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It has been six years since Editor-in-Chief Steffensen (2013) wrote in his editorial that “to Risks
inclusiveness, inter-disciplinarity, and open-mindedness is the very starting point.” An one-liner of his
editorial also stated that “[w]hat is complicated is not necessarily insightful and what is insightful is
not necessarily complicated: Risks welcomes simple manuscripts that contribute with insight, outlook,
understanding and overview.”

This philosophy has contributed immensely to Risks becoming one of the most interesting,
enlightening, and inspiring journals dealing with various facets of risk. It was, therefore, most
humbling and exciting to accept the invitation by Risks to organize a special issue, and we decided
to cover three inevitable stages of our lives: taking risks, sometimes getting ruined, and hopefully
surviving. Success along this path requires well thought out strategy and tactics, which involve
measuring and modeling risks, selecting and testing decisions. These tasks benefit greatly from
exploratory simulation studies and, needless to say, from well-tested ancient wisdom. As Master Sun
(Sun-tzu 2007) said during the Warring States Period more than 2000 years ago,

He who knows the enemy and himself
Will never in a hundred battles be at risk;
He who does not know the enemy but knows himself
Will sometimes win and sometimes lose;
He who knows neither the enemy nor himself
Will be at risk in every battle. (Sun-tzu 2007, p. 87)

We are blessed to have witnessed the immense interest that the Special Issue has generated, and
we thank all the authors whose contributions have, or have not, been selected for this Issue, and we are
of course grateful to all the referees for their effective and tireless work during the selection process.

We are indebted to the entire Editorial and Production Teams of Risks for making our work on the
Issue as easy as one-two-three, but we would nevertheless be remiss if we did not especially mention
Managing Editor Janine Li for her constant and frank advice that has guided our work.

We shall next introduce each of the ten papers, in the usual alphabetical order based on authorship,
with the intent of generating enough interest among the Risks readership to look at the papers in
depth and, in turn, to write up their thoughts and suggestions as follow-up contributions to Risks.
To ensure the accuracy of each of the ten introductions, we have sought and received generous and
much appreciated feedback from the authors.

Dang (2018):

Investors from different cultures exhibit different cognitive biases (Afego 2018). Behavioral pitfalls
such as overreaction and herding are related to uncertainty avoidance and collectivism (embeddedness)
dimensions, respectively (Chang and Lin 2015; Hofstede et al. 2010). Empirical studies document the
effects of culture values on investor sentiments and market mood, and the latter makes an impact on
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credit ratings. President of the European Commission José Manuel Barroso remarked at the European
Parliament in May 2010 that credit ratings are “too cyclical, too reliant on the general market mood
rather than on fundamentals—regardless of whether market mood is too optimistic or too pessimistic.”
The informal constraints that stem from culture have made an extensive impact on daily behavior,
and this impact extends far beyond formal laws (North 1990). Culture directly influences managerial
decision making, thereby indirectly influencing corporate risk taking (Li et al. 2013), capital structure
(Chui et al. 2002), debt maturity (Zhen et al. 2012), cash management (Chang and Noorbakhsh 2009;
Ramirez and Tadesse 2009), corporate investment (Shao et al. 2013), dividend policy (Bae et al. 2012;
Fidrmuc and Jacob 2010; Shao et al. 2010), financial disclosures, financial report quality (Gray 1988; Hope
2003), and the degree of earnings management (Desender et al. 2011; Han et al. 2010). Guiso et al. (2016)
further suggest that cultural differences between Germany and Greece hindered Greece’s negotiations to
avoid a default. There is increasing recognition of the role that culture plays in corporate and sovereign
credit risk. An interesting question that has not been addressed in the literature is whether and how
culture affects changes in credit risk, specifically, in credit ratings. Dang (2018) offers a cross-disciplinary
explanation of this phenomenon and establishes a link between culture and corporate rating migration.
In particular, Dang (2018) shows that studying culture helps to enrich our understanding of credit rating
decisions, which in turn can be helpful in developing predictive models of corporate rating changes
across countries.

Greselin et al. (2019):

Quantile, also known as percentile and value-at-risk (VaR), is a fundamental quantity in many
areas of research and practice. It is quite often thought to be an easy parameter to estimate, and this
is indeed true in the sense that any quantile can easily be calculated from any data set. Deriving its
confidence intervals, however, has turned out to be a Herculean task: obtaining limiting distributions
require mathematically elegant (e.g., Beirlant et al. 2004; Csörgő 1983; De Haan and Ferreira 2006) but
nevertheless practically-formidable assumptions; and resampling techniques (e.g., Shao and Tu 1995)
designed to circumvent some of the difficulties quickly run into a host of challenges (e.g., Bickel and
Sakov 2008). Yet, regulatory frameworks in insurance and banking require estimating pre-specified
quantiles and then use them as risk measures. Attempts to utilize optimal, or nearly optimal, results
derived by mathematical statisticians under optimal, or nearly optimal, assumptions quickly become
disconcerting, due to the need to explain to the managers and shareholders, among others, why and
when the assumptions hold. This is when decision-makers posit the formidable challenge to researchers
to come up with practically-appreciable confidence intervals under practically-justifiable conditions.
Obviously, “practically appreciable” does not necessarily mean asymptotically accurate—the definition
of “practically appreciable” depends on managers, decision-makers, and others involved in making
the company profitable, or at least safeguarding it from defaulting. It is this viewpoint that has guided
the research of Greselin et al. (2019) on VaR in the context of operational risk (OpRisk) measurement.

Gribkova and Zitikis (2018):

The notion of systemic, also known as background, risk permeates various research areas:
insurance, finance, engineering, system security, and so on. It is a multifaceted topic, with
various methods and techniques available for detection, analysis, and decision making. Many
engineering-related studies employ techniques in the frequency domain, while Gribkova and Zitikis
(2018) pursue the task in the time domain. The latter paper is a part of the tetralogy by Gribkova and
Zitikis (2018, 2019a, 2019b, 2019c) who develop a comprehensive classification and testing methodology
for dealing with potential effects of systemic risk on systems at their input and/or output stages.
The importance of such research is due to the fact, among other reasons, that even though the decision
maker may be aware of the existence of systemic risk and would thus incorporate it into the statistical
model, the decision maker cannot be sure that the resulting model complexity is really justified. Indeed,
the effects of systemic risk on the system may be statistically insignificant, and thus a simpler and
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more tractable model could be used. The aforementioned tetralogy offers a comprehensive resolution
of the problem.

Koch (2019):

An accurate assessment of the risk of extreme environmental events is essential, inter alia for the
(re)insurance industry, and this is increasingly so in the context of climate change. Although the theory
of risk measures has been under development for a long time, the spatial and infinite-dimensional
settings have essentially been tackled only since Koch (2017), where the author introduces a notion
of spatial risk measure that explicitly considers the spatial region and the cost field generated by
a specific hazard over the region. Koch (2017) also proposes a related set of axioms that describes
how the spatial risk is expected to evolve with respect to spatial features of the region, such as
its location and size. Results of this kind facilitate the quantification of a number of parameters
of interest for (re)insurance companies, including the rate of spatial diversification. In the present
research, Koch (2019) makes further advances in the development of the concept of spatial risk and
corresponding axioms, and supplements them with in-depth explanations of their uses in actuarial
science and practice. In the case of a general cost field, Koch (2019) specifies conditions that give the
rate of spatial diversification for spatial risk measures linked with expectation, variance, Value-at-Risk
(VaR) and Expected Shortfall (ES). These conditions are then refined when the cost field is a function
of max-stable random fields, which are well suited for modeling spatial extremes and are thus
beneficial in practice. Finally, in Koch (2017 2019), the dependence between the individual risks are
fully characterized by means of the spatial dependence structure of the cost field. Note in this regard
that the classical actuarial individual and collective risk models lack the localization of risks, thus
making their dependence modeling somewhat arbitrary and possibly less reliable from the practical
point of view.

Li and Lu (2018):

The aggregate discounted claims for insurance portfolios are the present values of the total
amounts to be paid by the company up to a certain time in the future. They depend on the
arrival times (frequency) and sizes (severity) of the claims, as well as on the forces of interest
for discounting. The aggregate discounted claims may also be influenced by the background or
environmental conditions; for example, weather or climate conditions may impact property and
casualty insurance claims. Hence, it is important for the insurer to know various distributional
characteristics (e.g., the average, variance, distribution, etc.) of the aggregate discounted claims, as
they represent the insurer’s future liabilities at present time. In light of this, Li and Lu (2018) study the
distribution and moments of the aggregate discounted claims occurring in a cluster of states based
on a Markovian arrival process in which the claim arrivals, claim amounts, and forces of interest are
influenced by an underlying Markov process. They also examine the correlations of the aggregate
discounted claims occurring under two different clusters of environmental conditions, or with two
different time lengths. To illuminate the results, Li and Lu (2018) provide an illustrative numerical
study based on a two-state Markov-modulated model.

Liu et al. (2018):

As illustrated by Furman et al. (2015), existing methods for measuring tail dependence
may sometimes underestimate the true interdependence between extreme co-movements of risks.
This might be disconcerting from the practical point of view, and has therefore given rise to the notion
of maximum tail dependence (MTD). Liu et al. (2018) have adopted this notion in their real data
based explorations of a portfolio selection problem initiated by De Luca and Zuccolotto (2011), who
have proposed to cluster financial assets by tail dependence. In Liu et al. (2018), the tail dependence
coefficient (TDC) used by De Luca and Zuccolotto (2011) is replaced by the MTD coefficient, and the
corresponding techniques of clustering are developed and discussed. The obtained results suggest that
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MTD-based portfolios outperform TDC-based portfolios on avoiding extremely low rates of return.
The importance of this article is at least two-fold: it lends support to the MTD methodology from
a practical perspective, and proposes a way to improve the performance of portfolios from the risk
management perspective.

Lkabous and Renaud (2018):

In actuarial mathematics, the occupation time of an insurer’s surplus process below a given
threshold level is particularly critical when assessing the insurer’s solvency risk (e.g., Guérin and
Renaud 2017; Landriault et al. 2014). Such problems are closely related to Parisian ruin models,
under which insurers are granted a grace period to re-emerge above the threshold level before a
ruin is deemed to occur. Naturally, therefore, Guérin and Renaud (2017) introduce the concept of
cumulative Parisian ruin, which is based on the “time spent in the red” by the underlying surplus
process. The time of the cumulative Parisian ruin is the first time the surplus process stays cumulatively
below a critical level longer than the pre-determined grace period. Several dynamic risk measures,
which are those based on ruin-theoretic quantities, have been studied by, e.g., Trufin et al. (2011),
Mitric and Trufin (2016), and Loisel and Trufin (2014). These results have, in turn, motivated Lkabous
and Renaud (2018) to explore a VaR-type risk measure based on the cumulative Parisian ruin for the
classical risk model. In particular, they relate their measure to other ones that have appeared in the
literature, and they also verify various properties of the measure. Finally, Lkabous and Renaud (2018)
perform a sensitivity analysis of their risk measure in the case of a Cramér–Lundberg process with
exponential claims.

Loke and Thomann (2018):

The dual risk model exemplifies the surplus process of a company that incurs expenses at a
constant rate and earns random positive gains at random times. The model is also known as the
“negative claims model” because it can be obtained by negating the signs of premiums and claims in
the classical Cramér-Lundberg model. A great variety of applications have been tackled using this
model. To illustrate, in life insurance and pensions (e.g., Grandell 2012), continuous payments are
made by the company to the policyholder, and upon the death of the latter, the gross reserve becomes
available to the company as a profit. Another example concerns companies that engage in research
and discovery, such as petroleum or pharmaceutical companies (e.g., Avanzi et al. 2007), with random
gains corresponding to, e.g., the discoveries of oil or the development of new patents, respectively.
In greater generality, many subsequent risk models have also incorporated investments with constant
force of interest, which could be, e.g., investments of the entire surplus in bonds, as earlier argued
by Segerdahl (1942). These arguments have motivated Loke and Thomann (2018) to further explore
the problems in detail, particularly from the view of practical implementation needs, such as speedy
decision making for which numerical algorithms become indispensable. Hence, the authors have put
forward and examined the performance of a numerical algorithm for tackling the ruin probability in
the dual risk model with risk-free investments under arbitrary gain distributions. Crucially for the
algorithm, the ruin probability has been shown to satisfy an integro-differential equation, which the
authors subsequently discretized and reduced to a linear matrix equation. This has enabled Loke and
Thomann (2018) to efficiently compute the ruin probability for any jump distribution. Furthermore,
the authors have employed an analogous numerical method to tackle other Gerber–Shiu type functions,
such as the Laplace transform of the time of ruin.

Marri et al. (2018):

The problem of risk aggregation for insurance portfolios has been extensively studied from
various perspectives. For example, Léveillé and Garrido (2001a, 2001b) employ renewal theory to
derive closed-form expressions for the first two moments of the discounted aggregate claims, and
Léveillé and Hamel (2013) study aggregate discounted payments and the expense process for medical
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malpractice insurance. As is the case with many pioneering studies, they have assumed that the
inter-arrival times and the claim amounts are independent. Empirical observations have revealed,
however, that a departure from independence would considerably increase the practical appeal of
such studies. To illustrate, in non-life insurance, the same catastrophic event (e.g., a flood or an
earthquake) may lead to frequent and high losses. Inspired by such observations, Marri et al. (2018)
study discounted renewal aggregate claims under full dependence structure: they allow dependence
among the inter-claim times, dependence among the claim sizes, and also dependence between the
inter-claim times and the claim sizes.

Semenikhine et al. (2018):

Loss distributions have been a staple of actuarial studies for many years. When modeling
losses, actuaries are particularly interested in distributions that are supported on the non-negative
real half-line, have positive skewness, and allow for varying degrees of heavy-tailness. One of such
distributions, arguably the most prominent one in insurance applications, is the gamma distribution.
When insurance losses arise from multiple business lines and need to be considered jointly due
to their interdependence, multivariate extensions of the gamma distribution are naturally called
upon. Although there are numerous multivariate gamma models in the literature, real data-driven
applications impose significant constraints on the model choice. In particular, practitioners often
wish to work with multivariate distributions that (i) admit meaningful and relevant interpretations,
(ii) allow for adequate fits (marginally or jointly) to a wide range of multivariate data, (iii) possess
desirable distributional properties for insurance valuation and risk management, and (iv) can be readily
implemented. The multivariate gamma family proposed by Semenikhine et al. (2018) is exactly such.
Although the family is exceptionally general, the authors have succeeded in thoroughly exploring
its properties. In particular, Semenikhine et al. (2018) have linked the family to the multiplicative
background risk model, derived an explicit formula for the distribution of the aggregate risk, specified
the corresponding copula function, and determined measures of nonlinear correlation, including the
index of maximal tail dependence (Furman et al. 2015).

Funding: The authors gratefully acknowledge research support from the Natural Sciences and Engineering
Research Council (NSERC) of Canada, and the National Research Organization “Mathematics of Information
Technology and Complex Systems” (MITACS) of Canada.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The informal constraints that arise from the national culture in which a firm resides have a
pervasive impact on managerial decision making and corporate credit risk, which in turn impacts
on corporate ratings and rating changes. In some cultures, firms are naturally predisposed to rating
changes in a particular direction (downgrade or upgrade) while, in other cultures, firms are more
likely to migrate from the current rating in either direction. This study employs a survival analysis
framework to examine the effect of national culture on the probability of rating transitions of 5360
firms across 50 countries over the period 1985–2010. Firms located in long-term oriented cultures are
less likely to be downgraded and, in some cases, more likely to be upgraded. Downgrades occur
more often in strong uncertainty-avoiding countries and less often in large power distance (hierarchy)
and embeddedness countries. There is some evidence that masculinity predisposes firms to more rating
transitions. Studying culture helps enrich our understanding of corporate rating migrations, and
helps develop predictive models of corporate rating changes across countries.

Keywords: national culture; survival analysis; hazard model; rating migrations

1. Introduction

Hofstede, Hofstede and Minkov (Hofstede et al. 2010) define culture as “the collective programming
of the mind that distinguishes the members of one category of people from those of another.” In a global
survey conducted in May 2008 by PricewaterhouseCoopers, 78% of the participants considered culture
and excessive risk taking the contributing factors that led to the credit crisis (PricewaterhouseCoopers
2008). Contributing to this view is the evidence that culture affects corporate risk taking (Li et al. 2013),
bank risk taking (Ashraf et al. 2016), and bank performance (Boubakri et al. 2017).

Pan et al. (2017) observe similarity in risk attitudes inside U.S. firms, which are rooted in the
founders’ risk attitudes and retained through the appointments of leaders with similar mindsets.
Unlike Pan et al., this study does not focus on founders’ risk attitudes and corporate risk culture.1 As
Ramirez and Tadesse (2009) suggest, the culture in which an individual resides influences his/her
perception of uncertainty and his/her “mechanism” to cope with uncertainty and ambiguity. Corporate
managers, regardless of their original cultural backgrounds, have to tailor their business priorities and
corporate policies to the cultural contexts in which their firms operate. This study therefore focuses on
the national culture in which a firm resides.

In practice, credit rating has been widely used as a measure of credit risk. A strong understanding of
credit rating decisions has important implications to market participants. As the President of the European
Commission José Manuel Barroso remarked at the European Parliament on 5 May 2010, ratings are “too
cyclical, too reliant on the general market mood rather than on fundamentals—regardless of whether
market mood is too optimistic or too pessimistic”.

1 Pan et al. acknowledge that they do not account for social influences and shared experience inside a firm, thus not capturing
a firm’s risk culture entirely.
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Investors from different cultures react differently to an information shock and are affected by
different cognitive biases (Afego 2018). Behavioral pitfalls, such as overreaction and herding, are
related to culture values. For example, people in strong uncertainty avoiding countries, such as Greece
and Italy, show a high level of anxiety and a natural sense of urgency (Hofstede et al. 2010). People
in collectivism (embeddedness) cultures tend to exhibit herding behavior (Chang and Lin 2015). These
culture values affect investor sentiment and market mood, and market mood impacts on credit ratings,
as stated by the President of the European Commission. Thus, it is expected that culture indirectly
influences rating decisions.

Empirical studies suggest that culture feeds into the rating review process through several
channels (Appendix A). Culture directly influences managerial decision making thereby indirectly
influencing corporate risk taking (Li et al. 2013), capital structure (Chui et al. 2002), debt maturity
(Zheng et al. 2012), cash management (Ramirez and Tadesse 2009; Chang and Noorbakhsh 2009), and
corporate investment (Shao et al. 2013). Corporate risk taking, corporate investment, capital structure,
debt maturity and cash management are important criteria used in the rating review process (S&P
RatingsDirect 2013).

The informal constraints that stem from culture have an extensive influence on daily behaviors, and
this influence extends far beyond formal laws (North 1990). Culture directly affects managers’ perceptions
of questionable business practices (Vitell et al. 1993; Cohen et al. 1996) and indirectly influences managers’
choices relating to financial disclosures, financial report quality (Gray 1988; Hope 2003) and the degree
of earnings management (Han et al. 2010; Desender et al. 2011). Jorion et al. (2009) consider increased
earnings management the contributing factor that has led to a deterioration in the quality of corporate
investment ratings.

The conflict of interest between shareholders and creditors, and the extent of protection toward
shareholders and creditors vary markedly across countries (Li et al. 2013). Paredes and Wheatley
(2017) find that measures of investor protection are “subsumed” by culture. Culture affects managers’
decisions to hire a Big Four auditor (Hope et al. 2008). High quality audits reduce information
asymmetries and agency conflicts between corporate managers (shareholders) and creditors (Jensen
and Meckling 1976). Culture also affects dividend policy (Shao et al. 2010; Fidrmuc and Jacob 2010;
Bae et al. 2012), and dividend policy has been widely used as a monitoring mechanism to minimize
agency problems. Culture may also complicate the negotiations to avoid a default between corporate
managers (shareholders) and creditors.2

There is increasing recognition of the role culture plays in corporate risk taking and corporate
credit risk. An interesting question which has not been addressed in the literature is if and how culture
affects changes in credit risk, specifically, changes in ratings. Though culture is very stable, I argue that
some cultures may predispose to more rating changes while other cultures may lead to directional
predisposition for rating changes over time. As discussed in Section 2.3, a strong uncertainty avoidance
trait may lead to more downgrades while a long-term orientation trait may result in fewer downgrades
as time passes. Analysts may be more prone to change corporate ratings in countries with a high score
for masculinity, individualism, and power distance.

Culture is expected to affect rating migrations through two channels (Appendix A). First, culture
influences macro-economic activities3 through its roles as an informal constraint and through its effects
on managerial decision making (Zheng et al. 2012). Ratings move pro-cyclically (Lobo et al. 2017) and
rating regrades are primarily affected by macro-economic conditions (Blume et al. 1991). Accelerated
downgrades and defaults occur more often during economic contractions while upgrades tend to

2 Contributing to this view is the evidence that the cultural differences between Greece and Germany made Greece’s
negotiations to avoid a default much more difficult (Guiso et al. 2016).

3 For example, long-term oriented countries have a higher national saving rate and a higher growth rate. Individualistic countries
achieve a higher GNI per capita (Hofstede et al. 2010, pp. 38, 263–65).
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outweigh downgrades during economic expansions (Bangia et al. 2002; Lobo et al. 2017). Rating volatility
is intensified during business cycle troughs and subdued during business cycle peaks (Nickell et al. 2000).

Second, culture feeds into the rating review process (as discussed above) and thus affects a firm’s
rating and its rating history. Empirical studies suggest that the current rating and various aspects of
rating history impact on subsequent rating changes. For example, issuers in the boundary between
investment and speculative rating grades (BBB−/BB+) exhibit different migration dynamics compared
with other issuers (Carty and Fons 1994; Johnson 2004). Issuers downgraded to a given rating are more
likely to be downgraded than those upgraded to that rating grade.4

The above discussion motivates this study to examine the impact of national culture on corporate
rating migrations. The effects of culture are examined after accounting for variables that have been
found to be significant in previous studies on rating migrations. The results of this study provide
robust evidence that national culture significantly impacts the probability of rating changes of 17,109
ratings (5360 firms) across 50 countries over the period 1985–2010. The evidence in favor of including
culture variables is stronger for rating downgrades and when numeric scores are used to represent
culture values.

This study finds that long-term orientation (LTO) value is associated with a lower downgrade
hazard, and in some cases, a higher upgrade probability. The effect of LTO on downgrades is robust
to alternative samples (with and without U.S. firms), alternative measures of culture (Hofstede’s and
Schwartz’s culture scores) and alternative study periods (crisis and non-crisis times). Uncertainty
avoidance trait makes a downgrade more likely whereas power distance (hierarchy) and embeddedness trait
reduces the risk of a downgrade. There is some evidence that masculinity dimension predisposes firms
to more rating transitions.

This study extends the literature in two ways. First, this is the first study to explore the effects of
culture values established by Hofstede et al. (2010) and Schwartz (1994) on the rating migration hazards
of 5360 firms in 50 countries over a 26-year period. The study suggests a cross-disciplinary explanation
and establishes a link between culture literature and rating migration literature. Second, the study
applies a survival analysis framework (Allison 1995) and develops Cox’s dynamic hazard model
(Cox 1972) which offers three attractive features: It accounts for the sequence of rating migrations of
the same firm, includes both time-fixed and time-varying variables in the estimation process, and
allows for non-Markovian behaviors, such as within-rating heterogeneity and time-heterogeneity, in
corporate rating migration dynamics.

The remainder of this paper is organized as follows. Section 2 describes the data and discusses
culture values established by Hofstede et al. (2010) and Schwartz (1994). Section 3 presents the method,
variables and samples. Section 4 discusses the results, and Section 5 summarizes the key findings.

2. National Culture and Corporate Rating Migrations

2.1. Rating Data

This study employs Standard and Poor’s foreign currency issuer ratings retrieved from Ratings
Xpress database on 28 September 2010. Firm-specific data other than credit ratings are not available.
Standard and Poor’s (S&P) ratings are used as S&P’s decisions are generally timelier than Moody’s
(Güttler 2011). Foreign currency ratings are used as the persistence of national culture dimensions is
relevant for firms which issue debts in international markets.

Financial institutions and utilities are excluded from this study for two reasons. First, previous
studies suggest that financial institutions exhibit different rating migration dynamics compared with
industrial firms (Nickell et al. 2000; Lando and Skodeberg 2002). Second, financial institutions and

4 For the evidence of downward momentum in rating migration dynamics, see Altman and Kao (1992); Carty and Fons (1994);
Altman (1998); Bangia et al. (2002); Lando and Skodeberg (2002); Güttler and Wahrenburg (2007); Figlewski et al. (2012);
Dang and Partington (2014)
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utilities operate in highly regulated environments and are closely monitored by their respective
regulatory agencies. This suggests less latitude for corporate managers in these sectors to exhibit
flexibility in decision making. Thus, financial institutions and utilities deserve a separate study and
this article focuses entirely on other sectors. The study spans the period from 1 January 19855 to 28
September 2010.

2.2. Culture Data

Hofstede’s culture values have been widely employed in various business disciplines including
finance. This study employs Hofstede et al. (2010)’s five culture values, namely power distance index,
uncertainty avoidance index, individualism versus collectivism, masculinity versus femininity, and long-term
versus short-term orientation. A country’s score for a culture value does not represent an absolute
position but reflects its ranking relative to other countries. The validity of culture values persists for a
long period of time. Hofstede (2001, p. 255) stresses that in the long term “cultures shift, but they shift
in formation so that the differences between them remain intact.”

This study employs the numerical scores of Hofstede’s five culture values and five dummy
variables, each based on a country’s score relative to the mean score. Scores greater than or equal to
the mean take a value of one or zero otherwise. As the differences between cultures remain stable
over time, the use of dummy variables helps maintain the relative rankings between cultures over the
study period.

Most culture values introduced in recent studies are conceptually related to and empirically
correlated with Hofstede’s culture values (Leung et al. 2005).6 Two widely known frameworks that
categorize culture along similar values are the GLOBE study conducted by Robert House and his team
in 1991 and Schwartz (1994). GLOBE values are not used in this study as, despite using the same terms,
their meanings are different compared with Hofstede’s values. The approach the GLOBE team used to
formulate survey questions suffers from major disadvantages (Hofstede et al. 2010, pp. 42–43).

There are significant correlations between Schwartz’s scores and Hofstede’s scores (Hofstede et al.
2010, p. 41). Given their comparability, this study employs the numeric scores of two of Schwartz’s
culture measures, embeddedness7 and hierarchy, as alternative measures of Hofstede’s collectivism (the
opposite pole of individualism) and power distance index, respectively. As in Zheng et al. (2012), this study
does not employ Schwartz’s mastery trait because it captures such values as success, independence,
ambition, and capability, which overlap with those of Hofstede’s individualism and masculinity traits.

2.3. Culture Dimensions

The following discussion elaborates on the possible links between culture values and corporate
rating migrations, as outlined in Appendix A. In some cultures, firms are naturally predisposed to
rating changes in a particular direction (downgrade or upgrade) while in other cultures firms tend to
migrate from the current rating in either direction.

2.3.1. Power Distance Index (PDI) or Hierarchy

Hofstede’s power distance index (PDI) and Schwartz’s hierarchy reflect the extent to which people
accept an unequal, hierarchical distribution of power, authority and wealth (Hope 2003; Licht et al.
2005). Small power distance (PD) cultures strive to equalize the distribution of power, and justification

5 S&P rating scales were changed in 1983. To calculate the annual changes of employed macro-economic variables in 1985, the
values in 1984 and 1985 were needed. Thus, 1985 was chosen as the starting year of the study.

6 Tang and Koveos (2008) suggest that institutional factors, such as language, religion, climate and legal origin, are subsumed
by Hofstede’s uncertainty avoidance and masculinity traits. The correlations between Hofstede’s culture scores and other
measures “do not tend to become weaker over time” (Hofstede et al. 2010, p. 39).

7 Embeddedness is referred to as conservatism in some studies, such as Johnson and Lenartowicz (1998); Chui et al. (2002);
Shao et al. (2010).
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is required for any inequalities. Large PD cultures accept a hierarchical order in which everybody has
a place and no further justification is required (Hofstede et al. 2010).

Agency conflicts are less severe in large PD countries as there is greater acceptance of wealth
and power inequalities (Fidrmuc and Jacob 2010). As a result, firms adopt a lower dividend payout
policy and are less likely to hire a Big Four auditor (Hope et al. 2008). It is difficult for firms to
get access to long-term credit markets given the greater risk of violence in domestic politics. Thus,
firms employ more short-term debt than long-term debt and exhibit a lower degree of financial risk
(Zheng et al. 2012). Contributing to this view is the evidence that banks in large PD countries tend to
take fewer risks (Ashraf et al. 2016).

A high PD score is related to a high degree of earnings management (Paredes and Wheatley
2017). Corporate managers exhibit strong influences on financial reporting choices and prefer not to
disclose information to preserve power inequalities (Zarzeski 1996). People often view a questionable
business practice as ethical (Cohen et al. 1996, p. 58) and are more tolerant of corruption and tax
evasion (Husted 1999; Tsakumis et al. 2007). Policy debates and political discussions are not often seen
in larger PD societies, which indicates a lower degree of transparency and accountability.

The above discussion suggests that a high PD score may predispose firms to rating changes in
either direction (downgrade and upgrade).

2.3.2. Individualism (IDV) versus Collectivism (Embeddedness)

People in individualistic countries (high IDV score) show autonomy and are encouraged to
pursue personal goals and stand up for their rights (Licht et al. 2005). Hofstede’s individualism trait may
predispose firms to rating changes in either direction (downgrade and upgrade), as discussed below.

Individualistic countries have strong economies (Hofstede 2001, p. 519) and tend to adopt
market-based financial systems, which encourage corporate risk taking (Li et al. 2013). Their preferred
Anglo-Saxon corporate governance systems focus on shareholders’ interests (Griffin et al. 2015). Firms
employ a high degree of leverage (Chui et al. 2002), invest more in long-term assets, R&D projects
(instead of physical assets), and employ excess cash to increase R&D (instead of increasing dividends)
(Shao et al. 2013). Aggressive risk-taking results in more volatile operating income (Li et al. 2013).
Consequently, managers are more likely to manage earnings (Han et al. 2010) and engage in income
smoothing (Fonseca and Gonzalez 2008). Agency conflicts are inherently more severe (Chui et al. 2002)
as corporate insiders exhibit a strong tendency to pursue their own personal interests rather than
adhere to different stakeholders’ preferences.

On the positive side, individualistic countries have effective regulatory systems. Laws and rights
are equal for all groups, and formal institutions are established to protect the rights of competing
parties, such as shareholders and creditors (Licht et al. 2005). Firms tend to adopt a high dividend
payout policy to minimize agency problem concerns (Shao et al. 2010; Fidrmuc and Jacob 2010).
The business environment in individualistic cultures is more competitive and less secretive than in
collectivistic cultures (Gray 1988). Firms are open to extensive accounting disclosures (Gray and Vint
1995) and are more likely to hire a Big Four auditor (Hope et al. 2008). People are less tolerant of
corruption and tax evasion (Tsakumis et al. 2007).

In collectivistic (embeddedness) cultures (low IDV score), people have less need for autonomy
and an active determination of their own lives. Schwartz’s embeddedness trait is expected to lower
downgrade hazard and raise upgrade probability, as discussed below.

Collectivistic (embeddedness) cultures focus on maintaining a harmonious relationship within a
society and preserving public images. People value conformity and adherence to societal norms and
regulations (Hofstede 1980). Firms tend to adopt autocratic and paternalistic management systems.
Corporate managers are very concerned about the liquidation costs to its stakeholders (Titman 1984).
Capital structure is decided by corporate leaders who have strong views that there should be no
detrimental effect on employees. As a high degree of financial leverage restricts firms’ flexibility
and raises the probability of bankruptcy, firms in embeddedness cultures tend to employ less debt
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(Chui et al. 2002) and use more short-term debt (Zheng et al. 2012). Avoiding bankruptcy is also
consistent with preserving a firm’s public images.

Collectivistic (embeddedness) cultures are more likely to have bank-based financial systems and
relation-based corporate governance systems, which place a greater emphasis on the interests of a
firm’s different stakeholders (Griffin et al. 2015). Agency conflicts are less severe and excessive risk
taking is not encouraged as managers tend to act in line with the interests of all stakeholders (Jensen
and Meckling 1976; Fidrmuc and Jacob 2010; Shao et al. 2013). Corporate managers share a strong
sense of responsibility and are less likely to differentiate between their own and others’ welfares.

Overall, individualism may predispose firms to more rating regrades whereas embeddedness is
expected to raise upgrade hazard and reduce downgrade risk.

2.3.3. Masculinity (MAS) versus Femininity

Masculine cultures (high MAS score) value assertiveness, ambition, competition, challenge,
recognition, material accomplishment, and success. Feminine cultures (low MAS score) value cooperation,
modesty, tenderness, security, caring for the weak, and quality of life (Hofstede et al. 2010).

Masculine cultures encourage taking risky decisions and achieving performance goals. Men often
exhibit overconfidence or self-attribution biases (Barber and Odean 2001). Compared with women, men
are less likely to assess the accurate levels of risk associated with an assigned task (Byrnes et al. 1999).
Men are also more likely to experience failure or unfavorable outcomes, and can be more aggressive
than women about default. Contributing to this view is the evidence that banks in masculine countries
are more likely to incur a large loss during a crisis (Kanagaretnam et al. 2011).

Masculine cultures are open to head-on confrontation (Licht et al. 2005) and encourage aggressive
behaviors (Kanagaretnam et al. 2011). Conflicts are often resolved by fighting in masculine countries
and by negotiation in feminine countries.8 The political environment in masculine countries tends
to be adversarial, as opposed to cooperative coalitions in feminine countries (Hofstede et al. 2010,
pp. 173–80).

Countries with high MAS scores are less likely to perceive ethical issues in business practices
(Vitell et al. 1993, p. 758). However, masculine countries incorporate economic interests in legal form
(Licht et al. 2005), and are less permissive in dealing with lawbreakers. Masculine countries focus more
on punishment while feminine countries are more lenient and place greater emphasis on correction
and rehabilitation (Hofstede 2001, p. 319).

Firms in masculine cultures are open to extensive information sharing (Hope 2003; Doupnik and
Tsakumis 2004) as societies are more business oriented and value visible achievement. Corporate
managers are concerned that debt covenants may restrict their aggressive business plans and fears
of financial distress may interfere with their bold investment strategies. Firms thus prefer less debt
financing (Chui et al. 2002) and use more short-term debt (Zheng et al. 2012). By contrast, feminine
cultures may accept higher indebtedness to support their welfare systems “even at the expense of
accomplishment and performance” (Weaver 2001, p. 9).

The above discussion suggests that a high MAS score may predispose firms to rating migrations
in either direction (downgrade and upgrade).

8 An example is the handling of the Åland Islands crisis and the Falkland Islands crisis. The Åland Islands crisis was resolved
by negotiations in 1921 between feminine countries Finland and Sweden. The Åland Islands remained Finnish but the
pro-Swedish islands gained substantial regional autonomy. The Falklands Islands crisis in 1982 involved Argentinean
military and British expeditionary forces. The crisis between two masculine countries cost “725 Argentinean and 225 British
lives and enormous financial expense.” The Falklands Islands have remained a disputed territory and required “constant
British subsidies and military presence” (Hofstede et al. 2010, p. 173).
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2.3.4. Uncertainty Avoidance Index (UAI)

Uncertainty avoidance (UA) is the extent to which members of a society feel uncomfortable with
uncertainty and find ambiguity stressful (Chui et al. 2002). People from strong UA countries are
subject to a natural sense of urgency and are more likely to suffer from anxiety (Hofstede et al. 2010).
A strong UA trait tends to exacerbate investor panic and create more uncertainty during market
turmoil. Deteriorating market mood and heightened concerns about uncertainty often lead to drastic
and accelerated downgrades.9

Uncertainty avoidance differs from risk avoidance (Tsakumis et al. 2007). High UA cultures
perceive ambiguity as a continuous threat. People tend to “engage in risky behavior in order to reduce
ambiguities, such as starting a fight with a potential opponent rather than sitting back and waiting”.
They are open to familiar risks such as driving faster and having more fatal accidents but they show
fears of ambiguity and unfamiliar risks (Hofstede et al. 2010, pp. 197–98).

Strong UA countries tend to adopt bank-based financial systems (Kwok and Tadesse 2006) and
maintain a low degree of economic freedom. Firms in these countries have a negative view of
competition. Debt financing is minimized as the use of debt imposes constraints and may lead to
financial instability (Chui et al. 2002). Corporate managers are concerned about potential financial
distress and the cash shortage that may require capital raising under unfavorable market conditions or
fire sales of a firm’s assets (Chang and Noorbakhsh 2009). Access to long-term credit markets is difficult
given the greater risk of political instability.10 So, firms prefer to use more short-term debt (Zheng et al.
2012), adopt a lower dividend payout policy (Fidrmuc and Jacob 2010) and hold more cash (Ramirez
and Tadesse 2009; Chang and Noorbakhsh 2009). Firms are not open to extensive accounting disclosure
(Gray and Vint 1995) and are less likely to hire a Big Four auditor (Hope et al. 2008). Information
asymmetries and agency conflicts between managers (shareholders) and creditors tend to be greater.

In strong UA countries, “ineffective rules can satisfy people’s emotional need for formal structure”
(Hofstede et al. 2010, p. 209). Corporate managers are less likely to perceive ethical problems and are
not opposed to contravening an unjust law. In situations where outcomes cannot be determined
with certainty, corruption is viewed as an option to secure a predictable result. Tax evasion is
considered a means of reducing ambiguity (Vitell et al. 1993, p. 757; Husted 1999; Tsakumis et al. 2007;
Hofstede et al. 2010, p. 223). By contrast, in weak UA countries rules are often more likely to be
followed (Hofstede et al. 2010), investors’ legal rights are stronger (Licht et al. 2005), and people are
less likely to view tax evasion as a viable option.

In strong UA societies, people are also slower in paying their bills (De Mooij 2004, p. 154). These
countries have more precise formal laws, informal rules, rigid safety and security measures in place.
However, it takes more time for their citizens to comply with two simple civil procedures: collecting
a bounced check which had been refused by a bank and evicting a tenant for non-payment of rent
(Hofstede et al. 2010, pp. 216–17). Debt burdened firms in strong UA countries may not waste time
negotiating with creditor(s) to reduce their delinquent debts. Driven by a high level of anxiety and a
natural sense of urgency, these firms may simply walk away to avoid any uncertainty associated with
the debt restructure process.

