the Sum of Two-sine Functions with AR(1)

A 0.5 1 15 2 25 3

ARLoyr(T3) 72.0051 40.9314 18.6684 9.0452 4.8423 2.7555
Control Chart Based on the Polynomial Regression of Order 4

A 0.5 1 15 2 25 3

ARLoyr(T3) 74.3391 45.2862 22.9480 11.3352 5.8202 3.4110
eij=gpeij_1+a;;,a;;~N(0,0?)

Ag;‘;g:if‘tt:;“ 0.1 03 05 07 09
ARLour(EWMA) 764314 50.9765 26.2965 13.8156 8.7692

4. Conclusions

This paper presents a new monitoring framework for dealing with the autocorrelation effect that
exists in the errors around the functional relationship when only small samples are available. The
research framework includes model building and phase I and II analyses. The central idea of the
proposal is how to construct an appropriate profile model that is capable of dealing with the time series
effect. Using different profile models (the polynomial regression model, the modified sum of two-sine
functions, and the nonlinear mixed effects model), the phase I and II analyses of reflow process data
can be conducted. In phase I, the Hotelling T,% control chart is utilized to screen the outlying profiles.
When the outlying profiles are investigated and removed, then the same control charts with the EWMA
control chart for monitoring autocorrelation are used for phase II monitoring, where the detectability
of parameter shifts in terms of ARLoyr is evaluated. According to the comparison results, some

concluding remarks and suggestions can be provided:

1. If the profile pattern exhibits a significant autocorrelation effect, then the proposed framework
can use a different profile model with AR(1) and the proposed model selection procedure to
strengthen the fitting performance. Furthermore, we feel safe to conclude that the sum of two-sine
functions with AR(1) can be a viable modelling option for nonlinear profiling monitoring instances

where only small samples are available for the reflow process.

2. InphaseI of the reflow process that is investigated in this paper, two types of composite models
all have good monitoring ability for identifying outlying profiles. However, the nonlinear mixed
effects model cannot resolve the problem of autocorrelation in the residuals. This situation will

cause difficulties in monitoring when autocorrelation is present.
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3. According to the phase I results of the reflow process that was investigated in this study,
the Hotelling T? control chart can produce satisfactory performance for monitoring of the
process profile.

4. On the whole, the proposed monitoring framework displays better detecting performances than
the traditional polynomial regression model in phase II analysis for the reflow process that
is discussed in this paper. In addition, the proposed EWMA control chart is also effective in
detecting changes of the autocorrelation effect in residuals. This study pinpoints a major finding,
a fact that the modified sum of two-sine functions is able to statistically fit the nonlinear profile of
the reflow process data extremely well. In the proposed framework, the Hotelling T2 control chart
and the EWMA control chart work in harmony to simultaneously monitor the parameter estimates
(i.e., profile shape) and residuals (i.e., profile variability), respectively. The simulation results in
phases I and II illustrate the proposed monitoring framework. Therefore, the practitioner can
follow the guidelines of model building and process monitoring that are demonstrated in this
paper, as the nonlinear profile monitoring task of the reflow process is necessary.

5. To achieve desirable monitoring performances for other potential applications, the parameter
setting of the control chart bears further scrutiny. A real-data examination of phase II analysis
should be further conducted to complement the research outcomes that are delivered in this paper.
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Appendix A

1. The pseudo-code for the proposed monitoring framework:
Input the reflow process data
Do

Use three nonlinear models to fit the data;
Calculate (R, j» SSE, SICc, AIC.);

While (the goodness of fit test is satisfied)

If (autocorrelation in the residuals)

{

Incorporate the time series model;

}

Construct the fitted model for each profile data

Calculate the T? statistics using the vector of parameter estimates

Calculate the control limits for the T statistics

If (T2 > UCLc) or (T3 > UCLp)

{

Do

Remove the out-of-control profiles;

Recalculate the T? and its upper control limit to check for any out-of-control profile;
While (all out-of-control profiles removed)

}

Calculate ARLjy and ARLy;t for phase II analysis
2. The pseudo-code for Phase II analysis
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For (the number of executions = 1:10,000)
Count = 0;
For (the number of simulated profiles = 1:20,000)
Count = count + 1;
Index = 0;
If (T2 > UCLy2)
RL (the number of simulations) = the number of simulated profiles;
Break;
Else
For (the sampling number of each profile = 1:48)
Calculate EWMA Z(the sampling number of each profile)
If (Z > UCLEWMA or Z < LCLEWMA)
Index = 1;
Break;
End
End
If (index = 1)
RL (the number of executions) = count;
Break;
End
End
End
End
Calculate ARL;
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Abstract: The integrated modular avionics (IMA) system is widely used in all classes of aircraft as
a result of its high functional integration and resource utilization in developing advanced avionics
systems. However, a series of challenges related to safety assessment exist in the background of the
logical architecture for multi-message interactions of the IMA system. Traditional safety assessment
methods are mainly based on engineering experience, and are difficult to reuse, incomplete, and even
error-prone. Here we propose a method to assess the availability of the IMA system based on
the thinking of model-based safety analysis. To aid the proposed method, we implement a tool to
generate a AltaRica 3.0 file used to assess the IMA system model. The simulation results show that the
proposed method makes the availability assessment fast, efficient, and effective. Moreover, we apply
this method to the modification analysis of the IMA system under the condition of satisfying the
safety requirement. Our study can enhance the safety assessment of safety-critical systems effectively,
assist the design of IMA systems, and reduce the amount of errors during the programming process
of the safety model.

Keywords: availability assessment; integrated modular avionics; model-based safety analysis;
AltaRica 3.0

1. Introduction

Integrated modular avionics (IMA) is the state-of-the-art methodology in the real-time computer
network airborne system domain, which consists of a number of computing modules capable of
supporting numerous hosted applications with different criticality levels [1,2]. Up to now, IMA
has been widely used in large, civil aircraft, such as the Airbus A380 and Boeing B787, due to the
remarkable improvement in system efficiency, with weight and power consumption reductions by
means of comprehensive resources integration or high resources sharing [3]. Different from the
federated digital architecture, the IMA system can be divided into three levels: the functional layer,
logical layer, and physical layer. The visual objects in the logical layer work together to provide
services for hosted applications in the functional layer by utilizing the resources in the physical layer.
In addition, some IMA systems, like that in the A380, use two redundant avionics full duplex switched
ethernet (AFDX) networks to guarantee the required availability [4]. However, at the same time,
the reuse of the traditional safety assessment will become more difficult. Virtual link (VL), the central
feature of an AFDX network, is a unidirectional logic path from the source end-system to all the
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destination end-systems [5]. In this way, VLs are mapped onto visual objects in the logical layer,
AFDX switches and end-systems are mapped onto the resource in the physical layer, and functions
are mapped onto the application in the functional layer. In practice, the system engineer utilizes
the IMA configure tool to obtain a specific VL configuration, whose network performance meets the
needs of hosted applications. However, the above VL configuration needs to be further analyzed to
verify that the availability of specific applications appropriate to a required criticality level is satisfied.
Availability is the qualitative or quantitative attribute that signals that a system is in a functioning state
at a given point in time, and it is sometimes expressed in terms of the probability that a system does
not provide its output(s) (i.e., unavailability) [6]. It is an important factor in the area of reliability and
safety, especially for the safety-critical system. Traditionally, the safety assessment and hazard analysis
are modeled on fault tree analysis (FTA) by analysts based on engineering experience, which is easy to
understand, but hard to reflect in real designs. Even more important for complex avionics systems,
the FTA model is too huge to modify with any minor change by manual operation [7]. In addition,
traditional safety analyses (FTA, etc.) are usually based on informal system models, which are always
regarded as incomplete, inconsistent, and error-prone [8]. Moreover, a consistent formal model is
needed in both system design procedure and safety analysis procedure. To solve these problems,
model-based safety analysis (MBSA) is proposed.

Up to now, MBSA has been widely used in the fields of aviation [9], railways [10], automotives [11],
and other safety-critical systems [12]. During the process of MBSA, system engineers and safety
analysts share a common system model. It extends the system model with a fault model as well as
relevant portions of the physical system, and is recommended to model complex systems in ARP 4761A
draft [13]. In addition, Laboratoire Bordelais de Recherche en Informatique (LaBRI) developed a free
formal language, AltaRica, to model both functional and dysfunctional behaviors of systems. Models in
AltaRica 3.0 are described by guarded transition systems (GTS), which consists of state variables, flow
variables, events, transitions, and assertions [14]. AltaRica 3.0 can support the modeling of event
driven systems based on MBSA, and the model described can be hierarchical and compositional [15].
Thus, AltaRica 3.0 has been widely used to model these safety-critical systems [16,17].

Some researchers have investigated the safety assessment of avionics systems based on MBSA.
Morel used MBSA to validate several IMA architectures with three levels, and suggested that MBSA
is a good method for safety assessment in early validation to support flexible and rapid prototyping
of integrated systems, and expressed that his study needed to do some quantity analysis to verify
whether the availability further met the requirements [9]. Li used MBSA to study the safety assessment
of complex aircraft products, proposed a safety modeling approach based on AltaRica, and proved its
validity through simple hydraulic system verification [18]. The safety analysis of IMA based on MBSA
have also been studied, while the model described by AltaRica was totally coded by hand, this makes
it difficult to reuse and easy to make mistakes with [19].

In this paper, to study the impact of using the effective procedure and tool to analyze the safety
of IMA systems, a method based on MBSA using AltaRica 3.0 to assess the availability of the IMA
system is proposed and a tool to aid the assessment method is implemented. An IMA system case is
modeled to verify the validity of the proposed method. In addition, we do some research on design
optimization of the IMA system. Finally, the advantages and disadvantages of the different assessment
methods are analyzed. This provides new insights into the safety assessment and hazard analysis in
an IMA system operating within an acceptable safety level.

2. Assessment Method

Model-based safety analysis (MBSA) is able to build a complete, accurate, and consistent safety
model for complex, safety-critical systems [20]. Generally, there are seven steps in a MBSA process:
“Gather the most complete system data available at the time”, “Define the goal and the granularity
of the analysis”, “Define the failure conditions to be studied”, “Build the failure propagation model

(FPM) according to the collected data”, “Build the failure condition logic”, “Verification of the FPM
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and failure condition logic”, and “Failure condition evaluation & analysis”. However, not every MBSA
process suits the above steps. In addition, there is no limit to the model languages in a MBSA process.
Considering this, AltaRica 3.0, an available, high-level language for event driven modeling of complex
systems, is especially well suited for safety analyses and performance analyses. AltaRica 3.0 defines
the block by representing the component with failure mode, which is composed of the declaration of
variables and events, and the definition of transitions and assertions [18].

As shown in Figure 1, the system designer is responsible for the system model while the safety
engineer is responsible for the safety model. An IMA system model consists of three layers: the physical
layer, logical layer, and functional layer. These three layers have one-to-one correspondence with the
failure modes, failure propagation models, and failure conditions, which constitute an IMA safety
model. According to the requirement, the system designer utilizes the IMA configure tool to generate
the xml file for data exchange. The file in xml format contains the failure rate and configured VLs
of every component to describe the logical relationship between the components in the IMA system.
In this paper, the data about safety of failure modes and failure propagation models can be collected
from the system model and translated into the description of the alt file, which is used to describe the
safety model. The safety engineer obtains the information about the function from the system designer
and defines the invalid function as the studied failure condition. The configuration xml file is used as
interface control document (ICD) for components in IMA system. Note that the ICD file is built by the
system designer, and it is always regarded as the input for the safety engineer.

Requirement

integrated modular avionics (IMA) .
= fioure tool Role View
System|Designer
IMA system model i
[ FunctonalLayer | Failure Conditions
9 Invalid Invalid Invalid
it HUnin o s Funtion; Funtion, o Funtiony
e Lok ) \C:“La S_IA ety ASW AND| /OR AND| /OR\ — — | Consept View
1) \ ., \ iy L1 L— [ —)
| N N, ogical Layer Failure Propagation Models :
I "1 1
| = ~l— 1 ‘ |
c c e ) AN ~ /- ~ - ~
[l 2| e P Safety Aspect 1 C C 2) Component; ) —:—
| Physical Layer < ‘\' 75 ~Failure Modes ™ = |
i |
-_— _l ______________________________________ 1_ _______
| alt file |
| observer |
_________ I assertion 4—.—
| (variable) |
xml file |
| File View
Component,: Failure Rate, . |
Viset = {Virtual Link,. Virtual Link,} N c va"abllew ” |
- - + 'omponentMode IR
—> Component,: Failure Rate, xml2altdima | 4 event (Failure Rate) -«

Viset={Virtual Link,. Virtual Link,. Virtual Link;} transition

Component;: Failure Rate;
Viset = {Virtual Link;}

Figure 1. Generated mapping from system model to safety model for a integrated modular avionics
(IMA) system

In this paper, a method is proposed to assess the availability of the typical IMA system based
on MBSA using AltaRica 3.0. On the basis of the system model described in the xml file, we build
the safety model in the alt file (AltaRica 3.0 format) by utilizing a tool named xml2alt4ima which was
developed by our team. In the xml file, there is one root element named “VirtualLinks” after XML
declaration. Each component is an element of the VirtualLinks. Every component has three attributes
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to represent “Name”, “GulD”, and failure rate of “Loss”. Every component also contains several
elements to represent the configured VLs. Every VL consists of 10 attributes: “Name”, “GulD”, “BAG”,
“MaxFrameSize”, “MinFrameSize”, “Priority”, “Captain”, “ActualPath”, “Source”, and “Destination”.
Note that not every attribute is utilized in our method, for example, “BAG” is used to set the time gap
between two packages, and it’s used to assess the performance in real-time. In our method, “Name”
and failure rate of “Loss” of each component, and “Name” and “ActualPath” of each VL are the safety
properties and they are utilized in describing the safety model.

The xml file contains all components with thier configurations, and these configurations can be
mapped onto VLs in the physical layer and components in the logical layer. In addition, since the
fault may occur in every component in the physical layer, each component has a responding failure
mode in safety model. Each VL in the logical layer has its own working status, which can be changed
when fault occurs in the related components. The failure propagation models and failure modes are
described by “variable”, “ComponentMode”, “event”, and “transition” in the alt file. The “variable” is
used to describe the state of the system or subsystem, the “ComponentMode” is used to describe the
status of component, the “event” is used to describe the event that may occur in the system, and the
“transition” describes how the system evolves. The variable with brackets in the alt file generated
by the functions means it is not required, but it can assist in the process of calculating the observer,
especially when the observer is a complex function or failure condition. Moreover, the functions in
the functional layer are defined by the system designer, and it is the basis of the failure condition in
the safety model during the process of MBSA. The failure condition is a condition having an effect
on the aircraft, which is usually caused by one or more failures or errors associated with the flight
phase, relevant adverse operational or environmental conditions, or external events [21]. To sum up,
the system model described in the xml file can be mapped onto the physical layer and logical layer,
and it contains the basis data of the safety model which is described in the alt file. The safety engineer
needs to understand the system model, extract valid information of the safety assessment, build the
failure condition with the help of the system designer, and thus, realize the safety model.

Therefore, the process to assess the availability of the IMA system can be concluded in a method
as follows:

e  Step 1. Define the failure condition of the IMA system and their safety requirements.
The failure condition means an unexpected state. It is always a logical combination of some
unexpected states. For the IMA system, it means an invalid function.

e  Step 2. Utilize the special generation tool (xml2alt4ima) to generate an alt file based on the
configuration xml file.
The xml2alt4ima tool is designed to aid the construction of the alt file according to the xml
configure file.

° Step 3. Manually add the observer, assertion, and variables if needed.
Complete the alt file manually. The observer is used to represent the failure condition and
complex function. The assertion contains some sentences to represent the logical relationship.
Variables provide assistance in understanding the logical relationship between the failure
condition and failure mode. In addition, we need to add a variable named “failed”, which
is used to represent the top event of the fault tree.

. Step 4. Utilize the AltaRica 3.0 assessment tool to compile the alt file, and obtain the cut set,
probability, contribution, and so on.
The AltaRica 3.0 compiler can explain the meaning of the alt file. We recommend the free
OpenAltaRica tool [22], which integrates many analysis functions.

The xml2alt4ima tool is developed in Matlab 2016a, and the core algorithm is illustrated in
Algorithm 1.
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Algorithm 1 The algorithm to generate the alt file from the configuration xml file of the IMA system.

Input: xml file, including m (m>1) components with failure rate and configured VLs;
Output: alt file, including file structure, event, transition and required variable;
1: Begin initialization
2:  Define the domain of ComponentMode for all components
3: End initialization
4: m <= the quantity of the components in the xml file
5: For component i (1<i<m)
Rate; < the failure rate of component i
Define the state of component i based on ComponentMode
Define the event for component i with Rate;
Define the transition of component i based on event
10:  n <= the quantity of the VLs configured in component i
11:  For VLj (1<j<n)

12: Define variables for VL j configured in component i

13: p <= he quantity of components in the actual path through VL j
14: For component k (1<k<p)

15: Add action for VL j in the transition configured in component
16: End component k

172 End VLj

18: End component i

19: Delete redundant variables for VL

20: Begin modification

21:  Add assertion for the failure condition
22:  Add block for the whole model

23: End modification

3. Case Study

In this section, a typical example of the IMA system model is introduced in Section 3.1,
some general assumptions and failure condition are presented in Section 3.2, the results based on our
proposed method is calculated, and it is also verified by other methods in Section 3.3. On the basis
of the results, we try to optimize the system model and propose advice for the system designer in
Section 3.4. We also try to explore the efficiency of different safety assessment methods in Section 3.5.

3.1. IMA System Model

As a result of the high requirement of performance and availability, the utilization of the existing
resource becomes the most difficult point in the structural design of IMA and the core architecture
of civil avionics systems [23,24]. For example, to avoid a single-point failure, all AFDX networks
and end-systems are designed to be double or triple module redundant. Figure 2 shows a typical
IMA system model with two redundant AFDX networks, three general processing modules (GPM),
three remote data concentrators (RDC), and two hosted functions (HF). The RDC is designed for data
acquisition from the sensor (SEN) and other signal sources, the GPM is designed for data calculation
and procession, the HF is designed for data display and upper application, and the switch (SW) is
designed for transferring data through the IMA system. It is assumed that HF1 is used by the captain
and HEF2 is used by the copilot. Every HF needs data processed by the GPM from both SEN1 and SEN2.

SEN1 BU denotes the backup of SEN1, and SEN2 BU denotes the backup of SEN2. Every RDC
obtains the data from the connected sensors through the ARINC 429 bus, and transfers these data to
three GPMs through the redundant network. After processing these data, every GPM transfers the
processed data to two HFs through the redundant network. The GPM and HF are able to utilize the
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effective data and drop the redundant data. In addition, since the sensors are connected with the RDC
through the ARINC 429 bus, instead of the AFDX switch, there is no VL configuration in the sensors.

— AFDX (Red)
---AFDX (Blue)
— ARINC 429

Figure 2. The model of a integrated modular avionics (IMA) system
3.2. Assumption and Failure Definition

There are 12 components in the IMA system model, as shown in Figure 2. To simplify the model,
there are six general assumptions [24-26].
Assumptions

Faults are modeled as statistically independent distributed events;

The failure rate of each component is a constant;

A fault occurs instantaneously and at most one fault event in a minimum time slice;
The system and its components have two states: normal and failure;

The system and its components are unrepairable while in use;

The cable between two components keeps working.

Note that the failure distribution of the components is assumed to be a A-exponential distribution
where A is equal to the failure rate per flight hour. The mean time between failure (MTBF) and failure
rate per flight hour of these components are shown in Table 1. The failure rate of the sensor comes from
the book written by Jukes [27], the MTBF of the switch and GPM come from Reference [4], and the
MTBF of the RDC comes from a booklet published by a RDC manufacturer [28]. The HF exists in a
specific line replaceable unit (LRU), so these data vary with different LRU. The MTBF of the HF refers
to the devices in the display system designed by the China National Aeronautical Radio Electronics
Research Institute (CARERI). Components fail instantaneously without any common cause effect.
Since the sensors do not belong to the IMA system, their failures are not calculated in Section 3.3.

Table 1. Failure rate of components in the IMA system.

Component Mean Time Between Failure (MTBF) Failure Rate per Flight Hour
Sensor (SEN) 20,000 h 5.00 x 1075
Switch (SW) 100,000 h 1.00 x 107>
Remote data concentrator (RDC) 14,000 h 7.14 x 1075
Hosted function (HF) 16,000 h 6.25 x 107>
General processing module (GPM) 50,000 h 2.00 x 105

In this paper, the meaning of the failure condition is similar to the functional failure mode.
According to their severity, failure conditions can be classified into catastrophic, hazardous, major,
minor, and of no safety effect. On the basis of the design experience of civil aircraft projects,
a safety-critical function is defined in the model: at least one HF can get both sets of sensor data
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processed by the GPM. In other words, a hazardous failure condition defined and denoted as
LOSS_SEN_HEF. LOSS_SEN_HF means the crew, both HFs, cannot get either set of sensor data processed
by the GPM. Development assurance level (DAL) is defined in aerospace recommended practice (ARP)
4754A [6] and the above function should satisfy with DAL B, which means this failure condition may
cause the hazardous effect and its failure rate must be lower than 10~7 per flight hour [29].

3.3. Results

We added observers and assertions for a special failure condition based on the alt file generated
by xml2alt4ima tool. Then, we ran its program in OpenAltaRica tool, the aim of which was to develop
a complete set of tools for the high-level modeling language AltaRica 3.0 [30]. Then, we generated a
fault tree in open probabilistic safety assessment (OPSA) format from AltaRica 3.0 model as below.

As shown in Figure 3, the top event of the fault tree is LOSS_SEN_HF, and the basic events are the
failures of these components. The size of the generated OPSA file was 8318 KB. There were thousands
of automatic defined gates, including all the combinations of different basic events.

LOSS_SEN_HF

4
LOSS_SEN_HF1 LOSS_SEN_HF2
4 4
10SS_S2 L0SS_S1 L0SS_S2
1688 81 HH _HF1 _HF2 _HF2
4
1
LOSS_S1_HF1 LOSS_S1_HF1 LOSS_S1_HF1
_via_GPM1 _via_GPM2 _via_GPM3

LOss_VL LOSS_VL LOSS_VL LOSS_VL LOSS_VL
A_410 A_011 B_110 B_410 B_011
+

eHES LD B

Figure 3. The fault tree of the defined failure condition

In addition, we modified the file (XFTA.xml) to meet with the failure conditions defined
above [31,32]. Finally, we got the minimal cut set of the failure condition, as shown in Table 2.
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Table 2. Minimal cut set of LOSS_SEN_HF in the IMA system.

Rank Minimal Cut Set Probability
1 rdcl_f, rdc3_f 5.10 x 1077
2 rdc2_f, rdc3_f 5.10 x 1077
3 hfl_f, hf2_f 391 x 1077
4 gpml_f, gpm?2_f, gpm3_f 8.00 x 1015
5 rdcl_f, sw2A_f, sw2B_f 7.14 x 10715
6 rdc2_f, sw2A_f, sw2B_f 7.14 x 10715
7 rdc3_f, swlA_f, sw1B_f 7.14 x 10715
8 hfl_f, sw2A_f, sw2B_f 6.25 x 10715
9 hf2_f, swlA_f, sw1B_f 6.25 x 10715
10 gpm3_f, swlA_f, swi1B_f 2.00 x 10715
11

hf2_f, rdcl_f, swlA_f, sw2B_f 4.46 x 10~ 19

Since switches are configured as redundant devices, the IMA configure tool denotes swlA and
sw1B to represent switches with the same location. There are hundreds of minimal cut sets generated
by OpenAltaRica, while three second-order cut sets and seven third-order cut sets make up the majority
of the top event.

The probability of LOSS_SEN_HF per flight hour is 1.41022 x 108, which complies with the
safety requirements.

Besides, we used other assessment methods to verify the proposed method. We utilized Simfia
(software developed by APSYS) to build the model of the above system, generate the fault tree,
and calculate the availability. The model and the fault tree of Simfia are shown in Figure 4.

. ~(b) The fault tree of LOSS_SEN_HF - -

Figure 4. The model and the fault tree of Simfia. (a) Description of the IMA model. (b) The fault tree
generated by the Simfia.

The availabilities of the above two methods were a little different (1.41088 x 108 calculated
by Simfia), and the deviation comes from the computational accuracy of Simfia. We also used the
Monte Carlo simulation to verify the proposed method. The failure condition “LOSS_SEN_HF”
occurred 141 times over 10,000,000,000 simulation runs. The result of the Monte Carlo simulation is
approximately the same with the above two methods. In summary, the Monte Carlo simulation proves
the correctness of our method.
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3.4. Optimization of the IMA System

The GPM in the IMA system is always configured with many applications, thus it is capable of
supporting numerous upper functions of differing critical levels. In this paper, we only define one
function: the HF obtains sensor data from the RDC processed by GPMs. All devices are redundant in
improving the availability of the above function.

As shown in Table 2, the cut set rank first and second are the combination failures of the RDCs,
which means that the failures of both data sources can lead to a top event. The cut set rank third,
meaning the failures of both data destinations, can lead to a top event as well. The third-order cut
set is a combination of different types of components, excluding the cut set rank fourth, which is the
failure set of all GPMs. As is well known, three redundant devices failing per flight hour is an event
with a small probability, unless these devices are designed with the same unknown bug.

For the function defined in this paper, it seems that there is no need to use three GPMs to
satisfy the safety requirement, which should be researched further. Then, we tried to modify the
logical architecture with only two GPMs, and generate the alt file referring to the prior subsection.
The probability of LOSS_SEN_HF per flight hour with two GPMs is shown in Table 3.

Table 3. Probability of LOSS_SEN_HF in the IMA system with two GPMs.

Configuration Probability of LOSS_SEN_HF

without GPM1 1.45022 x 108
without GPM2 1.45022 x 108
without GPM3 1.46022 x 108

Note that the original IMA system includes three GPMs: GPM1, GPM2, and GPM3. Configuration
of “without GPM1” denotes the current defined function in the IMA system model only employing
GPM2 and GPM3.

Table 3 shows that the probability of LOSS_SEN_HF in the IMA system without GPM1 or GPM2
is lower than that without GPM3. This is due to the fact that in the latter configuration there exists
another second-order cut set “swlA_f, swlB_{”, more than in the first two configurations. As Figure 2
shows, switches are designed to connect with part of the GPMs to balance the communication load.
In the above model, it can be concluded that the load balancing designation can reduce the risk of
common cause failure, especially for same zone risk.

3.5. Efficiency of Safety Assessment Process

The advantage and disadvantage of the three safety assessment methods are analyzed in this
section. The first one uses the proposed method based on the MBSA, the second one uses the safety
assessment tool (Simfia) to build the safety model manually, and the third one uses the traditional tool
(PTC Windchill Quality Solutions, also known as Relex) to build the fault tree based on engineering
experience directly. The main steps of obtaining the availability of the failure condition with the
different methods are summarized in Table 4. “Auto” means the corresponding step can be operated
by software, while “manually” means that the step should be done by a safety engineer, and the
context after [source] of each [auto] signifies the data source of corresponding step. It is clear to see
that the MBSA requires less manual operations.

With the help of the senior safety engineers in CARERI who have five years experience in using
both Simfia and Relex, we tried to analyze the availability of different IMA cases for analyzing the
efficiency of the above three methods. All our experiments were conducted on a single core of a
2.7 GHz Intel Core2Duo processor with 2 GB RAM running on Windows XP. The statistical data are
shown in Table 5.
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Table 4 shows that our proposed method based on the MBSA costs less time to model than the
traditional method or Simfia. When the system changes, our proposed method can be changed more
efficiently than the other two methods. However, the quantity of gates and basic events of the fault tree
generated by OpenAltaRica is larger than that of the other two methods, and the time for calculating
the cut set of our proposed method is longer. In addition, different analysts have different styles to
define the gate of the fault tree, which makes it difficult for other analysts to understand the fault tree
generated by Relex. When utilizing Simfia to analyze the availability, analysts need to remodel the
system according to their comprehension, which is inefficient and prone to error. On the contrary, our
proposed method enables the safety analyst to devote their time to the safety analysis and designation
advice rather than on duplicate work.

4. Conclusions

IMA is recommended because of its high utility as regards resources and hierarchical architecture,
as well as its ease of use for the engineer. However, the traditional availability assessment of the IMA
system with the feature of the redundant AFDX network is time-consuming and error-prone. For a
safety-critical system, the common way to analyze the availability is through modeling the fault tree
based on engineering experience. In this paper, we propose an availability assessment method for the
IMA system based on MBSA using AltaRica 3.0 and implement a tool to generate an alt file based on the
configuration xml file of the IMA system. In this way, the availability assessment becomes faster and
can be modified effectively according to the change of system. Taking a typical IMA system model as
an example, the results indicate that the application in the IMA system satisfies the safety requirements.
In addition, we also find that the load balancing designation of the IMA system is advantageous in
reducing the risk of common cause failure. Our method can also be used in the availability assessment
of a safety-critical system with hierarchical architecture with a functional-logical-physical layer.

In the future, we will research the safety analysis of the IMA system in the following two aspects:
On the one hand, considering that different GPMs can process respective functions, it is necessary to
study the feature of the fault propagation process in the IMA system; on the other hand, it is of great
importance to study a process which can handle the availability assessment considering errors or the
confusing of basic components and functions, rather than the loss of these modules.
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Abbreviations

The following abbreviations are used in this manuscript:

IMA Integrated Modular Avionics

AFDX Avionics Full Duplex Switched Ethernet
VL Visual Link

FTA Fault Tree Analysis

MBSA Module Based Safety Analysis

ARP Aerospace Recommended Practice

GTS Guarded Transition Systems

FPM Failure Propagation Model

CARERI  China National Aeronautical Radio Electronics Research Institute
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ICD
GPM
RDC
HF
SW
SEN
BU

Interface Control Document
General Processing Module
Remote Data Concentrator
Hosted Function

Switch

Sensor

Backup

ARINC  Aeronautical Radio Inc.
MTBF Mean Time Between Failure

LRU
DAL
KB

Line Replaceable Unit
Development Assurance Level
Kilo Byte

OPSA Open Probabilistic Safety Assessment
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Abstract: Gas turbines are widely used all over the world, in order to ensure the normal operation of
gas turbines, it is necessary to monitor the condition of gas turbine and analyze the tested parameters
to find the state information contained in parameters. There is a problem in gas turbine condition
monitoring that how to locate the fault accurately if failure occurs. To solve the problem, this paper
proposes a method to locate the fault of gas turbine components by evaluating the sensitivity of tested
parameters to fault. Firstly, the tested parameters are decomposed by the kernel principal component
analysis. Then construct the statistics of T? and SPE in the principal elements space and residual
space, respectively. Furthermore, the thresholds of the statistics must be calculated. The influence of
tested parameters on faults is analyzed, and the degree of influence is quantified. The fault location
can be realized according to the analysis results. The research results show that the proposed method
can realize fault diagnosis and location accurately.

Keywords: KPCA; T2 statistical model; SPE statistical model; kernel function

1. Introduction

Gas turbines provide power for generators, ships, aircraft, etc. Gas turbines need to withstand
the influence of high temperature and high pressure when working. Obviously, the harsh working
condition of turbines will definitely lead to the performance degradation of components. Fault occurs
when performance degradation is severe. It is essential to locate the fault in time after a fault
happens [1-4]. Currently, there are four categories of fault diagnosis—the turbine model-based
method, the knowledge-based method, the data-driven-based method, and the techniques fusion-based
method [5,6]. The model-based method of the diagnosed object must establish an accurate turbine
model and on-line input parameters are employed [5]. Silvio Simani and Farsoni Saverio [7] established
an identified fuzzy model which based on the Takagi-Sugeno prototype to detect and isolate the fault.
Hector Sanchez and Teresa Escobet [8] established a model and proposed a method to check whether
the measurements fall inside the output interval. A diagnosis was proposed based on this model.
Method based on knowledge is to essentially formulate the diagnostic problem solving as a pattern
recognition problem [9,10]. Zhang, Bingham, and Gallimore [11] proposed two techniques to detect
the fault. They promoted the concept of y indices based on a transposed formulation of data matrix,
and residual errors (REs) and faulty sensor identification indices (FSIIs) are introduced in another
method. A large number of data must be available if the method based on data-driven is adopted.
The potential relationships between these data need to be extracted. Zhu, Ge, and Song [12] proposed
a robust variable model driven by the hidden Markov model and a probabilistic model with Student’s
t mixture output was designed to tolerate outliers. Furthermore, Zhang Peng [13] studied the Kalman
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filter and applied it in the location of a fault. He focused on how to establish the linear and nonlinear
models of turbine. Based on the models, two faulty location algorithms which apply to the steady
working state and dynamic working state respectively were constructed. Vasile Palade, Ron J. Patton,
and Faisel ]. Uppal [14] applied a neuro-fuzzy technique in an actuator fault location of a gas turbine.
Based on learning and adaptation of the TSK fuzzy model, a neuro-fuzzy model was used to generate
he residual, and a neuro-fuzzy classifier for the Mamdani model is used to evaluate the residual.
Che Changchang, Wang Huawei, and Ni Xiaomei [15] proposed a fault fusion diagnosis model which
is based on deep learning. The model analyzes a large number of performance data and obtains fault
classification confidence by extracting hidden features from the performance data, then conducts the
decision fusion of multiple fault classification results. Tayarani-Bathaie and Khorasani [16] constructed
two types of dynamic neural networks to learn the turbine dynamic state. For the measurable variables
of the turbine, different neural networks are trained to capture the dynamic relationships. Then,
construct a multilayer perception network function to isolate the fault. All model-based methods need
to build models that accurately reflect the turbine state. However, due to the large number of turbine
parts and the bad working environment, there are too many factors that affect the working state of
gas turbine. Thus, it is very difficult to build high-precision models. In addition, the data-driven
approaches require sufficient samples to be obtained to locate the fault. Furthermore, the algorithm
designer must know the fault generation mechanism and the relationship between these samples.
All the above conditions are difficult to meet at the same time.

To avoid the problems mentioned above, and to locate the faults successfully, this paper
proposes a fault location approach based on the sensitivity analysis of tested aerodynamic parameters.
This approach belongs to the category of data-driven method and the faulty samples are not needed.
Firstly, when the turbine is testing, collects the measured data in real-time. Then decomposes the
measured data based on the kernel principal component analysis, constructs the Hotelling-T? (T?)
statistic, which is the application of the T-statistic in multivariate analysis in the principal space
and squared prediction error (SPE) statistics in residual space after data decomposition. Further,
the thresholds of statistics must be calculated, determining whether the fault occurs by comparing
the relationship between the T2 statistic and its threshold. If a fault occurs during detection, we
calculate the partial derivatives of the T2 and SPE statistics to the measured parameters. The greater
the values of the partial derivatives, the greater the impacts of the measured parameters to the statistics.
According to the working principle of gas turbines, it can be known that the parameters at the outlet of a
component will fluctuate firstly and then the fluctuation spreads to other components if a component is
faulty. The amplitude of the fluctuation at the outlet of the failed component is the greatest. Obviously,
partial derivatives can be used to indicate the degree of influence of the measured parameters when a
component fails.

