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1. Introduction

Mathematical optimization is the selection of the best element in a set with respect to a given
criterion. Optimization has become one of the most commonly used tools in modern control theory
to compute control laws, adjust the controller parameters (tuning), estimate unmeasured states, find
suitable conditions to fulfill a given closed-loop property, carry out model fitting, among others.
Optimization is also used in the design of fault detection and isolation systems, due to the complexity
of automated installations and to prevent safety hazards and huge production losses that require
the detection and identification of any kind of fault, as early as possible, as well as the minimization
of their impacts by implementing real-time fault detection and fault-tolerant operations systems
where optimization algorithms play an important role. Recently, it has been proved that many
optimization problems with convex objective functions and linear matrix inequality (LMI) constraints
can be solved efficiently using existing software, which increases the flexibility and applicability of the
control algorithms. Therefore, real-world control systems need to comply with several conditions and
constraints that have to be taken into account in the problem formulation, which represents a challenge
in the application of the optimization algorithms.

This special issue aims at offering an overview of the state-of-the-art of the most advanced (online
and offline) optimization techniques and their applications in control engineering.

2. Papers Presented in the Special Issue

The first paper, presented by López-Estrada et al. [1], offers an extensive review of the three
main topics covered in this special issue. This literature survey presents different methodologies for
analysis and control, observer synthesis, and fault-related strategies for convex systems under different
representations: Takagi–Sugeno fuzzy models, linear parameter varying (LPV), and quasi-LPV systems.

Zhao et al. [2] perform an analysis on the selection of the length of the control horizon for a linear
model predictive control, with application to steam/water loops in large-scale watercraft/ships, with
an emphasis on the performance and computational complexity of the algorithm.

Aydın Mühürcü [3] considers a combination of a feed-forward artificial neural network (FFANN)
and an artificial bee colony (ABC) optimization algorithm to ensure the settling time of a second-order
system. The FFANN is the nonlinear control structure adopted for a buck converter and its parameters
are optimized using the ABC algorithm.

Processes 2020, 8, 201; doi:10.3390/pr8020201 www.mdpi.com/journal/processes1
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Gutierrez-Carmona et al. [4] analyze the performance of a nonlinear dissipative observer
for a tubular reactor. They show that, by simple considerations in the boundary conditions,
the observer’s convergence is improved regardless of the presence of perturbations. The sensor
locations acquire physical meaning, and by simple numerical manipulations, the inflow perturbations
can be estimated numerically.

Son and Du [5] develop a reliable thermal management system to predict and monitor precisely
the thermal behavior of lithium-ion batteries. First, an iterative optimization algorithm corrects
the model by incorporating the errors between the measured quantities and the model predictions.
Then, an optimization-based fault detection and diagnosis algorithm provide a probabilistic description
of the occurrence of possible faults, while taking into account the uncertainties.

Fan et al. [6] present a profile monitoring methodology that includes model fitting and
statistical process (SP) control. In this paper, the authors consider non-linear profiles with correlated
within-the-profile observations. Three profile models were studied: a traditional one (polynomial
regression) but with added autoregression structure, and two known from the theory of non-linear
regression, but relatively unknown for SPC practitioners.

Dong et al. [7] present a methodology to assess a specific critical avionic system: the integrated
modular avionics (IMA) system. This methodology is derived from a model-based safety analysis
performed using the AltaRica 3.0 modeling language. Moreover, the authors present a design
optimization of the IMA system.

Zeng et al. [8] present a fault diagnosis and isolation method for gas turbines. First, the measured
aerodynamic parameters are decomposed using the kernel principal component analysis. Then, they
construct the Hotelling-T2 (T2) statistic, which is the application of the T-statistic in multivariate
analysis in the principal space and squared prediction error (SPE) statistics in the residual space. Finally,
they calculate the parameters’ sensitivity to the T2 and SPE statistics to locate the fault.

Piprek et al. [9] provide a sampling approach to approximate the chance constraints in the
formulation of optimal control problems for stochastic dynamical systems to capture rare events.
The applicability of the proposed approach is demonstrated in a battery charging-discharging problem.

Khanum et al. [10] describe an interesting algorithm approach for improving global search
minimum optimizations and compare multiple existing algorithms to assess their ability to find optimal
parameters for various functions.

Morán-Durán et al. [11] propose the use of a trained neural network to predict and control the
voltage of a proton-exchange membrane (PEM) fuel cell. The approach uses principal component
analysis (PCA) to reduce the dimensionality, aiming to eliminate non-significant variables with respect
to the control objective.

Nguyen et al. [12] present the design of a bilinear model-based predictive control for the
three-degrees-of-freedom model of an underactuated ship affected by uncertain disturbances.
The bilinear model of the ship is obtained by linearizing each nonlinear model section and the
uncertain components and random disturbances of the model are compensated with a state estimator.

Allawi et al. [13] report a novel fine-tuning meta-heuristic algorithm to solve global optimization
problems. Also, the proposed algorithm has been validated by comparing it with some featured
meta-heuristic optimization algorithms over different benchmark test functions.

Shin et al. [14] discuss a holonic-based mechanism for self-learning factories based on
a hybrid-learning approach which is designed to obtain predictive modeling ability in both data-existent
and data-absent environments via accommodating machine learning and transfer learning.

Ionescu et al. [15] study the case of an optimization method that considers short-term and
long-term cost objectives. The problem of cost-effective optimization of the system’s output is studied
in a multi-objective predictive control formulation and applied to a windmill park case study.

Zeng et al. [16] provide a method that uses a hybrid filter for fault diagnosis in a gas turbine.
The hybrid filter is based on the unscented Kalman filter and a particle filter with optimized weight.
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It estimates the health parameters of the rotor components and builds a model in order to give
a prediction for fault diagnosis.

Hernández et al. [17] characterize the high viscosity gas-liquid intermittent flows by detrended
fluctuation analysis. Specifically, the authors investigated the long-term evolution of highly viscous
two-phase pipe flows of glycerin/air blends. Then they apply a detrended fluctuation analysis of
pressure measurements at various positions along the flow line to extract long-range correlations.

Albalawi and Zaid [18] introduce the application of a model-based predictive control algorithm to
control and improve the performance of a grid-tied neutral-point-clamped 3-ϕ transformerless inverter
powered by a photo-voltaic panel. The controller considers the filter elements, as well as the internal
impedance of the grid.

Zheng et al. [19] establish a generalized proportional hazard model to exploit the monitoring
condition information of a relay protection equipment to ensure the safe and stable operation of
a power system.

Navarro et al. [20] propose a method to detect, locate, and estimate the magnitude of leaks in
a pipeline using only flow rate and pressure head measurements at both ends of the pipe. The method
develops a mathematical model that builds an observer ensemble using genetic algorithms.

Liu and Lü [21] focus on an approach for fault diagnosis of the blocking diesel particulate filter based
on spectral analysis of the instantaneous exhaust pressure. The method is validated experimentally.

Kaid et al. [22] develop a two-step robust deadlock control approach based on Petri nets for
automated manufacturing systems where the structural complexity of the Petri net supervisors
is minimized.

Cui et al. [23] provide the infrastructure and mathematical tools necessary to face the detection
of active distribution networks faults with a wide range of converter interfaces and, therefore,
their protection.

Pour et al. [24] present an economic reliability-aware model predictive control based on a finite
horizon stochastic optimization problem with joint probabilistic constraints for the management of
drinking water transport networks.

Martínez-García et al. [25] propose a discrete-time interval observer for a class of discrete-time
parametric uncertain systems modeled in the Takagi–Sugeno form, where the perturbation vector is
considered to be unknown but bounded, to estimate state variables and actuator faults.

Tran et al. [26] provide a tuning method for a fuzzy proportional-integral-derivative controller
based on a modified genetic algorithm that can speed up convergence and save operation time by
neglecting the chromosome decoding step.

Lu et al. [27] study the safety performance of the fly-by-wire system of an aircraft. The safety
analysis is based on stochastic simulations of a Simulink model. The Simulink model represents the
nominal operation of the system, extended with failure mode. The safety requirements of the system
are defined by presenting the thresholds of system performance metrics.

3. Conclusions

We believe that the papers in this special issue reveal an exciting area that can be expected to
continue to grow in the very near future, namely, the use of advanced optimization strategies in
engineering applications. The pursuit of work in this area requires expertise in control engineering
as well as in systems design and numerical analysis. We hope that this issue helps to bring these
communities into closer contact with each other, as the fruitfulness of collaboration across these areas
becomes clear.

Finally, we would like to acknowledge the enthusiastic effort of all the authors, reviewers and
editorial staffwho have participated in this special issue.

Author Contributions: All authors contributed equally to this work. All authors have read and agreed to the
published version of the manuscript.
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Abstract: This paper provides a review about the concept of convex systems based on Takagi-Sugeno,
linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the
nonlinearities by means of an equivalent description which uses a set of linear models interpolated
by appropriately defined weighing functions. Convex systems have become very popular since they
allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex
nonlinear systems. This survey aims at providing the reader with a significant overview of the
existing LMI-based techniques for convex systems in the fields of control, observation and safety.
Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex
controllers is considered. Secondly, the problem of state estimation is addressed through the design
of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of
convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant
control (FTC).

Keywords: linear parameter varying (LPV) systems; Takagi-Sugeno systems; convex systems; linear
matrix inequalities (LMIs); fault diagnosis; fault tolerant control (FTC)

1. Introduction

Confucius once said ”the beginning of wisdom is to call things by their proper name”. In this regard,
it can be noticed that within the control community there is a big disagreement to call a certain class
of multiple model systems by its proper name, in other words, to call a spade a spade. Multiple
models were proposed in order to reduce the complexity of controller design for nonlinear systems
by describing the latter as a combination of local linear models. To this end, several approaches have
been proposed in the literature to deal with this problem, such as the linear parameter varying (LPV),
the quasi-LPV (qLPV) and the Takagi-Sugeno (TS).

LPV systems were introduced by Refs. [1,2] as models used to design controllers that guarantee
a suitable closed-loop performance for nonlinear plants working under time-varying operating
conditions. This was achieved by embedding the plant’s nonlinearities inside the so-called scheduling
parameters. The term LPV was coined to differentiate the resulting class of systems from both linear
time invariant (LTI) and linear time varying (LTV) systems. The difference with respect to LTI systems
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is clear because LPV systems are non-stationary. On the other hand, LPV systems are distinguished
from LTV systems in the perspective taken on both analysis and synthesis. LPV systems can be seen as
a generalization of a group of LTV systems, each one obtained by means of a predetermined trajectory
of the weighing functions. Therefore, properties such as stability, disturbance rejection and tracking,
among others, hold for a family of LTV systems, rather than for a single LTV system [3]. A typical LPV
system is described by:

ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) (1)

y(t) = C(θ(t))x(t) (2)

where x(t) ∈ Rnx denotes the state vector, u(t) ∈ Rnu is the input vector, y(t) ∈ Rny is the output
vector and θ(t) ∈ Rnθ is the vector of varying parameters, which can be a function of exogenous or
endogenous variables (in the latter case, the system is referred to as quasi-LPV) and that takes values
within a region Θ, that is, θ(t) ∈ Θ ⊂ Rnθ .

TS models are similar to LPV systems, since they are obtained by considering some collection
of linear models, although their overall blending is obtained by means of a set of fuzzy IF ... THEN
rules [4]. At first, they were obtained by performing linearization of the nonlinear plant about different
operating points [5]. Nevertheless, this conception was changed in the work by Ohtake et al. [6], who
proposed a convex modeling technique via the so-called sector nonlinearity approach. In this case,
the main idea is to obtain a convex system such that the global model matches the nonlinear system
exactly in a compact subset of the state space. The number of sub-models is directly related to the
number of nonlinear terms. For each nonlinear term, two sub-models are obtained such that for k
nonlinear terms, the global model is composed of h = 2k sub-models. Therefore, the bigger is the
number of nonlinear terms, the bigger becomes the conservatism of the global convex system and the
computational burden of both analysis and synthesis.

The TS approach was adopted rapidly by the control community and was applied to
state estimation [7], control [8], fault detection [7], descriptor systems [9], state observers [10],
waste-water treatment plants [11], bioreactors [12], process industry [13,14], mechatronics [15,16],
aeronautics [17,18] and automotive [19,20], among others. Comprehensive material about the topic
can be found in Refs. [8,21–23] and the references therein. On the other hand, another school of
thought named these approaches as quasi-LPV (qLPV) in order to differentiate fuzzy approaches
from model-based approaches. Nonetheless, models obtained by means of the sector nonlinearity
approach are not fuzzy, since the weighting functions are completely deterministic, as detailed in
Ref. [24]. Literature on qLPV systems can be found in Refs. [25–33], just to mention a few.

It is clear that LPV and TS systems have been developed independently but recently some works
have started discussing about the analogies between these paradigms [23,34,35]. For this reason, we
find it appropriate to consider a terminology that includes both schools of thought and in this review
we propose to denote both LPV and TS systems as convex systems. The idea of unifying these two
paradigms under a single name is not new, as it was originally proposed in Ref. [36] and retaken in
Refs. [37–40]. Nonetheless, in spite of the success of these paradigms, there is no literature review that
allows tasting all the flavors offered by the vastness of convex approaches. Therefore, in this paper,
three main aspects of convex systems are reviewed: control, observation and safety. The objective is to
help the reader to locate themselves in the area of convex systems by learning about the main used
techniques. It is worth highlighting that, although real-life applications of the reviewed methods are
discussed whenever appropriate, the level of detail is kept low, since the main focus of this review
is theoretical. The reader interested in a more extensive survey of experimental applications and
validations based on high-fidelity simulations is referred to the excellent work in Ref. [41] and the
references therein.

The overall structure of this review is provided in Figure 1.
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1. INTRODUCTION

2. CONTROL OF CONVEX SYSTEMS: it is dedicated to discuss
advances and control techniques for convex systems

2.1 Convex state-feedback control

2.2 Convex output-feedback control

2.3 Convex tracking controller

2.4 Model predictive control fo convex systems

2.5 Final comments on control of convex systems

3. OBSERVATION OF CONVEX SYSTEMS: it is dedicated to
observers

3.1 Convex observers

3.2 Robust observers

3.3 Proportional-integral observers

3.4 Descriptor observers

4. SAFETY IN CONVEX SYSTEMS: it is dedicated to fault diagnosis 
and fault tolerant control of convex systems

4.1 Residual generation for fault detection

4.2 Unknown input observers-based fault isolation

4.3 Observer-based fault estimation

4.4 Multiple model adaptive estimators

4.5 Sliding mode fault tolerant control

4.6 Fault tolerant control based on controller reconfiguration

4.7 Fault-hiding via virtual actuators and sensors

5. CONCLUSIONS

Figure 1. Structure of the review.
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Notation: The notation used in this article is quite standard. Rm×n denotes the set of all matrices
with m rows and n columns. If a square matrix A ∈ Rn×n is symmetric, this fact will be denoted
by A ∈ Sn. Given a matrix A ∈ Sn, A � 0 (A ≺ 0) denotes positive (negative) definiteness, that
is, that all its eigenvalues are positive (negative). Similarly, A � 0 (A � 0) denotes positive (negative)
semi-definiteness. For a matrix A ∈ Rm×n, AT and A† denote its transpose and pseudo-inverse,
respectively. If A ∈ Rn×n is non-singular, A−1 will denote its inverse. The symbol ∗ denotes the
transposed element in a symmetric position of a matrix. Finally, He{A} is used as a shorthand notation
for A + AT .

2. Control of Convex Systems

Convex systems can arise from three possible interpretations [42]: (i) they can be seen as linear
systems subject to uncertainties for which the synthesis of a controller must be approached from a
robust control perspective; (ii) they can be seen as a family of parameter varying systems, for which the
instantaneous value of the varying parameters can be injected directly in the control structure, leading
to a gain scheduled control [43,44]; and (iii) the two previous situations can be combined, as suggested
by Ref. [45], where a double-layer polytopic framework was considered to this end.

In the last years, significant progress has been made in the control of convex systems. For
example, in the presence of uncertainties or disturbances, LPV robust control techniques have shown to
provide better performance than robust LTI controllers [46,47]. Indeed, many linear matrix inequality
(LMI)-based solutions for LTI systems have been extended to LPV systems, for example, an LPV
stabilizing controller was proposed for an arm-driven inverted pendulum in Ref. [48] and was shown
to outperform classical robust control techniques, such as H∞ and μ-synthesis. However, the method in
Ref. [48] does not guarantee that the closed-loop system exhibits a robust performance. To handle this
problem, a parametrized LPV H∞ control was presented in Ref. [49], which showed good performance
when applied to a turbofan jet engine. Other H∞ controllers for systems affected by time-varying
parametric uncertainties can be consulted in Refs. [50,51]. In order to improve the performance of
H∞ controllers, a switching controller designed with multiple Lyapunov functions was proposed by
Ref. [52]. Similarly, an LPV control for switched systems with slow-varying parameters was proposed
for an F-16 aircraft model in Ref. [53] by adopting the blending method developed by Ref. [54], which
achieves the separation of the entire parameter set into overlapped subsets, such that the overall
LPV controller can be blended over the entire region by means of regional controllers. In spite of the
good achieved performance, the method is applicable only under the assumption that the scheduling
parameters can be measured on-line, which is often difficult to satisfy in practice. To solve this problem,
a robust compensator which considers prior and non-real-time knowledge of the varying parameters
was proposed by Ref. [55] for stable polytopic LPV plants. Robust convex controllers have been also
proposed in the context of networked nonlinear systems [56,57] where the communication channel is
affected by package dropouts intermittently.

2.1. Convex State-Feedback Control

The first convex developments were proposed in Ref. [58] and subsequent papers [2,44,59].
The main difference with respect to the robust control theory is that the varying parameters are
assumed to be known and they can be used to schedule the time-varying controller gain. The most
widely applied control approach is the state-feedback, for which a conceptual scheme is given in
Figure 2. This approach computes the control law as follows:

u(t) = K(θ(t))x(t) (3)

where K(θ(t)) ∈ Rnu×nx denotes the controller gain. It is the simplest control law that can be
considered but its implementation requires knowing the full state of the system. Combining (1)
and (3), the closed-loop system is described by the following autonomous convex system:
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ẋ(t) =
[

A(θ(t)) + B(θ(t))K(θ(t))
]

x(t) (4)

Hence, by using the Lyapunov candidate function V(x(t)) = xT(t)Px(t) > 0, with P ∈ Snx

and requiring V̇(x(t)) < 0, the so-called quadratic stability condition is obtained, as follows:

He{PA(θ) + PB(θ)K(θ)} ≺ 0 ∀θ ∈ Θ (5)

Convex
controller Convex plant

Figure 2. Conceptual scheme of convex control.

Equation (5) is a bilinear matrix inequality (BMI) as the unknown variables K(θ) and P appear in
the same product of matrices PB(θ)K(θ). However, it is possible to transform (5) into an LMI by pre-
and post-multipliying (5) by Q = P−1, thus obtaining [60] (similarity transformations do not change
the eigenvalues of a matrix, hence its positive/negative definiteness):

He{QPA(θ)Q + QPB(θ)K(θ)Q} ≺ 0 ∀θ ∈ Θ (6)

Note that in this case PQ = (PQ)T = I and therefore the following is obtained:

He{A(θ)Q + B(θ)K(θ)Q} ≺ 0 ∀θ ∈ Θ (7)

Finally, the quadratic term is eliminated by using the change of variables Γ(θ) = K(θ)Q, so
that (7) becomes:

He{A(θ)Q + B(θ)Γ(θ)} ≺ 0 ∀θ ∈ Θ (8)

which is in an LMI form. It is important to mention that, in the case that multiple specifications are
desired, the above change of variables introduces some conservatism, since it forces to use the same
Lyapunov matrix Q for all specifications, whereas using different matrices for different specifications
would lead to better performance. However, using LMIs instead of BMIs is convenient due to the
computational efficiency of available LMI solvers, whereas BMIs are non-convex, so that there is no
guarantee of obtaining a global minimum. Equation (8) represents an infinite number of constraints,
therefore it presents a computational problem. Unfortunately, the direct application of a polytopic
approach is not straightforward. One could rewrite (8) as:

Mij := He{AiQ + BjΓi} ≺ 0 ∀i, j = 1, . . . , h (9)

and achieve stabilization by using u(t) = K(θ(t))x(t), with the feedback controller gain obtained as
K(θ(t)) = Γ(θ(t))Q−1, where Γ(θ(t)) = ∑h

i=1 ρi(θ(t))Γi and ρi(θ(t)) denotes the coefficients of the
following polytopic decomposition:
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[
A(θ(t))
B(θ(t))

]
=

h

∑
i=1

ρi(θ(t))

[
Ai
Bi

]
,

h

∑
i=1

ρi(θ(t)) = 1, ρi(θ(t)) ≥ 0 ∀θ ∈ Θ (10)

However, this solution has the drawback that a vertex gain Ki must be robust with respect to all
possible values of B(θ(t)), which corresponds to a high degree of conservatism. For this reason,
alternative solutions can be found in the literature, such as that proposed by Ref. [61] which consists
in pre-filtering the control input u(t). The combination of the filter and the system (1) leads to a
convex system with constant input matrix since B(θ(t)) appears embedded into the state matrix of
the augmented system. However, it must be mentioned that some recent work has questioned the
advantages of the pre-filter against using directly the LMIs (9) for the controller design [62,63].

Other alternative solutions aim at relaxing (9), although usually the requirement of low
conservatism is associated with an increase in the computational load. Among these solutions, it is
worth mentioning the conditions proposed by Ref. [64], who presented a fuzzy control application
of the Polya’s theorems on positive forms in the standard simplex. The result is a set of sufficient
conditions to prove the positiveness of double sums, which are progressively less conservative as a
complexity parameter n increases. These conditions are asymptotically exact, that is, necessary and
sufficient when n tends to infinity. Other conditions are those obtained by generating partitions of the
polytope through the triangulation method [65], which allows to obtain a family of sufficient conditions
for positivity/negativity of double sums and, in parallel, another family of necessary conditions, which
become asymptotically exact by decreasing the size of the partitions. In addition, one can recall the
conditions proposed by Ref. [66], that allow to relax the conditions of double polytopic sum to take
into account, for example, the existence of gaps in the set Θ. Nonetheless, the most popular relaxation
is the one proposed by Tuan et al. [67], which considers that an LMI in the form of (9) is equivalent to:

Mij ≺ 0 i ∈ [1, 2, ..., h] (11)
2

h− 1
Mii +Mij +Mji � 0 1 ≤ i 
= j ≤ h (12)

which reduces the conservatism and increases the applicability of the controller.
For convex qLPV and TS systems, Equations (9) and (11) are also known as parallel distributed

compensation (PDC) [68]. In this case, the feedback controller and the convex system share the same
weighting functions and the LMI conditions are obtained with the direct Lyapunov method. However,
the more local models the convex representation has, the greater is the conservatism of the LMI solution.
This fact follows from the necessity of finding a feasible solution that employs a common matrix P for all
the local models. A possible strategy to reduce the conservatism is to consider nonquadratic Lyapunov
functions (NQLFs) as done, for example, in Refs. [69–72]. The solution obtained through NQLFs,
which is also known as non-PDC [73,74], reduces considerably the conservatism and maintains the
same weighting functions for both the convex model and the controller. However, non-PDC controllers
are harder to design than PDC controllers, since the weighting functions involve time derivatives of
the NLQF, leading to local results [75]. This problem does not arise in convex systems dependent on
exogenous time-varying parameters, because the NLQLF would not involve time derivatives of the
states, hence global solutions can be obtained for this case [72,76–78].

2.2. Convex Output-Feedback Control

A variant of the state-feedback control strategy previously described consists in using directly
the output y(t) for feedback, which is easier to implement in cases where the state is unavailable for
measurement. Nevertheless, some conditions have to be ensured to make it possible to synthesize
these controllers, by means of approaches initially developed in the robust context and later extended
to the LPV framework [79–82].
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The next result allows the quadratic stabilization of a convex system of the form (1)–(2) using a
convex dynamic output-feedback controller defined as:

ẋK(t) = AK(θ(t))xK(t) + BK(θ(t))y(t) (13)

u(t) = CK(θ(t))xK(t) + DK(θ(t))y(t) (14)

where xK(t) ∈ Rnx is the internal state of the controller and AK(θ(t)), BK(θ(t)), CK(θ(t)), DK(θ(t)) are
matrix-valued functions, such that the closed-loop system obtained by the connection of (1)–(2) and
(13)–(14) is stable. In particular, the closed-loop system is described by the following autonomous
convex system:[

ẋ(t)
ẋK(t)

]
=

[
A(θ(t)) + B(θ(t))DK(θ(t))C(θ(t)) B(θ(t))CK(θ(t))

BK(θ(t))C(θ(t)) AK(θ(t))

] [
x(t)

xK(t)

]
(15)

Due to the presence of C(θ(t)) post-multiplying BK(θ(t)) and DK(θ(t)) in (15), the procedure to
obtain LMIs for design of the controller’s matrices is somehow more complex. The system (1)–(2) is
quadratically stabilizable using the convex controller (13)–(14) if there exist a positive definite matrix
P ∈ S2nx such that Acl(θ)P + PAcl(θ) ≺ 0, ∀θ ∈ Θ, where Acl(θ) is the state matrix of the autonomous
system (15). Following Refs. [83,84], this condition is achieved if and only if there exist matrices Q � 0
and S � 0 and matrix-valued functions ĈK(θ) and B̂K(θ) such that the following holds ∀θ ∈ Θ:

He{A(θ)Q + B(θ)ĈK(θ)} ≺ 0 (16)

He{SA(θ) + B̂K(θ)C(θ)} ≺ 0 (17)

A possible methodology to obtain the controller’s matrices after solving (16)–(17) is described
hereafter [85]. If (16)–(17) and the following condition hold:(

Q I
I S

)
� 0 (18)

then, by letting M, N be non-singular matrices such that MNT = I − SQ and choosing DK (θ(t)) = 0,
the controller’s matrices AK (θ(t)), BK (θ(t)) and CK (θ(t)) can be computed as follows:

BK(θ(t)) = M−1
[

B̂K(θ(t))− SB(θ(t))DK(θ(t))
]

(19)

CK(θ(t)) =
[
ĈK(θ(t))− DK(θ(t))C(θ(t))Q

]
N−T (20)

AK(θ(t)) = M−1
[

ÂK(θ(t))− SB(θ(t))CK(θ(t))NT −MBK(θ(t))C(θ(t))Q (21)

− S
(

A(θ(t)) + B(θ(t))DK(θ(t))C(θ(t))
)

Q
]

N−T

On the other hand, if (18) does not hold, then the matrices have to be adjusted using Qλ = λQ,
Sλ = λS, B̂Kλ(θ(t)) = λB̂K(θ(t)) and ĈKλ(θ(t)) = λĈK(θ(t)), where λ > 1, until (18) holds with these
new variables and the controller’s matrices can be computed.

Equation (18) guarantees the existence of the invertible matrices M and N used for controller
computation. In the same way, the conditions to perform H∞ control, control with guaranteed cost
or to achieve other specifications can be obtained. Note that double polytopic sums appear due to
the terms B(θ)ĈK(θ) and B̂K(θ)C(θ) in (16)–(17). If the controller is restricted to the case where B̂K(θ)

and ĈK(θ) are constant, then the LMIs (16)–(17) can be reduced to a finite number of conditions easily,
otherwise the discussion provided in the previous section about possible relaxations would apply
with slight modifications. It is worth remarking that in convex systems in which θ(t) depends on
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unmeasured states, the analysis and design of the output feedback control become more complicated,
see for example, Ref. [86].

2.3. Convex Tracking Controller

Consider a convex system subject to unknown inputs ans sensor noise, described by (for the sake
of simplicity, the output matrix is assumed to be constant):

ẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) + R(θ(t))d(t) (22)

y(t) = Cx(t) + Gd(t) (23)

where d(t) ∈ Rnd is the disturbance vector comprising both unknown inputs and noise and R(θ(t))
and G are matrices of appropriate dimensions. As illustrated in Figure 3, a convex tracking controller
can be considered for this system, with control law:

u(t) = K1(θ(t))x(t) + K2(θ(t))ε(t) = K(θ(t))
[

x(t) ε(t)
]T

(24)

where K1(θ(t)) and K2(θ(t)) are the gains to be designed and ε(t) is the integration error, added to
compensate steady-state errors and reach the desired output w(t):

ε̇(t) = w(t)− y(t) = w(t)− Cx(t)− Gd(t) (25)

Integral 
action

Proportional 
action

Convex plant

Figure 3. Convex tracking controller scheme.

The system augmented with the integrator can be rewritten in a compact form by introducing the
augmented state vector xc(t) = [xT(t) εT(t)]T :

ẋc(t) = Āc(θ(t))xc(t) + B̄c(θ(t))u(t) + R̄c(θ(t))d(t) + B̄ww(t) (26)

with:

Āc(θ(t)) =

[
A(θ(t)) 0
−C 0

]
B̄c(θ(t)) =

[
B(θ(t))

0

]
B̄w =

[
0
I

]
R̄c(θ(t)) =

[
R(θ(t))
−G

]
(27)

The closed loop system has the form:

ẋc(t) =
h

∑
i=1

ρi(θ(t))
h

∑
j=1

ρj(θ(t))
[(

Āci − B̄ciKj
)

xc(t) + B̄Rwid̄w(t)
]

(28)
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with:

B̄Rwi =
[

R̄i B̄w

]
, d̄w(t) =

[
d(t) w(t)

]T
(29)

Sufficient conditions for the existence of the controller are given in Ref. [35] and presented
hereafter. Consider the system (22)–(23), the feedback control law defined by (24), the integrator, and
let the attenuation level be given by γc > 0. The closed loop system error (25) is globally stable with H∞

performance if ‖ xc(t) ‖2
2< γ2

c ‖ d̄ω(t) ‖2
2 and if there exists a matrix X � 0 such that ∀i, j ∈ [1, 2, ..., h],

the following holds: [
He
(

XĀT
ci + ΞT

j B̄T
ci

)
+ B̄RwiB̄T

Rwi X

∗ −γ2
c I

]
≺ 0 (30)

Then, the controller gain matrices are computed by Kj =
[
K1j K2j

]
= X−1Ξj.

This is possible because if we consider the L2-gain from d̄ω(t) to xc(t) such that:

Jxcd = V̇(t) + xT
c (t)xc(t)− γ2

c d̄T
ω(t)d̄ω(t) < 0 (31)

where V(t) is a quadratic Lyapunov function, the LMI (30) is obtained after solving the performance
criteria (31). Complete procedures are described in detail in Ref. [35].

An alternative approach is to use a reference model as originally proposed by Ref. [87] and later
applied by Refs. [26,88], which has the advantage that the tracking error is described by an autonomous
system, so its convergence to zero can be guaranteed even without the use of an integrator.

2.4. Model Predictive Control for Convex Systems

Model predictive control (MPC) is a control strategy that is based on the use of a mathematical
model to predict the system’s behavior in a future time window and then finds the optimal input
sequence by minimizing a cost function [89,90]. Only the first calculated input is applied to the system
and the remaining are discarded, repeating this prediction-optimization process at every sample. This
control technique is popular because it can take into account systematically complex dynamics, as well
as physical and process quality constraints [91].

Consider the discrete-time convex system:

x(k + 1) = A(θ(k))x(k) + B(θ(k))u(k) (32)

where A(θ(k)) = ∑l
j=1 θj(k)Aj and B(θ(k)) = ∑l

j=1 θj(k)Bj. Therefore, θ(k) belongs to a convex

polytope Θ defined by the values θj(k) such that ∑l
j=1 θj(k) = 1, with, 0 ≤ θj(k) ≤ 1. On the

other hand, when θ(k) varies in the polytope Θ, the system matrices vary in the polytope Ω defined
as follows:

[A(θ(k)), B(θ(k))] ∈ Ω = Co{[A1, B1], [A2, B2], . . . , [Al , Bl ]} (33)

where [Ai, Bi] are the vertex matrices obtained when θi = 1 and θj = 0 for j 
= i. Hereafter,
for illustrative purposes, it is assumed that there is no model uncertainty and that both the scheduling
variable θ(k) and the state x(k) are known at time k. However, the future evolution of the model is
uncertain since future values of θ(k) are unknown.

Let us define the following quadratic cost function:

J(k) = x(k|k)TQx(k|k) + u(k|k)T Ru(k|k)︸ ︷︷ ︸
J0(k)

+
∞

∑
i=1

x(k + i|k)TQx(k + i|k) + u(k + i|k)T Ru(k + i|k)︸ ︷︷ ︸
J1(k)

(34)
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where Q, R are weighting matrices with appropriate dimensions and the notation x(k + i|k) represents
the predicted value for the state variable x at the future sample k + i calculated at sample k. Hence,
J0(k) correspond to the first prediction step and J1(k) correspond to the remaining of the prediction.

Let U(k) be the sequence of inputs computed at sample k, that is, U(k) = [u(k|k), U1(k)] =

[u(k|k), u(k + 1|k), . . .]. Then, the optimal control sequence is obtained by minimizing the maximum
value that the cost function (34) can take for all the possible future trajectories of the parameter
θ(k), that is,

U∗(k) = min
U(k)

max
[A(θ(k+i)),B(θ(k+i))]∈Ω i≥0

J(k) (35)

where ∗ denotes optimality. The first element of U∗(k), that is, u∗(k|k), is applied to the system, while
the remaining of the sequence U∗1 (k) can be proven to be equivalent to a state feedback control law
whose gain does not depend on the instantaneous value of θ(k) (see Ref. [92] for further details), that is,

U∗1 (k) = {u(k + i|k) = K(k)x(k + i|k), i ≥ 1} (36)

Following Ref. [92], instead of solving (35), an upper bound for the term J1(k) can be defined,
as follows:

max
[A(θ(k+i)),B(θ(k+i))]∈Ω, i≥0

J1(k) ≤ V(x(k + 1|k)) = x(k + 1|k)T Px(k + 1|k) P(k) � 0. (37)

Then, an upper bound of the worst case of J(k) is minimized instead of (35), as follows:

U∗(k) = min
u(k|k),P(k)

x(k|k)TQx(k|k)T + u(k|k)T Ru(k|k)T + x(k + 1|k)T Px(k + 1|k) (38)

The optimization problem (38) can be reformulated as the following minimization problem:

min
γ,u(k|k),Q̃(k),Y(k)

γ (39)

subject to LMIs: ⎡⎢⎢⎢⎣
1 x̂(k + 1|k)T x̂(k|k)TQ

1
2 u(k|k)T R

1
2

x̂(k + 1|k) Q̃(k) 0 0
Q

1
2 x(k|k) 0 γI 0

R
1
2 u(k|k) 0 0 γI

⎤⎥⎥⎥⎦ � 0 (40)

⎡⎢⎢⎢⎣
Q̃(k) Γ̃j(k)T Q̃(k)Q

1
2 Y(k)T R

1
2

Γ̃j(k) Q̃(k) 0 0
Q

1
2 Q̃(k) 0 γI 0

R
1
2 Y(k) 0 0 γI

⎤⎥⎥⎥⎦ � 0 ∀j = 1, . . . , l (41)

with x̂(k + 1|k) = [A(θ(k))x(k|k) + B(θ(k))u(k|k)], Γ̃j(k) = AjQ̃(k) + BjY(k) and Q̃(k) � 0. The gain
in (36) is computed as K(k) = Y(k)Q̃−1(k), which guarantees that the state evolves in an ellipsoidal
invariant set.

Considering the system output as y(k) = Cx(k), the cost function (34) may be subject to
constraints [93]: ∣∣∣u(k|k)∣∣∣ ≤ umax (42)∣∣∣∣∣∣C[A(θ(k))x(k|k) + B(θ(k))u(k|k)]∣∣∣∣∣∣

2
≤ ymax (43)
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Constraints on the inputs are satisfied if there exists a matrix X � 0 such that:[
X Y

YT Q̃

]
� 0 with Xii ≤ u2

max (44)

In a similar way, the constraints on the outputs are equivalent to the LMI:[
Q̃ [AjQ̃ + BjY]TCT

C[AjQ̃ + BjY] y2
max

]
� 0 j = 1, . . . , l (45)

The constrained MPC algorithm with control law (36) can be obtained by solving the optimization
problem (39) subject to the LMIs (40), (41), (44), (45) and constraints (42) and (43). However,
although this algorithm does not impose u(k|k) and y(k + 1|k) to invariant ellipsoid constraints, still
includes constraints on all future inputs and outputs. A method to improve the conservatism is to relax
the future constraints (44) and (45) and bound only u(k|k) and y(k + 1|k) [93]. To guarantee stability
an additional constraint that ensures that the cost function decreases monotonously (φ(k) < φ(k− 1)
with φ(k) = x(k|k)TQx(k|k)T + u(k|k)T Ru(k|k)T + x(k + 1|k)T Px(k + 1|k)) has to be included in
the optimization:

min
γ,u(k|k),Q̂(k),Y(k)

γ (46)

subject to LMIs: ⎡⎢⎢⎢⎣
γ x̂(k + 1|k)T x(k|k)TQ

1
2 u(k|k)T R

1
2

x̂(k + 1|k) Q̂(k) 0 0
Q

1
2 x(k|k) 0 I 0

R
1
2 u(k|k) 0 0 I

⎤⎥⎥⎥⎦ � 0 (47)

⎡⎢⎢⎢⎣
φ(k− 1) Γ̂j(k)T Q̂(k)Q

1
2 Y(k)T R

1
2

Γ̂j(k) Q̂(k) 0 0
Q

1
2 Q̂(k) 0 I 0

R
1
2 Y(k) 0 0 I

⎤⎥⎥⎥⎦ � 0 ∀j = 1, . . . , l (48)

[
u(k|k)− umax

−umax − u(k|k)

]
≤ 0 (49)[

C
[
A(θ(k))x(k|k) + B(θ(k))u(k|k)]− ymax

−ymax − C
[
A(θ(k))x(k|k) + B(θ(k))u(k|k)]

]
≤ 0 (50)

with Γ̂j(k) = AjQ̂(k) + BjY(k) and Q̂(k) � 0. The gain of the control law (36) is computed as
K(k) = Y(k)Q̂−1(k). To initialize the algorithm, in k = 0, the Lyapunov constraint φ(k) < φ(k− 1)
is not taken into account. The resulting control strategy, which is depicted in Figure 4, provides
guaranteed closed-loop stability provided that a feasible solution has been found. A parameter
dependant feedback law instead of (36) can also be considered as in Ref. [93].
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Online 
optimization Convex plant

Convex model

MODEL PREDICTIVE CONTROLLER

Figure 4. Convex model predictive control scheme.

Most of the MPC strategies for convex systems are based on the algorithm proposed by Ref. [92]
since it stabilises robustly an LPV system for all possible parameter variations. However, such
algorithm was not thought for application to LPV systems and therefore it suffers from being
conservative and computationally demanding. The strategies proposed by Refs. [93,94], which consider
bounds in the parameter variations, show less conservatism and a decreased computational load when
compared to Ref. [92]. A modification of Ref. [93] that involves updating the polytope Ω while keeping
it defined by the least possible number of vertices has been presented in Ref. [95]. This innovation is
motivated by the fact that the fewer vertices are used to describe Ω, the less likely it is that infeasibility
problems could occur. In Ref. [96], an extension to nonlinear systems has been presented, where a
linearized model is obtained from the nonlinear model at each sample and then an LPV model that
varies in a politope Ω is used for obtaining the state prediction. Other existing approaches are focused
on the use of Lyapunov functions that depend on θ(k) that enlarge the feasible region [97,98]. In line
with this work, an algorithm that uses closed-loop predictions with good achieved performance and
low computational requirements was presented in Ref. [99]. More recently, Ref. [100] has presented
a class of nonlinearly parameterized Lyapunov functions to achieve more efficient relaxed stability
conditions. A robust MPC scheme for LPV systems where the varying parameters are assumed to
be measured online and exploited for feedback has been derived in Ref. [101]. Explicit MPC for
convex systems has been also proposed in order to avoid the need of online optimization [102,103].
In general, MPC for convex systems has been a topic that has received an intense interest by the
research community in the last few years, for which the interested reader is referred to Refs. [104–107]
and the references therein.

2.5. Final Comments on Control of Convex Systems

It is worth noting that what has been discussed in this section about the control of convex systems
does not apply only to the problem of controller design for quadratic stabilization but also to the
case of other specifications, such as D-stabilization [108], H∞ control [109], control with guaranteed
cost [110] and many more. The described methods can be adapted to deal with convex systems with
piecewise constant parameters, which provide a unifying concept lying in between the robust and the
gain-scheduled perspectives, including both as extremal cases [111].

On the other hand, there are some cases in which the direct application of the convex techniques
described so far would not work, for example, due to the loss of controllability for some points of the
design polytope, so that alternative strategies must be employed. For instance, consider the following
simplified model of a unicycle mobile robot
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⎡⎢⎣ ẋ(t)
ẏ(t)
α̇(t)

⎤⎥⎦ =

⎡⎢⎣ cos(α(t)) 0
sin(α(t)) 0

0 1

⎤⎥⎦ [ v
w

]
(51)

where x, y are the spacial 2D coordinates, v and w are the mobile robot translational and angular
velocities, respectively and α denotes the orientation with respect to the fixed frame. If α ∈ [−π, π]

were considered, one would get a non-controllable convex models in the vertices although the
underlying nonlinear system is actually controllable. For example, the solution proposed in Ref. [88]
was based on dividing the parameter space in regions and use a switched approach in order to avoid
the above-mentioned singularities.

Another important theoretical point to be remarked is that the LMI-based assessment of stability
(or some other goal) in convex systems arising from an underlying nonlinear system could mislead to
believe that global stability (or performance) would hold for the original system. This fact is in general
not true, as shown remarkably by Ref. [112] with a simple second order autonomous nonlinear system,
that is, the well known Van der Pol equation. Fortunately, Ref. [112] also shows that it is possible to
estimate the region of attraction for the nonlinear system, based on the Lyapunov function obtained
for the convex system. This fact was further studied by Refs. [113–115] and was used by Ref. [34] to
create a metric to compose different convex models obtained for the same nonlinear system.

Finally, it is worth mentioning that analysis and control problems for convex systems with
delays have also attracted some recent interest [116,117]. These systems belong to the intersection
of convex systems and time-delay systems, so they inherit the difficulties of each one. In particular,
the stability analysis of these systems must be performed using tools such as Lyapunov-Razumikhin
functions and Lyapunov-Krasovskii functionals, which increase the number of decision variables [118].
The interested reader is referred to the monograph [119] and the references therein.

3. Observation of Convex Systems

In many real-world applications there are some internal state variables that cannot be measured
with the available sensors. Nevertheless, many control techniques are based on the assumption that
the whole state is available, which is not always true. In practice, the available information concerns
the input u(t) and the output y(t), rather than the state x(t). In such case, the observability properties
state that when the system is observable, the initial state can be determined and, therefore, the state
trajectory can be reconstructed from input and output measurements, by means of the so-called state
observer. State observers are dynamical systems that are designed to estimate asymptotically the
state vector x(t). Applications of convex observers can be found in UAVs [120], electric vehicles [121],
networked systems [122], DC motors [123], wind turbines [124], riderless bicycles [125], to mention
a few.

3.1. Convex Observers

The most common state observer is the one named after Luenberger, which for a convex systems
has the following form [126] (see Figure 5):

˙̂x(t) = A(θ(t))x̂(t) + B(θ(t))u(t) + L(θ(t)) (y(t)− ŷ(t)) (52)

ŷ(t) = Cx̂(t) (53)

where x̂(t) ∈ Rnx denotes the state estimate, ŷ(t) ∈ Rny denotes the output estimate and the meaning
of the remaining variables can be inferred from the previous section. The scheduled observer gains
L(θ(t)) are designed to guarantee closed-loop stability of the estimation error dynamics for all values
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of θ(t), such that the estimation error between the observer (52)–(53) and the system (1)–(2) converges
towards zero. Let us define the estimation error as follows:

e(t) := x(t)− x̂(t). (54)

Convex observer

Convex plant

Figure 5. Convex state observer scheme.

Then, the estimation error dynamics is defined as:

ė(t) = (A(θ(t))− L(θ(t)C))e(t) (55)

The stability condition of the above differential equation can be obtained by means of LMI-based
techniques, for example by considering the quadratic stability concept. In this case, one seeks the
existence of a quadratic Lyapunov function V(e(t)) = e(t)T Pe(t) ≥ 0, P � 0, whose derivative over
the error dynamics is given by:

V(e(t)) =ė(t)T Pe(t) + e(t)T Pė(t) = e(t)T (He{PA (θ(t))− PL (θ(t))C}) e(t) < 0

In order to eliminate the quadratic term, the change of variable W(θ(t) = PL(θ(t) is considered,
such that the following LMI is obtained:

He{PA(θ)−W(θ)C} ≺ 0 ∀θ ∈ Θ (56)

where the observer gain matrix can be computed later from its solution as L(θ(t)) = P−1W(θ(t)).
Furthermore, to improve the speed convergence of the state observer, a decay rate α < 0 can be

added as requirement, by asking that:

V̇(e(t)) + 2αP < 0 (57)

which is also known in the literature as α-stabilization. As a result, the LMI (56) is replaced by
the following:

He{PA(θ)−W(θ)C}+ 2αP ≺ 0 ∀θ ∈ Θ (58)

It should be noticed that the stability of a state observer is guaranteed if the LMI (58) has a solution.
Nevertheless, the approach described so far does not consider disturbances or measurement noise,
which affect all physical systems.
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3.2. Robust Observers

Dynamical systems can be affected by external disturbances and measurement noise and,
moreover, there exists always a mismatch between the real plant and its model used for control. These
effects can lead to the loss of stability or performance if not taken into account appropriately. A control
system that remains stable and with none (or little) performance loss despite the disturbances/noise is
said to be robust. In other words, robustness means that the system remains stable and with almost
the same performance even in the presence of disturbance, model mismatches or noise. For example,
a wind turbine system must keep its efficiency even in the presence of air velocity changes. In contrast,
an example of unwanted disturbance amplification is the Tacoma Narrows suspension bridge, where
strong winds caused resonant oscillations of increasing magnitude in the bridge structure, which
ultimately led to its destruction.

In particular, the robust state observer design problem is related to finding the observer gains
such that it is always possible to estimate the real states within prescribed tolerances, despite the effects
of uncertainties.

A possible technique to deal with uncertainties is by means of the robust H∞ approach, which
has been developed since the beginning of the eighties and has been applied intensely, with successful
results, to convex systems [11,120,127,128].

The H∞ approach assumes that the disturbance d(t) ∈ Rnd belongs to a set of norm bounded
functions. The idea is to minimize the worst error that can arise from any disturbance in the
following set:

‖ d(t) ‖2=

(∫ ∞

0
dT(τ)d(τ)dτ

)1/2
(59)

For instance, let us consider a convex model affected by the above sources of uncertainty:

ẋ(t) =A(θ(t))x(t) + B(θ(t))u(t) + R(θ(t))d(t) (60)

y(t) =Cx(t) + Gd(t) (61)

where the meaning of each variable and matrix is kept as previously and the matrices A (θ(t)), B (θ(t)),
R (θ(t)) satisfy the polytopic property:⎡⎢⎣ A(θ(t))

B(θ(t))
R(θ(t))

⎤⎥⎦ =
h

∑
i=1

ρi(θ(t))

⎡⎢⎣ Ai
Bi
Ri

⎤⎥⎦ ,
h

∑
i=1

ρi(θ(t)) = 1, ρi(θ(t)) ≥ 0 ∀θ ∈ Θ (62)

Let us consider the Luenberger observer given by (52)–(53), for which the dynamics of the
estimation error defined as in (55), can be described after some algebraic manipulations as follows:

ė(t) = (A(θ(t))− L(θ(t))C) e(t) + (R(θ(t)) + L(θ(t))G)d(t) (63)

Then, the design problem can be formulated as the one of guaranteeing asymptotic stability of
the estimation error (63) while at the same time minimizing, by means of the H∞ technique, the ratio
between the �2 norm of the output vector and the �2 norm of the disturbance vector against the
disturbance vector d(t), that is,

min γ
γ>0

:
||y||�2

||d||�2

< γ, ||d||�2 
= 0 (64)

where γ > 0 is the prescribed attenuation level (upper bound on the above mentioned ratio).
Then, by considering a bound on the L2 gain from d(t) to e(t) given by the Lyapunov function
V(e(t)) = e(t)T Pe(t), P � 0, the above performance criterion is satisfied if the following holds:
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V̇(e(t)) + e(t)Te(t)− γ2d(t)Td(t) < 0 (65)

Similarly to the procedure described above in Section 3.1, the following LMI is obtained from
manipulations on (65): [

He{PAi − ΞiC}+ I PEi − ΞiG
∗ −γ̄I

]
≺ 0 (66)

Once solved the above LMI, the observer gain matrix can be computed as Li = P−1Ξi, which achieves
an attenuation level γ =

√
γ̄.

3.3. Proportional-Integral Observers

Proportional-integral observers (PIOs) have become popular in recent years due to their
robustness against constant or slowly varying disturbances. In a PIO an additional term, which is
proportional to the integral of the output estimation error, is added in order to increase the robustness
performance [129], as depicted in Figure 6. This term gives an additional degree of freedom that can
be used for the estimation of unknown inputs such as disturbances [130,131], battery charge [132] and
faults [133,134], among others.

Proportional observer

Convex plant

Figure 6. Convex proportional integral observer (PIO) scheme.

A PIO for a system in the form (60)–(61) is described by the following equations:

˙̂x(t) = A (θ(t)) x(t) + B (θ(t)) u(t) + L(θ(t))(Cx̂(t)− y(t)) + Kp(θ(t))d̂(t) (67)
˙̂d(t) = Φ(y(t)− Cx̂(t)) (68)

where x̂ and d̂ denote the estimated state and unknown input vectors, respectively and L(θ(t)),
Kp(θ(t)), and Φ are the observer gain matrices to be computed. The addition of an integrator provides
more robustness to the observer so that it can deal with measurement noise or modeling uncertainties.
Let us define the estimation errors as (55) and ed(t) = d(t)− d̂(t). In order to get a suitable design
procedure, it can be considered that the unknown input d(t) is varying slowly, which means that
ḋ(t) ≈ 0. Then, the dynamics of the estimation errors can be computed as:
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ė(t) = (A(θ(t))− L(θ(t))C)e(t) + (R(θ(t))− L(θ(t))G)d(t)− Kp(θ(t))d̂(t) (69)

ėd(t) = −ΦCe(t)−ΦGd(t) (70)

By considering:

R(θ(t))− L(θ(t))G = Kp(θ(t)) (71)

ΦG = 0 (72)

and an extended error vector defined as ēT(t) :=
[
eT(t)eT

d (t)
]T , the overall error dynamics is

rewritten as:
˙̄e(t) = (Ae(θ(t))− Le(θ(t))Ce)ē(t) (73)

with:

Ae(θ(t)) =

[
A(θ(t) Kp(θ(t)

0 0

]
Le(θ(t)) =

[
L(θ(t))

Φ

]
Ce = [C, 0] (74)

Then, by considering a Lyapunov equation V(ē(t)) = ēT(t)P ē(t), the solution is obtained in the LMI
formulation, similarly to (56), as:

He{PAe(θ)−We(θ)Ce} ≺ 0 ∀θ ∈ Θ (75)

where P = diag(P, Q), P, Q � 0 and We(θ(t)) = PLe(θ(t)). The observer gain matrices are obtained
from the solution of (75) as Le(θ(t)) = P−1We(θ(t)).

It is worth remarking that the slow variation assumption is very common in the literature. From a
practical point of view, it can be relaxed, as done for example in Ref. [135]. It is also worth noticing that
later, in Section 4.2, unknown input observers, which allow to obtain asymptotic convergence of the
estimation error despite the presence of d(t) without making the assumption that d(t) is approximately
constant, will be reviewed.

3.4. Descriptor Observers

The observers discussed above are designed for regular systems whose dynamics are represented
only by ordinary differential equations. Nevertheless, some mathematical models are composed of both
differential and static (algebraic) equations. Designing state observers for descriptor systems is harder
than for regular systems because descriptor systems usually have three types of modes (finite dynamic,
impulsive and non-dynamic [136]) and the observer must deal with all of them. Nonetheless, there are
plenty of fields in which descriptor systems are applied, for example, aircraft modeling [137], complex
systems [11], microgrids [138], electrical [9], mechanical and hydraulic systems [136] and biological
processes [12], among others. Furthermore, there are some mechanical systems for which possible
variations in time of masses and/or inertias rely on a natural descriptor model as in Refs. [139–141].
In these cases, although convex systems can be transformed into a regular system, it has been proved
that it is possible to reduce the number of linear models by considering a descriptor representation,
which in general makes the LMI-based constraints less conservative [142,143].

A convex descriptor system affected by disturbances is described by

Eẋ(t) = A(θ(t))x(t) + B(θ(t))u(t) + R(θ(t))d(t) (76)

y(t) = Cx(t) + Gd(t) (77)

where E is a constant matrix with rank(E) = r ≤ nx. Note that in the particular case of E = I,
the descriptor system becomes a regular system and the observer can be computed as described
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previously. On the other hand, unlike regular systems, a descriptor system has different modes that
are given by differential and algebraic equations. As a result, different types of observability condition
should be verified such as R-observability [144], which means that:

rank

[
sE− Ai

C

]
= nx ∀i ∈ [1, 2, ...N] (78)

and I-observability [144], that is,

rank

⎡⎢⎣E Ai
0 E
0 C

⎤⎥⎦ = nx + r ∀i ∈ [1, 2, ..., N] (79)

R-observability characterizes the ability to reconstruct only the reachable state from the output
data. However, due to the algebraic equations, impulsive terms can appear, which are not desirable
since they can saturate the state response or, in general, have negative effects on the system. On the
other hand, I-observability guarantees the ability to estimate impulse terms given by the algebraic
equations [12].

Then if the convex descriptor system is both R- and I-observable, the following observer can
be proposed:

ż(t) = N(θ(t))z(t) + J(θ(t))u(t) + L(θ(t))y(t) (80)

x̂(t) = z(t) + T2y(t) (81)

ŷ(t) = Cx̂(t) (82)

where z(t) represents the observer state and x̂(t) stands for the estimated states. N(θ(t)), J(θ(t)),
L(θ(t)) and T2 are unknown gain matrices of appropriate dimensions to be computed. Based
on (76)–(77) and (80)–(82), the estimation error e(t) is:

e(t) = x(t)− x̂(t) = (I − T2C)x(t)− z(t)− T2Gd(t) (83)

Assuming that there exists a matrix T1 ∈ Rnx×nx such that:

I − T2C = T1E (84)

the estimation error becomes:

e(t) = T1Ex(t)− z(t)− T2Gd(t). (85)

Assuming that the disturbances is slowly varying, ḋ(t) ≈ 0, the dynamics of e(t) is given by:

ė(t) =T1Eẋ(t)− ż(t) (86)

=T1 (A(θ(t))x(t) + B(θ(t))u(t) + R(θ(t))d(t))− (N(θ(t))z(t) + J(θ(t))u(t) + L(θ(t))y(t))

=(T1 A(θ(t))− L(θ(t))C− N(θ(t))T1E)x(t) + (T1B(θ(t))− J(θ(t)))u(t)

+ (T1R(θ(t))− L(θ(t))G + N(θ(t))T2G)d(t) + N(θ(t))e(t) (87)

In order to guarantee convergence to zero of the estimation error, the following conditions
are considered:

24



Processes 2019, 7, 814

T1 A(θ(t))− L(θ(t))C− N(θ(t))T1E = 0 (88)

T1B(θ(t))− J(θ(t)) = 0 (89)

After some algebraic manipulations, the following equations equivalences are obtained:

N(θ(t)) = T1 A(θ(t)) + K(θ(t))C (90)

Γ(θ(t)) = L(θ(t))− N(θ(t))T2 (91)

R̄(θ(t)) = T1R(θ(t))− Γ(θ(t))G (92)

A particular solution of both matrices T1 and T2 is computed as:

[
T1 T2

]
=
[

Inx 0
] [E

C

]†

(93)

The estimation error becomes:

ė(t) = N(θ(t))e(t) + R̄(θ(t))d(t)

and, in order to guarantee robustness, the following H∞ performance criterion is considered:

V̇(e(t)) + e(t)Te(t)− γ2d(t)Td(t) < 0 (94)

with attenuation level γ > 0 and quadratic Lyapunov function V(e(t)) := e(t)T Pe(t), P � 0, such that
the following BMI is obtained:[

He{PT1 A(θ(t)) + PK(θ(t))C}+ I PT1R(θ(t))− PΓ(θ(t))G
∗ −γI

]
≺ 0 (95)

Then, by considering the change of variable Ξ(θ(t)) = PK(θ(t)) and Ω = PΓ(θ(t)), the above
LMI becomes: [

He{PT1 A(θ(t)) + Ξ(θ(t))C}+ I PT1R(θ(t))−Ω(θ(t))G
∗ −γI

]
≺ 0 (96)

4. Safety in Convex Systems

Due to the increased demand of safety and reliability in complex systems, fault diagnosis
techniques have attracted a great amount of attention in the past few decades. Concerning the recent
developments of fault diagnosis for convex systems, hereafter we will review: (i) residual generation
for fault detection; (ii) unknown input observers (UIO)-based fault isolation; (iii) observer-based
fault estimation; and (iv) multiple model adaptive estimators (MMAEs). Fault tolerant control (FTC)
systems aim at maintaining closed-loop stability and desired performances in the face of faults in some
components, for example, actuators or sensors. The majority of the literature has focused the attention
on LTI systems, although one can find ad-hoc approaches developed for nonlinear systems, see for
example, Ref. [145]. It should not be surprising that some recent research has attempted to extend FTC
strategies developed originally for LTI systems to the convex case, in order to enlarge their applicability
to a wider class of nonlinear systems. This research has focused mainly on the following techniques,
which will be reviewed in the following: (i) sliding mode control (SMC); (ii) control reconfiguration;
and (iii) virtual actuators/sensors.
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4.1. Residual Generation for Fault Detection

Fault detection aims at detecting accurately the appearance of a fault and is usually performed
generating residual signals which act as fault indicators [146]. For the following convex system with
unknown disturbances d(t) and faults f (t):

ẋ(t) = A (θ(t)) x(t) + B (θ(t)) u(t) + R (θ(t)) d(t) + F (θ(t)) f (t) (97)

y(t) = Cx(t) + Gd(t) + H f (t) (98)

let us consider a detection filter with the following structure:

ż(t) = N (θ(t)) z(t) + J (θ(t)) u(t) + L (θ(t)) y(t) (99)

x̂(t) = z(t)− Ey(t) (100)

ŷ(t) = Cx̂(t) (101)

where N (θ(t)), J (θ(t)), L (θ(t)) are filter gains to be determined through design. By defining the
estimation error signal e(t) = x(t) − x̂(t), the residual signal r(t) = y(t) − ŷ(t) and the matrix
T = I + EC, if the following constraints hold:

TA (θ(t))− N (θ(t)) T − L (θ(t))C = 0 (102)

TB (θ(t))− J (θ(t)) = 0 (103)

E
[

G H
]
= 0 (104)

then one obtains that the residual has a dynamics described by:

ė(t) = N (θ(t)) e(t) + Bd (θ(t)) d(t) + Bf (θ(t)) f (t) (105)

r(t) = Ce(t) + Dd(t) + H f (t) (106)

with:
Bd (θ(t)) = [TR (θ(t)− L (θ(t)) G− N (θ(t)) EG)]

Bf (θ(t)) = [TF (θ(t)− L (θ(t)) H − N (θ(t)) EH)]

Then, in order to achieve the fault detection goal, one must ensure the asymptotic stability of the error
system while making the signal r(t) as sensitive as possible to faults and as insensitive as possible to
disturbances, which is usually achieved by means of a mix of H∞ and H− index optimization. This
approach was initially proposed for filter design in the full-frequency domain, see for example, Refs. [147,
148]. However, for some practical systems, fault and disturbance frequencies ranges are known
beforehand, which motivated recent research on filter design in a finite-frequency domain [149–151],
using the so-called generalized Kalman-Yakubovich-Popov (GKYP) lemma [152]. Another recent line of
research worth of mentioning is the one that investigates the behavior of the fault detection observer
when unmeasurable scheduling parameters are considered, see for example, Ref. [153].

4.2. Unknown Input Observers-Based Fault Isolation

In the last years, UIOs have shown to be a promising technique for fault detection purposes, due
to their ability to provide the system state estimate even in the presence of unknown inputs, such as
faults and disturbances. The approaches proposed for UIO design can be basically split into two classes:
in the first one, the state estimation is decoupled from the unknown inputs, for example, by means of
some structural conditions [154]. In the second case, joint estimation of the state and unknown inputs
is achieved [155].
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Let us consider the following convex system (for the sake of simplicity, the whole state is assumed
to be measured):

ẋ(t) = A (θ(t)) x(t) + B (θ(t)) u(t) + F (θ(t)) f (t) (107)

y(t) = x(t) (108)

and let R (θ(t)) and H (θ(t)) be some given matrix functions. Let us choose:

T (θ(t)) = I − R (θ(t)) (109)

S1 (θ(t)) = R (θ(t)) A (θ(t))− H (θ(t)) (110)

S2 (θ(t)) = H (θ(t)) T (θ(t)) (111)

then:

ż(t) = H (θ(t)) z(t) + R (θ(t)) B (θ(t)) u(t) +
[
S (θ(t))− Ṫ (θ(t))

]
y(t) (112)

x̂(t) = z(t) + T (θ(t)) y(t) (113)

where Ṫ (θ(t)) is the time derivative of T (θ(t)) and:

S (θ(t)) = S1 (θ(t)) + S2 (θ(t)) (114)

is an unknown input observer for (107)–(108) [156], for which the dynamics of the estimation error
e(t) = x(t)− x̂(t) is given by:

ė(t) = H (θ(t)) e(t) + R (θ(t)) F (θ(t)) f (t) (115)

In fact, taking into account (107)–(108) and (112)–(113), one finds:

ė(t) = [A (θ(t))− S (θ(t))− T (θ(t)) A (θ(t))] x(t)− H (θ(t)) z(t) (116)

+ [I − R (θ(t))− T (θ(t))] B (θ(t)) u(t) + [I − T (θ(t))] F (θ(t)) f (t)

which, using (109)–(111), can be rewritten as follows:

ė(t) = [H (θ(t))− H (θ(t)T (θ(t)))] x(t)− H (θ(t)) z(t) + R (θ(t)) F (θ(t)) f (t) (117)

Then, it is easy to check that (115) follows from (117) taking into account (113).
The main feature of the estimation error dynamics in (115) is that convergence of e(t) to zero

when f (t) = 0 can be ensured by a proper choice of the matrix H (θ(t)) (for example, as a diagonal
matrix with strictly negative parameter-varying elements on the main diagonal). Moreover, the matrix
R (θ(t)) can be used to constrain the range of the matrix R (θ(t)) F (θ(t)), in such a way that different
directions of e(t) can be assigned to different faults, such that not only fault detection but also fault
isolation can be achieved.

In the last years, one can recognize a trend in research that goes towards robustification of this
technique, which was started by Ref. [157]. For instance, a few recent works have merged UIOs with
interval observers [158–160], in such a way that instead of a single trajectory for the estimation error,
lower and upper bounds which are compatible with the uncertainty are computed. On the other hand,
other works have considered the case in which the scheduling variables are measured inexactly, see for
example, Refs. [128,161,162]. Further improvements have been provided by Ref. [163], who have not
restricted the parameter dependency of the UIO to mimic the one of the system, so that the decoupling
conditions can be relaxed and have also considered the case in which the output equation of the convex
system is not restricted to be parameter-independent.
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4.3. Observer-Based Fault Estimation

As the name itself suggests, in observer-based fault estimation techniques, an observer is used
to estimate the fault as though as if it were another (unmeasurable) state of the system. In order to
exemplify the main idea behind these techniques, let us consider the following convex system:

ẋ(t) = A (θ(t)) x(t) + B (θ(t)) u(t) + F (θ(t)) f (t) (118)

y(t) = Cx(t) (119)

and let us assume that the dynamics of f (t) is described by:

ḟ (t) = A f f (t) (120)

with known matrix A f (this assumption can be relaxed using, for example, an interval formulation).

Then, it is possible to consider an augmented state x̄(t) =
[
x(t)T , f (t)T]T such that the resulting

augmented system is described by:

˙̄x(t) = Ā (θ(t)) x̄(t) + B̄ (θ(t)) u(t) (121)

y(t) = C̄x(t) (122)

with:

Ā (θ(t)) =

[
A (θ(t)) F (θ(t))

0 A f

]
B̄ (θ(t)) =

[
B (θ(t))

0

]
C̄ =

[
C 0

]
Hence, a state observer designed to provide an estimate ˆ̄x(t) of x̄(t) would provide an estimate f̄ (t)
of f (t).

Among recent works developing further this concept, an adaptive polytopic observer which
could estimated time-varying actuator faults was presented in Ref. [164] for convex descriptor systems,
differing from most of other papers which assume generally that the actuator faults are constant.
Sliding mode observers have been investigated by Refs. [165,166], which have considered the case of
erroneous scheduling parameters. The case in which the fault’s frequency content is not distributed
within the whole frequency domain but in a finite interval of frequencies was addressed by Ref. [167]
based on the GKYP lemma. An improvement of the design conditions has been brought by Ref. [168],
which have developed a robust fault estimator via homogeneous polynomially parameter-dependent
Lyapunov functions. It is worth highlighting that, although the majority of the results found in the
literature consider the case of additive faults, some recent work has proposed a switched observer
formulation to estimate actuator multiplicative faults in discrete-time convex systems [135]. Successful
applications of observer-based fault estimation, either using high-fidelity simulations or through
experimental validation, can be found in the areas of aviation [165,166], bioreactors [12], distillation
columns [169], automotive suspension systems [170] and renewable microgrids [171,172].

4.4. Multiple Model Adaptive Estimators

The main idea behind MMAEs is to choose a set of models that represent the possible system
behavior patterns and to obtain the state estimate as a combination of the estimates obtained from
local state observers which run in parallel, each one based on the individual models that match these
patterns [173,174]. The above mentioned combination is achieved as a weighted sum, where the
weights represent the likelihood that the corresponding model is indeed true. Under certain conditions,
the weight associated with the correct model converges to 1, while the other weights converge to 0,
which allows an adaptive identification of the correct model [175]. This approach has been developed
for discrete-time systems and it is exemplified hereafter.
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Following Ref. [176], let us consider the discrete-time convex system:

x(k + 1) = A (ζ(k), θ(k)) x(k) + B (ζ(k), θ(k)) u(k) (123)

y(k) = C (ζ(k), θ(k)) x(k) (124)

where using standard notation, k ∈ Z denotes a sample. Moreover, ζ(k) denotes an uncertain
parameter, for which a finite set of candidate parameter values {ζ1, ζ2, . . . , ζN} is considered.

For the system (123)–(124), state estimation is achieved by means of the following convex
MMAE [176]:

x̂(k) =
h

∑
i=1

pi(k)x̂(k|ζi) (125)

ŷ(k) =
h

∑
i=1

pi(k)ŷ(k|ζi) (126)

ζ̂(k) = ζi∗(k), i∗(k) = arg max
i∈{1,...,h}

pi(k) (127)

where x̂(k), ŷ(k) and ζ̂(k) denote the estimates of the state x(k), the output y(k) and the unknown
parameter vector ζ, respectively and pi(k) are dynamic weights, which can be interpreted as a
time-varying indicator of how likely it is that ζ = ζi. In (125)–(126), each x̂(k|ζi), ŷ(k|ζi) correspond to
local estimates, obtained under the assumption that ζ = ζi.

The dynamic weights pi(k) appearing in (125)–(127) can be generated as follows:

pi(k + 1) =
pi(k)βi(k)e−ωi(k)

N
∑

j=1
pj(k)β j(k)e

−ωj(k)
(128)

where βi(k) is a positive weighting matrix function and ωi(k) is the error measuring function, which
describes how different is each local output estimate ŷ(k|ζi) from the observed output y(k).

The above described convex MMAE, for which a conceptual scheme is provided in Figure 7,
has some relevant properties. First of all, if pi(0) > 0 ∀i ∈ {1, . . . , h}, it can be proven that all
the weights pi(k) generated by (128) are non-negative, uniformly bounded and contained in [0, 1],
with ∑h

i=1 pi(k) = 1, ∀k > 0. Moreover, it can be demonstrated that under some conditions the
parameter estimate ζ̂(k) will converge to a value ζ∗i with p∗i (k)→ 1 as k → ∞, which corresponds to
the local estimate that exhibits the smallest error measuring function.

These properties have been exploited for fault identification purposes by Ref. [177], where it was
shown that a convex MMAE could be used to achieve icing diagnosis in unmanned aerial vehicles
(UAVs) with the relevant feature that information about the icing location could be obtained. In this
case, the idea is to assign different faulty models to different parameters ζi, in such a way that the
dynamic weights would suggest which model is the one that fits data coming from the sensors the
best. A similar idea was employed in Ref. [178], where a bank of observers, each one corresponding to
a system description taking into account the presence of a particular fault, was used to address the
problem of fault detection and isolation in near-space vehicles (NSVs) with actuator faults.
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Figure 7. Multiple model adaptive estimator (MMAE) conceptual scheme.

4.5. Sliding Mode Fault Tolerant Control

The robustness of sliding mode control (SMC) against matched uncertainties makes it an
interesting choice for FTC [179], although its direct application is impeded by the loss of regularity of
the sliding mode when complete losses of actuators are considered. In fact, the first applications of
SMC to convex systems were in a fault-free context [180]. The above mentioned problem was solved
for overactuated systems by Ref. [181] by means of control allocation (CA), which provides an effective
mechanism for distributing a virtual control signal among the available actuators.

More specifically, a convex plant subject to actuator faults represented by a diagonal semipositive
definite matrix W(t) with diagonal entries that represent the effectiveness level of actuators was
considered in Ref. [181], as follows:

ẋ(t) = A (θ(t)) x(t) + Bf E (θ(t))W(t)u(t) (129)

where E(θ) is invertible for all θ ∈ Θ and Bf is factored as Bf = [B1, B2]
T with B2BT

2 = Il , l < nu

and ‖B2‖ > ‖B1‖, so that B2 represents the dominant contribution of the distribution of the control
action within the channels of the system.

For the system (129), the control law is chosen as (see Figure 8 for an illustrative scheme):

u(t) = − (E (θ(t)))−1 BT
2

(
B2E (θ(t)) Ŵ(t) (E (θ(t)))−1 BT

2

)−1
(νl(t) + νn(t)) (130)

where Ŵ(t) is an estimate of W(t), νl(t) is the linear component of the virtual control, chosen to be a
standard state-feedback νl(t) = −Fx(t) and νn(t) is the nonlinear discontinuous part, which induces
sliding and provides robustness:

νn(t) = −κ(t)
σ(t)
‖σ(t)‖ for σ(t) 
= 0 (131)

where κ(t) is an adaptive modulation function given by:

κ(t) = ‖F‖ ‖x(t)‖ κ̄(t) + η (132)
˙̄κ(t) = −βκ̄(t) + γε0 ‖F‖ ‖x(t)‖ ‖σ(t)‖ (133)
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with β, γ, ε0, η positive scalars and σ defines the sliding surface σ(t) = 0:

σ(t) = B2

(
BT

f Bf

)−1
BT

f

(
x(t)− x(0)−

∫ t

0

(
A (θ(τ))−

[
B1BT

2
Il

]
F

)
x(τ)dτ

)
(134)

Finally, Ref. [145] shows that if F is designed such that the fault-free closed-loop system is quadratically
stable, then it is possible to prove that for any faults/failures inside the set:

Wε = {(w1, . . . , wnu) ∈ [0, 1]× . . .× [0, 1] : H(θ)T H(θ) > εI} (135)

with ε small scalar which satisfies 0 < ε � 1 and H(θ) = B2E(θ)W(t) (E(θ))−1 BT
2 , the sliding motion

will be stable if:

γ0γ1

(
1 +

c√
ε

)
< 1 (136)

where γ0 is the L2 gain of G̃(s) = F (sI − A(θ) + BνF)−1 [In−l , 0]T , γ1 = |B1| (which, by assumption
is small) and c represents the worst-case condition number (over Θ) of E(θ).

The design of the state-feedback controller in Ref. [181] was based on the assumption that all the
plant states are available. This assumption was later relaxed by Ref. [182], where an unknown input
observer (UIO) was used to estimate the unavailable plant states. Further research has led to develop
some conditions based on the Lyapunov-Krasovskii functional approach that do not only guarantee
the passivity and asymptotical stability of the closed-loop system but also cover the issue of actuator
saturation and the existence of time-varying delays [183].

Actuators Plant

FDI

Baseline
Controller F

Sliding mode
control

Control 
Allocation

Figure 8. Sliding mode fault tolerant control (FTC) scheme.

4.6. Fault Tolerant Control Based on Controller Reconfiguration

On the other hand, as the name itself suggests, in controller reconfiguration, some modification of
the control law is performed in order to compensate for the fault effect and make the faulty system
behave as close as possible to the nominal system. The reconfiguration can be performed either by
considering the fault estimation f̂ (t) as an additional scheduling variable θ f (t), as in Refs. [26,184,185]
or by introducing a component in the control law, which is responsible to achieve fault tolerance,
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as proposed by Refs. [186–189]. In the first case, if we restrict our attention to a state-feedback control
law (for the sake of simplicity), then it would have the following structure:

u(t) = K
(

θ(t), θ f (t)
)

x(t) (137)

with the advantage that fault tolerance would be achieved employing exactly the same LMI-based
techniques employed for standard control design. On the other hand, in the second case, the control
law is obtained as follows (see Figure 9):

u(t) = un(t) + u f (t) (138)

where un(t) is the nominal state-feedback controller in fault-free condition and u f (t) is used to
accommodate the faults. The advantage of this approach lies in that it eases the integrated design of
fault estimator and fault tolerant controller, as discussed deeply in Ref. [188]. In order to illustrate
this fact, let us consider the following convex system, which is a simplification of the class of systems
considered in Ref. [188] by neglecting disturbances and parametric uncertainties in the state matrix:

ẋ(t) = A (θ(t)) x(t) + B (θ(t)) u(t) + F (θ(t)) fa(t) (139)

y(t) = Cx(t) + Fs fs(t) (140)

where fa(t) and fs(t) denote actuator and sensor faults, respectively. By augmenting the state as
x̄(t) = [x(t), fa(t), fs(t)]

T , the system (139)–(140) becomes:

˙̄x(t) = Ā (θ(t)) x̄(t) + B (θ(t)) u(t) (141)

y(t) = C̄x̄(t) (142)

for which an observer can be proposed, as follows:

ż(t) = M (θ(t)) z(t) + J (θ(t)) u(t) + L (θ(t)) y(t) (143)

x̂(t) = z(t) + Hy(t) (144)

where z(t) and x̂(t) are the observer internal state and the estimate of x̄(t), respectively. Under the
assumption that:

L (θ(t)) = L1 (θ(t)) + L2 (θ(t)) (145)

L2 (θ(t)) = (ΞĀ (θ(t))− L1 (θ(t)) C̄) H (146)

M (θ(t)) = ΞĀ (θ(t))− L1 (θ(t)) C̄ (147)

J (θ(t)) = ΞB̄ (θ(t)) (148)

with Ξ = I − HC̄, the dynamics of the estimation error e(t) = x(t)− x̂(t) is described by:

ė(t) = M (θ(t)) e(t) = [ΞĀ (θ(t)− L1 (θ(t)) C̄)] e(t) (149)

If the control law is chosen as:

u(t) = K (θ(t)) x̂(t) =
[

Kx (θ(t)) K f (θ(t))
]

x̂(t) (150)

where Kx (θ(t)) and K f (θ(t)) are the state-feedback and actuator fault compensation gains respectively,

then if K f (θ(t)) is chosen as K f (θ(t)) = −B (θ(t))† F (θ(t)) (under the assumption that the actuator
fault fa(t) is in the range space of the control input), one obtains:
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ẋ(t) = [A (θ(t)) + B (θ(t))Kx (θ(t))] x(t) + E (θ(t)) e(t) (151)

with:
E (θ(t)) =

[
−B (θ(t))Kx (θ(t)) F (θ(t)) 0

]
(152)

On the other hand, the sensor fault can be compensated as:

yc(t) = y(t)− Fs f̂s(t) (153)

where yc(t) is the compensated system output and f̂s(t) is the sensor fault estimate. Since (149) and
(151) describe an autonomous convex system, the integrated FE/FTC design can be formulated as an
LMI-based stabilization problem (H∞ optimization if there are uncertainties and/or disturbances).

Actuators Plant

Observer
Fault

compensator

Nominal 
controller

Sensors

Figure 9. Controller reconfiguration FTC scheme.

4.7. Fault-Hiding via Virtual Actuators and Virtual Sensors

Contrarily to the previously described approach, the fault-hiding paradigm aims at reconfiguring
the faulty plant instead of the controller/observer when a fault occurs [88]. The reconfiguration block
hides the fault from the controller/observer point of view, such that it will see the same plant as
before the fault and thus can be kept without modifying or retuning it (see Figure 10). The advantage
of doing so is that fault tolerance can be added to an already existing control scheme by means of
a plug-and-play philosophy. In case of actuator faults, the reconfiguration block is named virtual
actuator [190], whereas it is named virtual sensor in the case of sensor faults [191]. Although virtual
sensors and virtual actuators were initially considered separately, an overall scheme that employs both
of them in order to tolerate simultaneous actuator and sensor faults was later developed [192,193].
Some recent work has also studied issues related to the existence of input constraints (saturations) and
fault isolation delays [194].

Let us consider the following convex system:

ẋ(t) = A (θ(t)) x(t) + B (θ(t))W(t) (u(t) + fa(t)) (154)

y(t) = V(t)Cx(t) + fs(t) (155)

where, consistently with the previously described approaches, W(t) and V(t) denote losses of
effectiveness in the actuators and sensors, respectively, whereas fa(t) and fs(t) denote additive
actuator/sensor faults.
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Figure 10. FTC using virtual sensors and virtual actuators.

The structure of the convex virtual actuator depends on the following rank condition (Ŵ denotes
an estimation of W) [192]:

rank
(

B
(
θ(t)Ŵ(t)

))
= rank (B (θ(t))) ∀θ ∈ Θ (156)

which describes whether fault tolerance can be achieved through a simple redistribution of the control
inputs. In the first case, the reconfiguration structure is as follows:

u(t) = Nva (θ(t)) uc(t)− f̂a(t) (157)

where f̂a(t) is an estimation of fa(t) and Nva (θ(t)) is given by:

Nva (θ(t)) =
[
B (θ(t)) Ŵ(t)

]† B (θ(t)) (158)

In case (156) does not hold, the virtual actuator becomes a dynamical system with state equation:

ẋva(t) = [A (θ(t)) + B∗ (θ(t)) Mva (θ(t))] xva(t) + [B (θ(t)− B∗ (θ(t)))] uc(t) (159)

and output equation (reconfiguration structure):

u(t) = Nva (θ(t))
[
uc(t)−Mva (θ(t)) xva(t)− f̂a(t)

]
(160)

where xva(t) is the virtual actuator state, Mva (θ(t)) denotes the virtual actuator gain and the matrix
B∗ (θ(t)) is obtained as:

B∗ (θ(t)) = B (θ(t)) Ŵ(t)Nva (θ(t)) (161)

Similarly, the structure of the virtual sensor depends on the following rank condition (V̂ is the
estimation of V) [192]:

rank
(
V̂(t)C

)
= rank(C) (162)

so that if it holds, then the virtual sensor is a static block, whereas if the above condition does not hold,
then it is a dynamical system with internal state xvs(t) and dynamics described by the equations:
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ẋvs(t) = [A (θ(t)) + Mvs (θ(t))C∗] xvs(t) + B (θ(t)) uc(t) (163)

−Mvs (θ(t)) Nvs(t)
(

y(t) + V̂(t)Cxva(t)− f̂s(t)
)

yc(t) = Nvs(t)
(

y(t) + V̂(t)Cxva(t)− f̂s(t)
)
+ (C− C∗) xvs(t) (164)

where f̂s(t) denotes an estimation of fs(t), Mvs (θ(t)) is the virtual sensor gain and:

Nvs(t) = C
[
V̂(t)C

]† (165)

C∗ = Nvs(t)V̂(t)C (166)

Then, it is possible to show that if the control loop consists of a state-feedback law with controller
gain K (θ(t)) and a Luenberger observer with gain L (θ(t)), then thanks to the introduction of the
virtual actuator/sensor in the loop, one can find an appropriate similarity transformation of the overall
augmented state such that the dynamics in the new state coordinates x̆ is described by:

˙̆x(t) =

⎡⎢⎢⎢⎣
A(θ) + Mvs(θ)C∗ 0 0 0

� A(θ) + L(θ)C 0 0
� � A(θ) + B(θ)K(θ) 0
� � � A(θ) + B∗(θ)Mva(θ)

⎤⎥⎥⎥⎦ x̆(t) (167)

where � denotes some generic non-zero terms, which is in a block-triangular structure. Then, since
A(θ) + L(θ)C and A(θ) + B(θ)K(θ) are already stable due to the stability of the faultless system,
one can ensure overall stability under fault occurrence by designing the gains Mvs(θ) and Mva(θ)

so that A(θ) + Mvs(θ)C∗ and A(θ) + B∗(θ)Mva(θ) are stable (the reader is referred to Ref. [192] for
further details on the method, along with a discussion about the quadratic stability of block-triangular
convex systems).

Finally, it is worth mentioning that some recent works have combined model predictive control
(MPC) with the convex formulation in order to take into account possible input and state constraints
associated to actuator saturation and other physical limitations [195,196]. The convex MPC framework
has been used to go one step further than FTC, that is, to perform health-aware control on the basis
of the information about the system reliability provided by a prognosis and health management
(PHM) module [197,198]. This type of control strategy increases the overall reliability, anticipates the
apparition of faults and reduces the operational costs.

5. Conclusions

In this paper, we have performed a review of the most applied techniques in control, observation
and safety of convex systems. With this terminology we have wished to unify the concepts of linear
parameter varying and Takagi-Sugeno systems, with the purpose of allowing the reader to taste all the
flavors of techniques offered by the humongous existing literature about these classes of systems. Due
to the huge amount of papers, the review is in no way meant to be exhaustive but it is meant to be a
helpful document to look for any reader who wishes to locate himself/herself in this field and learn
about the main used techniques. We feel that we have done our best to provide a discussion about
the state-of-the-art of the topic. However, in spite of our best efforts, many publications could not be
included and for this reason, we would like to apologize in advance for any omission.

In addition, it is important to mention that this paper is mainly focused on discussing the
advances of polytopic convex systems. However, it is acknowledged that other approaches that lead to
an LPV representation exist, such as grid-based LPV [199], linear fractional transformation (LFT)-based
LPV [200,201], polynomial LPV approaches [202] and tensor model-based transformation [203,204],
among others. Also, the reader should note that, throughout the review, only methods based on
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quadratic Lyapunov functions have been discussed. Nevertheless, less conservative solutions can be
obtained based on non-quadratic Lyapunov functions, for example, the polyquadratic, as proposed
in Refs. [69–71]. In general, all these topics are currently investigated and, therefore, the above
references are recommended to the interested reader.
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Abstract: This paper presents an extensive analysis of the properties of different control horizon
sets in an Extended Prediction Self-Adaptive Control (EPSAC) model predictive control framework.
Analysis is performed on the linear multivariable model of the steam/water loop in large-scale
watercraft/ships. The results indicate that larger control horizon values lead to better loop
performance, at the cost of computational complexity. Hence, it is necessary to find a good trade-off
between the performance of the system and allocated or available computational complexity. In this
original work, this problem is explicitly treated as an optimization task, leading to the optimal control
horizon sets for the steam/water loop example. Based on simulation results, it is concluded that
specific tuning of control horizons outperforms the case when only a single valued control horizon is
used for all the loops.

Keywords: model predictive control; control horizon; steam power plant; steam/water loop;
multi-input and multi-output system; loop design

1. Introduction

The steam/water loop is a water supply process in a steam power plant with highly interconnected
equipment. Good steam/water loop performance is a prerequisite for the steam power plant to operate
properly [1]. However, due to the complicated interactions between the dynamic variables and the
harsh working environment of the watercraft, there are difficulties in obtaining satisfying performance
for the complex dynamics of such a steam/water loop [2]. The ever-increasing system complexity and
demand for high performance of this sub-system within the broader operation system of the watercraft
also pose challenges to operations. In this context, an effective control method is required to guarantee
safe operation of the steam/water loop.

In order to design an effective controller for the steam/water loop, constraints such as:
input saturations or rate limits have to be taken into consideration. There are several possibilities to
deal with the constraints in the literature [3–6], including also model predictive control (MPC) [7,8],
applied specifically in steam power plants. For example, an economic model predictive control
was developed for the boiler-turbine system [9]. The economic index was utilized directly as a cost
function, and the economic model predictive control realized the economic optimization as well
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Processes 2018, 6, 265

as the dynamic tracking. In order to guarantee the stability of the closed loop system, a Sontage
controller and corresponding region were designed. A stable model predictive tracking controller
(SMPTC) for coordinated control of a large-scale power plant was proposed [10]. By using fuzzy
clustering and a subspace identification method, a Takagi–Sugeno (TS) fuzzy model was established.
Then, through the SMPTC method, the system obtained good set-point tracking performance while
guaranteeing input-to-state stability and the input constraints of the system. A non-linear generalized
predictive controller based on neuro-fuzzy network (NFGPC) is proposed in [11], which consists
of local generalized predictive controllers (GPCs) designed using the local linear models of the
neuro-fuzzy network that models the plant. Liu discussed the performance of coordinated control
on the steam-boiler generation plant using two non-linear model predictive control methods [12].
One of these methods is the input output feedback linearization technique based on a suitably chosen
approximated linear model. The other method is based on neuro-fuzzy networks to represent a
non-linear dynamic process using a set of local models. To improve the learning ability of the MPC
method, Liu proposed a non-linear model predictive controller based on iterative learning control [13].
In practice, the MPC method was also applied to the boiler control system to enable tight dynamical
coordination of selected controlled variables, particularly the coordination of air and fuel flows during
transients [14].

The works introduced above are mainly about the application of model predictive control on the
boiler-turbine system installed on land. However, the steam power plants installed on the large-scale
watercraft or ships have more differences compared to those installed on land. Some of these are:
(i) receiving more disturbances from the ocean waves; (ii) of smaller capacity; (iii) used at multiple
operation points with varying state processes. According to these characteristics, there is a need to
develop more effective control methods for the steam/water loop.

The impact of tuning different prediction horizon sets on the steam/water loop has already been
studied in our previous work, and an optimized prediction horizon set was obtained according to the
specific dynamics of this complex system [15].

However, in the present paper, we summarize our findings upon the effect of tuning different
control horizon sets. In [16], Rossiter analyzed the effect of varying the control horizon, and he
summarized that as control horizon increases, the nominal closed-loop performance improves if the
prediction horizon is large enough. However, for many models, there is not much change beyond a
control horizon equal to 3 samples. For a system with an unstable equilibrium point, the sensitivity of
the trajectory sometimes is very high if the input sequence and the initial state are near the unstable
equilibrium point. In this case, it is necessary to reduce the sensitivity by choosing a shorter horizon
length [17], while ignoring the performance increase with large control horizon length. Cortés proposed
that larger values for the control horizon length will, in general, provide better performance [18].
However, the computational complexity will also increase with the horizon length.

In this paper, a comprehensive analysis was made, studying the effect of different control horizons
in a linear Extended Predictive Self-Adaptive Control (EPSAC) MPC framework [19]. The results were
obtained on the steam/water loop in a large-scale ship. It was found that larger control horizon values
improve the loop performance, at the cost of computational complexity. Consequently, an optimization
scheme was designed by minimizing an optimal performance index consisting of the tracking error and
the computing time for solving the MPC problem. In the end, the best control horizon set was obtained
which provides a good trade-off between the closed-loop performance and allocated or available
computational complexity. According to the simulation results, there are always ripples in the system’s
outputs when applying different control horizon sets, with Nc ≥ 2. Hence, a modified cost function
penalizing both the control effort and the tracking error was imposed in EPSAC, which effectively
removed the ripple.

The rest of the paper is structured as follows: A description of the steam/water loop is given
in Section 2. In Section 3, a brief introduction of the proposed EPSAC strategy with optimized
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control horizon is described. The simulation results and analysis are shown in Section 4. Finally,
the conclusions are given in Section 5.

2. Description of the Steam/Water Loop

In the steam/water loop, there are mainly five loops, as briefly introduced in Figure 1: (i) drum
water level control loop, (ii) deaerator water level control loop, (iii) deaerator pressure control loop,
(iv) condenser water level control loop, and (v) exhaust manifold pressure control loop.
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Figure 1. Scheme of complete steam/water loop investigated in this paper.

There are two main loops, one for steam indicated by red line, and another for water indicated
by the green line. The system works as follows. Firstly, the water from the water tank goes to the
condenser. Secondly, the water will be deoxygenated in the deaerator and be pumped to boiler. Due to
a higher density of feed water, it goes into the mud drum. After being heated in the risers, the feed
water turns into a mixture of steam and water. Thirdly, steam gets separated from the mixture and
heated in the superheater. Finally, the steam with a certain pressure and temperature services the steam
turbine. The used steam will be sent back to exhaust manifold and most of the steam gets condensed
in the condenser, while the remainder services the deaerator for deoxygenation.

The references of these models for each equipment are described as follows. The model of
the boiler comes from [20]; the model of exhaust manifold is approximated as a second-order
model according to [21]; the models of the deaerator and condenser are obtained according to [22].
Through linearization around the operating point, the overall model shown in Equation (1) is obtained.
The input vector u = [u1,u2,u3,u4,u5] contains the positions of the valves that control the flow rates
of feedwater to the drum (u1), exhaust steam from the exhaust manifold (u2), exhaust steam to the
deaerator (u3), water from the deaerator (u4) and water to the condenser (u5), respectively. The output
vector y = [y1,y2,y3,y4,y5] contains the values of the water level in drum (y1), pressure in exhaust
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manifold (y2), water level (y3) and pressure (y4) in the deaerator, and water level of the condenser (y5),
respectively. Table 1 includes the ranges and operating points of the output variables.⎡⎢⎢⎢⎢⎣

y1

y2
...

y5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
G11 G12 · · · G15

G21 G22 · · · G25
...

...
. . .

...
G51 G52 · · · G55

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

u1

u2
...

u5

⎤⎥⎥⎥⎥⎦ (1)

where G11 = 0.0000987
(s+0.1131)(s+0.0085+0.032j)(s+0.0085−0.032j) , G22 = 0.7254

(s+1.2497)(s+0.0223) ,

G23 = −0.5
(s+1.9747)(s+0.0253) , G33 = 0.0132

(s+0.0265+0.0244j)(s+0.0265−0.0244j) ,

G34 = −0.009
(s+0.0997)(s+0.0411) , G41 = −0.0008

(s+0.012+0.126j)(s+0.012−0.126j) , G44 = 0.0005152
(s+0.012+0.038j)(s+0.012−0.038j) ,

G54 = −0.00015
(s+0.0175+0.0179j)(s+0.0175−0.0179j) , G55 = 0.00147

(s+0.025+0.0654j)(s+0.025−0.0654j) , and other transfer
functions G12 = G13 = . . . = G53 = 0.

Table 1. Parameters used in steam/water loop.

Output Variables Operating Points Range Units

Drum water level 1.79 1.39–2.19 m
Exhaust manifold pressure 100.03 87.03–133.8 MPa

Deaerator pressure 30 24.9–43.86 KPa
Deaerator water level 0.7 0.489–0.882 m
Condenser water level 0.5 0.32–0.63 m

The rates and amplitudes of the five inputs are constrained to:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−0.007 ≤ du1
dt ≤ 0.007 0 ≤ u1 ≤ 1

−0.01 ≤ du2
dt ≤ 0.01 0 ≤ u2 ≤ 1

−0.01 ≤ du3
dt ≤ 0.01 0 ≤ u3 ≤ 1

−0.007 ≤ du4
dt ≤ 0.007 0 ≤ u4 ≤ 1

−0.007 ≤ du5
dt ≤ 0.007 0 ≤ u5 ≤ 1

(2)

The inputs units are normalized percentage values of the valve opening (i.e., 0 represents a fully
closed valve, and 1 is completely opened). Additionally, the input rates are measured in percentage
per second.

3. Model Predictive Control with Optimized Control Horizon

3.1. Brief Introduction to Extended Prediction Self-Adaptive Control (EPSAC)

The following is a short summary of EPSAC and more details can be found in [23]. Consider a
linear system described below:

y(t) = x(t) + n(t) (3)

where y(t) indicates the measured output of system; x(t) is the output of model and n(t) is the
model/process disturbance. The output of the model x(t) depends on the past outputs and inputs,
and can be expressed generically as:

x(t) = f [x(t− 1), x(t− 2), . . . , u(t− 1), u(t− 2), . . .] (4)

In EPSAC, the future input consists of two parts:

u(t + k|t) = ubase(t + k|t) + δu(t + k|t) (5)
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where ubase(t + k|t) indicates basic future control scenario and δu(t + k|t) indicates the optimizing
future control actions. Then following results will be obtained by applying Equation (5) as the
control effort.

y(t + k
∣∣t) = ybase(t + k

∣∣t) + yopt(t + k
∣∣t) (6)

where ybase(t + k|t) is the effect of base future control and yopt(t + k
∣∣t) is the effect of optimizing

future control actions δu(t|t) , . . . , δu(t + Nc − 1|t) . The part of yopt(t + k
∣∣t) can be expressed as a

discrete time convolution as follows:

yopt(t + k
∣∣t) = hkδu(t

∣∣t) + hk−1δu(t + 1
∣∣t) + . . . + gk−Nc+1δu(t + Nc − 1

∣∣t) (7)

where h1, . . . hNp are impulse response coefficients; g1, . . . gNp are the step response coefficients; Nc,
Np are control horizon and prediction horizon, respectively. Thus the following formulation can
be obtained:

Y = Y + G·U (8)

with, Y = [y(t + N1
∣∣t) . . . y(t + Np

∣∣t)] T , U = [δu(t|t) . . . δu(t + Nc − 1|t)] T ,
Y = [ybase(t + N1|t) . . . ybase(t + NP|t)] T and

G =

⎡⎢⎢⎢⎣
hN1 hN1−1 . . . gN1−Nc+1

hN1+1 hN1 . . . . . .
. . . . . . . . . . . .
hNP hNP−1 . . . gNP−Nc+1

⎤⎥⎥⎥⎦ (9)

where N1 indicates the time-delay in the system.
The disturbance term n(t) is defined as a filtered white noise signal [19]. When there is no

information concerning the noise, the disturbance model used in Equation (3) can be chosen as an
integrator, to ensure zero steady-state error in the reference tracking experiment:

n(t) =
1

1− q−1 e(t) (10)

where e(t) denotes the white noise; q−1 is the backward shift operator.
In order to apply EPSAC for a MIMO (multiple-input and multiple-output) system, the individual

error of each output is minimized separately. The cost function for the steam/water system with five
sub-loops is as follows:

Ji =
NP

∑
k=N1

[ri(t + k|t)− yi(t + k|t)] 2(i = 1, 2, . . . , 5) (11)

By defining Gik as the influence from kth input to ith output, Equation (11) can be rewritten as:

(Ri − Yi)
T(Ri − Yi) = (Ri − Yi −

5

∑
k=1

GikUk)
T(Ri − Yi −

5

∑
k=1

GikUk) (12)

with Ri denoting the reference for loop i, and Yi denotes the predicted output for loop i.
Taking constraints from inputs and outputs into account, the process to find the minimum cost

function becomes an optimization problem which is called quadratic programming.
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min
Ui

Ji(Ui(= Ui
THiUi + 2fi

TUi + ci subject to AU ≤ b

with

⎧⎪⎪⎨⎪⎪⎩
Hi = GT

ii Giifi = −GT
ii (Ri − Yi −

5
∑

k=1
GikUk)

ci = (Ri − Yi −
5
∑

k=1
GikUk)

T(Ri − Yi −
5
∑

k=1
GikUk)

(13)

where A is a matrix; b is a vector according to the constraints and Ui is the input for sub loop i.
By solving the quadratic problem, the optimal U = [U1 U2 U3 U4 U5] can be obtained.

3.2. Ripple-Free Model Predictive Control (MPC)

Since MPC uses a discrete-time model, it is easy to get ripples in the system output when
controlling a continuous system with periodic control effort during the sampling time. According to
the simulation results of the steam/water loop in large-scale ships, there always exists ripple when
applying a control horizon Nc ≥ 2. To remove the ripple in the control effort, an alternative cost
function which also penalizes the control effort imposed in the EPSAC strategy [15], obtaining:

Ji = Je
i +

λ

1− λ
Ju
i (14)

where λ ∈ [0; 1) is a weighting parameter, and,

Je
i =

Np

∑
k=1

kei (t + k|t) 2, Ju
i =

Nc

∑
k=1

(ui(t + k|t)− ui(t + k− 1|t))2 (15)

are the cumulative sum that penalizes the predicted tracking error ei(t + k|t) over the prediction
horizon, and the cumulative term which corrects the deviations in postulated control effort ui(t + k|t)
over the control horizon, for each loop i, respectively.

In order to minimize the Je
i in Equation (15), the tracking error must converge to zero rapidly.

However, the Ju
i term has a negative impact on the tracking error. By choosing an appropriate value

for λ, a good trade-off between the closed-loop performance and the control effort can be made.

3.3. Optimized Control Horizon

To our knowledge, the longer control horizon values can result in better performance, albeit the
computational complexity will also increase, which makes it more difficult to realize online
optimization. The relationship between performance, computational complexity and control horizon
can be described by Figure 2.

Control Horizon   Nc

In
de

x

Tracking performance

Computational complexity

Figure 2. The relationship between tracking performance, computational complexity and
control horizon.
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According to Figure 2, it is possible to find a good trade-off between the tracking performance and
computational complexity. In this paper, the problem is explicitly treated as an optimization problem,
and the following index is applied to obtain the point of compromise for the five loops [24]:

Ii = Ti + ηiEi (i = 1, 2, . . . , 5)

Ti =
NS
∑

k=1
tis(k) Ei =

NS
∑

k=0
|ri(k)− yi(k)|/ri(k)

(16)

where Ti is the total simulation computation time, with tis the length of time required to perform the
optimization at each sampling time and Ns the number of total simulation samples; Ei is the integrated
absolute normalized tracking error; ηi denotes the weighting factor.

In order to obtain the optimal control horizon Nc for loop i, experiments are required to be
conducted with different control horizons. After minimizing the index Ii, the optimal control horizon
can be obtained. The value of η should be chosen according to the dynamic of the system. For example,
the dynamic of the system is slow in the steam/water loop, hence a large value of η should be chosen
to focus more on the error than the computation time.

4. Simulation Results and Analysis

In this section, the proposed EPSAC method is applied to the steam/water loop. Firstly,
the performance is shown after applying the cost function focus on penalizing the control effort
by tracking several step set points in different loops. Secondly, different control horizon sets are
imposed in the ripple-free EPSAC to verify their effect, and the optimal control horizon set is obtained
by minimizing the index in Equation (16).

4.1. Ripple-Free Validation

According to our previous work, the parameter configuration for the EPSAC method is shown in
Table 2, where the Ts is the sampling time; Np1, Np2, . . . , Np5 are prediction horizons of the five loops,
respectively. (The prediction horizons were selected taking into account the specific transient dynamic
for each loop). The step set points are provided in Table 3. In the experiments, the initial condition was
set at the operating point of the steam/water loop.

Table 2. Parameters applied in Extended Prediction Self-Adaptive Control (EPSAC) controller.

Controllers Nc Ts Np λ N1 Ns

EPSAC
10 5 s

Np1 = 20; Np2 = 15; Np3 = 15;
Np4 = 20; Np5 = 20

0
1 300

Ripple-free EPSAC 0.3

Table 3. Step set points changes in the experiments.

Time (s) 2–300 300–600 600–900 900–1200 1200–1500

Drum Water Level (m) 2 2 2 2 2
Exhaust Manifold Pressure (MPa) 100.03 116 116 116 116

Deaerator Pressure (KPa) 30 30 35 35 35
Deaerator Water Level (m) 0.7 0.7 0.7 0.8 0.8
Condenser Water Level (m) 0.5 0.5 0.5 0.5 0.6

The simulation results are shown in Figure 3, including the system outputs and the corresponding
control efforts. Note that the EPSAC performs better, with the cost function given in Section 3.2 that
also penalizes the control effort variations, thus eliminating the severe ripples on each loop input. Also,
it is noteworthy to mention that the output steady state error from loops 1, 4 and 5 is removed.

When only the tracking error is penalized in the cost function, there are ripples with Nc ≥ 2,
which means that the controller is allowed to give at least two different control values, to ensure
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that the predicted output reaches the imposed reference, within the prediction window. In order to
minimize the cost function, the first value of control effort will be optimized as large as possible under
the constraint of the system. Hence, the inputs of the system are aggressive which results in the ripples.
The amplitude of the ripples is influenced by the control horizon and the sampling time. By choosing
an appropriate λ value in Equation (14), the ripples can be effectively removed. It is worth mentioning
that when the control horizon is Nc = 1, there are no ripples.

In the ship’s steam/water loop, the condenser and the deaerator have smaller capacity when
compared with the boiler. Therefore, as seen in Figure 3, there are large overshoot values at the
condenser water level and the deaerator water level when the setpoint is changing for the drum water
level. The steady errors exhibited in loops 1, 4 and 5 as shown in Figure 3, are caused by the intrinsic
coupling between the respective loops. The input u1 has a large influence on the deaerator water level
y4, which is controlled by u4. However, input u4 also modifies the condenser water level y5. On the
other hand, the inputs for each loop are calculated according to the cost function shown in Equation
(12), where the past sample time input values for the coupling variables are used.
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Figure 3. Responses of the steam/water loop under the EPSAC and ripple-free EPSAC for (a) drum
water level control loop, (b) deaerator water level control loop, (c) deaerator pressure control loop,
(d) condenser water level control loop and (e) exhaust manifold pressure control loop (The figures on
left-hand indicate the outputs, and on the right-hand indicate the inputs).
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4.2. Influence of Different Control Horizon Sets

This section summarizes the results for the five loops with different control horizon values.
The simulation study cases are described as follows:

• Case 1: Nc1, . . . ,Nc5 = 1 sample;
• Case 2: Nc1, . . . ,Nc5 = 2 samples;
• Case 3: Nc1, . . . ,Nc5 = 5 samples;
• Case 4: Nc1, . . . ,Nc5 = 10 samples.

The responses of the steam/water loop with different control horizon values, are shown in Figure 4
(left-hand side), whereas the corresponding control efforts are given in Figure 4 (right-hand side).
From the simulation results, one can remark that increasing the control horizon value in the proposed
ripple-free EPSAC leads to better tracking performance, with a smaller overshoot and settling-time
response, but with a higher control effort.
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Figure 4. Responses of the steam/water loop under the ripple-free EPSAC for different control horizons
for (a) drum water level control loop, (b) deaerator water level control loop, (c) deaerator pressure
control loop, (d) condenser water level control loop and (e) exhaust manifold pressure control loop
(The figures on left-hand indicate the outputs, and on the right-hand indicate the inputs).
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The performance of the proposed ripple-free EPSAC algorithm was also analyzed in terms of the
integrated absolute normalized tracking error (Ei) and computation time (Ti) defined in Section 3.3,
in index (15). The numerical values are listed in Tables 4 and 5 respectively, and their relationship is
graphically depicted in Figure 5 (for different control horizon values).

Table 4. Normalized tracking error with different control horizon sets.

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

Nc = 1 1.342 2.039 2.08 1.933 4.603
Nc = 2 1.294 2.007 2.063 2.04 5.595
Nc = 5 1.242 1.976 2.038 1.999 5.012

Nc = 10 1.215 1.957 2.015 1.919 4.147

Table 5. Computing time in seconds with different control horizon sets.

Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

Nc = 1 3.384 2.687 3.182 2.584 2.79
Nc = 2 4.778 3.217 4.083 4.432 4.297
Nc = 5 6.058 4.456 5.716 5.757 5.822

Nc = 10 5.959 4.393 5.195 5.332 5.455
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Figure 5. Computation time Ti (blue line) and integrated absolute normalized tracking error Ei (red line)
in the five loops i (i = 1,2, . . . ,5) for different control horizon values.

Next, the information from Tables 4 and 5 is combined, and the index (16) is calculated,
with ηi = 0.76, for each loop i (i = 1,2, . . . ,5). Note that this value compromises the computational
complexity (i.e., the required computation time) in favor of a better tracking error. Given the graphical
results plotted in Figure 6 and their significance, the optimal Nc set is selected as Nc1 = 4, Nc2 = 1,
Nc3 = 1, Nc4 = 4, Nc5 = 6 samples, which gives a good trade-off between the two components from
index (15).
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Figure 6. Optimization index for different control horizon values.

5. Conclusions

In this paper, the effect of control horizon is studied for an EPSAC model predictive control
framework, and the results are validated on a complex steam/water loop process example. Since a
larger control horizon improves the performance of the system at the price of a higher computational
complexity and control effort, a trade-off is required. By minimizing an objective function defined as a
combination between the system error and computational time, the best control horizon set of values
is obtained. According to the simulation results, when applying different control horizon sets (Nc ≥ 2)
in the steam/water loop, there are always ripples in the output of the system. Hence, a cost function in
terms of tracking error and deviations in the control effort was imposed in EPSAC. The simulation
results show the effectiveness of the alternative cost function from EPSAC.
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Abstract: In this study, a control strategy is aimed to ensure the settling time of a 2nd order system’s
output value while its input reference value is changed. Here, Feed Forward Artificial Neural Network
(FFANN) nonlinear structure has been chosen as a control algorithm. In order to implement the
intended control strategy, FFANN’s normalization coefficient (K), learning coefficients (η), momentum
coefficients (μ) and the sampling time (Ts) were optimized by Artificial Bee Colony (ABC) but
FFANN’s values of weights were chosen arbitrary on start time of control system. After optimization
phase, the FFANN behaves as an adaptive optimal discrete time non-linear controller that forces
the system output to take the same value with the input reference for a desired settling time (ts).
The success of the optimization algorithm was proved with close loop feedback control simulations on
Matlab’s Simulink platform based on 2nd order transfer functions. Also, the success was proved with
a 2nd order physical system (buck converter) that was structured with power electronics elements on
Simulink platform. Finally, the success of the control process was discussed by observing results.

Keywords: FFANN; control; optimization; ABC; modeling; buck converter; settling time

1. Introduction

Nowadays, optimization of controllers’ parameters is preferred for obtaining a better cost-effective
control strategies. In the last two decades, researchers have developed different types of optimization
algorithms that may be used by scientists in control area. Bee [1], Firefly [2], Bat [3], Virus [4], Genetic [5],
Cuckoo [6], Particle Swarm [7], Gravitation [8] and Biogeography [9] may be given for example.

The mathematical algorithms called controller are used for shaping the output variable of a
physical system according to a desired behavior [10]. These mathematical algorithms are run using
discrete or continuous time hardware [11]. Controller’s parameters are calculated with analysis of
rules sequences developed for related control algorithms [12].

Owing to the fact that the Artificial Intelligence algorithms are versatile, with the same type of
structure they may be used for solving more than one type of problems such as control, prediction,
estimation and modelling [13]. Using the same type of Artificial Neural Network structure, different
researches have solved different type of problems. For example, Erkaymaz et al. estimate the thermal
performance of a solar air collectors and predicted the modules of rupture values of oriented strand
boards [14], Beg et al. proposed a discrete wavelet transform approach to classify power system
transient analysis [15], Zounemat-Kermani et al. developed models to predict one day ahead stream
flow of the Marion Junction station in Cahaba watershed [16] and Ardestani et al. suggested to predict
contact force at the medial knee joint [17].

The most popular type of Artificial Neural Networks (ANN) are illustrated like Feed Forward,
Kohonen, Radial Basis, Dynamic Neural, Multilayer Perceptron, Neural-Fuzzy, Cascading Neural and
Stochastic Neural [13–17].
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There are several studies in the literature that combine heuristic-based optimization algorithms
with ANN based algorithms. In some studies, the optimized ANN algorithm is asked to model a
system [18,19]. In another type of work, the optimized ANN is expected to work as a predictor [20,21].
There are also several studies in the estimation and control field performed by the ANN algorithm
which has been optimized by heuristic algorithms [22–24]. The common point of the study types
mentioned above is the optimization of the weights of the ANN algorithm. In these works, external
parameters of the ANN are not put into optimization. They are fixed in arbitrary way.

In this study, the external parameters that are Kout, η, μ and Ts of the Feed Forward
Artificial Neural Network (FFANN) were optimized using the Artificial Bee Colony (ABC) algorithm.
The weights, which are the internal parameters of the FFANN algorithm, were randomly assigned and
continuously recalculated using the Back-Propagation method in the control process. Thus, the FFANN
algorithm is adapted to adaptive and optimal operation.

There are various swarm-based optimization methods in the literature. Such methods present
extremely superiority in obtaining the global optimum and in handling discontinuous and non-convex
objectives. However, many of these methods are not effective in managing optimization problems of
integer and discrete nature. Such optimization problems can be solved by approximating the discrete and
integer variables by continuous variables. Thus, the problem becomes an ordinary nonlinear programming
one with continuous control parameters and the continuous values are reduced to the closest possible
discrete or integer variable values. In practice, this method generally causes to the solutions that may be far
from the globally optimal solution. ABC algorithm is a search method, which is inspired by the foraging
behavior of honey bee swarming, and target discrete optimization problems [25].

2. The Feed Forward Artificial Neural Network (FFANN) Model

Block diagram belongs to FFANN that was used in this study is given in Figure 1.
Here, the FFANN controller has 3 layers called input, hidden and output. Each layer quantity is 1.

Figure 1. The Feed Forward Artificial Neural Network (FFANN) ontroller block diagram chosen for
this study.

Variables in Figure 1 are described as,
Sh

1, Sh
2, . . . , Sh

5 : Addition centers of hidden (h) layer
wh

11, wh
12, . . . , wh

15: Weights between FFANN input and hidden layer addition centers
wh

21, wh
22, . . . , wh

25: Weights, between bias input and hidden layer addition centers, belong to input layer
R(k): FFANN input
U(k): FFANN output
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Sy
1: Addition center of FFANN output layer

wy
11, wy

21, . . . , wy
51: Weights between output of hidden layer and output layer addition center

of FFANN
wy

61: Weight between bias input of output layer and addition center of output layer
f (x): Activation function
In the literature, there is not any rule for numbering of hidden layers and for numbering of hidden

layer’s neurons [26]. On one hand, if number of hidden layers or neurons is chosen more than needed,
the trading volume would be increased unnecessarily while optimizing the weights; on the other hand,
if they were chosen less than needed, probability of reaching the level of acceptable minimum error
would be decreased.