In the light of this discussion, a high UA score is expected to make downgrades more likely and
upgrades less likely.

9 Contributing to this view is the remark of the President of the European Commission José Manuel Barroso at the European
Parliament in May 2010 that ratings are “too cyclical, too reliant on the general market mood rather than on fundamentals...”.

10 Strong UA countries are intolerant of political ideologies, are “more likely to harbor extremist minorities within their
political landscape” and have more “native terrorists” (Hofstede et al. 2010, p. 221).
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2.3.5. Long-Term (LT) versus Short-Term (ST) Orientation

Long-term oriented societies (high LTO score) value pragmatic virtues related to the future, such
as savings and adapting to changing circumstances (Hofstede et al. 2010, p. 239). Firms invest in
building up strong market positions even at the expense of poor short-term performance. Managers
are allowed time and resources to make sustained efforts with an aim to serve stakeholders and future
generations (Hofstede et al. 2010, p. 244). Young people are taught the importance of savings and learn
to put money aside for future uses.

Short-term oriented societies (low LTO score)—for example, Arab countries—value virtues related
to the past and present such as national pride, respect for tradition, preservation of public images,
and fulfilling social obligations (Hofstede et al. 2010, p. 239). Young people, affected by a culture of
consumption, often live beyond their means. Corporate managers focus on the immediate results and
are judged by their short-term performance. The cost of short-term decisions in terms of “pecuniary
considerations, myopic decisions, work process control, hasty adoption, and quick abandonment of
novel ideas” is evident (Hofstede et al. 2010, pp. 244–45).

The economic success of Taiwan, South Korean, Singapore, Hong Kong and Japan in the early
1990s highlights the value of their LTO cultures. These countries encourage thrift, perseverance
(Anderson et al. 2011), and support entrepreneurial activities. People are persistent in the pursuit
of their goals and are less tolerant of questionable business activities (Cohen et al. 1996). Their
thrift translates into higher savings and growth rates (Hofstede et al. 2010, pp. 38, 263–65) and the
availability of capital for reinvestment. Firms are less likely to rely heavily on debt financing. The
sense of shame prevalent in LTO societies encourages interrelatedness through social contacts and
stresses the importance of keeping commitments (Hofstede et al. 2010, pp. 243–44). Firms have strong
ethical motivations to pay debts on time, and the severity of agency conflicts is inherently lower given
their focus on stakeholders and future generations.

In the light of this discussion, a high LTO score is expected to make upgrades more likely and
downgrades less likely.

3. Models and Variables

3.1. Estimation Model

This study applies a survival analysis framework (Allison 1995) and develops Cox’s dynamic
hazard model (Cox 1972) to examine the effect of culture on the probability of corporate rating
migrations. Previous studies suggest that upgrade and downgrade follow different dynamics
(Figlewski et al. 2012; Dang and Partington 2014). Thus, upgrade and downgrade are treated as
competing risks, and separate models are estimated for these two migration outcomes.

Rating observations are arranged in event time (gap time) risk sets; each risk set includes all the
firms that are at risk of a migration of interest at event time t. The clock is reset when a firm is assigned
a rating grade. An upgrade (downgrade) is treated as a migration of interest (a censored observation)
when estimating the upgrade model, and vice versa. Ratings which started before the beginning of the
study or ended after the end of the study are also treated as censored. The survival time of a rating is
the time a firm maintains a rating grade measured from the time it enters the rating grade subsequent
to the start of the study until the time it either migrates to another rating grade or becomes censored.

Cox’s hazard model is the premier technique in survival analysis. The main attraction of the
estimated model is that it is convenient to handle repeated migrations. A typical firm experienced
several migrations during the study period, which may lead to dependence among ratings. Accounting
for repeated migrations is important as 42.6% (18%) of the firms in the main sample experienced
between 2 and 15 downgrades (upgrades); the most volatile firms experienced 26 downgrades
(25 upgrades). This highlights the need to consider unobserved heterogeneity in the underlying
hazard of a rating change and to ensure that a firm is not considered at risk of a rating change before
all previous rating changes have already occurred (Hosmer et al. 2008).
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The problem arising from repeated migrations is minimized in two ways. First, the Wei et al.
(1989)’s method for multiple failure time data is applied to account for the dependence among ratings
of the same firm. The advantage of this method is that it does not require any assumptions about the
nature or the structure of the dependence (Allison 1995, p. 242). Second, the estimation of the stratified
hazard model, as in as Dang and Partington (2014), takes into account the sequence of rating changes.
Each stratum includes ratings that have the same number of prior changes. The underlying (baseline)
hazard of a rating change differs according to the number of prior changes whereas the effect of a
variable is assumed to be the same across strata.

Another attractive feature of the estimated hazard model is that it accommodates time-varying
outlook and rating age. A firm may be assigned a negative, positive, stable or developing outlook while
its rating remains unchanged. A negative (positive) outlook signals the deterioration (improvement)
in a firm’s credit quality, and indicates S&P’s opinion regarding the potential direction of a long-term
credit rating over the intermediate term (six months to two years) (S&P RatingsDirect 2009). Estimating
stratified dynamic hazard models with time-varying variables on a sample of 17,109 ratings (5360 firms)
across 50 countries over a 26-year period creates substantial computational challenges in this study.

The hazard of a rating change m in stratum s is given by the product of the underlying (baseline)
hazard h(0,s)(t) and the effect of the risk factors (covariates), and can be expressed as follows:

hm,s(t, Z, Z(t)) = h(0,s)(t) exp[Zm
j β j + Zm

p (t)βp

]
, (1)

where: hm,s(t, Z, Z(t)) is the migration hazard of rating m in stratum s at time t given its time-fixed
covariate vector Zm

j and its time-varying covariate vector Zm
p (t); h(0,s)(t) is the baseline hazard of a

migration in stratum s at time t; βp is the vector of estimated coefficients for time-varying covariates
Zm

p (t); and β j is the vector of estimated coefficients for time-fixed covariates Zm
j .

The full rating migration model is estimated by multiplying together the individual likelihood
functions for all the strata in the sample.

3.2. Variables

The definitions of variables employed, the data sources, and the references to examples of the
relevant literature are given in Table 1.

The first group of variables includes Hofstede’s five culture values and two of Schwartz’s culture
values, as discussed in the previous section.

The second group of variables accounts for the current rating (current rating grade), its proximity
to investment/speculative rating threshold (dummy investment boundary, dummy junk boundary), rating
history (logarithm of age since first rated, dummy lag one downgrade, lag one duration, dummy prior fallen
angel, dummy large downgrade, dummy large upgrade, rating volatility) and time-varying rating outlook
(dummy negative outlook, dummy positive outlook). Previous studies on corporate rating migrations have
widely documented that the direction of lagged rating change, the duration of lagged rating, and
rating outlook are the key determinants of rating changes.11 The use of lagged dependent variable (lag
one duration) and important control variables (dummy lag one downgrade, dummy negative outlook, dummy
positive outlook) minimizes endogeneity concerns, Li (2016).

11 See, for example, Altman and Kao (1992); Carty and Fons (1994); Altman (1998); Bangia et al. (2002); Lando and Skodeberg
(2002); Vazza et al. (2005b); Güttler and Wahrenburg (2007); Figlewski et al. (2012); Dang and Partington (2014).
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The third group of variables takes into account country characteristics. Potential variables
are identified from previous studies on rating migrations. The choices of variables eliminate
multi-collinearity concerns and aim at creating a sample from a large number of cultures. Selected
variables are proxies for changes in macro-economic conditions (change in real GDP growth rate, change in
inflation, change in current account surplus/GDP, change in term trade), the level of economic development
(logarithm of GDP per capita, dummy OECD member), the degree of stock market capitalization (logarithm
of ratio stock market capitalization/GDP), the existence of a sovereign debt/banking crisis (dummy debt
crisis), and a history of sovereign foreign currency debt defaults (dummy prior default). Selected variables
also account for the performance of global stock market (return of world stock market index), and the
political risk in each country (dummy high political risk, dummy low political risk). By definition, dummy
high political risk and dummy low political risk capture institutional factors such as religion and law
(Table 1). The use of these variables further minimizes endogeneity concerns.

The variables are of two types: static (time-fixed) and dynamic (time-varying). The time-varying
variables (dummy negative outlook, dummy positive outlook, logarithm of age since first rated) are updated
over the duration of a rating as its outlook changes or as a migration of interest occurs. The time-fixed
variables take the values observed at the start or closest to the start of a rating observation and are not
changed over the duration of a rating.12 The values of static variables only change when the rating
changes. The durations of ratings, particularly for downgrades, were small, as depicted in Figure 1.
Thus, substantial changes in the values of static variables during the duration of a rating were unlikely.

3.3. Samples

Since the data on outlook and the last rating change are required, only firms having at least one
rating outlook and experiencing at least one prior migration during the study period are included
in the final dataset. The main sample, sample A(H), includes 17,109 ratings of 5360 firms from 50
countries. This sample consists of ratings which have no missing data on Hofstede (H)’s five culture
values and control variables.

Several robustness tests are conducted using alternative samples, alternative study periods, and
alternative culture measures. In the first test, Schwartz’s numeric scores for embeddedness and hierarchy
are used as alternative measures of Hofstede’s numeric scores for collectivism (the opposite pole of
individualism) and power distance index, respectively. The requirement of data availability for Schwartz
(S)’s culture scores causes a small reduction in the size of sample A(H), resulting in sample A(H-S) of
16,966 ratings. Each rating in sample A(H-S) has no missing data for three of Hofstede (H)’s culture
values (masculinity, uncertainty avoidance index, and long-term orientation), two of Schwartz (S)’s culture
values (embeddedness and hierarchy), and all control variables.

In the second robustness test, U.S. firms are excluded from samples A(H) and A(H-S), which
results in samples B(H) and B(H-S), respectively. Sample B(H) (with Hofstede’s culture values) includes
4745 ratings of 1717 firms from 49 countries. Sample B(H-S) (with Hofstede and Schwartz’s culture
values) includes 4602 ratings.

In the third test, ratings in sample A(H) are pooled across countries at the time they were (were
not) experiencing a debt/a banking crisis, as defined in Manasse et al. (2003), Laeven and Valencia
(2008), and De Paoli et al. (2009). Restricting the study period to crisis and non-crisis times results
in samples C(H-1) and C(H-2), respectively. Sample C(H-1) (crisis times) includes 3927 ratings of
2088 firms from 32 countries. Sample C(H-2) (non-crisis times) includes 13,182 ratings of 4614 firms
from 50 countries. Excluding U.S firms from sample C(H-2) results in sample C(H-3) of 3714 ratings
(1535 firms).

12 Most static variables are updated annually. Return of world stock market index is calculated using daily data over a 63-trading
day rolling window prior to the beginning of each rating. Dummy OECD member, dummy debt crisis and dummy prior default
are updated at the beginning of each rating.
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3.4. Statistics

A numerical rating scale is employed to represent S&P’s alphabetical ratings, ranging from AAA
as 21 to C as 1. The descriptive statistics of the current rating grades (start rating) for observations in
the three samples with Hofstede’s culture scores are presented in Panel A of Table 2. On average, firms
in all three samples had a speculative grade median rating (BB for the whole sample and BB+ for the
sample excluding U.S firms). During crisis times the median rating dropped by two notches from BB
to B+, suggesting a substantial decline in credit quality.

The descriptive statistics of the survival times for downgrades and upgrades in the three samples
with Hofstede’s culture scores are respectively given in Panel B and Panel C of Table 2. The median
survival time was 1 year (1.74 years) for downgrades (upgrades) in the entire sample A(H), and about
0.38 year (1.01 year) for downgrades (upgrades) in the crisis sample C(H-1).

Downgrades (upgrades) account for 60.85% (23.48%), 56.08% (23.1%) and 46.47% (13.3%) of the
entire sample A(H), non-U.S. sample B(H), and crisis sample C(H-1), respectively. The surprisingly
low frequency of downgrades in the crisis sample is due to the lower than average frequency of
downgrades of U.S. firms during crisis times. This is not too surprising as the study does not consider
financial sector and thus does not examine accelerated downgrades which occurred to a large number
of U.S. financial institutions during the financial crisis 2007–2009. Additional analysis shows that for
non-U.S. firms, the frequency of downgrades is comparable (56%) across business cycles. For U.S.
firms, the frequency of downgrades is markedly higher in non-crisis times (68.63%) than in crisis times
(43.23%). For both U.S. and non-U.S. firms, upgrades occur much less often in crisis times.

Table 2. Statistics of rating grades and survival time.

Panel A: Statistics of S&P’s Numerical Rating Grades

Sample A(H): All Firms
Sample B(H): Non-US

Firms
Sample C(H-1): Crisis

Sample

Sample size 17,109 4745 3927
Mean 10.29 11.08 8.79

Median 10 (BB) 11 (BB+) 8 (B+)
Std dev 4.18 4.22 3.9

Min 1 (C) 1 (C) 2 (CC)
Max 21 (AAA) 21 (AAA) 20 (AA+)

Panel B: Statistics of Survival Time for Downgrades

Sample A(H): All Firms
Sample B(H): Non-US

Firms
Sample C(H-1): Crisis

Sample

Number of downgrades 10,411 2661 1825
Frequency of
downgrades 60.85% 56.08% 46.5%

Mean (years) 1.82 1.55 0.66
Median (years) 1 0.92 0.38

Std dev 2.25 1.78 0.76
Min (years) ~0 0.01 0.01
Max (years) 23.43 14.28 7.41

Panel C: Statistics of Survival Time for Upgrades

Sample A(H): All Firms
Sample B(H): Non-US

Firms
Sample C(H-1): Crisis

Sample

Number of upgrades 4018 1096 521
Frequency of upgrades 23.48% 23.1% 13.3%

Mean (years) 2.25 1.99 1.34
Median (years) 1.74 1.55 1.01

Std dev 1.96 1.63 1.32
Min (years) 0.02 0.02 0.04
Max (years) 19.72 10.3 10.3

Panel A of Table 2 shows the statistics of rating grades, Panel B and Panel C present the statistics of survival time for
downgrades and upgrades, respectively, in the whole sample A(H), non-U.S. sample B(H), and crisis sample C(H-1).
For brevity reasons, this table presents the statistics for ratings in the three samples with Hofstede’s culture values.
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The histograms of survival times for downgrades and upgrades in sample A(H) (the entire
sample) and sample C(H-1) (crisis times) are depicted in Figure 1. Overall, downgrades had a shorter
survival time than upgrades and were heavily massed in durations shorter than a year. About 50% of
downgrades during the study period and about 80% of downgrades during crisis times retained their
current rating for less than a year.

Figure 1. Distribution of rating observations by duration (survival time). Panel A and Panel B of
Figure 1 shows the distribution of migrated ratings by duration (survival time) for the entire sample
A(H) and crisis sample C(H-1), respectively. Duration is the length of time a firm stays in a rating
grade measured from the time it enters the rating grade subsequent to the beginning of the study until
the time it either migrates to another rating grade or becomes censored. A typical firm contributes
multiple ratings to the dataset. Sample A(H) and sample C(H-1) includes 17,109 ratings and 3927
ratings, respectively.

Panels A and B of Table 3 give the descriptive statistics of the numeric scores on Hofstede’s five
culture values and Schwartz’s two culture values for firms in samples A(H) and B(H), respectively.
There is a wide range of variation in the scores for each of Hofstede’s culture values. Compared
with firms in sample A(H), non-U.S. firms in sample B(H) show characteristics of larger power
distance (PDI), more feminine (MAS), more collectivistic (IDV), stronger risk-avoiding (UAI), and
more long-term oriented (LTO) cultures.
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Table 3. Descriptive statistics of national culture scores.

Panel A: Descriptive Statistics of Culture Values for Samples A(H) and A(H-S) of All Firms

Mean Median Std Dev Min Max

Hofstede (H) culture values (N = 17,109)
Power distance index (PDI) 42.7 40 10.43 11 104

Individualism vs. collectivism (IDV) 83.26 91 17.64 12 91
Masculinity vs. femininity (MAS) 60.15 62 10.4 5 110

Uncertainty avoidance index (UAI) 50.28 46 13.46 8 112
Long-term vs. short-term orientation (LTO) 32.91 26 15.99 13 100
Schwartz (S) culture values (N = 16,966)

Embeddedness 3.62 3.67 0.16 3.03 4.35
Hierarchy 2.34 2.37 0.17 1.49 3.23

Panel B: Descriptive Statistics of Culture Values for Sample B(H) and B(H-S) of Non-U.S. Firms

Mean Median Std Dev Min Max

Hofstede (H) culture values (N = 4745)
Power distance index (PDI) 49.75 39 17.98 11 104

Individualism vs. collectivism (IDV) 63.08 71 23.63 12 90
Masculinity vs. femininity (MAS) 55.32 56 18.91 5 110

Uncertainty avoidance index (UAI) 61.44 53 21.94 8 112
Long-term vs. short-term orientation (LTO) 50.93 51 21.74 13 100

Schwartz (S) culture values (N = 4602)
Embeddedness 3.49 3.46 0.27 3.03 4.35

Hierarchy 2.25 2.22 0.32 1.49 3.23

Table 3 shows the descriptive statistics for scores of Hofstede (H)’s and Schwartz (S)’s culture values for the whole
samples and non-U.S. samples. The definitions of the culture variables are as in Table 1.

4. Results

Separate models are estimated for downgrades and upgrades. Overall, culture values have
significant effects on downgrades and upgrades after accounting for time-varying rating outlook,
various aspects of rating history, macro-economic conditions and political risks.

4.1. Models for the Whole Sample (Samples A(H) and A(H-S))

The results of the models for the whole sample are given in Table 4. For each migration outcome,
three models are estimated and three sets of results are given: first, using dummy variables where each
dummy is set according to a country’s score on Hofstede’s culture value relative to the mean (model 1);
second, using numeric scores for Hofstede’s culture values (model 2); and, third using numeric scores
for Hofstede’s and Schwarz’s culture values (model 3).

As presented in Table 4, most of the retained variables are significant at the 10% level or better
based on a Wald chi-square test. Culture values have stronger effects on downgrades than upgrades.
The downgrade model with Hofstede and Schwartz’s scores (model 3) features the significance of all
five culture measures. The sign of a significant culture variable in model (3) is consistent with its sign
(if significant) in model (1) and model (2).

The three models for downgrades feature one common culture value, which is long-term orientation
(LTO)/dummy LTO, and its sign is as expected. Being in a LTO country reduces the downgrade
probability by 25.2% (model 1) whereas a one-unit increase in LTO score makes a downgrade 0.9%
(model 2) or 1.1% (model 3) less likely.13

Power distance index (PDI) is significant in model (2) for downgrades while hierarchy is present in
model (3) for both downgrades and upgrades. Schwartz’s score of hierarchy has a stronger effect than
Hofstede’s score of PDI. For example, a one-unit increase in hierarchy makes a downgrade 29.8% less

13 Subtracting one from the hazard ratio (HR) gives the change in risk for a one-unit change in the independent variable.
Dummy LTO’s HR of 0.748 represents a 25.2% reduction in downgrade risk for firms in a LTO country (model 1). Dummy
LTO (model 1) has a stronger impact than LTO (models 2 and 3). A larger effect of dummy LTO is not unusual in hazard
modelling, often because a switch from short-term to long-term orientation represents a substantial change.
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likely and an upgrade 73.7% more likely (model 3). A one-unit increase in PDI reduces the downgrade
hazard by only 1% (model 2). This is not surprising as the score of Hofstede’s PDI value for a country
is much higher than the respective score of Schwartz’s hierarchy value (Table 3). The risk being changed
is very small for a one-unit increase in PDI.

Apart from LTO and PDI/hierarchy, models (2) and (3) for downgrades share another common
culture value which is uncertainty avoidance index (UAI). As expected, firms residing in strong UA
countries have unfavorable experiences toward downgrades.

Individualism (IDV)/ Dummy IDV is not significant in models (1) and (2). However, embeddedness
is significant in model (3) for downgrades. Embeddedness is comparable to collectivism which is the
opposite pole of individualism. As expected, firms in embeddedness cultures are less likely to experience
a downgrade (model 3).

For upgrades, hierarchy is the only significant variable in model (3) (as discussed above) while
masculinity (MAS)/ dummy MAS is the only significant variable in models (1) and (2). MAS’s positive
sign in models (1) and (2) (for upgrades) and model 3 (for downgrades) suggests that firms in MAS
cultures are more likely to experience rating changes in either direction.

With regard to control variables, the following discussion focuses on those significant in all
three models for downgrades (upgrades). Firms rated around the speculative rating boundary
(BB+/BB/BB) are more likely to become rising stars. Firms rated close to the investment rating
threshold (BBB+/BBB/BBB−) or those with a positive outlook have lower downgrade risk and higher
upgrade probability. Consistent with prior literature, issuers with a lagged downgrade or a negative
outlook exhibit a strong tendency to travel downward on the rating spectrum. Older firms, firms
with a high current rating, a volatile rating history or those which have experienced a fallen angel
event tend to retain the current rating grade. Firms with a longer lagged rating or those with a prior
substantial downgrade are more likely to experience a subsequent migration.

With regard to macro-economic environment, a strong global equity market is associated with
a lower rating volatility, raising the probability that a firm will retain its current rating grade. Firms
in OECD countries or countries with strong current account balances tend to go up the rating scales.
Firms in countries high on inflation or countries with equity market-based economies experience
fewer upgrades. A high GDP growth rate, a strong current account balance, and an emergence from a
sovereign default lower the probability of corporate downgrades.

In terms of political risk, the effect of dummy low political risk is in contrast to initial expectations.
Firms in countries with low political risk are more likely to be downgraded and less likely to be
upgraded. Perhaps this surprising effect is due to the sample being dominated by U.S. firms.

A natural question is whether the impact of culture remains robust when the sample is restricted
to non-U.S. firms and the study period is restricted to crisis/ non-crisis times.

4.2. Robustness Tests

4.2.1. Models for Non-U.S. Firms (Samples B(H) and B(H-S))

The results of the models for non-U.S. firms are given in Table 5. The evidence in favor of including
culture variables is weaker in the upgrade models and stronger in the downgrade models (compared
with the respective models in Table 4).

For downgrades, dummy LTO/LTO remains significant in three models. Consistent with the
results presented in Table 4, firms in LTO cultures are less likely to be downgraded. Model (3) for
downgrades features only four significant culture values compared with five significant culture values
in the respective model for the whole sample (Table 4). UAI is no longer present in model (3) whereas
dummy UAI and dummy large PDI become significant in model (1). The negative sign of dummy large
PDI (model 1) is consistent with the negative sign of PDI (model 2), hierarchy (model 3) and the results
presented in Table 4. Similarly, the positive sign of dummy UAI (model 1) is consistent with the positive
sign of UAI (model 2).
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For upgrades, model (1) does not feature any significant culture dummies. In model (3), hierarchy
is no longer significant and is replaced by MAS. The positive effect of MAS on upgrades (models 2 and
3) and on downgrades (model 3) is as expected. Firms in MAS cultures are more volatile and exhibit a
tendency to migrate from the current rating in either direction.

4.2.2. Models for Crisis and Non-Crisis Periods (Samples C(H-1), C(H-2), C(H-3))

Table 6 presents the results of the models for crisis sample C(H-1), non-crisis sample C(H-2),
and non-crisis non-U.S. sample C(H-3). For reasons of brevity, only the results of the models with
Hofstede’s numeric scores are reported in Table 6.

Overall, the statistical significance of culture variables for crisis and non-crisis samples is weaker.
Consistent with the results presented in Tables 4 and 5, LTO is the only culture value which is significant
in the downgrade models for three samples. Firms in LTO cultures are less likely to be downgraded
and during crisis times, are more likely to be upgraded.

UAI is only present in the downgrade model for the crisis sample. A strong UA culture (UAI)
predisposes to more downgrades during crisis times. The effect is consistent with its effect on the
whole sample (Table 4) and non-U.S. sample (Table 5). PDI is significant in the downgrade model for
the crisis sample and the upgrade model for the non-crisis non-U.S. sample. A high PDI score reduces
the downgrade hazard during crisis times and raises the upgrade probability of non-U.S. firms during
non-crisis periods. The impact of PDI on downgrades during crisis times is consistent with its impact
on the whole sample (Table 4) and non-U.S. sample (Table 5). MAS is not present in any downgrade
models while IDV is not significant in any models.

The upgrade models for three samples do not share any significant common culture variable.
However, MAS is significant in the upgrade models for the two non-crisis samples. Its positive sign
suggests that firms in MAS cultures are more likely to be upgraded during non-crisis periods.

4.2.3. Other Robustness Tests

For each migration outcome, model (1) is re-estimated for three samples using dummy variables
where each dummy is set according to a country’s score on Hofstede’s culture value relative to
the median score. Three samples are used in this test: the whole sample (sample A(H)), non-U.S.
sample (sample B(H)) and crisis sample (sample C(H-1)). Untabulated results across the three samples
consistently show that firms in LTO countries (dummy LTO) are less likely to go down the rating scales.
Dummy LTO is significant in both downgrade and upgrade models for the whole sample, and its
opposite effects are as expected.

Dummy masculinity (MAS) is also significant in the models for the two large samples A(H) and
B(H). The positive effect of dummy MAS on upgrades in sample A(H) is consistent with the result of
the respective model when dummy MAS is set based on a country score relative to the mean score
(Table 4, model 1 for upgrades).

While dummy individualism/ IDV is not significant in any models presented in Tables 4–6, it is
significant when each dummy is set based on a country score relative to the median score. Firms in
individualistic countries are more likely to be downgraded (for the whole sample and non-U.S. sample)
and less likely to be upgraded (for the crisis sample).
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5. Conclusions

The informal constraints (social influences) that arise from the national culture in which a firm
resides have a pervasive impact on managerial decision making and corporate credit risk, which in
turn impacts on corporate ratings and rating changes. Some cultures may lead to more rating changes
whereas other cultures may result in a directional predisposition for rating changes (downgrade or
upgrade). This study is the first attempt to explore the effects of national culture values established
by Hofstede et al. (2010) and Schwartz (1994) on the rating migration dynamics of 5360 firms across
50 countries over the period 1985–2010. The study enriches the literature by presenting empirical
evidence that national culture provides a better explanation of corporate rating migrations. The effects
of culture are significant after accounting for variables which have been found significant in previous
studies on rating migrations. The study overcomes computational challenges in estimating stratified
dynamic hazard models (with time-varying variables) for a large sample of 17,109 ratings.

Overall, the evidence in favor of including culture variables is generally stronger in the downgrade
models or when numeric scores are employed to represent culture. The evidence of statistical
significance is strongest for the effect of long-term orientation. Firms located in long-term oriented
cultures (LTO) are less likely to be downgraded and in some cases, more likely to climb up the rating
scales. The effect of LTO on downgrades is robust to alternative samples, alternative measures of
culture and alternative study periods. There is some evidence that downgrades occur more often in
strong uncertainty-avoiding countries and less often in large power distance (hierarchy) and embeddedness
countries. Masculinity predisposes to a higher rating volatility, raising the probability of downgrades
and upgrades.

This study is somewhat limited as apart from credit rating, other firm-specific data is not available.
In the absence of variables such as firm size, it is not possible to examine the effects of culture on
rating levels. This study therefore focuses on the effects of national culture on the probability of
rating migrations. The estimated models of rating changes include the current rating, which captures
firm-specific characteristics such as firm size and leverage, and time-varying rating outlooks, which
signal the potential direction of a long-term credit rating over the intermediate term. Thus, the lack of
firm-specific data such as firm size is not a substantial concern for this study.

This study emphasizes the need to understand the role of culture in managerial decision making
and corporate policies, which feed into the rating review process. Studying culture helps enrich our
understanding of corporate rating migration dynamics. This knowledge in turn can be helpful in
developing predictive models of corporate rating changes across countries. The results of this study
have practical implications to investors who use credit ratings to make investment decisions.
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Appendix A

Appendix A outlines different channels over which national culture impacts on corporate rating
migration dynamics.
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Figure A1. Possible links between national culture and corporate rating migrations.
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Abstract: We explore the Monte Carlo steps required to reduce the sampling error of the estimated
99.9% quantile within an acceptable threshold. Our research is of primary interest to practitioners
working in the area of operational risk measurement, where the annual loss distribution cannot be
analytically determined in advance. Usually, the frequency and the severity distributions should be
adequately combined and elaborated with Monte Carlo methods, in order to estimate the loss
distributions and risk measures. Naturally, financial analysts and regulators are interested in
mitigating sampling errors, as prescribed in EU Regulation 2018/959. In particular, the sampling
error of the 99.9% quantile is of paramount importance, along the lines of EU Regulation 575/2013.
The Monte Carlo error for the operational risk measure is here assessed on the basis of the binomial
distribution. Our approach is then applied to realistic simulated data, yielding a comparable precision
of the estimate with a much lower computational effort, when compared to bootstrap, Monte Carlo
repetition, and two other methods based on numerical optimization.

Keywords: advanced measurement approach; confidence interval; Monte Carlo; operational risk;
value-at-risk

1. Introduction

International financial institutions typically calculate capital requirements for operational risk
via the advanced measurement approach (AMA). The AMA is based on statistical models that are
internally defined by institutions and comply with regulatory requirements (see European Parliament
and Council of the European Union 2013). In particular, the regulations define which data sources
must be used to measure operational risk:

• internal loss data;
• external loss data;
• scenario analysis; and
• business environmental and internal control factors.

Risks 2019, 7, 50; doi:10.3390/risks7020050 www.mdpi.com/journal/risks37
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Another significant requirement specifies that the capital charge has to be calculated at the 99.9%
confidence level, with the holding period of one year. This means that the financial institution may
experience an annual loss higher than the capital requirement once every 1000 years, on average.

The most-adopted implementation of AMA models is the loss distribution approach
(see Frachot et al. 2001, 2007), where the objective is to estimate the probability distribution of the
annual loss amount. In more detail, the loss data is categorized by Operational Risk Categories
(ORCs), such that the independent and identical distribution (iid) hypothesis is applicable within
each ORC. For each ORC, the severity distribution (i.e., the probability distribution of a single loss
amount) and the frequency distribution (i.e., the probability distribution of the number of losses in
one year) are estimated. The annual loss distribution for each ORC is obtained through a convolution
process, and practically implemented with approximation or numerical techniques, since it is not
usually feasible to represent the convolution function in closed form. For this aim, the main available
approaches are:

• Monte Carlo method,
• Fourier transform-related methods,
• Panjer algorithm, and
• single loss approximation.

Naturally, these methodologies have their pros and cons, which have to be carefully considered
when they are adopted. In particular:

• Monte Carlo method (see Owen 2013) is the most flexible and widely used technique, but it
requires intensive computations and converges slowly to the correct result. In particular,
the sampling error decreases proportionally to the square root of the number of steps.

• Fourier transform-related methods and the Panjer algorithm (see Klugman et al. 2012;
Embrechts and Frei 2009) allow for a higher accuracy based on less intensive computations,
but they require to carefully define the discretization of the severity distribution, to avoid
underflow or overflow cases. The complexity of a valid discretization for the severity distribution
has, usually, limited the usage of these techniques in the AMA models. In fact, while the slow
convergence of the Monte Carlo method can affect the accuracy of the estimates, the underflow or
overflow cases can potentially lead to totally unrealistic results.

• Single loss approximation (SLA) (see Böcker and Klüppelberg 2005; Böcker and Sprittulla 2006)
allows approximating a high level quantile (corresponding to a probability close to 1) of the
annual loss distribution on the basis of a particular quantile of the severity distribution and of the
average of the frequency distribution. In particular, the SLA says that the 99.9% quantile of the
annual loss distribution G can be approximated by the quantile of the severity distribution F at the
level 1− (1− 0.999)/λ, where λ is the average of the frequency distribution, i.e., G−1(0.999) ≈
F−1(1− (1− 0.999)/λ). Therefore, the shape of the frequency distribution does not significantly
affect the 99.9% quantile of the loss distribution. This technique is very useful to obtain a quick
proxy for the 99.9% quantile of the annual loss distribution but, being an asymptotic result, it is
valid only for high level quantiles and cannot be used to define the entire annual loss distribution.

As suggested by the SLA, the purpose of AMA models is to estimate the severity distribution.
This calculation phase of the AMA models is heavily affected by the “extrapolation issue”
(see Mignola and Ugoccioni 2006; Cope et al. 2009). In fact, since the 99.9% quantile of the annual loss
distribution approximately corresponds to the 1− (1− 0.999)/λ quantile of the severity distribution,
this means that λ/(1− 0.999) = λ/0.001 = 1000λ losses would be needed to estimate the 99.9%
quantile of the annual loss distribution without resorting to extrapolation. This is because, in order
to calculate the quantile of probability p (where 0 < p < 1) without extrapolation, we need at least
1/(1− p) data. In recent years, banks have been collecting data, besides reporting current losses,
and an effort has been made to build data bases going back in time. In any case, no more than ten to
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fifteen years of loss data are available, and so the capital requirement needs a delicate extrapolation.
To extrapolate beyond the data, therefore, parametric models for the severity distribution can be
applied. In fact, non-parametric estimation does not provide any guidance outside of the range of
observed data. Usually, parametric models are applied only above a sufficiently high loss threshold to
fit the tail of the severity distribution; while the losses below the threshold (i.e., the body of the severity
distribution) can be easily modeled using non-parametric methods, e.g., the empirical distribution.
The lognormal, loglogistic, Weibull, Pareto and generalized Pareto are among the most common model
choices (see Bolancel et al. 2012; Klugman et al. 2012). The parameters (e.g., (μ, σ) for the lognormal
distribution) can be estimated through the maximum likelihood method, adopting truncated or shifted
distributions (see Cavallo et al. 2012; Luo et al. 2007) to fit the models above a specified threshold.

Many other methods have been proposed to reduce the issues due to the extrapolation,
among them are the following ones:

• Internal loss data are complemented with external loss data and a scenario analysis in the
estimation of the severity distributions. Such an integration can be coherently performed using
Bayesian methods (see Lambrigger et al. 2007; Shevchenko 2011; Dalla Valle and Giudici 2008;
Figini et al. 2014; Shevchenko and Wüthrich 2006).

• Robust methods are employed to yield model parameters, like the weighted likelihood or the
Optimal B-Robust estimation method (see Colombo et al. 2015; Danesi and UniCredit Business
Integrated Solutions 2015; Danesi et al. 2016, respectively).

The AMA methods usually incorporate a fitting procedure to select the best model and threshold
(i.e., tail parametric model) for each ORC (see Chernobai et al. 2005; Lavaud and Leherisse 2014;
Panjer 2006). It has to be noted that a sound procedure to select the best tail model should include
measures of both the goodness-of-fit vs loss data and the uncertainty of the estimated capital
requirement (see Larsen 2016, 2019).

Whenever the shape of the frequency distribution does not significantly affect the capital
requirement, as it has been discussed in the SLA approach, then the frequency distribution is estimated
through the simplest possible model, which is the Poisson distribution. This discrete probability
distribution has only one parameter λ, representing both the average and the variance of the number
of loss data in one year. Once, for each ORC, the severity and the frequency distributions have been
estimated, the annual loss distribution can be approximated through one of the above mentioned
techniques, e.g., the Monte Carlo method. Starting with the annual loss distributions of the ORCs as
margins, the overall annual loss distribution is usually obtained by applying a copula function. In fact,
on the basis of Sklar’s theorem, if F is an n-dimensional cdf with continuous margins F1, . . . , Fn, then it has
the unique copula representation F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), where C is the copula function,
i.e., a multivariate cdf with margins uniformly distributed on [0,1], with the following properties:

• C : [0, 1]n → [0, 1];
• C is grounded, i.e., Ci(u) = C(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0 for all i = 1, . . . , n, and

n-increasing;
• C has margins Ci(i = 1, . . . , n) satisfying Ci(u) = C(1, . . . , 1, u, 1, . . . , 1) = u for all u ∈ [0, 1].

In practice, we see that for continuous multivariate distribution functions, the univariate margins
and the multivariate dependence structure can be separated. The dependence structure can be
represented by a proper copula function, e.g., the Student t-copula (see Di Clemente and Romano 2004).
The capital requirement is then, usually, defined through the Value-at-Risk (VaR) measure, as the 99.9%
quantile of the overall annual loss distribution. Deductions for insurance (see Bazzarello et al. 2006)
and expected losses are often considered in AMA models. For expected loss deduction, the European
Parliament and Council of the European Union (2013) states that a financial institution shall calculate
its capital requirement for operational risk as comprising both the expected loss and the unexpected
loss, unless the expected loss is adequately captured in its internal business practices. We can see the
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99.9% quantile of the overall annual loss distribution as the sum between the expected loss and the
unexpected loss, from which the expected loss could be eventually deducted. To obtain this deduction,
it is necessary to comply with the requirements reported in European Parliament and Council of the
European Union (2018):

• the expected loss estimation process is done by ORC and is consistent over time;
• the expected loss is calculated using statistics that are less influenced by extreme losses,

including median and trimmed mean, especially in the case of medium- or heavy-tailed data;
• the maximum offset for expected loss applied by the institution is bounded by the total expected loss;
• the maximum offset for expected loss in each ORC is bound by the relevant expected losses calculated

according to the institution’s operational risk measurement system applied to that category;
• the offsets the institution allows for expected loss in each ORC are capital substitutes or available

to cover expected loss with a high degree of certainty (e.g., provisions) over the one-year period;
• specific reserves for exceptional operational risk loss events, that have already occurred, cannot be

used as expected loss offsets.

In case the annual loss distributions for the ORCs and the related overall annual loss distribution
are obtained through the Monte Carlo method, such distributions have to be represented by a sufficiently
high number of simulated data. Following the terminology adopted by the EU regulators, the number of
Monte Carlo steps refers to the sample size. For example, with 5 million data points, the 99.9% quantile
can be estimated via the empirical estimator as the value at position 4,995,000 in the increasing ordered
sequence of the simulated losses. It provides the capital requirement for operational risk.

2. The Monte Carlo Method: An Introduction

The Monte Carlo method has a long history in statistics, where it was also called ‘model sampling’.
It was used to verify the properties of estimates by reproducing the settings for which they were
designed. W. S. Gosset, writing as Student (1908), before deriving analytic result on Student’s t
distribution, did some simulations, using height and left middle finger measurements from 3000
criminals as written on pieces of cardboard. Additional history on the Monte Carlo method can be
found in Kalos and Whitlock (2008) including computations made by Fermi in the 1930s. This method
became more important in the 1940s and early 1950s, when it was also used to solve problems in
physics, related to atomic weapons. The name itself was assigned in this period, taken from the famous
casino located in Monte Carlo.