2. Materials and Methods

Principal component analysis is a method of data processing which is suitable for linear system
and transforms the correlated data into uncorrelated ones by a series of orthogonal changes. Gas
turbine is a typical nonlinear system and great error may be caused if PCA is directly used to diagnose
the fault of turbine. This paper adopts the kernel principal component analysis to detect the gas turbine
fault. By using the kernel function, KPCA has strong nonlinear system processing ability [17,18].
The processes of KPCA are shown below [19-23].

For a given data sample collection, x1,X2,X3, . .., Xq € R", a nonlinear transformation & maps the
samples into a higher feature space F:

xeR" 2 g(x) €F 1)

where @(x) is the expression of samples in feature space. The covariance of &(x) can be expressed as:
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n

Y 2(x)@(x)" )

i=1

Cp =

Av = Cpv 3)

where A is the eigenvalue of Cp and v is the eigenvector of Cp. Calculating the inner product of @(x;)
with Av and Cgv respectively:
A(@(X])V) = @(Xj)-CpV (4)

The eigenvectors can be represented by a series of constants «;, as follows:

vV =

-

I
—_

oD (xp) ®)

1

Combine Equations (2)-(5):

N E [o(9)-20)] = 24) 1 £ o))" £ o (x)
i=1 N n i=1 k=1 (6)
=1 £ [ 20202 () 2(50)]
Simplify Equation (6) into Equation (7):
nAx = Ka 7)

In Equation (7), K = [@(xj)-@(x;)] . K is a kernel function which calculates the inner product of
vectors in high-dimensional feature space. To strengthen the ability of KPCA to deal with nonlinear
problem, the Gauss radial basis function is adopted and its expression is:

L 2
K(xx) = exp [~ X0 ®)

Normalize the eigenvectors v by Equation (8):

<VkrVk> =1 (9)

It can be seen that the vector « is normalized by Equation (9). Representing the mapped data in
the feature space as ty, there is:

b= (i 2(x) = ¥ o [2(x) 2] = 37 &K (%) (10)

i=1 i=1

where ocf is the i-th coefficient of the k-th eigenvalue of matrix K to eigenvector. The cumulative
contribution rate of variance is used to determine the number of principal components which mapped
to the feature space. The calculation equation is as follow:

ZL:1 A

> € 11
A (11)

where 1 is the number of principal component and ¢ is a constant. The value of ¢ reflect the influence
of noise. Usually, the value of ¢ is between 0 and 1.

Equations (2)—(11) are the steps to conduct the kernel principal component analysis. To achieve
the fault detection of gas turbine components, the statistics of T2 and SPE must be constructed, as
shown below:

T2 = [tl,tz,...,tl]/\z[tl,tz,...,tl]T (12)
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where A is a diagonal matrix consisting of principal component eigenvalues. ty is the mapped data of

samples in the feature space.
2
2 _ I

th = D) Fa(lLn—1) (13)

n(n—1)

T%h is the threshold of the T? statistic and Fy (1, n — 1) is upper limit value of F-ditribution with
confidence level o

n 1
SPE = |@(x) —ax(x)|> =Y & - ) & (14)
i=1 i=1
% 1/hg
Ca (20,13 0 ha(ho — 1
ﬂmmzem—lggglf+1+glﬂglgl] (15)
01 03
n n n
GFZZAﬁF:ZAMF:ZAhWﬂ—N@“%Q (16)
i=k+1 i=k+1 i=k+1

Based on the KPCA introduced from Equations (2)—(15), a fault diagnosis algorithm is designed
to determine whether the turbine component is fault. The tested parameters include all the values
of total temperature and total pressure at the outlet of gas turbine components. Decomposing these
parameters by kernel principal component analysis, construct the T2 statistic, SPE statistic, and their
corresponding thresholds. Determine whether a fault occurs by comparing the relationship of the T2
statistic and its threshold.

This section focuses on how to locate the fault when the failure occurs. By calculating the partial
derivatives of statistics T2 and SPE to the tested parameters, the sensitivity of tested parameters to
the fault can be expressed, and the location of the fault can be determined according to the sensitivity.
For the T2 statistic, the greater the value of sensitivity is, the more likely it is the location of the fault.
Kernel function analysis is the most important step in sensitivity calculation, so we make the following
changes to the kernel function:

K(xi,xj) =exp[—|xi — xj||2/02}: K(v~xi,v~xj) =exp|[— ||lvx; — v~xj|\2/02] 17)

v = [v1,Vy,...,Vn], Vi = 1, nis the number of categories of measured parameters, X; is the i-th
measurement vector consisting of different measured parameters. Calculating the partial derivative of
kernel function to vy, there is:

IK( x;,X; IK(v-x;,v-x; 2
gvlk 1) - X T 1) = —ﬁ(xi,k _Xj,k) K(x;, %))

2
1
=-2 <Vk~xi,k - Vk‘xj,k) K(v-xj, v-xj)

(18)

The value of partial derivative indicates the effect of parameters to kernel function. x;, x; x are the
k-th elements of the i-th and j-th measured parameters. The partial derivative of the product between
kernels can be expressed as:

9K (i Xnew ) K (Xj Xnew 2
%(X]X) = —é {(Xi,k - Xnew,k)2 + (Xj/k — Xnew,k) } X 19)
K(xi, Xnew ) K (X, Xnew)

Xnew 1S @ vector consisting of measured parameters. Define the partial derivatives of statistics as

CTz,i,n ow @nd CspE i new, there are:
T2 JSPE;
Cr2inew = a\r;iw CsPEinew = ‘ v (20)

158



Processes 2019, 7, 124

The values of Cp2; and Cgpg i new indicate the sensitivity level of the i-th element of the

Ji,new

statistics. Steps of calculate the Cpz; . are as follows:

T2 = [tl,tz, e ,tk]A_l[tl,tz, .. .,tk]T = KEeWOCA_locTKneW =

- T
tr( T oMK pew Kpew A 1)

1 n 1 n 1 n n
K(x1, Xnew) — n Z] K(Xlr Xj) ~a E] K(Xnew/xj) +z Zl 21 K(Xj, Xj)
o L R
= K(x2, Xnew) — n L K(Xz, X]) “n r K(Xnew/xj) + 3z r X K(Xj/ X])
Knew = j=1 j=1 j=1j=1
1 n 1 n 1 n n
K(Xn, Xnew) — 3 Zl K(x2, %) — & Zl K (Xnew, X)) + -2 Zl Zjl K(x, %)
1= 1= ==
There is:
. _ T2, _ 9 (tr (o« KnewKnew T A7) = oot (E)KneWKwWT JaA1]
T inew IV IV Vi
The calculation steps of SPE are as follows:
2 n 1 n n T
SPE = K(Xnew: Xnew) - ; 2 K(Xir Xnew) + ? Z Z K(Xir Xi) — thewtnew
i=1 i=1i=1
Iy k i Xnew d TCW new
Copinew = |BIE| = |~ [~ 3 Whirgluto) _ Yot
172 B):F: k(X Xnew) atzewtnew
o2 [H . v; + av; }
172 a):?: K(Xi Xnew atEewtnew
= ?[H% + tr(ocTToc)]‘

Figure 1 shows an algorithm for fault diagnosis and location based on above research.

Aerodynamic
parameters obtained
by sensors

Processed by KPCA
T
- +
Construct the T? Construct the SPE
statistics and statistics and
threshold threshold
+
The noise detection

The vaule of T module

beyond its threshold?

L 24
Calculate the sensitivity of
aerodynamic parameters to
T?and SPE statistics
1
Locate the fault
according to the size
of sensitivity

Figure 1. Process of fault diagnosis and location.
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3. Results

In order to verify the effectiveness of the method proposed in this paper, certain of twin-spool
aviation gas turbine is adopted as the research object. It is widely known that the working condition of
the engine is very bad [13,24] (suffering from high pressure, high temperature, high stress, etc.) and the
performances of gas turbine components (such as the compressor, rotator, turbine, etc.) are decreasing
as working hours increase [25-30]. The initial working parameters of this turbine are shown in Table 1.
When these working parameters are determined, the state parameters of the engine are shown in
Figures 2 and 3 when the flight altitude and speed are different.

Table 1. Initial working parameters of turbine.

Efficiency of LPC 0.868 Pressure ratio of LPC 3.8
Efficiency of HPC 0.878 Pressure ratio of HPC 4.474
Fuel low calorific value 42,900 Total temperature of combustor outlet 1600 K
Efficiency of HPR 0.98 Efficiency of LPR 0.98
Combustion chamber efficiency 0.98 Engine room air entrainment coefficient 0.01
Cooling parameter of HPT 0.03 Efficiency of HPT 0.89
Cooling parameter of LPT 0.01 Efficiency of LPT 0.91
Design speed of LPR 10,000 (r/m) Design Speed of HPR 16,000 (r/m)

LPC—Low Pressure Compressor; HPC—High Pressure Compressor; HPR—High Pressure Rotor; LPR—Low
Pressure Rotor; HPT—High Pressure Turbine; LPT—Low Pressure Turbine.

= 12000 : % : pl400
—&—T125 of LPC when H=0Km
HO0F ——T(3 of HPC when H=0Km
—a—Tt45 of HPT when H=0Km = : 51200
1000 - —e—Tt5 of LPT when H=0Km
—&—Tt25 of LPC when H=11Km

900 - ——Tt3 of HPC when H=11Km
—a—Tt45 of HPT when H=11Km

800+ —¢—Tt5 of LPT when H=11Km -

=0,Ma=!
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5 X + v
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Figure 2. Total temperatures of components.

In the experiment, the measured parameters include the total temperature at the outlets of low
pressure compressor LPC (Tt25), total temperature of how pressure compressor HPC (Tt3), total
temperature of the high pressure turbine HPT (Tt45), and total temperature of the low pressure turbine
LPT (Tt5). In addition, the total pressure at the outlets of the low pressure compressor LPC (Pt25),
total pressure of the high pressure compressor HPC (Pt3), total pressure of the high pressure turbine
HPT (Pt45), and the total pressure of the low pressure turbine LPT (Pt5) are included. Two faults
occurred at the 2600th sampling moment: one is the misalignment of the LPC rotor, and another
one is the crack generation of the LPT blade. The proposed method is adopted to detect and locate
the faults. Figures 4-7 are the diagrams of fault diagnosis. At the 2600th sampling time, the faults
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of the LPC and LPT are generated, respectively. In Figure 2, the value of the T? statistic is smooth
and lower than its threshold before the 2600th sampling time. Due to the occurrence of fault at the
2600th sample, the curve takes a large jump and exceeds its threshold. In Figure 5, the SPE statistic
approaches the threshold at some time before the occurrence of fault. Since the SPE statistic mainly
contains noise information, KPCA processing cannot eliminate the noise completely. When the noise
amplitude increases, the value of the SPE statistic may exceed its threshold, which has been introduced
in Equations (13) and (15). This does not affect the fault diagnosis of the components. Figures 6
and 7 show the fault detection of the LPT and the detection results are similar with those of the LPC.
The fault location algorithm mentioned above is used to locate the fault of the LPC, HPC, LPT, and

HPT. The location of the results are shown in Table 2.

2500 T T T T T
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—*— P13 of HPC when H=0K:m
—=—Pt45 of HPT when H=0Km
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—5—P125 of LPC when H=11Km
—#—Pt3 of HPC when H=11Km
—=—Pt45 of HPT when H=11Km
—4—Pt5 of LPT when H=11Km

0,Ma=0

=)
=1
=3
S
T

1500

1000

!
500

Components Outlet Total Pressure(Kpa) H:

2
=3
S
1

L.

1400

11,Ma

I
-
=1
=]

= 1000

Components Outlet Total Pressure(Kpa) H:

0 \ , \ \
5000 5500 6000 6500 7000 7500 8000 8500
NI(r/m)

Figure 3. Total pressures of components.
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Figure 4. Value of the T? statistic under the condition of an LPC (low pressure compressor) fault.

161



Processes 2019, 7, 124

0.012

—=—SPE statistics

—SPE statistics threshold

SPE

0 500 1000 1500 2000 2500 3000
Sampling period/S

Figure 5. Value of SPE statistic under the condition of LPC fault.
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Figure 6. Value of the T? statistic under the condition of an LPT fault.

Table 2 shows that when any part of gas turbine components is fault, the sensitivity of measured
parameters of faulty part to the statistics of T? and SPE is greater than that of normal ones. Take LPC
as an example to illustrate the result. If the efficiency coefficient of LPC decreased by 1% due to
the misalignment of LPC rotor, the measured parameters at the outlet of the LPC fluctuates firstly.
Sensitivities of total temperature and total pressure at the outlet of LPC measured by the sensors to T2
statistic are 0.3239 and 0.6271, which are obviously higher than those of other measured parameters.
The sensitivities to the SPE statistic are both 0.125, which are also higher than those of other parameters.
The fault location method can locate the fault to the each component. Figure 8 shows the sensitivity
distribution spectrums of the measured parameters when the gas turbine is working.
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Figure 7. Value of the SPE (Squared Prediction Error) statistic under the condition of an LPT fault.

Table 2. The sensitivity of measured parameters.

Sensitivity Frpc Fupc Frpr Furr

Cre 15 0.3239 0.0397 0.037 0.0279

Cp 13 0.0045 0.6043 0.0215 0.0133

Cp 145 0.0144 0.0789 0.0584 0.1764

Cp 15 0.005 0.0248 0.2073 0.0177

Cp pos 0.6271 0.063 0.0554 0.0448

Cp ps 0.0042 0.1014 0.0246 0.0195

Sensitivity of Cp pas 0.0156 0.0739 0.0713 0.6866
measured Cr ps 0.0049 0.014 0.5244 0.0138
parameters to CspE_T25 0.1250 0.1249 0.1249 0.1249
statistics CspE_T3 0.1249 0.125 0.1249 0.1249
CspE_T45 0.1249 0.1249 0.1249 0.125

CspE_T5 0.1249 0.1249 0.125 0.1249

CspE_p25 0.1250 0.1249 0.1249 0.1249

CspE_p3 0.1249 0.125 0.1249 0.1249

CspE_pas 0.1249 0.1249 0.1249 0.125

CspE_ps 0.1249 0.1249 0.1245 0.1249

It can be seen that before the fault occurs in this figure, the sensitivity distribution curves are gentle
and the differences between the sensitivity curves are not obvious. When a low pressure compressor
failure occurs, the curves representing the sensitivity of the LPC increased sharply in a short time, and
the values are significantly higher than others. In addition, according to the rule of failure caused by
the degradation of gas turbine components, if the performance of a component degrades to a certain
extent and is about to fail, the degradation speed will be accelerated until the failure occurs. In this
process, the measured parameters at the outlet of deteriorating components will deviate from the real
value as the deterioration of performance. In the sensitivity distribution spectrum, the sensitivity of the
measured values of the deteriorating components will increase continuously, and the fault prediction
can be realized by comparing the changes in sensitivity.
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In addition, due to the influence of harsh working circumstance, the sensor outputs may seriously
deviate from their actual values and this may lead to the misdiagnosis. It is essential to keep output
within a reasonable range. According to the working principle of gas turbines (taking an aero gas
engine as an example), the power and flow balance conditions must be observed when the turbine
is under normal working conditions and all parameters remain unchanged or fluctuate in a small
range. If the state of turbine changes due to the variation of control parameters, all the aerodynamic
parameters will bound to change greatly, reflecting an anomaly of sensor measurements. Another case
is that if only a few measurements are abnormal, according to the working principle of gas turbines
and the balance conditions, it can be known that the anomalies are caused by noise or the fault of the
sensors and the measurements must be restored. The process to detect the abnormal value and restore

Figure 8. Sensitivity distribution spectra of the tested parameters.

the measurements is shown in Figure 9.

Firstly, Grubb’s method for testing is adopted to check if the parameters of sensors are abnormal
or not. It is important to note that the value of detection level « must be determined according to the

Aerodynamic
parameters obtained
by sensors

Grubbs testing
method

Abnormal
arameters?

All the
parameters
bnormal?

Recovery the
parameters by SVR

Figure 9. Processing steps for outliers.
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variation of the aerodynamic parameters. If the checked parameters are abnormal, all the parameters
should be tested by Grubb’s method. Then count the number of parameters which are abnormal. If the
number is less than the quantity of aerodynamic parameters for fault diagnosis, it indicates that the
sensors are faulty or the influence of noise increases. In such a situation, the abnormal parameters must
be restored by a support vector machine (SVR) [31] to ensure the fault location proceeds smoothly.

4. Conclusions

In this paper, a novel method to locate the fault of a gas turbine is proposed. Kernel principal
component analysis is adopted to detect the occurrence of fault. Based on the analysis of the
fault indicator and aerodynamic parameters, the partial derivative of the T? and SPE statistics to
aerodynamic parameters are calculated. The results are used to represent the influence degree of fault
to these parameters and the fault location can be realized by different influence degrees. There are four
conclusions can be drawn, as follows:

(1) The KPCA is an effective way to detect the fault of a gas turbine. T? and SPE statistics, and
their corresponding thresholds must be constructed. By comparing the size of the T? statistic and its
threshold, the on-line fault diagnosis of a gas turbine can be realized. Furthermore, both statistics help
to locate the fault.

(2) The fault location of gas turbine is realized by calculate the partial derivatives of T2
to aerodynamic parameters. The size of partial derivatives represent the sensitivity degrees of
aerodynamic parameters to fault. Based on the balance working condition of gas turbine, fault
location can be achieved according to the size of partial derivatives.

(3) Sensitivity distribution spectra can be used to represent the performance degradation of the
gas turbine and identify a potential fault. When a fault which resulted by performance degradation is
about to occur, the partial derivatives of the aerodynamic parameters associated with this fault will
change dramatically and this change is easily reflected by the sensitivity distribution spectra.

(4) The method proposed in this paper is used to locate the fault of a gas turbine and how to
recognize the fault is not discussed. Whether this method can be used in fault identification needs to
be verified in the follow-up work.
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Abstract: This study develops a chance—constrained open-loop optimal control (CC-OC) framework
capable of handling rare event probabilities. Therefore, the framework uses the generalized polynomial
chaos (gPC) method to calculate the probability of fulfilling rare event constraints under uncertainties.
Here, the resulting chance constraint (CC) evaluation is based on the efficient sampling provided by the
gPC expansion. The subset simulation (SubSim) method is used to estimate the actual probability of
the rare event. Additionally, the discontinuous CC is approximated by a differentiable function that is
iteratively sharpened using a homotopy strategy. Furthermore, the SubSim problem is also iteratively
adapted using another homotopy strategy to improve the convergence of the Newton-type optimization
algorithm. The applicability of the framework is shown in case studies regarding battery charging and
discharging. The results show that the proposed method is indeed capable of incorporating very general
CCs within an open-loop optimal control problem (OCP) at a low computational cost to calculate optimal
results with rare failure probability CCs.

Keywords: robust open-loop optimal control; generalized polynomial chaos; chance constraints; subset
simulation; open-loop optimal control; battery charge-discharge

1. Introduction

In the context of open—loop optimal control (OC), the calculation of robust trajectories, i.e., trajectories
that remain safe despite model uncertainties, is crucial for safety-critical applications. This type of
problem is often treated by a chance constraint (CC) formulation, which must generally be approached via
sampling techniques. Here, the method of generalized polynomial chaos (gPC), introduced by Xiu and
Karniadakis in 2002 [1], allows for calculating arbitrarily good approximations of the system response due
to uncertainties, which can consequently be used to generate samples of the system trajectories.

In this work, we introduce gPC in open-loop optimal control problems (OCPs) with CCs, combined
with a subset simulation (SubSim) sampling technique, to calculate trajectories subject to probabilistic
constraints imposing very rare failure events. To make the CC formulation applicable for Newton-type
optimization algorithms, a differentiable approximation of the indicator function is used. Additionally,
a homotopy strategy is implemented to gradually approximate the exact CC failure domain.
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Processes 2019, 7, 185

The formulation of OCPs with uncertainties by chance—constrained open-loop optimal control
(CC-OC) techniques is a commonly used approach, although CC-OC can be computationally expensive
and difficult to solve. The following research has been conducted within the field of CC-OC: In [2], a
general overview of different methods for handling CCs is given. The author introduces both analytical
(e.g., ellipsoid relaxation) and sampling-based methods (e.g., mixed integer programming). Both methods
are subsequently combined in a hybrid approach. Additionally, feedback control is used to satisfy system
constraints. In [3], a strategy to approximate a CC based on split Bernstein polynomials is introduced.
Here, pseudo-spectral methods are applied and a single optimization run is used on the transformed
CC-OC. Therefore, joint CCs are decomposed and a Markov—chain Monte-Carlo (MCMC) algorithm is
used to evaluate the samples.

In general, CCs are also common in model predictive control (MPC) applications [4]. A very popular
choice for this robust MPC are so-called min-max algorithms, which try to achieve a worst-case design in
the presence of uncertainties to increase the robustness [5-7]. As online applicability is very important
in MPC, CC algorithms in MPC often try to transform CCs in algebraic constraints [8]. Further methods
comprise maximizing the feasible set with CCs [9] or randomization [10]. It should be noted that none
of these methods is specifically tailored to treat rare events, which is desired in this study. These rare
events are of special importance in reliability engineering and safety critical applications and are thus very
prominent in the engineering domain. In addition, the developed method in this study should not be too
conservative as it would e.g., be the case with transformations to algebraic constraints.

In order to deal with rare events, we use the method of SubSim, proposed in [11,12]. This methodology
begins the probability estimation with a general Monte—Carlo analysis (MCA) solution and then gradually
explores different samples within the failure domain. This MCMC algorithm converges to a series of
conditional probabilities that yield the failure probability of the rare event. In the context of CC-OC,
we use the samples generated from the MCMC as evaluation samples for the solution of the OCP. Here,
we use a homotopy strategy to adapt the samples after each OCP solution until the SubSim, as well as the
OCP, fulfill the desired rare-event failure probability.

To give an overview of the development of a CC-OC framework, the paper is organized as follows.
In Section 2, some theoretical background and fundamentals of OC and gPC are introduced. Section 3
introduces the proposed incorporation of CCs in the OCP and the combination with the gPC expansion
and SubSim. The model for the CC-OC case studies is presented in Section 4, while the results are given in
Section 5. Conclusive remarks and an outlook are looked at in Section 6.

2. Theoretical Background

This section gives an overview of the methods used within this paper as well as some characteristics
of their implementation. Here, Section 2.1 introduces the general OCP formulation, while Section 2.2 gives
an overview of the gPC method and how to calculate statistics for the OCP from: it.

2.1. Open-Loop Optimal Control
The OCP in this paper is given as follows (extended form of [13]):

gy 1)) ) [ s

s.t. ap(x,u,p) < c(x u,p) < cp(x,u,p), O
f(x,u,p;0) =%,
$(xu,p) =0,
Pocp(y € F) =
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In Equation (1), the lower and upper bounds of box constraints are denoted by [b and ub respectively and
the output variables y € R" are defined by the following nonlinear function:

y=g(xup) )

It should be noted that we deliberately distinguish between probabilistic and deterministic (“hard”)
constraints in Equation (1). This is done due to e.g., the fact that the state integration is generally carried
out in the deterministic rather than the probabilistic domain (in our case, we use specific evaluation
nodes provided by the gPC theory), while we also have constraints that are specifically designed in the
probabilistic domain (i.e., our CCs).

The optimization/decision variables of the OCP include the states of the system x € R"¥, the controls
u € R™, the time-invariant parameters p € R" (these might be design parameters of the model,
e.g., a surface area or a general shape parameter), and the final time ¢ 1A R. We combine these variables

within the vector z = {t fs pT, xT,uT T, The external parameters 8 € R" are considered uncertain, but of
known probability density function (pdf). The set 7, labeled failure set hereafter, is the set of states, controls,
and parameters, i.e., the outputs, which lead to a failure of the system. Note that Equation (1) is the
probability to not hit the failure set with the desired probability. This choice creates a better conditioned
nonlinear programming problem (NLP) within the Newton-type optimization. In this paper, we assume
that the probability 7 = P45 (y ¢ F) of not encountering a failure is selected arbitrarily close to 1.

It should be noted that we can assume without loss of generality that the initial time fg is zero.
The objective is to minimize the cost functional ] consisting of the final time cost index e and the running
cost index L. The OCP is subject to the following constraints:

e the state dynamics x that ensure a feasible trajectory,

e the inequality path and point constraints ¢ that ensure limits of the trajectory to be feasibly enforced
by box constraints (i.e., by lower and upper bound)

e the equality path and point constraints ¢ that ensure a specific condition during the flight,
e.g., the initial and final state condition.

Generally, when the state dimension is not trivially small, OCPs as in Equation (1) are best solved
using direct methods. Direct methods first discretize the problem into a NLP, which is then solved by
classic NLP solvers. In the following, we use the trapezoidal collocation method for the discretization [13],
which is readily implemented in the OC software FALCON.m [14]. This software tool is also used to
implement the proposed CC-OC approach. Furthermore, the primal-dual interior-point solver Ipopt [15]
is used to solve the discretized NLP.

2.2. Generalized Polynomial Chaos

This section gives an overview on the gPC method. Here, Section 2.2.1 introduces the basics of the
gPC method. The calculation of the statistical moments is then presented in Section 2.2.2.

2.2.1. Definition of Expansion and Incorporation in the Optimal Control Problem

The gPC method was originally developed by Xiu and Karniadakis in 2002 [1] and is an extension of
the Wiener polynomial chaos, which was only valid for Gaussian uncertainties [16]. It can be construed as
a Fourier-like expansion with respect to the uncertain parameters, which approximates the response of the
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output variables y and reads as follows (it is reminded that the output variables are defined as a nonlinear
function of states, controls, and parameters in Equation (2)) [1,17]:
M-1
N+D
z;0)~ Y 3™ (z)0™ (), (M-1 :( ) 3
y(z6) mZ::O y (z) @ (6) ( ) N ©)

where the multivariate expansion polynomials @) € R are orthogonal with 71 as their highest polynomial
exponent [1]. The order of the gPC expansion is given by M, the number of uncertain parameters by N, and
the highest order of the orthogonal polynomials by D. The Wiener-Askey scheme provides general rules
to select the orthogonal polynomials ® based on the pdf p (8) of the uncertain parameters 6. For some
specific pdfs of the gPC expansion, these polynomial relations are summarized in Table 1. Take into
account that extensions to general pdfs are also available [18].

The expansion coefficients §(") € R" in Equation (3) are given by a Galerkin projection [19]:

9 (2) = [ y(z:0)00") (8)p(6)do, @
where Q is the support of the pdf p (6) € R (Table 1).

Table 1. Continuous density function-orthogonal polynomial connection for standard generalized
polynomial chaos (after [1]) for a scalar parameter 6.

Distribution Probability Density Function Support Symbol Orthogonal Polynomial
. 2 .
Gaussian/Normal \/% exp (%) |—o0,00[ N (u,0) Hermite
Gamma % [0, 0] v (0, 0) Laguerre
Beta B2 gy (149 ]-1,1]  B(abap) Jacobi

T (1)L (B+1)
i 1-1,1] U (a,b) Legendre

Uniform

To connect the expansion coefficients with the physical trajectories of the system, the stochastic
collocation (SC) method is used [19]. This is also done to constrain the viable domain of the expansion
coefficients based on the physical system response in the OCP. Generally, the SC method tries to
approximate the integral in Equation (4) by Gaussian quadrature using a finite sum, discrete expansion at
a set of nodes 81/) € R" with corresponding integration weights «/) € R. These are specifically chosen in
order to have a high approximation accuracy [19]. This yields the following approximation formula for
Equation (4) [19]:

Q _ . .
9 (2) = [ y(@0) o (0)p(0)do ~ Yy (z:00)) &) (60) ul). 6
Ja =
)

Here, Q is the number of specifically selected nodes according to the Gaussian quadrature rules (zeros
of orthogonal polynomial), defining the accuracy of the integral approximation [19]. It should be noted
that the Gaussian quadrature approach is subject to the curse of dimensionality for a large number of
uncertain parameters because it is generally evaluated on a tensor grid [19]. Thus, sparse grids [19] must
be employed in higher dimensions, e.g., starting from 1y > 5. For the sake of simplicity, we use the tensor
grid in this study, but the methods can directly be extended to sparse grids as well.
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The continuous OCP (Equation (1)), is discretized into a NLP using the gPC expansion for states
and controls, and then solved using a Newton-type optimization algorithm. Here, we use a trapezoidal
collocation scheme. It should be noted that we apply the state integration and the state constraint to
each of the SC nodes in this context. This makes it possible to calculate any desired output variable gPC
expansion for the CC using the SC expansion in Equation (5). Here, the physical state trajectories and the
output equation (Equation (2)) must be applied to calculate the required output expansion coefficients for
Equation (10). In addition, we ensure feasible, physical trajectories by constraining the physical states at
each of the SC nodes as this task might not be trivial by merely constraining the expansion states that are
part of the decision variables (Equation (7)). Take into account that it is crucial in this context to ensure
the constraint qualifications /regularity conditions for the NLP, e.g., linear independence, such that the
optimization is well-behaved ([20], p. 45).

The basic form of the NLP is as follows (after [13]):

f(O) N_1
min ] = e (2y) + fThT Y [L(2)+L(2i11)]
i=1
s.t. ilb S Z S iub/
N M-1 1
xp < : < Xup, V],
X%) _ Mg m) g m) (9<1>) ©

i ; b0 Nt
e () 4L

Pocp(y1 & F)

Pocp(yn & F)]

Take into account that the differential equation, used for the model dynamics in Equation (1), is
directly included in the equality constraints ¢ using the trapezoidal integration scheme. Additionally,
the deterministic equality and inequality constraints of the NLP must be fulfilled in our framework at each
SC nodes to ensure feasibility.
The discretization step is depicted by h; and generally comprises N discretized time steps.
The decision variable vector z, with corresponding lower and upper bounds depicted by 2, and z,;,
respectively, is defined using the gPC expansion coefficients for states, controls, and parameters as follows:
p= [0, B0 %0, MY el sk, el )
Take into account that the control history is not expanded in Equation (7). This is due to the fact that
expanding the control history would yield a set of optimal control histories. As we want to calculate a
robust trajectory, i.e., a trajectory that is robust considering that the control history is not adapted, we only
use the mean value in the decision vector. Still, an extension of Equation (7) to a distributed control history
is possible. It should be noted that the same argumentation applies for the time-invariant parameters, as it
is also generally desired to calculate a single robust value for these.
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Further note that the outputs y, required for the CC in Equation (6), can be calculated directly using the
decision variables in Equation (7), the gPC expansion in Equation (3) (to calculate the physical trajectories),
the output equation in Equation (2), and the SC method in Equation (5).

It should be noted that the cost function in Equation (6) is depending on the decision variables directly,
which are the expansion coefficients (Equation (7)). This is done to be able to optimize statistical moments
(e.g., mean value and variance; Section 2.2.2) in the OCP. Further take into account that the inequality path
constraints are box constraints enforced at each discretization point for the physical trajectories with the
same lower and upper bound and independent of the uncertainty. This is done as the state limits normally
do not vary over time and should also not change depending on the uncertainty. In addition, we enforce
physical trajectories calculated by the NLP optimizer using this procedure.

Further take into account that Equation (6) is a deterministic version of the uncertain OCP in
Equation (1) except for the CCs. Further note that the inequality as well as equality constraints are
evaluated at the physical SC nodes (Equation (5)) using the gPC expansion in Equation (3).

2.2.2. Statistical Moments

Statistical moments, such as mean or variance, can be calculated directly from the gPC expansion in
Equation (3), if the expansion coefficients are known. For instance, the mean is given by [19]:

M-1

Ely(z;0)] =~ /n < Z )A,(m) (z) Pdm) (9)) p(6)do = }A,(O) (). 8)

m=0

Equation (8) shows that the mean is only depending on the first deterministic expansion coefficient. The
variance of the outputs y calculated as [19]:

2 2] 2
P ly(z0)] =E[y(z0) ~Ely(z0)| ~ ¥ [y (2)] ©)
m=1
is only dependent on the deterministic expansion coefficients y(1--M-1)

3. Chance Constraints in the Polynomial Chaos Optimal Control Framework

Within this section, we look at the CC framework based on the gPC approximation within the OCP that
should approximate the probability of not being the failure event, i.e., ]POCP(YZU) ¢ F),Vi. In Section 3.1,
the general formulation of CCs in the deterministic OCP is introduced. Afterwards, Section 3.2 introduces
a differentiable approximation of the sharp CCs and a homotopy strategy to iteratively sharpen the
differentiable CC representation. The SubSim method and its incorporation within CC-OC to calculate

rare-event failure probabilities are described in Section 3.3.

3.1. Derivation of Chance Constraint Formulation

Sampling techniques such as the Metropolis-Hastings algorithm (MHA) [21] or importance
sampling [22] are frequently used to approximate the probability of an event (in this case: fulfilling a CC)
when its pdf is difficult to sample from or integrate. A drawback of these methods is a non-deterministic
evaluation procedure of the probability. Generally, this study still tries to apply sampling-based algorithms
to estimate the probability Pocp(y; ¢ F) in the OCP (Equation (6)). Additionally, rare events should
be covered, which makes SubSim a viable choice [12]. The basic SubSim method uses a modified
Metropolis-Hastings algorithm (MMHA), i.e., random sampling, to explore the failure region and calculate
the failure probability. Here, a further issue arises when using direct methods to solve OCPs with
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Newton-type NLP solvers: the samples cannot be redrawn in each iteration of the NLP solution process as
this would yield a stochastic Newton-type optimization procedure. Generally, this would be necessary
in the context of sampling techniques, such as SubSim, which ultimately results in problems defining
accurate step-sizes and exit criteria in the NLP. Thus, this study uses a homotopy strategy to cope with
these issues that move the creation of new samples from the NLP iteration to a homotopy step.

In order to apply the mentioned sampling techniques, we need a good approximation for the
probabilistic quantity, i.e., the quantity with respect to whom the CC is defined, depending on the stochastic
disturbance. When applying gPC, the gPC expansion in Equation (3) provides this approximation. Thus,
in cases where the expansion coefficients are available within the NLP, as e.g., in Equation (6) (remember
that Equations (2), (3) and (5) can be applied to calculate the expansions coefficients for any output quantity
based on the known physical trajectories at the SC nodes for the states used in Equation (6)), we can sample
the gPC expansion for thousands of samples via a matrix-vector operation in an MCA-type way, but with
improved efficiency due to the simple evaluation as follows: consider 1; random samples obtained from
the pdf of 6, labeled 6“), ., 0("s) Tt should be noted that these samples can now be drawn randomly
in contrast to the SC method as we are not trying to approximate the integral in Equation (4), but the
probability of the CC. These samples for the uncertain parameters yield corresponding samples for the
output y, given by:

y(z6) ... y(z0")]=[30@ ... yM ()] ; ; ., (10
e e oM-1) (9<1>> @M (9<ns>)

RMxns

such that the output samples are provided from a simple matrix-vector multiplication operating on the
expansion coefficients §, which are part of the OCP formulation due to Equations (2), (3) and (5). With the
samples available from Equation (10), the general equation for fulfilling, i.e., not being in the failure set, a
CC s given as follows:

Bly (20) ¢ F) = [ 1(y(z0)p(0)a0~ LY 7 (y(z01)). an

Here, Z (y (z;0)) is the indicator function, defined as:

Z(y(=0"))= {l, eyt ¢ (12

0, else.