In this study, the control structure shown in Figure 2 was constructed. FFANN hidden layers and
neurons count were determined by experimental observation. To this end, FFANN was optimized
by ABC by selecting the hidden layer and the number of neurons high. Then, the optimization
process was repeated by selecting the hidden layer and the number of neurons low. Fault-based cost
function value was observed by running the control system after optimization process, Equation (11).
The results of the experiment showed that the FFANN-based control process involved a high number
of hidden layers and neurons, and the cost value of the FFANN-based control process with a low
amount of hidden layer and neuron was similar, Figure 8. Considering the cost function values of the
experimental processes, the numbers of hidden layers were chosen as 1 and the numbers of neurons
belonging to the hidden layer were chosen as 5, Figure 1.

Another important variable is the activation function. The function type has also effects on weight
optimization [27]. The FFANN controller in the closed loop negative feedback control system generates
the control signal, u(k), based on error signal, e(k), Figure 2. The error during the control process may
be greater, lower or equal to zero. Therefore, the activation function with limit values [−1, +1] of
tangent sigmoid is chosen in the FFANN structure, Equation (1).

f (x) =
ex − e−x

ex + e−x (1)

3. The Control System

Block diagram of close loop negative feedback control system based on FFANN controller is
shown on Figure 2. Here, the controller is a discrete time algorithm but the system that is under control
has continuous time structure.

ZOH
as b

cs ds e
+

+ +

Figure 2. FFANN-based close loop control structure for controlling a 2nd order system.

For this study, a Digital to Analog Converter (DAC) was chosen, with a 1st order holder transfer
function, as seen Equation (2).

1− esT

s
(2)
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Since operation range of a FFANN is between [−1, +1] [28], input signals have to be involved into
FFANN algorithm only after multiply by normalization coefficient (Kin). FFANN’s output signal is
turned back using de-normalization coefficient (Kout) as shown in Figure 2.

FFANN algorithm is a two-step mathematical algorithm. In the first step, optimization of FFANN
weights is done. In literature, this step is named as “learning process”. In this study, “Steepest Descent”
method has been used for weight optimization. This optimization method is simple structured and
fast [28]. Renewal of weights based on this method is given in Equation (3) and Equations (3) and (4).

E(k) =
1
2
(R(k)−Y(k))2 (3)

w(k + 1) = w(k)− η
∂E(k)

∂w
+ μ[w(k)− w(k− 1)] (4)

Here, η is learning coefficient and is chosen randomly in the range of (0, 1]. Another coefficient,
μ, is momentum coefficient. Momentum coefficient does not only ensure to pass the local gradients
but also helps to decrease the proportion of the error. The network may have an oscillation without
momentum. Momentum coefficient usage prevents the network from oscillation during learning
process, [28]. In literature momentum coefficient is chosen randomly between (0, 1].

At the second step of FFANN, output calculation is realized for sampling moment (Ts × k, k = 0, 1,
2 . . . ) as shown in Equations (5)–(7).

Sh
j =

5

∑
i=1

(
R(k)wh

ji

)
+wh

2j, j = 1, 2, . . . , 5 (5)

Sy
1 =

5

∑
i=1

(
f
(

Sh
i

)
wy

i1

)
+wy

61 (6)

U = f
(

Sy
1

)
(7)

4. Artificial Bee Colony (ABC) Algorithm

A bee transforms itself into a scout bee in order to find new sources when the food source is
exhausted. Food source represents cost function in ABC algorithm. Therefore, the lowest cost function
value represents the richest food source [29].

Food sources are created randomly in the first step of the algorithm. The bees that go directly to source
of food are known as worker bees. Onlooker bees live in colony that they are directed to food sources
based on the signs of worker bees. Onlooker bees go to food sources. They chose and store food like
worker bees and return to the colony, Figure 3. Worker bees who consume food resources within a certain
number of trials turn into scout bees to search for new food sources. When scout bees reach a random food
source, process of food storage restart. These steps, continue until end criterion is satisfied [29].

“limits” and “popsize” is two fundamental variables in ABC algorithm. “popsize” is number of
individuals in algorithm. The “limit” is number of trials for worker bees to leave food source. If it is not
possible to develop as much as the limit value for a solution that represents a resource it is abandoned [29].

 

Figure 3. Bees in the hive.
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The bee that abandoned food source becomes a scout bee. In the ABC algorithm, the number of
onlooker bees, number of worker bees and number of food sources equal to each other. Number of
food sources is half of the population [29].

First, food sources are created randomly for starting to run ABC algorithm, as seen in Equation (8).

xi,j = xmin
j + rand(0, 1)

(
xmax

j − xmin
j

)
(8)

The new solution that is found by worker bees is compared with the old one. If the new solution
is better, it keeps this solution and deletes the old solution from memory. If the new solution is not
better than before, the previously defined abandonment counter is incremented. Searching food source
by worker bees is shown in Equation (9).

vi,j = xi,j + ϕi,j

(
xi,j − xk,j

)
(9)

After the worker bees have completed their food scan, onlooker bees go to random analysis so
that they can select of food sources for bees, Equation (10).

ρi =
f iti

NS
∑

i=1
f iti

(10)

The ρ value is obtained for each solution. Worker bees compare ρre f that are randomly selected
and used as threshold value with ρi. If the probability of selecting ρi is larger than ρre f onlooker bee is
moved toward this source of food and starts searching for a new solution by rerunning Equation (8).

The variables in Equations (8)–(10) are
NS: Number of food sources
D: Number of parameters that are optimized
xmax, xmin: Limit values of parameters that will be optimized
vi: New food location in relation to xi
xk: Randomly food location that is different from xi
ϕi,j: Random value between −1 to 1
f iti: Normalized cost function
k: Solution in the neighborhood of i
All worker and onlooker bees check the abandonment counter for each solution after completing

of food searching. If counter value reaches to limit value, the worker bee turns into a scout bee and
run Equation (8). The process steps continue until the maximum number of cycles or the lowest value
of the cost function value is reached.

5. Parameter Optimization by ABC

The FFANN weights in the closed-loop control system projected in Figure 2 are optimized during
the control process by running the Back-Propagation algorithm. Before starting the control process,
the parameters of Kout, η, μ and Ts should be optimized. They are optimized by the heuristic ABC
algorithm. In the optimization process, the control system given in Figure 2 is used, too. During the
process, the FFANN weights are randomly assigned for each optimization simulation, as in the
beginning of the control process, Figure 2.

The implementation of the block diagram of the optimization process described in flow diagram
below is given in detail in “Appendix A”. As seen in the block diagram, the FFANN parameters are
randomly assigned before the 1st run is performed. Then, the closed loop control system runs up to
the simulation time period, Figure 5.

The input reference voltage applied to the control system has square waveform, Figure 4.
The corners of the square wave are rounded off using the 1st order transfer function. The square wave
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is defined as the high and low time interval ts of the reference input voltage. In this way, the ABC
algorithm optimizes FFANN parameters for the time interval of the closed-loop control system for the
time period specified by ts.

Errors calculated by running the cost function during the simulation are collected. The total error
obtained after the simulation is transferred to the ABC algorithm. The ABC algorithm calculates the
new Kout, η, μ and Ts parameters by processing the total error within the framework of its mathematical
algorithm. Next, the new parameters are replaced with the old ones for use in the next simulation. Prior to
running the control system with the new parameters, the weights of FFANN are randomly assigned.

The potential solutions performed by the ABC algorithm, as in other heuristic algorithms, tries to
find the closest value to the global solution by moving around instead of finding the most optimal
solution available in the problem space [28]. It was also tried to be eliminated by the simulation
technique in order to keep the algorithm around a certain local minimum. Therefore, FFANN weights
are assigned randomly before running the required simulation for each new cost function account.

Figure 4. Vref voltage used in the optimization process as input of control system in Figure 2.

Discrete time cost function of Integral Squar Error (ISE) was benefited to determining cost belong
to process of control [28]. Mathematical equation belong to discrete ISE is given in Equation (11).

ISE(e) =
tsim/Ts

∑
k=0

e2
k (11)

ABC optimization process “run ABC” belongs to flow chart in Figure 5 is summarized as:

1. Initialize the population of solutions.
2. Evaluate the population.
3. cycle = 1
4. repeat
5. Produce new solution (food-source positions) vi,j in the neighborhood of xi,j for the employed

bees using Equation (9).
6. Apply the greedy selection process between xi and vi.
7. Calculate the probability values of ρi for the solutions xi by means of their fitness values,

Equation (10).
8. Produce the new solutions (new positions) vi for the onlookers from the solutions xi selected

depending on ρi and evaluate them.
9. Apply the greedy selection process for the onlookers between xi and vi.
10. Determine the abandoned solution (source), if exists, and replace it with a new randomly

produced solution xi for the scout, Equation (8).
11. Memorize the best food source position (solution) achieved so far.
12. cycle = cycle + 1.
13. until cycle = Maximum Cycle Number.
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Figure 5. Artificial Bee Colony (ABC) based optimization process of system in Figure 2.
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6. Control Simulations with Transfer Functions

The 2nd order transfer function belongs to a buck converter, Figure 6, can be derived using
circuit theory.

Vout(s) = Vin(s)
(Z3 + Z4)//Z5

(Z1 + Z2) + (Z3 + Z4)//Z5
(12)

Vout(s)
Vin(s)

= T(s) =
(Z3+Z4)Z5
Z3+Z4+Z5

(Z1 + Z2) + (Z3+Z4)Z5
Z3+Z4+Z5

(13)

where,

Z1 = jωL = sL: Impedance of coil
Z2 = RL: Serial equivalent resistance of coil
Z3 = Rc: Serial equivalent resistance of capacitor
Z4 = 1

jωC = 1
sC : Impedance of capacitor

Z5 = Rload: Load resistance
denotes.

If the impedances are changed with S-domain parameters, the new transfer function takes shape
as shown below:

T(s) =
sCRCRLOAD + RLOAD

s2(CLRC + CLRLOAD) + s(L + CRLRC + CRLRLOAD + CRCRLOAD) + (RL + RLOAD)
(14)

If variables of T(s) are replaced with parameter values that are used for T2(s), Table 1, it will be
seen that T(s) output signal values are the same with the buck converter output voltage for the same
input control signal, U(s), Figure 6.

 
Figure 6. Simulation of models with the same input control signal, U(s).

In this study, transfer functions with 3 different time constant (τ) were chosen for control
application experience, Equations (15)–(18).

T1(s) =
(1.25×10−6)s+25

(2.505×10−11)s2+(3.502×10−6)s+25.05
,

roots = (−0.6991 ∓ 9.9755j)× 105 , τ = 14.3× 10−6

⎫⎪⎬⎪⎭ (15)

T2(s) =
(9.4×10−6)s+4

(4.188×10−9)s2+(4.092×10−5)s+4.05 ,

roots = (−0.4885 ∓ 3.0712j)× 104, τ = 204.69× 10−6

⎫⎬⎭ (16)
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T3(s) =
(8.25×10−3)s+50

0.3634s2+2.217s+50.05 ,

roots = ( −3.0500 ∓ 11.3331j), τ = 327.9× 10−3

⎫⎬⎭ (17)

Table 1, indicates the component values of buck converter circuits belong to transfer functions of
T1(s), T2(s) and T3(s).

Table 1. Buck converters’ parameters.

Equation L (μH) Rl (mohm) C (μF) Rc (mohm) Rload (ohm)

6.4 1 50 1 6.6 25
6.5 22 50 47 32.8 4
6.6 2200 50 3300 327.9 50

Chosen 3 systems have been adjusted as to have large difference between τ of each other’s.
The behaviors of systems’ output signals based on unit step input function have been represented on
Figure 7.

On Figure 7, it’s seen that when a unit input signal is applied to transfer functions, overshoot of
output signals is different from each other’s. Here the settling times are different for about 1000 times
with each other’s. Control success for these 3 transfer functions, whose settling time values are very
different from each other will show that the FFANN control logic based on the proposed ABC heuristic
optimization method is applicable to all 2nd order systems.

Timing of ABC algorithm was defined by transfer functions’ time constants, Table 2.

Table 2. Initialization ABC’s timing parameters.

T. Functions Simulation Time Iteration

T1(s) ts1 × 5 100
T2(s) ts2 × 5 100
T3(s) ts3 × 5 100

On Figure 8, ISE(e) decreasing is shown for optimization process with ABC for T1(s) and for
settling time ts1 = 5τ. On Figure 8, it is seen that after 14th iteration the cost function becomes stable
and so it’s found out the optimum parameters’ values according to ABC algorithm.

 
(a) 

Figure 7. Cont.
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(b) 

 
(c) 

Figure 7. Systems’ outputs for unit step input, (a) T1(s), (b) T2(s), (c) T3(s).

 
Figure 8. Decrease of Integral Squar Error (ISE (e)), optimizing FFANN’s output parameters for ts = 5τ
of T1(s).

In this study, ts values have been chosen according to time constant of systems, Tables 3–5.
FFANN’s optimized parameter values by ABC belong to three different transfer functions for 5 different
settling times as shown in Tables 3–5. Parameter values of Kin for normalization had been fixed to
1/450 before optimization process was started. Value 450 is 3 times bigger than maximum input
reference value (R(k)) that will be applied to the input of the control system, Figure 2.

Table 3. Feed Forward Artificial Neural Network (FFANN) parameter optimization for T1(s).

Setling Time n1, n2 μ1, μ2 Kout Tsample

5τ 0.0018 0.038 4725 286 ns
25τ 0.0022 0.052 4455 1.36 μs
250τ 0.0012 0.027 4275 12.584 μs

10,000τ 0.0033 0.041 3825 572.16 μs
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Table 4. FFANN parameter optimization for T2(s).

Setling Time n1, n2 μ1, μ2 Kout Tsample

5τ 0.0011 0.029 4630 4.094 μs
25τ 0.0034 0.024 4316 20.47 μs

250τ 0.0016 0.028 3804 198.7 μs
10,000τ 0.0027 0.033 3710 8.26 ms

Table 5. FFANN parameter optimization for T3(s).

Setling Time n1, n2 μ1, μ2 Kout Tsample

5τ 0.0021 0.027 4722 6.6 ms
25τ 0.0024 0.021 4386 32.8 ms
250τ 0.0019 0.034 3854 319 ms

10,000τ 0.0031 0.028 3635 13.11 s

Control simulations of Figure 2 for T1(s), T2(s) and T3(s) are shown on Figures 9–11. It’s seen that
success of control with optimal FFANN’s parameters (red output line) is much better than those of
with classical chosen FFANN’s parameters (green output line). Here, n1 = n2 = 0.1, μ1 = μ2 = 0.1, Kout
= 1/Kin = 450 and Tsample = τ/10 were chosen as un-optimal FFANN’s parameters.

 

 
Figure 9. Cont.
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Figure 9. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for T1(s).

 

 

 
Figure 10. Cont.
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Figure 10. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for T2(s).

 

 

 

 
Figure 11. Control success of FFANN controller with optimal (red) and classical (green) chosen output
parameters for T3(s).
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The control success of the FFANN based controller assigned with the traditional method depends
on the roots of the system it is going to control and therefore the time constant exists, see Figures 9–11.
The response rate of the controller for some systems is sufficient and the system output is close to
the input reference value as soon as possible. However, the settlement time of this convergence
varies depending on whether the reference step takes up or downward value, Figure 9. The FANN
based controller, whose parameters are assigned in the traditional way, can transform the controlled
system output into a highly oscillating or marginal stable structure, as shown in Figures 10 and 11.
However, the FFANN parameters will be optimized by ABC and the control processes to be performed
will be determined in a stable manner. By running the optimization algorithm over the linking
strategies of the control process, such as settlement time, more functional output signals based on
simpler structured input reference value can be obtained, see Figures 9–11.

7. Control Simulations with Power Electronics Components

In Figure 12, a buck converter circuit based on feedback control system is shown. Here, the buck
converter transfer function is 2nd order as shown in Section 6, Figure 6. So, Figure 12 shows FFANN
based controller for a feedback control system with 2nd order model constructed by hardware on
simulation platform.

Control system given in Figure 12 is similar to system given in Figure 2. The difference is that in
Figure 2, the system that is under control has been given mathematically as transfer function but in
Figure 12, it’s been expressed using power electronic components.

Component values for 3 different bucks are given in Table 1. Optimal output parameter values
of FFANN are shown on Tables 3–5. Control success of the FFANN is shown on Figures 13–15.
Again, n1 = n2 = 0.1, μ1 = μ2 = 0.1, Kout = 1/Kin = 450 and Tsample = τ/10 were chosen as un-optimal
FFANN’s parameters.

Another difference of the control system on Figure 12 from Figure 2 is that control signals are
input to buck converter as Pulse Width Modulation (PWM) signals. Frequency of the PWM signals
was chosen as fpwm = 2/Tsample.

ZOH

Figure 12. Hardware settings for control simulation on Matlab’s Simulink.

Figure 13. Cont.
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Figure 13. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for T1(s).

 

 
Figure 14. Cont.
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Figure 14. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for T2(s).

 

 

 
Figure 15. Cont.
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Figure 15. Control success of FFANN with optimal (red) and classical (green) chosen output parameters
for T3(s).

The control success of the FFANN controller, whose parameters were determined by the
conventional method, was further reduced by the conversion of the output signal to the PWM-based
signal. During the control process based on Pulse Width Modulation (PWM) technique has been
seen oscillations that had not been seen before in the continuous time simulations, Figures 13–15.
The oscillation amplitude is related to the time constant of the controlled system. If FFANN output
parameters are optimized by ABC it will be seen that the control process will be operated in a stable
manner even if the output control signal is PWM structured.

8. Discussion

In this study, parameter optimization of a FFANN based controller was demonstrated. Different ANN
structures should be optimized in their output parameters if they are targeted to control the 2nd order
systems in an optimal and stable manner. Otherwise, high oscillation or marginal stability of the controlled
system’s output may be encountered, as in the case of FFANN based control. The weight of the ANN
control algorithm whose parameters will be optimized can also be included in the optimization process.
Thus, the ANN based controller will achieve the minimum control cost from the moment the control
starts. Another optimization approach can be to change the optimization parameters. That is, the output
parameters optimized in this study will be fixed based on the traditional method and only FFANN weights
will be optimized. This means that during the control process, no Back-Propagation algorithm will be
required and so mathematical operations would be minimized throughout the process.

9. Conclusions

In this study, artificial intelligence algorithm in FFANN structure has been transformed into a
successful controller by using a heuristic algorithm. The ABC heuristic algorithm has been used in
the optimization process of FFANN parameters. The reason for choosing ABC is explained in the
introduction section. It has been proven by simulations that the control success of the FFANN based
controller whose parameters are created by conventional methods is low and may vary even in the
same control process. For a successful control process, FFANN parameters have been shown to require
an optimization based on system parameters to be controlled. The optimization strategy may be
developed in the form of minimum settling time or it may be improved by monitoring a desired
settlement time. In this study, FFANN parameters which are optimized by observing the settlement
time, in order to achieve the reference step input changes, the approximations of the input sizes of the
outputs of the 2nd order systems have been achieved. The FFANN based controller has succeeded to
converge of the system output value for the reference step input changes inside the prescribed time.
The control simulations with transfer function and hardware-based control have proved the accuracy
of the FFANN parameters to be optimized with a heuristic optimization algorithm such as ABC.

Funding: This research received no external funding.

Conflicts of Interest: The author declare no conflict of interest.
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Appendix A

ABC optimization process for the system that is shown on Figure 2 is given below as a Matlab's
function (*.m) file. The optimization process optimizes output parameters of FFANN.

%ABC optimization process for the system shown in Figure 2.

%Problem Definition

CostFunction = @(x) Run_Fig2(x); % first simulate Figure 3 to find out cost function
nVar = 4;% number of decision variables K1 for n1 2, K2 for μ1 2, K3 for Tsmpl, K4 for Kout
VarSize = [1 nVar];% decision variables matrix size
VarMin = 0.001; % decision variables lower bound
VarMax = 10000; %decision variables upper bound, chosen acording to τ

% ABC Settings
MaxIt = 40; % maximum number of iterations
nPop = 40; % population size (colony size)
nOnlooker = nPop; %number of onlooker bees
L = round(0.0025 × nVar × nPop); % abandonment limit parameter (trial limit)
H = 0.025; % acceleration coefficient upper bound
% Initialization
empty_bee.Position = [];
empty_bee.Cost = []; % empty bee structure
Pop = repmat(empty_bee,nPop,1); % ınitialize population array
BestSol.Cost = inf; % initialize best solution ever found
for i = 1:nPop % create initial population, start1

pop(i).Position = unifrnd(VarMin,VarMax,VarSize);
pop(i).Cost = Run_Fig2 (pop(i).Position);

if pop(i).Cost <= BestSol.Cost
BestSol = pop(i);

end
end % create initial population, end1

C = zeros(nPop,1); % abandonment counter
BestCost = zeros(MaxIt,1); % hold best cost values
% ABC Main Loop
for it = 1:MaxIt % abc main loop, start2

for i= 1:nPop % recruited bees, start3

% Choose k randomly, not equal to i
K = [1:i-1 i+1:nPop];
K = K(randi([1 numel(K)]));
% Define Acceleration Coeff.
phi = h × unifrnd(−1,+1,VarSize);

% New Bee Position
newbee.Position = pop(i).Position+
phi. × (pop(i).Position-pop(k).Position);
% Evaluation
newbee.Cost = Run_Fig2(newbee.Position);
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% Comparision
if newbee.Cost <= pop(i).Cost

pop(i) = newbee;
else

C(i) = C(i)+1;
end

end % recruited bees, end3

% Calculate Fitness Values and Selection Probabilities
F = zeros(nPop,1);
MeanCost = mean([pop.Cost]);
for i = 1:nPop % convert cost to fitness

F(i) = exp( −pop(i).Cost/MeanCost );
end
P = F/sum(F); % probability calculation
for m = 1:nOnlooker % onlooker bees, start4

% Select Source Site
i = RouletteWheelSelection(P);
% Choose k randomly, not equal to i
K = [1:i-1 i+1:nPop];
k = K(randi([1 numel(K)]));
% Define Acceleration Coeff.
phi = h × unifrnd(−1,+1,VarSize);
% New Bee Position
newbee.Position=
pop(i).Position+phi. × (pop(i).Position-pop(k).Position);
% Evaluation
newbee.Cost = Run_Fig2 (newbee.Position);

% Comparision
if newbee.Cost <= pop(i).Cost

pop(i) = newbee;
else

C(i) = C(i)+1;
end

end % onlooker bees, end4

for I = 1:nPop % scout bees
if C(i) >= L pop(i).Position = unifrnd(VarMin,VarMax,VarSize);

pop(i).Cost = Run_Fig2 (pop(i).Position);
C(i) = 0;

end
end
for I = 1:nPop % update best solution ever found

if pop(i).Cost <= BestSol.Cost
BestSol = pop(i);

end
end
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% Store Best Cost Ever Found
BestCost(it) = BestSol.Cost;
end % abc main loop, stop2

% Results
figure(1);
xlabel(‘Iteration’);
ylabel(‘Best Cost’);
plot(BestCost);
hold on;
grid on;
semilogy(BestCost, ‘LineWidth’,2);
K1=BestSol.Position(1) % n1 2

K2=BestSol.Position(2) % μ1 2

K3=BestSol.Position(3) % Tsample
K4=BestSol.Position(4) % Kout
Inside the algorithm it is used “Roulette Wheel Selection” function that is described below.
function i = RouletteWheelSelection (P)

r = rand;
C = cumsum(P);
i=find(r <= C,1,‘first’);

end
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Abstract: The modal injection mechanism ensures the exponential convergence of an observer in a
continuous tubular reactor in dependence with the system parameters, the sensor location, and the
observer gains. In this paper, it is shown that by simple considerations in the boundary conditions,
the observer convergence is improved regardless of the presence of perturbations, the sensor locations
acquire a meaningful physical meaning, and by simple numerical manipulations, the perturbations
in the inflow can be numerically estimated.

Keywords: distributed observers; sensor position; perturbation estimation; PDE

1. Introduction

Tubular reactors are of great importance in chemical and biochemical processes, specially those
with non-monotonic kinetics [1], e.g., catalytic reactors with Langmuir–Hinshelwood kinetics [2,3] or
bioreactors with Haldane kinetics [4]. The tubular reactors are continuous systems where the mass
concentration in some inner point depends on the spatial and temporal coordinates (see Figure 1).

Figure 1. Simplified model of a tubular reactor.

In this kind of reactors, it is almost impossible to measure the concentration along the reactor;
it is usually found that only a finite set of points can be measured, and the system states must be
reconstructed from this information. The necessity to measure or estimate the system states has
motivated the design of observers for this distributed parameter system, including absolute stability
results [5], adaptive switching observers [6], Lyapunov-based approaches [7], backstepping designs [8],
sliding modes observers [9], kalman schemes [10,11], interval observers [12], and finally (the main
interest of this work) dissipative approaches [13].

Dissipative observers deal with a Luenberger-type observer; this is, the observer may be
understood as a copy of the original system, plus correction terms to adjust the system response.
The observer dynamic in the infinite–dimensional space is studied using the Garlekin’s method, where
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the orthonormal basis is defined by the eigenfunctions, which in turn may be divided into slow
eigenfunctions and fast eigenfunctions that describe, correspondingly, the slow and fast dynamics of
the system [14–16].

The main idea of the dissipative observers is, through a modal injection mechanism, to move
the slow eigenfunctions sufficiently far into the left-half complex plane to ensure that the potentially
destabilising effects of the non-linear reaction terms are compensated [13,16]. The effect of the fast
eigenfunctions, corresponding to fast dynamics, is assumed stable and disappears rapidly.

In the non-linear dissipative observer [17], three measurements of the concentration are made
in the reactor: In some inner point and in both boundaries. The observer behaviour depends on
the position of the inner measurement point but not explicitly on the boundary measurements [18];
thus, the boundary measurements can be used for other purposes rather than stability—for example,
to provide further information for the sensor allocation or improve the observer performance in the
presence of inflow uncertainties.

In this paper, we propose a simple but meaningful way to select the boundary gains in order to
improve the observer convergence, provide a physical meaning for the sensor position, and allow the
estimation of the input uncertainties in the inflow. The results are shown in a numerical example.

This paper is organised as follows: In Section 2, the previous results and inconvenience of
neglecting the effects of the boundary gains are described; in Section 3, the advantages of a correct
selection of the boundary gains are proposed; in Section 4, the numerical results are shown; and in
Section 5, the conclusions are presented.

2. Problem Formulation

Consider the tubular reactor depicted in Figure 1, where c (x, t) is the mass concentration at the
spatial coordinate x ∈ [0, 1] at time t. For this tubular reactor, the dynamical equations are given as:

∂c(x,t)
∂t = 1

Pec

∂2c(x,t)
∂x2 − ∂c(x,t)

∂x − Dar (c (x, t)) ,
1

Pec

∂c(x,t)
∂x

∣∣∣
x=0

= c (0, t)− cin (t) ,
1

Pec

∂c(x,t)
∂x

∣∣∣
x=1

= 0,

(1)

where Pec is the system Peclet number, r (x, t) is the non-linear reaction rate, Da is a constant reaction
rate, and cin (t) is the inflow mass concentration.

The mass concentration c (x, t) can be measured by sensors located at the positions x = {0, ξ, 1},
for some ξ ∈ (0, 1); this is, the mass concentration is measured in the inflow, some inner point of
the reactor and outflow. To estimate the complete mass concentration in the distributed system, the
Luenberger-type observer may be used [13]:

∂ĉ(x,t)
∂t = 1

Pec

∂2 ĉ(x,t)
∂x2 − ∂ĉ(x,t)

∂x − Dar (ĉ (x, t))
· · · − lξ (x) (ĉ (ξ, t)− c (ξ, t)) ,

1
Pec

∂ĉ(x,t)
∂x

∣∣∣
x=0

= ĉ (0, t)− cin (t)− l0 (ĉ (0, t)− c (0, t)) ,
1

Pec

∂ĉ(x,t)
∂x

∣∣∣
x=1

= −l1 (ĉ (1, t)− c (1, t)) .

(2)

Note that the observer is a copy of the original system (Equation (1)), plus the distributed
correction term lξ (x) and the boundary correction terms {l0, l1}. The observation error

e (x, t) := ĉ (x, t)− c (x, t) , (3)

is the difference between the real and the estimated mass concentration, with a dynamical evolution
given as:
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∂e(x,t)
∂t = 1

Pec

∂2e(x,t)
∂x2 − ∂e(x,t)

∂x − Daρ (x, t)− lξ (x)e (ξ, t)
1

Pec

∂e(x,t)
∂x

∣∣∣
x=0

= (1− l0) e (0, t) ,
1

Pec

∂e(x,t)
∂x

∣∣∣
x=1

= −l1e (1, t) ,

(4)

where the non-linear term ρ (x, t) = r (ĉ (x, t))− r (c (x, t)) is the difference between the reaction rate
in the system and the observer. In Reference [18], the following theorem is described.

Theorem 1. If in the observer (Equation (2)), the boundary correction terms are set to zero, and using the
correction term:

lξ (x) =
N

∑
k=1

lξ,kΦk (x), (5)

where φk (x) are the solutions of the Sturm–Liouville problem:(
1

Pec

∂2

∂x2 −
∂

∂x

)
Φk (x) = λkΦk (x) , (6)

then the weighted error norm:

‖e (x, t)‖Lω
2
=
∫ 1

0
exp−Pecx e2 (x, t)dx =: E (t) , (7)

converges exponentially to zero; this is:

E (t) ≤ E (0) exp−Λ̃t, (8)

for some positive constant Λ̃, if the following conditions are met:

(i) The non-linear term ρ (x, t) satisfies the sector condition:

Sh :=
∫ 1

0
ω (x)

[
e (x, t)
ρ (x, t)

]T [ −susl
1
2 (su + sl)

1
2 (su + sl) −1

] [
e (x, t)
ρ (x, t)

]
dx ≥ 0, (9)

where sl = min ∂r
∂c , and su = max ∂r

∂c are, respectively, the minimal and maximal slope of the reaction rate
with respect to the concentration;

(ii) the sensor location x = ξ does not correspond to any root of the first N eigenfunctions Φk (x), this is,
Φk (ξ) 
= 0;

(iii) noticing that the eigenvalues λk, given as:

λk =
P2

ec + 4ω2
k

4Pec
, (10)

are real, negative, and form a discrete monotonically decreasing series [19], λ1 > λ2 > . . . > λN >

λN+1 > . . ., for some (k− 1)π ≤ ωk ≤ π, see Equation (20). Then, the modal correction dimension N is
chosen such that:

−2λN+1 >
(2Da − [su + sl ])

2

4
− susl + 2Λ, (11)

and finally;
(iv) the maximal eigenvalue of the matrix (AN − LCs), where:
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AN =

⎡⎢⎢⎢⎢⎣
λ1 0 · · · 0
0 λ2 0
...

. . .
...

0 0 · · · λN

⎤⎥⎥⎥⎥⎦ , L =

⎡⎢⎢⎢⎢⎣
lξ,1
lξ,2

...
lξ,N

⎤⎥⎥⎥⎥⎦ , Cs =

⎡⎢⎢⎢⎣
φ1 (ξ)

φ2 (ξ)

· · ·
φN (ξ)

⎤⎥⎥⎥⎦ , (12)

is smaller than λN+1.

Remark 1. The eigenvalues λk are functions of the Peclet number Pec, determining the convergence rate of the
weighted error norm (Equation (7)), and the dimension N of the modal correction mechanism (Equation (11)).
A small Peclet number produces a high diffusion term, whereas a big Peclet number produces a small
diffusion term.

The basic idea of the observer is to accelerate the convergence rate of the slowest N−
eigenfunctions. Noticing that the observer stability proof does not depend on the boundary conditions
(see Appendix A), the pair {l0, l1} is selected to improve the observer performance, without seemingly
any restriction on the pair {l0, l1}. In similar works [16], solely the boundary conditions in the observer
convergence are studied, leading to restrictive conditions.

In this work, as an extension of the previous theorem, we show that the gains {l0, l1} can be
selected to:

(a) Improve the observer convergence;
(b) provide more information about the sensor position;
(c) facilitate tuning the observer parameters;
(d) and allow the estimation of the inflow perturbation.

3. Main Results

The gains {l0, l1} are not required directly in the proof of Theorem 1, but they certainly modify
the eigenvalues Φk (x) used to design the correction term (Equation (5)) and play an important role in
the observation error (see Equations (3) and (16)). In the following corollary, we show how the correct
gains {l0, l1} simplify the observer design and constrain the error behaviour in a suitable way.

Corollary 1. Assume conditions of Theorem 1 are fulfilled, but consider the boundary conditions:

|l0| � 1 and l1 = l0 − 2, (13)

then:

(i) The correction term lξ (x) in Equation (5) simplifies to:

lξ (x) =
√

2expPecx/2
N

∑
k=1

lξ,k sin (kπx) , (14)

(ii) the feasible sensor positions are given by all points in the set:

ξ =
{

y ∈ (0, 1) : y 
= n
k

for k = 1, · · · , N and n ∈ N
}

, (15)

(iii) and the observation error in the boundaries is close to zero or converges rapidly to zero.

The proof of this corollary is given along this section. First recall that the solution for the error
Equation (4) may be decomposed as:
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e (x, t) =
∞

∑
k=1

ek (t)Φk (x) , (16)

where the set {φk (x)}|k∈N defines a basis for the spatial distribution and {ek (t)}|k∈N defines the time
evolution of the system. From Equation (6), it follows that the eigenfunctions {φk (x)}|k∈N are of
the form:

Φk (x) = expPecx/2 (Aksin (ωkx) + Bk cos (ωkx)) . (17)

The eigenfrequencies {ωk}|k∈N and the amplitudes {Ak, Bk}|k∈N are obtained, substituting the
eigenfunctions from Equation (17) in the Sturm–Liouville boundary conditions:

1
Pec

∂φk(x)
∂x

∣∣∣
x=0

= (1− l0) φk (0) ,
1

Pec

∂φk(x)
∂x

∣∣∣
x=1

= −l1φk (1) ,
(18)

as:
(1− 2l0) PecBk − 2ωk Ak = 0, (19)

and:

(tan (ωk))
−1 =

1
(l1 − l0 + 1)

(
1

Pec
ωk +

(1 + 2l1) (2l0 − 1)
4

Pec

ωk

)
. (20)

From Equations (19) and (20), it follows that numerical approximations are required to build
the inyection term (Equation (5)). From Equation (13), for example, l1 − l0 + 1 = −1 and |l0| � 1,
Equation (20) becomes:

(tan (ωk))
−1 ≈ −

(
1

Pec
ωk + |l0|2 Pec

ωk

)
. (21)

The right-hand side is a concave function with upper bound:

−
(

1
Pec

ωk + |l0|2 Pec

ωk

)
≤ −2 |l0| , (22)

and Equation (20) simply becomes:

(tan (ωk))
−1 ≤ −2 |l0| , (23)

and using |l0| � 1, we find:
ωk ≈ kπ for all k ∈ N. (24)

In Figure 2, the left and right-hand sides of Equation (20) are plotted for l0 = 12 and l1 = 10,
where the intersection points are the solutions of the equation, which verifies Equation (24).

Once the eigenfrequencies ωk are fixed, Equation (19) becomes:

Bk =
2kπAk

(1− 2l0) Pec
, (25)

and for |l0| large enough, the first N terms may be neglected, this is:

{Bk}|k=1,··· ,N ≈ 0. (26)
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Figure 2. Numerical approximation for Equation(20).

Therefore, the first N eigenfunctions are:

φk (x) ≈ Ak expPecx/2 sin (kπx) k = {1, · · · , N} . (27)

To satisfy the orthogonal condition depicted in the Appendix A (see Equation (A3)), Ak =
√

2 is
selected for k = {1, · · · , N}, and the first N eigenfunctions become:

φk (x) ≈
√

2 expPecx/2 sin (kπx) for k = {1, · · · , N} , (28)

From where Equation (14) follows. In Figure 3, the first four eigenvalues for l0 = 12 and l1 = 10
are shown. Increasing |l0| will make Equation (28) a better approximation to the real eigenvalues.
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Figure 3. First four eigenvalues φk (x).

From Equation (28), it is immediately obvious that the sensor should avoid any position ξ ∈ (0, 1)
such that:

sin (ξπx) = 0 for k = {1, · · · , N} , (29)

and Equation (15) follows.
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Now, noticing that the slowest N eigenfunctions are approximated by sine functions, the error
decomposition e (x, t) = ∑∞

k=1 ek (t) φk (x) may be written as:

e (x, t) =
N

∑
k=1

ek (t) Ak sin (kπx) +
∞

∑
k=N+1

ek (t) φk (x) . (30)

Therefore, at the boundaries:

e (x, t)|x={0,1} =
∞

∑
k=N+1

ek (t) φk (x) , (31)

the error depends only of fastest modes {φk (x)}|k={N+1,··· } that converges rapidly to zero.

Remark 2. If the values of Bk for k = {1, 2, ..., N} are not negligible, this may occur for small Peclet numbers
or l0 close to 1

2 (see Equation (19)); then, a peaking phenomenon may arise. This is exemplified in the numerical
simulation section.

Remark 3. Equation (13), say l1 = l0 − 2 is an algebraic condition, not the only one, proposed to preserve the
right-hand side of Equation (20) as a concave function, keeping valid the approximation ωk ≈ kπ.

The precise sensor position is something that should be discussed more carefully; however,
noticing that the sensor position ξ should be selected to increase the effect of the correction mechanism,
given by the product lξ (x) e (ξ, t) in Equation (4), the sensor position can be proposed to satisfy
the relation:

ξ =

{
y :

N

∑
j=1

∣∣φj (y)
∣∣ = max

x∈(0,1)

N

∑
j=1

∣∣φj (x)
∣∣} . (32)

4. Numerical Simulation

In this section, a tubular reactor with a non-monotonic Langmuir–Hinshelwood type kinematics
is considered [2,3], where the reaction rate is given by:

r (c (x, t)) =
c (x, t)

(1 + σc (x, t))2 , (33)

where the constant coefficient σ denotes some inhibition parameter. Simulation studies were carried
out, considering a diffusion dominated behaviour corresponding to (Pec, σ, Da) = (6, 3, 4), and an
inflow as the sum of a nominal and a perturbation term:

cin (t) = 0.3︸︷︷︸
nominal

+ 0.1

(
5

∑
m=0

cos (6mπt)

)
︸ ︷︷ ︸

perturbation

. (34)

Figure 4 shows the error surface when no correction mechanism is applied, this is, l0 = l1 = lξ = 0.
The behaviour at x = 0 is due to the inflow perturbations.
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Figure 4. Error surface without boundary feedback.

By setting {l0, l1} = {102, 100}, the error in the boundaries can be brought to values close to
zero rapidly (see Figure 5); even the effect of the inflow perturbations is reduced. Note that without
the modal injection mechanism lξ (x), at t = 0.6 (s), the spatial behaviour of the error resembles the
behaviour of the first and slowest eigenfunction φ1 (x) =

√
2 expPecx/2 sin (πx).
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Figure 5. Error surface with only boundary feedback.

Now, it is straightforward to verify condition (iii) of Theorem 1; this is, the eigenvalues form the
decreasing series:

λ1 = −3.15, λ2 = −8.08, λ3 = −16.30, · · · (35)

and Equation (11) is fulfilled for N = 1:

− 2λN+1 >
(2Da − [su + sl ])

2

4
− susl + 2Λ = 12.41 + 2Λ, (36)

and any Λ ∈ (0, 1.87). It is proposed the modal correction mechanism:

lξ (x) = lξ,1φ1 (x) = lξ,1
√

2 expPecx/2 sin (πx) , (37)
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that will affect the slowest eigenfunction, allowing a better convergence of the error surface to zero.
Using Equation (32) to fix the sensor position to ξ = 0.74, and by setting lξ,1 = 2.87, condition (iv) of
the Theorem 1 is fulfilled:

λ1 − lξ,1φ (ξ) = −30 < λ2. (38)

In Figure 6, the error surface with the the boundary feedback and the correction mechanism is
shown. The effect of the modal injection mechanism is immediate.

Figure 7 shows the error norm E (t) for all different feedback conditions:

(a) No feedback;
(b) only boundary feedback;
(c) only modal correction mechanism;
(d) both boundary and modal correction mechanism.
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Figure 6. Error surface with boundary and the first mode feedback.

Figure 7. Error comparison.
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The combination of a modal injection mechanism with boundary feedback increases the convergence
rate without compromising stability. To improve the observer convergence, more modes can be added
to the modal correction mechanism; for example, consider the modal correction mechanism:

lξ (x) =
3

∑
k=1

lξ ,kΦk (x) =
√

2 expPecx/2
3

∑
k=1

lξ ,k sin (kπx). (39)

It is immediate to verify that setting:

lξ,1 = 12.6, lξ,2 = 6.2, lξ,3 = 0.3, (40)

then:

max

⎧⎪⎨⎪⎩eig

⎛⎜⎝
⎡⎢⎣−3.15 0 0

0 −8.08 0
0 0 −16.30

⎤⎥⎦−
⎡⎢⎣lξ,1

lξ,2
lξ,3

⎤⎥⎦ [φ1 (ξ) φ2 (ξ) φ3 (ξ)
]⎞⎟⎠
⎫⎪⎬⎪⎭ = −20 < λ3, (41)

and the convergence rate of the three slowest modes is increased. In Figure 8, the corresponding error
surface is shown. Comparing Figures 6 and 8, the effect of adding more modes in the modal correction
mechanism is immediate.
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Figure 8. Error surface with boundary and three modal correction mechanism.

Now, using the fact that the error in the boundaries is close to zero, this is:

e (x, t)|x=0 ≈ 0 ⇒ ĉ (0, t) ≈ c (0, t), (42)

simple numeric manipulations will allow the estimation of the inflow perturbation. From the
boundary conditions:

1
Pec

∂c (0, t)
∂x

= c (0, t)− {cin (t) + θper (t)
}

, (43)

and the corresponding discrete approximation:

1
PecΔx

(c (Δx, t)− c (0, t)) = c (0, t)− {cin (t) + θper (t)
}

, (44)
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a non-rigorous estimation of the perturbation is obtained by replacing the actual concentration with
the estimated concentration, this is, c (Δx, t)→ ĉ (Δx, t), and solving for θper as:

θper (t) ≈ 1
PecΔx

((1 + PecΔx) c (0, t)− ĉ (Δx, t))− cin (t) . (45)

The estimation of the inflow perturbation is shown in Figure 9.
Finally, and for completeness, an example is presented of the peaking phenomenon that commonly

occurs when high gains are implemented.
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Figure 9. Perturbation estimation in the concentration input.

Peaking Phenomenon

Consider a tubular reactor with a small Peclet number, for example, (Pec, σ, Da) = (2, 3, 4), and
the boundary gains (l0, l1) = (12, 10). The corresponding error surface is depicted in Figure 10, where
a peak in the spatial boundary appears. Contrary to what is thought, this peak is reduced when the
boundary gains are increased, making this peaking phenomenon something that should be more
carefully analysed, especially when the observer data will be used for feedback control [20].
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Figure 10. Peaking phenomena is the error surface.
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5. Conclusions

In this work, we extend some results of the non-linear dissipative observer to show that correctly
chosen boundary gains allow a simple tuning of the observer and its parameters, improving the
observer convergence, and allowing the estimation of the inflow perturbations. Numerical validation
of the presented algorithm shows the validity of the proposed approach.
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Appendix A

Proof of Theorem 2.1. In this section, a simplified proof is provided. First recall that the error norm
(see Equation (7)) may be equivalently written as:

‖e (x, t)‖Lω
2
= E (t) =

∫ 1

0
ω (x) e2 (x, t) dx, (A1)

where ω (x) = expPecx/2 [21,22]. Combining Equations (16) and (A1), we have:

E (t) =
∞

∑
k=1

∞

∑
j=1

ek (t) ej (t)
∫ 1

0
ω (x) φk (x) φj (x) dx, (A2)

selecting the eigenfuntions {φk (x)}|k∈N in such a way that:

∫ 1

0
ω (x) φk (x) φj (x) dx = δk,j, (A3)

where:

δk,j =

{
0 if k 
= j
1 if k = j

, (A4)

then the error norm can be written as:

E (t) =
∞

∑
k=1

∞

∑
j=1

ek (t) ej (t) δk,j =
∞

∑
k=1

e2
k (t) , (A5)

and deriving the error norm E (t), we obtain:

d
dt E (t) = d

dt

(∫ 1
0 ω (x) e2 (x, t) dx

)
= 2

∫ 1
0 ω (x) e (x, t) ∂e(x,t)

∂t dx, (A6)

and substituting (4) we have:
d
dt

E (t) = DT + DK, (A7)

with:
DT = 2

∫ 1
0 ω (x) e (x, t)

((
1

Pec
∂2

∂x2 − ∂
∂x

)
e (x, t)−lξ (x) e (ξ, t)

)
dx

DK = −2
∫ 1

0 ω (x) e (x, t) Daρ (x, t) dx
. (A8)
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Now, using Equations (16) and (6), we rewrite DT as:

DT = 2
∞
∑

k=1

∞
∑

j=1
λkej (t) ek (t)

∫ 1
0 ω (x)Φk (x)Φj (x)dx

−2
∞
∑

k=1

N
∑

j=1
lξ,je (ξ, t)ek (t)

∫ 1
0 Φj (x)Φk (x) dx,

(A9)

and using the orthogonality condition (Equation (A3)), we have:

DT = 2
∞

∑
k=1

λke2
k (t)− 2e (ξ, t)

N

∑
k=1

lξ,kek (t) : (A10)

since e (ξ, t) = ∑∞
k=1 ek (t) φk (ξ), then:

DT = 2
∞

∑
k=1

λke2
k (t)− 2

∞

∑
k=1

N

∑
j=1

ek (t)Φk (ξ)lξ,jej (t), (A11)

which can be written in the quadratic form:

DT = 2eT (t)

[
, AN − LCs LC f

0 AN+1

]
e (t) (A12)

where:
e (t) =

[
e1 (t) · · · eN (t) eN+1 (t) · · ·

]T
, (A13)

and:

AN =

⎡⎢⎣ λ1 0
. . .

0 λN

⎤⎥⎦ , AN+1 =

⎡⎢⎣ λN+1 0
0 λN+2

. . .

⎤⎥⎦ (A14)

L =

⎡⎢⎣ lξ,1
· · ·
lξ,N

⎤⎥⎦ , Cs =

⎡⎢⎣ Φ1 (ξ)

· · ·
ΦN (ξ)

⎤⎥⎦ , C f =

⎡⎢⎣ ΦN+1 (ξ)

ΦN+2 (ξ)

· · ·

⎤⎥⎦ . (A15)

If φk (ξ) 
= 0 for k = {1, · · · , N}, then the pair {AN , Cs} is observable and there exists a vector L
such that:

λN+1 ≤ max σ (AN − LCs) , (A16)

so DT is bounded by:
DT ≤ λN+1eT (t) e (t) = λN+1E (t) . (A17)

The perturbation term DK is bounded using the sector condition Sh ≥ 0 (see Equation (9)) so:

DK ≤ −2
∫ 1

0
ω (x) e (x, t) Daρ (x, t) dx + Sh, (A18)

or, regrouping terms:

DK ≤ −
∫ 1

0
ω (x)

[
e (x, t)
ρ (c, e)

]T [
susl Da − 1

2 (su + sl)

Da − 1
2 (su + sl) 1

] [
e (x, t)
ρ (c, e)

]
dx. (A19)
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Equation (A7) is then bounded as:

d
dt

E (t) ≤ −
∫ 1

0
ω (x)

[
e (x, t)
ρ (c, e)

]T

P

[
e (x, t)
ρ (c, e)

]
dx, (A20)

where P = PT ∈ R2×2 is given by:

P =

[
susl − 2λN+1 Da − 1

2 (su + sl)

Da − 1
2 (su + sl) 1

]
. (A21)

Now, P is positive definite if for some positive scalar Λ > 0:

susl − 2λN+1 −
(

Da − 1
2
(su + sl)

)2
= Λ, (A22)

or, equivalently:

−2λN+1 =
(2Da − [su + sl ])

2

4
− susl + Λ, (A23)

Therefore:

d
dt

E (t) ≤ −Λ̃
∫ 1

0
ω (x)

[
e (x, t)
ρ (x, e)

]T[
e (x, t)
ρ (x, e)

]
dx Λ̃ = min σ (P) (A24)

d
dt

E (t) ≤ −Λ̃
∫ 1

0
ω (x) e2 (x, t) dx = −Λ̃E (t) , (A25)

and:
E (t) ≤ E (0) exp−Λ̃t . (A26)
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Abstract: The Lithium-ion battery (Li-ion) has become the dominant energy storage solution in many
applications, such as hybrid electric and electric vehicles, due to its higher energy density and longer
life cycle. For these applications, the battery should perform reliably and pose no safety threats.
However, the performance of Li-ion batteries can be affected by abnormal thermal behaviors, defined
as faults. It is essential to develop a reliable thermal management system to accurately predict and
monitor thermal behavior of a Li-ion battery. Using the first-principle models of batteries, this work
presents a stochastic fault detection and diagnosis (FDD) algorithm to identify two particular faults in
Li-ion battery cells, using easily measured quantities such as temperatures. In addition, models used
for FDD are typically derived from the underlying physical phenomena. To make a model tractable
and useful, it is common to make simplifications during the development of the model, which may
consequently introduce a mismatch between models and battery cells. Further, FDD algorithms can
be affected by uncertainty, which may originate from either intrinsic time varying phenomena or
model calibration with noisy data. A two-step FDD algorithm is developed in this work to correct
a model of Li-ion battery cells and to identify faulty operations in a normal operating condition.
An iterative optimization problem is proposed to correct the model by incorporating the errors
between the measured quantities and model predictions, which is followed by an optimization-based
FDD to provide a probabilistic description of the occurrence of possible faults, while taking the
uncertainty into account. The two-step stochastic FDD algorithm is shown to be efficient in terms of
the fault detection rate for both individual and simultaneous faults in Li-ion batteries, as compared
to Monte Carlo (MC) simulations.

Keywords: fault detection and classification; uncertainty analysis; lithium-ion battery; optimization;
thermal management; polynomial chaos expansion

1. Introduction

Lithium-ion (Li-ion) batteries are widely used in many applications, such as cell phones, electric
and hybrid electric vehicles, since they exhibit a higher energy density and have a relatively longer life
compared to other batteries [1]. In these systems, Li-ion batteries must possess a high reliability and
pose no safety threats [2]. However, the thermal behavior can greatly affect the safety, durability, and
performance of Li-ion batteries [3]. For example, fire and explosions caused by thermal runaway were
reported [4]. Thus, reliable battery management systems are essential to mitigate negative effects (e.g.,
thermal runaway) and avoid catastrophic failures [5]. As a key component of the battery management
system, fault detection and diagnosis play an important role in the management of Li-ion batteries [6].

Fault detection and diagnosis (FDD) methods generally can be classified into two major groups,
i.e., first-principle model-based methods and data driven (or empirical) methods [7]. For the former,
models describing the physical mechanisms of the fault dynamics are oftentimes used, while historical

Processes 2019, 7, 38; doi:10.3390/pr7010038 www.mdpi.com/journal/processes99
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data are typically collected for data driven methods to derive empirical models. Each of these
approaches has its own advantage and drawback depending on the specific problems. It is recognized
that first-principle model-based methods exhibit a better extrapolation ability, whereas data-driven
methods are easier to design [8]. This work focuses on the use of the first-principle models for FDD,
since these models provide a fundamental understanding of the thermal physics of batteries [9].

Several first-principle thermal models have been previously developed for Li-ion batteries.
For example, a three-dimensional thermal finite element model was developed to investigate the
cell behavior under abnormal events such as overheating and external short circuits [10]. This model
requires high computational capabilities, and its application is limited to stationary storage [11].
Compared to the three-dimensional models, the one-dimensional model of Li-ion batteries, developed
using the average lumped temperature of the cell, is viable for real-time applications and can enable
online battery management [12]. However, such a model may fail to provide insights into the thermal
(fault) dynamics due to its simplicity [13]. As a trade-off, a two-dimensional thermal model was
developed, which can predict the core and the surface temperature of Li-ion battery cells [3,13]. Since
the two-dimensional model can provide a better understanding of the thermal dynamics of battery
cells, while maintaining the computational complexity, it is used in this work for the design of a
stochastic FDD scheme.

Measurements of temperatures such as surface and core temperatures are often used for FDD
in Li-ion batteries, but there is no direct measurement of the core temperature. To take the core
temperature into account, estimation techniques are often required. In the literature, several estimation
techniques have been developed. For example, an adaptive observer based on the lumped thermal
model [14] and state observer using partial differential algebraic equations [15] were proposed to
estimate the temperature. Compared to these estimation techniques, the real-time monitoring and
diagnosis of faults in batteries are less explored. Although there have been several proposed works
related to diagnostic algorithms for internal faults in Li-ion batteries [3,16,17], it is important to note that
previously reported FDD work mostly investigated sensor or actuator fault detection problems [18–20].

In this work, we propose to estimate the core temperature and use the estimation results to
identify and classify two sets of faults. That is, faults that can introduce dynamic changes in core
temperatures and faults that can affect the surface temperatures. The FDD scheme in this work can
potentially provide more information about the thermal dynamics of batteries and enable an internal
thermal fault detection to improve the performance of the Li-ion battery.

For FDD, the available algorithms compare the observed behavior to the corresponding model
results, estimated from first-principle models [21]. When a fault is detectable, the FDD scheme will
generate fault signatures, which in turn can be referred to an FDD scheme to identify the root cause of
faults using a threshold [22]. However, the main restrictive factor for the first-principle model-based
FDD is the model uncertainty [23]. The accuracy of the fault detection algorithm can be affected by
any uncertainty in the model parameters. Such an uncertainty may result from intrinsic time varying
phenomena or originate from the model calibration with noisy measurements [24]. The uncertainty
can be quantitatively approximated by a calibration with experimental data, which include principles
such as least squares errors or the Delphi method [25,26].

The procedures that firstly quantify the uncertainty and then propagate the uncertainty onto the
FDD scheme are typically omitted in previously reported works. This subsequently may lead to a
loss of information about the effect of uncertainty on FDD performance. Recently, several techniques,
such as the adaptive observer [27,28] and the sliding mode observer [29], were developed for FDD
in the presence of uncertainty. However, most of these methods cannot provide information, such as
the probability that a fault has occurred. In addition, since the faults in the batteries may happen in a
stochastic fashion, the use of fixed thresholds to identify the root cause of faults may not be effective.

There are differences between the actual thermal dynamics of Li-ion batteries and fundamental
models derived from physical phenomena. For example, to make models tractable and useful, it is
common to make simplifications during the model development, which will introduce a mismatch
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between the model and the Li-ion battery system of interest. Thus, the first principle model-based
FDD scheme should be designed to compensate the mismatch. Specifically, a set of fixed model
parameters may not be accurate enough for estimating the core temperature in the presence of a model
mismatch. Consequently, any inaccuracy in the temperature estimation may potentially lead to a low
fault detection rate. To ensure the accuracy of FDD, it is essential to simultaneously calibrate the model
parameters and adjust the FDD scheme. However, this is generally challenging due to the presence of
uncertainty such as the measurement noise and an unknown model mismatch.

In this work, we propose to address these aforementioned limitations by developing an FDD
scheme for Li-ion batteries described by a two-dimensional first-principle thermal dynamic model,
for which both model parameters and faults are of a stochastic nature. Specifically, the faults considered
in this work, such as the thermal runaway, are stochastic perturbations superimposed on step changes
in the specific thermal dynamic parameter and electric current. The objective is to identify the
changes in the mean values of the thermal dynamic parameter and current in the presence of random
perturbations, the measurement noise, and a model mismatch. As compared to other existing thermal
diagnostic techniques, the main feature of the FDD scheme is the efficient quantification of the effect
of stochastic changes in model parameters on fault detection, and the rapid propagation of the
stochasticity onto the estimation of temperatures that are required for FDD.

Note that one possible way to propagate uncertainty in model parameters onto temperature
estimates is the use of Monte Carlo (MC) simulations [30]. However, methods such as MC may be
computationally demanding, since they often require a larger number of simulations in order to
obtain accurate results. It is worth mentioning that although the calibration of an FDD scheme can be
performed offline, the online re-calibration of the model in the presence of a model mismatch with MC
as shown later in current work is computationally prohibitive. Recently, the uncertainty propagation
with generalized Polynomial Chaos (gPC) expansion has been studied in different modelling [31],
optimization [32], and fault detection problems [24]. As compared to MC, the advantage of gPC is that
it can propagate a complex probability distribution of uncertainty in model parameters onto model
predictions rapidly and can analytically approximate the statistical moments of model predictions in
a computationally efficient manner [31]. The improvement in computational time may facilitate its
application in the real-time model adjustment for improved FDD.

The FDD algorithm in this work is specifically targeted to identify and diagnose stochastic thermal
faults consisting of uncertainty around a set of mean values of thermal properties in the presence of a
model mismatch. In summary, the contributions in this work include: (i) The use of an intrusive gPC
model for stochastic FDD of Li-ion batteries by approximating the uncertainty in thermal dynamics
with gPCs and by propagating the uncertainty directly onto temperatures that can be used for FDD;
(ii) the identification and classification of a fault based on the probability information of temperatures
other than a single point estimate or threshold; (iii) the formulation of an optimization to account for a
model mismatch and adjust the thermal dynamic models by incorporating the discrepancy between
model predictions and measurements.

This paper is organized as follows. Section 2 presents the theoretical background and the principal
methodologies in this work, including a two-dimensional thermal dynamic model, the introduction of
generalized polynomial chaos (gPC) expansion, and the formulation of the stochastic fault detection
and diagnosis (FDD) problem. The methodology for FDD and the formulation of an optimization
for model correction to account for the model mismatch is presented in Section 3. The analysis and
discussion of the results are given in Section 4, followed by conclusions in Section 5.

2. Theoretical Backgrounds

2.1. Thermal Model of Lithium-ion Battery

The two-dimensional deterministic thermal dynamic model is used to describe a cylindrical
Li-ion battery cell in this work [3,13]. A schematic diagram of the Li-ion battery cell is shown in

101



Processes 2019, 7, 38

Figure 1. This model can provide information about the heat source of the battery and estimate the
core temperature based on measurements of the surface temperature. The surface temperature Ts and
the core temperature Tc can be defined as:

Cc
.

Tc = I2Re +
Ts − Tc

Rc
(1)

Cs
.

Ts =
Tf − Ts

Ru
− Ts − Tc

Rc
(2)

Re = β0 + β1SOC + β2Tc (3)

where I is the current, Tf represents the surrounding air temperature, Re is the internal (or electrical)
resistance, Rc is the thermal resistance between the surface and core of the battery, Ru denotes the
convection resistance between the surface and the surroundings of the battery, Cc and Cs represent the
heat capacity of the internal battery material and the surface battery material, respectively. The internal
resistance Re is given in Equation (3) which consists of state of charge (SOC), core temperature Tc, and
parameters β0, β1, β2 that can be pre-estimated by an offline estimation scheme [3].

Figure 1. Schematic of thermal model of Li-ion battery cell.

For the Li-ion battery cell model given in Equations (1) and (2), model parameters including Re

are generally assigned with constant values. A set of parameters used in the two-dimensional thermal
dynamic model is given in Table 1 [33].

Table 1. Parameter declaration for the thermal model of Li-ion battery cell.

Model Parameters Cc Cs Re Rc Ru

Units JK−1 JK−1 mΩ KW−1 KW−1

Value 268 18.8 10 2 1.5

It is important to note that the model of the battery and the model parameters may involve
uncertainty. For example, the thermal dynamics of a Li-ion battery cell can change with respect to
time, which may be caused by factors such as the surrounding temperature and the state of charge.
In addition, the estimates of model parameters can be affected by noisy data used for model calibration.
These possible sources of uncertainty can be briefly categorized into three groups as follows.

1. Observational uncertainty: This includes measurement errors in experimental data, such as the
measurements of voltage, current, and surface temperatures.

2. Parametric uncertainty: This refers to uncertainty in parameters, which may originate from the
observational uncertainty or result from lack of information. It may be advantageous to represent
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a model parameter, e.g., Re in Equation (1), as a random variable with a distribution other than a
fixed value.

3. Structural uncertainty: This describes the differences between a model and the actual Li-ion
battery system. For example, models in Equations (1) and (2) may not be an exact representation
of the thermal dynamics of a Li-ion battery cell.

In this current work, we focus on the development of FDD algorithms in the presence of these
uncertainties. Specifically, the conduction resistance Rc in Equations (1) and (2) is considered as an
uncertain parameter and changes in Rc are defined as stochastic faults. The conduction resistance
Rc is often used to incorporate conduction and thermal resistance across materials with compact
and inhomogeneous properties. It is difficult to accurately estimate the exact parameter value of Rc,
since the rolled electrodes consist of the cathode, anode, separator, and current collectors, which may
complicate the parameter estimation and reduce the estimation accuracy [14]. Any variations in Rc,
may significantly affect the performance of the battery. In addition, it is assumed that the current I
in Equation (1) is the second uncertainty in this work, since the internal state of the battery can be
affected by the current [34]. For example, as previously reported [14] current variations may lead to
the fluctuation in temperatures of the battery. Furthermore, the electric current of the battery can be
time-varying in practice and can be corrupted by measurement errors. Thus, the exact value of current
can be an unknown prior.

Since the convection resistance Ru is related to the surrounding coolant flowrate [35], which
is oftentimes tightly controlled to maintain a consistent battery temperature, Ru is assumed to be
a constant rather than a parametric uncertainty. For the internal resistance Re in Equation (1), it
can be affected by various conditions such as the state of charge of battery, temperature, and drive
cycle [14,36,37] leading to the changes in model predictions such as temperature. However, this
thermal parameter in Li-ion battery has been investigated by many researchers and is well formulated
with the state of charge and temperatures as shown in Equation (3) [3,14,38]. For example, it can
be estimated offline with experimental data or determined online with SOC estimation based on an
equivalent circuit model (ECM) [38]. In this work, it is assumed that Re is a constant rather than a
time-varying parameter and it is not considered as a parametric uncertainty for simplicity. However,
the proposed uncertainty propagation and diagnostic scheme can be extended to Ru and Re according
to their intrinsic properties when there is evidence to support a significant variation in Ru and Re.

In this work, sudden changes of temperatures in the Li-ion battery caused by the current I and
resistance Rc will be diagnosed and classified by the proposed method. Additionally, to introduce
structural uncertainty, it is assumed that the exact statistical moments of uncertainties, such as the
actual mean value of Rc is unknown to the modelers, which will be corrected by incorporating the
differences between model predictions and the measurement of temperatures. Further, it should be
noted that only the surface temperature of the battery can be directly measured, thus the estimations
of the core temperatures will be used in the model correction.

2.2. Generalized Polynomial Choas Expansion

The generalized polynomial chaos (gPC) expansion approximates a random variable with an
arbitrary probability density function (PDF) of another random variable (e.g., ξ) with a known prior
distribution. For brevity, suppose that the battery thermal models in Equations (1) and (2) can be
described by a set of ordinary differential equations (ODEs) as:

.
x = f (t, x, u, p) (4)

where the vector x = {xj} (j = 1, 2, . . . , n) represents the core and the surface temperatures, i.e., Tc

and Ts, with initial values x0 at t = 0, u is deterministic parameters, i.e., fixed constant values, while
p is a vector of uncertainties, i.e., I and Rc in this work, which will be approximated with PDFs. To
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evaluate the effect of uncertainty on temperatures, a key step is to approximate each parameter in
p = {pi} (i = 1,2, . . . , np) as a function of a set of the independent random variable ξ = {ξi} as:

pi = pi(ξi) (5)

where ξi denotes the ith independent random variable following a standard PDF [31]. Based on the
definition of gPC expansion, each parametric uncertainty {pi} and the model predictions x can be
defined using the orthogonal polynomial basis functions {φk (ξ)} as:

pi(ξi)=
∞

∑
k=0

p̂i,kφk(ξi) (6)

xj(t, ξ) =
∞

∑
k′=0

x̂j,k′(t)ϕk′(ξ) (7)

where
{

p̂i,k
}

denote the gPC coefficients of the ith parametric uncertainty,
{

x̂j,k′
}

are the gPC
coefficients of the jth model predictions at time instant t, and {ϕk′ (ξ)} are the orthogonal polynomial
basis functions of random variables ξ [31]. When the PDFs of p are a given prior, a set of coefficients{

p̂i,k
}

in Equation (6) can be determined such that pi(ξi) follows a prior known distribution. Otherwise,
optimization techniques can be used to estimate

{
p̂i,k
}

. As compared to p, the gPC coefficients of x are

unknown and have to be calculated. To calculate
{

x̂j,k′
}

, Equations (6) and (7) are firstly substituted
into Equation (4), which is followed by applying a Galerkin projection and by projecting Equation (4)
onto each of the polynomial chaos basis function {ϕk′ (ξ)} as:

〈 .
xj(t, ξ), ϕk′(ξ)〉 = 〈 f (t, xj(t, ξ), u, p(ξ)), ϕk′(ξ)〉 (8)

For practical application, truncation, i.e., a finite number of terms, is often used other than infinite
terms in Equations (6) and (7). For example, the total number of approximation terms (i.e., Q) that can
be used for

{
xj
}

in Equation (7) can be calculated as:

Q = ((np + q)! /(np!q!))− 1 (9)

where q is the number of terms that is necessary to approximate an arbitrary uncertainty with a prior
known PDF in Equation (6), and np is the total number of parametric uncertainties in p. As seen in
Equation (9), the number of terms required for the gPC approximation of x = {xj} depends on the order
of polynomial q and/or the number of unknown parametric uncertainty np.

The inner product between any two vectors in Equation (8) can be calculated as [31]:

〈ψ(ξ), ψ′(ξ)〉 =
∫

ψ(ξ)ψ′(ξ)W(ξ)dξ (10)

where the integral is calculated over the entire domain defined by random variables ξ in the
Wiener-Askey framework, W(ξ) is the PDF of ξ that is defined as a weighting function in gPC theory.
For example, Hermite polynomial basis functions can be used for normal distributions [31]. Using
gPC coefficients of model predictions x in Equation (7), the statistical moments of x at a given time t
can be quickly estimated as follows:

E(xj(t)) = E

[
Q

∑
k′=0

x̂j,k′(t)ϕk′

]
= x̂j,0(t)E(ϕ0) +

Q

∑
k′=1

E[ϕi] = x̂j,0(t) (11)
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Var(xj(t)) = E
[
(xj(t)− E

[
xj(t)

]
)

2
]
= E

⎡⎣( Q
∑

k′=0
x̂j,k′(t)ϕk′ − x̂j,k′=0(t)

)2
⎤⎦

= E

⎡⎣( Q
∑

k′=1
x̂j,k′(t)ϕk′

)2
⎤⎦ =

Q
∑

k′=1
x̂j,k′(t)

2E(ϕk′
2)

(12)

In addition, the PDF of model predictions x can be estimated by sampling from the PDF of ξ and
by substituting samples into the gPC expressions of x in Equation (7). The calculation of statistical
moments with the analytical formulae in Equations (11) and (12) and the rapidly approximation of
the PDF of x are the main rationale of using the gPC in this current work, since it can reduce the
computational burden involved in the model correction in the presence of structural and parametric
uncertainty. Note that the FDD procedure in this work consists of the inverse of the procedures
summarized above, i.e., the identification of the PDFs (e.g., mean values) of parametric uncertainty
using the measurements and model predictions of x. The details concerning the FDD will be discussed
in Section 3.

2.3. Formulation of FDD Problem

The faults considered in this work consist of stochastic perturbations superimposed on a particular
set of mean values of these two aforementioned uncertainties, i.e., current I and conduction resistance
Rc. For example, Figure 2 shows a possible fault profile (Figure 2a) and the resulting noise-free
temperature responses (Figure 2b). For clarity, two mean values of each faults in Figure 2 are presented.
As can be seen, any changes in the mean values of faults can induce variations in temperatures.
The objective is to use the measurements of the temperature to identify the step changes between
different mean values of the current (I) and the thermal resistance Rc.

A mathematical description of stochastic faults is defined as:

pi = pi + Δpi(i = 1, . . . , np) (13)

where pi ε p (i = 1,2, . . . , np), {pi} denotes a set of mean values, and {Δpi} represents the variation
around each mean value of the ith uncertainty. For example, the solid bold lines (blue and red) in
Figure 2a are the mean values of current (I) and thermal resistance Rc, while the purple and green lines
are the perturbations around each of the mean values. It is assumed in this work that the statistical
moment of {Δpi} is time-invariant for simplicity and can be estimated with offline model calibration
algorithms. In addition, the total number of possible mean values of pi can be experimentally inferred
from the constancy of measured quantities such as the surface temperature as shown in Figure 2b, but
the exact mean values can be unknown to the modelers.

  
(a) (b) 

Figure 2. Profiles of faults (a) and the corresponding noise-free temperature (b). Note that the purple
and green lines in (a) represent the perturbations around the mean values of possible faults, and noise
free measurements of temperatures are used in (b) for clarity.
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As seen in Figure 2b, the core temperature is higher, when the mean values of I and Rc are larger.
Since any significant changes in the core temperatures are harmful and may cause catastrophic failures
in Li-ion batteries [4], the smaller mean values of I and Rc are used to represent the normal operating
mode of Li-ion battery in this work, while the larger mean value in either I and Rc is used to represent
the faulty operating modes. Thus, the objective is to identify the mean value (or mean value changes)
of I and Rc in the presence of uncertainty.

To summarize, two types of faults are considered. (i) Fault 1: Current fault (I), representing the
switch between two mean values of I, which can affect the core temperature dynamics and further
induce thermal runaway faults. (ii) Fault 2: Thermal resistance fault (Rc), representing a significant
deviation in the mean value of thermal resistance Rc, which may result from battery aging and can
affect both the core and temperatures. Based on the definition of the faults, the setting of normal and
faulty operating modes in this work is given in Table 2, respectively.

Table 2. Faults definition and description.

Modes Description Type

Normal I = I1, Rc = R1
c No fault

Faulty 1 I = I2, Rc = R1
c Individual fault

Faulty 2 I = I1, Rc = R2
c Individual fault

Faulty 3 I = I2, Rc = R2
c Simultaneous faults

3. Methodology of Fault Detection and Diagnosis

The objective of the FDD algorithm is to identify a change in the mean values of I and Rc and
classify an operating condition as a normal or faulty mode described in Table 2, using measurements
of temperatures. A Joint Confidence Region (JCR) based FDD algorithm is first presented in Section 3.1,
which is followed by an optimization-based model correction method in Section 3.2 for improved FDD
in the presence of a model mismatch.

3.1. Fault Detection Algorithm Using JCR Profiles

In Section 2, the propagation of uncertainty onto model predictions was discussed, from which
the PDF profile of each model prediction can be approximated using the gPC models. The main idea
of the FDD algorithm in this work is to solve the inverse problem, i.e., to identify the mean values of
uncertainty with gPC models. The FDD method consists of three steps. (a) The stochasticity in faults
(i.e., I and Rc) is propagated onto model predictions, thus producing a family of gPC models of the
core and surface temperatures around each mean value of faults considered in this work. (b) Since
two uncertainties (faults) are studied, a set of joint confidence region (JCR) profiles of the core and
surface temperatures is used to infer the possible mean values or any changes in mean values of
faults. The generation of the JCR, which predicts the probability that a pair of measurements belongs
to a particular JCR, will be discussed later. (c) Because of the measurement noise and the overlaps
among JCRs, the JCR-based FDD may provide a lower fault detection rate. Thus, a gPC model-based
minimum distance optimization is developed to improve the FDD performance.

Step a

The formulation of the gPC models for the core and surface temperatures follows the procedures as
outlined in Section 2. It is assumed that the stochastic perturbations in faults I and Rc are independent
stochastic events, thus a two-dimensional random space is used, i.e., ξ = {ξ1, ξ2}. Consequently, the
predictions of temperatures obtained from Equation (7) are functions of ξ = {ξ1, ξ2}, i.e., any changes in
faults can affect both the core and surface temperatures.
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Step b

Since two faults are studied, JCR profiles of the core and surface temperatures are used to infer
mean value changes in faults I and Rc. Figure 3 shows a schematic of generated JCRs from gPC models.
The generation of JCRs proceeds as follows.

Figure 3. Schematic of joint confidence regions (JCRs) with different probabilities. Note that the units
of temperatures in this work is Celsius degree (◦C).

(i) In the case of stochastic perturbations in both I and Rc, the maximum variations of core and
surface temperatures are first estimated. (ii) A two-dimensional discrete domain made of combinations
of core and surface temperature values can be generated based on the temperature estimations in
Step i. (iii) Random samples of ξ1 and ξ2 are substituted into the gPC models of the core and surface
temperatures as defined in Equation (7), which can provide the temperatures values. (iv) Each pair
of the core and surface temperatures is assigned to a particular grid generated in Step ii, and the
total number of temperature pairs can be calculated when all the samples from Step iii have been
assigned. (v) The probability at each discrete grid is calculated as the ratio between the number of
temperature pairs at a particular grid point and the total number of temperature pairs (i.e., the number
of combinations of ξ1 and ξ2 that are used in Step iii). (vi) A JCR can be generated by connecting
discrete grid points with the same probability (see Figure 3).

Step c

Following the procedures above, a family of JCR profiles can be generated for each pair of mean
values of I and Rc, as shown in Table 2, which can be used for FDD. However, as seen in Figure 4a,
the JCRs used to infer faults can be misleading, when a pair of measurements (red star) is found to
be in the overlap of JCRs. In addition, the measurements may lay outside of JCR profiles due to the
measurement noise, as shown in Figure 4b. Thus, a gPC model-based minimum distance criterion is
used to improve the FDD performance, which is explained below.

 
Figure 4. Visual interpretation of fault detection and diagnosis (FDD) algorithm using JCRs. Note that
(a) represents that a pair of measurements can be found in the overlap of the JCRs, and (b) represent
that a pair of measurements can be found outside the JCRs due to measurement noise. In addition, d1

and d2 in (b) represent the distance between the measurements and the centers of JCRs, which can be
used for FDD with a minimum distance criterion as defined in Equations (14) and (15).
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As seen in Equation (7), the gPC models of the core and surface temperatures are functions
of random variables ξ = {ξ1, ξ2}, which can provide the statistical information of temperatures
resulting from stochasticity in faults I and Rc. The combination of gPC models of the core and surface
temperatures can provide the mathematical description of JCRs. When a pair of temperatures is
available, e.g., red star in Figure 4, it is possible to calculate the distance between a pair of temperatures
and the center of a JCR. For a prescribed confidence region (or specific probability), the shortest
distance between the measurements and a specific JCR can then be used to infer the mean values of
faults. For example, as seen in Figure 4b, the distance d2 is smaller than d1, thus indicating that the
mean values of faults, used to generate JCR-2, are the most probable operating mode. To analytically
decide the Euclidean distance between a pair of measurements and a JCR, an optimization problem is
developed as:

min
λ

Ji = (Tc,i − Tc,p)
2 + (Ts,i − Ts,p)

2 (14)

Operatingmode : MFCR = arg min{Ji} (15)

where i is the total number of combination of mean values of faults I and Rc as shown in Table 2, Tc,i,
and Ts,i are the gPC models for a particular set of mean value I and Rc, which are functions of ξ given
in Equation (7), Tc,p, and Ts,p. are the core and surface temperatures that are used for FDD. Note that
MFCR in Equation (15) is the identified operating mode defined in Table 2 based on the minimum
distance criterion. It should be noted that there is no direct measurement of the core temperatures of
the battery, thus models, i.e., Equations (1) and (2), are used to estimate the core temperature with the
measurement of the surface temperature. The decision variable λ is a vector of random samples of
ξ = {ξ1, ξ2} from the sample domain defined by the three-sigma rules [39]. This optimization problem
in Equation (14) will be performed for each pair of core and surface temperature measurements and
combination of mean values of faults I and Rc that are defined in Table 2. Then, the minimum distance
as defined in Equation (15) can be used to identify an operating mode as defined in Table 2.

3.2. Optimization-Based Model Correction

The FDD algorithm in Section 3.1 assumes that the exact statistical moments of I and Rc are given
priors, which can be propagated onto the temperatures to formulate the JCR profiles of temperatures.
However, it cannot account for the discrepancy between the model and the actual thermal dynamics of
the Li-ion battery. For example, a model calibration with noisy data can introduce model uncertainty.
Further, model assumptions and simplifications are often made to make a model tractable, which may
result in structural uncertainty. To account for uncertainty (and/or mismatch) between the model and
the actual battery cells, we propose to correct the model by incorporating the error between model
predictions and available measurements. The correction criterion is formulated as follows:

.
x̃ = f (t, x̃, u, p) + μ(x̂− x̃) (16)

where μ =
{

μj
}

(j = 1, 2, . . . , n) is a vector of correction gains, x̃ is model predictions, and x̂ is the
measurements of temperatures. To implement Equation (16), it is assumed that the measurements
of the surface temperature are available, and the core temperature can be estimated with the model
that is being corrected. It is also assumed that the exact statistical information, such as mean value of
the uncertainty, is not available for the user, in order to represent a model involving model mismatch.
Such a difference will be compensated using correction gains μ in Equation (16).

To calculate the correction gains, a set of measurements inside a sliding time window will be
used in this work. A schematic of the sliding time moving window is shown in Figure 5, where L
represents the size of the moving window and M is the moving rate, i.e., L determines a total number
of required temperatures and M decides the overlap between the windows. A smaller window size
can be less accurate and may be time consuming, but it can be sensitive as it would better capture the
thermal dynamics of battery. A larger window size can reduce the computational burden, but it may
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lead to a coarse estimation. The moving rate decides the number of measurements changed at a time.
For example, when 1 is used for M, which means that the one measurement is changed at a time, i.e.,
the first measurement in L will be removed and one new measurement will be appended to L. When
M is larger, it may produce poor model correction result, while it will increase the computational load
when M is smaller. The choice of L and M is problem specific and requires a trade-off, which can be
determined with insights of the dynamic natures of batteries.

Figure 5. Schematic of sliding time moving windows for model correction.

For a sliding time moving window with temperature measurements, the correction gains μ can be
optimized with an optimization as:

min
λ=μ

J =
L

∑
i=1

(Tc,i − Tc,p)
2 +

L

∑
i=1

(Ts,i − Ts,p)
2 (17)

where Tc,i, and Ts,i are gPC model predictions of core and surface temperatures obtained from
Equation (16), Tc,p and Ts,p denotes the temperatures inside moving windows that are used for the
model correction. Note that core temperatures are estimated from the deterministic models that are
being corrected based on the measurements of the surface temperatures. The decision variable λ in
Equation (17) is the correction gain that can be recursively updated with moving time windows. It will
be shown in the results section that the model correction can be executed at each time interval in a
real-time fashion, and the fault detection results can be greatly improved with the recursively-updated
gPC model.

3.3. Summary of FDD Algorithm

An overview of the proposed model correction and FDD is shown in Figure 6. In summary,
the algorithm proceeds as follows.

Figure 6. Overview of the proposed FDD algorithm.
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Step i—Collect measurements of surface temperatures as a training set when the battery is
operated at normal and faulty operating modes, described in Table 2. Using the optimization defined
as Equation (17), the models of Li-ion battery cells can be corrected around each pair of the mean
values of I and Rc. Note that the measurements of the temperatures for faults can be obtained from
either a historical database or designed experiments.

Step ii—Using the corrected models, the JCR profiles of the core and surface temperatures for
each operating mode can be generated following the procedures described in Section 3.1.

Step iii—When a sample of surface temperature is available, the core temperature will be firstly
estimated, and the minimum distance can be calculated with Equations (14) and (15), which can be
used to infer a particular set of mean values of I and Rc.

To evaluate the performance of the proposed FDD approach, the fault classification rate (rFCR)
defined as below is used:

rFCR =
nid

ntotal
(18)

where ntotal represents the total number of testing samples used for algorithm verification, and nid is
the number of samples that have been correctly identified and classified.

4. Results and Discussion

4.1. Uncertainty Propagation and Model Predictions

The FDD algorithm is applied to the Li-ion battery cells as explained in Section 2.1. For clarity,
two mean values of fault I and Rc are considered, respectively. For the current fault, I, these mean
values are I1 = 16.2 A and I2 = 13.8 A, respectively. It is assumed that the stochastic perturbations in I
around each of these mean values follow a normal distribution with a mean of zero and a standard
deviation of 0.45 A. For the conduction resistance Rc, two mean values are R1

c =1.68 KW−1 and
R2

c = 2.28 KW−1, respectively. In addition, the random variations around each mean value are normally
distributed, which has a mean value of zero and a standard deviation of 0.066 KW−1, i.e., a 5% variation
with respect to the average of two mean values. Since the perturbations around the mean values
follow a normal distribution, Hermite polynomial basis functions are used for gPC models in this
work. It is important to note that for arbitrary distributions, the polynomial basis functions from the
Askey-Wiener scheme other than Hermite polynomial basis functions can be used to improve the
convergence of the gPC approximation in Equation (6) [31].

Following the uncertainty propagation procedures described in Section 2.2, Figure 7 shows the
mean of temperatures and the corresponding variance around the mean values at each time interval,
when the battery is operated at the normal mode. Since two sources of uncertainty are studied
(i.e., np = 2 in Equation (9)), and two terms can be used to approximate a normally distributed I or
Rc (i.e., p = 1), six terms are required to approximate each temperature (i.e., Q = 5 in Equation (9)).
The gPC coefficients of the temperatures can be solved by substituting the gPC models of uncertainties
and temperatures into the Li-ion battery model (Equations (1) and (2)), which can then be solved by a
Galerkin projection as explained in Section 2.2. This will produce a set of coupled equations to describe
the stochastic thermal dynamics of Li-ion battery cells. The resulting gPC models of the core and the
surface temperatures are given by Equations (A1)–(A12) in Appendix A for brevity.

As seen in Figure 7, Tc0 and Ts0 represent the mean values of the rcore and surface temperatures,
and the bar-plots represent the variances around the mean values which can be calculated from the
higher order gPC coefficients, using Equation (12) in Section 2.2. Additionally, it was found that the
core temperature can be significantly affected by variations in I and Rc, as compared to the surface
temperature, i.e., a larger variance as seen in Figure 7.
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Figure 7. Uncertainty propagation in the lumped thermal models of the Li-ion battery cell at the normal
operating mode, (mean value of temperatures and the variance at a few particular time intervals).

4.2. FDD Using JCR Profiles and Computational Efficiency

Based on the gPC model developed with each pair of the mean values of I and Rc, a family of
JCRs can be generated following the procedures as explained in Section 3. Figure 8 shows the JCRs for
a set of specific confidence regions, where 1000 pairs of temperature samples are used. Based on the
JCRs profile, the mean values of I and Rc can be inferred by solving the optimization problem defined
in Equations (14) and (15) for a pair of temperatures. Taking a pair of temperatures as given in Figure 8
(the star) as an example, it can be concluded that the battery system is operated around the second set
of mean values of I and Rc, since the distance between the given samples of temperatures and JCR-2 is
minimal. It should be noted that the JCR profiles can not only distinguish a specific faulty operating
mode from the normal operation, but also provide the probability information of occurred faults.

In addition, comparison studies were conducted to compare the gPC-based FDD with Monte
Carlo (MC) simulations-based method. For MC, a similar optimization problem as done for the gPC is
defined as:

min
λ′

J =
N

∑
j=1

(Tj
c − Tc,p)

2
+

N

∑
j=1

(Tj
s − Tc,p)

2
(19)

where λ′ is the decision variables, i.e., the mean and the standard deviation of I and Rc that have to be
determined with respect to a given pair of measurements of temperature, i.e., Tc,p, and Ts,p. Also, N
is the total number of samples used in the MC simulations in each iteration of the optimization, Tj

c

and Tj
s are a particular set of core and surface temperatures simulated with respect to the decision

variables. When the optimization of Equation (19) is finished, the optimization results λ′ are compared
with mean values defined in Table 2 based on a minimum distance criterion, which can identify a
corresponding operating mode.

 
Figure 8. JCRs generated with a set of specific mean values of I and Rc, which are summarized in
Table A1 in Appendix B. (i) JCR 1: 16.2 and 1.68 for I and Rc; (ii) JCR 2: 16.2 and 2.28 for I and Rc; (iii)
JCR 3: 13.8 and 1.68 for I and Rc; (iv) JCR 4: 13.8 and 2.28 for I and Rc.

111



Processes 2019, 7, 38

For the gPC-based FDD, it was found that the optimization problem described in Equations (14)
and (15) can be finished within an average of 5 seconds. However, for the MC-based method, the
calculation of the mean values of I and Rc on average requires approximately 321 seconds, when
100 pairs of samples of I and Rc were used to simulate Tj

c and Tj
s in each optimization iteration. This

clearly shows the computational efficacy of gPC, compared with that of MC. In addition, it was found
that MC with 100 samples cannot provide as accurate results as gPC. For example, it was found
that the fault classification rate rFCR of gPC and MC is ~0.94 and ~0.75, respectively. To improve the
FDD performance, a larger number of samples are required in each iteration of the optimization with
MC. However, this may significantly increase the computational burden. Especially, for the real-time
model correction that will be discussed in next section, it can be computationally prohibitive with MC.
A summary of the comparison between gPC and MC is given in Appendix C.

4.3. FDD Results Using JCRs in Combination with Model Correction

In previous case studies, it is assumed that the models of a battery are accurate, and JCR profiles
are used for FDD. In this section, the JCR profiles-based FDD algorithm is integrated with a model
correction procedure to deal with the FDD problem in the presence of a model mismatch. For clarity, it
is assumed that the exact mean values of I and Rc for each operating modes (JCRs) are unknown to the
modeler, thus a set of correction gains will be used to compensate the effect of a model mismatch on
FDD. Since the exact mean values of faults are unknown, the mean values in the gPC models of the
core and surface temperature are corrected using model predictions and measurements collected at
each time interval inside the time moving windows, which can be described as:

dTc0

dt
=

1
Cc

(
I0

2Re + I1
2Re +

1
Rc0

((Ts0 − Tc0)A + (Ts2 − Tc2)B + (Ts4 − Tc4)C)
)
+ μ1(Tc0 − Tc )̂ (20)

dTs0

dt
=

1
Cs

(
1

Ru
(Tf − Ts0)− 1

Rc0
((Ts0 − Tc0)A + (Ts2 − Tc2)B + (Ts4 − Tc4)C)

)
+ μ2(Ts0 − Ts )̂ (21)

where Tc0 and Ts0 are the first coefficients (i.e., mean values) in gPC models of the core and surface
temperatures, I0 and Rc0 are the gPC coefficients in Equation (6) used to approximate the mean values
of I and Rc, Tc

ˆ and Ts
ˆ are the measurements of temperatures. Note that μ1 and μ2 are correction gains

which will be recursively optimized with the optimization defined in Equation (17), Ts2, Tc2, Ts4, and
Tc4 are higher order gPC coefficients of the core and surface temperatures, which can be determined
with gPC models as given in Appendix A. In addition, A, B, and C are constants calculated using gPC
models with the Galerkin projection. For illustration, Figure 9 shows the model correction results of μ1

and μ2, when the system is operated at different operating modes as defined in Tables 2 and A1 in
Appendix B. To introduce the model mismatch, a ±10% change was randomly added to these mean
values given in Table A1.

For different JCR profiles, the first column in Figure 9 represents the correction gains of the core
temperature calculated at each time instant, whereas the second column is the correction gain of the
surface temperature. As can be seen in Figure 9, the profiles of correction gains μ1 and μ2 fluctuated
within a certain range when the optimization of Equation (17) was executed, and eventually reached a
plateau. For example, the correction gain of the core temperature, i.e., μ1, varied significantly when
the optimization was initially executed, e.g., 0 to ~80 min. In contrast, the changes in correction
gains appear to be smaller after approximately 80 min of simulations. It is important to note that the
perturbations in correction gains may either result from measurement noises or stochasticity in the
current I and conduction resistance Rc. In addition, it was found that the correction gain μ2 of the
surface temperature stabilizes faster than the correction gain of core temperature μ1. This is due to
the fact that random variations in I and Rc can significantly affect core temperatures as previously
discussed in Section 4.1 (see Figure 7). Note that the size of moving time window (L) is set to 80 for
simulations as shown in Figure 9, i.e., 80 measurements were used to optimize the correction gains at
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each time instant. The moving rate M is set to 1 in this case study. In addition, random noise was added
to the surface temperatures, which was further used to estimate core temperatures for optimization as
defined in Equation (17).

Figure 9. Correction gains μ1 and μ2 for different operating modes, where solid lines (blue) are
the correction gain used for core temperatures and the dash-dotted line (red) are the results of
surface temperature.

Using these correction gains and the gPC coefficients, the distributions of the core and surface
temperatures as each time interval can be rapidly estimated. For example, Figure 10 shows the
simulation results of temperatures for the normal operation. Based on the corrected gPC models and
the distributions of temperatures, a set of JCR profiles can be formulated and used for FDD following
the steps as explained in Section 3.1.

  
(a) (b) 

Figure 10. Distribution of temperatures for a few time intervals estimated with the generalized
polynomial chaos (gPC) coefficients and the correction gains, which can be used to define a
two-dimensional domain to generate JCR profiles for FDD: (a) Core temperature approximated with
gPC and correction gains and (b) surface temperature approximated with gPC and correction gains.

To evaluate the efficiency of the correction and its effect on FDD, two case scenarios were
investigated. For the first one, JCR profiles generated with the inaccurate mean values of I and
Rc were used, whereas the correction algorithm was combined with the JCR-based FDD in the second
case scenario. Table 3 shows the results of FDD for both case studies.

As seen in Table 3, the fault classification rate rFCR can be improved approximately by 25% on
average with the correction algorithm defined in Equation (17). In addition, study was conducted to
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investigate the effect of measurement noise on the accuracy of FDD, and Table 4 shows the results of
rFCR with respect to different levels of measurement noise. It can be seen that the measurement noise
can significantly affect the accuracy of FDD. For instance, the fault classification rate rFCR is about
73% with a 5% measurement noise in the surface temperatures, which has been decreased about 22%,
as compared with the case where the measurement noise is 1%.

Table 3. Faults classification rate with different joint confidence region (JCR) profiles.

rFCR (%) JCR 1 JCR 2 JCR 3 JCR 4

without correction 59.1 62.3 59.9 69.7
with correction 89.6 89.7 82.7 88.4

Table 4. Faults classification rate of the model corrected by optimization-based model correction.

1% 2% 3% 4% 5%

rFCR (%) 95 89.6 84.5 78.2 72.7

Using the gPC models, it was found that the optimization of Equation (17) for one function
evaluation can be completed in ~1 second on average and the optimum can be achieved in about
30 iterations, which results in an overall simulation time of about ~30 seconds. On the other hand, it was
found that if Monte Carlo simulations were used for updating the correction gains with 100 samples,
~5 min were required for one evaluation of the optimization in Equation (17). Thus, 30 iterations
would take ~2.5 h. This is significantly higher than the gPC-based FDD method, which may be
computationally prohibitive for a real-time application of model correction with MC.

5. Conclusions

Lithium-ion (Li-ion) batteries are widely used due to their higher energy density and longer life
as compared to other batteries. However, the thermal behavior can greatly affect the safety, durability,
and performance of Li-ion batteries. Fault detection and diagnosis (FDD), as a key component of the
battery management system, play an important role in the management of Li-ion batteries. This paper
presents a stochastic FDD algorithm to identify thermal dynamic faults such as the thermal runaway
fault in a Li-ion battery using generalized polynomial chaos (gPC) expansion models. The proposed
algorithm consists of three consecutive procedures: (i) Uncertainty propagation with gPC models to
evaluate the effect of uncertainty on measured quantities, which can be used for FDD; (ii) accurate
fault diagnosis with JCR profiles, which can provide the probabilistic information of being in a faulty
operating mode; (iii) recursive optimization to adjust the FDD algorithm to account for a mismatch
between models and thermal dynamics of Li-ion battery cells. It was found that the gPC-based FDD
method can outperform sampling-based techniques such as Monte Carlo (MC) simulations in terms
of computational efficiency and FDD accuracy. This ensures its on-line applications in Li-ion battery
systems such as electric and hybrid electric vehicles. However, the application of the proposed FDD
algorithm in complex systems is not pursued for brevity and left for future study. In addition, it is
assumed that the uncertainty in this work follows the standard distribution in the Askey–Wiener
scheme for algorithm clarity. For other distributions, the arbitrary gPC algorithm as explained in our
previous work can be used to improve the computational efficiency [40].
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Appendix A. Results of the gPC Expansion for the Lumped Thermal Model of Li-Ion Battery

dTc0

dt
=

1
Cc

(
I0

2Re + I1
2Re +

1
Rc0

((Ts0 − Tc0)A + (Ts2 − Tc2)B + (Ts4 − Tc4)C)
)

(A1)

dTs0

dt
=

1
Cs

(
1

Ru

(
Tf − Ts0

)
− 1

Rc0
((Ts0 − Tc0)A + (Ts2 − Tc2)B + (Ts4 − Tc4)C)

)
(A2)

dTc1

dt
=

1
Cc

(
2I0 I1Re +

1
Rc0

((Ts1 − Tc1)A + (Ts5 − Tc5)B)
)

(A3)

dTs1

dt
=

1
Cs

(
1

Ru
(−Ts1)− 1

Rc0
((Ts1 − Tc1)A + (Ts5 − Tc5)B)

)
(A4)

dTc2

dt
=

1
Cc

(
1

Rc0
((Ts0 − Tc0)B + (Ts2 − Tc2)C + (Ts4 − Tc4)D)

)
(A5)

dTs2

dt
=

1
Cs

(
1

Ru
(−Ts2)− 1

Rc0
((Ts0 − Tc0)B + (Ts2 − Tc2)C + (Ts4 − Tc4)D)

)
(A6)

dTc3

dt
=

1
Cc

(
I1

2ReE +
1

Rc0
((Ts3 − Tc3)FA)

)
(A7)

dTs3

dt
=

1
Cs

(
1

Ru
(−Ts3)F− 1

Rc0
((Ts3 − Tc3)FA)

)
(A8)

dTc4

dt
=

1
Cc

(
1

Rc0
((Ts0 − Tc0)C + (Ts2 − Tc2)D + (Ts4 − Tc4)G)

)
(A9)

dTs4

dt
=

1
Cs

(
1

Ru
(−Ts4)H − 1

Rc0
((Ts0 − Tc0)C + (Ts2 − Tc2)D + (Ts4 − Tc4)G)

)
(A10)

dTc5

dt
=

1
Cc

(
1

Rc0
((Ts1 − Tc1)B + (Ts5 − Tc5)C)

)
(A11)

dTs5

dt
=

1
Cs

(
1

Ru
(−Ts5)− 1

Rc0
((Ts1 − Tc1)B + (Ts5 − Tc5)C)

)
(A12)

where A, B, C, D, E, F, G, and H are all constants calculated with the Galerkin Projection.

Appendix B. Definition and Description of Faults and Their Mean Values

Table A1. Faults Definition and Description.

JCRs (Mode) Mean Values Type

JCR 1 (Faulty 1) I = 16.2, Rc = 1.68 Individual fault
JCR 2 (Faulty 3) I = 16.2, Rc = 2.28 Simultaneous faults
JCR 3 (Normal) I = 13.8, Rc = 1.68 No fault
JCR 4 (Faulty 2) I = 13.8, Rc = 2.28 Individual fault

Appendix C. Summary of Comparison between gPC and MC

Table A2. Comparison results between gPC and MC.

Method Classification Rate Computational Time

gPC 0.94 5 s
MC (100 samples) 0.75 324 s *

* Per optimization iteration of Equation (17).
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Abstract: The methodology of profile monitoring combines both the model fitting and statistical
process control (SPC) techniques. Over the past ten years, a variety of profile monitoring methods
have been proposed and extensively investigated in terms of different process profiles. However,
monitoring tasks still exhibit a primary problem in that the errors surrounding the functional
relationship are frequently assumed to be independent within every single profile. However, the
assumption of independence is an unrealistic assumption in many practical instances. In particular,
within-profile autocorrelation often occurs in the profile data. To mitigate the within-profile
autocorrelation, a monitoring method incorporating an autoregressive (AR)(1) model to cope
with autocorrelation is proposed. In this paper, the reflow process with small samples in surface
mount technology (SMT) is investigated. In Phase I, three different process models are compared
in combination with the first-order autoregressive model, while an appropriate profile model is
sought. The Hotelling T2 and exponentially weighted moving average (EWMA) control charts are
used together to monitor the parameter estimates (i.e., profile shape) and residuals (i.e., profile
variability), respectively.

Keywords: profile monitoring; polynomial regression model; sum of sine function; Hotelling’s T2

control chart; EWMA control chart

1. Introduction

Statistical process control (SPC) has globally been applied for dealing with process monitoring
in a variety of manufacturing processes [1]. The control charting technique is typically designed to
monitor a univariate statistic, e.g., the sample average, standard deviation, range of a sequence of
sample data, among others. However, several productive processes (e.g., reflow oven, heat treatment,
etc.) have proven difficult to manage with a traditional SPC operation. The difficulty in these cases
arises because a quality characteristic cannot be suitably characterized. If the quality characteristic of
a product or process can be represented by a functional form between the quality characteristic and
the input variable, then effective monitoring can be established. This scenario is the so-called “profile
monitoring”.

A major problem for many profile monitoring models lies in the dependence of within-profile
residuals, i.e., within-profile autocorrelation. This problem may cause the parameter estimates of
the fitted model to be unstable or it might make monitoring performance unsatisfactory. By this
account, within-profile autocorrelation is often present and it should not be intentionally ignored.
Jensen et al. [2] applied a mixed model to monitor nonlinear profiles in order to account for the
correlation structure. Chicken et al. [3] has proposed a semiparametric wavelet method for monitoring
the changes in sequences of nonlinear profiles. In their paper, no assumptions are made on the nature
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of form or the changes between the profiles other than finite square-integrability. Based on a likelihood
ratio test involving a change-point model, the method uses the spatial adaptability properties of
wavelets to detect the profile changes. Qiu et al. [4] proposed a new control chart to deal with
the within-profile autocorrelation. Hung et al. [5] used support vector regression to describe the
within-profile relationship. In [6], a B-spline approach was presented for process profile modeling.
To mitigate the dependency of the process data, the bootstrap method was utilized. Ghahyazi et al. [7]
used a multistage process in phase II to monitor a simple linear profile. In that paper, a first-order
autoregressive correlation model was first modeled. Subsequently, a U statistic is utilized to eliminate
the cascade effect and the control scheme is modified accordingly. Zhang et al. [8] proposed that a
Gaussian process model be applied to the characterization of the within-profile correlation. Herein,
two multivariate control charts (Hotelling T2 and multivariate EWMA) were proposed to monitor the
linear trend term and the within-profile correlation separately in phase II. Khedmati and Niaki [9]
proposed using the U statistic for the general linear profiles to eliminate the effect of between-profile
autocorrelation of error terms in phase-II monitoring. Based on the simulation results, this proposed
method could provide a significantly better result in detecting shifts in the regression parameters.
Jensen et al. [10] used a nonlinear model for fitting the profiles, thus reducing the profiles to a smaller
set of parameter estimates. In that paper, a T2 control chart using the difference-covariance matrix is
employed to perform profile monitoring. The proposed statistic that was based on the differences was
modified to account for the correlation between the profiles in phase I and phase II analysis.

The main objective of this research is to construct a monitoring system that can compensate for
the one-step-ahead residuals, particularly for the reflow process with small samples in surface mount
technology (SMT). In the reflow process, it is of critical importance to monitor the oven temperature
condition and to identify potential process irregularity before the product quality becomes worse.
In this paper, 15 profiles of the reflow process from [11] will be investigated.

The three different parametric models will be considered as the modeling candidates. Afterwards,
the different fitted models are evaluated by means of R2

adj, Akaike information criterion (AIC), and
Schwarz information criterion (SIC). Next, in terms of the best-fitted model, phase I and II process
monitoring is performed.

The remainder of this paper is organized, as follows. Section 2 presents the three different fitting
models, together with the autocorrelation effect. The basic engineering details of the reflow process
will be elaborated in Section 3. Simulation results of profile monitoring are presented to demonstrate
the performance of different fitting models. Lastly, the conclusions of the paper and the summary of
our findings are remarked in Section 4.

2. The Proposed Method for Monitoring Process Profiles

In the proposed framework, three different models are investigated to seek an appropriate profile
model. Additionally, the Hotelling T2 and the EWMA control charts are employed in order to monitor
the profile shape and the profile residual, respectively. The flowchart is shown in Figure 1. First, the
different process models are compared on the basis of R2

adj, AICC, and SICC. According to the parameter
estimates of the profile model, the nonlinear profile can be monitored and analyzed. In phase I, the
Hotelling T2 control chart is used to evaluate the process stability and remove any outlying profiles.
The Hotelling T2 control chart is also considered for phase II analysis via the out-of-control average
run length (ARLOUT). An EWMA control chart is utilized to check the residuals of the fitted model if
the autocorrelation effect is changed or not.
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Input profile data

Construct and compare the fitted 
model using the polynomial 

regression, sum of sine function, 
and nonlinear mixed effect model 

Consider time series parameter 
(AR(1)) so that the fitted model has 

a better monitoring performance

Execute phase I analysis and find 
the outlying profiles using the 
estimated model parameters

Check for any out-of-
control profile. If any?

Remove the outlier profiles if an 
assignable cause is identified

Conduct phase II analysis as the 
in-control parameter estimates 

and ARLin is set equal

Execute phase II analysis using 
the detection of parameter shift

YES

NO

Figure 1. Flow chart for the proposed framework.

2.1. Constructing the Profile Model

To evaluate and determine an appropriate process model, R2
adj is firstly considered to be an

immediate measure so that the fitted performance can be more quickly compared. However, the
performance evaluation of model fitting merely considers R2

adj that can cause the problem of overfitting.
Hurvich and Tsai [12] had pointed out that the AIC would generate the overfitting problem when the
fitting samples belong to a smaller number. Although Hurvich and Tsai [12] claimed that the AICC

could enhance the accuracy of model selection, the overfitting problem can still occur to circumvent
better estimation solutions. When referring to [13], we can find that the SICC seems to be able to deal
with the overfitting problem for the small sample case. To deal with the accuracy of model selection
and the overfitting problem, in this paper, the AICc and SICc are simultaneously adopted, with the
expectation of obtaining adequate results. The small sample SICc and AICc criteria derived by [13] are
described, as follows:

SICc = log(σ̂2
k ) +

log(n)k
n− k− 2

(1)

AICc = log(σ̂2
k ) +

n + k
n− k− 2

(2)

In (1) and (2), the variance estimate is denoted by σ̂2
k =

n
∑

j=1
(yj − ŷj)

2/(n − 1). Here, k is the

number of the parameters in the process model. The number of measurement points that are in the
profile is denoted by n. It is of particular importance to note that the variance estimate σ̂2

k is calculated
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after the autocorrelation effect has been discounted by using the first-order autoregressive model,
which will be addressed shortly.

2.1.1. Polynomial Model

The polynomial model with one input variable can be defined by

yjp = β′pxj + ηjp, p = 1, . . . , q; j = 1, . . . , n (3)

where the first-order autoregressive model is defined by ηjp = φηj−1,p + ε jp, which is logical in
deeming the profile as a time series data set. Since the autocorrelation effect often occurs in profile
monitoring, the first-order autoregressive model (i.e., AR(1)) is considered as the disturbance term, η,
and is incorporated into the profile model. Therefore, the profile model will include the first-order
autoregressive parameter to compensate. The parameter φ is the first-order autoregressive (AR(1))
coefficient. The noise ε jp is the error term of white noise and its variance estimate is indicated by σ̂2

k , as
in Equations (1) and (2). Also, β′p =

[
β0p, β1p, . . . , βrp

]
is the vector of unknown parameters in the

polynomial function, the vector of regressors is denoted by x′ j =
[
1, xj, x2

j , . . . , xr
j

]
and r denotes the

order of the model in (3). Note that all of the parameters in Equation (3) are estimated by using the
ordinary least squares estimation method (see [11]).

2.1.2. Model of the Modified Sum of Sine Functions in two Different Forms

The modified sum of sine functions is represented in the original form as

yjp =
k

∑
r=1

arp sin
(
brpxj + crp

)
+ ηjp, r = 1, . . . , k; p = 1, . . . , q; j = 1, . . . , n (4)

where ar is the amplitude, br is the frequency, and cr is the horizontal phase constant at each sine wave
term. For example, when the profile model is considered as the modified sum of two-sine functions,
then the model can be defined by

yjp = a1p sin(b1pxj + c1p) + a2p sin(b2pxj + c2p) + ηjp (5)

where xj denotes the input variable for the jth measurement, βp denotes the parameter vector in profile
p (β′p = [a1p, a2p, b1p, b2p, c1p, c2p]), and the ηjp term is defined, as in Equation (3). As mentioned
above, the parameters a1 and a2 are the amplitude of the function, b1 and b2 determine the period, and
c1 and c2 influences the horizontal shift. The parameter estimation is performed by using the nonlinear
least squares estimation method (see [11]).

To strengthen the fitting of nonlinear models by means of the modified sum of sine functions,
we also use the nonlinear mixed effects model (NLME) to test the fitted performance, which then is
extended into a nonlinear model with random effects. The generic form of NLME is given by the
following equation:

yjp = f (βjp, xj) + ε jp, βjp = Ajpθ+ Bjpγjp, p= 1, . . . , q, j = 1, . . . , n (6)

In (6), f is the function governing within-profile behavior, βjp is a vector of group-specific model
parameters, Ajp is a design matrix for combining fixed effects, θ is a vector of fixed effects, Bjp is
a design matrix for combining random effects, γjp is a vector of multivariate normally distributed
random effects with γjp ∼ N(0, D), where D is a covariance matrix for the random effects, and
ε jp is a vector of errors, which is assumed to be independent, identically, normally distributed, and
independent of γjp, ε jp ∼ N(0, σ2).
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According to the mixed model that β = A · Fixed e f f ect + B · Random e f f ect, the estimated
profile parameters (β) of the two-sine function in terms of the NLME model can be described in
Equation (7): ⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1p
b1p
c1p
a2p
b2p
c2p

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= A ·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1

b1

c1

a2

b2

c2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+ B ·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1p − a1

b1p − b1

c1p − c1

a2p − a2

b2p − b2

c2p − c2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7)

In Equation (7), the A and B are assumed to be the 1 matrix, the bar symbol refers to an average.
The NLME form can then be represented, as follows:

yjp = [a1 + (a1p − a1)] sin[(b1 + (b1p − b1)xj) + (c1 + (c1p − c1))]+

[a2 + (a2p − a2)] sin[(b2 + (b2p − b2)xj) + (c2 + (c2p − c2))] + ε jp
= (a1, f ixed + a1p,random) sin((b1, f ixed + b1p,random)xij + (c1, f ixed + c1p,random))+

(a2, f ixed + a2p,random) sin((b2, f ixed + b2p,random)xij + c2, f ixed) + ε jp

(8)

The parameter estimates are obtained by using the maximum likelihood estimation method
(see [2]). Herein, it should be noted that the NLME model does not include the AR(1) term. In previous
literature (see [2]), the NLME model has been used to solve the problem of autocorrelation. Therefore,
the two fitting models together with AR(1) and the NLME model are compared in phase I analysis.

2.2. Phase I and II Monitoring and Analysis

In phases I and II, the parametric T2 control chart is used to check whether the process is in the
statistical control status and to identify potential outliers. Here, β̂p is the estimate of the parameter

vector. Over the entire profile data, the sample mean vector β̂ and the sample variance-covariance
matrix S = s2{β̂} can be computed by using the parameter estimates that were obtained from different
fitting models. For example, the estimate of the parameter vector for the fourth order polynomial with
AR(1) is defined as

[
β̂0 β̂1 β̂2 β̂3 β̂4 φ̂

]
; the estimate of the parameter vector for the sum of

two-sine functions with AR(1) is defined as
[

â1 â2 b̂1 b̂2 ĉ1 ĉ2 φ̂
]
.

According to the aforementioned parameter estimates, the T2 control chart (Brill, 2001) is
described by

T2
c,p = (β̂p − β̂)′S−1

c (β̂p − β̂), p = 1, 2, . . . , q, (9)

where Sc is the sample variance-covariance estimator, as defined by

Sc =
1

q− 1

q

∑
p=1

(β̂p − β̂)(β̂p − β̂)′ (10)

In (10), q is the number of profiles in the process data. The approximate upper control limit (UCL),
as derived by [14], is as follows:

UCLc =
(q− 1)2

q
Bα,k/2,(q−k−1)/2 (11)

In Equation (11), Bα,k/2,(q−k−1)/2 is the upper α percentage point of a beta distribution with
parameters k/2 and (q− k− 1)/2, where k is the number of parameter estimates. According to [15],
the T2 control chart in (9) is shown to be ineffective in detecting sustained shifts in the mean vector.
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In this regard, the alternative T2 control chart that was proposed by [16] is also considered. The control
chart is defined by

T2
D,p = (β̂p − β̂)′S−1

D (β̂p − β̂), p = 1, 2, . . . , q (12)

In (12), the variance-covariance estimator (SD) is calculated by using successive differences in the
following:

SD =
V̂
′
V̂

2(q− 1)
(13)

where v̂p = β̂p+1 − β̂p for p = 1, . . . , q− 1 and the transpose of these q− 1 difference vectors are
stacked into the (q− 1)× k matrix V̂, as follows:

V̂ = [v̂′1v̂′2 · · · v̂′q−1]
′ (14)

In [17], the approximate UCLD for a large sample size (q > k2 + 3k) can be estimated according to

UCLD = χ2(1− α, k), (15)

where k denotes the degrees of freedom and α denotes the significance level. Sullivan and Woodall [15]
argue that the simulation results can be used to discover that the T2

C control chart (see Equation (9))
performs worse in detecting the step change and the ramp shift in the mean vector during phase I than
the T2

D chart, as shown in (12). Based on this fact, in this paper, the T2
D control chart is employed to

evaluate the different fitting models while identifying the outlying profiles.
While phase I is executed, the process should be able to achieve a stable situation. Subsequently,

the data of the in-control profiles is employed to estimate the unknown parameters. In phase II,
the exponentially weighted moving average (EWMA) chart is additionally used for detecting the
autoregressive (AR) effect in residuals in order to determine whether the AR parameter in the process
model should be re-estimated. In sum, the T2

D control chart is used to monitor the parameters of the
model (i.e., profile shape). In the meantime, the EWMA control chart is used to monitor the residuals
(i.e., profile variability). The EWMA statistic is computed by

EWMAε(j) = θej + (1− θ)EWMAε(j− 1), j = 1, 2, . . . , n, (16)

where ej is the jth residual; θ(0 < θ ≤ 1) is a smoothing constant and the starting value is assumed
EWMAε(0) = 0. An out-of-control signal is issued as soon as EWMAε(j) < LCL or EWMAε(j) > UCL,
where

LCL = 0− Lεσ̂ε

√
θ

2− θ
, UCL = 0 + Lεσ̂ε

√
θ

2− θ
(17)

In (17), σ̂ε denotes the standard error of the residual as σ̂k in Equations (1) and (2); Lε(> 0) is a
half-length that is designed to generate a specific in-control ARL. Under this monitoring framework,
the ARLOUT performance of the T2 control chart, together with the EWMA chart, is evaluated for
phase II analysis in the next section. In terms of the aforementioned methods, the proposed monitoring
framework can be formalized as pseudo-code 1 in the appendix.