There are several papers in which the Monte Carlo method is widely used for new problems.
For example, Metropolis et al. (1953) presented the Metropolis algorithm, which was the first Markov
chain Monte Carlo method. Boyle (1977) showed how to apply Monte Carlo methods to financial
options pricing. Efron (1979) defined the bootstrap, using Monte Carlo method to derive statistical
properties without specifying distributional assumptions.

Approximately during the same period, the Quasi-Monte Carlo techniques were defined. The term
itself was assigned by Richtmyer (1952). He thought to improve Monte Carlo by using sequences with
better uniformity than truly random sequences would have.

The uniform distribution on [0, 1] is fundamental in the theory of Monte Carlo method. In fact the
simulation methods derive their randomness from sequences of independent, uniformly distributed,
random variables on [0, 1]. A continuous random variable U is uniformly distributed on [0, 1] if it has
the following probability density function

fU(u) =

{
1, if u ∈ [0, 1];

0, otherwise.
(1)

In order to generate a realization from a non-uniform distribution, random numbers uniformly
distributed on [0, 1] can be transformed in observations extracted from the desired distribution. Given a
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random variable X, its cumulative distribution function FX(x) is an increasing function on [0, 1].
If FX(x) is continuous and strictly increasing (i.e., FX(x1) < FX(x2) if x1 < x2), then it assumes all the
values between 0 and 1. In this case, the inverse function F−1

X (y) (i.e., the quantile function) can be
defined, such that y = FX(x)⇐⇒ x = F−1

X (y). More generally, the quantile function can be defined as
F−1

X (y) = inf{x : FX(x) ≥ y}. Hence, to obtain a random number c from a random variable X, one can
generate a number r from the uniform distribution on [0, 1] and calculate c = F−1

X (r).
Actually, no sequence generated through an algorithm, and hence through a computer, can be

really considered ‘random’. In fact, we can only generate sequences of pseudo-random numbers,
i.e., numbers which are apparently random. A pseudo-random sequence is built by a sequence of
values xj, for which the first k values x0, x1, . . . , xk−1 are chosen, and each of the next values xj, j ≥ k
is obtained by applying a function on the k previous values xj−1, xj−2, . . . , xj−k. The sequence of the
first k values x0, x1, . . . , xk−1 is named ‘seed’. Therefore, the entire sequence of generated numbers
depends on the value of the seed. Generally, the generation of random sequences is based on a linear
congruential generator defined as follows

xj+1 = (a · xj + b) mod m (2)

where a is the multiplier, b is the shift, and m is the module. The best of these quickly
produce very long streams of numbers, and have fast and portable implementations in many
programming languages. Among these high quality generators, the Mersenne twister, MT19937,
of Matsumoto and Nishimura (1998) has become the most prominent, though it is not the only high
quality random number generator. We also cite the ‘combined multiple-recursive generator’ from
L’Ecuyer (1999).

In a simple Monte Carlo problem (see Owen 2013) we define the quantity to be estimated as the
expected value of a random variable Y , i.e., μ = E(Y). Please note that the estimation of average is
the most basic application of Monte Carlo method, which is generally used to introduce the approach.
The estimation of quantile, which is of main interest in operational risk measurement, will be discussed
from the following sections. To begin with, we generate values Y1, . . . , Yn independently and randomly
from the distribution of Y and take their average

μ̂n =
1
n

n

∑
i=1

Yi (3)

as the estimate of μ. Usually, we have Y = f (X) where the random variable X ∈ D ⊂
Rd has a probability density function p(x), and f is a real-valued function defined over D.
Then μ =

∫
D f (x)p(x)dx.

The simple Monte Carlo is justified through the laws of large numbers, assuring that under simple
conditions (μ has to exist), the sample-average estimator converges to the actual value. This tells us
that Monte Carlo will eventually produce an error as small as we like, but it does not tell us how large
n has to be for this to happen. Supposing that Y has a finite variance (σ2 < ∞), μ̂n is a random variable
having mean

E(μ̂n) =
1
n

n

∑
i=1

E(Yi) = μ, (4)

and variance

E((μ̂n − μ)2) =
σ2

n
. (5)
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Therefore, the standard deviation of μ̂n is equal to
√

E((μ̂n − μ)2) = σ√
n . This means that to get

one more decimal digit of accuracy is equivalent to asking for a standard deviation one tenth as large,
and that requires a 100-fold increase in computation. The value of σ2 can be estimated by

s2 =
1

n− 1

n

∑
i=1

(Yi − μ̂n)
2. (6)

The variance estimate s2 tells us that the standard error is of the order of s/
√

n. From the central
limit theorem (CLT), we also know that μ̂n − μ has approximately a normal distribution with mean 0
and variance s2/n. This yields the familiar 95% confidence interval

μ̂n − 1.96
s√
n
≤ μ ≤ μ̂n − 1.96

s√
n

. (7)

Since the Monte Carlo method typically has an error variance of the form σ2

n , we get a more
accurate estimate by sampling with a larger value of n. However, the computing time grows with
n. Therefore several techniques have been defined to reduce σ (see Owen 2013; Kleijnen et al. 2010).
To do this, new Monte Carlo methods can be constructed, having the same answer as the simple one
but with a lower σ. These methods are known as variance reduction techniques:

• Antithetic sampling: let μ = E(X) for X ∼ p, where p is a symmetric density on the symmetric
set D. Here, symmetry is with respect to reflection through the center point of D. If we reflect
x ∈ D through c we get the point x̃ with x̃− c = −(x− c), that is x̃ = 2c− x. Symmetry means
that p(x̃) = p(x) including the constraint that x ∈ D if and only if x̃ ∈ D. The antithetic sampling
estimate of μ is

μ̂anti =
1
n

n/2

∑
i=1

( f (Xi) + f̃ (Xi)), (8)

where Xi ∼ p, and n is an even number. It can be proved that the variance in antithetic sampling is

Var(μ̂anti) =
σ2

n
(1 + ρ), (9)

where ρ = Corr( f (X); f̃ (X)). From −1 ≤ ρ ≤ 1 we obtain 0 ≤ σ2(1 + ρ) ≤ 2σ2. In the best case,
antithetic sampling gives the exact answer from just one pair of function evaluations. In the worst
case it doubles the variance. Both cases do arise. It is clear that a negative correlation is favorable.

• Stratification: the idea in stratified sampling is to split up the domain D of X into separate
regions, take a sample of points from each such region, and combine the results to estimate
E( f (X)). Intuitively, if each region gets its fair share of points then we should get a better
answer. One might be able to do better still by oversampling within the important strata and
undersampling those in which f is nearly constant.

• Common Random Numbers (CRN): this technique applies when we are comparing two or more
alternative configurations (of a system) instead of investigating a single configuration. CRN requires
synchronization of the random number streams, which ensures that in addition to using the same
random numbers to simulate all configurations, a specific random number used for a specific
purpose in one configuration is used for exactly the same purpose in all other configurations.

• Control variate: control variates provide ways to exploit closed form results. With control variates
we use some other problems, quite similar to our given one, but for which an exact answer is
known. The precise meaning of ’similar’ depends on how we use this other problem, and more
than one method is given below. As for ’exact’, we mean it literally, but in practice it may just
mean known with an error negligible when compared to Monte Carlo errors.

• Importance sampling: the idea behind importance sampling is that certain values of the input
random variables in a simulation have more impact on the parameters being estimated than
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others. If these ‘important’ values are sampled more frequently, then the variance can be reduced.
The basic methodology in importance sampling is to choose a distribution which ‘encourages’ the
important values. This use of ‘biased’ distributions will result in a biased estimator, if it is applied
directly in the simulation. However, if the simulation outputs are weighted to correct for the use
of the biased distribution, this will ensure that the new importance sampling estimator is unbiased.
The weight is given by the likelihood ratio, that is, the Radon–Nikodym derivative of the true
underlying distribution with respect to the biased simulation distribution. The fundamental issue
in implementing importance sampling is the choice of a biased distribution which encourages
the important regions of the input variables. Choosing a good biased distribution is the core
part of importance sampling. The rewards for a good distribution can be huge run-time savings;
the penalty for a bad distribution can be longer run times than for a simple Monte Carlo simulation
without importance sampling.

We also mention the Quasi-Monte Carlo methods, which use low-discrepancy sequences
(also called quasi-random sequences or sub-random sequences). This is in contrast to the simple
Monte Carlo method, which is based on sequences of pseudorandom numbers. The advantage of
using low-discrepancy sequences is a faster rate of convergence. Quasi-Monte Carlo has a rate of
convergence of order 1/n, whereas—as already mentioned above—the rate for the simple Monte Carlo
method is 1/

√
n.

In this paper we treat and apply the simple Monte Carlo method, which is also known as crude
Monte Carlo to distinguish it from more sophisticated methods. In fact, all of the more sophisticated
methods offer several promising technical venues for implementing the capital requirement estimation
methods that we discuss. However, we have chosen the simple method because we have found it
to be the easiest to be applied by practitioners working in the industry, where simplicity is often
preferred to more complex methods. Moreover, calculations with simple Monte Carlo method can
be easily distributed to more CPUs, allowing for a parallel computation, in order to make them less
time consuming. In fact, most of adopted softwares in statistics offer built-in routines for parallel
computations (e.g., parallel package in R by R Core Team (2016)), allowing reducing the calculation
time of simple Monte Carlo proportionally to the number of used CPUs.

3. The Monte Carlo Method: Basic Definitions for Operational Risk Measurement

As mentioned in Section 1, Monte Carlo simulations are widely employed in the operational risk
measurement. A detailed description of the Monte Carlo method applied to the calculation of annual
loss distribution and capital requirement for operational risk can be found in Guharay et al. (2016).
Here we will recall briefly the main idea behind it.

Let S be the random variable defined as

S =
N

∑
i=1

Xi (10)

describing the annual loss distribution, where Xi is the random variable representing the severity of
the i-th operational risk loss event, and N is the random variable representing the number of single
operational risk loss events, for each year. On the basis of the above notation, the Monte Carlo method
can be implemented by executing the following sequence of instructions at the generic step j:

• from the frequency distribution, draw a value nj representing the number of loss events for year j;
• from the severity distribution, draw the amounts x1j, . . . , xnj j of loss events;

• calculate the annual loss amount for year j, that is sj = ∑
nj
i=1 xij;

and iterate the above three steps for a sufficiently large number J of steps. The capital requirement can
be evaluated as the empirical 99.9% quantile of the simulated sample of the annual losses s1, s2, . . . , sJ .
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In practice, after ordering the sequence {sj}j=1,...,J to obtain s1:J ≤ s2:J ≤ · · · ≤ sJ:J , the capital
requirement corresponds to the annual loss sj:J with j = 99.9%J.

It is well known (as already mentioned in Section 2) that the sampling accuracy of the capital
requirement, calculated through the Monte Carlo method, increases proportionally to the square root
of the number of steps (see Owen 2013). In other words, increasing the number of steps by 100 times,
the random sampling error is expected to decrease by 10 times. Therefore, when the annual loss
distribution and the related 99.9% quantile are approximated by the Monte Carlo method, the good
practice would require to consider and, possibly, measure the consequent sampling error. Moreover,
the recently published EU Regulatory Technical Standards (European Parliament and Council of the
European Union 2018) require that irrespective of the techniques adopted to obtain the annual loss
distribution and the related 99.9% quantile, the institution adopts criteria that mitigate sampling and
numerical errors and provides a measure of their magnitude. With reference to the Monte Carlo
method, the Regulatory Technical Standards 2018/959 require that:

• the number of steps to be performed is consistent with the shape of the distributions and with the
confidence level to be achieved;

• where the distribution of losses is heavy-tailed and measured at a high confidence level, the number
of steps is sufficiently large to reduce sampling variability below an acceptable threshold.

To comply with these requirements, the sampling variability, i.e., the random sampling error,
has to be assessed. Having estimated such an error, given the acceptable threshold (reasonably defined
in terms of a low percentage of the 99.9% quantile), it is possible to verify whether the number of
steps is sufficiently large and, consequently, consistent with the shape of the estimated distribution.
It is worth mentioning that the topic of the sampling error related to the Monte Carlo method is also
considered by Mignola and Ugoccioni (2006), based on the previous work of Chen and Kelton (2001).

There is a discussion in the recent literature on extreme quantile estimation and the adoption
of some types of Monte Carlo techniques, as in Boos (1984); Danielsson and De Vries (1996);
Peng and Qi (2006); Gomes and Pestana (2007). The proposed methodologies are mainly based on
the Extreme Value Theory (EVT). However, in the operational risk measurement context, the EVT
is no longer intensively used by practitioners, despite its interesting theoretical properties. In fact,
when the EVT is applied to actual operational risk data, several practical problems arise, due to
the failure of achieving the asymptotic regime described by the theory. Additionally, the capital
requirement measures based on EVT are affected by the high volatility due to the use of Pareto-type
tails (see Mignola and Ugoccioni 2005; Makarov 2006). In any case, EVT methods can be conjugated
with the present approach, but such development is beyond the scope and purpose of this paper—it
can be an interesting topic for further studies.

4. The Monte Carlo Error in Operational Risk Measurement

Suppose that using Monte Carlo techniques applied to historical data, we have obtained a set of
n losses, which are positive real numbers, assuming that we do not take into account null values for
losses. Hence, we are dealing with outcomes of n positive i.i.d. random variables (rv’s)

X1, X2, ..., Xn (11)

with cdf F(x) and quantile function F−1(p). The focus of actuaries is on large losses, and thus on
large order statistics of the Xs. In this framework, percentiles are rich informative measures that
can be represented using the order statistics X1:n ≤ X2:n ≤ · · · ≤ Xn:n of rv’s (11). From the
mathematical point of view, by ordering rv’s we obtain a monotone sequence and thus extract
additional information from the original rv’s (11). In a general setting, we want to obtain a confidence
interval for VaR(p) = F−1(p), for some p in (0,1), but the focus here is to measure the error when
estimating a very high (an extreme) quantile F−1(p), say for p = 0.999 for the operational risk
measurement. Once we have a CI, we can define:

44



Risks 2019, 7, 50

• the Monte Carlo error (E) as the width of the CI, and
• the relative Monte Carlo error (RE) as the ratio between the width of the CI and the best available

estimate of the 99.9% quantile itself.

To construct a CI, we consider (and compare) the following methods:

• the method based on the binomial distribution applied on the quantile, as proposed by Owen (2013);
• the bootstrap (or re-sampling) method (i.e., the classical n-bootstrap and the m-out-of-n-bootstrap),

where we get the probability distribution of the 99.9% quantile by drawing random samples with
replacement from the annual loss distribution generated by the Monte Carlo method;

• the Monte Carlo repetition method, where we simulate the probability distribution of the 99.9%
quantile, repeating several times the Monte Carlo method;

• two methods based on constrained optimization.

Since we suppose that the severity and the frequency distributions are already known or, in any
case, already estimated, some typical operational risk distribution functions and parameterizations
can be considered, in order to run the above mentioned methods and to analyze results. In particular,
the lognormal pdf

fX(x) =
1

x σ
√

2π
exp

(
− (ln x− μ)2

2 σ2

)
,

for x > 0, with −∞ < μ < +∞ and σ > 0, can be used to model the severity (with , e.g., parameters
μ = 9 and σ = 2), and the Poisson distribution can be used to model the frequency (with, e.g., parameter
λ = 100, i.e., assuming 100 losses per year, on average). Such choices are motivated by previous works
in the literature; see, for example, Frachot et al. (2001, 2007); Mignola and Ugoccioni (2005); Böcker
and Sprittulla (2006).

Naturally, other models can be adopted for the severity distribution. We may for example consider,
as a valuable alternative, the three-and four-parameter lognormal distributions, or gamma-type,
or beta-type, or Pareto-type size distributions (see Kleiber and Kotz (2003) for a detailed review).
Recent papers on thick-tailed distributions have adopted a semi-nonparametric approach (the so-called
log-SNP, see, e.g., Cortés et al. (2017)) that generalizes the lognormal incorporating not only thick
tails but also non-monotonic decay, multimodality and many other salient empirical features of the
distribution of losses. This approach presents a valuable avenue for future research on operational risk.

For simplicity, we suppose that the overall annual loss distribution is generated on the basis of
a single ORC, without affecting the generality of our results. Therefore, applying the Monte Carlo
method, we simulate a sample of n = 5 million annual losses. We obtain the estimated 99.9% quantile
as VaR(0.999) = 47.8037 × 106, and we are now ready to evaluate the different CIs for the latter.

4.1. The Binomial Distribution Method

To begin with, we employ the approach based on the binomial distribution (see Owen 2013).
The idea behind this method is that the number of simulated annual losses below the 99.9% quantile
follows the binomial distribution Bn,θ , where n is the number of simulated annual losses and θ = 0.999.

Let S have a continuous distribution. Then P(S ≤ Qθ) = θ holds and so Qθ = η if and only if
E(1S≤η) = θ. If θ is not included in the confidence interval for E(1S≤η), then we can reject Qθ = η.
As a result, we can obtain confidence intervals for Qθ using confidence intervals for a binomial
proportion. As a candidate value η increases, the number of Si below it changes only when η crosses
one of the order statistics si:n in the sample. As a result, the confidence interval takes the form [sL:n, sR:n]

for integers L and R. Then
P(sL:n ≤ Qθ ≤ sR:n) = P(L ≤ W ≤ R)

where W = ∑n
i=1 1Si≤Qθ ∼ Bn,θ .

This method allows defining a confidence interval for the 99.9% quantile given, e.g., the following
information:
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• ordered sample of simulated annual losses s1:n ≤ s2:n ≤ · · · ≤ sn:n,
• confidence level 1− α,
• quantile level θ = 99.9%,
• cdf Bn,θ of the Binomial(n; θ) distribution,

by adopting the following steps:

• L = B−1
n,θ (α/2),

• if Bn,θ(L) ≤ α/2, then L = L + 1,
• R = B−1

n,θ (1− α/2),
• the confidence interval is defined as [sL:n, sR:n].

Please note that the cases L = 0 and R = n + 1 can occur when n is small. In these cases,
the confidence interval can be defined by considering s0:n = 0 (since the losses are non-negative by
definition) and sn+1:n = +∞, respectively. For numerical reasons, the test on L is not Bn,θ(L) = α/2,
but it is Bn,θ(L) ≤ α/2. In fact, we could have Bn,θ(L) < α/2, even if it is actually Bn,θ(L) = α/2,
just because of some rounding in the implementation of the method.

Applying the above described algorithm to 5 million simulated annual losses from the lognormal
(μ = 9, σ = 2) severity and Poisson (λ = 100) frequency, we obtain the following CI at the confidence
level 1− α = 0.99:

[LBin; RBin] = [47.3667 × 106; 48.2897 × 106]. (12)

We get the error
EBin = RBin − LBin = 0.9231 × 106 (13)

and the relative error

REBin = (RBin − LBin)/VaR(0.999) = 0.019310 = 1.9310%. (14)

4.2. The n-Bootstrap Method

In this section we compare our previous results with those that can be obtained using the bootstrap
method. The bootstrap is a resampling technique that allows estimating the standard error of an
estimator. It can be used to estimate the variance of the estimator, its bias, construct confidence
intervals, and test hypotheses by calculating p-values. The method was introduced by Efron (1979)
and has been widely used, since it is easy to understand and implement. A very useful version of
the method is the non-parametric bootstrap, which does not require any prior knowledge of the
underlying distribution.

Consider a statistic Tn calculated based on a sample of size n from a distribution F. Let Fn be an
estimator of F. The bootstrap method is based on generating a large number B of samples from Fn,
i.e., drawing n elements with replacement from the original sample of size n, obtaining X1, . . . , Xn.
In the case of non-parametric bootstrap, the empirical estimator Fn(x) = 1

n ∑n
i 1[0,x]Xi is the natural

choice for estimating F(x). The B samples are then used to estimate the sampling distribution of Tn,
i.e., from each sample, a realization of Tn is calculated until we obtain realizations t1, . . . , tB, which are
used to simulate the sampling distribution of Tn. If the estimator Fn is “close” enough to F, then the
bootstrap (hereafter n-bootstrap) method works. Other resampling techniques are the jackknife and
cross-validation (see Efron 1979, 1982).

Therefore, given the empirical estimator of the distribution of annual losses, we simulate the
distribution of the quantile by drawing B = 100 random samples with replacement from the 5 million
of simulated annual losses. We get the 99.9% quantile estimate from the sample average of the
estimated 99.9% quantiles calculated on the 100 random samples:

VaRn�boot(0.999) = 47.7977 × 106. (15)
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We employ the empirical 0.05 and 0.95 quantiles of the B = 100 realizations of the 99.9% quantiles
obtained from the bootstrapped samples, in order to obtain the corresponding CI

[Ln�boot; Rn�boot] = [47.2914 × 106; 48.2306 × 106]. (16)

As before, we evaluate the error

En�boot = (Rn�boot − Ln�boot) = 0.9392 × 106 (17)

and the relative error

REn�boot = (Rn�boot − Ln�boot)/VaRn�boot(0.999) = 0.019649 = 1.9649%. (18)

Please note that this method provides very similar results to those obtained earlier using the
binomial method.

4.3. The m-out-of-n-Bootstrap Method

There are cases where the bootstrap method, in its most classical version, fails. Guidelines to
identify cases where we should have problems are reported by Bickel et al. (1997). However, it is
not trivial to a priori identify cases where the bootstrap method could not work. When the classical
bootstrap fails, several authors suggest to consider, instead, samples of size m = o(n) (Bickel et al. 1997;
Sakov 1998; Bickel and Sakov 2008; Gribkova and Helmers 2011). However, some issues arise:

• one does not know, a priori, whether or not the bootstrap works in each particular case;
• the choice of m can be crucial, in case the classical bootstrap fails.

Assume that X1, . . . , Xn are i.i.d. random variables with distribution F. Let Tn = Tn(X1, . . . , Xn; F)
be an estimator with cdf Ln(x) = P(Tn ≤ x). We assume a known rate of convergence of Tn to a
non-degenerate limiting distribution L, i.e., Ln ⇒ L. We aim at estimating a confidence interval for
θ = γ(L), where γ is a functional.

The bootstrap method can be used to estimate θ, which in turn is used to estimate L, applying
the functional γ. For any positive integer m, let X∗1 , . . . , X∗m be a bootstrap sample drawn from the
empirical cdf Fn, and denote the m-bootstrap version of Tn by T∗m = T∗m(X∗1 , . . . , X∗m; Fn), with the
bootstrap distribution L∗m,n(x) = P∗(T∗m ≤ x) = P(T∗m ≤ x|Fn).

We say that the bootstrap “works” if L∗m,n converges weakly to L in probability for all m, n → ∞
and, in particular, for m = n. When the n-bootstrap does not “work,” using a smaller bootstrap
sample size rectifies the problem. It has been proved that under minimal conditions, although L∗n,n
does not have the correct limiting distribution, L∗m,n with “small” but not too small m does work
(Bickel et al. 1997, Bickel and Sakov 2008). Please note that for any m < n, bootstrap samples may be
drawn with or without replacement, and we adopt the second choice as it allows for the case of m = n.

Using a smaller bootstrap sample requires a choice of m, and the method is known as
m-out-of-n-bootstrap. When m is in the “right range” of values, the bootstrap distributions for different
possible samples are “close” to each other (Bickel and Sakov 2008). When m is “too large” or fixed,
the bootstrap distributions can be different. This suggests looking at a sequence of values of m and
their corresponding bootstrap distributions. A measure of discrepancy between these distributions
should have large values when m is “too large” or fixed. The discrepancies should be small when m is
of the “right order”.

The failure of the n-bootstrap is, usually, of the following type: L∗n,n when viewed as a probability
distribution on the space of all probability distributions does not converge to a point mass at the correct
limit L, but rather converges to a non-degenerate distribution, denote it by L1 on that space. If m → ∞,
m/n → λ, 0 < λ < 1, one gets convergence to a non-degenerate distribution, say Lλ, which is typically
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different from L1. We would expect that L0 = L. This behavior suggests the following adaptive rule
for choosing m, which is described by Bickel and Sakov (2008).

1. Consider a sequence of values for m, defined as follows:

mj = [qjn], for j = 0, 1, 2, . . . , 0 < q < 1, (19)

where [α] denotes the smallest integer ≥ α.
2. For each mj , find L∗mj ,n using the m-out-of-n-bootstrap.
3. Let ρ be some metric consistent with convergence in law, and set

m̂ = argmin
mj

ρ(L∗mj ,n, L∗mj+1,n). (20)

If the difference is minimized for a few values of mj , then pick the largest among them. Denote the
j corresponding to m̂ by ĵ.

4. The estimator of L is L̂ = L∗mĵ ,n
. Estimate θ by θ̂n = γ(L̂) and use the quantiles of L̂ to construct a

confidence interval for θ.

Bickel and Sakov (2008) propose to use the Kolmogorov-Smirnov distance , i.e., ρ(F, G) =

supx |F(x)− G(x)|, for measuring the distance. The adaptive rule described above has been applied
on our example to choose m (where n is equal to 5 millions), with parameter q = 0.8 to define mj.
Figure 1 shows the Kolmogorov-Smirnov distances, calculated for each mj over the grid of values in
1–5 millions as in (19) with q = 0.8, to select the value of m̂ which minimizes the discrepancies among
bootstrap distributions. The Kolmogorov-Smirnov distance has been minimized for m̂ = 1,310,721.

Figure 1. Choice of the optimal m in terms of KS distance from bootstrap distributions (n = 5,000,000).

We get the 99.9% quantile estimate

VaRm�boot(0.999) = 47.8173 × 106 (21)

from the sample average of the B = 100 estimated 99.9% quantiles calculated using the Monte Carlo
samples of size m̂ = 1,310,721. We employ the empirical 0.05 and 0.95 quantiles of the B = 100
realizations of the 99.9% quantiles calculated using the Monte Carlo samples to obtain the CI

[Lm�boot; Rm�boot] = [46.9388 × 106; 48.9690 × 106]. (22)

As before, we evaluate the error

Em�boot = (Rm�boot − Lm�boot) = 2.0302 × 106 (23)
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and the relative error

REm�boot = (Rm�boot − Lm�boot)/VaRm�boot(0.999) = 0.042457 = 4.2457%. (24)

We note that by applying the m-out-of-n-bootstrap with m̂ = 1,310,721, the error and the relative
error are slightly higher than the double of the same values calculated using the n-bootstrap. We can
observe that this result is consistent with the fact that the Monte Carlo accuracy increases (decreases)
proportionally to the square root of the number of steps: since the ratio between n = 5,000,000 and m̂
= 1,310,721 is equal to around 3.8, we can expect that the relative error increases by approximately√

3.8 = 1.95, which is actually close to the observed result. To see the impact of the selection of m̂,
Figures 2 and 3 depict the errors and the relative errors of the CIs calculated on the grid of values of m
as in (19).

Figure 2. Error for different m values.

Figure 3. Relative error for different m values.

We observe that the errors decrease as the value of m increases, which is consistent with the
aforementioned square root rule for the Monte Carlo accuracy.

4.4. The Monte Carlo Repetition Method

In this section, we compare the previous results with those we shall next obtain using the
Monte Carlo repetition method. We first note that repeating the Monte Carlo method several times,
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without fixing the initial seed of each repetition, provides a realistic probability distribution of the
possible results that we can obtain using this numerical procedure. Please note that it is fundamental to
initialize the seed only for the first repetition since, as reminded in Section 2, the seed defines the entire
sequence of the generated random numbers. In fact, if we initialize the same seed for each Monte
Carlo repetition, we will alway obtain the same results leading to a degenerate probability distribution.
Although the Monte Carlo repetition method can be intuitively considered as the most accurate to
estimate the Monte Carlo error (if the number of repetitions is sufficient), it cannot be extensively used
because it is the most computationally intensive. Therefore, to compare the Monte Carlo repetition
method with previous results, we simulate the distribution of the quantile by repeating 100 times the
Monte Carlo method. We get the 99.9% quantile estimate

VaRMC100(0.999) = 47.4246 × 106 (25)

from the sample average of the 100 estimated 99.9% quantiles, calculated on the 100 Monte Carlo
samples. We employ the empirical 0.05 and 0.95 quantiles of the 99.9% quantiles calculated from the
100 Monte Carlo samples to obtain the CI

[LMC100; RMC100] = [47.0261 × 106; 47.8522 × 106]. (26)

As before, we evaluate the error

EMC100 = (RMC100 − LMC100) = 0.8261 × 106 (27)

and the relative error

REMC100 = (RMC100 − LMC100)/VaRMC100(0.999) = 0.017420 = 1.7420%. (28)

We note that the current method provides slightly lower errors than the previous two methods.
To see how the number of Monte Carlo repetitions affects the results, we have reapplied the

current method by repeating 1000 times the Monte Carlo method. We obtain the following results:

VaRMC1000(0.999) = 47.4345 × 106; (29)

[LMC1000; RMC1000] = [47.0207 × 106; 47.8503 × 106]; (30)

EMC1000 = (RMC1000 − LMC1000) = 0.8297 × 106; (31)

REMC1000 = (RMC1000 − LMC1000)/VaRMC1000(0.999) = 0.017491 = 1.7491%. (32)

Please note that even though we have increased the number of repetitions from 100 to 1000,
the error results basically remain the same.

To obtain a further confirmation of the sufficiency of 1000 repetitions, we check the normality of
the distribution of the 99.9% quantile. First of all, we estimate the parameter of the normal distribution
from the sample average μ = 47.4345 × 106 and the sample standard deviation σ = 0.2540 × 106.
Figure 4 depicts the histogram of the simulated 99.9% quantiles derived from the 1000 samples. It is
apparent that it follows the normal distribution.

As an additional check for the normality assumption, we apply the Shapiro-Wilk test using the
R function shapiro.test, see R Core Team (2016). The p-value of the test is 0.4642, implying that the
normality distribution cannot be rejected due to being considerably higher than 0.05.
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Figure 4. Histogram of 99.9% quantiles derived from 1000 Monte Carlo repetitions, compared with the
estimated normal distribution.

4.5. Constrained Optimization Methods

In this section, we introduce two alternative methods for estimating the Monte Carlo error. In fact,
we have not seen these methods introduced earlier in the literature.

Adopting the earlier notation introduced and setting k = [np], it is natural to base the interval
estimation for the 99.9% quantile on the order statistic Xk:n = F−1

n (p). We look for the shortest interval
[a, b] ⊂ R such that

P{a < Xk:n ≤ b} = 0.9. (33)

Let α, β ∈ [0, 1] be such that and F−1(α) = a and F−1(β) = b, and let

P{a < Xk:n ≤ b} = P{F−1(α) < Xk:n ≤ F−1(β)} = 0.9. (34)

We know that P{Xk:n ≤ x} = ∑n
j=k (

n
j)Fj(x)(1− F(x))n−j. Therefore

P{F−1(α) < Xk:n ≤ F−1(β)} =
n

∑
j=k

(
n
j

)
βj(1− β)n−j −

n

∑
j=k

(
n
j

)
αj(1− α)n−j

and the CI for F−1(p) is obtained by searching for α and β such that

• ∑n
j=k (

n
j)βj(1− β)n−j −∑n

j=k (
n
j)α

j(1− α)n−j = 0.9, and
• (β− α) is minimal.

This constrained optimization problem can be solved numerically by considering a grid of α and
β values close to p.

Equivalently, we can restate our research question into the search of α and β such that

• P{α < Uk:n ≤ β} = 0.9, and
• (β− α) is minimal,

where Uk:n = F(Xk:n) is a uniform r.v. on [0,1]. Here we have used the fact that if X is a continuous
random variable with cdf F, then the random variable U = F(X) has a uniform distribution on [0,1].
Therefore α and β can be obtained by repeated draws from uniform random variables on [0,1].

Coming back to the CI for VaR, we have

P{F−1(α) < F−1
n (p) ≤ F−1(β)} = 0.9,
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that is
P{F−1

n (p) ≤ F−1(β)} −P{F−1
n (p) ≤ F−1(α)} = 0.9. (35)

Note the equations

P{F−1
n (p) ≤ F−1(β)} = P

{
F−1(p)
F−1(β)

F−1
n (p) ≤ F−1(p)

}
and

P{F−1
n (p) ≤ F−1(α)} = P

{
F−1

n (p)
F−1(p)
F−1(α)

≤ F−1(p)
}

.

Consequently, Equation (35) becomes

P

{
F−1(p)
F−1(β)

F−1
n (p) ≤ F−1(p) ≤ F−1(p)

F−1(α)
F−1

n (p)
}

= 0.9

and implies the following CI

[L ; R] =

[(
F−1

n (p)
)2

F−1
n (β)

;

(
F−1

n (p)
)2

F−1
n (α)

]

where β and α are functions of n and p obtained using any of the two methods presented earlier.
Next are the results obtained using the first constrained optimization method:

VaRO1(0.999) = 47.8037 × 106, (36)

[LO1; RO1] = [47.3399 × 106; 48.2386 × 106], (37)

EO1 = (RO1 − LO1) = 0.8987 × 106, (38)

REO1 = (RO1 − LO1)/VaRO1(0.999) = 0.018799 = 1.8799%. (39)

The second constrained optimization method yields the following results:

VaRO2(0.999) = 47.8037 × 106, (40)

[LO2; RO2] = [47.4584 × 106; 49.0432 × 106], (41)

EO2 = (RO2 − LO2) = 1.5848 × 106, (42)

REO2 = (RO2 − LO2)/VaRO2(0.999) = 0.033153 = 3.3153%. (43)

We observe that the second method provides a higher relative error, probably due to the less
accurate evaluation of α, obtained by redrawing from the uniform distribution on [0,1]. In fact, while in
the first constrained optimization method we used a grid of 10,000 points close to p, in the second
one we drew 10,000 values from the uniform distribution on [0,1]. These configurations were used to
have a comparable computational effort between the two methods. The obtained results suggest that
the second constrained optimization method would require a higher computational effort to reach a
relative error comparable to the first one.

4.6. Comparison among the Described Methods

All the results that we have obtained using the methods discussed in this paper are summarized
in Table 1. We applied different methodologies for constructing CI’s for the VaR to realistic data
samples, mimicking annual loss distributions and obtained via the Monte Carlo method with 5 million
steps based on the lognormal (9,2) severity distribution and the Poisson (100) frequency distribution.
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First of all, we see from Table 1 that all the approaches (apart from the m-out-of-n-bootstrap and the
constrained optimization II, for the above mentioned reasons) are consistent with each other, and the
method based on Monte Carlo repetitions is slightly less conservative than the other methods. On the
other hand, the binomial method allows obtaining consistent results with the great advantage of
requiring much less computational effort. In fact, the binomial method allows constructing the CI for
the VaR using closed forms and, on the contrary to other methods, does not require to perform further
simulations. Applying the Monte Carlo repetition method, in both cases considering 100 and 1000
samples, and the binomial, n-bootstrap and constrained optimization I methods, we obtain a relative
error not higher than 2%. Therefore, whenever we fix the tolerance threshold for the relative error equal
to 2%, we can conclude that 5 million steps are sufficient to mitigate sampling errors, as prescribed in
EU Regulation 2018/959. For tolerance thresholds lower than 2%, we presumably have to increase
the number of Monte Carlo steps or, alternatively, we have to adopt more sophisticated approaches,
such as the variance reduction techniques or the Quasi-Monte Carlo methods.

Table 1. Estimated Monte Carlo errors (values in millions of Euro).

Method VaR(0.999) L R E RE

Binomial 47.8037 47.3667 48.2897 0.9231 1.9310%
n-Bootstrap (100 samples) 47.7977 47.2914 48.2306 0.9392 1.9649%

m-out-of-n-Bootstrap (100 samples) 47.8173 46.9388 48.9690 2.0302 4.2457%
MC repetitions (100 samples) 47.4246 47.0261 47.8522 0.8261 1.7420%
MC repetitions (1000 samples) 47.4345 47.0207 47.8503 0.8297 1.7491%

Constrained optimization I 47.8037 47.3399 48.2386 0.8987 1.8799%
Constrained optimization II 47.8037 47.4584 49.0432 1.5848 3.3153%

5. Conclusions and Further Work

Motivated by the recently published EU Regulatory Technical Standards on AMA models, we have
analyzed and compared six methods to estimate the Monte Carlo error when estimating VaR in
operational risk measurement. The purpose is to assess the capital charge for the financial institution,
usually defined through the VaR measure as the 99.9% quantile of the annual loss distribution with the
holding period of one year. Presently, financial analysts and regulators are more and more focused
on how to mitigate sampling errors, and this concerns the assessment of CI’s for the Value-at-Risk
along the lines of EU Regulation 959/2018. In this paper we have aimed at offering to practitioners an
easy-to-follow rule of thumb for choosing approaches to evaluate such CI’s and, if needed, for tuning
them in terms of the number of required Monte Carlo replications. In particular, we started with
the more straightforward method based on the binomial distribution, and we compared it with
other methods such as the n-bootstrap, the m-out-of-n-bootstrap, the Monte Carlo repetition method,
and two other techniques based on constrained optimization. All the methods have been applied to
realistic simulated data. Our results show that the method based on Monte Carlo repetitions is slightly
less conservative than the other methods. Furthermore, we have seen that the m-out-of-n-bootstrap
and the second method based on constrained optimization give less precise results, in terms of
relative error. The binomial method, which requires a much lower computational effort, seems to be
particularly useful for the purpose, due to its precision. In fact, the binomial method is just slightly
more conservative than the Monte Carlo repetition method, which can be intuitively considered as
the most accurate for estimating the Monte Carlo error. Moreover, it is worth mentioning that the
more sophisticated Monte Carlo methods, such as the variance reduction techniques and Quasi-Monte
Carlo methods, offer several promising technical avenues for implementing the operational risk capital
requirement estimation methods that we discussed. They can be subjects for future research.
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The following abbreviations are used in this manuscript:

AMA Advanced Measurement Approach
cdf cumulative distribution function
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E Error
EU European Union
EVT Extreme Value Theory
ORC Operational Risk Category
pdf probability density function
LDA Loss Distribution Approach
RE Relative Error
RTS Regulatory Technical Standards
SLA Single Loss Approximation
VaR Value-at-Risk
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1 Faculty of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg 199034, Russia;
nv.gribkova@gmail.com

2 School of Mathematical and Statistical Sciences, Western University, London, ON N6A 5B7, Canada
* Correspondence: rzitikis@uwo.ca; Tel.: +1-519-432-7370

Received: 28 August 2018; Accepted: 10 September 2018; Published: 14 September 2018

Abstract: Background, or systematic, risks are integral parts of many systems and models in insurance
and finance. These risks can, for example, be economic in nature, or they can carry more technical
connotations, such as errors or intrusions, which could be intentional or unintentional. A most
natural question arises from the practical point of view: is the given system really affected by these
risks? In this paper we offer an algorithm for answering this question, given input-output data and
appropriately constructed statistics, which rely on the order statistics of inputs and the concomitants
of outputs. Even though the idea is rooted in complex statistical and probabilistic considerations, the
algorithm is easy to implement and use in practice, as illustrated using simulated data.