It should be noted that the indicator function 7 is trivial to evaluate but non-differentiable, and can
therefore create difficulties when used in the context of a Newton-type NLP solver. Thus, we introduce a
smooth approximation s of the indicator functions having the following properties:

s(y(z0)) € [0;1],
s(y(z0)~1 y(z0)¢7F, (13)
s(y(z0)) =0 y(z0) e F.
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3.2. Approximation of Chance Constraints by Sigmoids

A group of functions that can be used for the approximation of an indicator function that must fulfill
the conditions given in Equation (13) are the logistics functions. An example for this class of functions is
the sigmoid function, which is defined as follows for a scalar output y:

1

s(y;a,b) = oxpl—a-(y—b)] +1 eR. (14)

The parameters a € R and b € R are the scaling and offset parameter of the sigmoid, respectively.
These are used to shape the sigmoid in order to suitably approximate the desired CC domain. Their design
using a homotopy strategy while solving the CC-OC problem is illustrated in Algorithm 1.

Algorithm 1 Implemented homotopy strategy for sigmoid scaling and offset parameter in CC-OC
framework.
Require: Define the homotopy factor ay,,, and the desired final sigmoid parameter a ;-

1: Initialize sigmoid parameter a and confidence level CL.
2: Define the bound value of the sigmoid ¥4 (i-e., the bound value of the CC)
3: while a < a,5j0,4 do

4:  Calculate the sigmoid values:
In &71

5: c= ——

6 b= Ypouna — ¢

7:

Solve the CC-OC problem including SubSim in Algorithm 4.
8:  Increase a by homotopy factor: a = ay,,, - a.

9: end while

10: return Robust optimal trajectory.

Furthermore, the sigmoid in Equation (14) has a very simple derivative that can be used to efficiently
calculate the gradient that is necessary for OC. It is given as follows:

ds (y;a,b)

dy =a-s(y;a,b)-[s(y;a,b) —1]. (15)

The sigmoid in Equation (14) can be combined by multiplication in order to approximate the indicator
function for F being an interval in R. This is depicted in Figure 1, which shows the multiplication of
two sigmoids (solid blue) with one gradual descend (dashed green; number 1) and one steep ascend
(dashed red; number 2) to approximate a box constraint on a scalar output. Here, one sigmoid s (y; aj, byp)
describes the lower bound, while the other sigmoid s (y; 4,5, b,,,) describes the upper bound.

For the sake of simplicity, we further assume box constraints on all our CCs, i.e.,, we assume
that F is a hyper-rectangle with lower and upper bounds Ib;, ub; on dimension i = 1,...,ny.
This is a viable assumption for most OCP applications, as box constraints are very prominent in OC.
The proposed approach can be trivially extended to any set F that can be described by a set of smooth
inequality constraints.
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s(yia,b) = s(y;aw, biy) - 5(Y; aup, bup)
1 T T T T
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Figure 1. Product of two sigmoids with different scaling and offset parameters to approximate an
uncertainty domain by box constraints.

We can then form the hyper-rectangle by applying the basic sigmoid in Equation (14) as follows:

)‘Ly

s(y;a,b) =[5 (visaw, biw,) - 5 (¥i aup; bup,) € R (16)
i=1

Here, a = {albl, By -+ Alb,, 0 a,,bny} ! and b = [blblf bupy, -y b;bny, bub,,y] ! are simplifying notations.
Take into account that the derivative of Equation (16) can be formed using the chain rule and Equation (15).

In order to calculate the probability, we must only sum up the function values of the multidimensional
sigmoid in Equation (16) and divide it by the number of samples as follows:

Ply ¢ Fla L3 s (yi:ab 17
[y ¢ ] ~ ZS y ;a, . ( )
ns i3

This approximation can now be used within the OCP (Equation (6)). In order to include rare failure
events, the next subsection introduces the SubSim method that elaborates on the CC modeling of this
subsection.

3.3. Subset Simulation in Chance-Constrained Optimal Control

The probability approximation in Equations (11) and (17) converges for reasonably low choices of 1
only if rather loose bounds on the probability (e.g., domain of 7 = 99%) are considered. For tighter bounds
typically used for rare events, as often required in e.g., reliability engineering (where 17 = 99.9999% is
common), better suited algorithms to calculate and sample the probability are required. Indeed, a reliable
estimation of the probability of rare events normally requires a very large number of samples. A classical
approach to circumvent this difficulty is the use of SubSim, which is tailored to evaluate the probability of
rare events [11,12,23].

SubSim methods are based on an MCMC algorithm typically relying on a MMHA, which ensures
that the failure region is properly covered by the samples. To that end, it stratifies the choice of samples
iteratively in order to draw significantly more samples from the failure region than a classical MCA
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sampling would. SubSim methods are based on an expansion of the failure probability as a series of
conditional probabilities:

m

P(}-)—P(}"m)—ﬁ”<ﬁfi) =P (F) [[P(FilFi1). (18)
i1

i=2

In Equation (18), F is the set of failure events and 71 D F» D ... D F,; = F is a sequence of set
of events with decreasing probability of occurrence. The conditional probability P (F;|F;_1) describes
the probability that an event in F; C F;_; occurs assuming that an event in F;_; has already occurred.
Thus, instead of evaluating the rare event P (F) = P (F,), one can evaluate a chain of relatively likely
conditional probabilities P (F;| F;_1), each of which is relatively easy to evaluate via sampling.

The evaluation of the conditional probabilities is the main task in SubSim, achieved using e.g.,
the MMHA approach. The MMHA, working on each component of a random vector (i.e., vector of
one-dimensional random variables) (RVec), is introduced in Algorithm 2 [11,12,24].

Algorithm 2 Modified Metropolis—-Hastings algorithm for subset simulation for each component of the
random vector 6; to create new sample for random parameter (after [11]).

Require: Current sample for the random parameter: 6;.

1: Define a symmetric proposal pdf, p; (8|6;) = p} (6;|6), centered around the current random sample 6;.

2 Generate candidate sample 8 from p; (8]6;) and calculate the system response (e.g., by Equations (1),
(3), or (6)) of this candidate.

3: Calculate the ratio between the proposed and the candidate sample evaluated at the target pdf, e.g.,
r= % with p o N (0,1) (this is the stationary pdf according to the central limit theorem ([17], p. 23)).

4: Set the acceptance ratio of the candidate sample 8 as follows: 2 = min{1, 7} and accept it with this
probability.

5. Draw a random sample from the uniform distribution as follows: s o</ (0,1).

6: if s > a then

7. Set: 0p = 2
8: else

9:  Set: Qp =6;
10: end if

11: Update the new sample by the rule:

12: if 0 € F; then

13: Set: Opew,i = Op

14: else

15:  Set: enew,i =6;

16: end if

17: return New sample for the random parameter: Opeyy ;-

Normally, the MCMC algorithm based on the MMHA in Algorithm 2 is fast converging as especially
the sampling of new candidates is done locally around the current sample point. Thus, the acceptance
rate is normally very high and progress is made quite fast. An issue of the MMHA is the choice of an
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appropriate proposal distribution p;. Here, generally a Uniform or a Gaussian pdf is chosen, in order to
have a simple evaluation and the symmetric property. The general behavior of the MMHA in SubSim can
be visualized as in Figure 2: it can be seen that after the random sampling by MCA in level 0, the samples
get shifted to the failure domain, which are the arcs in the corners of the domain. This is done until a
sufficient amount of samples is located in the failure domain.

SubSim Samples - Level 0 SubSim Samples - Level 1

X

Figure 2. General behavior of subset simulation with modified Metropolis-Hastings algorithm and py = 0.1
showing movement of the samples (red: in failure domain, green: not in failure domain) over the different
subset levels with arc failure domains at edges.

We detail the SubSim method as in Algorithm 3 [11,12]. The SubSim starts with a general MCA
and afterwards subsequently evaluates the failure region yielding the chain of conditional probabilities.
It should be noted that the choice of the intermediate failure events Fj, _,, is critical for the convergence
speed of the SubSim. In [11], the “critical demand-to-capacity ratio” is introduced that is based on
normalized intermediate threshold values. Based on this ratio, it is common to choose the thresholds
adaptively such that the conditional probabilities are equal to a fixed, pre-defined value ([12], p. 158).
This is done by appropriately ordering the previous samples and their result. An often and a normally
very efficient conditional probability value is pg = 0.1 [11].

Finally, we can estimate the failure probability of the SubSim regarding the desired threshold b and
the (m — 1) — th Markov chain element, which is the last one of the SubSim as follows ([12], p. 179)
(see Algorithm 3 line 12):

Ne  Nsc

1—IP’ss(y(z;9)¢]—'):IP(]-'7n—pO 122[(y]k '>b), b>by (19)
s j=lk=
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Algorithm 3 General algorithm used for a subset simulation in connection with generalized polynomial
chaos (after [12], p. 158ff).

Require: Define the number of samples per level 1, the conditional probability pg, and the critical
threshold b.
1: Calculate the number of Markov chains 1. = pg - s and the number of samples 5. = py 1 for each of

the chains.
2: Initialize the SubSim by creating the random sample set {BI(CO) tk=1,...,n5}
3: Calculate the output set {yl((o) (z; BI(CO)> :k=1,...,ns} by Equation (3) related to {BIEO) ck=1,...,n}.

4: Sort {y,SO) (z; 0,((())) :k=1,...,ns} in ascending order to create {b;{o) :k=1,...,ns}. Here, b,(f)) is an

estimate of the exceedance probability P [y (z;0) > b] = "=k

5 Setb; = b\

ng—ne

and {9 :j=1,...,nc} corresponding to {b( ) 1j=1,...,nc} as the threshold

—ne+j
and the seeds for the next level.
6: fori=1...m-1 do

7. Usee.g., the MMHA (Algorithm 2) to generate the samples {6](,]? :k=1,...,ns} of the conditional

pdf p (.|F;) for each seed {9 j=1,...,n.}. This creates n. Markov chains with ns. samples.
8:  Calculate the output set {y]k ( ) j=1,...,n,k =1,...,ns} by Equation (3) related to
{9 ]—l ek =1,..., 1}
9: Sort {y i (z, /(k)> j=1,...,n,k=1,...,ns} in ascending order to create {b(’) ck=1,...,ns}.

i ns—k

Here, b,(() is an estimate of the exceedance probability P [y (z;0) > b] = pj™— m .
10:  Setbjyq = b\, and {6 (i+1) :j=1,...,nc} corresponding to {b<> :j=1,...,nc} as the

ns—ne ne—ntj ©
threshold and the seeds for the next level.

11: end for

2: Calculate the failure probability Pss (y (z;8) ¢ F) based on Equation (19)

3: return Failure probability Ps; (y (z;0) ¢ F).

U

It should be noted that, for the OCP in Equation (1) or Equation (6), the calculated probability in
Equation (19) must be subtracted from 1 as the CC in Equation (6) is defined for not being in the failure set.
Here, 7 (y (z; 0)) is the complementary indicator function from Equation (12) defined for the failure region:

- . 1, fory|(z; o)) € F,

T <y (z; 9(’>)) = y ( ) (20)
0, else.

Take into account that the accuracy of Equation (19) can be quantified using the coefficient of variation

(c.ov):

o [P(F)]

= (21)
E[P(F)]

Here, E [P (F)] is given by Equation (19), while the standard deviation of the failure probability

can be calculated by a Beta pdf fit as proposed in ([25], p. 293). Overall, we can compare the resulting

c.0.v. with literature values [24] to access the viability. Generally, a small c.0.v. indicates that the standard

178



Processes 2019, 7, 185

deviation of our failure probability estimation is smaller than our expected /mean value. Thus, the goal is
to have a small c.o.v. as then the dispersion of the data is small and we can be certain about the CC being
fulfilled.

In this study, we propose to introduce the SubSim algorithm in the CC-OC algorithm. Our procedure
is to calculate the subset samples based on the analytic response surface of the gPC expansion (Equation (3)),
which is based on the initial solution of the OCP (Equation (1)) by MCA. The samples are then used to
run a new optimization fulfilling the desired rare event probability. A new response surface is calculated
from which new samples are generated using a SubSim. This procedure is repeated until both the SubSim
probability Pss (y (z;0) ¢ F) (Equation (19)) as well as the probability level assigned to the constraint
Pocp (y (z;0) ¢ F) (Equation (6)) in the OCP fulfill the desired rare event probability P, (y (z;0) ¢ F).
The procedure is described in Algorithm 4. It should be noted that this procedure can generally be applied
as long as the underlying OCP in Equation (6) can be solved.

Algorithm 4 Basic strategy of the subset simulation algorithm within CC-OC framework.

Require: OCP as in Equation (6) with initial guess for decision variables z.
1: Calculate an optimal solution for a likely failure (e.g., P (y (z;0) ¢ F) = 99%) using MCA.
2: Obtain the subset probability P (y (z;0) ¢ F) and samples, based on the analytic gPC response
surface (Equation (3)) and by applying Algorithm 3.
3: while Py (y (z;0) ¢ F) > Pys (y (2,0) ¢ F) and Pocp (y (z;0) € F) > Pyes (y (2;0) ¢ F) do
4:  Assign the SubSim samples to the evaluation routine of the CC within the OCP.
5:  Solve the CC-OC problem (Equation (6)).
6:  if Optimization not successful then
7: Reduce the probability of the constraint Pocp (y (z;0) ¢ F) to relax the OCP (e.g., by factor of 10).
8: else

9: ifPocp (y (2, 0) ¢ F) # Puaes (y (z;0) ¢ F) then

10: Increase the constraint probability within the OCP (e.g., factor of 10).
11: end if
12:  end if

13:  Obtain the new subset probability Ps, (y (z;0) ¢ F) from Equation (19) and samples based on the

new analytic gPC response surface and using Algorithm 3.
14: end while
15: return Optimal decision variables z.

Regarding the homotopy strategy, it should be noted that, by using the SubSim samples calculated
from the last optimal solution within the new optimization, we might introduce a bias as the samples
drawn from the Markov chain are based on the optimal results created by the last NLP solution. Generally,
they would have to adapted in each iteration of the NLP as the system response changes. As we do not
update the samples within the NLP, but within the homotopy step after the optimal solution has been
calculated, we technically solve the CC and its rare event probability using biased samples compared to
the ones that would be calculated within the SubSim. We cope with this issue in this paper by checking
the fulfillment of the CC both in the OCP as well as after the OCP is solved by the SubSim, i.e., with the
new response surface. Thus, the CC-OC is only solved if both results show that the CC is fulfilled to the
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desired level. Within this paper, the OCP converges fine, but further studies should explore the effects and
influences of this bias and how to reduce it (e.g., by importance sampling).

4. Optimization Model

The implemented optimization model is based on the work in [26]: at first, the dynamic model is
introduced in Section 4.1. The OCP setup, including constants and parameters, is afterwards defined in
Section 4.2.

4.1. Battery Dynamic Equations

The following section summarizes the dynamic equations for a battery modeled by an extended
equivalent circuit model (XECM) as depicted in Figure 3. Here, the equations of motion are introduced in
Section 4.1.1. Afterwards, Section 4.1.2 introduces a battery heating model.

Uy
- +

AN e
Ry '

I’y

+

Figure 3. Schematics of Extended Equivalent Circuit Model (XECM) [26].

4.1.1. Local Voltage and Ion Concentration Dynamic Equations

The local voltage v; and ion concentration Az; equations of motion are based on the parallel
resistor-capacitor arrangement in Figure 3. The equations are given by first order lags with the current i as
the control variable:

. 1 1
01 = e ‘o1 + 7. i (22a)

Az = LIRS (22b)
L= 7RG Y2

Here, Rq and C; are the resistance and capacity, respectively. It should be noted that Ry and C; are
functions of the battery temperature (Section 4.1.2).

In addition, we have the total ion concentration z dynamic equation, also called state of charge (SoC),
that is only dependent on the current:

2= =i, (23)

Here, Q is the battery capacity.
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4.1.2. Battery Heating

As an extension to the standard XECM in Section 4.1.1, we also model the heating of the battery
when a current is applied. This heating can again be formulated by an equation of motion for the battery
temperature Tj,y that is mainly influenced by the square of the applied current:

Tbatf - kl 1 +k2 ( amb — Tbtztt) (24)

oRo
The coefficients k1 = m— as well as ky are again parameters of the battery, while T, is the ambient
temperature. It should be noted that kR, is the considered uncertainty and is a scaling factor for the lumped
resistance term Ry. It is uniformly distributed as follows:

kgr, €U (0.8;12), u=1 o~0.1155. (25)

Thus, the lumped resistance term can vary up to £20%, which refers to the uncertainty that is
introduced to the system when identifying the parameter. Take into account that we choose this parameter
as the uncertain value as it is also the main contributor to the battery temperature increase, which we want
a robust trajectory against. Additionally, it should be noted that the uncertainty definition in Equation (25)
implies using a Uniform pdf as the proposal distribution in Algorithm 2.

For the CC optimization, we want to achieve that the following probability for the battery temperature
is always fulfilled:

P[0°C < Tpape < 40°CJ > 0.999999. (26)

This CC is implemented using the SubSim approach presented in Section 3.3 and the sigmoid
approximation of the CC with the homotopy strategy presented in Section 3.2. We use this kind of
probability as we want to assure that the battery is not damaged by a temperature that is too high, but also
charges as optimally as possible without being too conservative. In addition, it might not be possible in
general applications, due to other system constraints, to calculate a fully robust trajectory, which makes
the use of CCs viable.

4.2. Problem Setup

The problem consists of two phases that model one charge and one discharge of the battery. The
following initial boundary conditions (IBC; Table 2) for the states x = {vl Az z Tbutt] that define these
conditions in the beginning of the first phase are as follows (these are assigned as inequality constraints in
Equation (6)):

Table 2. Initial boundary condition (IBC) of the optimization problem.

Phase IBClb IBCub
1 [0,0,0.15,20]  [0,0,0.15,20]

Furthermore, the final boundary conditions (FBC; Table 3) for the same states in all phases are defined
as follows (again assigned as inequality constraints in Equation (6)):
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Table 3. Final boundary conditions (FBC) of the optimization problem.

Phase FBC”, FBCub
1 [0,0,0.95,—10]  [0.15,0.5,1.00,40]
2 [0,0,0.00,—10]  [0.15,0.5,0.15,40]

It should be noted here that trying to e.g., enforce an equality constraint for the final boundary
condition with only the mean robust control, as in Equation (7), might yield an infeasible OCP. In this case,
a CC should be considered to model the final boundary condition or an inequality constraint (as used in
this study) can be applied.

The states with their respective lower and upper bounds x, x,,,, and scaling xg are as given in Table 4.

Table 4. States upper and lower bounds as well as scalings.

State  Description Xy Xup XS

vy Local voltage 0 015 10°
Az Local concentration 0 1 100
z Total concentration ~ 0.05 095 100

Tpy  Battery temperature —10 40 107!

The controls with their respective lower and upper bounds u;;, 1, and scaling ug are defined as in
Table 5.

Table 5. Control upper and lower bounds as well as scalings.

Control  Description u Uyp  US

id_“"g" Charge current 0 3-Q 107!
jischarge  Discharge current  —3-Q 0 101

Finally, the parameters and the constants of the optimization model are defined in Table 6.

Table 6. Parameters and constants of the optimization model.

Value Description Reference
Tomb Ambient Temperature 20°C
MpapC battery mass times specific heat capacity 260%
ko convection coefficient of battery with ambient 0400001%
Rq Local Resistance fen (Typar)
Ro Lumped Resistance fen (Typar)
C Local Capacity fen (Typar)
Q Battery Capacity 26Ah

Finally, we consider the following cost function to minimize the cycle time:
J =10 27)

This is a parameter cost that actually requires a trade-off between fulfilling the CC and finishing the
cycle as fast as possible, due to the fact that a fast charging/discharging with large current yields a fast
temperature increase.
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5. Optimization Cases

This section covers the test cases for the CC-OC framework. At first, a single phase with only charging
is looked at in Section 5.1 to get an overview of the problem characteristics. Then, Section 5.2 looks at a
charge-discharge cycle. Generally, each phase has N = 125 time discretization steps yielding NLP problem
sizes of around 2000 optimization variables and constraints.

For the final results, which are depicted in the following, the scaling factor of the sigmoid CC
approximation is @ = £50. This could be achieved in a single homotopy step for the results in Section 5.1
and with two homotopy steps for the results in Section 5.2. The homotopy begins with 2 = £1 and has an
intermediate step, in the second example, at 2 = £25. In general, we use n; = 10,000 random samples to
approximate the probability of the CC using the methods introduced in Section 3. The gPC expansion
order is chosen to be three as this has shown to be viable for these kind of problems. The CC is defined
as given in Equation (26). Take into account that the initial MCA solution fulfills the CC in Equation (26)
with a probability of 97.5%. After this initial solution, we directly assign the desired probability, given in
Equation (26), to the CC-OC and thus require one homotopy step.

In the following, we show the results obtained for the different SubSim level (“SSLevel”) runs with
po = 0.1 and ns = 2500 during the homotopy procedure. Here, the zeroth level is the basic MCA solution.
The gPC order is chosen to be three, which was determined to be sufficient by comparing the accuracy of
the expansion with MCA optimization runs.

5.1. Battery Charging Optimization

This section introduces the optimization of a single battery charge by looking at the general
time-optimal OCP (Equation (27)).

In Figure 4, which depicts the probability of not fulfilling the CC, it can be seen that our desired
probability level is fulfilled after the first SubSim level. This probability is calculated in a post-processing
step using 1 million samples and the analytic indicator function in Equation (12): here, we get a level close
to 0% failures and thus the CC is, based on our sampling, fulfilled with a very high certainty. Indeed,
the SubSim evaluates the failure probability to be P (F) = 2.0088 - 10~>% with a c.o.v. of v = 1.0052. Thus,
we fulfill our desired failure probability of 10~#% even though we have a slightly high c.o.v..

This can also be seen looking at Figure 5 that shows the fitted marginal distribution of the failure
probability at the final point in time (i.e., the end time). This is the point where the violation is most likely
to occur. Here, the already mentioned method of fitting a Beta pdf for the c.o.v. estimation by applying the
theory in study [25] is used. The pdf is depicted in solid blue and plotted in the range of [0, Py, (F)], which
covers the range of the pdf and its probability until the maximal allowed failure probability. The mean
value is depicted in dashed black. It is evident that the pdf fulfills our rare-event CC with high probability
and thus we can be confident in the certainty of our result. To be specific, according to the SubSim and the
Beta pdf of [25], the CC is fulfilled with almost 97% certainty for our application.

In Figure 6, the current for the robust optimal result is shown. We can see that the current is mainly at
its maximum bound for the MCA optimization (SSLevel: 0), while it decreases linearly from a general lower
level to fulfill the tighter bounds of the desired rare-event probability in the SSLevel 1 run. The optimal
time is slightly increased for the SSLevel 1.
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Probability of Failing CC (ng = 1,000,000)
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Figure 4. Probability of fulfilling the chance constraint over time for charging.
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Figure 5. Estimation of failure probability density function from subset simulation for a final point on the
optimization time horizon using a Beta distribution with mean value and probability density function area
estimation until the allowed failure probability.

Finally, Figure 7 shows the development of the SoC for the mean value and the standard deviation.
We observe a basically linear increase in the mean value reaching the desired charging level and a small
standard deviation. Overall, the SoC is only subject to minor influences by the defined uncertainty that are
mainly based on the temperature variations. Thus, although there is an uncertainty, we can still reach a
similar charging level with the proposed robust open-loop optimal control (ROC) method. Furthermore,
there are only minor differences between the different SubSim levels.
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Figure 6. Robust control history for the current as the command variable over time for charging.
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Figure 7. Mean and standard deviation value for state-of-charge over time for charging.
5.2. Battery Charge-Discharge Cycle Optimization

Within this section, we are looking at the full charge—discharge cycle: For this, Figure 8 shows the
optimal current histories. In contrast to the single cycle, we can see that the current now is not reaching
the maximal value anymore (78A; Section 4.2) and is also gradually decreasing over time. The differences
between the SubSim levels are overall quite minimal but the same trend as for the results in Figure 6 can
be observed, i.e., that the SubSim levels after the MCA have an overall lower level and are slightly longer.

Then, Figure 9 shows the fitted marginal distribution of the failure probability at the final point in
time (i.e., the end time) once more. Once again, the pdf is plotted in the range of [0, P4 (F)], i.e., we cover
the part of the pdf and its probability until the allowed maximal failure probability. Although we can see
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that the failure probability is now twice as large in the mean as for only the charge cycle (Figure 5), we can
still be certain regarding our confidence in fulfilling the CC (around 91.5%).

Mean Value of Current
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Figure 8. Robust control history for the current as the command variable over time for charge-discharge cycle.
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Figure 9. Estimation of failure probability density function for charge—discharge cycle from subset
simulation for the final point on an optimization time horizon using a Beta distribution with mean value
and probability density function area estimation until the allowed failure probability.

Now, Figure 10 shows the mean value of the SoC and its standard deviation. We can observe that the
SoC is virtually independent of the SubSim level, but a major increase in the standard deviation can be
seen, which is a consequence of the robust charging and the uncertainty. Generally, this increase is based
on an increased standard deviation of the optimal time.
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Figure 10. Mean and standard deviation value for state-of-charge over time for charge-discharge cycle.

Finally, Figure 11 depicts the battery temperature mean value and mean value with an added
standard deviation. It should be noted that, in this figure, the standard deviation is added with a factor of
ks = 1.7321: this value is chosen as it is exactly the value that yields the boundary value of the original
uniform pdf if adding the standard deviation in Equation (25). As the optimization model is linear in
the uncertainty, we can expect that the propagated uncertainty at the output is thus also almost linear.
This is strengthened by Figure 11 as the solution that is offset by the factor k, = 1.7321 is just violating
the constraint at the end, which is based on the CC fulfillment that must not be 100%. Again, the level 1
SubSim yields a reduced exceedance with a longer charge time.
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Figure 11. Mean battery temperature including the standard deviation interval provided by the underlying
uniform parameter uncertainty over time for the charge-discharge cycle.
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6. Conclusions

This paper presented an efficient method for ROC that relies on a CC-OC framework. In this
framework, CCs are approximated by efficiently sampling from the gPC expansion. Therefore, a direct
transcription method using the gPC expansion is applied for solving the OCP: by this, the gPC expansion
can be evaluated in each optimization step as a matrix-vector operation and efficient sampling of the
CC value, and thus its probability, is possible. In order to make the sharp CC bounds usable for
Newton-type OC applications, the paper additionally introduced an approximation of CCs by means of
sigmoids. This sigmoid approximation is gradually adapted using a homotopy strategy to reach a good
approximation of the original sharp bound. Finally, the method of SubSim is applied to get the capability
of calculating rare event failure probabilities. Overall, the applicability of the framework is shown using
battery charge and discharge examples.

In the future, developments can be made combining the proposed method with distributed open-loop
optimal control (DOC). The DOC framework can then be used to handle smaller sub-problems of the
original OCP, which can be solved more efficiently. Here, also a distribution of the SubSim can be
considered for improved efficiency.

Furthermore, more research should be directed into the suitable choice of the gPC expansion order to
find a good response surface approximation for the evaluation of the CC. Here, especially the truncation
errors of the gPC expansion as well as the SC evaluation must be considered. This is necessary to accurately
calculate the probability of fulfilling the CC. In addition, e.g., a moment-matching optimization [27],
which tries to find the best nodes-weights combination for the given problem, could be applied. Especially
with a highly nonlinear model, larger orders of the gPC expansion must also be used, which decreases
the efficiency. In the context of this large expansion order as well as a high-dimensional uncertainty
space, further research must also be directed to efficient (adaptive) sparse grid implementations for the SC
evaluation [19,28].

Additionally, in future applications, general pdfs can be introduced in the proposed method using
the theory of arbitrary polynomial chaos [18,29] or Gaussian mixture models [30]. This could also be of
special interest for the accurate choice of the SubSim evaluation points.

Finally, research can be directed into controlling the c.0.v. of the SubSim using the Beta pdf introduced
in [25]. This can be beneficial to have a small dispersion of the data and thus high confidence in the
calculated failure probability estimation and, consequently, the calculated robust optimal trajectories.

Author Contributions: The concept and methodology of this article was developed by P.P. and S.G. The formal
analysis was carried out by PP, who also wrote the original draft of this paper. S.G., P.P,, and EH. provided review
and editing to the original draft. EH. was responsible for funding acquisitions as well as supervision.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Technical University
of Munich (TUM) International Graduate School of Science and Engineering (IGSSE).

Acknowledgments: The authors want to acknowledge the German Research Foundation (DFG) and the Technical
University of Munich (TUM) for supporting the publication in the framework of the Open Access Publishing Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xiu, D.; Karniadakis, G.E. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations. SIAM .
Sci. Comput. 2002, 24, 619-644. [CrossRef]

2. Vitus, M.P. Stochastic Control via Chance Constrained Optimization and its Application to Unmanned Aerial
Vehicles. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2012.

188



Processes 2019, 7, 185

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24,

25.

Zhao, Z.; Liu, E; Kumar, M.; Rao, A.V. A novel approach to chance constrained optimal control problems.
In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1-3 July 2015; pp. 5611-5616.
[CrossRef]

Mesbah, A. Stochastic Model Predictive Control: An Overview and Perspectives for Future Research.
IEEE Control Syst. 2016, 36, 30—44. [CrossRef]

Diehl, M.; Bjornberg, J. Robust Dynamic Programming for Min—-Max Model Predictive Control of Constrained
Uncertain Systems. IEEE Trans. Autom. Control 2004, 49, 2253-2257. [CrossRef]

Lu, Y,; Arkun, Y. Quasi-Min-Max MPC algorithms for LPV systems. Automatica 2000, 36, 527-540. [CrossRef]
Villanueva, M.E.; Quirynen, R.; Diehl, M.; Chachuat, B.; Houska, B. Robust MPC via min-max differential
inequalities. Automatica 2017, 77, 311-321. [CrossRef]

Gavilan, F; Vazquez, R.; Camacho, E.F. Chance-constrained model predictive control for spacecraft rendezvous
with disturbance estimation. Control Eng. Pract. 2012, 20, 111-122. [CrossRef]

Schaich, R.M.; Cannon, M. Maximising the guaranteed feasible set for stochastic MPC with chance constraints.
IFAC-PapersOnLine 2017, 50, 8220-8225. [CrossRef]

Zhang, X.; Georghiou, A.; Lygeros, ]. Convex approximation of chance-constrained MPC through piecewise
affine policies using randomized and robust optimization. In Proceedings of the 2015 54th IEEE Conference on
Decision and Control (CDC), Osaka, Japan, 15-18 December 2015; pp. 3038-3043. [CrossRef]

Au, SK.; Beck, J.L. Estimation of small failure probabilities in high dimensions by subset simulation.
Probab. Eng. Mech. 2001, 16, 263-277. [CrossRef]

Au, SK. Engineering Risk Assessment with Subset Simulation; Wiley: Hoboken, NJ, USA, 2014. [CrossRef]

Betts, ].T. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd ed.; Advances
in Design and Control; Society for Industrial and Applied Mathematics (SIAM 3600 Market Street Floor 6
Philadelphia PA 19104): Philadelphia, PA, USA, 2010.

Rieck, M.; Bittner, M.; Griiter, B.; Diepolder, J.; Piprek, P. FALCON.m User Guide, Institute of Flight
System Dynamics, Technical University of Munich, 2019. Available online: www.falcon-m.com (accessed on
30 March 2019).

Wichter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale
nonlinear programming. Math. Program. 2006, 106, 25-57. [CrossRef]

Wiener, N. The Homogeneous Chaos. Am. J. Math. 1938, 60, 897. [CrossRef]

Xiu, D. Numerical Methods for sTochastic Computations: A Spectral Method Approach; Princeton University Press:
Princeton, NJ, USA, 2010.

Witteveen, J.A.; Bijl, H. Modeling Arbitrary Uncertainties Using Gram-Schmidt Polynomial Chaos.
In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 9-12 January 2006.
Xiu, D. Fast Numerical Methods for Stochastic Computations: A Review. Commun. Comput. Phys. 2009,
5,242-272.

Bittner, M. Utilization of Problem and Dynamic Characteristics for Solving Large Scale Optimal Control Problems.
Dissertation, Technische Universitat Miinchen, Garching, Germany, 2016.

Sherlock, C.; Fearnhead, P.; Roberts, G.O. The Random Walk Metropolis: Linking Theory and Practice Through a
Case Study. Stat. Sci. 2010, 25, 172-190. [CrossRef]

Bucklew, J.A. Introduction to Rare Event Simulation; Springer Series in Statistics; Springer: New York, NY,
USA, 2004. [CrossRef]

Au, SK; Patelli, E. Rare event simulation in finite-infinite dimensional space. Reliab. Eng. Syst. Saf. 2016,
148, 67-77. [CrossRef]

Papaioannou, I, Betz, W.; Zwirglmaier, K.; Straub, D. MCMC algorithms for Subset Simulation.
Probab. Eng. Mech. 2015, 41, 89-103. [CrossRef]

Zuev, KM; Beck, J.L.; Au, S.K.; Katafygiotis, L.S. Bayesian post-processor and other enhancements of Subset
Simulation for estimating failure probabilities in high dimensions. Comput. Struct. 2012, 92-93, 283-296.
[CrossRef]

189



Processes 2019, 7, 185

26.

27.

28.

29.

30.

Skotte, J. Optimal Charging Strategy for Electric Vehicles. Master’s Thesis, Chalmers University of Technology,
Gothenburg, Sweden, May 2018.

Paulson, J.A.; Mesbah, A. Shaping the Closed-Loop Behavior of Nonlinear Systems Under Probabilistic
Uncertainty Using Arbitrary Polynomial Chaos. In Proceedings of the 2018 IEEE Conference on Decision
and Control (CDC), Miami Beach, FL, USA, 17-19 December 2018; pp. 6307-6313. [CrossRef]

Blatman, G.; Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression.
J. Comput. Phys. 2011, 230, 2345-2367. [CrossRef]

Paulson, J.A.; Buehler, E.A.; Mesbah, A. Arbitrary Polynomial Chaos for Uncertainty Propagation of Correlated
Random Variables in Dynamic Systems. IFAC-PapersOnLine 2017, 50, 3548-3553. [CrossRef]

Piprek, P.; Holzapfel, F. Robust Trajectory Optimization combining Gaussian Mixture Models with Stochastic
Collocation.  In Proceedings of the IEEE Conference on Control Technology and Applications (CCTA),
Mauna Lani, HI, USA, 27-30 August 2017; pp. 1751-1756.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution (CC
[

BY) license (http://creativecommons.org/licenses/by/4.0/).