3. Experimental Results for Profile Monitoring

In this section, the proposed monitoring framework is illustrated and evaluated while using the
simulated reflow process in SMT. The application domains of the monitoring system and some
implementation issues are discussed. In terms of the simulation results, the analysis of profile
monitoring can be done in three parts: (i) making a comparison of the fitting performance between
the polynomial regression with AR(1), the modified sum of sine functions with AR(1), and the NLME
model; (ii) screening the outlying profiles by means of the T2

D control chart for phase I analysis; and,
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(iii) testing the proposed T2
D control chart with the EWMA control chart, while also monitoring the

process parameters and the residual in phase II analysis.

3.1. Fundamentals of Reflow Process

The operation of the reflow process is the heating sequence for assembling printed circuit boards
(PCB) using solder paste at successively higher temperatures. As an assembly moves through a
soldering system, it will perform a controlled temperature curve in order to achieve the required
quality. Such a temperature curve is also called a “temperature profile”. The temperature profile is
often measured along a variety of technical dimensions, such as slope, soak, time above liquidus, and
peak. In general, reflow soldering processes contain four stages. Each operation presents a unique
temperature profile: preheat, thermal soak (dwell), reflow (liquidus), and cooling. Figure 2 shows a
typical example of a schematic temperature profile.

 
Figure 2. A typical temperature profile.

In the preheat zone step, the changes of the temperature curve can be described as an ascending
tendency from normal temperature to approximately 150 ◦C. In this step, the ascending temperature
facilitates the removal of solvent and water vapor in the solder paste. Rapid heating helps the flux
softening temperature to be reached quickly, so the flux can spread quickly and cover the maximum
area of solder joints. It also integrates some activator into the actual alloy liquid. Furthermore, because
some parts of the motherboard cannot deal with the sharp temperature changes, the rate of temperature
change in the preheating zone is set to between 1.5 ◦C/s and 3 ◦C/s.

When the operation approaches the thermostatic zone, the temperature is usually maintained in a
region of 150 ± 10 ◦C. This operational zone is a flat temperature profile to enhance the effect of the
soldering, and it especially prevents tombstoning. The reflow zone is also called Time Above Liquidus
(TAL). The TAL is the period of time above the maximum temperature at which crystals can coexist
with the melt in thermodynamic equilibrium. The peak of reflow temperature usually depends on
the melting temperature of the solder, while also taking into account the temperature that assembled
components can endure. For instance, a typical lead-free manufacturing process must not exceed the
limit of 260 ◦C, which is the highest temperature that tantalum capacitors can endure.

Following the reflow zone, the product is cooled and the solder joints are solidified so that it
can rejoin the assembly process. Note that Figure 2 only provides an overall, schematic diagram of
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the temperature profile of the reflow process. In fact, the temperature control in the reflow process
belongs to a nonlinear profile pattern. Hence, any linear approximation approach will not be suited
to this research. The high nonlinearity and curvature somewhat warrants the need for a new profile
monitoring approach. In this paper, the practical data of the same product type is gathered so as to
form individual profiles for process monitoring. The production line in the SMT practice is essentially
constructed with high flexibility to deal with the different types of products. Hence, to perform profile
monitoring of a wide variety of low-volume products in small-to-moderate batches is our research
target. Note that the data set that was used in this research is available upon request.

3.2. Comparing and Evaluating the Different Profile Models

In this section, the polynomial regression model, the modified sum of sine functions, and the
NLME model are first used to fit the reflow process data. The polynomial models of orders 3–5 and
the modified sum of 1–3 sine functions are selected for model fitting. In every profile, n measurements
in the ith random profile are collected over time, as indicated by (xjp, yjp), for p = 1, 2, . . . , q and
j = 1, 2, . . . , n. The polynomial models are as shown in Equation (3). The modified sum of sine
functions and the nonlinear mixed effects models are as shown in Equations (4)–(7).

In here, seven models, including the polynomial model of different orders with AR(1), the
modified sum of sine functions with AR(1), and the NLME model, are tested. Fifteen profiles of 48
data points that were collected each in the reflow process are individually modelled by using the seven
different models, and the parameter estimates are utilized for phase I monitoring. To compare the
fitting results, four performance measures (R2

adj, RSS, SICc, and AICc) are selected as the performance
measures. Moreover, the number of times that each model is chosen best over 15 profiles is also
reported. The computational results are displayed in Table 1 and Figures 3–5. From the fitting results in
Table 1, it can be seen that the modified sum of two-sine functions exhibits a better fitting performance
(with less SIC and AIC) than the other fitted models. Typically, using a large sample of profiles for
parameter estimation in the phase I analysis is necessary, especially for nonlinear profiles. In this study,
only fifteen profiles can be obtained due to a technical limitation. The excellent fitting performance that
is shown in Table 1 and Figures 3–5 must be attributed to the appropriateness of model selection and
the flexibility of the chosen models under investigation. If the fitting performance is not satisfactory,
then more profile data need to be collected for the estimation purpose before proceeding to the phase
II analysis.

The particularly high performance based on the four measures arises from the suitability of
the modified sum of two-sines with AR(1) for the reflow process data. Thus, the model previously
mentioned is considered to be the best model to undertake research. The polynomial model of order 4
with AR(1) outperforms the other polynomial models, thus being considered as the benchmark model.
These two process models with AR(1) show great flexibility in dealing with complex model-building
situations, and therefore they are also expected to be extensively applied in a wide variety of nonlinear
processes. They will be selected for evaluation in phase I and II monitoring.
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Table 1. The fitting performances for polynomial, sum of sine, and nonlinear mixed effects model
(NLME) models. (a) The fitting performances of the polynomial with first-order autoregressive (AR(1))
model; (b) The fitting performances of the sum of sine with AR(1) model; (c) The number of times
each model was chosen best over 15 profiles; (d) The fitting performances of NLME model based on
two-sine function.

The Different Order The Fitting Performance for Polynomial with AR(1) Model

R2
adj AICC SICC RSS

3rd order 0.9873 4.6003 3.7309 1522.7104

4th order 0.9904 4.3485 3.5279 1126.4767

5th order 0.9908 4.3158 3.5465 1048.1086

The Different Order The Fitting Performance for Sum of Sine with AR(1) Model

R2
adj AICC SICC RSS

One-sine model 0.9863 4.6576 3.7417 1677.0915

Two-sine model 0.9955 3.1722 2.4029 517.3413

Three-sine model 0.9909 3.4961 2.8972 994.5594

Models R2
adj AICC SICC RSS

3rd order polynomial
with AR(1) 0 0 0 0

4th order polynomial
with AR(1) 0 0 0 0

5th order polynomial
with AR(1) 0 0 0 0

One-sine with AR(1) 0 0 0 0

Two-sine with AR(1) 9 9 10 7

Three-sine with AR(1) 6 6 5 8

¯
R

2

adj
AICC SICC RSS

NLME model 0.9929 3.9730 3.5039 718.9822
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(a) (b) 

 
(c) 

Figure 3. The fitting profile using the polynomial with AR(1) model. (a) The third-order model; (b)
The fourth-order model; and, (c) The fifth-order model.
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(a) (b) 

(c) 

Figure 4. The fitting profile using the sum of sine model with AR(1) model. (a) The one-sine model; (b)
The two-sine model; a d, (c) The three-sine model.

Figure 5. The fitted profiles of the nonlinear mixed effects model (NLME).

3.3. Simulations for Phase I Analyses

In phase I, following [18] and [16], the T2
D chart is used for identifying the outlying profiles. First,

the statistic T2
D of the parameter estimates (including the AR(1) parameter) is calculated based on

Equation (12). Based on the polynomial regression model of order 4 and the modified sum of two-sines,
the control limit of T2

D control chart is plotted in Figure 6. Since no outlying profiles are found in the
15 phase I runs, as in the common SPC practice, no profiles need to be removed prior to the phase II.
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On the other hand, three types of the hypothetical process abnormalities are also tested in order to
assess and compare the performance of phase I monitoring. The first scenario assumes that the preheat
zone has a lower temperature slope. The maintenance of temperature in the dwell zone is assumed to
be unstable for the second scenario, and in the third scenario the temperature is set to over-heating in
the reflow zone. Figure 7 shows the three outlying profiles along with the average baseline using 15
in-control profiles. In common practice, these three types of abnormality will not happen at the same
time. Accordingly, in our paper, we test each abnormal profile separately.

 
Figure 6. T2

D control chart of the sum of two-sine function by using the fifteen in-control profiles.

Figure 7. The simulations of abnormal profiles.

In this simulation, the significance level of α = 0.05 is used as the significance level for any
individual profile, i.e., T2

p , p = 1, . . . , 15, and to construct the control limits [14,17]. The three simulated
abnormal profiles are individually added to the 15 in-control profiles. The T2

D statistic is computed
for the polynomial regression and the modified sum of two-sine functions with the AR(1) model.
Figures 8 and 9 show the monitoring results of the T2

D control charts for abnormal profiles 1, 2, and 3.
The simulated results reveal that the T2

D control charts are able to identify the outlying situations if the
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abnormal profiles are present. It is worth to note that the T2
D control chart is like a moving range with

individual observations, and it is not affected by shifts in the mean vector, and as a result of which it
has greater power.

(a) 

(b) 

 
(c) 

Figure 8. Detect the abnormal profiles using the polynomial model with the 16 profiles (fifteen
in-control and one out-of-control for each scenario). (a) Detecting the abnormal profile 1; (b) Detecting
the abnormal profile 2; and, (c) Detecting the abnormal profile 3.
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(a) 

 
(b) 

 
(c) 

Figure 9. Detect the abnormal profiles using the sum of sine function with the 15 in-control profiles. (a)
Detecting the abnormal profile 1; (b) Detecting the abnormal profile 2; and, (c) Detecting the abnormal
profile 3.

The polynomial model of order 4 with AR(1) and the modified sum of two-sine functions with
AR(1) can account for the autocorrelation effects appropriately, so the simulated abnormal profiles can
be successfully detected. From a fitting performance viewpoint based on Table 1, the modified sum
of two-sine functions with AR(1) takes the lead between the compared models. From an operational
point of view, the polynomial model of order 4 can be adopted, since it contains fewer unknown
parameters to be estimated and it is easier to implement in practice than the modified sum of two-sine
functions. By contrast, the modified sum of two-sine functions explains the data variance better and
is more powerful than the polynomial model of order 4. Therefore, during the pre-production stage
where the process insights should be fully gained for the purpose of process adjustment/optimization,
the modified sum of two-sine functions can be considered instead.
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3.4. Simulation Results for Phase II Monitoring

The objective of phase II is to detect shifts quickly in the process. The reliable control limits can
be established to achieve effective on-line monitoring in phase II when the in-control process data
is stable. The proposed monitoring framework uses the composite method to monitor two possible
process irregularities. First, the T2

D control chart is applied, so that the profile shape of the fitted model
can be monitored. Second, the autocorrelation of residuals is monitored by using the EWMA control
chart. If the process has been confirmed to be stable, then the 15 in-control profiles will be employed in
order to estimate the parameters of the fitted model, the mean vector, and the variance-covariance.
The parameter estimates are used to replace the unknown parameters in Equations (3)–(7), plus an
error term to simulate the profile data. The practical process is assumed to follow the modified sum
of two-sine functions with the error term to simulate the process changes. The variance of the fitted
model is estimated by using the mean square error (MSE), over the 15 in-control profiles, from the
model-building stage. The error term of the process model is assumed to be normally distributed
with zero mean and constant variance. Next, the T2

D and EWMA control charts are employed to
implement the phase II analysis, evaluating the detection performance as the process parameters shift.
The control limits are constructed using the parameter estimates of the three different fitting models
(the polynomial regression model of order 4 with AR(1), the modified sum of two-sine functions
with AR(1), and the traditional polynomial regression model of order 4) to evaluate and compare
the monitoring performances. The traditional polynomial regression model of order 4 is only used
as a benchmark. To monitor the process shape on a fair basis, in each fitting model the different
control limits should be particularly designed to have an approximately equal in-control ARL (i.e.,
ARLIN = 100) when using 10,000 simulation cycles. Moreover, the smoothing constant (θ) in the EWMA
chart is set to 0.02, as in [11] and [19]. Here, in each experiment, 20,000 profiles are simulated for
ARLOUT evaluation in terms of the shifts of different scales in the six parameters of the modified sum
of two-sine functions. Note that, based on an earlier experiment, using a typical ARLIN in our study,
like 370 or even larger, will cause indistinguishable performance in ARLOUT in the presence of a small
scale of parameter change. The formal procedure in the Phase II analysis is represented as pseudo-code
2 in the Appendix A.

In the ordinary SMT operation, if the process recipe is suitably tuned before volume production,
then the profile specification should be pre-determined and only subjected to a minuscule adjustment
as a result of product changes. Therefore, seven different types of shifts are considered in our simulation
study. The shifts of these process parameters are applied to the amplitude, the frequency, and the
horizontal phase constant in the model, as shown in Equation (5). The simulation results of ARLOUT

can be used to evaluate the on-line monitoring capability. These ARLOUT values are calculated by
setting equally spaced parameter shifts every 100 simulated profiles (maximum ARLIN = 100) and
then averaging across 20,000 simulation cycles. The parameter shift in the scale of σβ ranges from
0.5 to 3 for the six process parameters. Any parameter shift will cause the change of curve shape that
is closest to the type of sustained shift in SPC practice. Figure 10a shows the comparative profiles
under various shifts of different process parameters. In order to detect the autocorrelation effect in the
residuals of each profile, the EWMA control chart is used to implement the related monitoring tasks
using the different scales of the autocorrelation coefficient, from 0.1 to 0.9 (see Figure 10b).
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(a) 

(b) 

Figure 10. Phase II analysis. (a) Detecting the curve changes using different shifts of process parameters;
and, (b) Detecting the autocorrelation effect of residuals using exponentially weighted moving average
(EWMA) control chart.

Table 2 gives the ARLOUT estimates for shifts of the six parameters. The experimental results
indicate that, for monitoring the shape of the model, both of the composite models perform reasonably
well regardless of whether the data is modeled by the modified sum of two-sine functions or the
polynomial regression model. We also use the EWMA control chart to monitor residuals if any
autocorrelation effect in addition to the AR(1) already included in the model is exhibited. The results
show that the modified sum of two-sine functions, combined with AR(1), performs much better
than the pure polynomial regression model as λ ≥ 1.5. Even so, it is very difficult to compare the
modified sum of two-sine functions and the polynomial regression model in the composite approach,
although the former performs slightly better than the latter. In a word, it is reasonable to allege that the
modified sum of two-sine functions can be a viable modeling option for nonlinear profiling monitoring
circumstances where only small samples are available for the reflow process.
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Table 2. The average run length (ARL) comparison for different parameter shifts using three different
models. (a) a1 from a1 to a1 + λσa1 ; (b) b1 from b1 to b1 + λσb1

; (c) c1 from c1 to c1 + λσc1 ; (d) a2 from
a2 to a2 + λσa2 ; (e) b2 from b2 to b2 + λσb2 ; (f) c2 from c2 to c2 + λσc2 ; (g) The ARL for monitoring the
autocorrelation of residuals.

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

72.7286 40.0651 18.9343 9.2455 4.8773 2.8661

Control Chart Based on the Sum of Two-sine Functions with AR(1) Model

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

71.0655 40.0492 18.6020 9.0533 4.7834 2.8495

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

75.8772 45.8895 21.2343 10.5677 7.0577 3.0632

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

73.5965 41.9621 19.6273 8.9772 4.8677 2.9916

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

73.5521 40.9701 18.2644 8.7256 4.7681 2.8211

Control Chart Based on Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

74.9043 52.3352 21.2921 10.8889 7.8225 4.5232

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

74.8687 40.2647 18.5716 9.0064 4.9945 2.8466

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

74.4160 40.1462 18.3835 8.8046 4.6832 2.7475

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

78.3815 55.6741 22.7029 15.3900 6.3135 3.6904

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

71.2188 40.5620 19.4892 9.1471 5.0632 2.9617

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

70.7991 39.8413 19.2414 8.7882 4.7695 2.8921

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

79.4577 59.0987 21.8773 9.9247 6.9499 3.1433
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Table 2. Cont.

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

77.9581 40.7159 17.8598 9.5453 5.2117 2.9759

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

77.6478 40.7232 17.7346 9.0055 4.9806 2.8821

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

80.9116 51.3598 25.5898 11.8557 6.0081 4.3123

Control Chart Based on the Polynomial Regression Model of Order 4 with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

72.7417 41.3423 18.8105 9.0889 4.9321 2.8128

Control Chart Based on the Sum of Two-sine Functions with AR(1)

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

72.0051 40.9314 18.6684 9.0452 4.8423 2.7555

Control Chart Based on the Polynomial Regression of Order 4

λ 0.5 1 1.5 2 2.5 3

ARLOUT
(
T2

D
)

74.3391 45.2862 22.9480 11.3352 5.8202 3.4110

εij=φεij−1+aij,aij∼N(0,σ2)

Autocorrelation
coefficient φ

0.1 0.3 0.5 0.7 0.9

ARLOUT(EWMA) 76.4314 50.9765 26.2965 13.8156 8.7692

4. Conclusions

This paper presents a new monitoring framework for dealing with the autocorrelation effect that
exists in the errors around the functional relationship when only small samples are available. The
research framework includes model building and phase I and II analyses. The central idea of the
proposal is how to construct an appropriate profile model that is capable of dealing with the time series
effect. Using different profile models (the polynomial regression model, the modified sum of two-sine
functions, and the nonlinear mixed effects model), the phase I and II analyses of reflow process data
can be conducted. In phase I, the Hotelling T2

D control chart is utilized to screen the outlying profiles.
When the outlying profiles are investigated and removed, then the same control charts with the EWMA
control chart for monitoring autocorrelation are used for phase II monitoring, where the detectability
of parameter shifts in terms of ARLOUT is evaluated. According to the comparison results, some
concluding remarks and suggestions can be provided:

1. If the profile pattern exhibits a significant autocorrelation effect, then the proposed framework
can use a different profile model with AR(1) and the proposed model selection procedure to
strengthen the fitting performance. Furthermore, we feel safe to conclude that the sum of two-sine
functions with AR(1) can be a viable modelling option for nonlinear profiling monitoring instances
where only small samples are available for the reflow process.

2. In phase I of the reflow process that is investigated in this paper, two types of composite models
all have good monitoring ability for identifying outlying profiles. However, the nonlinear mixed
effects model cannot resolve the problem of autocorrelation in the residuals. This situation will
cause difficulties in monitoring when autocorrelation is present.
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3. According to the phase I results of the reflow process that was investigated in this study,
the Hotelling T2 control chart can produce satisfactory performance for monitoring of the
process profile.

4. On the whole, the proposed monitoring framework displays better detecting performances than
the traditional polynomial regression model in phase II analysis for the reflow process that
is discussed in this paper. In addition, the proposed EWMA control chart is also effective in
detecting changes of the autocorrelation effect in residuals. This study pinpoints a major finding,
a fact that the modified sum of two-sine functions is able to statistically fit the nonlinear profile of
the reflow process data extremely well. In the proposed framework, the Hotelling T2 control chart
and the EWMA control chart work in harmony to simultaneously monitor the parameter estimates
(i.e., profile shape) and residuals (i.e., profile variability), respectively. The simulation results in
phases I and II illustrate the proposed monitoring framework. Therefore, the practitioner can
follow the guidelines of model building and process monitoring that are demonstrated in this
paper, as the nonlinear profile monitoring task of the reflow process is necessary.

5. To achieve desirable monitoring performances for other potential applications, the parameter
setting of the control chart bears further scrutiny. A real-data examination of phase II analysis
should be further conducted to complement the research outcomes that are delivered in this paper.

Author Contributions: This is a joint work of the three authors; nevertheless, each author was especially in charge
of his expert and capability: S.-K.S.F. and J.-X.L. for conceptualization, methodology, investigation and formal
analysis, S.-K.S.F. and C.-H.J. for validation, original draft preparation and writing.

Funding: Shu-Kai S. Fan was partially funded by the Ministry of Science and Technology Project
MOST 105-2221-E-027-071-MY3.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

1. The pseudo-code for the proposed monitoring framework:

Input the reflow process data
Do

Use three nonlinear models to fit the data;
Calculate (R2

adj, SSE, SICc, AICc);

While (the goodness of fit test is satisfied)
If (autocorrelation in the residuals)
{
Incorporate the time series model;
}
Construct the fitted model for each profile data
Calculate the T2 statistics using the vector of parameter estimates
Calculate the control limits for the T2 statistics
If (T2

C > UCLC) or (T2
D > UCLD)

{
Do
Remove the out-of-control profiles;
Recalculate the T2 and its upper control limit to check for any out-of-control profile;
While (all out-of-control profiles removed)
}

Calculate ARLIN and ARLOUT for phase II analysis
2. The pseudo-code for Phase II analysis
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For (the number of executions = 1:10,000)

Count = 0;

For (the number of simulated profiles = 1:20,000)

Count = count + 1;

Index = 0;

If (T2 > UCLT2)

RL (the number of simulations) = the number of simulated profiles;

Break;

Else

For (the sampling number of each profile = 1:48)

Calculate EWMA Z(the sampling number of each profile)

If (Z > UCLEWMA or Z < LCLEWMA)

Index = 1;

Break;

End

End

If (index = 1)

RL (the number of executions) = count;

Break;

End

End

End

End

Calculate ARL;
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Abstract: The integrated modular avionics (IMA) system is widely used in all classes of aircraft as
a result of its high functional integration and resource utilization in developing advanced avionics
systems. However, a series of challenges related to safety assessment exist in the background of the
logical architecture for multi-message interactions of the IMA system. Traditional safety assessment
methods are mainly based on engineering experience, and are difficult to reuse, incomplete, and even
error-prone. Here we propose a method to assess the availability of the IMA system based on
the thinking of model-based safety analysis. To aid the proposed method, we implement a tool to
generate a AltaRica 3.0 file used to assess the IMA system model. The simulation results show that the
proposed method makes the availability assessment fast, efficient, and effective. Moreover, we apply
this method to the modification analysis of the IMA system under the condition of satisfying the
safety requirement. Our study can enhance the safety assessment of safety-critical systems effectively,
assist the design of IMA systems, and reduce the amount of errors during the programming process
of the safety model.

Keywords: availability assessment; integrated modular avionics; model-based safety analysis;
AltaRica 3.0

1. Introduction

Integrated modular avionics (IMA) is the state-of-the-art methodology in the real-time computer
network airborne system domain, which consists of a number of computing modules capable of
supporting numerous hosted applications with different criticality levels [1,2]. Up to now, IMA
has been widely used in large, civil aircraft, such as the Airbus A380 and Boeing B787, due to the
remarkable improvement in system efficiency, with weight and power consumption reductions by
means of comprehensive resources integration or high resources sharing [3]. Different from the
federated digital architecture, the IMA system can be divided into three levels: the functional layer,
logical layer, and physical layer. The visual objects in the logical layer work together to provide
services for hosted applications in the functional layer by utilizing the resources in the physical layer.
In addition, some IMA systems, like that in the A380, use two redundant avionics full duplex switched
ethernet (AFDX) networks to guarantee the required availability [4]. However, at the same time,
the reuse of the traditional safety assessment will become more difficult. Virtual link (VL), the central
feature of an AFDX network, is a unidirectional logic path from the source end-system to all the
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destination end-systems [5]. In this way, VLs are mapped onto visual objects in the logical layer,
AFDX switches and end-systems are mapped onto the resource in the physical layer, and functions
are mapped onto the application in the functional layer. In practice, the system engineer utilizes
the IMA configure tool to obtain a specific VL configuration, whose network performance meets the
needs of hosted applications. However, the above VL configuration needs to be further analyzed to
verify that the availability of specific applications appropriate to a required criticality level is satisfied.
Availability is the qualitative or quantitative attribute that signals that a system is in a functioning state
at a given point in time, and it is sometimes expressed in terms of the probability that a system does
not provide its output(s) (i.e., unavailability) [6]. It is an important factor in the area of reliability and
safety, especially for the safety-critical system. Traditionally, the safety assessment and hazard analysis
are modeled on fault tree analysis (FTA) by analysts based on engineering experience, which is easy to
understand, but hard to reflect in real designs. Even more important for complex avionics systems,
the FTA model is too huge to modify with any minor change by manual operation [7]. In addition,
traditional safety analyses (FTA, etc.) are usually based on informal system models, which are always
regarded as incomplete, inconsistent, and error-prone [8]. Moreover, a consistent formal model is
needed in both system design procedure and safety analysis procedure. To solve these problems,
model-based safety analysis (MBSA) is proposed.

Up to now, MBSA has been widely used in the fields of aviation [9], railways [10], automotives [11],
and other safety-critical systems [12]. During the process of MBSA, system engineers and safety
analysts share a common system model. It extends the system model with a fault model as well as
relevant portions of the physical system, and is recommended to model complex systems in ARP 4761A
draft [13]. In addition, Laboratoire Bordelais de Recherche en Informatique (LaBRI) developed a free
formal language, AltaRica, to model both functional and dysfunctional behaviors of systems. Models in
AltaRica 3.0 are described by guarded transition systems (GTS), which consists of state variables, flow
variables, events, transitions, and assertions [14]. AltaRica 3.0 can support the modeling of event
driven systems based on MBSA, and the model described can be hierarchical and compositional [15].
Thus, AltaRica 3.0 has been widely used to model these safety-critical systems [16,17].

Some researchers have investigated the safety assessment of avionics systems based on MBSA.
Morel used MBSA to validate several IMA architectures with three levels, and suggested that MBSA
is a good method for safety assessment in early validation to support flexible and rapid prototyping
of integrated systems, and expressed that his study needed to do some quantity analysis to verify
whether the availability further met the requirements [9]. Li used MBSA to study the safety assessment
of complex aircraft products, proposed a safety modeling approach based on AltaRica, and proved its
validity through simple hydraulic system verification [18]. The safety analysis of IMA based on MBSA
have also been studied, while the model described by AltaRica was totally coded by hand, this makes
it difficult to reuse and easy to make mistakes with [19].

In this paper, to study the impact of using the effective procedure and tool to analyze the safety
of IMA systems, a method based on MBSA using AltaRica 3.0 to assess the availability of the IMA
system is proposed and a tool to aid the assessment method is implemented. An IMA system case is
modeled to verify the validity of the proposed method. In addition, we do some research on design
optimization of the IMA system. Finally, the advantages and disadvantages of the different assessment
methods are analyzed. This provides new insights into the safety assessment and hazard analysis in
an IMA system operating within an acceptable safety level.

2. Assessment Method

Model-based safety analysis (MBSA) is able to build a complete, accurate, and consistent safety
model for complex, safety-critical systems [20]. Generally, there are seven steps in a MBSA process:
“Gather the most complete system data available at the time”, “Define the goal and the granularity
of the analysis”, “Define the failure conditions to be studied”, “Build the failure propagation model
(FPM) according to the collected data”, “Build the failure condition logic”, “Verification of the FPM
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and failure condition logic”, and “Failure condition evaluation & analysis”. However, not every MBSA
process suits the above steps. In addition, there is no limit to the model languages in a MBSA process.
Considering this, AltaRica 3.0, an available, high-level language for event driven modeling of complex
systems, is especially well suited for safety analyses and performance analyses. AltaRica 3.0 defines
the block by representing the component with failure mode, which is composed of the declaration of
variables and events, and the definition of transitions and assertions [18].

As shown in Figure 1, the system designer is responsible for the system model while the safety
engineer is responsible for the safety model. An IMA system model consists of three layers: the physical
layer, logical layer, and functional layer. These three layers have one-to-one correspondence with the
failure modes, failure propagation models, and failure conditions, which constitute an IMA safety
model. According to the requirement, the system designer utilizes the IMA configure tool to generate
the xml file for data exchange. The file in xml format contains the failure rate and configured VLs
of every component to describe the logical relationship between the components in the IMA system.
In this paper, the data about safety of failure modes and failure propagation models can be collected
from the system model and translated into the description of the alt file, which is used to describe the
safety model. The safety engineer obtains the information about the function from the system designer
and defines the invalid function as the studied failure condition. The configuration xml file is used as
interface control document (ICD) for components in IMA system. Note that the ICD file is built by the
system designer, and it is always regarded as the input for the safety engineer.

Figure 1. Generated mapping from system model to safety model for a integrated modular avionics
(IMA) system

In this paper, a method is proposed to assess the availability of the typical IMA system based
on MBSA using AltaRica 3.0. On the basis of the system model described in the xml file, we build
the safety model in the alt file (AltaRica 3.0 format) by utilizing a tool named xml2alt4ima which was
developed by our team. In the xml file, there is one root element named “VirtualLinks” after XML
declaration. Each component is an element of the VirtualLinks. Every component has three attributes
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to represent “Name”, “GuID”, and failure rate of “Loss”. Every component also contains several
elements to represent the configured VLs. Every VL consists of 10 attributes: “Name”, “GuID”, “BAG”,
“MaxFrameSize”, “MinFrameSize”, “Priority”, “Captain”, “ActualPath”, “Source”, and “Destination”.
Note that not every attribute is utilized in our method, for example, “BAG” is used to set the time gap
between two packages, and it’s used to assess the performance in real-time. In our method, “Name”
and failure rate of “Loss” of each component, and “Name” and “ActualPath” of each VL are the safety
properties and they are utilized in describing the safety model.

The xml file contains all components with thier configurations, and these configurations can be
mapped onto VLs in the physical layer and components in the logical layer. In addition, since the
fault may occur in every component in the physical layer, each component has a responding failure
mode in safety model. Each VL in the logical layer has its own working status, which can be changed
when fault occurs in the related components. The failure propagation models and failure modes are
described by “variable”, “ComponentMode”, “event”, and “transition” in the alt file. The “variable” is
used to describe the state of the system or subsystem, the “ComponentMode” is used to describe the
status of component, the “event” is used to describe the event that may occur in the system, and the
“transition” describes how the system evolves. The variable with brackets in the alt file generated
by the functions means it is not required, but it can assist in the process of calculating the observer,
especially when the observer is a complex function or failure condition. Moreover, the functions in
the functional layer are defined by the system designer, and it is the basis of the failure condition in
the safety model during the process of MBSA. The failure condition is a condition having an effect
on the aircraft, which is usually caused by one or more failures or errors associated with the flight
phase, relevant adverse operational or environmental conditions, or external events [21]. To sum up,
the system model described in the xml file can be mapped onto the physical layer and logical layer,
and it contains the basis data of the safety model which is described in the alt file. The safety engineer
needs to understand the system model, extract valid information of the safety assessment, build the
failure condition with the help of the system designer, and thus, realize the safety model.

Therefore, the process to assess the availability of the IMA system can be concluded in a method
as follows:

• Step 1. Define the failure condition of the IMA system and their safety requirements.

The failure condition means an unexpected state. It is always a logical combination of some
unexpected states. For the IMA system, it means an invalid function.

• Step 2. Utilize the special generation tool (xml2alt4ima) to generate an alt file based on the

configuration xml file.

The xml2alt4ima tool is designed to aid the construction of the alt file according to the xml
configure file.

• Step 3. Manually add the observer, assertion, and variables if needed.

Complete the alt file manually. The observer is used to represent the failure condition and
complex function. The assertion contains some sentences to represent the logical relationship.
Variables provide assistance in understanding the logical relationship between the failure
condition and failure mode. In addition, we need to add a variable named “failed”, which
is used to represent the top event of the fault tree.

• Step 4. Utilize the AltaRica 3.0 assessment tool to compile the alt file, and obtain the cut set,

probability, contribution, and so on.

The AltaRica 3.0 compiler can explain the meaning of the alt file. We recommend the free
OpenAltaRica tool [22], which integrates many analysis functions.

The xml2alt4ima tool is developed in Matlab 2016a, and the core algorithm is illustrated in
Algorithm 1.
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Algorithm 1 The algorithm to generate the alt file from the configuration xml file of the IMA system.

Input: xml file, including m (m≥1) components with failure rate and configured VLs;
Output: alt file, including file structure, event, transition and required variable;

1: Begin initialization
2: Define the domain of ComponentMode for all components
3: End initialization
4: m⇐ the quantity of the components in the xml file
5: For component i (1≤i≤m)
6: Ratei ⇐ the failure rate of component i
7: Define the state of component i based on ComponentMode
8: Define the event for component i with Ratei
9: Define the transition of component i based on event

10: n⇐ the quantity of the VLs configured in component i
11: For VL j (1≤j≤n)
12: Define variables for VL j configured in component i
13: p⇐ he quantity of components in the actual path through VL j
14: For component k (1≤k≤p)
15: Add action for VL j in the transition configured in component i
16: End component k
17: End VL j
18: End component i
19: Delete redundant variables for VL
20: Begin modification
21: Add assertion for the failure condition
22: Add block for the whole model
23: End modification

3. Case Study

In this section, a typical example of the IMA system model is introduced in Section 3.1,
some general assumptions and failure condition are presented in Section 3.2, the results based on our
proposed method is calculated, and it is also verified by other methods in Section 3.3. On the basis
of the results, we try to optimize the system model and propose advice for the system designer in
Section 3.4. We also try to explore the efficiency of different safety assessment methods in Section 3.5.

3.1. IMA System Model

As a result of the high requirement of performance and availability, the utilization of the existing
resource becomes the most difficult point in the structural design of IMA and the core architecture
of civil avionics systems [23,24]. For example, to avoid a single-point failure, all AFDX networks
and end-systems are designed to be double or triple module redundant. Figure 2 shows a typical
IMA system model with two redundant AFDX networks, three general processing modules (GPM),
three remote data concentrators (RDC), and two hosted functions (HF). The RDC is designed for data
acquisition from the sensor (SEN) and other signal sources, the GPM is designed for data calculation
and procession, the HF is designed for data display and upper application, and the switch (SW) is
designed for transferring data through the IMA system. It is assumed that HF1 is used by the captain
and HF2 is used by the copilot. Every HF needs data processed by the GPM from both SEN1 and SEN2.

SEN1 BU denotes the backup of SEN1, and SEN2 BU denotes the backup of SEN2. Every RDC
obtains the data from the connected sensors through the ARINC 429 bus, and transfers these data to
three GPMs through the redundant network. After processing these data, every GPM transfers the
processed data to two HFs through the redundant network. The GPM and HF are able to utilize the
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effective data and drop the redundant data. In addition, since the sensors are connected with the RDC
through the ARINC 429 bus, instead of the AFDX switch, there is no VL configuration in the sensors.

Figure 2. The model of a integrated modular avionics (IMA) system

3.2. Assumption and Failure Definition

There are 12 components in the IMA system model, as shown in Figure 2. To simplify the model,
there are six general assumptions [24–26].

Assumptions

• Faults are modeled as statistically independent distributed events;
• The failure rate of each component is a constant;
• A fault occurs instantaneously and at most one fault event in a minimum time slice;
• The system and its components have two states: normal and failure;
• The system and its components are unrepairable while in use;
• The cable between two components keeps working.

Note that the failure distribution of the components is assumed to be a λ-exponential distribution
where λ is equal to the failure rate per flight hour. The mean time between failure (MTBF) and failure
rate per flight hour of these components are shown in Table 1. The failure rate of the sensor comes from
the book written by Jukes [27], the MTBF of the switch and GPM come from Reference [4], and the
MTBF of the RDC comes from a booklet published by a RDC manufacturer [28]. The HF exists in a
specific line replaceable unit (LRU), so these data vary with different LRU. The MTBF of the HF refers
to the devices in the display system designed by the China National Aeronautical Radio Electronics
Research Institute (CARERI). Components fail instantaneously without any common cause effect.
Since the sensors do not belong to the IMA system, their failures are not calculated in Section 3.3.

Table 1. Failure rate of components in the IMA system.

Component Mean Time Between Failure (MTBF) Failure Rate per Flight Hour

Sensor (SEN) 20,000 h 5.00× 10−5

Switch (SW) 100,000 h 1.00× 10−5

Remote data concentrator (RDC) 14,000 h 7.14× 10−5

Hosted function (HF) 16,000 h 6.25× 10−5

General processing module (GPM) 50,000 h 2.00× 10−5

In this paper, the meaning of the failure condition is similar to the functional failure mode.
According to their severity, failure conditions can be classified into catastrophic, hazardous, major,
minor, and of no safety effect. On the basis of the design experience of civil aircraft projects,
a safety-critical function is defined in the model: at least one HF can get both sets of sensor data
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processed by the GPM. In other words, a hazardous failure condition defined and denoted as
LOSS_SEN_HF. LOSS_SEN_HF means the crew, both HFs, cannot get either set of sensor data processed
by the GPM. Development assurance level (DAL) is defined in aerospace recommended practice (ARP)
4754A [6] and the above function should satisfy with DAL B, which means this failure condition may
cause the hazardous effect and its failure rate must be lower than 10−7 per flight hour [29].

3.3. Results

We added observers and assertions for a special failure condition based on the alt file generated
by xml2alt4ima tool. Then, we ran its program in OpenAltaRica tool, the aim of which was to develop
a complete set of tools for the high-level modeling language AltaRica 3.0 [30]. Then, we generated a
fault tree in open probabilistic safety assessment (OPSA) format from AltaRica 3.0 model as below.

As shown in Figure 3, the top event of the fault tree is LOSS_SEN_HF, and the basic events are the
failures of these components. The size of the generated OPSA file was 8318 KB. There were thousands
of automatic defined gates, including all the combinations of different basic events.

Figure 3. The fault tree of the defined failure condition

In addition, we modified the file (XFTA.xml) to meet with the failure conditions defined
above [31,32]. Finally, we got the minimal cut set of the failure condition, as shown in Table 2.
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Table 2. Minimal cut set of LOSS_SEN_HF in the IMA system.

Rank Minimal Cut Set Probability

1 rdc1_f, rdc3_f 5.10× 10−9

2 rdc2_f, rdc3_f 5.10× 10−9

3 hf1_f, hf2_f 3.91× 10−9

4 gpm1_f, gpm2_f, gpm3_f 8.00× 10−15

5 rdc1_f, sw2A_f, sw2B_f 7.14× 10−15

6 rdc2_f, sw2A_f, sw2B_f 7.14× 10−15

7 rdc3_f, sw1A_f, sw1B_f 7.14× 10−15

8 hf1_f, sw2A_f, sw2B_f 6.25× 10−15

9 hf2_f, sw1A_f, sw1B_f 6.25× 10−15

10 gpm3_f, sw1A_f, sw1B_f 2.00× 10−15

11 hf2_f, rdc1_f, sw1A_f, sw2B_f 4.46× 10−19

...
...

...

Since switches are configured as redundant devices, the IMA configure tool denotes sw1A and
sw1B to represent switches with the same location. There are hundreds of minimal cut sets generated
by OpenAltaRica, while three second-order cut sets and seven third-order cut sets make up the majority
of the top event.

The probability of LOSS_SEN_HF per flight hour is 1.41022× 10−8, which complies with the
safety requirements.

Besides, we used other assessment methods to verify the proposed method. We utilized Simfia
(software developed by APSYS) to build the model of the above system, generate the fault tree,
and calculate the availability. The model and the fault tree of Simfia are shown in Figure 4.

Figure 4. The model and the fault tree of Simfia. (a) Description of the IMA model. (b) The fault tree
generated by the Simfia.

The availabilities of the above two methods were a little different (1.41088× 10−8 calculated
by Simfia), and the deviation comes from the computational accuracy of Simfia. We also used the
Monte Carlo simulation to verify the proposed method. The failure condition “LOSS_SEN_HF”
occurred 141 times over 10,000,000,000 simulation runs. The result of the Monte Carlo simulation is
approximately the same with the above two methods. In summary, the Monte Carlo simulation proves
the correctness of our method.
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3.4. Optimization of the IMA System

The GPM in the IMA system is always configured with many applications, thus it is capable of
supporting numerous upper functions of differing critical levels. In this paper, we only define one
function: the HF obtains sensor data from the RDC processed by GPMs. All devices are redundant in
improving the availability of the above function.

As shown in Table 2, the cut set rank first and second are the combination failures of the RDCs,
which means that the failures of both data sources can lead to a top event. The cut set rank third,
meaning the failures of both data destinations, can lead to a top event as well. The third-order cut
set is a combination of different types of components, excluding the cut set rank fourth, which is the
failure set of all GPMs. As is well known, three redundant devices failing per flight hour is an event
with a small probability, unless these devices are designed with the same unknown bug.

For the function defined in this paper, it seems that there is no need to use three GPMs to
satisfy the safety requirement, which should be researched further. Then, we tried to modify the
logical architecture with only two GPMs, and generate the alt file referring to the prior subsection.
The probability of LOSS_SEN_HF per flight hour with two GPMs is shown in Table 3.

Table 3. Probability of LOSS_SEN_HF in the IMA system with two GPMs.

Configuration Probability of LOSS_SEN_HF

without GPM1 1.45022× 10−8

without GPM2 1.45022× 10−8

without GPM3 1.46022× 10−8

Note that the original IMA system includes three GPMs: GPM1, GPM2, and GPM3. Configuration
of “without GPM1” denotes the current defined function in the IMA system model only employing
GPM2 and GPM3.

Table 3 shows that the probability of LOSS_SEN_HF in the IMA system without GPM1 or GPM2
is lower than that without GPM3. This is due to the fact that in the latter configuration there exists
another second-order cut set “sw1A_f, sw1B_f”, more than in the first two configurations. As Figure 2
shows, switches are designed to connect with part of the GPMs to balance the communication load.
In the above model, it can be concluded that the load balancing designation can reduce the risk of
common cause failure, especially for same zone risk.

3.5. Efficiency of Safety Assessment Process

The advantage and disadvantage of the three safety assessment methods are analyzed in this
section. The first one uses the proposed method based on the MBSA, the second one uses the safety
assessment tool (Simfia) to build the safety model manually, and the third one uses the traditional tool
(PTC Windchill Quality Solutions, also known as Relex) to build the fault tree based on engineering
experience directly. The main steps of obtaining the availability of the failure condition with the
different methods are summarized in Table 4. “Auto” means the corresponding step can be operated
by software, while “manually” means that the step should be done by a safety engineer, and the
context after [source] of each [auto] signifies the data source of corresponding step. It is clear to see
that the MBSA requires less manual operations.

With the help of the senior safety engineers in CARERI who have five years experience in using
both Simfia and Relex, we tried to analyze the availability of different IMA cases for analyzing the
efficiency of the above three methods. All our experiments were conducted on a single core of a
2.7 GHz Intel Core2Duo processor with 2 GB RAM running on Windows XP. The statistical data are
shown in Table 5.
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Table 4 shows that our proposed method based on the MBSA costs less time to model than the
traditional method or Simfia. When the system changes, our proposed method can be changed more
efficiently than the other two methods. However, the quantity of gates and basic events of the fault tree
generated by OpenAltaRica is larger than that of the other two methods, and the time for calculating
the cut set of our proposed method is longer. In addition, different analysts have different styles to
define the gate of the fault tree, which makes it difficult for other analysts to understand the fault tree
generated by Relex. When utilizing Simfia to analyze the availability, analysts need to remodel the
system according to their comprehension, which is inefficient and prone to error. On the contrary, our
proposed method enables the safety analyst to devote their time to the safety analysis and designation
advice rather than on duplicate work.

4. Conclusions

IMA is recommended because of its high utility as regards resources and hierarchical architecture,
as well as its ease of use for the engineer. However, the traditional availability assessment of the IMA
system with the feature of the redundant AFDX network is time-consuming and error-prone. For a
safety-critical system, the common way to analyze the availability is through modeling the fault tree
based on engineering experience. In this paper, we propose an availability assessment method for the
IMA system based on MBSA using AltaRica 3.0 and implement a tool to generate an alt file based on the
configuration xml file of the IMA system. In this way, the availability assessment becomes faster and
can be modified effectively according to the change of system. Taking a typical IMA system model as
an example, the results indicate that the application in the IMA system satisfies the safety requirements.
In addition, we also find that the load balancing designation of the IMA system is advantageous in
reducing the risk of common cause failure. Our method can also be used in the availability assessment
of a safety-critical system with hierarchical architecture with a functional–logical–physical layer.

In the future, we will research the safety analysis of the IMA system in the following two aspects:
On the one hand, considering that different GPMs can process respective functions, it is necessary to
study the feature of the fault propagation process in the IMA system; on the other hand, it is of great
importance to study a process which can handle the availability assessment considering errors or the
confusing of basic components and functions, rather than the loss of these modules.
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Abbreviations

The following abbreviations are used in this manuscript:

IMA Integrated Modular Avionics
AFDX Avionics Full Duplex Switched Ethernet
VL Visual Link
FTA Fault Tree Analysis
MBSA Module Based Safety Analysis
ARP Aerospace Recommended Practice
GTS Guarded Transition Systems
FPM Failure Propagation Model
CARERI China National Aeronautical Radio Electronics Research Institute
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ICD Interface Control Document
GPM General Processing Module
RDC Remote Data Concentrator
HF Hosted Function
SW Switch
SEN Sensor
BU Backup
ARINC Aeronautical Radio Inc.
MTBF Mean Time Between Failure
LRU Line Replaceable Unit
DAL Development Assurance Level
KB Kilo Byte
OPSA Open Probabilistic Safety Assessment
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Abstract: Gas turbines are widely used all over the world, in order to ensure the normal operation of
gas turbines, it is necessary to monitor the condition of gas turbine and analyze the tested parameters
to find the state information contained in parameters. There is a problem in gas turbine condition
monitoring that how to locate the fault accurately if failure occurs. To solve the problem, this paper
proposes a method to locate the fault of gas turbine components by evaluating the sensitivity of tested
parameters to fault. Firstly, the tested parameters are decomposed by the kernel principal component
analysis. Then construct the statistics of T2 and SPE in the principal elements space and residual
space, respectively. Furthermore, the thresholds of the statistics must be calculated. The influence of
tested parameters on faults is analyzed, and the degree of influence is quantified. The fault location
can be realized according to the analysis results. The research results show that the proposed method
can realize fault diagnosis and location accurately.

Keywords: KPCA; T2 statistical model; SPE statistical model; kernel function

1. Introduction

Gas turbines provide power for generators, ships, aircraft, etc. Gas turbines need to withstand
the influence of high temperature and high pressure when working. Obviously, the harsh working
condition of turbines will definitely lead to the performance degradation of components. Fault occurs
when performance degradation is severe. It is essential to locate the fault in time after a fault
happens [1–4]. Currently, there are four categories of fault diagnosis—the turbine model-based
method, the knowledge-based method, the data-driven-based method, and the techniques fusion-based
method [5,6]. The model-based method of the diagnosed object must establish an accurate turbine
model and on-line input parameters are employed [5]. Silvio Simani and Farsoni Saverio [7] established
an identified fuzzy model which based on the Takagi–Sugeno prototype to detect and isolate the fault.
Hector Sanchez and Teresa Escobet [8] established a model and proposed a method to check whether
the measurements fall inside the output interval. A diagnosis was proposed based on this model.
Method based on knowledge is to essentially formulate the diagnostic problem solving as a pattern
recognition problem [9,10]. Zhang, Bingham, and Gallimore [11] proposed two techniques to detect
the fault. They promoted the concept of y indices based on a transposed formulation of data matrix,
and residual errors (REs) and faulty sensor identification indices (FSIIs) are introduced in another
method. A large number of data must be available if the method based on data-driven is adopted.
The potential relationships between these data need to be extracted. Zhu, Ge, and Song [12] proposed
a robust variable model driven by the hidden Markov model and a probabilistic model with Student’s
t mixture output was designed to tolerate outliers. Furthermore, Zhang Peng [13] studied the Kalman
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Processes 2019, 7, 124

filter and applied it in the location of a fault. He focused on how to establish the linear and nonlinear
models of turbine. Based on the models, two faulty location algorithms which apply to the steady
working state and dynamic working state respectively were constructed. Vasile Palade, Ron J. Patton,
and Faisel J. Uppal [14] applied a neuro-fuzzy technique in an actuator fault location of a gas turbine.
Based on learning and adaptation of the TSK fuzzy model, a neuro-fuzzy model was used to generate
he residual, and a neuro-fuzzy classifier for the Mamdani model is used to evaluate the residual.
Che Changchang, Wang Huawei, and Ni Xiaomei [15] proposed a fault fusion diagnosis model which
is based on deep learning. The model analyzes a large number of performance data and obtains fault
classification confidence by extracting hidden features from the performance data, then conducts the
decision fusion of multiple fault classification results. Tayarani-Bathaie and Khorasani [16] constructed
two types of dynamic neural networks to learn the turbine dynamic state. For the measurable variables
of the turbine, different neural networks are trained to capture the dynamic relationships. Then,
construct a multilayer perception network function to isolate the fault. All model-based methods need
to build models that accurately reflect the turbine state. However, due to the large number of turbine
parts and the bad working environment, there are too many factors that affect the working state of
gas turbine. Thus, it is very difficult to build high-precision models. In addition, the data-driven
approaches require sufficient samples to be obtained to locate the fault. Furthermore, the algorithm
designer must know the fault generation mechanism and the relationship between these samples.
All the above conditions are difficult to meet at the same time.

To avoid the problems mentioned above, and to locate the faults successfully, this paper
proposes a fault location approach based on the sensitivity analysis of tested aerodynamic parameters.
This approach belongs to the category of data-driven method and the faulty samples are not needed.
Firstly, when the turbine is testing, collects the measured data in real-time. Then decomposes the
measured data based on the kernel principal component analysis, constructs the Hotelling-T2 (T2)
statistic, which is the application of the T-statistic in multivariate analysis in the principal space
and squared prediction error (SPE) statistics in residual space after data decomposition. Further,
the thresholds of statistics must be calculated, determining whether the fault occurs by comparing
the relationship between the T2 statistic and its threshold. If a fault occurs during detection, we
calculate the partial derivatives of the T2 and SPE statistics to the measured parameters. The greater
the values of the partial derivatives, the greater the impacts of the measured parameters to the statistics.
According to the working principle of gas turbines, it can be known that the parameters at the outlet of a
component will fluctuate firstly and then the fluctuation spreads to other components if a component is
faulty. The amplitude of the fluctuation at the outlet of the failed component is the greatest. Obviously,
partial derivatives can be used to indicate the degree of influence of the measured parameters when a
component fails.

2. Materials and Methods

Principal component analysis is a method of data processing which is suitable for linear system
and transforms the correlated data into uncorrelated ones by a series of orthogonal changes. Gas
turbine is a typical nonlinear system and great error may be caused if PCA is directly used to diagnose
the fault of turbine. This paper adopts the kernel principal component analysis to detect the gas turbine
fault. By using the kernel function, KPCA has strong nonlinear system processing ability [17,18].
The processes of KPCA are shown below [19–23].

For a given data sample collection, x1, x2, x3, . . . , xq ∈ Rn, a nonlinear transformation ∅ maps the
samples into a higher feature space F:

x ∈ Rn ∅→ ∅(x) ∈ F (1)

where ∅(x) is the expression of samples in feature space. The covariance of ∅(x) can be expressed as:
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CF =
1
n

n

∑
i=1

∅(xi)∅(xi)
T (2)

λv = CFv (3)

where λ is the eigenvalue of CF and v is the eigenvector of CF. Calculating the inner product of ∅(xi)

with λv and CFv respectively:
λ
(
∅
(
xj
)·v) = ∅

(
xj
)·CFv (4)

The eigenvectors can be represented by a series of constants αi, as follows:

v =
n

∑
i=1

αi∅(xi) (5)

Combine Equations (2)–(5):

λ
n
∑

i=1
αi[∅

(
xj
)·∅(xi)] = ∅

(
xj
) 1

n

n
∑

i=1
∅(xi)∅(xi)

T n
∑

k=1
αk∅(xk)

= 1
n

n
∑

k=1
[[

n
∑

i=1
∅(xi)∅(xi)

T][αk∅
(
xj
)·∅(xk)]]

(6)

Simplify Equation (6) into Equation (7):

nλα = Kα (7)

In Equation (7), K = [∅
(
xj
)·∅(xi)] . K is a kernel function which calculates the inner product of

vectors in high-dimensional feature space. To strengthen the ability of KPCA to deal with nonlinear
problem, the Gauss radial basis function is adopted and its expression is:

K(xi,x) = exp [−‖xi − x‖2

σ2 ] (8)

Normalize the eigenvectors v by Equation (8):

〈vk, vk〉 = 1 (9)

It can be seen that the vector α is normalized by Equation (9). Representing the mapped data in
the feature space as tk, there is:

tk = 〈vk,∅(x)〉 =
n

∑
i=1

αk
i [∅(xi)·∅(x)] =

n

∑
i=1

αk
i K(xi, x) (10)

where αk
i is the i-th coefficient of the k-th eigenvalue of matrix K to eigenvector. The cumulative

contribution rate of variance is used to determine the number of principal components which mapped
to the feature space. The calculation equation is as follow:

∑l
k=1 λk

∑n
k=1 λk

> ε (11)

where l is the number of principal component and ε is a constant. The value of ε reflect the influence
of noise. Usually, the value of ε is between 0 and 1.

Equations (2)–(11) are the steps to conduct the kernel principal component analysis. To achieve
the fault detection of gas turbine components, the statistics of T2 and SPE must be constructed, as
shown below:

T2 = [t1, t2, . . . , tl]Λ
2[t1, t2, . . . , tl]

T (12)
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where Λ is a diagonal matrix consisting of principal component eigenvalues. tk is the mapped data of
samples in the feature space.

T2
th =

l
(
n2 − 1

)
n(n− l)

Fα(l, n− l) (13)

T2
th is the threshold of the T2 statistic and Fα(l, n− l) is upper limit value of F-ditribution with

confidence level α:

SPE = ‖∅(x)−∅k(x)‖2 =
n

∑
i=1

t2
i −

l

∑
i=1

t2
i (14)

SPEth = θ1[
Ca

(
2θ2h2

0

) 1
2

θ1
+ 1 +

θ2h0(h0 − 1)
θ2

1
]

1/h0

(15)

θ1 =
n

∑
i=k+1

λi, θ2 =
n

∑
i=k+1

λ2
i , θ3 =

n

∑
i=k+1

λ3
i , h0 = 1− 2θ1θ2/

(
3θ2

2

)
(16)

Based on the KPCA introduced from Equations (2)–(15), a fault diagnosis algorithm is designed
to determine whether the turbine component is fault. The tested parameters include all the values
of total temperature and total pressure at the outlet of gas turbine components. Decomposing these
parameters by kernel principal component analysis, construct the T2 statistic, SPE statistic, and their
corresponding thresholds. Determine whether a fault occurs by comparing the relationship of the T2

statistic and its threshold.
This section focuses on how to locate the fault when the failure occurs. By calculating the partial

derivatives of statistics T2 and SPE to the tested parameters, the sensitivity of tested parameters to
the fault can be expressed, and the location of the fault can be determined according to the sensitivity.
For the T2 statistic, the greater the value of sensitivity is, the more likely it is the location of the fault.
Kernel function analysis is the most important step in sensitivity calculation, so we make the following
changes to the kernel function:

K
(
xi, xj

)
= exp [−‖xi − xj‖2/σ2]= K

(
v·xi, v·xj

)
= exp[− ‖v·xi − v·xj‖2/σ2] (17)

v = [v1, v2, . . . , vn], vi = 1, n is the number of categories of measured parameters, xi is the i-th
measurement vector consisting of different measured parameters. Calculating the partial derivative of
kernel function to vk, there is:

∂K(xi,xj)
∂vk

=
∂K(v·xi,v·xj)

∂vk
= − 1

σ2

(
xi,k − xj,k

)2
K
(
xi, xj

)
= − 1

σ2

(
vk·xi,k − vk·xj,k

)2
K
(
v·xi, v·xj

) (18)

The value of partial derivative indicates the effect of parameters to kernel function. xj,k, xi,k are the
k-th elements of the i-th and j-th measured parameters. The partial derivative of the product between
kernels can be expressed as:

∂K(xi,xnew)K(xj,xnew)
∂vk

= − 1
σ2

[
(xi,k − xnew,k)

2 +
(

xj,k − xnew,k

)2
]
×

K(xi, xnew)K
(
xj, xnew

) (19)

xnew is a vector consisting of measured parameters. Define the partial derivatives of statistics as
CT2,i,new and CSPE,i,new, there are:

CT2,i,new =

∣∣∣∣∣∂T2
new

∂vk

∣∣∣∣∣CSPE,i,new =

∣∣∣∣∂SPEi

∂vk

∣∣∣∣ (20)
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The values of CT2,i,new and CSPE,i,new indicate the sensitivity level of the i-th element of the
statistics. Steps of calculate the CT2,i,new are as follows:

T2 = [t1, t2, . . . , tk]Λ−1[t1, t2, . . . , tk]
T = KT

newαΛ−1αTKnew =

tr(αTαTKnewKT
newαΛ−1)

(21)

Knew =

K(x1, xnew)− 1
n

n
∑

j=1
K
(
x1, xj

)− 1
n

n
∑

j=1
K
(
xnew, xj

)
+ 1

n2

n
∑

j=1

n
∑

j=1
K
(
xj, xj

)
K(x2, xnew)− 1

n

n
∑

j=1
K
(
x2, xj

)− 1
n

n
∑

j=1
K
(
xnew, xj

)
+ 1

n2

n
∑

j=1

n
∑

j=1
K
(
xj, xj

)
· · ·

K(xn, xnew)− 1
n

n
∑

j=1
K
(
x2, xj

)− 1
n

n
∑

j=1
K
(
xnew, xj

)
+ 1

n2

n
∑

j=1

n
∑

j=1
K
(
xj, xj

)
(22)

There is:

CT2,i,new =

∣∣∣∣∣∂T2
new

∂vk

∣∣∣∣∣ =
∣∣∣∣∣∂
(
tr
(
αTKnewKnew

TαΛ−1))
∂vk

∣∣∣∣∣ =
∣∣∣∣tr[αT(

∂KnewKnew
T

∂vk
)αΛ−1]

∣∣∣∣ (23)

The calculation steps of SPE are as follows:

SPE = K(xnew, xnew)− 2
n

n

∑
i=1

K(xi, xnew) +
1

n2

n

∑
i=1

n

∑
i=1

K(xi, xi)− tT
newtnew (24)

CSPE,i,new =
∣∣∣ ∂SPE

∂vi

∣∣∣ = ∣∣∣− 1
σ2 [− 2

n
∂ ∑n

i=1 k(xi,xnew)
∂vi

− ∂tT
newtnew

∂vi
]
∣∣∣

=
∣∣∣ 1
σ2 [

2
n

∂ ∑n
i=1 k(xi,xnew)

∂vi
+ ∂tT

newtnew
∂vi

]
∣∣∣

=
∣∣∣ 1
σ2 [

2
n

∂ ∑n
i=1 k(xi,xnew)

∂vi
+ tr(αT ∂tT

newtnew
∂vi

α)]
∣∣∣

(25)

Figure 1 shows an algorithm for fault diagnosis and location based on above research.

 
Figure 1. Process of fault diagnosis and location.
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3. Results

In order to verify the effectiveness of the method proposed in this paper, certain of twin-spool
aviation gas turbine is adopted as the research object. It is widely known that the working condition of
the engine is very bad [13,24] (suffering from high pressure, high temperature, high stress, etc.) and the
performances of gas turbine components (such as the compressor, rotator, turbine, etc.) are decreasing
as working hours increase [25–30]. The initial working parameters of this turbine are shown in Table 1.
When these working parameters are determined, the state parameters of the engine are shown in
Figures 2 and 3 when the flight altitude and speed are different.

Table 1. Initial working parameters of turbine.

Efficiency of LPC 0.868 Pressure ratio of LPC 3.8

Efficiency of HPC 0.878 Pressure ratio of HPC 4.474
Fuel low calorific value 42,900 Total temperature of combustor outlet 1600 K

Efficiency of HPR 0.98 Efficiency of LPR 0.98
Combustion chamber efficiency 0.98 Engine room air entrainment coefficient 0.01

Cooling parameter of HPT 0.03 Efficiency of HPT 0.89
Cooling parameter of LPT 0.01 Efficiency of LPT 0.91

Design speed of LPR 10,000 (r/m) Design Speed of HPR 16,000 (r/m)

LPC—Low Pressure Compressor; HPC—High Pressure Compressor; HPR—High Pressure Rotor; LPR—Low
Pressure Rotor; HPT—High Pressure Turbine; LPT—Low Pressure Turbine.

 
Figure 2. Total temperatures of components.

In the experiment, the measured parameters include the total temperature at the outlets of low
pressure compressor LPC (Tt25), total temperature of how pressure compressor HPC (Tt3), total
temperature of the high pressure turbine HPT (Tt45), and total temperature of the low pressure turbine
LPT (Tt5). In addition, the total pressure at the outlets of the low pressure compressor LPC (Pt25),
total pressure of the high pressure compressor HPC (Pt3), total pressure of the high pressure turbine
HPT (Pt45), and the total pressure of the low pressure turbine LPT (Pt5) are included. Two faults
occurred at the 2600th sampling moment: one is the misalignment of the LPC rotor, and another
one is the crack generation of the LPT blade. The proposed method is adopted to detect and locate
the faults. Figures 4–7 are the diagrams of fault diagnosis. At the 2600th sampling time, the faults
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of the LPC and LPT are generated, respectively. In Figure 2, the value of the T2 statistic is smooth
and lower than its threshold before the 2600th sampling time. Due to the occurrence of fault at the
2600th sample, the curve takes a large jump and exceeds its threshold. In Figure 5, the SPE statistic
approaches the threshold at some time before the occurrence of fault. Since the SPE statistic mainly
contains noise information, KPCA processing cannot eliminate the noise completely. When the noise
amplitude increases, the value of the SPE statistic may exceed its threshold, which has been introduced
in Equations (13) and (15). This does not affect the fault diagnosis of the components. Figures 6
and 7 show the fault detection of the LPT and the detection results are similar with those of the LPC.
The fault location algorithm mentioned above is used to locate the fault of the LPC, HPC, LPT, and
HPT. The location of the results are shown in Table 2.

 
Figure 3. Total pressures of components.

Figure 4. Value of the T2 statistic under the condition of an LPC (low pressure compressor) fault.
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Figure 5. Value of SPE statistic under the condition of LPC fault.

 

Figure 6. Value of the T2 statistic under the condition of an LPT fault.

Table 2 shows that when any part of gas turbine components is fault, the sensitivity of measured
parameters of faulty part to the statistics of T2 and SPE is greater than that of normal ones. Take LPC
as an example to illustrate the result. If the efficiency coefficient of LPC decreased by 1% due to
the misalignment of LPC rotor, the measured parameters at the outlet of the LPC fluctuates firstly.
Sensitivities of total temperature and total pressure at the outlet of LPC measured by the sensors to T2

statistic are 0.3239 and 0.6271, which are obviously higher than those of other measured parameters.
The sensitivities to the SPE statistic are both 0.125, which are also higher than those of other parameters.
The fault location method can locate the fault to the each component. Figure 8 shows the sensitivity
distribution spectrums of the measured parameters when the gas turbine is working.
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Figure 7. Value of the SPE (Squared Prediction Error) statistic under the condition of an LPT fault.

Table 2. The sensitivity of measured parameters.

Sensitivity FLPC FHPC FLPT FHPT

Sensitivity of
measured

parameters to
statistics

CT2_T25 0.3239 0.0397 0.037 0.0279
CT2_T3 0.0045 0.6043 0.0215 0.0133
CT2_T45 0.0144 0.0789 0.0584 0.1764
CT2_T5 0.005 0.0248 0.2073 0.0177
CT2_P25 0.6271 0.063 0.0554 0.0448
CT2_P3 0.0042 0.1014 0.0246 0.0195
CT2_P45 0.0156 0.0739 0.0713 0.6866
CT2_P5 0.0049 0.014 0.5244 0.0138

CSPE_T25 0.1250 0.1249 0.1249 0.1249
CSPE_T3 0.1249 0.125 0.1249 0.1249
CSPE_T45 0.1249 0.1249 0.1249 0.125
CSPE_T5 0.1249 0.1249 0.125 0.1249
CSPE_P25 0.1250 0.1249 0.1249 0.1249
CSPE_P3 0.1249 0.125 0.1249 0.1249
CSPE_P45 0.1249 0.1249 0.1249 0.125
CSPE_P5 0.1249 0.1249 0.1245 0.1249

It can be seen that before the fault occurs in this figure, the sensitivity distribution curves are gentle
and the differences between the sensitivity curves are not obvious. When a low pressure compressor
failure occurs, the curves representing the sensitivity of the LPC increased sharply in a short time, and
the values are significantly higher than others. In addition, according to the rule of failure caused by
the degradation of gas turbine components, if the performance of a component degrades to a certain
extent and is about to fail, the degradation speed will be accelerated until the failure occurs. In this
process, the measured parameters at the outlet of deteriorating components will deviate from the real
value as the deterioration of performance. In the sensitivity distribution spectrum, the sensitivity of the
measured values of the deteriorating components will increase continuously, and the fault prediction
can be realized by comparing the changes in sensitivity.
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Figure 8. Sensitivity distribution spectra of the tested parameters.

In addition, due to the influence of harsh working circumstance, the sensor outputs may seriously
deviate from their actual values and this may lead to the misdiagnosis. It is essential to keep output
within a reasonable range. According to the working principle of gas turbines (taking an aero gas
engine as an example), the power and flow balance conditions must be observed when the turbine
is under normal working conditions and all parameters remain unchanged or fluctuate in a small
range. If the state of turbine changes due to the variation of control parameters, all the aerodynamic
parameters will bound to change greatly, reflecting an anomaly of sensor measurements. Another case
is that if only a few measurements are abnormal, according to the working principle of gas turbines
and the balance conditions, it can be known that the anomalies are caused by noise or the fault of the
sensors and the measurements must be restored. The process to detect the abnormal value and restore
the measurements is shown in Figure 9.

 
Figure 9. Processing steps for outliers.

Firstly, Grubb’s method for testing is adopted to check if the parameters of sensors are abnormal
or not. It is important to note that the value of detection level α must be determined according to the
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variation of the aerodynamic parameters. If the checked parameters are abnormal, all the parameters
should be tested by Grubb’s method. Then count the number of parameters which are abnormal. If the
number is less than the quantity of aerodynamic parameters for fault diagnosis, it indicates that the
sensors are faulty or the influence of noise increases. In such a situation, the abnormal parameters must
be restored by a support vector machine (SVR) [31] to ensure the fault location proceeds smoothly.

4. Conclusions

In this paper, a novel method to locate the fault of a gas turbine is proposed. Kernel principal
component analysis is adopted to detect the occurrence of fault. Based on the analysis of the
fault indicator and aerodynamic parameters, the partial derivative of the T2 and SPE statistics to
aerodynamic parameters are calculated. The results are used to represent the influence degree of fault
to these parameters and the fault location can be realized by different influence degrees. There are four
conclusions can be drawn, as follows:

(1) The KPCA is an effective way to detect the fault of a gas turbine. T2 and SPE statistics, and
their corresponding thresholds must be constructed. By comparing the size of the T2 statistic and its
threshold, the on-line fault diagnosis of a gas turbine can be realized. Furthermore, both statistics help
to locate the fault.

(2) The fault location of gas turbine is realized by calculate the partial derivatives of T2

to aerodynamic parameters. The size of partial derivatives represent the sensitivity degrees of
aerodynamic parameters to fault. Based on the balance working condition of gas turbine, fault
location can be achieved according to the size of partial derivatives.

(3) Sensitivity distribution spectra can be used to represent the performance degradation of the
gas turbine and identify a potential fault. When a fault which resulted by performance degradation is
about to occur, the partial derivatives of the aerodynamic parameters associated with this fault will
change dramatically and this change is easily reflected by the sensitivity distribution spectra.

(4) The method proposed in this paper is used to locate the fault of a gas turbine and how to
recognize the fault is not discussed. Whether this method can be used in fault identification needs to
be verified in the follow-up work.
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Abstract: This study develops a chance–constrained open–loop optimal control (CC–OC) framework
capable of handling rare event probabilities. Therefore, the framework uses the generalized polynomial
chaos (gPC) method to calculate the probability of fulfilling rare event constraints under uncertainties.
Here, the resulting chance constraint (CC) evaluation is based on the efficient sampling provided by the
gPC expansion. The subset simulation (SubSim) method is used to estimate the actual probability of
the rare event. Additionally, the discontinuous CC is approximated by a differentiable function that is
iteratively sharpened using a homotopy strategy. Furthermore, the SubSim problem is also iteratively
adapted using another homotopy strategy to improve the convergence of the Newton-type optimization
algorithm. The applicability of the framework is shown in case studies regarding battery charging and
discharging. The results show that the proposed method is indeed capable of incorporating very general
CCs within an open–loop optimal control problem (OCP) at a low computational cost to calculate optimal
results with rare failure probability CCs.

Keywords: robust open-loop optimal control; generalized polynomial chaos; chance constraints; subset
simulation; open-loop optimal control; battery charge–discharge

1. Introduction

In the context of open–loop optimal control (OC), the calculation of robust trajectories, i.e., trajectories
that remain safe despite model uncertainties, is crucial for safety-critical applications. This type of
problem is often treated by a chance constraint (CC) formulation, which must generally be approached via
sampling techniques. Here, the method of generalized polynomial chaos (gPC), introduced by Xiu and
Karniadakis in 2002 [1], allows for calculating arbitrarily good approximations of the system response due
to uncertainties, which can consequently be used to generate samples of the system trajectories.

In this work, we introduce gPC in open–loop optimal control problems (OCPs) with CCs, combined
with a subset simulation (SubSim) sampling technique, to calculate trajectories subject to probabilistic
constraints imposing very rare failure events. To make the CC formulation applicable for Newton-type
optimization algorithms, a differentiable approximation of the indicator function is used. Additionally,
a homotopy strategy is implemented to gradually approximate the exact CC failure domain.

Processes 2019, 7, 185; doi:10.3390/pr7040185 www.mdpi.com/journal/processes
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The formulation of OCPs with uncertainties by chance–constrained open–loop optimal control
(CC–OC) techniques is a commonly used approach, although CC–OC can be computationally expensive
and difficult to solve. The following research has been conducted within the field of CC–OC: In [2], a
general overview of different methods for handling CCs is given. The author introduces both analytical
(e.g., ellipsoid relaxation) and sampling-based methods (e.g., mixed integer programming). Both methods
are subsequently combined in a hybrid approach. Additionally, feedback control is used to satisfy system
constraints. In [3], a strategy to approximate a CC based on split Bernstein polynomials is introduced.
Here, pseudo-spectral methods are applied and a single optimization run is used on the transformed
CC–OC. Therefore, joint CCs are decomposed and a Markov–chain Monte–Carlo (MCMC) algorithm is
used to evaluate the samples.

In general, CCs are also common in model predictive control (MPC) applications [4]. A very popular
choice for this robust MPC are so-called min-max algorithms, which try to achieve a worst-case design in
the presence of uncertainties to increase the robustness [5–7]. As online applicability is very important
in MPC, CC algorithms in MPC often try to transform CCs in algebraic constraints [8]. Further methods
comprise maximizing the feasible set with CCs [9] or randomization [10]. It should be noted that none
of these methods is specifically tailored to treat rare events, which is desired in this study. These rare
events are of special importance in reliability engineering and safety critical applications and are thus very
prominent in the engineering domain. In addition, the developed method in this study should not be too
conservative as it would e.g., be the case with transformations to algebraic constraints.

In order to deal with rare events, we use the method of SubSim, proposed in [11,12]. This methodology
begins the probability estimation with a general Monte–Carlo analysis (MCA) solution and then gradually
explores different samples within the failure domain. This MCMC algorithm converges to a series of
conditional probabilities that yield the failure probability of the rare event. In the context of CC–OC,
we use the samples generated from the MCMC as evaluation samples for the solution of the OCP. Here,
we use a homotopy strategy to adapt the samples after each OCP solution until the SubSim, as well as the
OCP, fulfill the desired rare-event failure probability.

To give an overview of the development of a CC–OC framework, the paper is organized as follows.
In Section 2, some theoretical background and fundamentals of OC and gPC are introduced. Section 3
introduces the proposed incorporation of CCs in the OCP and the combination with the gPC expansion
and SubSim. The model for the CC–OC case studies is presented in Section 4, while the results are given in
Section 5. Conclusive remarks and an outlook are looked at in Section 6.

2. Theoretical Background

This section gives an overview of the methods used within this paper as well as some characteristics
of their implementation. Here, Section 2.1 introduces the general OCP formulation, while Section 2.2 gives
an overview of the gPC method and how to calculate statistics for the OCP from it.

2.1. Open-Loop Optimal Control

The OCP in this paper is given as follows (extended form of [13]):

min
x, u, p, t f

J = e
(

x
(

t f

)
, u
(

t f

)
, p, t f

)
+
∫ t f

t0=0
L (x, u, p)dt,

s.t. clb(x, u, p) ≤ c(x, u, p) ≤ cub(x, u, p),

f(x, u, p; θ) = ẋ,

ψ(x, u, p) = 0,

POCP(y /∈ F ) ≥ η

(1)
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In Equation (1), the lower and upper bounds of box constraints are denoted by lb and ub respectively and
the output variables y ∈ Rny are defined by the following nonlinear function:

y = g (x, u, p) (2)

It should be noted that we deliberately distinguish between probabilistic and deterministic (“hard”)
constraints in Equation (1). This is done due to e.g., the fact that the state integration is generally carried
out in the deterministic rather than the probabilistic domain (in our case, we use specific evaluation
nodes provided by the gPC theory), while we also have constraints that are specifically designed in the
probabilistic domain (i.e., our CCs).

The optimization/decision variables of the OCP include the states of the system x ∈ Rnx , the controls
u ∈ Rnu , the time-invariant parameters p ∈ Rnp (these might be design parameters of the model,
e.g., a surface area or a general shape parameter), and the final time t f ∈ R. We combine these variables

within the vector z =
[
t f , pT , xT , uT

]T
. The external parameters θ ∈ Rnθ are considered uncertain, but of

known probability density function (pdf). The set F , labeled failure set hereafter, is the set of states, controls,
and parameters, i.e., the outputs, which lead to a failure of the system. Note that Equation (1) is the
probability to not hit the failure set with the desired probability. This choice creates a better conditioned
nonlinear programming problem (NLP) within the Newton-type optimization. In this paper, we assume
that the probability η = Pdes(y /∈ F ) of not encountering a failure is selected arbitrarily close to 1.

It should be noted that we can assume without loss of generality that the initial time t0 is zero.
The objective is to minimize the cost functional J consisting of the final time cost index e and the running
cost index L. The OCP is subject to the following constraints:

• the state dynamics ẋ that ensure a feasible trajectory,
• the inequality path and point constraints c that ensure limits of the trajectory to be feasibly enforced

by box constraints (i.e., by lower and upper bound)
• the equality path and point constraints ψ that ensure a specific condition during the flight,

e.g., the initial and final state condition.

Generally, when the state dimension is not trivially small, OCPs as in Equation (1) are best solved
using direct methods. Direct methods first discretize the problem into a NLP, which is then solved by
classic NLP solvers. In the following, we use the trapezoidal collocation method for the discretization [13],
which is readily implemented in the OC software FALCON.m [14]. This software tool is also used to
implement the proposed CC–OC approach. Furthermore, the primal-dual interior-point solver Ipopt [15]
is used to solve the discretized NLP.

2.2. Generalized Polynomial Chaos

This section gives an overview on the gPC method. Here, Section 2.2.1 introduces the basics of the
gPC method. The calculation of the statistical moments is then presented in Section 2.2.2.

2.2.1. Definition of Expansion and Incorporation in the Optimal Control Problem

The gPC method was originally developed by Xiu and Karniadakis in 2002 [1] and is an extension of
the Wiener polynomial chaos, which was only valid for Gaussian uncertainties [16]. It can be construed as
a Fourier-like expansion with respect to the uncertain parameters, which approximates the response of the
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output variables y and reads as follows (it is reminded that the output variables are defined as a nonlinear
function of states, controls, and parameters in Equation (2)) [1,17]:

y (z; θ) ≈
M−1

∑
m=0

ŷ(m) (z)Φ(m) (θ) , (M− 1) =
(

N + D
N

)
, (3)

where the multivariate expansion polynomials Φ(m) ∈ R are orthogonal with m as their highest polynomial
exponent [1]. The order of the gPC expansion is given by M, the number of uncertain parameters by N, and
the highest order of the orthogonal polynomials by D. The Wiener–Askey scheme provides general rules
to select the orthogonal polynomials Φ based on the pdf ρ (θ) of the uncertain parameters θ. For some
specific pdfs of the gPC expansion, these polynomial relations are summarized in Table 1. Take into
account that extensions to general pdfs are also available [18].

The expansion coefficients ŷ(m) ∈ Rny in Equation (3) are given by a Galerkin projection [19]:

ŷ(m) (z) =
∫

Ω
y (z; θ)Φ(m) (θ) ρ (θ)dθ, (4)

where Ω is the support of the pdf ρ (θ) ∈ R (Table 1).

Table 1. Continuous density function-orthogonal polynomial connection for standard generalized
polynomial chaos (after [1]) for a scalar parameter θ.

Distribution Probability Density Function Support Symbol Orthogonal Polynomial

Gaussian/Normal 1√
2π

exp
(

θ2

2

)
]−∞, ∞[ N (μ, σ) Hermite

Gamma θα exp(−θ)
Γ(α+1) [0, ∞[ γ (μ, σ, α) Laguerre

Beta Γ(α+β+2)
2α+β+1Γ(α+1)Γ(β+1) (1− θ)α (1 + θ)β ]−1, 1[ B (a, b, α, β) Jacobi

Uniform 1
2 ]−1, 1[ U (a, b) Legendre

To connect the expansion coefficients with the physical trajectories of the system, the stochastic
collocation (SC) method is used [19]. This is also done to constrain the viable domain of the expansion
coefficients based on the physical system response in the OCP. Generally, the SC method tries to
approximate the integral in Equation (4) by Gaussian quadrature using a finite sum, discrete expansion at
a set of nodes θ(j) ∈ Rnθ with corresponding integration weights α(j) ∈ R. These are specifically chosen in
order to have a high approximation accuracy [19]. This yields the following approximation formula for
Equation (4) [19]:

ŷ(m) (z) =
∫

Ω
y (z; θ)Φ(m) (θ) ρ (θ)dθ ≈

Q

∑
j=1

y
(

z; θ(j)
)

︸ ︷︷ ︸
y(j)

Φ(m)
(

θ(j)
)

α(j). (5)

Here, Q is the number of specifically selected nodes according to the Gaussian quadrature rules (zeros
of orthogonal polynomial), defining the accuracy of the integral approximation [19]. It should be noted
that the Gaussian quadrature approach is subject to the curse of dimensionality for a large number of
uncertain parameters because it is generally evaluated on a tensor grid [19]. Thus, sparse grids [19] must
be employed in higher dimensions, e.g., starting from nθ > 5. For the sake of simplicity, we use the tensor
grid in this study, but the methods can directly be extended to sparse grids as well.
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The continuous OCP (Equation (1)), is discretized into a NLP using the gPC expansion for states
and controls, and then solved using a Newton-type optimization algorithm. Here, we use a trapezoidal
collocation scheme. It should be noted that we apply the state integration and the state constraint to
each of the SC nodes in this context. This makes it possible to calculate any desired output variable gPC
expansion for the CC using the SC expansion in Equation (5). Here, the physical state trajectories and the
output equation (Equation (2)) must be applied to calculate the required output expansion coefficients for
Equation (10). In addition, we ensure feasible, physical trajectories by constraining the physical states at
each of the SC nodes as this task might not be trivial by merely constraining the expansion states that are
part of the decision variables (Equation (7)). Take into account that it is crucial in this context to ensure
the constraint qualifications/regularity conditions for the NLP, e.g., linear independence, such that the
optimization is well-behaved ([20], p. 45).

The basic form of the NLP is as follows (after [13]):

min
ẑ

J = e (ẑN) +
t̂(0)f

2
hτ

N−1

∑
i=1

[L (ẑi) + L (ẑi+1)]

s.t. ẑlb ≤ ẑ ≤ ẑub,

xlb ≤

⎡⎢⎢⎢⎢⎢⎣
x
(j)
1 =

M−1
∑

m=0
x̂
(m)
1 Φ(m)

(
θ(j)
)

...

x
(j)
N =

M−1
∑

m=0
x̂
(m)
N Φ(m)

(
θ(j)
)

⎤⎥⎥⎥⎥⎥⎦ ≤ xub, ∀j,

ψ(ẑ; θ) =

⎡⎢⎢⎢⎢⎣
x
(j)
2 − x

(j)
1 − t f

(j)

2 hτ

(
ẋ
(j)
2 + ẋ

(j)
1

)
...

x
(j)
N − x

(j)
N−1 −

t f
(j)

2 hτ

(
ẋ
(j)
N + ẋ

(j)
N−1

)
⎤⎥⎥⎥⎥⎦ = 0, ∀j,

⎡⎢⎣POCP(y1 /∈ F )
...

POCP(yN /∈ F )

⎤⎥⎦ ≥ ηηη.

(6)

Take into account that the differential equation, used for the model dynamics in Equation (1), is
directly included in the equality constraints ψ using the trapezoidal integration scheme. Additionally,
the deterministic equality and inequality constraints of the NLP must be fulfilled in our framework at each
SC nodes to ensure feasibility.

The discretization step is depicted by hτ and generally comprises N discretized time steps.
The decision variable vector ẑ, with corresponding lower and upper bounds depicted by ẑlb and ẑub,
respectively, is defined using the gPC expansion coefficients for states, controls, and parameters as follows:

ẑ = [t̂(0)f , . . . , t̂(M−1)
f , p̂(0), x̂

(0)
1 , . . . , x̂

(M−1)
1 , û

(0)
1 , . . . , x̂

(0)
N , . . . , x̂

(M−1)
N , û

(0)
N ]T . (7)

Take into account that the control history is not expanded in Equation (7). This is due to the fact that
expanding the control history would yield a set of optimal control histories. As we want to calculate a
robust trajectory, i.e., a trajectory that is robust considering that the control history is not adapted, we only
use the mean value in the decision vector. Still, an extension of Equation (7) to a distributed control history
is possible. It should be noted that the same argumentation applies for the time-invariant parameters, as it
is also generally desired to calculate a single robust value for these.
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Further note that the outputs y, required for the CC in Equation (6), can be calculated directly using the
decision variables in Equation (7), the gPC expansion in Equation (3) (to calculate the physical trajectories),
the output equation in Equation (2), and the SC method in Equation (5).

It should be noted that the cost function in Equation (6) is depending on the decision variables directly,
which are the expansion coefficients (Equation (7)). This is done to be able to optimize statistical moments
(e.g., mean value and variance; Section 2.2.2) in the OCP. Further take into account that the inequality path
constraints are box constraints enforced at each discretization point for the physical trajectories with the
same lower and upper bound and independent of the uncertainty. This is done as the state limits normally
do not vary over time and should also not change depending on the uncertainty. In addition, we enforce
physical trajectories calculated by the NLP optimizer using this procedure.

Further take into account that Equation (6) is a deterministic version of the uncertain OCP in
Equation (1) except for the CCs. Further note that the inequality as well as equality constraints are
evaluated at the physical SC nodes (Equation (5)) using the gPC expansion in Equation (3).

2.2.2. Statistical Moments

Statistical moments, such as mean or variance, can be calculated directly from the gPC expansion in
Equation (3), if the expansion coefficients are known. For instance, the mean is given by [19]:

E [y (z; θ)] ≈
∫

Ω

(
M−1

∑
m=0

ŷ(m) (z)Φ(m) (θ)

)
ρ (θ)dθ = ŷ(0) (z) . (8)

Equation (8) shows that the mean is only depending on the first deterministic expansion coefficient. The
variance of the outputs y calculated as [19]:

σ2 [y (z; θ)] = E
[
y (z; θ)−E [y (z; θ)]2

]
≈

M−1

∑
m=1

[
ŷ(m) (z)

]2
(9)

is only dependent on the deterministic expansion coefficients ŷ(1,...,M−1).

3. Chance Constraints in the Polynomial Chaos Optimal Control Framework

Within this section, we look at the CC framework based on the gPC approximation within the OCP that
should approximate the probability of not being the failure event, i.e., POCP(y

(j)
i /∈ F ), ∀i. In Section 3.1,

the general formulation of CCs in the deterministic OCP is introduced. Afterwards, Section 3.2 introduces
a differentiable approximation of the sharp CCs and a homotopy strategy to iteratively sharpen the
differentiable CC representation. The SubSim method and its incorporation within CC–OC to calculate
rare-event failure probabilities are described in Section 3.3.

3.1. Derivation of Chance Constraint Formulation

Sampling techniques such as the Metropolis–Hastings algorithm (MHA) [21] or importance
sampling [22] are frequently used to approximate the probability of an event (in this case: fulfilling a CC)
when its pdf is difficult to sample from or integrate. A drawback of these methods is a non-deterministic
evaluation procedure of the probability. Generally, this study still tries to apply sampling-based algorithms
to estimate the probability POCP(yi /∈ F ) in the OCP (Equation (6)). Additionally, rare events should
be covered, which makes SubSim a viable choice [12]. The basic SubSim method uses a modified
Metropolis–Hastings algorithm (MMHA), i.e., random sampling, to explore the failure region and calculate
the failure probability. Here, a further issue arises when using direct methods to solve OCPs with
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Newton-type NLP solvers: the samples cannot be redrawn in each iteration of the NLP solution process as
this would yield a stochastic Newton-type optimization procedure. Generally, this would be necessary
in the context of sampling techniques, such as SubSim, which ultimately results in problems defining
accurate step-sizes and exit criteria in the NLP. Thus, this study uses a homotopy strategy to cope with
these issues that move the creation of new samples from the NLP iteration to a homotopy step.

In order to apply the mentioned sampling techniques, we need a good approximation for the
probabilistic quantity, i.e., the quantity with respect to whom the CC is defined, depending on the stochastic
disturbance. When applying gPC, the gPC expansion in Equation (3) provides this approximation. Thus,
in cases where the expansion coefficients are available within the NLP, as e.g., in Equation (6) (remember
that Equations (2), (3) and (5) can be applied to calculate the expansions coefficients for any output quantity
based on the known physical trajectories at the SC nodes for the states used in Equation (6)), we can sample
the gPC expansion for thousands of samples via a matrix-vector operation in an MCA-type way, but with
improved efficiency due to the simple evaluation as follows: consider ns random samples obtained from
the pdf of θ, labeled θ(1), . . . , θ(ns). It should be noted that these samples can now be drawn randomly
in contrast to the SC method as we are not trying to approximate the integral in Equation (4), but the
probability of the CC. These samples for the uncertain parameters yield corresponding samples for the
output y, given by:

[
y
(

z; θ(1)
)

. . . y
(

z; θ(ns)
)]

︸ ︷︷ ︸
Rny×ns

=
[
ŷ(0) (z) . . . ŷ(M−1) (z)

]
︸ ︷︷ ︸

Rny×M

⎡⎢⎢⎢⎣
Φ(0)

(
θ(1)
)

... Φ(0)
(

θ(ns)
)

...
. . .

...

Φ(M−1)
(

θ(1)
)

... Φ(M−1)
(

θ(ns)
)
⎤⎥⎥⎥⎦

︸ ︷︷ ︸
RM×ns

, (10)

such that the output samples are provided from a simple matrix-vector multiplication operating on the
expansion coefficients ŷ, which are part of the OCP formulation due to Equations (2), (3) and (5). With the
samples available from Equation (10), the general equation for fulfilling, i.e., not being in the failure set, a
CC is given as follows:

P [y (z; θ) /∈ F ] =
∫

Ω
I (y (z; θ)) ρ (θ)dθ ≈ 1

ns

ns

∑
i=1
I
(

y
(

z; θ(i)
))

. (11)

Here, I (y (z; θ)) is the indicator function, defined as:

I
(

y
(

z; θ(i)
))

=

⎧⎨⎩1, for y
(

z; θ(i)
)

/∈ F ,

0, else.
(12)

It should be noted that the indicator function I is trivial to evaluate but non-differentiable, and can
therefore create difficulties when used in the context of a Newton-type NLP solver. Thus, we introduce a
smooth approximation s of the indicator functions having the following properties:

s (y (z; θ)) ∈ [0; 1] ,

s (y (z; θ)) ≈ 1 y (z; θ) /∈ F ,

s (y (z; θ)) ≈ 0 y (z; θ) ∈ F .

(13)
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3.2. Approximation of Chance Constraints by Sigmoids

A group of functions that can be used for the approximation of an indicator function that must fulfill
the conditions given in Equation (13) are the logistics functions. An example for this class of functions is
the sigmoid function, which is defined as follows for a scalar output y:

s (y; a, b) =
1

exp [−a · (y− b)] + 1
∈ R. (14)

The parameters a ∈ R and b ∈ R are the scaling and offset parameter of the sigmoid, respectively.
These are used to shape the sigmoid in order to suitably approximate the desired CC domain. Their design
using a homotopy strategy while solving the CC–OC problem is illustrated in Algorithm 1.

Algorithm 1 Implemented homotopy strategy for sigmoid scaling and offset parameter in CC–OC
framework.
Require: Define the homotopy factor ahom and the desired final sigmoid parameter adesired.

1: Initialize sigmoid parameter a and confidence level CL.
2: Define the bound value of the sigmoid ybound (i.e., the bound value of the CC)
3: while a < adesired do

4: Calculate the sigmoid values:
5: c = − ln( 1

CL−1)
a

6: b = ybound − c
7: Solve the CC–OC problem including SubSim in Algorithm 4.
8: Increase a by homotopy factor: a = ahom · a.
9: end while

10: return Robust optimal trajectory.

Furthermore, the sigmoid in Equation (14) has a very simple derivative that can be used to efficiently
calculate the gradient that is necessary for OC. It is given as follows:

ds (y; a, b)
dy

= a · s (y; a, b) · [s (y; a, b)− 1] . (15)

The sigmoid in Equation (14) can be combined by multiplication in order to approximate the indicator
function for F being an interval in R. This is depicted in Figure 1, which shows the multiplication of
two sigmoids (solid blue) with one gradual descend (dashed green; number 1) and one steep ascend
(dashed red; number 2) to approximate a box constraint on a scalar output. Here, one sigmoid s (y; alb, blb)

describes the lower bound, while the other sigmoid s (y; aub, bub) describes the upper bound.
For the sake of simplicity, we further assume box constraints on all our CCs, i.e., we assume

that F is a hyper-rectangle with lower and upper bounds lbi, ubi on dimension i = 1, . . . , ny.
This is a viable assumption for most OCP applications, as box constraints are very prominent in OC.
The proposed approach can be trivially extended to any set F that can be described by a set of smooth
inequality constraints.
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Figure 1. Product of two sigmoids with different scaling and offset parameters to approximate an
uncertainty domain by box constraints.

We can then form the hyper-rectangle by applying the basic sigmoid in Equation (14) as follows:

s (y; a, b) =
ny

∏
i=1

s
(
yi; albi

, blbi

) · s (yi; aubi
, bubi

) ∈ R. (16)

Here, a =
[

alb1 , aub1 , . . . , albny
, aubny

]T
and b =

[
blb1 , bub1 , . . . , blbny

, bubny

]T
are simplifying notations.

Take into account that the derivative of Equation (16) can be formed using the chain rule and Equation (15).
In order to calculate the probability, we must only sum up the function values of the multidimensional

sigmoid in Equation (16) and divide it by the number of samples as follows:

P [y /∈ F ] ≈ 1
ns

ns

∑
i=1

s
(

y(i); a, b
)

. (17)

This approximation can now be used within the OCP (Equation (6)). In order to include rare failure
events, the next subsection introduces the SubSim method that elaborates on the CC modeling of this
subsection.

3.3. Subset Simulation in Chance-Constrained Optimal Control

The probability approximation in Equations (11) and (17) converges for reasonably low choices of ns

only if rather loose bounds on the probability (e.g., domain of η = 99%) are considered. For tighter bounds
typically used for rare events, as often required in e.g., reliability engineering (where η = 99.9999% is
common), better suited algorithms to calculate and sample the probability are required. Indeed, a reliable
estimation of the probability of rare events normally requires a very large number of samples. A classical
approach to circumvent this difficulty is the use of SubSim, which is tailored to evaluate the probability of
rare events [11,12,23].

SubSim methods are based on an MCMC algorithm typically relying on a MMHA, which ensures
that the failure region is properly covered by the samples. To that end, it stratifies the choice of samples
iteratively in order to draw significantly more samples from the failure region than a classical MCA
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sampling would. SubSim methods are based on an expansion of the failure probability as a series of
conditional probabilities:

P (F ) = P (Fm) = P

(
m⋂

i=1

F i

)
= P (F 1)

m

∏
i=2

P (F i|F i−1) . (18)

In Equation (18), F is the set of failure events and F 1 ⊃ F2 ⊃ . . . ⊃ Fm = F is a sequence of set
of events with decreasing probability of occurrence. The conditional probability P (F i|F i−1) describes
the probability that an event in F i ⊂ F i−1 occurs assuming that an event in F i−1 has already occurred.
Thus, instead of evaluating the rare event P (F ) = P (Fm), one can evaluate a chain of relatively likely
conditional probabilities P (F i|F i−1), each of which is relatively easy to evaluate via sampling.

The evaluation of the conditional probabilities is the main task in SubSim, achieved using e.g.,
the MMHA approach. The MMHA, working on each component of a random vector (i.e., vector of
one–dimensional random variables) (RVec), is introduced in Algorithm 2 [11,12,24].

Algorithm 2 Modified Metropolis–Hastings algorithm for subset simulation for each component of the
random vector θi to create new sample for random parameter (after [11]).

Require: Current sample for the random parameter: θi.
1: Define a symmetric proposal pdf, ρ∗i

(
θ̃|θi
)
= ρ∗i

(
θi|θ̃
)
, centered around the current random sample θi.

2: Generate candidate sample θ̃ from ρ∗i
(
θ̃|θi
)

and calculate the system response (e.g., by Equations (1),
(3), or (6)) of this candidate.

3: Calculate the ratio between the proposed and the candidate sample evaluated at the target pdf, e.g.,

r =
ρ(θ̃)
ρ(θi)

with ρ ∝ N (0, 1) (this is the stationary pdf according to the central limit theorem ([17], p. 23)).

4: Set the acceptance ratio of the candidate sample θ̃ as follows: a = min{1, r} and accept it with this
probability.

5: Draw a random sample from the uniform distribution as follows: s ∝ U (0, 1).
6: if s ≥ a then

7: Set: θp = θ̃

8: else

9: Set: θp = θi

10: end if

11: Update the new sample by the rule:
12: if θp ∈ F i then

13: Set: θnew,i = θp

14: else

15: Set: θnew,i = θi

16: end if

17: return New sample for the random parameter: θnew,i.

Normally, the MCMC algorithm based on the MMHA in Algorithm 2 is fast converging as especially
the sampling of new candidates is done locally around the current sample point. Thus, the acceptance
rate is normally very high and progress is made quite fast. An issue of the MMHA is the choice of an
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appropriate proposal distribution ρ∗i . Here, generally a Uniform or a Gaussian pdf is chosen, in order to
have a simple evaluation and the symmetric property. The general behavior of the MMHA in SubSim can
be visualized as in Figure 2: it can be seen that after the random sampling by MCA in level 0, the samples
get shifted to the failure domain, which are the arcs in the corners of the domain. This is done until a
sufficient amount of samples is located in the failure domain.

−10 −5 0 5 10
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5

10

SubSim Samples - Level 0

−10 −5 0 5 10
−10

−5

0
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SubSim Samples - Level 1
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SubSim Samples - Level 2

Figure 2. General behavior of subset simulation with modified Metropolis–Hastings algorithm and p0 = 0.1
showing movement of the samples (red: in failure domain, green: not in failure domain) over the different
subset levels with arc failure domains at edges.

We detail the SubSim method as in Algorithm 3 [11,12]. The SubSim starts with a general MCA
and afterwards subsequently evaluates the failure region yielding the chain of conditional probabilities.
It should be noted that the choice of the intermediate failure events F1,...,m is critical for the convergence
speed of the SubSim. In [11], the “critical demand-to-capacity ratio” is introduced that is based on
normalized intermediate threshold values. Based on this ratio, it is common to choose the thresholds
adaptively such that the conditional probabilities are equal to a fixed, pre-defined value ([12], p. 158).
This is done by appropriately ordering the previous samples and their result. An often and a normally
very efficient conditional probability value is p0 = 0.1 [11].

Finally, we can estimate the failure probability of the SubSim regarding the desired threshold b and
the (m − 1) − th Markov chain element, which is the last one of the SubSim as follows ([12], p. 179)
(see Algorithm 3 line 12):

1− Pss (y (z; θ) /∈ F ) = P (F ) =
1
ns

pm−1
0

nc

∑
j=1

nsc

∑
k=1
Ĩ
(

y
(m−1)
jk > b

)
, b > bm−1. (19)
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Algorithm 3 General algorithm used for a subset simulation in connection with generalized polynomial
chaos (after [12], p. 158ff).

Require: Define the number of samples per level ns, the conditional probability p0, and the critical
threshold b.

1: Calculate the number of Markov chains nc = p0 · ns and the number of samples nsc = p−1
0 for each of

the chains.
2: Initialize the SubSim by creating the random sample set {θ

(0)
k : k = 1, . . . , ns}.

3: Calculate the output set {y
(0)
k

(
z; θ

(0)
k

)
: k = 1, . . . , ns} by Equation (3) related to {θ

(0)
k : k = 1, . . . , ns}.

4: Sort {y
(0)
k

(
z; θ

(0)
k

)
: k = 1, . . . , ns} in ascending order to create {b

(0)
k : k = 1, . . . , ns}. Here, b

(0)
k is an

estimate of the exceedance probability P [y (z; θ) > b] = ns−k
ns

.
5: Set b1 = b

(0)
ns−nc

and {θ
(1)
j0 : j = 1, . . . , nc} corresponding to {b

(0)
ns−nc+j : j = 1, . . . , nc} as the threshold

and the seeds for the next level.
6: for i=1. . . m-1 do

7: Use e.g., the MMHA (Algorithm 2) to generate the samples {θ
(i)
jk : k = 1, . . . , nsc} of the conditional

pdf ρ∗i (.|F i) for each seed {θ
(i−1)
j0 : j = 1, . . . , nc}. This creates nc Markov chains with nsc samples.

8: Calculate the output set {y
(i)
jk

(
z; θ

(i)
jk

)
: j = 1, . . . , nc, k = 1, . . . , nsc} by Equation (3) related to

{θ
(i)
jk : j = 1, . . . , nc, k = 1, . . . , nsc}.

9: Sort {y
(i)
jk

(
z; θ

(i)
jk

)
: j = 1, . . . , nc, k = 1, . . . , nsc} in ascending order to create {b

(i)
k : k = 1, . . . , ns}.

Here, b
(i)
k is an estimate of the exceedance probability P [y (z; θ) > b] = pi

0
ns−k

ns
.

10: Set bi+1 = b
(i)
ns−nc

and {θ
(i+1)
j0 : j = 1, . . . , nc} corresponding to {b

(i)
ns−nc+j : j = 1, . . . , nc} as the

threshold and the seeds for the next level.
11: end for

12: Calculate the failure probability Pss (y (z; θ) /∈ F ) based on Equation (19)
13: return Failure probability Pss (y (z; θ) /∈ F ).

It should be noted that, for the OCP in Equation (1) or Equation (6), the calculated probability in
Equation (19) must be subtracted from 1 as the CC in Equation (6) is defined for not being in the failure set.
Here, Ĩ (y (z; θ)) is the complementary indicator function from Equation (12) defined for the failure region:

Ĩ
(

y
(

z; θ(i)
))

=

⎧⎨⎩1, for y
(

z; θ(i)
)
∈ F ,

0, else.
(20)

Take into account that the accuracy of Equation (19) can be quantified using the coefficient of variation
(c.o.v.):

ν =
σ [P (F )]

E [P (F )]
. (21)

Here, E [P (F )] is given by Equation (19), while the standard deviation of the failure probability
can be calculated by a Beta pdf fit as proposed in ([25], p. 293). Overall, we can compare the resulting
c.o.v. with literature values [24] to access the viability. Generally, a small c.o.v. indicates that the standard
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deviation of our failure probability estimation is smaller than our expected/mean value. Thus, the goal is
to have a small c.o.v. as then the dispersion of the data is small and we can be certain about the CC being
fulfilled.

In this study, we propose to introduce the SubSim algorithm in the CC–OC algorithm. Our procedure
is to calculate the subset samples based on the analytic response surface of the gPC expansion (Equation (3)),
which is based on the initial solution of the OCP (Equation (1)) by MCA. The samples are then used to
run a new optimization fulfilling the desired rare event probability. A new response surface is calculated
from which new samples are generated using a SubSim. This procedure is repeated until both the SubSim
probability Pss (y (z; θ) /∈ F ) (Equation (19)) as well as the probability level assigned to the constraint
POCP (y (z; θ) /∈ F ) (Equation (6)) in the OCP fulfill the desired rare event probability Pdes (y (z; θ) /∈ F ).
The procedure is described in Algorithm 4. It should be noted that this procedure can generally be applied
as long as the underlying OCP in Equation (6) can be solved.

Algorithm 4 Basic strategy of the subset simulation algorithm within CC–OC framework.

Require: OCP as in Equation (6) with initial guess for decision variables z.
1: Calculate an optimal solution for a likely failure (e.g., P (y (z; θ) /∈ F ) = 99%) using MCA.
2: Obtain the subset probability Pss (y (z; θ) /∈ F ) and samples, based on the analytic gPC response

surface (Equation (3)) and by applying Algorithm 3.
3: while Pss (y (z; θ) /∈ F ) > Pdes (y (z; θ) /∈ F ) and POCP (y (z; θ) /∈ F ) > Pdes (y (z; θ) /∈ F ) do

4: Assign the SubSim samples to the evaluation routine of the CC within the OCP.
5: Solve the CC–OC problem (Equation (6)).
6: if Optimization not successful then

7: Reduce the probability of the constraint POCP (y (z; θ) /∈ F ) to relax the OCP (e.g., by factor of 10).
8: else

9: if POCP (y (z; θ) /∈ F ) 
= Pdes (y (z; θ) /∈ F ) then

10: Increase the constraint probability within the OCP (e.g., factor of 10).
11: end if

12: end if

13: Obtain the new subset probability Pss (y (z; θ) /∈ F ) from Equation (19) and samples based on the

new analytic gPC response surface and using Algorithm 3.
14: end while

15: return Optimal decision variables z.

Regarding the homotopy strategy, it should be noted that, by using the SubSim samples calculated
from the last optimal solution within the new optimization, we might introduce a bias as the samples
drawn from the Markov chain are based on the optimal results created by the last NLP solution. Generally,
they would have to adapted in each iteration of the NLP as the system response changes. As we do not
update the samples within the NLP, but within the homotopy step after the optimal solution has been
calculated, we technically solve the CC and its rare event probability using biased samples compared to
the ones that would be calculated within the SubSim. We cope with this issue in this paper by checking
the fulfillment of the CC both in the OCP as well as after the OCP is solved by the SubSim, i.e., with the
new response surface. Thus, the CC–OC is only solved if both results show that the CC is fulfilled to the
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desired level. Within this paper, the OCP converges fine, but further studies should explore the effects and
influences of this bias and how to reduce it (e.g., by importance sampling).

4. Optimization Model

The implemented optimization model is based on the work in [26]: at first, the dynamic model is
introduced in Section 4.1. The OCP setup, including constants and parameters, is afterwards defined in
Section 4.2.

4.1. Battery Dynamic Equations

The following section summarizes the dynamic equations for a battery modeled by an extended
equivalent circuit model (XECM) as depicted in Figure 3. Here, the equations of motion are introduced in
Section 4.1.1. Afterwards, Section 4.1.2 introduces a battery heating model.

Figure 3. Schematics of Extended Equivalent Circuit Model (XECM) [26].

4.1.1. Local Voltage and Ion Concentration Dynamic Equations

The local voltage v1 and ion concentration Δz1 equations of motion are based on the parallel
resistor–capacitor arrangement in Figure 3. The equations are given by first order lags with the current i as
the control variable:

v̇1 = − 1
R1 · C1

· v1 +
1

2 · C1
i, (22a)

Δż1 = − 1
R1 · C1

· Δz1 +
1

2 · C1
i. (22b)

Here, R1 and C1 are the resistance and capacity, respectively. It should be noted that R1 and C1 are
functions of the battery temperature (Section 4.1.2).

In addition, we have the total ion concentration z dynamic equation, also called state of charge (SoC),
that is only dependent on the current:

ż =
1
Q

i. (23)

Here, Q is the battery capacity.
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4.1.2. Battery Heating

As an extension to the standard XECM in Section 4.1.1, we also model the heating of the battery
when a current is applied. This heating can again be formulated by an equation of motion for the battery
temperature Tbatt that is mainly influenced by the square of the applied current:

Ṫbatt = k1 · i2 + k2 · (Tamb − Tbatt) . (24)

The coefficients k1 =
kR0 ·R0
mbattc

as well as k2 are again parameters of the battery, while Tamb is the ambient
temperature. It should be noted that kR0 is the considered uncertainty and is a scaling factor for the lumped
resistance term R0. It is uniformly distributed as follows:

kR0 ∈ U (0.8; 1.2) , μ = 1, σ ≈ 0.1155. (25)

Thus, the lumped resistance term can vary up to ±20%, which refers to the uncertainty that is
introduced to the system when identifying the parameter. Take into account that we choose this parameter
as the uncertain value as it is also the main contributor to the battery temperature increase, which we want
a robust trajectory against. Additionally, it should be noted that the uncertainty definition in Equation (25)
implies using a Uniform pdf as the proposal distribution in Algorithm 2.

For the CC optimization, we want to achieve that the following probability for the battery temperature
is always fulfilled:

P [0◦C ≤ Tbatt ≤ 40◦C] ≥ 0.999999. (26)

This CC is implemented using the SubSim approach presented in Section 3.3 and the sigmoid
approximation of the CC with the homotopy strategy presented in Section 3.2. We use this kind of
probability as we want to assure that the battery is not damaged by a temperature that is too high, but also
charges as optimally as possible without being too conservative. In addition, it might not be possible in
general applications, due to other system constraints, to calculate a fully robust trajectory, which makes
the use of CCs viable.

4.2. Problem Setup

The problem consists of two phases that model one charge and one discharge of the battery. The
following initial boundary conditions (IBC; Table 2) for the states x =

[
v1 Δz1 z Tbatt

]
that define these

conditions in the beginning of the first phase are as follows (these are assigned as inequality constraints in
Equation (6)):

Table 2. Initial boundary condition (IBC) of the optimization problem.

Phase IBClb IBCub

1 [0, 0, 0.15, 20] [0, 0, 0.15, 20]

Furthermore, the final boundary conditions (FBC; Table 3) for the same states in all phases are defined
as follows (again assigned as inequality constraints in Equation (6)):
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Table 3. Final boundary conditions (FBC) of the optimization problem.

Phase FBClb FBCub

1 [0, 0, 0.95,−10] [0.15, 0.5, 1.00, 40]
2 [0, 0, 0.00,−10] [0.15, 0.5, 0.15, 40]

It should be noted here that trying to e.g., enforce an equality constraint for the final boundary
condition with only the mean robust control, as in Equation (7), might yield an infeasible OCP. In this case,
a CC should be considered to model the final boundary condition or an inequality constraint (as used in
this study) can be applied.

The states with their respective lower and upper bounds xlb, xub, and scaling xS are as given in Table 4.

Table 4. States upper and lower bounds as well as scalings.

State Description xlb xub xS

v1 Local voltage 0 0.15 100

Δz1 Local concentration 0 1 100

z Total concentration 0.05 0.95 100

Tbatt Battery temperature −10 40 10−1

The controls with their respective lower and upper bounds ulb, uub, and scaling uS are defined as in
Table 5.

Table 5. Control upper and lower bounds as well as scalings.

Control Description ulb uub uS

icharge Charge current 0 3 ·Q 10−1

idischarge Discharge current −3 ·Q 0 10−1

Finally, the parameters and the constants of the optimization model are defined in Table 6.

Table 6. Parameters and constants of the optimization model.

Value Description Reference

Tamb Ambient Temperature 20 ◦C
mbattc battery mass times specific heat capacity 260 J

◦C
k2 convection coefficient of battery with ambient 0.00001 1

s
R1 Local Resistance f cn (Tbatt)
R0 Lumped Resistance f cn (Tbatt)
C1 Local Capacity f cn (Tbatt)
Q Battery Capacity 26Ah

Finally, we consider the following cost function to minimize the cycle time:

J = t̂(0)f . (27)

This is a parameter cost that actually requires a trade-off between fulfilling the CC and finishing the
cycle as fast as possible, due to the fact that a fast charging/discharging with large current yields a fast
temperature increase.
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5. Optimization Cases

This section covers the test cases for the CC–OC framework. At first, a single phase with only charging
is looked at in Section 5.1 to get an overview of the problem characteristics. Then, Section 5.2 looks at a
charge–discharge cycle. Generally, each phase has N = 125 time discretization steps yielding NLP problem
sizes of around 2000 optimization variables and constraints.

For the final results, which are depicted in the following, the scaling factor of the sigmoid CC
approximation is a = ±50. This could be achieved in a single homotopy step for the results in Section 5.1
and with two homotopy steps for the results in Section 5.2. The homotopy begins with a = ±1 and has an
intermediate step, in the second example, at a = ±25. In general, we use ns = 10, 000 random samples to
approximate the probability of the CC using the methods introduced in Section 3. The gPC expansion
order is chosen to be three as this has shown to be viable for these kind of problems. The CC is defined
as given in Equation (26). Take into account that the initial MCA solution fulfills the CC in Equation (26)
with a probability of 97.5%. After this initial solution, we directly assign the desired probability, given in
Equation (26), to the CC–OC and thus require one homotopy step.

In the following, we show the results obtained for the different SubSim level (“SSLevel”) runs with
p0 = 0.1 and ns = 2500 during the homotopy procedure. Here, the zeroth level is the basic MCA solution.
The gPC order is chosen to be three, which was determined to be sufficient by comparing the accuracy of
the expansion with MCA optimization runs.

5.1. Battery Charging Optimization

This section introduces the optimization of a single battery charge by looking at the general
time-optimal OCP (Equation (27)).