Keywords: background risk; systematic risk; transfer function; information processing; order statistic;
concomitant

1. Introduction

Actuarial, financial, and economic literature is abundant with models and analyses of background,
or systematic, risks that affect decision making (cf., e.g., Finkelshtain et al. 1999; Franke et al. 2006, 2011;
Nachman 1982; Pratt 1998; Guo et al. 2018; Furman et al. 2018; and references therein). Various models
have been proposed, including additive, multiplicative, and more intricate ones that couple underlying
losses (or, generally speaking, inputs) with background risks. For recent far-reaching contributions to this
area, we refer to Perote et al. (2015), Su (2016), Su and Furman (2017a, 2017b) Semenikhine et al. (2018),
Guo et al. (2018), as well as to the extensive lists of references therein.

Systems and thus their models are prone to a myriad of intentional or unintentional disruptions,
which could affect inputs and/or outputs. The literature on the topic is vast, and some of
the recent contributions include those tackling deliberate intrusions (e.g., Cárdenas et al. 2011;
Premathilaka et al. 2013), and false data injections (e.g., Liang et al. 2017). A number of sophisticated
methods have been developed for tackling the problems (e.g., Huang et al. 2016; Onoda 2016;
He et al. 2017; Potluri et al. 2017), to name a few.

Whether or not these risks affect the underlying input variables and thus decision making is a
problem of immense interest. From the conceptual point of view, broadly speaking, two scenarios
arise. First, if it is suspected that the outputs are affected, then testing whether or not this is indeed the
case falls, in a sense, within the context of regression analysis, though additional statistical challenges
arise (e.g., Perote and Perote-Peña 2004; Perote et al. 2015.; Chen et al. 2018; Gribkova and Zitikis 2018).
The second scenario, which is the main topic of the present paper, deals with the case when it is the
inputs that are possibly affected by risks.
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Statistically speaking, given the input and output random variables X and Y, respectively, which
in the risk-free scenario are connected by a “transfer” function h via the equation

Y = h(X), (1)

we wish to have an algorithm that would tell us whether risk-free model (1) is true or the
risk-contaminated one

Y = h(X + δ), (2)

where δ is an exogenous risk, sometimes called input-reading error, that directly affects the input X
and thus, indirectly, the output variable as well. We note that Chen et al. (2018) consider model (1) with
deterministic inputs, like those to be defined in Equation (3) below. Gribkova and Zitikis (2018) explore
risk-free model (1), which can be viewed as the “null hypothesis” in the context of the present paper.
Hence, model (2) can be viewed as the “alternative hypothesis,” and the algorithm to be constructed
and illustrated in this paper will distinguish between the two hypotheses.

The rest of the paper is organized as follows. In Section 2, we lay out the foundations for
assessing the presence, or absence, of input-affecting risks. In Section 3, we describe the algorithm
itself. It relies on two statistics whose roles, interrelationship, and asymptotic properties are presented
in Sections 4 and 5. Section 6 concludes the paper with a brief overview of main findings.

2. The Model

Systems are usually associated with finite-length transfer windows, say [a, b] ⊂ R, and also with
transfer functions h : [a, b] → R. Let X1, . . . , Xn be input random variables, which we assume to be
pre-whitened (e.g., Box et al. 2015), that is, independent and identically distributed (iid). Denote their
marginal cumulative distribution functions (cdf) by F(x), whose support is the transfer window [a, b].
Hence, the input values are always in [a, b]. We assume that the cdf F(x) is strictly increasing on the
interval [a, b], with F(a) = 0 and F(b) = 1. In fact, to simplify mathematics and still cover a wide
variety of applications, we assume that the cdf is continuously differentiable and its probability density
function (pdf) is bounded away from 0 on the transfer window [a, b].

Denote the input-affecting risks by δ1, . . . , δn ∼ Fδ, which act upon the inputs X1, . . . , Xn as
visualized in Figure 1.

h(x)

Input-affecting risks δ1, . . . , δn ∼ Fδ

Inputs X1, . . . , Xn ∼ F X1 + δ1, . . . , Xn + δn Outputs Y1, . . . , Yn

Figure 1. Are the input-affecting risks absent (i.e., degenerate at 0) or not?

We assume that the input-affecting risks are pre-whitened, that is, iid random variables, and we
also assume that they are independent of the input variables X1, . . . , Xn and are affecting their values
in the additive way. The inputs Xi take values in the interval [a, b], but the risks δi, being exogenous
variables, are not restricted to any domain and can therefore take any real values. Our goal in this paper
is to offer a practical way for detecting whether or not the risks are absent, or present. Two following
notes relate our research to the topics in statistical literature.

First, the problem that we tackle is different from that dealing with errors-in-variables, where
observations already contain errors, whereas in our case, the inputs Xi are uncontaminated but possibly
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become such while being transferred into the filter, also known as the transmission channel in the
engineering literature. That is, in the errors-in-variables scenario, we would observe Xi + δi, whereas
in the present context we observe the original inputs Xi and want to know whether or not they are
affected by δi.

Second, there is a connection between our research and classical regression, and we have already
noted contributions by Perote and Perote-Peña (2004), Perote et al. (2015), where we also find extensive
lists of related references. Namely, given the outputs Yi = h(Xi + δi) and assuming for the sake of
argument that the risks δi are small, the Taylor formula gives the approximation Yi ≈ h(Xi) + h′(Xi)δi,
which places the input-based scenario into the output-based scenario Yi = h(Xi) + εi, but the risks
εi ≈ h′(Xi)δi depend on the inputs Xi via the term h′(Xi). This dependence feature presents a major
hurdle, which we circumvent in our following considerations and produce a user-friendly algorithm
for detecting δi’s when they are present.

Throughout the paper we assume that the transfer function h(x) has a bounded and continuous
first derivative, and we also assume that the derivative is not identically equal to 0, thus ruling out
the trivial case of constant transfer functions. Actually, throughout the paper we also exclude the case
h(a) = h(b), which causes some technical complications but is hardly of practical relevance, as we
shall explain in the next section. If, however, due to some considerations we would need to depart
from these conditions, then there is room for relaxing the conditions, though naturally at the expense
of more complex considerations.

3. The Algorithm

We first elaborate on the definition of outputs. Indeed, even though Xi’s are in the transfer
window [a, b], the affected inputs Xi + δi may or may not be in [a, b], which is the domain of definition
of the transfer function h(x). Hence, the actual outputs are

Yi = h
(

max{a, min{Xi + δi, b}})
= g(Xi + δi), i = 1, . . . , n,

where
g(x) = h

(
max{a, min{x, b}}).

Since the cdf of X is continuous, we can uniquely order the random variables X1, . . . , Xn.
The resulting order statistics X1:n < · · · < Xn:n give rise to the concomitants Y1,n, . . . , Yn,n (e.g., David
and Nagaraja 2003). Based on them and using the notation x+ = max{x, 0}, we define the statistics

An :=
1√
n

n

∑
i=2

(
Yi,n −Yi−1,n

)
+

and

Bn :=
1√
n

n

∑
i=2

∣∣Yi,n −Yi−1,n
∣∣,

and then, in turn, their ratio

In :=
An

Bn
.

The algorithm, to be introduced in a moment, for detecting input-affecting risks is based on
asymptotics, when n gets large, of In and Bn, which we call the pivot and its supporter, thus hinting at
their main and supporting roles, respectively. Before formulating the algorithm, we make the natural
assumption that the risks, when they exist, should not be so large that the performance of the system
would be derailed to such an extent that it becomes unnecessary to run any algorithm. For the purpose
of rigour, in the following definition we summarize the circumstances under which there is ambiguity
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as to the absence, or presence, of input reading risks, and thus employing the algorithm becomes
warranted.

Definition 1. The presence of input-affecting risk is suspected, and thus becomes a subject for testing, when it
is believed that there is a set T ⊂ [a, b] such that the event X ∈ T has a (strictly) positive probability and, for all
x ∈ T, the random variable g(x + δ) is non-degenerate, due to the random δ.

We note at the outset that Definition 1 is a user-friendly reformulation of technically-looking
condition (10) to be presented in Section 5 below, where it plays a pivotal role in setting rigorous
mathematical foundations for our algorithm. In this regard, we note that the condition is tightly tied to
the indefinite growth of Bn when the sample size n grows, as we shall see in Theorem 3 below. Hence,
if the subject-matter knowledge is not sufficiently convincing for the decision maker to see whether
or not the circumstances delineated by Definition 1 hold, then data-based checking of the asymptotic
behaviour of Bn for large n should clarify the situation.

Definition 1 implies that the system’s output Y = g(X + δ) varies not just because of X but
also because of δ, assuming of course that the latter is present, that is, is not degenerate at 0.
This, for example, excludes situations (as unquestionably obvious) when g(x + δ) = g(a) for every x
(i.e., when −δ > 0 is very large), or when g(x + δ) = g(b) for every x (i.e., when δ > 0 is very large).
In either of these extreme cases, the decision maker would immediately see the system’s malfunction
because of the outputs constantly lingering on, or near, the boundaries g(a) and g(b), and thus no
special testing would be warranted.

We are now ready to formulate the algorithm for detecting the input-affecting risk when its
presence is suspected.

Case 1: The pivot In is not approaching 1/2.

(i) If In decisively tends to a limit other than 1/2, then we advise the decision maker
about the absence of the risk.

(ii) If In seems to tend to a limit other than 1/2 but there is some doubt as to whether
this is true, then we check if the supporter Bn is asymptotically bounded, and if yes,
then we advise the decision maker about the absence of the risk.

Case 2: The pivot In is approaching 1/2.

(i) If the supporter Bn tends to infinity, then we advise the decision maker about the
presence of the risk.

(ii) If the supporter Bn is asymptotically bounded, then h(a) and h(b) are likely to be
insufficiently different to have already triggered Case 1 above, and we thus advise
the decision maker about the absence of the risk.

In the next two sections, we present rigorous results upon which the above algorithm relies.
We note in passing that irrespective of whether the algorithm detects risks or not, in either case we
can still wish to double-check the findings. It can also be necessary to check the system’s vulnerability
(e.g., Hug and Giampapa 2012; and references therein). In such cases, we can use artificially constructed
inputs, such as

xi,n = a + (b− a)
i− 1
n− 1

, i = 1, . . . , n. (3)

We conclude this section with an example that shows how the algorithm works in practice.
For this, let the transfer function be h(x) = 1− (x− 0.25)2 for x ∈ [0, 1]. Furthermore, upon recalling
that the (unconditional) Lomax cdf is 1− (1 + x/β))−α for x ≥ 0, with shape and scale parameters
α > 0 and β > 0, we assume that the input X follows the Lomax(α, β) distribution conditioned on the
transfer interval [0, 1]. Throughout the illustration, we set α = 1.5 and β = 1.
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Let δ follow the normal distributions with the mean 0 and standard deviation σ. In the risk-free
case (i.e., σ = 0), the asymptotics of In and Bn is depicted in panels (a) and (b) of Figure 2, and when
σ = 0.1, their asymptotics is depicted in panels (c) and (d). We also check the performance of the
algorithm when the risk δ is discrete, specifically, when it is equal to −2 with probability 0.7 and to 2
with probability 0.3. The asymptotics of In and Bn is depicted in panels (e) and (f) of Figure 2.

(a) In in the risk-free case. (b) Bn in the risk-free case.

(c) In for normal(0, 0.1) risk. (d) Bn for normal(0, 0.1) risk.

(e) In for discrete ±2 risk. (f) Bn for discrete ±2 risk.

Figure 2. The risk-detection algorithm via the asymptotics of the pivot In and its supporter Bn, with the
horizontal line in the three left-hand panels at the height of Ih to be defined by Equation (4) below.

We see from the left-hand panels that the pivot In converges to the limit other than 1/2 (i.e., to the
value of Ih to be defined by Equation (4) in the next section) only in the risk-free case. The increasing
pattern of Bn in panels (d) and (f) confirms the presence of input risk in both scenarios, which have
initially been detected by the pivot In (due to its convergence to 1/2) in panels (c) and (e). Note that
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the convergence to 1/2 in panel (e) is decisive, whereas the convergence in panel (c) may not be so
well pronounced, and thus the increasing pattern of Bn in panel (d) provides reassurance.

4. Asymptotics of the Pivot In

We begin with the case when the input-affecting risk is absent, and thus the system is functioning
properly. This is the starting point of many works (e.g., Cárdenas et al. 2011, p. 360) dealing with intrusion
detection (e.g., Debar et al. 1999; Premathilaka et al. 2013), false data injections (e.g., Liang et al. 2017),
and other disruptions. Recall the notation x+ = max{x, 0} for any x ∈ R.

Theorem 1 (Gribkova and Zitikis, 2018). If δ is absent, then, when n → ∞, the pivot In converges to

Ih :=

∫ b
a (h

′(u))+du∫ b
a |h′(u)|du

. (4)

For another perspective on the meaning of Ih, we refer to Davydov and Zitikis (2017) where Ih
arises as the solution to an optimization problem. The importance of Theorem 1 in the present paper
follows from the fact that when the cdf Fδ is non-degenerate, then (details in Section 5 below) the pivot
In converges to 1/2 when n → ∞. Of course, the limit 1/2 can also manifest when δ is absent, that is,
in the context of Theorem 1, but this can happen only when h(a) = h(b). Indeed, as it is easy to check
using the equations |x| = x+ + x− and x = x+ − x− with x− = max{−x, 0}, we have Ih = 1/2 if and
only if h(a) = h(b). The latter property is, however, an exception rather than the rule: it manifests in
such cases when, for example, the system is down and thus h(x) takes the same value irrespective of
x ∈ [a, b]. Hence, unless explicitly noted otherwise, throughout the paper we assume

h(a) �= h(b), (5)

as we have already mentioned earlier.
We next discuss how to check whether or not the risk δ is degenerate. Naturally, in order

to detect anomalies, the original state of the system has to be in reasonable working order
(cf., e.g., Cárdenas et al. 2011, p. 360). Gribkova and Zitikis (2018) have put forward an argument in
favour of the following definition.

Definition 2. A system is in reasonable working order whenever in the absence of input-affecting risk (i.e., when
δ = 0 almost surely), the sequence Bn is asymptotically bounded in probability. In mathematical terms, we write
this as Bn = OP(1) when n → ∞.

Given that in the absence of input-affecting risk we are exploring the asymptotic behaviour of
the pivot In, which is the ratio of An and Bn, both of which are asymptotically bounded in probability,
the requirement Bn = OP(1) is natural. This can be seen from the following argument involving the
mean-value theorem:

1√
n

n

∑
i=2

∣∣h(Xi:n)− h(Xi−1:n)
∣∣ = 1√

n

n

∑
i=2

∣∣h′(ξi)
(
Xi:n − Xi−1:n

)∣∣
≤ ‖h′‖(b− a)√

n
(6)

for some ξi between Xi−1:n and Xi:n, where

‖h′‖ := sup
a≤x≤b

|h′(x)| < ∞.
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As a side-note, the right-hand side of bound (6) implies that, if needed, the boundedness of the
first derivative of the transfer function can be relaxed and the system can still remain in reasonable
working order, as per Definition 2.

We next present an example that shows what happens with the system when the input-affecting
risk is present, that is, when the cdf Fδ is non-degenerate. Before starting the example, we recall (David
and Nagaraja 2003) that the concomitants Y1,n, . . . , Yn,n can be written as follows

Yi,n = g
(
Xi:n + δ[i]

)
,

where δ[i] is the random variable among δ1, . . . , δn that corresponds to Xi:n. As noted by David and
Nagaraja (2003, p. 145), the random variables δ[1], . . . , δ[n] are iid and follow the cdf Fδ of the original
risk δ.

Example 1. Let δ take value c > 0 with probability p ∈ (0, 1) and −c with probability 1 − p, and let
c ≥ b− a. The latter assumption implies that irrespective of the value of Xi:n, the value of Xi:n + δ[i] is above
b with probability p and below a with probability 1− p. Hence, the concomitant Yi,n is equal to h(b) with
probability p and to h(a) with probability 1− p. Since each concomitant can take only two values, |Yi,n−Yi−1,n|
is equal to |h(b)− h(a)| when δ[i] �= δ[i−1] and 0 otherwise. Consequently,

|Yi,n −Yi−1,n| = |h(b)− h(a)|
2c

∣∣δ[i] − δ[i−1]
∣∣,

which implies

Bn =
|h(b)− h(a)|

2c

{
1√
n

n

∑
i=2

(∣∣δ[i] − δ[i−1]
∣∣− E

[∣∣δ[i] − δ[i−1]
∣∣])+ n− 1√

n
E
[∣∣δ[i] − δ[i−1]

∣∣]}
=
|h(b)− h(a)|

2c
√

n E
[∣∣δ[i] − δ[i−1]

∣∣]+ OP(1). (7)

Since the variables δ[1], . . . , δ[n] are iid and follow the same cdf Fδ as the original δ, the mean E[|δ[i]− δ[i−1]|]
is equal to 4cp(1− p) and thus Equation (7) implies

Bn = 2
√

n p(1− p)|h(b)− h(a)|+ OP(1). (8)

From this we conclude that if p is neither 0 nor 1, which we assume, and if h(b) �= h(a), which we also

assume, then Bn
P→ ∞ when n → ∞. Analogous arguments lead to

An =
√

n p(1− p)|h(b)− h(a)|+ OP(1). (9)

Combining statements (8) and (9), we have In = An/Bn
P→ 1/2 when n → ∞, which in turn implies

that the system is affected by the risk. This concludes Example 1.

The above example has been constructed to show—in a somewhat dramatic way—what happens
when the input-affecting risk pushes the input outside the transfer window, but the same conclusion
can be reached under much weaker assumptions on δ, as we shall show in the next section.

5. Growth of the Supporter Bn

The following general result plays a major role in the justification of the earlier presented algorithm.

Theorem 2. Gribkova and Zitikis (2018) Let (X1, Y1), . . . , (Xn, Yn) be independent copies of a generic random

pair (X, Y), with X having continuous cdf and Y having finite second moment. If Bn
P→ ∞, then In

P→ 1/2
when n → ∞.
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We know from statement (6) and the arguments around it that if δ is degenerate, then Bn
P→ ∞

cannot be true. In the next theorem, we give a necessary and sufficient condition for Bn
P→ ∞ to hold,

which, according to Theorem 2, implies In
P→ 1/2.

Theorem 3. The statement Bn
P→ ∞ holds if and only if

∫ 1

0
(2t− 1)

( ∫ 1

0
F−1

g(xs+δ)
(t)ds

)
dt > 0, (10)

where xs = F−1(s) is the sth percentile of X, and F−1
g(xs+δ)

(t) denotes the quantile function of the random
variable g(xs + δ).

Condition (10) arises naturally, but its formulation is not user friendly. Remarkably, its meaning
is very simple and has already been conveyed in Definition 1. Before proving Theorem 3, we next
illuminate the meaning of condition (10) by revisiting Example 1 through the lens of the condition.

Example 2. Let δ take value c > 0 with probability p ∈ (0, 1) and −c with probability 1 − p, and let
c ≥ b− a. Since for every s ∈ (0, 1) we have xs = F−1(s) ∈ [a, b], the random variable g(xs + δ) has the
probability distribution

g(xs + δ) =

{
h(a) with probability 1− p,
h(b) with probability p.

To obtain its quantile function, we start with the case h(a) ≤ h(b) and have the formula

F−1
g(xs+δ)

(t) =

{
h(a) when 0 < t ≤ 1− p,
h(b) when 1− p < t ≤ 1.

Consequently,

∫ 1

0
(2t− 1)

( ∫ 1

0
F−1

g(xs+δ)
(t)ds

)
dt = h(a)

∫ 1−p

0
(2t− 1)dt + h(b)

∫ 1

1−p
(2t− 1)dt

= p(1− p)
(
h(b)− h(a)

)
.

Analogous calculations when h(a) ≥ h(b) give the answer p(1− p)(h(a)− h(b)), thus establishing
the equation ∫ 1

0
(2t− 1)

( ∫ 1

0
F−1

g(xs+δ)
(t)ds

)
dt = p(1− p)

∣∣h(b)− h(a)
∣∣

irrespective of the values of h(a) and h(b). We can therefore conclude that as long as h(b) �= h(a) and p is

neither 0 nor 1, condition (10) is satisfied. Thus, we have Bn
P→ ∞ according to Theorem 3.

Proof of Theorem 3. We first show that if condition (10) is satisfied, then Bn
P→ ∞. We start with

the bound

Bn =
1√
n

n

∑
i=2

∣∣g(Xi:n + δ[i])− g(Xi−1:n + δ[i−1])
∣∣

≥ 1√
n

n

∑
i=2

∣∣g(Xi−1:n + δ[i])− g(Xi−1:n + δ[i−1])
∣∣− 1√

n

n

∑
i=2

∣∣g(Xi:n + δ[i])− g(Xi−1:n + δ[i])
∣∣. (11)
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Since the transfer function h(x) has a bounded derivative on the interval [a, b], the function g(x)
is Lipschitz continuous on the entire real line, that is, |g(x) − g(y)| ≤ ‖h′‖|x − y| for all x, y ∈ R.
Continuing with bound (11), we have

Bn ≥ 1√
n

n

∑
i=2

∣∣g(Xi−1:n + δ[i])− g(Xi−1:n + δ[i−1])
∣∣− ‖h′‖(b− a)√

n

=
1√
n

n

∑
i=2

∣∣g(Xi−1 + δi)− g(Xi−1 + δi−1)
∣∣− ‖h′‖(b− a)√

n

=
n− 1√

n
E
[∣∣g(X + δ2)− g(X + δ1)

∣∣]− ‖h′‖(b− a)√
n

+ OP(1), (12)

because (i) the inputs Xi and the risks δi are independent, (ii) the inputs Xi have the same cdf F, and
(iii) the risks δi have the same cdf Fδ. Hence, if the expectation on the right-hand side of bound (12)

does not vanish, then we must have Bn
P→ ∞ when n → ∞. The proof of the converse (i.e., if Bn

P→ ∞,
then condition (13) is satisfied) follows from the same arguments but now with “+” instead of “−”
and the reversed inequalities in bounds (11) and (12).

We are left to show that the statement

E
[∣∣g(X + δ2)− g(X + δ1)

∣∣] > 0 (13)

holds if and only if condition (10) is satisfied. We do so with the help of the equation

E
[∣∣g(X + δ2)− g(X + δ1)

∣∣] = 2
∫ 1

0
(2t− 1)

( ∫
R

F−1
g(x+δ)

(t)dF(x)
)

dt, (14)

which trivially follows from

E
[∣∣g(X + δ2)− g(X + δ1)

∣∣] = E
[
GMD(X)

]
=
∫ 1

0
GMD(xs)ds,

where GMD(x) is the Gini mean difference of the variable g(x + δ), defined by

GMD(x) :=E
[∣∣g(x + δ2)− g(x + δ1)

∣∣]
=2
∫ 1

0
(2t− 1)F−1

g(x+δ)
(t)dt.

The right-most equation holds due to the well-known representation of the Gini mean difference as
a Choquet integral (e.g., Giorgi 1993; Yitzhaki and Schechtman 2013; Furman et al. 2017; and references
therein). We conclude with the note that the Gini mean difference is known to be (strictly) positive
whenever the underlying random variable is non-degenerate, which in our case is g(x + δ). Hence, by
assuming non-degeneracy of g(x + δ) for every x ∈ T ⊆ [a, b] such that P[X ∈ T] > 0, we arrive at
condition (13) and thus, in turn, at (10). The proof of Theorem 3 is finished.

6. Concluding Notes

The need for an algorithm that distinguishes between the “null hypothesis” Y = g(X) and the
“alternative” Y = g(X + δ) for exogenous background risk δ arises in many problems of economics,
insurance, and finance. In the present paper, we have developed a user-friendly algorithm for
distinguishing between the aforementioned two hypotheses. The algorithm is based on the asymptotic
behaviour of two statistics: the pivot In and its supporter Bn, which are constructed using the order
statistics of inputs and the corresponding concomitants of outputs. We have supplemented our
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theoretical considerations with illustrative examples, graphs, and discussions, thus facilitating the use
of the algorithm in practice.

As we have noted in the Introduction, practical considerations give rise to alternatives which
couple X and δ not just in the additive way but possibly in a more intricate way, which we generally
formulate as Y = g(X, δ). In this regard we also note that X and δ might be dependent random
variables, and even multivariate ones, thus giving rise to a highly non-trivial follow-up problem.
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Abstract: An accurate assessment of the risk of extreme environmental events is of great importance
for populations, authorities and the banking/insurance/reinsurance industry. Koch (2017) introduced
a notion of spatial risk measure and a corresponding set of axioms which are well suited to analyze
the risk due to events having a spatial extent, precisely such as environmental phenomena. The axiom
of asymptotic spatial homogeneity is of particular interest since it allows one to quantify the rate of
spatial diversification when the region under consideration becomes large. In this paper, we first
investigate the general concepts of spatial risk measures and corresponding axioms further and
thoroughly explain the usefulness of this theory for both actuarial science and practice. Second, in the
case of a general cost field, we give sufficient conditions such that spatial risk measures associated
with expectation, variance, value-at-risk as well as expected shortfall and induced by this cost field
satisfy the axioms of asymptotic spatial homogeneity of order 0,−2,−1 and−1, respectively. Last but
not least, in the case where the cost field is a function of a max-stable random field, we provide
conditions on both the function and the max-stable field ensuring the latter properties. Max-stable
random fields are relevant when assessing the risk of extreme events since they appear as a natural
extension of multivariate extreme-value theory to the level of random fields. Overall, this paper
improves our understanding of spatial risk measures as well as of their properties with respect to the
space variable and generalizes many results obtained in Koch (2017).

Keywords: central limit theorem; insurance; max-stable random fields; rate of spatial diversification;
reinsurance; risk management; risk theory; spatial dependence; spatial risk measures and
corresponding axiomatic approach

1. Introduction

Hurricane Irma, which affected many Caribbean islands and parts of Florida in September 2017
caused at least 134 deaths and catastrophic damage exceeding 64.8 billion USD in value. Such an
example shows the prime importance for civil authorities and for the insurance1 industry of the
accurate assessment of the risk of natural disasters, particularly as, in a climate change context, certain
types of extreme events become more and more frequent (e.g., Bevere and Mueller 2014).

Motivated by the spatial feature of natural disasters, Koch (2017) introduced a new notion of
spatial risk measure, which makes explicit the contribution of the space and enables one to account
for at least part of the spatial dependence in the risk measurement. He also introduced a set of
axioms describing how the risk is expected to evolve with respect to the space variable, at least
under some conditions. These notions constitute relevant tools for risk assessment. For instance,
the knowledge of the order of asymptotic spatial homogeneity allows the quantification of the rate of

1 Throughout the paper, insurance also refers to reinsurance.
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spatial diversification. Hence, they may be appealing for the banking/insurance industry. It should be
highlighted that the literature about risk measures in a spatial context is very limited. To the best of
our knowledge, the paper by Koch (2017) constitutes the first attempt to establish a theory about risk
measures in a spatial context where the risks spread over a continuous geographical region.

In the following, the spatial risk measure associated with a classical risk measure Π and induced
by a cost random field C (e.g., modelling the cost due to damage caused by a natural disaster)
consists in the function of space arising from the application of Π to the normalized integral of C on
various geographical areas. The contribution of this paper is threefold. First, we further explore the
notions of spatial risk measure and corresponding axioms introduced in Koch (2017). Among others,
we show that, for a given region, the distribution of the normalized spatially aggregated loss is entirely
determined by the finite-dimensional distributions of the cost field, and propose alternative definitions
of the concepts developed in Koch (2017). Additionally, we deeply explain why this whole theory about
spatial risk measures is fruitful for both actuarial science and practice; e.g., we show that considering
the risk related to the normalized loss does not prevent our theory from being successful for the study
of the risk related to the non-normalized loss. We also point out how it can be used by insurance
companies to tackle concrete issues. Second, in the case of a general cost field, we give sufficient
conditions such that spatial risk measures associated with expectation, variance, value-at-risk (VaR) as
well as expected shortfall (ES) and induced by this cost field satisfy the axiom of asymptotic spatial
homogeneity of order 0, −2, −1 and −1, respectively. Last but not least, we focus on the case where
the cost field is a function of a max-stable random field. We provide sufficient conditions on both the
function and the max-stable field such that spatial risk measures associated with expectation, variance,
VaR as well as ES and induced by the resulting cost field satisfy the axiom of asymptotic spatial
homogeneity of order 0, −2, −1 and −1, respectively. Max-stable random fields naturally appear
when one is interested in extreme events having a spatial extent since they constitute an extension of
multivariate extreme-value theory to the level of random fields (in the case of stochastic processes, see,
e.g., de Haan 1984; de Haan and Ferreira 2006). They are particularly well suited to model the temporal
maxima of a given variable (for instance a meteorological variable) at all points in space since they
arise as the pointwise maxima taken over an infinite number of appropriately rescaled independent
and identically distributed random fields. On the whole, this study improves our comprehension of
spatial risk measures as well as of their properties with respect to the space variable and generalizes
many results by Koch (2017).

The remainder of the paper is organized as follows. In Section 2, we recall and further study
the notion of spatial risk measure and the corresponding set of axioms introduced in Koch (2017).
Furthermore, we thoroughly demonstrate their usefulness for both actuarial science and practice.
Then, we introduce some concepts about mixing and central limit theorems for random fields.
Finally, we provide some insights about max-stable random fields. Then, Section 3 presents our
results relating to the properties of some spatial risk measures. Finally, Section 4 contains a short
summary as well as some perspectives.

Throughout the paper, (Ω,F ,P) is an adequate probability space and d
= and d→ designate equality

and convergence in distribution, respectively. In the case of random fields, distribution has to be
understood as the set of all finite-dimensional distributions. Finally, we denote by ν the Lebesgue measure.

2. Spatial Risk Measures and Other Concepts

2.1. Spatial Risk Measures and Corresponding Axioms

First, we describe the setting required for a proper definition of spatial risk measures. Let A be
the set of all compact subsets of R2 with a positive Lebesgue measure and Ac be the set of all convex
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elements of A. Denote by C the set of all real-valued and measurable2 random fields on R2 having
almost surely (a.s.)3 locally integrable sample paths. Let P be the family of all possible distributions of
random fields belonging to C. Each random field represents the economic or insured cost caused by
the events belonging to specified classes and occurring during a given time period, say [0, TL]. In the
following, TL is considered as fixed and does not appear anymore for the sake of notational parsimony.
Each class of events (e.g., European windstorms or hurricanes) will be referred to as a hazard in the
following. Let L be the set of all real-valued random variables defined on (Ω,F ,P). A risk measure
typically will be some function Π : L → R. This kind of risk measure will be called a classical risk
measure in the following. A classical risk measure Π is termed law-invariant if, for all X̃ ∈ L, Π(X̃)

only depends on the distribution of X̃.
We first remind the reader of the definition of the normalized spatially aggregated loss,

which enables one to disentangle the contribution of the space and the contribution of the hazards and
underpins our definition of spatial risk measure.

Definition 1 (Normalized spatially aggregated loss as a function of the distribution of the cost field).
For A ∈ A and P ∈ P , the normalized spatially aggregated loss is defined by

LN(A, P) =
1

ν(A)

∫
A

CP(x) ν(dx), (1)

where the random field {CP(x)}x∈R2 belongs to C and has distribution P.

The quantity

L(A, P) =
∫

A
CP(x) ν(dx) (2)

corresponds to the total economic or insured loss over region A due to specified hazards. For technical
reasons and to favour a more intuitive understanding, we base our definition of spatial risk measures
on LN(A, P), which is the loss per surface unit and can be interpreted, in a discrete setting4 and in an
insurance context, as the mean loss per insurance policy. Among other advantages, this normalization
enables a fair comparison of the risks related to regions having different sizes.

Since the field CP is measurable, L(A, P) and LN(A, P) are well-defined random variables.
Moreover, they are a.s. finite as A is compact and CP has a.s. locally integrable sample paths. The following
proposition gives a sufficient condition for a random field to have a.s. locally integrable sample paths.

Proposition 1. Let d ≥ 1 and {Q(x)}x∈Rd be a measurable random field. If the function

E : Rd → R

x �→ E[|Q(x)|]

is locally integrable, then Q has a.s. locally integrable sample paths.

Proof. Let A be a compact subset of Rd. First, since Q is measurable,
∫

A |Q(x)| ν(dx) is a well-defined
random variable. By Fubini’s theorem, we have

E

[∫
A
|Q(x)| ν(dx)

]
=
∫

A
E[|Q(x)|] ν(dx) < ∞,

2 Throughout the paper, when applied to random fields, the adjective “measurable” means “jointly measurable”.
3 Unless otherwise stated, by a.s., we mean P-a.s.
4 See Section 2.2.
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which necessarily implies that ∫
A
|Q(x)| ν(dx) < ∞ a.s.

Since this is true for all A being a compact subset of Rd, we obtain the result.

We now recall the notion of spatial risk measure introduced by Koch (2017), which makes explicit
the contribution of the space in the risk measurement.

Definition 2 (Spatial risk measure as a function of the distribution of the cost field). A spatial risk
measure is a functionRΠ that assigns a real number to any region A ∈ A and distribution P ∈ P :

RΠ : A×P → R

(A, P) �→ Π(LN(A, P)),

where Π is a classical and law-invariant risk measure and LN(A, P) is defined in (1).

This extends the notion of classical risk measure to the spatial and infinite-dimensional setting
as we now have a function of both the space and the distribution of a random field (or directly a
random field, see below) instead of a function of a unique real-valued random variable. Note that
law-invariance of Π is necessary for spatial risk measures to be defined in this way; see below for
more details. For a given Π and a fixed P ∈ P , the quantityRΠ(·, P) is referred to as the spatial risk
measure associated with Π and induced by P. A nice feature is that, for many useful classical risk
measures Π such as, e.g., variance, VaR and ES, this notion of spatial risk measure allows one to take
(at least) part of the spatial dependence structure of the field CP into account. We could define spatial
risk measures in the same way but using the non-normalized spatially aggregated loss; this is not what
we do for reasons explained above and in Remark 2 below.

Now, we remind the reader of the set of axioms for spatial risk measures developed in Koch (2017).
It concerns the spatial risk measures properties with respect to the space and not to the cost distribution,
the latter being considered as given by the problem at hand. For any A ∈ A, let bA denote its barycenter.

Definition 3 (Set of axioms for spatial risk measures induced by a distribution). Let Π be a classical
and law-invariant risk measure. For a fixed P ∈ P , we define the following axioms for the spatial risk measure
associated with Π and induced by P,RΠ(·, P):

1. Spatial invariance under translation:
for all v ∈ R2 and A ∈ A, RΠ(A + v, P) = RΠ(A, P), where A + v denotes the region A translated
by the vector v.

2. Spatial sub-additivity:
for all A1, A2 ∈ A, RΠ(A1 ∪ A2, P) ≤ min{RΠ(A1, P),RΠ(A2, P)}.

3. Asymptotic spatial homogeneity of order −γ, γ ≥ 0:
for all A ∈ Ac,

RΠ(λA, P) =
λ→∞

K1(A, P) +
K2(A, P)

λγ
+ o
(

1
λγ

)
,

where λA is the area obtained by applying to A a homothety with center bA and ratio λ > 0, and K1(·, P) :
Ac → R, K2(·, P) : Ac → R\{0} are functions depending on P.

It is also reasonable to introduce the axiom of spatial anti-monotonicity: for all A1, A2 ∈ A,
A1 ⊂ A2 ⇒ RΠ(A2, P) ≤ RΠ(A1, P). The latter is equivalent to the axiom of spatial sub-additivity.
These axioms appear natural and make sense at least under some conditions on the cost field CP
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(e.g., stationarity5 in the case of spatial invariance under translation and spatial sub-additivity)
and for some classical risk measures Π. The axiom of spatial sub-additivity indicates spatial
diversification. If it is satisfied with strict inequality, an insurance company would be well advised to
underwrite policies in both regions A1 and A2 instead of only one of them. This axiom involves the
minimum operator because the concept of spatial risk measure is based on the normalized spatially
aggregated loss; using the summation operator instead would not provide information about spatial
diversification. On the other hand, if spatial risk measures were defined using the non-normalized
loss, then summation would make sense; see Remark 2 below for more details. Originally, Koch (2017)
used the term “sub-additivity”, among other reasons, by analogy with the axiom of sub-additivity
by Artzner et al. (1999), which also conveys a diversification idea. The axiom of asymptotic spatial
homogeneity of order −γ quantifies the rate of spatial diversification when the region becomes large.
Consequently, determining the value of γ is of interest for the insurance industry; see Section 2.2 for
further details.

The axioms of spatial invariance under translation and spatial sub-additivity a priori make sense
only if the cost field satisfies at least some kind of stationarity. If an insurance company covers a region
A1 which is much less risky than a region A2, it is very unlikely that the company reduces its risk by
covering A1 ∪ A2. For a given hazard (e.g., hurricanes), the cost resulting from a single specific event
(e.g., a particular hurricane) generally varies across space, making any particular realization of the cost
field spatially inhomogeneous. Nevertheless, the cost field (and not one realization of it) related to this
hazard can be stationary or, at least, piecewise stationary; see immediately below.

In concrete actuarial applications, the cost field (for a given hazard) is often non-stationary over
the entire region covered by the insurance company, unless it is a very small area. In many cases,
however, it can reasonably be considered as locally stationary; see, e.g., Dahlhaus (2012) for an excellent
review about locally stationary processes, and Eckley et al. (2010) as well as Anderes and Stein (2011)
for papers dealing with local non-stationarity in the case of random fields. Locally stationary processes
can be well approximated by piecewise stationary processes (e.g., Ombao et al. 2001, Section 2.2)
and, assuming this to be also true for random fields, we can reasonably consider the cost field to be
stationary over sub-regions, at least in most cases. In the latter, the axioms of spatial invariance under
translation and spatial sub-additivity make sense separately on each sub-region over which the field is
stationary. Let Sub be such a sub-region (a subset of R2) and Sub be the set of all compact subsets of
Sub with a positive Lebesgue measure. The axiom of spatial invariance under translation becomes: for
all v ∈ R2 and A ∈ Sub such that A + v ∈ Sub, RΠ(A + v, P) = RΠ(A, P); spatial sub-additivity is
now written: for all A1, A2 ∈ Sub, RΠ(A1 ∪ A2, P) ≤ min{RΠ(A1, P),RΠ(A2, P)}.