190



processes MBPY

Article
Global Evolution Commended by Localized Search
for Unconstrained Single Objective Optimization

Rashida Adeeb Khanum ', Muhammad Asif Jan 2**, Nasser Tairan >, Wali Khan Mashwani %%,

Muhammad Sulaiman #f, Hidayat Ullah Khan 5 and Habib Shah 3*
1

2

Jinnah College for Women, University of Peshawar, Peshawar 25000, Pakistan; rakhan@uop.edu.pk

Institute of Numerical Sciences, Kohat University of Science & Technology, Kohat 26000, Pakistan;

mashwanigr8@gmail.com

3 College of Computer Science, King Khalid University, Abha 61321, Saudi Arabia;
nmtairan@kku.edu.sa (N.T.); habibshah.uthm@gmail.com (H.S.)

4 Department of Mathematics, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
sulaiman513@gmail.com

5 Department of Economics, Abbottabad University of Science & Technology, Abbottabad 22010, Pakistan;
masmaleo@yahoo.com

*  Correspondence: majan@kust.edu.pk or majan.math@gmail.com; Tel.: +92-313-998-6123

1t These authors contributed equally to this work.

Received: 27 April 2019; Accepted: 27 May 2019; Published: 11 June 2019

Abstract: Differential Evolution (DE) is one of the prevailing search techniques in the present era
to solve global optimization problems. However, it shows weakness in performing a localized
search, since it is based on mutation strategies that take large steps while searching a local area.
Thus, DE is not a good option for solving local optimization problems. On the other hand, there are
traditional local search (LS) methods, such as Steepest Decent and Davidon—Fletcher-Powell (DFP)
that are good at local searching, but poor in searching global regions. Hence, motivated by the short
comings of existing search techniques, we propose a hybrid algorithm of a DE version, reflected
adaptive differential evolution with two external archives (RJADE/TA) with DFP to benefit from both
search techniques and to alleviate their search disadvantages. In the novel hybrid design, the initial
population is explored by global optimizer, RIADE/TA, and then a few comparatively best solutions
are shifted to the archive and refined there by DFP. Thus, both kinds of searches, global and local,
are incorporated alternatively. Furthermore, a population minimization approach is also proposed.
At each call of DFP, the population is decreased. The algorithm starts with a maximum population
and ends up with a minimum. The proposed technique was tested on a test suite of 28 complex
functions selected from literature to evaluate its merit. The results achieved demonstrate that DE
complemented with LS can further enhance the performance of RJADE/TA.

Keywords: optimization; evolutionary computation; population minimization; hybridization; local
search; global search; adaptive differential evolution; external archives; metaheuristics

1. Introduction

Nonlinear unconstrained optimization is an active research area, since many real-life
challenges/problems can be modeled as a continuous nonlinear optimization problem [1]. To deal
with this kind of optimization problems, various nature-inspired population based search mechanisms
have been developed in the past [2]. A few of those are Differential Evolution (DE) [3,4], Evolution
Strategies (ES) [2,5], Partical Swarm Optimization (PSO) [6-9], Ant Colony Optimization (ACO) [10-13],
Bacterial Foraging Optimization (BFO) [14,15], Genetic Algorithm (GA) [16-18], Genetic Programming
(GP) [2,19-21], Cuckoo Search (CS) [22,23], Estimation of Distribution Algorithm (EDA) [24-28] and
Grey Wolf Optimization (GWO) [29,30].

Processes 2019, 7, 362; doi:10.3390/ pr7060362 191 www.mdpi.com/journal/processes
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DE does not need specific information about the complicated problem at hand [31]. That is
why DE is implemented to solve a wide variety of optimization problems in the past two
decades [30,32-34]. DE has merits over PSO, GA, ES and ACO, as it depends upon few control
parameters. Its implementation is very easy and user friendly, too [2]. Due to these advantages,
we selected DE to perform global search in the suggested hybrid design. In addition, because of its
easy nature, DE is implemented widely [35-42] on practical optimization problems [35-42]. However,
its convergence to known optima is not guaranteed [2,31,43]. Stagnation of DE is another weakness
identified in various studies [31].

Traditional search approaches, such as Nelder-Mead algorithm, Steepest Descent and DFP [44]
may be hybridized with DE to improve its search capability. Implementing LS into a global search
for enhancing the solution quality is called Memetic Algorithms (MAs) [31,45]. Some of the recent
MAs can be found in [1,31]. Very recently, Broyden-Fletcher-Goldfarb-Shanan LS was merged with
an adaptive DE version, JADE [46], which produced the MA, Hybridization of Adaptive Differential
Evolution with an Expensive Local Search Method [47]. In the majority of the established designs, LS is
implemented to the overall best solutions, while in our design it is applied to the migrated elements of
the archive. In addition, the population is adaptively decreased.

In this work, we propose a hybrid algorithm that combines DFP [44,48,49] with a recently
developed algorithm, RJADE/TA [50], to enhance RJADE/TA’s performance in local regions. The main
idea is to operate DFP on the elements that are shifted to archive and record the information from
both solutions, the previously brought forward and the new potential solutions to discourage the
chance of losing the globally best solution. For this purpose, firstly, DFP is implemented to the
archived information. Secondly, a decreasing population mechanism is suggested. The new algorithm
is denoted by RJADE/TA-ADP-LS.

The structure of this work is as follows. Section 2 presents primary DE, DFP, and RJADE/TA
methods. Section 3 describes the literature review. In Section 4, the suggested hybrid algorithm is
outlined. Section 5 is devoted to the validation of results achieved by RJADE/TA-ADP-LS. At the end,
the conclusions are summarized in Section 6.

2. Primary DE, DFP, and RJADE/TA

We reviewed in detail traditional DE and JADE in our previous works [47,50]. Here, we briefly
review primary DE, DFP and RJADE/TA for ready reference.

2.1. Primary DE

DE [3,4] starts with a random population in the given search region. After initialization, a mutation
strategy, where three different individuals from population are randomly selected and the scaled
difference of the two individuals to the third one, target vector is added to produce a mutant vector.
Following mutation, the mutant and the target vectors are combined through a crossover operator to
produce a trial vector. At last, the target and trial vectors are compared based on a fitness function to
select the better one for the next generation (see Lines 7-20 of Algorithm 1).
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Algorithm 1 Outlines of RJADE/TA Procedure.
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To form the primary population P, produce N [Porl vectors uniformly and randomly,

o Ayt (]

Wiisi) Wil Whis gy’

w

. Mlfirst] — pglsec] —

. Initialize ACR = AF = 0.5; p = 5%; c = 0.1;
: Set Scr = Sp=@;

: Evaluate Py;

. while FEs < MaxFEs do

F; = rand(AF,0.1);
Randomly sample wE Y] st) in 100p% pop;

Choose w{y} # w{/} in Py;

lis]

Choose w{y} # w{y }] in P, U MUirstl do random selection;

Produce the mutant vector w[{y} ut] @S w[{lyn}m] = f‘zys}] + Fi(w éfei/t}) F %) + Fi(w {y}] —wirhy;

Produce the trial vector q[{y { as follows.

fori=1tondo

if i <ipgpq or rand(0,1) < CR; then
{y} fvy .
1]] [imut;]’

else

{vy _ Ay}
ij) = “lisy)’

end for

Best selection {w{lys}, q{y}}

if qi{j }] is the best then

wilh = MU, CR; — Scr, F — Sp;
end if

If size of MUirstl > N [7”"7”], delete extra solutions from ML/i7st] randomly;
Update M as follows.

if y = « then

[{]yb}est] — M[SEC];
Py — P []ybect] /
Centroid calculation — w pon ZN o {y }
{J {j} +(w {y} );

Reflection mechanism — w[/ il W[] best] )

end if
ACR = (1 —¢) - ACR + ¢ - mean 5 (ScRr);
AF = (1—c)-AF +c-meany(Sr);

end while

{v}

Result: The best solution W (jest) corresponding to minimum function f(w) value from P,UM [sec]

in the optimization.
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2.2. Reflected Adaptive Differential Evolution with Two External Archives (RTADE/TA)

RJADE/TA [50] is an adaptive DE variant. Its main idea is to archive comparatively best solutions
of the population at regular interval of optimization process and reflect the overall poor solutions.
RJADE/TA inserts the following techniques in JADE. The techniques are presented in Table 1.

Table 1. Algorithmic parameters.

MUrstl First archive Mmlsed Second archive
P, Primary population Nlpor] Population size
FEs Function evaluations MaxFEs ~ Maximum function evaluations
A FEs of RIADE/TA K Gap between two successive updates of M!sec!
ACR Crossover probability AF Mutation scaling factor
Scr Set of successful crossover probabilities Sk Set of successful mutation factors
w No. of iterations of DFP r Number of migrated solutions to M|
w[{ﬁm] " New candidate/solution at iteration y w[%}g ) jt" Ever best candidate/solution at iteration

To prevent premature convergence and stagnation, the best solution, w[{jy}

best
reflection in RJADE/TA and is then shifted to the second archive M [sec],
The reflected solution replaces wEiyh}est] in the population and the ever best candidate wi{],yb}gs f

| is replaced by its

by itself is migrated to the second archive M[**!. RJADE/TA maintains two archives, termed as
MUrst] and M) for convenience. After half of available resources are utilized (MaxFEs), the first
archive update of the second archive, M[%¢, is made. Afterwards, M**] is updated adaptively with a
continuing intermission of generations (see Algorithm 1).

The overall best candidates are transferred to M*c], whereas MU/7"s!] records the recently explored
poor solutions. The size of MU/s!] is fixed, equal to population size NIP??], while the size of M} may
exceed NIP°Pl. As M keeps information of all best solutions found, no solution is deleted from it.
M) records only one solution of the current iteration, it may be a child or a parent, whereas MU/l
makes a history of more than one inferior “parent solutions” only. M Uirst] g updated at every iteration
and M, initialized as @, is updated with a gap of & iterations adaptively. The recorded history
of MUirst] is utilized in reproduction later on. In contrast, in M [S“], the recorded best individual is
reflected with a new solution, which is then sent to the population. Once a candidate solution is posted
to M5l it remains passive during the whole optimization. When the search procedures are terminated,
then the recoded information contributes towards the selection of the best candidate solution.

2.3. Davidon—Fletcher—Powell (DFP) Method

The DFP method is a variable metric method, which was first proposed by Davidon [51] and then
modified by Powell and Fletcher [52]. It belongs to the class of gradient dependent LS methods. If a
right line search is used in DFP method, it will assure convergence (minimization) [49]. It calculates
the difference between the old and new points, as given in Equation (1). Then, it finds the difference of
the gradients at these points as calculated in Equation (2).

iy = wily —wl @
tgy = VF(WIT) — vr(wll). ®

It then updates the Hessian matrix H as presented in Equation (3). Afterwards, it locates
the optimal search direction sl with the help of the Hessian matrix information as calculated in
Equation (4). Finally, the output solution wli*1) is computed by Equation (5), where all is calculated
by a line search method; golden section search method is used in this work.

(o bwy) (HU]t{g}t{g}H[/]) ;

Hi+ = gl 4 .
torts) t HUE

194



Processes 2019, 7, 362

sl = fHU]Vf(wU]) @)
wiitl = wlil 4 4l gl (5)
3. Related Work

To fix the above-mentioned weaknesses of DE, many researchers merged various LS techniques
in DE. Nelder-Mead LS is hybridized with DE [53] to improve the local exploitation of DE. Recently,
two new LS strategies are proposed and hybridized iteratively with DE in [1,31]. These hybrid designs
show performance improvement over the algorithms in comparison. Two LS strategies, Trigonometric
and Interpolated, are inserted in DE to enhance its poor exploration. Two other LS techniques are
merged in DE along with a restart strategy to improve its global exploration [54]. This algorithm is
statistically sound, as the obtained results are better than other algorithms. Furthermore, alopex-based
LS is merged in DE [55] to improve its diversity of population. In another experiment, DE’s slow
convergence is enhanced by combining orthogonal design LS [56] with it. To avert local optima in DE,
random LS is hybridized [57] with it. On the other hand, some researchers borrowed DE’s mutation
and crossover in traditional LS methods (see, e.g., [58,59]).

To the best of our knowledge, none of the reviewed algorithms in this section integrate DFP into
DE’s framework. Further, the proposed work here maintains two archives: the first one stores inferior
solutions and the second one keeps information of best solutions migrated to it by the global search.
Furthermore, the second archive improves the solutions quality further by implementing DFP there.
Hence, our proposed work has the advantage that the second archive keeps complete information
of the solution before and after LS. This way, any good solution found is not lost. It also adopts a
population decreasing mechanism.

4. Developed Algorithm

As discussed in the literature review, LS techniques, due to their demerits, should not be used
alone to solve optimization problems [2]. The global optimality of global evolution techniques is very
high, but they can get stuck in local regions and cannot fine tune the solution at hand. Thus, motivated
by above issues of global/local techniques, we hybridize a global optimizer RJADE/TA with DFP
to enhance the convergence in both regions. The new design is named as RJADE/TA-ADP-LS.
We specifically handle unconstrained, nonlinear, continuous, and single objective optimization
problems in the current work.

RJADE/TA-ADP-LS

The initial population is evolved globally by RJADE/TA [50] until A% of the function evaluations;
that is, after RJADE/TA’s iterative mutation, crossover, selection and M [first] process, as shown in
Algorithm 1, the population is sorted and the current best solution WEI;‘,]best) is translated to M,
This best solution may be a parent or a child solution. The DFP is applied to the shifted elements for
w iterations. After implementation of DFP, a new improved solution WE];]MW) is produced from an
old migrant. Then, the previously explored best solution and this new solution are posted to archive
Mbee]. Unlike our perviously proposed archive Ml in RIADE/TA, where the archive keeps the
record of best solutions only and no LS is implemented, M [sec] a5 mentioned above, in this method
maintains information of both solutions, i.e., the migrated best solution and its improved version,
if any, after implementation of DFP.

The archive M is updated after regular intervals of x generations (20 here). The migrated
solutions and those explored by DFP remain there during the entire evolution process. When the
evolution process completes, the overall best candidate is selected from P,UM 5], The novelty of
RJADE/TA-ADP-LS is that it employs DFP to the archived solutions only, unlike all hybrid designs
reviewed in Section 3.
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In the proposed hybrid mechanism, we implement DFP to the migrated best solution to obtain its
improved form, but without reflection, as displayed in the flowchart given in Figure 1, unlike in our
recently proposed work [60]. Moreover, in this model, we propose adaptively decreasing population
(ADP) mechanism different from the fixed population approach of Khanum et al. [60]. We refer to this
new hybrid as RJADE/TA-ADP-LS throughout this work. The idea of RTADE/TA-ADP-LS is novel in
proposing the ADP approach, because, in the literature, majority of the evolutionary algorithms (as
reviewed in Section 3) maintain a fixed population throughout the searching process.

Generate random
population
of size NPorl

Implement RJADE/TA with-
out reflection till A genera-
tions and sort the population

|

Migrate the best solution to M sl

Apply DFP w iterations to
the best solution to produce
an improved best solution

|

Migrate the improved best solution to
Mlsecl and update NPorl = Nror _ 1

Is stopping criterion met? Go back to step 2

Output opti-
Figure 1. Flowchart of RJADE/TA-ADP-LS.
In this design, when the first update of M*] is made after half of the available resources are

spent, DFP is applied to the archive members. The implementations of DFP and ADP are shown
in Algorithm 2. Both the previously located best solution, wﬁrvges i and the one exploited by DFP,

w{% 1} , are propagated to M[5¢/, No reflection is made here to compensate the decreasing population.
new)
The ADP approach (Algorithm 2, Lines 6-8) is implemented as:

PP = PP - wﬁ]'?b}est]' ©)
Hence, v W v}
_ Y Y Yy

Po = AW Whisa = Wiis o 1) @

FB) = LF L) FOT e SO ) ®

Every time M is updated, the migrated element is removed from the current population b,
(see Equation (6)), and the population is decreased by one. Thus, after each break of x generations,
(= the number of times the x breaks occur) solutions are removed from N#?], and the population
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size is updated to N [pop] — 7, as demonstrated on Line 11 of Algorithm 2. Furthermore, the function
values are updated accordingly (see Equations (7) and (8)). In ADP approach, the algorithm begins
with a maximum population and terminates with a minimum population.

Algorithm 2 RJADE/TA-ADP-LS.

1: Update M5 as follows.
2: if k = « then

3: w%}est] — Mlsed;
4: Apply DFP to w[{].yb}g 51 tO prduce wéy’ 1}ew] ;
5: w{.y} s Mlsed;

[j,new]

. — (Wit {v}
6 P = WG Wil Wlis )

: — {v} vt {v}
7: f(Pp) = {f(w[]-ﬁ]])/f(w[/,sﬂ)/- . ~rf(w[]-,5N[pule]
3: Nlporl = Nlror] — 1;

9: end if
10: Terminate the iteration;

iy

11: Repeat the process r number of times and update N[P?] = Nlpor] —r,

5. Validation of Results

In this section, first we briefly illustrate the five algorithms used for comparison and then the
experimental results are presented.

5.1. Global Search Algorithms in Comparison

Among the five algorithms for comparison, the first two, RJADE/TA and RJADE/TA-LS,
are our recently proposed hybrid algorithms, while the remaining three, jDE, jDEsoo and jDErpo,
are non-hybrid, but adaptive and popular DE variants.

5.1.1. RJADE/TA

RJADE/TA [50], similar to RTADE/TA-ADP-LS, utilizes two archives for information. One of
the archives stores inferior solutions, while the other keeps a record of superior solutions. However,
in RJADE/TA-ADP-LS, the second archive stores elite solutions, which are then improved by DFP.
Further details of RIADE/TA can be seen in Section 2.2.

5.1.2. RJADE/TA-LS

RJADE/TA-LS [60] is a very recently proposed hybrid version of global and local search.
However, it is different from RJADE/TA-ADP-LS in the sense that it utilizes reflection mechanism and
a fixed population, while RJADE/TA-ADP-LS uses DFP as LS without reflection and a population
decreasing approach.

5.1.3.DE

jDE [61] is an adaptive version of DE, which is based on self-adaption of control parameters
F and CR. In jDE, the parameters F and CR keep changing during the evolution process, while
the population size NIPP! is kept unchanged. Every solution in jDE has its own F and CR values.
Better individuals are produced due to better values of F and CR. Such parameter values translate
to upcoming generations of jDE. Because of its unique mechanism and simplicity, jDE has gained
popularity among researchers in the field of optimization. Since its establishment, people use it to
compare with their own algorithms.
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5.1.4. jDEsoo and jDErpo

jDEsoo [62] is a new version of DE that deals with single-objective optimization. jDEsoo
subdivides the population and implements more than one DE strategies. To enhance diversity of
population, it removes those individuals from population that remain unchanged in the last few
generations. It was primarily developed for CEC 2013 competition.

jDErpo [61] is an improvement of jDE. It is based on the following mechanisms. Firstly,
it incorporates two mutation strategies, different from jDE, DE and RJADE/TA. Secondly, it uses
adaptively increasing strategy for adjusting the lower bounds of control parameters. Thirdly, it utilizes
two pairs of control parameters for two different mutation strategies in contrast to one pair of
parameters used in jDE, classic DE and RJADE/TA. jDErpo was also specially designed for solving
CEC 2013 competition problems.

5.2. Parameter Settings/Termination Criteria

Experiments were performed on 28 benchmark test problems of CEC 2013 [63]. They are referred
as BMF1-BMF28. The parameters’ settings were kept the same as demanded in [63]. The dimension n
of each problem was set to 10, population size N[P°! to 100, and the MaxFEs to 10,000 x . The number
of elite solutions » was kept as 1. The iterations number w of DFP was set to 2. The reduction of
population per archive update r was also chosen as 1. The gap & between successive updates of M¢!
was kept as 20. The optimization was terminated if either MaxFEs were reached or the difference
between the means of function error values was less than 1078, as suggested in [50,63].

Table 2. Comparison of RJADE/TA-ADP-LS with Well Established Algorithms.

Bench Marks jDE jDEsoo jDErpo RJADE/TA RJADE/TA-ADP-LS
BMF1 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0
BMF2 7.6534e — 05—  1.7180e + 03— 0.0000e + 0= 0.0000e + 0= 0.0000e + 00
BMF3 1.3797e + 0+ 1.6071e + 0+ 3.7193e — 05+  1.2108e + 02+ 2.0350e + 02
BMF4 3.663% — 08+  1.2429¢ — 01+ 0.0000e + 0+ 1.1591e + 02+ 2.9749¢ + 02
BMF5 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 00
BMF6 8.6581e +0—  8.4982e+ 04—  5.3872e+ 0+ 7.8884e + 0— 5.4656e + 00
BMF7 2.7229e — 03+  9.4791e — 01— 1.6463e — 03+ 1.5927e — 01+ 2.3707e — 01
BMF8 2.0351e +01=  2.0348e + 01+  2.0343e + 01+  2.0366e + 01— 2.0352e + 01
BMF9 2.6082e + 0+ 2.7464e + 0+ 6.4768e — 01+ 4.4593e + 0+ 4.6182e + 00

BMF10 4.5263e — 02— 7.0960e — 02—  6.4469e — 02—  3.5342¢ — 02— 3.2488e — 02
BMF11 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0
BMF12 1.2304e + 01—  6.1144e +0+  1.3410e+01—  7.7246e + 0— 7.0574e + 00
BMF13 1.3409¢ + 01— 7.8102e +0+  1.438le+ 01— 6.7571e + 0+ 9.7072e + 00
BMF14 0.0000e + 0+  5.0208e — 02—  1.9367e 4+ 01—  1.1994e — 02— 5.3105e — 03
BMF15 1.1650e + 03—  8.4017e + 02— 1.1778¢e + 03—  6.6660e + 02+ 7.3411e + 02
BMF16 1.0715e + 0— 1.0991e + 0— 1.0598e + 0— 1.1336e + 0— 1.0545e + 00
BMF17 1.0122e 4 01= 9.9240e + 0+ 1.0997e + 01— 1.0122e + 01= 1.0122e 4 01
BMF18 3.2862e + 01—  2.7716e + 01—  3.2577e + 01— 2.2715e + 01+ 2.4399% + 01
BMF19 43817e — 01—  3.1993e — 01—  7.4560e — 01—  4.4224e — 01— 4.2674e — 01
BMF20 3.0270e + 0— 2.7178e + 0— 2.5460e + 0+ 2.5317e 4+ 0+ 2.6153e + 00
BMF21 3.7272e + 02+  3.5113e + 02+  3.7272e + 02+  3.9627e + 02+ 4.001% + 02
BMF22 7.9231le+01— 9.1879e+01— 9.7978e+ 01—  2.7022e 4 01— 1.3178e + 01
BMF23 1.1134e + 03— 8.1116e+ 02— 1.1507e +03—  7.0015e 4 02— 4.8553e + 02
BMF24 2.0580e + 02—  2.085le + 02—  1.8865e + 02—  2.0217e + 02— 1.0823e + 02
BMF25 2.0471e + 02—  2.0955e + 02—  1.9885e + 02—  2.0314e + 02— 1.7732e + 02
BMF26 1.8491e + 02—  1.9301e + 02— 1.1732e + 02+ 1.2670e + 02— 1.2096e + 02
BMF27 4.7470e + 02— 4.9412e + 02— 3.0000e + 02+ 3.0351e + 02+ 3.0514e + 02
BMF28 2.9216e + 02—  2.8824e + 02—  2.9608e + 02—  2.8824e + 02— 2.8500e + 02

- 17 17 14 13

+ 6 8 10 10

= 5 3 4 5

5.3. Comparison of RIADE/TA-ADP-LS aguinst Established Global Optimizers

The mean of function error values, the difference between known and approximated values,
for jDE, jDEsoo, jDErpo, RJADE/TA and RJADE/TA-ADP-LS, are presented in Table 2. In Table 2,
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+ indicates that the algorithm won against our algorithm, RJADE/TA-ADP-LS; — indicates that the
particular algorithm lost against our algorithm; and = indicates that both algorithms obtained the
same statistics. The comparison of RJADE/TA-ADP-LS with other competitors showed its outstanding
performance against all of them. RJADE/TA-ADP-LS achieved higher mean values than jDE and
jDEsoo on 17 out of 28 problems; the many — signs in columns 2 and 3 of Table 2 support this fact.
In contrast, jDE and jDEsoo performed better on six and eight problems, respectively.

RJADE/TA-ADP-LS showed performance improvement against jDErpo and RJADE/TA
algorithms as well. In general, RIADE/TA-ADP-LS performed better than all algorithms in comparison,
especially in the category of multimodal and composite functions. The proposed mechanism is not
only based on LS for local tuning with no reflection, but it also implements an ADP approach, which
could be the reasons for its good performance.

5.4. Performance Evaluation of RIADE/TA-ADP-LS Versus RIADE/TA-LS

We empirically studied the performance of RTADE/TA-ADP-LS against RJADE/TA-LS. Table 3
presents the mean results achieved by both methods in 51 runs. The best results are shown in bold face.
It is very clear from the results in Table 3 that the proposed RJADE/TA-ADP-LS performed higher
than RJADE/TA-LS on 13 out of 28 problems. Furthermore, on five problems, they obtained the same
results. RJADE/TA-LS showed performance improvement on 10 test problems.

Table 3. Comparing RJADE/TA-ADP-LS with RJADE/TA-LS.

BMF1 BMF2 BMF3 BMF4 BMF5 BMF6 BMF7
RJADE/TA-LS 0.0000e+00 0.0000e+00 2.5750e +- 02 3.9511e+01 0.0000e+00 6.9264e +00 2.3707e-01
RJADE/TA-ADP-LS Mean 0.0000e+00 0.0000e+00 2.0350e + 02 2.9749e+02 0.0000e+00 5.4656e+00 2.3707e — 01
BMF8 BMF9 BMF10 BMF11 BMF12 BMF13 BMF14
RJADE/TA-LS 2.0342e+01 4.4888e + 00 3.2488e-02 0.0000e+00 6.8613e+00 7.9039e+00 7.3105e — 003
RJADE/TA-ADP-LS Mean 2.0352e + 01 4.6182e+00 3.2488e-02  0.0000e+00 7.0574e 4-00 9.7072e +00 5.3105e-03
BMF15 BMF16 BMF17 BMF18 BMF19 BMF20 BMF21
RJADE/TA-LS 6.6733e+02 1.0855e 00 1.0122e+01 1.0122e+01 4.4752e — 01 2.5707e+00  3.9627e+02
RJADE/TA-ADP-LS Mean 7.3411e + 02 1.0545e+00 1.0122e+01 2.4399e + 01 4.2674e-01 2.6153e + 00 4.0019e + 02
BMF22 BMF23 BMF24 BMF25 BMF26 BMF27 BMF28
RJADE/TA-LS 2.0589% + 01 6.7549e + 02 1.9809e + 02 2.0190e + 02 1.3596e +- 02 3.0033e+02 3.0000e + 02

RJADE/TA-ADP-LS Mean 1.3178e+01 4.8553e+02 1.0823e+02 1.7732e+02 1.2096e+02 3.0514e + 02 2.8500e+02

It is interesting to note that RTADE/TA-ADP-LS showed outstanding performance in the category
of composite functions, where it solved BMF22-BMF28 better than RJADE/TA-LS. Again, the two
different mechanisms, the ADP approach and the LS search with out reflection, of RJADE/TA-ADP-LS
could be the reasons for its better performance. Among 28 problems, RJADE/TA-LS was better
on 10 functions. Further, Table 4 presents the percentage performance of RJADE/TA-ADP-LS and
RJADE/TA-LS. Since on five test problems, both algorithms showed equal results, thus we compared
the percentage for the remaining 23 problems. As shown in Table 4, RJADE/TA-ADP-LS was able to
solve 57% of problems against 43% of problems solved by RJADE/TA-LS out of 23 test instances.

Table 4. Comparing RJADE/TA-ADP-LS with RJADE/TA-LS.

Algorithms RJADE/TA-ADP-LS  RJADE/TA-LS
Number of Problems solved in total of 23 13 of 23 10 of 23
% age 57% 43%

Furthermore, box plots were plotted from all means obtained in 25 runs of RJADE/TA,
RJADE/TA-LS and RJADE/TA-ADP-LS. Figures 2 and 3 plot one function from each three functions.
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Box plots are very good tools to show the spread of the data. Figure 2b—d shows that the boxes obtained
by RJADE/TA-ADP-LS were lower than the other two boxes, indicating its better performance.
Figure 2a presents the plot of BMF3, in which the two boxes in comparison were lower than
RJADE/TA-ADP-LS, thus they were better.

Figure 3b,d,f shows that the boxes obtained by RJADE/TA-ADP-LS on BMF19, BMF25 and
BMF27 were lower than the boxes of RTADE/TA and RJADE/TA-LS, indicating higher performance of
RJADE/TA-ADP-LS. Figure 3a,c,e shows that the two other algorithms were better on the respective
test instances.

5.5. Analysis/Discussion of Various Parameters Used

The number of solutions r to be migrated to archive and undergo DFP was kept as 1, since DFP is
an expensive method due to gradient calculation. Further, its application to more than one solution
might slow down the algorithm. The users may take two, but at most three is suggested. The number
of iteration w of DFP to archive elements was kept as 2. DFP is a very good method; it could fine tune
the solutions in only two iterations. Moreover, the decreasing number r of population per archive
update was also chosen as 1. Since the archive was updated after regular gap of global evolution, each
time population was decreased by one. However, if we reduced it by more than one solutions, then a
stage would come where the diversity of the population would be decreased and the algorithm would
either stop at local optima or converge prematurely. We suggest that the decreasing number be at most
3. In general, these parameters are user defined but should be chosen wisely to compliment the global
and local search together, instead of premature convergence or stagnation.
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Figure 2. Box plots of various algorithms in comparison.
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Figure 3. Box plots of various algorithms in comparison.
6. Conclusions

This paper proposed a new hybrid algorithm, RJADE/TA-ADP-LS, where a LS mechanism,
DEFP is combined with a DE based global search scheme, RJADE/TA to benefit from their searching
capabilities in local and global regions. Further, a population decreasing mechanism is also adopted.
The key idea is to shift the overall best solution to archive at specified regular intervals of RTADE/TA,
where it undergoes DFP for further improvement. The archive stores both the best solution and its
improved form. Furthermore, the population is decreased by one solution at each archive update.
We evaluated and compared our hybrid method with five established algorithms on test suit of CEC
2013. The results demonstrated that our new algorithm is better than other competing algorithms on
majority of the tested problems, particularly our algorithm showed superior performance on hard
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multimodal and composite problems of CEC 2013. In future, the present work will be extended to
constrained optimization. As a second task, some other gradient free LS methods, global optimizers
and archiving strategies will be tried to design more efficient algorithms for global optimization.

Author Contributions: Conceptualization, R.A.K. and M.AJ.; methodology, R.AK., M.AJ., and WK.M.;
software, R.AK., N.T. and H.S.; validation, H.U.K., M.S. and H.S.; formal analysis, R.A.K., M.A.J., and WK.M.;
investigation, R.A.K.,, M.A.J. and M.S.; resources, N.T. and H.S.; writing—original draft preparation, R.AK.,
M.A].; writing—review and editing, H.U.K. and M.S.; project administration, N.T.; and funding acquisition, N.T.
and H.S.

Funding: The authors would like to thank King Khalid University of Saudi Arabia for supporting this research
under the grant number R.G.P.2/7/38.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Price, K.V. Eliminating drift bias from the differential evolution algorithm. In Advances in Differential
Evolution; Springer: Berlin, Germany, 2008; pp. 33-88.

2. Xiong, N.; Molina, D.; Ortiz, M.L.; Herrera, F. A walk into metaheuristics for engineering optimization:
principles, methods and recent trends. Int. |. Comput. Intell. Syst. 2015, 8, 606-636. [CrossRef]

3. Storn, R;; Price, K.V. Differential Evolution—A simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341-359. [CrossRef]

4. Storn, R. Differential evolution research—Trends and open questions. In Advances in Differential Evolution;
Springer: Berlin, Germany, 2008; pp. 1-31.

5. Engelbrecht, A.; Pampara, G. Binary Differential Evolution Strategies. In Proceedings of the IEEE Congress
on Evolutionary Computation (CEC 2007), Singapore, 25-28 September 2007; pp. 1942-1947.

6.  Kennedy,].; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, WA, Australia, 27 November-1 December 1995; pp. 1942-1948.

7. Kennedy, J.; Eberhart, R. A Discrete Binary Version of the Partical Swarm Algorithm. In Proceedings of the
World Multiconference on Systemics, Cybernetics and Informatics, Orlando, FL, USA, 12-15 October 1997;
pp. 4104-4109.

8.  Eberhart, R.C.; Kennedy, ]. A New Optimizer using Particle Swarm Theory. In Proceedings of the 6th
International Symposium on Micromachine and Human Science, Nagoya, Japan, 4-6 October 1995; pp. 39-43.

9. Eberhart, R.C.; shi, Y. Guest Editorial: Special Issue on Particle Swarm Optimization. IEEE Trans.
Evol. Comput. 2004, 8, 201-203. [CrossRef]

10. Dorigo, M. Ant colony optimization. Scholarpedia 2007, 2, 1461. [CrossRef]

11. Dorigo, M.; Birattari, M. Ant colony optimization. In Encyclopedia of Machine Learning; Springer: Berlin,
Germany, 2011; pp. 36-39.

12.  Al-Salami, N.M. System evolving using ant colony optimization algorithm. J. Comput. Sci. 2009, 5, 380.
[CrossRef]

13. Cui, L; Zhang, K; Li, G.; Wang, X; Yang, S.; Ming, Z.; Huang, ].Z.; Lu, N. A smart artificial bee colony
algorithm with distance-fitness-based neighbor search and its application. Future Gener. Comput. Syst. 2018,
89, 478-493. [CrossRef]

14. Passino, K.M. Bacterial foraging optimization. Int. ]. Swarm Intell. Res. (IJSIR) 2010, 1, 1-16. [CrossRef]

15.  Gazi, V,; Passino, K.M. Bacteria foraging optimization. In Swarm Stability and Optimization; Springer: Berlin,
Germany, 2011; pp. 233-249.

16. Moscato, P. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic
algorithms. Caltech Concurr. Comput. Prog. C3P Rep. 1989, 826, 1989.

17. Fan, SK.S.; Zahara, E. A hybrid Simplex Search and Partical Swarm optimization for unconstrained
optimization. Eur. . Oper. Res. 2007, 181, 527-548. [CrossRef]

18. Yuen, S.Y.; Chow, C.K. A Genetic Algorithm that Adaptively Mutates and Never Revisits. [EEE Trans.
Evol. Comput. 2009, 13, 454-472. [CrossRef]

19. Koza, J.R. Genetic Programming 11, Automatic Discovery Of Reusable Subprograms; MIT Press: Cambridge, MA,
USA, 1992.

202



Processes 2019, 7, 362

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.

46.

Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput.
1994, 4, 87-112. [CrossRef]

Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press:
Cambridge, MA, USA, 1992.

Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the IEEE World Congress on Nature &
Biologically Inspired Computing, Coimbatore, India, 9-11 December 2009; pp. 210-214.

Yang, X.S.; Deb, S. Engineering optimisation by cuckoo search. arXiv 2010, arXiv:1005.2908.

Larrafiaga, P.; Lozano, J.A. Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation;
Springer: Berlin, Germany, 2001; Volume 2.