In Figure 4, which depicts the probability of not fulfilling the CC, it can be seen that our desired
probability level is fulfilled after the first SubSim level. This probability is calculated in a post-processing
step using 1 million samples and the analytic indicator function in Equation (12): here, we get a level close
to 0% failures and thus the CC is, based on our sampling, fulfilled with a very high certainty. Indeed,
the SubSim evaluates the failure probability to be P (F ) = 2.0088 · 10−5% with a c.o.v. of ν = 1.0052. Thus,
we fulfill our desired failure probability of 10−4% even though we have a slightly high c.o.v..

This can also be seen looking at Figure 5 that shows the fitted marginal distribution of the failure
probability at the final point in time (i.e., the end time). This is the point where the violation is most likely
to occur. Here, the already mentioned method of fitting a Beta pdf for the c.o.v. estimation by applying the
theory in study [25] is used. The pdf is depicted in solid blue and plotted in the range of [0,Pdes (F )], which
covers the range of the pdf and its probability until the maximal allowed failure probability. The mean
value is depicted in dashed black. It is evident that the pdf fulfills our rare-event CC with high probability
and thus we can be confident in the certainty of our result. To be specific, according to the SubSim and the
Beta pdf of [25], the CC is fulfilled with almost 97% certainty for our application.

In Figure 6, the current for the robust optimal result is shown. We can see that the current is mainly at
its maximum bound for the MCA optimization (SSLevel: 0), while it decreases linearly from a general lower
level to fulfill the tighter bounds of the desired rare-event probability in the SSLevel 1 run. The optimal
time is slightly increased for the SSLevel 1.
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Figure 4. Probability of fulfilling the chance constraint over time for charging.
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Figure 5. Estimation of failure probability density function from subset simulation for a final point on the
optimization time horizon using a Beta distribution with mean value and probability density function area
estimation until the allowed failure probability.

Finally, Figure 7 shows the development of the SoC for the mean value and the standard deviation.
We observe a basically linear increase in the mean value reaching the desired charging level and a small
standard deviation. Overall, the SoC is only subject to minor influences by the defined uncertainty that are
mainly based on the temperature variations. Thus, although there is an uncertainty, we can still reach a
similar charging level with the proposed robust open–loop optimal control (ROC) method. Furthermore,
there are only minor differences between the different SubSim levels.
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Figure 7. Mean and standard deviation value for state-of-charge over time for charging.

5.2. Battery Charge-Discharge Cycle Optimization

Within this section, we are looking at the full charge–discharge cycle: For this, Figure 8 shows the
optimal current histories. In contrast to the single cycle, we can see that the current now is not reaching
the maximal value anymore (78A; Section 4.2) and is also gradually decreasing over time. The differences
between the SubSim levels are overall quite minimal but the same trend as for the results in Figure 6 can
be observed, i.e., that the SubSim levels after the MCA have an overall lower level and are slightly longer.

Then, Figure 9 shows the fitted marginal distribution of the failure probability at the final point in
time (i.e., the end time) once more. Once again, the pdf is plotted in the range of [0,Pdes (F )], i.e., we cover
the part of the pdf and its probability until the allowed maximal failure probability. Although we can see
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that the failure probability is now twice as large in the mean as for only the charge cycle (Figure 5), we can
still be certain regarding our confidence in fulfilling the CC (around 91.5%).
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Figure 8. Robust control history for the current as the command variable over time for charge–discharge cycle.
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Figure 9. Estimation of failure probability density function for charge–discharge cycle from subset
simulation for the final point on an optimization time horizon using a Beta distribution with mean value
and probability density function area estimation until the allowed failure probability.

Now, Figure 10 shows the mean value of the SoC and its standard deviation. We can observe that the
SoC is virtually independent of the SubSim level, but a major increase in the standard deviation can be
seen, which is a consequence of the robust charging and the uncertainty. Generally, this increase is based
on an increased standard deviation of the optimal time.
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Figure 10. Mean and standard deviation value for state-of-charge over time for charge–discharge cycle.

Finally, Figure 11 depicts the battery temperature mean value and mean value with an added
standard deviation. It should be noted that, in this figure, the standard deviation is added with a factor of
kσ = 1.7321: this value is chosen as it is exactly the value that yields the boundary value of the original
uniform pdf if adding the standard deviation in Equation (25). As the optimization model is linear in
the uncertainty, we can expect that the propagated uncertainty at the output is thus also almost linear.
This is strengthened by Figure 11 as the solution that is offset by the factor kσ = 1.7321 is just violating
the constraint at the end, which is based on the CC fulfillment that must not be 100%. Again, the level 1
SubSim yields a reduced exceedance with a longer charge time.
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Figure 11. Mean battery temperature including the standard deviation interval provided by the underlying
uniform parameter uncertainty over time for the charge–discharge cycle.
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6. Conclusions

This paper presented an efficient method for ROC that relies on a CC–OC framework. In this
framework, CCs are approximated by efficiently sampling from the gPC expansion. Therefore, a direct
transcription method using the gPC expansion is applied for solving the OCP: by this, the gPC expansion
can be evaluated in each optimization step as a matrix-vector operation and efficient sampling of the
CC value, and thus its probability, is possible. In order to make the sharp CC bounds usable for
Newton-type OC applications, the paper additionally introduced an approximation of CCs by means of
sigmoids. This sigmoid approximation is gradually adapted using a homotopy strategy to reach a good
approximation of the original sharp bound. Finally, the method of SubSim is applied to get the capability
of calculating rare event failure probabilities. Overall, the applicability of the framework is shown using
battery charge and discharge examples.

In the future, developments can be made combining the proposed method with distributed open–loop
optimal control (DOC). The DOC framework can then be used to handle smaller sub-problems of the
original OCP, which can be solved more efficiently. Here, also a distribution of the SubSim can be
considered for improved efficiency.

Furthermore, more research should be directed into the suitable choice of the gPC expansion order to
find a good response surface approximation for the evaluation of the CC. Here, especially the truncation
errors of the gPC expansion as well as the SC evaluation must be considered. This is necessary to accurately
calculate the probability of fulfilling the CC. In addition, e.g., a moment-matching optimization [27],
which tries to find the best nodes-weights combination for the given problem, could be applied. Especially
with a highly nonlinear model, larger orders of the gPC expansion must also be used, which decreases
the efficiency. In the context of this large expansion order as well as a high-dimensional uncertainty
space, further research must also be directed to efficient (adaptive) sparse grid implementations for the SC
evaluation [19,28].

Additionally, in future applications, general pdfs can be introduced in the proposed method using
the theory of arbitrary polynomial chaos [18,29] or Gaussian mixture models [30]. This could also be of
special interest for the accurate choice of the SubSim evaluation points.

Finally, research can be directed into controlling the c.o.v. of the SubSim using the Beta pdf introduced
in [25]. This can be beneficial to have a small dispersion of the data and thus high confidence in the
calculated failure probability estimation and, consequently, the calculated robust optimal trajectories.
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Abstract: Differential Evolution (DE) is one of the prevailing search techniques in the present era
to solve global optimization problems. However, it shows weakness in performing a localized
search, since it is based on mutation strategies that take large steps while searching a local area.
Thus, DE is not a good option for solving local optimization problems. On the other hand, there are
traditional local search (LS) methods, such as Steepest Decent and Davidon–Fletcher–Powell (DFP)
that are good at local searching, but poor in searching global regions. Hence, motivated by the short
comings of existing search techniques, we propose a hybrid algorithm of a DE version, reflected
adaptive differential evolution with two external archives (RJADE/TA) with DFP to benefit from both
search techniques and to alleviate their search disadvantages. In the novel hybrid design, the initial
population is explored by global optimizer, RJADE/TA, and then a few comparatively best solutions
are shifted to the archive and refined there by DFP. Thus, both kinds of searches, global and local,
are incorporated alternatively. Furthermore, a population minimization approach is also proposed.
At each call of DFP, the population is decreased. The algorithm starts with a maximum population
and ends up with a minimum. The proposed technique was tested on a test suite of 28 complex
functions selected from literature to evaluate its merit. The results achieved demonstrate that DE
complemented with LS can further enhance the performance of RJADE/TA.

Keywords: optimization; evolutionary computation; population minimization; hybridization; local
search; global search; adaptive differential evolution; external archives; metaheuristics

1. Introduction

Nonlinear unconstrained optimization is an active research area, since many real-life
challenges/problems can be modeled as a continuous nonlinear optimization problem [1]. To deal
with this kind of optimization problems, various nature-inspired population based search mechanisms
have been developed in the past [2]. A few of those are Differential Evolution (DE) [3,4], Evolution
Strategies (ES) [2,5], Partical Swarm Optimization (PSO) [6–9], Ant Colony Optimization (ACO) [10–13],
Bacterial Foraging Optimization (BFO) [14,15], Genetic Algorithm (GA) [16–18], Genetic Programming
(GP) [2,19–21], Cuckoo Search (CS) [22,23], Estimation of Distribution Algorithm (EDA) [24–28] and
Grey Wolf Optimization (GWO) [29,30].
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DE does not need specific information about the complicated problem at hand [31]. That is
why DE is implemented to solve a wide variety of optimization problems in the past two
decades [30,32–34]. DE has merits over PSO, GA, ES and ACO, as it depends upon few control
parameters. Its implementation is very easy and user friendly, too [2]. Due to these advantages,
we selected DE to perform global search in the suggested hybrid design. In addition, because of its
easy nature, DE is implemented widely [35–42] on practical optimization problems [35–42]. However,
its convergence to known optima is not guaranteed [2,31,43]. Stagnation of DE is another weakness
identified in various studies [31].

Traditional search approaches, such as Nelder–Mead algorithm, Steepest Descent and DFP [44]
may be hybridized with DE to improve its search capability. Implementing LS into a global search
for enhancing the solution quality is called Memetic Algorithms (MAs) [31,45]. Some of the recent
MAs can be found in [1,31]. Very recently, Broyden–Fletcher–Goldfarb–Shanan LS was merged with
an adaptive DE version, JADE [46], which produced the MA, Hybridization of Adaptive Differential
Evolution with an Expensive Local Search Method [47]. In the majority of the established designs, LS is
implemented to the overall best solutions, while in our design it is applied to the migrated elements of
the archive. In addition, the population is adaptively decreased.

In this work, we propose a hybrid algorithm that combines DFP [44,48,49] with a recently
developed algorithm, RJADE/TA [50], to enhance RJADE/TA’s performance in local regions. The main
idea is to operate DFP on the elements that are shifted to archive and record the information from
both solutions, the previously brought forward and the new potential solutions to discourage the
chance of losing the globally best solution. For this purpose, firstly, DFP is implemented to the
archived information. Secondly, a decreasing population mechanism is suggested. The new algorithm
is denoted by RJADE/TA-ADP-LS.

The structure of this work is as follows. Section 2 presents primary DE, DFP, and RJADE/TA
methods. Section 3 describes the literature review. In Section 4, the suggested hybrid algorithm is
outlined. Section 5 is devoted to the validation of results achieved by RJADE/TA-ADP-LS. At the end,
the conclusions are summarized in Section 6.

2. Primary DE, DFP, and RJADE/TA

We reviewed in detail traditional DE and JADE in our previous works [47,50]. Here, we briefly
review primary DE, DFP and RJADE/TA for ready reference.

2.1. Primary DE

DE [3,4] starts with a random population in the given search region. After initialization, a mutation
strategy, where three different individuals from population are randomly selected and the scaled
difference of the two individuals to the third one, target vector is added to produce a mutant vector.
Following mutation, the mutant and the target vectors are combined through a crossover operator to
produce a trial vector. At last, the target and trial vectors are compared based on a fitness function to
select the better one for the next generation (see Lines 7–20 of Algorithm 1).
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Algorithm 1 Outlines of RJADE/TA Procedure.

1: To form the primary population Pp produce N[pop] vectors uniformly and randomly,

w
{y}
[j,s1]

, w
{y}
[j,s2]

, . . . , w
[y]
[j,s

N[pop] ]
;

2: M[ f irst] = M[sec] = ∅;
3: Initialize λCR = λF = 0.5; p = 5%; c = 0.1;
4: Set SCR = SF = ∅;
5: Evaluate Pp;
6: while FEs < MaxFEs do

7: Fj = rand(λF, 0.1);
8: Randomly sample w

[p,y]
(best) in 100p% pop;

9: Choose w
{y}
[i,s1]


= w
{y}
[i,s] in Pp;

10: Choose w̃
{y}
[i,s2]


= w
{y}
[i,s2]

in Pp ∪M[ f irst] do random selection;

11: Produce the mutant vector w
{y}
[i,mut] as w

{y}
[i,mut] = w

{y}
[i,s] + Fj(w

{p,y}
(best) −w

{y}
[i,s]) + Fj(w

{y}
[i,s1]

− w̃
{y}
[i,s2]

);

12: Produce the trial vector q
{y}
[i,j] as follows.

13: for i = 1 to n do

14: if i < irand or rand(0, 1) < CRj then

15: q{y}
[i,j] = w{y}

[i,mutj ]
;

16: else

17: q{y}
[i,j] = w{y}

[i,sj ]
;

18: end if

19: end for

20: Best selection {w
{y}
[i,s] , q

{y}
[i,s]};

21: if q
{y}
[i,s] is the best then

22: w
{y}
[i,s] → M[ f irst], CRj → SCR, Fj → SF;

23: end if

24: If size of M[ f irst] > N[pop], delete extra solutions from M[ f irst] randomly;
25: Update M[sec] as follows.
26: if y = κ then

27: w
{y}
[j,best] → M[sec];

28: Pp −w
{y}
[j,best];

29: Centroid calculation→ w
{y}
[j,c] =

1
N[pop]−1 ∑N[pop]

i=2 w
{y}
[j,c];

30: Reflection mechanism→ w
{y}
[j,r] = w

{y}
[j,c] + (w

{y}
[j,c] −w

{y}
[j,best]);

31: end if

32: λCR = (1− c) · λCR + c ·meanA(SCR);
33: λF = (1− c) · λF + c ·meanL(SF);
34: end while

35: Result: The best solution w
{y}
(best) corresponding to minimum function f (w) value from PpUM[sec]

in the optimization.
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2.2. Reflected Adaptive Differential Evolution with Two External Archives (RJADE/TA)

RJADE/TA [50] is an adaptive DE variant. Its main idea is to archive comparatively best solutions
of the population at regular interval of optimization process and reflect the overall poor solutions.
RJADE/TA inserts the following techniques in JADE. The techniques are presented in Table 1.

Table 1. Algorithmic parameters.

M[ f irst] First archive M[Sec] Second archive
Pp Primary population N[pop] Population size

FEs Function evaluations MaxFEs Maximum function evaluations
λ FEs of RJADE/TA κ Gap between two successive updates of M[sec]

λCR Crossover probability λF Mutation scaling factor
SCR Set of successful crossover probabilities SF Set of successful mutation factors
w No. of iterations of DFP r Number of migrated solutions to M[sec]

w
{y}
[j,new]

jth New candidate/solution at iteration y w
{y}
[j,best] jth Ever best candidate/solution at iteration y

To prevent premature convergence and stagnation, the best solution, w
{y}
[j,best] is replaced by its

reflection in RJADE/TA and is then shifted to the second archive M[sec].
The reflected solution replaces w

{y}
[j,best] in the population and the ever best candidate w

{y}
[j,best]

by itself is migrated to the second archive M[sec]. RJADE/TA maintains two archives, termed as
M[ f irst] and M[sec] for convenience. After half of available resources are utilized (MaxFEs), the first
archive update of the second archive, M[sec], is made. Afterwards, M[sec] is updated adaptively with a
continuing intermission of generations (see Algorithm 1).

The overall best candidates are transferred to M[sec], whereas M[ f irst] records the recently explored
poor solutions. The size of M[ f irst] is fixed, equal to population size N[pop], while the size of M[sec] may
exceed N[pop]. As M[sec] keeps information of all best solutions found, no solution is deleted from it.
M[sec] records only one solution of the current iteration, it may be a child or a parent, whereas M[ f irst]

makes a history of more than one inferior “parent solutions” only. M[ f irst] is updated at every iteration
and M[sec], initialized as ∅, is updated with a gap of κ iterations adaptively. The recorded history
of M[ f irst] is utilized in reproduction later on. In contrast, in M[sec], the recorded best individual is
reflected with a new solution, which is then sent to the population. Once a candidate solution is posted
to M[sec], it remains passive during the whole optimization. When the search procedures are terminated,
then the recoded information contributes towards the selection of the best candidate solution.

2.3. Davidon–Fletcher–Powell (DFP) Method

The DFP method is a variable metric method, which was first proposed by Davidon [51] and then
modified by Powell and Fletcher [52]. It belongs to the class of gradient dependent LS methods. If a
right line search is used in DFP method, it will assure convergence (minimization) [49]. It calculates
the difference between the old and new points, as given in Equation (1). Then, it finds the difference of
the gradients at these points as calculated in Equation (2).

t{w} = w
{y}
[j+1] −w[j] (1)

t{g} = ∇ f (w[j+1])−∇ f (w[j]). (2)

It then updates the Hessian matrix H as presented in Equation (3). Afterwards, it locates
the optimal search direction s[j] with the help of the Hessian matrix information as calculated in
Equation (4). Finally, the output solution w[j+1] is computed by Equation (5), where α[j] is calculated
by a line search method; golden section search method is used in this work.

H[j+1] = H[j] +
(t
′
{w}t{w})

t
′
{w}t{g}

−
(H[j]t

′
{g}t{g}H[j])

t{g}H[j]t
′
{g}

(3)
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s[j] = −H[j]∇ f (w[j]) (4)

w[j+1] = w[j] + α[j]s[j] (5)

3. Related Work

To fix the above-mentioned weaknesses of DE, many researchers merged various LS techniques
in DE. Nelder–Mead LS is hybridized with DE [53] to improve the local exploitation of DE. Recently,
two new LS strategies are proposed and hybridized iteratively with DE in [1,31]. These hybrid designs
show performance improvement over the algorithms in comparison. Two LS strategies, Trigonometric
and Interpolated, are inserted in DE to enhance its poor exploration. Two other LS techniques are
merged in DE along with a restart strategy to improve its global exploration [54]. This algorithm is
statistically sound, as the obtained results are better than other algorithms. Furthermore, alopex-based
LS is merged in DE [55] to improve its diversity of population. In another experiment, DE’s slow
convergence is enhanced by combining orthogonal design LS [56] with it. To avert local optima in DE,
random LS is hybridized [57] with it. On the other hand, some researchers borrowed DE’s mutation
and crossover in traditional LS methods (see, e.g., [58,59]).

To the best of our knowledge, none of the reviewed algorithms in this section integrate DFP into
DE’s framework. Further, the proposed work here maintains two archives: the first one stores inferior
solutions and the second one keeps information of best solutions migrated to it by the global search.
Furthermore, the second archive improves the solutions quality further by implementing DFP there.
Hence, our proposed work has the advantage that the second archive keeps complete information
of the solution before and after LS. This way, any good solution found is not lost. It also adopts a
population decreasing mechanism.

4. Developed Algorithm

As discussed in the literature review, LS techniques, due to their demerits, should not be used
alone to solve optimization problems [2]. The global optimality of global evolution techniques is very
high, but they can get stuck in local regions and cannot fine tune the solution at hand. Thus, motivated
by above issues of global/local techniques, we hybridize a global optimizer RJADE/TA with DFP
to enhance the convergence in both regions. The new design is named as RJADE/TA-ADP-LS.
We specifically handle unconstrained, nonlinear, continuous, and single objective optimization
problems in the current work.

RJADE/TA-ADP-LS

The initial population is evolved globally by RJADE/TA [50] until λ% of the function evaluations;
that is, after RJADE/TA’s iterative mutation, crossover, selection and M[ f irst] process, as shown in
Algorithm 1, the population is sorted and the current best solution w

[k]
(i,best) is translated to M[sec].

This best solution may be a parent or a child solution. The DFP is applied to the shifted elements for
w iterations. After implementation of DFP, a new improved solution w

[k]
(i,new)

is produced from an
old migrant. Then, the previously explored best solution and this new solution are posted to archive
M[sec]. Unlike our perviously proposed archive M[sec] in RJADE/TA, where the archive keeps the
record of best solutions only and no LS is implemented, M[sec], as mentioned above, in this method
maintains information of both solutions, i.e., the migrated best solution and its improved version,
if any, after implementation of DFP.

The archive M[sec] is updated after regular intervals of κ generations (20 here). The migrated
solutions and those explored by DFP remain there during the entire evolution process. When the
evolution process completes, the overall best candidate is selected from PpUM[sec]. The novelty of
RJADE/TA-ADP-LS is that it employs DFP to the archived solutions only, unlike all hybrid designs
reviewed in Section 3.
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In the proposed hybrid mechanism, we implement DFP to the migrated best solution to obtain its
improved form, but without reflection, as displayed in the flowchart given in Figure 1, unlike in our
recently proposed work [60]. Moreover, in this model, we propose adaptively decreasing population
(ADP) mechanism different from the fixed population approach of Khanum et al. [60]. We refer to this
new hybrid as RJADE/TA-ADP-LS throughout this work. The idea of RJADE/TA-ADP-LS is novel in
proposing the ADP approach, because, in the literature, majority of the evolutionary algorithms (as
reviewed in Section 3) maintain a fixed population throughout the searching process.

Generate random
population
of size N [pop]

Implement RJADE/TA with-
out reflection till λ genera-

tions and sort the population

Migrate the best solution to M [sec]

Apply DFP w iterations to
the best solution to produce
an improved best solution

Migrate the improved best solution to
M [sec] and update N [pop] = Npop − 1

Is stopping criterion met?

Output opti-
mal solution

Go back to step 2

yes

no

Figure 1. Flowchart of RJADE/TA-ADP-LS.

In this design, when the first update of M[sec] is made after half of the available resources are
spent, DFP is applied to the archive members. The implementations of DFP and ADP are shown
in Algorithm 2. Both the previously located best solution, w

{y}
[j,best], and the one exploited by DFP,

w
{y}
[j,new]

, are propagated to M[sec]. No reflection is made here to compensate the decreasing population.
The ADP approach (Algorithm 2, Lines 6–8) is implemented as:

Pp = Pp −w
{y}
[j,best]. (6)

Hence,
Pp = {w

{y}
[j,s1]

, w
{y}
[j,s2]

, . . . , w
{y}
[j,s

N[pop]−1
]
} (7)

f (Pp) = { f (w{y}
[j,s1]

), f (w{y}
[j,s2]

), . . . , f (w{y}
[j,s

N[pop]−1
]
)} (8)

Every time M[sec] is updated, the migrated element is removed from the current population Pp

(see Equation (6)), and the population is decreased by one. Thus, after each break of κ generations,
r(= the number of times the κ breaks occur) solutions are removed from N[pop], and the population
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size is updated to N[pop] − r, as demonstrated on Line 11 of Algorithm 2. Furthermore, the function
values are updated accordingly (see Equations (7) and (8)). In ADP approach, the algorithm begins
with a maximum population and terminates with a minimum population.

Algorithm 2 RJADE/TA-ADP-LS.

1: Update M[sec] as follows.
2: if k = κ then

3: w
{y}
[j,best] → M[sec];

4: Apply DFP to w
{y}
[j,best] to prduce w

{y}
[j,new]

;

5: w
{y}
[j,new]

→ M[sec];

6: Pp = {w
{y}
([j,s1]

, w
{y}
[j,s2]

, . . . , w
{y}
[j,s

N[pop]−1
]
};

7: f (Pp) = { f (w{y}
[j,s1]

), f (w{y}
[j,s2]

), . . . , f (w{y}
[j,s

N[pop]−1
]
)};

8: N[pop] = N[pop] − 1;
9: end if

10: Terminate the iteration;
11: Repeat the process r number of times and update N[pop] = N[pop] − r.

5. Validation of Results

In this section, first we briefly illustrate the five algorithms used for comparison and then the
experimental results are presented.

5.1. Global Search Algorithms in Comparison

Among the five algorithms for comparison, the first two, RJADE/TA and RJADE/TA-LS,
are our recently proposed hybrid algorithms, while the remaining three, jDE, jDEsoo and jDErpo,
are non-hybrid, but adaptive and popular DE variants.

5.1.1. RJADE/TA

RJADE/TA [50], similar to RJADE/TA-ADP-LS, utilizes two archives for information. One of
the archives stores inferior solutions, while the other keeps a record of superior solutions. However,
in RJADE/TA-ADP-LS, the second archive stores elite solutions, which are then improved by DFP.
Further details of RJADE/TA can be seen in Section 2.2.

5.1.2. RJADE/TA-LS

RJADE/TA-LS [60] is a very recently proposed hybrid version of global and local search.
However, it is different from RJADE/TA-ADP-LS in the sense that it utilizes reflection mechanism and
a fixed population, while RJADE/TA-ADP-LS uses DFP as LS without reflection and a population
decreasing approach.

5.1.3. jDE

jDE [61] is an adaptive version of DE, which is based on self-adaption of control parameters
F and CR. In jDE, the parameters F and CR keep changing during the evolution process, while
the population size N[pop] is kept unchanged. Every solution in jDE has its own F and CR values.
Better individuals are produced due to better values of F and CR. Such parameter values translate
to upcoming generations of jDE. Because of its unique mechanism and simplicity, jDE has gained
popularity among researchers in the field of optimization. Since its establishment, people use it to
compare with their own algorithms.
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5.1.4. jDEsoo and jDErpo

jDEsoo [62] is a new version of DE that deals with single-objective optimization. jDEsoo
subdivides the population and implements more than one DE strategies. To enhance diversity of
population, it removes those individuals from population that remain unchanged in the last few
generations. It was primarily developed for CEC 2013 competition.

jDErpo [61] is an improvement of jDE. It is based on the following mechanisms. Firstly,
it incorporates two mutation strategies, different from jDE, DE and RJADE/TA. Secondly, it uses
adaptively increasing strategy for adjusting the lower bounds of control parameters. Thirdly, it utilizes
two pairs of control parameters for two different mutation strategies in contrast to one pair of
parameters used in jDE, classic DE and RJADE/TA. jDErpo was also specially designed for solving
CEC 2013 competition problems.

5.2. Parameter Settings/Termination Criteria

Experiments were performed on 28 benchmark test problems of CEC 2013 [63]. They are referred
as BMF1–BMF28. The parameters’ settings were kept the same as demanded in [63]. The dimension n
of each problem was set to 10, population size N[pop] to 100, and the MaxFEs to 10, 000× n. The number
of elite solutions r was kept as 1. The iterations number w of DFP was set to 2. The reduction of
population per archive update r was also chosen as 1. The gap κ between successive updates of M[sec]

was kept as 20. The optimization was terminated if either MaxFEs were reached or the difference
between the means of function error values was less than 10−8, as suggested in [50,63].

Table 2. Comparison of RJADE/TA-ADP-LS with Well Established Algorithms.

Bench Marks jDE jDEsoo jDErpo RJADE/TA RJADE/TA-ADP-LS

BMF1 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0
BMF2 7.6534e− 05− 1.7180e + 03− 0.0000e + 0= 0.0000e + 0= 0.0000e + 00
BMF3 1.3797e + 0+ 1.6071e + 0+ 3.7193e− 05+ 1.2108e + 02+ 2.0350e + 02
BMF4 3.6639e− 08+ 1.2429e− 01+ 0.0000e + 0+ 1.1591e + 02+ 2.9749e + 02
BMF5 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 00
BMF6 8.6581e + 0− 8.4982e + 04− 5.3872e + 0+ 7.8884e + 0− 5.4656e + 00
BMF7 2.7229e− 03+ 9.4791e− 01− 1.6463e− 03+ 1.5927e− 01+ 2.3707e− 01
BMF8 2.0351e + 01= 2.0348e + 01+ 2.0343e + 01+ 2.0366e + 01− 2.0352e + 01
BMF9 2.6082e + 0+ 2.7464e + 0+ 6.4768e− 01+ 4.4593e + 0+ 4.6182e + 00
BMF10 4.5263e− 02− 7.0960e− 02− 6.4469e− 02− 3.5342e− 02− 3.2488e− 02
BMF11 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0= 0.0000e + 0
BMF12 1.2304e + 01− 6.1144e + 0+ 1.3410e + 01− 7.7246e + 0− 7.0574e + 00
BMF13 1.3409e + 01− 7.8102e + 0+ 1.4381e + 01− 6.7571e + 0+ 9.7072e + 00
BMF14 0.0000e + 0+ 5.0208e− 02− 1.9367e + 01− 1.1994e− 02− 5.3105e− 03
BMF15 1.1650e + 03− 8.4017e + 02− 1.1778e + 03− 6.6660e + 02+ 7.3411e + 02
BMF16 1.0715e + 0− 1.0991e + 0− 1.0598e + 0− 1.1336e + 0− 1.0545e + 00
BMF17 1.0122e + 01= 9.9240e + 0+ 1.0997e + 01− 1.0122e + 01= 1.0122e + 01
BMF18 3.2862e + 01− 2.7716e + 01− 3.2577e + 01− 2.2715e + 01+ 2.4399e + 01
BMF19 4.3817e− 01− 3.1993e− 01− 7.4560e− 01− 4.4224e− 01− 4.2674e− 01
BMF20 3.0270e + 0− 2.7178e + 0− 2.5460e + 0+ 2.5317e + 0+ 2.6153e + 00
BMF21 3.7272e + 02+ 3.5113e + 02+ 3.7272e + 02+ 3.9627e + 02+ 4.0019e + 02
BMF22 7.9231e + 01− 9.1879e + 01− 9.7978e + 01− 2.7022e + 01− 1.3178e + 01
BMF23 1.1134e + 03− 8.1116e + 02− 1.1507e + 03− 7.0015e + 02− 4.8553e + 02
BMF24 2.0580e + 02− 2.0851e + 02− 1.8865e + 02− 2.0217e + 02− 1.0823e + 02
BMF25 2.0471e + 02− 2.0955e + 02− 1.9885e + 02− 2.0314e + 02− 1.7732e + 02
BMF26 1.8491e + 02− 1.9301e + 02− 1.1732e + 02+ 1.2670e + 02− 1.2096e + 02
BMF27 4.7470e + 02− 4.9412e + 02− 3.0000e + 02+ 3.0351e + 02+ 3.0514e + 02
BMF28 2.9216e + 02− 2.8824e + 02− 2.9608e + 02− 2.8824e + 02− 2.8500e + 02

− 17 17 14 13
+ 6 8 10 10
= 5 3 4 5

5.3. Comparison of RJADE/TA-ADP-LS against Established Global Optimizers

The mean of function error values, the difference between known and approximated values,
for jDE, jDEsoo, jDErpo, RJADE/TA and RJADE/TA-ADP-LS, are presented in Table 2. In Table 2,
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+ indicates that the algorithm won against our algorithm, RJADE/TA-ADP-LS; − indicates that the
particular algorithm lost against our algorithm; and = indicates that both algorithms obtained the
same statistics. The comparison of RJADE/TA-ADP-LS with other competitors showed its outstanding
performance against all of them. RJADE/TA-ADP-LS achieved higher mean values than jDE and
jDEsoo on 17 out of 28 problems; the many − signs in columns 2 and 3 of Table 2 support this fact.
In contrast, jDE and jDEsoo performed better on six and eight problems, respectively.

RJADE/TA-ADP-LS showed performance improvement against jDErpo and RJADE/TA
algorithms as well. In general, RJADE/TA-ADP-LS performed better than all algorithms in comparison,
especially in the category of multimodal and composite functions. The proposed mechanism is not
only based on LS for local tuning with no reflection, but it also implements an ADP approach, which
could be the reasons for its good performance.

5.4. Performance Evaluation of RJADE/TA-ADP-LS Versus RJADE/TA-LS

We empirically studied the performance of RJADE/TA-ADP-LS against RJADE/TA-LS. Table 3
presents the mean results achieved by both methods in 51 runs. The best results are shown in bold face.
It is very clear from the results in Table 3 that the proposed RJADE/TA-ADP-LS performed higher
than RJADE/TA-LS on 13 out of 28 problems. Furthermore, on five problems, they obtained the same
results. RJADE/TA-LS showed performance improvement on 10 test problems.

Table 3. Comparing RJADE/TA-ADP-LS with RJADE/TA-LS.

BMF1 BMF2 BMF3 BMF4 BMF5 BMF6 BMF7

RJADE/TA-LS 0.0000e+00 0.0000e+00 2.5750e + 02 3.9511e+01 0.0000e+00 6.9264e + 00 2.3707e-01

RJADE/TA-ADP-LS Mean 0.0000e+00 0.0000e+00 2.0350e + 02 2.9749e+02 0.0000e+00 5.4656e+00 2.3707e− 01

BMF8 BMF9 BMF10 BMF11 BMF12 BMF13 BMF14

RJADE/TA-LS 2.0342e+01 4.4888e + 00 3.2488e-02 0.0000e+00 6.8613e+00 7.9039e+00 7.3105e− 003
RJADE/TA-ADP-LS Mean 2.0352e + 01 4.6182e+00 3.2488e-02 0.0000e+00 7.0574e + 00 9.7072e + 00 5.3105e-03

BMF15 BMF16 BMF17 BMF18 BMF19 BMF20 BMF21

RJADE/TA-LS 6.6733e+02 1.0855e + 00 1.0122e+01 1.0122e+01 4.4752e− 01 2.5707e+00 3.9627e+02

RJADE/TA-ADP-LS Mean 7.3411e + 02 1.0545e+00 1.0122e+01 2.4399e + 01 4.2674e-01 2.6153e + 00 4.0019e + 02

BMF22 BMF23 BMF24 BMF25 BMF26 BMF27 BMF28

RJADE/TA-LS 2.0589e + 01 6.7549e + 02 1.9809e + 02 2.0190e + 02 1.3596e + 02 3.0033e+02 3.0000e + 02
RJADE/TA-ADP-LS Mean 1.3178e+01 4.8553e+02 1.0823e+02 1.7732e+02 1.2096e+02 3.0514e + 02 2.8500e+02

It is interesting to note that RJADE/TA-ADP-LS showed outstanding performance in the category
of composite functions, where it solved BMF22–BMF28 better than RJADE/TA-LS. Again, the two
different mechanisms, the ADP approach and the LS search with out reflection, of RJADE/TA-ADP-LS
could be the reasons for its better performance. Among 28 problems, RJADE/TA-LS was better
on 10 functions. Further, Table 4 presents the percentage performance of RJADE/TA-ADP-LS and
RJADE/TA-LS. Since on five test problems, both algorithms showed equal results, thus we compared
the percentage for the remaining 23 problems. As shown in Table 4, RJADE/TA-ADP-LS was able to
solve 57% of problems against 43% of problems solved by RJADE/TA-LS out of 23 test instances.

Table 4. Comparing RJADE/TA-ADP-LS with RJADE/TA-LS.

Algorithms RJADE/TA-ADP-LS RJADE/TA-LS

Number of Problems solved in total of 23 13 of 23 10 of 23
% age 57% 43%

Furthermore, box plots were plotted from all means obtained in 25 runs of RJADE/TA,
RJADE/TA-LS and RJADE/TA-ADP-LS. Figures 2 and 3 plot one function from each three functions.
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Box plots are very good tools to show the spread of the data. Figure 2b–d shows that the boxes obtained
by RJADE/TA-ADP-LS were lower than the other two boxes, indicating its better performance.
Figure 2a presents the plot of BMF3, in which the two boxes in comparison were lower than
RJADE/TA-ADP-LS, thus they were better.

Figure 3b,d,f shows that the boxes obtained by RJADE/TA-ADP-LS on BMF19, BMF25 and
BMF27 were lower than the boxes of RJADE/TA and RJADE/TA-LS, indicating higher performance of
RJADE/TA-ADP-LS. Figure 3a,c,e shows that the two other algorithms were better on the respective
test instances.

5.5. Analysis/Discussion of Various Parameters Used

The number of solutions r to be migrated to archive and undergo DFP was kept as 1, since DFP is
an expensive method due to gradient calculation. Further, its application to more than one solution
might slow down the algorithm. The users may take two, but at most three is suggested. The number
of iteration w of DFP to archive elements was kept as 2. DFP is a very good method; it could fine tune
the solutions in only two iterations. Moreover, the decreasing number r of population per archive
update was also chosen as 1. Since the archive was updated after regular gap of global evolution, each
time population was decreased by one. However, if we reduced it by more than one solutions, then a
stage would come where the diversity of the population would be decreased and the algorithm would
either stop at local optima or converge prematurely. We suggest that the decreasing number be at most
3. In general, these parameters are user defined but should be chosen wisely to compliment the global
and local search together, instead of premature convergence or stagnation.

(a) BMF3 (b) BMF6

(c) BMF9 (d) BMF13

Figure 2. Box plots of various algorithms in comparison.
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(a) BMF16 (b) BMF19

(c) BMF22 (d) BMF25

(e) BMF26 (f) BMF27

Figure 3. Box plots of various algorithms in comparison.

6. Conclusions

This paper proposed a new hybrid algorithm, RJADE/TA-ADP-LS, where a LS mechanism,
DFP is combined with a DE based global search scheme, RJADE/TA to benefit from their searching
capabilities in local and global regions. Further, a population decreasing mechanism is also adopted.
The key idea is to shift the overall best solution to archive at specified regular intervals of RJADE/TA,
where it undergoes DFP for further improvement. The archive stores both the best solution and its
improved form. Furthermore, the population is decreased by one solution at each archive update.
We evaluated and compared our hybrid method with five established algorithms on test suit of CEC
2013. The results demonstrated that our new algorithm is better than other competing algorithms on
majority of the tested problems, particularly our algorithm showed superior performance on hard
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multimodal and composite problems of CEC 2013. In future, the present work will be extended to
constrained optimization. As a second task, some other gradient free LS methods, global optimizers
and archiving strategies will be tried to design more efficient algorithms for global optimization.
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Abstract: Fuel cells are promising devices to transform chemical energy into electricity; their behavior
is described by principles of electrochemistry and thermodynamics, which are often difficult to model
mathematically. One alternative to overcome this issue is the use of modeling methods based on
artificial intelligence techniques. In this paper is proposed a hybrid scheme to model and control fuel
cell systems using neural networks. Several feature selection algorithms were tested for dimensionality
reduction, aiming to eliminate non-significant variables with respect to the control objective. Principal
component analysis (PCA) obtained better results than other algorithms. Based on these variables,
an inverse neural network model was developed to emulate and control the fuel cell output voltage
under transient conditions. The results showed that fuel cell performance does not only depend on
the supply of the reactants. A single neuro-proportional–integral–derivative (neuro-PID) controller is
not able to stabilize the output voltage without the support of an inverse model control that includes
the impact of the other variables on the fuel cell performance. This practical data-driven approach is
reliably able to reduce the cost of the control system by the elimination of non-significant measures.

Keywords: feature selection; PEM fuel cell; control; neural network; principal component analysis;
modeling; system identification

1. Introduction

The constant increase in energy consumption, environmental issues, and the rapid exhaustion of
fossil fuel reservoirs have motivated researchers around the world to design renewable solutions to
this global challenge [1]. Hydrogen is a potential energy renewable source, and it could be the clean
fuel of the future [2]; its main characteristics are as follows:

• Hydrogen has the highest energy content per unit weight (142 kJ g−1) [3];
• It is a carbon-free fuel due to its combustion product being water [4];
• Hydrogen can be used as a direct fuel or as an energy carrier for a fuel cell [4].

“One of the most promising hydrogen energy conversion technologies is the fuel cell” [5]. However,
fuel cells need an operational control strategy supported by a fault detection and isolation method
which can reconfigure the energy system to overcome potential faults and increase both the reliability
and useful life of the fuel cell [6].

1.1. Fuel Cell Operation Principles

Fuel cells are devices that transform chemical energy into electricity. A fuel stack is made up of a
group of single fuel cells placed in series. Each cell is formed by a proton exchange membrane (PEM)
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Processes 2019, 7, 434

placed between two electrodes (anode and cathode) which are coated with a catalyst layer, usually
platinum (see Figure 1).

Figure 1. Proton exchange fuel cell diagram [7]. Reproduced with permission from Daud, W.R.W.,
Renew. Energy; published by Elsevier, 2007.

The fuel (hydrogen) is supplied at the anode, and the oxidant (oxygen, generally taken from
the air) is supplied at the cathode. At the anode, hydrogen in the presence of a platinum catalyst
is ionized into positively charged hydrogen ions and negatively charged electrons. At the cathode,
electrons which come from the anode and protons that have crossed the membrane combine with
oxygen from the air to form water that flows out of the fuel cell [8,9].

The overall reaction is described as follows.

Hydrogen + Oxygen⇒ Electricity + Water + Heat

1.2. PEM Fuel Cell System Control

In [10] are mentioned the main components that form a PEM fuel cell system. Below, these four
principal sub-systems are described:

• Reactant Flow Subsystem

This subsystem consists of a hydrogen and air supply loop; its objective is to maintain an adequate
stoichiometry of the reactants according to the operating conditions of the cell. The air supply loop
in a high-pressure fuel cell system uses a compressor to feed the air, while in a low-pressure system,
a low-speed blower is used to feed the air.

• Temperature Subsystem

A low-power PEM fuel cell only needs a blower to regulate its operation temperature, which is
around 80 ◦C. A high-power fuel cell cannot dissipate heat by air convection and radiation through the
surface of the stack; it needs to be cooled down by the flow of deionized water.
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• Water Management Subsystem

The objective of this system is to maintain good hydration of the membrane while balancing
the use/consumption of water in the cell. Dry membranes and flooded fuel cells cause high
polarization losses.

• Power Management Subsystem

This subsystem controls the power drawn from the fuel cell stack. The load current is considered
as a disturbance that has a direct impact on other subsystems.

If the reactant flow system is controlled correctly, the main variables of the stack, such as the
temperature and water concentration, will be indirectly controlled. This subsystem has a major impact
on the other subsystems; because of this, its control is critical for the performance of the stack.

Polarization phenomena at the PEM fuel cell reduce the voltage that can be delivered by the
system whenever more current is drawn by the load, which may affect the performance of equipment
that requires a fixed voltage to work correctly. Therefore, the output voltage of the stack must be
controlled by adjusting the flow rates of hydrogen and air. Another option to control the output voltage
is by using outside means such as a battery or a supercapacitor or both [7].

The stack must operate with maximum efficiency most of the time to achieve profitable operation.
Optimizing the hydrogen supply is a priority control objective to achieve cost-effective operation since,
at this moment, the hydrogen production cost is still too high [11].

It is possible that a fixed-parameter electrochemical model does not offer a reliable prediction in
transient conditions for a conventional controller. For this reason, systems identification techniques
seem to be more appropriate to control complex nonlinear systems.

Following the above mentioned, this paper is focused on the control of the reactant system. It is
organized as follows: Section 2 cites works related to the data-driven control of PEM fuel cells. Section 3
describes the dataset characteristics and briefly describes the types of feature selection algorithms
and some regression algorithms used for systems modeling. Section 4 presents the results obtained
by the application of the algorithms of feature selection and regression, and it also shows the control
scheme proposed.

2. Related Works

This section presents papers related to the modeling and control of PEM fuel cells using artificial
intelligence techniques. In [12], a methodology was presented for systems identification using NARX
(nonlinear autoregressive network with exogenous inputs) and NOE (nonlinear output error) neural
networks. The control-oriented black box model obtained was implemented in embedded hardware
with limited capacity for memory and processing. In [13], the performance of classical neural network
(NN) models and stacked models was compared. The stacking approach using partial least squares
as a combining algorithm obtained the best prediction. In [14], the authors compared an NN model
against a dynamic model using three statistical indices to validate their performance: the absolute
mean error (AME), the root-mean-square error (RMSE), and the standard deviation error (SDE).
The maximum value of the three indices indicated that the NN model is more precise and accurate but
has bigger variation in predicting the outputs when compared with a dynamic model. Different methods
have been tested to construct nonlinear empirical models. In [15], the performance of an artificial
neural network (ANN) and a support vector machine (SVM) in predicting fuel cell output voltage was
compared. The NN model presented excellent performance in predicting the polarization curves of
the stack with R2 = 0.999; the SVM model exhibited a slightly inferior performance with R2 = 0.980.
However, Kheirandish et al. [16] proposed a different approach for predicting the performance of an
electric bicycle using SVM and ANN. Their results showed that SVM has better accuracy in predicting
the power curve, approximately 99%, whereas ANN reached an accuracy of 97%. This difference is
mainly due to the selection of the hyperparameters. Parametric neural network (PNN) and group
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method of data handling (GMDH) techniques were used to predict and control the output voltage
of a PEM fuel cell of 25 W. The system inputs were gas pressure, fuel cell temperature, and input
current. Both methods presented high accuracy in predicting the voltage. However, the GMDH
model had less deviation [17]. Some parameters are difficult to measure, or it is very expensive to
measure them, especially in fuel cell stacks. Chávez-Ramírez et al. [18] developed a simulator, based
on ANN, to predict the stack voltage and cathode output temperature. They concluded that simulators
based on ANN are reliably able to predict voltage and temperature behavior, saving time and resources.
Recurrent neural networks were used to develop degradation prognostic models. In [19], a grid long
short-term memory (G-LSTM) recurrent neural network (RNN) was used to predict the lifetime of
fuel cells.

A detailed description of the neural control techniques applied to PEM fuel cells is provided
in [20]. In Figure 2 are shown these different approaches. A feed-forward control system, including
a neural network together with a proportional–integral–derivative controller, was presented in [21].
The control objective was maintaining a proper stack voltage using an inverse model of the plant to
calculate the control signal (air pressure). In [22], a neural network adaptive control with feedback
linearization was developed. The control variables were the pressure values of hydrogen and oxygen.
The model presented excellent disturbance rejection, even under load variations.

Figure 2. Neural control techniques applied to PEM fuel cells.

However, other artificial intelligence techniques have been applied to fuel cell systems to
control airflow rate, temperature, and mass flow, among others. In [23], an interval type-2 fuzzy
proportional–integral–derivative (IT2FPID) controller was designed to regulate the air flow. The results
were compared with those of conventional PID and type-1 fuzzy PID controllers. IT2FPID presented a
better performance in terms of transient response. In [24], a fuzzy cognitive map (FCM) was used to
model an electric bicycle powered by a fuel cell. The Hebbian algorithm was proposed for the FCM to
self-learn from its own data.

3. Materials and Methods

The development stages of the proposed control scheme are described below.

1. Apply a feature selection algorithm to determine the variables needed to model and control the
fuel cell voltage;

2. Define the system inputs from the subset formed by the feature selection algorithm and try
different regression algorithms to predict the output variable;

3. Develop the inverse model of the fuel cell, turning the system inputs into outputs. The output of
the regression model will become a system input.

4. Integrate the inverse model with a PID neuro control to track the errors and tune the control
signal to achieve the reference value of the system output. The reason why these two types of
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control are integrated is to modify the control signal by not only considering the error between
the output variable and the reference value but also considering the state of the other variables in
the transient state.

3.1. Experimental Setup

The proposed approach was applied to the test data from IEEE 2014 [25]. Experiments were carried
out on a testbench that allows running the PEM stacks under constant or variable operating conditions
while controlling and recording operation data like power loads, temperatures, and stoichiometry
rates of hydrogen and air. The variables monitored are presented in Table 1.

Table 1. Variables monitored.

Variable Description Unit

Time Time aging H
Vout Stack output voltage V

I Current A
J Current density A/cm2

Tin, Tout H2 Inlet and outlet H2 temperature ◦C
Tin, Tout Air Inlet and outlet air temperature ◦C
Pin, Pout H2 Inlet and outlet H2 pressure mBar
Fin, Fout H2 Inlet and outlet H2 flow L/min
Fin, Fout Air Inlet and outlet air flow L/min

Fwat Flow rate of cooling water L/min
HrAIR Inlet Hygrometry (Air) %

The stack was formed by five cells. Each cell had an active area of 100 cm2. The nominal current
density of the cells was 0.70 A/cm2, and their maximum current density was 1 A/cm2. The test was
carried out under dynamic changes in the load current (around 1020 h). The load current connected
was of 70 A with oscillations of 10% at a frequency of 5 kHz. The ranges of the operating parameters
are shown in Table 2.

Table 2. Range of parameters controlled.

Parameter Range

Air flow 0 to 100 L/min
H2 flow 0 to 30 L/min

Gas pressure 0 to 2 bars
Temperature 20 to 80 ◦C
Cell current 0 to 300 A

3.2. Feature Selection Algorithms and Data-Driven Models for Fuel Cells

Dimensionality reduction techniques can be classified into two groups: feature selection and feature
extraction. Each one has its characteristics, and its accuracy depends on the characteristics of the
database to be analyzed. Feature extraction techniques achieve dimensionality reduction by combining
the variables. In this way, they can generate a set of new components, reducing the data dimensionality
while maintaining enough information to describe the system. In some applications, such as image
analysis, where model accuracy is more important than model interpretability, these techniques
are very useful. Instead, feature selection reduces data dimensionality by removing irrelevant and
redundant variables. Feature selection techniques aim to obtain a subset of variables that describes
with accuracy the system characteristics with minimum performance degradation. Feature selection
can be grouped into three main categories: Filters, Wrappers, and Embedded. A brief description of
their main characteristics is given below:

• Filter methods measure the relevance of the variables by their correlations with the output variable;
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• Wrapper methods create a subset of the original dataset using a training algorithm;
• Filter methods are much faster than wrapper and embedded methods;
• Wrapper methods can fall into overfitting;
• Embedded and wrapper methods capture feature dependencies while filters methods do not.

The operating principles of PEM fuel cells include electrochemistry and thermodynamics principles
that are frequently very hard to model mathematically. One alternative to overcome this issue is the use
of modeling methods based on artificial intelligence techniques. In this work, neural networks were
used to model and control PEM fuel cells because deep learning techniques, in general, present better
performance in modeling highly nonlinear systems than do machine learning algorithms. Section 4.2
compares the performance of different algorithms against dynamic neural networks. These data-driven
models can be used as an emulator to detect possible failures in fuel cell systems or to develop an
inverse neural control system, as is shown in [26] (see Figure 3).

Figure 3. Direct inverse neural control.

4. Results and Discussion

For research purposes, all the information collected during the test is useful to understand and
improve the material quality and the design performance; these improvements can lead to increasing
the lifetime and thus reducing the cost of operation, which at the moment is still too high. However,
for control purposes, in real applications, it would be very expensive to install all of these sensors and
actuators. The control objective is to identify the critical operating variables and reduce the cost of the
control system using Feature Selection.

4.1. Fuel Cell Feature Selection

An attempt was made to train a regression algorithm without applying feature selection. The poor
results obtained were due to the noise generated by the low correlation of some variables. This section
presents the results of the application of various feature selection algorithms to the original dataset.
The best results were obtained using a feature extraction algorithm: PCA analysis. For this reason,
Section 4.1.4 was extended to describe how the variables were selected.

4.1.1. Filter Methods

The Pearson correlation method selected the next variables: current, current density, and the
output flow rates of hydrogen and air. These variables were selected due to their correlation grades
being superior to 0.5. However, although these variables could model the fuel cell voltage, none of
them can be considered as a system input useful to controlling the fuel cell.
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4.1.2. Wrapper Methods

Two wrapper methods were applied to perform feature selection: Recursive Feature Elimination
(RFE) and Backward Elimination (BE).

RFE selected 16 variables with a model precision of 0.85. The removed variables were the current
density and hydrogen output temperature. BE selected 17 variables according to a p value of 0.05
(statistically significant). The removed variable was the inlet hydrogen flow.

The dimensionality reduction achieved by both algorithms, RFE and BE, was nonsignificant.

4.1.3. Embedded Methods

The selection was made using lasso regularization. If the variable is irrelevant, lasso penalizes its
coefficient by changing it to zero. The best score using built-in LassoCV was 0.8617. Lasso picked 11
variables and eliminated the other 7 variables. The reduction achieved by this algorithm was highly
significant. However, the fit was barely acceptable.

4.1.4. Principal Component Analysis (PCA)

PCA analysis is a statistical method used to reduce the dimensionality of a dataset while retaining
as much as possible of the variation present in the data. For more details about this technique and its
applications to fuel cells, refer to [27].

The first step to performing a PCA analysis is to make a descriptive statistic that summarizes the
central tendency and dispersion of the values; the next step is to make a correlation matrix, which
allows us to observe which variables have a solid relationship, as shown in Figure 4.

 
Figure 4. Fuel cell correlation matrix.
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As can be seen, due to the low correlation between variables, it is very difficult to determine
the parameters for operating a fuel cell system [17]. This low correlation is mainly due to PEM fuel
cells having complex electrochemical reactions with multiple nonlinear input/output variables [28].
Systems with these characteristics are complicated to model accurately and, therefore, to optimize.

The main relationships are between the following:

• The air inlet and outlet pressure;
• The hydrogen inlet and outlet pressure; and
• The air inlet flow rate and hydrogen inlet flow rate.

However, as can be seen in Figure 4, there is a negative correlation between time and current
(−0.81), as well as between time and current density (−0.81); these relationships are not so significant
because they only reflect the natural wear of the membrane. The time variable was not considered
during the feature selection process.

After that, it is necessary to determine the number of components which explain the main variance
of the data. This number is obtained by trial and error. In this case, five components describe the
variance of the data correctly (see Figure 5).

 

 

(a) Explained variance per component (b) Cumulative variance 

Figure 5. Explained variance per component.

However, four components explain more than 97% of the variance. The fifth component is not
relevant, so it can be omitted. In Figure 6 can be seen which variables have a major impact on each one
of the four components (see also Table 3).

 

Figure 6. Fuel cell correlation matrix.

212



Processes 2019, 7, 434

Table 3. Selected variables from PCA analysis.

Variables Type

Current State variable
Hydrogen inlet temp. State variable

Air inlet temp. State variable
Air inlet pressure Input system

Air outlet pressure State variable
Hydrogen inlet pressure Input system

Hydrogen outlet pressure State variable

However, during the regression process, it is necessary to add the time variable due to the natural
wear of the membrane depending on the work hours, which reduce in an almost linear way the
output voltage. Once the main variables of the fuel cell have been identified, it is possible to create a
control-oriented model to track the output voltage.

4.2. Data-Driven Control-Oriented Models for PEM Fuel Cells

This section is divided into two parts. Section 4.2.1 describes the results obtained by some of the
most robust regression algorithms used in machine learning. Section 4.2.2 is extended to show in more
detail the neural network training process. Neural networks achieved better results than the algorithms
tested in Section 4.2.1, mainly due to their ability to track nonlinear variables and system delays.

4.2.1. Fuel Cell Modeling Using Machine Learning Regression Algorithms

Different regression algorithms were tested to create a robust control-oriented model, and their
performance was compared with the Explained Variance score ratio. The k-fold method was used for the
cross-validation of the model using five folds, and a fixed seed was established to ensure reproducibility.
The methods compared were ridge (RID), Bayesian ridge (BYR), decision tree regressor (DTR), gradient
boosting regressor (GBR), and random forest regressor (RFR). The results show the averages and
standard deviations of the Explained Variance.

• RID: 0.840495 (0.075010)
• BYR: 0.840494 (0.075011)
• DTR: 0.815885 (0.131130)
• GBR: 0.860727 (0.124138)
• RFR: 0.830844 (0.120877)

Figure 7 compares via a box plot the performance of the algorithms tested. In the graph, it can be
seen that gradient boosting regressor is the algorithm that presents less variation and better accuracy.
However, the gradient boosting regressor only reaches a score of 0.86, which is slightly low for
control purposes.
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Figure 7. Algorithm comparison.

4.2.2. Fuel Cell Modeling Based on Neural Networks

Neural networks can be classified according to their behavior in time as either static or dynamic.
A static neural network can model with high accuracy the performance of a PEM fuel cell. However,
as can be seen in Figure 4, the time variable impacts negatively on the output voltage and current,
even in steady-state conditions (see also Figure 8). A dynamic neural network takes into consideration
the time variable, and its structure can be used as a generic model for system control [29].
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Figure 8. Fuel cell output voltage as a function of time.

A nonlinear autoregressive with external exogenous input (NARX) network was used to model
the fuel cell. The validation process was done by a cross-validation technique (k-fold) with ten splits.

The dataset was divided into training and validation sets. The input layer consisted of eight
inputs (the variables selected in the PCA analysis, see Table 3), the hidden layer had ten neurons with a
log-sigmoid activation function with two delays (sampling time 30 seg.), and the output layer used the
purelin activation function to calculate the voltage. The dynamic neural network (DNN) configuration
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is shown in Figure 9. The training algorithm selected was Levenberg–Marquardt because, in general,
it has the fastest convergence and reduces the computational cost.

Figure 9. Dynamic neural network structure.

The high regression accuracy (R2 = 0.96) and the fast convergence are mainly due to the fact that in
the PCA analysis, the irrelevant and redundant variables which have no impact on the output voltage
were eliminated. The eliminated variables do not have value for control purposes. In Table 4 are
presented the scores of each fold. In Figure 10, a comparison of the actual values against the predicted
values is presented.

Table 4. Regression score function of each fold.

Fold Score

1 0.955929840882997
2 0.953074662444409
3 0.959505398134269
4 0.957813889951952
5 0.958048357252375
6 0.958116362163286
7 0.959355574634461
8 0.960026345242201
9 0.966767102061810
10 0.971974506261939

Ave. 0.960061203902970

 
Figure 10. Actual values and predicted values.

215



Processes 2019, 7, 434

4.3. Hybrid Control Scheme

According to the eight main variables identified in the PCA analysis, only two can be considered as
system inputs: the inlet pressures of hydrogen and oxygen. However, when analyzing Figure 6, it can
be seen that hydrogen pressure is the variable that most affects the fuel cell performance. Variations in
air inlet pressure can be considered non-representative for control purposes if they are kept within a
specific range of operation.

Keeping constant or following a reference is not the objective of this control approach for the
fuel cell output voltage; this is because the output voltage does not depend only on the supply of
the reactants. The load has a delayed negative correlation on the voltage level and in transient-state
conditions is the variable that impacts it the most. The load (current) can be considered as an external
disturbance. For the abovementioned, a MISO (multiple inputs, single output) control is needed
to supply the optimal hydrogen pressure to the cell according to the operating conditions, such as
temperature, current, or air pressure.

The neuro-PID controller is an already proven control approach in cases of system fault recovery,
such as flooding, drying out, and auxiliary failures, such as of a compressor [20]. A PID-series
neuro control scheme (with an inverse model of the fuel cell) was proposed to supply the optimal
hydrogen pressure by taking into account the values of the main variables under transient conditions
(see Figure 11). The self-autotuning of the PID control was done according to the method proposed by
Omatu et al. [30].

 
Figure 11. Proportional–integral–derivative (PID)-series neuro controller.

The ANN controller is the inverse model of the plant; this means that the output voltage of the
plant was turned into input, and the hydrogen pressure became the system output. The nominal
voltage is 3.3 volts in steady-state conditions; however, this nominal value depends on the changes in
the load and its effect on the temperature. The ANN controller not only considers the error between
the nominal voltage value and the actual value but also considers the values of the variables selected
in the PCA analysis to estimate the control signal—in this case, the hydrogen pressure. The training
was done following the same approach described in Section 4.2.2.

In Figure 12 are compared the voltage, current, and hydrogen pressure for both controllers,
the conventional and neuro PID-series. Both controllers achieved similar performance in steady-state
and transient conditions. The main difference is the reduction in the hydrogen pressure in the steady
state. This reduction in pressure causes a decrease in the flow of hydrogen, which in turn decreases
hydrogen consumption. It is necessary to recall that the difference is only about 45 mbar. In practical
applications, a high-precision actuator (expensive) would be needed to control these small differences.
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Conventional control  PID-series control  

  

(a) 

  
(b) 

  
(c) 

Figure 12. Performance analysis of PID-series and conventional control. (a) The same load was
connected to both controllers. At time 35.42 h the load was changed to evaluate the effect on the output
voltage and the supply hydrogen pressure; (b) The output voltage reached the same level in steady
state in both cases practically. When the load connected was reduced (until open circuit) the output
voltage increased; (c) Hydrogen pressure in the conventional control (left) oscillated (in the steady
state) mainly between 1280 and 1295 mBar, whereas in the neuro-control (right), the hydrogen pressure
remained practically constant at 1238 mBar in the steady state.

The training algorithm derives the error partially, so each neuron updates its weight according to
its proportion in that error. If the neuro-PID controller only considers the gap between the desired
voltage and the actual value without taking into account the changes in the variables selected in
the PCA analysis, the control signal, the hydrogen inlet pressure, will not stabilize the fuel cell
performance. PEM fuel cells must operate in steady-state conditions in order to avoid premature
failure, such as starvation due to improper gas supply or an excessive transient load demand [31].
An energy management system is required to deliver a fixed voltage to equipment so it can work
correctly. This paper proposes a practical approach to stabilize the fuel cell performance in transient
conditions at minimum control cost, focusing attention on the variables that impact the most on the
performance of the cell and eliminating unnecessary measurements. However, this control can be
improved if the air inlet pressure is also regulated. An incorrect startup/shutdown process can cause
accelerated or permanent damage to the catalyst layer. These considerations have to be included in the
control process to improve the proposed control.
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5. Conclusions

In this paper, we developed a data-driven control approach for PEM fuel cells to minimize the
cost of control. Several feature selection algorithms were used for dimensionality reduction. Principal
component analysis (PCA) obtained the best results by removing irrelevant and redundant variables.
The selected variables (Table 3) can describe with high accuracy the PEM fuel cell performance. Some of
the most powerful regression algorithms were compared to predict the output voltage of the cell.
However, neural networks obtained the highest accuracy (R2 = 0.96) due to their capacity to map
complex nonlinear relationships. With the selected variables, an inverse model of the fuel cell was
developed using neural networks in order to develop a neuro-PID controller. A PID-series control
was integrated with the inverse model to regulate the system input (hydrogen inlet pressure) by
considering the values of the other variables. The fuel cell voltage level does not depend only on the
supply of the reactants, and in transient conditions, the load is the variable that impacts the most on
fuel cell performance. This method is a practical way to save mathematical modeling time and reduce
the number of sensors in the control system.

In the future, this study will be improved via experimental tests in a real PEM fuel cell system
which includes the measurements detected in the PCA analysis. Later, an intelligent fault diagnosis
and isolation scheme will be developed to prevent permanent damage in the catalyst layer.
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Abstract: Ship transportation plays an increasingly important role in and accounts for a large
proportion of cargo transport. Therefore, it is necessary to improve the quality of the trajectory control
system of the ship for improving the transport efficiency and ensuring maritime safety. This paper
deals with the advanced control system for the three-degrees-of-freedom model of the underactuated
ship in the condition of uncertain disturbance. Based on the three-degrees-of-freedom model of the
underactuated ship, the authors built a bilinear model of the ship by linearizing each nonlinear model
section. Then, the authors used the state estimator to compensate for uncertain components and
random disturbances in the model. Finally, the authors built the output-feedback predictive controller
based on the channel-separation principle combined with direct observation of the continuous model
for controlling the motion of the underactuated ship in the case of uncertain disturbance and the
bound control signals. The result is that the movement quality of the underactuated ship is very good
in the context of uncertain disturbance and bound control signals.

Keywords: underactuated ship; bilinear model predictive controller; directly observer; uncertain estimator

1. Introduction

Maritime transport plays a particularly important role in international trade because about 80% of
imports and exports are transported through the sea. Maritime transport is a large market because of
its essential advantages, such as its wide transport range, large carrying capacity, low shipping cost,
etc. Therefore, it is necessary to conduct research for improving the trajectory control system of the
ship in order to improve the transport efficiency and ensure maritime safety. However, controlling
the ship movement with a high-quality is a challenge for scientists because the ship is a complex
object, with large nonlinearity and unknown structures, and works in dynamic environments with
complex noise.

The dynamic model of a ship is an uncertain nonlinear model, and the model parameters depend
on the control states. The equation used to describe ship motion is a high-order differential equation.
Considering the kinetic properties, ships have the following characteristics: The oscillation and the
time constant are large, and the stabilization margin is small [1]. Therefore, controlling the ship motion
is always a challenge for scientists, especially controlling the underactuated ship that has fewer control
signals than the state variables to be controlled [2]. Studies on ship control with the model of a lack of
actuators have been presented in the literature [3–7].

A ship is a large nonlinear object, so the use of simplified or linear control models does not give
us the expected results. In recent years, the development of electronic and informatics technology has
allowed us to apply modern control theory for ship motion, such as adaptive control, backstepping,
sliding mode control, model predictive control, etc. The research [8] uses the backstepping technique to
control an underactuated ship following the set trajectory. However, this research assumes that the ship
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only moves along a straight trajectory and the speed is constant and positive, and the uncertainties in
the kinematic model and the disturbance are not considered. The research [9] has provided a trajectory
ship controller based on the Lyapunov function and backstepping technique on the condition that the
control signals are not bound. Additionally, the research [10] has proposed a control method based on
linear algebra, where the controller is designed based on linearizing the nonlinear model of the control
object. However, this research does not address the problem of disturbance and uncertainties in the
dynamic model of the ship.

Therefore, difficult problems when designing the ship motion controller are as follows: the state
variables cannot be measured, and the coefficients in the model matrices are changed, depending
on the control states, so it is difficult to accurately determine the coefficients in the model matrices.
For simplicity, some previous research has ignored many factors, leading to models of the ship that are
very different to the actual situation.

In order to solve the problems caused by uncertain parameters and disturbance, the research [11,12]
has used the neural network to update and estimate the uncertain components in the model. In the
study [13], the author used the coordinate transformation method to overcome the third-order uncertain
component in the derivative of the Lyapunov function caused by the centrifugal and Coriolis forces.
To update the uncertain parameters and the time-varying parameters of the inertial mass matrix of
the model, the study [14] proposed a motion controller of the self-driver ship using the unscented
Kalman filter to compensate for the hidden noise in the model. The work [15] estimated the uncertain
components based on the finite-time disturbance observer. The works [16,17] proposed the nonlinear
disturbance observer based on the kinetic model to estimate the disturbance that is compensated for
the controller.

Another problem faced when designing the trajectory controllers of ship motion is that the studies
often ignore the limit of control signals. In fact, the angle of the steer is always limited from 35 degrees
left to 35 degrees right. The research [18] also addressed this problem when designing the nonlinear
model predictive controller for a ship following a set trajectory.

The review of previous studies shows that it is very complicated to design the trajectory control
system of ships in the condition of uncertain disturbance. There are some works that have studied
this topic in an attempt to solve these problems, but each work has only solved a specific problem in
the case of assumptions to simplify the object. There is no research that has simultaneously solved all
the problems, such as designing the advanced trajectory controller, eliminating the disturbance in the
system, control in the case of the object lacking the actuator, and the limit of control signals.

To solve all of the above limitations, this study will perform the following tasks. It will compensate
for the disturbance components in the object model and the disturbance components from the
environment by the state observers based on the continuous object model and the difference
between the object model and the reference model. Additionally, it will design the trajectory
controller of the underactuated ship based on the model predictive controller (MPC) combined with
segment-linearization techniques of the nonlinear object in the time-axial.

2. The Model of the Ship

2.1. The Motion of the Ship

Considering the ship motion on the sea surface, the motion of the ship is described as Figure 1.
It is characterized by the following motion components: the straight slide motion (u), horizontal slide
motion (v), and rotary motion (r). This ignores the following motion components: the roll rotary
motion (p = 0), pitch rotary motion (q = 0), and yaw rotary motion (ω = 0).
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Figure 1. The motion components of the ship.

To describe the ship motion in the three-degrees-of-freedom space, we can employ the speed
vector υ = [u v r]T and the position vector η = [x yψ]T.

Here, u, v, r denote the straight slide speed, the horizontal slide motion speed, and the rotation
speed, respectively.

2.2. The Equations of Ship Motion

The equations of ship motion in the three-degree freedom space are as follows [19]:⎧⎪⎪⎨⎪⎪⎩
.
η = J(η)υ
M

.
υ+ C(υ)υ+ D(υ)υ+ g(η) = τ+ τw

(1)

where:

M denotes the inertial matrix;
C(υ) denotes the centrifugal and Coriolis forces;
D(υ) denotes the hydrodynamic damping matrix;
J(η) denotes the orthogonal matrix;

g(η) represents the gravity forces;

τ is the vector of control torques, including the propeller force and the rudder force;
τw represents disturbances from the environment.

In the mathematical model (1), if the control force includes all of the components τ = [τu τv τr]
T,

then the ship is called a fully-actuated ship. This model of a ship has many actuators, such as the main
propeller for creating the straight-slide force, the horizontal propeller on both sides for creating the
horizontal slide force, and the rudder for controlling the ship direction. This model often appears
in types of ship such as the serving-ship, the special-task ship, and the ship for researching marine
dynamic stability control.

If the control force τ = [τu 0 τr]
T means that there is no horizontal slide force, then the ship is

called an underactuated ship. This ship only has two actuators, such as the main propeller for creating
the straight-slide force and the rudder for controlling the ship direction. This model often appears in
types of ship such as cargo ships and container ships with a long transport journey.
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The motion equations of an underactuated ship in the three-degree-freedom space are as follows [2]:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
.
η = J(η)υ
M

.
υ+ C(υ)υ+ D(υ)υ+ g(η) = τ+ τw

τ = [τu 0 τr]
T

(2)

It is very difficult to fully define the coefficients of M, C(υ), D(υ). These coefficients can be
determined by driving the ship at different speeds in different directions and measuring the response
signals. However, we still have to assume that the high-order nonlinear components are zero. Moreover,
the coefficients in the above matrices also depend on other factors, such as the cargo weight on the ship
and the waters in which the ships move.

In order for the model equations to fully express the dynamics of the underactuated ship in the
space of three-degrees-of-freedom, this research proposes merging all of the components that are
difficult to identify, uncertain components, and the environmental disturbance into the undefined
vector Δ(η, υ). ⎧⎪⎪⎨⎪⎪⎩

.
η = J(η)υ
M

.
υ+ C(υ)υ+ D(υ)υ+ g(η) = Fτ+ Δ(η, υ)

(3)

where:

1. F denotes the force distribution matrix, F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦;
2. Δ(η, υ) is the force and torque vector that is synthesized from the uncertainty components of the

ship model and disturbance from the external environment.

The matrices in Equation (3) are as follows:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
m11 0 0

0 m22 0
0 0 m33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, C
(
υ
)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 −m22v
0 0 m11u

m22v −m11u 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

D(υ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
d11 0 0
0 d22 0
0 0 d33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, J(η) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
To solve the uncertainty component Δ(η, υ) in Equation (3), this research will propose the estimator

and compensate for the uncertainty component in the controller.

3. Building the Control System

3.1. The Diagram of the Control System

The targets of this study are to build the output-feedback MPC according to the separation
principle and combine a state-feedback MPC and a state observer to control an underactuated ship
in case the model contains an uncertain component Δ(η, υ). The mission includes building the MPC
controller based on a bilinear model of the ship combined with the direct state observer that is built
from a continuous model of the ship, and building the estimator of uncertain components to estimate
and compensate for the uncertain components in the model. The proposed control system structure is
described in Figure 2.
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Figure 2. The model predictive controller (MPC) control system structure of the underactuated ship
with the uncertain component.

In the figure, d(x, t) is an uncertain component that arises in the model,
�
d (x, t) is the uncertain

component which is estimated from the estimator, ωk is the set trajectory, u(t) is the control signal,
and y(t) is the output signal. MPC-O denotes the output-feedback MPC controller. ZOH denotes the
zero-order hold component.

3.2. The Bilinear Model of the Underactuated Ship in the Three-Freedom Space

Considering Equation (2), x1 = η, x2 = υ, u = τ, and x = col(x1, x2). We thus have the following:

⎛⎜⎜⎜⎜⎝
.
η
.
υ

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝ 03×3 J(η)

−G(η) −M−1
[
C(υ) + D(υ)

] ⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝ ηυ

⎞⎟⎟⎟⎟⎠+
(

03×2

M−1F

)
τ (4)

Then,

A(x) =

⎛⎜⎜⎜⎜⎝ 03×3 J(x1)

−G(x1) −M−1
[
C(x2) + D(x2)

] ⎞⎟⎟⎟⎟⎠
B =

(
03×2

M−1F

)
, C = (I3 , 03×3)

(5)

Equation (4) is transformed into the following equation:⎧⎪⎪⎨⎪⎪⎩
.
x = A(x)x + Bu
y = η = (I3 , 03×3)x = Cx (6)

Equation (6) is the bilinear model of the underactuated ship in the three-freedom space.
Since the MPC controller is discrete, Equation (6) must be discrete with the sample time Ta.

Performing the approximate equation
.
x(t) ≈ [x((k + 1)Ta) − x(kTa)]/Ta, Equation (6) is transformed

into the following equation: ⎧⎪⎪⎨⎪⎪⎩ xk+1 =
[
I6 + TaA(xk)

]
xk + TaBuk

y
k
= Cxk

(7)
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Linearizing each segmentHk of the model (6) along the time-axis with the assumption of a small
amount of time, model (7) is approximated by the linear time-invariant model as follows [20]:

Hk :

⎧⎪⎪⎨⎪⎪⎩ zk+1 = Akzk + BΔuk
y

k
= Czk

(8)

where
zk = col

(
xk, uk−1

)
∈ R8, Δuk = uk − uk−1 ∈ R2

C = (C , 03×2) ∈ R3×8

Ak =

(
I6 + TaA(xk) TaB

02×6 I2

)
∈ R8×8, B =

(
TaB
I2

)
∈ R8×2

3.3. Building the Direct State Observer Based on the Continuous Model

Since the state variables in model (6) cannot be measured, the authors propose the direct observer
from the continuous model (2) or (6) based on the measured output signal y(t) = η(t) = [x yψ]T.
Here, x, y, ψ denote the x-axis coordinate, y-axis coordinate, and the direction of the ship, respectively.
These values can be measured by the Global Position System (GPS) and the compass on board.

The observer’s task is to identify the state vector of the continuous model (2) or (6) x = col(η, υ).

In the status vector x(t) = col
(
η(t), υ(t)

)
, the component η(t) = y(t) has been measured, so we only

need to define the second component υ(t).
From Equation (2), we have

.
η = J(η)υ, with the orthogonal matrix J(η) shown as follows:

J(η) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosψ − sinψ 0
sinψ cosψ 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

Therefore, we can determine the state component as follows: υ(t) = J(η)−1 .
η = J(y)−1 .

y.

To determine the derivative value
.
y(t) of the output signal y(t), we can use the first-order inertia

derivative stage DT(s) = s
1+Ts , where T > 0 is tiny. The input is y(t) and the output is

�
y (t), so we have

the following:
�
y + T

.
�
y =

.
y. Since T ≈ 0, the output

�
y (t) is defined as follows:

�
y ≈ .

y = J(η)υ.
Finally, we can obtain the observed signal as follows:

υ(t) = J(η)−1 .
η = J(y)−1 .

y ≈ J(y)−1�y (10)

3.4. Building the Estimator to Compensate for the Uncertainty Component in the Model

The incorrect model of a ship containing an uncertainty component (3) can be rewritten as follows:⎧⎪⎪⎨⎪⎪⎩
.
x = A(x)x + B[u + d(x, t)]
y = Cx (11)

The matrixes of the model A(x), B, C are inferred from the original model (3). Compared with
the exact model in Equation (6), the model Equation (11) has an uncertain component d(x, t), which is
smooth. The article will identify this uncertain component.

The identification value is named
�
d (x, t) ≈ d(x, t), with the tiny error ‖�d (x, t) − d(x, t)‖ ≤ δe.

After compensating for
�
d (x, t) in the input for the uncertainty model (11), this model is equivalent to

the correct model (6).
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The research will propose an approximate estimation method for
�
d (x, t) ≈ d(x, t) based on the

discontinuous model. This method is reasonable because the ships are not a fast-changing system,
and in a control cycle, the uncertain components seem constant. This means that d(x, t) is a constant
uncertain function in each cycle.

Equation (3) can be re-written according to the discontinuous form at the time (k) by linearizing
each segment according to the time-axis. In the present control cycle, the uncertain component of the

input d has been compensated for by
�
d k−1, which is defined in the previous control cycle. We have the

model at period k as follows:

υk =
�
A(υk−1)υk−1 +

�
B
[
uk−1 + d−�d k−1

]
(12)

where
�
A(υk) = I3 − TaM−1

[
C(υk) + D(υk)

]
∈ R3×3,

�
B = TaM−1F ∈ R3×2, uk = τk = τ(kTa)

(13)

The exact reference model at the time of k is

νk =
�
A(νk−1)νk−1 +

�
B
(
uk−1 −

�
d k−1

)
(14)

where uk−1 is the input. The error of two models is ek = υk − νk. This error completely depends on the

uncertain component, so we can determine
�
d k ≈ d from ek. Then,

�
d k is used to compensate for the

uncertain component in the next control loop (k + 1).
From (13) and (14), we have

ek =
�
A(υk−1)υk−1 +

�
B
[
uk−1 +

�
d k

]
−�A(νk−1)νk−1 −

�
Buk−1

=
�
A(υk−1)υk−1 −

�
A(νk−1)νk−1 +

�
Bd

Therefore, if the matrix
�
B has a rank of 2, then

d ≈ �d k =

(
�
B

T�
B
)−1�

B
T[

ek −
�
A(υk−1)υk−1 +

�
A(νk−1)νk−1

]
(15)

Equation (15) is used for approximating
�
d k ≈ d from ek = υk − νk, υk−1, and νk−1.

υk, υk−1 can be measured or observed from the system. νk−1, νk are defined by Equation (14).

After defining
�
d k, we can compensate for the input of the system at time k + 1 as Figure 3.

Figure 3. Compensating for the uncertain component for the incorrect model.
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3.5. Building the MPC Controller with Output-Feedback Based on the Separation Principle

The separation principle-based output-feedback MPC controller is the combination of the state
feedback MPC controller and the state observer directly from the continuous model. Unlike the
conventional controller of linear MPC or nonlinear MPC, the proposed MPC controller is a linear
controller used for a nonlinear object based on the linearization of each nonlinear model section.
Along the time axis, the object includes countless linear models (8).

Based on the linear approximation model of each segmentHk(k = 0, 1, . . .) and the predictive
control principle, we can obtain the future outputs y

k
for the entire forecasting window (N)

as follows [21]:

y
k
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y
k+1

y
k+2
...

y
k+N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CB 03×2 · · · 03×2

CAkB CB · · · 03×2
...

...
. . .

...

CA
N−1
k

�
B CA

N−2
k B · · · CB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δuk

Δuk+1
...

Δuk+N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CAk

CA
2
k

...

CA
N
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
zk = Hkp + bk (16)

Hk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CB 03×2 · · · 03×2

CAkB CB · · · 03×2
...

...
. . .

...

CA
N−1
k

�
B CA

N−2
k B · · · CB

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, p =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Δuk

Δuk+1
...

Δuk+N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, bk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CAk

CA
2
k

...

CA
N
k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
zk (17)

where p is the vector of future input signals that need to be defined.
After having obtained the future output signals y

k+i
(i = 1, 2, . . . , N) in the current forecasting

window that depend on the future input signals Δuk+ j( j = 0, 1, . . . , N − 1) through Equation (8),

we must define the future input signals so that the output signals follow the set signals
{
η

k

}
.

Setting the target function is the sum of the squared deviation of the errors in the current forecasting
window. In order to improve the response speed, this study proposed a technique to adjust the set

signal [22]. The set-signal after adjustment is as follows:rk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
η

k+1
−K′ek
...

η
k+N
−K′ek

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
Here, η

k
= η(kTa), ek = y/

k
− η

k
is the error at the previous time and K′ is the calibration parameter

of the set signal (0 < K′ < 1).
The objective function is set as follows:

J/
k (p) = pT

(
HT

k QkHk + Rk
)
p + 2

(
bk − rk

)T
QkHkp →

p
min

The solution is as follows:
p∗ = argmin

p∈P
J/
k (p) (18)

P is bound because of the mandatory requirements for the steer-angle α that is as follows:

− 350 ≤ α ≤ +350

P = ΔUN

ΔU =

{
Δu ∈ R2

∣∣∣
b1(xk) − b1(xk−1) ≤ Δu ≤ b2(xk) − b2(xk−1)

}
The common methods employed to find the optimal solution with bound conditions are the

sequential quadratic programming (SQP) method, interior-point method, or evolutionary methods for
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optimal control, such as genetic algorithms (GA) and the particle swarm optimization (PSO) method.
This research will use the GA method [23] to find the optimal solution of Equation (18).

The genetic algorithm (GA) is based on two basic rules of natural adaptations that hybridize
‘good’ elements p

i
, p

j
together to get better elements and transform the ‘bad’ elements p

k
. The ‘bad’

and ‘good’ valuations of these elements are evaluated through their objective function Ji = J(p
i
).

Firstly, N elements p
i
, i = 1, 2, . . . , N are randomly chosen in the constraint set p. Then, the values

Ji = J(p
i
) will be calculated respectively. Elements with δi ≤ δc are ‘good’, and elements with δk ≥ δm

are ‘bad’.
Here,

δi = |Ji|/
N∑

k=1
|Jk|; 0 < δc < δm < 1 are optional.

Next, a good pair of elements is hybridized to form new pairs, and bad elements are mutated.
Therefore, a new generation formed from the old generation contains better elements. This process,
with two calculations of the hybrid and mutant, is repeated many times until the end condition is
satisfied. When the end condition of the algorithm is satisfied, the element p

i
of the current generation

with the smallest Ji is chosen as the solution.
Currently, the GA has been installed into the command ga (·) in MATLAB, and we can use this

command to build the proposed MPC controller. The parameters, such as the number of generations,
the population size, and the type of selection, will automatically be defined. The syntax detail of the
command is as follows:

[x, fval] = ga(FUN, NVARS, A, B, AE, BE, OPTIONS)

where FUN is the objective function; NVARS is the number of variables of the objective function; and A,
B, AE, and BE are the boundary conditions.

In this research, the authors execute the command as follows:
The objective function:

FUN = f = J/
k (p) = pT

(
HT

k QkHk + Rk
)
p + 2

(
bk − rk

)T
QkHkp

The number of the variables: NVARS = 2.
The boundary conditions: −2 ≤ u1 ≤ 2, −3 ≤ u2 ≤ 3.
Finally, the details of the command are as follows:

[x, fval] = ga(f, 2, [ ], [ ], [−2; 2], [−3; 3], [ ], [ ])

After defining the solution p∗ of (18), we get the control signal uk for controlling the ship motion
(3) in the present cycle, as follows:

uk = uk−1 −
(
I2 , 02×2(N−1)

)
p∗ (19)

where uk is the control signal during one sampling period Ta.
The control algorithm is as follows:

• Step 1: Initialing and setting the forecasting window width N ≥ 2, the sample period Ta, and the
calibration parameter of the set signal 0 < K′ < 1. Calculating B, C according to (5), B, C according

to (8), and
�
B according to (13). Setting k = 1,

�
d 0 = 0;

• Step 2: Setting the two positive symmetric matrices Qk ∈ R3N×3N, Rk ∈ R2N×2N;

• Step 3: Measuring η
k

and estimating
�
υ k. Calculating Ak according to (8) and

�
A(
�
υ k−1) according

to (13). Determining Hk, bk, rk according to (17);

• Step 4: Determining νk according to (12) and
�
d k according to (15) for the next cycle;
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• Step 5: Determining the optimal solution p∗ according to (18);

• Step 6: Calculating uk from p∗ according to (12);

• Step 7: Using uk −
�
d k−1 for controlling the continuous model (3), which is also the object (4) and (6);

• Step 8: Setting k := k + 1. If it needs to update G, go back to the step (2); otherwise, set Qk+1 =

Qk, Rk+1 = Rk and go back to step (3).

The observer is considered a continuous-time model and the control input is calculated by using
the discrete-time model. Therefore, in the proposed controller algorithm, after observing the state of
the continuous model, we have to make the observed signal of the continuous model discrete with the
sample time Ta and then feed it into the controller. This is shown in step 3, where, after measuring η

k

and estimating
�
υ k, we calculate Ak according to (8).

4. The Results and Discussion

To verify the quality of the proposed control system, the authors have run the system on Matlab
software (R2014b, MathWorks Inc., Natick, MA, USA). The control object is an underactuated ship
with three degrees-of-freedom. The specifications of the ship given by Do K. D and J. Pan in the
document [2], with the length of 32 m, the weight of 118 × 103 kg, the minimum radius of curvature of
150 m, and other parameters, are shown in Table 1.

Table 1. The parameters of the ship.

τumax τrmax m11 m22 m33 d11 d22 d33

Unit N N.M Kg Kg Kgm2 Kgs−1 Kgs−1 Kgm2s−1

Value 5,2.109 8,5.108 120.103 177,9.103 636.105 215.102 177.103 802.104

The set trajectory is a straight and circular one, and the details are as follows: The ship moves
straight for a period of 300 s with a distance of 1200 m, and the ship then moves in a circle with a
radius of 200 m for a period of 325 s. The uncertain signals are assumed according to the document [5]
as follows:

d1 = 0.05 sin(0.1t) − 0.01, d2 = 0.2 sin(0.2t)+0.4 cos(0.3t)

The simulation results are shown in Figures 4–7. Figure 4a shows the ability of the ship to
follow the set trajectory, with the error shown in Figure 4b. Figure 5a shows the actual direction error.
The errors obtained from the observer are shown in Figure 5b. The qualities of estimating the uncertain
components d1 and d2 are shown in Figure 6a,b, respectively.

During the control process, the control signals of the straight slip force and the torque force are
bound in the defined range, and they are shown as Figure 7a,b. The shapes of the control signals in
Figure 7 are feasible because the control signal depends on the disturbance if the disturbance becomes
large and the control becomes large. The simulation time of 800 s is long, so the number of times
the control signal is changed in the simulation time is small. This number conforms to the Maritime
regulation on the number of signal changes of the steering angle.

The quality of the control system has been evaluated based on the following factors: The error of
trajectory, the actual direction error, the errors obtained from the observer, and the error of the estimator.
The results show that these errors are very small, so the quality of the control system is very good.
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(a) 

 
(b) 

Figure 4. The ability of the control system to follow the set trajectory: (a) The response trajectory;
(b) the error of the trajectory.

 
(a) 

 
(b) 

Figure 5. The simulation results of the observer: (a) The actual direction error; (b) the errors obtained
from the observer.
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(a) (b) 

Figure 6. The results of estimating the uncertain components: (a) d1 = 0.05 sin(0.1t) − 0.01; (b) d2 =

0.2 sin(0.2t)+0.4 cos(0.3t).

  
(a) (b) 

Figure 7. The control signals: (a) The straight slip force; (b) the torque force.

Although the control object has undefined components and the control signals are bound within
limits, the quality of the entire control system is still very good: The response trajectory is very close to
the set trajectory, and the error of the trajectory and the error of direction are very small. In addition,
the quality of the observer depends on the receding horizon of the controller and the time needed to
calculate the differential stage by the direct observer.

The estimator performed the mission well, compensating for the uncertain signals d1, d2 in
the system. The difference between the estimated signal and the uncertainty signal is very small.
The estimation error also depends on the receding horizon of the controller and the estimated value at
the initial time.

In addition, the quality of the entire control system depends on the forecasting window N and
the two positive symmetric matrices Qk ∈ R3N×3N, Rk ∈ R2N×2N. In fact, we can choose matrixes
Qk, Rk that match the control target.

5. Conclusions

This article was successful in building the MPC control system with the output-feedback based on
the separation principle, and building the direct observer based on the continuous model in order to
control the trajectory of the underactuated ship. The controller was built based on the optimal control
combined with the linearizing technique of each nonlinear model section. Disturbances from the
environment and uncertainty components in the model were estimated and compensated for by the
estimator. The simulation results show that although the control object has undefined components and
the control signals are bound, the quality of the entire control system is still very good. The response
values follow the set values, with tiny error. The success of this research is the basis for the authors to
apply it to actual ships in further studies.

Author Contributions: H.-Q.N. proposed the initial idea. A.-D.T., H.-Q.N., and T.-T.N. developed the research,
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Abstract: This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning
meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm,
the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely,
exploration, exploitation, and randomization, in such a way that if one step improves the solution,
then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has
been compared with that of five other optimization algorithms over ten benchmark test functions.
Nine of them are well-known and already exist in the literature, while the tenth one is proposed by
the authors and introduced in this article. One test trial was shown to check the performance of each
algorithm, and the other test for 30 trials to measure the statistical results of the performance of the
proposed algorithm against the others. Results confirm that the proposed FTMA global optimization
algorithm has a competing performance in comparison with its counterparts in terms of speed and
evading the local minima.

Keywords: global optimization; meta-heuristics; swarm intelligence; benchmark functions;
exploration; exploitation; global minimum; local minimum

1. Introduction

Meta-heuristic optimization describes a broad spectrum of optimization algorithms that need
only the relevant objective function along with key specifications, such as variable boundaries and
parameter values. These algorithms can locate the near-optimum, or perhaps the optimum values
of that objective function. In general, meta-heuristic algorithms simulate the physical, biological, or
even chemical processes that happen in nature. Of the meta-heuristic optimization algorithms, the
following are the most widely used:

1. Genetic algorithms (GAs) [1], which simulate Darwin’s theory of evolution;
2. Simulated annealing (SA) [2], which emerged from the thermodynamic argument;
3. Ant colony optimization (ACO) algorithms [3], which mimic the behavior of an ant colony

foraging for food;
4. Particle swarm optimization (PSO) algorithms [4], which simulates the behavior of a flock of birds;
5. Artificial bee colony (ABC) algorithms [5], which mimic the behavior of the honeybee colony; and
6. Differential evolution algorithms (DEAs) [6], for solving global optimization problems.

Xing and Gao collected more than 130 state-of-the-art optimization algorithms in their book [7],
and these swarm-based optimizations are applied in different applications and study cases [8–14].

Processes 2019, 7, 657; doi:10.3390/pr7100657 www.mdpi.com/journal/processes235
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Some algorithms start from a single point, such as SA, but the majority begin from a population of initial
solutions (agents) like GAs, PSO, and DEAs, most of which is referred to as “swarm intelligence” in their
mimicry of animal behaviors [15]. In these algorithms, every agent shares its information with other
agents through a system of simple operations. This information sharing results in improvements to the
algorithm performance and helps find the optimum or near-optimum solution(s) more quickly [3].

In any meta-heuristic optimization algorithm, there are three significant types of information
exchange between a particular agent with other agents in the population. The first is called exploitation,
which is a local search for the latest, and the best solution found so far. The second is called exploration,
which is a global search using another agent existing in the problem space [16]. The third is called
randomization, which is rarely used in some algorithms or may not be used at all. This last procedure
is similar to exploration, but instead of an existing agent, a randomly-generated agent is used. For
instance, ABC algorithms use randomization for the scout agent; therefore, it often succeeds in evading
many local minima. Many algorithms begin with exploration and gradually shift to exploitation
after several generations to avoid falling into local optimum values. Meta-heuristic algorithms then
maintain trade between exploration and exploitation [17]. However, the different types demonstrate
variations in how they perform this trade; by using this trade, these algorithms may get close to
near-optimum or even optimum solutions.

All agents compete with themselves to stay alive inside the population. Every agent that improves
its performance replaces any agent that did not promote itself. Therefore, in the fourth stage (i.e.,
selection) a variable selection method, such as greedy selection or roulette wheel, is used to choose the
best agent to replace the worst one [1]. Meta-heuristic algorithms may find near-optimum solutions
for some objective functions, but it may fall into local minima for other ones. This fact will be apparent
in the results of this article. To date, an optimization algorithm that offers a superior convergence
time and avoids local minima for objective functions has yet to be developed. Therefore, the area
is open to improving the existing meta-heuristic algorithms or inventing new ones to fulfill these
requirements [18].

In this article, a novel algorithm called the fine-tuning meta-heuristic algorithm (FTMA) is
presented. It utilizes information sharing among the population agents in such a way that it finds the
global optimum solution faster without falling into local ones; this is accomplished by performing
the necessary optimization procedures sequentially. In the next section, the proposed algorithm is
described in detail. Then, five well-known optimization algorithms are presented to compete with
FTMA over a ten-function benchmark. The results and discussion are shown in the final section, along
with the conclusions.

2. Literature Review

In the scope of the recent trends in nature-based meta-heuristic optimization algorithms, since the
genetic algorithms [1] and simulated annealing [2] has been presented, the race begins in inventing
many algorithms thanks to the rapid advances in computer speed and efficiency, especially in the new
millennia. From these algorithms, we mention the firefly algorithm (FA) [19], cuckoo search (CS) [20],
bat algorithm (BA) [21], flower pollination algorithm (FPA) [22], and many others mentioned in [23].

Many optimization algorithms were invented over the past five years. Some of them are new,
and the others are modifications and enhancements to the already-existing ones. One of the recent
and widely-used algorithms is grey wolf optimization (GWO) [24]; it is inspired by the grey wolves
and their hunting behaviors in nature. Four types of leadership hierarchy of the grey wolves as
well as three steps of prey hunting strategies are implemented. Mirjalili continued to invent other
algorithms. The same authors presented moth–flame optimization (MFO) [25]. This algorithm mimics
the navigation method of moths in nature which is called “traverse orientation”. The main path which
the moths travel along is towards the Moon. However, they may fall into a useless spiral path around
artificial lights if they encounter these in their way. Ant lion optimizer (ALO) has been proposed
in [26], which simulated the hunting mechanism of antlions in nature. Five main steps of hunting are
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implemented in this algorithm. Moreover, the same authors of [24] proposed a novel population-based
optimization algorithm, namely, the sine–cosine algorithm (SCA) [27], it fluctuates the solution agents
towards, or outwards, the best solution using a model based on sine and cosine functions. It uses
random and adaptive parameters to emphasize the search steps like exploration and exploitation.
Another proposed algorithm in the literature is the whale optimization algorithm (WOA) [28]. This
algorithm mimics the social behavior of humpback whales, using a hunting strategy called bubble-net,
as well as three operators to simulate this hunting strategy. All these algorithms mentioned above are
developed, enhanced, and modified through the years, hopefully to make them suitable for every real
problem which needs solving. However, no-free-lunch theorems state that there is no single universal
optimization method that can deal with every realistic problem [18].

3. Fine Tuning Meta-Heuristic Algorithm (FTMA)

The FTMA is a meta-heuristic optimization algorithm used to search for optimum solutions for
simple and/or complex objective functions. The fundamental feature of FTMA is the fine-tuning
meta-heuristic method used when searching for the optimum.

FTMA performs the fundamental procedures of solution update, which are exploration,
exploitation, randomization, and selection in sequential order. In FTMA, the first procedure of
exploration is undertaken concerning an arbitrarily-selected solution in the solution space. If the
solution is not improved according to the probability, the second procedure of exploitation is performed
concerning the best global solution found so far. Again, if the solution is not enhanced according to
probability, then the third procedure of randomization is performed concerning a random solution
generated in the solution space. The fourth procedure of selection is performed by comparing the
new solution and the old one and choosing the best according to the objective function. The FTMA
procedure steps are:

1) Initialization: FTMA begins with initialization. Its equation is shown below:

x0
i (k) = lb(k) + rand× (ub(k) − lb(k)); k = 1. 2. . . . d; i = 1, 2, . . . , N. (1)

At this point in the process, all the solutions xt
i are initialized randomly at the iteration counter t = 0

according to the lower bound lb and the upper bound ub for each solution space index k inside the solution
space dimension d. A random number rand, its value is between 0 and 1, is used to place the solution
value randomly somewhere between the lower and upper bounds. The space dimension, along with the
number of solutions N must be specified prior to the process. Then, the fitness f 0

xi is evaluated for each
solution x0

i using the objective function. The values of the best objective fitness f 0
b and its associated best

solution x0
b are initially obtained from the fitness and solutions vectors, respectively. Additionally, the

probabilities of exploitation and randomization, p, and r, respectively, are initialized.
After incrementing the iteration counter inside of the generation iteration loop, the four steps in

each iteration are performed in the FTMA core, as follows:

2) Exploration: The general formula of this step is as follows:

y(k) = xt
i(k) + rand×

(
xt

j(k) − xt
i(k)

)
. (2)

In this step, every solution xt
i is moved with respect to another existing solution vector xt

j, where j � i.
The value of the objective function for the temporary solution y is then evaluated as a temporary fitness g.

3) Exploitation: Its equation is presented as follows:

i f g > f t
xi && p > rand, y(k) = xt

i(k) + rand×
(
xt

b(k) − xt
i(k)

)
. (3)

If the fitness g is not improved compared with f t
xi and the probability of exploitation p is greater

than a random number rand; then the exploitation step will be initiated. In this step, the temporary
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solution vector y is calculated by moving the solution xt
i with respect to the best global solution, xt

b. The
value of the objective function for the temporary solution y is re-evaluated and stored in the temporary
fitness g.

4) Randomization: The formula of this step is as follows:

i f g > f t
xi && r > rand, y(k) = xt

i(k) + rand×
(
lb(k) + rand× (ub(k) − lb(k)) − xt

i(k)
)
. (4)

If the fitness g is not improved again in comparison with f t
xi and the probability of randomization

r is higher than a random number rand, then the randomization step will be initiated. In this step, the
solution xt

i moves with respect to a randomly-generated solution. The value of the objective function
for the temporary solution y is again re-evaluated and then stored in the temporary fitness g.

5) Selection: The final step of the FTMA iteration process is the selection step, which is summarized as:

i f g < f t
xi, xt+1

i = y; f t+1
xi = g, (5)

i f g < f t
b , xt+1

b = y; f t+1
b = g. (6)

6) Stopping Condition: The search ends if the global fitness value f t+1
b reaches zero or below a

specified tolerance value ε, or if the iteration counter t reaches its previously-specified maximum value
R. The pseudocode of FTMA is summarized as in Algorithm 1 below.

4. Methodology

To check the validity of the proposed FTMA, it should be tested with different well-known
optimization algorithms that were used widely in the literature. Five algorithms are chosen, although
there are many.

4.1. Well-Known Optimization Algorithms

(1) Genetic algorithm (decimal form) (DGA): This is similar to a conventional GAs with the exception
that the chromosomes are not converted to binary digits. It has the same steps as GAs, selection,
crossover, and mutation. Here, the crossover or mutation procedures are performed upon the
decimal digits as they are performed upon the bits in a binary GA. The entire procedure of the
DGA is taken from [29].

(2) Genetic algorithm (real form) (RGA): In this algorithm, the vectors are used in optimization as
real values, without converting them to integers or binary numbers. As a binary GA, it performs
the same procedures. The complete steps of DGA are taken from [30].

(3) Particle swarm optimization (PSO) with optimizer: The success of this famous algorithm is down
to its simplicity. It uses the velocity vector to update every solution, using the best solution of the
vector along with the best global solution found so far. The core formula of PSO is taken from [4].

(4) Differential evolution algorithm (DEAs): This algorithm chooses two (possibly three) solutions
other than the current solution and searches stochastically, using selected constants to update the
current solution. The whole algorithm is shown in [6].

(5) Artificial bee colony (ABC): This algorithm gained use for its distributed behavior simulating the
collaborative system of a honeybee colony. The system is divided into three parts, the employed
bees which perform exploration, the onlooker which shows exploitation, and the scout which
performs randomization. The algorithm is illustrated in [5].
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Algorithm 1: Fine-Tuning Meta-Heuristic Algorithm

Input: No. of solution population N, Maximum number of iterations R;
Tick;
for i = 1 to N

Initialize x0
i using Equation (1);

Evaluate f 0
xi for every x0

i ;
end for
Search for x0

b and f 0
b ;

Initialize t = 0, set p and r;
while t < R && f t

b > ε

t = t + 1;
for i = 1 to N

Choose xt
j such that j � i;

Compute y using Exploration (Equation (2));
Evaluate g for y;
if g > f t

xi && p > rand
Compute y using Exploitation (Equation (3));
Evaluate g for y;
if g > f t

xi && r > rand
Compute y using Randomization (Equation (4));
Evaluate g for y;

end if
end if
if g < f t

xi
Update xt+1

i and f t+1
xi using Equation (5);

if g < f t
b

Update xt+1
b and f t+1

b using Equation (6);
end if

end if
end for

end while
Output: xt+1

b , f t+1
b , t, and the computation time.

4.2. Benchmark Test Functions

The optimization algorithms mentioned above, along with the proposed algorithm, will be tested
on ten unimodal and multimodal benchmark functions. These functions have been used widely as
alternatives to real-world optimization problems. Table 1 illustrates nine of these functions.

where xi represents one of the solution parameters that i = 1, 2, 3 . . . d where d is the solution
space dimension. The bold 0 represents a solution vector of zeros, whereas the bold 1 represents a
solution vector of ones. The tenth benchmark function is proposed by the authors and introduced
for the first time in this article, which is a multimodal function with multiple local and one global
minimum, as shown in Table 2.

This function has 3d − 1 local minima which are located on points whose coordinates equal either
0 or ±1 except for the global minimum which is located precisely at the origin. The positive real
parameter ε should be slightly higher than zero to trick the optimization algorithm to fall into the
local minima.
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Table 1. List of nine benchmark test functions used in global optimization.

Fn.Sym. Function Formula |xi| Optimum

F1 SPHERE
d∑

i=1
x2

i <5 f (0) = 0

F2 ELLIPSOID
d∑

i=1
ix2

i <5 f (0) = 0

F3 EXPONENTIAL 1− exp
(
−0.5× d∑

i=1
x2

i

)
<5 f (0) = 0

F4 ROSENBROCK ∑d−1
i=1 100

(
xi+1 − x2

i

)2
+ (xi − 1)2 <2 f (1) = 0

F5 RASTRIGIN 10d +
d∑

i=1

(
x2

i − 10 cos 2πxi
)

<5 f (0) = 0

F6 SCHWEFEL 418.983d−∑d
i=1(xi + 420.968) sin

√|xi + 420.968| <100 f (0) = 0

F7 GREIWANK
∑d

i=1
x2

i
4000 −

∏d
i=1 cos xi√

i
+ 1 <600 f (0) = 0

F8 ACKLEY
−20 exp

⎛⎜⎜⎜⎜⎜⎝−0.2

√∑d
i=1 x2

i
d

⎞⎟⎟⎟⎟⎟⎠−
exp

(∑d
i=1 cos 2πx

d

)
+ e + 20

<32 f (0) = 0

F9 SCHAFFER
∑d−1

i=1 0.5 +
sin2(x2

i −x2
i+1)−0.5

(1+0.001(x2
i +x2

i+1))
2 <100 f (0) = 0

Table 2. The introduced benchmark test function.

Fn.Sym. Function Formula |xi| Optimum

F10 ALLAWI
d∑

i=1

(
x6

i − 2(ε+ 1)x4
i + (4ε+ 1)x2

i

)
. 0 < ε
 1 <2 f ∗(0) = 0

Figure 1 illustrates that function for d = 2 and for ε = 2.22× 10−16, which is the default constant
called eps used in MATLAB® package (MathWorks, Natick, MA, USA). There are eight local minima
distributed in a square space around the global minimum. The value of the function at these minima
may be represented as f (x) = 2ε

∑d
i=1|xi|.

Figure 1. Graph of ALLAWI test function for d = 2 and ε = 2.22× 10−16.

5. Results and Discussion

The two most essential requirements for an optimization algorithm are fast convergence and
reaching the global minimum without falling into the local minima. Therefore, the judge for which of
the optimization algorithms is the best will be taken according to these two criteria. The optimization
algorithms were used to find the optimum values for the ten benchmark functions through 30 trials,
to check for the mean error and the standard deviation for statistical comparison purposes. The
parameters of the optimization algorithm FTMA, p and r were set to be 0.7 to make the flow control
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probably bypass the exploitation and randomization steps, even if the fitness is not improved in the
exploration step. For all the algorithms, the number of dimensions was d = 2, the number of solution
population agents was N = 1000, and the maximum number of iterations was R = 1000. The results of
a sample trial are illustrated in Table 3.

Table 3. Results of the global fitness and computation time (s) for a sample trial. DGA: Genetic algorithm
(decimal form); RGA: Genetic algorithm (real form); PSO: Particle swarm optimization; DEA: Differential
evolution algorithms; ABC: Artificial bee colony; FTMA: fine-tuning meta-heuristic algorithm.

Fn.
DGA RGA PSO DEA ABC FTMA

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time

F1 1.06 ×
10−16 1.05 1.64 × 10−16 0.34 1.66 × 10−16 0.46 3.01 × 10−17 0.27 7.50 × 10−17 0.30 5.8 × 10−17 0.12

F2 1.07 ×
10−16 1.39 5.10 × 10−16 8.88 1.16 × 10−17 0.69 9.28 × 10−17 0.40 2.15 × 10−17 0.45 1.51 × 10−17 0.13

F3 2.22 ×
10−16 102 2.22 × 10−16 0.28 2.22 × 10−16 0.38 1.11 × 10−16 0.25 1.11 × 10−16 0.35 1.11 × 10−16 0.10

F4 1.95 × 10−6 6.96 1.20 × 10−5 4.84 1.97 × 10−16 0.46 1.63 × 10−16 0.46 4.37 × 10−7 2.52 7.05 × 10−17 0.41

F5 0 1.18 0 0.50 0 0.67 5.22 × 10−6 4.85 0 0.65 0 0.18

F6 0 1.00 0 0.46 0 0.58 0 0.28 0 0.633 0 0.15

F7 2.22 ×
10−16 1.23 0 0.53 0 0.71 5.33 × 10−9 5.41 1.11 × 10−16 2.15 0 0.21

F8 0 2.67 1.34 × 10−12 7.02 0 0.83 0 0.65 0 0.75 0 0.30

F9 0 0.58 2.22 × 10−16 0.20 0 0.31 0 0.43 2.22 × 10−16 0.66 0 0.09

F10 4.44 × 10−16 8.01 1.18 × 10−16 0.29 1.76 × 10−16 0.51 1.70 × 10−13 4.19 1.54 × 10−16 0.67 2.12 × 10−16 0.11

The data represent the output fitness value and the time taken by the optimization algorithm to
drive its optimum global fitness below the minimum tolerance error ε = 2.22× 10−16. The data in bold
represents the algorithm that simultaneously scored the fastest time and found the global minimum
for a specific benchmark function. The underlined data represents the algorithms that failed to pass
the tolerance and completed all 1000 generation cycles. The following ten figures in Figure 2 represent
the ten benchmark functions, illustrating the process of the optimization. All charts contain six lines
which differ in pattern, one for each optimization algorithm.

 
(a) (b) 

Figure 2. Cont.
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(c) (d) 

(e) (f) 

(g) (h) 

Figure 2. Cont.
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(i) (j) 

Figure 2. Convergence charts for the ten benchmark functions. (a) F1, (b) F2, (c) F3, (d) F4, (e) F5, (f) F6,
(g) F7, (h) F8, (i) F9, and (j) F10.

Concerning the computation time, it is evident from Table 3 that the FTMA outperforms all other
algorithms. Furthermore, we can see that the DGA failed to reach the optimum in F4 and barely in
F7. For RGA, F2, F4, and F8 also failed. PSO evaded all local minima in all the benchmark functions.
Furthermore, DEA failed in F10 along with F5 and F7. The ABC algorithm succeeded in avoiding
local minima except for F4. In F5, F6, F8, and F9, most of the algorithms succeeded in capturing
the zero global optimum value. However, FTMA never fell into the local minima, scoring the best
convergence time out of all the optimization algorithms. Additionally, it reaches zero optimum value
in the functions from F5 through F9. One can see that some of the optimization algorithms are suitable
for some problems and not ideal for others. For example, DGA, RGA, and ABC failed in F4, but DEA
succeeded; the situation is in contrary to F5. This confirms the no-free-lunch theorems of the absence of
a universal algorithm for every problem. PSO, as well as FTMA, have both succeeded in evading the
local maxima and converging to the global one. However, the time taken by PSO to reach the optimum
is three to four times the time taken by FTMA. If we look at the ten subgraphs, which represent the
search progression of the algorithms for one trial (its results are illustrated in Table 3), we find that
the FTMA line (solid black) is the closest line to the vertical axis, which is the logarithmic scale of
the global fitness against the number of generations. Although the maximum number of iterations
is 1000, the maximum number of iterations displayed in the plots is set to be 150, because most of
the algorithms catch the global optimum at or before this generation. In all figures, FTMA is the
best-performing function. PSO and ABC are next best in most of the graphs. DGA, RGA, and DEA
failed on many occasions. If we take the time which FTMA reached the critical error tolerance, the
best of the other functions barely reached the fitness value at the same time. It can be seen from the
plots that some of the algorithms have trapped in local minima, especially in F4. This implies that
FTMA has the fastest convergence speed among the identified optimization algorithms. The values
of the mean and standard deviation for the 30 trials are evaluated for each optimization algorithm
and benchmark function. Table 4 illustrates the distribution of the output error, and Table 5 shows
the distribution of computation time. The bold and underlined values represent the fastest and failed
sets of trials, respectively. The trial sets are presented in ten sub-figures in Figure 3, one for each
benchmark function.
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Figure 3. Cont.
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(g) (h) 

(i) (j) 

Figure 3. Computation time distribution for the ten benchmark functions. (a) F1, (b) F2, (c) F3, (d) F4,
(e) F5, (f) F6, (g) F7, (h) F8, (i) F9, and (j) F10.

In Table 4, the overall trials show that some algorithms that succeeded in one of the tests might
not achieve well in another one. It can be concluded that RGA failed in F2; DGA, RGA, and ABC
failed in F4. Moreover, DEA failed in F5; DEA, and ABC failed in F7; DGA and RGA failed in F8;
while PSO failed in the proposed benchmark function F10, which succeeded in all the other functions.
Although DGA average error is slightly less than the mean error of FTMA in F1, F2, and F9, the average
computation time is about eight times the computation time of the proposed algorithm. This implies
that the proposed algorithm succeeded in reaching the global minimum before DGA. It can be seen that
the computation time for the proposed algorithm is the best for all the benchmark functions. In Figure 3,
the plots contain six lines with different patterns, one for each optimization algorithm. The figures show
the logarithm of the computation time against computation trials. One can determine from these plots
that some optimization functions are suitable for some algorithms and not for another. For instance,
DEA is suitable for F4 but not for F5. The proposed algorithm always has the best computation time
among all the remaining algorithms. Its solid line lies in the bottom near the horizontal axis. In F4,
it is accompanied by PSO and DEA; in the other plots, it was alone in the bottom. For the proposed
benchmark system, DEA was the worst. PSO fell in local optima many times, and DGA a few times.
ABC and RGA performed well, but FTMA was the best.