Of course, the fact that the axioms of Definition 3 are satisfied depends on both the classical risk
measure Π and the cost field CP. It may be interesting to determine for which classical risk measures
the axioms are satisfied for the broadest class of cost fields. These classical risk measures could be
considered as “adapted” to the spatial context.

Remark 1. Although the concept of spatial risk measure and related axioms naturally apply in an insurance
context (see Section 2.2 for further details), they can also be used in the banking industry and on financial markets.
A potential application is the assessment of the risk related to event-linked securities such as catastrophe bonds.
Furthermore, they can be used for a wider class of risks than those linked with damage due to environmental
events. These concepts are actually insightful as soon as the risks spread over a geographical region. One might
think, e.g., about the loss in value of real estate due to adverse economic conditions.

We close this section by deeply commenting on the previous concepts and giving slightly modified
and more natural versions of previous definitions. First, we need the following useful result.

5 Throughout the paper, stationarity refers to strict stationarity.
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Theorem 1. Let d ≥ 1 and {H(x)}x∈Rd be a measurable random field having a.s. locally integrable sample
paths. Moreover, let A be a compact subset of Rd with positive Lebesgue measure. Then the distribution of

LN(A, H) =
1

ν(A)

∫
A

H(x) ν(dx)

only depends on A and the finite-dimensional distributions of H.

Proof. The proof is partly inspired from the proof of Theorem 11.4.1 in Samorodnitsky and Taqqu (1994).
We assume that the random field H is defined on the probability space (Ω,F ,P). For a fixed ω ∈ Ω,
we denote by Hω the corresponding realization of H on Rd and by Hω(x) the realization of H at
location x. By definition, we have, for almost every ω ∈ Ω, that

LN(A, Hω) =
1

ν(A)

∫
A

Hω(x) ν(dx). (3)

Now, let (Ω1,F1,P1) be a probability space different from the probability space (Ω,F ,P). Let U be
a random vector defined on (Ω1,F1,P1) and following the uniform distribution on A, with density
fU(x) = I{x∈A}/ν(A), x ∈ Rd. From (3), it directly follows that, for almost every ω ∈ Ω,

LN(A, Hω) =
∫
Rd

Hω(x) fU(x) ν(dx). (4)

Let us denote by E1 the expectation with respect to the probability measure P1. We have

E1[Hω(U)] =
∫
Rd

Hω(x) fU(x) ν(dx),

giving, using (4),
LN(A, Hω) = E1[Hω(U)].

Now, let U1, . . . , Un be independent replications of U (which are independent of the random field H).
The strong law of large numbers gives that, for almost every ω ∈ Ω,

LN(A, Hω) = lim
n→∞

1
n

n

∑
i=1

Hω(Ui) P1-a.s. (5)

Therefore, using Fubini’s theorem, we deduce that, for P1-almost every ω1 ∈ Ω1,

LN(A, Hω) = lim
n→∞

1
n

n

∑
i=1

Hω(Ui(ω1)) P-a.s. (6)

Now, we choose ω0 ∈ Ω1 such that the (non-random) sequence (U1(ω0), U2(ω0), . . . ) satisfies (6).
We obtain

LN(A, Hω) = lim
n→∞

1
n

n

∑
i=1

Hω(Ui(ω0)) P-a.s. (7)

Equation (7) says that the distribution of LN(A, H) is determined by the finite-dimensional
distributions at the points belonging to the set {Ui(ω0) : i ∈ N}. This yields the result.

It is more natural, especially in terms of interpretation, to introduce the normalized spatially
aggregated loss as a function of the cost field instead of its distribution, as shown immediately below.
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Definition 4 (Normalized spatially aggregated loss as a function of the cost field). The normalized
spatially aggregated loss function is defined by

LN : A× C → R

(A, C) �→ 1
ν(A)

∫
A

C(x) ν(dx).
(8)

Let CP ∈ C be a random field with distribution P. Although a particular realization of LN(A, CP)

obviously depends on CP (through its corresponding realization), we know from Theorem 1 that
its distribution is entirely characterized by A and P. This explains our notation LN(A, P) instead
of LN(A, CP) in Definition 1. More precisely, let C(1)

P , C(2)
P ∈ C be random fields having the same

distribution P. Then, C(1)
P and C(2)

P have the same finite-dimensional distributions, which implies that

LN(A, C(1)
P )

d
= LN(A, C(2)

P ).
Similarly, it can appear more natural to define spatial risk measures as functions of the cost field

instead of its distribution. Moreover, this allows spatial risk measures to be defined even when the
classical risk measure Π is not law-invariant.

Definition 5 (Spatial risk measure as a function of the cost field). A spatial risk measure is a functionRΠ

that assigns a real number to any region A ∈ A and random field C ∈ C:

RΠ : A× C → R

(A, C) �→ Π(LN(A, C)),

where Π is a classical risk measure.

For a given classical and law-invariant risk measure Π and a given region A ∈ A, the value
of the spatial risk measure of Definition 5 is completely determined by the distribution of LN(A, C)
by law-invariance of Π. Consequently, using Theorem 1, it is completely determined by A and the
distribution of the cost field C. This explains why Koch (2017) has introduced the notion of spatial risk
measure as a function of the distribution of C (see the reminder in Definition 2); if Π is law-invariant,
the spatial risk measures described in Definitions 2 and 5 refer to the same notion. For a given Π and a
fixed C ∈ C,RΠ(·, C) is referred to as the spatial risk measure associated with Π and induced by C.

Of course, we can also express the axioms recalled in Definition 3 for the spatial risk measures
induced by a cost field C ∈ C introduced immediately above. On top of being more natural, it enables
one to leave out the assumption of law-invariance for the classical risk measure Π.

Definition 6 (Set of axioms for spatial risk measures induced by a cost field). Let Π be a classical risk
measure. For a fixed C ∈ C, we define the following axioms for the spatial risk measure associated with Π and
induced by C,RΠ(·, C):

1. Spatial invariance under translation:
for all v ∈ R2 and A ∈ A, RΠ(A + v, C) = RΠ(A, C), where A + v denotes the region A translated
by the vector v.

2. Spatial sub-additivity:
for all A1, A2 ∈ A, RΠ(A1 ∪ A2, C) ≤ min{RΠ(A1, C),RΠ(A2, C)}.

3. Asymptotic spatial homogeneity of order −γ, γ ≥ 0:
for all A ∈ Ac,

RΠ(λA, C) =
λ→∞

K1(A, C) +
K2(A, C)

λγ
+ o
(

1
λγ

)
,

where λA is the area obtained by applying to A a homothety with center bA and ratio λ > 0, and K1(·, C) :
Ac → R, K2(·, C) : Ac → R\{0} are functions depending on C.
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All the explanations and interpretations given for Definitions 1–3 remain valid in the case of
Definitions 4–6. For the reasons mentioned above, our opinion is that Definitions 4–6 rather than
previous ones should be used. This is what is done in the following.

2.2. Concrete Applications to Insurance

This section is dedicated to the connections between the concepts described above and actuarial
risk theory as well as real insurance practice. We especially show how they can be used for concrete
purposes. In an insurance context, the quantity

L(A, C) =
∫

A
C(x) ν(dx) (9)

appearing in Definition 4 (or equivalently in (2)) can be seen as a continuous and more complex version
of the classical actuarial individual risk model. The latter can be formulated as

Lind =
N

∑
i=1

Xi, (10)

where Lind is the total loss, N denotes the number of insurance policies and, for i = 1, . . . , N, Xi is the
claim related to the i-th policy. The Xi’s are generally assumed to be independent but not necessarily
identically distributed. In L(A, C), each location x corresponds to a specific insurance policy and thus
each C(x) is equivalent to a Xi in (10). By the way, by choosing ν to be a counting measure instead of
the Lebesgue measure, the integral in (9) can be reduced to a sum, e.g., ∑x∈A′ C(x), where A′ is a finite
set of locations in R2 (e.g., part of a lattice in Z2). It is worth mentioning that the ideas of this paper
can easily be applied to such a framework.

Even if dependence between the Xi, i = 1, . . . , N, in (10) was allowed, considering L(A, C) (see (9))
would appear more promising. Indeed, the geographical information of each risk (i.e., insurance policy)
is explicitly taken into account and, consequently, the dependence between all risks can be modelled
in a more realistic way than in (10). The dependence between the risks directly inherits from their
respective associated geographical positions and, thus, ignoring their localizations as in (10) makes the
modelling of their dependence more arbitrary and likely less reliable. In our approach, this dependence
is fully characterized by the spatial dependence structure of the cost field C. Potential central limit
theorems (see below) would have stronger implications because the dependence is more realistic.
For these reasons, Models (8) and (9) allow a more accurate assessment of spatial diversification.
The same remarks hold if we compare our loss models with the classical actuarial collective risk model.

Our risk models (8) and (9) and more generally our theory about spatial risk measures may be
particularly relevant for an insurance company willing to adapt its policies portfolio. For example,
the axioms of spatial sub-additivity and asymptotic spatial homogeneity can help it to assess the
potential relevance of extending its activity to a new geographical region. Such an analysis requires
the company to have an accurate view of the dependence between its risks (inter alia between the
possible new risks and those already present in the portfolio), as allowed by Models (8) and (9) through
the cost field C. Model (10) would not enable the insurer to precisely account for the dependence
between the new risks and those already in the portfolio and hence to properly quantify the impact of
a geographical expansion, i.e., of an increase of the number of contracts N.

At present, we show that, consistently with our intuition, considering the risk related to the
normalized spatially aggregated loss is also insightful when the insurer is interested in the risk related
to its non-normalized counterpart, which is often the case. Let Π be a positive homogeneous and
translation invariant classical risk measure and pr denote either the claims reserves, revenues or
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any relevant related quantity6 per surface unit (possibly the mean premium per surface unit) of an
insurance company Ins.

We first consider the axiom of spatial sub-additivity, which is assumed to be satisfied. Ins covers
region A1 for a given hazard and potentially aims at covering also a region A2 disjoint of A1. We assume
that Ins properly hedges its risk on A1, i.e.,

ν(A1)pr ≥ Π(L(A1, C)), i.e., pr ≥ Π(LN(A1, C)), (11)

by positive homogeneity. Using again the same property,

Π(L(A1 ∪ A2, C)) = ν(A1 ∪ A2)Π(LN(A1 ∪ A2, C)).

Combined with
Π(LN(A1 ∪ A2, C)) ≤ Π(LN(A1, C)),

this yields

Π(L(A1 ∪ A2, C)) ≤ ν(A1 ∪ A2)

ν(A1)
Π(L(A1, C)).

Hence, by translation invariance,

Π(L(A1 ∪ A2, C)− ν(A1 ∪ A2)pr) = Π(L(A1 ∪ A2, C))− ν(A1 ∪ A2)pr

≤ ν(A1 ∪ A2)

ν(A1)
Π(L(A1, C))− ν(A1 ∪ A2)pr. (12)

It follows from (11) that

pr[ν(A1 ∪ A2)− ν(A1)] ≥ Π(L(A1, C))
ν(A1)

[ν(A1 ∪ A2)− ν(A1)],

which gives
ν(A1 ∪ A2)

ν(A1)
Π(L(A1, C))− ν(A1 ∪ A2)pr ≤ Π(L(A1, C))− ν(A1)pr. (13)

The combination of (12) and (13) yields that

Π(L(A1 ∪ A2, C)− ν(A1 ∪ A2)pr) ≤ Π(L(A1, C)− ν(A1)pr).

The last inequality is strict if that in the axiom of spatial sub-additivity or in (11) is so. Thus, if Ins
suitably hedges its risk on A1, the risk is even better hedged on A1 ∪ A2. Exactly the same reasoning
holds for A2.

Remark 2. For spatial risk measures defined using the non-normalized spatially aggregated loss, we could
propose the following axiom of spatial sub-additivity: for all disjoint A1, A2 ∈ A, Π(L(A1 ∪ A2, C)) ≤
Π(L(A1, C)) + Π(L(A2, C)). Nevertheless, this property is trivially satisfied as soon as the classical risk
measure Π is sub-additive and therefore its validity does not depend on the properties of the cost field C.
Basing the axiom of spatial sub-additivity on the normalized spatially aggregated loss as we did is more appealing
since it allows a diversification effect coming from C (and not only from Π). This argument is in favour of
defining spatial risk measures using the normalized spatially aggregated loss.

6 It is out of the scope of this paper to enter into accounting details.
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We now consider the axiom of asymptotic spatial homogeneity of order −γ, γ ≥ 0. Assume that
it is satisfied with γ > 0 (e.g., we will see that for Π being VaR or ES, γ typically equals 1). It follows
from Definition 6, Point 3, that

Π(L(λA, C)− ν(λA)pr) =
λ→∞

λ2ν(A)K1(A, C) + ν(A)K2(A, C)λ2−γ + o
(

λ2−γ
)
− λ2ν(A)pr

=
λ→∞

λ2ν(A)(K1(A, C)− pr) + ν(A)K2(A, C)λ2−γ + o
(

λ2−γ
)

.

Since γ > 0, the dominant term as λ → ∞ is λ2ν(A)(K1(A, C) − pr). Assume that K1(A, C) > 0
and K2(A, C) > 0. This is true under the conditions of Section 3 for VaR and ES: we have
K1(A, C) = E[C(0)], which is positive as the cost field can be assumed to be non-negative and not
a.s. equal to 0; regarding K2(A, C), this is always true for ES and, provided that the confidence
level α is greater than 1/2, also for VaR. Consequently, for λ large enough, the total risk of the
company, Π(L(λA, C)− ν(λA)pr), is a decreasing function of λ as soon as the revenue per surface
unit (or claims reserves, . . . ) satisfies pr > K1(A, C). Under the conditions of Section 3, for VaR and
ES, K1(A, C) = E[C(x)] for all x ∈ R2, and therefore the latter inequality entails that the revenue per
surface unit (e.g., the mean premium) exceeds the expected cost at each location, which appears natural.
The term 2− γ corresponds to the second highest power with respect to λ. Provided that K2(A, C) > 0
and 0 < γ < 2 (which is true for VaR and ES under the conditions of Section 3), the corresponding
term, ν(A)K2(A, C)λ2−γ, increases the total risk of the company as λ increases. However, the highest
the value of γ, the fastest the decrease of the total risk as λ increases owing to the term in λ2. For λ

large, the values of γ, K1(A, C), K2(A, C) and pr allow one to determine the value of λ necessary to
reach a targeted sufficiently low level of the total risk. Note that in the case of the variance, at least
under the conditions of Section 3, K1(A, C) = 0 and γ = 2.

Remark 3. The axioms of spatial invariance under translation and asymptotic spatial homogeneity could also
be defined for spatial risk measures based on the non-normalized spatially aggregated loss. Spatial invariance
under translation would be unchanged and asymptotic spatial homogeneity of order −γ, γ ≥ 0, would become:
for all A ∈ Ac,

Π(L(λA, C)) =
λ→∞

λ2ν(A)K1(A, C) + ν(A)K2(A, C)λ2−γ + o
(

λ2−γ
)

.

In this case, we would obtain the risk related to the non-normalized loss without assuming that Π is
positive homogeneous.

Finally, we discuss a possible way for a company to develop an adequate model for the cost
field C in regions where it is still inactive. The general model for the cost field introduced in
Koch (2017, Section 2.3), is written

{C(x)}x∈R2 = {E(x) D (Z(x))}x∈R2 , (14)

where {E(x)}x∈R2 is the exposure field, D a damage function and {Z(x)}x∈R2 the random field of
the environmental variable generating risk. The cost is assumed to be only due to a unique class of
events, i.e., to a unique natural hazard. The latter (e.g., heat waves or hurricanes) is described by the
random field of an environmental variable (e.g., the temperature or the wind speed, respectively), Z.
We assume that Z is representative of the risk during the whole period [0, TL]. The application of
the damage function (also referred to as vulnerability curve in the literature) D to the natural hazard
random field gives the destruction percentage at each location. Finally, multiplying the destruction
percentage by the exposure gives the cost at each location. For more details, we refer the reader to
Koch (2017, Section 2.3). In order to obtain an adequate model C in regions where it has no policies yet,
the company can for instance consider crude estimates of the exposure field in the new region, develop
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a detailed statistical model7 for the environmental field Z responsible of the risk insured (e.g., wind
speed in the case of hurricanes) using appropriate data and apply the same damage functions as in the
region it already covers. The company can then simulate from this cost model, hence obtaining an
empirical distribution of the loss appearing in (8) and (9). This makes it possible to check whether the
axiom of spatial sub-additivity is satisfied or not. Furthermore, if the spatial domain is large (which
is generally the case for reinsurance companies), considering potential central limit theorems and
determining the order of asymptotic spatial homogeneity (by checking if the conditions of Section 3
are satisfied) is useful as it allows the company to quantify the rate of spatial diversification.

Remark 4. Strictly speaking, the terms of the insurance policies should be accounted for in Model (14). By the
way, the latter model can be interpreted differently from what is done here. For instance, we can imagine that Z
represents the random field of the real cost and D accounts for the terms of the policies.

2.3. Mixing and Central Limit Theorems for Random Fields

We first remind the reader of the definition of the α- and β-mixing coefficients which will be used
in Section 3. Let {X(x)}x∈Rd be a real-valued random field. For S ⊂ Rd a closed subset, we denote by
FX

S the σ-field generated by the random variables {X(x) : x ∈ S}. Let S1, S2 ⊂ Rd be disjoint closed
subsets. The α-mixing coefficient (introduced by Rosenblatt 1956) between the σ-fields FX

S1
and FX

S2
is

defined by

αX(S1, S2) = sup
{
|P(A ∩ B)− P(A)P(B)| : A ∈ FX

S1
, B ∈ FX

S2

}
. (15)

The β-mixing coefficient or absolute regularity coefficient (attributed to Kolmogorov in Volkonskii and
Rozanov 1959) between the σ-fields FX

S1
and FX

S2
is given by

βX(S1, S2) =
1
2

sup

{
I

∑
i=1

J

∑
j=1
|P(Ai ∩ Bj)− P(Ai)P(Bj)|

}
,

where the supremum is taken over all partitions {A1, . . . , AI} and {B1, . . . , BJ} of Ω with the Ai’s in
FX

S1
and the Bj’s in FX

S2
. These coefficients satisfy the useful inequality

αX(S1, S2) ≤ 1
2

βX(S1, S2), for all S1, S2 ⊂ R
d. (16)

Now, we recall the concepts of Van Hove sequence and central limit theorem (CLT) in the case of
random fields. This will be useful, since, for instance, asymptotic spatial homogeneity of order −1 of
spatial risk measures associated with VaR (at a confidence level α ∈ (0, 1)\{1/2}) and induced by a
cost field C ∈ C is satisfied as soon as C fulfills the CLT and has a constant expectation (see below).
For V ⊂ Rd and r > 0, we introduce V+r = {x ∈ Rd : dist(x, V) ≤ r}, where dist stands for the
Euclidean distance. Additionally, we denote by ∂V the boundary of V. A Van Hove sequence in Rd

is a sequence (Vn)n∈N of bounded measurable subsets of Rd satisfying Vn ↑ Rd, limn→∞ ν(Vn) = ∞,
and limn→∞ ν((∂Vn)+r)/ν(Vn) = 0 for all r > 0. The assumption “bounded” does not always appear
in the definition of a Van Hove sequence. Let Cov denote the covariance. In the following, we say that
a random field {X(x)}x∈Rd such that, for all x ∈ Rd, E

[
[X(x)]2

]
< ∞, satisfies the CLT if∫

Rd
|Cov(X(0), X(x))| ν(dx) < ∞,

σX =

(∫
Rd

Cov(X(0), X(x)) ν(dx)

) 1
2
> 0,

7 Potentially different from those developed in the natural catastrophes industry: e.g., a max-stable model.
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and, for any Van Hove sequence (Vn)n∈N in Rd,

1
[ν(Vn)]1/2

∫
Vn
(X(x)−E[X(x)]) ν(dx)

d→ N (0, σ2
X), as n → ∞,

where N (μ, σ2) denotes the normal distribution with expectation μ ∈ R and variance σ2 > 0. In the
case of a random field satisfying the CLT, we have the following result.

Theorem 2. Let {C(x)}x∈R2 ∈ C. Assume moreover that C has a constant expectation (i.e., for all x ∈ R2,
E[C(x)] = E[C(0)]) and satisfies the CLT. Then, we have, for all A ∈ Ac, that

λ (LN(λA, C)−E[C(0)]) d→ N
(

0,
σ2

C
ν(A)

)
, for λ → ∞.

Proof. The result is essentially based on part of the proof of Theorem 4 in Koch (2017). We refer
the reader to this proof for details and only provide the main ideas here. First, we show (see the
third paragraph of the proof of Theorem 4 in Koch 2017) that, for any A ∈ Ac and any positive
non-decreasing sequence (λn)n∈N ∈ R such that limn→∞ λn = ∞, the sequence (λn A)n∈N is a Van
Hove sequence. Therefore, since C satisfies the CLT and has a constant expectation, we obtain

λn (LN(λn A, C)−E[C(0)]) d→ N
(

0,
σ2

C
ν(A)

)
, for n → ∞.

Second, we deduce (see the proof of Theorem 4, after (44), in Koch 2017) that, for all A ∈ Ac,

λ (LN(λA, C)−E[C(0)]) d→ N
(

0,
σ2

C
ν(A)

)
, for λ → ∞.

This concludes the proof.

This theorem will be useful in the following since it will allow us to prove asymptotic spatial
homogeneity of order respectively −2, −1 and −1 for spatial risk measures associated with variance,
VaR as well as ES and induced by a cost field satisfying the CLT and additional conditions.
Moreover, if λ is large enough, it gives an approximation of the distribution of the normalized
spatially aggregated loss:

LN(λA, C) ≈ N
(
E[C(0)],

σ2
C

λ2ν(A)

)
,

where ≈means “approximately follows”. Such an approximation can be fruitful in practice, e.g., for an
insurance company.

2.4. Max-Stable Random Fields

This concise introduction to max-stable fields is partly based on Koch et al. (2018, Section 2.2).
Below, “

∨
” denotes the supremum when the latter is taken over a countable set. In any dimension

d ≥ 1, max-stable random fields are defined as follows.

Definition 7 (Max-stable random field). A real-valued random field {Z(x)}x∈Rd is said to be max-stable
if there exist sequences of functions (aT(x), x ∈ Rd)T≥1 > 0 and (bT(x), x ∈ Rd)T≥1 ∈ R such that, for all
T ≥ 1, {∨T

t=1 {Zt(x)} − bT(x)

aT(x)

}
x∈Rd

d
= {Z(x)}x∈Rd ,

where the {Zt(x)}x∈Rd , t = 1, . . . , T, are independent replications of Z.

80



Risks 2019, 7, 52

A max-stable random field is termed simple if it has standard Fréchet margins, i.e., for all x ∈ Rd,
P(Z(x) < z) = exp (−1/z) , z > 0.

Now, let {T̃i(x)}x∈Rd , i = 1, . . . , n, be independent replications of a random field {T̃(x)}x∈Rd .
Let (cn(x), x ∈ Rd)n≥1 > 0 and (dn(x), x ∈ Rd)n≥1 ∈ R be sequences of functions. If there exists a
non-degenerate random field {G(x)}x∈Rd such that{∨n

i=1
{

T̃i(x)
}− dn(x)

cn(x)

}
x∈Rd

d→ {G(x)}x∈Rd , for n → ∞,

then G is necessarily max-stable; see, e.g., de Haan (1984). This explains the relevance and significance
of max-stable random fields in the modelling of spatial extremes.

Any simple max-stable random field Z can be written (see, e.g., de Haan 1984) as

{Z(x)}x∈Rd
d
=

{
∞∨

i=1

{UiYi(x)}
}

x∈Rd

, (17)

where the (Ui)i≥1 are the points of a Poisson point process on (0, ∞) with intensity u−2ν(du) and the
Yi, i ≥ 1, are independent replications of a random field {Y(x)}x∈Rd such that, for all x ∈ Rd, E[Y(x)] = 1.
The field Y is not unique and is called a spectral random field of Z. Conversely, any random field of the
form (17) is a simple max-stable random field. Hence, (17) enables the building up of models for max-stable
fields. We now present one of the most famous among such models, the Brown–Resnick random field,
which is defined in Kabluchko et al. (2009) as a generalization of the stochastic process introduced in
Brown and Resnick (1977). We recall that a random field {W(x)}x∈Rd is said to have stationary increments
if the distribution of the random field {W(x+ x0)−W(x0)}x∈Rd does not depend on x0 ∈ Rd. Provided the
increments of W have a finite second moment, the variogram of W, γW , is defined by

γW(x) = Var(W(x)−W(0)), x ∈ R
d,

where Var denotes the variance. The Brown–Resnick random field is specified as follows.

Definition 8 (Brown–Resnick random field). Let {W(x)}x∈Rd be a centred Gaussian random field with
stationary increments and with variogram γW. Let us consider the random field Y defined by

{Y(x)}x∈Rd =

{
exp

(
W(x)− Var(W(x))

2

)}
x∈Rd

.

Then the simple max-stable random field defined by (17) with Y is referred to as the Brown–Resnick random
field associated with the variogram γW. In the following, we will also call this field the Brown–Resnick random
field built with W.8

The Brown–Resnick field is stationary (Kabluchko et al. 2009, Theorem 2) and its distribution only
depends on the variogram (Kabluchko et al. 2009, Proposition 11).

Now, let (Ui, Ci)i≥1 be the points of a Poisson point process on (0, ∞)×Rd with intensity function
u−2ν(du)× ν(dc). Independently, let fi, i ≥ 1, be independent replicates of some non-negative random

8 In the following, when W is sample-continuous, what we refer to as the Brown–Resnick random field built with W is
obtained by taking replications of W (see (17)) which are also sample-continuous.
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function f on Rd satisfying E
[∫

Rd f (x) ν(dx)
]
= 1. Then, it is known that the mixed moving maxima

(M3) random field

{Z(x)}x∈Rd =

{
∞∨

i=1

{Ui fi(x− Ci)}
}

x∈Rd

(18)

is a stationary and simple max-stable field. The so-called Smith random field introduced by
Smith (1990) is a specific case of M3 random field and is defined immediately below.

Definition 9 (Smith random field). Let Z be written as in (18) with f being the density of a d-variate
Gaussian random vector with mean 0 and covariance matrix Σ. Then, the field Z is referred to as the Smith
random field with covariance matrix Σ.

As the Brown–Resnick and Smith fields are defined using the random fields-based and M3
representations (17) and (18), respectively, it is usual in the spatial extremes literature to distinguish
both models, although the Smith field with covariance matrix Σ corresponds to the Brown–Resnick
field associated with the variogram γW(x) = x

′
Σ−1x, x ∈ Rd, where ′ designates transposition; see,

e.g., Huser and Davison (2013).
Finally, we briefly present the extremal coefficient (see, e.g., Schlather and Tawn 2003) which is a

well-known measure of spatial dependence for max-stable random fields. Let {Z(x)}x∈Rd be a simple
max-stable random field. In the case of two locations, the extremal coefficient function θ is defined by

P (Z(x1) ≤ u, Z(x2) ≤ u) = exp
(
− θ(x1, x2)

u

)
, x1, x2 ∈ R

d,

where u > 0.

3. Properties of Some Induced Spatial Risk Measures

In this section, we provide sufficient conditions on the cost field such that some induced spatial risk
measures satisfy the axioms presented in Definition 6. First, we consider the case of a general cost field
before investigating the relevant case of a cost field being a function of a max-stable random field. In the
following, for α ∈ (0, 1), qα and φ denote the quantile at level α and the standard Gaussian density,
respectively. We recall that for a random variable X̃ with distribution function F, its value-at-risk
at confidence level α ∈ (0, 1) is written VaRα(X̃) = inf{x ∈ R : F(x) ≥ α}. Moreover, provided
E[|X̃|] < ∞, its expected shortfall at confidence level α ∈ (0, 1) is defined as

ESα

(
X̃
)
=

1
1− α

∫ 1

α
VaRu

(
X̃
)

ν(du).

Typical values for α are 0.95 and 0.99. It should be noted that in the actuarial literature, ES is sometimes
called tail value-at-risk (see, e.g., Definition 2.4.1 in Denuit et al. 2005).

In the following, we mainly consider the spatial risk measures

R1(A, C) = E[LN(A, C)], A ∈ A, C ∈ C,

R2(A, C) = Var(LN(A, C)), A ∈ A, C ∈ C,

R3,α(A, C) = VaRα(LN(A, C)), A ∈ A, C ∈ C,

R4,α(A, C) = ESα(LN(A, C)), A ∈ A, C ∈ C.

As a classical risk measure, the expectation is not very satisfying since it does not provide any
information about variability. Moreover, as will be seen, the associated spatial risk measures do not
take into account the spatial dependence of the cost field. An advantage of variance, VaR and ES lies in
the fact that their associated spatial risk measures all take into account (at least) part of this spatial
dependence. Historically, the variance has been the dominating risk measure in finance, primarily
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due to the huge influence of the portfolio theory of Markowitz which uses variance as a measure of
risk. However, using the variance is only possible when the normalized spatially aggregated loss
has a finite second moment. Moreover, since it allocates the same weight to positive and negative
deviations from the expectation, variance is a good risk measure only for distributions which are
approximately symmetric around the expectation. Currently, VaR is probably the most widely used
risk measure in the finance/insurance industry. Nevertheless, it does not provide any information
about the severity of losses which occur with a probability lower than 1− α, which is obviously a
serious shortcoming. Moreover, VaR is in general not sub-additive and hence not coherent in the sense
of Artzner et al. (1999). ES overcomes these two drawbacks of VaR. Pertaining to the first one, it can be
seen from the fact that, if a random variable X̃ has a continuous distribution function, then

ESα

(
X̃
)
= E

[
X̃
∣∣∣X̃ > VaRα(X̃)

]
.

Hence, the Basel Committee on Banking Supervision proposed the use of ES instead of VaR for
the internal models-based approach (Basel Committee on Banking Supervision 2012, Section 3.2.1).
However, contrary to VaR, ES is not elicitable (Gneiting 2011), implying that backtesting for ES is more
difficult than for VaR.

3.1. General Cost Field

The next result provides sufficient conditions on the cost field C such that the induced spatial risk
measureR1(·, C) satisfies the axioms presented in Definition 6.

Theorem 3. Let {C(x)}x∈R2 be a measurable random field having a constant expectation and such that,
for all x ∈ R2, E[|C(x)|] = E[|C(0)|] < ∞. Then, we have, for all A ∈ A, that R1(A, C) = E[C(0)].
Hence, the spatial risk measure induced by CR1(·, C) satisfies the axioms of spatial invariance under translation
and spatial sub-additivity. If, moreover, E[C(0)] �= 0, then R1(·, C) satisfies the axiom of asymptotic spatial
homogeneity of order 0 with K1(A, C) = 0 and K2(A, C) = E[C(0)], A ∈ Ac.

Proof. By assumption, the function x �→ E[|C(x)|] is constant and hence obviously locally integrable.
Consequently, as C is measurable, Proposition 1 gives that C has a.s. locally integrable sample paths.
Using Fubini’s theorem and the fact that C has a constant expectation, we have, for all A ∈ A, that

R1(A, C) =
1

ν(A)

∫
A
E[C(0)] ν(dx) = E[C(0)].

Thus, for all v ∈ R2 and A ∈ A,R1(A + v, C) = R1(A, C). Moreover, for all A1, A2 ∈ A,

R1(A1 ∪ A2, C) = R1(A1, C) = R1(A2, C) = min{R1(A1, C),R1(A2, C)}.

Finally, for all A ∈ Ac and λ > 0, we have R1(λA, C) = E[C(0)]. As |E[C(0)]| ≤ E[|C(0)|] < ∞,
we have |E[C(0)]| ∈ (0, ∞), which concludes the proof.

The next result is a generalization of Theorem 2 in Koch (2017) and will be useful in the following.

Theorem 4. Let {C(x)}x∈R2 ∈ C and such that, for all x ∈ R2, E
[
[C(x)]2

]
< ∞. Moreover, assume that,

for all A ∈ A, ∫
A

∫
A
|E [C(x)C(y)] | ν(dx) ν(dy) < ∞. (19)

Then, for all A ∈ A and λ > 0, we have

R2(λA, C) =
1

λ4[ν(A)]2

∫
λA

∫
λA

Cov(C(x), C(y)) ν(dx) ν(dy).
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Condition (19) is satisfied for instance in the following cases:

1. For any A ∈ A,

sup
x∈A

{
E

[
[C(x)]2

]}
< ∞. (20)

2. For all x, y ∈ R2,
Cov(C(x), C(y)) = Cov(C(0), C(x− y)), (21)

and ∫
R2
|Cov(C(0), C(x))| ν(dx) < ∞. (22)

Proof. For all A ∈ A, we consider L(A, C) = ν(A) LN(A, C). Thus, using Fubini’s theorem and (19),
we obtain

E

[
[L(A, C)]2

]
= E

[(∫
A

C(x) ν(dx)

)2
]
= E

[∫
A

C(x) ν(dx)
∫

A
C(y) ν(dy)

]
=
∫

A

∫
A
E [C(x)C(y)] ν(dx) ν(dy). (23)

Moreover, it is clear that

(E [L(A, C)])2 =
∫

A

∫
A
E [C(x)]E [C(y)] ν(dx) ν(dy). (24)

The combination of (23) and (24) gives that

E

[
[L(A, C)]2

]
− (E [L(A, C)])2 =

∫
A

∫
A

Cov(C(x), C(y)) ν(dx) ν(dy),

which implies that

R2(A, C) =
1

[ν(A)]2

∫
A

∫
A

Cov(C(x), C(y)) ν(dx) ν(dy).

The result is obtained by replacing A with λA.

We now prove the second part of the theorem, concerning (19). Let A ∈ A. In the first case,
we obtain, using Cauchy–Schwarz inequality and (20),

∫
A

∫
A
|E [C(x)C(y)] | ν(dx) ν(dy) ≤

∫
A

∫
A

(
E

[
[C(x)]2

]) 1
2
(
E

[
[C(y)]2

]) 1
2

ν(dx) ν(dy)

≤
∫

A

∫
A

(
sup
x∈A

{
E

[
[C(x)]2

]}) 1
2
(

sup
x∈A

{
E

[
[C(y)]2

]}) 1
2

ν(dx) ν(dy)

< ∞.

In the second case, it follows from (21) and (22) that∫
A

∫
A
|Cov(C(x), C(y))| ν(dx) ν(dy) =

∫
A

∫
A
|Cov(C(0), C(x− y))| ν(dx) ν(dy)

=
∫

A

[∫
A−y

|Cov(C(0), C(z))| ν(dz)

]
ν(dy)

≤
∫

A

[∫
R2
|Cov(C(0), C(z))| ν(dz)

]
ν(dy)

= ν(A)σ̃C < ∞,
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where
σ̃C =

∫
R2
|Cov(C(0), C(x))| ν(dx).

Thus, (19) is obviously satisfied.

We recall that for a random field {C(x)}x∈R2 such that, for all x ∈ R2, E
[
[C(x)]2

]
< ∞, we note

σC =

(∫
R2

Cov(C(0), C(x)) ν(dx)

) 1
2

.

The next theorem provides the main results of this subsection. In particular, it gives sufficient conditions
on the cost field C such that the induced spatial risk measuresR2(·, C),R3,α(·, C) andR4,α(·, C) satisfy
the axioms of asymptotic spatial homogeneity of order −2, −1 and −1, respectively.

Theorem 5. Let {C(x)}x∈R2 ∈ C.

1. Assume that C is stationary. Then, provided it exists, any spatial risk measure associated with a law-invariant
classical risk measure Π and induced by C satisfies the axiom of spatial invariance under translation.

2. Assume that C is such that, for all x ∈ R2,

E

[
[C(x)]2

]
< ∞, (25)

and satisfies (21) and (22). Then, we have, for all A ∈ Ac, that

R2(λA, C) =
λ→∞

σ2
C

λ2ν(A)
+ o
(

1
λ2

)
. (26)

Hence, if σC > 0, R2(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −2 with
K1(A, C) = 0 and K2(A, C) = σ2

C/ν(A), A ∈ Ac.
3. Assume that C has a constant expectation and satisfies the CLT. Then, we have, for all A ∈ Ac, that

R3,α(λA, C) =
λ→∞

E[C(0)] +
σCqα

λ[ν(A)]
1
2
+ o
(

1
λ

)
. (27)

Hence, if α ∈ (0, 1)\{1/2},R3,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1
with K1(A, C) = E[C(0)] and K2(A, C) = σCqα/[ν(A)]

1
2 , A ∈ Ac.

4. Assume that C has a constant expectation, satisfies the CLT and is such that the random variables
λ (LN(λA, C)−E[C(0)]), λ > 0, are uniformly integrable. Then, we have, for all A ∈ Ac, that

R4,α(λA, C) =
λ→∞

E[C(0)] +
σCφ(qα)

λ[ν(A)]
1
2 (1− α)

+ o
(

1
λ

)
. (28)

Hence, R4,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1 with
K1(A, C) = E[C(0)] and K2(A, C) = σCφ(qα)/{[ν(A)]

1
2 (1− α)}, A ∈ Ac.

Proof. 1. Let A ∈ A, v ∈ R2 and Π be a law-invariant classical risk measure. Using the fact that
ν(A + v) = ν(A) and a change of variable, we obtain

RΠ(A + v, C) = Π
(

1
ν(A + v)

∫
A+v

C(x) ν(dx)

)
= Π

(
1

ν(A)

∫
A

C(y + v) ν(dy)

)
. (29)
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Due to the stationarity of C, we have, for all v ∈ R2, that {C(x)}x∈R2
d
= {C(x + v)}x∈R2 , yielding,

since Π is law-invariant,

Π
(

1
ν(A)

∫
A

C(y + v) ν(dy)

)
= Π

(
1

ν(A)

∫
A

C(x) ν(dx)

)
= RΠ(A, C). (30)

The combination of (29) and (30) provides the result.