Zhang, Q.; Sun, J.; Tsang, E.; Ford, J. Hybrid estimation of distribution algorithm for global optimization.
Eng. Comput. 2004, 21, 91-107. [CrossRef]

Zhang, Q.; Muhlenbein, H. On the convergence of a class of estimation of distribution algorithms. IEEE Trans.
Evol. Comput. 2004, 8, 127-136. [CrossRef]

Lozano, J.A.; Larrafaga, P; Inza, 1.; Bengoetxea, E. Towards a New Evolutionary Computation: Advances on
Estimation of Distribution Algorithms; Springer: Berlin, Germany, 2006; Volume 192.

Hauschild, M.; Pelikan, M. An introduction and survey of estimation of distribution algorithms.
Swarm Evol. Comput. 2011, 1, 111-128. [CrossRef]

Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46-61. [CrossRef]
Gupta, S.; Deep, K. Hybrid Grey Wolf Optimizer with Mutation Operator. In Soft Computing for Problem
Solving; Springer: Berlin, Germany, 2019; pp. 961-968.

Leon, M.; Xiong, N. Eager random search for differential evolution in continuous optimization. In Portuguese
Conference on Artificial Intelligence; Springer: Berlin, Germany, 2015; pp. 286-291.

Maucec, M.S.; Brest, J.; Boskovi¢, B.; Kaci¢, Z. Improved Differential Evolution for Large-Scale Black-Box
Optimization. IEEE Access 2018, 6, 29516-29531. [CrossRef]

Biswas, P.P; Suganthan, P.; Wu, G.; Amaratunga, G.A. Parameter estimation of solar cells using datasheet
information with the application of an adaptive differential evolution algorithm. Renew. Energy 2019,
132, 425-438. [CrossRef]

Sacco, W.E; Rios-Coelho, A.C. On Initial Populations of Differential Evolution for Practical Optimization
Problems. In Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering;
Springer: Berlin, Germany, 2019; pp. 53-62.

Wu, G,; Shen, X.; Li, H,; Chen, H.; Lin, A ; Suganthan, P. Ensemble of differential evolution variants. Inf. Sci.
2018, 423, 172-186. [CrossRef]

Awad, N.H.; Ali, M.Z.; Mallipeddi, R.; Suganthan, PN. An improved differential evolution algorithm using
efficient adapted surrogate model for numerical optimization. Inf. Sci. 2018, 451, 326-347. [CrossRef]
Al-Dabbagh, R.; Neri, E; Idris, N.; Baba, M. Algorithm Design Issues in Adaptive Differential Evolution:
Review and taxonomy. Swarm Evol. Comput. 2018, 43, 284-311. [CrossRef]

Betzig, L.L. Despotism, Social Evolution, and Differential Reproduction; Routledge: Abingdon, UK, 2018.
Opara, K.R.; Arabas, J. Differential Evolution: A survey of theoretical analyses. Swarm Evol. Comput. 2018,
44, 546-558. [CrossRef]

Das, S.; Mullick, S.S.; Suganthan, P. Recent advances in differential evolution An updated survey.
Swarm Evol. Comput. 2016, 27, 1-30. [CrossRef]

Cui, L.; Huang, Q.; Li, G.; Yang, S.; Ming, Z.; Wen, Z.; Lu, N.; Lu, J. Differential Evolution Algorithm With
Tracking Mechanism and Backtracking Mechanism. IEEE Access 2018, 6, 44252-44267. [CrossRef]

Cui, L.; Li, G; Zhu, Z.; Ming, Z.; Wen, Z.; Lu, N. Differential evolution algorithm with dichotomy-based
parameter space compression. Soft Comput. 2018, 23, 1-18. [CrossRef]

Meng, Z.; Pan, ].S.; Zheng, W. Differential evolution utilizing a handful top superior individuals with bionic
bi-population structure for the enhancement of optimization performance. Enterpr. Inf. Syst. 2018, 1-22.
[CrossRef]

Fletcher, R. Practical Methods of Optimization, 2nd ed.; Wiley: Hoboken, NJ, USA, 1987; pp. 80-87.

Lozano, M.; Herrera, F.; Krasnogor, N.; Molina, D. Real-Coded Memetic Algorithms with Crossover
Hill-Climbing. Evol. Comput. 2004, 12, 273-302. [CrossRef] [PubMed]

Zhang, ].; Sanderson, A.C. JADE: adaptive differential evolution with optional external archive. IEEE Trans.
Evol. Comput. 2009, 13, 945-958. [CrossRef]

203



Processes 2019, 7, 362

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Khanum, R.A; Jan, M.A; Tairan, N.M.; Mashwani, W.K. Hybridization of Adaptive Differential Evolution
with an Expensive Local Search Method. |. Optim. 2016, 1016, 1-14. [CrossRef]

Davidon, W.C. Variable metric method for minimization. SIAM J. Optim. 1991, 1, 1-17. [CrossRef]
Antoniou, A.; Lu, W.S. Practical Optimization: Algorithms and Engineering Applications; Springer: Berlin,
Germany, 2007.

Khanum, R.A.; Tairan, N.; Jan, M.A.; Mashwani, W.K.; Salhi, A. Reflected Adaptive Differential Evolution
with Two External Archives for Large-Scale Global Optimization. Int. ]. Adv. Comput. Sci. Appl. 2016,
7,675-683.

Spedicato, E.; Luksan, L. Variable metric methods for unconstrained optimization and nonlinear least
squares. J. Comput. Appl. Math. 2000, 124, 61-95.

Mamat, M.; Dauda, M.; bin Mohamed, M.; Waziri, M.; Mohamad, F.; Abdullah, H. Derivative free
Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations. IOP Conf. Ser.
Mater. Sci. Eng. 2018, 332, 012030. [CrossRef]

Ali, M.; Pant, M.; Abraham, A. Simplex Differential Evolution. Acta Polytech. Hung. 2009, 6, 95-115.
Khanum, R.A;; Jan, M.A.; Mashwani, W.K.; Tairan, N.M.; Khan, H.U.; Shah, H. On the hybridization of
global and local search methods. |. Intell. Fuzzy Syst. 2018, 35, 3451-3464. [CrossRef]

Leon, M.; Xiong, N. A New Differential Evolution Algorithm with Alopex-Based Local Search. In International
Conference on Artificial Intelligence and Soft Computing; Springer: Berlin, Germany, 2016; pp. 420-431.

Dai, Z.; Zhou, A.; Zhang, G.; Jiang, S. A differential evolution with an orthogonal local search. In Proceedings
of the IEEE Congress on Evolutionary Computation, Cancun, Mexico, 2023 June 2013; pp. 2329-2336.
Ortiz, M.L.; Xiong, N. Using random local search helps in avoiding local optimum in differential evolution.
In Proceedings of the IASTED, Innsbruck, Austria, 17-19 February 2014; pp. 413-420.

Khanum, R.A ; Zari, I; Jan, M.A.; Mashwani, W.K. Reproductive nelder-mead algorithms for unconstrained
optimization problems. Sci. Int. 2015, 28, 19-25.

Zari, I; Khanum, R.A ; Jan, M.A.; Mashwani, W.K. Hybrid (N)elder-mead algorithms for nonlinear numerical
optimization. Sci. Int. 2015, 28, 153-159.

Khanum, R.A.; Jan, M.A.; Mashwani, W.K.; Khan, H.U.; Hassan, S. RTADETA integrated with local search
for continuous nonlinear optimization. Punjab Univ. |. Math. 2019, 51, 37-49.

Brest, J.; Zamuda, A.; Fister, I; Boskovic, B. ~Some Improvements of the Self-Adaptive jDE
Algorithm. In Proceedings of the IEEE Symposium on Differential Evolution (SDE), Orlando, FL, USA,
9-12 December 2014; pp. 1-8.

Brest, ].; Boskovic, B.; Zamuda, A.; Fister, I.; Mezura-Montes, E. Real Parameter Single Objective Optimization
using self-adaptive differential evolution algorithm with more strategies. In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20-23 June 2013; pp. 377-383.

Liang, J;, Qu, B, Suganthan, P; Hernandez-Diaz, A.G. Problem definitions and evaluation
criteria for the CEC 2013 special session on real-parameter optimization, 2013. Available online:
http:/ /al-roomi.org /multimedia/CEC_Database /CEC2013/RealParameterOptimizationCEC2013_
RealParameterOptimization_TechnicalReport.pdf (accessed on 22 April 2019).

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



processes MBPY

Article

PEM Fuel Cell Voltage Neural Control Based on
Hydrogen Pressure Regulation

Andrés Moran-Duran, Albino Martinez-Sibaja *, José Pastor Rodriguez-Jarquin,
Rubén Posada-Gomez and Oscar Sandoval Gonzalez

Division of Postgraduate and Research studies, Tecnolégico Nacional de México/Instituto Tecnologico de
Orizaba, Orizaba, Veracruz 92670, México
* Correspondence: albino3_mx@yahoo.com; Tel.: +52-272-183-3256

Received: 30 May 2019; Accepted: 24 June 2019; Published: 10 July 2019

Abstract: Fuel cells are promising devices to transform chemical energy into electricity; their behavior
is described by principles of electrochemistry and thermodynamics, which are often difficult to model
mathematically. One alternative to overcome this issue is the use of modeling methods based on
artificial intelligence techniques. In this paper is proposed a hybrid scheme to model and control fuel
cell systems using neural networks. Several feature selection algorithms were tested for dimensionality
reduction, aiming to eliminate non-significant variables with respect to the control objective. Principal
component analysis (PCA) obtained better results than other algorithms. Based on these variables,
an inverse neural network model was developed to emulate and control the fuel cell output voltage
under transient conditions. The results showed that fuel cell performance does not only depend on
the supply of the reactants. A single neuro-proportional-integral-derivative (neuro-PID) controller is
not able to stabilize the output voltage without the support of an inverse model control that includes
the impact of the other variables on the fuel cell performance. This practical data-driven approach is
reliably able to reduce the cost of the control system by the elimination of non-significant measures.

Keywords: feature selection; PEM fuel cell; control; neural network; principal component analysis;
modeling; system identification

1. Introduction

The constant increase in energy consumption, environmental issues, and the rapid exhaustion of
fossil fuel reservoirs have motivated researchers around the world to design renewable solutions to
this global challenge [1]. Hydrogen is a potential energy renewable source, and it could be the clean
fuel of the future [2]; its main characteristics are as follows:

e Hydrogen has the highest energy content per unit weight (142 k] g=1) [3];
e Itis a carbon-free fuel due to its combustion product being water [4];
e Hydrogen can be used as a direct fuel or as an energy carrier for a fuel cell [4].

“One of the most promising hydrogen energy conversion technologies is the fuel cell” [5]. However,
fuel cells need an operational control strategy supported by a fault detection and isolation method
which can reconfigure the energy system to overcome potential faults and increase both the reliability
and useful life of the fuel cell [6].

1.1. Fuel Cell Operation Principles

Fuel cells are devices that transform chemical energy into electricity. A fuel stack is made up of a
group of single fuel cells placed in series. Each cell is formed by a proton exchange membrane (PEM)
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placed between two electrodes (anode and cathode) which are coated with a catalyst layer, usually
platinum (see Figure 1).

Electric current
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fuel out and heat
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>
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ANODE CATHODE

Figure 1. Proton exchange fuel cell diagram [7]. Reproduced with permission from Daud, W.R.W.,
Renew. Energy; published by Elsevier, 2007.

The fuel (hydrogen) is supplied at the anode, and the oxidant (oxygen, generally taken from
the air) is supplied at the cathode. At the anode, hydrogen in the presence of a platinum catalyst
is ionized into positively charged hydrogen ions and negatively charged electrons. At the cathode,
electrons which come from the anode and protons that have crossed the membrane combine with
oxygen from the air to form water that flows out of the fuel cell [8,9].

The overall reaction is described as follows.

Hydrogen + Oxygen = Electricity + Water 4 Heat

1.2. PEM Fuel Cell System Control

In [10] are mentioned the main components that form a PEM fuel cell system. Below, these four
principal sub-systems are described:

e  Reactant Flow Subsystem

This subsystem consists of a hydrogen and air supply loop; its objective is to maintain an adequate
stoichiometry of the reactants according to the operating conditions of the cell. The air supply loop
in a high-pressure fuel cell system uses a compressor to feed the air, while in a low-pressure system,
a low-speed blower is used to feed the air.

e  Temperature Subsystem

A low-power PEM fuel cell only needs a blower to regulate its operation temperature, which is
around 80 °C. A high-power fuel cell cannot dissipate heat by air convection and radiation through the
surface of the stack; it needs to be cooled down by the flow of deionized water.
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e  Water Management Subsystem

The objective of this system is to maintain good hydration of the membrane while balancing
the use/consumption of water in the cell. Dry membranes and flooded fuel cells cause high
polarization losses.

e Power Management Subsystem

This subsystem controls the power drawn from the fuel cell stack. The load current is considered
as a disturbance that has a direct impact on other subsystems.

If the reactant flow system is controlled correctly, the main variables of the stack, such as the
temperature and water concentration, will be indirectly controlled. This subsystem has a major impact
on the other subsystems; because of this, its control is critical for the performance of the stack.

Polarization phenomena at the PEM fuel cell reduce the voltage that can be delivered by the
system whenever more current is drawn by the load, which may affect the performance of equipment
that requires a fixed voltage to work correctly. Therefore, the output voltage of the stack must be
controlled by adjusting the flow rates of hydrogen and air. Another option to control the output voltage
is by using outside means such as a battery or a supercapacitor or both [7].

The stack must operate with maximum efficiency most of the time to achieve profitable operation.
Optimizing the hydrogen supply is a priority control objective to achieve cost-effective operation since,
at this moment, the hydrogen production cost is still too high [11].

It is possible that a fixed-parameter electrochemical model does not offer a reliable prediction in
transient conditions for a conventional controller. For this reason, systems identification techniques
seem to be more appropriate to control complex nonlinear systems.

Following the above mentioned, this paper is focused on the control of the reactant system. It is
organized as follows: Section 2 cites works related to the data-driven control of PEM fuel cells. Section 3
describes the dataset characteristics and briefly describes the types of feature selection algorithms
and some regression algorithms used for systems modeling. Section 4 presents the results obtained
by the application of the algorithms of feature selection and regression, and it also shows the control
scheme proposed.

2. Related Works

This section presents papers related to the modeling and control of PEM fuel cells using artificial
intelligence techniques. In [12], a methodology was presented for systems identification using NARX
(nonlinear autoregressive network with exogenous inputs) and NOE (nonlinear output error) neural
networks. The control-oriented black box model obtained was implemented in embedded hardware
with limited capacity for memory and processing. In [13], the performance of classical neural network
(NN) models and stacked models was compared. The stacking approach using partial least squares
as a combining algorithm obtained the best prediction. In [14], the authors compared an NN model
against a dynamic model using three statistical indices to validate their performance: the absolute
mean error (AME), the root-mean-square error (RMSE), and the standard deviation error (SDE).
The maximum value of the three indices indicated that the NN model is more precise and accurate but
has bigger variation in predicting the outputs when compared with a dynamic model. Different methods
have been tested to construct nonlinear empirical models. In [15], the performance of an artificial
neural network (ANN) and a support vector machine (SVM) in predicting fuel cell output voltage was
compared. The NN model presented excellent performance in predicting the polarization curves of
the stack with R? = 0.999; the SVM model exhibited a slightly inferior performance with R? = 0.980.
However, Kheirandish et al. [16] proposed a different approach for predicting the performance of an
electric bicycle using SVM and ANN. Their results showed that SVM has better accuracy in predicting
the power curve, approximately 99%, whereas ANN reached an accuracy of 97%. This difference is
mainly due to the selection of the hyperparameters. Parametric neural network (PNN) and group
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method of data handling (GMDH) techniques were used to predict and control the output voltage
of a PEM fuel cell of 25 W. The system inputs were gas pressure, fuel cell temperature, and input
current. Both methods presented high accuracy in predicting the voltage. However, the GMDH
model had less deviation [17]. Some parameters are difficult to measure, or it is very expensive to
measure them, especially in fuel cell stacks. Chavez-Ramirez et al. [18] developed a simulator, based
on ANN, to predict the stack voltage and cathode output temperature. They concluded that simulators
based on ANN are reliably able to predict voltage and temperature behavior, saving time and resources.
Recurrent neural networks were used to develop degradation prognostic models. In [19], a grid long
short-term memory (G-LSTM) recurrent neural network (RNN) was used to predict the lifetime of
fuel cells.

A detailed description of the neural control techniques applied to PEM fuel cells is provided
in [20]. In Figure 2 are shown these different approaches. A feed-forward control system, including
a neural network together with a proportional-integral-derivative controller, was presented in [21].
The control objective was maintaining a proper stack voltage using an inverse model of the plant to
calculate the control signal (air pressure). In [22], a neural network adaptive control with feedback
linearization was developed. The control variables were the pressure values of hydrogen and oxygen.
The model presented excellent disturbance rejection, even under load variations.

B Neural feed-forward control
B Neural hbrid feedbacl feed-forward control |
B Neural feedback control |
D ynamic programming Dynamic |
W b roportonalntegral derivative |
B nearzation
W e

Figure 2. Neural control techniques applied to PEM fuel cells.
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However, other artificial intelligence techniques have been applied to fuel cell systems to
control airflow rate, temperature, and mass flow, among others. In [23], an interval type-2 fuzzy
proportional-integral-derivative (IT2FPID) controller was designed to regulate the air flow. The results
were compared with those of conventional PID and type-1 fuzzy PID controllers. IT2FPID presented a
better performance in terms of transient response. In [24], a fuzzy cognitive map (FCM) was used to
model an electric bicycle powered by a fuel cell. The Hebbian algorithm was proposed for the FCM to
self-learn from its own data.

3. Materials and Methods

The development stages of the proposed control scheme are described below.

1. Apply a feature selection algorithm to determine the variables needed to model and control the
fuel cell voltage;

2. Define the system inputs from the subset formed by the feature selection algorithm and try
different regression algorithms to predict the output variable;

3. Develop the inverse model of the fuel cell, turning the system inputs into outputs. The output of
the regression model will become a system input.

4. Integrate the inverse model with a PID neuro control to track the errors and tune the control
signal to achieve the reference value of the system output. The reason why these two types of
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control are integrated is to modify the control signal by not only considering the error between
the output variable and the reference value but also considering the state of the other variables in
the transient state.

3.1. Experimental Setup

The proposed approach was applied to the test data from IEEE 2014 [25]. Experiments were carried
out on a testbench that allows running the PEM stacks under constant or variable operating conditions
while controlling and recording operation data like power loads, temperatures, and stoichiometry
rates of hydrogen and air. The variables monitored are presented in Table 1.

Table 1. Variables monitored.

Variable Description Unit
Time Time aging H
Vout Stack output voltage \4

I Current A
J Current density AJem?
Tin, Tout H2 Inlet and outlet H, temperature °C
Tin, Tout Air Inlet and outlet air temperature °C
Pin, Pout H2 Inlet and outlet Hy pressure mBar
Fin, Fout H2 Inlet and outlet H, flow L/min
Fin, Fout Air Inlet and outlet air flow L/min
Fwat Flow rate of cooling water L/min
HrAIR Inlet Hygrometry (Air) %

The stack was formed by five cells. Each cell had an active area of 100 cm?. The nominal current
density of the cells was 0.70 A/em?, and their maximum current density was 1 Ajcm?. The test was
carried out under dynamic changes in the load current (around 1020 h). The load current connected
was of 70 A with oscillations of 10% at a frequency of 5 kHz. The ranges of the operating parameters
are shown in Table 2.

Table 2. Range of parameters controlled.

Parameter Range
Air flow 0 to 100 L/min
H, flow 0 to 30 L/min

Gas pressure 0 to 2 bars
Temperature 20 to 80 °C
Cell current 0to 300 A

3.2. Feature Selection Algorithms and Data-Driven Models for Fuel Cells

Dimensionality reduction techniques can be classified into two groups: feature selection and feature
extraction. Each one has its characteristics, and its accuracy depends on the characteristics of the
database to be analyzed. Feature extraction techniques achieve dimensionality reduction by combining
the variables. In this way, they can generate a set of new components, reducing the data dimensionality
while maintaining enough information to describe the system. In some applications, such as image
analysis, where model accuracy is more important than model interpretability, these techniques
are very useful. Instead, feature selection reduces data dimensionality by removing irrelevant and
redundant variables. Feature selection techniques aim to obtain a subset of variables that describes
with accuracy the system characteristics with minimum performance degradation. Feature selection
can be grouped into three main categories: Filters, Wrappers, and Embedded. A brief description of
their main characteristics is given below:

e  Filter methods measure the relevance of the variables by their correlations with the output variable;
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e Wrapper methods create a subset of the original dataset using a training algorithm;

e  Filter methods are much faster than wrapper and embedded methods;

e Wrapper methods can fall into overfitting;

e Embedded and wrapper methods capture feature dependencies while filters methods do not.

The operating principles of PEM fuel cells include electrochemistry and thermodynamics principles
that are frequently very hard to model mathematically. One alternative to overcome this issue is the use
of modeling methods based on artificial intelligence techniques. In this work, neural networks were
used to model and control PEM fuel cells because deep learning techniques, in general, present better
performance in modeling highly nonlinear systems than do machine learning algorithms. Section 4.2
compares the performance of different algorithms against dynamic neural networks. These data-driven
models can be used as an emulator to detect possible failures in fuel cell systems or to develop an
inverse neural control system, as is shown in [26] (see Figure 3).

Ref. ANN Controller U y
e » Plant

(Inverse model)

v

ANN Model 1
(Direct model) -

Y

Figure 3. Direct inverse neural control.
4. Results and Discussion

For research purposes, all the information collected during the test is useful to understand and
improve the material quality and the design performance; these improvements can lead to increasing
the lifetime and thus reducing the cost of operation, which at the moment is still too high. However,
for control purposes, in real applications, it would be very expensive to install all of these sensors and
actuators. The control objective is to identify the critical operating variables and reduce the cost of the
control system using Feature Selection.

4.1. Fuel Cell Feature Selection

An attempt was made to train a regression algorithm without applying feature selection. The poor
results obtained were due to the noise generated by the low correlation of some variables. This section
presents the results of the application of various feature selection algorithms to the original dataset.
The best results were obtained using a feature extraction algorithm: PCA analysis. For this reason,
Section 4.1.4 was extended to describe how the variables were selected.

4.1.1. Filter Methods

The Pearson correlation method selected the next variables: current, current density, and the
output flow rates of hydrogen and air. These variables were selected due to their correlation grades
being superior to 0.5. However, although these variables could model the fuel cell voltage, none of
them can be considered as a system input useful to controlling the fuel cell.
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4.1.2. Wrapper Methods

Two wrapper methods were applied to perform feature selection: Recursive Feature Elimination
(RFE) and Backward Elimination (BE).

RFE selected 16 variables with a model precision of 0.85. The removed variables were the current
density and hydrogen output temperature. BE selected 17 variables according to a p value of 0.05
(statistically significant). The removed variable was the inlet hydrogen flow.

The dimensionality reduction achieved by both algorithms, RFE and BE, was nonsignificant.

4.1.3. Embedded Methods

The selection was made using lasso regularization. If the variable is irrelevant, lasso penalizes its
coefficient by changing it to zero. The best score using built-in LassoCV was 0.8617. Lasso picked 11
variables and eliminated the other 7 variables. The reduction achieved by this algorithm was highly
significant. However, the fit was barely acceptable.

4.1.4. Principal Component Analysis (PCA)

PCA analysis is a statistical method used to reduce the dimensionality of a dataset while retaining
as much as possible of the variation present in the data. For more details about this technique and its
applications to fuel cells, refer to [27].

The first step to performing a PCA analysis is to make a descriptive statistic that summarizes the
central tendency and dispersion of the values; the next step is to make a correlation matrix, which
allows us to observe which variables have a solid relationship, as shown in Figure 4.
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Figure 4. Fuel cell correlation matrix.
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As can be seen, due to the low correlation between variables, it is very difficult to determine
the parameters for operating a fuel cell system [17]. This low correlation is mainly due to PEM fuel
cells having complex electrochemical reactions with multiple nonlinear input/output variables [28].
Systems with these characteristics are complicated to model accurately and, therefore, to optimize.

The main relationships are between the following:

e  The air inlet and outlet pressure;
e  The hydrogen inlet and outlet pressure; and
e  The air inlet flow rate and hydrogen inlet flow rate.

However, as can be seen in Figure 4, there is a negative correlation between time and current
(=0.81), as well as between time and current density (—0.81); these relationships are not so significant
because they only reflect the natural wear of the membrane. The time variable was not considered
during the feature selection process.

After that, it is necessary to determine the number of components which explain the main variance
of the data. This number is obtained by trial and error. In this case, five components describe the
variance of the data correctly (see Figure 5).
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Figure 5. Explained variance per component.

However, four components explain more than 97% of the variance. The fifth component is not
relevant, so it can be omitted. In Figure 6 can be seen which variables have a major impact on each one
of the four components (see also Table 3).
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Figure 6. Fuel cell correlation matrix.
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Table 3. Selected variables from PCA analysis.

Variables Type
Current State variable
Hydrogen inlet temp. State variable
Air inlet temp. State variable
Air inlet pressure Input system
Air outlet pressure State variable
Hydrogen inlet pressure Input system
Hydrogen outlet pressure State variable

However, during the regression process, it is necessary to add the time variable due to the natural
wear of the membrane depending on the work hours, which reduce in an almost linear way the
output voltage. Once the main variables of the fuel cell have been identified, it is possible to create a
control-oriented model to track the output voltage.

4.2. Data-Driven Control-Oriented Models for PEM Fuel Cells

This section is divided into two parts. Section 4.2.1 describes the results obtained by some of the
most robust regression algorithms used in machine learning. Section 4.2.2 is extended to show in more
detail the neural network training process. Neural networks achieved better results than the algorithms
tested in Section 4.2.1, mainly due to their ability to track nonlinear variables and system delays.

4.2.1. Fuel Cell Modeling Using Machine Learning Regression Algorithms

Different regression algorithms were tested to create a robust control-oriented model, and their
performance was compared with the Explained Variance score ratio. The k-fold method was used for the
cross-validation of the model using five folds, and a fixed seed was established to ensure reproducibility.
The methods compared were ridge (RID), Bayesian ridge (BYR), decision tree regressor (DTR), gradient
boosting regressor (GBR), and random forest regressor (RFR). The results show the averages and
standard deviations of the Explained Variance.

e RID: 0.840495 (0.075010)
e BYR: 0.840494 (0.075011)
e DTR: 0.815885 (0.131130)
o GBR: 0.860727 (0.124138)
o RFR:0.830844 (0.120877)

Figure 7 compares via a box plot the performance of the algorithms tested. In the graph, it can be
seen that gradient boosting regressor is the algorithm that presents less variation and better accuracy.
However, the gradient boosting regressor only reaches a score of 0.86, which is slightly low for
control purposes.
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Figure 7. Algorithm comparison.

4.2.2. Fuel Cell Modeling Based on Neural Networks

Neural networks can be classified according to their behavior in time as either static or dynamic.
A static neural network can model with high accuracy the performance of a PEM fuel cell. However,
as can be seen in Figure 4, the time variable impacts negatively on the output voltage and current,
even in steady-state conditions (see also Figure 8). A dynamic neural network takes into consideration
the time variable, and its structure can be used as a generic model for system control [29].

Output voltage in steady-state conditions
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Figure 8. Fuel cell output voltage as a function of time.

A nonlinear autoregressive with external exogenous input (NARX) network was used to model
the fuel cell. The validation process was done by a cross-validation technique (k-fold) with ten splits.
The dataset was divided into training and validation sets. The input layer consisted of eight
inputs (the variables selected in the PCA analysis, see Table 3), the hidden layer had ten neurons with a
log-sigmoid activation function with two delays (sampling time 30 seg.), and the output layer used the
purelin activation function to calculate the voltage. The dynamic neural network (DNN) configuration
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is shown in Figure 9. The training algorithm selected was Levenberg-Marquardt because, in general,
it has the fastest convergence and reduces the computational cost.

Hidden
x(t
(t Output

y(t)

-

Figure 9. Dynamic neural network structure.

The high regression accuracy (R? = 0.96) and the fast convergence are mainly due to the fact that in
the PCA analysis, the irrelevant and redundant variables which have no impact on the output voltage
were eliminated. The eliminated variables do not have value for control purposes. In Table 4 are
presented the scores of each fold. In Figure 10, a comparison of the actual values against the predicted
values is presented.

Table 4. Regression score function of each fold.

Fold Score
1 0.955929840882997
2 0.953074662444409
3 0.959505398134269
4 0.957813889951952
5 0.958048357252375
6 0.958116362163286
7 0.959355574634461
8 0.960026345242201
9 0.966767102061810
10 0.971974506261939
Ave. 0.960061203902970
6
5
4
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Figure 10. Actual values and predicted values.
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4.3. Hybrid Control Scheme

According to the eight main variables identified in the PCA analysis, only two can be considered as
system inputs: the inlet pressures of hydrogen and oxygen. However, when analyzing Figure 6, it can
be seen that hydrogen pressure is the variable that most affects the fuel cell performance. Variations in
air inlet pressure can be considered non-representative for control purposes if they are kept within a
specific range of operation.

Keeping constant or following a reference is not the objective of this control approach for the
fuel cell output voltage; this is because the output voltage does not depend only on the supply of
the reactants. The load has a delayed negative correlation on the voltage level and in transient-state
conditions is the variable that impacts it the most. The load (current) can be considered as an external
disturbance. For the abovementioned, a MISO (multiple inputs, single output) control is needed
to supply the optimal hydrogen pressure to the cell according to the operating conditions, such as
temperature, current, or air pressure.

The neuro-PID controller is an already proven control approach in cases of system fault recovery,
such as flooding, drying out, and auxiliary failures, such as of a compressor [20]. A PID-series
neuro control scheme (with an inverse model of the fuel cell) was proposed to supply the optimal
hydrogen pressure by taking into account the values of the main variables under transient conditions
(see Figure 11). The self-autotuning of the PID control was done according to the method proposed by
Omatu et al. [30].
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Figure 11. Proportional-integral-derivative (PID)-series neuro controller.

The ANN controller is the inverse model of the plant; this means that the output voltage of the
plant was turned into input, and the hydrogen pressure became the system output. The nominal
voltage is 3.3 volts in steady-state conditions; however, this nominal value depends on the changes in
the load and its effect on the temperature. The ANN controller not only considers the error between
the nominal voltage value and the actual value but also considers the values of the variables selected
in the PCA analysis to estimate the control signal—in this case, the hydrogen pressure. The training
was done following the same approach described in Section 4.2.2.

In Figure 12 are compared the voltage, current, and hydrogen pressure for both controllers,
the conventional and neuro PID-series. Both controllers achieved similar performance in steady-state
and transient conditions. The main difference is the reduction in the hydrogen pressure in the steady
state. This reduction in pressure causes a decrease in the flow of hydrogen, which in turn decreases
hydrogen consumption. It is necessary to recall that the difference is only about 45 mbar. In practical
applications, a high-precision actuator (expensive) would be needed to control these small differences.
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Figure 12. Performance analysis of PID-series and conventional control. (a) The same load was
connected to both controllers. At time 35.42 h the load was changed to evaluate the effect on the output
voltage and the supply hydrogen pressure; (b) The output voltage reached the same level in steady
state in both cases practically. When the load connected was reduced (until open circuit) the output
voltage increased; (c¢) Hydrogen pressure in the conventional control (left) oscillated (in the steady
state) mainly between 1280 and 1295 mBar, whereas in the neuro-control (right), the hydrogen pressure
remained practically constant at 1238 mBar in the steady state.

The training algorithm derives the error partially, so each neuron updates its weight according to
its proportion in that error. If the neuro-PID controller only considers the gap between the desired
voltage and the actual value without taking into account the changes in the variables selected in
the PCA analysis, the control signal, the hydrogen inlet pressure, will not stabilize the fuel cell
performance. PEM fuel cells must operate in steady-state conditions in order to avoid premature
failure, such as starvation due to improper gas supply or an excessive transient load demand [31].
An energy management system is required to deliver a fixed voltage to equipment so it can work
correctly. This paper proposes a practical approach to stabilize the fuel cell performance in transient
conditions at minimum control cost, focusing attention on the variables that impact the most on the
performance of the cell and eliminating unnecessary measurements. However, this control can be
improved if the air inlet pressure is also regulated. An incorrect startup/shutdown process can cause
accelerated or permanent damage to the catalyst layer. These considerations have to be included in the
control process to improve the proposed control.
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5. Conclusions

In this paper, we developed a data-driven control approach for PEM fuel cells to minimize the
cost of control. Several feature selection algorithms were used for dimensionality reduction. Principal
component analysis (PCA) obtained the best results by removing irrelevant and redundant variables.
The selected variables (Table 3) can describe with high accuracy the PEM fuel cell performance. Some of
the most powerful regression algorithms were compared to predict the output voltage of the cell.
However, neural networks obtained the highest accuracy (R? = 0.96) due to their capacity to map
complex nonlinear relationships. With the selected variables, an inverse model of the fuel cell was
developed using neural networks in order to develop a neuro-PID controller. A PID-series control
was integrated with the inverse model to regulate the system input (hydrogen inlet pressure) by
considering the values of the other variables. The fuel cell voltage level does not depend only on the
supply of the reactants, and in transient conditions, the load is the variable that impacts the most on
fuel cell performance. This method is a practical way to save mathematical modeling time and reduce
the number of sensors in the control system.

In the future, this study will be improved via experimental tests in a real PEM fuel cell system
which includes the measurements detected in the PCA analysis. Later, an intelligent fault diagnosis
and isolation scheme will be developed to prevent permanent damage in the catalyst layer.
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Abstract: Ship transportation plays an increasingly important role in and accounts for a large
proportion of cargo transport. Therefore, it is necessary to improve the quality of the trajectory control
system of the ship for improving the transport efficiency and ensuring maritime safety. This paper
deals with the advanced control system for the three-degrees-of-freedom model of the underactuated
ship in the condition of uncertain disturbance. Based on the three-degrees-of-freedom model of the
underactuated ship, the authors built a bilinear model of the ship by linearizing each nonlinear model
section. Then, the authors used the state estimator to compensate for uncertain components and
random disturbances in the model. Finally, the authors built the output-feedback predictive controller
based on the channel-separation principle combined with direct observation of the continuous model
for controlling the motion of the underactuated ship in the case of uncertain disturbance and the
bound control signals. The result is that the movement quality of the underactuated ship is very good
in the context of uncertain disturbance and bound control signals.

Keywords: underactuated ship; bilinear model predictive controller; directly observer; uncertain estimator

1. Introduction

Maritime transport plays a particularly important role in international trade because about 80% of
imports and exports are transported through the sea. Maritime transport is a large market because of
its essential advantages, such as its wide transport range, large carrying capacity, low shipping cost,
etc. Therefore, it is necessary to conduct research for improving the trajectory control system of the
ship in order to improve the transport efficiency and ensure maritime safety. However, controlling
the ship movement with a high-quality is a challenge for scientists because the ship is a complex
object, with large nonlinearity and unknown structures, and works in dynamic environments with
complex noise.