6. Conclusions

This paper proposed a new global optimization named the fine-tuning meta-heuristic algorithm
(FTMA). From the simulation results, it can be concluded that the FTMA reaches the optimum value
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faster than any other optimization algorithm used in the comparison. Its performance is competing with
state-of-the-art methods, namely, RGA, DEA, ABC, PSO, and DGA. It accomplishes this in real-time
and, unlike other optimization algorithms, evading any local optima. Moreover, it maintains the
accuracy and robustness at the least runtime. Therefore, the FTMA offers a promising approach which,
thanks to its rapid convergence time, could be applied in more complicated real-time systems where
the time is a crucial factor. This result does not mean that this algorithm can solve any real problem
we may encounter in practice, as it stated in the no-free-lunch theorems, there may be processes that
this algorithm struggles to solve. So, there are possible opportunities to enhance the FTMA and/or its
counterparts. Future studies include using the FTMA in combinatorial optimization or integrating
the FTMA in control applications as an online or offline tuning algorithm for finding the optimal
parameters of the feedback controllers. Moreover, because the lack of resources (supercomputers,
etc.), the computation time of more than two parameters in the algorithm takes hours or sometimes
days. So, it is intended to make the problem space higher if these resources become available. Finally,
checking multi-dimensional spaces and using multi-objective problem scenarios are possible aspects
for future research.
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Abstract: The present work proposes a holonic-based mechanism for self-learning factories based
on a hybrid learning approach. The self-learning factory is a manufacturing system that gains
predictive capability by machine self-learning, and thus automatically anticipates the performance
results during the process planning phase through learning from past experience. The system
mechanism, including a modeling method, architecture, and operational procedure, is structured
to agentize machines and manufacturing objects under the paradigm of Holonic Manufacturing
Systems. This mechanism allows machines and manufacturing objects to acquire their data and model
interconnection and to perform model-driven autonomous and collaborative behaviors. The hybrid
learning approach is designed to obtain predictive modeling ability in both data-existent and even
data-absent environments via accommodating machine learning (which extracts knowledge from
data) and transfer learning (which extracts knowledge from existing knowledge). The present work
also implements a prototype system to demonstrate automatic predictive modeling and autonomous
process planning for energy reduction in milling processes. The prototype generates energy-predictive
models via hybrid learning and seeks the minimum energy-using machine tool through the contract
net protocol combined with energy prediction. As a result, the prototype could achieve a reduction of
9.70% with respect to energy consumption as compared with the maximum energy-using machine tool.

Keywords: cyber-physical production systems; self-learning factory; holonic manufacturing systems;
machine learning; transfer learning; predictive analytics

1. Introduction

Manufacturing intelligence reinforces real-time understanding, reasoning, planning, and
management of manufacturing processes with the pervasive use of sensor-based data analytics
and modeling [1]. Such intelligence is nothing new in manufacturing; however, it is not mature despite
much effort related to its implementation and utilization over the past decades [2]. Implementing
manufacturing intelligence is becoming more important than ever due to the evolution of manufacturing
technology (MT) itself and the convergence of MT with Internet of things and cyber-physical
systems (CPS).

CPS have been recognized as a cutting-edge technology in implementing machine intelligence
in various domains, as CPS are “physical and engineered systems whose operations are monitored,
coordinated, controlled and integrated by a computing and communicating core” [3]. The concept
of CPS is naturally being deployed to industrial automation in the manufacturing realm, and the
manufacturing version of CPS is known as cyber-physical production systems (CPPS). CPPS seek to
realize intelligence, connectedness, and responsiveness through autonomous and cooperative objects
and sub-systems based on context awareness within and across all levels of production [4].

Processes 2019, 7, 739; doi:10.3390/pr7100739 www.mdpi.com/journal/processes249
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CPPS can be categorized based on their maturity levels, which consist of: visibility, transparency,
predictive capability, and self-optimization [5]. CPPS ultimately pursue the acquisition of
self-optimizing ability so that manufacturing machines are directly involved in problem-solving
or optimization through autonomous and collaborative decision-making and communication with
minimization of human intervention. This self-optimizing ability obviously requires predictive
capability at the precedent level. Machines can achieve self-optimization only after they can predict
their performance by themselves through learning algorithms and use this ability to enhance the
accuracy and robustness of their decision-making through evolutionary learning. Such predictive
capability can be realized if the machine can self-learn. Self-learning endows manufacturing
systems (especially manufacturing objects like machines, material handling equipment, workpieces,
work-in-process and products) with the ability to learn from history for future decisions [6].

From the perspective of CPPS implementation, CPPS require control architecture suites fit for
autonomous and collaborative operation and control on manufacturing objects. Holonic Manufacturing
Systems (HMS) represent one of the most promising architecture suites, with the same goals as those
of CPPS [4]. This coincidence can be demonstrated in the Product–Resource–Order–Staff Architecture
(PROSA) reference architecture. This referential architecture is structured to achieve both hierarchical
and heterarchical control by employing holons (autonomous and cooperative objects in manufacturing
systems) and their holarchy (a system of holons) for efficiency in resource utilization, stability against
disturbances, and flexibility during changes [7]. To pursue manufacturing intelligence, we suggest
that holonic-based systems should be reshaped to obtain learning ability within the complex and
dynamic nature of manufacturing environments. Even good stationary structures and mechanisms
can hardly accommodate huge numbers of manufacturing conditions which are rapidly changing.
Without learning, it is extremely difficult to identify concrete behaviors and activities that will improve
the performance of manufacturing systems [8].

Traditionally, self-learning largely depends on creating predictive models derived by
machine-learning techniques (e.g., regression, decision tree, Artificial Neural Network (ANN), support
vector machine, and genetic algorithms). Machine-learning techniques are used to acquire the
knowledge needed to make future decisions from historical training examples [9]. It is known that they
enhance the validity of machine-specific models by using real and historical data even in dynamic and
complex manufacturing environments. Machine-learning determine cause-and-effect relationships
from the training datasets that have been collected from previous manufacturing operations. As
cause-and-effect relationships are derived into mathematical representation under certain conditions
and constraints, machine-learned models can faithfully work as predictive models by anticipating an
effect from an input of cause values.

However, traditional machine learning has a drawback. It does not work unless training datasets
exist. Manufacturing environments cannot always create or keep training datasets due to difficult data
collection, data loss, data becoming outdated, or even data missing from manufacturing operations
that have not been run. Collecting new datasets by performing additional manufacturing operations is
desirable; however, it is time-consuming and is sometimes impossible. Nevertheless, the self-learning
ability should be obtained and maximized even in such data-absent environments, and transfer
learning can be a complementary means of achieving the machine’s self-learning. Transfer learning
is a technique to extract knowledge from source tasks and apply the knowledge to a target task to
reduce the effort required to collect training datasets [10]. As transfer learning involves knowledge
extraction from existing models, it allows machines to create knowledge-transferred models in the
data-absent environment. Eventually, the adaptive convergence of machine learning and transfer
learning enables machines to implement their self-learning ability in both data-existent and even
data-absent environments.

In the metal cutting industry, energy consumption becomes a major metric for improving
energy-efficiency and environmental performance. According to a survey [11], the manufacturing
sub-sectors of fabricated metal products and machinery where the metal cutting industry involves
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as a part consume 41,869 and 23,424 million kWh of net electricity in the United States of America,
respectively. As these values respectively occupy 5.5% and 3.1% of the entire manufacturing sector,
reducing energy consumption in the metal-cutting industry is important for improving environmental
performance. In this context, machining in a machine tool affects energy consumption and varies the
energy difference in terms of machining power and time by about 66% [12]. Thus, process planning for
energy efficiency works as a useful means for reducing the energy consumed during the execution of
machine tools because machining sequences and process parameters decided during process planning
significantly influence the performance of machine tool operations [13].

Accordingly, much of the literature has elucidated the relational models between process planning
decisions and energy consumption based on theoretical and experimental modeling approaches [14].
A theoretical approach uses the theory of metal-cutting with some coefficient assumptions; however,
it has limits in predicting energy values correctly due to the gap between assumptive and real coefficient
values. An experimental approach can be subdivided into statistical and learning approaches. A
statistical approach generates statistical models based on Design of Experiments, which aims at
generating response surfaces with a small set of experimental data. This approach derives polynomial
equations for energy prediction; however, it only works within the restricted experimental condition.
A learning approach uses real data from machining operations for creating machine-learned energy
models and shows high accuracy of energy prediction; however, it is limited to creating such models
in a data-absent environment, as mentioned above.

In view of the above, a holonic-based approach is necessary to gain the predictive capability
through self-learning for reducing energy in machining processes. As holons result from the application
of object-oriented concept, they can work as decentralized individuals who independently operate for
how-to-create and how-to-use models. These object-oriented holons can adaptively and evolutionarily
create learned models based on their associated data and thus can cope with the variability of data,
which frequently take place in manufacturing systems due to the changes in manufacturing setup,
condition and environment. Furthermore, holons’ mutual cooperation via their message exchanges
pursues performance optimization centralized on a holarchy. A plausible scenario for energy reduction
in machining is that the machines abstracted by holons automatically create energy-predictive models
through learning techniques, and predict their energy values using the models. In succession, the
machines autonomously and cooperatively make an optimal decision for reducing energy consumption
during the process planning phase.

For such purposes, we designed a holonic-based mechanism for self-learning factories based
on a hybrid-learning approach. We also implemented a prototype system to perform predictive
process planning for energy reduction in milling processes. The hybrid-learning approach is proposed
to obtain the ability of self-learned predictive modeling in both data-existent and even data-absent
environments via accommodating traditional machine learning and transfer learning. The holonic-based
mechanism, consisting of a modeling method, system architecture, and operational procedure, is
designed to provide an autonomous and collaborative decision-making environment through the
virtual agentization of machines and their associated objects under the paradigm of HMS. This
mechanism provides interconnections between data/models and virtual agents. Thus, we can create
and apply energy-predictive models automatically on machines with minimal human intervention.
The implementation demonstrates how individual machine tools utilize real data or existing models
for creating their learned models, predict energy based on their own models, and automatically
negotiate between themselves to find the best machine tool that can minimize energy consumption in
milling machining.

Section 2 reviews the relevant literature, and Section 3 introduces the concepts of a self-learning
factory and hybrid learning. Section 4 presents the holonic-based mechanism. Section 5 demonstrates
a prototype system with discussions, and Section 6 summarizes our conclusions.
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2. Related Works

This section reviews the literature relevant to HMS and learning ability. Our mechanism builds
upon the concept of HMS from a systematic perspective and the application of learning-based analytics
from a methodological perspective, respectively.

2.1. Holonic Manufacturing Systems

HMS originated from PROSA, which adopted a holonic organization to achieve stability against
disturbances, flexibility in changes, and efficiency in resource utilization [7]. The PROSA identified
major keywords as defined below [8].

• Holon: An autonomous and cooperative building block for transforming, transporting, storing,
and validating information and physical manufacturing objects. Basic holons consist of product,
resource, and order holons, whereas staff holons assist the basic holons.

• Holarchy: A system of holons that cooperates to achieve a goal. It defines the basic rules for
cooperation of holons, thereby limiting their autonomy.

• Autonomy: The capability of a holon to create and control the execution of its own plans
and strategies.

• Cooperation: A process whereby a set of holons develops and executes mutually acceptable plans.

Extensive knowledge of HMS can be found in outstanding reviews including [8,15–17]. The
reviews interestingly imply that Multi-Agent Systems (MAS) are a commonly-used and efficient
technology to implement HMS due to the suitability of implementing the modularity, decentralization,
and complexity of holons and their holarchy [17]. Here, an agent is a computational system situated
in a dynamic environment with the capability of exhibiting autonomous and intelligent behavior,
while MAS operate the community of interacting agents as a whole [16]. Thus, it makes sense that the
conceptual frame of HMS needs to be transformed to programmable outcomes using MAS technology.
Note that the present work also adopts this view due to the reasons given above.

Previous literature has attempted to develop and apply holonic-based systems to enhance target
Key Performance Indicators (KPI) in broad applications. The following describes the purposes of HMS
implementations in individual applications [15].

• Automation: The low- and (or) high-level control architecture to synchronize physical and
software control units for flexibility at the machine or shop floor levels.

• Task allocation: Task assignment involving the distribution of tasks to available resources with
the use of Contract Net Protocol (CNP), a negotiation procedure between a manager and a set of
candidate contractors about the assignment of a task [18]. Task allocation can be a part of planning
and scheduling in some sense.

• Fault-tolerance: Detection of failure, diagnosis of failure, and determination of reasonable
recovery actions.

• Real-time control: The system control that reacts within precise time constraints, being classified
into hard (missing deadline results in catastrophic consequences) or soft (meeting deadline is
desirable but missing a deadline will not cause serious damage).

• Planning and scheduling (the application of the present work): Optimal planning and scheduling
of available resources in the production or process level.

Table 1 lists the studies that have endeavored to develop holonic-based systems for enhancing the
target KPI (e.g., productivity, flexibility, reconfigurability and fault-free operation). Staff holons are
designed to efficiently carry out evaluation, mediation, management, and coordination to assist the
basic holons, which concentrate on achieving goals. However, the previous studies did not much focus
on data-driven modeling methodologies where the process of acquiring data and creating models
becomes critical in structuring holons’ functionalities and behaviors. As presented in Table 1, the
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previous studies are limited in identifying pivotal mediators that can interconnect historical data and
create data-driven models with basic holons for predictive process planning. These studies are also
limited in specifying operational and negotiating procedures between holons based on their recognition
of model-based prediction.

MAS-driven studies have recently contributed to improve energy efficiency in manufacturing
in accordance with the increase of energy reduction requirements. Alotaibi et al. developed a
MAS prototype to optimize bi-objective functions (energy and tardiness) in a flexible job shop [19].
Marchiori et al. presented a dynamical approach for energy trades in steel production with the use of
autonomous software agents [20]. Giret et al. proposed a software engineering approach for designing
sustainable intelligent control systems based on multi-agent and holonic principles [21]. However, their
studies depend on a deterministic or discrete event method and do not deal with energy-predictive
models based on a data-driven method, which can deliver better predictability and adaptability of
models at the machine level.
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2.2. Learning-Based Analytics

Learning ability is recognized as an indispensable feature of manufacturing intelligence [35].
As machine learning inherits the ability to learn, the applications of machine learning dramatically
increased in manufacturing domains over the last two decades, and proved suitable in prediction,
optimization, control, maintenance, and troubleshooting. This suitability stems from the advantages
of machine-learning techniques that handle high dimensional problems, increase the usability of
machine-learning practice, discover unknown knowledge, and adapt automatically to dynamic and
complex environments [36].

The learning ability has also been incorporated into agent-based manufacturing systems [37].
Kadar and Monostori presented resource/system-level learning to improve the performance of
distributed systems by expanding the adaptive characteristics of agents [38]. Shen et al. proposed a
learning mechanism for identifying organizational knowledge and selective interaction propagation
from emergent system behavior, and it was used for adjusting distributed schedules and planning
dynamically [6].

The learning ability has been widely applied into energy-efficient machining as well. Previous
works have demonstrated that machine-learning techniques are powerful for predicting and optimizing
energy consumption through utilizing the prior knowledge of a concerned system [39]. For example,
Garg et al. applied a multi-gene genetic programming approach to generate the model structure and
coefficients automatically for energy prediction and optimization in milling machining [40]. Bhinge
et al. presented a data-driven approach for energy prediction in milling machining through the
application of Gaussian process regression [41], and Liu et al. used a tree-based gradient boosting
method, which is a machine learning method to combine weak models into a single strong model in an
iterative fashion, to predict specific cutting energy in milling [39].

Despite such efforts, a common problem remains in that values of certain attributes are not available
or are missing in the dataset [36]. The recent emergence of transfer learning appears to overcome this
problem in manufacturing. Transfer-learning applications are increasing and include fault detection and
condition causality in product quality management, fault diagnosis and condition-based maintenance
in machine maintenance, and tool tip dynamics prediction in machine chatter [42,43].

Consequently, the motivation of the present work is to develop a HMS mechanism for gaining
learning ability, where basic holons can interconnect data, create data-driven models, and determine
their behaviors autonomously and collaboratively for energy-efficient machining through predictive
process planning. The convergence of machine learning and transfer learning provides a basis for
proactive decision-making about the future behaviors of agent-based manufacturing systems, thereby
resulting in learning ability in complex and dynamic environments.

3. Self-Learning Factory and Hybrid Learning

This section introduces the concept of a self-learning factory and a hybrid-learning approach,
respectively. Section 3.1 explains the conceptual structure and process of a self-learning factory.
Section 3.2 describes the theoretical methodology of the hybrid-learning approach.

3.1. Self-Learning Factory

Manufacturing systems operate in dynamic and real-time environments and are frequently
confronted with unexpected events such as machine failure. In this circumstance, MAS have been
applied to facilitate adaptive, flexible and efficient use of manufacturing resources. However,
determining concrete behaviors and activities in MAS a priori is challenging because the following
things should be known: the environmental requirements that will emerge in the future, which agents
are available, and how those agents need to interact in response to these requirements. Such challenges
should be overcome by endowing the agents with the ability to improve the future performance of
manufacturing systems through experience [6]. In the present work, a self-learning factory is the
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manufacturing system that allows manufacturing objects themselves to learn from past experience,
perform predictive simulations and analytics based on the learned-experience, and thus proactively
determine their behaviors and activities for improving, sustaining or recovering their target KPI.

Figure 1 presents the concept of a self-learning factory. It consists of a physical and cyber pairwise
factory, which mirrors the physical factory and uses virtual agents for representing their physical
objects. The cyber factory collects manufacturing data acquired from physical objects. It processes data
to generate training datasets and manufacturing context information. Here, the manufacturing context
means a machining condition that specifies which machine, material, machining feature, operation
and strategy are applied when a certain dataset is generated. The manufacturing context information
can be used a model identifier for categorizing the entire training dataset into individual datasets
because different process conditions create disparate models. For example, models for a machine need
to be different from those of another machine because both machines have different capabilities and
performances. It then creates models from training datasets using learning techniques and stores
them in a knowledge database (model repository). Here, it can adaptively choose machine learning or
transfer learning, depending on whether training datasets exist or not (more details in Section 3.2).
The cyber factory makes predictive planning and control decisions based on learned knowledge and
models, and eventually feeds such decisions forward to the physical objects located in the physical
factory. This cycle repeats, and the cyber factory evolutionarily improves the robustness of knowledge
and models, thereby allowing for more accurate planning and control in physical factories.

 
Figure 1. The concept of a self-learning factory. KPI: Key Performance Indicators.

3.2. Hybrid Learning

Manufacturing data are very important because data-driven knowledge creation is the foundation
for the self-learning factory. Figure 2 presents data flow on a computer-aided chain in machining
processes. Machining processes require part geometries, production plans (macro-level plans for
managing a shop floor), process plans (micro-level plans for machining a part), and Numerical
Control (NC) programs. Supplementary information like part libraries and machine and cutting tool
specifications aid in efficient planning and control by providing technical requirements about products
and resources. Here, the data associated with specifications, planning, and control work as causative
data because they characterize commands and instructions by which machines must operate. While
machine tools run the machining, they generate machine-monitoring data to represent their actions
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and movements along with timestamps. After or during machining, inspection equipment records
values that are used to check whether machining was satisfactorily completed as designed or not.
Machine monitoring and inspection data can be resultant data because they result from the machine’s
actual operations commanded and instructed by the causative data. Specifically, process plan and
NC program data significantly influence machine-monitoring data because a machine tool takes the
actions designated by the NC programs, which are outcomes of process plans [44].

 
Figure 2. A computer-aided process chain and its data flow. CAD: Computer-Aided Design; CAPP:
Computer-Aided Process Planning; CAM: Computer-Aided Manufacturing; CNC: Computerized
Numerical Control; CAI: Computer-Aided Inspection.

From a learning perspective, causative data can correspond to input variables (x variables) as
training datasets consist of x–y pairwise data instances; meanwhile, the resultant data are included as
output variables (y variables) [37]. Additionally, certain causative data are involved in identifying
the manufacturing contexts because they specify machining conditions. Hence, process plan and
NC program data configure manufacturing context information or x variable data instances, whereas
machine-monitoring data are related to y variable data instances. Training datasets can be constructed
by integrating machine-monitoring data instances with their corresponding process plan and NC
program data instances. Such training datasets are the primary requirements for machine learning and
are used to compute their causal relationship by learning techniques.

When implementing the self-learning factory, it is necessary to achieve the self-learning ability
through creating predictive models by means of appropriate learning approaches. Predictive models
allow machines to forecast KPI under uncertainties, thereby helping the KPI optimization through
their self-aware abilities [45]. The traditional learning that uses machine-learning techniques shows
excellence at creating predictive models, as reviewed in Section 2.2. However, it does not work
unless training datasets exist. To overcome this limitation of the traditional learning, we apply hybrid
learning. Hybrid learning can be defined as a learning method where traditional machine learning
creates predictive models in a data-existent environment; on the other hand, transfer learning does in a
data-absent environment.

Figure 3 presents the concept of hybrid learning for creating energy prediction models in machining
processes. Note that our problem is supervised learning because the x and y variables are supervised
by humans and desired outputs are supplied during training. When training datasets exist, traditional
learning computes a mathematical function, y = f(X) + ε (ε: error term), based on learning x–y pairwise
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training datasets. The upper part of Figure 3 shows how traditional learning is used to create an
energy model using an ANN, which is useful for energy prediction in machining [46]. This model
can calculate an anticipated energy value based on the input of process parameters (feedrate, spindle
speed, and cutting depth) in a certain manufacturing context because ANN makes the x−y relationship
numerically known. Such models can provide reliable prediction capability because they build on
training datasets that come from real data.
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Figure 3. The concept of hybrid learning. ANN: Artificial Neural Network.

Transfer-learning can work when training datasets are unavailable. This transfer learning can
create substituent models by transferring learned knowledge (existing models) as it builds upon the
similarity between models. A target manufacturing context (target task) captures a substituent model
that has the best similarity among existing models (source tasks), as presented in the lower part of
Figure 3. Transfer learning unavoidably requires prior knowledge, where the similarity between
models has been investigated in a certain manufacturing system (domain). The prior knowledge can
be obtained from a preliminary analysis of the target KPI (here, energy). Table 2 shows an example of
the similarity of strategies in 2.5 dimensional pocketing machining. This similarity comes from the
previous work [47], which observes that unidirectional x-axis up/down milling and unidirectional
y-axis strategies have the similar energy pattern in pocket machining due to the dependency of cycle
time; on the other hand, bidirectional x-axis, contour, and spiral strategies do. Model similarities can
be graded in terms of high, middle or low levels, depending on their energy pattern likeness. When
creating a substituent model, one of several models that have a high-level of similarity can be selected
and then be substituted for the model that needs to be created (the selection method explained in
Section 4.1.2). For example, a contour or spiral strategy model can be substituted for the model of
bidirectional strategy due to their high-level of similarity.

The adaptive convergence of machine learning and transfer learning enables self-learning ability
regardless of the degrees of freedom in the data. While models are continuously created by hybrid
learning, enormous knowledge can be accumulated to ensure predictive capability in a huge number
of manufacturing contexts.
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Table 2. A similarity matrix of energy patterns in 2.5 dimensional pocketing strategies.

Strategy.
Unidirectional

x-axis down
Milling

Unidirectional
x-axis up Milling

Bidirectional
x-axis

Unidirectional
y-axis

Contour Spiral

Unidirectional
x-axis down

milling
High Low High Low Low

Unidirectional
x-axis up milling

High Low High Low Low

Bidirectional
x-axis

Low Low Low High High

Unidirectional
y-axis

High High Low Low Low

Contour Low Low High Low High

Spiral Low Low High Low High

4. Mechanism

This section presents the mechanism for implementing the self-learning factory based on the
hybrid-learning approach. The mechanism includes a modeling method, system architecture and
operational procedure, and it focuses on predictive process planning for energy reduction in the cyber
part of the self-learning factory.

4.1. Modeling Method

Predictive process planning requires models so that machines make proactive and autonomous
decisions through model-based anticipation. The hybrid-learning approach needs to be fully specified
because it should be implemented to compile the knowledge needed for automatic creation and use of
models. Figure 4 shows high-level methods of the hybrid-learning approach. Sections 4.1.1 and 4.1.2
explain the methods of machine learning and transfer learning, respectively.

 

Figure 4. The modeling method of a hybrid-learning approach

4.1.1. Machine-Learning Method

The machine-learning method handles manufacturing data and data-driven models with the use
of machine-learning techniques. It consists of: (1) raw data retrieval, (2) data pre-processing, (3) training
dataset preparation, (4) model creation, (5) model validation, and (6) model storage and retrieval.

(1) Raw data retrieval involves the search and retrieval of raw data stored in a data repository
for collecting data instances in training datasets. As explained in Section 3.2, the process plan, NC
program and machine-monitoring data need to be searched and retrieved through a certain search
method. A metadata-based search is useful as the metadata indicate the data about the data and serve
as a map for locating data instances [48]. Once data instances are tagged with metadata attributes as
header information, they can be effectively detected through mapping metadata-tagged data instances
with the data queries utilizing the metadata attributes. We design the attributes of the metadata by

260



Processes 2019, 7, 739

considering generality and accessibility. Generality assures that basic information about data instances
will be represented across various data formats and dispersed data sources. Accessibility increases the
availability of data searches even when some attributes are null. The attributes of the metadata of data
can be identified as follows.

Metadata of data = {UUID, Group ID, Creator, Source, Duration, Means, Purpose, Creation}.

• UUID: Universally Unique Identifier.
• Group ID: an identifier for grouping instances.
• Creator: an identifier indicating who creates instances.
• Source: an identifier indicating where instances are stored.
• Duration: a period of time for gathering instances.
• Means: an identifier indicating how instances are obtained.
• Purpose: data attributes to be requested.
• Creation: a timestamp of data creation.

Figure 5 shows an example of the data retrieval using the metadata of data. When a set of raw
data associated with process planning (formalized as ISO14649 [49]), NC programing (conforming
to Fanuc codes), and machine monitoring (represented by MTConnect [50]) needs to be retrieved,
‘O9131’ (the NC program name) can work as ‘group ID’. In Figure 5a, if the metadata contain ‘group
ID’ and ‘purpose’, the relevant data instances can be retrieved because ‘O9131’ (red italic letters) is
encoded at ‘FILE_DESCRIPTION’ in the header section and ‘purpose’ corresponds to the entity of
‘PROJECT’ in the data section. In Figure 5b, ‘purpose’ can request a list of ‘CODE BLOCKS’ in the NC
program named ‘O9131’. Figure 5c illustrates the data retrieval from an MTConnect document when
data instances regarding ‘position’ and ‘wattage’ attributes during a period of time are necessary.

(2) Data pre-processing re-produces high-quality data from raw data and handles them as
designated for preparing training datasets. The data pre-processing basically includes data cleaning,
integration, transformation, and reduction [51].

Data cleaning resolves missing, noisy, outlying, duplicate, or incorrect data. Raw data unavoidably
include sparse, imprecise, faulty, missing, or null data due to the dynamics of manufacturing systems
and the limited capability of measurement devices [52]. These uncleaned data cause an increase
in data uncertainty and result in negative impact on data-driven learning. Data cleaning produces
so-called good data by keeping the data uncertainty under control, thereby increasing the reliability of
data-sensitive learning.

Data integration combines heterogeneous data sources or separate formats into a single dataset for
the desired learning analysis. For example, data instances retrieved from three different data formats
in Figure 5 should be integrated into a tabular training dataset to connect the x and y variables. Data
integration can be achieved by the backward tracing that scans from an MTConnect document and
an NC program to an ISO14649 program. Here, a key attribute should be identified as the linking
point for backward tracing, for which ‘position’ can be chosen as this key. Since ‘position’ indicates the
coordinates of a cutting tool, a value of ‘power’ matched with a certain position can be obtained. A NC
code block associated with the given position can be traced because the block obviously commands
cutting tool movement involving the position. In turn, a machining operation associated with the NC
block can be found because the former creates a group of NC blocks where the latter gets involved.

Data transformation converts data instances into the desired format, scale or unit that is more
useful for the learning analysis. For example, real data values about feedrate, spindle speed, cutting
depth, and power (blue and underlined letters in Figure 5a) need to be adjusted to a 0–1 scale through
minimum–maximum normalization due to their different scales. In addition, it is necessary to convert
a power unit to an energy unit. This is because a power meter typically measures power values, as
shown in Figure 5c, while the y variable in our model uses energy units, which are scalar quantities.
We adopt the delta-energy unit, which can be calculated by multiplying power with a sampling rate of
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measured power [41]. For example, the sampling rate is given by 0.365 s (the average sampling time of
the power meter used in our case study).

 
(a) 

 

(b) 

 

(c) 

null
null

null

'O9131'

null
null

null
null

O9131

null 

null 

“O9131”

Figure 5. Data retrieval using a metadata-based search (a) ISO14649 program; (b) Numerical Control
(NC) program; (c) MTConnect document. UUID: Universally Unique Identifier.

Data reduction may involve the removal of redundant data instances or a reduction in data
dimensions to alleviate computational burdens or obtain straightforward learning results. The present
dataset forms a data tuple of {feedrate, spindle speed, cutting depth}-{delta energy} at every sampling
rate. We need to reduce the data dimension to {feedrate, spindle speed, cutting depth}-{energy} in
terms of a manufacturing context because our models seek to output an energy value using the input
of certain process parameters in a manufacturing context, as described in Section 3.2. For this purpose,
all delta energy values within a manufacturing context are aggregated into a single energy value in the
manufacturing context.

(3) Training dataset preparation decomposes the entire pre-processed dataset into individual
training datasets separated by manufacturing contexts. Different manufacturing contexts require
different models. This comes from the disparate power patterns caused by different cutting force
distributions. For example, the power pattern for unidirectional strategy is different from that for
bidirectional strategy due to their different tool movements and their different cutting forces. Table 3
presents an example of training datasets in two different manufacturing contexts (bidirectional and
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contour machining strategies) within the same pocketing operation. These two datasets are used to
create two different models. For example, when the feedrate is set to 0.333, spindle speed to 0.5, and
cutting depth to 1, its corresponding energy value equals to 0.188, which is an aggregated value of
individual delta energy values consumed by operating the bidirectional strategy for the pocketing.
Note that the numerical values are normalized to a 0–1 scale based on original values.

Table 3. An example of training datasets.

Manufacturing Context x Variables
y

Variable

Machine Material Feature Operation Strategy Feedrate Spindle
speed

Cutting
depth Energy

NVD1500DCG
Steel
alloy

Closed
pocket

Pocketing

Bi-directional

0.333 0.5 1 0.188

0.667 0 0 0.546

0.667 1 0 0.227

0.667 1 1 0.000

Contour

0.333 0.5 0 0.796

1 0.5 0 0.256

0.333 0.5 1 0.269

0.667 0 0 0.386

(4) Model creation involves the generation of predictive models through learning training datasets
by machine-learning techniques. As noted in Section 3.2, our model is supervised learning and
thus machine-learning techniques can be used to derive mathematical functions that determine the
relationship between the x and y variables. Equation (1) expresses an ANN-based function for energy
prediction [53]. Figure 6 shows the structure of an energy prediction model (the graphical structure is
presented in Figure 3) and its example where the attributes of an ANN function are instantiated. The
manufacturing context enrolls model identification, and the numerical function performs the energy
calculation based on the input of the process parameters.

y = fO(
p∑

j=0

wOi fh(
q∑

i=0

wjixi)) + ε (1)

where y: energy, x: process parameter (feedrate, spindle speed, and cutting depth), p and q: the
numbers of neurons at each layer, woi and wji: weight values, fo and fh: activation functions, and ε:
learning error

 

n

n n

(where, the number of layers = 2, 
the number of neurons at hidden layer = 3)

Figure 6. Structure of an energy prediction model.
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(5) Model validation involves the quantification of model significance and reliability to validate
model conformance. This process checks whether model performance satisfactorily meets a threshold
by measuring learning error (the deviation between training data and a numerical function) and
prediction error (the deviation between the numerical function and real values to be predicted). Root
mean square error (RMSE) is widely used as a performance metric for measuring the learning error [54].
Cross validation is useful for measuring the prediction error. It splits the full dataset into training and
test data folds, measures the trained model’s performance using the test data fold, and then repeats
this procedure by changing the roles of the data folds [54].

(6) Model storage and retrieval involves the storage of validated models in a model repository
with their structural forms, and retrieval of the models when requested. Such numerical functions
expressed in Equation (1) are quite hard to store in and retrieve from the database. The tabular
model representation illustrated in Figure 6 makes this model storage and retrieval efficient. As
common relational database systems store and retrieve data records in tabular form, the attributes
of ANN functions can be identified as columns and their instances can be recorded as rows in tables.
A metadata-based search is also useful as the metadata act as model navigators, as explained in
Section 4.1.1 (1). The metadata of a model also need to consider accessibility (as with the metadata of
the data) because accessibility is the common sense of storage and retrieval in a database. However,
the metadata of the model need to be designed in accordance with specificity because manufacturing
contexts depend on and vary with characters of manufacturing systems (e.g., types and complexity of
production). The models requested need to be accurately retrieved, and thus the metadata of the model
should be able to represent the manufacturing context in a straightforward manner. The metadata of a
model for machining processes can be identified as follows.

Metadata of model = {UUID, Group ID, Creator, Source, Means, Creation, Machine, Material,
Feature, Operation, Strategy}.

• Machine: an identifier for the machine tool that creates a model.
• Material: an identifier for a workpiece material.
• Feature: an identifier for a machining feature.
• Operation: an identifier related to a machining operation.
• Strategy: an identifier related to a machining strategy that identifies the tool path pattern.

4.1.2. Transfer Learning Method

Transfer learning enables indirect model acquisition through knowledge transfer from existing
models when data do not exist, as addressed in Section 3.2. Our method is inductive transfer learning in
that the source and target domain (machining process) is the same, but the target task (manufacturing
context) is different from the source tasks. On the assumption that the similarity analysis has been
investigated, the transfer-learning method consists of: (1) model substitution, (2) model validation, and
(3) model storage and retrieval. We skip (3) because it is the same as in Section 4.1.1 (6). We will further
discuss the assumption in Section 5.3 (3). It is worth mentioning that traditional machine learning
needs to be prior to transfer learning because the former builds on real data, whereas the latter is based
on transferred knowledge. When training datasets are available and can be learned, transfer-learned
models need to be replaced by machine-learned models to ensure data-driven predictive capability.

(1) Model substitution involves the generation of an alternative energy model by selecting the
model that is most similar to the target manufacturing context. Figure 7 shows two methods of model
creation: cloning and competing. When there is only one model with a high-level of similarity, the
cloning just copies and pastes the original model to a new model, as shown in Figure 7a. When the
number of such models is greater than one, the competing is required to choose the best model based
on the criteria including default, preference and likeness, as illustrated in Figure 7b. For example, if a
new model for a contour strategy is requested and two bidirectional and spiral strategies indicate a
high-level of similarity with the former strategy, one of the latter models needs to be chosen. The spiral
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strategy model can be chosen if it turns out to be more like a contour strategy model with regard to
their machining power distributions.

 

(a) 

 

(b) 
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Figure 7. Two methods of transfer learning; (a) cloning, (b) competing.

(2) Model validation involves quantification of model significance and reliability to validate model
conformance. However, validating transfer-learned models is harder because the conformance of a
transfer-learned model may not be assured in the target task, although the original model proved to
be significant and reliable in the source task. The most obvious method of validation is to measure
prediction error by gathering real test data in the target manufacturing context. Reverse validation is
recommended when a few of datasets exist for the target manufacturing context [55]. It approximates
the difference between the estimated and true conditional distributions in the context of data limitation,
although it still requires a minimum dataset at the target task. In reverse validation, a transfer-learned
model is re-learned by combining {Xs, Ys,pred} (output dataset of the original model) and {Xt, Yt}
(real dataset gathered in the target task). In turn, the difference between Yt,pred (output of the new
model) and Yt (real output) is measured to quantify the model approximation for the true conditional
distribution (s: dataset in the source tasks, t: dataset in the target task, pred: predicted value).

4.2. System Architecture

Section 4.1 explained the modeling methods and described how to create and use models. It is
necessary to identify objects and their functions to allocate such methods from a software architecture
perspective. We designed a holonic-based system architecture, as shown in Figure 8. The PROSA
architecture underlies this architectural design and can be used to pursue goal-oriented systemization
through virtualizing object agents that have autonomous and collaborative capabilities.

Figure 8. A system architecture for a self-learning factory.
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In the PROSA architecture, basic agents consisting of product, order and resource agents mutually
exchange production knowledge, process knowledge and process execution knowledge. A product
agent performs the functions of request, allocation, confirmation, and supervision of tasks. An order
agent is an orchestrator that takes charge of Calls-For-Proposals (CFP), bid evaluation and selection,
task allocation, and task progress supervision. Meanwhile, a resource agent receives proposals, checks
availability, creates bids, accepts allocations and executes tasks.

In our architecture, data and models should be interconnected within the HMS architecture for
integrating the modeling method described in Section 4.1. The proposed architecture thereby gains the
capabilities of predictive model-based bid submission for resource agents and predictive value-based
bid evaluation for order agents. For this purpose, a data broker agent and a model broker agent are
added as staff agents.

The data broker agent acts as a mediator connecting basic agents and a data repository. The data
broker thus helps basic agents acquire manufacturing context information, training data and task
details. It receives the metadata of data from basic agents when these agents need to gather data to
create models or check availability. It returns the resulting data instances to the basic agents through
the metadata-based search in the data repository. Meanwhile, the model broker agent is a mediator
to connect basic agents and a model repository. It stores models in the model repository once basic
agents create models using the acquired data. It searches and returns the models requested by the
basic agents when the latter need to use the former. Likewise, the metadata of model is applied to
enable the metadata-based search in model requests, searches, and returns.

4.3. Operational Procedure

This sub-section describes the operational procedure to specify agents’ activities and interactions
in a sequential order based on the architecture proposed above. Figure 9 shows the operational
procedure represented by a sequence diagram in Unified Modeling Language. This figure is focused
on model creation and usage of resource agents.

Figure 9a illustrates the procedure for model creation, substitution and registration to prepare
the self-learning ability. If the target model already exists in the model repository (5), this procedure
is terminated (7). If not (8.1), the procedure is invoked and starts with a training data request (10).
If training datasets are available (13.1), models are created using the machine-learning method (16).
If training datasets are not available (13.2), models are substituted from existing models using the
transfer-learning method (24). The models created by the two different methods are requested to
register (26) and are then registered in the model repository (28).

Figure 9b shows the procedure for model usage to apply the self-learning ability. This procedure
builds upon CNP but extends to accommodate the activities and interactions associated with
model-based bidding and evaluation. An order agent requests the task taken for fabricating a
product (1), and a product agent provides task metadata to the order agent (3). The order agent issues
CFP to resource agents (4). The resource agents check their availability with respect to their capability
(whether they can fabricate or not) and idleness (whether they are occupied or not) (5). Available
resource agents receive the task details (technical specification of the task) using the task metadata
(8), and receive models using the metadata of the model extracted from the task metadata (11). They
automatically determine process parameters within their allowable ranges and capacities (12). In turn,
they anticipate energy values for the task using the models received (13), and then submit their bids
where predictive energy values are recorded (14). The order agent evaluates the resources’ bids based
on energy values (15), and then chooses and notifies the resource agent who submits the minimum
energy value (16). The remainder follows the traditional CNP. While agents communicate, they comply
with the Foundation for Intelligent Physical Agents–Agent Communication Language (FIPA-ACL),
which defines a set of interaction protocols and their individual communicative acts to coordinate
multi-message actions [56].
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(a) 

(b) 

Figure 9. An operational procedure for a self-learning factory (a) Model creation, substitution, and
registration; (b) Contract Net Protocol and model usage. FIPA-SL: Foundation for Intelligent Physical
Agents – Semantic Language.

5. Implementation

We implement a prototype system to show the feasibility of the self-learning factory. The prototype
demonstrates automatic predictive modeling and autonomous process planning for energy reduction in
milling machining. Section 5.1 describes implementation scenarios, and Section 5.2 explains prototype
implementation. Section 5.3 discusses implementation results.

5.1. Implementation Scenarios

Figure 10 shows a test part containing 13 machining conditions represented by {machining
feature; machining operation; machining strategy}. Here, a machining condition corresponds to a
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manufacturing context. Implementation scenarios consist of: (1) model creation, substitution, and
registration, and (2) CNP and model usage, as explained in Section 4.3.

Figure 10. A test part and a set of machining conditions.

Figure 11 presents the two scenarios (the simplification of Figure 9a,b). In Figure 11a, a machine
tool generates models using hybrid learning and registers them into the model repository for the
next scenario. When the machine asks the model broker for checking the existence of the models
associated with the machining conditions, the model broker returns the relevant models if they exist.
Otherwise, the machine requests data to the data broker who returns the data requested. If the data
exist, the machine creates energy models using machine learning and then requests model registration
to the model broker who notifies the registration confirmation to the machine. If the data do not exist,
the machine requests similar models to the model broker. The model broker then searches similar
models based on model similarity and returns them to the machine. The machine creates alternative
energy models using transfer learning and registers the models in the same way. Here, a model for
the machining condition {Pocket 1; Pocketing; Spiral}, which is assumedly to be absent in the model
repository, is created.

In Figure 11b, a CFP is initiated by an order if a product needs to be machined and informs the
relevant tasks. Five machine tools compete for a task. Machines 4 and 5 refuse this task due to their
unavailability because Machine 4 is a turning machine and Machine 5 was occupied by another task.
The remaining three machines (Machine 1, Machine 2, and Machine 3) decide their process parameters
within their allowable ranges or preferences. Process parameters are assumedly determined as follows:
Machine 1 (feedrate: 0.0127 mm/tooth, spindle speed: 1750 Revolution per Minute (RPM), cutting
depth: 1.5 mm), Machine 2 (feedrate: 0.0178, spindle speed: 2000, cutting depth: 1.0), and Machine 3
(feedrate: 0.0127, spindle speed: 2000, cutting depth: 1.5). They use their energy models to anticipate
the energy values consumed during the execution of the given machining conditions. Once their
energy values are estimated, the machines send their bids including their predictive energy values to
the order. The order evaluates the energy values submitted by the three machines. The order accepts
one of the machine tools if its proposal is the minimum energy value.
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(a) 

 
(b) 

Figure 11. Implementation scenarios for (a) Model creation, substitution and registration; (b) model
usage and machine selection.

5.2. Prototype Implementation

For energy modeling, we fabricated 12 test parts in a milling machine. Table 4 presents a list of
process parameters for the 12 individual parts. These parameters were randomly determined within
the experimental safety and allowable ranges of the machine and cutting tool used. Figure 12 shows
an implementation architecture. We generated ISO14649 programs manually, while NC programs
were generated using computer-aided manufacturing software, and MTConnect documents were
collected in a physical part to represent the machine-monitoring data heterogeneously sourced from
an NC and a power meter. The installations of this experiment included the machine (Mori Seiki
NVD 1500 DCG), NC (Fanuc 0i), workpiece (Steel 1018, 10.16 cm × 10.16 cm × 1.27 cm), cutting tool
(solid carbide flat-end mill, 8-mm diameter, four flutes), and power meter (high-speed power meter
from System insights). Note that only one machine is used due to our experimental limitation. We
implemented a prototype system in a cyber part based on the mechanism of the self-learning factory,
as explained in Section 4. The installations of this implementation included an integrated development
environment (Eclipse Java Oxygen), agent platform (Java Agent Development framework (JADE)),
JADE execution and deployment (EJADE), data and model repositories (MySQL), and a Java-based
ANN framework (Neuroph).
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Table 4. List of process parameters.

Trial
Feedrate

(mm/tooth)
Spindle Speed

(RPM)
Cutting Depth

(mm)

1 0.0127 1500 1.5

2 0.0127 2000 1.5

3 0.0127 1750 1

4 0.0229 1750 1

5 0.0127 1750 2

6 0.0178 1500 1

7 0.0178 2000 1

8 0.0178 2000 2

9 0.0178 1750 1.5

10 0.0076 1750 1.5

11 0.0152 1750 1.5

12 0.0127 1750 1.5

Figure 12. Implementation architecture of the prototype system.

Figure 13 illustrates the screen shots for the implementation of model creation, substitution
and registration corresponding to Figure 11a. The screen shots, captured from the JADE sniffer
agent, represent FIPA-ACL message exchanges and interactions across individual agents with respect
to time, while a computer automatically proceeds (we only click the start button). Note that the
arrows only indicate external message exchanges with communicative acts between agents, while
internal works inside agents are hidden. In Figure 13a, the machine learning works to create models
associated with the 13 machining conditions. The ANN technique is used for this purpose, and
the attributes of the ANN-based energy models include (see example in Figure 6) the learning rule
(momentum backpropagation), activation function (sigmoid), the number of layers (2), the number of
neurons at a hidden layer (3), learning rate (0.3), maximum error (0.01), maximum iteration (1000), and
momentum (0.2). As shown in Figure 13b, the transfer learning is activated because the data broker
cannot find data in the data repository and then refuses data return. An energy model for {Pocket
1; Pocketing; Spiral}, as described in Section 5.1, is alternatively created through cloning the energy
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model for {Pocket 1; Pocketing; Bidirectional} due to their high level of similarity. In these ways, energy
models are created and registered in the model repository for the next use.

 
(a) (b) 

Figure 13. Implementation result: model creation, substitution and registration (a) Machine
learning-based; (b) Transfer learning-based.

Figure 14 shows the screen shot for the implementation of CNP and model usage. The order agent
is an initiator in the frame of CNP, which comprises an initiator and participants for requesting a task
and performing the task, respectively. The order agent communicates with not only the product agent
(a participant) for issuing a task but also the machine agents (participants) for assigning the task. The
order agent processes its operations aligning with the scheduling of one-shot, cyclic or conditional
behaviors for communicating with the participants using FIPA-ACL messages (see Figure 9b). The
order agent sends the messages to the target participants and receives the messages from them based
on the behavioral scheduling because it can write or read the FIPA-ACL messages that include a sender,
receivers, communicative acts (i.e., a tag for communicative acts; e.g., call for proposal, accept/reject
proposal, inform and refuse), contents, conversation ID, and so forth.

 
Figure 14. Implementation result: model usage and machine selection.

Order 1 calls for proposals for selecting a machine who can perform the task informed from
Product 1. Machines 4 and 5 refuse this task due to their unavailability as explained in Section 5.1.
The remaining three machines receive the energy models of the 13 machining conditions and input
the determined process parameters. These three machines predict energy values for running the
13 machining conditions and the predictive energy values are, respectively: 11,825 kJ (Machine 1),
11,700 kJ (Machine 2), and 12,957 kJ (Machine 3). These machine agents propose their bids including
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these predictive energy values to the order agent. The order agent evaluates their energy values to seek
the machine agent who submits the minimum energy value in its bid. Because Machine 2 proposes the
minimum energy value, the order agent accepts the proposal from Machine 2, transmits the bidding
result and instructs Machine 2 to take the task. This selection of the minimum energy-using machine
tool (Machine 2) achieves 9.70% energy reduction, compared with the maximum energy-using one
(Machine 3).

We measure real energy values from actual machining to check the accuracy of their corresponding
predicted values derived from the ANN-based energy models. The real measured energy values were
recorded as 11,382 kJ (Machine 1), 11,044 kJ (Machine 2), and 12,580 kJ (Machine 3). These different
values come from the application of different process parameters given in Section 5.1. The total relative
error, which measures the percentage of predicted energy values – real energy values)/real energy
values, were 3.89%, 5.94%, and 3.00%, respectively.

5.3. Discussion

(1) Experimental limitation: our implementation could select the minimum energy-using machine
tool among three machines through predicting and competing their energy values. Using three different
machine tools is desirable because individual machine tools make different machine-specific energy
values due to the differences in their capabilities and performances. However, a single machine had to
be used due to our experimental limitations. It will be more realistic to use different machine tools for
creating machine-specific energy models through instantiating different values in the attribute ‘machine’
of the manufacturing context. Alternatively, transfer learning can be applied to create machine-specific
models by reflecting the difference of capabilities and performances between the target and source
machines (see an example in the below (3)). In addition, virtual simulators can be useful for limited
experimental environments. Some machining simulators can generate machine-specific power values
affected by machine’s capabilities and performances [57,58].

(2) Increase of practicability: our implementation has been made within a single order on a
single process. This may be far from the reality in common manufacturing systems where multiple
processes deal with various products and orders. Thus, gaining practicability remains critical. In other
words, the target application is demanded to extend toward production planning considering multiple
products and orders in a production line. It is expected that the adoption of MAS technology makes
the practicability achievable because MAS use unique identification and take their autonomous and
collaborative actions regardless of the number of product, order and machine agents. The proposed
approach needs to be extended to the production planning by adding more product, order, and machine
agents, although the difficulty and complexity of implementation increase.

(3) Uncertainty of transfer learning: our implementation shows the feasibility of the acquisition of
self-learning ability by machine and transfer learning techniques. Transfer learning creates an energy
model for the target manufacturing context {Pocket 1; Pocketing; Spiral}, which was not machined
in our experiment, by cloning the energy model for the source manufacturing context {Pocket 1;
Pocketing; Bidirectional}. However, we could not quantify significance nor validate conformance of the
transferred model because it was not machined just as stated. The model validation of transfer learning
remains as a future work. Our transfer-learning approach builds upon the similarity between the two
manufacturing contexts and thus the similarity needs to be analyzed and verified in advance. If such
similarity is not verified, transfer learning may not work properly and thus need to consider alternative
means besides the similarity analysis. Reverse validation needs to be applied if a few of datasets
are generated in the target manufacturing context, as described in Section 4.1.2 (3). Otherwise, the
properties that characterize a difference between target and source manufacturing contexts can be added
as variables of transfer learning. For example, an energy model for a machine tool can be transferred
from that for another machine. The former model should be different to the latter one because these
machines have different property values in basic power, rotation torque, and motor efficiency, which
affect power and energy in machining. These properties can be additional input variables in the
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structure of machine-learning models so that transfer learning can derive machine-dependent results
through learning the influence of different values of those properties.

(4) Implementation challenge: energy-efficient machining has become a massive trend in some
countries; however, it is still far from reality in other countries where many small-and-medium sized
manufacturers fabricate products with paying cheap industrial electricity costs. These countries deal
with time and quality as critical performances and are less concerned with energy consumption because
they regard the energy cost as an endurable expense. Nevertheless, researchers need to keep their
efforts on implementing and deploying cost-effective and data-accessible solutions for energy-efficient
machining as the metal-cutting industry affects a large portion of the total energy consumption over
the world. The use of open sources helps increase cost effectiveness for implementing such solutions.
The implementation tools that we used in the prototype system are all open sources, which are
publicly accessible without payment (payment may be required for commercial purposes). This
implementation strategy can reduce solution development expenses to the reasonable cost level and
help the deployment of such solutions toward small-and-medium sized manufacturers. The use of
interoperable and open data interfaces comfortably supports the availability of data collection as data
are critical for implementing manufacturing intelligence. Recent standardized interfaces including
MTConnect and Open Platform Communications–Unified Architecture facilitate data accessibility.
These interfaces provide open source tools as well and thus are quite useful for making a data bridge
between physical and cyber factories.

6. Conclusions

In the present work, we designed and implemented a holonic-based mechanism for a self-learning
factory based on a hybrid-learning approach. The concept of the self-learning factory was proposed
to allow manufacturing objects to learn past experience using their real data, to perform predictive
analytics and to determine their behaviors and activities for improving a target KPI. The holonic-based
mechanism identified a modeling method, system architecture, and operational procedure to
implement an autonomous and collaborative prediction environment through the virtual agentization
of manufacturing objects under the paradigm of HMS. The hybrid-learning approach was designed
to acquire predictive capability independently with the degrees of freedom in the data through the
accommodation of machine learning and transfer learning. This hybrid learning can be used to build
up a massive knowledge base through the accumulation of models, thereby gaining self-learning ability
in manufacturing systems. A prototype demonstrated the feasibility of the proposed mechanism via
predictive process planning for energy reduction in milling machining. Autonomous and collaborative
activities of manufacturing agents are carried out on a computer to select the minimum energy-using
machine tool while minimizing human intervention.

The limitations of the present work are as follows: (1) Our target is limited to process planning
for a single product and process and thus cannot ensure the feasibility of the proposed mechanism in
a more complex production line, (2) our implementation is restricted by the use of a single machine
and thus does not embody more realistic scenarios by multiple machine tools, (3) our experiment
does not show the validity of transferred models due to our experimental limitations, and (4) our
implementation excludes control and feedback of the cyber and physical parts in a real-time manner as
CPPS obviously require mirrored synchronization between the both parts. We plan to overcome these
limitations in future work.
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Abstract: This paper introduces the incentive of an optimization strategy taking into account
short-term and long-term cost objectives. The rationale underlying the methodology presented
in this work is that the choice of the cost objectives and their time based interval affect the overall
efficiency/cost balance of wide area control systems in general. The problem of cost effective
optimization of system output is taken into account in a multi-objective predictive control formulation
and applied on a windmill park case study. A strategy is proposed to enable selection of optimality
criteria as a function of context conditions of system operating conditions. Long-term economic
objectives are included and realistic simulations of a windmill park are performed. The results
indicate the global optimal criterium is no longer feasible when long-term economic objectives are
introduced. Instead, local sub-optimal solutions are likely to enable long-term energy efficiency in
terms of balanced production of energy and costs for distribution and maintenance of a windmill park.

Keywords: windmill park; wind speed estimator; multi-objective optimization; sequential optimisation;
distributed model predictive control

1. Introduction

When it comes to optimization strategies, advanced control methodologies such as model based
predictive control (MPC) is of great industrial relevance [1–3]. For large scale systems, its variant
as distributed MPC has great added value in terms of numerical optimization and computational
efficiency [4,5]. Additionally, it requires a significantly lower amount of information than full
multivariable MPC, hence the optimization can be accelerated. The cost function implemented in such
MPC schemes is usually tailored upon the specific objectives of the process at hand. Less academic
but highly relevant in practice objectives such as performance degradation, failure monitoring and
nesting, implementation and training costs are making the MPC an even more appealing strategy for
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large scale processes. Supply chain optimization is a great example for successful stories of economic
and environmental related objective based MPC applications [6,7].

Wide area control systems have been recently undergoing a revision of concepts and relevance
going beyond the classical output performance [8,9]. Such examples of revisited control objectives can
be found in large scale power systems [10], office buildings [11], traffic control [12], sustainability in
company management [13], and distribution networks [9]. A generic feature is to search solutions for
optimal operation from the decentralized to distributed control systems and combinations thereof.
The features of tomorrow’s control systems are based on system-wide control, plug-and-play control,
measurement driven, adaptive and reconfigurable architectures.

An application where environmental and economic objectives are core in the long-term cost
management and return of investment policies is the area of renewable energy, e.g., wave energy [14].
Example of large scale interacting sub-systems with independent control but global optimization
policies is the case of windmill parks, either land- or water-based. Due to their negative impact on
aesthetics and noise near populated areas, land based windmill parks lose their popularity as the
marine parks gather higher interest [15]. Satellite-based synthetic aperture radar measurements allows
a most optimal location along with best geometrical placement of such parks for the function of wind
speed and its energy content [16,17]. These issues are now mature and the next at hand objective
for optimal operation is derived from evidence-based effects of wind power systems on marine life
and related maintenance costs—the latter being obviously quite different from land-based parks [18].
Reports of various agencies and policy makers indicate that long-term and large-scale impacts have
cumulative effects and a knowledge gap is identified.

Following the exponential growth of wind capacity since 1996 to now, sufficient data is now
available to comprehensively evaluate their efficiency, by taking into account the effective energy
production and related costs on the long-term. Recent studies evaluating the distribution of costs
for wind power systems indicate that offshore based parks have about double costs with respect to
land-based costs [19]. Of the total cost distribution, maintenance and safe operation at lower power
production are estimated to be a staggering 30%–40%, and thus the major source of costs [18,20].
The same distribution of costs applies also to a levelised cost of electricity from wind power systems:
operation and maintenance remain leaders in the cost indicators [21].

Maintenance costs are related to the operation of the wind parks, in terms of environmental
conditions (saline air, saline water, etc) and safety related operational decisions (wind speed and
stability of the construction). There are other effects such as variability of the wind speed, affecting
the grid where the power is introduced, further enlarging the cost-related issues to the grid itself [22].
Choice of instrumentation is also important to avoid operational problems in the grid [23–25].
Weak grids will operate at a lower power than the capacity for power generation from the wind
park itself, and the choice of control strategy (voltage- or power-based criterium) will greatly affect the
impact [26]. Limitations in storage capacity will impose limits in peak voltage as a safety margin.

In this paper, we perform a feasibility study of a concept for multi-objective optimization (MOO)
scheme integrated with MPC and applied on a relevant study case: a windmill park. The combined
scheme addresses optimization criteria on a priority-based algorithm, resulting in a multi-objective
optimization priority MPC (MOOP-MPC ). Economic costs are taken into account along with safety
related limitations [27]. Comparison to a global priority optimization formulation is performed to
analyse the best strategy for long-term impact. An existing model for a windmill park and updated
cost function is used in Matlab/Simulink. Here, the estimation of wind speed is the basis for control
feedback law and a real-time estimation scheme is proposed. The hypothesis tested in this study is
whether the choice of the MOOP objectives will have an effect on the global performance output and
efficiency of the system.
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2. Materials and Methods

Model predictive control is an advanced control strategy well established over the past decades
and commonly employed in the so-called money making industry, where economic costs are highly
relevant [28–30]. For processes consisting of multiple interacting sub-systems, with highly coupled
dynamics, multivariable MPC algorithms are demanding in terms of model data availability and
computational costs. Instead, a much lighter version, ignoring interactions (if weak enough) or used
with decoupling matrices (if interactions are strong), is that of decentralized MPC. As a trade-off
solution, with interaction information communicated among the sub-systems, is the distributed
MPC [4,5], also a well established MPC strategy.

In this paper, we use a distributed MPC algorithm presented in [4,5], with a tailored optimization
scheme described hereafter. For nonlinear systems, in our version of MPC, linearization of the
process model is not necessary, in the condition that the step response of system dynamics matrix is
updated at every sampling time and the step input to obtain it has the amplitude in the region of the
expected steady state values of the controller output (due to nonlinear dynamics, if large input is used,
the information matrix no longer has information upon the specific operation point currently used).
This is a special version of the MPC, especially suitable for data driven formulation; see comprehensive
details in [31,32].

2.1. Multi Objective Optimization with Priorities

The new approach for wide-area control of systems is to have decentralized and distributed
control layers throughout the global system output to be controlled [10,33]. Assuming the inner/lower
layer of control works adequately, the upper level can deal with objectives other than absolute output,
or combinations thereof with economic and environmental objectives.

At this point, we introduce the prioritized multi-objective optimization (MO) algorithm. This
is a simplified approach compared to those proposed in the literature [34–38]. As with any process,
the safety constraint is set as a hard constraint, given limit value intervals for all input–output variables.
If this condition is not satisfied, a pre-set of (suboptimal) safety values are given to the process operation
units. This step is implemented as proposed in [39]. If this condition is fulfilled, then the next priority
is to meet the product specifications, i.e., performance tolerance error intervals and/or maintenance
costs are evaluated. Finally, if this is also fulfilled, then the optimization minimizes the control effort,
i.e., enters energy saving operation of the plant. The performance and other long-term costs are soft
constraints, i.e., they are tailored to fit the objective at hand and not to minimize a specific cost goal.
This allows a much faster computational convergence while process operation remains active within
safety bounds. The sequential (prioritized) flowchart is iterated at every sampling period and the
computational time within iteration is recorded.

2.2. Area-Wise Wind Speed Estimation

Bat algorithms and learning machine algorithms are popular estimation tools for predicting wind
speed on location of the wind turbine [26,40]. By adjusting the wind turbine speed, the system can
operate at optimal rotational speed while achieving the maximal power. However, the operation of
the turbine is influenced by wind speed and direction in a complex context given the influence of
neighbouring turbines in a windmill park. A good wind estimator is desired to reduce the uncertainty
that will directly affect the performance of the proposed controller in a neighbouring area. Figure 1
depicts the position of the wind estimator within the loop.

Drones or in general, unmanned aerial vehicles (UAV) can be used to fly over the park and estimate
wind speeds at determined locations in order to update the information for the individual operation
of the turbines depending on the time-varying wind conditions. The proposed wind estimation is
derived below for the coordinate frames of the UAV.
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CONTROL AND OPTIMIZER NEIGHBOURING AREA IN 
WINDMILL PARK

SENSORSWIND SPEED ESTIMATOR

INPUT: Wind

INPUT: Reference

Control

OUTPUT: Speed/Energy/Power

Estimated Wind

Past OUTPUT

Figure 1. Block scheme with wind estimator and controller on the turbine.

Solutions to estimate the wind using on-board embedded wind sensors, are given in [41,42].
A possible drawback is that the on-board wind sensors use valuable payload that could be otherwise
used. From aerodynamics, a nonlinear dependence of the UAV follows, by the wind speeds uw, vw,
ww, while the disturbances (external forces FXaero, FYaero, FZaero and moments Laero, Maero, Naero) enter
linearly in the drone equations. Hence, the problems of estimation of wind velocities and disturbances
can be formulated in two context conditions: piecewise constant or slowly varying. To estimate
linear parameters varying models for wind, the literature mainly reports two groups of solutions:
with/without airspeed sensor information. For instance, Qu et al. [43] uses airspeed sensor, roll angle,
and sideslip angle to estimate the wind speed for small fixed-wing UAV. Rhudy et al. [44] estimated
the wind field based on four formulations, combining the data coming from the Pitot -static tube,
the global position system (GPS), the inertial measurement unit (IMU) and the angle of attack and
sideslip vanes. Otherwise, Xing et al. [45] estimated the shear wind vector at low altitude using
IMU and GNSS modules. Pappu et al. [46] used a Kalman filter based gust identification technique
for estimating wind gusts. In our work, it is supposed that the estimation algorithm can use IMU
(accelerometer, gyroscope) sensors augmented with a motion tracking system and rotor’s rotational
velocity sensors.

Quadrotor linear velocities (u, v, w) and accelerations are provided by the on-board accelerometer,
which measures directly

Δ̃a(X) = Δa(X) + εa (1)

where εa is the bounded measurement noise and

Δa(X) =

⎡⎢⎣ Δau(X)

Δav(X)

Δaw(X)

⎤⎥⎦ =

⎡⎢⎣ u̇
v̇
ẇ

⎤⎥⎦+

⎡⎢⎣ p
q
r

⎤⎥⎦X

⎡⎢⎣ u
v
w

⎤⎥⎦−
⎡⎢⎣ −g sin θ

g cos θ sin φ

g cos θ cos phi

⎤⎥⎦ . (2)

From the gyroscope, which measures the rotational velocity in body frame with respect to the
earth, the other state coordinates are measured

Δ̃g(X) = Δg(X) + εg (3)

where εg is the bounded measurement noise and

Δ̃g(X) = [p q r]T . (4)
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The IMU sensor is augmented with ground based cameras, used to estimate (u, v, w, θ, φ) coupled
with the gyroscope and accelerometer, enabling drone observability with respect to the inertial frame.
The dynamics equation can be summarized as follows:[

Δa(X)

Δg(X)

]
= f0(X, U, ω) + Ω(ω)dw (5)

where f0 is known and Ω needs to be estimated.
Define the predicted acceleration

Δ̃a = f0a + Ωad̂w (6)

allowing introduction of the error between the measured and predicted state acceleration as

ea = Δ̃a − Δ̂a = Ωa(dw − d̂w) + εa. (7)

From Rios et al. [47], we use the finite-time estimation algorithm

d̂w = γaΩT
a [ea]

αa , 0 < αa < 1, γa � 0. (8)

The Lyapunov function can be selected

V =
1

2γa
|dw − d̂w|2 (9)

with ||2 denoting the norm and for the simplified dynamics of a quadrotor, the matrix Ωa is invertible
and the solution is feasible and stable [47,48].

An adaptive observer equation model can be derived at this point

Ω̂g = f0g + Ωgd̂w + lgsign(Δ̃g − Δ̂g)

d̂w = γgΩT
g (Δ̃g − Δ̂g)

(10)

with lg and γ � 0 tuning parameters. Consider here the Lyapunov function

V =
1
2

(
[Δg − Δ̂g]

2 +
1

γg
[dw − d̂w]

2
)

(11)

which has the derivative in time
V̇ = −lg|Δg − Δ̂g| (12)

and is bounded for all t > 0, with the state estimator converging asymptotically to the origin [47].
The wind estimation error converges as well to the origin, due to the persistent excitation in Ωg.

Some convergence bottlenecks may appear with this algorithm as the computations occur.
To increase robustness of convergence, the following algorithm is proposed (recall operations are
element-wise):

Δ̂g = f0g + Ωgd̂w + l
′
g
(
Δ̃g − Δ̂g

)
+ Φd̂w

Φ = −l
′
gΦ + Ωg

d̂w = γ
′
gΦT |Δ̃g − Δ̂g|α

′
g

(13)

where l
′
g > 0, α

′
g ∈ (0, 1) and γ

′
g � 0 are tuning parameters. The auxiliary matrix in this augmented

model has the same dimension of Ωg and is limited for bounded values of Ωg and positive values of l
′
g.
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In the presence of measurement noise and time-varying wind speed conditions, Equation (10)
will freeze its estimates, while (8) and (13) will estimate in an aggressive, respectively conservative
manner. The fusion of the equations may seem appealing under the form

d̂ f usion
w (t) = ∑2

i=1 e−kiv2
i (t)d̂i

w

∑2
i=1 e−kiv2

i (t)
(14)

with ki positive, a tuning parameter for convergence speed, and errors v1(t) = ea(t), respectively
v2(t) = Δ̃g(t)− Δ̂g(t). This fusion algorithm has the worst estimation error given by the maximum of
the two estimation errors for the algorithms (8) and (13).

Important fluctuations in the wind speed such as rapid turbulence will result in voltage
fluctuations. The above described algorithm can estimate the basal envelope of the speed, while
a faster component can be estimated by filtered white noise. The mean and standard deviation of the
wind speed are linearly related with a constant k found experimentally from the park site:

σ̂w = k · v̄. (15)

Using the shaping filter from Suvire et al. [49]

H(jω) =
K

(1 + jωT)5/6 (16)

we can set the time constant of the filter as
T =

L
v̄

(17)

with L the turbulence length (e.g., hundreds of meters). The constant of the filter is set by the condition
of coloured noise with unit standard deviation for the wind speed values:

K =

√
2π · T

B(0.5, 0.3) · Ts
(18)

with Ts the sampling period and B denoting the Bessel function.
The global estimation of the wind speed will dictate the decisions in the MOOP-MPC

optimization algorithm.

2.3. Windmill Park Simulator

A recent comprehensive literature review of wind farm operation using distributed predictive
control illustrates that wind speed is a core variable of information in the optimization of the farm
output in terms of generated power [50]. The wake effect is mainly in stream with the geometry of the
park and has a decaying effect towards the end area of its direction. Integration of wind mill parks
has been discussed comprehensively in a tutorial [10] and models for power control assumed from
Ugalde-Loo et al. [51], with Matlab codes available as in Sadamoto et al. [52]. Networked delayed
control is relevant for this system, but it is neglected in this study [8].

The simplest manner to model the wind park is to consider it a uniform turbine model. This is
useful for global optimization objectives with global wind speed conditions. The other extreme is to
consider individual models for each turbine. Wind mill parks can be as large as hundreds of units,
hence a significant computational load makes such models restricted to specific analysis such as
coherence, correlation, and similar properties of wind effects on energy production. However, area
related (i.e., group, or local) effects on the optimization scheme may be investigated if groups of wind
turbines are considered bundled into a model, and the wind park consists of several of such lumped
models. We use the model presented in Suvire et al. [49] and available in Matlab/Simulink, with values
for realistic wind speeds from Degraer et al. [53], but in a simplified version.
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The schematic in Figure 2 depicts the concept of area-wise simulation of the windmill park and
possible interaction between the areas coming from the wind direction.

WIND

9

2 3

4
5 6

7 8

1

UAV

UAV
UAV

UAV

Figure 2. Windmill park conceptualisation as area-wise controlled sub-systems with limited interaction
from wind direction and speed. The interaction intensity fades (with colour) as it travels through the
system; the direction is limited to the arrow indicators, hence the interaction matrix is not fully coupled,
which further motivates the use of distributed control.

The model of each sub-system denoted in Figure 2 by its corresponding number is a simplified
one from the one used in Zhang et al. [40] and Suvire et al. [49], which is easily implementable in
Matlab/Simulink. The output is the turbine’s generated power. The time constant of the low pass
filter depends on the average wind speed and can be assumed constant of time-varying. The effect of
the wind fluctuations at rated power operation is filtered by a damped second order transfer function.
Figure 3 schematically depicts the system to be controlled. This denotes a single grouped area of
windmills in the large park. The model has been fitted as a first hand least square optimization
algorithm to determine the parameters: Tb = 11, Kp = 2.8, T = 12.5 and d = 97, the latter term being
related to the distance covered by one sub-system.

Wind Speed
Information

Available 
Power

Power Curve

Wind speed

Figure 3. Schematic summary of the over-simplified model used for each sub-system in the
windmill park.
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3. Results

To verify the result between a global and an area-wise MOOP with distributed MPC strategy,
simulations are performed in Matlab/Simulink R2017a. The values of the turbine model are the same
as in Zhang et al. [40], and the values for the distributed MPC algorithm are set to 30 samples for the
prediction horizon, one sample as the control horizon, and no time delay. The sampling period is
100 milliseconds. The output of the system is the power. The tuning of the MPC follows the rules of
thumb given in Ionescu et al. [54].

The MOOP has three parameters sequentially activated as in Figure 4. The safety limits for
the input are 0–100 Volts, rotor flux for turbine between 0–1 and angle speed for rotor tracking
between 10–40 rad/s. Current is limited to maximum 5 A. These are taken as hard constraints in the
global optimization case, with a 100% weight. The maximum power is normalized to 1 pu, reaching
maximum output at 10 m/s and safety shut-down resulting in zero power output at 20 m/s. For the
simulation purposes, the default values from SimPowerSystems/Simulink Toolbox within Matlab
are used, but with wind speed from Degraer et al. [53] with an average varying between 10–20 m/s.
The length of the park is assumed to be 300 m. The total output power of the farm is obtained by
adding the power from each sub-system area for which model from Figure 3 has been identified from
the simulator data.

MPC w/o constraints MPC
Explicit Solution

Safety Limits (Short 
term) 

Other Long Term Costs 
Suboptimal Solution

END

START

SAFE ?

Max Energy 
Extraction?

YES

NO

YES

NO

Performance (Short 
term) vs Maintenance 

Costs (Long term)

Instrumentation
Ok?

YES

NO

AND/OR

Environment 
Impact

NO

Figure 4. Flowchart of the sequential prioritized optimization scheme. Model based predictive
control (MPC).

The performance term is evaluated as quadratic error between the maximal power extracted from
the estimated wind speed and actual power from the system, during global optimization at a 70%
weight. Maintenance costs are long-term costs and during global optimization they have a weighting
factor in the second objective as a 30% of the total 100% weight—the rest is given to the performance
as a short-term objective will have more influence on the cost variability. Alternatively, the short-term
and long-term costs can be also implemented as a function of the prediction horizon: shorter intervals
will give a faster convergence with large fluctuations, whereas longer prediction intervals will provide
a more basal variation in the long-term objectives. A ratio of 2:5 is proposed for the short vs. long-term
prediction horizon.

When exploring the environmental impact information such as in Degraer et al. [53], this is a
cyclic signal, which can be modeled as a slowly moving average signal with increasing offset (i.e.,
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cost). The minimization therefore is in terms of average values bringing them piecewise towards zero.
The impact of this term during the global optimization case is 10%.

Figure 5 depicts the various timelines of the optimization parameters and the wind speed profile
for the simulation is given in Figure 6.

Time 
instant t

Predicted moments in 
future at time t/t+1….t/t+P

Safety 
area

Performance (above 80% of 
achievable, but safe, power Maintenance

Environmental Impact

t+P

Figure 5. Illustration of the multiple objectives as a function of time and operation range percentage .

Figure 6. Example of variable wind speed profiles used in simulation.

The safety criterion is tested as being of the foremost importance in the operation of the park.
Figure 7 illustrates the simulation of the park with a moment for wind speed above 20 m/s and
temporary low windmill operation, resulting in lower output power—once the wind speed is recovered
below the maximum allowed, the operation is resumed.

We compare now the two situations in variable speed wind conditions. First, all sub-system
areas of the park are globally optimized, with a solidary cost function to take into account all output
variables equally. Distributed MPC (dMPC) is still valid in this case, but the objective function is
limited to neighbouring areas of each individual group of windmills. Second, the optimization is done
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individually per group (per sub-system), taking into account interactions from neighbouring areas,
but the optimization cost function is a MOOP with weighting factors among the various types of costs.
For the same time interval of 20 min, with same wind speed conditions, the power output for the two
strategies is depicted in Figure 8.

Figure 7. Example of testing the safety limits of operation of the park. Contour plot, blue colour
denotes lowest values. The maximum value (red) corresponds to a 90–100% power extraction, while
the lowest value (blue) corresponds to 0–10% power extraction.

Figure 8. Contour plot of power output for variable wind speed conditions. Left: MOOP optimization.
Right: global optimization. The maximum value (red) corresponds to a 90–100% power extraction,
while the lowest value (blue) corresponds to 0–10% power extraction.

In case of constant average speed conditions, the comparison between the two strategies is
illustrated in Figure 9.

Figure 9. Contour plot of power output for constant wind speed conditions. Left: MOOP optimization.
Right: Global optimization. The maximum value (red) corresponds to a 90–100% power extraction,
while the lowest value (blue) corresponds to 0–10% power extraction.
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The obtained performance is summarized in Tables 1 and 2 below for the two wind speed situations.

Table 1. Normalized units in percent for variable wind speed conditions. Distributed MPC (dMPC),
Global and Multi-objective optimization priority (MOOP) methods

Method Performance Total Power Output Cost

Global dMPC 88 85 91
MOOP dMPC 63 71 68

Table 2. Normalized units in percent for constant wind speed conditions.

Method Performance Total Power Output Cost

Global dMPC 90 95 91
MOOP dMPC 87 91 88

4. Discussion

The idea of using UAVs as a flying sensor is borrowed from precision agriculture applications [55]
and emergency medicine [56], but its integration in windmill park utilisation still leaves many open
challenges. For instance, the effect of wind gusts and wake on the UAV in flying mode may be
destabilizing. Efforts to model such effects are numerous [57,58]. Also, the need for real time
measurements of wind speed may not always be justified, but this again fits with the use of UAVs,
and this is perhaps less appealing for on-board turbine instrumentation [59]. The advantage of
using UAVs for sensing wind speed may be in their versatility to approach different areas of the
park at different altitudes and at different moments in time, while still having relatively less costs
when compared to on-board instrumentation. The problem of in flight stability has been addressed in
manifold applications of UAV and it is considered a rather mature control problem and is beyond the
objective of this paper. By contrast, the use of UAVs can be eliminated, at the cost of determining via
measurements the wind speed, direction and other useful features for maximizing throughput of the
windmill park. In this study we have particularly chosen the use of UAVs, motivated by the manifold
applications and versatility of their use in limited environments.

The use of the simplified model for wind turbine and the simplified wind farm scheme have the
advantage of allowing the simulations to convey information on the methodology of optimization
and control, while keeping to a minimum the effects of difficult dynamics from the system itself.
The disadvantage is that the analysis is limited to a concept, an incentive for further development, and
does not claim to be a comprehensive feasibility study of the wide area control system at hand.

It is not yet clear whether the increase in output power with maximizing global power extraction
from the park is actually more productive than the MOOP optimization scheme. In fact, they have to
be analysed in the perspective of their maintenance costs, which as indicated, are higher for the global
optimization case than in MOOP. The relatively lower power extraction of the MOOP case may be well
justified in long-term economic investigation.

From the simulations we performed, it appears that under constant wind speed conditions,
there is no significant difference among the two strategies. This is somewhat expected, as the variability
among the sub-systems remains similar for uniform distributions of wind energy in time. As the
area-based dynamics are simplified to common dynamics, there is no source of inter-system variability
propagated throughout the park. By contrast, variable speed conditions will induce different cost
function convergences, as the data used for optimization contains persistent excitation and different
weights affect the cost function optimizer. In this case, we observe significant differences among the
two strategies.

There are manifold opportunities for control-related items to be further investigated. Moreover,
the following questions may be applicable to any wide-area control system.
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For instance, how would comparing the global optimization of maximizing output power against
a MOOP with a short-term cost function and a long-term cost function? Whereas by long-term
cost function, one could use an economic cost of maintenance over several months, and impact on
environment cost over several years.

Would it still be interesting/appealing to use the maximizing power strategy?
Or, perhaps, a better solution could be that such a strategy could be used alternatively with the

MOOP short–long-term cost objectives?
These are merely a shortlisted enumeration of possible research directions. As mentioned in [10],

we are witnessing a transition to a new infrastructure in a manifold of power system networks, creating
a shift in energy supply from a centralized to a distributed network of energy supply and demand.
Such changes are visible in other than the power sector as well. Climate changes and stringent
environmental regulations affect the evaluations of cost-driven investments and this is visible in
long-term rather than short-term criteria. The concept and incentive study presented in this paper
suggest that operators are well motivated to be inclined to explore new control methods that go far
beyond current system management.

5. Conclusions

This paper introduces an incentive for wide-area control systems, with a conceptual study for
optimization of output power as a function of short-term and long-term impact objectives. A relevant
windmill park case study is presented, in which the initial simulations indicate opportunities and
challenges for both control and economic driven studies.
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Abstract: Gas turbine converts chemical energy into mechanical energy and provide energy for
aircraft, ships, etc. The performance diagnosis of rotating components of gas turbine are essential in
terms of the high failure rate of these parts. A problem that the sudden changing of operation state of
turbines may lead to the misdiagnosis due to the defect of gas turbine’s model. This paper constructs
the strong tracking filter based on the unscented Kalman filter to achieve accurate estimation of
gas turbine’s measured parameters when the state changes suddenly. In the strong tracking filter,
a parameter optimization method based on the residual similarity of measured parameters is proposed.
Next, adopt the measured parameters filtered by the strong tracking filter to construct the health
parameters estimation algorithm based on the particle filter. The particle weight is optimized by
the mean adjustment method. Performance diagnosis is realized by checking the changes of health
parameters output by particle filter. The results show that the proposed method improves the accuracy
of performance diagnosis obviously.

Keywords: Unscented Kalman Filter; particle filter; weight optimization; hybrid filter; gas turbine

1. Introduction

Performance diagnosis is essential to realize the health management of gas turbine, and is
absolutely necessary to the concept of on-condition maintenance which is an advanced maintenance
idea of gas turbine. There are many ways to achieve the performance diagnosis, the method based on
wear particle morphology analysis in lubricating oil, the method based on vibration signal analysis,
and the method based on electrostatic signal analysis at the outlet of nozzle [1–10]. Borguet Sebastien
and Leonard Olivier combine two diagnostic tools to improve the diagnosis accuracy of gas turbine.
One tool is the principal component analysis (PCA) which is used to isolate the components fault,
and another one is the Kalman filter in order to realize on-line evaluation of health condition of gas
turbine [11]. Lu Feng, Ju Hongfei, and Huang Jinquan propose a nonlinear state estimation algorithm
based on the extended Kalman filter. The transformation matrix is used to calculate estimation errors
and construct the underdetermined extended Kalman filter [12]. Vanini Sadough put forward multiple
dynamic neural networks to learn the different conditions of gas turbine. For each network, residuals
between the outputs of network and the measured values are calculated. Furthermore, the thresholds of
residuals are obtained, and performance diagnosis can be achieved by comparing the size of residuals
and their thresholds [13]. Chen Libo and Song Lanqi propose a hybrid technique which composed of
spectrometric oil analysis and auto debris classifier to enhance the diagnosis accuracy of wear fault.
The Dempster-Shafer evidence theory is adopted to detect the fault [14]. Huang Qiang, Zhang Guigang,
and Zhang Ting optimized the parameters of support vector machine by the genetic algorithm and
simulated annealing method. A performance diagnosis approach of aero engine gas path is proposed
by the advanced support vector machine [15]. Verma Rajeev, Roy Niranjan, and Ganguli Ranjan
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developed a fuzzy system based on a linear model to detect the failure of gas turbine [16]. Bachir, A
and Hafaifa, A introduce a way to monitor the working condition of gas turbine based on the vibration
signal analysis with respect to the principle of principal component analysis [17]. Yang Liu, Ding
Shuiting, and Wang Ziyao propose a risk assessment method to evaluate the health status of aeroengine
based on probability density evolution, and validate the effectiveness of this method by compare it
with the Monte Carlo simulation method [18]. Zeng Li, Long Wei, and Li Yanyan suggest an approach
based on the kernel principal component analysis to detect the fault and locate the failure by analyze
the influence of fault to gas path components [19]. All the methods mentioned above must obtain
the measured values of sensors and it is a consensus that the measurements contain many noise
signals. However, these methods do not treat the noise signals before construct the fault detection
algorithm, and it is probably lead to misdiagnosis. Furthermore, a defect exists in those methods which
based on the physical model of gas turbine is that the modeling errors may lead to the performance
diagnosis distortion.

To remove the noise in the measured parameters of airborne sensors and realize the performance
diagnosis exactly, Wang Lei, Liu Zhiwen, and Miao Qiang proposed use ensemble local mean
decomposition and fast kurtogram decompose the raw signal into the production functions to
characterize the fault information. Then the optimal band-pass filter to filter the selected production
functions and the impulse signal are obtained. By analyzing the fault characteristic frequencies, fault
identification can be realized [20]. Zhang Yongxiang and Randall R.B proposed fast kurtogram and
genetic algorithm to diagnose the failure of rolling element bearing. The initial parameters can be
given by fast kurtogram and the optimized parameters with minimal constraint can be obtained [21].
Pham Hongthom and Yang Bo-suk adopt the linear ARMA model and nonlinear GARCH model to
describe the fault of machine. The hybrid model can predict the future state of machine with high
accuracy and give obvious explanation of the state [22].

In this paper, a novelty hybrid filter which composed of strong tracking filter based on unscented
Kalman filter and particle filter with weight optimized is proposed to diagnose the performance
variance of gas turbine. Firstly, construct a strong tracking filter based on the unscented Kalman filter
by constraining the measurement residuals of current and last sampling time to be orthogonal. The
calculation process of the scale factor is optimized by the residual similarity of measured parameters.
The strong tracking filter is used to filter the noise signals contained in measurements. Next, the
particle filter is used to estimate the health parameters of gas turbine. The health parameters consist of
the efficiency coefficients and flow coefficients of rotating components. The outputs of strong tracking
filter are the input parameters of particle filter. The problem that the distortion of estimated values of
health parameter is resolved and the drawback of weight degradation of particle is overcome.

2. Materials and Methods

2.1. Fault Diagnosis Algorithm of Gas Turbine Based on Hybrid Filter

Compare with other component of gas turbine, the performance degradation rate of gas path
components is higher. In order to reflect the health status of gas path components accurately, the
health parameters include the efficiency coefficients and flow coefficients of turbines can be used to
indicate the performance changes of gas turbine [23–25]. Performance diagnosis can be realized by
estimating the values of health parameters. The strong tracking filter is constructed to eliminate the
noise contained in measured parameters based on unscented Kalman filter. The particle filter is used to
estimate the values of health parameters of gas turbine. To solve the problems of weight degradation
and degradation of diversity exist in the particle filter, a weight optimization method is proposed. The
principle of hybrid filter is shown in Figure 1.
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Figure 1. Principle of hybrid filter.

The two-spool turbojet is adopted as the research object. The low-pressure compressor, high-
pressure compressor, low-pressure turbine, high-pressure turbine are the principal components of
two-spool turbojet. The low-pressure compressor and the low-pressure turbine are connected by the
low-pressure rotor. The high-pressure compressor and the high-pressure turbine are connected by
the high-pressure rotor. Air enters the engine from Section 0 and compressed by the compressors.
Next, compressed air mixed with fuel in the burning room and combusts. The high temperature gas at
the exit of the burning room expands and drives the turbines to rotate. Some gas is ejected from the
nozzle to generate thrust. Due to the turbines and compressors are connected by rigid rotors, turbines
transmit torque to compressors to drive compressors to rotate, and pressurize the air. The structure of
the two-spool turbojet is shown in Figure 2.

Figure 2. Principal components of two-spool turbo jet.

Measurements include the following contents:

Tt25 Total temperature at the outlet of LPC Tt3 Total temperature at the outlet of HPC
Tt45 Total temperature at the outlet of LPT Tt5 Total temperature at the outlet of HPT
Pt25 Total pressure at the outlet of LPC Pt3 Total pressure at the outlet of HPC
Pt45 Total pressure at the outlet of LPT Pt5 Total pressure at the outlet of HPT

There are:

Low Pressure Compressor (LPC) High Pressure Compressor (HPC)
Low Pressure Turbine (LPT) High Pressure Turbine (HPT)
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2.2. Problem in the UKF

In order to ensure the good accuracy of the output parameters of unscented Kalman filter, a model
that can reflect the real working state of the monitored target must be established. In the condition
monitoring of two-spool turbojet based on the unscented Kalman filter, the Component-level Gas
Path Model (CGPM) is usually used to predict the values of health parameters [26–32]. The health
parameters are the indicators of the health status of turbojet and can be used to illustrate the flowing
ability and working efficiency. The CGPM is essentially a series of physical equations based on the
principle of aerothermodynamics. By the operation of CGPM, the health parameters (flow coefficients
and efficiency coefficient of gas path components) and the measured parameters (total temperature and
total pressure of gas path components) can be calculated. The structure of CGPM is shown in Figure 3.

 
Figure 3. Structure of Component-level Gas Path Model.

The Component-level Gas Path Model of two-spool turbojet can be described as follows [1]:

Mk+1 = f (Mk, Ck+1) + vk (1)

Yk+1 = g(Mk+1, Ck+1) + wk+1 (2)

In Formulas (1) and (2), k represents the kth sampling time. Mk is the state parameters vector.
Furthermore, all of these parameters are the estimated objects. Ck+1 is the control variable. There are:

Mk = [ηLPC, FLPC, ηHPC, FHPC, ηHPT, FHPT, ηLPT, FLPT, ] Ck+1 = F f uel

η and F are the efficiencies and flow coefficients of different components, respectively, include the
low-pressure compressor, high pressure compressor, low pressure turbine, and high pressure turbine.
Ck+1 is the flow of fuel. vk and wk are the state transmission noise and measurement transmission
noise. f represents the process of predicting the health parameters based on the Component-level Gas
Path Model. Mk+1 is the vector of health parameter. The value of Mk+1 is determined by Ck+1 and Mk.
Thus, the calculation of f can be realized by the health parameters calculation module, as shown in
Figure 3. The content of g is similar with that of f . g represents the process of predicting the measured
parameters based on the Component-level Gas Path Model. Yk+1 is the vector of measured parameters
at the k + 1th sampling time. By the operation of measured parameters calculation module, function g
can be.
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The working state transformation of turbojet is a continuous process, the Component-level Gas
Path Model can not accurately reflect all the working state. If the working state of turbojet changes
suddenly, the output measured parameters of CGPM deviate greatly from those of the turbojet due to
the defect of CGPM. Consequently, the estimations of UKF may be distorted. This circumstance can be
illustrated by Figure 4.

Figure 4. Estimations of Tt25 by UKF.

In Figure 4, the values of Tt25 are estimated by the unscented Kalman filter based on the
Component-level Gas Path Model. The working state of the turbojet changed abruptly after working
for an hour, and the measured parameters include Tt25 changed widely in short time. However, due to
the defect of Component-level Gas Path Model, the estimations of unscented Kalman filter are not
consistent with the true values of measurements, as shown in Figure 4.

2.3. Resolution

To overcome above drawback, a strong tracking filter based on the UKF is proposed. The strong
tracking filter (STF) satisfies following condition [33–35]:

E(εk · εT
k+i) ≈ 0 where εk = Yk − yk (3)

εk and εk+i are the residuals of measurements and outputs of model at the kth and (k + i)th
sampling times. Yk and yk are the measurements and outputs of model, respectively. Equation (3)
means that the residuals of measurements and outputs of model is orthogonal if the UKF is working
normally. When the working state of the engine changes abruptly, the residuals are not orthogonal
anymore. Paper design STF to adjust the variance ratio of measurements at different times to force the
residuals keep orthogonal so that the accuracy of estimated parameters remains high. The steps of STF
are as follows:

Samples collection and weight calculation.

X0 = x, W0 = υ/(υ+ n) i = 0

Xi = x +
√
(υ+ n)Pxx Wi = 1/(2(υ+ n)), i = 1, 2, . . . , n

Xi = x−
√
(υ+ n)Pxx Wi = 1/(2(υ+ n)), i = n + 1, n + 2, . . . , 2n
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Xi are the estimated objects (state variable) which consist of Tt25, Tt3, Tt45, Tt5, Pt25, Pt3,Pt45,
and Pt5. x denotes the mean vector of the estimated objects. W is the weight of estimated object. υ is
the parameter to reduce prediction error. n is the number of estimated objects and there is n = 8. Pxx is
the covariance matrix of the estimated objects.

State variable calculation based on model.

Xi
k+1 = f (Xk, Ck+1) + vk (4)

Xk+1 =
10∑

i=1

Wm
i Xi

k+1 (5)

PX,k+1 =
10∑

i=1

Wc
i (X

i
k+1 −Xk+1)(Xi

k+1 −Xk+1)
T (6)

Yi
k+1 = g(Xk+1, Ck+1) + wk+1 (7)

Yk+1 =
10∑

i=1

Wm
i Yi

k+1 (8)

PY,k+1 = Fk+1 ∗
10∑

i=1

Wc
i (Y

i
k+1 −Yk+1)(Yi

k+1 −Yk+1)
T (9)

PXY,k+1 =
10∑

i=1

Wc
i (X

i
k+1 −Xk+1)(Yi

k+1 −Yk+1)
T (10)

Kk+1 = PXY,k+1p−1
Y,k+1 (11)

Xk+1 = X + Kk+1(yk+1 −Yk+1) (12)

Pk+1 = PX,k+1 −Kk+1PY,k+1K−1
k+1 (13)

State variable is calculated by Equation (4). Ck+1 is the value of fuel flow. Xk+1 and Xk are the
estimated variables (state variable) at the K + 1th and Kth sampling time. Xk+1 is the mean vector of
estimated variables and PX,k+1 is the covariance matrix. Yi

k+1 and Yk+1 are the estimated values and
the mean value of measurements respectively. PXY is the covariance matrix of X and Y. PY and PX

are the variances of Y and X, respectively. yk+1 is the measurement vector obtained by sensors. Kk+1
is the Kalman gain. vk and wk are the state transmission noise and measurement transmission noise.
vk ∈ N(0, 0.0022), wk ∈ N(0, 0.0022).

The need to pay attention is that Fk+1 is fading factor vector. There is Fk+1 = diag( f1, f2, . . . , f8).
fi denotes the fading factor. By regulating the proportion of fading factors, the residual of measurements
at the current and last sampling time can be kept orthogonal. The emphasis of STF is to calculate the
value of Fk+1. For Fk+1, set each fading factor as:

fi = a ∗ pi, i = 1, 2, 3, . . . , 8 (14)

a is the common parameter and pi is the ratio parameter. The ratio value of fading factors can be
determined by experience, there is:

f1 : f2 : f3 : . . . : f8 = p1 : p2 : p3 : . . . : p8 (15)

Obviously, fi can be calculated if a is obtained. Equation (3) can be transformed as:

E(εkεk+i) ≈ PXY,k −KkCk = 0 (16)
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Ck is the residual covariance matrix of measurements. The condition to satisfies Equation (16)
is that:

I − P−1
Y,kCk = 0 (17)

There is:

Ck = Fk
10∑

i=1
Wc

i (Y
i
k −Yk)(Yi

k −Yk)
T
+ Qk

= a ∗ diag(p1, p2, . . . , p8) ∗
16∑

i=0
Wc

i (Y
i
k −Yk)(Yi

k −Yk)
T
+ Qk

(18)

Qk is the noise statistical matrix of measurements. Compute the trace of Equation (18), and the
expression of a can be obtained.

a =
tr(Ck −Qk)

tr(diag(p1, p2, . . . , p8)
∑16

i=0(Y
i
k −Yk)(Yi

k −Yk)
T
)

(19)

Ck =

⎧⎪⎪⎨⎪⎪⎩ ε0εT
0 k = 0

σCk−1 + εkε
T
k

1+σ k ≥ 1
(20)

σ named scale factor is used to adjust the ratio of residual covariance matrix at the k− 1th sampling
time. The greater the value of σ, the greater the proportion of Ck−1. Otherwise, the greater the
proportion of εkε

T
k . Usually, the value of σ is determined by experience, and there is a drawback that

unreasonable value of σmay lead to the distortion of Ck. Paper proposes a method to obtain σ. The
steps are as follows:

(1) Construct a variance vector ψk−1 which consist of the diagonal elements of Ck−1. Furthermore,
obtain the residual vector ζk which consist of diagonal elements of εkε

T
k .

(2) Similarity calculation between ζk and ψk−1.

sk =
〈ζk,ψk−1〉

(|ζk| ∗ |ψk−1|) (21)

sk is the cosine value between ζk and ψk−1, and sk ∈ [−1, 1]. Considering the Equation (20),
coefficients of Ck−1 and εkε

T
k are σ

1+σ and 1
1+σ respectively. Obviously, the sum of σ

1+σ and 1
1+σ is 1.

Set the angle between ψk−1 and ζk as θ, there is:

cosθ = sk

sin2 θ = 1− s2
k

Replace the original coefficients of Ck−1 and εkε
T
k with sk and 1 − sk. Equation (20) can be

transformed as:

Ck =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε0εT

0 , k = 0
s2

kCk−1 + (1− s2
k) ∗ εkε

T
k , k > 0, s2

k < 1/2
(1− s2

k)Ck−1 + s2
k ∗ εkε

T
k , k > 0, s2

k > 1/2
(22)

According to the working principle of gas turbine and taking into account that the proportion
of current (the kth sampling time) information should be greater than that of previous sampling
time. Equation (22) ensures that the coefficient of εkε

T
k is greater than that of Ck−1. Estimate Tt25 by

above method.
Compare with Figures 4 and 5 accurately reflects the sudden change of measurements. It shows

the validity of STF proposed by paper, which compensates the model error and enhances the
estimation accuracy.
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Figure 5. Estimations of Tt25 by the strong tracking filter (STF).

2.4. Health Parameters Estimation

Paper adopt particle filter to estimate the health parameters. The measurements filtered by the
STF are used to determine the posterior probability. Weight degradation that may lead to the accuracy
decrease of estimations is a commonly problem exists in the process of particle filter Particle resampling
is a traditional way to solve this problem. By increasing the number of larger-weight particles and
make all particles have the same weight, the weight degradation has been effectively solved. But the
above-mentioned method will lead to another problem, that is, the loss of particle diversity. In order to
coordinate these two issues, paper proposes a weight optimization method in the PF. The core idea of
this method is to adjust the posterior probability density function of health parameters. By properly
increasing the weight of small weight particles and reducing the weight of large weight particles,
the diversity of particles can be kept, and the high accuracy of probability density function can be
ensured. The steps of health parameters estimation algorithm based on weight optimization PF are as
follows [33,34]:

(1) k = 0, particles initialization.

k denotes the sampling time. Set the number of particles is 100. Each particle represents the value
of health parameter. Generate particles {x0

i }100
i=1 according to the importance probability density function

q(x). x consists of health parameters which include the efficiency coefficients of LPC, HPC, HPT, LPT,
and the flow coefficients of LPC, HPC, HPT, and LPT. q(x) is the uniform distribution function.

(2) k = 1,2, 3, . . . . weight update.

Predict the health parameters based on the prior probability distribution function:

xk
i ∝ p(xk

i |xk−1
i )

Above calculation can be realized based on the component-level model of engine. Weight update:

ωk
i ∝ ωk−1

i p(yk
i |xk

i )

y consists of different measurements filtered by STF. There are total temperatures at the outlet of
LPC, HPC, HPT, LPT, and total pressures at the outlet of LPC, HPC, HPT, and LPT.
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Weight optimization. Calculate the mean of weights, there is:

ωk =

∑100
i=1 ω

k
i

100

Adjust the weight of each particle:

ωk
i = ω

k
i − (ωk

i −ωk)R

R is regulator and R ∈ (0, 1). The function of R is to regulate the weight of particles. Normalize
the weights:

ωk
i =

ωk
i∑100

i=1 ω
k
i

(3) Particles resampling:

xk
i ∼ {xk

i ,ωk
i }, i = 1, 2, 3, . . . , 100 ωk

i =
1

100

(4) Optimize the health parameters:

xk =
100∑
i=1

xk
i ∗ωk

i

In order to verify the validity of proposed method, a simulation to detect the failure occurrence
of two-spool turbojet is conducted. By suddenly changing the value of health parameters, failure
occurrence can be simulated [1,13]. According to the research of previous chapters, by estimate the
values of health parameters, failure detect can be realized [13]. The steps to conduct the simulation are
as follows:

1 Generate the measured parameters from a software named Gasturb13 (Gasturb 13 is a simulation
software for gas turbine performance calculation with high accuracy). Add noise w to these
measured parameters. w ∈ N(0, 0.0022), N is the normal probability density function.

2 Establish the Component-level Gas Path Model of turbojet. This model is the detailed expression
of the Equations (1) and (2).

3 Build the module of strong tracking filter according the method introduced in Section 2.3. The
measured parameters including noise are input into the module and output to the particle filter
after being processed by the strong tracking filter.

4 Build the module of particle filer with weight optimization according to the method introduced
in Section 2.4. This module is used to estimate the health parameters.

5 Input the measured parameters to the particle filter and estimate the health parameters. The way
to simulate the failure are listed as follows:

FLPC = Fini − ΔF
ELPC = Eini − ΔE

FLPC and ELPC are the latest values of low-pressure compressor’s flow coefficient and efficiency
coefficient after the failure is simulated. Fini and Eini are the initial values of low-pressure compressor’s
flow coefficients and efficiency coefficient before failure are simulated. ΔF = F̂(T − T f ailure). ΔF named
the failure factor is variation volume of Fini. F̂ denotes the degradation value of flow coefficients during
every sampling time if failure happen. The meaning of ΔE and Ê are similar to that of ΔF and F̂. T and
Tfailure represent current sampling time and failure occurrence time. The design working parameters of
engine are as follows:
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Efficiency of LPC: ELPC = 0.868 Pressure ratio of LPC: πLPC
Efficiency of HPC: EHPC = 0.878 Pressure ratio of HPC: πHPC
Efficiency of high-pressure rotator: EHPR = 0.98 Efficiency of low-pressure rotator: ELPR = 0.98
Efficiency of burning room: EBR = 0.98 Air intake coefficient of cabin: EAI = 0.01
Cooling coefficient of HPT: CHPT = 0.03 Efficiency of HPT: EHPT = 0.89
Cooling coefficient of LPT: CLPT = 0.01 Efficiency of LPT: ELPT = 0.91
Design rotating speed of Low Pressure Rotator: SLPR = 104r/m
Design rotating speed of High Pressure Rotator: SHPR = 1.6 × 104r/m
Total temperature at the outlet of burning room: Tt4 = 1600 K
Heat value of fuel: FHV = 4.29 × 104

Due to limitation of space, the estimation of low-pressure compressor’s flow coefficient and
efficiency coefficient are listed only. The estimation processes of other health parameters of high-pressure
compressor, high-pressure turbine, low-pressure turbine are similar with that of low-pressure pressure.
Assure that 100 measured parameters are collected. When the engine performance degrades slowly,
the efficiency coefficient decreases by 0.6% compared with the initial value, and the flow coefficient
decrease by 0.7%. To simulate the failure, at the 11th sampling time, set the flow coefficient and
efficiency coefficient decreased by 0.3%.

Figure 6 shows the Estimated health parameters of low-pressure compressor based on the
traditional unscented Kalman filter and particle filter. Set there are 100 sampling times. The initial
theoretical values of the efficiency coefficient and the flow coefficient are 0.868 and 0.92, respectively.
During each sampling time, the variation of efficiency coefficient and flow coefficient are 5.2 × 10−6

and 6.4 × 10−6, as shown in Table 1. There are:

Eini − Eend
Eini

= 0.6%

Fini − Fend
Fini

= 0.7%

Eend and Fend are the values of efficiency coefficient and flow coefficient after the performance
degrades slowly. It can be seen that the estimations are close to the theoretical values of health
parameters basically. However, the estimations curve fluctuates greatly, and the accuracy degree of
estimations is not high.

 
Figure 6. Estimated health parameters of low-pressure compressor by the traditional unscented Kalman
filter and particle filter.
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Table 1. Error analysis under the condition of slow degradation of performance based on traditional method.

Estimated Parameters Maximum Error Mean Value of Error Variance

Efficiency coefficient 0.162% 0.118% 5.2 × 10−6

Flow coefficient 0.158% 0.112% 6.4 × 10−6

Figure 7 shows the estimated values of LPC’s flow coefficient and efficiency coefficients when the
working state of two-spool turbojet is steady based on the proposed hybrid filter. Under this working
condition, the variations range of health parameters (flow coefficient and efficiency coefficient of LPC)
are small and slow degradation of performance is happened due to the poor working circumstance of
turbojet. The purple curve consists of the estimated values and black curve consists of the theoretical
values. Obviously, the method proposed in this paper can accurately characterize the change trend of
health parameters. Furthermore, the accuracy of the estimations is also consistent with the theoretical
values of health parameters. The estimations variance of efficiency coefficient and flow coefficient are
2.59 × 10−6 and 4.05 × 10−6 respectively, as shown in Table 2.

 
Figure 7. Estimated health parameters of low-pressure compressor (LPC) by the proposed hybrid filter.

Table 2. Error analysis under the condition of slow degradation of performance based on proposed method.

Estimated Parameters Maximum Error Mean Value of Error Variance

Efficiency coefficient 0.094% 0.076% 2.59 × 10−6

Flow coefficient 0.089% 0.073% 4.05 × 10−6

Figure 8 shows the estimated values of low-pressure compressor’s flow coefficient and efficiency
coefficients based on the method proposed by this paper when the working state of two-spool turbojet
breaks down. At the 11th sampling time, set the efficiency coefficient and flow coefficient have a
sudden change of 0.3%. There are:

Eini − Eend
Eini

= 0.3%

Fini − Fend
Fini

= 0.3%
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Paper simulate the failure by changing the health parameters at the tenth sampling time. Due
to the occurrence of failure, the measured parameters have a sudden change. By the application of
strong tracking filter, the measured parameter can be estimated with high accuracy. According to the
introduction of Section 2.1, the output of strong tracking filter is input to the particle filter. Due to
the high accuracy tracking ability of the STF to the state mutation and the weight optimization of
particle filter, the health parameters are estimated with high accuracy by the particle filter, as shown
in Figure 8. The value of efficiency coefficient reduced from 0.8675 to 0.8649, and the value of flow
coefficient reduced from 0.9196 to 0.9168. From Figure 8, the mutations in health parameters are
accurately reflected on the curve and the occurrence of failure can be detected.

 
Figure 8. Estimated health parameters of low-pressure compressor in sudden change of working state.

3. Conclusions

In this paper, a developed method based on the unscented Kalman filter and particle filter is
proposed. To eliminate the noises contained in measurements which obtained by sensors, UKF
is adopted to dispose these noises. Furthermore, in order to enhance the estimation accuracy of
measurements when the working state of turbojet changes suddenly, a strong tracking filter is
constructed by adjust the variance ratio of measurements at different sampling times based on the
UKF. The output (The measurements filtered by STF) of STF is used to determine the weight of each
particle. According to the simulations conducted by paper, there are three conclusions can be made.

1 The strong tracking filter is used to eliminate the noise contained in measurements and the
accuracy of measured parameters is enhanced when the turbojet performance changes slowly.
Besides, the estimation accuracy remains high when the working state of turbojet changes abruptly
by adjust the variance ratio of measurements.

2 An optimization method for strong tracking filter is proposed. By calculating the similarity
between covariance vectors at different sampling times of measured parameters, the value of
scale factor can be obtained. This calculation method replaces the traditional way of relying
on experience.

3 In particle filter, to ensure the diversity of particles, paper proposes a weight optimization method
to adjust the weights of different particles. The regulation equation is derived according to the
regulator R and the mean of all weights. By above method, the high accuracy of probability
density function can be ensured.
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Abstract: We characterize the long-term development of high-viscosity gas–liquid intermittent flows
by means of a detrended fluctuation analysis (DFA). To this end, the pressures measured at different
locations along an ad hoc experimental flow line are compared. We then analyze the relevant
time-series to determine the evolution of the various kinds of intermittent flow patterns associated
with the mixtures under consideration. Although no pattern transitions are observed in the presence
of high-viscosity mixtures, we show that the dynamical attributes of each kind of intermittence
evolves from one point to another within the transport system. The analysis indicates that the loss of
a long-range correlation between the pressure responses are due to the discharge processes.

Keywords: high-viscosity; two-phase flow; detrended fluctuation analysis; heavy oils

1. Introduction

Today, the transportation of high-viscosity gas–liquid mixtures constitutes an important flow
assurance problem in several oil producing countries. As an example, the production of petroleum in
Mexico has declined over the last two decades, while the heavy and extra-heavy crude oil varieties
account for nearly 60% of the total reserves. Although diverse technologies are available to increase
the productivity (e.g., [1]), their application might not necessarily be possible, or may require to
be tailored to suit the specific needs of each particular case. Therefore, understanding how certain
flow characteristics evolve as the associated mixtures progress inside the pipelines is crucial to the
development of adequate flow enhancement techniques.

Other problems and technical difficulties may arise in the present context. For instance, Matsubara
and Naito [2] previously noted that the traditional flow maps were substantially modified with
high-viscosity gas–liquid flows. The boundary lines separating intermittent flows from other patterns
were drastically changed, such that at low local flow rates (or equivalently, at low local superficial
velocities) the pattern belonged exclusively to the intermittent class. Similar observations were made
more recently by Hernandez et al. [3] in a longer experimental flow loop.

In addition, after investigating the characteristics of the flow patterns produced with relatively
high-viscosity oils and air, Foletti et al. [4] concluded that the agreement with current predictive
models was rather poor. This pointed out to the necessity of conducting further work along these lines.
As a matter of fact, with lower viscosity oils there was room for improvement, as the results reported
by Khaledi et al. [5] clearly indicated.
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Experiments carried out with oils (whose viscosities were in the range ≤10 Pa·s) also showed
substantial differences between the measured data and the predicted values produced by the
existing correlations. In particular, Zhao et al. [6] identified four flow patterns, three of which were
intermittent. The need for improved mechanistic models that could handle such viscosities was
stressed. Similar patterns were caused at still higher viscosities (∼6 Pa·s) in horizontal pipes ([7]).

One relevant quantity affecting the properties of the intermittence is the local liquid holdup.
Al-Safran et al. [8] reported a new empirical correlation that is valid in the range of 0.1–0.58 Pa·s.
In a preceding article, Farsetti et al. [9] studied the frequencies produced by intermittent oil-air flows
with moderate-to-high-viscosities, in addition to other flow parameters. According to the reported
results, the frequency appeared to depend on the liquid holdup. Interestingly, only the estimates
obtained from the ad hoc correlation proposed by Gokcal et al. [10] compared favourably with the data.
The same kind of conclusions were drawn by Okezue [11], who studied high-viscosity oil–gas mixtures
(from 1.1 to 4 Pa·s) over a wide range of flow conditions. More recently, Baba et al. [12] conducted
additional experiments to further characterize the slug frequencies. It is noted that these flow traits
have a definitive influence in the design of field operations, as well as of fluid handling facilities and
equipment (e.g., [12]). A statistical analysis of the measured data was previously applied to this kind of
flows by Losi et al. [13]. Basic flow features such as slug frequencies, lengths and pressure drops, were
discussed in terms of the gas superficial velocities and other parameters. Furthermore, the authors
derived improved correlations based on the probability density functions thus obtained.

In view of the forgoing arguments, our present aim is to highlight some of the key traits of
high-viscosity gas–liquid flows by means of the well established detrended fluctuation analysis (or
DFA). This alternative viewpoint has not been fully exploited in this context, and may provide a robust
description of the properties of the intermittent patterns emerging naturally as the flow evolves.

Even though different methods were applied in the past to investigate low viscosity two-phase
flows, only the work by Zahi et al. [14] concerns the use of DFA (to the best of our knowledge).
As a matter of fact, these authors compared various fractal methods with the DFA. Within the superficial
velocities of the low viscosity phases involved, it was found that the numerical value of the scaling
exponent was lowest for the bubbly flow pattern, while the highest value was attained with the
intermittent slug flow pattern. The former result was attributed to the random dynamics of the
flow, and the latter to the periodicity of the slugging. More importantly, the DFA was shown to
perform better in comparison with other fractal techniques with varying noise levels. Therefore,
Zahi et al. [14] concluded that the DFA based approach can effectively underline the flow pattern
characteristics. The ability of the method to provide information of the transitions was also stressed.

The possibilities and implications of the detrended fluctuation analysis were clearly illustrated
by Peng et al. [15]. Because the DFA is an approach that relies on a simple scalar parameter (the
scaling exponent) to represent the correlation properties of a given signal, it may be applied to extract
useful dynamical information from the pressure time-series obtained at various locations. Moreover,
the DFA permits the detection of long-range correlations embedded in seemingly non-stationary
time-series, while avoiding spurious artifacts related with stationary effects. This technique has been
applied to such diverse fields of interest as DNA, heart rate dynamics, neuron spiking, human gait,
long-time weather records, cloud structure, economical time-series, solid state physics, and even
reservoir characterization (e.g., [16–18]).

2. Experiments

2.1. Test Apparatus

The experiments were conducted in the flow loop shown in Figure 1. This setup was designed to
promote the long-term evolution of the mixture, since the pipe’s length-to-diameter ratio was of order
L/d ∼ 102. The test section was constructed with (schedule 80) steel tubes with an internal diameter
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of 0.0762 m (3 in) and overall length of 54 m. It should be mentioned that a single 3 m section, made of
transparent PVC tube, was fitted 3 m upstream from the discharge point for visualization purposes.

Glycerin was selected as the Newtonian, high-viscosity, liquid phase. Its measured dynamic
viscosity was η = 1.1 Pa·s (1100 cP) at a room temperature of 25 ◦C. The liquid phase was supplied
to the test section by a progressive cavity pump (Seepex Mod. BN35-24). Regardless of the pressure
buildup at its discharge plane, the pump was capable of delivering constant mass flow rates in the
interval [0.0 kg/s, 6.1 kg/s]. The outlet of the test section was connected to a separator tank with an
internal capacity of 1.5 m3. The pressure in its interior was kept constant.

Figure 1. Test apparatus. The main elements of the flow loop are: (a) the pumping subsystem, (b) the
pressurized gas subsystem, (c) the flow loop, (d) the inlet flow measuring equipment, and (e) the
separator and storage tanks. The flow loop consisted of a 54 m long pipe, along which the pressure
transducers, thermocouples, and tomographic systems, were installed.

On the other hand, a twin-scroll Kaeser Aircenter SK.2 compressor supplied a constant mass of
dry air (at room temperature) for the pressures within the interval [0.0 Pa, 1.6× 106 Pa]. The mass flow
rate was finely tuned with a regulator and globe valves to produce a choked condition at the injection
port. The mixture was produced at the 3-way connection tube shown in Figure 1.