2. As (21) and (22) are satisfied, we know from Theorem 4 that, for all A ∈ Ac and λ > 0,
R2(λA, C) is well-defined. The result follows from an adapted version of the proof of Theorem 3,
Point 3, in Koch (2017). We refer the reader to that proof for the technical parts. We only highlight
some of the main steps as well as the main differences here.

The first part consists in showing that

lim
λ→∞

λ2ν(A)R2(λA, C) = σ2
C. (31)

Using Theorem 4 and (21), it follows that

R2(λA, C) =
1

λ4[ν(A)]2

∫
λA

∫
λA

Cov(C(0), C(x− y)) ν(dx) ν(dy).

Let Aλ = λA, λ > 0. Then, we consider the quantity

Tλ =
1

λ2ν(A)

∫
Aλ

∫
Aλ

k(x− y) ν(dx) ν(dy), λ > 0,

where
k(x) = Cov(C(0), C(x)), x ∈ R

2.

The next step consists in showing that
lim

λ→∞
Tλ = σ2

C. (32)

For this purpose, we proceed similarly as in Koch (2017), proof of Theorem 3, Point 3. The only
difference consists in the fact that here k is not necessarily non-negative. Hence, in order to bound
|T1,λ| and |T3,λ| (quantities defined in Koch 2017) from above, k must be replaced with its absolute
value in the corresponding integrals. This is where Condition (22) plays a role. Finally, since, for all
λ > 0,

Tλ = λ2ν(A)R2(λA, C),

(31) follows from (32).
In a second part, we easily derive (26) from (31). Now, as a compact subset of R2, A is bounded,

giving that ν(A) ∈ (0, ∞). Since, moreover, σ2
C ∈ (0, ∞), σ2

C/ν(A) ∈ (0, ∞). Hence, the second part of
the result follows from (26).

3. Theorem 2 gives that, for all A ∈ Ac,

λ (LN(λA, C)−E[C(0)]) d→ N
(

0,
σ2

C
ν(A)

)
, for λ → ∞.

Hence, the fact that the quantile function of a normal random variable is continuous on (0, 1),
Proposition 0.1 in Resnick (1987) and easy computations (see Koch 2017, proof of Theorem 5) yield (27).
Since C satisfies the CLT, we have E

[
[C(0)]2

]
< ∞ and thus E [C(0)] < ∞. Additionally, as α �= 1/2,

we have qα �= 0. Moreover, as σC > 0 (because C satisfies the CLT) and ν(A) > 0, we obtain that
σCqα/[ν(A)]

1
2 �= 0. Finally, since α /∈ {0, 1}, |qα| < ∞. Furthermore, σC < ∞ and ν(A) < ∞, giving

that |σCqα/[ν(A)]
1
2 | < ∞. The result follows by definition.
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4. Since C satisfies the CLT, we have, for all x ∈ R2, E
[
[C(x)]2

]
< ∞, which implies that, for all

x ∈ R2, E [|C(x)|] < ∞. We easily deduce, using Fubini’s theorem, that E[|LN(λA, C)|] is finite, and,
therefore, that R4,α(λA, C) is well-defined for all A ∈ Ac and λ > 0. Theorem 2 gives that, for all
A ∈ Ac,

λ (LN(λA, C)−E[C(0)]) d→ N
(

0,
σ2

C
ν(A)

)
, for λ → ∞.

Now, ES is known to be continuous with respect to convergence in distribution in the case of uniformly
integrable random variables. For details, see, e.g., Wang et al. (2018), Theorem 3.2 and Example 2.2,
Point (ii); the authors’ results concern bounded random variables but the mentioned result can be
extended to the case of integrable random variables. Hence, it follows from the fact that the random
variables λ (LN(λ, C)−E[C(0)]), λ > 0, are uniformly integrable, and the expression of ESα for the
Gaussian distribution, that

lim
λ→∞

1
1− α

∫ 1

α
VaRu(λ[LN(λA, C)−E[C(0)]]) ν(du) =

σCφ(qα)

[ν(A)]
1
2 (1− α)

. (33)

Moreover, we have

1
1− α

∫ 1

α
VaRu(λ[LN(λA, C)−E[C(0)]]) ν(du) =

1
1− α

∫ 1

α
λ (VaRu(LN(λA, C))−E[C(0)]) ν(du)

= λ (R4,α(λA, C)−E[C(0)]) .

Thus, (33) gives, for all A ∈ Ac,

λ (R4,α(λA, C)−E[C(0)]) =
λ→∞

σCφ(qα)

[ν(A)]
1
2 (1− α)

+ o(1),

which yields (28). Now, we have E [C(0)] < ∞. Moreover, using the fact that, for all α ∈ (0, 1), φ(qα) ∈
(0, ∞), and arguments stated at the end of the proof of Point 3, we obtain |σCφ(qα)/{[ν(A)]

1
2 (1− α)}| ∈

(0, ∞). Consequently, the result follows by definition.

Remark 5. In order to establish Points 3 and 4, we take advantage of the fact that both VaR and ES are
continuous with respect to convergence in distribution under appropriate assumptions. Hence, similar results
may hold for other classical risk measures satisfying continuity with respect to convergence in distribution.

Theorem 5 entails the following important result.

Corollary 1. Let {C(x)}x∈R2 ∈ C. Moreover, assume that C satisfies (21) and the CLT. Then, we have, for all
A ∈ Ac, that

R2(λA, C) =
λ→∞

σ2
C

λ2ν(A)
+ o
(

1
λ2

)
. (34)

Hence, R2(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −2 with K1(A, C) = 0 and
K2(A, C) = σ2

C/ν(A), A ∈ Ac.

Proof. Since C satisfies the CLT, it satisfies (22), (25) and σC > 0. Thus, the result follows from
Theorem 5, Point 2.

The next result provides a convenient condition ensuring the uniform integrability required in
Theorem 5, Point 4.

Proposition 2. Let {C(x)}x∈R2 ∈ C. Assume moreover that C has a constant expectation and satisfies the
CLT. If C satisfies (21), then the random variables λ (LN(λA, C)−E[C(0)]), λ > 0, are uniformly integrable.
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Proof. Let, for λ > 0, Mλ = λ (LN(λA, C)−E[C(0)]). Theorem 2 gives that, for all A ∈ Ac, Mλ
d→

M, for λ → ∞, where M ∼ N (0, σ2
C/ν(A)

)
. Therefore, by the continuous mapping theorem, we obtain

M2
λ

d→ M2, for λ → ∞. (35)

Now, it is clear that, for all λ > 0, Var(Mλ) = λ2R2(λA, C). Hence, it follows from (34) that
Var(Mλ) →

λ→∞
σ2

C/ν(A), which gives, since for all λ > 0, E[Mλ] = 0, that E
[
M2

λ

] →
λ→∞

E
[
M2].

Additionally, M2 is non-negative and integrable. Furthermore, the M2
λ are non-negative and,

for all λ > 0, E
[
M2

λ

]
= λ2R2(λA, C), which is finite according to Theorem 4 as (19) is satisfied.

Therefore, the M2
λ are integrable. Consequently, using (35) and Theorem 3.6 in Billingsley (1999),

we know that the random variables M2
λ, λ > 0, are uniformly integrable. This directly yields that the

random variables Mλ, λ > 0, are uniformly integrable.

3.2. Cost Field Being a Function of a Max-Stable Random Field

We now consider a cost field model written as in (14), i.e.,

{C(x)}x∈R2 = {E(x) D (Z(x))}x∈R2 , (36)

where Z is max-stable and the exposure is uniformly equal to unity. The relevance of using max-stable
random fields has been previously highlighted.

In the following, all theorems and corollaries assume Z to be simple, although max-stable fields
fitted to real data have generalized extreme-value (GEV) univariate marginal distributions with
location, scale and shape parameters η ∈ R, τ > 0 and ξ ∈ R. However, this does not cause any loss of
generality. If {Z(x)}x∈R2 is a max-stable field with such GEV parameters, we can write

Z(x) =

{
η + τ(Z̃(x)ξ − 1)/ξ if ξ �= 0,
η + τ log(Z̃(x)) if ξ = 0,

x ∈ R
2, (37)

where {Z̃(x)}x∈R2 is simple max-stable. Thus, there exists a function D1 such that Z(x) = D1(Z̃(x))
and Model (36) can be written C(x) = D̃(Z̃(x)), where Z̃ is simple max-stable and D̃ = D ◦ D1,
with “◦” denoting function composition. On (0, ∞), for any ξ �= 0 the transformation z̃ �→ η +

τ(z̃ξ − 1)/ξ is increasing and the same holds for the transformation z̃ �→ η + τ log(z̃), implying that
D1 is increasing. Most often, the damage function D is also increasing (e.g., the higher the wind
speed, temperature or rainfall amount, the higher the cost) and thus the same is true for D̃ = D ◦ D1.
Consequently, the requirement in Corollaries 3–5 (see below) on the function applied to the simple
max-stable field to be non-decreasing and non-constant is generally satisfied in the applications
motivating the present work.

For the sake of notational simplicity, in the following, we denote by Z (instead of Z̃) the simple
max-stable field and by D (instead of D̃) the quantity D ◦ D1. Accordingly, the reader should pay
attention to the fact that Z models the standardized environmental field (and not the real one) and D
consists in the composition of the marginal transformation of Z and the damage function.

We first give sufficient conditions on the function D and the field Z such that the spatial risk
measureR1(·, D(Z)) induced by the cost field D(Z) satisfies the axioms presented in Definition 6.

Corollary 2. Let {Z(x)}x∈R2 be a simple max-stable random field and D a measurable function such that
{C(x)}x∈R2 = {D(Z(x))}x∈R2 ∈ C and E[|C(0)|] < ∞. Then, for all A ∈ A, R1(A, C) = E[C(0)].
Hence, R1(·, C) satisfies the axioms of spatial invariance under translation and spatial sub-additivity.
If, moreover, E[C(0)] �= 0, then R1(·, C) satisfies the axiom of asymptotic spatial homogeneity of order 0
with K1(A, C) = 0 and K2(A, C) = E[C(0)], A ∈ Ac.

Proof. Since Z has identical margins, for all x ∈ R2, E [|C(x)|] = E [|C(0)|]. Therefore, the result
directly follows from Theorem 3.
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The result below gives sufficient conditions on D and Z such that the spatial risk measure
R2(·, D(Z)) induced by the cost field D(Z) satisfies the axiom of asymptotic spatial homogeneity of
order −2.

Theorem 6. Let {Z(x)}x∈R2 be a simple and sample-continuous max-stable random field and D a measurable
function such that {C(x)}x∈R2 = {D(Z(x))}x∈R2 ∈ C and such that there exist p, q > 0 satisfying
2/p + 1/q = 1 such that

E [|C(0)|p] < ∞ (38)

and ∫
R2
[2− θ(0, x)]

1
q ν(dx) < ∞, (39)

where θ is the extremal coefficient function of Z. Then, we have∫
R2
|Cov(C(0), C(x))| ν(dx) < ∞.

Additionally, assume that C satisfies (21) and σC > 0. ThenR2(·, C) satisfies the axiom of asymptotic spatial
homogeneity of order −2 with K1(A, C) = 0 and K2(A, C) = σ2

C/ν(A), A ∈ Ac.

Proof. Since Z has identical margins, (38) yields that, for all x ∈ R2, E [|C(x)|p] < ∞. Thus, using the
fact that 2/p + 1/q = 1, Davydov’s inequality (Davydov 1968, (2.2)) gives that

|Cov(C(0), C(x))| ≤ 12
[
αC({0}, {x})

] 1
q
(E [|C(0)|p]) 1

p (E [|C(x)|p]) 1
p . (40)

For all x ∈ R2, since D is measurable, C(x) = D(Z(x)) is FZ
{x}-measurable. Hence, FC

{x} ⊂ FZ
{x},

which gives by (15) that, for all x ∈ R2,

αC ({0}, {x}) ≤ αZ ({0}, {x}) . (41)

Now, using (16) and Corollary 2.2 in Dombry and Eyi-Minko (2012), we obtain that, for all x ∈ R2,

αZ ({0}, {x}) ≤ 2[2− θ(0, x)]. (42)

Thus, the combination of (41) and (42) gives that

αC ({0}, {x}) ≤ 2[2− θ(0, x)].

Consequently, (40) gives that

|Cov(C(0), C(x))| ≤ 12 2
1
q (E [|C(0)|p]E [|C(x)|p]) 1

p [2− θ(0, x)]
1
q .

Therefore, using (38) and (39), we obtain∫
R2
|Cov(C(0), C(x))| ν(dx) < ∞.

Since p, q > 0 and 2/p + 1/q = 1, we have p > 2. Consequently, for all x ∈ R2, E
[
[C(x)]2

]
< ∞.

Thus, Theorem 5, Point 2, gives the result.

Until the end, the following results provide sufficient conditions on D and Z such that the induced
spatial risk measures R2(·, D(Z)), R3,α(·, D(Z)) and R4,α(·, D(Z)) satisfy the axioms of asymptotic
spatial homogeneity of order −2, −1 and −1, respectively. In order to establish them, we take
advantage of the results in Koch et al. (2018) about the existence of a CLT for functions of stationary
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max-stable random fields. Let B(R) and B((0, ∞)) be the Borel σ-fields on R and (0, ∞), respectively.
For h = (h1, h2)

′ ∈ Z2, we adopt the notation [h, h + 1] = [h1, h1 + 1]× [h2, h2 + 1]. Next theorem
considers a general simple, stationary and sample-continuous max-stable random field.

Theorem 7. Let {Z(x)}x∈R2 be a simple, stationary and sample-continuous max-stable random field and D be
a measurable function from ((0, ∞),B((0, ∞))) to (R,B(R)) satisfying

E

[
|D(Z(0))|2+δ

]
< ∞, (43)

for some δ > 0. Furthermore, assume that, for all h ∈ Z2,

E

[
min

{
sup

x∈[0,1]2
{Y(x)}, sup

x∈[h,h+1]
{Y(x)}

}]
≤ K‖h‖−b,

for some K > 0, b > 2 max {2, (2 + δ)/δ} and where {Y(x)}x∈R2 is a spectral random field of Z (see (17)).
Let {C(x)}x∈R2 = {D(Z(x))}x∈R2 . Then, if σC > 0:

1. R2(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −2 with K1(A, C) = 0 and
K2(A, C) = σ2

C/ν(A), A ∈ Ac.
2. For all α ∈ (0, 1)\{1/2}, R3,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1

with K1(A, C) = E[C(0)] and K2(A, C) = σCqα/[ν(A)]
1
2 , A ∈ Ac.

3. For all α ∈ (0, 1), R4,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1 with

K1(A, C) = E[C(0)] and K2(A, C) = σCφ(qα)/{[ν(A)]
1
2 (1− α)}, A ∈ Ac.

Proof. Since Z is sample-continuous, it is measurable. Thus, the function D being measurable
from ((0, ∞),B((0, ∞))) to (R,B(R)), we obtain that C is measurable. Moreover, it follows from
the stationarity of C (due to the stationarity of Z) and Condition (43) that, for all x ∈ R2,
E [|C(x)|] = E [|C(0)|] < ∞. Therefore, the function x �→ E[|C(x)|] is constant and hence obviously
locally integrable. Consequently, Proposition 1 gives that C has a.s. locally integrable sample paths.
Therefore, C ∈ C.

Furthermore, the assumptions enable us to apply Theorem 2 in Koch et al. (2018). The latter yields
that the random field C satisfies the CLT. Finally, since C is stationary, it satisfies (21) and has a constant
expectation. Hence, Corollary 1 gives the first result. The second result follows from Theorem 5,
Point 3. The combination of Proposition 2 and Point 4 in Theorem 5 yields the third result.

Theorem 7 directly entails the following result.

Corollary 3. Let Z, D and C be as in Theorem 7 (but without assuming that σC > 0). Moreover, assume that
D is non-decreasing and non-constant. Then:

1. R2(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −2 with K1(A, C) = 0 and
K2(A, C) = σ2

C/ν(A), A ∈ Ac.
2. For all α ∈ (0, 1)\{1/2}, R3,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1

with K1(A, C) = E[C(0)] and K2(A, C) = σCqα/[ν(A)]
1
2 , A ∈ Ac.

3. For all α ∈ (0, 1), R4,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1 with

K1(A, C) = E[C(0)] and K2(A, C) = σCφ(qα)/{[ν(A)]
1
2 (1− α)}, A ∈ Ac.

Proof. Proposition 1 in Koch et al. (2018) gives that σC > 0. Therefore, Theorem 7 yields the result.

The next results concern the Brown–Resnick and Smith max-stable random fields.
The Brown–Resnick model is of high practical interest since, owing to its flexibility, it appears as
one of the best (if not the best) models among currently available max-stable models, at least for
environmental data; see, e.g., Davison et al. (2012, Section 7.4), in the case of rainfall.
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Theorem 8. Let {Z(x)}x∈R2 be the Brown–Resnick random field associated with the variogram γW(x) = m‖x‖ψ,
where m > 0 and ψ ∈ (0, 2], or the Smith random field with covariance matrix Σ, and D be as in Theorem 7.
Let {C(x)}x∈R2 = {D(Z(x))}x∈R2 . Then, if σC > 0:

1. R2(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −2 with K1(A, C) = 0 and
K2(A, C) = σ2

C/ν(A), A ∈ Ac.
2. For all α ∈ (0, 1)\{1/2}, R3,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1

with K1(A, C) = E[C(0)] and K2(A, C) = σCqα/[ν(A)]
1
2 , A ∈ Ac.

3. For all α ∈ (0, 1), R4,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1 with

K1(A, C) = E[C(0)] and K2(A, C) = σCφ(qα)/{[ν(A)]
1
2 (1− α)}, A ∈ Ac.

Proof. We start with the proof in the case of the Brown–Resnick field. As previously mentioned,
the Brown–Resnick random field is stationary. Thus, C is stationary and hence satisfies (21) and has a
constant expectation. Moreover, we can see from the proof of Theorem 3 in Koch et al. (2018) that Z is
sample-continuous. Consequently, the same arguments as in the proof of Theorem 7 yield that C ∈ C.
Furthermore, Theorem 3 in Koch et al. (2018) gives that C satisfies the CLT. Therefore, Corollary 1 yields
the first result. The second result follows from Theorem 5, Point 3. The combination of Proposition 2
and Point 4 in Theorem 5 gives the third result.

The Smith random field is stationary as an instance of M3 random field. Thus, C is stationary
and consequently satisfies (21) and has a constant expectation. Moreover, as the Smith field
is sample-continuous, the same arguments as in the proof of Theorem 7 yield that C ∈ C.
Additionally, Theorem 4 in Koch et al. (2018) gives that C satisfies the CLT. Therefore, Corollary
1 yields the first result. The second result follows from Theorem 5, Point 3. The combination of
Proposition 2 and Point 4 in Theorem 5 gives the third result.

Next corollary easily follows from Theorem 8.

Corollary 4. Let Z, D and C be as in Theorem 8 (but without assuming that σC > 0). Moreover, assume that
D is non-decreasing and non-constant. Then:

1. R2(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −2 with K1(A, C) = 0 and
K2(A, C) = σ2

C/ν(A), A ∈ Ac.
2. For all α ∈ (0, 1)\{1/2}, R3,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1

with K1(A, C) = E[C(0)] and K2(A, C) = σCqα/[ν(A)]
1
2 , A ∈ Ac.

3. For all α ∈ (0, 1), R4,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1 with

K1(A, C) = E[C(0)] and K2(A, C) = σCφ(qα)/{[ν(A)]
1
2 (1− α)}, A ∈ Ac.

Proof. As explained in the proof of Theorem 8, both such Brown–Resnick fields and the Smith field
are stationary and sample-continuous. Furthermore, they are simple max-stable. Thus, Proposition 1
in Koch et al. (2018) gives that σC > 0. Hence, Theorem 8 yields the result.

Let ‖.‖ denote the Euclidean norm in R2. We introduce B1 =
{

x ∈ R2 : ‖x‖ = 1
}

, the unit ball
of R2. For two functions g1 and g2 from R2 to R, the notation g1(h) =

‖h‖→∞
o(g2(h)) means that

limh→∞ supu∈B1
{|g1(hu)/g2(hu)|} = 0. Moreover, lim‖h‖→∞ g1(h) = ∞ must be understood as

limh→∞ infu∈B1 {g1(hu)} = ∞.

Theorem 9. Let {Z(x)}x∈R2 be the Brown–Resnick random field built with a random field {W(x)}x∈R2 which
is sample-continuous and whose variogram satisfies

sup
x∈[0,1]2

{γW(h)− γW(x + h)} =
‖h‖→∞

o(γW(h)),
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and

lim
‖h‖→∞

γW(h)

ln(‖h‖) = ∞.

Moreover, let D be as in Theorem 7. Let {C(x)}x∈R2 = {D(Z(x))}x∈R2 . Then, if σC > 0:

1. R2(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −2 with K1(A, C) = 0 and
K2(A, C) = σ2

C/ν(A), A ∈ Ac.
2. For all α ∈ (0, 1)\{1/2}, R3,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1

with K1(A, C) = E[C(0)] and K2(A, C) = σCqα/[ν(A)]
1
2 , A ∈ Ac.

3. For all α ∈ (0, 1), R4,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1 with

K1(A, C) = E[C(0)] and K2(A, C) = σCφ(qα)/{[ν(A)]
1
2 (1− α)}, A ∈ Ac.

Proof. The same arguments as in the proof of Theorem 8 show that C satisfies (21) and has a constant
expectation. As W is sample-continuous, Proposition 13 in Kabluchko et al. (2009) gives that Z
is sample-continuous. Thus, the same arguments as in the proof of Theorem 7 show that C ∈ C.
Moreover, Remark 3 in Koch et al. (2018) gives that C satisfies the CLT. Hence, Corollary 1 gives the
first result. The second result follows from Theorem 5, Point 3. The combination of Proposition 2 and
Point 4 in Theorem 5 yields the third result.

The following result is a direct consequence of Theorem 9.

Corollary 5. Let Z, D and C be as in Theorem 9 (but without assuming that σC > 0). Moreover, assume that
D is non-decreasing and non-constant. Then:

1. R2(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −2 with K1(A, C) = 0 and
K2(A, C) = σ2

C/ν(A), A ∈ Ac.
2. For all α ∈ (0, 1)\{1/2}, R3,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1

with K1(A, C) = E[C(0)] and K2(A, C) = σCqα/[ν(A)]
1
2 , A ∈ Ac.

3. For all α ∈ (0, 1), R4,α(·, C) satisfies the axiom of asymptotic spatial homogeneity of order −1 with

K1(A, C) = E[C(0)] and K2(A, C) = σCφ(qα)/{[ν(A)]
1
2 (1− α)}, A ∈ Ac.

Proof. The random field Z is simple, stationary, sample-continuous (see the proof of Theorem 9) and
max-stable. Thus, Proposition 1 in Koch et al. (2018) gives that σC > 0. Consequently, Theorem 9 yields
the result.

We conclude this section by commenting on the damage function D(z) = I{z>u}, z > 0, for u > 0,
which is considered in Koch (2017). This function is measurable from ((0, ∞),B((0, ∞))) to (R,B(R)).
Moreover, it is bounded and hence obviously satisfies (43) for every random field Z. Additionally,
this function is non-decreasing and non-constant. Consequently, the results of Theorem 3, Point 3 and
Theorem 5, Point 2 in Koch (2017) concerning the Brown–Resnick random field associated with the
variogram γW(x) = m‖x‖ψ, where m > 0 and ψ ∈ (0, 2], and the Smith random field, are particular
cases of Corollary 4.

4. Conclusions

In this paper, we first explore the notions of spatial risk measure and corresponding axioms
introduced in Koch (2017) further as well as describe their utility for both actuarial science and practice.
Second, in the case of a general cost field, we provide sufficient conditions such that spatial risk
measures associated with expectation, variance, VaR as well as ES and induced by this cost field satisfy
the axiom of asymptotic spatial homogeneity of order 0, −2, −1 and −1, respectively. Finally, in the
case where the cost field is a function of a max-stable random field, we give sufficient conditions on
both the function and the max-stable field such that spatial risk measures associated with expectation,
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variance, VaR as well as ES and induced by the resulting cost field satisfy the axiom of asymptotic
spatial homogeneity of order 0, −2, −1 and −1, respectively. Hence, these conditions allow one to
know the rate of spatial diversification when the region under study becomes large, which is valuable
for the banking/insurance industry. Overall, this paper improves our comprehension of the concept of
spatial risk measure as well as of their properties with respect to the space variable and, among others,
generalizes several results to be found in Koch (2017).

Ongoing work consists of the study of concrete examples of spatial risk measures involving
max-stable fields and relevant damage functions. Inter alia, we apply our theory to winter storm risk
over a specific European region. As previously mentioned, max-stable fields have GEV univariate
marginal distributions with three parameters. The first step involves jointly fitting the latter and the
dependence parameters of different max-stable models (Smith, Brown–Resnick, . . . ) to wind speed
maxima using, e.g., composite likelihood methods (see, e.g., Padoan et al. 2010). Model selection
has then to be performed employing, for instance, the composite likelihood information criterion.
The second step consists in choosing an appropriate damage function and exposure field and leads,
in combination with the first one, to the cost field model. If the sufficient conditions mentioned in
Section 3.2 are met, then we can draw conclusions about the asymptotic rate of spatial diversification,
and less importantly spatial invariance under translation. Simulating from the cost field, we obtain
realizations of the normalized spatially aggregated loss on chosen sub-regions, which allow the
estimation of the spatial risk measures of interest. This enables one to check, e.g., whether the axiom of
spatial sub-additivity is satisfied.

Future work will include the study of spatial risk measures associated with other classical
risk measures (e.g., more general distorsion risk measures than VaR or ES and expectile risk
measures) and/or induced by cost fields involving other kinds of random fields than max-stable
fields. For instance, it would be worthwhile to investigate whether spatial risk measures associated
with VaR and ES can still satisfy the axiom of asymptotic spatial homogeneity of order −1 in the case
where the cost field does not satisfy the CLT.
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Abstract: This paper studies the moments and the distribution of the aggregate discounted claims
(ADCs) in a Markovian environment, where the claim arrivals, claim amounts, and forces of interest
(for discounting) are influenced by an underlying Markov process. Specifically, we assume that
claims occur according to a Markovian arrival process (MAP). The paper shows that the vector of joint
Laplace transforms of the ADC occurring in each state of the environment process by any specific time
satisfies a matrix-form first-order partial differential equation, through which a recursive formula is
derived for the moments of the ADC occurring in certain states (a subset). We also study two types
of covariances of the ADC occurring in any two subsets of the state space and with two different
time lengths. The distribution of the ADC occurring in certain states by any specific time is also
investigated. Numerical results are also presented for a two-state Markov-modulated model case.

Keywords: aggregate discounted claims; Markovian arrival process; partial integro-differential
equation; covariance

1. Introduction

Consider a line of business or an insurance portfolio to be insured by a property and casualty
insurance company. Suppose that random claims arrive in the future according to a counting process,
denoted by {N(t)}t≥0, i.e., N(t) is the random number of claims up to time t. Assume that {Tn}n≥1 is
a sequence of random claim occurrence times and {Xn}n≥1 is a sequence of corresponding random
positive claim amounts (also called claim severities), and δ(t) is the force of interest at time t, which is
modeled by a stochastic process. Then S(t) defined by

S(t) =
N(t)

∑
n=1

Xne−
∫ Tn

0 δ(s)ds , t ≥ 0 (1)

is the aggregate discounted claims (ADCs) up to certain time t, or the present value of the total amounts
paid out by the company up to time t, which describes the random change over time of the insurer’s
future liabilities at present time. Accordingly, {S(t)}t≥0 is the ADC process (compound discounted
claims) for this business. At a fixed time t, the randomness of S(t) comes from the number of claims up
to time t, claim occurrence times, and corresponding sizes as well as the values of δ(s), 0 ≤ s ≤ t. It is
an important quantity in the sense that, at the time of issue (t = 0), this quantity would help insurers
set a premium for this particular line of business, and predict and manage their future liabilities.

A simple case of model (1) is one in which the counting process {N(t)}t≥0 is a homogeneous
Poisson process, independent of claim amounts, and the force of interest is deterministic. In this
paper, we assume that the counting process {N(t)}t≥0 is a Markovian arrival process (MAP) with
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representation (γ, D0, D1), introduced by Neuts (1979). That is, claim arrivals are influenced by an
underlying continuous-time Markov process {J(t)}t≥0 on state space E = {1, 2, . . . , m} with an m×m
intensity matrix D and initial distribution γ, where D = D0 + D1 =

(
d0,ij
)
+
(
d1,ij
)
, and is assumed

to be irreducible. Precisely, d0,ij represents the intensity of transitions from state i to state j without
claim arrivals, while d1,ij(≥ 0) represents the intensity of transitions from state i to state j with an
accompanying claim, having a cumulative distribution function Fi, density function fi, k-th moment
μ
(k)
i , and Laplace transform f̂i(s) =

∫ ∞
0 e−sx fi(x)dx. Here, the process {J(t)}t≥0 models the random

environment, which affects the frequency and the severity of claims and thus the insurance business;
for example, it is well known that the weather or climate conditions have impacts on automobile,
property and casualty insurance claims.

Moreover, we assume that the force of interest process {δ(t)}t≥0 in (1) is also governed by the same
Markov process {J(t)}t≥0 and is assumed constant while staying at certain state, that is, when J(t) = i,
δ(t) = δi(> 0), for all i ∈ E. As the force of interest used for evaluation is mainly driven by the local
or global economics conditions, we would reasonably model its random fluctuations by a stochastic
process that is different from {J(t)}t≥0. Technically, we can assume a two-dimensional Markov
process as the environment or background process and other mathematical treatments would be the
same as we do below. Hence, we make the above assumption in this paper to simplify notations and
presentations. We note that studies of the influence of economic conditions such as interest and inflation
on the classical risk theory can be found in papers by Taylor (1979), Delbaen and Haezendonck (1987),
Willmot (1989), and Garrido and Léveill (2004).

The MAP has received considerable attention in recent decades due to its versatility and feasibility
in modeling stochastic insurance claims dynamics. MAPs include Poisson processes, renewal processes
with the inter-arrival times following phase-type distributions, and Markov-modulated Poisson
processes as special cases, which are intensively studied in actuarial science literature. Detailed
characteristics and properties of MAPs can be found in papers by Neuts (1979) and Asmussen (2003).
Below, we present a brief literature review on the related work based on models given by Equation (1)
(including its special cases).

Most of the studies on model (1) are under the assumption that {δ(t)}t≥0 is deterministic. For the
ADC, Léveillé and Garrido (2001a) give explicit expressions for its first two moments in the compound
renewal risk process by using renewal theory arguments, while Léveillé and Garrido (2001b) further
derive a recursive formula for the moments calculation. Léveillé et al. (2010) study the moment
generating function (mgf) of the ADC by finite and infinite time under a renewal risk model or a delayed
renewal risk model. Recently, Wang et al. (2018) studied the distribution of discounted compound
phase-type renewal sums using the analytical results of their mgf obtained by Léveillé et al. (2010).
Jang (2004) obtains the Laplace transform of the distribution of the ADC using a shot noise process.
Woo and Cheung (2013) derive recursive formulas for the moments of the ADC using techniques
used by Léveillé and Garrido (2001b), for a renewal risk process with certain dependence between the
claim arrival and the amount caused. The impact of the dependency on the ADC are illustrated
numerically. Kim and Kim (2007) derive simple expressions for the first two moments of the
ADC when the rates of claim arrivals and the claim sizes depend on the states of an underlying
Markov process. Ren (2008) studies the Laplace transform and the first two moments of the ADC
following a MAP process, and Li (2008) further derives a recursive formula for the moments of the
discounted claims for the same model. Barges et al. (2011) study the moments of the ADC in a
compound Poisson model with dependence introduced by a Farlie–Gumbel–Morgenstern (FGM)
copula; Mohd Ramli and Jang (2014) further derive Neumann series expression of the recursive
moments by using the method of successive approximation.

There are few papers that study models described by Equation (1) with a stochastic process
{δ(t)}t≥0 in the literature of actuarial science. Leveille and Adekambi (2011, 2012) study the
covariance and the joint moments of the discounted compound renewal sum at two different times
with a stochastic interest rate where the Ho–Lee–Merton and the Vasicek interest rate models are
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considered. Their idea of studying the covariance and the joint moments is adopted and extended
in this paper. Here, we assume that the components of the ADC process {S(t)}t≥0 described by
Equation (1)—the number of claims, the size of the claims, and the force of interest for discounting—are
all influenced by the same Markovian environment process, which enhances the flexibility of the model
parameter settings. It follows that S(t) depends on the trajectory of this underlying process whose states
may represent different external conditions or circumstances that affect insurance claims. The main
objective of this paper is to study the moments and the distribution of S(t) given in Equation (1),
occurring in certain states (e.g., certain conditions) by time t.

In general, while the expectation of S(t) at any given time t can be used as a reference for the
insurer’s liability, the higher moments of S(t), describing further characteristics of the random variable
such as the variability around the mean and how extreme outcomes could go, may be used to determine
the marginals on reserves. Furthermore, the distributional results regarding S(t) would be useful for
obtaining the risk measures such as the value at risk and the conditional tail expectation, which may
help insurers prevent or minimize their losses from extreme cases.

Our work is basically a generalization of some aforementioned studies. We first obtain formulas
for calculating mean, variance, and distribution of the ADC occurring in a subset of states at a certain
time. The subset may represent a collection of similar conditions that the insurer would consider them
as a whole. We then derive explicit matrix-analytic expressions for covariances of the ADC occurring in
two subsets of the state space at a certain time and those occurring in a certain subset of states with two
different time lengths. The motivation of studying these two types of covariance is that we believe they
can reveal the correlation between the random discounted sums either between different underlying
conditions or with different time lengths, and the information would be helpful for insurers to set
their capital requirements for preventing future losses, and make strategic and contingency plans.
Moreover, we obtain a matrix-form partial integro-differential equation satisfied by the distribution
function of the ADC occurring in certain subset of states. The equation can be solved numerically to
obtain the probability distribution function of the ADC, which again could be useful for measuring
insurers’ risks of insolvency.

The rest of the paper is organized as follows. In Section 2, we study the joint Laplace transforms
of the ADC occurring in each state by time t and pay attention to some special cases. Recursive
formulas for calculating the moments of the ADC occurring in certain states are obtained. A formula
for computing the covariance of the ADC occurring in two subsets of the state space is derived in
Section 3, while the covariance of the ADC occurring in certain states with two different time lengths is
studied in Section 4. The distribution of the ADC occurring in certain states is investigated in Section 5.
Finally, some numerical illustrations are presented in Section 6.

2. The Laplace Transforms and Moments

We first decompose S(t) into m components as

S(t) =
m

∑
j=1

Sj(t)

where

Sj(t) =
N(t)

∑
n=1

Xn I(J(Tn) = j)e−
∫ Tn

0 δ(s)ds

is the ADC occurring in state j ∈ E, with I(·) being the indicator function. For a given k(1 ≤ k ≤ m),
1 ≤ l1 < l2 < . . . < lk ≤ m denote Ek = {l1, l2, . . . , lk} ⊆ E, a sub-state space of E. We then define

SEk (t) = ∑
j∈Ek

Sj(t)
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to be the ADC occurring in the subset of state space Ek. In particular, SE(t) = S(t) and S{j}(t) = Sj(t).
If δ(t) = 0 and Xi ≡ 1 for all i ∈ N+, then SEk (t) = NEk (t), where NEk (t) is the number of claims
occurring in the sub-state space Ek by time t.

Let Pi and Ei denote conditional probability and conditional expectation given J(0) = i,
respectively. Define

iL(ξ1, ξ2, . . . , ξm; t) = Ei

[
e−∑m

j=1 ξ jSj(t)
]

, ξ j ≥ 0, t ≥ 0, i ∈ E (2)

to be the joint Laplace transform of S1(t), S2(t), . . . , Sm(t), given that the initial state is i. In particular,
we have

iL(ξ; t) = Ei

[
e−ξS(t)

]
= iL(ξ, ξ, . . . , ξ; t)

iLEk (ξ; t) = Ei

[
e−ξSEk

(t)
]
= iL(ξ1, ξ2, . . . , ξm; t)

∣∣
ξ j=ξ I(j=ln),n=1,2,...,k

iLj(ξ j; t) = Ei

[
e−ξ jSj(t)

]
= iL(ξ1, ξ2, . . . , ξm; t)

∣∣
ξk=0,k �=j .

We define, for n ∈ N+, the n-th moment of S(t), Sj(t), and SEk (t), respectively, as

iV(n)(t) = Ei [Sn(t)] , i ∈ E

iV
(n)
j (t) = Ei

[
Sn

j (t)
]

, i, j ∈ E

iV
(n)
Ek

(t) = Ei

[
Sn

Ek
(t)
]

, 1 ≤ k ≤ m

given that the initial state is i.
We write the following column vectors for the Laplace transforms

L(ξ1, ξ2, . . . , ξm; t) =
(

1L(ξ1, ξ2, . . . , ξm; t), . . . , mL(ξ1, ξ2, . . . , ξm; t)
)�

L(ξ; t) =
(

1L(ξ; t), 2L(ξ; t), . . . , mL(ξ; t)
)�

LEk (ξ; t) =
(

1LEk (ξ; t), 2LEk (ξ; t), . . . , mLEk (ξ; t)
)�

Lj(ξ j; t) =
(

1Lj(ξ j; t), 2Lj(ξ j; t), . . . , mLj(ξ j; t)
)�,

with L(0; t) = LEk (0; t) = Lj(0; t) = 1 = (1, 1, . . . , 1)�.
In this section, we first show that L(ξ1, ξ2, . . . , ξm; t) satisfies a matrix-form first-order partial

differential equation, and derive recursive formulas for calculating the moments of various ADC
depending on the initial state of the underlying Markovian process. We also consider some
special cases.

Theorem 1. L(ξ1, ξ2, . . . , ξm; t) satisfies

∂L(ξ1, ξ2, . . . , ξm; t)
∂t

+ δ
m

∑
j=1

ξ j
∂L(ξ1, ξ2, . . . , ξm; t)

∂ξ j

= D0L(ξ1, ξ2, . . . , ξm; t) + f̂(ξ1, ξ2, . . . , ξm)D1 L(ξ1, ξ2, . . . , ξm; t)

(3)

where δ = diag(δ1, δ2, . . . , δm) and f̂(ξ1, ξ2, . . . , ξm) = diag
(

f̂1(ξ1), f̂2(ξ2), . . . , f̂m(ξm)
)
.
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Proof. For an infinitesimal h > 0, conditioning on three possible events which can occur in [0, h]—no
change in the MAP phase (state), a change in the MAP phase accompanied by no claims, and a change
in the MAP phase accompanied by a claim—we have

iL(ξ1, ξ2, . . . , ξm; t) = [1 + d0,iih] iL
(
ξ1e−δih, ξ2e−δih, . . . , ξme−δih ; t− h

)
+

m

∑
k=1,k �=i

d0,ikh kL
(
ξ1e−δih, ξ2e−δih, . . . , ξme−δih ; t− h

)
+

m

∑
k=1

d1,ikh f̂i
(
ξie−δih

)
kL
(
ξ1e−δih, ξ2e−δih, . . . , ξme−δih ; t− h

)
.