The dynamic model of a ship is an uncertain nonlinear model, and the model parameters depend
on the control states. The equation used to describe ship motion is a high-order differential equation.
Considering the kinetic properties, ships have the following characteristics: The oscillation and the
time constant are large, and the stabilization margin is small [1]. Therefore, controlling the ship motion
is always a challenge for scientists, especially controlling the underactuated ship that has fewer control
signals than the state variables to be controlled [2]. Studies on ship control with the model of a lack of
actuators have been presented in the literature [3-7].

A ship is a large nonlinear object, so the use of simplified or linear control models does not give
us the expected results. In recent years, the development of electronic and informatics technology has
allowed us to apply modern control theory for ship motion, such as adaptive control, backstepping,
sliding mode control, model predictive control, etc. The research [8] uses the backstepping technique to
control an underactuated ship following the set trajectory. However, this research assumes that the ship
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only moves along a straight trajectory and the speed is constant and positive, and the uncertainties in
the kinematic model and the disturbance are not considered. The research [9] has provided a trajectory
ship controller based on the Lyapunov function and backstepping technique on the condition that the
control signals are not bound. Additionally, the research [10] has proposed a control method based on
linear algebra, where the controller is designed based on linearizing the nonlinear model of the control
object. However, this research does not address the problem of disturbance and uncertainties in the
dynamic model of the ship.

Therefore, difficult problems when designing the ship motion controller are as follows: the state
variables cannot be measured, and the coefficients in the model matrices are changed, depending
on the control states, so it is difficult to accurately determine the coefficients in the model matrices.
For simplicity, some previous research has ignored many factors, leading to models of the ship that are
very different to the actual situation.

In order to solve the problems caused by uncertain parameters and disturbance, the research [11,12]
has used the neural network to update and estimate the uncertain components in the model. In the
study [13], the author used the coordinate transformation method to overcome the third-order uncertain
component in the derivative of the Lyapunov function caused by the centrifugal and Coriolis forces.
To update the uncertain parameters and the time-varying parameters of the inertial mass matrix of
the model, the study [14] proposed a motion controller of the self-driver ship using the unscented
Kalman filter to compensate for the hidden noise in the model. The work [15] estimated the uncertain
components based on the finite-time disturbance observer. The works [16,17] proposed the nonlinear
disturbance observer based on the kinetic model to estimate the disturbance that is compensated for
the controller.

Another problem faced when designing the trajectory controllers of ship motion is that the studies
often ignore the limit of control signals. In fact, the angle of the steer is always limited from 35 degrees
left to 35 degrees right. The research [18] also addressed this problem when designing the nonlinear
model predictive controller for a ship following a set trajectory.

The review of previous studies shows that it is very complicated to design the trajectory control
system of ships in the condition of uncertain disturbance. There are some works that have studied
this topic in an attempt to solve these problems, but each work has only solved a specific problem in
the case of assumptions to simplify the object. There is no research that has simultaneously solved all
the problems, such as designing the advanced trajectory controller, eliminating the disturbance in the
system, control in the case of the object lacking the actuator, and the limit of control signals.

To solve all of the above limitations, this study will perform the following tasks. It will compensate
for the disturbance components in the object model and the disturbance components from the
environment by the state observers based on the continuous object model and the difference
between the object model and the reference model. Additionally, it will design the trajectory
controller of the underactuated ship based on the model predictive controller (MPC) combined with
segment-linearization techniques of the nonlinear object in the time-axial.

2. The Model of the Ship

2.1. The Motion of the Ship

Considering the ship motion on the sea surface, the motion of the ship is described as Figure 1.
It is characterized by the following motion components: the straight slide motion (u), horizontal slide
motion (v), and rotary motion (r). This ignores the following motion components: the roll rotary
motion (p = 0), pitch rotary motion (g = 0), and yaw rotary motion (@ = 0).
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Figure 1. The motion components of the ship.

To describe the ship motion in the three-degrees-of-freedom space, we can employ the speed
vector v = [uvr]" and the position vector = [xy .

Here, u, v, r denote the straight slide_speed, the horizontal slide motion speed, and the rotation
speed, respectively.

2.2. The Equations of Ship Motion

The equations of ship motion in the three-degree freedom space are as follows [19]:

=]y M
v+ CL)v+D)v+g(n) =1+1

where:

M denotes the inertial matrix;

C(v) denotes the centrifugal and Coriolis forces;
D(v) denotes the hydrodynamic damping matrix;
J(n) denotes the orthogonal matrix;

g(n) represents the gravity forces;

7 is the vector of control torques, including the propeller force and the rudder force;
T,, represents disturbances from the environment.

In the mathematical model (1), if the control force includes all of the components T = [ty Ty Tr]T,
then the ship is called a fully-actuated ship. This model of a ship has many actuators, such as the main
propeller for creating the straight-slide force, the horizontal propeller on both sides for creating the
horizontal slide force, and the rudder for controlling the ship direction. This model often appears
in types of ship such as the serving-ship, the special-task ship, and the ship for researching marine
dynamic stability control.

If the control force © = [1,07,]" means that there is no horizontal slide force, then the ship is
called an underactuated ship. This ship only has two actuators, such as the main propeller for creating
the straight-slide force and the rudder for controlling the ship direction. This model often appears in
types of ship such as cargo ships and container ships with a long transport journey.

}T
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The motion equations of an underactuated ship in the three-degree-freedom space are as follows [2]:

n=J](ny
v+ Cr+Dv+gn) =1+7, ()
= [TuOTr]T

It is very difficult to fully define the coefficients of M, C(v), D(v). These coefficients can be
determined by driving the ship at different speeds in different directions and measuring the response
signals. However, we still have to assume that the high-order nonlinear components are zero. Moreover,
the coefficients in the above matrices also depend on other factors, such as the cargo weight on the ship
and the waters in which the ships move.

In order for the model equations to fully express the dynamics of the underactuated ship in the
space of three-degrees-of-freedom, this research proposes merging all of the components that are
difficult to identify, uncertain components, and the environmental disturbance into the undefined
vector A(n, v).

n=Jnv 3
Mv + C(v)v+ D(v)v +g(n) = FT+ A1, v)

where:

1
1.  Fdenotes the force distribution matrix, F = 0

2. A(n,v) is the force and torque vector that is synthesized from the uncertainty components of the
ship model and disturbance from the external environment.

The matrices in Equation (3) are as follows:

my1 0O 0 0 0 —1Mp0
M=| 0 mp 0 | Cl)=| 0 0 My
0 0 ms3 Mo20 —mqu 0

d1 0 0 cosy —sinyg 0

Dw)=| 0 dn 0 |, J(p)=| siny cosyp 0
0 0 ds - 0 0 1

To solve the uncertainty component A(7, v) in Equation (3), this research will propose the estimator
and compensate for the uncertainty component in the controller.

3. Building the Control System

3.1. The Diagram of the Control System

The targets of this study are to build the output-feedback MPC according to the separation
principle and combine a state-feedback MPC and a state observer to control an underactuated ship
in case the model contains an uncertain component A(n, v). The mission includes building the MPC
controller based on a bilinear model of the ship combined with the direct state observer that is built
from a continuous model of the ship, and building the estimator of uncertain components to estimate
and compensate for the uncertain components in the model. The proposed control system structure is
described in Figure 2.
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Figure 2. The model predictive controller (MPC) control system structure of the underactuated ship
with the uncertain component.

In the figure, d(x, t) is an uncertain component that arises in the model, 4 (x, t) is the uncertain
component which is estimated from the estimator, w, is the set trajectory, u(t) is the control signal,
and y(t) is the output signal. MPC-O denotes the output-feedback MPC controller. ZOH denotes the
zero-order hold component.

3.2. The Bilinear Model of the Underactuated Ship in the Three-Freedom Space

Considering Equation (2), x; =1, x, = v, u = 7, and x = col(x;, x,). We thus have the following:

_ 03x3 ](ﬂ) 0550 .
[ ][ ~G(n) -M™'[C(v) + D(v)] ][ J+( M-IF )— @)

<=3
I< 1=

Then,
) Ax) = 03x3 J(x;)
¥ -G(x;) _Mfl[c(iz) +D(£2)]
B= ( st ) C= (13,03

Equation (4) is transformed into the following equation:

x=A(x)x+Bu
{ y=n=(,035)x=Cx ©

Equation (6) is the bilinear model of the underactuated ship in the three-freedom space.

Since the MPC controller is discrete, Equation (6) must be discrete with the sample time Tj,.
Performing the approximate equation x(t) = [x((k+ 1)T,) — x(kTa)] /T, Equation (6) is transformed
into the following equation:

{ szrl = [I6 + T”A(zk)]zk + T,;Bﬂk (7)
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Linearizing each segment Hj, of the model (6) along the time-axis with the assumption of a small
amount of time, model (7) is approximated by the linear time-invariant model as follows [20]:

H, { A ®

where
2
zk = col(xk, Uy 1) € RS, Ay =u —u_; €R

C = (C,03x) € R>®

i ( I + ToA(x;) TaB ) cRS B ( T.B ) c R¥?2
026 L L

3.3. Building the Direct State Observer Based on the Continuous Model

Since the state variables in model (6) cannot be measured, the authors propose the direct observer
from the continuous model (2) or (6) based on the measured output signal y(f) = n(t) = xyy]”.
Here, x, y, ¥ denote the x-axis coordinate, y-axis coordinate, and the direction of the Sh_lp, respectively.
These values can be measured by the Global Position System (GPS) and the compass on board.

The observer’s task is to identify the state vector of the continuous model (2) or (6) x = col(n, v).

In the status vector x(t) = col( (t), v(t )) the component 7(t) = y(t) has been measured, so we only
need to define the second component v(t). - B
From Equation (2), we have 7 = J(17)v, with the orthogonal matrix J(1)) shown as follows:

costyp —siny 0

J()=| sing  cosyp 0 ©)
B 0 (US|
Therefore, we can determine the state component as follows: v(t) = J(n )t ](y)_l‘yA

To determine the derivative value y(t) of the output signal y(t), we can use the first-order inertia

derivative stage Dr(s) = 155, where T > 0 is tiny. The input is y(t) and the output is y Y (t), so we have

the following: ? + T? = y Since T =~ 0, the output ?( t) is defined as follows: y y=J(n)v.
Finally, we can obtain the observed signal as follows: - N

o) =TI =1y ¥~y (10)

3.4. Building the Estimator to Compensate for the Uncertainty Component in the Model

The incorrect model of a ship containing an uncertainty component (3) can be rewritten as follows:

(11)

x= () x+ Blu+d(xt)]
Y

The matrixes of the model A(x), B, C are inferred from the original model (3). Compared with
the exact model in Equation (6), the model Equation (11) has an uncertain component d(x, t), which is
smooth. The article will identify this uncertain component.

The identification value is named E(g, t) ~ d(x,t), with the tiny error ||£(£, t) —d(x, t)|| < -

After compensating for d (x, t) in the input for the uncertainty model (11), this model is equivalent to
the correct model (6).
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The research will propose an approximate estimation method for d (x,t) ~ d(x,t) based on the
discontinuous model. This method is reasonable because the ships are not a fast-changing system,
and in a control cycle, the uncertain components seem constant. This means that d(x, t) is a constant
uncertain function in each cycle.

Equation (3) can be re-written according to the discontinuous form at the time (k) by linearizing
each segment according to the time-axis. In the present control cycle, the uncertain component of the

input d has been compensated for by d,_;, which is defined in the previous control cycle. We have the
model at period k as follows:

v = AL )0y + B[E,H +d _ik—l] (12)
where _
A(gy) = I = T.M7[Clyy) + D(y)| € B>, a9
B = T,M~'F e R¥2, u =1, = 1(kT,)
The exact reference model at the time of k is
=AYy + B(ﬂk-l - ik—l) (14)

where u,_, is the input. The error of two models is ¢, = v, — ;. This error completely depends on the

uncertain component, so we can determine d; ~ d from ¢,- Then, d, is used to compensate for the
uncertain component in the next control loop (k + 1).
From (13) and (14), we have

Therefore, if the matrix B has a rank of 2, then

~ ~T~\"Ll~T —_ —_
d=d, = (B B) B [Ek =AYy + A(Zk—l)!k—l] (15)

Equation (15) is used for approximating d, ~ d from ¢, = v, —v;, v;_y, and v, _;.
Ui Ug_q can be measured or observed from the system. v, ;, v, are defined by Equation (14).

After defining d;, we can compensate for the input of the system at time k + 1 as Figure 3.

d(z,t)
u(t) y(®)
Ship >
Estimator of J
disturbances .

Figure 3. Compensating for the uncertain component for the incorrect model.
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3.5. Building the MPC Controller with Output-Feedback Based on the Separation Principle

The separation principle-based output-feedback MPC controller is the combination of the state
feedback MPC controller and the state observer directly from the continuous model. Unlike the
conventional controller of linear MPC or nonlinear MPC, the proposed MPC controller is a linear
controller used for a nonlinear object based on the linearization of each nonlinear model section.
Along the time axis, the object includes countless linear models (8).

Based on the linear approximation model of each segment H(k = 0,1, ...) and the predictive
control principle, we can obtain the future outputs Y, for the entire forecasting window (N)
as follows [21]:

p ) (S5 o ) (@
y k w03k Auy CA
y, = _k‘+2 . : . .+l i o= HkEJFQk (16)
—N-13  —=N-2= — —N
Yin CAy, B CA, B --- CB N\ Ay, CA;
CA(B CB - O30 Auy CA
+1 k
Ho=| . N T R 17 R A (17)
— N1 —N-2— — ' _
cA, 'B CA, 'B --- CB YT cay
where p is the vector of future input signals that need to be defined.
After having obtained the future output signals Yewi (i=1,2, ... ,N) in the current forecasting
1

window that depend on the future input signals Au; ]-( j=0,1,... ,N—-1) through Equation (8),

we must define the future input signals so that the output signals follow the set signals {ﬂk }

Setting the target function is the sum of the squared deviation of the errors in the current forecasting
window. In order to improve the response speed, this study proposed a technique to adjust the set

Mer ™ K'e
signal [22]. The set-signal after adjustment is as follows:r; = :
_
e ™K
Here, N, = n(kT,), e, = ylf -n, is the error at the previous time and K’ is the calibration parameter
of the set signal (0 < K’ < 1).”

The objective function is set as follows:
T .
],{ (E) = ET(HkTQka + R")E + 2(1_7k - fk) QiHyp 7 min

The solution is as follows:
.= inJ/ 18
pe = argmin (p) (18)
P is bound because of the mandatory requirements for the steer-angle « that is as follows:
-35" < < +35

P =AuN
2
AU — { AueR?| }
by (%) = by (x51) < Au < by () = by (%5 1)
The common methods employed to find the optimal solution with bound conditions are the
sequential quadratic programming (SQP) method, interior-point method, or evolutionary methods for
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optimal control, such as genetic algorithms (GA) and the particle swarm optimization (PSO) method.
This research will use the GA method [23] to find the optimal solution of Equation (18).

The genetic algorithm (GA) is based on two basic rules of natural adaptations that hybridize
‘good’ elements P, Ej together to get better elements and transform the ‘bad’ elements P, The ‘bad’
and ‘good’ valuations of these elements are evaluated through their objective function J; = | (Ez)

Firstly, N elements % i=1,2,...,N arerandomly chosen in the constraint set p. Then, the values

Ji=J(p.) will be calculated respectively. Elements with 6; < 0. are ‘good’, and elements with 6; > 6,
1

are ‘bad’".
Here,
N

6 =i/ XL 1Jkl; 0 < 8¢ < 6 < 1 are optional.

Next, a gkc;éd pair of elements is hybridized to form new pairs, and bad elements are mutated.
Therefore, a new generation formed from the old generation contains better elements. This process,
with two calculations of the hybrid and mutant, is repeated many times until the end condition is
satisfied. When the end condition of the algorithm is satisfied, the element 2 of the current generation
with the smallest J; is chosen as the solution.

Currently, the GA has been installed into the command ga (-) in MATLAB, and we can use this
command to build the proposed MPC controller. The parameters, such as the number of generations,
the population size, and the type of selection, will automatically be defined. The syntax detail of the
command is as follows:

[x, fval] = ga(FUN,NVARS, A, B, AE, BE, OPTIONS)

where FUN is the objective function; NVARS is the number of variables of the objective function; and A,
B, AE, and BE are the boundary conditions.

In this research, the authors execute the command as follows:

The objective function:

FUN = f =]] (p) = ET(H;(TQka + Rk)lz +2(b, - f_k)TQkaE

The number of the variables: NVARS = 2.
The boundary conditions: =2 <1y <2, -3 <up < 3.
Finally, the details of the command are as follows:

[x,fval] = ga(f,2,[],[],[-2; 2], (-3 3], [],[])

After defining the solution p+ of (18), we get the control signal u, for controlling the ship motion
(3) in the present cycle, as follows:

W =g~ (12 / 02><2(1\1—1))If_7’r (19)
where u, is the control signal during one sampling period T,.

The control algorithm is as follows:

e  Step 1: Initialing and setting the forecasting window width N > 2, the sample period T,, and the
calibration parameter of the set signal 0 < K’ < 1. Calculating B, C according to (5), B, C according
to (8), and B according to (13). Setting k =1, Eo =0;

e Step 2: Setting the two positive symmetric matrices Q; € R33N R, e RZN*2N;

e  Step 3: Measuring 1 and estimating ik Calculating Ay according to (8) and A (ik_l) according
to (13). Determinin:g Hy, by, ;. according to (17);

e  Step 4: Determining v, according to (12) and d according to (15) for the next cycle;
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e  Step 5: Determining the optimal solution p* according to (18);

e  Step 6: Calculating u; from p+ according to (12);

e Step7: Using i — Lﬁl for controlling the continuous model (3), which is also the object (4) and (6);
e  Step 8: Setting k := k + 1. If it needs to update G, go back to the step (2); otherwise, set Qx11 =
Qk, Rk+1 = Ry and go back to step (3).

The observer is considered a continuous-time model and the control input is calculated by using
the discrete-time model. Therefore, in the proposed controller algorithm, after observing the state of
the continuous model, we have to make the observed signal of the continuous model discrete with the
sample time Tz and then feed it into the controller. This is shown in step 3, where, after measuring n,

and estimating Ek, we calculate Ay according to (8).

4. The Results and Discussion

To verify the quality of the proposed control system, the authors have run the system on Matlab
software (R2014b, MathWorks Inc., Natick, MA, USA). The control object is an underactuated ship
with three degrees-of-freedom. The specifications of the ship given by Do K. D and J. Pan in the
document [2], with the length of 32 m, the weight of 118 x 10° kg, the minimum radius of curvature of
150 m, and other parameters, are shown in Table 1.

Table 1. The parameters of the ship.

Tumax Trmax myq mpn msz3 dn dy ds3
Unit N N.M Kg Kg Kgm? Kgs™! Kgs™!  Kgm?s~!
Value  5210° 85.10%8 120.10° 177,9.10° 636.10° 215.102 177.103 802.10*

The set trajectory is a straight and circular one, and the details are as follows: The ship moves
straight for a period of 300 s with a distance of 1200 m, and the ship then moves in a circle with a
radius of 200 m for a period of 325 s. The uncertain signals are assumed according to the document [5]
as follows:

di = 0.05sin(0.1t) — 0.01, d» = 0.2sin(0.2t)+0.4 cos(0.3t)

The simulation results are shown in Figures 4-7. Figure 4a shows the ability of the ship to
follow the set trajectory, with the error shown in Figure 4b. Figure 5a shows the actual direction error.
The errors obtained from the observer are shown in Figure 5b. The qualities of estimating the uncertain
components d1 and d2 are shown in Figure 6a,b, respectively.

During the control process, the control signals of the straight slip force and the torque force are
bound in the defined range, and they are shown as Figure 7a,b. The shapes of the control signals in
Figure 7 are feasible because the control signal depends on the disturbance if the disturbance becomes
large and the control becomes large. The simulation time of 800 s is long, so the number of times
the control signal is changed in the simulation time is small. This number conforms to the Maritime
regulation on the number of signal changes of the steering angle.

The quality of the control system has been evaluated based on the following factors: The error of
trajectory, the actual direction error, the errors obtained from the observer, and the error of the estimator.
The results show that these errors are very small, so the quality of the control system is very good.
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Figure 7. The control signals: (a) The straight slip force; (b) the torque force.

Although the control object has undefined components and the control signals are bound within
limits, the quality of the entire control system is still very good: The response trajectory is very close to
the set trajectory, and the error of the trajectory and the error of direction are very small. In addition,
the quality of the observer depends on the receding horizon of the controller and the time needed to
calculate the differential stage by the direct observer.

The estimator performed the mission well, compensating for the uncertain signals dy, d> in
the system. The difference between the estimated signal and the uncertainty signal is very small.
The estimation error also depends on the receding horizon of the controller and the estimated value at
the initial time.

In addition, the quality of the entire control system depends on the forecasting window N and
the two positive symmetric matrices Qi € R3NVGN Ry € RPV2N In fact, we can choose matrixes
Qk, Ry that match the control target.

5. Conclusions

This article was successful in building the MPC control system with the output-feedback based on
the separation principle, and building the direct observer based on the continuous model in order to
control the trajectory of the underactuated ship. The controller was built based on the optimal control
combined with the linearizing technique of each nonlinear model section. Disturbances from the
environment and uncertainty components in the model were estimated and compensated for by the
estimator. The simulation results show that although the control object has undefined components and
the control signals are bound, the quality of the entire control system is still very good. The response
values follow the set values, with tiny error. The success of this research is the basis for the authors to
apply it to actual ships in further studies.

Author Contributions: H.-Q.N. proposed the initial idea. A.-D.T., H.-Q.N., and T.-T.N. developed the research,
analyzed the results, and wrote the article together. T.-T.N. edited and finalized the article.
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Abstract: This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning
meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm,
the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely,
exploration, exploitation, and randomization, in such a way that if one step improves the solution,
then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has
been compared with that of five other optimization algorithms over ten benchmark test functions.
Nine of them are well-known and already exist in the literature, while the tenth one is proposed by
the authors and introduced in this article. One test trial was shown to check the performance of each
algorithm, and the other test for 30 trials to measure the statistical results of the performance of the
proposed algorithm against the others. Results confirm that the proposed FTMA global optimization
algorithm has a competing performance in comparison with its counterparts in terms of speed and
evading the local minima.

Keywords: global optimization; meta-heuristics; swarm intelligence; benchmark functions;
exploration; exploitation; global minimum; local minimum

1. Introduction

Meta-heuristic optimization describes a broad spectrum of optimization algorithms that need
only the relevant objective function along with key specifications, such as variable boundaries and
parameter values. These algorithms can locate the near-optimum, or perhaps the optimum values
of that objective function. In general, meta-heuristic algorithms simulate the physical, biological, or
even chemical processes that happen in nature. Of the meta-heuristic optimization algorithms, the
following are the most widely used:

1. Genetic algorithms (GAs) [1], which simulate Darwin’s theory of evolution;
Simulated annealing (SA) [2], which emerged from the thermodynamic argument;

3. Ant colony optimization (ACO) algorithms [3], which mimic the behavior of an ant colony
foraging for food;
Particle swarm optimization (PSO) algorithms [4], which simulates the behavior of a flock of birds;
Artificial bee colony (ABC) algorithms [5], which mimic the behavior of the honeybee colony; and
Differential evolution algorithms (DEAs) [6], for solving global optimization problems.

Xing and Gao collected more than 130 state-of-the-art optimization algorithms in their book [7],
and these swarm-based optimizations are applied in different applications and study cases [8-14].

Processes 2019, 7, 657; doi:10.3390/pr7100657 235 www.mdpi.com/journal/processes
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Some algorithms start from a single point, such as SA, but the majority begin from a population of initial
solutions (agents) like GAs, PSO, and DEAs, most of which is referred to as “swarm intelligence” in their
mimicry of animal behaviors [15]. In these algorithms, every agent shares its information with other
agents through a system of simple operations. This information sharing results in improvements to the
algorithm performance and helps find the optimum or near-optimum solution(s) more quickly [3].

In any meta-heuristic optimization algorithm, there are three significant types of information
exchange between a particular agent with other agents in the population. The first is called exploitation,
which is a local search for the latest, and the best solution found so far. The second is called exploration,
which is a global search using another agent existing in the problem space [16]. The third is called
randomization, which is rarely used in some algorithms or may not be used at all. This last procedure
is similar to exploration, but instead of an existing agent, a randomly-generated agent is used. For
instance, ABC algorithms use randomization for the scout agent; therefore, it often succeeds in evading
many local minima. Many algorithms begin with exploration and gradually shift to exploitation
after several generations to avoid falling into local optimum values. Meta-heuristic algorithms then
maintain trade between exploration and exploitation [17]. However, the different types demonstrate
variations in how they perform this trade; by using this trade, these algorithms may get close to
near-optimum or even optimum solutions.

All agents compete with themselves to stay alive inside the population. Every agent that improves
its performance replaces any agent that did not promote itself. Therefore, in the fourth stage (i.e.,
selection) a variable selection method, such as greedy selection or roulette wheel, is used to choose the
best agent to replace the worst one [1]. Meta-heuristic algorithms may find near-optimum solutions
for some objective functions, but it may fall into local minima for other ones. This fact will be apparent
in the results of this article. To date, an optimization algorithm that offers a superior convergence
time and avoids local minima for objective functions has yet to be developed. Therefore, the area
is open to improving the existing meta-heuristic algorithms or inventing new ones to fulfill these
requirements [18].

In this article, a novel algorithm called the fine-tuning meta-heuristic algorithm (FTMA) is
presented. It utilizes information sharing among the population agents in such a way that it finds the
global optimum solution faster without falling into local ones; this is accomplished by performing
the necessary optimization procedures sequentially. In the next section, the proposed algorithm is
described in detail. Then, five well-known optimization algorithms are presented to compete with
FTMA over a ten-function benchmark. The results and discussion are shown in the final section, along
with the conclusions.

2. Literature Review

In the scope of the recent trends in nature-based meta-heuristic optimization algorithms, since the
genetic algorithms [1] and simulated annealing [2] has been presented, the race begins in inventing
many algorithms thanks to the rapid advances in computer speed and efficiency, especially in the new
millennia. From these algorithms, we mention the firefly algorithm (FA) [19], cuckoo search (CS) [20],
bat algorithm (BA) [21], flower pollination algorithm (FPA) [22], and many others mentioned in [23].

Many optimization algorithms were invented over the past five years. Some of them are new,
and the others are modifications and enhancements to the already-existing ones. One of the recent
and widely-used algorithms is grey wolf optimization (GWO) [24]; it is inspired by the grey wolves
and their hunting behaviors in nature. Four types of leadership hierarchy of the grey wolves as
well as three steps of prey hunting strategies are implemented. Mirjalili continued to invent other
algorithms. The same authors presented moth—flame optimization (MFO) [25]. This algorithm mimics
the navigation method of moths in nature which is called “traverse orientation”. The main path which
the moths travel along is towards the Moon. However, they may fall into a useless spiral path around
artificial lights if they encounter these in their way. Ant lion optimizer (ALO) has been proposed
in [26], which simulated the hunting mechanism of antlions in nature. Five main steps of hunting are
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implemented in this algorithm. Moreover, the same authors of [24] proposed a novel population-based
optimization algorithm, namely, the sine-cosine algorithm (SCA) [27], it fluctuates the solution agents
towards, or outwards, the best solution using a model based on sine and cosine functions. It uses
random and adaptive parameters to emphasize the search steps like exploration and exploitation.
Another proposed algorithm in the literature is the whale optimization algorithm (WOA) [28]. This
algorithm mimics the social behavior of humpback whales, using a hunting strategy called bubble-net,
as well as three operators to simulate this hunting strategy. All these algorithms mentioned above are
developed, enhanced, and modified through the years, hopefully to make them suitable for every real
problem which needs solving. However, no-free-lunch theorems state that there is no single universal
optimization method that can deal with every realistic problem [18].

3. Fine Tuning Meta-Heuristic Algorithm (FTMA)

The FTMA is a meta-heuristic optimization algorithm used to search for optimum solutions for
simple and/or complex objective functions. The fundamental feature of FTMA is the fine-tuning
meta-heuristic method used when searching for the optimum.

FTMA performs the fundamental procedures of solution update, which are exploration,
exploitation, randomization, and selection in sequential order. In FTMA, the first procedure of
exploration is undertaken concerning an arbitrarily-selected solution in the solution space. If the
solution is not improved according to the probability, the second procedure of exploitation is performed
concerning the best global solution found so far. Again, if the solution is not enhanced according to
probability, then the third procedure of randomization is performed concerning a random solution
generated in the solution space. The fourth procedure of selection is performed by comparing the
new solution and the old one and choosing the best according to the objective function. The FTMA
procedure steps are:

1) Initialization: FTMA begins with initialization. Its equation is shown below:
(k) = Ib(k) + rand x (ub(k) = 1b(k)); k=1.2. ...d;i=1,2,...,N. (1)

At this point in the process, all the solutions x; are initialized randomly at the iteration counter f = 0
according to the lower bound /b and the upper bound ub for each solution space index k inside the solution
space dimension d. A random number rand, its value is between 0 and 1, is used to place the solution
value randomly somewhere between the lower and upper bounds. The space dimension, along with the
number of solutions N must be specified prior to the process. Then, the fitness f)?z is evaluated for each
solution x? using the objective function. The values of the best objective fitness fl? and its associated best
solution xg are initially obtained from the fitness and solutions vectors, respectively. Additionally, the
probabilities of exploitation and randomization, p, and 7, respectively, are initialized.

After incrementing the iteration counter inside of the generation iteration loop, the four steps in

each iteration are performed in the FTMA core, as follows:

2) Exploration: The general formula of this step is as follows:
y(k) = xt (k) + rand x (x; (k) = x4(K))- @

In this step, every solution xI’. is moved with respect to another existing solution vector x!, where j # i.
The value of the objective function for the temporary solution y is then evaluated as a temporary fitness g.

3) Exploitation: Its equation is presented as follows:
if §> f. &&p > rand, y(k) = x}(k) + rand x (xi(k) - xf(k)) (3)

If the fitness ¢ is not improved compared with f!, and the probability of exploitation p is greater
than a random number rand; then the exploitation step will be initiated. In this step, the temporary
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solution vector y is calculated by moving the solution x! with respect to the best global solution, x}. The
value of the objective function for the temporary solution y is re-evaluated and stored in the temporary
fitness g.

4) Randomization: The formula of this step is as follows:
if §> fl; &ber > rand, y(k) = x}(k) + rand x (Ib(k) + rand x (ub(k) - Ib(k)) - x}(k)). @)

If the fitness g is not improved again in comparison with f;l and the probability of randomization
r is higher than a random number rand, then the randomization step will be initiated. In this step, the
solution xlt. moves with respect to a randomly-generated solution. The value of the objective function
for the temporary solution y is again re-evaluated and then stored in the temporary fitness g.

5) Selection: The final step of the FTMA iteration process is the selection step, which is summarized as:
ife<fox =vfi'=g )
ifg<fp " =vf"=¢ ©

6) Stopping Condition: The search ends if the global fitness value f;“ reaches zero or below a
specified tolerance value ¢, or if the iteration counter ¢ reaches its previously-specified maximum value
R. The pseudocode of FTMA is summarized as in Algorithm 1 below.

4. Methodology

To check the validity of the proposed FTMA, it should be tested with different well-known
optimization algorithms that were used widely in the literature. Five algorithms are chosen, although
there are many.

4.1. Well-Known Optimization Algorithms

(1)  Genetic algorithm (decimal form) (DGA): This is similar to a conventional GAs with the exception
that the chromosomes are not converted to binary digits. It has the same steps as GAs, selection,
crossover, and mutation. Here, the crossover or mutation procedures are performed upon the
decimal digits as they are performed upon the bits in a binary GA. The entire procedure of the
DGA is taken from [29].

(2) Genetic algorithm (real form) (RGA): In this algorithm, the vectors are used in optimization as
real values, without converting them to integers or binary numbers. As a binary GA, it performs
the same procedures. The complete steps of DGA are taken from [30].

(3) Particle swarm optimization (PSO) with optimizer: The success of this famous algorithm is down
to its simplicity. It uses the velocity vector to update every solution, using the best solution of the
vector along with the best global solution found so far. The core formula of PSO is taken from [4].

(4) Differential evolution algorithm (DEAs): This algorithm chooses two (possibly three) solutions
other than the current solution and searches stochastically, using selected constants to update the
current solution. The whole algorithm is shown in [6].

(5) Artificial bee colony (ABC): This algorithm gained use for its distributed behavior simulating the
collaborative system of a honeybee colony. The system is divided into three parts, the employed
bees which perform exploration, the onlooker which shows exploitation, and the scout which
performs randomization. The algorithm is illustrated in [5].
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Algorithm 1: Fine-Tuning Meta-Heuristic Algorithm

Input: No. of solution population N, Maximum number of iterations R;
Tick;
fori=1toN
Initialize x? using Equation (1);
Evaluate fg for every x? ;
end for
Search for xg and fl? ;
Initialize t = 0, set p and r;
while t < R && f} > ¢
t=t+1;
fori=1toN
Choose x; such that j # i;
Compute y using Exploration (Equation (2));
Evaluate g for y;
if g > fl, && p > rand
Compute y using Exploitation (Equation (3));
Evaluate g for y;
if ¢ > fl. && r > rand
Compute y using Randomization (Equation (4));
Evaluate ¢ for y;
end if
end if
ifg < f;l
Update xf“ and f;“ using Equation (5);
ifg < f}
Update x;“ and fg” using Equation (6);
end if
end if
end for
end while
Output: x;'H, fbH'], t, and the computation time.

4.2. Benchmark Test Functions

The optimization algorithms mentioned above, along with the proposed algorithm, will be tested
on ten unimodal and multimodal benchmark functions. These functions have been used widely as
alternatives to real-world optimization problems. Table 1 illustrates nine of these functions.

where x; represents one of the solution parameters thati = 1, 2, 3...d where d is the solution
space dimension. The bold 0 represents a solution vector of zeros, whereas the bold 1 represents a
solution vector of ones. The tenth benchmark function is proposed by the authors and introduced
for the first time in this article, which is a multimodal function with multiple local and one global
minimum, as shown in Table 2.

This function has 37 — 1 local minima which are located on points whose coordinates equal either
0 or +1 except for the global minimum which is located precisely at the origin. The positive real
parameter ¢ should be slightly higher than zero to trick the optimization algorithm to fall into the
local minima.
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Table 1. List of nine benchmark test functions used in global optimization.

Fn.Sym. Function Formula Ix;l Optimum

d
F1 SPHERE Y22 <5 f(0)=0

i=1

d

F2 ELLIPSOID Y, ix? <5 f(0)=0

i=1

d
F3 EXPONENTIAL 1- exp(—0.5 x Y x?) <5 f(0)=0
i=1
2
F4 ROSENBROCK  y:71100(xiyq = x2) + (xi - 1)° <2 fy=o0
d
F5 RASTRIGIN 10d + . (x? — 10 cos 2mx;) <5 f(0)=0
i=1
418.983d —
Fo SCHWEFEL 4 (x; +420.968) sin vJx; + 420.968| <100 flo)=0
2
F7 GREIWANK T o0 — [y cos 2 +1 <600 f(0)=0
d 2
—20exp| 0.2/ EEE |

F8 ACKLEY <32 f(0)=0

Y| cos2mx

exp($)+e+20

sin® (x2-x2, )05

d-1
105
F9 SCHAFFER Yilo5+ TOTEREnY

<100 f(0)=0

Table 2. The introduced benchmark test function.