Both mass flow rates were measured at the inlet with Endress-Hauser Coriolis meters.
The Promass 83F80 DN80 3” model used with the glycerine had an accuracy of 0.1% across the
entire measuring range. Similarly, the Promass 83F50 DN50 2” model used with the air had an
accuracy of 0.05% across the entire measuring range. Also, all the pressures were measured with an
array of conventional MEAS U5300 transducers with a resolution of 0.1% across their measuring ranges.
The two measuring intervals selected for these instruments were [0.0 Pa, 1.03× 105 Pa], and [0.0 Pa,
3.45× 105 Pa]. Table 1 summarizes the reference values of the fluid properties.

Table 1. Fluid properties at standard conditions (i.e., @ P = 1.013× 105 Pa, T = 25 ◦C).

Fluid
Viscosity Density Interfacial Tension

(Pa·s) (kg/m3) (N/m)

Air 1.8×10−5 1.2 -

Glycerine 1.1 1.2× 103 6.3 × 10−2
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Impedance computed tomography scans (or ICT scans) provided snapshots of the internal flow
configuration. The tomograms were produced with the International Tomography Systems (ITS)
ERT and ECT instruments. Each tomogram is constituted by snapshots taken at a sampling rate of
30 frames per second in two separate measuring planes. Then, the computerized system reconstructs
the flow structure from the collected images. Although the ECT-ERT systems also yields an accurate
measurement of the holdup within the measuring planes, the corresponding times series are similar to
those of the pressure. These measurements will be discussed in a future paper.

2.2. Methodology

The experiments were produced in accordance with the inlet mass flow rates indicated in Table 2.
In total, 15 different combination pairs (qg, ql) were considered, and 10 experiments were conducted
for each one of them.

Table 2. Experimental matrix. Mass flow rates of the liquid (ql) and the gas (qg) phases injected into
the test section.

qg ql
(kg/s) (kg/s)

1.3
0.005 2.5
0.01 3.7
0.015 4.9

6.1

Every experiment conformed to the following procedure: first, a steady state, single phase flow
of glycerin was produced at a given flow rate. Owing to the elevated viscosity, the upper bound on
the Reynolds number (Rel = (ρud/η)l ∼ 102) implied that the Poiseuille velocity profile developed
fully in just under 20 pipe diameters. The steady state condition was then verified by making sure that
Δp/Δt ≈ 0 in all pressure transducers. Once this condition was reached, a specific mass flow rate of
air was injected (see Table 2). Because Rel/Reg ∼ 10−2–10−4, the head loss was essentially determined
by the liquid phase; accordingly, the two-phase (or mixture) Reynolds number was simply ReTP ∼ Rel .
Even though the two-phase flow developed rather quickly, the system was nevertheless allowed to
settle for at least 2 minutes before taking any kind of measurement. At this point the flow properties
were measured and collected by the data acquisition system.

In order to remove any external influence that might affect the measurements, only the differential
pressures were used to determine the pressure gradients of interest. The measuring ports were located
at 0, 18, 22, and 43 m, downstream from the inlet. These ports are labeled with P1, P2, P3 and P4,
respectively, in Figure 1.

The experiments were conducted at an average ambient temperature of 25 ◦C, as measured inside
the laboratory. In order to verify that the temperature of the fluids in the flow loop did not vary as the
experiments were conducted, two Type K thermocouples were installed at the inlet and outlet sections.
It is worth mentioning that no temperature fluctuations were observed within their resolution limit
(0.5 ◦C across the measuring range). Nevertheless, the mixture’s viscosity was checked for each test
by taking samples (from the previously indicated locations) and by measuring their viscosities with
a Brookfield DV2T viscometer.

Following Kline-McClintok’s method to determine the experimental uncertainties, it was readily
verified that the pressure time-series were measured with an uncertainty of ±10% with a confidence
level of 95% ([19,20]). It is worth mentioning that this uncertainty is well within the normally
accepted range in most multiphase flow contexts (e.g., [21–23]). Accordingly, at least 3 experiments
were conducted for each entry of the experimental matrix (i.e., for every (qg, ql) combination).
Around 900 samples were gathered for the measured variables per test. The universal set contained
nearly 750,000 data points comprising the simultaneous measurement of mass flow rates, pressures and
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temperatures. In general terms, it was observed that the statistical distribution of the data points
conformed to Student’s t-distribution with a 95% confidence level.

3. Results and Discussion

The set of electric impedance tomograms shown in Figure 2 portray the internal phase distribution
for three different flow regimes (in correspondence with the low, intermediate and high liquid flow
rates). Each image constitutes a snapshots of the actual structure by the two phases as they traverse
the measuring device.

(a)

(b)

(c)

Figure 2. Intermittent flow patterns corresponding to the experimental matrix given in Table 2.
From top to bottom, image (a) shows the flow structure for qg > ql , while (b) shows it for qg ∼ ql ,
and (c) for qg < ql .

Respectively, image (a) illustrates the classical structure of an elongated bubble pattern resulting
when the relatively low liquid flow rate, ql = 1.3 kg/s, is introduced in the pipe. By increasing ql to
3.7 kg/s the bubbles become shorter. This leads, in turn, to an augmented frequency. Similarly,
by further rising the liquid flow rate to ql = 6.1 kg/s the number of smaller bubbles and the
corresponding frequency increase considerably.

3.1. Pressure Response

The present analysis focuses on the pressure signals alone, because the corresponding time-series
encode information of every effect related with the flow. This approach proves to be convenient in field
applications ([24,25]). For illustration purposes, Figure 3 shows a typical set of pressure measurements
obtained at the U-turn section. The curves are deliberately plotted with different scales, in order to
highlight their distinctive characteristics for all the flow rate combinations given in Table 2.

Clearly, to every combination (qg, ql) corresponds a particular fluctuation pattern. From left
to right the fist image shows how, with low liquid flow rates, the resulting fluctuations tend to be
relatively large with respect to the average pressure. The converse is true when more liquid is pumped
into the system because the mean pressure increases substantially. In general terms, these non-periodic
amplitudes become quite important as they account for significant over-pressures inside the pipe.
Obvious external manifestations of such dynamical effects may include vibrations, as well as a very
noticeable recoil of the pipe during the ejection of the liquid slugs.

In contrast to the preceding behavior, the fluctuation amplitudes seem to be about the same order
of magnitude when the gas mass flow rates increase. However, the resulting frequencies appear to
increase with qg. One may also notice that the intermittence tends to become more regular. This is
easily explained in view of the fact that: (a) many more bubbles are formed, and (b) these tend to be
better distributed throughout the entire length of the pipe. This latter effect is purely conditioned by
the elevated viscosity of the liquid phase.
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Interestingly, as will be shown, these broad conclusions may not be directly extended to other
regions of the flow system. Instead of analyzing the time-series in those regions, the data is subjected to
the Detrended Fluctuation Analysis. In preparation for that, Figures 4–6 depict the pressure differences
near the inlet, at the mid-section and near the outlet of the pipe. No information has been lost to
this process, because the data has not been filtered. These ΔP are calculated at the locations specified
previously, while the flow rate combinations are the same in all figures.

Figure 3. Characteristic fluctuations of the pressure drop across the measuring ports P2 − P3 (between
18 m and 22 m). These time-series give a clear indication of the dynamical complexity of the flow.

Figure 4. Time series for the pressure difference P1 − P2. These pressure differences are calculated as
part of the FDA analysis and show the relative size of the fluctuations as a function of qg and ql .
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Figure 5. Time series for the pressure difference P2 − P3. These pressure differences are calculated as
part of the FDA analysis and show the relative size of the fluctuations as a function of qg and ql .

Figure 6. Time series for the pressure difference P3 − P4. These pressure differences are calculated as
part of the FDA analysis and show the relative size of the fluctuations as a function of qg and ql .

3.2. Spectral Evolution of the Flow

In order to extract useful information from the pressure time-series, it proves convenient to first
analyze the signals in the frequency domain. Since the primary interest of the analysis concerns
the pressure fluctuations, the mean pressure is subtracted from the time-series. The set of images
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in Figures 7–9 show the spectrograms for the flow rates given in the experimental matrix (Table 2).
Note that the three sets correspond to the three different locations along the pipe. Again, the columns
represent ql and the rows qg (their values are given in each snapshot).

These plots provide information about the frequency bandwidths that are excited at specific
times for different inlet flow rates (qg, ql). Moreover, since the three sets correspond to the three
specified locations along the tube, they also convey important information on the evolution of the
intermittence. The color scale indicates the amplitude of the excited modes in a given frequency
neighbourhood. Thus, for example, in the upper left image of Figure 7 one may observe that modes
with frequencies in the interval (0.02 Hz ≤ f ≤ 0.07 Hz) are excited from 60 s to 120 s. This relatively
long time spans most of the experiment. Notice that a strong peak, centered at 0.05 Hz, is produced at
approximately t = 80 s after the experiment is initiated. In contrast, for (qg, ql) = (0.005 kg/s, 3.7 kg/s)
and (qg, ql) = 0.005 kg/s, 6.1 kg/s) only a very narrow, low-frequency band is excited towards the
end of the experiment (t ≈ 140 s).

One may conclude that, in a broad sense, the periodic fluctuations appear as high intensity
(red) spots in the spectrograms. Conversely, noisy flow fields are represented by a rather diffuse,
low intensity, distribution of interconnected bands with a color scheme much closer to the blue.
Nevertheless, the abundance of spectral realizations induced by most (qg, ql) combinations is clearly
exemplified by the amount of modes excited in distinct bandwidths, and at different times. For the sake
of comparison consider the images corresponding to (qg, ql) = (0.015 kg/s, 3.7 kg/s) and (qg, ql) =

(0.015 kg/s, 3.7 kg/s), i.e., two neighbouring flow rate combinations of the experimental matrix,
which clearly illustrate the complexity of the fluctuation patterns.

Perhaps the most interesting feature portrayed by these images is the particular space-wise
evolution of the fluctuation patterns. Consider in this case the spectrograms for (qg, ql) = (0.005 kg/s,
1.3 kg/s) in Figures 7–9. What initially constitutes a single, narrow frequency band extending in
time (Figure 7), eventually unfolds into a couple of short frequency bands excited at the same time
(seen as two red spots at 60 s ≤ t ≤ 120 s in Figure 8), plus a wide range of less energetic modes, in
the mid-section of the tube. Finally, on the downstream section of the tube, two similar frequency
bands are excited at two different times (i.e., The two red blobs centered at f ≈ 0.05 Hz now appear at
t ∼ 75 s and t ∼ 125 s in Figure 9). Notice that the less energetic modes have already decayed at this
final stage. Interestingly, other flow combinations seem to be relatively immune to such changes and,
therefore, tend to persist in time.
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3.3. Detrended Fluctuation Analysis (DFA)

The characteristics of the spectral evolution, and consequently of the fow intermittence, may be
better understood in terms of the detrended fluctuation analysis (DFA). The reason is that two-phase
flows exhibit complex self-similar fluctuations over a broad range of space and time scales, much in
the same way as in many physical, biological, physiological and economic systems, where multiple
component feedback interactions play a central role.

Because of the nonlinear mechanisms controlling the underlying interactions, the output signals
of this two-phase flow are typically non-stationary. Furthermore, they are characterized by embedded
trends in heterogeneous segment patches with different (local) statistical properties. In this case,
traditional methods, such as the spectral and the auto-correlation analyses, may not be necessarily
well suited to study this kind of processes. The DFA methodology, in contrast, enables a proper
quantification of long-range correlations with non-stationary, fluctuating signals.

The procedure relies on the profiling of the pressure, P , through an ‘integration’ of the time-series

P(k) =
k

∑
i=1

[p(i)− p], (1)

where p is the mean value of the signal and p(i) is the value of the pressure at time i. First, the initial
data set is divided into equal segments of length n. Then, a linear approximation Pn is computed with
a least squares fit performed over each separate segment. The resulting fit represents the trend in the
given section. Next, the average fluctuation δp(n) of the signal about the trend is determined with

δp(n) =

√√√√ 1
N

N

∑
k=1

[P(k)−Pn(k)]2. (2)

With these elements one may proceed to directly plot log δp(n) as a function of log n. The scaling
exponent α then corresponds to the slope of the least squares, linear regression fit to the data points

δp(n) ∼ nα. (3)

Accordingly,
log δp(n) ∼ α log n, (4)

and the numerical value of the scaling exponent (also known as the fractal scale, autocorrelation
exponent, or self-similarity parameter) is given by

α =
∑
[(

log n− log n
)(

log δp− log δp
)]

∑
(

log n− log n
)2 . (5)

As in previous cases the overline indicates the mean value of the respective quantity. Power law
relationships of the kind represented by Equation (3) suggest the presence of self-similar fluctuations.
Furthermore, depending on the actual value of α, the following cases may be considered:

1. α < 0.5: The fluctuations are anti-correlated.
2. α � 0.5: The fluctuations are uncorrelated and represent 1/ f 0 noise; i.e., white noise.
3. α > 0.5: The fluctuations have positive autocorrelation.
4. α � 1 : The fluctuations represent 1/ f 1 noise; i.e., pink noise.
5. α > 1 : The fluctuations are non-stationary.
6. α � 1.5: The fluctuations represent 1/ f 2 noise; i.e., Brownian noise.
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This DFA analysis scheme produced the results summarized in Table 3 for the experimental data
sets obtained in the laboratory. It is readily seen that the table is divided in three sections, one for each
of the pressure differences p1 − p2, p2 − p3 and p3 − p4 previously discussed. The rows and columns
are in full correspondence with the liquid and gas flow rates of the experimental matrix. All flow rate
combinations are considered.

Table 3. Numerical values of α. These values provide the DFA footprint of the flows generated with
the inlet flow rates given in the experimental matrix (see Table 2).

P1 − P2 P2 − P3 P3 − P4

ql - qg 0.005 0.01 0.015 0.005 0.01 0.015 0.005 0.01 0.015

1.3 0.72 0.43 0.37 0.67 0.27 0.34 0.94 0.52 0.63
2.5 0.84 0.37 0.27 0.79 0.19 0.22 0.99 0.62 0.42
3.7 1.15 0.75 0.45 0.77 0.41 0.24 1.11 0.63 0.33
4.9 1.03 0.88 0.68 0.82 0.46 0.33 1.02 0.97 0.86
6.1 1.18 1.03 0.78 1.04 0.69 0.51 1.08 1.05 0.78

The numerical values acquired by the scaling exponent allows an interpretation of certain aspects
stemming from the long range development of the flow. Thus, with high-viscosity gas–liquid mixtures
we may draw two general observations:

First, it is noticed that the flow in the exit section of the test section is much noisier than in the
inlet section. This effect is caused by the ejection of the irregular liquid slugs at the outlet of the pipe.
Accordingly, in the long-term development of the flow the autocorrelated (α > 0.5) and anti-correlated
(α < 0.5) patterns tend to become noisier (i.e., as white, pink or Brownian noises). This means that the
slugs’ irregularities increase as the flow progresses towards the outlet. In contrast, the U-turn renders
the flow less noisy, possibly due to a regularization effect induced by the secondary flows.

Secondly, in relation with the frames corresponding to (qg, ql) = (0.005 kg/s, 3.7 kg/s) and
(qg, ql) = (0.005 kg/s, 6.1 kg/s) in figs. 8 and 10, one may notice two characteristic time scales: one
corresponds to the flow time scale, while the other to a low frequency mode with a much larger time
scale (easily seen as a small red spot appearing at the bottom of the images at t = 150 s). Nonetheless,
at higher gas flow rates, the flow in the exit section tends to be more regular, because higher modes are
excited (i.e., intense red spots).

For concreteness, however, the flow properties may be described in more detail as follows:

1. The pressure drop exhibits a space-wise evolution. It may be caused by local variations of the
phase volume fractions, which take place as the mixture evolves downstream along the pipe.
For example, consider the flow produced with (qg, ql) = (0.005 kg/s, 1.3 kg/s) (upper most
squares of columns 1, 4 and 7 of the table). The pressures appear to be autocorrelated except at
the downstream section.

In other words, the pressure measured at P1 corresponds to the pressures measured at P2 and
P3, the three being in-phase because α > 0.5 (positive autocorrelation). On the downstream
section, however, the pressure measured at P4 does not correspond to any of the measurements
at P1, P2 or P3. Hence, three possibilities arise: a) the coherence may be lost to the strong effects
induced by the ejection of irregular liquid lumps at the outlet, b) secondary flows at the U-turn
may have a disruptive effect on the properties of the pressure waves, and c) a combination of
the two. The reason for these possibilities is that the U-turn and the outlet are the only two
points in the flow system where the two following effects can take place: secondary flows due
to the centripetal acceleration undergone by the flow inside the U-turn section, and the sudden
depressurization caused by the ejection of the liquid slugs into the separator tank.

2. Apparently, very few flows exhibit white noise characteristics or non-stationary fluctuations.
The former are more related with higher liquid and gas flow rates, while the latter are more
related with low qg and high liquid ql .
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The non-stationary cases represented by α > 1 are interesting, because they indicate that the mean
values of the pressures are varying with time (or equivalently with position). Even though these
variations might be slight, the method is still capable of identifying them. This opens up the prospect
of designing techniques for industrial applications. Obvious examples would be the development of
methods to detect small leakages in pipelines, or to detect slow corrosion processes.

3. It is worth noticing that pink noise processes are mostly observed at the outlet section of the pipe.
In general, the α values of this section appear to show a relative increase with respect to the values of
the inlet section. This suggests that the scaling exponent increases in the direction of the flow.

Since pink noise refers to scalability, the reproduction of self-similar patterns and small scale
traits of the signal would suggest the existence of an energy distribution process (analogous to
the energy cascade in turbulence). However, it is noted that only the cases corresponding to
the inlet flow rates (qg, ql) = (0.005 kg/s, 4.9 kg/s) and (qg, ql) = (0.01 kg/s, 6.1 kg/s) maintain
this behavior. On the other hand, only the flow combination (qg, ql) = (0.005 kg/s, 6.1 kg/s)
seems to correspond to this process in the U-turn. Overall, from the physical point of view,
these characteristics would be mostly related with the ejection effects produced at the outlet of
the pipe.

4. Interestingly, not a single combination of inlet gas–liquid flow rates produced fully random
processes in this kind of flow system. The question still remains whether such Brownian noise
patterns would eventually emerge in a longer pipeline, or not. The same question could be asked
regarding the flow rates.

Anti-correlated flows for which α < 0.5 seem to dominate in the U-turn section of the pipe. This is
particularly true with high flow regimes, that is, those produced with elevated inlet mass flow
rates. Similar anti-correlations are also observed at the inlet and outlet section of the pipe with
high flow rates. These cases indicate that the phases of the pressure waves shift by approximately
π radians, as they progress from one pressure port to the next one.

4. Conclusions

Experiments were carried out with high vicosity mixtures of glycerine and air, in a flow loop with
a length to diameter ratio of l/d ∼ 102. The liquid phase had a viscosity of 1.1 Pa·s.

A detrended fluctuation analysis, or DFA, was applied to the experimental measurements obtained
in this facility. Concretely, the technique was applied to the pressure time-series, under the assumption
that relevant information can be extracted from them in a meaningful manner. It is important to note
that the mentioned experiments are significantly different to those so far reported in the open literature.
Therefore, a longer term development of the flow is possible, and a variety of dynamical effects are
reflected in the spectral content of the registered pressure signals.

The DFA showed that each of the 15 mixture combinations formed by different fractions of air
and glycerin have a unique head loss pattern, which can be expressed by power law expressions.
In principle, this uniqueness can be exploited by pattern recognition algorithms for the identification
of flow regimes, which is an important stage to design separation equipment, slug catchers, gas lift
operations, wellhead gathering systems, and production management.

It was noticed that the frequencies are relatively low as compared with those measured with
low viscosity water-air or nitrogen-water mixtures. The primary factor producing this outcome is the
viscosity of the glycerine.

The DFA analysis enabled the proper identification of various energy states of the flow,
in accordance with the observed behavior of the flow pattern at different locations. The corresponding
states were determined from the variations of the scaling exponent, which was measured at equally
spaced measuring ports on the flow loop.

Author Contributions: All authors contributed equally to this work.

320



Processes 2019, 7, 822

Funding: This investigation was partially funded by CONACYT through the Project No. 4730 (Convocatoria de
Proyectos de Desarrollo Científico para Atender Problemas Nacionales 2017).

Acknowledgments: J.H. and D.F.G. wish to thank CONACYT for the scholarships provided.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

d diameter (m)
f frequency (Hz)
l length (m)
p pressure (kPa)
q flow rate (m3/s)
t time (s)
u velocity (m/s)
x length (m)
P pressure profile (kPa)
α scaling exponent -
δ standard deviation (kPa)
η dynamic viscosity (Pa·s)
ρ density (kg/m3)
Re Reynolds number -
avg average
l liquid
g gas
i, k, n dummy indices
N number of data points
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Abstract: Grid-connected photovoltaic (PV) systems are now a common part of the modern power
network. A recent development in the topology of these systems is the use of transformerless
inverters. Although they are compact, cheap, and efficient, transformerless inverters suffer from
chronic leakage current. Various researches have been directed toward evolving their performance
and diminishing leakage current. This paper introduces the application of a model predictive control
(MPC) algorithm to govern and improve the performance of a grid-tied neutral-point-clamped (NPC)
3-ϕ transformerless inverter powered by a PV panel. The transformerless inverter was linked to
the grid via an inductor/capacitor (LC) filter. The filter elements, as well as the internal impedance
of the grid, were considered in the system model. The discrete model of the proposed system was
determined, and the algorithm of the MPC controller was established. Matlab’s simulations for
the proposed system, controlled by the MPC and the ordinary proportional–integral (PI) current
controller with sinusoidal pulse width modulation (SPWM), were carried out. The simulation results
showed that the MPC controller had the best performance for earth leakage current, total harmonic
distortion (THD), and the grid current spectrum. Also, the efficiency of the system using the MPC
was improved compared to that using a PI current controller with SPW modulation.

Keywords: PV; 3-ϕ transformerless inverter; NPC; boost converter; model predictive control;
maximum power point tracking

1. Introduction

Renewable energy utilization is currently expanding due to global warming awareness and the
predicted depletion of fossil fuels. Many governments across the world encourage and motivate people
by applying incentive rules to use renewable energies. As a result, grid-connected photovoltaic (PV)
systems are now widespread within communities.

Most PV system installations are single-phase installations used for small-scale systems up to
5–6 kW [1]. However, this type of installation has a smooth direct current (DC) input and a pulsating
alternating current (AC) output with a large DC capacitor that decreases the system’s reliability and
lifetime. In contrast, in three-phase systems, the large capacitor is not required, which improves the
system’s reliability and lifetime as it has a constant AC output [2]. The most critical part of the PV
system is the inverter because it works as an interface between the PV system and the utility grid.
Usually, the inverter comes with a transformer to isolate the PV panel system from the grid and to
match the system voltage to that of the grid [2]. In other words, the transformer helps to boost the PV
system’s voltage when needed and reduces the harmonic injection into the grid, thereby improving
the power quality [3]. The transformer may be integrated into grid-connected PV systems using two
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configurations. The first involves a high-frequency transformer connected between the power inverter
and the PV panel, while the second configuration involves a low-frequency transformer between the
power inverter and the grid. These transformers increase the system’s weight, size, and cost. Also,
they decrease efficiency and introduce more complexity to the system. Recently, new and amazing
topologies—called transformerless PV systems—have been introduced [2,3]. Although these topologies
reduce the drawbacks of transformer-based systems, they introduce an earth leakage current problem.
The source of this problem is the absence of galvanic isolation between the PV system and the grid.
Consequently, any potential fluctuations between the PV panels and the ground increase the earth
leakage current. This is unfavorable as it generates losses, destroys the system’s safety, and distorts the
grid current. Research has indicated that fluctuations of the inverter’s common-mode voltage (CMV)
are the origin of the leakage current [4]. Therefore, to decrease the leakage current issues that appear in
transformerless PV systems, it is required to keep the CMV constant.

In the literature, several studies have proposed single-phase transformerless structures to tackle
the problem of leakage current [5–8]. In contrast, research on three-phase transformerless topology is
still limited. There are two approaches in the literature for manipulating the leakage current problem
of three-phase transformerless systems: the inverter modulation technique and the inverter structure
or topology. Several modulation methods and conversion structures have been reported recently. Due
to the high leakage current of conventional pulse width modulation (PWM), whether discontinuous
PWM (DPWM) or space vector PWM (SVPWM), it is not sufficient for three-phase transformerless
PV applications. The authors of Reference [2] presented a remote-state PWM (RSPWM) technique
for a conventional three-phase transformerless PV system to eliminate leakage current. The main
disadvantage of the presented modulation method was that it could only be used for two-level inverters
with a 650 V DC link in the case of a 110 V grid phase. In Reference [3], the authors introduced the
H8 topology with a modulation technique dependent on conventional sinusoidal PWM (SPWM).
However, the high number of power switches increased the system’s losses and reduced efficiency. In
Reference [9], a Z-source inverter (ZSI) topology was implemented by adding a fast recovery diode to
reduce the leakage current using a modified modulation technique. Although the overall efficiency was
increased, the system and controller were complex. Furthermore, a new three-phase transformerless
inverter topology called H7 [10,11] has been introduced to minimize the leakage current with modified
SVPWM. This system provides good results according to the leakage current; however, the efficiency is
slightly reduced. Reduced leakage current was also achieved using a new topology and modulation
strategy called a zero-voltage state rectifier (ZVR), as presented in Reference [12]. However, the
topology suffered from a severe unbalance in the voltages of the capacitors.

Among all topologies of 3-ϕ transformerless inverters, the most recently used is the multilevel
inverter type, especially the neutral-point-clamped (NPC) inverter type [13,14]. This type is vastly
employed in industrial applications. NPC features two characteristics; despite the large number of
switching devices and diodes, NPC is characterized by a low total harmonic distortion (THD) of
output voltage and a low rating of switching devices compared to two-level inverters. The authors in
Reference [15] presented two PWM approaches to decrease the common-mode current (CMC) in a
three-level NPC inverter. These techniques improved the CMV, but they also increased the voltage
ripples and THD. In Reference [16], a multivariable linear quadratic regulator (LQR) was presented for
the comprehensive control of a three-level inverter connected to the grid with an inductor/capacitor
(LC) filter.

Lately, model predictive control (MPC) methods have attracted many researchers to control
power converters [17–26]. MPC is considered a favorable and proper methodology to control power
converters as it has a discrete nature. Additionally, there are many advantages of using MPC, such
as easy comprehension of the concept, fast dynamic response, and a simple control algorithm. Also,
it has the characteristic of dealing with multivariable cases and constrains treatment and dead time
compensation. However, implementation of the MPC algorithm requires many calculations which are
now solvable due to great developments in digital signal processors (DSPs). The MPC technique is
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used to control 3-ϕ transformerless inverters. In Reference [27], a finite control set MPC technique
was applied to remove the leakage current of a T-type transformerless three-level inverter. Moreover,
in Reference [28], a new MPC control scheme for current control of a three-phase NPC inverter was
introduced. Nevertheless, the inverter output filter has not been used in the system model. Usually,
tuned LC filters are used to reduce the grid current harmonics injected by transformerless inverters [29].

This paper introduces an MPC algorithm to control and improve the performance of a grid-tied
NPC 3-ϕ transformerless inverter powered by a PV panel. The transformerless inverter was linked to
the grid via an LC filter. The objectives of this research were to:

• Apply the MPC controller to the proposed system with appropriate consideration of the LC filter
and grid impedance.

• Discuss the effect of the MPC on performance factors, such as the earth leakage current, grid
current THD, and efficiency.

• Compare the performance of the system using the MPC controller with the system that used the
proportional–integral (PI) controller.

The first step in designing the MPC controller was system modeling. The filter elements, as well
as the internal impedance of the grid, were considered in the system model. Then, the discrete-time
model was derived, followed by a description of the MPC algorithm for the proposed system. Finally,
the Matlab platform was used to simulate the proposed system and a performance comparison between
the MPC controller and the ordinary PI with SPWM. The simulation results showed that the MPC
controller had the best performance for earth leakage current, THD, and the grid current spectrum.
Also, the efficiency of the system that used MPC was improved compared to the system that used the
PI current controller with SPW modulation.

The paper is prepared as follows. Section 2 describes the proposed system, while modeling of the
system is presented in Section 3. Section 4 discusses the MPC controller design and whole system
controllers. Section 5 provides a detailed discussion of the simulation results and Section 6 provides
the net conclusions of the paper.

2. System Description

The proposed system is a PV-powered 3-ϕ transformerless inverter linked to the grid. Shown
in Figure 1, the first stage in the system is the PV panel, which is usually linked to a capacitor at its
terminals. The capacitor functions to regulate power and improve PV performance [30]. The PV output
is coupled to a boost converter, which acts as an adjustable load for the PV panels.

The maximum power point tracking (MPPT) operation of the PV can be reached by regulating the
boost converter. Also, the boost converter is capable of stepping up the PV voltage at low insolation
levels. Therefore, it supports extracting low power levels from the PV. The terminals of the boost
converter output represent the DC link, which is attached to the input of the 3-ϕ transformerless
inverter. The 3-ϕ transformerless inverter has NPC topology. An LC filter is set at the inverter output
terminals which are connected to the utility grid. The filter avoids high-frequency ripples and damps
the current dynamics [31]. The model and operation of each part of the system will be explained in the
next paragraphs.
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Figure 1. The proposed photovoltaic (PV)-powered 3-level transformerless inverter connected to the
grid and its controllers.

3. System Modelling

Predictions of the grid current and filter voltage are essential for MPC controller operation.
Modelling the system is the first step in MPC controller design. The following assumptions were used
in the mathematical model of the system:

• Boost converter losses are neglected.
• Voltage drops and leakage currents of all the switching devices are neglected.
• Snubber circuits are neglected.
• The grid internal impedance is taken into consideration.

These assumptions were only used for the mathematical model and were not applied in the
computer simulation. The dynamic model of all the proposed system parts shown in Figure 1 is
explained in the following sections.

3.1. Photovoltaic Panel Model

Figure 2 presents the PV panel model, which consisted of a current source with a parallel diode
and series and parallel resistances. If the parallel resistance was large enough, its current was able to
be neglected in the cell model. The equations of the model are well known in the literature [32].

VpvISC

IpvRs

Rp

Figure 2. Model of the PV panel, where ISC is the panel short circuit current and (Rp, Rs) is the model
parallel and series resistances.
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3.2. Boost Converter Dynamic Model

Figure 3 shows the power circuit of the boost converter. Its input is the PV panel output and the
output feeds the DC link voltage of the 3-level transformerless inverter. Its function was to regulate the
PV power to operate at MPPT conditions. Assuming that the DC link capacitor is large enough, the
dynamic model of the converter is specified by the following equations [33]:

Vpv = Lb
dIpv

dt
, Qb → on (1)

Vpv −VDC = Lb
dIpv

dt
, Qb → o f f (2)

where Lb is the boost converter input inductance and (VDC) is the DC link voltage.

 

Qb

Lb

VDCVpv

Figure 3. The power circuit of the boost converter.

3.3. Three-Level Inverter and Filter Model

The power stage of the NPC 3-level inverter is shown in Figure 4a. It contains 12 Insolated Gate
Bipolar Junction Transistor (IGBTs) and 6 clamp diodes. The DC bus voltage had to be split using two
capacitors, as shown in the figure. It is well known that the NPC 3-level inverter has 27 states, as shown
in Figure 4b. When these states are represented as space vectors, they produce 19 voltage vectors (V1,
. . . .V19). As stated in Reference [15], there are only seven states with zero common-mode voltage,
named (V8, V10, V12, V14, V16, V18, V0). Hence, to limit the CMV of the NPC three-level inverter, the
previous seven switching states were utilized. Consequently, the earth leakage current can be killed.

As shown in Figure 4a, the transformerless NPC inverter was connected to the grid through an
LC filter. The source inductance (lg) was taken into consideration in the model. The grid was assumed
to be an infinite 3-ϕ bus that had constant frequency and voltage amplitude. All 3-ϕ voltages and
currents are expressed as space vectors using:

U = 2/3
(
ua + aub + a2uc

)
(3)

where (ua, ub, and uc) are the 3-ϕ quantities, u is the equivalent space vector, and a = ej(2π/3).
From the circuit’s basic laws, the system dynamic behavior can be expressed by:

L f

dI f

dt
= Vi −Vc (4)

Lg
dIg

dt
= Vc −Vs (5)

C f
dVc
dt

= I f − Ig (6)

where (Lf, Cf) is the filter inductance and capacitance. The filter capacitor voltage vector is Vc, the
inverter voltage vector is Vi, the grid current vector is Ig, and the filter current vector is If.
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(a) 

 

(b) 

B
C

O A

Lf 

Vc

IfVi Ig

Cf

+

-

+

-
Lg

Vs

Figure 4. (a) The power circuit diagram of an NPC 3-ϕ inverter and (b) the inverter space vectors.

3.3.1. State Space Form of the 3-ϕ Transformerless Inverter Model

Equations (4)–(6) can be rewritten in the state space system matrix form:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
I f
Ig
Vc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)
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dX
dt

= AX + BVi + CVs (8)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 −1

L f

0 0 1
Lg

1
C f

−1
C f

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

L f

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
−1
Lg

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

3.3.2. Discrete-Time Prediction of the 3-ϕ Transformerless Inverter Model

Implementation of the MPC algorithm requires prediction of the future values of the controlled
quantities. The prediction process is accomplished using the system discrete model. Usually, this
model is determined by the forward Euler approximation:

dX
dt

=
X(k + 1) −X(k)

Ts
(10)

where Ts is the sampling time. With the help of Equation (10), the state space equation in (8) could be
transformed into discrete as:

X(k + 1) =
.

AX(k) +
.
BVi(k) +

.
CVs(k) (11)

where

w;
.

A = eATs ,
.
B =

∫ Ts

0
eAtBdt,

.
C =

∫ Ts

0
eAtCdt (12)

From these equations, the system variables for the next sample can be predicted. An optimization
process is then adapted to direct the system to the set point. This process will occur using the
cost function.

4. System Controllers

Here, three controllers are introduced to represent the control system for the suggested PV
grid-tied system. The first controller is the MPPT controller that adjusts the PV operating point to
be very close to the MPPT conditions. The MPPT algorithm generates the reference current to a
current-regulated boost converter, which in turn maintains the MPPT conditions. The second controller
is the DC link voltage controller that regulates VDC at a specified value. The third controller is used to
regulate the grid current of the NPC transformerless inverter controller.

4.1. MPPT Controller

For better utilization of the PV systems, extracting maximum power is very important.
Consequently, the operation at the MPPT condition is essential in these systems. Many techniques
have been prepared for MPPT [34,35]. In this work, the incremental conductance MPPT approach was
applied to utilize the maximum permissible PV power. The approach is based on tracking the slope of
the PV power and voltage curve (dPpv/dVpv) until reaching zero, according to [30]:

ΔP
ΔV < 0 on the right o f the MPPT condition at the curve

ΔP
ΔV = 0 at the MPPT condition

ΔP
ΔV > 0 on the li f t o f the MPPT condition at the curve

(13)

The incremental conductance approach produces the reference current to a current-regulated
boost converter, as shown in Figure 5. The reference current is compared to the PV current generating
an error signal that derives the hysteresis controller. In turn, the hysteresis controller produces the
required duty cycle signals for the boost converter transistor.
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+
MPPT 

Algorithm 

I*pv

Ipv 

- Switch  

Pulses  

Vpv 

Hystersis Controller 

Figure 5. Maximum power point tracking (MPPT) controller block diagram.

4.2. DC Link Voltage Controller

This controller regulates the DC link voltage which has an important role in the power transfer and
stability of the whole system. It generates the reference grid’s current value. For stability issues, the
response of this controller must be slower than the inverter controller. Fortunately, the huge capacitor
value at the DC link terminals decelerates the response of the system. As the set value is constant, the
PI controller is adequate. The PI controller parameters are tuned by the Nichehols–Ziegler procedure.

4.3. NPC Inverter Controller Implemented Using the MPC Algorithm

The MPC scheme was based on predicting the future manipulated variables of the model to
improve system performance. MPC schemes with power electronic systems are different since power
electronic systems always use power converters. These converters usually have a limited number of
feasible switching states. In those cases, the procedure depends on selecting the switching state which
makes the system output as close as possible to its respective reference for each sampling period. For
each sampling state, the behavior of the variables can be predicted by using the system model. Then, an
optimization is adapted and applied to ensure selection of the appropriate and optimal switching state.
This optimization is defined as a cost function that will be assessed for every promising switching
state. Then, the optimal and suitable switching state is selected based on the minimization of the cost
function obtained. The control structure of the proposed system is illustrated in Figure 6. The goals of
this controller were to control the grid current vector (Ig) to track its sinusoidal reference and achieve
unity power factor operation for the power supplied to the grid.

Ig

Filter 

PLL 

NPC 
Transformerless 

Inverter 

MPC 
Controller Vs

Vc

12 Switching 

Pulses

3-ϕ Grid

VDC

Ig ref

Figure 6. Model predictive control (MPC) block diagram.

The prediction process relied on the measured variables, which were (Ig(k), Vs(k), Vc(k)). Next,
the prediction of Ig(k + 1) for each effective switching state was obtained using the system model
and measurements. In turn, the prediction assessed the cost function to obtain the control goals.
Afterward, the valid switching state—which provides the minimum cost function—was designated
for the next sampling period. Figure 7 shows a flow chart for the MPC controller of the NPC
transformerless inverter.
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Sample Ig (k), Vc(k), Vs(k)

Calculate Ig(k+1) 

Equation (11) 

Fop=∞

For j=1:7 

Fop=F, jop=j

Calculate F 

Equation (14) 

F<Fop 

j<7 

Apply S(jop) at K+1 sample

Yes 

No 

Yes 

No 

Figure 7. MPC algorithm flowchart.

Cost Function (F)

The cost function is the core of the MPC optimization process. To achieve the MPC goals, F is
chosen to minimize the grid current error. F is defined as the square of grid current error, as given by:

F = (igα − i∗gα)
2 + (igβ − i∗gβ)

2 (14)

where (igα, igβ) are the real and imaginary components of Ig and (i*gα, i*gβ) are the real and imaginary
components of the grid current reference.

5. Simulation Results

The proposed system shown in Figure 1 is simulated using the Matlab/Simulink platform. The
system parameters are listed in Table 1. Typically, the power ratings of three-phase systems are
10–15 kW in the case of rooftop applications. This research used a 10 Kw power rating. Assuming
that the 3-ϕ grid was (230 V, 50 Hz), the typical DC bus voltage VDC for the transformerless inverter
was 650 V [1]. To achieve that value of VDC and output power of 10 Kw, the PV panel structure was
960 series cells × 6 parallel strings. The leakage capacitance (Cearth) between the cells and the grounded
frame was modeled with a simple capacitance. It can have values up to 50–150 nF [36], depending on
the atmospheric conditions and the structure of the panels. However, the value of (Cearth) in simulation
was selected to be 100 nF. The sampling time (Ts) was selected based on the actual time for completing
one control algorithm process. The remaining parameters were selected based on the fact they are
commonly used, in practice, for 3-ϕ inverters. Figure 8 is a comparison of the results of the proposed
NPC transformerless inverter controlled by the MPC controller (Figure 8a) and the PI current controller
with SPW modulation. The 3-ϕ grid currents, with the two controllers, are sinusoidal and in phase
with the grid voltage (unity power factor). The grid current THD with the MPC controller is 1.22%
and with the PI controller is 2.23%. The inverter output line voltages have different waveforms as the
controller action in each case is different. The PV currents for the two controllers are the same, as the
same MPPT controller is used for each case. For earth leakage current, it is very clear that the MPC
controller case is much smaller than the PI controller.
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Table 1. System parameters.

Parameter Value

PV SC current 24.53 A
PV OC voltage 633 V

Cearth 100 nF
VDC 650 V
Cf 2 μF
Lf 3 mH

Utility voltage 230 V
Utility frequency 50 Hz

PWM carrier frequency 10 KHz
DC link capacitor 1000 μF

Ts 35 μs

(a) 

(b) 

Figure 8. Simulation results of the proposed neutral-point-clamped (NPC) transformerless inverter in
terms of grid voltage, grid current, PV current, and earth leakage current with (a) the MPC controller
and (b) the proportional–integral (PI) current controller with sinusoidal pulse width modulation
(SPWM).
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Figure 9 shows the variation of the Root Mean Square (RMS) value of the leakage current
with the insolation level. The leakage current with the MPC case is less than one-third the value
of the PI controller case. In MPC, not all the voltage vectors are used, only those that minimize
leakage currents. The PI controller with SPW modulation utilizes all the voltage vectors. Hence, the
leakage current is smaller in the MPC case. Furthermore, the leakage current drops for the MPC
controller, while remaining nearly constant with the PI controller. This phenomenon is explained in
the following paragraphs.

Figure 9. Variation of the leakage current with the insolation level for the MPC controller and PI current
controller with SPW modulation.

It is well known in the literature that CMV fluctuations are the main cause of leakage current. By
checking the CMV of the two controllers, it was observed that with PI there were small CMV variations
with the insolation variation. The MPC case had moderate CMV variations.

Figure 10 shows the variation of the grid current THD with the insolation level. Comparing the
THD for the two cases shows that THD with MPC produces less than 50% of the value than THD with
the PI controller. This result can be explained by the current-error-minimization process that occurs
when the MPC controller is used.

Figure 10. Variation of the grid current total harmonic distortion (THD) with the insolation level for
the MPC controller and PI current controller with SPW modulation.
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Figure 11 shows the variation of the frequency spectrum of the grid current with the insolation
level. The figure shows that lower order harmonics in the MPC case are less than the lower order
harmonics in the PI controller case. Generally, the value of the harmonics is lowest for MPC cases.
The optimization mechanism in the MPC minimizes THD in the grid current since the cost function
focuses on the error present in the grid current. The PI controller with the SPW modulation does not
possess this optimization. For this reason, the THD is smaller in the MPC case than the other case.

(a) 

(b) 

Figure 11. The spectrum of the grid current for the (a) MPC controller and (b) PI current controller
with SPW modulation (@75%insolation).

Figure 12 presents the response of the output power and maximum power point (MPP) power in
the case of MPC controller (Figure 12a) and the PI current controller with SPW modulation (Figure 12b).
The output power of the two cases tracks the MPP power with a forced steady-state error representing
system losses. The losses in the MPC controller cases are smaller than in the PI controller cases. The
reason for this difference is because a small THD produces harmonic losses. Losses increase with
increasing power levels, which is considered a normal issue since current values increase as power
levels increase.
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(a) 

(b) 

Figure 12. The maximum power point (MPP) power and output power at step insolation variations for
the (a) MPC controller and (b) PI current controller with SPWM.

Figure 13 shows the variation of system efficiency with insolation level for the MPC controller
and PI current controller with SPW modulation. Under all insolation levels, the efficiency of the MPC
controller is higher than that for the PI controller. The proposed system Californian efficiency (η ηc)
has been determined for the two controllers using the following equation [37]:

ηC = 0.05η100% + 0.21η75% + 0.53η50% + 0.12η30% + 0.05η20% + 0.04η10% (15)

The efficiency is 95.62% for the MPC controller case and 94.99% for the PI current controller
case. As the two compared cases use the same hardware, but have a different controller, the inverter
switching pattern and harmonics are different. These differences are because the MPC controller
provides better switching patterns and lower harmonics than other controllers. The higher efficiency is
thought to come from the small switching losses and low harmonic losses from the MPC controller.
Figure 14 provides a line diagram of the major performance factors, including THD, efficiency, and
leakage current. The figure shows great improvement in leakage current reduction.
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Figure 13. Variation of the system efficiency with the insolation level for the MPC controller and PI
current controller with SPW modulation.

Figure 14. Line diagram of the THD, efficiency, and leakage current for the MPC controller and PI
current controller with SPW modulation.

6. Conclusions

This article proposed application of an MPC controller with a PV-powered grid-tied NPC
transformerless inverter. The transformerless inverter was linked with the grid through an LC filter.
The filter elements, as well as the internal impedance of the grid, were taken into consideration in
the system model. The discrete model of the proposed system was determined and the algorithm of
the MPC controller was established. Matlab simulations of the proposed system (controlled by MPC)
and a system that used an ordinary PI current controller with SPW modulation were carried out. The
simulation results showed the following:

(1) The MPC controller had the best performance for all factors of comparison.
(2) The 3-ϕ grid currents, with the two controllers, were sinusoidal and in phase with the grid voltage

(i.e., unity power factor).
(3) The grid current THD with the MPC controller was 1.22% and 2.23% for the PI controller.
(4) The leakage current in the MPC case was less than one-third of the value of the PI controller case.
(5) The efficiency of the system that used the MPC was improved compared to the system that used

the PI current controller with SPW modulation.
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Nomenclatures

CMV Common-mode voltage
CMC Common-mode current
Cearth The leakage capacitance
DPWM Discontinuous PWM
DSP Digital signal processor
F The cost function
Ig The grid current vector
If The filter current vector
Iearth The earth leakage current
ISC The panel short circuit current
(igα, igβ) The real and imaginary components of Ig

(i*gα, i*gβ) The real and imaginary components of the grid current reference
lg The source inductance
Lb The boost converter input inductance
(Lf, Cf) The filter inductance and capacitance.
MPP The maximum power point
MPC Model predictive control.
MPPT Maximum power point tracking
NPC Neutral-point-clamped.
RSPWM Remote-state PWM
(Rp, Rs) The model parallel and series resistances
SPWM Sinusoidal pulse width modulation
SVPWM Space vector pulse width modulation
THD Total harmonic distortion
Ts The sampling time
(ua, ub, and uc ) The 3-ϕ quantities
u The equivalent space vector
(Vpv, Ipv) The PV terminal voltage and current
VDC The DC link voltage
Vc The filter capacitor voltage vector
Vi The inverter voltage vector
ZSI Z-Source Inverter
ZVR Zero-voltage state rectifier
ηχ Californian efficiency
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Abstract: Relay protection equipment is important to ensure the safe and stable operation of power
systems. The risks should be evaluated, which are caused by the failure of relay protection. At present,
the fault data and the fault status monitoring information are used to evaluate the failure risks
of relay protection. However, there is a lack of attention to the information value of monitoring
information in the normal operation condition. In order to comprehensively improve monitoring
information accuracy and reduce, a generalized proportional hazard model (GPHM) is established
to fully exploit the whole monitoring condition information during the whole operation process,
not just the monitoring fault condition data, with the maximum likelihood estimation (MLE) used to
estimate the parameters of the GPHM. For solving the nonlinear equation in the process of parameter
estimations, the adaptive homotopy algorithm is adopted, which could ensure the reversibility
of the Jacobi matrix. Three testing cases have been reviewed, to demonstrate that the adaptive
homotopy algorithm is better than traditional algorithms, such as the Newton homotopy algorithm,
regarding the calculation speed and convergence. Therefore, GPHM could not only reflect the real
time state of the equipment, but also provide a sound theoretical basis for the selection of equipment
maintenance types.

Keywords: relay protection equipment; whole monitoring data; generalized proportional hazard
model (GPHM); adaptive homotopy algorithm; jacobi matrix

1. Introduction

Because a relay protection device can curb the deterioration of a power grid by its fast and correct
action [1], it is always seen as the first line of defense to ensure the safe and stable operation of power
systems. In recent years, there have been frequent blackouts around the world, and most of them
are related to the incorrect action of relay protection. Therefore, evaluation of the reliability of relay
protection is the focus of many scholars, and the relay protection failure rate is one of the indexes to
estimate its reliability [2,3].

At present, the research on the failure rate model is generally based on the time-failure rate model
and equipment state model [4]. The commonly used fault distribution forms for the time-failure rate
model are gamma distribution, Weibull distribution, and exponential distribution [5]. The failure
rate of exponential distribution is constant and it only represents the accidental failure period.
However, the failure rates of most electrical equipment follow the typical curve, namely the bathtub
curve, and the bathtub curve includes the early failure period, the accidental failure period, and the
three stages of loss failure period. Therefore, the exponential distribution generally is not adopted.
By contrast, the Weibull distribution can match the bathtub curve well, so that it has been widely used.
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Nevertheless, the Weibull distribution only pays attention to the effect of equipment running enlistment
age on the failure rate, which ignores the effect of some external factors such as the equipment
maintenance on the equipment failure rate [6]. Accordingly, Weibull distribution has some limitations.
The equipment state model is established based on the current state of the equipment [7], so that it
does not take the effects of man-made maintenance and historical condition on the failure rate into
account, and so it is difficult to predict the future failure rate. Furthermore, there are differences
between countries/power companies. The British EA company and Canada Kinectrics Company
focus on the health state [8,9]. In China, the failure rate model is an exponential function, which
considers the health state as the independent variable [10–12], and from the model, the failure rate
may increase exponentially when the equipment state worsens, and the failure rate is beyond 1,
so that it doesn’t conform to the actual situation. In other words, it is difficult to predict the future
failure rate. Aiming at the shortcoming of the two kinds of failure rate model, a Weibull proportional
hazards model (PHM), which considered the fault diagnosis value of failure time and used maximum
likelihood estimation (MLE) to estimate the model parameters, has been proposed in [13]. In [14],
the proportional covariate model (PCM) was put forward in order to solve the lack of data in the
fault interval. For a repairable system, the proportional intensity model (PIM) were first proposed
by Kumar [15]. Kumar said that the fault rate in a repairable system was affected by many factors,
such as operating environment, equipment materials, history operation, design features, and so on.
However, the PIM always assumed that the covariates were changed only when failure/maintenance
occurred, and maintained constant during the interval of failure/maintenance [16,17]. This assumption
ignored the influence of the concomitant variables on the failure rate during the failure/maintenance
interval. In [18], the PHM was used to estimate the reliability of thin oxide dielectrics, and used the
partial maximum likelihood method to estimate the parameters. In [19], the scholars pointed out
that the environmental factors influencing relay reliability mainly included temperature, humidity,
vibration, and so on. Additionally, the application of Cox-proportional hazards modeling with respect
to the effect of ambient temperature on electromagnetic relays was discussed.

For the above model, ignoring the whole monitoring condition values is the common point.
Therefore, based on the above model, this paper analyzes the influence of variables during the
failure/maintenance interval, and takes the time varying covariates in the failure/maintenance interval
into account, not only the monitoring state value at failure time; then, the generalized proportional
hazards model (GPHM) Weibull is built. In order to get the expressions of fault rate, the parameters
of Weibull distribution are needed to estimate, which involves the solution for nonlinear equations.
At present, there are many the solutions for nonlinear equations, such as the Newton method, the least
square method [20], the Marquardt method [21], and so on. There are also many achievements on the
solution of nonlinear equations, whereas they still have a fatal defect, namely, local convergence [22].
Because the initial value must be close to the exact one, the requirement of the initial value is very
harsh. In the meantime, the calculation is a large amount which brings certain challenges to the
running time and space. Actually, for many nonlinear equations, the initial value is not easy to
set, which brings inconvenience to the solution of nonlinear equations. Fortunately, the homotopy
algorithm has a large convergence range and its requirement on the initial value is not strict, so that it
brings a breakthrough to solve nonlinear equations [23]. Howver, the Jacobi matrix of the homotopy
algorithm must be reversible, otherwise the homotopy algorithm loses its significance [24]. For solving
this problem, the adjusting factor is introduced to construct an adaptive homotopy algorithm to
ensure the non-singularity of the Jacobi matrix in this paper. Then, the nonlinear equation can
be solved. In summary, in order to fully consider the influence of time–varying covariates in the
failure/maintenance interval on the failure rate, the GPHM-Weibull is proposed, which can reflect the
real-time state. MLE is used to estimate parameters of GPHM, and the adaptive homotopy algorithm
is used to solve nonlinear equation, where the piecewise function expression of fault rate is solved.
According to the failure rate, the operation personnel can make the differential operation strategy and
realize the economic, stable operation of the power system.
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Section 2 presents the generalized proportional hazard model. Section 3 describes the adaptive
homotopy algorithm. Section 4 discusses the estimation of Weibull distribution parameters, the solution
of nonlinear equations and the calculation of the initial value. Section 5 presents a summary of the
proposed method and draws relevant conclusions.

2. Generalized Proportional Hazard Model

With reference to survival function model in medical science [25], based on GPHM, the failure
rate model is constructed, and its mathematical expression is as follows:

λ( t|Z) = λ0(t)ψ(Z(t)) (1)

Here, λ0(t) is the basic failure rate. Ψ(Z(t)) is the link function, representing the impact of different
states Z(t) on failure rate. Z(t) is a vector of covariates, which is composed of n time-varying covariates.
Each covariate can represent a particular state. The expression is Z(t)= [Z1(t), Z2(t) . . . Zn(t)]. In practice,
the covariate could be an internal variable which can reflect the state of the device, such as the detection
information of device. It can also be an external variable which can affect the operation of the device,
such as the environmental conditions. In general, the link function can be expressed as follows:

ψ(Z(t)) = exp(γ1Z1(t) + γ2Z2(t) + · · ·+ γnZn(t)) (2)

Here, γ = (γ1, γ2 . . . γn) represents the corresponding regression coefficient of each covariate.
The assumptions of GPHM are as follows:

(1) The basic failure rate λ0 (t) subjects to Weibull distribution, and its expression is

λ0(t) =
β

η
(

t
η
)
β−1

. (3)

Here, β is the shape parameter, and η is the scale parameter.
(2) The fault interval is longer than maintenance time, so that the maintenance time can be neglected.
(3) The effect of covariates on the failure rate maintain constant and it cannot be changed with time.
Choosing the best covariates is the key to establish the GPHM. Age, operating environment,

maintenance times, health index, and manufacturer are selected as covariates, as shown in Figure 1 [25].

 

Figure 1. Selection of covariates.

Health index (HI) reflects the overall health level of the relay protection equipment, which is
closely related to the equipment failure rate. In order to facilitate quantitative comparison, HI is
divided into five levels (normal, attention, serious, emergency, and fault), and their corresponding
values are listed in Table 1.

Table 1. Values of Health Index (HI).

Grade Normal Attention Emergency Serious Fault

values of HI 0 0.1 0.3 0.6 1
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In [26], research’s results indicated that when the equipment is in the loss period, the failure rate
meets Weibull distribution, and Weibull distribution is a function of time. It means that the failure rate
is related to age. In [27], the scholars pointed out that the failure rate function directly is multiplied by
the age reduction factor, and failure rate increase factor after repairmen. Because the age reduction
factor and failure rate increase factor are related to the maintenance type and maintenance times,
the failure rate λk+1(t) after kth maintenance is defined recursively as:

λk+1(t) = βkλk(t + αkTk) (4)

Here, k is the kth maintenance. Tk represents the interval for the kth maintenance. βk is age reduction
factor, which can simulate the equipment damage caused by each maintenance. αk is failure rate increase
factor, which can describe the degree of improvement in equipment failure rate after maintenance.

According to [28], the failure rate can be affected the operating environment. Therefore, the business
district and the industrial area differ considerably. Different manufacturers may have different familial
defects which may affect the history data. With reference to [27], the values of the operating environment
and manufacturers are given as Tables 2 and 3 shown.

Table 2. Values of operating environment.

Operating Environment Business District Industrial Area

value 1 2

Table 3. Of the manufacturer.

Manufacturer NR Electronic Beijing Sifang Changyuan Shenrui Guodian Nanzi Xuji Dianqi

value 1 2 3 4 5

Therefore, the expression of the failure rate λ( t|Z) which takes the influence of covariates into
consideration can be expressed as

λ( t|Z) = β
η (

t
η )
β−1 exp(γpmZpm(t) + γcmZcm(t) + γageZage(t)

+γenvZenv(t) + γHIZHI(t) + γmauZmau(t))
(5)

Here, covariant Zpm, Zcm, Zage, Zenv, ZHI, and Zmau respectively represent the times of preventive
maintenance and corrective maintenance, age, the operating environment, the HI of equipment and
manufacturer; the corresponding coefficient of the covariates are λpm, λcm, λage, λenv, λHI, and λmau.
Equation (5) illustrates that if you want to get to the expression of failure rate, β/η/γi is needed in order
to estimate. The maximum likelihood function (MLE) and the adaptive homotopy algorithm are used
to solve the nonlinear equations.

3. Adaptive Homotopy Algorithm

3.1. The Basicprinciple of Homotopy Algorithm

Considering the following nonlinear Equation (6):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1, x2, x3, x4 . . . . . . , xn) = 0
f2(x1, x2, x3, x4 . . . . . . , xn) = 0

...
fn(x1, x2, x3, x4 . . . . . . , xn) = 0

(6)
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Here, x = (x1, x2, x3, x4 . . . xn) ∈ Rn can be obtained. fi(x1, x2, x3, x4 . . . xn) is a real function defined
on a regional D, i = (1, 2, 3 . . . n). Its vector notation is:

→
F(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f1(x)
f2(x)

...
fn(x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn →0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)

Then, Equation (7) can be converted to:

→
F(x) =

→
0 (8)

In Equation (8), parameter t is introduced to construct a set of homotopy mapping H(x, t) which
subjects to: {

H(x, 0) = G(x0) = 0
H(x, 1) = F(x) + (t− 1)G(x)

(9)

From Equation (9), the equations can be obtained, which are t = 0, H(x, 0) = G(x0) and t = 1, H(x,
1) = F(x). Then, the solution of equation F(x) = 0 is transformed into the solution of equation x = x
(t) which subjects to equation H(x, 1) = 0. Equation (9) indicates that due to different G(x), there are
different homotopy equations.

A Fixed Point Homotopy Algorithm
If G(x) = x − x0, then a fixed point homotopy algorithm is formed as:

H(x, t) = F(x) + (t− 1)(x− x0) (10)

Newton Homotopy Algorithm
If G(x) = F(x) − F(x0), then a Newton homotopy algorithm is formed as:

H(x, t) = tF(x) + (1− t)(F(x) − F(x0)) (11)

The derivative of parameter t in H(x, t) = 0 is:

∂H
∂x

dx
dt

+
∂H
∂t

= 0 (12)

If the inverse matrix ( ∂H∂x )
−1

exists, then:

dx
dt

= −(∂H
∂x

)
−1

.
∂H
∂t

(13)

Adaptive Homotopy Equation

However, when inverse matrix (∂H/∂x)−1 doesn’t exist, the homotopy algorithm will lose its
significance. Because the diagonal factor G(x) = diag[egi(x)] in the exponential homotopy method is
multiplied by F to construct a new homotopy algorithm, it is only feasible in theory, and the calculation
is complicated and not suitable for the large-scale nonlinear equation. However, in reference to the idea
of exponential homotopy algorithm, the equation for adaptive homotopy algorithm can be obtained as:

H(x, t) = F(x) − (1− t)[F(x0) − a(1 + t)(x− x0)] (14)

(
∂H
∂x

)
−1

= [F′(x) + a(1− t2)I]
−1

(15)
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Because a (1 − t2) I is a nonsingular matrix and when (∂H/∂x)−1 is singular, through adjusting
the parameter a, it can account for the diagonal dominance, as long as a is large enough. In the actual
calculation, the initial value of parameter a is set as 0. When the Jacobi matrix F′(x) becomes singular
after some calculation steps, a automatic increase Δa. Thus, the solution of the Equation (7) can be
obtained by finding the solution of the homotopy Equation (9).

3.2. Numerical Calculation of the Adaptive Homotopy Algorithm

Equation (13) presents that the calculation of nonlinear equations can be converted into the
calculation of IVP (initial value problem), which can be expressed as:⎧⎪⎪⎨⎪⎪⎩ dx

dt = −( ∂H∂x )
−1

.∂H∂t = [F′(x) + a(1− t2)I]−1.∂H∂t
x0 = x(0)

(16)

In order to solve the Equation (16), the Euler method is used to estimate, and the Runge Kutta
method is used to correct.

Euler method

We begin to track the path from the starting point (t0, x0) of the homotopy path, and the Euler
method is adopted to estimate the next approximate point (t1, x̃1), so that the expression is:

x̃1 = x0 +
dx
dt

Δt = x0 − ( ∂H∂x0
)
−1 ∂H
∂t0

Δt (17)

With the iterative equation as:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̃n = xn−1 − ( ∂H∂xn−1

)
−1 ∂H
∂tn−1

Δt
tn−1 = t1 + (n− 1) × h
h = 1

N

(18)

Here, h is the step size, and n is the number of iterations.

The Fouth Runge Kutta method

Through using the Runge Kutta method, the local truncation error of the fourth Runge Kutta
method is about o (h5) [13], and its calculation speed is fast. Therefore, the fouth Runge Kutta method
is adopted to calculate the initial parameters.

Assuming dx
dt = −J(x)−1F(x0) = y(xn, tn), according to Equation (18), the point (t1, x1) can

be obtained. Then, the point (t1, x1) is set as the starting point. For obtaining the next round of
prediction-correction, the equations are used as follows:⎧⎪⎪⎨⎪⎪⎩ xn = x̃n − ( ∂H∂x )

−1
H(tn, x̃n)

tn = t0 + h× n
(19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃n+1 = xn + h( k1+2k2+2k3+k4
6 )

k1 = y(xn, tn)

k2 = y(xn +
1
2 h, tn +

1
2 hk1)

k3 = y(xn +
1
2 h, tn +

1
2 hk1)

k3 = y(xn + h, tn + hk3)

(20)

And the prediction-correction process is stopped until t = 1. After several iterations, xn+1 may
not be the exact solution x*, according to mathematical convergence theory. If |xn+1 − xn| < ε (ε is the
set of coefficients of accuracy), it is considered that the exact solution is found, otherwise the above
steps are repeated to perform the predictive-correction process. In order to elucidate the adaptive
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homotopy algorithm further, Figure 2 shows a flow diagram of this algorithm, which was implemented
in MATLAB.

 
Figure 2. Calculation flow chart of adaptive homotopy algorithm.

Step 1: Set the maximum number of iterations nmax, the initial value x0 and a = 0;
Step 2: According to Equation (9), calculate F(x0) and F′(x0);
Step 3: Judge the reversibility of F′(x0), if YES, then turn to step 4, if not, then turn to step 9;
Step 4: Based on Equation (18), estimate the next point x1;
Step 5: According to Equation (20), modify x1 and choose the modified x1 as the initial value for the
next round. Meanwhile calculate F(x1) and F′(x1), n set as n + 1;
Step 6: Assume that nth step has been carried out and obtain the solution xn. judge whether the
inequality |xn − xn−1| < ε is true or not. If YES, output the exact solution x* = xn, otherwise turn step 7;
Step 7: Calculate F(xn) and F′(xn), and judge whether F′(xn) is reversible or not. If YES, based on
Equation (18), estimate the next point xn+1, and n automatically add 1, namely, n = n + 1. If not, turn
step 9;
Step 8: Judge whether the inequality n > nmax is true or not. If YES, the equation without solution.
If not, then turn step 6;
Step 9: Adjust the value of a, and define a = a + Δa. n automatically add 1, namely, n = n + 1, and turn
to step 3.

347



Processes 2019, 7, 899

4. Parameter Estimation

4.1. Weibull Distribution Parameters Estimation

There are two reasons which may lead to the relay protection equipment withdrawal from the
power system. One is its failure, and the other one is the maintenance. The former possesses fault data
and belongs to the corrective maintenance (CM). The latter possesses the truncated data and belongs
to the preventive maintenance (PM). If the relay protection equipment is still running at the end of
the observation, the data can also be censored. Considering the censored data, based on maximum
likelihood, the parameters’ estimation can be described as follows:

The failure time at 0 < ti < . . . < tn (T) is observed in the time interval (0 T]. MLE is used to
calculate the parameters of GPHM. It is supposed that (ti, zi, δi) and (i = 1, 2, . . . , n) are the records of
failure and maintenance, respectively; n is the total number of events, including all the CM times and
all the PM times, so that n can be expressed as n = Ncm(t) + Npm(t). ti is the failure time of PM and
CM; zi is the state information of the equipment at ti, δi is corresponding censoring indicator variables,
and the equation δi = 0 represents no failure at ti. The equation δi = 1 represents failure at ti.

The corresponding likelihood function is given as:

L(β, η) =
l∏

i=1

f (ti)
δi R(ti)

1−δi (21)

Defining f (t) = R(t)λ(t), then

R(t) = exp[−
∫ t

0
λ0(t) exp(γZ(t))] (22)

Therefore, Equation (21) can be converted into

L(β, η) =
l∏

i=1
f (ti)

δi R(ti)
1−δi

=
r∏

i=1
λ(ti)

l∏
i=1

R(ti)

=
r∏

i=1

β
η (

ti
η )
β−1

exp(
6∑

j=1
γ jZj(ti))∗

l∏
i=1

exp(−∫ T
0
β
η (

ti
η )
β−1

) exp(
6∑

j=1
γ jZj(ti)))

(23)

Here, l represents the total number of the relay protection equipment and r represents the number
of faulty relay protection equipment. Then, the corresponding log likelihood function is:

ln L = r ln βη +
r∑

i=1
[(β− 1) ln( ti

η ) +
6∑

j=1
γ jZj(ti)]

− n∑
i=1

(( ti
η )
β
. exp

6∑
j=1
γ jZj(ti))

(24)

Taking the partial derivatives of β and η separately:

∂ ln L
∂β

=
r
β

r∑
i=1

ln(
ti
η
) −

n∑
i=1

(
ti
η
)
β
. ln(

ti
η
). exp(

6∑
j=1

γ jZj(ti)) (25)

∂ ln L
∂η

= −βr
η

+
n∑

i=1

+
β

η
(

ti
η
)
β

exp
6∑

j=1

γ jZj(ti) (26)
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The maximum likelihood functions are:

∂ ln L
∂β

= 0 (27)

∂ ln L
∂η

= 0 (28)

Taking the second derivative operations, then:

∂2 ln L
∂β2 = − r

β2 −
n∑

i=1

(
ti
η
)
β
[ln(

ti
η
)]2 exp(

6∑
j=1

γ jZj(ti)) (29)

∂2 ln L
∂η2 = − rβ

η2 −
n∑

i=1

(
ti
η
)
β
.
β2 + β

η2 exp(
6∑

j=1

γ jZj(ti)) (30)

∂2 ln L
∂β∂η

= − r
η
+

n∑
i=1

1
η
(

ti
η
)
β
[1 + β lnti] exp(

6∑
j=1

γ jZj(ti)) (31)

∂2 ln L
∂η∂β

= − r
η
+

n∑
i=1

1
η
(

ti
η
)
β
[1 + β lnti] exp(

6∑
j=1

γ jZj(ti)) (32)

Then, a second order derivative matrix can be obtained, namely Jacobi matrix:

J =

⎡⎢⎢⎢⎢⎢⎢⎣
∂2 ln L
∂β2

∂2 ln L
∂β∂η

∂2 ln L
∂η∂β

∂2 ln L
∂η2

⎤⎥⎥⎥⎥⎥⎥⎦ (33)

4.2. The Solution of Nonlinear Equations Based on Adaptive Homotopy Algorithm

According to the adaptive homotopy algorithm mentioned, the iteration equation is:

(
β
η

)
k+1

=

(
β
η

)
k
− (Jk + ak(1− t2)I)

−1
⎛⎜⎜⎜⎜⎜⎝
∂ ln L
∂β
∂ ln L
∂η

⎞⎟⎟⎟⎟⎟⎠ (34)

Here, β0 and η0 are the initial values of corresponding parameters when k = 0. After the initial
values are selected, two parameters can be calculated according to the Equation (34).

4.3. Calculation of the Initial Value

Selecting two data points, namely, (td, λd) and (tg, λg) in the Weibull distribution, the initial values
can be solved by the following equation.⎧⎪⎪⎪⎨⎪⎪⎪⎩

β0
η0
(

td
η0
)
β−1

= λd
β0
η0
(

tg
η0
)
β−1

= λg

(35)

According to the above analysis, MLE can be used to estimate the parameter of GPHM. And the
adaptive homotopy algorithm can be used to solve the nonlinear equation in the parameter estimation
process. Then, the fault rate model is established.

5. Case Analysis

Case 1: The machine account and defect information of the relay protection equipment are
collected, which are running in the similar environment or have the same type, and its failure rate is
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shown in Table 4. According the above failure rate, the failure rate curve can be drawn as Figure 3
shown. Based on the adaptive homotopy algorithm and the Newton homotopy algorithm, the failure
rate parameters are computed iteratively. Then, failure rate parameters of the Weibull distribution can
be obtained and shown in Tables 5 and 6, so that their fitting curve can also be seen in Figure 3.

Table 4. Statistics of failure rate of relay protection.

Running Time/Year Failure Rate/(Times/Device. Year) Running Time/Year Failure Rate (Times/Device. Year)

1 0.0251 7 0.0272
1.5 0.0202 7.5 0.0342
2.5 0.0226 8 0.0311
3 0.025 8.5 0.0496

3.5 0.0177 9 0.0364
4 0.0268 9.5 0.0774

4.5 0.0232 10 0.133
5 0.0261 10.5 0.189

5.5 0.0283 11 0.232
6 0.0253 12 0.374

6.5 0.0296 13 0.593

Table 5. Estimation of parameters based on adaptive homotopy algorithm.

Stage of Fault Distribution
Random Failure Period Loss Failure Period

β η β η

parameter values 1.2903 29.1759 7.818 12.526
relative error 0.0971 0.1711

iteration number 5

Table 6. Estimation of parameters based on Newton homotopy algorithm.

Stage of Fault Distribution
Random Failure Period Loss Failure Period

β η β η

parameter values 1.177 31.936 7.248 12.435
relative error 0.1532 0.2518

iteration number 11

Figure 3. Curve fitting of failure rate.
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Through analyzing the data of Tables 5 and 6 and the curves in Figure 3, the iterations number of
the adaptive homotopy algorithm is significantly smaller the iterations number of other algorithms.
When the equipment is in the random failure period, the relative error of the adaptive homotopy
algorithm is 0.0971, and the Newton homotopy algorithm is 0.1532. When the equipment is in the
loss failure period, the relative error of the adaptive homotopy method is 0.1711 and the Newton
homotopy algorithm is 0.2518, whose error is large. This is caused by the fact that when the equipment
is running, all parts of the equipment occur material fatigue, aging or rust and other undesirable
conditions. In order to ensure the normal operation of the equipment, the appropriate maintenance
should be done, namely, PM, or CM. However, these two types of maintenance inevitably affect the
equipment failure rate. Therefore, the model considering the run-time regardless of the current state
will be not correct. The result has big difference with the actual operation.

Case 2: Similar to case 1, the operation data of relay protection equipment is shown in Table 7.
Based on Table 7, the failure rate curve of relay protection equipment can be obtained in Figure 4.

Table 7. Operation data of relay protection.

Running Time/Year
Failure Rate

(Times/Device. Year)
Running Time/Year

Failure Rate
(Times/Device. Year)

1.5 0.0224 7.0 0.0268
2 0.0202 7.5 0.0342

2.5 0.0226 8.0 0.0327
3 0.024 8.5 0.0453

3.5 0.0175 9.0 0.0411
4 0.0252 9.5 0.0726

4.5 0.0267 10.0 0.0693
5 0.0223 10.5 0.116

5.5 0.0283 11 0.132
6 0.0253 11.5 0.187

6.5 0.0296 12 0.213

 
Figure 4. The failure rate curve of equipment.

Based on the data from Table 7, the convergence characteristics of different algorithms can be
obtained. From Table 8, it can be found that the Newton homotopy algorithm is non-converging.
However, the adaptive homotopy algorithm can guarantee the singularity of the equation by controlling
the parameter a. According to Equation (15), an affects singularity of nonlinear equations, so that the
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optimal parameter a is selected which can make the iteration number need less. According to Table 8,
although there will be differences between the initial values/parameter values/iterations number,
the difference of the final parameter estimates’ results are in the allowed error range. Therefore, it can
be proved that the homotopy algorithm is independent of the setting of the initial value, and the
different initial values are the different optimal values of a. For example, when the initial value is
(1, 1), the iteration number is 10, and then the optimal value of a is 3. While the initial value is
(11, 1), the iteration number is 35, and then the optimal value of a is −1. Figure 5 shows the curves
corresponding to different initial values. From Figure 5, the trend of the curve can fully verify the
above analysis results.

Case 3: It is necessary to do the corresponding maintenance for equipment after the device is
put into operation for some time. According to Equation (15), it can be found that the choice of
maintenance can affect the failure rate. Table 9 gives the operating data of the equipment maintenance.
In order to solve the parameters of GPHM, the life data of relay protection equipment is analyzed,
firstly. Then, the regression coefficient vector γ is estimated by Statistical Analysis Software (SPSS).
On the basis of γ, the adaptive homotopy algorithm is used to estimate the other parameters.

Table 8. Comparisons of two algorithms.

Initial Value Newton Homotopy Algorithm Adaptive Homotopy Algorithm

convergence (β, η) convergence iteration number a (β, η)
(1, 1) non-converging - convergence 10 3 6.201, 13.790
(11, 1) non-converging - convergence 35 −1 6.201, 12.971

 
Figure 5. The failure rate curve of equipment.
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Table 9. Operation data of relay protection equipment.

Running Time/Day
Failure

Rate/(Times/Device. Day)
Running Time/Day

Failure
Rate/(Times/Device. Day)

215 0.0130 1300 0.0186
310 0.0141 1557 0.0212
471 0.0182 1754 0.0215
680 0.024 1891 0.0200
763 0.0221 2058 0.0211
841 0.0202 2177 0.0200
1008 0.0168 2482 0.066168
1193 0.019

Model I: selecting the times of maintenance as a covariate; Models II/III: on the basis of model I,
the condition monitoring data of the corrective or preventive maintenance moment are fitted, such
as age, the operating environment, the HI of equipment, and the manufacturer; Model IV: on the
basis of Models II/III, the condition monitoring data of the whole period (such as age, the operating
environment, the HI of equipment, and the manufacturer) are fitted, not just the state of corrective or
preventive maintenance moment.

From Table 10, by comparing the estimated log likelihood, the fourth methods are optimal and
its log likelihood is −53.930. Obviously, based on the monitoring data of the entire running time,
GPHM has better fitting characteristics. According to parameter estimation results, it can be found
that the failure maintenances frequency, γcm, is negative in the above three approaches, so that CM can
effectively reduce the failure rate. The preventive maintenances frequency, γpm, is positive, so that PM
can’t effectively reduce the failure rate. This conclusion can provide a theoretical basis for maintenance
personnel to choose the appropriate maintenance mode, and improve maintenance efficiency in case
of the blind maintenance. The results also show that when the environment and the internal state of
the covariates deviate from the rated or normal state, the failure rate will be higher. The quantitative
analysis is consistent with the experience. Based on GPHM model, the curve of equipment failure
rate can be obtained as Figure 5 shown. From Figure 6, we can find that the curve based on GPHM is
closed to the actual value, while the Weibull model is away from the actual value, especially in the
loss period. That is because in the loss period the equipment has to implement the maintenance. It is
inevitable to affect the fault rate.

Table 10. Parameter estimation of models with different factor combinations.

Model Estimated Log Likelihood
Parameter Estimation

β η γpm γcm γage γenv γHI γmau

I −55.409 1.424 29.58 0.013 −0.001 0 0 0 0
II −57.940 1.25 33.49 0 −0.001 −0.001 0.911 −0.079 −0.288
III −54.404 1.434 25.673 0.0137 0 0.0004 0.728 0.053 0.482
IV −53.930 1.424 29.581 0.0138 −0.001 0.0003 0.773 −0.047 0.516
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Figure 6. Curve fitting based on the generalized proportional hazard model (GPHM).

6. Conclusions

In order to fully analyze the impact of the whole process of the monitoring state on the failure
rate, this paper presents GPHM-Weibull, whose covariates include the times of PM and CM, age,
the operating environment, HI, and manufacturer. The baseline function obeys Weibull distribution,
and the adaptive homotopy algorithm is adopted to estimate the parameters of Weibull distribution.
The regression coefficient vector γ is estimated by SPSS. Finally, three cases have been presented to
demonstrate the following conclusions.

(1) The curve drawn by the GPHM is very close to the actual value. However, due to GPHM
taking the whole running state of the equipment into consideration, the curve drawn by the Weibull
model is away from the actual value, especially in the loss period.

(2) The adaptive homotopy algorithm ensures the singularity of the equation by adjusting the
parameter a, and the result of the parameter estimation is less affected by the initial value.
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Nomenclature

λ0 basic failure rate
Z(t) failure rate
β/η shape/scale parameter
αk failure rate increase factor
Zpm/Zcm times of preventive/corrective maintenance
Zage/Zenv times of age/operating environment
ZHI/Zmau times of equipment HI/manufacturer
δi censoring indicator variables
r faulty relay protection equipment number
λpm/λcm/λage

coefficient of covariates
λenv/λHI/λmau

Tk kth maintenance interval
k kth maintenance
βk age reduction factor
h step size
n iterations number
γ corresponding regression coefficient
l relay protection equipment total number
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Abstract: This work deals with the Leak Detection and Isolation (LDI) problem in water pipelines
based on some heuristic method and assuming only flow rate and pressure head measurements at
both ends of the duct. By considering the single leak case at an interior node of the pipeline, it has
been shown that observability is indeed satisfied in this case, which allows designing an observer for
the unmeasurable state variables, i.e., the pressure head at leak position. Relying on the fact that the
origin of the observation error is exponentially stable if all parameters (including the leak coefficients)
are known and uniformly ultimately bounded otherwise, the authors propose a bank of observers
as follows: taking into account that the physical pipeline parameters are well-known, and there is
only uncertainty about leak coefficients (position and magnitude), a pair of such coefficients is taken
from a search space and is assigned to an observer. Then, a Genetic Algorithm (GA) is exploited
to minimize the integration of the square observation error. The minimum integral observation
error will be reached in the observer where the estimated leak parameters match the real ones.
Finally, some results are presented by using real-noisy databases coming from a test bed plant built at
Cinvestav-Guadalajara, aiming to show the potentiality of this method.

Keywords: leak isolation; nonlinear observer; genetic algorithm; fault diagnosis

1. Introduction

Fluid transport is a significant issue in the world today. Currently, cities are continually demanding
utilities, including drinking water, the distribution of oil products, the treatment of wastewater, etc.,
and pipelines are predominantly used to do this. The pipeline networks have increased the growth
and comfort of society. Nevertheless, there is also a constant risk (in particular, for fuel pipelines) that
accidents, environmental pollution or economic losses may occur if the fluid spreads through leaks.
In this context, several critical incidents have recently occurred within Mexico, such as San Martín
Texmelucan, Puebla in 2010, and more recently in the Tuxpan-Tula poly-duct in the municipality of
Tlahuelilpan, Hidalgo in 2019, where many people died as a result of an explosion caused by illegal
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fuel extraction. On the other hand, according to the National Water Committee (CONAGUA) [1],
about 40% of drinking water is lost due to leakage. Although there are entirely different explanations
for each problem, both can be solved by using similar techniques.

The scientific community has paid attention to that problem and has proposed several
methodologies for monitoring and supervision purposes in order to avoid losses and accidents (see,
e.g, [2–11]). In particular, in Begovich et al. [2], a LDI algorithm based on Billman and Isermann [3]
has been implemented and tested with accurate results and based on steady-state conditions, which
increase the convergence time in the leak parameter estimation process. The proposal in Verde et al. [5]
deals with the location of multiple leaks in a pipeline. The key to the leak detector, which should
operate in quasi-real-time, is a family of parameterized transient models for all scenarios in the
pipeline. In this case, the equivalence in the steady-state of a leak at a position with two leaks allows
obtaining the family of dynamic models. Then, to estimate the specific parameter of the leak, an off-line
identification process is performed.

Likewise, a multi-leak diagnostic scheme has been suggested in Delgado-Aguiñaga et al. [4] based
on Kalman observers. In general, it considers a model-based approach for detecting and isolating
several non-concurrent leaks. The method modifies the nonlinear model for each new leakage event.
Thus, it is an extension of the single-leak isolation problem. Although this scheme shows acceptable
results, the complexity of computation increases as an additional leak occurs. In Rubio Scola et al. [12],
the authors presented the development of a nonlinear state observer to locate a blockage in a pipeline.
The technique uses a mathematical model derived from the equations of the water hammer together
with the method of finite differences for its solution, providing a suitable location for the blockage.
Besides, concerning the implementation problem, a recent algorithm based on the extended Kalman
filter Delgado-Aguiñaga and Begovich [10] has successfully identified a leak in an aqueduct in
Guadalajara, Mexico. A posterior study estimated that approximately 130 million liters of drinking
water had been lost in this incident.

There are also other methods with successful application. For example, the approach presented
in Ostapkowicz [6] uses a pressure wave method, and Liu et al. [11] presented a system based on
acoustic waves. A hybrid approach based on a real-time transient simulation system, and a negative
pressure wave method is proposed in Zhang et al. [7]. In the last reference, the authors argued that
the most likely future development in pipeline leak detection and location tends to be the use of two
or more different methods. Finally, Tian et al. [8] proposed an algorithm to locate leaks based on the
pressure difference profile along the pipeline. It considers the effect of the static pressure increases at
the leakage point.

On the other hand, analytical redundancy methods (the technique of several model-based methods)
have demonstrated to be useful to improve the precision, reliability, and performance of a system.
Notably, in the field of fault detection and isolation, the attention on this class of methods has
increased lately in several topics, such as robotics Lyu et al. [13], control theory Chouchane et al. [14],
diagnosis system Lunze [15], and the application of evolutionary algorithms and neural networks to
fault diagnosis Witczak [16]. In particular, several works dealing the leak diagnosis problem in Water
Distribution Networks (WDN) have also been proposed on the basis of genetic algorithms. In Vitkovsky
et al. [17], a technique in conjunction with the inverse transient method is used to detect leaks and friction
factors. Additionally, in [18], a model calibration process is formulated as an nonlinear optimization
problem that is solved by using a genetic algorithm. Case studies are presented to demonstrate how the
integrated approach is applied to water leak detection.

The framework previously stated encourages researchers to propose new model-based approaches
that can be used in combination with other methods and thus contribute to the development of a robust
leak diagnostic tool for single pipelines on the basis of analytical redundancy model.

By relying on an observability property, fulfilled for the single leak case, our approach considers
building an observer ensemble together with a genetic algorithm to minimize the observation error
and, in this way, estimate the leak parameters, i.e., position and magnitude. The extended Luenberger
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observer has been chosen to estimate the internal state variable (the pressure at the leak point).
Such an observer is exponentially stable only if the parameters of the model are known. Otherwise,
the observation error is, at last, uniformly ultimately bounded. Then, if only leak position and
magnitude are the unknown parameters (the rest of the pipeline mathematical model parameters are
well-known), it is possible to design a bunch of observers, each with different values of leak position
and magnitude (the search space). Thus, the best estimation of the leak parameters provided by the
observer ensemble is the one that gives the minimum residual. Now, the potential of the genetic
algorithm could be exploited to find the best estimation of such parameters.

The paper is organized as follows. Section 2 provides the mathematical model. Section 3 describes
the Leak Detection and Isolation scheme. Section 4 presents some successful experimental results.
Finally, in Section 5, some conclusions and future work are discussed.

2. Pipeline Mathematical Model

The pipeline model is classically derived under the following assumptions: the pipeline is
considered to be straight without any fitting and without slope; the fluid is slightly compressible;
the duct wall is slightly deformable; and the convective velocity changes are negligible. Likewise,
the pipeline cross-section area and fluid density are constant. Then, the Partial Differential Equations
(PDE) governing the fluid transient response, can be written as Roberson et al. [19]:

Momentum Equation
∂Q(z, t)

∂t
+ gAr

∂H(z, t)
∂z

+ μQ(z, t) |Q(z, t)| = 0 (1)

Continuity Equation
∂H(z, t)

∂t
+

b2

gAr

∂Q(z, t)
∂z

= 0 (2)

where Q is the flow rate [m3/s]; H is the pressure head [m]; z is the length coordinate [m]; t is the time
coordinate [s]; g is the gravity acceleration [m/s2]; Ar is the cross-section area [m2]; b is the pressure
wave speed in the fluid [m/s]; μ = f (Q)/2φAr, where φ is the inner diameter [m] and f is the friction
factor; and the rest of physical parameters are computed as in Delgado-Aguiñaga et al. [20] considering
a constant water temperature of 20 ◦C. The dynamics in Equations (1) and (2) is fully defined by
related pairs of initial and boundary conditions.

Leak model: Furthermore, one leak arbitrarily located at point z ∈ (0, L) (where L is the total
length of the pipeline), can be modeled as follows Roberson et al. [19] (see Figure 1):

Ql = λ
√

Hl (3)

where the constant λ is function of the orifice area and the discharge coefficient (for simplicity, the λ

coefficient is referred as “leak magnitude” from now on); Ql is the flow through the leak; and Hl is the
head pressure at the leak point Navarro et al. [21].
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Q1 Q2

Ql
H1

H2 = Hl

H3

0 LΔz L− Δz

�

Figure 1. Discretization of the pipeline with a leak Ql .

This leak produces a discontinuity in the system. Furthermore, due to the law of mass
conservation, Ql must satisfy the next relation:

Q2 = Q1 + Ql (4)

where Q1 and Q2 are the flows before and after of the leak point, respectively.
Friction model: In modern pipes (pipes with a relative roughness usually less than 1× 10−3), it is

difficult to reach a complete turbulence zone (i.e., the zone where friction factor is almost constant,
see Figure 2).

Figure 2. Moody chart.

Therefore, a friction factor deemed as a constant value could yield a poor mathematical model. For
this reason, in the present work, the friction factor is calculated by using the well-known Swamee–Jain
equation Brkić [22], Swamee and Jain [23]:

f (Q) =
0.25[

log10

(
ε

3.7D + 5.4
Re0.9

)]2 (5)

which is suitable for flow regime in the transition zone (as occurs in plastic pipelines) and where
ε ∈ [0.000001, 0.05] [m] is the roughness height, Re ∈ [5000, 108] is the Reynolds number given by

Re =
QD
vA

and v is the kinematic viscosity [m2/s].
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Spatial Discretization of the Modeling Equations

In order to obtain a finite dimensional model from (1) and (2), such PDE’s are discretized
with respect to the spatial variable z, as in Verde [24], Besançon et al. [25], by using the following
relationships:

∂H(zi, t)
∂z

� Hi+1 − Hi
zi

∀i = 1, · · · , n (6)

∂Q(zi−1, t)
∂z

� Qi −Qi−1

zi−1
∀i = 2, · · · , n (7)

where Hi, Qi stand for H(zi, t), Q(zi, t), and n the number of pipeline sections. Assuming only one
partition in the pipeline, as shown in Figure 1, zi (i = 1, 2) becomes the distance from upstream to
the point of the leak and from the point of the leak to downstream, respectively. Notice that Δz = z1

and z2 = L− Δz. The leak position is assumed to be Δz ∈ (0, L) in this description. Applying the
approximations in (6) and (7) to equations (1) and (2) together with (3), we get:⎡⎢⎣ ẋ1

ẋ2

ẋ3

⎤⎥⎦ =

⎡⎢⎣ − Ar g
Δz (x2 − u1)− μ1x1 |x1|

− b2

Ar gΔz (x3 − x1 + λ
√

x2)

− Ar g
L−Δz (u2 − x2)− μ2x3 |x3|

⎤⎥⎦ (8)

Here, the state vector is defined as x = [x1 x2 x3]
T = [Q1 H2 Q2]

T , the input vector is
u = [u1 u2]

T = [H1 H3]
T , and the pressure output vector is y = [x1 x3]

T = [Q1 Q2]
T , μi = f (Qi)/2φAr

with i = 1, 2. It is worth noting that H2 represents the pressure head at the leak point. This value is
impossible to measure since the leak position is not known “a priori”, but this value could be observed
because, for the system (8), the observability property is fulfilled, as seen in the next section.

Notice that the mathematical model in (8) assumes a straight pipe without loss of generality, as,
even if the pipe is not straight, it is possible to obtain an Equivalent Straight Length (ESL) of the pipe.
This is done by considering losses due to each “non-straight element” (i.e., fitting). The equivalent
straight pipe Le can be calculated as Mott [26]:

Le = Lr +
D ∑n

j=i Kj

f
(9)

where Lr stands for the pipeline physical length [m] measured between the sensors placed at the
ends of the pipeline, Kj is the fitting loss coefficient for the jth fitting, and n the total number of the
pipeline fittings.

3. LDI Scheme Approach

The leak diagnosis process (the task of determining the magnitude λ and location Δz of the leak)
proposed in this work is carried out by the design of a bank of observers together with a genetic
algorithm method whose selection rule is to minimize the integration error of each observer.

Since the observability property of the system (8) is fulfilled, it is possible to design an extended
Luenberger observer to estimate H2. Such an observer is exponentially stable only if the parameters
of the model (Ar, g, b, L, μ1, μ2 ,λ, and Δz, in (8)) are known; otherwise, the observation error will be
uniformly ultimately bounded. Then, if only leak position (Δz) and magnitude (λ) are the unknown
parameters (the rest of the pipeline mathematical model parameters are known), it is possible to
design a bunch of observer,s each with different values of λ and Δz, i.e., search space. Thus, the best
leak position and leak magnitude estimation of the ensemble is the one that gives the minimum
residual. Now, the potential of the genetic algorithm could be exploited to find the best estimation of
such parameters.

The minimum integral observation error will be reached when the leak position and magnitude
match the real ones.
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3.1. Extended Luenberger Observer for MIMO Systems

First, let us consider that the space-state representation given by (8) can be rewritten in compact form:

ẋ = f (x, u)
y = h(x)

(10)

with the state x ∈ R3, the input u(t) ∈ R2, and the output h(x) ∈ R2 (with two components, h1 and
h2). Then, the observability is guaranteed by invertibility of the following map (where L f denotes the
Lie derivative):

Y =

⎡⎢⎣ y1

ẏ1

y2

⎤⎥⎦ =

⎡⎢⎣ h1

L f h1

h2

⎤⎥⎦ =

⎡⎢⎣ x1

− Ar g
Δz (x2 − u1)− μ1x1 |x1|

x3

⎤⎥⎦ (11)

which is in fact uniform in u. If one considers x1|x1| = x2
1 (for unidirectional flow), such a map induces

the following rank observability condition:

rank(
∂Y(x)

∂x
) =

⎡⎢⎣ 1 0 0
−2μ1x1 − Ar g

Δz 0
0 0 1

⎤⎥⎦ = 3 (12)

such that the system in (10) is locally observable and satisfies the condition for the extended Luenberger
observer design for MIMO systems Birk and Zeitz [27]. Then, the system (10) can be rewritten to
obtain its additive output nonlinearity form:

ẋ = Ax + ϕ(x) + φ(u) + ξ(y)
y = Cx

(13)

where matrices A, ϕ(x), φ(u), ξ(y), and C are given by:

A =

⎡⎢⎣ 0 − a1
Δz 0

a2
Δz 0 − a2

Δz
0 a1

L−Δz 0

⎤⎥⎦ ϕ(x) =

⎡⎢⎣ 0
−a2

λ
Δz
√

x2

0

⎤⎥⎦

φ(u) =

⎡⎢⎣
a1
Δz u1

0
− a1

L−Δz u2

⎤⎥⎦ ξ(y) =

⎡⎢⎣ −μy1 |y1|
0

−μy2 |y2|

⎤⎥⎦
C =

[
1 0 0
0 0 1

]

where a1=̇Arg and a2=̇
b2

Ar g . Here, the additive output nonlinearity can be built from direct
measurements and thus compensated in the observer design (as it was originally proposed by the
authors in Krener and Isidori [28], J. Krener and Respondek [29], for instance). The representation (13)
admits an observer of the form:

˙̂x = Ax̂ + ϕ(x̂) + φ(u) + ξ(y) + K(y− Cx̂)
ŷ = Cx̂

(14)

By defining the estimation error as e = x− x̂, the dynamic error model is:

ė = (A− KC)e + ϕ′(x, x̂) (15)
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where ϕ′(x, x̂) =
[

0 −a2
λ

Δz (
√

x2 −
√

x̂2) 0
]T .

In this equation, e = 0 is clearly an equilibrium. In addition, K can be chosen so that (A− KC) is
Hurwitz (since (A, C) is observable), that is for any Q = QT > 0, there exists P = PT satisfying the
Lyapunov equation P(A− KC) + (A− KC)T P = −Q.

Notice then that ϕ(x, x̂) satisfies a linear growth bound ‖ϕ(x, x̂)‖ ≤ γ‖e‖ on the region of
operation, and thus if γ < ζmin(Q)/2ζmax(P), where ζmin(·) and ζmax(·) denote the minimum and
maximum eigenvalue of a matrix, one can conclude that the origin of the error system in (13) is
exponentially stable (see Khalil [30] for more details).

3.2. Genetic Algorithm

In computer science, the genetic algorithm is an algorithm inspired in the biological evolution that
offers a suitable solution to optimization and search problems. The GA is a recursive algorithm where
the aptest individuals of a population are discovered, emphasized, and recombined (reproduction) in
order to produce descendants of the next generation. Six phases are considered in a genetic algorithm:

1. Initial population. The first step of the process is to obtain a set of individuals randomly generated
(initial population) in which each such individual is a candidate solution to a problem.

As in the natural selection process, an individual is characterized by a set of parameters called
genes. The solutions, known as chromosomes, are genes joined into a string.

In a genetic algorithm, the chromosome is represented using a string in terms of an alphabet.
Binary encoding (a string of ones and zeros) is the most common procedure to encode the genes
in a chromosome.

2. Fitness function. The fitness function defines how close an individual fits a solution and, in this
way, determines which will reproduce and survive into the next generation. The fitness function
provides a “fitness score” to each individual. Such “fitness score” settles the probability that
an individual will be selected for reproduction.

3. Selection. In this phase, the chromosomes in the population that more closely match the fitness
function are selected. The solution (chromosome) that fits better during iteration is more likely to
be selected to reproduce.

4. Crossover. After the selection process, a recombination of the chromosomes is carried out in order
to generate a new population for the next iteration. Crossover is applied to randomly pair strings
and exchanges the sub-sequences before and after to create two offspring.

5. Mutation. To preserve diversity within the population and prevent premature convergence,
a mutation process is done. The mutation operation is applied after the crossover process is
achieved. For each bit in a subset of the new offspring, some of their genes can be mutated with
a low probability. This is done by flipping some bits in the chromosome bit string.

6. Termination. If the algorithm does not produce new populations that are sufficiently different
from the previous generation, the algorithm has converged. Then, the genetic algorithm has
found a set of solutions to the problem, and it is terminated. Such a criteria is predefined by the
designer according to specific constraints. In particular, for the proposed scheme, the algorithm is
kept in operation during the entire experiment since a permanent pipeline monitoring is assumed
no matter if a leak is occurring or not.

Some final remarks. The GA discussed thus far uses a binary string to encode the genes in
a chromosome. Nevertheless, for many engineering problems, it is nearly impossible to represent the
solution with a binary encoding (as in the case of the leak diagnosis). Thus, it is necessary to make
a mapping between binary and real numbers before the process (crossover and mutation) is started.
Such a mapping is built in two stages: First, a function m = ψ(r), which assigns a real number r of
a given search interval r ∈ [0, Rmax] to a closed set of integer number, m ∈ [0, 2n], is defined:

363



Processes 2019, 7, 913

ψ(r) = round
(
(2n − 1)

r
Rmax

)
(16)

where round function rounds each element to the nearest integer, Rmax stands for the maximum real
number of the interval, and n is a natural number. Naturally, the longer n is, the more accurate the
mapping will be. Then, once m is obtained, the process to convert m into a binary number follows
immediately.

To return from binary to a real number and, in this way, apply the fitness function and selection
processes, the inverse mapping ψ−1 is applied.

Figure 3 depicts the flowchart of GA (for more information, see Schmitt [31], Mitchell [32], Whitley
[33]).

Figure 3. Genetic algorithm block diagram.

3.3. Evolutionary Ensemble of Observers

At this point, let us analyze an observer with the structure of (14), in the presence of parameter
errors. First, one can consider that the leak parameters (λ and Δz) match with real values. Then, if
a parametric error appears (i.e., there is a deviation between the current λ or Δz and the real ones),
the observer structure given by (14) changes in the following form:
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˙̂x = (A + δ(A))x̂− a2

⎡⎢⎣ 0(
λ

Δz + δ
(

λ
Δz

))
0

⎤⎥⎦√x̂2

+

⎡⎢⎣
( a1

Δz + δ
( a1

Δz
))

0
0 0

0 −
(

a1
L−Δz + δ

(
a1

L−Δz

))
⎤⎥⎦ u

+ξ(y) + K(y− ŷ)

ŷ = Cx̂

(17)

where the symbol δ(•) denotes a parametric deviation from the real value. This means that δ (λ) is the
difference of λ as a sum error (i.e., the wrong value λw could be separated as follows: λw = λ + δ(λ),
where λ is the real value). Then, (17) yields an error model in the following form:

ė = (A− KC)e + ϕ′(x, x̂) + δ(A)x̂ +

⎡⎢⎣ 0
a2δ( λ

Δz )

0

⎤⎥⎦√x̂2 (18)

From (18), we have that

δ(A)x̂ +

⎡⎢⎣ 0
a2δ( λ

Δz )

0

⎤⎥⎦√x̂2

changes the equilibrium point of (15) away from 0. Thus, a residual r(t) is induced in the output error
y− Cx̂ when an error presented in λ or Δz and this residual r(t) is zero only when the λ and Δz match
the real values. The present work exploits this system property (as long as the rest of the parameters
are properly tuned). It is interesting to see that the residuals do not depend on the input signal u(t).

Hence, it is possible to design an ensemble of observers, each with different values of λ and Δz,
such that the residuals of individual observers (namely, r1, r2,..., rn) go away from zero as long as these
values do not match with the real ones. Figure 4 depicts this idea.

If the residual is minimized somehow, then it is possible to estimate the correct values of the
leak parameters. The present work proposes a GA that searches the correct values of λ and Δz by
minimizing the integral squared residual of the ensemble of observers. In this GA, the population
is built with the combination (cartesian product) of the possibles values of λ and Δz. The following
optimization problem is considered. Find (Δz, λ) such that:

minimize
t0+T∫
t0

(r(t))2 dt (19)

where the residual vector is defined as:

r(t) =

⎡⎢⎢⎢⎢⎣
r1

r2
...

rn

⎤⎥⎥⎥⎥⎦ (20)

Here, ri(t) = y(t)− ŷi(t) is the residual of the ith observer and n is the cross product between
the number of the position and magnitude that we are looking for, i.e., n = l × m. Here, l and m
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are the number of position and magnitude, respectively, arbitrarily proposed by the designer. This
work suggests to set l = m such that each value of the variables Δzi and λi belongs to a set of equally
separated values, i.e., Δzi ∈ {Δzmin, 2Δzmin, ..., mΔzmin = Δzmax} and λi ∈ {λmin, 2λmin, ..., lλmin =

λmax}. Initial time t0 can be deleted, as well as window length T.

Figure 4. Evolutionary ensemble of observer block diagram.

4. Experimental Results

In this section, the proposed LDI methodology performance is evaluated. To ensure the method’s
effectiveness, three experiments were carried out by using some database coming from the pilot plant
built at Cinvestav-Guadalajara. Three different leaks were emulated by opening three electro-valves
located at diverse positions along the pilot pipe.

The section continues as follows: First, a brief description of the pilot pipe is given, and then the
experimental setup is stated. Finally, each experiment is described in detail.

4.1. Experimental Setup

The pilot plant referred above was manufactured with PP-R (Polypropylene Copolymer Random),
and it is equipped with: two flow rate transducers (FT) and two pressure-head transducers (PT)
installed at both ends of the pipe. In addition, a 5 HP centrifugal pump was connected to
a variable-frequency driver fixed at 50 Hz (to experiment on flow-rate variation effects over the
LDI scheme); and three valves were used to emulate the leak effect. Figure 5 depicts a schematic
diagram of the pipeline prototype. More information can be found in Begovich et al. [2]. The main
parameters of the pipeline system are shown in Table 1. The sampling rate was 300 Hz satisfying the
Courant’s condition for system (8).

As mentioned above, the mathematical model used to derive the LDI algorithm given by (8)
assumes a straight pipeline, and the prototype is not straight. Therefore, it is necessary to find
an Equivalent Straight Length (ESL) for this prototype. Expression (9) is useful for this purpose (for
more information, see Navarro et al. [34]). Table 2 establishes the ESL between sensors (see Figure 5)
and also from upstream to each valve.
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Table 1. Pipeline prototype parameters.

Parameter Symbol Value

Length between PT sensors Lr 68.84 m
Internal diameter φ 6.54× 10−2 m

Friction factor f 1.635× 10−2

Gravity acceleration g 9.81 m/s2

Pressure wave speed b 341 m/s
Fitting loss coefficient sum ∑n

j=i Kj 9.09 [-]

Table 2. Distances in ESL.

Estimated in ESL Terms Symbol Value

Between PT sensors L 105.1 m
Upstream to Valve 1 z f 1 30.92 m
Upstream to Valve 2 z f 2 43.64 m
Upstream to Valve 3 z f 3 62.99 m

Figure 5. Schematic diagram of the pipeline prototype.

By substituting those pipeline parameters shown in Table 1 into the matrices A, ϕ(x), and φ(u),
ξ(y) in (13), one can see that the observability matrix in (12) has full rank if z f ∈ (0, Lr), Torres et al. [35].
The experiments started in a free-leak condition, and at time tl ≈ 40 [s], a leak was induced by opening
Valves 1–3, respectively. Each leak was detected once the following threshold was triggered:

|Qin(t)−Qout(t)| > δ (21)

where δ = 1.55× 10−4 [m3/s] was chosen considering the noise variance of the flow rate measurements
in order to avoid false alarms. The ensemble of observers was turned on with the parameters shown in
Table 1. The integration error of each residual was computed in a time-window of T = 22 [s] in (19),
where T = ti − ti−1, with i ∈ N and t0 the time of leak occurrence. This procedure means that, once the
leak was detected, executions of the GA were performed with period T = 22 [s] (selection, crossover,
and mutation). In Figures 7, 8, 10, 11, 13 and 14, this scheduled-process is indicated by: t1, t2, t3, t4, t5

and t6. Therefore, the integral in (19) becomes:

minimize
ti∫

ti−1

(r(t))2 dt (22)
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Notice that the selected values of the leak parameters, Δz and λ, were held at time ti−1 and
reflected up to the next GA-process at time ti.

In other words, the time-integration-window ti served for the election of Δz and λ used in next
iteration ti+1 and so on. In the period t1, random values of Δz and λ were used.

The initial conditions of the observers were fixed as follows: x̂0
1 = Q̂0

in and x̂0
3 = Q̂0

out were equal
to the mean values of the input and output flows in steady state in free-leak condition. x̂0

2 = Ĥ0
2 ,

the pressure head at the pipeline middle point, was calculated at distance Δ̂z = L/2. Finally, λ̂i (i.e.,
the leak magnitude of each observer) were fixed as zero, since the pipeline was not leaking. Table 3
summarizes those values.

Table 3. Initial conditions for the observer.

Estimated Symbol Value

Q̂0
in x̂0

1 8× 10−3 [m3/s]
Ĥ0

2 x̂0
2 12 [m]

Q̂0
out x̂0

3 8× 10−3 [m3/s]

To minimize the integration error in (22), the following considerations were made: the initial
population vector of the algorithm was fixed by the cross product of two sets, both formed by uniformly
spaced pipe sections Δzi ∈ {Δzmin, 2Δzmin, ..., mΔzmin = L} and λi ∈ {λmin, 2λmin, ..., lλmin = λmax},
where Δzmin = 3.507 [m] and λmin = 6.697× 10−6 [m5/2/s].

Remark 1. It is worth noting that λmax was chosen such that the hole induces a flow through a leak 10%
the size of the pipeline nominal flow at most. A leak higher than this percent is considered as a failure
(a catastrophic breakdown of the system’s ability to perform a required function under specified operating
condition Isermann [36], and this topic goes beyond the scope of this paper).

The SNR (signal-to-noise ratio) of each input and output signal is shown in Table 4. The SNR
was calculated as the ratio of the signal power to the background noise Papoulis and Pillai [37]:

SNR =
E
[
s2]

σ2

where E [•] refers to the expected value and σ stands for the standard deviation of the noisy signal.

Table 4. Signal-to-noise ratio of the input and output signals.

Variable SNR

Hin 2.008 × 101

Hout 6.689 × 101

Qin 1.338 × 102

Hout 1.432 × 102

4.2. Leak Isolation Scheme Results

The proposed scheme was tested by three off-line experiments using some database. First, to
ensure the validity of the mathematical model (8) in a free-leak and leak conditions, synthetic data
were generated using the ESL parameters (shown in Table 2) and then were compared with their
corresponding real data. Some discussions and results are described to demonstrate the Leak Isolation
Scheme’s effectiveness.

4.2.1. Leak Case in Valve 1

Initially, results in a leak induced in Valve 1 are shown. Figure 6a depicts the measured pressure
head at inlet (u1 = Hin) and outlet (u2 = Hout) of the pipeline (i.e., the observation input). Figure 6b
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shows the measured flow upstream (x1 = Qin) and downstream (u1 = Hin) of the pipe together with
their respective synthetic data (Q̄in and Q̄out), generated by (8). As it can be seen, the mathematical
model follows the real data in a proper way despite the measurement noise.

Figure 7a,b shows the evolution of the state observer: upstream and downstream flow rate,
respectively. Notice that the inlet and outlet flow rate are well estimated after the first integration time,
t1. This fact shows that the GA chooses the appropriate values of Δz and λ.

The results of the LDI scheme are depicted in Figure 8a,b, where the leak size and its position
estimation are shown. As it can be seen, the leak position in all three cases is well estimated despite
signal noise.

(a) (b)

Figure 6. Model validation for a leak induced in Valve 1: (a) pressure head at inlet an outlet of the
pipeline u = [u1 u2]

T = [Hin Hout]
T (input signals); and (b) synthetic and real flow rates at inlet (Q̄in

and Qin) and outlet (Q̄out and Qout) of the pipe.

(a) (b)
Figure 7. Flow rate estimations at the ends of the pipeline: (a) flow rate at inlet of the pipe (Qin) and its
estimation (Q̂in); and (b) flow rate at outlet of the pipe (Qout) and its estimation (Q̂out).
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(a)
(b)

Figure 8. Leak parameters: (a) lambda parameter estimation λ̂ concerning Valve 1 (leak magnitude);
and (b) leak position estimation Δz concerning Valve 1.

4.2.2. Leak Case in Valve 2

Now, results in a leak induced in Valve 2 are shown. As before, Figure 9a depicts the measured
pressure head at inlet (u1 = Hin) and outlet (u2 = Hout) of the pipeline. Figure 9b shows the measured
flow upstream (x1 = Qin) and downstream (u1 = Hin) of the pipe together with their respective
synthetic data (Q̄in and Q̄out). In this second case, the mathematical model follows the real data
in a proper way, as well. Figure 10a,b depicts the evolution of the state observer: upstream and
downstream flow rate, respectively. Figure 11a,b depicts the leak size and its position estimation.

(a) (b)

Figure 9. Model validation for a leak induced in Valve 2: (a) pressure head at inlet an outlet of the
pipeline u = [u1 u2]

T = [Hin Hout]
T (input signals); and (b) synthetic and real flow rates at inlet (Q̄in

and Qin) and outlet (Q̄out and Qout) of the pipe.
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(a) (b)
Figure 10. Flow rate estimations at the ends of the pipeline: (a) flow rate at inlet of the pipe (Qin) and
its estimation (Q̂in); and (b) flow rate at outlet of the pipe (Qout) and its estimation (Q̂out).

(a)
(b)

Figure 11. Leak parameters: (a) lambda parameter estimation λ̂ concerning Valve 2 (leak magnitude);
and (b) leak position estimation Δz concerning Valve 2.

4.2.3. Leak Case in Valve 3

Finally, the results in a leak induced in Valve 3 are shown. Figure 12a depicts the measured
pressure head at inlet (u1 = Hin) and outlet (u2 = Hout) of the pipeline. Figure 12b shows the measured
flow upstream (x1 = Qin) and downstream (u1 = Hin) of the pipe together with their respective
synthetic data (Q̄in and Q̄out). In the same way as before, the mathematical model follows the real data
in a proper way. Figure 13a,b depicts the evolution of the state observer: upstream and downstream
flow rate, respectively. Figure 14a,b depicts the leak size and its position estimation.
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(a) (b)

Figure 12. Model validation for a leak induced in Valve 3: (a) pressure head at inlet an outlet of the
pipeline u = [u1 u2]

T = [Hin Hout]
T (input signals); and (b) synthetic and real flow rates at inlet (Q̄in

and Qin) and outlet (Q̄out and Qout) of the pipe.

(a) (b)
Figure 13. Flow rate estimations at the ends of the pipeline: (a) flow rate at inlet of the pipe (Qin) and
its estimation (Q̂in); and (b) flow rate at outlet of the pipe (Qout) and its estimation (Q̂out).

(a)

(b)

Figure 14. Leak parameters: (a) lambda parameter estimation λ̂ concerning Valve 3 (leak magnitude);
and (b) leak position estimation Δz concerning Valve 3.

5. Conclusions and Future Work

The present work deals with the leak isolation problem (to estimate the position and magnitude
of a leak in a water pipeline) using a heuristic method. The proposed scheme assumes only flow
and pressure sensors at the upstream and downstream of the pipeline. Exploiting the fact that the
pipeline mathematical model is observable, it is possible to design an observer where the observation
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dynamic error system is exponentially stable only if the leak size and location parameters are known
and, at last, uniform ultimate boundedness in other cases. In this way, the authors propose to design
a bank of observers together with a Genetic Algorithm. This scheme allows for minimizing the integral
observation error. Then, the minimum integral observation error will be reached when the leak position
and magnitude match the real ones.

The approach presented in the paper estimated the leak position and its intensity in a very
acceptable way. This is corroborated since both downstream and upstream flow rates were well
estimated in the presence of noise. It means that the genetic algorithm chooses the real values of the λ

(size of the leak) and Δz (leak location). The use of the integration error as a fitness function helped
obtain a good estimation despite the presence of noise.

As future work, this algorithm will be refined to achieve better performance. Moreover,
the authors will explore the possibility of extending the present approach to two or more leaks.
Finally, the algorithm will be tested to locate leaks in a hydraulic network.
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Abstract: Diesel particulate filter is one of the most effective after-treatment techniques to reduce
Particulate Matters (PM) emissions from a diesel engine, but the blocking Diesel Particulate Filter
(DPF) will seriously affect the engine performance, so it is necessary to study the fault diagnosis of
blocking DPF. In this paper, a simulation model of an R425DOHC diesel engine with wall-flow ceramic
DPF was established, and then the model was verified with experimental data. On this basis, the fault
diagnosis of the blocking DPF was studied by using spectral analysis on instantaneous exhaust
pressure. The results showed that both the pre-DPF mean exhaust pressure and the characteristic
frequency amplitude of instantaneous exhaust pressure can be used as characteristic parameters
of monitoring the blockage fault of DPF, but it is difficult to monitor DPF blockage directly by
instantaneous exhaust pressure. In terms of sensitivity, the characteristic frequency amplitude of
instantaneous exhaust pressure is more suitable as a characteristic parameter to monitor DPF blockage
than mean exhaust pressure. This work can lay an important theoretical foundation for the on-board
diagnosis of DPF.