(4)

As iL(ξ1, ξ2, . . . , ξm; t) is differentiable with respect to ξi (i ∈ E) and t (the differentiability of iL
with respect to t is justified in Appendix), we have

iL
(
ξ1e−δih, ξ2e−δih, . . . , ξme−δih ; t− h

)
= iL(ξ1, ξ2, . . . , ξm; t)− h

∂ iL(ξ1, ξ2, . . . , ξm; t)
∂t

− δih
m

∑
l=1

ξl
∂ iL(ξ1, ξ2, . . . , ξm; t)

∂ξl
+ o(h)

(5)

where limh→0(o(h)/h) = 0. Substituting the expression above into Equation (4), dividing both sides
by h, and letting h → 0, we have

δi

m

∑
l=1

ξl
∂ iL(ξ1, ξ2, . . . , ξm; t)

∂ξl
+

∂ iL(ξ1, ξ2, . . . , ξm; t)
∂t

=
m

∑
k=1

d0,ik kL(ξ1, ξ2, . . . , ξm; t) +
m

∑
k=1

d1,ik f̂i
(
ξi
)

kL(ξ1, ξ2, . . . , ξm; t) .
(6)

Rewriting Equation (6) in matrix form gives Equation (3).

Remark 1. Using the same argument, we have the follow results.

(1) LEk (ξ; t) satisfies the following matrix-form first-order partial differential equation:

∂LEk (ξ; t)
∂t

+ δξ
∂LEk (ξ; t)

∂ξ
= D0LEk (ξ; t) + f̂Ek (ξ)D1LEk (ξ; t) (7)

where f̂Ek (ξ) is an m× m diagonal matrix with the li-th entry being f̂li (ξ), for i = 1, 2, . . . , k and all
other entries being 1.

(2) L(ξ; t) satisfies

∂L(ξ; t)
∂t

+ δξ
∂L(ξ; t)

∂ξ
= D0L(ξ; t) + f̂(ξ)D1L(ξ; t)

where f̂(ξ) = diag
(

f̂1(ξ), f̂2(ξ), . . . , f̂m(ξ)
)
.

(3) Lj(ξ j; t) satisfies

∂Lj(ξ j; t)
∂t

+ δξ j
∂Lj(ξ j; t)

∂ξ j
= D0Lj(ξ j; t) + f̂j(ξ j)D1Lj(ξ j; t)

where f̂j(ξ j) = diag
(
1, 1, . . . , f̂ j(ξ j), 1, . . . , 1

)
.
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We now study the moments of the ADC considered in Theorem 1. Denote the vectors of the n-th
moment of the corresponding ADC as

Vn(t) =
(

1V(n)(t), 2V(n)(t), . . . , mV(n)(t)
)�

Vn,Ek (t) =
(

1V(n)
Ek

(t), 2V(n)
Ek

(t), . . . , mV(n)
Ek

(t)
)�

Vn,j(t) =
(

1V(n)
j (t), 2V(n)

j (t), . . . , mV(n)
j (t)

)� .

From Equation (7), we obtain in Theorem 2 a matrix-form first-order differential equation satisfied by
the moments of SEk (t), Vn,Ek (t) and then, in Theorem 3, obtain recursive formulas for calculating them.

Theorem 2. The moments of SEk (t) satisfy

V′n,Ek
(t) +

(
nδ−D0 −D1

)
Vn,Ek (t) =

n

∑
r=1

(
n
r

)
IEk μr D1 Vn−r,Ek (t) , n ∈ N

+, (8)

with initial conditions Vn,Ek (0) = 0 and V0,Ek (t) = 1. In particular,

V′1,Ek
(t) +

(
δ−D0 −D1

)
V1,Ek (t) = IEk μ1D11 , t ≥ 0

where μr = diag
(
μ
(r)
1 , μ

(r)
2 , . . . , μ

(r)
m
)
, IEk is an m×m diagonal matrix with the li-th entry being 1, for i =

1, 2, . . . , k, and all other diagonal entries being 0.

Proof. By Taylor’s expansion (its existence is easily justified as we assume that fi has moment μ
(n)
i for

any n ∈ N+), we have

f̂i(ξ) = 1 +
∞

∑
n=1

(−1)nξn

n!
μ
(n)
i .

In matrix notation,

f̂Ek (ξ) = 1 +
∞

∑
n=1

(−1)nξn

n!
IEk μn . (9)

Substituting Equation (9) together with

LEk (ξ; t) =
∞

∑
n=0

(−1)nξn

n!
Vn,Ek (t)

into Equation (7) and equating the coefficients of ξn give Equation (8).

Corollary 1. We have the following results for the moments of S(t) and Sj(t).

(i) Vn(t) satisfies the matrix-form first-order differential equation:

V′n(t) +
(
nδ−D0 −D1

)
Vn(t) =

n

∑
r=1

(
n
r

)
μrD1 Vn−r(t) , n ∈ N

+

where Vn(0) = 0 and V0(t) = 1. In particular, V1(t) satisfies

V′1(t) +
(
δ−D0 −D1

)
V1(t) = μ1D11 , t ≥ 0.

(ii) Vn,j(t) satisfies

V′n,j(t) +
(
nδ−D0 −D1

)
Vn,j(t) =

n

∑
r=1

(
n
r

)
IjμrD1 Vn−r,j(t)
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where Ij = I{j} is a diagonal matrix with the j-th entry being 1, and 0 otherwise, Vn,j(0) = 0 and
V0,j(t) = 1. In particular, V1,j(t) satisfies

V′1,j(t) +
(
δ−D0 −D1

)
V1,j(t) = Ijμ1D11 , t ≥ 0.

Solving differential Equation (8) with Vn,Ek (0) = 0, we obtain the following recursive formulas
for Vn,Ek (t).

Theorem 3. For t > 0 and n ∈ N+, we have

Vn,Ek (t) =
n

∑
r=1

(
n
r

) ∫ t

0
e−
(

n δ−(D0+D1)
)

x IEk μrD1Vn−r,Ek (t− x)dx .

In particular,

V1,Ek (t) =
∫ t

0
e−
(

δ−(D0+D1)
)

xdx IEk μ1 D11

= [δ− (D0 + D1)]
−1
[
I− e−[δ−(D0+D1)]t

]
IEk μ1 D11 .

(10)

Clearly, we have V1,Ek (t) + V1,Ec
k
(t) = V1(t), where Ec

k = E \ Ek.

Corollary 2. If we set Ek = E and Ek = {j} in Theorem 3, we have the following recursive formulas for the
moments of S(t) and Sj(t):

Vn(t) =
n

∑
k=1

(
n
k

) ∫ t

0
e−
(

n δ−(D0+D1)
)

xμkD1Vn−k(t− x)dx

Vn,j(t) =
n

∑
k=1

(
n
k

) ∫ t

0
e−
(

n δ−(D0+D1)
)

x IjμkD1Vn−k,j(t− x)dx .

In particular,

V1(t) = [δ− (D0 + D1)]
−1
[
I− e−[δ−(D0+D1)]t

]
μ1D11

V1,j(t) = [δ− (D0 + D1)]
−1
[
I− e−[δ−(D0+D1)]t

]
Ijμ1D11 .

Remark 2. When t → ∞, we have the following asymptotic results for the moments of the ADC for n ∈ N+:

Vn,Ek (∞) = [nδ− (D0 + D1)]
−1

n

∑
r=1

(
n
r

)
IEk μrD1Vn−r,Ek (∞)

Vn(∞) = [nδ− (D0 + D1)]
−1

n

∑
r=1

(
n
r

)
μr D1Vn−r(∞)

Vn,j(∞) = [nδ− (D0 + D1)]
−1

n

∑
r=1

(
n
r

)
Ij μr D1Vn−r,j(∞)

where V0,Ek (∞) = V0(∞) = V0,j(∞) = 1.

3. The Covariance of ADC Occurring in Two Sub-State Spaces

In this section, we first calculate the joint moment of the ADC occurring in two subsets of the
state space and then the covariance between them could be calculated.
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For 1 ≤ l1 < l2 < . . . < lk ≤ m and 1 ≤ n1 < n2 < . . . < nj ≤ m, where 2 ≤ k + j ≤ m,
denote Ek = {l1, l2, . . . , lk} and Ej = {n1, n2, . . . , nj} to be two disjoint subsets of E, i.e., Ek ∩ Ej = ∅.
The aggregate discounted claim amounts occurring in Ek and Ej are

SEk (t) = ∑
i∈Ek

Si(t), SEj(t) = ∑
i∈Ej

Si(t) .

Define

iLEk ,Ej(ξk, ξ j; t) = Ei

[
e
−ξkSEk

(t)−ξ jSEj
(t)]

to be the joint Laplace transform of SEk (t) and SEj(t). Let LEk ,Ej(ξk, ξ j; t) be a column vector with the
i-th entry being iLEk ,Ej(ξk, ξ j; t). Moreover, let

iVEk ,Ej(t) = Ei

[
SEk (t)SEj(t)

]
be the joint moment of SEk (t) and SEj(t). Denote VEk ,Ej(t) as an m× 1 column vector with the i-th
entry being iVEk ,Ej(t). A matrix-form integral expression of VEk ,Ej(t) and its asymptotic formula when
t → ∞ are presented in the theorem below.

Theorem 4. For two disjoint subsets of E, Ek and Ej, the joint moment of SEk (t) and SEj(t) satisfies

VEk ,Ej(t) =
∫ t

0
e−
(

2δ−(D0+D1)
)

x IEk μ1 D1V1,Ej(t− x)dx

+
∫ t

0
e−
(

2δ−(D0+D1)
)

x IEj μ1 D1V1,Ek (t− x)dx
(11)

where V1,Ek (t) is given by Equation (10) in Theorem 3. When t → ∞, we have

VEk ,Ej(∞) =
[
2δ− (D0 + D1)

]−1
[
IEk μ1D1V1,Ej(∞) + IEj μ1 D1V1,Ek (∞)

]
. (12)

Proof. Following from Equation (3), we have

∂LEk ,Ej(ξk, ξ j; t)

∂t
+ δξk

∂LEk ,Ej(ξk, ξ j; t)

∂ξk
+ δξ j

∂LEk ,Ej(ξk, ξ j; t)

∂ξ j

= D0LEk ,Ej(ξk, ξ j; t) + f̂Ek ,Ej(ξk, ξ j)D1 LEk ,Ej(ξk, ξ j; t)
(13)

where f̂Ek ,Ej(ξk, ξ j) is a diagonal matrix with the li-th entry being f̂li (ξk), for i = 1, 2, . . . , k, with the

ni-th entry being f̂ni (ξ j), for i = 1, 2, . . . , j, and all other elements being 1.
Taking partial derivatives with respect to ξk and ξ j on both sides of Equation (13), setting ξk = 0

and ξ j = 0, and noting that

iVEk ,Ej(t) =
∂2

iLEk ,Ej(ξk, ξ j; t)

∂ξk∂ξ j

∣∣∣
ξk=ξ j=0

,

we obtain the following matrix-form first-order differential equation for VEk ,Ej(t):

V ′
Ek ,Ej

(t) + [2δ−D0 −D1]VEk ,Ej(t) = IEk μ1D1V1,Ej(t) + IEj μ1 D1V1,Ek (t) .

Solving it gives Equation (11).
Letting t → ∞ in Equation (11), we obtain expression (12) for the joint moment of SEk (∞) and

SEj(∞).
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Remark 3. If Ek = {k} and Ej = {j}, and k �= j, we have

V{k},{j}(t) =
∫ t

0
e−
(

2δ−(D0+D1)
)

x Ijμ1D1V1,k(t− x)dx

+
∫ t

0
e−
(

2δ−(D0+D1)
)

xIk μ1D1V1,j(t− x)dx .

When t → ∞, the joint moment of Sk(∞) and Sj(∞) can be expressed as

V{k},{j}(∞) =
[
2δ− (D0 + D1)

]−1 [
Ij μ1D1V1,k(∞) + Ik μ1 D1V1,j(∞)

]
.

Remark 4. If two subsets Ek and Ej are not disjoint, i.e., Ek ∩ Ej = Ekj �= ∅, then

Covi
(
SEk (t), SEj(t)

)
= Covi

(
SEk\Ekj

(t) + SEkj(t), SEj\Ekj
(t) + SEkj(t)

)
= Covi

(
SEk\Ekj

(t), SEkj(t)
)
+ Covi

(
SEj\Ekj

(t), SEkj(t)
)

+ Covi

(
SEk\Ekj

(t), SEj\Ekj
(t)
)
+ Vari

(
SEkj(t)

)
.

All the covariance terms in the expression above are for ADCs occurring in two disjoint sets.

4. The Covariance of the ADC with Two Different Time Lengths

In this section, we investigate the covariance of the ADCs occurring in two (overlapped) time
periods, i.e., we want to evaluate

Covi(SEk (t), SEk (t + h)) � Cov(SEk (t), SEk (t + h)
∣∣J(0) = i)

= Ei
[
SEk (t)SEk (t + h)

]−Ei[SEk (t)]Ei[SEk (t + h)]

for t, h > 0 and Ek = {l1, l2, . . . , lk} with k ≤ m. Denote REk (t, t + h) as a column vector with the i-th
entry being Ei

[
SEk (t)SEk (t + h)

]
. In the following, we first show in a lemma a result that is needed

for deriving the expression for REk (t, t + h). We then present an explicit formula of REk (t, t + h) in a
theorem below.

As SEk (t + h) = SEk (t + h)− SEk (t) + SEk (t), we have

Ei
[
SEk (t)SEk (t + h)

]
= Ei

[
S2

Ek
(t)
]
+Ei

[
SEk (t)

(
SEk (t + h)− SEk (t)

)]
. (14)

Define Ft = σ(S(v); 0 ≤ v ≤ t) to be σ-algebra generated by the ADC process by time t. Using the law
of iterated expectation, we have

Ei
[
SEk (t)

(
SEk (t + h)− SEk (t)

)]
= Ei

{
E
[
SEk (t)

(
SEk (t + h)− SEk (t)

)∣∣Ft
]}

= Ei
{

SEk (t)E
[(

SEk (t + h)− SEk (t)
)∣∣Ft

]}
= Ei

{
SEk (t)e

− ∫ t
0 δ(s)ds

E
[(

SEk (t, t + h)
)∣∣Ft

]}
= Ei

{
SEk (t)e

− ∫ t
0 δ(s)ds

E
[(

SEk (t, t + h)
)∣∣J(t)]}

=
m

∑
j=1

Ei

{
SEk (t)e

− ∫ t
0 δ(s)ds

E
[(

SEk (t, t + h)
)∣∣J(t) = j

]}
P(J(t) = j|J(0) = i)

=
m

∑
j=1

Ei

[
SEk (t)e

− ∫ t
0 δ(s)ds I(J(t) = j)

]
Ej[SEk (h)]P(J(t) = j|J(0) = i)

(15)

where SEk (t, t + h) is the present value, at time t, of the claims occurring in states within Ek over
(t, t + h].
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Denote MEk (t) =
(

Mi,j,Ek (t)
)

m×m, where

Mi,j,Ek (t) = Ei
[
SEk (t)e

− ∫ t
0 δ(s)ds I(J(t) = j)

]
.

The following lemma gives a matrix-form integral expression for MEk (t).

Lemma 1. MEk (t) is of the form

MEk (t) =
∫ t

0
e−
(

2δ−(D0+D1)
)

x IEk μ1 D1v(t− x)dx (16)

where v(t) is a matrix with (i, j)-th element being

vi,j(t) = Ei

[
e−
∫ t

0 δ(s)ds I(J(t) = j)
]

, i, j ∈ E.

Proof. Conditioning on the events that may occur over an infinitesimal interval (0, Δt), we have

Mi,j,Ek (t) = (1 + d0,iiΔt)e−2δiΔt Mi,j,Ek (t− Δt) + ∑
l �=i

d0,ilΔt e−2δiΔt Ml,j,Ek
(t− Δt)

+
m

∑
l=1

d1,il Δt e−2δiΔt
[

I(i ∈ Ek)μ
(1)
i El

(
e−
∫ t

Δt δ(s)ds I(J(t) = j)
)
+ Ml,j,Ek

(t− Δt)
]

.
(17)

We can then obtain a matrix-form differential equation for MEk (t) from Equation (17) as follows:

M′
Ek
(t) = (D0 + D1 − 2δ)MEk (t) + IEk μ1 D1v(t) , (18)

with MEk (0) = 0. In fact, it is easy to show that v(t) = e(D0+D1−δ)t, with v(0) = I and v(∞) = 0.
Solving Equation (18) gives Equation (16).

Let qi,j(t) = Pi(J(t) = j). Then Q(t) =
(
qi,j(t)

)
m×m is the transition matrix of the underlying

Markov process {J(t)}t≥0 at time t. It follows from Ren (2008) that Q(t) = e(D0+D1)t.

Theorem 5. REk (t, t + h) can be expressed as

REk (t, t + h) = V2,Ek (t) + (MEk ◦Q)(t)V1,Ek (h) (19)

where (MEk ◦Q)(t) is the Hadamard product of MEk (t) and Q(t), i.e., the (i, j)-th element of (MEk ◦Q)(t) is
Mi,j,Ek (t)× qi,j(t), and MEk (t) is given by Equation (16) in Lemma 1.

Proof. Equation (19) follows immediately from Equations (14) and (15).

Remark 5. If Ek = E or Ek = {k}, Equation (19) simplifies to the joint moment of S(t) and S(t + h), or the
joint moment of Sk(t) and Sk(t + h).

5. The Distributions of the ADC

In this section, we investigate the distributions of SEk (t) and its two special cases, S(t) and Sk(t),
for Ek = {l1, l2, . . . , lk} ⊆ E. To precede, we define for x ≥ 0 and i ∈ E,

Gi(x, t) = Pi(S(t) ≤ x)

Gi,k(x, t) = Pi(Sk(t) ≤ x)

Gi,Ek (x, t) = Pi
(
SEk (t) ≤ x

)
,
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with the following conditions:

Gi(x, 0) = Gi,k(x, 0) = Gi,Ek (x, 0) = 1, x ≥ 0

Gi(0, t) = Pi(N(t) = 0)

Gi,k(0, t) = Pi(Nk(t) = 0)

Gi,Ek (0, t) = Pi
(

NEk (t) = 0
)

where Nk(t) = ∑
N(t)
l=1 I(J(Tl) = k) is the number of claims occurring in state k and NEk (t) = ∑j∈Ek

Nj(t)
is the number of claims occurring in the subset Ek. Denote

G(x, t) =
(
G1(x, t), G2(x, t), . . . , Gm(x, t)

)�
Gk(x, t) =

(
G1,k(x, t), G2,k(x, t), . . . , Gm,k(x, t)

)�
GEk (x, t) =

(
G1,Ek (x, t), G2,Ek (x, t), . . . , Gm,Ek (x, t)

)� .

We present in the theorem below that GEk (x, t) satisfies a first-order partial integro-differential equation
in matrix form.

Theorem 6. GEk (x, t) satisfies

∂GEk (x, t)
∂t

− xδ
∂GEk (x, t)

∂x

= (D0 + D1 − IEk D1)GEk (x, t) +
∫ x

0
IEk f(y)D1 GEk (x− y, t)dy ,

(20)

with initial conditions
GEk (x, 0) = 1, GEk (0, t) = e(D0+D1−IEk

D1)t1 (21)

where GEk (0, t) is the solution of the differential equation obtained from Equation (20) by setting x = 0.

Proof. Using the same arguments as in Section 2, we have, by conditioning on events that may occur
over (0, h],

Gi,Ek (x, t) = [1 + d0,iih]Gi,Ek

(
xeδih, t− h

)
+

m

∑
j=1,j �=i

d0,ijhGj,Ek

(
xeδih, t− h

)
+

m

∑
j=1

d1,ijh Gj,Ek

(
xeδih, t− h

)
, i �∈ Ek .

(22)

As Gi,Ek (x, t) is differentiable with respect to x and t, we have

Gi,Ek

(
xeδih, t− h

)
= Gi,Ek (x, t) + δixh

∂Gi,Ek (x, t)
∂x

− h
∂Gi,Ek (x, t)

∂t
+ o(h) . (23)

The justification of Equation (23) can be done similarly as that for Equation (5) (see Appendix A).
Substituting Equation (23) into Equation (22), rearranging terms, dividing both sides by h, and taking
limit as h → 0, give

∂Gi,Ek (x, t)
∂t

− δix
∂Gi,Ek (x, t)

∂x
=

m

∑
j=1

d0,ijGj,Ek (x, t) +
m

∑
j=1

d1,ijGj,Ek (x, t) , i �∈ Ek .
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For i ∈ Ek = {l1, l2, . . . , lk}, we have

Gi,Ek (x, t) = [1 + d0,iih]Gi,Ek

(
xeδih, t− h

)
+

m

∑
j=1,j �=i

d0,ikhGj,Ek

(
xeδih, t− h

)

+
m

∑
j=1

d1,ijh
∫ xeδi h

0
fi(y)Gj,Ek

(
xeδih − y, t− h

)
dy .

Taylor’s expansion gives

∂Gi,Ek (x, t)
∂t

− δix
∂Gi,Ek (x, t)

∂x

=
m

∑
j=1

d0,ijGj,Ek (x, t) +
m

∑
j=1

d1,ij

∫ x

0
fi(y)Gj,Ek (x− y, t)dy , i ∈ Ek .

Equations for i ∈ Ek and i �∈ Ek can then be expressed in matrix form (20).

Remark 6. If we set Ek = E and Ek = {k}, respectively, we have the following results:

∂G(x, t)
∂t

− xδ
∂G(x, t)

∂x
= D0G(x, t) +

∫ x

0
f(y)D1G(x− y, t)dy

∂Gk(x, t)
∂t

− xδ
∂Gk(x, t)

∂x
= (D0 + D1 − Ik D1)Gk(x, t) +

∫ x

0
Ikf(y)D1Gk(x− y, t)dy ,

(24)

with initial conditions

G(x, 0) = 1, G(0, t) = eD0t1

Gk(x, 0) = 1, Gk(0, t) = e(D0+D1−IkD1)t1 .

Here, Gk(0, t) is the solution of the differential equation obtained from Equation (24) by setting x = 0.

Remark 7. The matrix-form partial integro-differential Equation (20) with the corresponding initial conditions
given by Equation (21) may be solved numerically as follows.

(a) For two infinitesimal h1 and h2, we set GEk (lh1, 0) = 1, for l = 1, 2, . . . , and we calculate GEk (0, nh2)

using Equation (21) for n = 1, 2, . . . .
(b) With Equation (20), GEk (lh1, nh2) can be calculated recursively, for n, l = 1, 2, . . . , by

GEk (lh1, nh2) =
[
I− lh2 δ− h2(D0 + D1 − IEk D1)

]−1

×
[
GEk (lh1, (n− 1)h2)− lh2 δGEk

(
(l − 1)h1, nh2

)
+ h2 h1

l−1

∑
j=0

IEk f(jh1)D1GEk

(
(l − 1− j)h1, nh2

)]
.

Remark 8. If fi(x) = βie−βi x, βi > 0, then f(x) = βe−βx, with f′(x) = −βf(x), where
β = diag(β1, β2, . . . , βm). Taking partial derivative with respect to x on both sides of Equation (20) and
performing some manipulations, we obtain the following matrix-form second-order partial differential equation
for GEk (x, t) :

∂2GEk (x, t)
∂t∂x

− xδ
∂2GEk (x, t)

∂x2 + IEk β
∂GEk (x, t)

∂t

+
(
δ−D0 −D1 + IEk (xδβ + D1)

)∂GEk (x, t)
∂x

− IEk (βD0 + D1)GEk (x, t) = 0 .

(25)
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This partial differential equation can also be solved numerically by using forward finite difference methods.

Remark 9. Li et al. (2015) show that, when δ(s) = 0, Gi(x, t) can be used to find an expression for the density
of the time of ruin in a MAP risk model.

6. Numerical Illustrations

In this section, we consider a two-state Markov-modulated with intensity matrix

A =

⎛⎝ −1/4 1/4

3/4 −3/4

⎞⎠ .

We also assume that f1(x) = e−x, f2(x) = 0.5e−0.5x, x > 0, λ1 = 1, λ2 = 2/3, δ1 = 0.03, and
δ2 = 0.05. Table 1 gives the first moments of S1(t) and S2(t) and their covariance for t = 1, 2, 5, 10, 20, 30,
and ∞, given J(0) = 1 and J(0) = 2, respectively, in which the covariances, for i = 1, 2, are calculated by

Covi(t) � Cov
(
S1(t), S2(t)

∣∣J(0) = i
)
= Ei

[
S1(t)S2(t)

]−Ei[S1(t)]Ei[S2(t)].

It shows that, as expected, the expected values of S1(t) and S2(t) (and hence S(t)) are increasing in t
given J(0) = i for i = 1, 2. It is not surprised to see that S1(t) and S2(t) are negatively correlated for
any t, as claims occurring in the two states compete with each other. Moreover, the larger the time t,
the more the negative correlation between S1(t) and S2(t).

Figure 1 plots the variances of S(t), S1(t), and S2(t), given J(0) = 1, for 0 ≤ t ≤ 150. The variances
all increase with time t. The variance of S(t) is bigger than those of S1(t) and S2(t) for a fixed t. When
time t goes to ∞, the three variances converge.

Tables 2 and 3 display the covariances of the ADC at time t and t + h, given J(0) = 1, for some
selected t values and for h = 1 and h = 5. It is shown that S(t) and S(t + h), S1(t) and S1(t + h),
and S2(t) and S2(t + h) are all positively correlated. Moreover, when t increases, the covariances
increase; moreover, when h increases, the covariances decrease. When t → ∞, the covariances of the
pairs S(t) and S(t + h), Si(t), and Si(t + h) converge to the variances of S(∞) and Si(∞), respectively.
Similar patterns should be expected for J(0) = 2.

Finally, we display in Figure 2 the numerical values of the distribution function of S(t) with
initial state i, Gi(x, t) = Pi(S(t) ≤ x), for t = 1 and 4, 0 ≤ x ≤ 25, and i = 1, 2. Note that
G(x, t) = (G1(x, t), G2(x, t))� satisfies the partial differential Equation (25); its solution can be obtained
numerically. From the graph, it shows clearly that the probability of S(t) being bigger than a fixed x
is smaller for small values of t as expected. For most x values, G1(x, t) is bigger than G2(x, t) due to
the fact that the underlying Markov process in our example tends to stay in state 1 more often than
staying at state 2.

Table 1. Expected values and covariances of S1(t) and S2(t).

t J(0) = 1 J(0) = 2

E1[S1(t)] E1[S2(t)] Cov1(t) E2[S1(t)] E2[S2(t)] Cov2(t)

1 0.8948 0.1196 −0.0599 0.2690 0.9444 −0.1412
2 1.6665 0.3607 −0.2832 0.8117 1.4717 −0.5475
5 3.7056 1.1998 −1.3303 2.6996 2.4452 −1.8361

10 6.6248 2.4695 −2.9252 5.5563 3.6966 −3.4208
20 11.1330 4.4336 −5.0170 9.9757 5.6221 −5.4630
30 14.3123 5.8188 −6.1938 13.0922 6.9800 −6.6142
∞ 21.9178 9.1324 −7.9012 20.5479 10.2283 −8.2962
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Figure 1. Variances of S(t), S1(t) and S2(t) with initial state J(0) = 1.

Table 2. Covariances of discounted claims at t and t + 1.

t J(0) = 1

Cov1

(
S(t), S(t + 1)

)
Cov1(S1(t), S1(t + 1)) Cov1(S2(t), S2(t + 1))

1 1.9327 1.7143 0.5328
2 3.9024 3.2169 1.7021
5 9.5545 7.3372 5.8448
10 17.0771 12.8965 11.4471
20 26.6637 20.2686 18.0782
30 31.9796 24.5961 21.2571
∞ 40.3073 32.2449 23.8648

Table 3. Covariances of discounted claims at t and t + 5.

t J(0) = 1

Cov1

(
S(t), S(t + 5)

)
Cov1(S1(t), S1(t + 5)) Cov1(S2(t), S2(t + 5))

1 0.8651 1.2213 0.4437
2 1.3181 2.0228 1.4775
5 3.4481 4.5219 5.2676
10 7.5945 8.5121 10.5187
20 15.2651 14.9882 16.9435
30 21.6039 19.7868 20.2186
∞ 40.3073 32.2449 23.8648

(a) (b)

Figure 2. Distribution functions of S(1) in (a) and S(4) in (b) for J(0) = 1, 2.
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Appendix A. Justification of Equation (5)

It is easy to see that the partial derivation of iL(ξ1, ξ2, . . . , ξm; t) in Equation (2) with respect to ξi
exists for i ∈ E. For its partial derivation with respect to t, we have

∂ iL(ξ1, ξ2, . . . , ξm; t)
∂t

= − lim
h→0

iL(ξ1, ξ2, . . . , ξm; t)− iL(ξ1, ξ2, . . . , ξm; t + h)
h

= − lim
h→0

1
h
Ei

[
e−∑m

j=1 ξ jSj(t)
(

1− e−∑m
j=1 ξ j(Sj(t+h)−Sj(t))

)]
.

Now, under certain regularity conditions, we obtain

lim
h→0

Ei

[
e−∑m

j=1 ξ jSj(t) 1− e−∑m
j=1 ξ j(Sj(t+h)−Sj(t))

h

]
≤ lim

h→0
Ei

[
1− e−∑m

j=1 ξ j(Sj(t+h)−Sj(t))

h

]

= lim
h→0

1−Ei

[
e−∑m

j=1 ξ j(Sj(t+h)−Sj(t))
]

h
.

Let ξ = max(ξ1, ξ2, . . . , ξm). Then

limh→0

1−Ei

[
e
−∑m

j=1 ξ j(Sj(t+h)−Sj(t))
]

h ≤ limh→0

1−Ei

[
e
−ξ ∑m

j=1(Sj(t+h)−Sj(t))
]

h

= limh→0
1−Ei[e−ξ(S(t+h)−S(t))]

h

= limh→0
1−Ei[e−ξS(h)]

h .

(A1)

Since

Ei

[
e−ξS(h)

]
= [1 + d0,iih] +

m

∑
k=1,k �=i

d0,ikh +
m

∑
k=1

d1,ikh f̂i
(
ξe−δih

)
+ o(h)

= 1 +
m

∑
k=1

d0,ikh +
m

∑
k=1

d1,ikh f̂i
(
ξe−δih

)
+ o(h)

= 1 +
m

∑
k=1

(d0,ik + d1,ik)h +
m

∑
k=1

d1,ikh
[

f̂i
(
ξe−δih

)− 1
]
+ o(h)

= 1 +
m

∑
k=1

d1,ikh
[

f̂i
(
ξe−δih

)− 1
]
+ o(h) ,

it follows from Equation (A1) that

lim
h→0

1−Ei

[
e−∑m

j=1 ξ j(Sj(t+h)−Sj(t))
]

h
≤ lim

h→0

1−Ei

[
e−ξS(h)

]
h

=

(
m

∑
k=1

d1,ik

) [
1− f̂i

(
ξ
)]

,

which justifies the existence of the partial derivation of iL(ξ1, ξ2, . . . , ξm; t) with respect to t.
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Abstract: In this paper, we propose a clustering procedure of financial time series according to the
coefficient of weak lower-tail maximal dependence (WLTMD). Due to the potential asymmetry of
the matrix of WLTMD coefficients, the clustering procedure is based on a generalized weighted
cuts method instead of the dissimilarity-based methods. The performance of the new clustering
procedure is evaluated by simulation studies. Finally, we illustrate that the optimal mean-variance
portfolio constructed based on the resulting clusters manages to reduce the risk of simultaneous large
losses effectively.

Keywords: maximal tail dependence; clustering; financial time series; weighted cuts; copula

1. Introduction

It is of great interest in identifying the risk of simultaneous large losses in portfolio selection
and financial risk management. If this type of risk is identified properly, candidate assets could be
grouped such that asset prices or returns from different groups are unlikely to drop simultaneously.
An investment strategy is called portfolio diversification if the portfolio is constructed by selecting one
asset from each group. As we could see, the performance of portfolio diversification depends on how
the assets are grouped.

In general, the observed prices or returns of assets are essentially time series. To group assets
properly, time series clustering techniques are usually involved. Early works on time series clustering
include interdependence measure between asset returns such as the (Pearson or Spearman type)
cross-correlation coefficients (cf. Kaufman and Rousseeuw 1990). In particular, Mantegna (1999) and
Bonanno et al. (2004) quantified the degree of interdependence between the synchronous time evolution
of a pair of stock prices and used it in financial time series clustering. Moreover, as another extension
of dependence-based method, Baragona (2001) and Brockwell and Davis (2002) developed a new
measure of interdependence from the residuals obtained by fitting the data to acceptable time series.
In addition, inspired by the dynamic conditional correlation (DCC) model developed by Engle and
Sheppard (2001) and Engle (2002), Billio et al. (2006) and Billio and Caporin (2009) proposed the Flexible
Dynamic Conditional Correlation (FDCC) multivariate GARCH model and provided an estimate of
the dynamics of correlation coefficients within groups of financial assets for asset allocations.

However, cross-correlation coefficients do not always guarantee a sufficient degree of portfolio
diversification because these coefficients cannot always capture the possible extreme co-movements of
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asset returns in lower tails. Extreme co-movement of asset returns in lower tails plays an important
role in studying contagion of financial crisis. Bae et al. (2003) provided evidence of the existence
of extreme co-movements in terms of coexceedances when studying the phenomenon of contagion.
More formally, the contagion of financial crisis could be defined directly as a significant increase of
extreme co-movements if financial crisis occurs in one of the markets (cf. Pericoli and Sbracia 2003,
Definition 4). Hence, if a portfolio diversification arrangement fails to diversify the risk of extreme
co-movement in the lower tail, it might be vulnerable to the contagion of financial crisis occurring in
other markets.

Even when there is no contagion, extreme co-movements of asset returns may also exist
due to the similarity of fundamentals from the traditional point of view, investor trading
patterns(Barberis et al. 2005), or incomplete information (Veldkamp 2006). To diversify the risk
of extreme co-movement in lower tail, De Luca and Zuccolotto (2011) proposed a dissimilarity
measure based on tail dependence coefficients (TDC) instead of cross-correlation coefficients to obtain
homogeneous groups of time series with an association between extreme low values. Inspired by this
work, Durante et al. (2014) developed a time series clustering procedure with a conditional version
of Spearman’s correlation coefficient for extremely low values introduced by Durante et al. (2014),
and a non-parametric estimator of tail dependence provided in Durante et al. (2015). De Luca and
Zuccolotto (2015) further proposed a dynamic clustering procedure so that the coefficient employed to
measure the lower tail dependence can be time-varying on the basis of historical market volatility.

In this paper, we propose to cluster time series via the coefficients of maximum tail dependence
introduced by Furman et al. (2015). The coefficients of maximal tail dependence are direct extensions
of TDCs including the tail dependence coefficient λ, the weak tail dependence coefficient χ and the
tail order κ. The major difference is that the coefficients of maximal tail dependence are calculated
with convergence paths that are possibly other than the diagonal path. As a result, the matrix of
coefficients of maximal tail dependence may not be symmetric and thus cannot be used as a similarity
(or dissimilarity) matrix in clustering procedures. Instead, such a matrix may be seen as a type of
affinity matrix representing directed relations between assets.

The paper is organized as follows. Section 2 is a brief introduction of the coefficients of maximal
tail dependence. The proposed clustering procedure of time series is formally described in Section 3.
The performance of the proposed procedure is evaluated in Section 4. An application to real exchange
rates of G20 countries is presented and analyzed in Section 5. Section 6 concludes.

2. The Coefficients of Maximal Tail Dependence

Several coefficients have been introduced by researchers to measure the extreme co-movements
in recent years. For example, one of the most important measures is the lower (upper) tail dependence,
which is formally defined by⎧⎪⎨⎪⎩

λL := lim
u→0+

P
(

X ≤ F−1
X (u)|Y ≤ F−1

Y (u)
)

λU := lim
u→1−

P
(

X > F−1
X (u)|Y > F−1

Y (u)
) ,

where random variables X and Y represent the potentially dependent risks. Since by Sklar’s Theorem
(cf. Nelsen 2006) there is a uniquely determined copula function C : [0, 1]2 → [0, 1] such that

FX,Y(x, y) = C
(

FX(x), FY(y)
)

,

the lower (upper) tail dependence could be defined as the limiting point of a functional of the copula
function, namely,

λL := λL(C) = lim
u→0+

C(u, u)
u

, λU := λU(C) = lim
u→0+

Ĉ(u, u)
u

,
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where Ĉ is the survival copula with respect to C. Apart from the lower (upper) tail dependence, similar
measures include the weak lower (upper) tail dependence

χL := χL(C) = lim
u→0+

2 log u
log C(u, u)

− 1, χU := χU(C) = lim
u→0+

2 log u
log Ĉ(u, u)

− 1,

(cf. Coles et al. 1999) and lower (upper) tail order κL (κU) defined via:

C(u, u) = �L(u)uκL , Ĉ(1− u, 1− u) = �U(u)uκU , u ∈ (0, 1)

where �L and �U are slowly varying functions of u at 0 (cf. Hua and Joe 2011).
The aforementioned measures of tail dependence are all limiting values of functionals of C as

the arguments (u, v) shrink to (0, 0) along the diagonal line of the square [0, 1]2. However, as pointed
out by Furman et al. (2015), these measures may sometimes underestimate the extent of extreme
co-movements for dependent risks, and, for this reason, the authors proposed improved versions
of these coefficients of tail dependence, named as the coefficients of the maximal tail dependence, which
are more sensitive to extreme co-movements. Accordingly, a clustering procedure based on such
coefficients may provide better clustering results than those based on other coefficients of tail
dependence such as those proposed by De Luca and Zuccolotto (2011) and Durante et al. (2014),
and the portfolios constructed based on such clustering results may also outperform.