Fn.Sym. Function Formula Ix;l Optimum

d
F10 ALLAWI El(xf' “2(e+1)xf+ (e +1)22) 0<e <1 <2 F(0)=0

Figure 1 illustrates that function for d = 2 and for ¢ = 2.22 x 1071¢, which is the default constant
called eps used in MATLAB® package (MathWorks, Natick, MA, USA). There are eight local minima
distributed in a square space around the global minimum. The value of the function at these minima
may be represented as f(x) = 2¢ Z‘Z:llxil.

Figure 1. Graph of ALLAWI test function for d = 2 and ¢ = 2.22 x 1071°.
5. Results and Discussion

The two most essential requirements for an optimization algorithm are fast convergence and
reaching the global minimum without falling into the local minima. Therefore, the judge for which of
the optimization algorithms is the best will be taken according to these two criteria. The optimization
algorithms were used to find the optimum values for the ten benchmark functions through 30 trials,
to check for the mean error and the standard deviation for statistical comparison purposes. The
parameters of the optimization algorithm FTMA, p and r were set to be 0.7 to make the flow control
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probably bypass the exploitation and randomization steps, even if the fitness is not improved in the
exploration step. For all the algorithms, the number of dimensions was d = 2, the number of solution
population agents was N = 1000, and the maximum number of iterations was R = 1000. The results of
a sample trial are illustrated in Table 3.

Table 3. Results of the global fitness and computation time (s) for a sample trial. DGA: Genetic algorithm
(decimal form); RGA: Genetic algorithm (real form); PSO: Particle swarm optimization; DEA: Differential
evolution algorithms; ABC: Artificial bee colony; FTMA: fine-tuning meta-heuristic algorithm.

Fn DGA RGA PSO DEA ABC FTMA

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
F1 11‘({)]5’15 1.05  1.64x107% 034 166x1071¢ 046 3.01x1077 027 750x1077 030 58x1077  0.12
F2 11‘8_71§ 139  510x107 888 116x1077 069 928x1077 040 215x1077 045 151x107V7 013
F3 21'3,212( 102 222x107% 028  222x107'° 038 1.11x107' 025 111x107'° 035 111x107'®  0.10
F4 195x10°° 696 120x1075 484 197x107 046 1.63x1071¢ 046  437x107 252 705%x10"7 041
F5 0 1.18 0 0.50 0 067 522x10° 485 0 0.65 0 0.18
F6 0 1.00 0 0.46 0 0.58 0 0.28 0 0.633 0 0.15
F7 21'331: 1.23 0 0.53 0 071  533x10° 541 111x107'% 215 0 0.21
F8 0 267 134x1072  7.02 0 0.83 0 0.65 0 0.75 0 0.30
F9 0 058 222x1071° 0.0 0 0.31 0 043  222x107'% 066 0 0.09

FI0 444x107 801 1.18x107 029 176x107%¢ 051 1.70x1073 419 154x107'¢ 067 212x107%  0.11

The data represent the output fitness value and the time taken by the optimization algorithm to
drive its optimum global fitness below the minimum tolerance error ¢ = 2.22 x 1071, The data in bold
represents the algorithm that simultaneously scored the fastest time and found the global minimum
for a specific benchmark function. The underlined data represents the algorithms that failed to pass
the tolerance and completed all 1000 generation cycles. The following ten figures in Figure 2 represent
the ten benchmark functions, illustrating the process of the optimization. All charts contain six lines
which differ in pattern, one for each optimization algorithm.
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Convergence chart for F9 Convergence chart for F10

Log(Fitness)
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Figure 2. Convergence charts for the ten benchmark functions. (a) F1, (b) F2, (c) F3, (d) F4, (e) F5, (f) F6,
(g) F7, (h) F8, (i) F9, and (j) F10.

Concerning the computation time, it is evident from Table 3 that the FTMA outperforms all other
algorithms. Furthermore, we can see that the DGA failed to reach the optimum in F4 and barely in
F7. For RGA, F2, F4, and F8 also failed. PSO evaded all local minima in all the benchmark functions.
Furthermore, DEA failed in F10 along with F5 and F7. The ABC algorithm succeeded in avoiding
local minima except for F4. In F5, F6, F8, and F9, most of the algorithms succeeded in capturing
the zero global optimum value. However, FTMA never fell into the local minima, scoring the best
convergence time out of all the optimization algorithms. Additionally, it reaches zero optimum value
in the functions from F5 through F9. One can see that some of the optimization algorithms are suitable
for some problems and not ideal for others. For example, DGA, RGA, and ABC failed in F4, but DEA
succeeded; the situation is in contrary to F5. This confirms the no-free-lunch theorems of the absence of
a universal algorithm for every problem. PSO, as well as FTMA, have both succeeded in evading the
local maxima and converging to the global one. However, the time taken by PSO to reach the optimum
is three to four times the time taken by FTMA. If we look at the ten subgraphs, which represent the
search progression of the algorithms for one trial (its results are illustrated in Table 3), we find that
the FTMA line (solid black) is the closest line to the vertical axis, which is the logarithmic scale of
the global fitness against the number of generations. Although the maximum number of iterations
is 1000, the maximum number of iterations displayed in the plots is set to be 150, because most of
the algorithms catch the global optimum at or before this generation. In all figures, FTMA is the
best-performing function. PSO and ABC are next best in most of the graphs. DGA, RGA, and DEA
failed on many occasions. If we take the time which FTMA reached the critical error tolerance, the
best of the other functions barely reached the fitness value at the same time. It can be seen from the
plots that some of the algorithms have trapped in local minima, especially in F4. This implies that
FTMA has the fastest convergence speed among the identified optimization algorithms. The values
of the mean and standard deviation for the 30 trials are evaluated for each optimization algorithm
and benchmark function. Table 4 illustrates the distribution of the output error, and Table 5 shows
the distribution of computation time. The bold and underlined values represent the fastest and failed
sets of trials, respectively. The trial sets are presented in ten sub-figures in Figure 3, one for each
benchmark function.
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Figure 3. Computation time distribution for the ten benchmark functions. (a) F1, (b) F2, (c) F3, (d) F4,
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In Table 4, the overall trials show that some algorithms that succeeded in one of the tests might
not achieve well in another one. It can be concluded that RGA failed in F2; DGA, RGA, and ABC
failed in F4. Moreover, DEA failed in F5; DEA, and ABC failed in F7, DGA and RGA failed in F8;
while PSO failed in the proposed benchmark function F10, which succeeded in all the other functions.
Although DGA average error is slightly less than the mean error of FTMA in F1, F2, and F9, the average
computation time is about eight times the computation time of the proposed algorithm. This implies
that the proposed algorithm succeeded in reaching the global minimum before DGA. It can be seen that
the computation time for the proposed algorithm is the best for all the benchmark functions. In Figure 3,
the plots contain six lines with different patterns, one for each optimization algorithm. The figures show
the logarithm of the computation time against computation trials. One can determine from these plots
that some optimization functions are suitable for some algorithms and not for another. For instance,
DEA is suitable for F4 but not for F5. The proposed algorithm always has the best computation time
among all the remaining algorithms. Its solid line lies in the bottom near the horizontal axis. In F4,
it is accompanied by PSO and DEA; in the other plots, it was alone in the bottom. For the proposed
benchmark system, DEA was the worst. PSO fell in local optima many times, and DGA a few times.
ABC and RGA performed well, but FTMA was the best.

6. Conclusions

This paper proposed a new global optimization named the fine-tuning meta-heuristic algorithm
(FTMA). From the simulation results, it can be concluded that the FTMA reaches the optimum value
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faster than any other optimization algorithm used in the comparison. Its performance is competing with
state-of-the-art methods, namely, RGA, DEA, ABC, PSO, and DGA. It accomplishes this in real-time
and, unlike other optimization algorithms, evading any local optima. Moreover, it maintains the
accuracy and robustness at the least runtime. Therefore, the FTMA offers a promising approach which,
thanks to its rapid convergence time, could be applied in more complicated real-time systems where
the time is a crucial factor. This result does not mean that this algorithm can solve any real problem
we may encounter in practice, as it stated in the no-free-lunch theorems, there may be processes that
this algorithm struggles to solve. So, there are possible opportunities to enhance the FTMA and/or its
counterparts. Future studies include using the FTMA in combinatorial optimization or integrating
the FTMA in control applications as an online or offline tuning algorithm for finding the optimal
parameters of the feedback controllers. Moreover, because the lack of resources (supercomputers,
etc.), the computation time of more than two parameters in the algorithm takes hours or sometimes
days. So, it is intended to make the problem space higher if these resources become available. Finally,
checking multi-dimensional spaces and using multi-objective problem scenarios are possible aspects
for future research.
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Abstract: The present work proposes a holonic-based mechanism for self-learning factories based
on a hybrid learning approach. The self-learning factory is a manufacturing system that gains
predictive capability by machine self-learning, and thus automatically anticipates the performance
results during the process planning phase through learning from past experience. The system
mechanism, including a modeling method, architecture, and operational procedure, is structured
to agentize machines and manufacturing objects under the paradigm of Holonic Manufacturing
Systems. This mechanism allows machines and manufacturing objects to acquire their data and model
interconnection and to perform model-driven autonomous and collaborative behaviors. The hybrid
learning approach is designed to obtain predictive modeling ability in both data-existent and even
data-absent environments via accommodating machine learning (which extracts knowledge from
data) and transfer learning (which extracts knowledge from existing knowledge). The present work
also implements a prototype system to demonstrate automatic predictive modeling and autonomous
process planning for energy reduction in milling processes. The prototype generates energy-predictive
models via hybrid learning and seeks the minimum energy-using machine tool through the contract
net protocol combined with energy prediction. As a result, the prototype could achieve a reduction of
9.70% with respect to energy consumption as compared with the maximum energy-using machine tool.

Keywords: cyber-physical production systems; self-learning factory; holonic manufacturing systems;
machine learning; transfer learning; predictive analytics

1. Introduction

Manufacturing intelligence reinforces real-time understanding, reasoning, planning, and
management of manufacturing processes with the pervasive use of sensor-based data analytics
and modeling [1]. Such intelligence is nothing new in manufacturing; however, it is not mature despite
much effort related to its implementation and utilization over the past decades [2]. Implementing
manufacturing intelligence is becoming more important than ever due to the evolution of manufacturing
technology (MT) itself and the convergence of MT with Internet of things and cyber-physical
systems (CPS).

CPS have been recognized as a cutting-edge technology in implementing machine intelligence
in various domains, as CPS are “physical and engineered systems whose operations are monitored,
coordinated, controlled and integrated by a computing and communicating core” [3]. The concept
of CPS is naturally being deployed to industrial automation in the manufacturing realm, and the
manufacturing version of CPS is known as cyber-physical production systems (CPPS). CPPS seek to
realize intelligence, connectedness, and responsiveness through autonomous and cooperative objects
and sub-systems based on context awareness within and across all levels of production [4].

Processes 2019, 7, 739; doi:10.3390/pr7100739 249 www.mdpi.com/journal/processes
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CPPS can be categorized based on their maturity levels, which consist of: visibility, transparency,
predictive capability, and self-optimization [5]. CPPS ultimately pursue the acquisition of
self-optimizing ability so that manufacturing machines are directly involved in problem-solving
or optimization through autonomous and collaborative decision-making and communication with
minimization of human intervention. This self-optimizing ability obviously requires predictive
capability at the precedent level. Machines can achieve self-optimization only after they can predict
their performance by themselves through learning algorithms and use this ability to enhance the
accuracy and robustness of their decision-making through evolutionary learning. Such predictive
capability can be realized if the machine can self-learn. Self-learning endows manufacturing
systems (especially manufacturing objects like machines, material handling equipment, workpieces,
work-in-process and products) with the ability to learn from history for future decisions [6].

From the perspective of CPPS implementation, CPPS require control architecture suites fit for
autonomous and collaborative operation and control on manufacturing objects. Holonic Manufacturing
Systems (HMS) represent one of the most promising architecture suites, with the same goals as those
of CPPS [4]. This coincidence can be demonstrated in the Product-Resource—Order-Staff Architecture
(PROSA) reference architecture. This referential architecture is structured to achieve both hierarchical
and heterarchical control by employing holons (autonomous and cooperative objects in manufacturing
systems) and their holarchy (a system of holons) for efficiency in resource utilization, stability against
disturbances, and flexibility during changes [7]. To pursue manufacturing intelligence, we suggest
that holonic-based systems should be reshaped to obtain learning ability within the complex and
dynamic nature of manufacturing environments. Even good stationary structures and mechanisms
can hardly accommodate huge numbers of manufacturing conditions which are rapidly changing.
Without learning, it is extremely difficult to identify concrete behaviors and activities that will improve
the performance of manufacturing systems [8].

Traditionally, self-learning largely depends on creating predictive models derived by
machine-learning techniques (e.g., regression, decision tree, Artificial Neural Network (ANN), support
vector machine, and genetic algorithms). Machine-learning techniques are used to acquire the
knowledge needed to make future decisions from historical training examples [9]. It is known that they
enhance the validity of machine-specific models by using real and historical data even in dynamic and
complex manufacturing environments. Machine-learning determine cause-and-effect relationships
from the training datasets that have been collected from previous manufacturing operations. As
cause-and-effect relationships are derived into mathematical representation under certain conditions
and constraints, machine-learned models can faithfully work as predictive models by anticipating an
effect from an input of cause values.

However, traditional machine learning has a drawback. It does not work unless training datasets
exist. Manufacturing environments cannot always create or keep training datasets due to difficult data
collection, data loss, data becoming outdated, or even data missing from manufacturing operations
that have not been run. Collecting new datasets by performing additional manufacturing operations is
desirable; however, it is time-consuming and is sometimes impossible. Nevertheless, the self-learning
ability should be obtained and maximized even in such data-absent environments, and transfer
learning can be a complementary means of achieving the machine’s self-learning. Transfer learning
is a technique to extract knowledge from source tasks and apply the knowledge to a target task to
reduce the effort required to collect training datasets [10]. As transfer learning involves knowledge
extraction from existing models, it allows machines to create knowledge-transferred models in the
data-absent environment. Eventually, the adaptive convergence of machine learning and transfer
learning enables machines to implement their self-learning ability in both data-existent and even
data-absent environments.

In the metal cutting industry, energy consumption becomes a major metric for improving
energy-efficiency and environmental performance. According to a survey [11], the manufacturing
sub-sectors of fabricated metal products and machinery where the metal cutting industry involves
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as a part consume 41,869 and 23,424 million kWh of net electricity in the United States of America,
respectively. As these values respectively occupy 5.5% and 3.1% of the entire manufacturing sector,
reducing energy consumption in the metal-cutting industry is important for improving environmental
performance. In this context, machining in a machine tool affects energy consumption and varies the
energy difference in terms of machining power and time by about 66% [12]. Thus, process planning for
energy efficiency works as a useful means for reducing the energy consumed during the execution of
machine tools because machining sequences and process parameters decided during process planning
significantly influence the performance of machine tool operations [13].

Accordingly, much of the literature has elucidated the relational models between process planning
decisions and energy consumption based on theoretical and experimental modeling approaches [14].
A theoretical approach uses the theory of metal-cutting with some coefficient assumptions; however,
it has limits in predicting energy values correctly due to the gap between assumptive and real coefficient
values. An experimental approach can be subdivided into statistical and learning approaches. A
statistical approach generates statistical models based on Design of Experiments, which aims at
generating response surfaces with a small set of experimental data. This approach derives polynomial
equations for energy prediction; however, it only works within the restricted experimental condition.
A learning approach uses real data from machining operations for creating machine-learned energy
models and shows high accuracy of energy prediction; however, it is limited to creating such models
in a data-absent environment, as mentioned above.

In view of the above, a holonic-based approach is necessary to gain the predictive capability
through self-learning for reducing energy in machining processes. As holons result from the application
of object-oriented concept, they can work as decentralized individuals who independently operate for
how-to-create and how-to-use models. These object-oriented holons can adaptively and evolutionarily
create learned models based on their associated data and thus can cope with the variability of data,
which frequently take place in manufacturing systems due to the changes in manufacturing setup,
condition and environment. Furthermore, holons’ mutual cooperation via their message exchanges
pursues performance optimization centralized on a holarchy. A plausible scenario for energy reduction
in machining is that the machines abstracted by holons automatically create energy-predictive models
through learning techniques, and predict their energy values using the models. In succession, the
machines autonomously and cooperatively make an optimal decision for reducing energy consumption
during the process planning phase.

For such purposes, we designed a holonic-based mechanism for self-learning factories based
on a hybrid-learning approach. We also implemented a prototype system to perform predictive
process planning for energy reduction in milling processes. The hybrid-learning approach is proposed
to obtain the ability of self-learned predictive modeling in both data-existent and even data-absent
environments via accommodating traditional machine learning and transfer learning. The holonic-based
mechanism, consisting of a modeling method, system architecture, and operational procedure, is
designed to provide an autonomous and collaborative decision-making environment through the
virtual agentization of machines and their associated objects under the paradigm of HMS. This
mechanism provides interconnections between data/models and virtual agents. Thus, we can create
and apply energy-predictive models automatically on machines with minimal human intervention.
The implementation demonstrates how individual machine tools utilize real data or existing models
for creating their learned models, predict energy based on their own models, and automatically
negotiate between themselves to find the best machine tool that can minimize energy consumption in
milling machining.

Section 2 reviews the relevant literature, and Section 3 introduces the concepts of a self-learning
factory and hybrid learning. Section 4 presents the holonic-based mechanism. Section 5 demonstrates
a prototype system with discussions, and Section 6 summarizes our conclusions.
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2. Related Works

This section reviews the literature relevant to HMS and learning ability. Our mechanism builds
upon the concept of HMS from a systematic perspective and the application of learning-based analytics
from a methodological perspective, respectively.

2.1. Holonic Manufacturing Systems

HMS originated from PROSA, which adopted a holonic organization to achieve stability against
disturbances, flexibility in changes, and efficiency in resource utilization [7]. The PROSA identified
major keywords as defined below [8].

e  Holon: An autonomous and cooperative building block for transforming, transporting, storing,
and validating information and physical manufacturing objects. Basic holons consist of product,
resource, and order holons, whereas staff holons assist the basic holons.

e Holarchy: A system of holons that cooperates to achieve a goal. It defines the basic rules for
cooperation of holons, thereby limiting their autonomy.

e Autonomy: The capability of a holon to create and control the execution of its own plans
and strategies.

e  Cooperation: A process whereby a set of holons develops and executes mutually acceptable plans.

Extensive knowledge of HMS can be found in outstanding reviews including [8,15-17]. The
reviews interestingly imply that Multi-Agent Systems (MAS) are a commonly-used and efficient
technology to implement HMS due to the suitability of implementing the modularity, decentralization,
and complexity of holons and their holarchy [17]. Here, an agent is a computational system situated
in a dynamic environment with the capability of exhibiting autonomous and intelligent behavior,
while MAS operate the community of interacting agents as a whole [16]. Thus, it makes sense that the
conceptual frame of HMS needs to be transformed to programmable outcomes using MAS technology.
Note that the present work also adopts this view due to the reasons given above.

Previous literature has attempted to develop and apply holonic-based systems to enhance target
Key Performance Indicators (KPI) in broad applications. The following describes the purposes of HMS
implementations in individual applications [15].

e Automation: The low- and (or) high-level control architecture to synchronize physical and
software control units for flexibility at the machine or shop floor levels.

e  Task allocation: Task assignment involving the distribution of tasks to available resources with
the use of Contract Net Protocol (CNP), a negotiation procedure between a manager and a set of
candidate contractors about the assignment of a task [18]. Task allocation can be a part of planning
and scheduling in some sense.

e  Fault-tolerance: Detection of failure, diagnosis of failure, and determination of reasonable
recovery actions.

e  Real-time control: The system control that reacts within precise time constraints, being classified
into hard (missing deadline results in catastrophic consequences) or soft (meeting deadline is
desirable but missing a deadline will not cause serious damage).

e  Planning and scheduling (the application of the present work): Optimal planning and scheduling
of available resources in the production or process level.

Table 1 lists the studies that have endeavored to develop holonic-based systems for enhancing the
target KPI (e.g., productivity, flexibility, reconfigurability and fault-free operation). Staff holons are
designed to efficiently carry out evaluation, mediation, management, and coordination to assist the
basic holons, which concentrate on achieving goals. However, the previous studies did not much focus
on data-driven modeling methodologies where the process of acquiring data and creating models
becomes critical in structuring holons” functionalities and behaviors. As presented in Table 1, the
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previous studies are limited in identifying pivotal mediators that can interconnect historical data and
create data-driven models with basic holons for predictive process planning. These studies are also
limited in specifying operational and negotiating procedures between holons based on their recognition
of model-based prediction.

MAGS-driven studies have recently contributed to improve energy efficiency in manufacturing
in accordance with the increase of energy reduction requirements. Alotaibi et al. developed a
MAS prototype to optimize bi-objective functions (energy and tardiness) in a flexible job shop [19].
Marchiori et al. presented a dynamical approach for energy trades in steel production with the use of
autonomous software agents [20]. Giret et al. proposed a software engineering approach for designing
sustainable intelligent control systems based on multi-agent and holonic principles [21]. However, their
studies depend on a deterministic or discrete event method and do not deal with energy-predictive
models based on a data-driven method, which can deliver better predictability and adaptability of
models at the machine level.
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2.2. Learning-Based Analytics

Learning ability is recognized as an indispensable feature of manufacturing intelligence [35].
As machine learning inherits the ability to learn, the applications of machine learning dramatically
increased in manufacturing domains over the last two decades, and proved suitable in prediction,
optimization, control, maintenance, and troubleshooting. This suitability stems from the advantages
of machine-learning techniques that handle high dimensional problems, increase the usability of
machine-learning practice, discover unknown knowledge, and adapt automatically to dynamic and
complex environments [36].

The learning ability has also been incorporated into agent-based manufacturing systems [37].
Kadar and Monostori presented resource/system-level learning to improve the performance of
distributed systems by expanding the adaptive characteristics of agents [38]. Shen et al. proposed a
learning mechanism for identifying organizational knowledge and selective interaction propagation
from emergent system behavior, and it was used for adjusting distributed schedules and planning
dynamically [6].

The learning ability has been widely applied into energy-efficient machining as well. Previous
works have demonstrated that machine-learning techniques are powerful for predicting and optimizing
energy consumption through utilizing the prior knowledge of a concerned system [39]. For example,
Garg et al. applied a multi-gene genetic programming approach to generate the model structure and
coefficients automatically for energy prediction and optimization in milling machining [40]. Bhinge
et al. presented a data-driven approach for energy prediction in milling machining through the
application of Gaussian process regression [41], and Liu et al. used a tree-based gradient boosting
method, which is a machine learning method to combine weak models into a single strong model in an
iterative fashion, to predict specific cutting energy in milling [39].

Despite such efforts, a common problem remains in that values of certain attributes are not available
or are missing in the dataset [36]. The recent emergence of transfer learning appears to overcome this
problem in manufacturing. Transfer-learning applications are increasing and include fault detection and
condition causality in product quality management, fault diagnosis and condition-based maintenance
in machine maintenance, and tool tip dynamics prediction in machine chatter [42,43].

Consequently, the motivation of the present work is to develop a HMS mechanism for gaining
learning ability, where basic holons can interconnect data, create data-driven models, and determine
their behaviors autonomously and collaboratively for energy-efficient machining through predictive
process planning. The convergence of machine learning and transfer learning provides a basis for
proactive decision-making about the future behaviors of agent-based manufacturing systems, thereby
resulting in learning ability in complex and dynamic environments.

3. Self-Learning Factory and Hybrid Learning

This section introduces the concept of a self-learning factory and a hybrid-learning approach,
respectively. Section 3.1 explains the conceptual structure and process of a self-learning factory.
Section 3.2 describes the theoretical methodology of the hybrid-learning approach.

3.1. Self-Learning Factory

Manufacturing systems operate in dynamic and real-time environments and are frequently
confronted with unexpected events such as machine failure. In this circumstance, MAS have been
applied to facilitate adaptive, flexible and efficient use of manufacturing resources. However,
determining concrete behaviors and activities in MAS a priori is challenging because the following
things should be known: the environmental requirements that will emerge in the future, which agents
are available, and how those agents need to interact in response to these requirements. Such challenges
should be overcome by endowing the agents with the ability to improve the future performance of
manufacturing systems through experience [6]. In the present work, a self-learning factory is the

256



Processes 2019, 7, 739

manufacturing system that allows manufacturing objects themselves to learn from past experience,
perform predictive simulations and analytics based on the learned-experience, and thus proactively
determine their behaviors and activities for improving, sustaining or recovering their target KPI.

Figure 1 presents the concept of a self-learning factory. It consists of a physical and cyber pairwise
factory, which mirrors the physical factory and uses virtual agents for representing their physical
objects. The cyber factory collects manufacturing data acquired from physical objects. It processes data
to generate training datasets and manufacturing context information. Here, the manufacturing context
means a machining condition that specifies which machine, material, machining feature, operation
and strategy are applied when a certain dataset is generated. The manufacturing context information
can be used a model identifier for categorizing the entire training dataset into individual datasets
because different process conditions create disparate models. For example, models for a machine need
to be different from those of another machine because both machines have different capabilities and
performances. It then creates models from training datasets using learning techniques and stores
them in a knowledge database (model repository). Here, it can adaptively choose machine learning or
transfer learning, depending on whether training datasets exist or not (more details in Section 3.2).
The cyber factory makes predictive planning and control decisions based on learned knowledge and
models, and eventually feeds such decisions forward to the physical objects located in the physical
factory. This cycle repeats, and the cyber factory evolutionarily improves the robustness of knowledge
and models, thereby allowing for more accurate planning and control in physical factories.

Cyber factory

Decision |
transmission

- KPI prediction]
- Decisions

- Predictive model
- Knowledge

Machine- Transfer-
learning learning

—

;

Self-learning reposito

- Manufacturing context

- Training dataset
Data processing

- Raw data

Virtual
Data collection

agents

- Process plan data|
- Contro! data ata
- Operation data

- Sensor data osito!

Physical factory  Process plan

- Process con
. N !
Manufacturing objects
(machine, robot, product, etc)

Figure 1. The concept of a self-learning factory. KPI: Key Performance Indicators.

3.2. Hybrid Learning

Manufacturing data are very important because data-driven knowledge creation is the foundation
for the self-learning factory. Figure 2 presents data flow on a computer-aided chain in machining
processes. Machining processes require part geometries, production plans (macro-level plans for
managing a shop floor), process plans (micro-level plans for machining a part), and Numerical
Control (NC) programs. Supplementary information like part libraries and machine and cutting tool
specifications aid in efficient planning and control by providing technical requirements about products
and resources. Here, the data associated with specifications, planning, and control work as causative
data because they characterize commands and instructions by which machines must operate. While
machine tools run the machining, they generate machine-monitoring data to represent their actions
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and movements along with timestamps. After or during machining, inspection equipment records
values that are used to check whether machining was satisfactorily completed as designed or not.
Machine monitoring and inspection data can be resultant data because they result from the machine’s
actual operations commanded and instructed by the causative data. Specifically, process plan and
NC program data significantly influence machine-monitoring data because a machine tool takes the
actions designated by the NC programs, which are outcomes of process plans [44].

- Part library

" Part dictionary

/,—{ Production resource

n resource

Design requirement
Engincering requirement

Part design
(CAD)

Part geometry

Prod

(CAPP)

Machine tool resource achine tool description
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(CAM) .
NC program " NC code scheme

Machining ) Post processing
(CNC)
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Machined part Machine execution

Resultant data group —= I“;PCe::;On

Dimensional measurement

Machine monitoring

Machine-monitoring documents

—

Figure 2. A computer-aided process chain and its data flow. CAD: Computer-Aided Design; CAPP:
Computer-Aided Process Planning; CAM: Computer-Aided Manufacturing; CNC: Computerized
Numerical Control; CAI: Computer-Aided Inspection.

From a learning perspective, causative data can correspond to input variables (x variables) as
training datasets consist of x— pairwise data instances; meanwhile, the resultant data are included as
output variables (y variables) [37]. Additionally, certain causative data are involved in identifying
the manufacturing contexts because they specify machining conditions. Hence, process plan and
NC program data configure manufacturing context information or x variable data instances, whereas
machine-monitoring data are related to y variable data instances. Training datasets can be constructed
by integrating machine-monitoring data instances with their corresponding process plan and NC
program data instances. Such training datasets are the primary requirements for machine learning and
are used to compute their causal relationship by learning techniques.

When implementing the self-learning factory, it is necessary to achieve the self-learning ability
through creating predictive models by means of appropriate learning approaches. Predictive models
allow machines to forecast KPI under uncertainties, thereby helping the KPI optimization through
their self-aware abilities [45]. The traditional learning that uses machine-learning techniques shows
excellence at creating predictive models, as reviewed in Section 2.2. However, it does not work
unless training datasets exist. To overcome this limitation of the traditional learning, we apply hybrid
learning. Hybrid learning can be defined as a learning method where traditional machine learning
creates predictive models in a data-existent environment; on the other hand, transfer learning does in a
data-absent environment.

Figure 3 presents the concept of hybrid learning for creating energy prediction models in machining
processes. Note that our problem is supervised learning because the x and y variables are supervised
by humans and desired outputs are supplied during training. When training datasets exist, traditional
learning computes a mathematical function, y = f(X) + ¢ (e: error term), based on learning x—y pairwise
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training datasets. The upper part of Figure 3 shows how traditional learning is used to create an
energy model using an ANN, which is useful for energy prediction in machining [46]. This model
can calculate an anticipated energy value based on the input of process parameters (feedrate, spindle
speed, and cutting depth) in a certain manufacturing context because ANN makes the x—y relationship
numerically known. Such models can provide reliable prediction capability because they build on
training datasets that come from real data.

_ Training dataset ANN-based Energy Prediction Model n
AR
oL x s
M f: ing Context n
Py g
Machine- Machine: NVD1500DCG

Learning /|Material: Steel alloy Learning
Feature: Closed pocket
Operation: Pocketing

Strategy: Bidirectional

Knowledge Accumulation Suhstitution\
Repository \ Energy Prediction Model n+1
M ing Context n+1 Energy Prediction Model n “’
Transfer- \ |Machine: NVD1500DCG  |Knowledge Transfer

Learning [ |Material: Steel alloy I .
Feature: Closed pocket Similarity Analysis
Operation: Pocketing

Strategy: Unidirectional

Figure 3. The concept of hybrid learning. ANN: Artificial Neural Network.

Transfer-learning can work when training datasets are unavailable. This transfer learning can
create substituent models by transferring learned knowledge (existing models) as it builds upon the
similarity between models. A target manufacturing context (target task) captures a substituent model
that has the best similarity among existing models (source tasks), as presented in the lower part of
Figure 3. Transfer learning unavoidably requires prior knowledge, where the similarity between
models has been investigated in a certain manufacturing system (domain). The prior knowledge can
be obtained from a preliminary analysis of the target KPI (here, energy). Table 2 shows an example of
the similarity of strategies in 2.5 dimensional pocketing machining. This similarity comes from the
previous work [47], which observes that unidirectional x-axis up/down milling and unidirectional
y-axis strategies have the similar energy pattern in pocket machining due to the dependency of cycle
time; on the other hand, bidirectional x-axis, contour, and spiral strategies do. Model similarities can
be graded in terms of high, middle or low levels, depending on their energy pattern likeness. When
creating a substituent model, one of several models that have a high-level of similarity can be selected
and then be substituted for the model that needs to be created (the selection method explained in
Section 4.1.2). For example, a contour or spiral strategy model can be substituted for the model of
bidirectional strategy due to their high-level of similarity.

The adaptive convergence of machine learning and transfer learning enables self-learning ability
regardless of the degrees of freedom in the data. While models are continuously created by hybrid
learning, enormous knowledge can be accumulated to ensure predictive capability in a huge number
of manufacturing contexts.
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Table 2. A similarity matrix of energy patterns in 2.5 dimensional pocketing strategies.

Unidirectional

. Unidirectional Bidirectional Unidirectional .
Strategy. x-axis down -axis up Millin x-axis _axis Contour Spiral
Milling P & y
Unidirectional
x-axis down High Low High Low Low
milling
Un.l dlrectu‘an‘al High Low High Low Low
x-axis up milling
Bidirectional Low Low Low High High
x-axis
Unidirectional High High Low Low Low
y-axis
Contour Low Low High Low High
Spiral Low Low High Low High

4. Mechanism

This section presents the mechanism for implementing the self-learning factory based on the
hybrid-learning approach. The mechanism includes a modeling method, system architecture and
operational procedure, and it focuses on predictive process planning for energy reduction in the cyber
part of the self-learning factory.

4.1. Modeling Method

Predictive process planning requires models so that machines make proactive and autonomous
decisions through model-based anticipation. The hybrid-learning approach needs to be fully specified
because it should be implemented to compile the knowledge needed for automatic creation and use of
models. Figure 4 shows high-level methods of the hybrid-learning approach. Sections 4.1.1 and 4.1.2
explain the methods of machine learning and transfer learning, respectively.

Data-existent environment

Machine- | Ratw.dat:: H Data . |_’|’I‘ralnmg d;taseH Mo;iiel H N.lode.l
3 retrieva ! |_pre-processing | reparation |\ creation H
Learning i pre-p g | prep | | Rl
Raw dataset Processed dataset Training dataset Raw model

= Model storage
Validated model <[ & retrieval
Data-absent environment
Transfer- Model Model H Model },
Learning similarity analysis bstituti lidati

Model knowledge

Substituted model

Figure 4. The modeling method of a hybrid-learning approach

4.1.1. Machine-Learning Method

The machine-learning method handles manufacturing data and data-driven models with the use
of machine-learning techniques. It consists of: (1) raw data retrieval, (2) data pre-processing, (3) training
dataset preparation, (4) model creation, (5) model validation, and (6) model storage and retrieval.

(1) Raw data retrieval involves the search and retrieval of raw data stored in a data repository
for collecting data instances in training datasets. As explained in Section 3.2, the process plan, NC
program and machine-monitoring data need to be searched and retrieved through a certain search
method. A metadata-based search is useful as the metadata indicate the data about the data and serve
as a map for locating data instances [48]. Once data instances are tagged with metadata attributes as
header information, they can be effectively detected through mapping metadata-tagged data instances
with the data queries utilizing the metadata attributes. We design the attributes of the metadata by
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considering generality and accessibility. Generality assures that basic information about data instances
will be represented across various data formats and dispersed data sources. Accessibility increases the
availability of data searches even when some attributes are null. The attributes of the metadata of data
can be identified as follows.

Metadata of data = {UUID, Group ID, Creator, Source, Duration, Means, Purpose, Creation}.

e  UUID: Universally Unique Identifier.

e Group ID: an identifier for grouping instances.

e  Creator: an identifier indicating who creates instances.

e  Source: an identifier indicating where instances are stored.
e  Duration: a period of time for gathering instances.

e  Means: an identifier indicating how instances are obtained.
e  Purpose: data attributes to be requested.

e  Creation: a timestamp of data creation.