Keywords: DPF; blockage; fault diagnosis; exhaust pressure; spectral analysis

1. Introduction

With the development of the economy and the progress of science and technology, the automatic
industry has developed rapidly. Diesel engines have been widely used because of their good power,
economy, reliability, and emission (lower CO and HC compared with gasoline engines) performances.
Not only do diesel engines hold the dominant position in the area of medium- and heavy-duty vehicles,
but they are also applied widely in light-duty vehicles in the present situation [1]. While the automobile
brings convenience to human life, the related pollution problem is becoming more and more serious.
Therefore, many countries have established more and more rigorous regulations to limit engine
emissions. In order to reduce the emission pollutants of diesel engines, the researchers have taken
many measures, such as improving fuel quality, internal purification technology, and after-treatment
technology. For the moment, to satisfy the increasingly stringent emission regulations, we must depend
on both internal purification technology and after-treatment technology.

The diesel particulate filter (DPF) is one of the most effective after-treatment techniques to reduce
PM emissions from the diesel engine, which has been widely used [2]. At present, the wall flow filter
invented by America Corning Company is regarded as the best filter because of its performance and
its micro structure [3].

DPFs have been used in diesel engine vehicles for over 10 years [4–9], since the French Peugeot
Company invented the DPF system in 2000. During the use of DPF, with the increase in particulate
depositions in the DPF, the exhaust resistance of the diesel engine increases, and blocking the DPF will
seriously affect the engine performance (particulate depositions increase to a certain extent). To avoid
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the blockage fault of DPFs and to satisfy the increasingly stringent emission regulations, we need to
monitor and diagnose the blockage situation of DPFs so as to clean particulates at the proper time.
Therefore, it is necessary to study the fault diagnosis of blocking DPFs.

In recent years, many researchers [10–15] have carried out a lot of research on the fault diagnosis
of blocking DPFs. At present, the most common used fault diagnosis method is to monitor the
average exhaust pressure pre-DPF [2], but the exhaust pressure is changing constantly, as for on board
diagnosis, the method has some disadvantages in sensitivity and aging characteristics. As a result,
some researchers want to apply a new method to studying the fault diagnosis of blocking DPFs. Kumar
et al. [16] raised a fault diagnosis method based on power spectral density theory, to diagnose the
failure status of DPFs by analyzing the power spectral density of upstream and downstream sensor
waveforms. Surve et al. [5] conducted the fault diagnosis of DPFs by combining the correlation analysis
method with the spectral analysis method—the principle is to diagnose the failure status of DPF by
calculating the characteristic value of the transfer function, and the advantages include that the failure
status of the DPF can be diagnosed under the transient conditions of the diesel engine and that the
slight failure of the DPF can also be found. Gupta et al. [17] raised a new fault diagnosis method based
on the adaptive model. This method has great robustness for modeling error, sensor noise, and process
variability, and it can be applied to on-board diagnosis (OBD) without any extra sensors.

To our knowledge, although some researchers have conducted a lot of research on the fault
diagnosis of blocking DPFs and obtained many research results, there is still no consensus over how to
efficiently monitor and diagnose the DPF system (and reach the level of OBD). Also, the methods to
monitor and diagnose DPF status are still not comprehensive. Therefore, the spectral analysis method
is applied in this paper to study the fault diagnosis of blocking DPF. This work can lay an important
theoretical foundation for the on board diagnosis of DPF.

In this paper, a simulation model of a R425DOHC diesel engine with wall-flow ceramic DPF
was established, and then the model was verified. On this basis, the effects of different blockage
extents on the mean exhaust pressure of pre-DPF and the effects of different blockage extents on
instantaneous exhaust pressure and its frequency spectrum were studied, and the sensitivity of mean
exhaust pressure and characteristic frequency amplitude of instantaneous exhaust pressure with an
increase in particulate depositions in DPF were comparatively studied.

2. Simulation Model and Validation

The research object was an R425DOHC diesel engine with a wall-flow ceramic DPF, and its main
technical parameters are shown in Tables 1 and 2. GT-SUITE software was applied in this paper, which
can be used for the performance simulation of an engine and after-treatment system. On this basis,
a simulation model of the R425DOHC diesel engine with wall-flow ceramic DPF was established,
as shown in Figure 1.

Table 1. Main parameters of the R425DOHC diesel engine.

Diesel Parameters Value Diesel Parameters Value

Rated speed (r/min) 4000 Rated power (kW) 105
Max torque (N·m) 340 Displacement (L) 2.499

Bore × Stroke (mm) 92 × 94 Cylinder number 4
Compression ratio 17.5:1 Stroke 4

Table 2. Main parameters of the diesel particulate filter.

DPF Parameters Value

Filter length (mm) 200
Filter diameter (mm) 190
Cell density (cm−2) 16
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Figure 1. GT-Power model of an R425DOHC diesel engine with a diesel particulate filter (DPF).

To verify the accuracy of simulation model, we compared the simulation results of power
performance and fuel economy under external characteristics with experimental data of the diesel
engine, and the compared results are shown in Figures 2 and 3 and Table 3. In Figures 2 and 3, we
set engine load as full-load, and set engine speed as 1000 r/min, 1500 r/min, 2000 r/min, 2500 r/min,
3000 r/min, 3500 r/min, and 4000 r/min. In Table 3, the max torque point was 100% load, 2000 r/min,
and the max power point was 100% load, 4000 r/min. In addition, the experimental data of the diesel
engine were supplied by the manufacturer.

n

P
 

Figure 2. Comparison of experimental engine power with simulation results under full-load conditions.
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n

T

Figure 3. Comparison of experimental engine torque with simulation results under full-load conditions.

Table 3. Comparison of experimental engine specific fuel consumption with simulation results under
rated conditions.

Specific Fuel Consumption
Simulation

Results
Experimental Data

Max torque point (g/kW·h) 208.9 215
Max power point (g/kW·h) 252.2 256

As shown in Figures 2 and 3 and Table 3, the simulation results of power performance and fuel
economy under external characteristics agreed well with the experimental data of the diesel engine,
and the calculation errors were less than 5%, which suggests that the simulation model is correct and
can be applied to simulating the exhaust characteristics of the diesel engine.

3. Effects of Different Blockage Extents of DPF on Mean Exhaust Pressure

Particulate deposition amounts in a DPF determine the blockage extent of the DPF. Meanwhile,
considering the strong pulsation of exhaust pressure, the effects of different blockage extents on
the mean exhaust pressure and the instantaneous exhaust pressure will be studied. In this section,
the effects of different particulate deposition amounts on mean exhaust pressure will be discussed firstly.

In this section, we set engine speed as 2000 r/min and 4000 r/min—2000 r/min is the maximum
torque speed, while 4000 r/min is the maximum power speed (rated speed).

Figure 4 gives the mean exhaust pressure versus particulate deposition amounts in the DPF
(0 g, 20 g, 40 g, 60 g,) under different engine conditions.

P

 

P

(a) 2000 r/min (b) 4000 r/min 

Figure 4. Effects of particulate depositions on the mean exhaust pressure.
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As shown in Figure 4, when the engine speed was 2000 r/min or 4000 r/min, under different engine
loads, the mean exhaust pressure increased obviously with the increase in particulate depositions in
the DPF. This is because particulate depositions affect the circulation performance of the DPF—the
more particulate depositions, the worse the circulation performance of the DPF. The exhaust gas cannot
be discharged through the DFP to the external envoriment, which leads to the increase in the mean
exhaust pressure pre-DPF.

Also, mean exhaust pressure increased obviously with the increase in diesel engine loads,
regardless of the engine speed. In addition, comparing Figure 4a with Figure 4b, under the same
engine load, the mean exhaust pressure of pre-DPF when the engine speed was 4000 r/min was greater
than that when the engine speed is 2000 r/min. This is because the flow velocity of exhaust gas at high
engine speed is higher than that at low engine speed, while the resistance produced by the DPF at flow
velocity is greater than that at low flow velocity.

Based on the above analysis, we can determine that monitoring the mean exhaust pressure pre-DPF
is a way to understand the situation of particulate depositions in the DPF so that we can diagnose the
blockage extent. This conculation proved again that the commonly used diagnosis method is effective
and feasible.

4. Effects of Different Blockage Extents of DPF on the Instantaneous Exhaust Pressure and its
Frequency Spectrum

The gas flow in the exhaust system of a diesel engine is an unsteady flow. Exhaust pressure varies
not only with engine conditions, but it is also different at different times of one exhaust cycle. So,
the blockage extent of a DPF has an effect on the instantaneous exhaust pressure, except for the mean
exhaust pressure. In this section, the effects of different blockage extents of DPFs on the instantaneous
exhaust pressure will be first studied, then the effects of different blockage extents of DPFs on the
frequency spectrum of instantaneous exhaust pressure will be studied, and an attempt will be made to
find the eigen value which can be used to diagnose the blockage extents of DPFs.

Similar to the research on mean exhaust pressure, the measurement position of instantaneous
exhaust pressure is also at the front of DPFs. Engine load was set as 100%, and engine speeds were set
as 1000 r/min, 2000 r/min, 3000 r/min, and 4000 r/min. Particulate deposition amounts in DPF were set
as 0 g, 20 g, 40 g, and 60 g, respectively.

Figure 5 shows that the instantaneous exhaust pressure varied with the increase in particulate
depositions in DPFs under different engine conditions.

As shown in Figure 5, when engine load was 100%, under different engine speeds, instantaneous
exhaust pressure increased with the increase in particulate depositions in the DPF, and the peak and
trough values of instantaneous exhaust pressure increased obviously in one exhaust cycle. However,
the instantaneous exhaust pressure of a diesel engine varies constantly in the time domain, so it is
difficult to diagnose the blockage extents of a DPF by monitoring the instantaneous exhaust pressure
in the time domain. Therefore, Fourier transform was applied to process the signal of instantaneous
exhaust pressure, and we tried to find the characteristic parameter which can be used to reflect the
blockage extents of DPF in frequency domain.

To research whether the frequency amplitude of instantaneous exhaust pressure with different
exhaust pulsation frequencies can be used as the characteristic parameter to diagnose the blockage
extents of DPF, we need to research the effects of particulate depositions in DPF on the frequency
amplitude of instantaneous exhaust pressure with different exhaust pulsation frequencies.

Figure 6 gives the effects of particulate depositions in DPF on the Fourier spectrum of instantaneous
exhaust pressure under different engine conditions.
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Figure 5. Effects of particulate depositions on the instantaneous exhaust pressure.
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Figure 6. Effects of particulate depositions on the Fourier spectrum of instantaneous exhaust pressure.

As shown in Figure 6, in the Fourier spectrum of instantaneous exhaust pressure, when engine
load was 100%, under the same engine speed, although particulate depositions in the DPF were
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different, the maximum frequency amplitude corresponded to the same frequency. The frequency
is described as the exhaust pulsation frequency of the diesel engine at this speed. In addition, with
the increase in particulate depositions in the DPF, the frequency amplitude of instantaneous exhaust
pressure with different frequencies increases, and the variation extent of the frequency amplitude
under the exhaust pulsation frequency is the most obvious.

In addition, with the increase in engine speeds, the frequency amplitude under the exhaust
pulsation frequency decreased gradually. Also, the increasing extent of the frequency amplitude under
the exhaust pulsation frequency decreased gradually with the increase in particulate depositions
in the DPF. When the engine speed was 1000 r/min, the exhaust pulsation frequency was 33.33 Hz.
The frequency amplitudes under the same exhaust pulsation frequency were 3.9 kPa, 4.9 kPa, 5.8
kPa, and 6.6 kPa when particulate depositions in the DPF were 0 g, 20 g, 40 g, and 60 g, respectively.
When the engine speed was 3000 r/min, the exhaust pulsation frequency was 100.00 Hz. The frequency
amplitudes under the same exhaust pulsation frequency were 2.9 kPa, 3.3 kPa, 3.7 kPa, and 4.2 kPa
when particulate depositions in the DPF were 0 g, 20 g, 40 g, and 60 g, respectively.

Note that the instantaneous exhaust pressure under the constant engine condition is a stationary
signal, so Figure 6 gives the calculation results based on the Fourier spectrum. In real engine conditions,
the instantaneous exhaust pressure is an unsteady signal. In this paper, we assumed it was quasi-steady
state (because the exhaust pulsation frequency is low and constant under the certain engine condition).

To get the sensitivity of the frequency amplitude under the exhaust pulsation frequency versus
particulate depositions in the DPF, Figure 7 gives the effects of particulate depositions in the DPF on
the frequency amplitude under exhaust pulsation frequency under different engine conditions.

m
F

 

m
F

(a) 2000 r/min (b) 4000 r/min 

Figure 7. Effects of particulate depositions in the DPF on the frequency amplitude under exhaust
pulsation frequency.

As shown in Figure 7, when the engine speed was 2000 r/min or 4000 r/min, under different
engine loads, the frequency amplitude under exhaust pulsation frequency increased obviously with
the increase in particulate depositions in the DPF. In addition, the frequency amplitude under exhaust
pulsation frequency increased obviously with the increase in diesel engine loads, regardless of the
engine speed. Also, compared Figure 7a with Figure 7b, under the same engine load, the frequency
amplitude under exhaust pulsation frequency when the engine speed was 4000 r/min was smaller than
when the engine speed was 2000 r/min.

Based on the above analysis, we can determine that the frequency amplitude under exhaust
pulsation frequency may be used as characteristic parameter to diagnose the blockage extent of DPFs.
The frequency amplitude under exhaust pulsation frequency is defined as characteristic frequency
amplitude in this paper.

5. Comparison between Characteristic Frequency Amplitude and Mean Exhaust Pressure

According to the analysis of Sections 3 and 4, both mean exhaust pressure and characteristic
frequency amplitude of instantaneous exhaust pressure may be used as characteristic parameters
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to diagnose the blockage extent of DPFs. However, which one is more sentitive to the variation in
particulate depositions in DPFs (more qualified to monitor the blockage extents of DPF) requires
further comparative research.

Next, this paper will study the sensitivity of mean exhaust pressure change rate and characteristic
frequency amplitude change rate under different particulate depositions in DPF. The change rate of
mean exhaust pressure is defined by formula (1), while the change rate of characteristic frequency
amplitude is defined by formula (2):

θP1 =
P1x − P10

P10
, (1)

θmF =
mFx −mF0

mF0
, (2)

where P1x represents the mean exhaust pressure when particulate depositions exist in the DPF,
P10 represents the mean exhaust pressure when particulate deposition is 0 g in the DPF, mFx represents
the characteristic frequency amplitude when particulate depositions exist in the DPF, mF0 represents
the characteristic frequency amplitude when particulate deposition is 0 g in the DPF.

Figures 8 and 9 provide a comparison of the mean exhaust pressure change rate with characteristic
frequency amplitude change rate under different particulate depositions at 2000 r/min and 4000 r/min.

θ

m  m

θ

(a) Load 25% (b) Load 50% 

m

θ

 m

θ

(c) Load 75% (d) Load 100% 

Figure 8. Comparison of mean exhaust pressure change rate with characteristic frequency amplitude
change rate under different particulate depositions at 2000 r/min.

As shown in Figures 8 and 9, despite engine conditions and particulate depositions in DPF, the
change rate of the characteristic frequency amplitude was always greater than the change rate of mean
exhaust pressure. Take Figure 9, for example, when particulate depositions in DPF increased from 0 g
to 20 g, the change rates of mean exhaust pressure under different engine loads were less than 5%,
while the change rates of characteristic frequency amplitude were greater than 15%; when particulate
depositions in the DPF increased from 0 g to 40 g, the change rates of mean exhaust pressure under
different engine loads were less than 10%, while the change rates of characteristic frequency amplitude
were greater than 25%; when particulate depositions in the DPF increased from 0 g to 60 g, the change
rates of mean exhaust pressure under different engine loads were less than 15%, while the change rates
of characteristic frequency amplitude were greater than 35%.
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Figure 9. Comparison of mean exhaust pressure change rate with characteristic frequency amplitude
change rate under different particulate depositions at 4000 r/min.

The major reason for this is that mean exhaust pressure represents the average value of pressure
in a relatively long period, so the value is relatively great and the effect of particulate depositions in
the DPF on mean exhaust pressure is small, while characteristic frequency amplitude represents the
frequency amplitude component under exhaust pulsation frequency, so the value is relatively small
and the effect of particulate depositions in the DPF on characteristic frequency amplitude is great.
Therefore, characteristic frequency amplitude is more sentitive than mean exhaust pressure to the
variation in particulate depositions in the DPF.

A comparison of Figures 8 and 9 shows that under the same engine speed, the difference in
the change rate of characteristic frequency amplitude was not obvious with different engine loads.
Also take Figure 9, for example, when particulate depositions in the DPF increased from 0 g to 40 g,
the change rates of the characteristic frequency amplitude were 37.8%, 38.4%, 37.4%, and 38.8% with
different engine loads (25%, 50%, 75%, 100%, respectively).

In addition, it was also found that when the diesel engine speed was 2000 r/min, the change rate
of the characteristic frequency amplitude was less than the value when engine speed was 4000 r/min
under the same conditions. When particulate depositions in the DPF increased from 0 g to 60 g,
the change rate of the characteristic frequency amplitude was about 40% at 2000 r/min, while the
change rate of the characteristic frequency amplitude was about 60% at 4000 r/min.

Therefore, in terms of sensitivity, the characteristic frequency amplitude of instantaneous
exhaust pressure is more suitable as a characteristic parameter to monitor DPF blockage than mean
exhaust pressure.

Finally, this method is correct under constant engine condition and under the assumption that
the instantaneous exhaust pressures in real engine conditions are a quasi-steady state. For more
accuracy in further study, wavelet transform and Hilbert Huang Transform (HHT) will be the better
research methods.
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6. Conclusions

In this paper, a simulation method was used to study the fault diagnosis of blocking DPFs by
using spectral analysis on instantaneous exhaust pressure. From the results of this investigation, some
conclusions can be drawn:

(1) A simulation model of an R425DOHC diesel engine with wall-flow ceramic DPF was established,
and then the correctness of the model was verified with experimental data;

(2) Under different engine conditions, mean exhaust pressure increases obviously with the increase
in particulate depositions in DPF. Mean exhaust pressure increases with the increase in diesel engine
loads, regardless of the engine speed. Under the same engine load, the mean exhaust pressure of
pre-DPF when the engine speed is 4000 r/min is greater than that when the engine speed is 2000 r/min.
Monitoring the mean exhaust pressue pre-DPF is a way to understand the situation of particulate
depositions in the DPF so that we can diagnose the blockage extents of DPF;

(3) Under different engine conditions, instantaneous exhaust pressure increases with the increase
in particulate depositions in the DPF, and the peak and trough values of instantaneous exhaust pressure
increase obviously in one exhaust cycle. However, it is difficult to diagnose the blockage extent of
a DPF by monitoring instantaneous exhaust pressure in the time domain. Characteristic frequency
amplitude decreases gradually an the increase in engine speed, but increases with an increase in engine
loads, and the increasing extent of characteristic frequency amplitude decreases gradually with an
increase in particulate depositions in the DPF. Characteristic frequency amplitude may be used as a
characteristic parameter to diagnose the blockage extent of DPFs;

(4) Despite engine conditions and particulate depositions in DPFs, the change rate of characteristic
frequency amplitude is always greater than the change rate of mean exhaust pressure. Under the same
engine speed, the difference in the change rate of characteristic frequency amplitude is not obvious
with different engine loads. The change rate of characteristic frequency amplitude when engine speed
is 2000 r/min is less than the value when engine speed is 4000 r/min under the same conditions;

(5) In terms of sensitivity, the characteristic frequency amplitude of instantaneous exhaust pressure
is more suitable as a characteristic parameter to monitor DPF blockage than mean exhaust pressure.
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Abstract: Deadlock control approaches based on Petri nets are usually implemented by adding
control places and related arcs to the Petri net model of a system. The main disadvantage of the
existing policies is that many control places and associated arcs are added to the initially constructed
Petri net model, which significantly increases the complexity of the supervisor of the Petri net model.
The objective of this study is to develop a two-step robust deadlock control approach. In the first
step, we use a method of deadlock prevention based on strict minimal siphons (SMSs) to create a
controlled Petri net model. In the second step, all control places obtained in the first step are merged
into a single control place based on the colored Petri net to mark all SMSs. Finally, we compare the
proposed method with the existing methods from the literature.

Keywords: Automated manufacturing system; colored Petri net; deadlock prevention; siphon

1. Introduction

An automated manufacturing system (AMS) is a conglomeration of robots, machine tools, fixtures,
and buffers. Several types of products enter the manufacturing system at separate points in time;
the system can process these parts based on a specified sequence of operations and resource sharing.
The sharing of resources leads to the occurrence of deadlock states, in which the local or global
system is incapacitated [1–4]. Thus, an efficient deadlock-control algorithm is needed to prevent the
deadlocks in an AMS. Petri nets are an excellent mathematical and graphical tool suitable for modeling,
analyzing, and controlling deadlocks in AMSs [5,6]. The behavior and characteristics of an AMS
(such as synchronization, conflict, and sequences) can be described by using Petri nets. Moreover,
Petri nets may be used to provide the liveness and boundedness of a system [7]. To address the
deadlock problem in AMSs, several approaches with Petri nets exist. These approaches are categorized
into three strategies: (1) deadlock detection and recovery, (2) deadlock prevention, and (3) deadlock
avoidance [7,8].

Traditionally, deadlock control approaches for AMS control are evaluated by using three criteria:
structural complexity, computational complexity, and behavioral permissiveness [7]. Structural
complexity means that a controller can be implemented with fewer monitors and arcs. When the
computational complexity of a deadlock control approach is low, it can be applied to a large-scale
system [7]. Behavioral permissiveness achieves high resource utilization in a controlled Petri net.
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Deadlock control may be implemented in AMS with reliable resources (resources without failures or
breakdowns) or unreliable resources (resources with failures or breakdowns). For reliable resources,
there are two main techniques to prevent deadlocks in AMSs using a Petri net: reachability graph
analysis [9–11] and structural analysis [12,13]. The reachability graph analysis needs listing all or a
part of the reachable markings of the Petri net model. There are two parts of the reachability graph:
the deadlock zone (DZ) and the live zone (LZ). First-met bad markings (FBMs) are defined in and
extracted from the DZ. In this case, the deadlock is eliminated by designing and adding a monitor to
prohibit the first-met bad markings from being reached. In this process, all first-met bad markings
can be prevented by using iterations [14]. Several policies have been developed to prevent deadlock
states, including iterative methods, the theory of region, and siphon control [10,13–19]. The weakness
of the reachability graph analysis is that the size of a reachability graph of a Petri net grows quickly
and, in the worst case, grows exponentially with respect to the net size and its initial marking, and the
net can easily reach an unmanageable level. Structural analysis is often applied to a typical structure
of Petri nets, such as siphons. The control steps in this technique are simple: each minimal siphon
is prohibited from being non-empty, and each unmarked minimal siphon needs an added monitor
to ensure a system to be live. However, the weakness of this technique is that the number of control
places will be increased when the size of a Petri net model is increased; hence, this results in high
structural complexity [20].

In the literature, deadlock control approaches based on the structural analysis technique (siphons)
for AMSs with the Petri nets framework can be implemented by inserting the control places and
the associated arcs to the original net, so that its siphons are permanently non-empty. The main
disadvantage of the current policies is that many control places and associated arcs are inserted into
the original Petri net model, which leads to the increased complexity of the supervisor of the Petri net
model, compared with the initial model for the Petri net supervisor. Hence, an efficient approach is
needed to minimize the Petri net supervisors’ structural complexity for AMS. The objective of this
study is to develop a two-step robust deadlock control policy. A technique based on SMSs developed
in [21] is used in the first phase to develop a controlled Petri net model. In the second step, all control
places obtained in the first step are merged into one control place based on colored Petri nets to make
all SMSs marked.

The rest of the paper is organized as follows. Basic concepts of Petri nets are introduced in
Section 2. Section 3 describes a deadlock prevention approach based on the SMS and the proposed
robust control based on colored Petri nets. Section 4 shows an example from the literature. Finally,
Section 5 presents conclusions and future research.

2. Preliminaries

This section introduces the basics of Petri nets and a general Petri net simulator (GPenSIM) tool.

2.1. Basics of Petri Nets

Let N = (P, T, F, W) be a Petri net, where P and T are finite non-empty sets of places and transitions,
respectively. Elements in P ∪ T are named nodes. Here, P ∪ T � ∅ and P ∩ T = ∅; P and T are depicted
by circles and bars, respectively. Next, F ⊆ (P × T) ∪ (T × P) is the set of directed arcs that join the
transitions with places (and vice versa), W: (P × T) ∪ (T × P)→IN is a mapping that assigns an arc’s
weight, where IN = {0, 1, 2, . . . }.

N is known as an ordinary net if ∀ (p, t) ∈ F, W (p, t) = 1, where N = (P, T, F). N is named a
weighted net if there is an arc between x and y such that W (x, y) > 1. Let N = (P, T, F, W) and node a ∈
P ∪ T. Then, ·a = {b ∈ P ∪ T | (b, a) ∈ F} is named the preset of node a, and a· = {b ∈ P ∪ T | (a, b) ∈ F} is
named the postset of node a.

A marking M of N is a mapping M: P→ IN. Next, (N, Mo) is a marked Petri net (PN), represented
as PN = (P, T, F, W, Mo), where the initial marking of PN is Mo: P→ IN. A transition t ∈ T is enabled at
marking M if for all p ∈ ·t, M (p) ≥W (p, t), which is denoted as M [ t〉. When a transition t fires, it takes
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W (p, t) token (s) from each place p ∈ ·t, and adds W (t, p) token (s) in each place p ∈ t·. Thus, it reaches
a new marking M′, denoted as M [ t〉M′, where M′(p) =M (p) −W (p, t) +W (t, p).

We call N self-loop free if for all a, b ∈ P ∪ T, W (a, b) > 0 implies W (b, a) = 0. Let [N] be an
incidence matrix of net N, where [N] is an integer matrix that consists of |T| columns and |P| rows with
[N] (p, t) =W (t, p) −W (p, t). The set of markings that are reachable from M in N is named the set of
reachability of the Petri net model (N, M) denoted by R (N, M).

Let (N, Mo) be a marked Petri net. A transition t ∈ T is live if for all M ∈ R (N, M), there exists a
reachable marking M′ ∈ R (N, M) such that M′[ t〉 holds. A transition is dead at Mo if there does not
exist t ∈ T such that Mo [ t〉 holds. M′ is said to be reachable from M if there exists a finite transition
sequence δ = t1 t2 t3 . . . tn that can be fired, and markings M1, M2, M3, . . . , and Mn−1 such that M [ t1〉
M1 [ t2〉M2 [ t3〉M2 . . . Mn−1 [ tn〉M′, denoted as M [δ〉M′, satisfies the state equation M′ =M + [N]

→
δ ,

where
→
δ : T→ IN maps t in T to the number of appearances of t in δ and is called a Parikh vector or a

firing count vector.
Let (N, Mo) be a marked Petri net. It is said to be k-bounded if for all M ∈ R (N, M0), for all p ∈ P,

M(p) ≤ k (k ∈ {1, 2, 3, . . . }). A net is safe if all of its places are safe, i.e., in each place p, the number of
tokens does not exceed one. In other words, a net is k-safe if it is k-bounded.

P-vectors (place vectors) and T-vectors (transition vectors) are column vectors. A P-vector I: P→
Z cataloged by P is said to be a place invariant or P-invariant if I � 0 and IT. [N] = 0T, and a T-vector J:
T→ Z cataloged by T is said to be a transition invariant or T-invariant if J � 0 and [N]. J = 0, where Z is
the set of integers.

When each element of I is nonnegative, place invariant I is called a place semiflow or P-semiflow.
Assume that I is a P-invariant of a net with (N, Mo) and M is a marking reachable from the initial
marking Mo. Then, ITM = ITMo. Let ||I|| = {p |I(p) � 0} be the support of P-invariant I.

The supports of P-invariant I are classified into three types: (1) ||I||+ is the positive support of
P-invariant I with ||I||+= {p|I (p) > 0}. (2) ||I||− is the negative support of P-invariant I with ||I||− = {p
|I(p) < 0}. (3) I is a minimal P-invariant if ||I|| is not a superset of the support of any other one and its
components are mutually prime. Let li be the coefficients of P-invariant I if for all pi ∈ P, li = I(pi).

A colored Petri net (CPN) is described as a nine-tuple CPN = (P, T, F, SC, Cf, Nf, Af, Gf, If), where

1. P and T are finite nonempty sets of places and transitions, respectively, assuming P ∩ T = ∅. F is a
set of flows (arcs), from pi ∈P to tj ∈T and from ti ∈ T to pj ∈ P.

2. SC is a color set that contains colors ci and the operations on the colors.
3. Cf is the color function that maps pi ∈P into colors ci ∈ SC.
4. Nf is the node function that maps F into (P × T) ∪ (T × P).
5. Af is the arc function that maps each flow (arc) f ∈ F into the term e.
6. Gf is the guard function that maps each transition ti ∈ T to a guard expression g that has a

Boolean value.
7. If is the initialization function that maps each place pi ∈ P into an initialization expression.

2.2. GPenSIM Tool

GPenSIM was developed by R. Davidrajuh (the fourth author of our paper) and runs in MATLAB.
GPenSIM has been designed to model, control, simulate, and analyze discrete event systems [22].
GPenSIM enables the integration of Petri net models with other toolboxes in MATLAB (e.g., “Control
systems” and “Fuzzy logic”). Table 1 shows the advantages and disadvantages of GPenSIM compared
to CPN Tools [23]. Compared to the CPN tools, it is simpler to create a colored Petri net in GPenSIM.
For instance,

1. Being versatile, CPN allows manipulation of the functions Cf, Nf, Af, Gf, and If independently.
However, being simple and crude, these functions (Cf, Nf, Af, Gf, and If) are merged together
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in GPenSIM and are coded in the preprocessor files. Hence, GPenSIM allows fewer degrees of
freedom when developing a model.

2. In CPN tools, it is possible to impose logical constraints on places, transitions, and arcs. In
GPenSIM, logical expressions can only be processed by transitions. Inevitably, this means
GPenSIM poses restrictions in modeling compared to CPN. However, this is the price paid for
achieving simplicity in GPenSIM (easiness in learning, using, and extending).

3. The arc weights can dynamically alter in CPN tools because of the logic conditions connected to
it. GPenSIM does not allow dynamic nets (e.g., dynamic arcs, run-time removal of places and
transitions). Once a Petri net is defined in the Petri net definition file (PDF), it cannot be changed.

Table 1. The advantages and disadvantages of GPenSIM compared to CPN Tools.

Tool Advantages Disadvantages

GPenSIM

1. Simple, easy to learn, and use.
2. Easy to extend.
3. GPenSIM runs on MATLAB, it is

easy to interconnect with
other toolboxes.

1. Limited functionality.
2. The user is supposed to extend the

primitive functions offered or to
develop their own functions.

CPN Tools

1. A large number of
functions available.

2. Has been used to model
large systems.

1. Quite complicated, as this is a
product of several researchers,
extending the tool into diverse
directions over a period of 20 or
more years.

2. Lack of user manual deprives
new users.

To model, simulate, analyze, and control the Petri net models in GPenSIM, three files should be
coded: Petri net definition file (PDF), main simulation file (MSF), and pre- and postprocessor files.

1. PDF defines the static elements of a Petri net (places, transitions, and arcs).
2. Before the simulation starts, MSF loads a PDF into memory and the workbench, and then the

simulation begins. During the simulation runs, MSF will be blocked; the control will be handed
back to MSF together with the simulation results when the simulation is finished. Consequently,
MSF has no control over what happens during the simulation.

3. Pre-and postprocessors will be called during the simulation before and after firing of the transition.
The preprocessor will inspect if the conditions of firing for a certain transition are met, and the
postprocessor will execute post-firing activities if needed after a certain transition has been fired.
These can be used to control the runtime of the system, as they are called during the simulation.

All tokens are homogeneous inside a place. It does not matter which token is first or last to arrive
at the place. Similarly, it does not matter by which transition a token is deposited at the place. However,
GPenSIM introduces the token colors. Each token can become identifiable and unique with a unique
token identification number (tokID). Moreover, we can add some tags (“colors”) to each token. The
following problems are crucial when using colors in GPenSIM:

1. Only transitions can manipulate colors: the colors of the output tokens can be added, deleted, or
changed in the preprocessor.

2. By default, colors are inherited: the system gathers all colored tokens from the input places when
a transition fires and then transfers the colored tokens to the output places. However, color
inheritance can be avoided by overriding.
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3. An enabled transition may choose certain color-based input tokens.
4. An enabled transition may choose certain time-based input tokens (e.g., when the creation time

of the tokens is known).
5. A token has the following structure: tokID, time of creation, and color setting.

A. tokID: a single token identifier (integer value).
B. creation_time: the transition time (real value) when the token was produced. Importantly,

this time may differ when the transition actually deposited the token in an output place.
C. t_color (text string set) is a color setting.

There are several GPenSIM functions used for color manipulation. One of the functions used in
this study is tokenEXColor, which can be expressed as follows:

[set_of_tokID,nr_token_av] = tokenEXColor (place, nr_tokens_wanted, t_color), where the
function requires three input arguments and returns two output values.

1. Input arguments:

(place, nr_tokens_wanted, t_color):

• Place: from which place the tokens are to be selected.
• nr_tokens_wanted: the number of required tokens with the specified color.
• t_color: a set of colors.

2. Output values:

[set_of_tokID,nr_token_av]

• set_of_tokID: a set of tokIDs that meet the color specifications. The set length of tokIDs is
equal to the input argument of nr_tokens_wanted.

• nr_token_av: the number of valid tokIDs available in set_of_tokID; the set may have trailing
zeros to match the length of nr_tokens_wanted.

3. Deadlock Prevention Policy Based on SMSs and Colored Petri Nets

In this section, we use a deadlock-prevention approach based on strict SMSs to design a controlled
Petri net model. This approach is adopted from Ezpeleta et al. [1].

Definition 1 [23]. A PN N = (PA ∪ {p0}, T, F) is said to be a simple sequential process (S2P), if: (1) N is a
strongly connected state machine and (2) each circuit N includes place p0, where p0 is named the idle process
place and PA � ∅ is an operation places set.

Definition 2 [23]. A PN N = ({p0} ∪ PA ∪ PR, T, F) is said to be a simple sequential process with resources
(S2PR) such that:

1. The subnet generated by X = PA ∪ {p0} ∪ T is an S2P.
2. PR � ∅ and (PA ∪ {p0}) ∩ PR = ∅, where PR is a resource places set.
3. ∀p ∈ PA, ∀t ∈.p, ∀t′ ∈ p., ∃ rp ∈ PR, .t ∩ PR = t′. ∩ PR = {rp}.
4. ∀r ∈ PR, .r ∩ PA = r. ∩ PA � ∅ and .r ∩ r. � ∅.
5. (p0) ∩ PR = (p0). ∩ PR � ∅.

Definition 3 [23]. Let N = ({p0} ∪ PA ∪ PR, T, F) be an S2PR, and Mo be an initial marking of N. An S2PR
with such a marking is said to be acceptably marked if (1) Mo(p0) ≥ 1, Mo(r) ≥ 1, ∀r ∈ PR, and (3) Mo(p) = 0,
∀p ∈ PA.

Definition 4 [23]. A system of S2PR, named S3PR for abbreviation, is defined recursively as follows:
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1. An S2PR is as well an S3PR
2. Let N1 and N2 be two S3PRs, where N1 = ({p0

1} ∪ PA1 ∪ PR1, T1, F1) and N2 = ({p0
2} ∪ PA2 ∪ PR2, T2,

F2), such that ({p0
1} ∪ PA1) ∩ ({p0

2} ∪ PA2) = ∅, PA1 ∩ PA2 � PC, PR1 ∩ PR2 = PC and T1 ∩ T2 � ∅.
Then, the net N = ({p0} ∪ PA ∪ PR, T, F) is also an S3PR resulting from the composition of N1 and N2 via
the set of common PC and defined as follows: (1) p0 = {p0

1} ∪ {p0
2}, PR = PR1 ∪ PR2, PA = PA1 ∪ PA2, T

= T1 ∪ T2, F = F1 ∪ F2.

The composition of n S2PR N1-Nn via PC, is denoted by
⊗n

i=1 Ni. Ni is used to denote the S2P
from which the S2PR Ni is formed.

Definition 5 [23]. Let N = ({p0} ∪ PA ∪ PR, T, F) be an S3PR. Mo is an initial marking of N. (N, Mo) is said to
be an acceptably marked S3PR if (1) (N, Mo) is an acceptably marked S2PR, (2) N = N1 ◦ N2, where (Ni, Moi) is
said to be an acceptably marked S3PR and

• ∀p ∈ PAi ∪ {p0
i}, Mo (p) =Moi (p), ∀i ∈ {1,2}.

• ∀r ∈ PRi � PC, Mo(r) =Moi (r), ∀i ∈ {1,2}.
• ∀r ∈ PRi, Mo (p) = max {Mo1 (r), Mo2 (r)}, ∀i ∈ {1,2}.

Definition 6 [23]. Let N be an S3PR, A non-empty set S ⊆ P is said to be a siphon in N if · S ⊆ S·. When a
siphon does not include other siphons, it is said to be a minimal siphon.

Definition 7 [24]. Let S be a minimal siphon in an S3PR N. A minimal siphon S is said to be strict if · S � S ·.
Let Π = {S1, S2, S3, . . . , Sk} be a set of SMSs of N. We have S = S A ∪ S R, S R = S ∩ PR, and SA = S \ SR,
where SA denotes the places of operations and SR denotes the places of resources.

Definition 8 [23]. Let r ∈ PR be a reliable resource place in an S3PR N. The operation places that use r are known
as the set of holders of r, indicated by H(r) = {p\p ∈ PA, p ∈ .r ∩ PA � ∅}. [S] is said to be the complementary set
of S if [S]= (U r∈SR

H(r))� SA.

Definition 9 [24]. Let (Na, Ma) and (Nb, Mb) be marked Petri nets; Ni = (Pi, Ti, Fi, Wi), where i = a, b. We
call (N, M) with N = (P, T, F, W) a synchronous net resulting from the integration of (Na, Ma) and (Nb, Mb)
and denote it as (Na, Ma) ‖ (Nb, Mb) when the following conditions are satisfied: (1) P = Pa ∪ Pb, and Pa ∩ Pb
= ∅. (2) T = Ta ∪ Tb. (3) F = Fa ∪ Fb. (4) W (e) =Wi (e), where e ∈ Fi, i= a, b. (5) M(p) =Mi (p), where p ∈ Pi,
i = a, b.

Definition 10 [25]. Let (N, Mo) be an S3PR with N = (PA ∪ {p0} ∪ PR, T, F, Mo). The deadlock controller for
(N, Mo) developed by Ezpeleta et al. [1] is denoted as (V, MVo) = (PV, TV, FV, MVo), where (1) PV = {VS \ S ∈
Π} is a set of control places. (2) TV = {t \ t ∈ ·VS ∪VS·}. (3) FV ⊆ (PV × TV) ∪ (TV × PV) is the set of directed
arcs that join the control places with transitions (and vice versa). (4) For all VS ∈ PV, MVo (VS) =MVo (S) – 1,
where MVo (VS) is called an initial marking of a control place VS.

We call (NV, MVo) a controlled Petri net model resulting from the integration of (V, MVo) and
(N, Mo), denoted as (V, MVo) ‖ (N, Mo). A control place or monitor is inserted to each SMS to ensure
the liveness of a Petri net, and all SMSs can never be unmarked. The proposed policy is simple and
guarantees success. However, it leads to a more complex Petri-net-controlled system than the original
Petri net model, because the number of added monitors is equal to that of the SMSs in the target Petri
net model, and the number of associated arcs is larger than that of the added monitors. According to
the strict minimal siphon concept, the developed deadlock prevention approach proposed by [1] is
described by Algorithm 1.
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Algorithm 1: Strict minimal siphon-based algorithm

Input: Original S3PR Petri net model (N, Mo)
Output: Controlled net (NV, MVo).
Step 1: Compute the set of SMS Π for N.
Step 2: for each S ∈ Π do

• Add a control place VS. /* By using Definition 10.*/
• Add Vs output arcs; all arc weights are unitary. /* By using Definition 10.*/
• Add Vs input arcs; all arc weights are unitary. /* By using Definition 10.*/
• Compute MVo(VS). /* By using Definition 10.*/

end for

Step 3: Output a controlled net (NV, MVo).
Step 4: End

Consider the S3PR Petri net model shown in Figure 1. The Petri net model involves eleven places
and eight transitions. The places can be described as the following set partition: P0 = {p1, p8}, PR = {p9,
p10, p11}, and PA = {p2, p3, . . . , p7}. The model has 20 reachable markings and eight minimal siphons,
three of which are SMSs. The siphons are S1 = {p4, p7, p9, p10, p11}, S2 = {p4, p6, p10, p11}, and S3= {p3, p7,
p9, p10}. According to Definitions 2, 3, and 5

(1) For S1: SA = {p4, p7}, SR = {p9, p10, p11}, H (p9) = {p2, p7}, H (p10) = {p3, p6}, H (p11) = {p4, p5}, [S1] =
{p2, p3, p5, p6}, ·VS1 = {t3, t7}, VS1· = {t1, t5}, and MVo (VS1) = 2.

(2) For S2: SA = {p4, p6}, SR = {p10, p11}, H (p10) = {p3, p6}, H (p11) = {p4, p5}, [S2] = {p3, p5}, ·VS2 = {t3,
t6}, VS2· = {t2, t5}, and MVo (VS2) = 1.

(3) For S3: SA = {p3, p7}, SR = {p10, p11}, H (p10) = {p3, p6}, H (p11) = {p4, p5}, [S3] = {p2, p6}, ·VS3 = {t2,
t7}, VS3· = {t1, t5}, and MVo (VS3) = 1.

Figure 1. S3PR Petri net model of an AMS.

After monitors have been added using Algorithm 1, we obtain the controlled Petri net model
shown in Figure 2.
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Figure 2. Controlled S3PR Petri net model.

Definition 11. Let (N, Mo) be an S3PR with N = (PA ∪ {p0} ∪ PR, T, F, Mo). The deadlock controller for
(N, Mo) developed in Ezpeleta et al. [1] is denoted as (V, MVo) = (PV, TV, FV, MVo). Here, (V, MVo) can be
reduced and replaced by a colored common deadlock control subnet, which is a PN NDC = ({pcombined}, {TDCi ∪
TDCo}, FDC, Cvsi), where pcombined is called the merged control place of all monitors PV = {VS \ S ∈ Π}. TDCi =

{t \ t ∈ •VS}. TDCo = {t \ t ∈ VS
•}. FDC ⊆ ({pcombined}× {TDCi ∪ TDCo}) ∪ ({TDCi ∪ TDCo}× {pcombined}) is the

set of arrows that join the merged control place with transitions (and vice versa). Ccri is the color that maps
pcombined into colors Cvsi ∈ SC, where SC = ∪i∈Vs {Cvsi}. (NDC, MDCo) is called a colored common deadlock
control subnet. For all VS ∈ PV, MDCo (pcombined) =

∑
MVo(VS), where MDCo (pcombined) is an initial token with

the colors marking of the merged monitor.

Figure 3 shows pcombined, the merged control place of all monitors PV of the controlled Petri net
model from Figure 2, according to Definition 6.

 
Figure 3. Merged control place for all monitors PV.

The output arcs of pcombined are connected to the source transitions TDCo, which lead to the sink
transitions of S. Transitions Vsi

• for all monitors PV augmented from Algorithm 1 are defined as VS1· =
{t1, t5}, VS2· = {t2, t5}, and VS3· = {t1, t5}. Thus, TDCo can be denoted as TDCo = ∪i∈Vs{VSi·}, so TDCo =

{2t1, t2, 3t5}, as shown in Figure 4.
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Figure 4. Output arcs of pcombined for all monitors PV.

The input arcs of pcombined are connected with the output of S, denoted as TDCi. Transitions ·Vsi for
all monitors PV augmented from Algorithm 1 are defined as ·Vs1 = {t3, t7}, ·Vs2 = {t3, t6}, and ·Vs3 = {t2,
t7}. Thus, TDCi can be represented by TDCi = ∪i∈Vs{·Vsi}, so TDCi = {t2, 2t3, t6, 2t7}, as shown in Figure 5.

Figure 5. Output arcs of pcombined for all monitors PV.

Moreover, MDCo (pcombined) =
∑

MVo (VS) = MVo (VS1) + MVo (VS2) + MVo (VS3) = 2 + 1 + 1 = 4.
Thus, in the model of the Petri net from Figure 2, we have three color types: SC = {Cvs1, Cvs2, Cvs3}.
Therefore, the total number of colored tokens is 4: we have two tokens of Cvs1 color, one token of Cvs2

color, and one token of Cvs3 color, as shown in Figure 6.

Figure 6. Merged controller for all monitors PV.

Definition 12. Let (N, Mo) be an S3PR with N = (PA ∪ {p0} ∪ PR, T, F, Mo) and (NDC, MDCo) a deadlock
controller for (N, Mo) created by Definition 11 with NDC = {pcombined}, {TDCi ∪ TDCo}, FDC, Cvsi, MDCo). We
call (NC, MCo) a controlled marked Petri net, denoted as (NC, MCo) = (N, Mo) ‖ (NDC, MDCo) and called the
composition of (N, Mo) and (NDC, MDCo), where NC = (PA ∪ {p0} ∪ PR ∪ {pcombined}, T ∪ TDCi ∪ TDCo, F ∪
FDC, CR, MCo) be a colored controlled marked S3PR, and R(NC, MCo) be its reachable graph.
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Theorem 1. The colored controlled net (NC, MCo) is live.

Proof. We must prove that all transitions T, TDCi, TDCo in (NC, MCo) are live. No strict minimal siphon
is emptied. In addition, no new strict minimal siphon is created, since all t1 ∈ T are live. For all t2 ∈
TDCi; if ∀pi ∈ • t2, MC(pi) > 0, then t2 can fire in any case because it is uncontrollable. Thus, MC (pcombined)
> 0, for all t3 ∈ TDCo, if MC (pcombined) > 0, then t3 can fire. Therefore, controlled net (NC, MCo) is live. �

According to the concepts of SMSs and colored Petri nets, the developed policy is stated in
Algorithm 2.

Algorithm 2: Integrated Strict Minimal Siphon And Colored Petri Nets-Based Algorithm

Input: Petri net models (N, Mo) and (V, MVo).
Output: Colored controlled S3PR Petri net (NC, MCo).
Step 1: Combine all monitors PV into one monitor (pcombined), considering the following steps:

1. Add pcombined output arcs TDCo. /* By Definition 11.*/
2. Add pcombined input arcs TDCi. /* By Definition 11.*/
3. Define colors for monitors PV /* By Definition 11.*/
4. Compute MDCo (pcombined) =

∑
MVo (VS), where MDCo (pcombined) is an initial token with the colors

marking of a merged monitor. /* By Definition 11.*/

Step 2: Insert the combined monitor into the Petri net model (N, Mo). The obtained net is denoted as (NC, MCo).
Step 3: Output (NC, MCo).
Step 4: End

Figure 7 shows the proposed single controller for the controlled Petri net model from Figure 2
by using Algorithm 2. In the net shown in Figure 7, when transition t1 fires, the system selects only
one token from input place p1, one token from resource place p9, one token of color Cvs1 from pcombined,
and one token of color Cvs3 from pcombined, and it transfers them into p2. Moreover, when transition t2

fires, the system selects only one token from operation place p2, one token from resource place p10, and
one token of color Cvs2 from pcombined and transfers them into p3. When transition t5 fires, the system
selects only one token from input place p8, one token from resource place p11, one token of color Cvs2

from pcombined, one token of color Cvs2 from pcombined, and one token of color Cvs3 from pcombined and
transfers them into p5. When transition t2 fires, it creates a color Cvs3 on the tokens from p2 and p10

and transfers them into common place pcombined. In addition, when the transition t3 fires, it creates two
colors Cvs1 and Cvs2 on the tokens from p3 and p11 and transfers them into place pcombined. Moreover,
when transition t6 fires, the system creates a color Cvs2 on the tokens from p5 and p10 and transfers
them into place pcombined. Finally, when transition t7 fires, the system creates two colors Cvs1 and Cvs3

on the tokens from p6 and p9 and transfers them into pcombined.
By default, colors are inherited: when a transition TDCo fires, the system gathers all colored tokens

from the input place pcombined and then transfers these colored tokens to the output place pi. However,
color inheritance can be prohibited by overriding.

After implementing a Petri net model shown in Figure 7 by using the GPenSIM code, we usually
obtain three files: the Petri net definition file (PDF), common processor file (COMMON_PRE file), and
main simulation file (MSF). Figure 8 shows the resulting PDF file and defines the static Petri net model
by declaring the sets of places, transitions, and arcs. Figure 9 shows the MSF file used to compute
the simulation results. Figure 10 displays the resulting MSF COMMON_PRE file and defines the
conditions for the enabled failure and recovery transitions to start firing based on the colored tokens,
mean time to failure, and mean time to repair.
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Figure 7. Colored controlled S3PR Petri net model Algorithm 2.

 

Figure 8. PDF file of the colored controlled S3PR Petri net model from Figure 7.

 
Figure 9. Part of the MSF file of the colored controlled S3PR Petri net model from Figure 7.
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Figure 10. Part of the COMMON_PRE file of the colored controlled S3PR Petri net model from Figure 7.

To make the work more solid and well-positioned, we have developed a Trust-based colored
controlled Petri net (TCCPN) [26–29] and comparing the proposed work with relevant TCCPNs.

Definition 13. Let (N TM, M TMo) be a Trust-based colored controlled Petri net (TCCPN) S3PR with NTM =

(PA ∪ {p0} ∪ PR ∪ {pcombined}, T ∪ TDCi ∪ TDCo, F ∪ FDC, CR, η, τ, ψ, MTMo), and R (N TM, MTMo) be its
reachable graph, where

1. η is the arcs weight, which denotes the importance or probability of input arcs into a transition. If there is
an arc (p, t), η (p, t) = c indicates there is a probability of η (p, t) encouraging the token entering t from p.
If the token has a capacity h, the new capacity will be h * c.

2. τ is a time guard for transition t ∈ (T ∪ TDCi ∪ TDCo), τ: t→ [e, f], τ (t) indicates transition t can only
fire during e and f. Particularly, if e = f, that indicates the transition can only occur through e.

3. ψ is the threshold of token in p ∈ (PA ∪ {p0} ∪ PR ∪ {pcombined}), ψ: p→ R, and R is a real type data. Ψ
(p) = r1, indicates when the number of tokens in p is less than or equal to r1, p can reach a new position.

To model a TCCPN, there are many types of factors that can have an influence on trust in colored
controlled net S3PR, and a non-negative real number can represent the value of each factor type. An
assessment process will consume factors for aggregating a new trust value. We use Ein to characterize
the input factors consumed and use Eout to characterize the aggregation trust value. For an assessment
process APk, Ein(APk) is related to the input place and Eou (APk) is related to the output place. There
are rules for firing transitions in a TCCPN and are stated as below:

Definition 14. Let (N TM, M TMo) be a Trust-based colored controlled Petri net (TCCPN) S3PR with NTM
= (PA ∪ {p0} ∪ PR ∪ {pcombined}, T ∪ TDCi ∪ TDCo, F ∪ FDC, CR, η, τ, ψ, MTMo), a transition Tk under the
marking M can be fired when the following conditions are satisfied:

1. t ∈ τ(Tk)
2. Ein(APk) > 0
3. Eout(APk) ≥ Ψ(pi)
4. for all p ∈ ·t, M(p) ≥W (p, t)
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where τ(t) is the valid firing time in TCCPN, and Ein (APk) is the current value of the token in the input place.
Eout (APk) is the current value of the token in the output place, and Ψ (pi) is the threshold for entering pi. Note
that an assessment process APk may have more than one input place and output place.

In addition, there are rules for new markings, when a transition t fires, a token value can be
changed and it will be kept in a new place because of the threshold, Eout(APk) =

∑n f
i=1 ηi * Ein

i(APk),
where nf is the number of input factors. Then, the new marking will be changed as M′(p) =M(p) −W(p,
t) +W(t, p). In order to demonstrate the TCCPN, reconsider Figure 7, it describes a system as follows:

1. τ(t): τ(t1) = 0, τ(t2) = 3, τ(t3) = 2, τ(t4) = 4, τ(t5) = 0, τ(t6) = 4, τ(t7) = 5, τ(t8) = 3;
2. Mo = (p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 pcombined) = (3 0 0 0 0 0 0 3 1 1 1 4);
3. Assessment process is a combined place Apcombined

4. The input assessment process is Tk = {t2,2t3, t6, 2t7}
5. The importance on arcs: η (p2, t2) = 0.5, η(p10, t2) = 0.5, η(p3, t3) = 0.5, η(p11, t3) = 0.5, η(p5, t6) =

0.5, η(p10, t5) = 0.5, η(p6, t7) = 0.5, η(p9, t7) = 0.5
6. The factors’ values of Ein (Apcombined): if t2 enabled, Ein

1(Apcombined) = (1, 1), if t3 enabled,

Ein
2(Apcombined) = (2, 2), if t6 enabled, Ein

3(Apcombined) = (1, 1), if t7 enabled, Ein
4(Apcombined) = (2, 2).

7. Ψ(p): Ψ(p1) = 0, Ψ(p2) = 0, Ψ(p3) = 0, Ψ(p4) = 0, Ψ(p5) = 0, Ψ(p6) = 0, Ψ(p7) = 0, Ψ(p8) = 0, Ψ(p9) =
0, Ψ(p10) = 0, Ψ(p11) = 0, and Ψ (pcombined) ≤ 4

Places p1, p2, p3, p4, p5, p6, p7, p8, p9, p10 and p11 obtain tokens unconditionally, their thresholds are
set as zero. t2, t3, t6, t7 represent the four transitions that can fire. If any of four transitions fires, new
tokens with colors are built. For example, when transition t2 fires, it creates a color Cvs3 on the tokens
from p2 and p10 and transfers them into common place pcombined. For transition t2, there are two factors:
p2 and p10

Eout(Apcombined) =
∑n f

i=1 ηi * Ein
i (Apcombined) = η1* Ein

1(Apcombined) + η2* Ein
2(Apcombined) = 0.5*1 +

0.5*1= 1. Since if the current tokens in pcombined place + 1 ≤ 4, pcombined can be reached.
If transition t3 fires, it creates colors Cvs1 and Cvs2 on the tokens from p3 and p11 and transfers

them into common place pcombined. For transition t3, there are two factors: p3 and p11

Eout(Apcombined) =
∑n f

i=1 ηi * Ein
i (Apcombined) = η1* Ein

1(Apcombined) + η2* Ein
2(Apcombined) = 0.5*2 +

0.5*2 = 2. Since if the current tokens in pcombined place + 2 ≤ 4 pcombined can be reached.
When transition t6 fires, it creates a color Cvs2 on the tokens from p5 and p10 and transfers them

into common place pcombined. For transition t6, there are two factors: p5 and p10

Eout(Apcombined) =
∑n f

i=1 ηi * Ein
i(Apcombined) = η1* Ein

1(Apcombined) + η2* Ein
2(Apcombined) = 0.5*1 +

0.5*1 = 1. Since if the current tokens in pcombined place + 1 ≤ 4 pcombined can be reached.
If transition t7 fires, it creates colors Cvs1 and Cvs3 on the tokens from p6 and p9 and transfers them

into common place pcombined. For transition t7, there are two factors: p6 and p9

Eout(Apcombined) =
∑n f

i=1 ηi * Ein
i(Apcombined) = η1* Ein

1(Apcombined) + η2* Ein
2(Apcombined) = 0.5*2 +

0.5*2 = 2. Since if the current tokens in pcombined place + 2 ≤ 4 pcombined can be reached.
Finally, comparing the proposed work with a relevant developed TCCPN is shown in Section 4.

4. Case Study

In this section, we show the results of the experiments with the proposed approach. Specifically,
we use an AMS example available in the literature: the AMS Petri net model given in Piroddi et al. [30],
Chen et al. [8], Chen and Li [31], Chen et al. [32], and TCCPN [26–29]. The Petri net model is displayed
in Figure 11; it includes 14 transitions and 19 places. The places can be described as the following set
partition: P0 = {p1, p19}, PR = {p13, . . . , p18}, and PA = {p2, . . . , p14}. The properties of the developed
Petri net models are obtained using the free GPenSIM tool [22]. We find that it has 282 reachable
markings, and the system is not live (it has a deadlock).
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Figure 11. Colored controlled Petri net model of the system.

We apply the proposed deadlock-prevention algorithm to this case study. Without considering
recovery subnets, the system model has five SMSs that may be empty: S1 = {p7, p12, p13, p14, p15, p16,
p17, p18}, S2 = {p5, p12, p13, p16, p17}, S3 = {p2, p7, p12, p14, p15, p16, p17, p18}, S4 = {p2, p7, p10, p12, p14,
p15, p17, p18}, and S5 = {p2, p5, p12, p16, p17}. Based on the suggested deadlock-prevention algorithm
(Algorithm 1), five monitors are inserted to protect the five SMSs from being emptied. The required
control places using Algorithm 1 are designed as follows:

(1) •VS1 = {t7, t13}, VS1
• = {t1, t9}, and MVo(VS1) = 5.

(2) •VS2 = {t4, t5, t13}, VS2
• = {t1, t11}, and MVo(VS2) = 2.

(3) •VS3 = {t7, t13}, VS3
• = {t1, t9}, and MVo(VS3) = 4.

(4) •VS4 = {t7, t11}, VS4
• = {t1, t9}, and MVo(VS4) = 3.

(5) •VS5 = {t4, t13}, VS5
• = {t2, t11}, and MVo(VS5) = 3.

By Definition 11, a deadlock control subnet of the Petri net model illustrated in Figure 11 is NDC =

(pcombined, {TDCi, TDCo}, FDC, Cvsi), where TDCo = {4t1, t2, t3, 3t9, 2t11}, and TDCi = {2t4, t5, 3t7, 4t13}. The
initial token with a color marking of a combined monitor is MDCo(pcombined) =

∑
MVo(VS) =MVo(VS1) +

MVo(VS2) +MVo(VS3) +MVo(VS4) +MVo(VS5) = 5 + 2 + 4 + 3 + 1 = 15 tokens. Thus, in the Petri net
model illustrated in Figure 11, there are five color types, which are SC = {Cvs1, Cvs2, Cvs3, Cvs4, Cvs5}.
Therefore, the total number of colored tokens is 15: five tokens of color Cvs1, two tokens of color Cvs2,
four tokens of color Cvs3, three tokens of color Cvs4, and one token of color Cvs5, as shown in Figure 11.
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In the net displayed in Figure 11, when transition t1 fires, the system selects only one token from
input place p1, one token from resource place p17. Additionally, the system selects tokens from pcombined:
one token of color Cvs1, one token of color Cvs2, one token of color Cvs3, and one token of color Cvs4. If
transition t2 is fired, the system selects only one token from place p2, one token from resource place p16,
and one token of color Cvs5 from pcombined. Moreover, when transition t3 fires, the system selects only
one token from input place p2, one token from resource place p13, and one token of color Cvs3 from
pcombined.

If transition t9 fires, the system selects only one token from input place p19, one token from
resource place p18, one token of color Cvs1 from pcombined, one token of color Cvs3 from pcombined, and one
token of color Cvs4 from pcombined. In addition, when transition t11 fires, the system selects only one
token from input place p9, one token from resource place p15, one token from resource place p17, one
token of color Cvs2 from pcombined, and one token of color Cvs5 from pcombined.

When transition t4 fires, the system creates two colored tokens—one of color Cvs2 and one of
color Cvs5—and transfers them into the common place pcombined. Moreover, when transition t5 fires, the
system adds color Cvs2 to the tokens and transfers them into the common place pcombined. If transition t7

fires, the system creates three colored tokens—one of color Cvs1, one of color Cvs3, and one of color
Cvs4—and transfers them into the common place pcombined. Finally, when transition t13 fires, the system
creates four colored tokens—one of color Cvs1, one of color Cvs2, one of color Cvs3, and one of color
Cvs5—and transfers them into the common place pcombined.

To test and validate the developed GPenSIM code, we compared it with the methods in Piroddi et
al. [30], Chen et al. [8], Chen and Li [31], Chen et al. [32], and TCCPN [26–29]. The simulation was
undertaken for 480 min. After running and simulating the Petri net model in MATLAB, we obtained
the results summarized in Tables 2 and 3. Table 2 shows the results in terms of the number of monitors,
number of arcs, liveness, and reachable marking. We observe that the proposed approach provides
a supervisor with only a single control place and 9 arcs, both of which are minimal compared with
other techniques in Piroddi et al. [30], Chen et al. [8], Chen and Li [31], and Chen et al. [32]. Table 3
displays the results in terms of utilization of the robots and machines, throughput of Part A and
Part B, work-in-process (WIP), and total time in system (throughput time). In terms of the resource
utilization, all methods obtain approximately the same values, as shown in Figure 12. Moreover,
from the viewpoint throughput, the proposed method can provide greater throughput than other
techniques as shown in Figure 13. In term of WIP, the proposed method leads to better WIP than the
other techniques as shown in Figure 14. With respect to throughput time of Part A and Part B, overall,
the proposed method can obtain less throughput time than other techniques as shown in Figures 15
and 16. Therefore, the proposed method is valid, it can give sufficiently accurate results, and it can
potentially be applied to other cases.

Table 2. Comparison with the existing policies: number of monitors, number of arcs, liveness, and
reachable marking.

Parameters
Chen et al.

[8]
Piroddi et al.

[30]
Chen and Li

[31]
Chen et al.

[32]
TCCPN[26–29]

Proposed
Method

Monitors 8 5 2 2 1 1
Arcs 37 23 12 12 9 9

Liveness Live Live Live Live Live Live
Reachable
marking 205 205 205 205 205 205
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Table 3. Comparison with the existing policies: utilization throughput, work-in-process, and
throughput time.

Parameter
Chen et al.

[8]
Piroddi et al.

[30]
Chen and Li

[31]
Chen et al.

[32]
TCCPN
[26–29]

Proposed
Method

M 1 utilization% 18.75 17.7083 17.7083 17.7083 17.7083 17.7083

M 2 utilization% 35 33.3333 33.3333 33.3333 34.5833 33.9583

M 3 utilization% 12.5 13.75 14.375 14.375 11.875 12.5

M 4 utilization% 22.5 21.6667 20.8333 20.8333 23.3333 22.5

R 1 utilization% 39.5833 40 40.4167 40.4167 39.1666 39.58333

R 2 utilization% 29.375 30 30 30 30 30

Throughput of Part A (unit) 20 21 20 20 19 24

Throughput of Part B (unit) 26 25 26 26 27 23

Work-In-Process 3.9271 3.93331 3.8480 3.9667 3.4938 3.3854

Throughput time of Part A
(min) 23.9500 22.8571 24 23.9235 25.2105 19.9583

Throughput time of Part B
(min) 18.4230 19.200 18.3321 18.4615 17.7407 20.8260
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5. Conclusions

In this paper, we introduce a two-step controlled deadlock policy. In the first step, we create a Petri
net controlled model using the deadlock prevention method based on SMSs proposed by [1]. In the
second step, all control places obtained after the first step are merged into a single control place based
on the colored Petri nets to mark all SMSs. We compare the proposed method with the methods of
Piroddi et al. [30], Chen et al. [8], Chen and Li [31], and Chen et al. [32], and TCCPN [26–29]. According
to our results, the proposed controller is more powerful, has a simpler structure, and does not need
to calculate reachability graphs; therefore, it has low-overhead computation. The most challenging
research topic in the future is that the controlled system that developed by previous deadlock control
approaches may undergo changes of control requirements and specifications such as:

1. Adding or removing a machine
2. New production ratio
3. Adding new product
4. Changing a resource capacity
5. Resource faults and raw-material processing in a faulty resource
6. The processing routes of the system are changed
7. System contain uncontrollable transitions

When a system has these problems, a system needs to be reconfigurable. Then the deadlock-free
system can have deadlocks. Therefore, the proposed robust deadlock control policy needs to be
extended to improve efficiency for rapid and valid reconfiguration of Petri net-based supervisory
controllers for reconfigurable manufacturing systems.
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Abstract: With the decentralization of the electricity market and the plea for a carbon-neutral
ecosystem, more and more distributed generation (DG) has been incorporated in the power distribution
grid, which is then known as active distribution network (ADN). The addition of DGs causes numerous
control and protection confronts to the traditional distribution network. For instance, two-way
power flow, small fault current, persistent fluctuation of generation and demand, and uncertainty
of renewable energy sources (RESs). These problems are more challenging when the distribution
network hosts many converter-coupled DGs. Hence, the traditional protection schemes and relaying
methods are inadequate to protect ADNs against short-circuit faults and disturbances. We propose
a robust communication-assisted fault protection technique for safely operating ADNs with high
penetration of converter-coupled DGs. The proposed technique is realizable by employing digital
relays available in the recent market and it aims to protect low-voltage (LV) ADNs. It also includes
secondary protection that can be enabled when the communication facility or protection equipment
fails to operate. In addition, this study provides the detail configuration of the digital relay that
enables the devised protection technique. Several enhancements are derived, as alternative technique
for the traditional overcurrent protection approach, to detect small fault current and high-impedance
fault (HIF). A number of simulations are performed with the complete model of a real ADN,
in Shenyang, China, employing the PSCAD software platform. Various cases, fault types and
locations are considered for verifying the efficacy of the devised technique and the enabling digital
relay. The obtained simulation findings verify the proposed protection technique is effective and
reliable in protecting ADNs against various fault types that can occur at different locations.

Keywords: active distribution network; converter; digital relay; DG; fault; protection; power system;
renewable energy resource

1. Introduction

Low-voltage active distribution networks (ADNs) comprising distributed generations (DG) such
as photovoltaic (PV) solar system, microturbine, wind generation, mini-hydro, and fuel cell have
become prominent in the energy sector especially in the existing smart grid setup. This is because
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the DGs in ADNs are easy accessible, clean, and simplified structures. ADNs are a highly efficient,
economic, and reliable form of power grids [1–3].

As a result of the distinct features of ADNs, the conventional power system protection approaches
that assume high fault current amplitudes and one-way current flow conventions of radial networks
are not adequate to operate ADNs [4].

The main challenge concerning the ADN protection appears where there are high proportion
of converter-interfaced renewable energy sources (RESs). In this case, the fault current is relatively
low (two times of the peak current) due to the small current rating of the semiconductor apparatuses
of the power electronic converters. Consequently, the conventional overcurrent protection scheme
cannot sufficiently detect these low fault currents and protect ADNs against severe damages that can
be caused by potential network faults [5–8]. Although traditional overcurrent protection schemes can
be utilized to protect ADNs when there is a strong main (utility) grid connection, the existing relay
configurations must be cautiously attuned since the integration of DGs can challenge the harmonization
of the protection plan [4,9–11].

There have been a few research works in area of fault protection for ADNs. Admittance-based
ADN protection scheme is devised in [5]. Nevertheless, it could not provide an effective method for
determining the precise line admittance for different fault types and places. In addition, the relay
coordination was not completely presented in the work.

Network voltage-based fault protection of ADNs and microgrids (MGs) has been proposed by
few studies [6,7,12,13]. The method presented in [7], for example, uses Park-transformed (d-q frame)
network voltage to detect the occurrence of faults in a MG. Nevertheless, it did not measure the d-q
components of the network voltages for all kinds of solid faults. It did not guarantee protection for
high impedance faults (HIFs) as well. In addition, the method does not define the configuration of
the relay that enables the presented protection scheme. The protection method in [13] applied the
d-q components of network voltages for detecting solid faults and wavelet transform-based detection
for HIFs. However, the findings of the proposed method are limited to isolated microgrids and its
applicability to the ADNs was not considered.

Reference [8] proposed a protection strategy including its enabling relay to protect low voltage
power networks. The strategy provides fault protection for both MGs and ADNs. Nonetheless, it might
require a comparatively extensive time to sense faults in a medium voltage (MV) power grids because
of the definite time grading technique it uses.

Reference [14] devised a fast communication-supported fault protection scheme and a
microprocessor-based relay in MV power networks. The scheme delivers speedy and coordinated
fault clearance for both ADNs and isolated MGs. Nonetheless, the strategy uses under voltage-based
method of fault detection that may lead the relays to command false trip signals to circuit breakers
(CBs) in case of temporary occurrence of voltage-sags, which all the time present in the power networks
because of dynamic variation of load demands and volatility of RESs. Furthermore, the strategy neither
guarantees protection for symmetrical HIFs nor delivers techniques for protecting buses.

This study devices a quick and robust fault protection technique for low voltage (LV)
ADNs containing high penetration of converter-interfaced renewable energy resources. It uses
microprocessor-based digital relay to enable the proposed protection technique. It explicitly provides
the configuration of this digital relay. The digital relays operate in coordination detect and clear faults
in the ADN. They exchange information with themselves and the central protection manager (CPM).
The CPM also exchanges information with the ADN controllers and demand regulation systems.
The devised technique provides primary and secondary protections for all solid fault types and HIFs
at various possible fault points in the ADN. Numerous simulations are performed on a complete
model of an actual ADN using the PSCAD software platform, for various fault locations and types, to
substantiate the success of the devised protection technique and enabling relays.
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The remaining sections of the study are prepared as follows. Section 2 offers the configuration of
the devised fault protection relay. Section 3 presents the devised protection technique. The case studies
and simulation findings are offered in Section 4. The study is summarized at the end in Section 5.

2. Configuration of the Devised Relay

In this study, a communication-aided protection technique is devised for LV active distribution
networks. The devised protection technique uses a digital relay to sense the occurrence of fault and
segregate the minimum section of the ADN impacted by the fault. The devised protection technique is
actuated by the relay that hereafter is said to be the “ADN protection digital relay” (APDR). The focus
of Section 2 is towards describing the architecture, operational units and key components of the APDR.
If the APDR communicates with other APDRs, the ADN operator and additional components, it is
known as a “communication-aided ADN protection digital relay” (CAPDR).

As aforementioned, the integration of DG causes ADNs or traditional distribution grids encounter
a number of confronts, concerning control and protection problems. These problems can be summarized
as follows:

1. bi-directional power flow
2. limited fault current magnitude
3. dynamic fluctuations of operating conditions
4. uncertainty of power generations

Thus, the traditional fault protection methods and relay algorithms are not enough and hence, the
protection scheme and relay configurations must be redesigned and modified to operate ADNs safely
and reliably [11]. Particularly, directional components are essential to evade unwanted tripping when
faults impact a nearby protection area. The directional component of the neighboring area hastily
disable its CB(s), for a specified time, to let the protection (main) components of the fault-impacted
area to be activated and remove the fault. If the fault continues, on the other hand, the CB(s) of the
neighboring protection area is activated to be opened as secondary protection following the primary
protection reverse time-delay.

The proposed protection scheme can be realized using digital relays accessible in the market.
Figure 1 illustrates the functional schematic and operational sections of the devised APDR/CAPDR
that is the extended form of the relays provided in [13,14]. As depicted in Figure 1, five units present
in the APDR/CAPDR: “directional unit”, “solid fault detection unit”, “HIF detection unit,” “the trip
unit,” and “the auto-reclose unit.”

The directional unit decides where the fault current flows using the method that will be discussed
in Section 2.3. The solid fault detection unit is responsible for detecting all type of solid faults in the
ADN. It uses the Park transformation of the network voltage as a fault detection signal. The detail
analysis and derivation of the detection signal will be discussed in Section 2.1. The HIF detection
unit is responsible for detection HIFs. It employs wavelet transform-based travelling wave fronts of
the network current transients. At the end, the yields from the directional unit, solid fault detection
unit, and HIF detection unit are applied to the tripping unit to decide the issuance of a tripping signal.
The auto-reclosing unit is responsible for ensuring the seamless recoupling of the isolated section of
the ADN to the normal section following the clearance of the fault.

2.1. Solid Fault Detection

As discussed in the previous sections, the proposed solid fault recognition methodology relies
on the Park transformation of the ADN system voltage. The measured three-phase voltages at
the APDR/CAPDR are first transformed to the direct(d)-axis and quadrature(q)-axis (dq) voltage
components [15,16]. Any change in the three-phase voltage is observed by a change in the dq voltage
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components [13]. This study uses the q-axis voltage as the detection signal and it is expressed as
follows [13]:

Vq =
2
3
·
{
cosθ ·Va + cos

(
θ− 2π

3

)
·Vb + cos

(
θ+

2π
3

)
·Vc

}
(1)

Here, Va, Vb, and Vc are the 3-phase voltages, and θ is the phase (transformation) angle.

Figure 1. Schematic diagram of the communication-aided active distribution network (ADN) protection
digital relay (CAPDR) and its operational units.

The disturbance voltage (Vq.dist) which is used as the fault detection signal is described as:

Vq.dist = Vq.re f −Vq (2)

where, Vq.ref is a reference q-axis voltage associated with the normal operation of the ADN before the
occurrence of the fault.

Under pre-fault condition, the value of Vq.dist is zero. When a fault occurs, Vq.dist is a dc signal that
changes based on the fault type.

For symmetrical faults, Vq.dist is given by:

Vq.dist = Vq.re f −Vm sinϕ (3)

where, Vm is the peak of phase voltages and ϕ is the phase angle.
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For unsymmetrical faults, Vq.dist is expressed as:

Vq.dist = Vq.re f − {VPm sinϕP + VNm sin(2ωt + ϕN)
}

(4)

where, VPm and VNm are the maximum +ve and −ve sequence phase voltages correspondingly, ω is
frequency, and ϕP and ϕN are phase angles +ve and −ve sequence phase voltage, respectively.

As observed from Equation (3), for symmetrical (three-phase) faults Vq.dist is a DC signal. While for
unsymmetrical faults, as given in Equation (4), Vq.dist is a DC signal plus a sinusoidal component with
double frequency (2ω).

Therefore, as per the devised protection technique, the solid fault detection unit of the CAPDR at
the end decides the occurrence of a solid fault by contrasting the disturbance voltage (Vq.dist) with a
preset threshold value. When Vq.dist is exceeds the preset minimum level, the unit will command a
solid fault detection signal (SFDS) to the trip unit of the CAPDR.

2.2. HIF Detection

The traditional overcurrent relays cannot correctly detect HIFs. Although several methodologies
have been recommended by prior research works to address the problem (HIF detection) [17–19],
there is no comprehensive remedy yet. This study provides a technique for HIF detection based on
the observation of travelling wave fronts obtained from current transients measured at fault points
(branches) [13,20].

With this technique, the 3-phase currents in the fault-impacted branches are first converted to
the modal components (αβ coordinate) by employing the abc-αβ transform. Afterwards, the wave
front (discrete wavelet coefficients (DWTCs)) of the modal constituents is obtained utilizing the
discrete wavelet transform (DWT). The αβ branch current constituents are mainly used to obtain the
propagation modes in the ADN during the fault occurrence. The DWTCs of each modal component is
examined and the DWTC having the biggest amplitude is selected to decide the occurrence of the HIF.
At the end, the obtained DWTC is contrasted with a preset threshold to decide they HIF occurrence.
The technique has the advantage of being deployed into digital relays.

Therefore, according to the devised protection technique, the HIF detection unit of the CAPDR
commands a HIF detection signal (HIFDS) to the trip unit if the fault is sensed. The fault detection
signal (FDS) in the trip unit is the resultant of the logical OR of SFDS and HIFDS.

2.3. Directional Decision Forming

The devised technique uses directional units that are provided here according to the methods
presented in [13,14]. When HIF happens in the ADN, the directional units cannot indicate the precise
HIF point. To address this challenge, this study uses zero-sequence directional units; it is similar
with the method used in [21]. In addition, negative-sequence directional unit is utilized to ensure
reliable protection for unsymmetrical HIFs, for example line-to-line faults [8]. At the end, as depicted
in Figure 1, directional commands from zero, −ve, and +ve sequence directional units are merged
and used to generate the major directional command D. A unique delay time is employed in either
direction of the relays. The relay coordination is performed by regulating the delay times.

3. Proposed Protection Technique

Here, we present the devised communication-aided protection technique, enabled by the devised
relay in Section 2. The devised technique offers primary and secondary protections to solve the ADN
protection challenges presented above in Sections 1 and 2.

Based on the devised protection technique, a minimal part of the ADN is separated because of the
fault from the healthy section of the ADN through the commands transmitted to one or more CAPDRs.
The quantity of CAPDRs used in the ADN is determined according to the preferred selectivity and
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reliability needs. Every CAPDR that is responsible to protect a particular component or area dispatches
2 commands ADN protection manager (APM):

1. Fault detection signal (FDS), which indicates if the CAPDR sensed the fault inside its zone
2. Fault direction signal (D) that specifies the path of the faults from CAPDR perspective.

The calculation of the FDS and D are presented above in Sections 2.1–2.3.
The APM receives the FDS and D commands from every CAPDR and decides using a suitable

logical calculation, the fault affected part of the ADN. The logical calculation is alike the “directional
decision” protection technique. It is elaborated more in Section 4.

When the incidence of the fault is decided (using the FDS), the APM holds-up for a small preset
period to receive another directional command and decide the fault-impacted part of the network.
Afterwards, appropriate trip signal(s) are dispatched to the CB(s) linked with the CAPDR(s), to open
and segregate the faulty part of the ADN. The trip commands are dispatched following a delay-time
(in the range (0.1 s, 0.15 s) [22]) to provide a chance to the adjacent protection elements to operate
first. This time setting can guarantee coordination of the CAPDRs with the primary protection
adjacent elements.

During a CB malfunctioning, a failure command is commanded to the proximate CBs to isolate
the minimum section of the ADN. The CB failure information is sent after a delay-time (in the range
(0.3 s, 0.4 s) [22]) if any FDS is still active. The secondary protection is energized following a delay
of 0.4 s from the fault incidence and, therefore, provides an opportunity for the aforementioned two
signals to be commanded. Accordingly, if the communication malfunctions and the CAPDRs cannot
get any information for a preset time, all CAPDRs will be immediately swapped to the secondary
protection. The communications are not needed for the secondary protection except that it requires
longer activation time than the primary protection.

The segregated (because of the fault occurrence) section of the ADN can be recoupled back and
synchronized to the remaining part of the network through the resynchronization setting of its DGs
and reclosing ability of its CBs if the fault is short-term and cleared immediately after the segregation.

The devised protection technique can be realized using the communication abilities of smart
grids. Wireless communications [23], IEEE-802.11 wireless LAN [24] with Ethernet bridges [25]
and IEC 61,850 [26] can be some of the communication channels for the application of the devised
protection technique.

4. Results and Discussions

To reveal the success of the devised protection technique, the ADN whose schematic framework
illustrated in Figure 2 is used. The ADN in Figure 2 is an actual LV distribution network in Shenyang,
China. The network primarily delivers power to industrial park loads with a peak total demand of
5 MVA.

As depicted in Figure 2, the ADN comprises four converter-coupled DGs (CC-DGs) and two
synchronous machine DGs (SM-DGs). The CC-DGs are the PV system, wind generation, vanadium
redox battery (VRB) and lithium-ion (Li-Ion) battery. The capacity of each of these power sources
are indicated in the figure. The SM-DGs are the diesel generator and micro gas turbine generation.
Hereafter, the ADN of Figure 2 is called the “case study ADN.”

All the DGs in the ADN normally operate in PQ (fixed active and reactive power) control approach
as the main utility grid can always supply the reference voltage and frequency. The detail control
approaches of the DGs can be referred from [27].

As presented above in Sections 2 and 3, every CAPDR sends 2 signals, FDS and D, to the APM.
The APM analyses these signals received from the CAPDRs and determines the precise fault point.
Then, the trip signals will be sent to the responsible CB(s) to segregate the fault-impacted part of the
ADN following a preset delay-time. Table 1 provides the CAPDRs used for the primary and secondary
protections to sense and remove fault from the ADN. During the occurrence faults in the ADN, the D
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and FDS commands of the corresponding (adjacent) CAPDR(s) are dispatched to the APM. The fault is
assumed forward fault if the FDS and D commands have a value of one.

 

Figure 2. Model of the case study ADN with embedded CAPDRs.

Table 1. Relays and their respective protection responsibility in the case study ADN.

Fault Point
Direction 1 Direction 2

Primary Secondary Primary Secondary

DG

Wind CAPDR 11
PV CAPDR 31

Diesel CAPDR 18
Microturbine CAPDR 27

VRB CAPDR 19
Li-Ion CAPDR 28

Load

Load 1 CAPDR 16 CAPDR 15 N/A
Load 2 CAPDR 17 CAPDR 13 N/A CAPDR 14
Load 3 CAPDR 23 CAPDR 22 N/A CAPDR 24
Load 4 CAPDR 26 CAPDR 25 N/A

Load 5 CAPDR 32 N/A N/A CAPDR 12
CAPDR 21

Reserve CAPDR 41 N/A N/A CAPDR 12
CAPDR 21

Line

Line 1 CAPDR 12 N/A CAPDR 13 CAPDR 21
CAPDR 14

Line 2 CAPDR 14 CAPDR 13 N/A

Line 3 CAPDR 21 N/A CAPDR 22 CAPDR 12
CAPDR 24

Line 4 CAPDR 24 CAPDR 22 N/A

Bus

Bus 1 N/A CAPDR 12
CAPDR 21

CAPDR 13
CAPDR 22

Bus 2 CAPDR 13 CAPDR 12 CAPDR 14 N/A
Bus 3 CAPDR 15 CAPDR 14 N/A
Bus 4 CAPDR 22 CAPDR 21 CAPDR 24 N/A
Bus 5 CAPDR 25 CAPDR 24 N/A
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To confirm the efficacy of the devised ADN protection technique and its enabling digital relay,
the case study ADN, depicted in Figure 2, is modeled and simulated using the PSCAD simulation
platform [28]. For CAPDRs in the major protection, the delay-times are set as 100 ms. This offers
sufficient time for the tripping unit not to send false signal for temporary voltage dips in the network.
The time-delay CAPDRs/APDRs in the secondary protection is set as 400 ms. The CBs need 20 ms for
opening or closing. In addition, the CAPDRs are implemented with double-setting directional units in
order to provide both primary and secondary protections when needed.

Likewise, the reverse time-delays of CAPDRs are set according to common practices and the
techniques provided in [8] and obviously have dissimilar values from the forward time-delays since
there might be distinct DG and load in the reverse direction. The q-axis reference voltage is set as the
q-axis rated value. The threshold voltage is taken as 50% of the rated voltage for double line to ground
(DLG), 3-line to ground (3LG) and line-to-line (LL) faults, while 20% is used for single line to ground
(LG) fault. The Daubechies 8 (Db8) DWT with a sampling frequency of 6 kHz and multiresolution
analysis (MRA) of unity resolution is used for the HIF detection.

The simulations consist of faults at various points in the ADN. These faults are F1, F2, F3, F4,
F5, and F6 (illustrated in Figure 2) which designate faults at the PV DG terminal, Load1 terminal,
distribution line, bus, microturbine DG terminal, and Load4 terminal, correspondingly. All solid faults
(LG, DLG, LL, and 3LG) and HIFs are considered in the protection simulation. A resistance value of
60Ω is employed to simulate the HIFs.

For the photovoltaic DG, the primary protection is provided by CAPDR31 while F1 happens near
to its terminal. Figure 3 illustrates the 3-phase voltages and q-axis disturbance voltage observed at
CB31 while F1 (3LG) occurs. As observed in Figure 3, the disturbance voltage has varied considerably
when F1 happened, and surpassed the preset threshold level. As shown, the disturbance voltage is
a fixed DC value for a 3LG fault. As Figure 3 shows, F1 happened at 2 s and remained for 0.05 s.
The CAPDR sensed F1 using the substantial variation in the q-axis voltage and dispatched the trip
command at 2.02 s. CB31 opened at 2.025 s to cut off the DG and segregate it from the remaining
part of the ADN. F1 cleared at 2.05 s and the CB reclosed at 2.07 s. It is shown that the ADN voltage
has recovered its normal value straightaway following the disappearance of F1 through the reclose
function of the devised relay. It demonstrates the rapidity of the devised technique and its quick
information exchange capability.

 

Figure 3. 3-phase voltages, disturbance voltage, and trip signal for fault 1 (F1).
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For Load1, primary protection in direction1 is provided by CAPDR16 and secondary protection
by CAPDR15 when F2 happens. Figure 4 depicts the 3-phase voltages, q-axis disturbance voltage, and
DWTC (wave front) of current-transient observed at CB16, while F2 (DLG HIF) occurs. As shown
in Figure 4, the q-axis voltage altered very little when F2 happened. It is smaller than the preset
threshold level. Consequently, the q-axis disturbance voltage cannot sufficiently activate the CAPDR to
dispatch a tripping command to the responsible CB. Nevertheless, the DWTC has revealed a substantial
variation (surpasses the zero threshold level) while the DLG HIF (F2) happened. F2 happened at 2 s.
The CAPDR has sensed F2 using the substantial alteration of the DWTC and sent trip signal to CB16 to
cut off Load1 and separate it from the healthy part of the ADN.

 

Figure 4. 3-phase voltage, disturbance voltage, and discrete wavelet coefficient (DWTC) of current
transient during F2.

CAPDR12 in direction1 and CAPDR13 in direction2 are in charge of the primary protection for
Line1 when F3 happens. CAPDR21 for CAPDR12 and CAPDR14 for CAPDR13 are the corresponding
secondary protections in direction2. Figure 5 depicts the 3-phase voltages and q-axis disturbance
voltage observed at CB13 when F3 (LG) happens. As clearly seen, the q-axis voltage varies considerably
while F3 has happened and surpasses the preset threshold. The q-axis voltage in this case is a DC
signal plus a ripple element with a double frequency. F3 happened at 2 s and remained for 0.05 s.
Both CAPDRs sensed F3 and sent trip commands at 2.02 s. CB12 and CB13 opened at 2.025 s to separate
Line1 and separate it from the healthy part of the ADN. F3 cleared at 2.05 s and the CBs reclosed at
2.07 s.
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Figure 5. 3-phase voltages, disturbance voltage, and trip signal for F3.

CAPDR12, CAPDR21, CAPDR32, and CAPDR41 are in charge of primary protection of Bus1
when F4 happens. The APM determines bus faults using the direction commands (Ds) obtained from
the CAPDRs coupled with the bus. It decides the incidence of the bus fault if all the Ds sent from
every relay coupled with the bus are negative one (−1). The trip commands are then dispatched to all
responsible CBs. Figure 6 depicts the 3-phase voltages, q-axis disturbance voltage, and current DWTC
observed at CB21, while F4 (LL HIF) occurs. Similar outcome can be attained at CB12, CB32, and CB41
as well. As shown, the DWTC surpasses the zero threshold when F4 happened. F4 happened at 2 s.
The CAPDRs sensed F4 and sent the trip commands to the responsible CBs to segregate Bus1 from the
remaining part of the ADN.
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Figure 6. 3-phase voltage, disturbance voltage, and DWTC during F4.

Similarly, Figures 7 and 8 illustrate the 3-phase voltages and q-axis disturbance voltage observed
at CB27 when F5 (3LG) occurs and at CB26 when F6 (LG) occurs, respectively.

 

Figure 7. 3-phase voltages, disturbance voltage, and trip signal for F5.
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Figure 8. 3-phase voltages, disturbance voltage, and trip signal for F6.

5. Conclusions

We devised a novel communication-aided technique for quick and reliable protection of low voltage
converter-dominated and renewable energy-integrated active distribution networks. The technique
employs distinct approaches to detect the incidences of solid faults and HIFs. The proposed method
solves the challenges brought to ADNs due to small-magnitude fault currents. It also provides both
main and backup protections embedded into a proposed digital relay. The devised digital relay has five
distinct units with different functions. The relay identifies diverse fault types based on the features of
the disturbance voltage. The technique does not require adaptive elements. Plenty of simulations have
been executed by employing the PSCAD software platform for various cases and fault locations, to
reveal the efficacy of the devised fault protection technique and the actuating digital relay. The devised
protection technique is successful irrespective of the position, capacity, and type of the DGs in the
ADN. In addition, it is valid for any fault current amplitude, impedance, type, and point.
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Acronyms

ADN active distribution network
APDR ADN protection digital relay
APM ADN protection manager
CC-DG converter-coupled DG
DG distributed generation
F fault
PSCAD power system computer-aided design
HIF high impedance fault
dq d-axis ~ q-axis reference frame
ESS electrical energy storage
ADNPDR ADN protection digital relay
CAPDR communication-aided ADN protection digital relay
abc three phase reference frame
αβ alpha-beta reference frame
MG microgrid
MRA multi-resolution analysis
MV medium voltage
DWT discrete wavelet transform
Va, Vb and Vc phase a, b and c voltages, respectively
Vα and Vβ alpha and beta axis voltages, respectively
Vd and Vq d-axis and q-axis voltages, respectively
Vq.dist disturbance voltage signal
Vq.ref q-axis reference voltage
Vm max phase voltage
n harmonic order
ω angular frequency of system voltage
f frequency
ϕ initial phase angle of the system voltage
ωr angular frequency of the stator voltages
θ rotor angle of rotation
DC direct current
V0 zero-sequence voltage
VPm and VNm peak values of the positive- and negative-sequence fundamental voltages
ϕP and ϕN initial phase angle values of the positive- and negative-sequence voltages
SFDS solid fault detection signal
DWTC discrete wavelet transform coefficient
HIF high impedance fault
HIFDS high impedance fault detection signal
FDS fault detection signal
D main directional command
D0, D2, D1 zero-, negative-, and positive-sequence directional signals, respectively
DWT discrete wavelet transform
CB circuit breaker
CPM central protection manager
LAN local area network
LV low voltage
IEEE institute of electrical and electronic engineers
IEC international electro-technical commission
MVA mega volt ampere
N/A not applicable
SM-DG synchronous machine-based DG
VRB vanadium redox flow battery
Li-Ion lithium-ion battery
PQ active-reactive power
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U/f voltage/frequency
PV photovoltaic
ms milli second
LG single-line-to-ground
DLG double-phase-to-ground
LL line-to-line
3LG three-phase-to-ground
Db8 Daubechies 8 wavelet
kHz killo herz
s second
RES renewable energy resource
R&D research and development
Vq.dist_thresh threshold disturbance voltage signal
Vabc three phase voltages
Iabc three phase currents
V012 zero-, positive-, and negative-sequence voltages
I012 zero-, positive-, and negative-sequence currents
Vd.ref d-axis reference voltage
Vabc_healthy three phase voltages of non-fault-impacted or healthy section
Δ|V| voltage magnitude deviation
Δf frequency deviation
Δθ phase angle deviation
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Abstract: This paper presents an economic reliability-aware model predictive control (MPC) for
the management of drinking water transport networks (DWNs). The proposed controller includes
a new goal to increase the system and components reliability based on a finite horizon stochastic
optimization problem with joint probabilistic (chance) constraints. The proposed approach is based on
a single-layer economic optimization problem with dynamic constraints. The inclusion of components
and system reliability in the MPC model using an Linear Parameter Varying (LPV) modeling approach
aims to maximize the availability of the system by estimating system reliability. On the other hand,
the use of a LPV-MPC control approach allows the controller to consider nonlinearities in the
model in a linear like way. Moreover, the resulting MPC optimization problem can be formulated
as a Quadratic Programming (QP) problem at each sampling time reducing the computational
burden/time compared to solving a nonlinear programming problem. The use of chance-constraint
programming allows the computation of an optimal strategy with a pre-established risk acceptability
levels to cope with the uncertainty of the demand forecast. Finally, the proposed approach is applied
to a part of the water transport network of Barcelona for demonstrating its performance. The obtained
results show that the system reliability of the DWN is maximized compared with the other approaches.

Keywords: drinking water networks; model predictive control; reliability; linear parameter varying;
operation and management; economic cost

1. Introduction

The real-time control and supervision of drinking water networks (DWNs) is a field of increased
interest given the environmental, economic and social impact [1]. DWNs are critical infrastructures in
urban environments. These networks provide important services in modern society and maintaining
the service availability is an important requirement. Therefore, reliability and resilience are important
properties to be guaranteed in DWNs while being subject to constraints and continuously varying
conditions of probabilistic nature [2]. DWNs are multivariate dynamic constrained systems that are
described by the interconnection of several subsystems (tanks, actuators, sources, nodes and consumer
sectors). Moreover, DWN optimal management is a complex challenge for water utilities that can
be addressed as a multi-objective optimization problem. This problem can be solved online using a
Model Predictive Control (MPC) scheme [3].
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Generally, the structure of the MPC approach follows a moving horizon strategy. The control
action is obtained solving an optimal control problem that provides a control action sequence in a
prediction horizon that minimizes the considered control objectives and satisfies the set of constraints
including the system model and physical/operational limitations. Therefore, MPC can provide suitable
strategies to achieve the DWN operational control improving their performance, as it allows computing
optimal control approaches ahead of time for all the pressure and flow control elements [4]. Revising the
literature, different approaches can be found that show the benefits of the optimal DWN management.
In [5–7], by optimizing a mathematical function that considers operational goals in a specific time
horizon and using a model of the network dynamics and demand forecasts, optimal strategies are
computed. These references also assumed predicted disturbances as defined in the model, but involve
a soft constraint to penalize evacuation of water volume below a heuristic safety threshold without
forcing any target regulation. Regarding optimised control strategies for managing water systems, MPC
is not implemented in a classical way, as there is no reference volume to be tracked [8]. The standard
MPC forces the system to follow the set point, but it does not guarantee that the system evolution
toward the set points is obtained in an economic efficient way. The general aim in the operation of
several process industries, as, e.g., DWNs, is the reduction of costs associated to the consumption
of energy, which is not the main goal of standard MPC. For this purpose, Economic MPC (EMPC)
provides a systematic method for the optimization of economic system operation [9]. The problem
of optimization associated to the EMPC strategy aims at obtaining a family of optimal set points
considering economic efficiency rather than aiming that the controlled system reach a certain set
point [9].

The use of control strategies that take into account the system and component reliability that
guarantee the quality of service is necessary. The health monitoring of the actuator and system should
be considered for increasing the system reliability, minimising the fault appearance and reducing
the operational costs. In the later stages, system reliability in the process of control system has been
considered using a Prognosis and Health Management (PHM) framework. This is because reliability is
a standard method for evaluating how long the system will achieve its function without malfunctions.
Moreover, it can be used to predict future damages in the system according to the health state of its
components [10].

In the past few years, the problems of system reliability and actuator lifetime in service has
received considerable interest for the researcher community. In [11], to decrease the maintenance
cost, the actuator lifetime is regarded as a controlled parameter that is considered as additional
goal when using a linear quadratic optimal controller. On the other side, MPC predicts the suitable
control actions to obtain optimal performance according to multi-objective cost functions and physical
constraints, and therefore it can be considered as a suitable approach for developing health-aware
control schemes. An MPC strategy based on distributing the loads among redundant actuators is
introduced in [12], while forcing constraints to guarantee that the accumulated actuator degradation
will not arrive at the unsafe level at the end of the prediction horizon. In [13], the authors proposed
a health-aware MPC controller that incorporates a fatigue-based prognosis into MPC to minimize
the component damage. Most of the other methods that consider component health and system
reliability management stand within the structure of fault-tolerant control or in the area of preservation
scheduling see, e.g., Gallestey et al. [14], Khelassi et al. [15], Salazar et al. [16] and references therein.
However, none of these methods consider uncertainty.

The reliability is the system’s ability (or component) to carry out its expected functions.
The reliability of DWN is influenced by different conditions such as the capacity and the quality
of the water accessible at the sources and the pump/pipe failure rates [17,18]. In most of the
works, the actuator reliability is assumed that follows an exponential distribution that varies with
the control action [19]. The system reliability is characterised according to the interdependence
topology based on the combining of each actuator reliability. Subsequently, the system reliability has
a demonstrative relationship with the control input that leads to a nonlinear mathematical model.
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In several studies, this is achieved by including a damage index in the optimization problem and
establishing a trade-off by weight tuning [20] or by imposing constraints with respect to the actuator
reliability [17]. However, considering the reliability at the actuator level not at the system level is the
main drawback of the previous methods; otherwise, it leads to the use of nonlinear MPC according
to nonlinearity of the resulting constraints. Generally, Economic Nonlinear MPC (ENMPC) implies
a high computational cost and, the existing gradient-based numerical algorithms do not certify that
the obtained solution corresponds to the global one because of the non-convexity of the associated
optimization problem. Transforming the nonlinear optimization problem into a quadratic problem
through a linearisation method is one way of addressing the non-convexity problem and guaranteeing
a unique optimum. In this way, the system is modelled by an incremental model because the model
has to be linearised at each iteration. This approach has been improved by means of of the use Linear
Parameter Varying (LPV) models that do not require linearisation [21]. The LPV models can describe
both nonlinear phenomena and time-varying that can be estimated/measured online.

Another weakness of previous approaches combining reliability analysis and MPC is the
conservatism of the resulting control strategies, which affects negatively the efficient DWN operation.
Furthermore, in real applications, the assumption of bounded disturbances in real applications is not
always satisfied. Thus, constraint violations can not be avoided because of the appearance of faults,
unexpected events, etc. A more realistic representation of uncertainty is based on using the stochastic
approach that leads to less conservative control methods by incorporating explicit disturbance models
in the control design and by converting hard constraints into probabilistic constraints. The stochastic
approach is a sophisticated theory in the field of optimization, but a revived consideration has been
provided to the stochastic programming methods as powerful tools for the design of controllers,
leading to the stochastic MPC, which has a particular alternative called chance-constrained MPC
(CC-MPC) [22,23]. The stochastic control approach that represents robustness in terms of probabilistic
(chance) constraints, which need that the probability of violation of any operational condition or
physical constraint is under a designated value. By placing this value suitably, the user/operator can
obtained the desired trade-off between robustness and performance. For related works that proposed
the CC-MPC approach in water networks the reader is referred to [24,25]. Some economic-oriented
controller that consider the reliability issue has been proposed [20], but without considering reliability
at the system level and probabilistic constraints based on the reliability of the system.

The aim of this paper is to include in an EMPC strategy for DWN an additional objective that takes
into account PHM information obtained by the online evaluation of the system reliability. The system
reliability is incorporated into the control algorithm by using an augmented model that includes
both the reliability and DWN models. As the reliability model of the whole DWN is nonlinear,
its model is expressed as an LPV model such that at each time instant the varying parameters are
updated according to the value of the scheduling variables. This allows to solve the optimization MPC
problem associated to the health-aware approach using quadratic programming instead of nonlinear
programming. Considering the probabilistic nature of system reliability, it is included in the MPC
optimization problem in the form probabilistic constraints as the demands (disturbances) using the
chance constraints programming paradigm. The resulting control inputs obtained by the proposed
health-aware MPC approach are able to achieve the economic control objectives and simultaneous to
increase the lifespan and reliability of the system components.

Chance-constraints programming allow to determine an optimal strategy by establishing the
desired level of infeasibility and system reliability. Moreover, it allows considering the system reliability,
which is assessed online using an LPV-MPC strategy; representing the main contribution of this paper.
The second contribution is to propose an advanced health-aware LPV-MPC approach that formulates a
quadratic optimization problem taking into account the functional dependency of scheduling variables
and state vector. This approach avoids the use of nonlinear optimization. Moreover, it uses chance
constraints programming to manage dynamically designate safety stocks in flow-based networks to
satisfy nonstationary flow demands and system reliability.
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The structure of the paper is as follows. The control-oriented model considered for DWN when
considering the transportation layer is introduced in Section 2. Section 3 presents the chance-constraints
programming and the way to use it into the MPC controller. The system reliability modeling and
the relationship between reliability and chance constricted are described in Section 4. In Section 5,
the economic reliability-aware MPC-LPV including chance-constraints programming is provided. The
results of the application of the proposed control strategy to the DWN network using the proposed
case study are analyzed and summarized in Section 6. Finally, the conclusions and research future
paths are presented in Section 7.

Notation: Throughout this paper R,R+,Rn,Rm×n indicate the field of real numbers, the set of
non-negative real numbers, the set of column real vectors of length n, and the set of m by n real
matrices, respectively. Equivalently, I+ presents the set of non-negative integer numbers including
zero. Define the set I[a,b] := {x ∈ I+|a ≤ x ≤ b} for some a, b ∈ I+ and I≥c := {x ∈ I+|x ≥ c} for
some c ∈ I+. The operator ⊕ is direct sum of matrices (block diagonal concatenation). Furthermore,
‖.‖ denotes the spectral norm for matrices and ||.||2 is the squared 2-norm symbol. The superscript !

represents the transpose and operators <,≤,=,>,≥ indicate element-wise relations of vectors.

2. EMPC for Transport Water Networks

2.1. Control-Oriented Model

In the literature, several control-oriented models for DWNs can be found depending if the
transportation or distribution layer is considered. (see, e.g., in [26,27]). In this paper, a flow-based
control-oriented modeling approach is considered following [6,28] since the transportation layer is
considered. A DWN is composed by pipes, water tanks, pumping stations, and valves used for
consumer water supply. To derive the control oriented-model, the state vector x ∈ Rnx is defined to
represent the tank volumes. The vector u ∈ Rnu of controlled inputs is associated to the flow rates
through the actuators (pumps and valves) of the network, and the vector dm ∈ Rnd of disturbances
(demands) as the collection of flow rates required by the consumers at demand nodes. By means fo the
flow–mass balance relations in the tanks and nodes, a discrete-time model based on linear differential
algebraic equations (DAEs) for all time instant k ∈ Z≥0 can be formulated for a given DWN as follows,

x(k + 1) = Ax(k) + Bu(k) + Bddm(k), (1a)

0 = Euu(k) + Eddm(k), (1b)

where difference Equation (1a) model the dynamics of the storage tanks, whereas the algebraic
relations (1b) describe the mass balance at junction nodes. A ∈ Rnx×nx , B ∈ Rnx×nu , Bd ∈ Rnx×nd ,
Eu ∈ Rnd×nu , Ed ∈ Rnd×nd , and C ∈ Rny×nx are time-invariant matrices of that depends on the network
topology. The system is subject to physical input and state constraints provided by convex and closed
polytopic sets defined as

x(k) ∈ X := {x ∈ Rnx |Gx ≤ g}, (2a)

u(k) ∈ U := {u ∈ Rnu |Hu ≤ h}, (2b)

for all k ∈ Z≥0, where G ∈ Rmx×nx , g ∈ Rmx , H ∈ Rmu×nu , and h ∈ Rmu are vectors/matrices
collecting the system constraints, signifying mu ∈ Z≥0 and mx ∈ Z≥0, the number of input and
state constraints, respectively. Concerning the operation of the considered flow-based networks,
the following assumptions are considered in this paper.

Assumption 1. The demands in dm(k) and the states in x(k) are observable at each time instant k ∈ Z≥0,
also the pair (A, B) is stabilizable.

426



Processes 2020, 8, 60

Assumption 2. The demand realizations at the current time instant k ∈ Z≥0 can be represented as

dm(k) = dm(k) + d̃m(k), (3)

where dm(k) is the vector of expected disturbances that can be forecast, and d̃m(k) is the vector of probabilistic
independent forecasting errors with nonstationary uncertainty and a known (or approximated) quasi-concave
probability distribution D(0, ∑(dm,(j)(k))

)
. Consequently, each j-th row of dm(k) is described by an stochastic

variable dm,(j)(k)D(j)
(
dm,(j)(k), ∑(d̃m,(j)(k))

)
, where dm,(j)(k) represents the mean and ∑(d̃m,(j)(k))

the variance.

2.2. EMPC Formulation

Computing the input commands ahead of time, to obtain the optimal performance of the
network according to a set of control goals, is the purpose of applying MPC techniques for managing
water transportation networks [1]. The control goal is to minimize a convex stage cost function
� : Z≥0 ×X×U −→ R≥0, which might carry any functional relationship with the economics of
the system operation. Therefore, the control aim can be expressed for minimization of a convex
multi-objective cost function, which involves three functional objects for managing the DWN with
different types:

• Economic objective: Minimizing water production and transport costs while providing the
demanded volume.

• Safety objective: The safety volumes in the tanks are preserved guaranteeing, up to some level,
the water supply under connected variations in the demand.

• Smoothness objective: For avoiding overpressures in pipes and damage in actuators, the actuators
are managed based on the smooth control actions.

2.2.1. Economic Cost Minimization

Minimizing the economical costs that include water production and electrical costs related to
pumping is the main control objective of the DWN. Transporting drinking water to proper elevation
levels by the network involves significant electricity costs due to pumping. Therefore, the cost function
related to this objective can be expressed as

�e(k) � α(k)!Weu(k), (4)

where α(k) � (α1 + α2(k)) ∈ Rnu , α1 ∈ Rnu denotes a fixed water production costs that related to the
water treatments, and α2 ∈ Rnu corresponds to a time-varying water cost associated to pumping that
varies in each time instant k with respect to the dynamic electricity tariff. We indicates the weighting
term that allows to prioritize the economic control objective in the complete objective function.

2.2.2. Safety Management

To preserve water stocks in spite of unexpected changes in the water demands, an appropriate
safety storage level for each tank is required to be guaranteed. This goal can be formulated in the
following manner,

�s(k) �
{
‖x(k)− xs‖2, i f x(k) ≤ xs

0, otherwise
(5)

where xs indicates the tanks safety levels. This piecewise linear formulation can be avoided by
considering that the safety cost function can be expressed through a soft constraint by using a slack
variable ξ, which is introduced to retain feasibility of the optimization problem and minimized

�s(k) � ξ!(k)Wsξ(k), (6)

427



Processes 2020, 8, 60

and the soft constraint is defined as
x(k) ≥ xs − ξ(k), (7)

and Ws is diagonal positive definite matrix that allows to prioritize this objective in the complete
objective function.

2.2.3. Control Action Smoothness

Pumps and valves are the considered actuators in a DWN. Therefore, the control actions obtained
by the MPC controller must be smooth for the purpose of preserving the component lifetime. To achieve
the smoothing effect, the variation of the control actions among two consecutive time instants is
penalized as follows,

�Δu(k) � Δu(k)!WΔuΔu(k), (8)

where Δu(k) � u(k)− u(k− 1), and WΔu is a weighting matrix that allows prioritizing this objective
in the complete objective function.

2.2.4. EMPC Optimization Problem Formulation

The EMPC strategy can be implemented by solving a finite-horizon optimization problem over a
prediction horizon Np, where the multi-objective cost function is minimized subject to the prediction
model and a set of system constraints. According to the network model (1), the MPC controller design
is based on minimizing the following cost function in the prediction horizon Np,

J =
Np

∑
l=0

(�e(l|k) + �s(l|k) + �Δu(l|k)). (9)

where at each time instant, the following optimization problem is solved online.

min
u(k),x(k),ξ(k)

J(u(k), x(k), ξ(k)), (10a)

subject to:

x(l + 1|k) = Ax(l|k) + Bu(l|k) + Bddm(l|k), l = 0, · · · , Np − 1 (10b)

0 = Euu(l|k) + Eddm(k), l = 0, · · · , Np − 1 (10c)

x(l|k) ≥ xs − ξ(l|k), l = 1, · · · , Np (10d)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (10e)

x(l|k),∈ X, l = 1, · · · , Np (10f)

ξ(l|k) ≥ 0, l = 0, · · · , Np (10g)

x(0|k) = x(k), (10h)

The optimal control actions sequence u∗(k) = {u(l|k)}l∈Z[0,Np−1]
, x∗(k) = {x(l|k)}l∈Z[1,Np ]

, and

ξ∗(k) = {xi(l|k)}l∈Z[1,Np ]
are obtained online. Considering the receding horizon philosophy [3],

the procedure is based on solving the optimization problem (10a) from the current time instant k to
k+ Np by using x(0|k) as the initial condition that is computed from measurements (or state estimation)
at time k. Then, by applying the first value u∗(0|k) from the optimal input sequence u∗(k) to the system,
the procedure goes to the next time instant. To calculate u∗(0|k + 1) at time k + 1, the optimization
problem (10a) is solved from k + 1 to k + 1 + Np, and initial states x(0|1 + k) from measurements (or
state estimation) are updated at time k + 1. The same method is iterated for the following time instants.
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3. Chance-Constrained Model Predictive Control

If the stochastic nature of disturbances (demands) and reliability of components of the system
is not explicitly considered, an optimal solution of (10) satisfying all constraints can not be found in
real scenarios. Therefore, to guarantee feasibility of the optimization problem (10), it is appropriate
to relax the original constraints that involve stochastic elements with probabilistic statements in the
form of chance constraints. In this manner, the constraints are needed to be satisfied with predefined
risk levels to manage the uncertainty and component reliability of the system. Chance-constrained
programming is a technique of stochastic programming dealing with constraints of the general form as

P[f(v, ζ) ≤ 0] ≥ 1− δζ , (11)

where P indicates the probability operator, v ∈ Rnv is the decision vector, ζ ∈ Rnζ a random variable,
and f : Rnv ×Rnζ −→ Rnc a constraint mapping. The level δζ ∈ (0, 1) is user given and defines the
preference for safety of the decision v. The constraint (11) means that we wish to take a decision v
that satisfies the nc-dimensional random inequality system f(v, ζ) ≥ 0 with high enough probability.
As demonstrated in [29], if f(., .) is jointly convex in (v, ζ) and Φ =Δ P[.] is quasi-concave, then the
feasible set

Ψ(δζ) =
Δ {v|P[f(v, ζ) ≤ 0] ≥ 1− δζ} (12)

is convex for all δζ(0, 1). All chance-constrained models need prior knowledge of the acceptable risk
δζ connected with the constraints. A lower risk acceptability proposes a harder constraint. In general,
joint chance constraints lack from analytic expressions because of the involving multivariate probability
distribution [30]. In this paper, by following the results in [30,31], a uniform distribution of the joint
risk is approximated by upper bounding the joint constraint and assuming a similar distribution
of the joint risk among a set of individual chance constraints are transformed inside equivalent
deterministic constraints.

Consider the general joint chance constraint (11), and define f(v, ζ) =Δ ζ − Fv with F ∈ Rζ×nv .
Therefore, the additive stochastic element is separable and the following chance constraint is achieved,

P[ζ ≤ Fv] ≥ 1− δζ . (13)

Then, by rewiring ω =Δ Fv, for any duple (ζ, ω), it follows that

Φζ(ω) = P[{ζ1 ≤ ω1, ..., ζnc ≤ ωnc}]. (14)

Describing the events Ci =
Δ {ζi ≤ ωi}, ∀i ∈ Znc

1 (as e.g., faults in the actuators or unexpected
changes in the demand), it follows that

Φζ(ω) = P[Ci ∩ ...∩ Cnc ]. (15)

Indicating the complements of the events Ci by Cc
i =Δ {ζi > ωi}, and it is obvious from probability

theory that
C1 ∩ ...∩ Cn = (Cc

1 ∪ ...∪ Cc
nc)

c, (16)

and consequently

Φζ(ω) = P[Ci ∩ ...∩ Cnc ] (17a)

= P[(Cc
1 ∪ ...∪ Cc

nc)
c] (17b)

= 1− P[(Cc
1 ∪ ...∪ Cc

nc)
c] ≤ 1− δζ . (17c)
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By using the union bound, the Boole inequality let to bound the result in (17c), declaring that for
a countable set of events, the probability that at least one event occurs is not higher than the sum of the
individual probabilities [32], such that

P
[
∪nc

i=1 Ci

]
≤

nc

∑
i=1

P[Ci], (18)

and, by applying (18) to (17c), it yields to

nc

∑
i=1

P[Cc
i ] ≤ δζ ⇐⇒

nc

∑
i=1

(1− P[Ci]) ≤ δζ . (19)

Then, a set of constraints rises from previous results as sufficient conditions to enforce the joint
chance constraint (13), by allotting the joint risk δζ in nc separate risks δζ,i, i ∈ Znc

i . These constraints
are described as follows,

P[Ci] ≥ 1− δζ,i, ∀i ∈ Znc
1 (20a)

nc

∑
i=1

δζ,i ≤ δζ , (20b)

0 ≤ δζ,i ≤ 1, (20c)

where (20a) produces the set of nc effective individual chance constraints, which bounds the probability
that each inequality of the receding horizon problem could not be satisfied. Moreover, (20b) and (20c)
are conditions forced to bound the new single risks in such a way that the joint risk bound is not
breached. Each solution that satisfies the aforesaid constraints is guaranteed to provide (13).

According to the satisfaction of each individual constraint is an event Ci, ∀i ∈ Znc
i . A joint chance

constraint needs that the connection of all the individual constraints is satisfied with the wanted
probability level, such as

P
[
∩nc

i=1 Ci

]
≥ 1− δζ . (21)

Considering that each individual constraint is probabilistically dependent, the level of
conservatism can be derived by using the inclusion–exclusion principle for the union of finite events,
Ci, ∀i ∈ Znc

1 , which proves the following equality,

P
[
∪nc

i=1 Ci

]
=

nc

∑
i=1

P[Ci]− ∑
1≤i<j≤nc

P
[
Ci ∩ Cj

]
+ ∑

1≤i<j<k≤nc

P
[
Ci ∩ Cj ∩ Ck

]
− ... + (−1)nc−1P

[
∩nc

i=1 Ci

]
.

(22)

Note that by considering as an event a fault in an actuator, it can be observed that Equation (22)
has a similar as formulation as the one used for evaluating the system reliability based on the
component reliability.

In a DWN, the constraints come from models (10b) and (10c) that can be formulated as chance
constraints statements taking into account the probabilities associated to the component reliability.
Considering only faults in actuators, the reliability of the system is related to the system inputs ui(k).
Therefore, (11) can be formulated in case of the actuators as follows,

P[f(ui(k), ζi(k)) ≤ 0] ≥ 1− δζi , (23)

where ζ(k) ∈ {0, 1} is a stochastic variable which considers if the actuator is one of two states
{Unvailable, Available} (or {0, 1}) defined as follows,
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ζi(k) =

{
1, Ri(k) > 0

0, Ri(k) = 0.
(24)

where Ri(k) is the actuator reliability. In the case that ζi(k) = 1, the input ui(k) associated to the i-th
actuator is bounded by (2b); otherwise, an additional constraint setting ui(k) = 0 should be included.
Furthermore, to determine the reliability associated to the system that associates a probability to the
system model constraint (1), the joint-chance constraint probability calculation (22) should be used
leading to the following probabilistic formulation for the MPC optimization problem (10),

min
u(k),x(k),ξ(k)

J(u(k), x(k), ξ(k)), (25a)

subject to

P

[
Ax(l|k) + B(ζi)u(l|k) + Bddm(l|k), (25b)

Eu(ζi)u(l|k) + Eddm(k)
]
≥ 1− δ, l = 0, · · · , Np − 1 (25c)

x(l|k) ≥ xs − ξ(l|k), l = 1, · · · , Np (25d)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (25e)

x(l|k),∈ X, l = 1, · · · , Np (25f)

ξ(l|k) ≥ 0, l = 0, · · · , Np (25g)

x(0|k) = x(k). (25h)

The main difficulty in solving this stochastic problem using chance constraints is that at each time
iteration, the probabilities associated to the system reliability should be updated taking into account
the value of the optimal control actions ui. In the following section, a solution procedure is proposed
to solve this problem.

4. Augmenting Network Model with the Reliability Model

As discussed in the introduction, one of the contributions of this work is to integrate the
information about system health in the MPC controller by using the reliability approach. In the
following, a procedure to derive the reliability model of the DWN is presented, considering that faults
can only occur in the actuators.

4.1. Reliability Model

In the literature, different types of distributions have been considered to characterize the evolution
of the reliability with time. The most commonly used are exponential, normal, log-normal, and Weibull
distributions [33]. Here, the exponential function is considered.

First, define the concept of failure rate which is important to obtain reliability. The general
explanation of failure rate, indicated by λ is presented as the fraction of the density of the stochastic
lifetime to the remainder function (i.e., conditional probability). Particularly, systems are designed to
work under different load values. According to [33], the load firmly affects the component failure rate.
Therefore, for presenting system reliability evaluation should be considered the load versus failure rate
relationship. A significant amount of literature has been produced to include the impact of the load
level in the reliability estimation [33]. In this paper, actuator failure rates under various load levels
are considering in function of the applied control input. The following exponential laws is the most
widely used relationship to characterize the variation of the actuator fault rates with the load
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λi = λ0
i exp

(
βiui(k)

)
, i = 1, 2, . . . , m (26)

where λ0
i represents the baseline failure rate (nominal failure rate) and ui(k) is the control action a time

k for the i-th actuator. βi is a constant parameter that depends on the actuator characteristics.
Accordingly to the failure rate definition, reliability of a system or component can be described

as follows

Definition 1. Reliability is determined as the probability that a system (or component) will perform their
functioning satisfactorily for a certain period of time subject to operating conditions [34].

From the mathematical point of view, reliability R(t) is defined as the probability of the successful
operation of a system in the intervening period from time 0 to time t:

R(t) = P(T > t), t ≥ 0 (27)

where T is a stochastic variable that describes time until failure. Furthermore, the unreliability of
system (or a component) is represented as follows.

Definition 2. The unreliability F(t) is determined as the probability that the component or system encounters
the first failure or has failed one or more times among the time interval 0 to time t.

Considering the system (or component) is always in one of the two states introduced in
Equation (24), the following relationship is provided,

F(t) + R(t) = 1. (28)

The reliability of a component R0(t) in the useful life period can be specified at a certain time t by
a starting point. Accordingly, R0,i(t) will denote the i-th actuator reliability determined considering
nominal operating conditions

R0,i(t) = exp
(− λ0

i t
)
, i = 1, 2, . . . , m (29)

Therefore, the components reliability of a system with the i-th components can be computed by
exploiting the exponential function and the baseline reliability level R0,j as follows,

Ri(t) = R0,i exp
(
−
∫ k

0
λi(s) ds

)
, i = 1, 2, . . . , m (30)

In discrete-time, Equation (30) can be rewritten as

Ri(k + 1) = R0,i(k) + exp
(
− Ts

k+1

∑
s=0

λi(s)
)

, i = 1, 2, . . . , m (31)

where λi(s) is the failure rate that is acquired from the i-th component under varying load levels ui
and Ts is the sampling time.

4.2. Overall Reliability

The system lifespan can be determined by the reliability of the overall system that is denoted
as Rg(k). This reliability is obtained based on the computation of the reliabilities of elementary
components (or subsystems). Therefore, Rg(k) is influenced by the configuration of the actuator that
can be computed from the combination of parallel and/or series of subsystems (or components) [35].
However, there are several engineering systems that not attending the parallel, series, or connection
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of parallel and series structures. To manage the more complex situations, a graph model can be used
to determine if the component successful path existence can be identified to determine whether the
system is working correctly. A path for the graph network is a set of components, in such a way that
the system will succeed just when all the components are successful in that set. A minimal path Ps is a
set of components that relates to it, but the elimination any one of the components will create the set
not to be a successful path [35]. Therefore, the overall system reliability Rg(k) can be counted as

Rg(k) = 1−
s

∏
j=1

(
1− ∏

i∈Ps,j

Ri(k)
)

, (32)

where j = 1, . . . , s is minimal paths number. As mentioned in previous section, there is an indirect
relationship between conservatism of probability and the overall system reliability. In fact, the formula
obtained for overall reliability system (Equation (32)) can be obtained from Equation (22).

4.3. System Reliability Modeling

Aiming to include reliability in the MPC model, a transformation is needed allowing to estimate
reliability in a LPV framework. The considered transformation relies on applying the logarithm to (32).
Then, Equation (32) can be rewritten as follows,

log(Qg(k)) = log
( s

∏
j=1

(
1− ∏

i∈ps,j

Ri(k)
))

, (33)

and by introducing an change of variable

zj(k) = 1− ∏
i∈ps,j

Ri(k), (34)

Equation (33) can be expressed as

log(Qg(k)) =
s

∑
i∈ps,j

log(zj(k)). (35)

Considering (34), the log(zj(k)) can be determined as

log(zj(k)) =
log(zj(k))

log(1− zj(k))
∑

i∈ps,j

log Ri(k). (36)

Afterward, by renaming β j(k) =
log(zj(k))

log(1−zj(k))
in (36), (33) can be rewritten as

log(Qg(k)) =
s

∑
i∈ps,j

β j(k) ∑
i∈ps,j

log Ri(k). (37)

Finally, the system unreliability can be computed from the unreliability of the baseline system

log(Qg(k + 1)) = log(Qg(k)) +
s

∑
i∈ps,j

β j(k) ∑
i∈ps,j

log Ri(k). (38)
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5. Economic Reliability-Aware MPC-LPV Using Chance-Constraints

5.1. Economic Reliability Aware MPC-LPV

In this section, the integration of reliability model in the MPC controller augmenting the DWN
model is proposed. As previously discussed, the reliability of the DWN can be determined by
employing the control input. Thus, a new objective can be included in the MPC controller that aims to
preserve the system reliability additionally to consider the reliability model (38). Figure 1 summarizes
the procedure to obtain the augmented control model from the dynamic model of DWN by obtaining
the reliability model using Equation (32) or equivalently Equation (22).

System Model

Signal-Flow Graphs

Obtaining Minimal Path

Reliability Model

Augmented Model

for Control

Figure 1. Structure diagram of the proposed approach.

By following this procedure, the augmented MPC model can be formulated as follows,

xg(k + 1) = Agxr(k) + Bgu(k) + Bd,gdm(k),

yg(k) = Cgx(k),
(39)

where the state and output vector are defined by xg = [x, log(Qg), log(R1), . . . , log(Ri)]
T and

yg = [y, log(Qg)]T , respectively. The augmented matrices are defined as

Ag =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A 0nx×ni+1

01×nx 1 ∑s
i∈ps,j

β j(k)

0ni×nx Ini×ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Bg =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bnu×nu

0

−λi × Ini×ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bd,g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bd,nu×nu

0ni+1×nBd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cg =

[
C 0 0 · · · 0
0 1 0 · · · 0

]
.

(40)
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Considering the control action ui(k) as the scheduling variable related to each actuator and state
in the augmented MPC model, it can be considered (39) as an LPV model. The model (39) cannot be
assessed before solving the optimization problem (10), due to the future state sequence is unknown
and cannot be determined. In reality, x(l|k) depends on the future control inputs u(k), and also on
the future scheduling parameters, thus LPV model can not instantiated offline but instead should
be evaluated online at each time instant k. In this way, the MPC optimization problem (10) can be
formulated as a QP problem by using an estimation of scheduling variables, θ̂ instead of utilizing θ.
That means the scheduling variables in the prediction horizon are estimated using the values from
the previous MPC iteration and applied to update the model matrices of the MPC controller. Indeed,
the control input sequence is utilized to change the model matrices used in the prediction horizon.
Therefore, the predicted parameters and sequence of states are obtained from the optimal control
sequence u(k), such as

x̃(k) =

⎡⎢⎢⎢⎢⎣
x(l + 1|k)
x(l + 2|k)

...
x(Np|k)

⎤⎥⎥⎥⎥⎦ ∈ RNp,nx , Θ =

⎡⎢⎢⎢⎢⎣
θ̂(l|k)

θ̂(l + 1|k)
...

θ̂(Np − 1|k)

⎤⎥⎥⎥⎥⎦ ∈ RNp,nθ . (41)

The vector Θ(k) includes parameters from time k to k + Np − 1 while the state prediction
is considered for time k + 1 to k + Np. Thus, by a small abuse of notation, ϕ is defined as
Θ(k) = ϕ([xT(k) x̃T(k)], u(k)). The vector Θ(k) consists of parameters from time k tok + Np − 1,
whereas the state prediction is performed for time k + 1 to k + Np.

Therefore, using Equation (41), the predicted states can be directly expressed as follows,

x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) + Br,ddm(k), (42)

where A ∈ Rnx×nx and B ∈ Rnx×nu are provided by Equations (43) and (44).

A(Θ(k)) =

⎡⎢⎢⎢⎢⎢⎢⎣
I

A(θ̂(k))
A(θ̂(k + 1))A(θ̂(k))

...
A(θ̂(k + Np − 1))A(θ̂(k + Np − 2)) . . . A(θ̂(k))

⎤⎥⎥⎥⎥⎥⎥⎦ , (43)

and

B(Θ(k)) =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0

B(θ̂(k)) 0 0 . . . 0
A(θ̂(k + 1))B(θ̂(k)) B(θ̂(k + 1)) 0 . . . 0

...
...

. . .
. . .

...
A(θ̂k+Np−1) . . . A(θ̂(k + 1))B(θ̂(k)) A(θ̂k+Np−1) . . . A(θ̂(k + 2))B(θ̂(k + 1)) . . . B(θ̂k+Np−1)) 0

⎤⎥⎥⎥⎥⎥⎦ . (44)

By exploiting Equation (42), and new weighting matrices w̃1 = diagNp(w1), and w̃2 = diagNp(w2),
the cost function (9) with the new additional objective that aims to increase the system reliability can
be revised in vector form as follows,

min
u(k),ξ(k),x(k)Qg(k)

Np

∑
l=0

[�e(l|k) + �s(l|k) + �Δu(l|k)− �Rg(l|k)], (45a)

subject to
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x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) + Br,ddm(k), (45b)

0 = Euu(l|k) + Eddm(k), (45c)

x(l + 1|k) ≥ xs − ξ(l|k) (45d)

log Qg(l + 1|k) = x̃nx+1(l|k) (45e)

u(l|k) ∈ U, l = 0, · · · , Np − 1 (45f)

x(l|k),∈ X, l = 1, · · · , Np (45g)

ξ(l|k) ≥ 0, l = 0, · · · , Np (45h)

x(0|k) = x(k), (45i)

where �Rg(k) � Q!g w3Qg is an additional objective including the weight w3 into the controller cost
function to improve the system reliability. The optimization problem is solved as a QP problem
according to that the predicted states Θ(k) in (42) are linear with respect to control inputs u(k),
which is considerably further easier than solving a nonlinear optimization problem. To clarify the
proposed approach, Algorithm 1 is presented.

Algorithm 1 LPV-based MPC strategy

1: k ←− 0
2: repeat
3: i ←− 0
4: if k = 1 then

5: To solve the optimization problem (45a), where θ(0|k) � θ(1|k) � θ(2|k) � ... � θ(Np − 1|k)
6: Calculate Θ(k) by using x̃(k) and u(k)
7: else

8: Determine Θ(k) = {θ̂(i|k)}Np−1
i=0 where θ̂(i|k) = ψ(x(i|k− 1 + 1), u(i|k− 1)),

9: Solve the optimization problem (45a)
10: Compute x̃(k) and u(k),
11: i ←− i + 1
12: end if
13: Apply first element of the input sequence to the plant
14: Define Θ0(k + 1) = ψ(x̃1(k), u0(k))
15: k ←− k + 1
16: until end

5.2. Including Demand Uncertainty Using Chance Constraints

According to the stochastic nature of water demands, the DWN prediction model includes
exogenous additive uncertainties. Therefore, the constraint’s satisfaction (10) cannot be guaranteed,
unless uncertainty it is not explicitly considering in some way. Therefore, the original constraints that
include stochastic elements (2a) will formulated by means of probabilistic statements using the chance
constraints framework (11). Considering this framework introduced in Section 3, and the form of state
constraint set X, the form of a state joint chance constraint is described as

P[G(r)x ≤ g(r), ∀r ∈ Z[1,mx ]] ≥ 1− δx, (46)

where δx ∈ (0, 1) is the risk acceptability level of constraint violation for the states, and G(r) and g(r)
indicate the r-th row of G and g, respectively. This entails that all rows r have to be jointly satisfied
with the probability 1− δx. Also, the form of a state individual chance constraint is described as

P[G(r)x ≤ g(r), ] ≥ 1− δx, ∀r ∈ Z[1,mx ] (47)
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which requires that each r-th row of the inequality has to be satisfied individually with the respective
probability 1− δx,r, where δx,j ∈ (0, 1). Then, according to Equation (20), the state constraints can be
described as follows,

P[G(r)x ≤ g(r)] ≥ 1− δx,r, ∀r ∈ Z[1,mx ] (48a)
mx

∑
r=1

δx,r ≤ δx, (48b)

0 ≤ δx,r ≤ 1, (48c)

and, as recommended in [31], specifying a constant and equal value of risk to each individual constraint,
that is, δx,r = δx/mx for all r ∈ Z[1,mx ], then (48b) and (48c) are obtained.

By considering a known (or approximated) quasi-concave probabilistic distribution function for
the stochastic disturbance in the dynamic model (1), it yields to

P[G(r)x(k + 1) ≤ g(r)] ≥ 1− δx,r ⇔ FG(r)Bddm(k)(g(r)− G(r)(Ax(k) + Bu(k))) ≥ 1− δx,r

⇔ G(r)(Ax(k) + Bu(k)) ≤ g(r)− F−1
G(r)Bddm(k)(1− δx,r),

(49)

for all r ∈ Z[1,mx ], where FG(r)Bddm(k)(.) and F−1
G(r)Bddm(k)(.) are the cumulative distribution and the

left-quantile function of G(r)Bddm(k), respectively. The use of chance constraints allows to guarantee a
safety stock at each storage node of a flow-based network for decreasing the probability of stock-outs
due to demand uncertainty. In this way, according to Equation (48a), the safety stocks are optimally
assigned and designed by the constraint back-off effect due to the term FG(r)Bddm(k)(1 − δx,r) in
Equation (46). Therefore, the original state constraint set X is adjusted by the effect of the mx

deterministic equivalents in (49) and substituted by the stochastic feasibility set provided by

Xs(k) :={x(k) ∈ Rnx |∃ u(k) ∈ U, such that

G(r)(Ax(k) + Bu(k)) ≤ g(r)− F−1
G(r)Bddm(k)(1− δx,r) ∀r ∈ Z1,mx

and Euu(k) + Edd̄(k) = 0},

(50)

where d̄(k) = E[dm] is the first moment of dm for all k ∈ Z0≥0. The set Xs(k) is convex when non-empty
for all δx,r ∈ (0, 1) in most distribution functions, due to the convexity of G(r)x(k + 1) ≤ g(r) and
the log-concavity assumption of the distribution. For some particular distributions, e.g., Gaussian,
convexity is preserved for δx,r ∈ (0, 0.5] [30].

5.3. Enhancing System Reliability Using Chance Constraints

According to the Section 5.1, component and system reliability model can be included in the
EMPC controller model. Besides, (50) provides a new constraint set according to the deterministic
equivalent (49). However, (50) does not consider the states related to the component and system
reliability. Therefore, it is necessary to modify the constraint set (50) with probabilistic statements
based on the component and system reliability. In this way, the system reliability is formulated in
terms of probabilistic constraints as follows,

xRg(k) ∈ {xRg ∈ RnR |P[GRgxRg ≥ gRg] ≥ (1− δRg)} (51)

where xRg(k) ∈ RnRg is system reliability state defined in Equation (39), and δRg ∈ (0, 1) is the
corresponding risk acceptability level of constraint violation. According to the above discussion and
the effect of stochastic reliability in the model (39), (51) can be rewritten as

P[GRgxRg(k + 1) ≥ gRg] ≥ (1− δRg)⇔ FGRgη(gRg − GRgxRg(k + 1)) ≥ 1− δRg

⇔ GRgxRg(k + 1) ≥ gRg + F−1
GRgη(1− δRg),

(52)
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where η is a random vector whose components follow a normal distribution, and FGRgη(.) and F−1
GRgη(.)

are the cumulative distribution and the left-quantile functions involved in the state and actuator health
deterministic equivalent constraints, respectively. The deficiency of reliability in the system can be caused
that the actuator operation compromise the network supply service unless demands result reachable
from other redundant flow paths or a fault-tolerant mechanism is activated. Therefore, a preventive
strategy can be performed to increase overall system reliability by guaranteeing that the system reliability
at each time instant to remain above a safe threshold until a predefined maintenance horizon is reached.
Thereupon, the probabilistic constraint (52) can be formulated in the predictive controller as

GRgxRg(k + Np|k) ≥ gRg(k) + F−1
GRgη(1− δRg), (53a)

gRg(k) = xRg, min(k) := xRg(k) + Np
Rtresh − xRg(k)
kM + Np + k

, (53b)

where xRg, min(k) ∈ RnRg is the vector of minimum reliability of the system allowed for time instant k
and Rtresh ∈ RnRg is the vector of threshold for the terminal system reliability at a maintenance horizon
kM ∈ Z≥0. The right-hand side of Equation (53b) is an identical restricting of the remaining allowable
system reliability (Rtresh − xRg(k)) that is updated at each time step according to the applied control
actions and guarantees that xRg(k) ≥ Rtresh for k = kM.

5.4. Chance-Constraints Reliability-Aware EMPC-LPV Reformulation

After the inclusion system reliability in the control low as an additional state of the control model
and discussing about how to use the probabilistic statements for demand and reliability constraints and
formulating them into deterministic equivalent constraints. Next, the setting of the proposed economic
reliability-aware MPC-LPV controller, including deterministic equivalent constraints, is presented.
This transformation leads to an optimization problem considering both the dynamic safety stocks and
the system reliability theory, in order to improve the flow supply service level in a given network,
handling demands uncertainty and equipment damage.

In this way, for a given sequence of demands d, the predicted system reliability Rg, acceptable
risk levels δx and δRg, and the optimization problem associated with the deterministic equivalent for
considered transportation DWN at each time step k are expressed as follows,

min
u(k),ξ(k),x(k)xRg(k)

Np

∑
k=0

[�e(k) + �s(k) + �Δu(k)− �Rg(k)], (54a)

subject to:

x̃(k) = A(Θ(k))x(k) + B(Θ(k))u(k) + Br,ddm(k), (54b)

0 = Euu(l|k) + Eddm(k), (54c)

x(k + l + 1|k) ≤ xmax(r)−Φx
k,r(δx), (54d)

x(k + l + 1|k) ≥ xmin(r) + Φx
k,r(δx) (54e)

GRgxRg(k + Np|k) ≥ xRg, min(k) + Φ
xRg
k,η (δRg), (54f)

x(k + l + 1|k) ≥ xs − ξ(k + l|k), (54g)

ξ(k + l|k) ≥ 0, (54h)

xRg(l + 1|k) = Rg(k), (54i)

u(k), uk+1, ..., uk+Np−1 ∈ U, (54j)

x(k|k), d̄m(k|k)) = (x(k), dm(k)), (54k)
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for all l ∈ Z[0,Np−1] and all r ∈ Z[0,mr ], where the terms Φx
k,r(δx) = F−1

G(r)Bddm(k)

(
1 − δx

nx Np

)
and

Φ
xRg
k,η (δRg) = F−1

GRgη

(
1− δx

Np

)
are the quantile functions involved in the states and system reliability

deterministic equivalent constraints.

6. Application

6.1. Case Study

The system used as a case study is a part of the Barcelona DWN that is presented in [36]. In the
considered case study, nine sources were considered, consisting of five underground and four surface
sources, which currently provide an inflow of about 2 m3/s. This part is composed of 17 tanks and 61
actuators (valves and pumps), 12 nodes, and 25 demands. Figure 2 presents the considered network
showing the components and the relationships between them.

Figure 2. Barcelona drinking water network.

The approach proposed in this paper has been applied to the using the control-oriented model
of DWN presented in Figure 2 presented in Section 2. This model can also be represented by means
of a graph G(ν, ε), where nx storage tanks, ns sources, nd demands, and nq intersection nodes are
represented by v ∈ ν vertices that are connected by a ∈ ε links (pipes) (see Figure 3). The graph that
shows in figure of the water network was obtained from the state-space representation of the system.
This procedure is defined with more detail in [37]. According to the DWN reliability study, demands,
sources, pipelines, and tanks are considered completely reliable whereas active elements such as valves
and pumps are recognized not completely reliable [38]. The forecast of each demand dm(k)) is known
as well the distribution of the forecasting error d̃m (see Figure 4).

Using the reliability analysis, the states that are structurally controllable can be determined
since the path computation analysis gives all possible paths from a source to a consumer node.
Furthermore, an approximate operational cost (related to the electricity cost of pump) and a maximal
water flow (according to the physical constraints of the actuators) can be obtained for each path.
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From the definition of minimal path Ps in Section 4.2, the minimal path sets are determined for
Barcelona DWN. A minimal path set is composed by those components which allow a flow path
between sources and demands, such as pipes, tanks, and pumps.

Tables 1 and 2 present important number of critical actuators within the network, according
to the topology and the way of network elements are linked, as most actuators (pumps or valves)
have the unique connection between tanks and demands. Subsequently, if an actuator fails, then
the corresponding demand will not be satisfied. Note that the information presented in Tables 1
and 2 is particularly significant for AGBAR because it recognizes the critical elements in the
network for monitoring/improvement policies to be performed in the event of element damage [39].
Considering the DWN (Figure 2), Tables 1 and 2, and the study of the success minimal path of the
water network, 607 minimal path sets are specified inside the system. Some simplification of success
minimal paths from the water network is presented in Table 3.

Figure 3. Graph from Barcelona DWN.
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Figure 4. Drinking water demand for several demands.
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Table 1. Structural actuators (towards tanks).

No. Name No. Name No. Name No. Name

u1 VALVA u16 VALVA309 u33 CC130 u47 VPSJ
u3 CPIV u17 bPousE u34 CC70 u48 CMO
u4 bMS u19 CGIV u35 VB u49 VMC
u5 CPII u20 CPLANTA50 u36 CF176 u50 VALVA60
u6 VALVA47 u21 PLANTA10 u37 VCO u51 VALVA56
u7 bCast u23 CRE u38 CCO u52 VALVA57
u8 VCR u24 CC100 u39 VS u53 CRO
u9 bPouCast u25 VALVA64 u40 V u54 VBMC
u10 CCA u26 VALVA50 u41 VCT u55 bPousB
u11 CB u27 CC50 u42 CA u56 VALVA53
u12 VALVA308 u28 VF u43 VP u57 VALVA54
u13 VALVA48 u29 CF200 u44 VBSLL u58 VALVA61
u14 VCA u30 VE u45 CPR u59 VALVA55
u15 CPLANTA70 u32 VZF u46 VCOA u60 VCON

Table 2. Structural actuators (towards demands).

No. Name No. Name No. Name No. Name

u2 VALVA45 u18 VSJD-29 u22 CE u31 VRM
u61 VALVA312

Table 3. Success minimal paths of the Barcelona DWN .

Path Component Set

P1 {aMS, bMS, c125PAL}
P2 {AportA, VALVA, VALVA45, c70PAL}
P3 {AportA, VALVA, VALVA47, CPIV, c125PAL}
P4 {AportA, VALVA, CPII, c110PAP}
P5 {ACast, bCast, c115CAST}
...

...
P607 {AportT, VALVA312, c135SCG}

The reliability of each minimal path set depends on the reliability of its components; tanks and
pipes are supposed perfectly reliable. Although, sources are involved in the minimal path sets only
for illustrative purposes of the procedure. The objective of the MPC as has been explained before
is to minimize the multi-objective cost function (54). The prediction horizon is 24 h because the
demand and also the electrical tariff have periodicity of 1 day. The analysis is carried for a time
period of 11 day (264 h) with sampling time of 1 h. The weights of the cost function (54a) are
We = 100, Ws = 1, WΔu = 1, and WRg = 10. The weighting matrices are founded by iterative tuning
until the desired performance is achieved. The tuning of these parameters is arranged based on that
the objective with the highest preference is the economic cost, which must be minimized maintaining
proper levels of safety volumes and control action smoothness and the same time should maximize
the system reliability. The simulation results based on real data are obtained using the Gurobi 6.2
optimization package and Matlab R2015b (64 bits), running in a PC Intel(R) Core(TM)i7-5500 CPU at
2.4 GHz with 12 GB of RAM.

6.2. Results and Discussion

To analyze and assess the benefits of the proposed economic readability-aware MPC-LPV
approach, a comparison with respect to baseline control strategies that were earlier proposed for
the same case study is considered. In particular, the considered methods are as follows.
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• Reliability-Aware Chance-constrained Economic MPC-LPV (RACCEMPC-LPV): This is the approach
proposed in this paper that is based on solving the optimization problem (54). This approach
allows the consideration of nonstationary stochastic demand uncertainty and stochastic whole
reliability of the system. Therefore, the base stock constraint, the hard bounds of the states and the
terminal constraint of the system reliability are formulated in the framework of chance constraints.

• Economic MPC-LPV (EMPC-LPV): This approach is based the optimization problem (45) without
including the reliability objective. Moreover, it is not considering the stochastic demand
uncertainty, chance constraints, and terminal constraint of the system reliability of the network.

• Chance-constrained Economic MPC-LPV (CCEMPC-LPV): This approach is included robustness only
for demand uncertainty by replacing the state deterministic constraints with chance-constraints.
Moreover, the CCEMPC-LPV controller does not include neither the reliability objective nor the
terminal constraint of the system reliability of the network.

• Reliability-aware economic MPC-LPV (RAEMPC-LPV): This approach relies on solving problem (45a).
In this approach, an additional goal is included to the controller in order to extend the components
and system reliability. However, the stochastic demand uncertainty and chance constraints
associated to the system reliability are not considered.

Table 4 exhibits the numeric assessment of the above-mentioned controllers through different key
performance indicators (KPIs), which are detailed below,

KPIe :=
1

ns + 1

ns

∑
k=0

α!(k)ukΔt, (55a)

KPIΔu :=
1

ns + 1

nu

∑
i=1

ns

∑
k=0

(Δu(i, k))2, (55b)

KPIs :=
nx

∑
i=1

ns

∑
k=0

max{0, xs(i, k)− x(i, k)}, (55c)

KPIR := xRg(k), (55d)

KPIt := topt(k), (55e)

where KPIe denotes the average economic performance of the water network, KPIΔu evaluates the
smoothness of the control actions, KPIs comprises the quantity of water utilized from safety stocks,
KPIR denotes the value of the whole system reliability of the DWN, and KPIt defines the difficulty
to solve the optimization tasks associated with each approach accounting topt(k) as the average time
that gets to solve the corresponding FHOP. In KPIe, KPIΔu , KPIs, and KPIt lower values signify better
performance results. However, a higher KPIR value shows better performance in system reliability of
the DWN. Furthermore, Table 5 presents the details of the production and operational costs associated
with each approach, which are one of the most important objectives for the DWN managers.

Figures 5 and 6 show, respectively, the evolution of the flow actuator commands and the tank
volumes for comparison of different considered MPC approaches for the Barcelona DWN. Figure 5
shows that pumps always try to operate at the minimum cost, i.e., when the electrical tariff is cheaper.
Figure 6 shows the proper replenishment planning for the tanks that the predictive controller dictates
according to the cyclic behavior of demands. Note that the net demand of each tank is properly
satisfied along the simulation horizon.

To manage the stochastic demand uncertainty, CCEMPC-LPV and RACCEMPC-LPV controllers
incorporated the robustness for demand uncertainty by replacing the state deterministic constraints
with chance constraints. Generally, chance constraints create an optimal back-off from real constraints
as a risk-averse mechanism to face the nonstationary uncertainty included in the prediction of states.
This is reflected in Figure 5, where the behavior in the presented actuators commands in chance
constraints approaches (CCEMPC-LPV and RACCEMPC-LPV) are almost the same and larger than in
the case of EMPC-LPV and RAEMPC-LPV, that also present a similar behavior. Similarly, this behavior

442



Processes 2020, 8, 60

appeared in the volume evolution of the selected storage tanks that are presented in Figure 6. These
results are logical since to cope with the uncertainty considered by the chance constraint-based methods
additional water is stored in the tanks and this requires more flow to be injected.
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Figure 5. Evaluation of the control actions results.

0 50 100 150 200 250
198

198.5

199

W
a

te
r 

F
lo

w
 [

m
3
/s

] Evolution of states x3

0 50 100 150 200 250
800

802

804

806

W
a

te
r 

F
lo

w
 [

m
3
/s

]

Evolution of states x6

X
RAEMPC-LPV

X
RACCEMPC-LPV

X
EMPC-LPV

X
CCEMPC-LPV

0 50 100 150 200 250

Time [h]

200

200.5

201

201.5

W
a

te
r 

F
lo

w
 [

m
3
/s

] Evolution of states x11

Figure 6. Results of the evolutions of storage tanks.
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Table 5 presents the details of water production and electricity cost of each approach.
The RACCEMPC-LPV approach has similar costs to those of the baseline CCEMPC-LPV approach,
but with the profit of a better handling of constraints and considering the system reliability into control
low of the controller. Generally, the proposed RACCEMPC-LPV approach leads to a higher total
closed-loop operational cost if considering only the water and electric costs as signs for economic
performance. This is the price to pay for increasing the reliability of the system.

On the other hand, Figure 7 shows the comparison of the system reliability predictions
and accumulated economic cost of the DWN that obtained from the different MPC approaches.
According to this figure and reviewing the results in Tables 4 and 5, it can be observed that the
robustness enhancements of the RACCEMPC-LPV approach are larger than the other controllers
in terms of reliability. The EMPC-LPV controller has lower values in the economic index KPIe

but, the guarantee of reliability, robustness and feasibility problems are not considered. The main
disadvantage of this controller is that control actions are computed based on economic criteria. In this
case, the controller overexploits actuators that have lower operational costs, quickening their damage
and hazarding the service reliability. The RAEMPC-LPV strategy reached the lowest KPIe after the
EMPC-LPV controller by including the reliability objective in the control low. However, the stochastic
demand uncertainty and stochastic uncertainty of the system reliability are not considered.
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Figure 7. Evaluation of system reliability and accumulated economic cost.

Table 4. Comparison of control performance.

Controller KPIe KPIΔu KPIs KPIRg KPIt Simulation Time

EMPC-LPV 3779.81 0.5271 28951.72 0.8772 1.5628 412.599
CCEMPC-LPV 4029.09 0.4910 28955.69 0.9186 1.9051 502.952
RAEMPC-LPV 3980.07 0.5317 28952.62 0.9263 1.78348 470.841
RACCEMPC-LPV 4029.19 0.4903 28955.90 0.9386 1.9664 519.147
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Table 5. Comparison of daily average costs of the MPC approaches.

MPC Approach
Water Average Cost Electric Average Cost Daily Average Cost

(e.u./day) (e.u./day) (e.u./day)

EMPC-LPV 44162.44 3053.08 47215.53
CCEMPC-LPV 51237.98 3262.43 54500.42
RAEMPC-LPV 44369.90 3121.84 47491.75
RACCEMPC-LPV 51438.13 3262.64 54700.77

7. Conclusions

In this paper, an economic reliability-aware LPV-MPC strategy based on chance constraints for
water transport network has been proposed to deal with the management of flow-based networks,
considering both demand uncertainty and system reliability in a probabilistic way. The considered
control-oriented model of the water transport network is based on a flow modeling approach.
By considering chance constraints programming to compute an optimal replenishment policy based
on a desired risk acceptability level, the system reliability is introduced as state variables inside the
control model, which includes nonlinear term and it is changed in a linear-like form through the
LPV structure. Therefore, the LPV model includes both the reliability and DWN models including
scheduling parameters are updated with the state vector value at that time. Moreover, nonstationary
flow demands and system reliability are satisfied by considering chance-constraint programming.
The results obtained show that the system reliability of the DWN network is maximized with the
proposed controller while the cost is slightly increased. The level of resultant back-off volume is
variable and depend of the forecast demand uncertainty and system reliability at each prediction
step based on probabilistic distributions employed to their modeling. As, in practice, disturbances
are unbounded, the strategy proposed in this paper is based on a service-level guarantee and a
probabilistic feasibility.

Future research will concentrate on the study of predicting the system reliability of water
distribution networks by considering the pressure model.
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Abstract: This paper presents a simultaneous state variables and system and actuator fault
estimation, based on an unknown input interval observer design for a discrete-time parametric
uncertain Takagi–Sugeno system under actuator fault, with disturbances in the process and
measurement noise. The observer design is synthesized by considering unknown but bounded
process disturbances, output noise, as well as bounded parametric uncertainties. By taking into
account these considerations, the upper and lower bounds of the considered faults are estimated.
The gain of the unknown input interval observer is computed through a linear matrix inequalities
(LMIs) approach using the robust H∞ criteria in order to ensure attenuation of process disturbances
and output noise. The interval observer scheme is experimentally evaluated by estimating the upper
and lower bounds of a torque load perturbation, a friction parameter and a fault in the input voltage
of a permanent magnet DC motor.

Keywords: Takagi–Sugeno; fault estimation; unknown input; interval observer; permanent magnet
motor

1. Introduction

Typically, an observer is an scheme for state estimation through the system input and output
measurements. For instance, in [1] a nonlinear observer is applied to estimate the degree of
polymerization in a series of polycondensation reactors. However, an observer can be designed
for parameter estimation [2], unknown input estimation [3,4] or fault estimation [5,6] among other
important applications where it is important to precisely know the actual value of the states, signals or
parameters for multiple purposes.

Sometimes there are many technical difficulties in performing an exact estimation of the
state, signals or parameters to be estimated. For instance: (i) Model uncertainties, (ii) simplifying
assumptions of physical phenomena for modeling, and (iii) complexity reduction of models or the
unmeasured disturbances, represent an important source of mismatch between a real process and
a mathematical model. In these cases, an approximation of the estimated values can be performed.
These approximations can be very useful in many applications where there is not necessary to know
the exact value of a variable.

An alternative to estimate unknown variables in processes with uncertain models, interval
observers can be used. These observers provide an interval estimation providing a lower and upper
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bound of the unknown estimated variables. The actual value of the corresponding unmeasured
variable located inside the interval defined by these bounds assuming that the uncertainty bounds
are known.

Although it is not possible to estimate the exact value of a variable, the information provided
by an interval observer can be very useful for several applications. For instance, the authors in [7]
propose an interval observer to estimate the lower and upper bounds of vehicle dynamics regardless of
the presence of unknown inputs whose bounded interval is also estimated. The authors in [8] design
an interval sliding mode observer for sensor fault detection and applied it to an electrical traction
device. Another interesting application of interval observers is given in [9], where a trajectory control
based on an interval observer is designed for a quadrotor. The interval observer is synthesized by
using an uncertain model where all the uncertainties (parameters, disturbance, noise) are unknown
but bounded with known bounds.

The main limitation of recent works regarding interval observers is that in most cases, the interval
observer design considers linear systems, or a very particular structure of nonlinear systems which
sometimes are transformed into linear ones. For instance, the observer in [7] has been designed for
switched systems; therefore, its use is limited. In other cases of interval observer designs such as [9],
no faults are considered to be estimated or there is a lack of procedure to detect actuator faults [8].

The objective of this paper is to design an interval observer for a wider variety of nonlinear
processes by using the Takagi–Sugeno (T–S) approach. Most of the nonlinear models can be adequately
transformed into a T–S model (e.g., [10,11]) by using two different methods [12]:

• The nonlinear sector method, in this case the nonlinear model and its equivalent T–S model have
exactly the same behavior. For this reason, this is the method used in this work.

• The linearization method, in which the equivalent T–S model can be dynamically approximated
to the original nonlinear model with a certain accuracy, depending on the design requirements.

Besides, many advantageous opportunities arise when interval observers are designed for
processes modeled in T–S form: (i) Pole placement via linear matrix inequalities (LMI) regions is
considered to compute the observer gains, in contrast with many nonlinear approaches where the
observer gains are heuristically tuned; (ii) a standard methodological procedure can be used to
compute the observer gains; (iii) many approaches originally conceived for linear systems can be
easily extended to T–S systems. For these reasons, the design of interval observers for T–S systems is a
recent and interesting research topic. For example in [13], the authors propose an interval observer
for the state estimation of systems modeled in T–S form with parametric uncertainty, disturbances,
and measurement noise. However, the work is limited to estimate the unmeasured states. The authors
in [14] treat the problem of fault diagnosis of proton exchange membrane (PEM) fuel cells. However,
this paper deals with only the case of sensor faults by means of a bank of observers. In [15] a robust fault
detection procedure for vehicle lateral dynamics using a switched T–S interval observer is presented.
The proposed method is conceived to detect but not to estimate faults.

The main contribution of this paper consists in the design of an interval observer that performs
a simultaneous estimation of unmeasured states, actuator and system faults for processes modeled
in T–S form with uncertainties. The conditions for the existence of such observers are given. Such
conditions guarantee the observer stability and they are proved through a Lyapunov analysis combined
with a LMI formulation. The interval observer scheme is experimentally evaluated by estimating the
upper and lower bounds of a torque load perturbation, a friction parameter and a fault in the input
voltage of a permanent magnet direct-current (DC) motor. These cases are typical faults that, if not
detected in time, can become catastrophic failures such as short-circuits or machinery damages due to
damaged bearings.
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2. Problem Formulation and Preliminaries

Consider the following discrete-time T–S system:

x(k + 1) =
m

∑
i=1

ξi(ρ(k))[(Ai + ΔAi)x(k) + Biu(k)] + Ef f (k) + Gθ(k) + Eww(k),

y(k) = Cx(k) + Evv(k),

(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu , f (k) ∈ Rn f , θ(k) ∈ Rnθ , w(k) ∈ Rnw and v(k) ∈ Rnv represent the state
variable, the input, the actuators fault vector, the unknown parameter, the disturbance and the output
noise vector. Ai, ΔAi, Bi, G and C are matrices of appropriate dimensions. Ef , Ew and Ev are matrices
of the coupling distribution. k denotes the k−th discrete time instant.

The term ξi(ρ(k)) represents the i-th membership function, which is a weighting of the rule
i, where i = 1, 2, . . . , m. The membership functions are normalized, i.e., they satisfy the following
conditions [12,16]: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m

∑
i=1

ξi(ρ(k)) = 1

0 ≤ ξi(ρ(k)) ≤ 1, i = 1, 2, · · · , m.

(2)

To obtained a simultaneous estimation of parameters and faults, the system (1) is rewritten
as follows

x(k + 1) =
m

∑
i=1

ξi(ρ(k))(Ai + ΔAi)x(k) + Biu(k) + E fE(k) + Eww(k)

y(k) = Cx(k) + Evv(k),

(3)

where the vector fE(k) is an augmented one, which is defined by the actuator fault vector f (k) and
the unknown parameter vector θ(k); and consequently, the matrix E contains the fault coupling
distribution matrix Ef and the parameter matrix G, i.e.,:

E =
[

Ef G
]

, fE(k) =

⎡⎢⎣ f (k)

θ(k)

⎤⎥⎦ .

The following considerations are taken into account for the T–S system of the Equation (3):

• The augmented fault vector fE(k) is defined as:

fE(k + 1) = fE(k) + w fE
(k), (4)

where w fE
(k) is considered as a variation of the actuator fault. Therefore, the estimation of fE(k)

is equivalent to the estimation of f̂ (k) and θ̂(k).
• The perturbation vector w(k) is considered unknown but bounded as follows:

w(k) ≤ w(k) ≤ w(k). (5)

• The noise vector v(k) is also considered as an unknown but bounded signal, i.e.,:

|v(k)| ≤ V(k). (6)

• The uncertain matrix ΔAi is considered bounded as follows,

ΔAi ≤ ΔAi ≤ ΔAi . (7)
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• Based on previous assumptions, the estimates to be obtained will be as follows

x̂(k) ≤ x(k) ≤ x̂(k), (8)

f̂ E(k) ≤ fE(k) ≤ f̂
E
(k). (9)

This means that we would get two estimates, i.e., the upper and lower limit of each variable.
For that, we consider the following design based on a T–S interval observer.

3. Observer Design

In this section a similar procedure as that in [17] (where no parametric uncertainties nor noise
nor disturbances were considered) is presented for the observer design. For this design, first it is
considered the output vector at time instant (k + 1), i.e.,

y(k + 1) = Cx(k + 1) + Evv(k + 1). (10)

Substituting the state equation from system (3), it yields to:

y(k + 1) = C

(
m

∑
i=1

ξi(ρ(k))[(Ai + ΔAi)x(k) + Biu(k)] + E f E(k) + Eww(k)

)
+ Evv(k + 1). (11)

Next, the following equation can be derived after the pertinent operations

CE f E(k) =y(k + 1)− C
m

∑
i=1

ξi(ρ(k))(Ai + ΔAi)x(k)− C
m

∑
i=1

ξi(ρ(k))Biu(k)− CEww(k)− Evv(k + 1), (12)

where it is possible to obtain the fault vector f (k) as follows:

f (k) = O
(

y(k + 1)− C

[
m

∑
i=1

ξi(ρ(k))[(Ai + ΔAi)x(k)− Biu(k)]− Eww(k)

]
− Evv(k + 1)

)
, (13)

such that O comes from the following condition, which furthermore must be satisfied for the observer
to exist [18]:

rank(CE f E) = rank(E f E) = nθ + n f . (14)

The decoupling is achieved by computing

O = (CE f E)
+, (15)

such that (CE f E)
+(CE f E) = In f is satisfied. Whereas the value of O is obtained as:

O =
[
(CE f E)

TCE f E

]−1
(CE f E)

T . (16)

Replacing fault vector Equation (13) in system Equation (3), the new T–S discrete-time system
is obtained:

x(k + 1) =
m

∑
i=1

ξi(ρ(k))[(Ai + ΔAi)x(k) + Biu(k)] + Eww(k) + EOy(k + 1)− EOEvv(k + 1),

y(k) =Cx(k) + Evv(k)

(17)

with
Ai = (I − EfOC) Ai, ΔAi = (I − EfOC) ΔAi,
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Bi = (I − EfOC) Bi, Ew = (I − EfOC) Ew.

Now, based on (17), the unknown input T–S interval observer structure can be written as
follows [19]:

x̂(k + 1) =
m

∑
i=1

ξi(ρ(k))(I − EOC)[(Ai − LiC)x̂(k) + Biu(k) + ΔAix(k)︸ ︷︷ ︸+Li y(k)− |Li|EvV(k) + Eww(k)

+ EO y(k + 1)− |Li|Ev V(k + 1)],

x̂(k + 1) =
m

∑
i=1

ξi(ρ(k))(I − EOC)[(Ai − LiC)x̂(k) + Biu(k) +
︷ ︸︸ ︷
ΔAix(k) +Li y(k) + |Li|EvV(k) + Eww(k)

+ EO y(k + 1) + |Li|Ev V(k + 1)],

f̂ (k) = O[y(k + 1)− C
m

∑
i=1

ξi(ρ(k))(Aix̂(k) + Biu(k) + ΔAix(k)︸ ︷︷ ︸)− CEww(k)− EvV(k + 1)− w f (k)],

f̂ (k) = O[y(k + 1)− C
m

∑
i=1

ξi(ρ(k))(Aix̂(k) + Biu(k) + ΔAix(k)︸ ︷︷ ︸)− CEww(k) + EvV(k + 1)− w f (k)],

(18)

with
ΔAix(k)︸ ︷︷ ︸ = A+

i x+ − A+
i x− − A−i x+ + A−i x−,

︷ ︸︸ ︷
ΔAix(k) = A+

i x+ − A+
i x− − A−i x+ + A−i x−,

where x̂(k) and x̂(k) ∈ Rn
x are the interval estimations of x(k), f̂ (k) and f̂ (k) ∈ Rs are the interval

estimations of fE(k). Li and Li are the observer gains used to compute the upper and lower bounds of
the estimated states, faults and parameters, respectively.

The unknown input interval observer can be designer considering (18) in a way that ensures the
simultaneous estimation of Equations (8) and (9). The following theorem is introduced to secure the
stability analysis and robustness in the presence of unknown entries.

Theorem 1. Consider the system given by (18) as an interval observer for system (17) for fault and parameter
estimation. The observer (18) is stable and robust against the effects of unknown inputs such as bounded
disturbances or noise if there exists a symmetric matrix P = PT > 0, a matrix Q > 0 and the scalars ε1 > 0,
γ > 0 and β > 0 such that:

QGi,j −WiΓ > 0, (19)

φi,i < 0, (20)

φi,j =

⎡⎢⎢⎢⎢⎢⎣
I − P + γη2 I 0 0 0 (QGi,j −WiΓ)T

0 γI − ε1P PHi PΦ 0
0 HiP −β2 I 0 HT

i QT + ΦTQT

0 ΦP 0 −β2 I QTΦ
(∗) (∗) (∗) (∗) P−Q−QT

⎤⎥⎥⎥⎥⎥⎦ ,

2
m− 1

φi,i + φi,j + φj,i < 0, (21)

for i, j = 1, 2, · · · , m, 1 ≤ i 
= j ≤ m, i.e., for all subsystems. The observer gains are given by

Li = Q−1Wi, (22)

Li = Q−1Wi. (23)
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Proof. For the stability analysis the following estimation error equations are considered:

e(k) = x(k)− x̂(k), (24)

e(k) = x̂(k)− x(k). (25)

Substituting the state equation (17) and the estimate state equations (18), (24) and (25) it leads to:

e(k + 1) =
m

∑
i=1

ξi(ρ(k))[(Ai + ΔAi) x(k) + Biu(k)] + Eww(k) + EOy(k + 1)− EOEvv(k + 1)

−
(

m

∑
i=1

ξi(ρ(k))(I − EOC)[(Ai − LiC)x̂(k) + Biu(k) + ΔAix(k)︸ ︷︷ ︸+Li y(k)− |Li|EvV(k)

+ Eww(k) + EO y(k + 1)− |Li|Ev V(k + 1)]

)
,

(26)

ê(k + 1) =
m

∑
i=1

ξi(ρ(k))(I − EOC)[(Ai − LiC)x̂(k) + Biu(k) +
︷ ︸︸ ︷
ΔAix(k) +Li y(k) + |Li|EvV(k)

+ Eww(k) + EO y(k + 1) + |Li|Ev V(k + 1)]−
(

m

∑
i=1

ξi(ρ(k))(Ai + ΔAi)x(k) + Biu(k)

+ Eww(k) + EOy(k + 1)− EOEvv(k + 1)

)
,

(27)

such that the resulting error equations are the following:

e(k + 1) =
m

∑
i=1

ξi(ρ(k)) [(Ai − LiC) e(k) + ΔAix(k)− ΔAix(k)︸ ︷︷ ︸+Ew(w(k)− w(k))

+ |Li|EvV(k)− LiEvv(k)− EOEvv(k + 1) + LiEvV(k + 1)],

(28)

e(k + 1) =
m

∑
i=1

ξi(ρ(k))[
(

Ai − LiC
)

e(k) +
︷ ︸︸ ︷
ΔAix(k)−ΔAix(k) + Ew(w(k)− w(k))

+ LiEvv(k) + |Li|EvV(k)− EOEvv(k + 1) + LiEvV(k + 1)].

(29)

By convenience, the estimation error given by equations (28) and (29) are rewritten as follows

ε(k + 1) =
m

∑
i=1

ξi(ρ(k))[Giε(k) + ΘΔA + Hiδ(k)] + Φδ(k + 1), (30)

ε(k) =

[
e(k)
e(k)

]
, Gi =

[
Ai − LiC 0

0 Ai − LiC

]
, ΘΔA =

⎡⎢⎣ΔAix(k)− ΔAix(k)︸ ︷︷ ︸
ΔAix(k)︸ ︷︷ ︸−ΔAix(k)

⎤⎥⎦ ,

Hi =

⎡⎣[Ew −LiEv |Li|Ev

]
0

0
[

Ew LiEv |Li|Ev

]⎤⎦ ,

Φ =

⎡⎣[0 −EOEv Ev

]
0

0
[
0 −EOEv Ev

]⎤⎦ δ(k) =

⎡⎢⎣
⎡⎢⎣w(k)− w(k)

v(k)
V(k)

⎤⎥⎦
⎡⎢⎣w(k)− w(k)

v(k)
V(k)

⎤⎥⎦
⎤⎥⎦

T

.
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To show that the observer is stable and robust, the following Lyapunov quadratic function for
stability analysis is proposed:

V1(ε(k)) = ε(k)T Pε(k) > 0 with P = PT > 0, (31)

whose increment function corresponds to

ΔV1(ε(k)) = V1(ε(k + 1))−V1(ε(k))←→ ΔV1(ε(k)) = ε(k + 1)T Pε(k + 1)− ε(k)T Pε(k), (32)

Thus, the the stability condition requires ΔV1(ε(k)) ≤ 0, i.e.,

ΔV1(ε(k)) =
m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))([Giε(k) + ΘΔA + Hiδ(k)] + Φδ(k + 1))T P,

([Giε(k) + ΘΔA + Hiδ(k)] + Φδ(k + 1))− ε(k)T Pε(k) ≤ 0.

(33)

If each function is substituted, Equation (33) can be expressed as:

m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))ε(k)T(GT
i PGj − P)ε(k) + ΘT

ΔAPΘΔA + δ(k)T HT
i PHjδ(k)

+ δ(k + 1)TΦT PΦδ(k + 1) + 2ε(k)T(GT
i,jPΘΔA + GT

i,jPHjδ(k) + GT
i,jPΦδ(k + 1))

+ 2ΘT
ΔA(PHjδ(k) + PΦδ(k + 1)) + 2δ(k)T(HT

i,jPΦδ(k + 1)) ≤ 0.

(34)

Furthermore, for the unknown input T–S interval observer design, the criterion H∞ for the robust
estimation problem of T–S system is considered to minimize the effects of noise and disturbance
signals:

lim
k→∞

ε(k) = 0 for δ(k) = 0 ∀k, (35)

‖ ε(k) ‖2< β ‖ δ(k) ‖2 for δ(k) 
= 0, ξ(0) = 0, (36)

where β =

[
ψ

α

]
correspond to a vector for minimizing the disturbance and noise. The criterion H∞

corresponds to the following function:

ε(k)Tε(k)− β2δ(k)Tδ(k)− β2δ(k + 1)Tδ(k + 1) ≤ 0, (37)

such that the increment of the Lyapunov function results in

V1(ε(k + 1))−V1(ε(k)) + ε(k)Tε(k)− β2δ(k)Tδ(k)− β2δ(k + 1)Tδ(k + 1) ≤ 0. (38)

In addition to considering the stability analysis and robustness, the next condition is considered
for the estimation speed ΔV(ε(k)) ≤ (ε1P− γ)ΔAi(k) for all trajectory, equivalent to

m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))ε(k)T(GT
i PGj − P + I)ε(k) + ΘT

ΔAPΘΔA + δ(k)T HT
i PHjδ(k)

+ δ(k + 1)TΦT PΦδ(k + 1) + 2ε(k)T(GT
i,jPΘΔA + GT

i,jPHjδ(k) + GT
i,jPΦδ(k + 1))

+ 2ΘT
ΔA(PHjδ(k) + PΦδ(k + 1)) + 2δ(k)T(HT

i,jPΦδ(k + 1))− β2δ(k)Tδ(k)

− β2δ(k + 1)Tδ(k + 1) + γΘT
ΔAΘΔA − ε1ΘT

ΔAPΘΔA ≤ 0,

(39)

whereas in Equation (39) it can be seen that ΘT
ΔAPΘΔA is a global Lipschitz function such that

f (x, x) = (A+
i − A+

i )x+ − A−i x+ + A−i x−, (40)
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f (x, x) = (A+
i − A+

i )x− − A−i x+ + A−i x−, (41)

| f (x, x)| ≤ ‖ΔA+
i − ΔA+

i ‖2|x|+ (‖ΔA−i ‖2 + ‖ΔA−i ‖2)|x|, (42)

| f (x, x)| ≤ ‖ΔA+
i − ΔA+

i ‖2|x|+ (‖ΔA−i ‖2 + ‖ΔA−i ‖2)|x|, (43)

and the resulting functions are given by

η = 2(‖ΔA+
i − ΔA+

i ‖2|+ ‖ΔA−i ‖2 + ‖ΔA−i ‖2). (44)

Consequently, the resulting incremental Lyapunov function can be rewritten as follows

m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))ε(k)T(GT
i PGj − P + I + γη2 I)ε(k) + δ(k)T HT

i PHjδ(k) + δ(k + 1)TΦT PΦδ(k + 1)

+ 2ε(k)T(GT
i,jPΘΔA + GT

i,jPHjδ(k) + GT
i,jPΦδ(k + 1)) + 2ΘT

ΔA(PHjδ(k) + PΦδ(k + 1)) + 2δ(k)T(HT
i,j

PΦδ(k + 1))− β2δ(k)Tδ(k) + γΘT
ΔAΘΔA − ε1ΘT

ΔAPΘΔA − β2δ(k + 1)Tδ(k + 1) ≤ 0,

(45)

and can be expressed in the following form:⎡⎢⎢⎢⎣
ε(k)
ΘΔA
δ(k)

δ(k + 1)

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

GT
i PGj − P + η2 I + I GT

i,jP GT
i PHi GT

i PΦ
PGi,j γI − ε1P PHi PΦ

HiPGi HiP HT
i PHi − β2 I HT

i PΦ
ΦPGi ΦP ΦPHi ΦPΦ− β2 I

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ε(k)
ΘΔA
δ(k)

δ(k + 1)

⎤⎥⎥⎥⎦ ≤ 0 (46)

To relax the conservatism of (46), the following theorem is considered.

Theorem 2. There exists a symmetric matrix P > 0 such that [20]

AT PA− P < 0, (47)

and a matrix G such that the following inequality implies (47)[
−P ATGT

GA P− G− GT

]
< 0, (48)

Consequently, by applying this theorem, inequality (46) is equivalent to⎡⎢⎢⎢⎢⎢⎣
I − P + η2 I 0 0 0 GT

i,jQ
T

0 γI − ε1P PHi PΦ 0
0 HT

i P −β2 I 0 HT
i QT + ΦTQT

0 ΦT P 0 −β2 I ΦTQT

QGi,j 0 QHi + QΦ QΦ P−Q−QT

⎤⎥⎥⎥⎥⎥⎦ ≤ 0, (49)

such that denoting the inequality (49) as φi,j, it follows

m

∑
i=1

m

∑
j=1

ξi(ρ(k)) ξ j(ρ(k))

⎡⎢⎢⎢⎣
ε(k)
ΘΔA
δ(k)

δ(k + 1)

⎤⎥⎥⎥⎦
T

φi,j

⎡⎢⎢⎢⎣
ε(k)
ΘΔA
δ(k)

δ(k + 1)

⎤⎥⎥⎥⎦ ≤ 0. (50)
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In the inequality, (50) a bilinearity between the GQ matrices appears as can be been in⎛⎜⎜⎜⎜⎜⎝
[

Ai,j + ΔA+
i,j 0

0 Ai,j + ΔA+
i,j

]
︸ ︷︷ ︸

Gi,j

−
[

Li 0
0 L

] [
C 0
0 C

]
︸ ︷︷ ︸

Γ

⎞⎟⎟⎟⎟⎟⎠
Q︷ ︸︸ ︷[

Q 0
0 Q

]
≤ 0. (51)

To eliminate the bilinearity that there exists with Li, Li and Q matrices, it is possible to use the
following change of variables Wi = QLi and Wi = QLi. Consequently, the following linear inequality
is obtained

QGi,j −WiΓ < 0, (52)

where Wi correspond to Wi =

[
Wi 0
0 Wi

]
. Finally, the inequality (21) is the result of using [21], which

relaxes the double sum problem.

4. Simulation Results

4.1. Case Study

A DC motor will be used to illustrate the fault estimation proposed in this paper. The following
nonlinear mathematical model represents the dynamics of DC motor [22]:

i̇a(t) = −Ra

L
ia(t)− Ke

L
vm(t) +

1
L

u(t),

v̇m(t) =
KT
J1

ia(t)−
(

fr − fpvm(t)
J1

)
vm(t)− T0(t)− T2(t)

J1
.

(53)

where ia(t) and vm(t) are the armature current and the rotational speed, u(t) is the input voltage,
T2(t) and T0(t) correspond to the load and non-load torque. Table 1 summarizes the model parameter
values.

Table 1. Parameters of a DC motor.

Parameter Value

L 850× 10−3 H
Ra 1.02 Ω
KT 0.1 N·m/A
fp 0.000000075 N/rpm2

fr 0.0000035 N/rpm
Ke 0.0134 V/rpm
J1 0.00668933 N·m·s

L correspond to the inductance, Ra is the armature resistance, KT is the torque-current coefficient, fp is
the friction coefficient (due to aerodynamics), Ke is the back-emf coefficient, fr is the friction coefficient
(due to the bearing lubrication condition) and J1 is the normalized inertial moment of the rotor.

The nonlinear model (53) can be transformed first into a continuous T–S representation (3)
considering the following assumptions:

Assumption 1. The torque T0 and T2 are considered to be unknown. Therefore, it is necessary to decouple
their effect.

Assumption 2. The rotational speed vm is a measurement and is considered as the scheduling parameter.
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Assumption 3. The armature current ia is the measured output.

Consequently, by considering that the rotational speed is scheduling variable ρ(k) = vm(k) =
x2(k) varying in the interval ρ(k) ∈ [ρ ρ], being ρ = 100 and ρ = 300] the minimal and maximal
rotational speeds. The results T–S representation (3) has the following matrices:

A1 =

⎡⎢⎣−
Ra

L
−Ke

L
KT
J1

−
(

fr + fpρ

J1

)
⎤⎥⎦ , A2 =

⎡⎢⎢⎣−
Ra

L
−Ke

L
KT
J1

−
(

fr + fpρ

J1

)
⎤⎥⎥⎦ , B =

⎡⎣ 1
L
0

⎤⎦ ,

E =

⎡⎢⎣ 1
L

0 0

0 − 1
J1

− 1
J1

⎤⎥⎦ , Ew =

⎡⎣ 1
L
0

⎤⎦ , Ev = 0.98, C =

[
1 0
0 1

]
,

ΔAi = 0.01Ai; and fE =
[

f (k) T0(k) T2(k)
]T

.

The previous continuous-time T–S model can be expressed in discrete time with a sampling time
Ts = 1. The resulting matrices are

A1 =

[
0.2471 −0.0088
8.3671 0.9178

]
, A2 =

[
0.2480 −0.0086
8.1747 0.8820

]
, B =

[
0.6591
5.9246

]
, ΔA+

1 =

[
0.0024 −0.00008
0.0836 0.0091

]
,

ΔA+
2 =

[
0.0024 −0.00008
0.0817 0.0088

]
, ΔA−1 =

[
−0.0024 −0.00008
−0.0836 −0.0091

]
, ΔA−2 =

[
−0.0024 0.00008
−0.0817 −0.0088

]
,

ΔA−1 =

[
−0.0024 0
−0.0836 −0.0091

]
, ΔA−2 =

[
−0.0024 0
−0.0817 −0.0088

]
, ΔA+

1 =

[
0 0.8823
0 0

]
× 10−4,

ΔA+
2 =

[
0 0.8620
0 0

]
× 10−4, ΔA−1 =

[
0 −0.8823
0 0

]
× 10−4, ΔA−2 =

[
0 −0.8620
0 0

]
× 10−4,

ΔA+
1 =

[
0.0024 0
0.0836 0.0091

]
× 10−4, ΔA+

2 =

[
0.0024 0
0.0817 0.0088

]
× 10−4,

E =

[
0.0117 0 0

0 −1.4949 −1.4949

]
× 102, Ew =

[
1.1764

0

]
, Ev =

[
0.08
0.08

]
.

The solution of LMIs (19)–(21) of Theorem 1 (considering γ = 15, ε1 = 36.46, η = 0.337 and

β =

[
5.6214
4.1365

]
) lead to the following solution

P =

[
3.6658 0.8521
0.8521 6.1022

]
, Q =

[
43.6972 14.9802
14.9802 19.6044

]
,

L1 =

[
0.0099 −0.0111
−0.1453 0.2328

]
, L2 =

[
−0.0085 −0.0245
0.1847 0.3049

]
,

L1 =

[
−0.1301 −0.1171
−0.8238 −0.8665

]
× 10−13, L2 =

[
0.07489 0.2300
0.0382 0.2643

]
× 10−13,
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The initial conditions for the T–S unknown input interval observer are x̂(0) =
[
18 250

]T
, x̂(0) =[

5 150
]T

, f̂ (0) =
[
0.01 0.01 0.001

]
, f̂ (0) =

[
0.001 0.02 0

]
. Additionally, the system

disturbance system and output noise is considered to be bounded with the following bounds:
−0.98 ≤ w(k) ≤ 0.98 and |v(k)| ≤ 0.8.

4.2. Experimental Tests

Two scenarios are considered for the evaluation of the interval observer. The armature current
ia(t), measurable via an oscilloscope, and the rotational speed vm(t) of the motor, measurable via an
incremental encoder associated with an FPGA myRIO-1900 board of National Instruments is used for
implementing the proposed approach.

In the evaluation tests, the laboratory prototype shown in Figure 1 is used. This prototype consists
of a DC motor available at the TecNM/CENIDET in Mexico (1) coupled to a bearing train (2), and an
incremental encoder (3) through a band, whose mathematical model is presented in Equation (53).
The results show the good performance of the interval observer in the event of an actuator fault.

In the first evaluation test, the DC motor is powered with 14 V at time instant 390 s, an abrupt
fault, almost instantaneous, is introduced in the motor supply voltage via a programmable testing
power source. The fault in the motor input produces a decrease of 3.5 V.

Figure 1. Laboratory prototype.

Figure 2 shows the measurement of the armature current and the limits (upper and lower)
estimated by the interval observer. It can be seen in the figure that the current and limits slightly
change their value in the presence of the fault.
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Figure 2. Measurement of armature current x1(k) and estimation of interval bounds.

Figure 3 shows that the motor speed signal and the limits (upper and lower), estimated by the
interval observer (18), present a fairly close dynamic behavior and the speed is always kept within the
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limits. When the fault disappears, the speed signal recovers its nominal value in approximately 120 s,
with the dynamics of the motor coupled to a bearing train.
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Figure 3. Measurement of rotational speed x2(k) and estimation of interval bounds.

Figure 4 shows the estimated limits for the input fault, which corresponds to a change in the
motor supply voltage. The limits are kept at a value of zero in the absence of failure and change their
value when the fault is present.
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Figure 4. Estimation of the bounds for the input voltage fault.

Figures 5 and 6 show the estimated values of parameters T0 and T2, of the parameter vector θ(k).
It can be observed that these parameters remain relatively constant (around 0 and 0.5, respectively)
and in the presence of the fault their values are modified. When the fault disappears, they converge
again to their initial values.
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Figure 5. Estimation of T0(k).
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Figure 6. Estimation of T2(k).

Figure 7 shows the dynamic behavior of the membership functions, which meet the conditions
described in Equation (33).

In the second evaluation test, the DC motor is powered with 15 V at time instant 420 s.
An intermittent fault occurs in the supply voltage to the DC motor, caused by interruptions in the
connection of the power supply.
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Figure 7. Membership functions.

Figure 8 shows the dynamic behavior of the armature current signal. Figure 9 shows the variations
of the motor rotational speed signal. The current signal and the speed signal, both measurable, are
maintained within their respective estimated intervals, in the presence of a fault.
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Figure 8. Measurement of armature current x1(k) and estimation of interval bounds.
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Figure 9. Measurement of rotational speed x2(k) and estimation of interval bounds.

Figure 10 shows the evolution of the estimated bounds for the input fault, which corresponds to
change in the the voltage of the motor power supply. The limits are kept at a value centered around
zero in the absence of fault and change their value when the fault is present.
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Figure 10. Estimation of the limits of input voltage fault.

Figures 11 and 12 show the estimated values of parameters T0 and T2, of the parameter vector θ(k).
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Figure 11. Upper and lower bound estimations of T0(k).
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Figure 12. Upper and lower bound estimations of T2(k).

Figure 13 shows the dynamic behavior of the membership functions, which meet the conditions
described in Equation (2).
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Figure 13. Membership functions.

5. Conclusions

A discrete-time unknown-input interval observer is proposed for a system modeled in T–S
form with uncertainties. This observer allows the simultaneous estimation of unmeasured states,
actuator and system faults despite disturbances and measurement noise. The structure of the proposed
discrete-time T–S model has four additional terms: Three terms in the dynamic structure corresponding
to the fault, disturbance and parametric uncertainty, and an additive noise term in the output
(measurement noise). The conditions for the existence of the observer are formally given to guarantee
the observer stability. Such conditions are derived through a Lyapunov analysis combined with a LMI
formulation. The proposed discrete-time interval observer approach is experimentally evaluated by
estimating the upper and lower bounds of a torque load perturbation, a friction parameter and a fault
in the input voltage, in a permanent magnet DC motor.

The main advantage of the proposed T–S interval observer with respect to Kalman or
Luenberger-like observers is that a great amount of nonlinear models can be transformed into the
Takagi–Sugeno form, with a consequent benefit of preserving the model dynamics. This feature
allows us to use this observer for a great number of nonlinear systems, in contrast with Kalman or
Luenberger-like observes which requires linear or linearized systems to be implemented.

Author Contributions: All the authors have equally contributed. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been partially funded by the Spanish State Research Agency (AEI) and the European
Regional Development Fund (ERFD) through the projects SCAV (ref. MINECO DPI2017-88403-R) and also by EU
INTERREG POCTEFA (2014-2020) EFA 153/16 SMART.

Conflicts of Interest: The authors declare no conflict of interest.

463



Processes 2020, 8, 61

References

1. Ling, C.; Kravaris, C. State observer design for monitoring the degree of polymerization in a series of melt
polycondensation reactors. Processes 2016, 4, 4. [CrossRef]

2. Nagy-Kiss, A.M.; Schutz, G.; Ragot, J. Parameter estimation for uncertain systems based on fault diagnosis
using Takagi–Sugeno model. ISA Trans. 2015, 56, 65–74. [CrossRef] [PubMed]

3. Youssef, T.; Chadli, M.; Karimi, H.R.; Zelmat, M. Design of unknown inputs proportional integral observers
for TS fuzzy models. Neurocomputing 2014, 123, 156–165. [CrossRef]

4. Peng, C.-C. Nonlinear Integral Type Observer Design for State Estimation and Unknown Input
Reconstruction. Appl. Sci. 2017, 7, 67. [CrossRef]

5. Zhang, K.; Jiang, B.; Shi, P.; Xu, J. Fault estimation observer design for discrete-time systems in
finite-frequency domain. Int. J. Robust Nonlinear Control. 2015, 25, 1379–1398. [CrossRef]

6. Van Nguyen, T.; Ha, C. Sensor Fault-Tolerant Control Design for Mini Motion Package Electro-Hydraulic
Actuator. Processes 2019, 7, 89. [CrossRef]

7. Ifqir, S.; Ichalal, D.; Oufroukh, N.A.; Mammar, S. Robust interval observer for switched systems with
unknown inputs: Application to vehicle dynamics estimation. Eur. J. Control 2018, 44, 3–14. [CrossRef]

8. Zhang, K.; Jiang, B.; Yan, X.-G.; Shen, J. Interval Sliding Mode Observer Based Incipient Sensor Fault
Detection With Application to a Traction Device in China Railway High-Speed. IEEE Trans. Veh. Technol.
2019, 68, 2585–2597. [CrossRef]

9. Abadi, A.; El Amraoui, A.; Mekki, H.; Ramdani, N. Guaranteed trajectory tracking control based on interval
observer for quadrotors. Int. J. Control 2019, 1–17. [CrossRef]

10. Chang, Y.-C.; Tsai, C.-T.; Lu, Y.-L. Current Control of the Permanent-Magnet Synchronous Generator Using
Interval Type-2 TS Fuzzy Systems. Energies 2019, 12, 2953. [CrossRef]

11. Liu, F.; Li, R.; Dreglea, A. Wind Speed and Power Ultra Short-Term Robust Forecasting Based on
Takagi–Sugeno Fuzzy Model. Energies 2019, 12, 3551. [CrossRef]

12. Lendek, Z.; Guerra, T.M.; Babuska, R.; De Schutter, B. Stability Analysis and Nonlinear Observer Design Using
Takagi-Sugeno Fuzzy Models; Springer: Berlin/Heidelberg, Germany, 2011.

13. Li, J.; Wang, Z.; Shen, Y.; Wang, Y. Interval Observer Design for Discrete-Time Uncertain Takagi—Sugeno
Fuzzy Systems. IEEE Trans. Fuzzy Syst. 2019, 27, 816–823. [CrossRef]

14. Rotondo, D.; Fernandez-Canti, R.M.; Tornil-Sin, S.; Blesa, J.; Puig, V. Robust fault diagnosis of proton
exchange membrane fuel cells using a Takagi-Sugeno interval observer approach. Int. J. Hydrogen Energy
2016, 41, 2875–2886. [CrossRef]

15. Ifqir, S.; Ichalal, D.; Oufroukh, N.A.; Mammar, S. Adaptive Threshold Generation for Vehicle Fault Detection
using Switched TS Interval observers. IEEE Trans. Ind. Electron. 2019. [CrossRef]

16. Ohtake, Hi.; Tanaka, K.; Wang, H.O. Fuzzy modeling via sector nonlinearity concept. Integr. Comput.-Aided
Eng. 2003, 10, 333–341. [CrossRef]

17. Rotondo, D.; Witczak, M.; Puig, V.; Nejjari, F.; Pazera, M. Robust unknown input observer for state and fault
estimation in discrete-time Takagi–Sugeno systems. Int. J. Syst. Sci. 2016, 47, 3409–3424. [CrossRef]
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Abstract: By mimicking the biological evolution process, genetic algorithm (GA) methodology has
the advantages of creating and updating new elite parameters for optimization processes, especially
in controller design technique. In this paper, a GA improvement that can speed up convergence and
save operation time by neglecting chromosome decoding step is proposed to find the optimized
fuzzy-proportional-integral-derivative (fuzzy-PID) control parameters. Due to minimizing tracking
error of the controller design criterion, the fitness function integral of square error (ISE) was employed
to utilize the advantages of the modified GA. The proposed method was then applied to a novel
autonomous hovercraft motion model to display the superiority to the standard GA.

Keywords: modified GA; fuzzy-PID control; autonomous hovercraft; ISE criterion

1. Introduction

John Henry Holland, by imitating Darwin’s biological evolution process, proposed the powerful
stochastic global search method genetic algorithm (GA) first in 1975 [1,2]. Both the two reproduction
mechanisms of genetic algorithm, including crossover and mutation, are used to find the convergence
of optimal solutions. These values show an important effect on both behavior and performance.
Therefore, GA instructions for choosing appropriate values are introduced by many researchers.
In 1986, Grefenstette et al. proposed a method for optimizing the control gains for the genetic
algorithm [3]. Then, in 1994, Srinivas and Patnaik demonstrated the adaptive probabilities of crossover
and mutation [4]. In 1997, the bounded difficulty problems were considered by Harik [5]. Later in 2004,
Zlochin et al. suggested model-based search for implementing combinatorial optimization [6]. In 2007,
Zhang et al. adaptively adjusted crossover and mutation probabilities by utilizing a clustering-based
technique [7]. Preceding this paper, GA and its innovations have been successfully deployed in a
wide range of non-trivial complicated real-world issues, from optimization of flight control laws [8] to
aerodynamic optimization problems [9]; from small wind turbine design [10] to path planning of a
space-based of a manipulator system [11]; and from modeling collinear data [12] to ship navigation in
collision situations [13].
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Processes 2020, 8, 66

The genetic algorithm optimization offers a powerful methodology for solving single to
multivariable problems. Each GA represents a problem solution encoded by the form of binary
strings or chromosomes. Its fitness is employed to measure how good of one solution by increasing the
best bit patterns. Hence, the maxima/minima of fitness function value are then optimized during the
GA course.

Nevertheless, the standard GA (denoted shortly as sGA) still has some drawbacks; for example, low
convergence speed and premature convergence because of requiring hundreds of updated generations.
Hence, we proposed a modified genetic algorithm (denoted shortly as mGA) to improve the optimal
process. This modified algorithm, just in short operating generations [1,2,14], can improve the global
search efficiency and increase the convergence speed of the optimal control design. Next, the proposed
control design was a fuzzy-proportional-integral-derivative (F-PID) control [15–25] that comprises
the fuzzy logic control (FLC) and the common PID controller. The first, fuzzy term is employed to
increase the stability and the robustness of the controller design by tuning the membership functions
and by selecting suitable methods of fuzzification and defuzzification [15–19,24,25]. The second,
PID control term is separated in two small sub-terms: the PD is employed to maintain the system
stability while the term I is utilized to eliminating the steady-state error of the controlled system
response [20–23]. Based on the calculation of criterion error of the control system, the “integral of
square error” (ISE) [20–22] was chosen as a fitness function to show the controller performance index.

A hovercraft, also known as an air cushion vehicle (ACV), moves smoothly on any surface [26–31]
from the ground-land to the mud, water, sand, and even on ice. Because a hovercraft is very active and
agile, its models was chosen for the control implementation.

To summarize, the modified GA is proposed to take advantages of the fuzzy-PID controller design
in shorter operation period. Thus, the dynamic of Hovercraft models could be mobility in high stability
with fast response and less error.

2. Hovercraft Prototype Model

A hovercraft, which is known as an underactuated system and named an air cushion vehicle
(ACV), has rotors and a cushion, where inside air pressure enables floating and smooth movement on
any surface [26–31], such as land, mud, water, sand, and even on ice. The hovercraft is very active
and agile; hence, it is applied widely in the coastguard, army, rescue operations, civil engineering, etc.
The hovercraft is mounted with a single tilt servomotor on the fin tail. As shown in Figure 1, the rotor
duct fan of the hovercraft is settled along the y-axis, while the propeller is attached along the z-axis.
Firstly, the lift propeller provides the internal cushion pressure to lift up in a long operation period.
Next, the forward moving is created by the rear rotor duct-fan. Finally, the turning typically is operated
by directing the thrust airflow through rotor duct fan, which is steered by a tilt servomotor placed
at the rear. The subsequently generated momentum is used to maneuver the craft. Although many
modern technologies are utilized, the hovercraft still requires an advanced maneuvering system to
achieve optimized performance.

The hovercraft dynamic models were derived in [28–31] using right-hand convention coordinate
systems. The positive x-axis covers the lateral factors, namely, sway motion or surge position, while
the y-axis is the direction along the hovercraft body, covering surge motion or sway position; and
the positive z-axis defines the downwards direction. The hovercraft’s kinematics can be expressed as
Equation (1): ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

.
x = ucosψ− vsinψ
.
y = vcosψ+ usinψ

.
ψ = r

(1)

where u ∈ R and v ∈ R represent linear velocities in surge direction and sway direction, respectively.
The angular velocity is represented as r ∈ R. Using Equation (1), we can derive the kinetic energy T
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and potential energy V to define the Lagrange L = T − V by applying Euler–Lagrange formulation as
in following equation:

M(q)
.
q + C

(
q,

.
q
)
q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
F
τ
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where τ is the torque in yaw rotation and F is the force acting along surge direction.

 

 

z

y

x

ϕ
θ

ψ

Figure 1. The hovercraft configuration model.

3. Modified GA Optimal Controller Gains

3.1. The Controller Design

Fuzzy logic concepts are extremely modest but powerful and effective for applications in the
control of various machines. The fuzzy control takes advantages in stability and robustness since its
aptitude is deal with the nonlinear and uncertain systems. Fuzzy control rules are designed based
on the center of area method (COA) for defuzzification and Mandani’s MIN–MAX inference engine
type. It includes the tracking error e(t) and the differential tracking error de(t) as the inputs. The fuzzy
control output to PID control is defined as eFuzzy(t). Seven partitions of the fuzzy rule-table control,
which exploit the triangular membership functions (as shown in Figure 2), are noted in Table 1, which
include negative small (NS), negative medium (NM), negative big (NB), positive big (PB), positive
medium (PM), positive small (PS), and zero (Z).

Figure 2. The fuzzification membership function.
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Table 1. Fuzzy rule-table.

eFuzzy(t)
e(t)

NB NM NS Z PS PM PB

de(t)

PB Z PS PM PB PB PB PB
PM NS Z PS PM PB PB PB
PS NM NS Z PS PM PB PB
Z NB NM NS Z PS PM PB

NS NB NB NM NS Z PS PM
NM NB NB NB NM NS Z PS
NB NB NB NB NB NM NS Z

PID controllers are designed to satisfy dynamic response, and reduce and/or eliminate error of
physical empirical systems. Thus, the fuzzy-PID controller [24,25] output u to the system is proposed
and expressed on Equation (3) as:

u = uFuzzy + uPID = uFuzzy + kp × e + kI

∫
edt + kD × d

dt
e(t) (3)

where uFuzzy and uPID are the Fuzzy and PID controller output signals. kP, kI, kD are the PID controller
proportional, integral and derivative constants.

The fuzzy-PID controls is highly effective, as it is simple, has less overshoot, and is able to eliminate
the steady state error, and especially smooth control signal. Its block diagram is demonstrated in
Figure 3.

Figure 3. The controller block diagram.

3.2. Improved GA in the Optimization Process

The standard GA’s characteristics [3], which includes three main parameters—mutation rate (Rm),
crossover rate (Rc), and population size (N)—were employed to verify the optimized gains of the
proposed control system. This optimal program usually takes hundreds of generations to update and
find out convergence gains. Therefore, the GA is powerful, but it still has a critical drawback, which
has been investigated for a solution by many researchers. By checking the GA process, it was found
out that chromosome decode is not compulsory due to the evaluation of the cost function [1,2,14].
Hence, we proposed the novel modified GA method where the chromosome decoding step is totally
neglected, as shown in Figure 4. This improvement makes modified GA more effective than the
conventional GA in the aspects of storage (less) and convergence speed (naturally higher) [1,2,14].
The optimal process of the modified GA to Fuzzy-PID control parameters using the ISE (integral of
square errror) fitness function is formulated as ISE =

∫ ∞
0 e2(t)dt.
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Figure 4. The proposed fuzzy-PID-mGA (fuzzy-proportional-integral-derivative modified genetic
algorithm; the decode chromosome step is neglected).

4. Numerical Simulation Results

The autonomous hovercraft simulation parameters were derived from [28–31] and denoted with
the mass m = 2.1 kg and the inertia moment I = 0.000257 kg.m2. The modified GA had the mutation
rate (Rm) of 0.08, the crossover rate (Rc) of 0.95, and one hundred individuals (n = 100). We proposed
to tune the fuzzy-PID controller gains in only 20 population-generations of the simulation process.
The PID gains were chosen arbitrary initialized in range (0,50) while e and de of fuzzy control changed
slightly around 1; the control parameters after optimization by the mGA are in Table 2. In comparison
with the standard GA, the modified GA operated in shorter generations (just 20 generations) and
rapidly updated the convergence speed of fitness function.

The hovercraft was tested by moving forward (x-direction); stability was tested when it was
attacked on the side, as it would be by a wave or the wind (y-direction); and steering was by pilot
control (z-direction). Hence, the subsystems of the hovercraft are separated in each channel for the
strategy of design the controller. Performance of the proposed controller of the autonomous Hovercraft
motions are shown on surge position on x-axis in Figure 5, sway position on y-axis in Figure 6, and
yaw angle on z-axis in Figure 7, respectively. The numerical simulation result, achieved in just after
20 generations, clearly proves that the proposed methodology gives a fast response, less error, and
zero overshoot. Moreover, the ISE fitness function, as shown in part b of each of Figures 5–7, gives the
better process of the minimum error. In all three of Figures 5–7, the modified GA error from start to
finish is faster than the standard GA, as shown on Table 3. The 1/Fitness error being larger means that
the speed of the convergence from start toward finish is faster. All the simulation performance work
was done on the MATLAB/Simulink platform (R2018a, MathWorks, Natick, MA, USA).
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(top) 

(bottom) 
Figure 5. (Top) Surge—position control; (bottom) improved GA (mGA) versus standard GA (sGA)
fitness functions.
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(top) 

(bottom) 

Figure 6. (Top) Sway—position control; (bottom) improved GA (mGA) versus standard GA (sGA)
fitness functions.

Table 2. The fuzzy-PID-mGA tuning results.

Generation e de KI KP KD

Surge position x (5 cm) 20 1 1 41.61 8.75 1.42
Sway position y (5 cm) 20 0.98 1.05 29.3 3.32 0.66

Steering-Yaw angle (5 degree) 20 1.1 1.03 32.8 5.91 3.26

Table 3. The error fitness function by generations.

1/Fitness Error i Gene-Ration sGA mGA i Gene-Ration sGA mGA

Surge position x (5 cm) 3 0.00137 0.00236 20 0.0018 0.00263
Sway position y (5 cm) 10 0.045 0.08 20 0.045 0.081
Steering-Yaw angle (5 degree) 10 0.00035 0.00067 20 0.00036 0.00095
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(top) 

(bottom) 
Figure 7. (Top) Steering—Yaw control; (bottom) improved GA (mGA) versus standard GA (sGA)
fitness functions.
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5. Conclusions

In this study, genetic algorithms, during a short operation period, were utilized to optimize the
parameters of an autonomous hovercraft controller. The proposed method achieved good performances
in terms of response (fast), stability (high), error (low), and overshoot (none at all). In addition, the
improved GA methodology, which was implemented by make some simple changes inside the standard
GA’s process that neglects/eliminates the chromosome decode step, displayed better performances
in convergence speed. Especially, the modified GA can update the error fitness function in a smaller
number of generations. It is undeniable that the improved GA is valuable in the optimization processes,
particularly in optimizing the controller parameters. In further research, the authors would like to
enhance the efficiency of the modified GA by using another error criteria, such as: ITSE (integral of
time weighted square error) and MSE (mean square error). The disturbances attack to system models
will be also considered to verify the efficiency of the process of optimizing control parameters.
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Abstract: Safety analysis is one of the important means to show compliance with airworthiness
requirements. The traditional safety analysis methods are significantly dependent on analysts’ skills
and experiences. A model-based safety analysis approach is proposed for typical fly-by-wire (FBW)
systems based on the system development model built via Simulink, by which the response of
system performances can be simulated. The safety requirements of the FBW system are defined by
presenting the thresholds of system performance metrics, and the effects of failure conditions on
aircraft safety are determined according to the system response simulation by injecting failures or
failure combinations into the Simulink model. The Monte Carlo simulation method is used to calculate
the probability of unsafe conditions, whose effects are determined by the system response simulation
with fault injections. Finally, a case study is used to illustrate the effectiveness and advantages of our
proposed approach.

Keywords: system safety assessment; fly-by-wire system; fault injection; Monte Carlo simulation;
dynamic behavior mode

1. Introduction

Safety is the most important characteristic of aviation products. The flight control system is a
typical safety-critical system of modern aircraft, whose failures or malfunctions will lead to an unsafe
flight path or structural failure preventing continued safe flight and landing. In the modern transport
category of airplanes, fly-by-wire (FBW) systems have been widely used to replace hydro-mechanical
ones. By utilizing the FBW system, pilots’ commands are converted to electronic signals transmitted
by wires to flight control computers, and control commands are calculated by flight control computers
based on control laws to determine the movements of the actuators at each control surface. Therefore,
the mechanical circuit consisting of rods, cables and pulleys is not required anymore, and the weight
of the airplane can be reduced.

In aircraft or system development, the safety assessment process is an integral process that is
used to show compliance with airworthiness requirements such as 14CFR/CS 23.1309, 14CFR/CS
23.1309, 14CFR 33.75, CS-E 510 and so on. At present, the safety assessment for civil airborne
systems and equipment is usually conducted according to the standard ARP4761 issued by the
Society of Automotive Engineer (SAE) [1,2]. In this document, it is recommended that traditional
safety analysis techniques including Dependence Diagram Analysis (DDA), Fault Tree Analysis (FTA),
Markov Analysis (MA), Failure Mode and Effect Analysis (FMEA) are applied in the safety assessment
process [2]. These techniques are based on information synthesized from several sources including
informal design models and requirements documents, and they are usually performed manually by
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safety engineers whose experiences and skills will affect the analysis significantly. Therefore, the results
of traditional safety analysis techniques are incomplete, inconsistent and highly subjective [3].

To overcome the deficiencies of the traditional techniques, model-based safety analysis (MBSA) has
been proposed. MBSA focuses on modeling the system in a formal specification (model), which can be
extended by injecting failure modes of the physical system or conducting safety analysis automatically.
In this way, the completeness, consistency and correctness of the safety analysis results can be ensured,
and the dependency on the engineers’ skills and experiences can be avoided [4].

Over the past decade, different kinds of modeling tools have been applied in the modeling
of the formal specification for MBSA. These tools can be classified into three categories [5],
which are graphical modeling tools, system modeling languages and failure logic modeling
techniques. Graphical modeling tools include Matlab-Simulink [6–8], Modelica [9,10], Petri Net [11–13]
and SCADE [3,14]; system modeling languages include SysML [15,16], AADL [17–19], AltaRica [20–22],
and NuSMV [23,24]; and failure logic modeling techniques include HiP-HOPS [25,26] and failure
propagation approaches [27].

Although all the above-mentioned tools can be applied in the modeling of a formal specification,
some of them are used to build models for system development, such as Matlab-Simulink, Modelica,
and AADL; others are used to build models for failure analysis specifically, such as AltaRica, HiP-HOPS
and FPTN. In the case that the models for system development are applied, the fault can be injected
to the model directly and the consistency between system development and safety analysis can be
maximized. The model of a flight control system used in development is usually expressed in system
dynamics (control laws), which are given in the form of differential equations, transfer functions or
state equations, and Matlab-Simulink is the most widely used tool in the development of control
systems to build system dynamics models. Meanwhile, other MBSA tools such as AADL, AltaRica
and HiP-HOPS are suitable for describing the failure propagations of avionics systems.

In this study, an MBSA method is proposed for typical FBW systems based on the system
development model built via Simulink, by which the response of system performances can be
simulated. The safety requirements of the FBW system are defined by presenting the thresholds of
system performance metrics, and the effects of failure conditions on aircraft safety are determined
according to the system response simulation by injecting failures or failure combinations in the
Simulink model. The Monte Carlo simulation method is used to calculate the probability of failure
conditions (unsafe conditions), whose effects are determined by the system response simulation with
fault injections.

The system safety process of an aircraft is usually composed of four parts, which are
Functional Hazard Assessment (FHA), Preliminarily Aircraft/System Safety Assessment (PASA/PSSA),
Aircraft/System Safety Assessment (ASA/SSA) and Common Cause Analysis (CCA). This study focuses
on the ASA/SSA process, the response of the Simulink model with fault injection is used to determine
the failure effects of failure modes and their combinations from FMEA, and the Monte Carlo simulation
method is applied to calculate the probability of top failure conditions instead of FTA, DDA and MA.
The rest of this paper is structured as follows. In Section 2, the nominal (failure-free) model of the
FBW system is presented by using Simulink, and the safety requirements are defined by giving the
thresholds of system responses for performance metrics. In Section 3, the typical failure modes of the
FBW system are modeled by Simulink, and the fault injecting approach is proposed to extend the
nominal model. In Section 4, the probability calculation of unsafe conditions based on the Monte Carlo
simulation is presented as a step-by-step procedure. In Section 5, a lateral-directional flight control
system is used as a case study to show the accuracy and advantages of our proposed Monte Carlo
simulation-based method. In Section 6, concluding remarks are presented.

2. Nominal Model of a Typical FBW System

The model of a typical FBW system under normal operating conditions, which is called the
nominal or failure-free model, is built with Simulink in this section. Then, the system performance
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responses under the failed configurations can be simulated by injecting the corresponding failure mode
into the nominal model.

2.1. System Modeling via Simulink

In aircraft design, the development model of the FBW system as well as the aircraft dynamics are
expressed by mathematical models such as state-space functions, transfer functions and differential
equations, which are usually modeled with Simulink. In this section, a lateral-directional flight control
system [6] is applied as an example to illustrate how to build the nominal model with Matlab-Simulink
(2017a, MathWorks, Natick, MA, USA, 2017).

The lateral-directional flight control system is composed of a flight control computer subsystem, an
actuation subsystem, a sensor subsystem and control surfaces. The flight control computer subsystem
has a dual redundant architecture that is composed of two identical primary flight computers (PFCs).
The actuation subsystem includes the left aileron actuation (LAA), the right aileron actuation (RAA)
and the rudder actuation (RA). Each of them is composed of two redundant actuators that are connected
with a combiner. The sensor subsystem includes the right aileron position sensors (RAPS), the left
aileron position sensors (LAPS), the rudder position sensors (RPS) and the inertial measurement units
(IMU). All of them have a triple modular redundant architecture. The control surfaces for lateral control
include the left aileron, the right aileron and the rudder. Pilots’ commands from pedals and control
sticks are converted to electronic signals transmitted by wires to the two PFCs, and control commands
are calculated in terms of control laws in the PFCs to determine the movements of the actuators for all
control surfaces. The architecture of the lateral-directional flight control system is shown in Figure 1.

Figure 1. Architecture of the lateral-directional flight control system.

According to the dynamic models of the lateral-directional flight control system given in [6,28],
the corresponding Simulink model can be built. Taking the roll control law of the PFC as an example,
the mathematical model is expressed as

Rr(s) = Kr1φc(s) + Kr2Rb(s) + Kr3
s+zr
s+pr

Pb(s)

δ
l(r)
a∗r

(s) =
(
Pr +

Ir
s + Drs

)(
Rr(s) + Krδ

l(r)
a (s)

) (1)

where φc(·) is the roll command, Rb(·) is the yaw rate, Pb(·) is the roll rate, δl(r)
a (·) is the angle of the left

(right) aileron, and δl(r)
a∗r

(·) is the output response of the roll control law. The values of the coefficients
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are given as Kr1 = 0.66, Kr2 = −0.145 s, Kr3 = 2.16 s, zr = 11.1 s−1, pr = 25 s−1, Pr = 0.45 A, Ir = 6 A/s,
Dr = 0.01 As, and Kr = −1.33 [6,28].

The corresponding nominal Simulink model is shown in Figure 2.

Figure 2. Simulink model of the roll control law of the primary flight computer (PFC).

By combining the Simulink models of all components, we can build the Simulink model of the
lateral-directional flight control system, which is shown in Figure 3. In both Figures 2 and 3, the symbol
“*” is used to note the output variables of the control laws.

Figure 3. Nominal Simulink model of the lateral-directional flight control system.

2.2. The Definition of the FBW System Safety Requirement

When the aircraft is in a safe condition, the output response of each performance metric should be
restricted to within an acceptable region, in which the requirements of the performance metrics can be
satisfied. For the lateral-directional flight control system, the performance metrics include the sideslip
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angle β(t), the roll rate pb(t), the yaw rate rb(t) and the roll angle φ(t), thus the safety requirement of
the system can be defined as ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣∣∣β(t) − βr(t)
∣∣∣ ≤ rβ∣∣∣pb(t) − pbr(t)
∣∣∣ ≤ rpb∣∣∣rb(t) − rbr(t)
∣∣∣ ≤ rrb∣∣∣φ(t) −φr(t)
∣∣∣ ≤ rφ

(2)

where βr(t), pbr(t), rbr(t) and φr(t) are the reference values of the sideslip angle, the roll rate, the yaw
rate and the roll angle, respectively, which are the responses of these parameters in the failure-free
configuration; rβ, rpb , rrb and rφ are the thresholds of the sideslip angle, the roll rate, the yaw rate and the
roll angle, respectively. Here, we take rβ = 0.15 rad, rpb

= 0.45 rad/s, rrb
= 0.45 rad/s and rφ = 0.15 rad

from [28].

3. Extension of the Nominal Model

The objective of extending the nominal model is to inject different kinds of failure modes into
the failure-free model. In this way, the performance responses of the FBW system under failed
configurations can be obtained, and the unsafe conditions can be determined by comparing these
responses with the performance thresholds given in Equation (2). In this section, the failure modes
as well as their mathematical model are given, the Simulink tool is also used to build the models of
different kinds of failure modes, and the fault injecting method is proposed.

3.1. Failure Modes and Their Mathematical Model

The failure modes of the components of the FBW system, as well as their failure rates, are given
in Table 1.

Table 1. Component failure modes of the fly-by-wire (FBW) system [6].

Component Failure Mode Failure Mode Description Failure Rate (1/h)

PFCs

Omission Null output 2 × 10−7

Random Random output between −5 and 5 1 × 10−7

Stuck Output stuck at the last correct value 1 × 10−7

Delayed Output delayed by 0.2 s 1 × 10−7

Actuators
Omission Null output 1 × 10−6

Stuck Output stuck at the last correct value 1 × 10−6

Control Surfaces
Stuck Output stuck at the last correct value 1 × 10−8

Trailing Output decided by the
aero-dynamics 1 × 10−8

Inertial Measurement Units
(IMU)

Omission Null output 4 × 10−7

Gain change Output scaled by a factor of 1.5 3 × 10−7

Biased Output biased by a factor of 0.3 deg 3 × 10−7

Position Sensors
Omission Null output 4 × 10−7

Gain change Output scaled by a factor of 1.5 3 × 10−7

Biased Output biased by a factor of 0.3 deg 3 × 10−7

Reproduced with permission from (Dominguez-Garcia A. D., Kassakian J. G., Schindall J. E., et al.), (Reliability
Engineering & System Safety); published by (Elsevier), 2008.

The dynamic behavior of each component can be expressed as the state-space function:

{ .
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(3)

where x(t) is the vector of state variables, u(t) is the vector of input variables, y(t) is the vector of
output variables, A is the system matrix, B is the control matrix, C is the output matrix and D is the
feedforward matrix.
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We make the assumption that the output of the failure-free configuration is y(t), and the output
of different failure modes can be expressed as

¯
y(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ommision
rand random
y(τs) stuck

y(t− τd)1(t− τd) delayed
ϑ or ψ trailing
Gy(t) gain change

y(t) + b biased

(4)

where rand is a random value expressing the random output, τs is the time point when “stuck” occurs,
τd is the delayed time, ϑ is the pitching angle (for the ailerons), ψ is the heading angle (for the rudder),
G is the gain change factor and b is the biased factor.

3.2. Failure Mode Modeling via Simulink

The Simulink tool is also used to build the models of the seven failure modes expressed via
Equation (4), which are given in Figure 4.

 
(a) 

 
(b) (c) 

 
(d) 

 
(e) 

(f) 
 

(g) 

Figure 4. Simulink models of the seven failure modes: (a) “omission”, (b) “random”, (c) “stuck”,
(d) “delayed”, (e) “trailing”, (f) “gain change”, and (g) “biased”.

In all the models, the time point of fault injection is set as the 4th second, and the input is the
failure-free response of the related component. Therefore, the output of each model before the 4th
second will be the failure-free response of the related component as well. Figure 4a shows the Simulink
model of “omission”; the “Output” block will connect to the “Zero” block 4 s later, thus the output
after the 4th second will be null. Figure 4b shows the Simulink model of “random”; the “Output” block
will connect to the “Random Number” block 4 s later, then the output after the 4th second will be a
random value. Figure 4c shows the Simulink model of “stuck”; the “Output” block will connect to the
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output value of “4 s” after the 4th second, then the output will be stuck at its value of “4 s”. Figure 4d
shows the Simulink model of “delay”; the “Output” block will connect to the “Delay” block 4 s later,
then the output after the 4th second will be delayed. Figure 4e shows the Simulink model of “trailing”;
the “Output” block will connect to the “Constant” block 4 s later, then the output after the 4th second
will be a constant value. The constant value C in the“Constant” block will be the heading angle ψ for
the rudder and the pitching angle ϑ for the ailerons. Figure 4f shows the Simulink model of “gain
change”; the “Output” block will connect to the “Gain” block 4 s later, then the output will be scaled by
the gain change factor, which is shown as K in the “Gain” block. Figure 4g shows the Simulink model
of “biased”; the “Output” block will connect to the “Sum” block 4 s later, then the output will be the
summation of the initial output and the biased factor, which is shown as C in the “Constant” block.

3.3. The Fault Injecting Method

The fault injection is conducted by a “fault injector”, which is a “Variant Subsystem” block placed
between each component block and its output. Figure 5 shows the fault injector and its inner structure.
The fault injector includes the blocks of the seven failure modes given in Figure 4a–g as well as an
additional “normal” block. The “normal” block denotes the failure-free configuration; its inner “Input”
connects “Output” directly.

Figure 5. Simulink model of the fault injector.

The block parameters of the “fault injector” are used as the control variables for fault injections.
By selecting different control variables, the responses of different kinds of configurations can be obtained.

Figure 6 shows the performance responses of the FBW system. Figure 6a shows the performance
responses of the FBW system in the failure-free configuration when the roll command is a 0.2 rad, 0.1 Hz
square wave. Figure 6b shows the system performance responses of the same input command when
the “random” failure mode of one PFC has been injected. We can see that the difference between the
roll angle response and its reference value has exceeded the threshold (0.15 rad). Thus, there is an
unsafe condition. The results shown in these figures are similar to those in [6]. Figures 6a and 6b here
correspond to Figures 2b and 6b in [6], respectively.
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(a) (b) 

Figure 6. Performance responses of the FBW system: (a) the failure-free configuration; (b) the
configuration of the “PFC random” failure mode.

4. Probability Calculation of Unsafe Conditions Based on Monte Carlo Simulation

Random numbers are used to denote the failure time for each component failure mode.
These numbers will be the fault occurrence time of each corresponding failure mode. We order
these numbers from smallest to largest, and inject the failure modes at their occurrence time one by
one according to the fault injecting method. When the responses do not satisfy the safety requirement
given in Equation (2), one simulation will terminate and a sample of time to the unsafe condition
can be obtained. In terms of several time samples, the probability distributions of the time to unsafe
conditions can be obtained. In this way, the probability of unsafe conditions can be calculated at
different time points.

We make the assumption that the system is composed of n components and the ith (i = 1, 2, . . . , n)
component has mi failure modes. N is used to denote the ordinal of the current simulation. TN is the
time to unsafe conditions obtained from the Nth simulation.

The step-by-step procedure of the Monte Carlo simulation-based method is as follows.
The flowchart of the step-by-step procedure is shown in Figure 7.

Step 1 Initialization

Before the simulation starts, the ordinal of the current simulation is zero, namely N = 0;
the corresponding time to unsafe conditions is also set as zero, namely T0 = 0.

Step 2 Start a new simulation

Let N = N + 1, and the (N + 1)th simulation will start.

Step 3 Generate random numbers

Generate random numbers as the failure time for all failure modes. A common situation is that
the failure time of each failure mode follows the exponential distribution, and the random number can
be expressed as

ti j= − 1
λi j

ln(1− r01) (i = 1, 2, · · · , n; j = 1, 2, · · · , mi) (5)

where λi j is the constant failure rate of the ith component’s jth failure mode, r01 is a random number
generated from the uniform distribution defined over the interval (0, 1), and ti j is the failure time of the
ith component’s jth failure mode. For other distributions, we can also obtain a random number by
their cumulative density function.

Step 4 Obtain the failure time for each component
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As each component has several failure modes and the component will fail when one of the failure
modes occurs, the failure time of each component will be the minimum value of all its failure modes’
occurrence time. We have

ti ji = min
j=1,2,··· ,mi

(
ti j
)

(6)

where ti ji is the failure time of the ith component, and ji is the ordinal of the ith component’s failure
mode that has the minimum failure time.
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Figure 7. Flowchart of the Monte Carlo simulation.

Step 5 Inject the fault of each component

The failure time for each component is ordered from smallest to largest, and the ith component’s
jith failure mode will be injected into the nominal model at ti ji one by one according to the fault
injection method proposed in Section 3. When the unsafe condition occurs, the corresponding ti ji will
be the Nth sample of the time to unsafe conditions obtained from the Nth simulations (TN).

Step 6 Decide whether the simulations will end or not
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The simulations will stop when the mean time to unsafe conditions converges, thus the simulation
ending criteria can be expressed as ∣∣∣∣∣∣∣ 1

N

N∑
k=1

Tk − 1
N − 1

N−1∑
k=1

Tk

∣∣∣∣∣∣∣ < ε (7)

where ε is an arbitrarily small positive real, and we usually let ε = 0.1.
If Equation (7) can be satisfied, the simulation procedure will go to Step 7; otherwise, it will go

back to Step 2.

Step 7 Calculate the probability of unsafe conditions

According to the N samples of time to unsafe conditions, we perform distribution selections,
parameter estimations and goodness-of-fit tests. Then, we can obtain the probability distribution of
time to unsafe conditions, and the probability of the time to unsafe conditions can be calculated.

5. Case Study and Discussion

The lateral-directional flight control system given in Figure 1 is applied as the case study here.
The failure rates of all components’ failure modes are already given in Table 1.

By conducting the Monte Carlo simulation procedure given in Section 4, we obtain nearly 2000
samples of time to unsafe conditions, whose histogram is shown in Figure 8. According to the shape of
the histogram, it can be estimated that these samples may follow Weibull distribution or Lognormal
distribution. For the kth sample Tk, the estimate of the related cumulative distribution function (CDF)
can be expressed as

F̂(Tk) =
k
N

(8)

Figure 8. Histogram of time samples.

The CDF of Weibull distribution is expressed as

F(t) = 1− exp
[
−
( t
α

)β]
(9)

We let ⎧⎪⎪⎨⎪⎪⎩
xk = ln Tk

yk = ln
{
ln
[

1
1−F̂(Tk)

]} (10)
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Thus, if the samples follow a Weibull distribution, the plotting of xk versus yk expressed by (10)
should look like a straight line. This plotting is shown in Figure 9a.

 
(a) (b) 

Figure 9. (a) The plotting of Weibull fitting; (b) The plotting of lognormal fitting.

Likewise, the CDF of a lognormal distribution is expressed as

F(t) = Φ
(

ln t− μ
σ

)
(11)

where Φ(·) is the CDF of the standard normal distribution. Let⎧⎪⎪⎨⎪⎪⎩ xk = Φ−1
[
F̂(Tk)

]
yk = ln Tk

(12)

Thus, if the samples follow a lognormal distribution, the plotting of xk versus yk expressed by (12)
should look like a straight line. This plotting is shown in Figure 9b.

It is shown that the plotting of xk versus yk in Figure 9a is much more like a straight line compared
with Figure 9b. Therefore, the Weibull distribution is preferred for these samples.

By using the maximum likelihood estimation, we can obtain α = 2.6062× 105 h and β = 1.211.
In addition, the Kolmogorov–Smirnov test shows that we should not reject the hypothesis that the
samples of time to unsafe conditions are following the Weibull distribution with α = 2.6062 × 105

and β = 1.211 [29]. Hence, the probability of the unsafe condition at time t can be expressed as

P(t) = 1− exp
[
−
( t

2.6062× 105

)1.211]
(13)

For the FBW system, the scheduled inspection interval is set as 500 flight hours, which means the
function of the FBW system will be thoroughly checked every 500 flight hours and the FBW system
will be restored to the perfect condition if it is degraded. Thus, we can obtain the probability of the
unsafe condition in a scheduled inspection interval as 5.1234× 10−4. Therefore, the average probability
of the unsafe condition per flight hour is 1.0247× 10−6.

In [6], the Markov process is applied to calculate both the upper and lower bounds of the
probability of the unsafe condition in the scheduled inspection interval, which are 5.1178 × 10−4

and 5.8211× 10−4, respectively, for this case. We have also used the state enumerating method to obtain
the minimal cut sets that cause unsafe conditions. In the state enumerating method, we simulate the
model of the FBW system with all component failure modes and their combinations, and the minimal
cut sets can be obtained in terms of the system response. Moreover, the probability of the unsafe
condition or its interval can be calculated via the probability additive formula. The upper and lower
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bounds of the probability of the unsafe condition calculated by the minimal cut sets are 5.1088× 10−4

and 5.2084× 10−4, respectively. The results of the three methods are given in Table 2.

Table 2. Probability of the unsafe condition calculated by different methods.

Monte Carlo Simulation Markov Process State Enumerating

5.1234 × 10−4 (5.1178 × 10−4, 5.8211 × 10−4) (5.1088 × 10−4, 5.2084 × 10−4)

Table 2 shows that the result of the Monte Carlo simulation method is located just between the upper
and lower limits obtained from both the Markov process and the state enumerating, which illustrates
the accuracy of our Monte Carlo simulation method. The advantages and disadvantages of the
above-mentioned three methods are discussed in Table 3.

Table 3. Comparison of the three methods.

Methods Advantages Disadvantages

Monte Carlo simulation

• The cumbersome work of
building a Markov model can
be avoided.

• The simulation algorithm
does not have to be modified
when the system is modified.

• Time-consuming for
large systems.

• A stochastic method, and it
does not achieve
exact results.

Markov process

• The exact value or interval of
the probability can
be calculated.

• More efficient than Monte
Carlo simulation after the
Markov model has been built.

• Faced with the state
explosion problem.

• A new Markov model is
needed when the system
is modified.

State enumerating

• The probability additive
formula is used to calculate
the exact value or interval of
the probability for an
unsafe condition.

• Impossible to enumerate all
the states for large systems.

• A new formula is required
when the system is modified.

6. Conclusions

In this study, an MBSA approach is proposed based on the system development model built by
Simulink for the FBW system, and Monte Carlo simulation is used to obtain the probability of unsafe
conditions. Our proposed approach has the following advantages:

(1) The performance responses of the system with fault injection are used to determine the effect
of component failures or failure combinations on system safety. Compared with the traditional
safety analysis methods, the determination of failure effects is no longer dependent on analysts’
specific knowledge about the aircraft system.

(2) By using the Monte Carlo simulation method, the cumbersome work of building a Markov model
can be avoided, and the state explosion problem of the Markov process can be resolved to some
extent. Additionally, when the system is modified or changed, the Markov model should be
rebuilt; however, our Monte Carlo simulation algorithm should not be updated.

(3) By using the system development model built by Simulink, the safety assessment can be carried
out in the early stage of system development. Moreover, it is easy to update the safety assessment
results with the design improvement of the FBW system.
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