Figure 5 shows an example of the data retrieval using the metadata of data. When a set of raw
data associated with process planning (formalized as 15014649 [49]), NC programing (conforming
to Fanuc codes), and machine monitoring (represented by MTConnect [50]) needs to be retrieved,
‘09131’ (the NC program name) can work as ‘group ID’. In Figure 5a, if the metadata contain ‘group
ID’ and ‘purpose’, the relevant data instances can be retrieved because ‘O9131’ (red italic letters) is
encoded at ‘FILE_DESCRIPTION’ in the header section and “purpose’ corresponds to the entity of
‘PROJECT" in the data section. In Figure 5b, ‘purpose’ can request a list of ‘CODE BLOCKS’ in the NC
program named ‘O9131". Figure 5c illustrates the data retrieval from an MTConnect document when
data instances regarding “position” and ‘wattage” attributes during a period of time are necessary.

(2) Data pre-processing re-produces high-quality data from raw data and handles them as
designated for preparing training datasets. The data pre-processing basically includes data cleaning,
integration, transformation, and reduction [51].

Data cleaning resolves missing, noisy, outlying, duplicate, or incorrect data. Raw data unavoidably
include sparse, imprecise, faulty, missing, or null data due to the dynamics of manufacturing systems
and the limited capability of measurement devices [52]. These uncleaned data cause an increase
in data uncertainty and result in negative impact on data-driven learning. Data cleaning produces
so-called good data by keeping the data uncertainty under control, thereby increasing the reliability of
data-sensitive learning.

Data integration combines heterogeneous data sources or separate formats into a single dataset for
the desired learning analysis. For example, data instances retrieved from three different data formats
in Figure 5 should be integrated into a tabular training dataset to connect the x and y variables. Data
integration can be achieved by the backward tracing that scans from an MTConnect document and
an NC program to an ISO14649 program. Here, a key attribute should be identified as the linking
point for backward tracing, for which ‘position’ can be chosen as this key. Since ‘position” indicates the
coordinates of a cutting tool, a value of ‘power” matched with a certain position can be obtained. A NC
code block associated with the given position can be traced because the block obviously commands
cutting tool movement involving the position. In turn, a machining operation associated with the NC
block can be found because the former creates a group of NC blocks where the latter gets involved.

Data transformation converts data instances into the desired format, scale or unit that is more
useful for the learning analysis. For example, real data values about feedrate, spindle speed, cutting
depth, and power (blue and underlined letters in Figure 5a) need to be adjusted to a 0-1 scale through
minimum-maximum normalization due to their different scales. In addition, it is necessary to convert
a power unit to an energy unit. This is because a power meter typically measures power values, as
shown in Figure 5c, while the y variable in our model uses energy units, which are scalar quantities.
We adopt the delta-energy unit, which can be calculated by multiplying power with a sampling rate of
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measured power [41]. For example, the sampling rate is given by 0.365 s (the average sampling time of
the power meter used in our case study).

Metadata Data Instances

HEADER;
FILE_DESCRIPTION(('09131", PROCESS PLANNING FOR 2.5D MILLING'), 'I');
FILE_NAME(TEST VERSIONLstp!, 2014-10-15', (PROCESS PLANNER A'),
UUID = “TEST VERSIONLstp” (ORGANIZATION B), '$', 1SO 14649, 'S);

Group ID =“09131” ENDSEC;

Creator = “PROCESS PLANNER A” DATA;
Source = null » #1= PROJECT(EXECUTE EXAMPLEI'#2,(#4).$.5.5);

Duration = null #2= WORKPLAN('MAIN WORKPLAN',(#30,#36,#34,#32.#38,#40,#42.#44 #46).$ #8.8);
Means = null #36=MACHINING_WORKINGSTEP(‘CLOSED_POCKET'#60.#3400,#500.$);
Purpose = [PROJECT] #500=BOTTOM_AND_SIDE_ROUGH_MILLING(S.S,"CLOSED_POCKETI',

Creation =2014-10-15” 10.0,8,#510,#530,#540,8,#550,#560,4570,2. 0,0.0);
#510=MILLING_CUTTING_TOOL(‘ENDMILL'#511,(#513),80.0.8.5);

#530=MILLING_TECHNOLOGY (0.007, TCP.$,2000,, F.,.E..F.$);
(a)
Metadata Data Instances
09131
(2014-10-26")
UUID = “09131.nc”
Group ID = “09131” G17 G90 G21 G94
Creator = null GO G40 G80
Source = null GY1 G28 Z0 M19G28 X0 YO
Duration = null
Means = null (SOLIDMILL - CONTOURING)
Purpose = [CODE BLOCKS] N10 (5/16 IN END MILL, T01 HO1 D01 )
Creation = “2014-10-26” M5
G91 G28 Z0 M19
M1
(b)
Metadata Data Instances

<Header creationTime="2014-12-11T21:33:22.323" ... instanceld=“09131" ...
firstSequence="2014-12-11T22:57:000" lastSequence="2014-12-11T23:58:000"/>

: <Streams>
UUID = “MILLING_ MACHINE_1”
Group ID = “09131° - <DeviceStream name="NVDI500DCG" uuid="MILLING_MACHINE_1">
Creator = “NVD1500DCG” <ComponentStream name="X_AXIS" component=“Linear componentld=“x_axis™>

.071</Position>

Source = null <Position dataltemld="X_POSITION™ timestamp="2014-12-11T22:57:58.83
Duration = [2014-12-11T22:57:000 ~ C 1St Y AXIS” =-Li - tld= .
2014-12-11T23:58:000] <ComponentStream name="Y_AXIS” component="Linear” componentld="y_axis

Means = nuil <Position dataltemld="Y_POSITION" timestamp="2014-12-11T22:57:58.835">47.808</Position>
Purpose = [Position; Wattage] <ComponentStream name="Z_AXIS” component="Linear” componentld="z_axis™>
Creation =“2014-12-11T21:33:22.323 <Position dataltemld==Z_POSITION™ timestamp==2014-12-11T22:57:58.835">-1.500</Position>

<ComponentStream name="Systems” comp Electric” Systems™>
<Wattage dataltemld="“WATTAGE" timestamp="2014-12-11T22:57:58.835">2811.500</Wattage>

(c)

Figure 5. Data retrieval using a metadata-based search (a) ISO14649 program; (b) Numerical Control
(NC) program; (¢) MTConnect document. UUID: Universally Unique Identifier.

Data reduction may involve the removal of redundant data instances or a reduction in data
dimensions to alleviate computational burdens or obtain straightforward learning results. The present
dataset forms a data tuple of {feedrate, spindle speed, cutting depth}-{delta energy} at every sampling
rate. We need to reduce the data dimension to {feedrate, spindle speed, cutting depth}-{energy} in
terms of a manufacturing context because our models seek to output an energy value using the input
of certain process parameters in a manufacturing context, as described in Section 3.2. For this purpose,
all delta energy values within a manufacturing context are aggregated into a single energy value in the
manufacturing context.

(3) Training dataset preparation decomposes the entire pre-processed dataset into individual
training datasets separated by manufacturing contexts. Different manufacturing contexts require
different models. This comes from the disparate power patterns caused by different cutting force
distributions. For example, the power pattern for unidirectional strategy is different from that for
bidirectional strategy due to their different tool movements and their different cutting forces. Table 3
presents an example of training datasets in two different manufacturing contexts (bidirectional and
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contour machining strategies) within the same pocketing operation. These two datasets are used to
create two different models. For example, when the feedrate is set to 0.333, spindle speed to 0.5, and
cutting depth to 1, its corresponding energy value equals to 0.188, which is an aggregated value of
individual delta energy values consumed by operating the bidirectional strategy for the pocketing.
Note that the numerical values are normalized to a 0-1 scale based on original values.

Table 3. An example of training datasets.

. . y
Manufacturing Context x Variables Variable
. . . Spindle  Cutting
Machine Material =~ Feature  Operation Strategy Feedrate speed depth Energy
0.333 0.5 1 0.188
L. . 0.667 0 0 0.546
Bi-directional
0.667 1 0 0.227
Steel Closed . 0.667 1 1 0.000
NVD1500DCG o O Pocketing
alloy pocket 0.333 05 0 0.796
1 0.5 0 0.256
Contour
0.333 0.5 1 0.269
0.667 0 0 0.386

(4) Model creation involves the generation of predictive models through learning training datasets
by machine-learning techniques. As noted in Section 3.2, our model is supervised learning and
thus machine-learning techniques can be used to derive mathematical functions that determine the
relationship between the x and y variables. Equation (1) expresses an ANN-based function for energy
prediction [53]. Figure 6 shows the structure of an energy prediction model (the graphical structure is
presented in Figure 3) and its example where the attributes of an ANN function are instantiated. The
manufacturing context enrolls model identification, and the numerical function performs the energy
calculation based on the input of the process parameters.

P q
y= fo(Z wOifh(Z wiix;)) + & 1)
] pary

where y: energy, x: process parameter (feedrate, spindle speed, and cutting depth), p and g: the
numbers of neurons at each layer, w,; and wj;: weight values, f, and f;: activation functions, and e:
learning error

Energy Prediction Model n

Manufacturing Context n Structural Numerical Function n
Machine: NVD1500DCG - Technique: Artificial Neural Network
Material: Steel alloy - Learning rule: Momentum Backpropagation
Feature: Closed pocket - Activation function: Sigmoid
Operation: Pocketing - Weights and Bias
Strategy: Bidirectional Hidden layer Output layer
Neuron| euron|
[Input N"n NI" N"Z (Output 1\3‘"
Xy 1.912 | 1.219 | -2.065 N1,0 -2.473
X; 0.764 |-0.202 | -0.707 N1 -0.839
X3 1.103 | 0.223 [-1.471 N1,2 3.427
Bias -1.300]-0.115| 1.477 Bias 0.242

(where, the number of layers = 2,
the number of neurons at hidden layer = 3)

Figure 6. Structure of an energy prediction model.
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(5) Model validation involves the quantification of model significance and reliability to validate
model conformance. This process checks whether model performance satisfactorily meets a threshold
by measuring learning error (the deviation between training data and a numerical function) and
prediction error (the deviation between the numerical function and real values to be predicted). Root
mean square error (RMSE) is widely used as a performance metric for measuring the learning error [54].
Cross validation is useful for measuring the prediction error. It splits the full dataset into training and
test data folds, measures the trained model’s performance using the test data fold, and then repeats
this procedure by changing the roles of the data folds [54].

(6) Model storage and retrieval involves the storage of validated models in a model repository
with their structural forms, and retrieval of the models when requested. Such numerical functions
expressed in Equation (1) are quite hard to store in and retrieve from the database. The tabular
model representation illustrated in Figure 6 makes this model storage and retrieval efficient. As
common relational database systems store and retrieve data records in tabular form, the attributes
of ANN functions can be identified as columns and their instances can be recorded as rows in tables.
A metadata-based search is also useful as the metadata act as model navigators, as explained in
Section 4.1.1 (1). The metadata of a model also need to consider accessibility (as with the metadata of
the data) because accessibility is the common sense of storage and retrieval in a database. However,
the metadata of the model need to be designed in accordance with specificity because manufacturing
contexts depend on and vary with characters of manufacturing systems (e.g., types and complexity of
production). The models requested need to be accurately retrieved, and thus the metadata of the model
should be able to represent the manufacturing context in a straightforward manner. The metadata of a
model for machining processes can be identified as follows.

Metadata of model = {UUID, Group ID, Creator, Source, Means, Creation, Machine, Material,
Feature, Operation, Strategy}.

e Machine: an identifier for the machine tool that creates a model.

e  Material: an identifier for a workpiece material.

e  Feature: an identifier for a machining feature.

e  Operation: an identifier related to a machining operation.

e  Strategy: an identifier related to a machining strategy that identifies the tool path pattern.

4.1.2. Transfer Learning Method

Transfer learning enables indirect model acquisition through knowledge transfer from existing
models when data do not exist, as addressed in Section 3.2. Our method is inductive transfer learning in
that the source and target domain (machining process) is the same, but the target task (manufacturing
context) is different from the source tasks. On the assumption that the similarity analysis has been
investigated, the transfer-learning method consists of: (1) model substitution, (2) model validation, and
(3) model storage and retrieval. We skip (3) because it is the same as in Section 4.1.1 (6). We will further
discuss the assumption in Section 5.3 (3). It is worth mentioning that traditional machine learning
needs to be prior to transfer learning because the former builds on real data, whereas the latter is based
on transferred knowledge. When training datasets are available and can be learned, transfer-learned
models need to be replaced by machine-learned models to ensure data-driven predictive capability.

(1) Model substitution involves the generation of an alternative energy model by selecting the
model that is most similar to the target manufacturing context. Figure 7 shows two methods of model
creation: cloning and competing. When there is only one model with a high-level of similarity, the
cloning just copies and pastes the original model to a new model, as shown in Figure 7a. When the
number of such models is greater than one, the competing is required to choose the best model based
on the criteria including default, preference and likeness, as illustrated in Figure 7b. For example, if a
new model for a contour strategy is requested and two bidirectional and spiral strategies indicate a
high-level of similarity with the former strategy, one of the latter models needs to be chosen. The spiral
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strategy model can be chosen if it turns out to be more like a contour strategy model with regard to
their machining power distributions.

Existing Models Alternative Models, Existing Models Competing Alternative Models

Model 1 Model 1"
Default
Model 2 ‘
Model 2’
Model 3

Model n Model n’

(@) (b)

Model 1 Model 1"

Model 2’

Model 2

Model n

QoA

i

Figure 7. Two methods of transfer learning; (a) cloning, (b) competing.

(2) Model validation involves quantification of model significance and reliability to validate model
conformance. However, validating transfer-learned models is harder because the conformance of a
transfer-learned model may not be assured in the target task, although the original model proved to
be significant and reliable in the source task. The most obvious method of validation is to measure
prediction error by gathering real test data in the target manufacturing context. Reverse validation is
recommended when a few of datasets exist for the target manufacturing context [55]. It approximates
the difference between the estimated and true conditional distributions in the context of data limitation,
although it still requires a minimum dataset at the target task. In reverse validation, a transfer-learned
model is re-learned by combining {X;, Ys,pred} (output dataset of the original model) and {X;, Y;}
(real dataset gathered in the target task). In turn, the difference between Y . (output of the new
model) and Y; (real output) is measured to quantify the model approximation for the true conditional
distribution (s: dataset in the source tasks, t: dataset in the target task, pred: predicted value).

4.2. System Architecture

Section 4.1 explained the modeling methods and described how to create and use models. It is
necessary to identify objects and their functions to allocate such methods from a software architecture
perspective. We designed a holonic-based system architecture, as shown in Figure 8. The PROSA
architecture underlies this architectural design and can be used to pursue goal-oriented systemization
through virtualizing object agents that have autonomous and collaborative capabilities.

Product
Agent

Data Repository

Data Storage e N Staff Agents Production-knowledge
Data Search Data A
- S + Li( Data Broker
Data Retrieval War A ™
Data Management | ——— T_ gent —
Order

Model

L Agent

Model Repository Knowledge
- Model Broker } ||
Model Search Agent Process (knowledge
Model Retrieval Model Process exegti g6
Model Registration |[Warehous ’
Model Management .
Self-learning Resource
Factory Agent i
System Basic Agents

Figure 8. A system architecture for a self-learning factory.
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In the PROSA architecture, basic agents consisting of product, order and resource agents mutually
exchange production knowledge, process knowledge and process execution knowledge. A product
agent performs the functions of request, allocation, confirmation, and supervision of tasks. An order
agent is an orchestrator that takes charge of Calls-For-Proposals (CFP), bid evaluation and selection,
task allocation, and task progress supervision. Meanwhile, a resource agent receives proposals, checks
availability, creates bids, accepts allocations and executes tasks.

In our architecture, data and models should be interconnected within the HMS architecture for
integrating the modeling method described in Section 4.1. The proposed architecture thereby gains the
capabilities of predictive model-based bid submission for resource agents and predictive value-based
bid evaluation for order agents. For this purpose, a data broker agent and a model broker agent are
added as staff agents.

The data broker agent acts as a mediator connecting basic agents and a data repository. The data
broker thus helps basic agents acquire manufacturing context information, training data and task
details. It receives the metadata of data from basic agents when these agents need to gather data to
create models or check availability. It returns the resulting data instances to the basic agents through
the metadata-based search in the data repository. Meanwhile, the model broker agent is a mediator
to connect basic agents and a model repository. It stores models in the model repository once basic
agents create models using the acquired data. It searches and returns the models requested by the
basic agents when the latter need to use the former. Likewise, the metadata of model is applied to
enable the metadata-based search in model requests, searches, and returns.

4.3. Operational Procedure

This sub-section describes the operational procedure to specify agents’ activities and interactions
in a sequential order based on the architecture proposed above. Figure 9 shows the operational
procedure represented by a sequence diagram in Unified Modeling Language. This figure is focused
on model creation and usage of resource agents.

Figure 9a illustrates the procedure for model creation, substitution and registration to prepare
the self-learning ability. If the target model already exists in the model repository (5), this procedure
is terminated (7). If not (8.1), the procedure is invoked and starts with a training data request (10).
If training datasets are available (13.1), models are created using the machine-learning method (16).
If training datasets are not available (13.2), models are substituted from existing models using the
transfer-learning method (24). The models created by the two different methods are requested to
register (26) and are then registered in the model repository (28).

Figure 9b shows the procedure for model usage to apply the self-learning ability. This procedure
builds upon CNP but extends to accommodate the activities and interactions associated with
model-based bidding and evaluation. An order agent requests the task taken for fabricating a
product (1), and a product agent provides task metadata to the order agent (3). The order agent issues
CFP to resource agents (4). The resource agents check their availability with respect to their capability
(whether they can fabricate or not) and idleness (whether they are occupied or not) (5). Available
resource agents receive the task details (technical specification of the task) using the task metadata
(8), and receive models using the metadata of the model extracted from the task metadata (11). They
automatically determine process parameters within their allowable ranges and capacities (12). In turn,
they anticipate energy values for the task using the models received (13), and then submit their bids
where predictive energy values are recorded (14). The order agent evaluates the resources’ bids based
on energy values (15), and then chooses and notifies the resource agent who submits the minimum
energy value (16). The remainder follows the traditional CNP. While agents communicate, they comply
with the Foundation for Intelligent Physical Agents—Agent Communication Language (FIPA-ACL),
which defines a set of interaction protocols and their individual communicative acts to coordinate
multi-message actions [56].
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Figure 9. An operational procedure for a self-learning factory (a) Model creation, substitution, and

registration; (b) Contract Net Protocol and model usage. FIPA-SL: Foundation for Intelligent Physical
Agents — Semantic Language.

5. Implementation

We implement a prototype system to show the feasibility of the self-learning factory. The prototype
demonstrates automatic predictive modeling and autonomous process planning for energy reduction in
milling machining. Section 5.1 describes implementation scenarios, and Section 5.2 explains prototype
implementation. Section 5.3 discusses implementation results.

5.1. Implementation Scenarios

Figure 10 shows a test part containing 13 machining conditions represented by {machining
feature; machining operation; machining strategy}. Here, a machining condition corresponds to a

267



Processes 2019, 7, 739

manufacturing context. Implementation scenarios consist of: (1) model creation, substitution, and
registration, and (2) CNP and model usage, as explained in Section 4.3.

Machining Conditions
B oS | ] {Profile 1; Profiling; Contour}
{Pocket 1; Pocketing; Bidirectional}
{Pocket 2; Pocketing; Contour}
{Pocket 3; Pocketing; Contour Island}]
{Slot 1; Slotting; Bidirectional}
i {Slot 2; Slotting; Unidirectional}
{Slot 3; Slotting; Unidirectional}
{Slot 4; Slotting; X-linear Zigzag}
{Slot 5; Slotting; Y-linear Zigzag}
{Slot 6; Slotting; Diagonal Zigzag}
{Slot 7; Slotting; Circular Zigzag}
{Hole 1; Drilling; Multistep}
{Hole 2; Drilling; Multistep}

Figure 10. A test part and a set of machining conditions.

Figure 11 presents the two scenarios (the simplification of Figure 9a,b). In Figure 11a, a machine
tool generates models using hybrid learning and registers them into the model repository for the
next scenario. When the machine asks the model broker for checking the existence of the models
associated with the machining conditions, the model broker returns the relevant models if they exist.
Otherwise, the machine requests data to the data broker who returns the data requested. If the data
exist, the machine creates energy models using machine learning and then requests model registration
to the model broker who notifies the registration confirmation to the machine. If the data do not exist,
the machine requests similar models to the model broker. The model broker then searches similar
models based on model similarity and returns them to the machine. The machine creates alternative
energy models using transfer learning and registers the models in the same way. Here, a model for
the machining condition {Pocket 1; Pocketing; Spiral}, which is assumedly to be absent in the model
repository, is created.

In Figure 11b, a CFP is initiated by an order if a product needs to be machined and informs the
relevant tasks. Five machine tools compete for a task. Machines 4 and 5 refuse this task due to their
unavailability because Machine 4 is a turning machine and Machine 5 was occupied by another task.
The remaining three machines (Machine 1, Machine 2, and Machine 3) decide their process parameters
within their allowable ranges or preferences. Process parameters are assumedly determined as follows:
Machine 1 (feedrate: 0.0127 mm/tooth, spindle speed: 1750 Revolution per Minute (RPM), cutting
depth: 1.5 mm), Machine 2 (feedrate: 0.0178, spindle speed: 2000, cutting depth: 1.0), and Machine 3
(feedrate: 0.0127, spindle speed: 2000, cutting depth: 1.5). They use their energy models to anticipate
the energy values consumed during the execution of the given machining conditions. Once their
energy values are estimated, the machines send their bids including their predictive energy values to
the order. The order evaluates the energy values submitted by the three machines. The order accepts
one of the machine tools if its proposal is the minimum energy value.
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Figure 11. Implementation scenarios for (a) Model creation, substitution and registration; (b) model
usage and machine selection.

5.2. Prototype Implementation

For energy modeling, we fabricated 12 test parts in a milling machine. Table 4 presents a list of
process parameters for the 12 individual parts. These parameters were randomly determined within
the experimental safety and allowable ranges of the machine and cutting tool used. Figure 12 shows
an implementation architecture. We generated 15014649 programs manually, while NC programs
were generated using computer-aided manufacturing software, and MTConnect documents were
collected in a physical part to represent the machine-monitoring data heterogeneously sourced from
an NC and a power meter. The installations of this experiment included the machine (Mori Seiki
NVD 1500 DCG), NC (Fanuc 0i), workpiece (Steel 1018, 10.16 cm X 10.16 cm x 1.27 cm), cutting tool
(solid carbide flat-end mill, 8-mm diameter, four flutes), and power meter (high-speed power meter
from System insights). Note that only one machine is used due to our experimental limitation. We
implemented a prototype system in a cyber part based on the mechanism of the self-learning factory,
as explained in Section 4. The installations of this implementation included an integrated development
environment (Eclipse Java Oxygen), agent platform (Java Agent Development framework (JADE)),
JADE execution and deployment (EJADE), data and model repositories (MySQL), and a Java-based
ANN framework (Neuroph).
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Table 4. List of process parameters.

Trial Feedrate Spindle Speed Cutting Depth
(mm/tooth) (RPM) (mm)
1 0.0127 1500 15
2 0.0127 2000 1.5
3 0.0127 1750 1
4 0.0229 1750 1
5 0.0127 1750 2
6 0.0178 1500 1
7 0.0178 2000 1
8 0.0178 2000 2
9 0.0178 1750 15
10 0.0076 1750 15
11 0.0152 1750 15
12 0.0127 1750 15
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Figure 12. Implementation architecture of the prototype system.

Figure 13 illustrates the screen shots for the implementation of model creation, substitution
and registration corresponding to Figure 11a. The screen shots, captured from the JADE sniffer
agent, represent FIPA-ACL message exchanges and interactions across individual agents with respect
to time, while a computer automatically proceeds (we only click the start button). Note that the
arrows only indicate external message exchanges with communicative acts between agents, while
internal works inside agents are hidden. In Figure 13a, the machine learning works to create models
associated with the 13 machining conditions. The ANN technique is used for this purpose, and
the attributes of the ANN-based energy models include (see example in Figure 6) the learning rule
(momentum backpropagation), activation function (sigmoid), the number of layers (2), the number of
neurons at a hidden layer (3), learning rate (0.3), maximum error (0.01), maximum iteration (1000), and
momentum (0.2). As shown in Figure 13b, the transfer learning is activated because the data broker
cannot find data in the data repository and then refuses data return. An energy model for {Pocket
1; Pocketing; Spiral}, as described in Section 5.1, is alternatively created through cloning the energy
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model for {Pocket 1; Pocketing; Bidirectional} due to their high level of similarity. In these ways, energy
models are created and registered in the model repository for the next use.

- - - -/1: Check model existence - - - !/1: Check model existence
o o )
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Figure 13. Implementation result: model creation, substitution and registration (a) Machine
learning-based; (b) Transfer learning-based.

Figure 14 shows the screen shot for the implementation of CNP and model usage. The order agent
is an initiator in the frame of CNP, which comprises an initiator and participants for requesting a task
and performing the task, respectively. The order agent communicates with not only the product agent
(a participant) for issuing a task but also the machine agents (participants) for assigning the task. The
order agent processes its operations aligning with the scheduling of one-shot, cyclic or conditional
behaviors for communicating with the participants using FIPA-ACL messages (see Figure 9b). The
order agent sends the messages to the target participants and receives the messages from them based
on the behavioral scheduling because it can write or read the FIPA-ACL messages that include a sender,
receivers, communicative acts (i.e., a tag for communicative acts; e.g., call for proposal, accept/reject
proposal, inform and refuse), contents, conversation ID, and so forth.

o

' fEYERet Ty O 2~ 1: Inform task

. INFEMD Gk 753, 351) -

g pi1 o 750

. Cret ok 750 )

- o1 ac 766 [~ 2. Callfor proposals

. oot s 750 4. Request task data
o

©

- REFUSE:1 (as 788 ) } 3. Refi task

» REFUSE (ot 707] ) . Refuse als

w

. e ) r 5. Return task data
© J

7 REQUESTS (o 704 ) 6.Request models
® 780 760) B

S ReouesT I\ o2

» Prdgoseii ko ) N

o SUBSERIBES (ois 708 702) 7. Return models
-10. Send bids b e

s eadrose: ok ont .

; CcerrproPotALa G oo

2 wignus :- 11-?ccepl P‘mlmsal

Figure 14. Implementation result: model usage and machine selection.

Order 1 calls for proposals for selecting a machine who can perform the task informed from
Product 1. Machines 4 and 5 refuse this task due to their unavailability as explained in Section 5.1.
The remaining three machines receive the energy models of the 13 machining conditions and input
the determined process parameters. These three machines predict energy values for running the
13 machining conditions and the predictive energy values are, respectively: 11,825 k] (Machine 1),
11,700 kJ (Machine 2), and 12,957 k] (Machine 3). These machine agents propose their bids including
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these predictive energy values to the order agent. The order agent evaluates their energy values to seek
the machine agent who submits the minimum energy value in its bid. Because Machine 2 proposes the
minimum energy value, the order agent accepts the proposal from Machine 2, transmits the bidding
result and instructs Machine 2 to take the task. This selection of the minimum energy-using machine
tool (Machine 2) achieves 9.70% energy reduction, compared with the maximum energy-using one
(Machine 3).

We measure real energy values from actual machining to check the accuracy of their corresponding
predicted values derived from the ANN-based energy models. The real measured energy values were
recorded as 11,382 kJ (Machine 1), 11,044 kJ (Machine 2), and 12,580 kJ (Machine 3). These different
values come from the application of different process parameters given in Section 5.1. The total relative
error, which measures the percentage of predicted energy values — real energy values)/real energy
values, were 3.89%, 5.94%, and 3.00%, respectively.

5.3. Discussion

(1) Experimental limitation: our implementation could select the minimum energy-using machine
tool among three machines through predicting and competing their energy values. Using three different
machine tools is desirable because individual machine tools make different machine-specific energy
values due to the differences in their capabilities and performances. However, a single machine had to
be used due to our experimental limitations. It will be more realistic to use different machine tools for
creating machine-specific energy models through instantiating different values in the attribute ‘machine’
of the manufacturing context. Alternatively, transfer learning can be applied to create machine-specific
models by reflecting the difference of capabilities and performances between the target and source
machines (see an example in the below (3)). In addition, virtual simulators can be useful for limited
experimental environments. Some machining simulators can generate machine-specific power values
affected by machine’s capabilities and performances [57,58].

(2) Increase of practicability: our implementation has been made within a single order on a
single process. This may be far from the reality in common manufacturing systems where multiple
processes deal with various products and orders. Thus, gaining practicability remains critical. In other
words, the target application is demanded to extend toward production planning considering multiple
products and orders in a production line. It is expected that the adoption of MAS technology makes
the practicability achievable because MAS use unique identification and take their autonomous and
collaborative actions regardless of the number of product, order and machine agents. The proposed
approach needs to be extended to the production planning by adding more product, order, and machine
agents, although the difficulty and complexity of implementation increase.

(3) Uncertainty of transfer learning: our implementation shows the feasibility of the acquisition of
self-learning ability by machine and transfer learning techniques. Transfer learning creates an energy
model for the target manufacturing context {Pocket 1; Pocketing; Spiral}, which was not machined
in our experiment, by cloning the energy model for the source manufacturing context {Pocket 1;
Pocketing; Bidirectional}. However, we could not quantify significance nor validate conformance of the
transferred model because it was not machined just as stated. The model validation of transfer learning
remains as a future work. Our transfer-learning approach builds upon the similarity between the two
manufacturing contexts and thus the similarity needs to be analyzed and verified in advance. If such
similarity is not verified, transfer learning may not work properly and thus need to consider alternative
means besides the similarity analysis. Reverse validation needs to be applied if a few of datasets
are generated in the target manufacturing context, as described in Section 4.1.2 (3). Otherwise, the
properties that characterize a difference between target and source manufacturing contexts can be added
as variables of transfer learning. For example, an energy model for a machine tool can be transferred
from that for another machine. The former model should be different to the latter one because these
machines have different property values in basic power, rotation torque, and motor efficiency, which
affect power and energy in machining. These properties can be additional input variables in the
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structure of machine-learning models so that transfer learning can derive machine-dependent results
through learning the influence of different values of those properties.

(4) Implementation challenge: energy-efficient machining has become a massive trend in some
countries; however, it is still far from reality in other countries where many small-and-medium sized
manufacturers fabricate products with paying cheap industrial electricity costs. These countries deal
with time and quality as critical performances and are less concerned with energy consumption because
they regard the energy cost as an endurable expense. Nevertheless, researchers need to keep their
efforts on implementing and deploying cost-effective and data-accessible solutions for energy-efficient
machining as the metal-cutting industry affects a large portion of the total energy consumption over
the world. The use of open sources helps increase cost effectiveness for implementing such solutions.
The implementation tools that we used in the prototype system are all open sources, which are
publicly accessible without payment (payment may be required for commercial purposes). This
implementation strategy can reduce solution development expenses to the reasonable cost level and
help the deployment of such solutions toward small-and-medium sized manufacturers. The use of
interoperable and open data interfaces comfortably supports the availability of data collection as data
are critical for implementing manufacturing intelligence. Recent standardized interfaces including
MTConnect and Open Platform Communications—-Unified Architecture facilitate data accessibility.
These interfaces provide open source tools as well and thus are quite useful for making a data bridge
between physical and cyber factories.

6. Conclusions

In the present work, we designed and implemented a holonic-based mechanism for a self-learning
factory based on a hybrid-learning approach. The concept of the self-learning factory was proposed
to allow manufacturing objects to learn past experience using their real data, to perform predictive
analytics and to determine their behaviors and activities for improving a target KPI. The holonic-based
mechanism identified a modeling method, system architecture, and operational procedure to
implement an autonomous and collaborative prediction environment through the virtual agentization
of manufacturing objects under the paradigm of HMS. The hybrid-learning approach was designed
to acquire predictive capability independently with the degrees of freedom in the data through the
accommodation of machine learning and transfer learning. This hybrid learning can be used to build
up a massive knowledge base through the accumulation of models, thereby gaining self-learning ability
in manufacturing systems. A prototype demonstrated the feasibility of the proposed mechanism via
predictive process planning for energy reduction in milling machining. Autonomous and collaborative
activities of manufacturing agents are carried out on a computer to select the minimum energy-using
machine tool while minimizing human intervention.

The limitations of the present work are as follows: (1) Our target is limited to process planning
for a single product and process and thus cannot ensure the feasibility of the proposed mechanism in
a more complex production line, (2) our implementation is restricted by the use of a single machine
and thus does not embody more realistic scenarios by multiple machine tools, (3) our experiment
does not show the validity of transferred models due to our experimental limitations, and (4) our
implementation excludes control and feedback of the cyber and physical parts in a real-time manner as
CPPS obviously require mirrored synchronization between the both parts. We plan to overcome these
limitations in future work.
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Abstract: This paper introduces the incentive of an optimization strategy taking into account
short-term and long-term cost objectives. The rationale underlying the methodology presented
in this work is that the choice of the cost objectives and their time based interval affect the overall
efficiency/cost balance of wide area control systems in general. The problem of cost effective
optimization of system output is taken into account in a multi-objective predictive control formulation
and applied on a windmill park case study. A strategy is proposed to enable selection of optimality
criteria as a function of context conditions of system operating conditions. Long-term economic
objectives are included and realistic simulations of a windmill park are performed. The results
indicate the global optimal criterium is no longer feasible when long-term economic objectives are
introduced. Instead, local sub-optimal solutions are likely to enable long-term energy efficiency in
terms of balanced production of energy and costs for distribution and maintenance of a windmill park.

Keywords: windmill park; wind speed estimator; multi-objective optimization; sequential optimisation;
distributed model predictive control

1. Introduction

When it comes to optimization strategies, advanced control methodologies such as model based
predictive control (MPC) is of great industrial relevance [1-3]. For large scale systems, its variant
as distributed MPC has great added value in terms of numerical optimization and computational
efficiency [4,5]. Additionally, it requires a significantly lower amount of information than full
multivariable MPC, hence the optimization can be accelerated. The cost function implemented in such
MPC schemes is usually tailored upon the specific objectives of the process at hand. Less academic
but highly relevant in practice objectives such as performance degradation, failure monitoring and
nesting, implementation and training costs are making the MPC an even more appealing strategy for
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large scale processes. Supply chain optimization is a great example for successful stories of economic
and environmental related objective based MPC applications [6,7].

Wide area control systems have been recently undergoing a revision of concepts and relevance
going beyond the classical output performance [8,9]. Such examples of revisited control objectives can
be found in large scale power systems [10], office buildings [11], traffic control [12], sustainability in
company management [13], and distribution networks [9]. A generic feature is to search solutions for
optimal operation from the decentralized to distributed control systems and combinations thereof.
The features of tomorrow’s control systems are based on system-wide control, plug-and-play control,
measurement driven, adaptive and reconfigurable architectures.

An application where environmental and economic objectives are core in the long-term cost
management and return of investment policies is the area of renewable ene