The coefficients of the maximum tail dependence are limiting values of the usual versions of the
corresponding functionals of C (or Ĉ) converging to the lower-left (or upper-right) vertex along paths
of maximal tail dependence. To formally define the paths of maximal tail dependence, consider
a function ϕ : [0, 1] �→ [0, 1] satisfying the following admissible conditions (see Furman et al. 2015,
Definition 2.1):

1. ϕ(u) ∈ [u2, 1] for every u ∈ [0, 1]; and
2. both ϕ(u) and u2/ϕ(u) converge to 0 when u ↓ 0.

The collection of such kind of functions is called the admissible set, denoted as A. Then, a path(
ϕ(u), u2/ϕ(u)

)
0�u�1

shrinking to the lower-left (or upper-right) vertex is called admissible

whenever ϕ belongs to A. Specifically, the diagonal path used to define the usual coefficients
of tail dependence (u, u)0�u�1 is admissible as the function ϕ0(u) = u, u ∈ [0, 1] is admissible.
According to (Furman et al. 2015, Definition 2.2), the paths of maximal tail dependence is denoted as(

ϕ∗(u), u2/ϕ∗(u)
)

0�u�1
where

ϕ∗(u) = arg max
ϕ∈A

C
(

ϕ(u), u2/ϕ(u)
)

.

To simplify the notations, we denote Π∗(u) = C
(

ϕ∗(u), u2/ϕ∗(u)
)

if the optimal value exists.
Then, the lower tail maximal dependence (LTMD) is defined via:

λ∗L := λ∗L(C) = lim
u→0+

Π∗(u)
u

,

the weak lower tail maximal dependence (WLTMD) is defined via:

χ∗L := χ∗L(C) = lim
u→0+

2 log u
log Π∗(u) − 1,

and the order of lower tail maximal dependence is defined via:

Π∗(u) = �∗L(u)uκ∗L , u ∈ (0, 1)
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where �∗L is a slowly varying function of u at 0. In particular, for κ∗L, we have the following result
similar to that of the usual tail order κL (cf. Hua and Joe 2011):

Proposition 1. For any bivariate copula function C, if ϕ∗(u) ∈ A exists, then the corresponding index of
maximal tail dependence κ∗L ∈ [1, 2].

The proof is given in Appendix A. As a result, χ∗L ∈ [0, 1] may also not be a desirable affinity
measure for common clustering procedures such as k means clustering or hierarchical clustering.
However, χ∗L is a desirable weight for graphs. The larger χ∗L of two assets is, the stronger the extreme
co-movement between these assets is, and hence a bigger weight is posed by χ∗L.

We refer to Furman et al. (2015) for examples of expressions for λ∗L and κ∗L with closed forms
in the case of parametric families of distributions. Notably, Furman et al. (2016) proved that, in the
Gaussian case, the classical and maximal tail dependence coefficients coincide. In the present paper,
however, to speed up practical calculations, we resort to non-parametric approach in the following
sections. In particular, we find a clustering procedure based on χ∗L to be very attractive.

3. Clustering Procedure

Typically, clustering based on dissimilarity matrices such as given by De Luca and Zuccolotto
(2011, sct. 3) could be achieved through the hierarchical clustering method directly. However, to cluster
using the affinity matrix constructed with χ∗L, we could not use the hierarchical clustering method
because the affinity matrix may not be symmetric. Hence, we have to consider graph based clustering
procedures.

Suppose we have n assets in total available for a portfolio construction. Then, the affinity matrix
Δ =

(
Δij

)
n×n

is given by

Δij = χ∗L,ij =
2

κ∗L,ij
− 1 (1)

(cf. Furman et al. 2015, sct. 5). Theoretically, Δ should be a symmetric matrix which could be seen
as an affinity matrix consisting of edge weights for an undirected graph and thus could be used
for clustering with the hierarchical clustering method. This is because Π∗(u) is unique as long as
it exists and thus κ∗L,ij = κ∗L,ji. However, for those asymmetric copulas such as the unexchangeable
Marshall–Olkin copulas

CMO
a,b (u, v) = min{u1−av, uv1−b}, a, b ∈ (0, 1), a �= b

the estimated parameters may differ due to that for two series of observations there are actually
two different copulas to be chosen for the parameter estimation procedure: CMO

a,b (u, v) and
CMO

b,a (u, v) = CMO
a,b (v, u). In other words, for two arbitrary series of observations, it is impossible to

determine which group should be regarded as “u” and the other group as “v” in practice, even though
we are sure that these observations are generated from an unexchangeable Marshall–Olkin copula.

For simplicity, when constructing the affinity matrix Δ, we keep only one of the two possible
copulas whenever we have to estimate the parameters of the copula from pairwise observations.
The advantage of this idea is that, taking CMO

a,b (u, v) for instance, the lower triangle part of Δ is
calculated by assuming the pairwise observations are generated from CMO

a,b (u, v) and then estimating
the parameters a and b while the upper triangle part of Δ is actually calculated by assuming the same
pairwise observations are generated from CMO

b,a (u, v) = CMO
a,b (v, u) and then estimating the parameters

a and b. In other words, the resulting affinity matrix Δ contains information of estimated parameters
from both CMO

a,b (u, v) and CMO
b,a (u, v) = CMO

a,b (v, u) in fact.
Since such an affinity matrix may not necessarily be symmetric, the hierarchical clustering method

fails to work. In this case, the resulting affinity matrix could be considered as a matrix of weighted
edges in a directed graph instead of an undirected graph. The clustering task could be achieved with
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the Weighted Normalized Cuts (WNACut for short) introduced by Meilă and Pentney (2007), which is
initially developed to analyze directed graphs related to the link data.

To understand the WNACut method, let C = {C1, . . . , CK}1≤K≤n be an arbitrary partition of the set
of all assets. Then, the cut of Ck to Ck′ represents the total influence of Cluster Ck on Cluster Ck′ , namely,

Cut(Ck, Ck′) = ∑
i∈Ck

∑
j∈Ck′

Δij. (2)

Hence, the total weighted cut of all clusters is defined via:

WCut(C) =
K

∑
k=1

∑
k′ �=k

Cut(Ck, Ck′)

∑i∈Ck
Vi

,

where Vi = ∑n
j=1 Δij for i = 1, . . . , n. Then, our target cluster C∗ is such that

WCut(C∗) = min
C

WCut(C).

This optimization problem could be solved through a spectral clustering algorithm named
“BestWCut”. Similar to the clustering procedure proposed by De Luca and Zuccolotto (2011),
this algorithm is also a two-stage clustering procedure, in which the non-metric multidimensional
scaling (MDS) in the first stage is substituted by a process that transforms the asymmetric affinity
matrix consisting of the WLTMDs into k orthonormal columns, where k is the predetermined number
of clusters. The details are given in Algorithm A1. In Meilă and Pentney (2007), the WNACut method
is shown to consistently outperform all other clustering methods chosen to be tested with synthetic
data in their experiments. For this reason, we adopt this method to finish the clustering task in our
proposed procedure.

4. A Simulation Study of Synthetic Data

As mentioned, our proposed clustering procedure is a two-stage procedure, as shown in
Algorithm A1. However, there is no information related to the choice of clustering method for the
second stage in this particular situation revealed. Hence, a simulation study is designed in this section
to compare the performance of the second stage clustering method in WNACut with that of a list
of commonly used clustering methods, including the classical k-means method and hierarchical
clustering procedure with Ward’s minimum variance method (considering both Ward’s criterion
and Ward’s criterion squared, the results are denoted as Ward.D2 and Ward.D, respectively), single
linkage method, complete linkage method, average linkage method, McQuitty’s linkage method,
median linkage method, and centroid linkage method. The performances are measured in two metrics:
the misclassification error (ME) described in Verma and Meilă (2003) and variation in information (VI)
introduced in Meilă (2003). Both criteria tend to be smaller if the resulting clusters are more similar to
the K known clusters.

To begin with, we assume there are K different known clusters whose numbers of elements are
N1, . . . , NK, respectively. The dependence structure employed to generate the realizations in each
cluster is a particular case of the asymmetric multivariate copula given by Liebscher (2008, eq. 3);
namely, for cluster k, we have

Ck(uk,1, . . . , uk,n1) = uγ1/(γ0+γ1)
k,1

(
u−1/(γ0+γ1)

k,1 +
n1

∑
i=2

(
u−1/γ0

k,i − 1
))−γ0

,

where γ0 > 0 and γ1 ≥ 0. Then, the joint CDF of the distribution used to generate the realizations is
given by
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C(u1,1, . . . , u1,n1 , . . . , uK,1, . . . , uK,nK ; γ0, γ1) =
K

∏
k=1

Ck(uk,1, . . . , uk,n1).

Notice that, with the above model settings, the pairwise marginal copulas could be written
as either

C(u, v) = uγ1/(γ0+γ1)
(

u−1/(γ0+γ1) + v−1/γ0 − 1
)−γ0

, γ1 ∈ [0, ∞], (3)

or
C(u, v) = vγ1/(γ0+γ1)

(
v−1/(γ0+γ1) + u−1/γ0 − 1

)−γ0
, γ1 ∈ [0, ∞], (4)

which includes both the pairwise independent copula C(u, v) = uv as the particular case γ1 = ∞

and the pairwise standard Clayton copula C(u, v) =
(

u−1/γ0 + v−1/γ0 − 1
)−γ0

as the particular case
γ1 = 0. Then, as discussed in Section 3, we only keep (3) for further analysis. When the realizations are
generated, the affinity matrix consisting of pairwise WLTMDs could be calculated by first estimating
γ0 and γ1 with the maximal likelihood method based on (3) and then calculating the WLTMDs using

κ̂∗L,ij = 1 + γ̂1,ij/(γ̂1,ij + 2γ̂0,ij)

(cf. Furman et al. 2015, eq. 6.2). Therefore, with all pairwise κ̂∗L,ij obtained, the affinity matrix Δ could
be calculated through Equation (1). Then, given the predetermined number of clusters k, the first stage
of the BestWCut will transform the affinity matrix Δ into k orthonormal columns.

The total number of iterations for our simulation study is 500, which is the same as De Luca and
Zuccolotto (2011). Other values of the parameters for the simulation study are given below:

• The number of known clusters K = 4.
• The number of objects in each cluster n1, . . . , nK are independently sampled from {3, 4, . . . , 8} at

random for each iteration.
• γ0 = 4.
• γ1 = 1, 8, 64, which result in theoretical κ∗L = 10/9, 1.5, 17/9, respectively, if the two series of

realizations are neither independent nor dependent with a classical Clayton copula.
• The distances used in hierarchical clustering methods are all Euclidean distance in RK.

The results of MEs and VIs are given in Tables 1 and 2, respectively, in which we can see that,
with Ward’s criterion squared, the Ward’s minimum variance method is consistently competitive or
even outperforms other methods. Moreover, the distributional properties of the simulated ME’s are
shown in Figures 1–3 for γ1 = 1, γ1 = 8, and γ1 = 64, respectively, and the distributional properties of
the simulated VIs are shown in Figures 4–6 for γ1 = 1, γ1 = 8, and γ1 = 64, respectively. All these
figures indicate that the Ward’s minimum variance method might be the best choice for the second
stage of the proposed clustering procedure.

The results shown in Tables 1 and 2 also indicate the sensitivity of the ME/VI to κ∗L.
Taking the Ward’s minimum variance method as an example, when κ∗L increases or decreases by
(3.5/9/1.5 =) 25.93% (i.e., γ1 increases from 8 to 64 or decreases from 8 to 1, correspondingly) the
average ME increases by 179.25% or decreases by 19.57%, correspondingly, while the average VI
increases by 79.8% or decreases by 38.39%, correspondingly. Thus, our proposed clustering procedure
seems to perform better as the true WLTMD κ∗L gets closer to 1, and as the true WLTMD κ∗L moves
towards 2, the performance of our proposed clustering procedure worsens rapidly.
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Table 1. Means and variances of simulated MEs using various clustering methods in the second stage
of WNACut for γ1 = 1, γ1 = 8 and γ1 = 64, respectively.

γ1 = 1 γ1 = 8 γ1 = 64

Mean Var Mean Var Mean Var

k means 0.1269 0.0143 0.1795 0.0132 0.3875 0.0109
ward.D 0.1089 0.0095 0.1354 0.0012 0.3781 0.0113

ward.D2 0.1206 0.0117 0.1326 0.0014 0.3913 0.0111
single 0.3341 0.0271 0.1477 0.0037 0.5311 0.0089

complete 0.1715 0.0205 0.1349 0.0034 0.4244 0.0121
average 0.1988 0.0242 0.1329 0.0021 0.4582 0.0127

McQuitty 0.1995 0.0217 0.1345 0.0023 0.4536 0.0124
median 0.3430 0.0324 0.1422 0.0033 0.5201 0.0088
centroid 0.3223 0.0377 0.1349 0.0019 0.5284 0.0091

Table 2. Means and variances of simulated VIs using various clustering methods in the second stage of
WNACut for γ1 = 1, γ1 = 8 and γ1 = 64, respectively.

γ1 = 1 γ1 = 8 γ1 = 64
Mean Var Mean Var Mean Var

k means 0.6323 0.2236 1.0234 0.1347 1.8849 0.2088
ward.D 0.6317 0.1959 1.0254 0.0346 1.8437 0.2202

ward.D2 0.6486 0.2043 1.0085 0.0462 1.8738 0.2095
single 1.1335 0.2906 1.0446 0.0383 1.9781 0.1007

complete 0.7914 0.2827 0.9977 0.0659 1.9327 0.1998
average 0.8225 0.2750 1.0000 0.0551 1.8980 0.1622

McQuitty 0.8285 0.2620 1.0085 0.0509 1.9295 0.1804
median 1.2115 0.3518 1.0340 0.0405 1.9935 0.1115
centroid 1.1504 0.3994 1.0158 0.0484 1.9783 0.1013
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Figure 1. Box plots of simulated MEs using various clustering methods in the second stage of WNACut
for γ1 = 1.
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Figure 2. Box plots of simulated MEs using various clustering methods in the second stage of WNACut
for γ1 = 8.
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Figure 3. Box plots of simulated MEs using various clustering methods in the second stage of WNACut
for γ1 = 64.
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Figure 4. Box plots of simulated VIs using various clustering methods in the second stage of WNACut
for γ1 = 1.
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Figure 5. Box plots of simulated MEs for all hierarchical clustering methods when γ = 8.
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Figure 6. Box plots of simulated VIs using various clustering methods in the second stage of WNACut
for γ1 = 64.

5. Application to Real Data

In this section, we apply the proposed procedure on the log-returns of foreign exchange rates
with respect to US dollars from Group of 20 (known as G20). Since US dollar is used as the underlying
currency, there are 19 time series of exchange rates in total. The exchange rates of France, Germany and
Italy are excluded from our analysis due to their perfect linear correlation with euros, which results in
16 time series of exchange rates available for our clustering analysis1. The data were collected weekly
from 5 September 2012 to 17 August 2016, covering 207 × 16 active observations during these four
years, which can be downloaded from “PACIFIC Exchange Rate Service”, 2016, by Werner Antweiler,
University of British Columbia. The descriptive statistics and histograms of observations for the 16
currencies are given in Table 3 and Figure 7.

1 The currencies include: Argentine Pesos, Australian Dollars, Brazilian Reals, British Pounds, Canadian Dollars, Chinese
Renminbi, European Euros, Indian Rupees, Indonesian Rupiah, Japanese Yen, Mexican Pesos, Russian Rubles, Saudi Arabian
Riyal, South African Rand, South Korean Won, and Turkish New Lira.
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Table 3. Descriptive statistics of (log)returns of 16 selected currencies.

Min. 1st Qu. Median Mean 3rd Qu. Max. Std

ARS −0.1466 −0.0048 −0.0026 −0.0056 −0.0010 0.0415 0.0112
AUD −0.0294 −0.0085 −0.0005 −0.0014 0.0060 0.0295 0.0175
BRL −0.0584 −0.0128 −0.0012 -0.0022 0.0086 0.0474 0.0086
CAD −0.0239 −0.0071 −0.0008 −0.0013 0.0038 0.0228 0.0028
CNY −0.0211 −0.0011 0.0000 -0.0002 0.0010 0.0079 0.0106
EUR −0.0379 −0.0067 −0.0006 −0.0006 0.0058 0.0268 0.0087
GBP −0.0840 −0.0063 −0.0005 −0.0010 0.0052 0.0304 0.0093
IDR −0.0366 −0.0059 −0.0015 −0.0015 0.0016 0.0502 0.0118
INR −0.0408 −0.0050 −0.0010 −0.0009 0.0037 0.0409 0.0089
JPY −0.0482 −0.0078 −0.0008 −0.0012 0.0051 0.0409 0.0110

KRW −0.0273 −0.0055 0.0004 0.0001 0.0059 0.0266 0.0245
MXN −0.0318 −0.0077 −0.0012 −0.0016 0.0052 0.0280 0.0158
RUB −0.1215 −0.0124 −0.0022 −0.0034 0.0080 0.1253 0.0126
SAR −0.0052 −0.0008 0.0000 −0.0000 0.0008 0.0045 0.0097
TRY −0.0484 −0.0099 −0.0006 −0.0023 0.0057 0.0346 0.0112
ZAR −0.0487 −0.0130 −0.0017 −0.0023 0.0079 0.0437 0.0175
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Figure 7. Histograms for the 16 selected currencies.

5.1. Preliminary Analysis

For each series of the exchange rates, the log-returns are obtained by taking logarithm of the
fraction between two consecutive weekly exchange rates, part of which are shown in Figure 8.
To eliminate the potential autocorrelation and heteroskedasticity of the log-returns, a univariate
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generalized error distribution (GED) ARMA-GARCH (1, 1) model is applied to each time series of
log-returns and the fitted standardized residuals are extracted for the purpose of clustering.

Figure 8. Log return of exchange rates for some of the G20 members.

A preliminary test of correlation indicates that the standardized residuals of Argentine Pesos
seem to be uncorrelated to those of all the other currencies. The details of the correlation tests are
shown in Table 4, from which we could see that all p-values are greater than 0.05. Thus, we suspect
that all WLTMDs between the residuals of ARS and any other currency are approximately 0. To this
end, let TX,i = min{RARS,i, RX,i} where X represents some currency and RX,i is the random variable
having the same distribution as the standard residuals obtained by fitting the log-returns of currency
X with GED ARMA-GARCH(1, 1) model. Then, by Coles et al. (1999, eq. 4.2), we have

P
(
TX,i > t

) ∼ �X(t)t−ηX

121



Risks 2018, 6, 115

as t → ∞ where ηX = 2/(1 + χL,ARS(X)) and χL,ARS(X) is the weak lower-tail dependence between
the standard residuals of the log-returns of ARS and currency X. Hence, our concern about whether
χL,ARS(X) = 0 is equivalent to test

H0 : ηX = 2 v.s. H1 : ηX �= 2.

The test statistic, which is asymptotically standard normal, could be obtained using the improved
OLS method given in Gabaix and Ibragimov (2011). When 50 pairs of observations are used,
the resulting p-values are all greater than 0.1, as shown in Table 4. Thus, H0 could not be rejected,
which leads to η̂GI ≈ 2 and hence χ̂L,ARS(X) ≈ 0 for all currencies other than ARS. Notice that by
definition WLTMD should always be smaller than or equal to the corresponding weak lower-tail
dependence, therefore the WLTMDs between the residuals of ARS and those of any other currency
are approximately 0, which allows us to evaluate ARS as an isolated point that will not be taken into
account in further analysis.

Table 4. The p-values of correlation tests between the standardized residuals of ARS and those of
the other 15 currencies based on Pearson’s product moment correlation coefficient, Kendall’s τ and
Spearman’s ρ, respectively. The last column contains the p-values of the test of H0 using the OLS
test statistic.

Currency Pearson Kendall Spearman η̂GI

AUD 0.3437 0.2111 0.2248 0.9268
BRL 0.0530 0.6239 0.6545 0.5408
CAD 0.0922 0.1932 0.2157 0.6553
CNY 0.1825 0.9444 0.9718 0.1550
GBP 0.3954 0.8485 0.8263 0.8356
INR 0.6418 0.2816 0.3278 0.8877
IDR 0.3542 0.3807 0.3855 0.2402
JPY 0.6390 0.2889 0.2957 0.3472

KRW 0.7797 0.9702 0.9660 0.6733
MXN 0.8750 0.8962 0.9712 0.4198
RUB 0.4855 0.9944 0.9739 0.3999
SAR 0.7583 0.5040 0.4771 0.9567
ZAR 0.8412 0.1508 0.1746 0.7425
TRY 0.2061 0.0696 0.0741 0.6147
EUR 0.4067 0.2103 0.2173 0.6303

In fact, ARS is not the only currency that should be excluded from further clustering procedure.
When testing the correlation between standardized residuals of the fitted GED ARMA-GARCH (1, 1)
model for log-returns, we discover that the residuals of SAR have negative correlation with majority
of the residuals of the other currencies (see the columns entitled “Sign of estimated coefficients”
in Table 5). Furthermore, we can see in Table 5 that only AUD, CNY, GBP and JPY are currencies
whose standard residuals may not be negatively correlated with SAR. Unfortunately, none of the
corresponding p-values show significant correlation between the standardized residuals of these
currencies and SAR. Therefore, it is reasonable to suspect the WLTMDs between the residuals of SAR
and any other currency are approximately 0. As expected, the last column in Table 5 verifies this result
using the OLS test statistics with only 30 pairs of observations. Therefore, we do not include SAR in
our next step of clustering procedure either.
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Table 5. The sign of Estimated Correlation Coefficients and p-values of correlation tests between the
standardized residuals of SAR and those of the other 14 currencies based on Pearson’s product moment
correlation coefficient, Kendall’s τ and Spearman’s ρ, respectively. The last column is the p-values of
the test of H0 using the OLS test statistic.

Currency
Sign of Estimated Coefficients p-Values

Pearson Kendall Spearman Pearson Kendall Spearman η̂GI

AUD + − − 0.8734 0.7981 0.8015 0.6997
BRL − − − 0.0021 0.0007 0.0008 0.9334
CAD − − − 0.2140 0.0641 0.0514 0.5117
CNY − + + 0.8798 0.7593 0.7691 0.9141
GBP + − − 0.2583 0.8755 0.8342 0.8694
INR − − − 0.0592 0.0240 0.0213 0.6743
IDR − − − 0.8543 0.7563 0.7676 0.9509
JPY + + + 0.4373 0.5078 0.5216 0.1236

KRW − − − 0.9862 0.9492 0.9391 0.9861
MXN − − − 0.0043 0.0044 0.0041 0.4444
RUB − − − 0.0290 0.0022 0.0021 0.2088
ZAR − − − 0.0899 0.0283 0.0233 0.7497
TRY − − − 0.1121 0.0549 0.0471 0.4727
EUR − − − 0.5123 0.3963 0.4209 0.7975

Since there are no more currencies that could be evaluated as isolated points based on correlation
tests or OLS test statistics, we retain all of the rest 14 exchange rates in our further clustering analysis.

5.2. Clustering the Exchange Rates Using WLTMD

For each pair of the residuals fitted from the log-return series, a bivariate Clayton copula function
(see Liebscher 2008, for instance) is adopted with the form of Equation (3) on the estimated empirical
distribution functions (pseudo observations), where γ0 ≥ 0 and γ1 ≥ 0 are unknown parameters to be
specified. Notice that the Clayton-type copula defined in Equation (3) relaxes the restriction γ1 = 0 in
the classical Clayton copula and hence is not necessarily symmetric. With this Clayton-type copula,
the tail order of maximal dependence is proved to have the following analytic form:

κ∗L = 1 + γ1/(γ1 + 2γ0)

(cf. Furman et al. 2015, eq. 6.2). The parameters can be estimated by the maximum likelihood
method, and hence the estimate of the lower tail of the maximal dependence is given by
κ̂∗L = 1 + γ̂1/(γ̂1 + 2γ̂0). To measure the goodness-of-fit of the assumed copula, we employ a test
based on the Rosenblatt transformation (see Breymann et al. 2003) between two dependent random
variables Y1 and Y2, given by

S(Y1, Y2) =
[
Φ−1 (F1(Y1)

)]2
+
[
Φ−1 (C(F2(Y2)|F1(Y1))

)]2

where Φ denotes the standard normal c.d.f. and C(F2(Y2)|F1(Y1)) the conditional copula.
Then, the random variable S(Y1, Y2) should have a χ2

2 distribution if C is the true copula, which can
be tested by a Kolmogorov–Smirnov test between S as a function of pseudo observations and χ2

2
for each pair of the standardized residuals for different currencies. The test statistics are given in
Table A1 in Appendix C. Notice that n = 206 in our situation, thus the 5% critical value for the
Kolmogorov–Smirnov test is equal to 1.358/

√
206 = 0.095, indicating none of the fitted copulas should

be rejected as the true copulas.
Using the fitted parameters γ̂0 and γ̂1, we obtain the fitted tail order of maximal dependence

κ̂L as well as the fitted WLTMD χ̂L. Then, we apply the WNACut algorithm for the first stage of the
clustering procedure and Ward1 method for the second stage on the affinity matrix constructed by
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the (14× 14 = 196) χ̂Ls for k = 2, . . . , 13, respectively. The total weights for WNACut is k, and the
percentages of weights cut of the total weights WCut(C∗)/k against k are shown in Figure 9,
which indicates that a relatively stable clustering result is obtained when the number of clusters k ≥ 4.
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Figure 9. Percentage of weights cut against the number of clusters.

To get a closer look at the clustering result, first we consider the case k = 3 whose cluster
dendrogram is given by Figure 10.
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Figure 10. The dendrogram of the clustering procedure based on WNACut methods with affinity matrix
as WLTMDs for k = 3.

The resulting clusters are listed in Table 6 which provides a regional segmentation of the world:
Northeast Asia, the East/Southeast Asia and the rest of the world. Obviously, such a cluster result has
the lowest percentage of weighted cuts and seems to perform well for currencies of countries in the
Northeast Asia, East Asia and Southeast Asia. However, it fails to distinguish the currencies of the rest
of the world. For the purpose of comparison, in Table 6, we also provide the clustering results given
by the method of De Luca and Zuccolotto (2011) for k = 3.
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Table 6. Members for each of the clusters when k = 3.

Cluster 1 Cluster 2 Cluster 3

Our proposed procedure

Australia Mexico China Russia
Brazil South Africa India Japan
Canada Turkey Indonesia South Korea
UK EU

De Luca and Zuccolotto (2011)

Australia Mexico Brazil Indonesia
Canada South Africa Japan Turkey
China Russia
India South Korea
UK EU

Next, we compare the clustering result for k = 4 to k = 3. When k = 4, the clustering dendrogram
is given by Figure 11.
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Figure 11. The dendrogram of the clustering procedure based on WNACut methods with affinity matrix
as WLTMDs for k = 4.

The resulting clusters are listed in Table 7 which preserves the regional characteristics for
currencies of countries in East/Northeast Asia while the partition of the rest of the world in Table A2
is provided by the IMF. For the purpose of comparison, in Table 7, we also provide a clustering result
given by the method of De Luca and Zuccolotto (2011) for k = 4. Here are some remarks on the
clustering outcomes obtained by our clustering procedure.

• All economies in the first group have strong economic connections with the US (under certain
type of free trade agreements). Besides, the nominal per capita GDPs of these economies are all
above $30, 000 (see Table A2 in Appendix D). Thus, it is reasonable to include currencies of these
economies in one group.

• The second group of economies have neither strong economic connection to the US nor high
nominal per capita GDPs (less than $10, 000). Moreover, all of them are identified as emerging
economies by IMF (see Table A2 in Appendix D).

• China is the only member of the third group. Although there is no free trade agreements between
US and China, it is well-acknowledged that China has a strong economic connection with the US.
In addition, China has a very high nominal GDP (the third highest among all 20 economies) but
very low nominal GDP per capita (less than $8000). As a result, it is reasonable to not include
China in any other group.

• It is reasonable to include the rest three economies in one group from the geographical perspective.
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Table 7. Members for each of the clusters when k = 4.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Our proposed procedure

Australia Brazil China Russia
Canada India Japan
UK Indonesia South Korea
EU Mexico

South Africa
Turkey

De Luca and Zuccolotto (2011)

Australia China UK Japan
Canada India
Brazil Indonesia
EU Mexico
Russia
South Korea
South Africa
Turkey

In conclusion, the clustering result for k = 4 seems to more reasonable compared to that of k = 3.
Besides, the clustering result for k = 4 could not be obtained through further partition based on the
clustering result for k = 3 because it requires a combination of {Brazil, Mexico, South Africa, Turkey}
and {India, Indonesia} as a new cluster. Therefore, the clustering result for k = 3 seems not to be
sufficiently stable from our perspective.

5.3. An Example of Portfolio Management with the Clustering

As stressed in Section 1, one important application of time series clustering is risk management.
Since the WLTMD represents the extreme co-movement downwards, the resulting clusters obtained
through our proposed procedure represent groups of assets whose returns move in the same direction
when both returns are extremely low. Hence, we should avoid including two assets from the same
cluster in our portfolio. For instance, if we would like to construct a portfolio with four of the 14
aforementioned currencies, we may consider the following steps:

1. Perform our proposed clustering procedure for k = 4. The clustering result is given in Table 7.
2. From the clustering result in Table 7, one has (4× 6× 1× 3 =) 72 choices if he/she tries to avoid

selecting two assets from the same cluster in his/her portfolio. All 72 resulting portfolios are
listed in Table A3 in Appendix E.

3. Construct portfolio using Markowitz’s procedure (minimum variance criteria), namely,
computing the sample covariance matrix S of the log-returns for any combination of currencies
in Table A3 and solving

min
w

w′Sw (5)

subject to w1 + w2 + w3 + w4 = 1 and wi ≥ 0 for i = 1, 2, 3, 4, where w =
[
w1 w2 w3 w4

]′
.

The resulting weights corresponding to the 72 choices of currencies are also given in Table A3 in
Appendix E.

The paths of the returns for all 72 combinations are shown in Figure 12. Notice that there are
((14

4 ) =)1001 different combinations of four currencies without considering the clustering result (the
resulting weights as well as the mean and accumulative returns corresponding to these 1001 portfolios
are listed in Table S1 in the Supplementary Materials). We also construct portfolios using Equation (5)
for all of the 1001 combinations of currencies and plot the corresponding paths of returns in Figure 12.
In contrast, in Figure 12, we also provide the paths of aggregated returns of all portfolios constructed
by the method of De Luca and Zuccolotto (2011).
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Figure 12. Returns (black lines) of the selected minimum variance portfolios based on our clustering
procedure (left, 72 portfolios in total) and the procedure proposed by De Luca and Zuccolotto (2011)
(right, 32 portfolios in total). Each portfolio consists of four currencies, selected by choosing one
currency from each of the four resulting clusters, compared to returns (gray lines) of minimum variance
portfolios constructed by all combinations (1001 in total) of four currencies out of total 14 currencies.

In Figure 12, the portfolios constructed through our proposed procedure are shown to have
uniformly exceptional performance among all possible ways to construct portfolios with four
currencies for a long period (September 2012–August 2016). Compared with the portfolios constructed
using the method of De Luca and Zuccolotto (2011), all of our portfolios outperform most of their
portfolios. Besides, the paths of return provided by our portfolios do not vary significantly across the
72 combinations of currencies and seem to have better performance in the long run (the average and
accumulative returns of these 72 portfolios on 17 August 2016 (the last date of the observation period)
are also provided in Table A3 in Appendix E, from which we can see that the accumulative returns are
from −7% to −4%, corresponding to the range shown in the left of Figure 12).

We also show the path of risk adjusted returns provided by our portfolios in Figure 13. The results
also show that our portfolios have outstanding performance most of the time.

Figure 13. Risk-adjusted returns (black lines) of the 72 minimum variance portfolios selected based on
our proposed clustering procedure, compared to risk-adjusted returns (gray lines) of minimum variance
portfolios constructed by all combinations (1001 in total) of four currencies out of total 14 currencies.
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For a retrospective study, the performance of the proposed portfolios as well as all possible
portfolios from 17 August 2016 to 10 September 2018 are plotted in Figure 14. Although these portfolios
fail to be the best choices again, the resulting returns are still shown to have very strong invulnerability
against fluctuations and risks.

Figure 14. Returns (black lines) of the selected minimum variance portfolios based on our clustering
procedure (left, 72 portfolios in total) and the procedure proposed by De Luca and Zuccolotto (2011)
(right, 32 portfolios in total). Each portfolio consists of four currencies, selected by choosing one
currency from each of the four clusters, compared to returns (gray lines) of minimum variance portfolios
constructed by all combinations (1001 in total) of four currencies out of total 14 currencies.

In contrast, in Figure 14, we also provide the paths of aggregate returns of all portfolios constructed
by the method of De Luca and Zuccolotto (2011). Obviously, the performances are quite inconsistent
and the returns seem to vary when volatility increases.

For the retrospective study, we also show the path of risk adjusted returns provided by our
portfolios in Figure 15. The performance of our portfolios seems to be very good during early 2018 but
relatively poor during late 2016 to 2017.

Figure 15. Risk-adjusted returns (black lines) of the 72 minimum variance portfolios selected based on
our proposed clustering procedure, compared to returns (gray lines) of minimum variance portfolios
constructed by all combinations (1001 in total) of four currencies out of total 14 currencies.
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6. Conclusions

In this paper, we have proposed a clustering procedure based on a new affinity measure indicating
the extreme co-movements for financial time series. Unlike the common distance-based affinity matrix,
our proposed affinity matrix is not necessarily symmetric and hence cannot be used as the input in
hierarchical clustering algorithms directly. As a result, clustering procedures based on weighted cuts
are employed and examined, and the WNACut method is finally selected as a recommended clustering
procedure, based on the performances of compared procedures applicable. The resulting clusters seem
to be reasonable when applied to the real exchange rate time series, and the portfolios constructed
based on the resulting clusters are shown to outperform those from other clustering procedures,
particularly in the long run.

Future research should focus on seeking consistent nonparametric estimators for the coefficients
of maximal tail dependence such as WLTMD, since parametric copulas having explicit forms of these
coefficients are not always available for the standard residuals extracted from the data. As pointed
out in (Furman et al. 2015, sct. 7), the achievement in the area of M-estimators may be a possible
way to obtain such estimators as well as the relevant statistical inference. Moreover, the idea of the
OLS estimator (see Gabaix and Ibragimov 2011, for instance) may also be a potential way to address
this challenging problem. Furthermore, as indexes of maximal tail dependence such as WLTMD are
measures of extreme co-movements, they might not reflect the potential causality between quantities
and hence could not be directly applied to some important issues in the financial markets such as
contagion effects. Nevertheless, our proposed clustering procedure provides an insight to analyze
financial time series using asymmetric information matrices such as matrices of contagion measures.

Supplementary Materials: The following are available at http://www.mdpi.com/2227-9091/6/4/115/s1,
Table S1: 1001 portfolios constructed for all combinations of 4 currencies out of 14 currencies. The portfolio weights
obtained by Markowitz minimal variance criteria is given in the bracket. Also, mean returns and accumulative
returns are listed.
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Appendix A. Proof of Proposition 2.1

Proof. Since there exists a function ϕ∗(u) ∈ A such that

Π∗(u) = C(ϕ∗(u), u2/ϕ∗(u)),

combined with the upper Fréchet–Hoeffding bound of copulas we must have for any x ∈ (0, 2),

C(ux, u2−x) ≤ Π∗(u) ≤ min{ϕ∗(u), u2/ϕ∗(u)} (A1)

for all u ∈ (0, 1] because ux, u2−x ∈ A. From Equation (A1), it is easy to obtain

Π∗(u) ≤ u. (A2)

Given the Lipschitz condition of copula, we have∣∣∣C(ux, u2−x)− C(1, u2)
∣∣∣ ≤ ∣∣ux − 1

∣∣+ u2
∣∣∣u−x − 1

∣∣∣→ 0

as x ↓ 0 by noticing C(1, u2) = u2, then

lim
x↓0

C(ux, u2−x) = u2 (A3)
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for all u ∈ (0, 1]. Combining Equations (A1) and (A3) yields

Π∗(u) ≥ u2 (A4)

for all u ∈ (0, 1], and since Π∗(u) = �∗(u)uκ∗L , it further follows by Equations (A2) and (A4) that

1− log �∗(u)
log(u)

≤ κ∗L ≤ 2− log �∗(u)
log(u)

(A5)

for all u ∈ (0, 1]. Provided the Karamata’s Representation Theorem, the slowly varying function �∗(u)
has the following representation:

�∗(u) = c∗(u) exp

{∫ 1/u

1

ε∗(t)
t

dt

}
, (A6)

where measurable functions c∗(u) and ε∗(t) satisfy

lim
u↓0

c∗(u) = c ∈ (0, ∞)

and
lim
t→∞

ε∗(t) = 0.

Hence, by Equation (A6), we have for all u ∈ (0, 1]

log �∗(u)
log(u)

=
1

log(u)

(
log c∗(u) +

∫ 1/u

1

ε∗(t)
t

dt

)
. (A7)

Notice that, in Equation (A7), it is obvious that

lim
u↓0

log c∗(u)
log(u)

= 0, (A8)

the major discussion should focus on the limit of the rest part of Equation (A7) as u ↓ 0. Since ε∗(t)→ 0
as t → ∞, by defining Tε := sup{t ∈ (1, ∞) : |ε∗(t)| ≥ ε} for arbitrary ε > 0 we know that Tε < ∞.
Hence, for small enough u ∈ (0, 1], we could rewrite

1
log(u)

∫ 1/u

1

ε∗(t)
t

dt =
1

log(u)

(∫ Tε

1

ε∗(t)
t

dt +
∫ 1/u

Tε

ε∗(t)
t

dt

)
. (A9)

Then, for Equation (A9), it is obvious, that for u < Uε := exp

{
−1

ε

∫ Tε

1

ε∗(t)
t

dt

}
, we have

∣∣∣∣∣ 1
log(u)

∫ Tε

1

ε∗(t)
t

dt

∣∣∣∣∣ < ε,

while for u < T−0.5
ε ,∣∣∣∣∣ 1

log(u)

∫ 1/u

Tε

ε∗(t)
t

dt

∣∣∣∣∣ <
∣∣∣∣∣ 1
log(u)

∣∣∣∣∣ ∣∣− log(u)− log Tε

∣∣ ε =

∣∣∣∣∣1 + log Tε

log(u)

∣∣∣∣∣ ε ≤ ε.
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Therefore, for all u < min{T−0.5
ε , Uε} we have∣∣∣∣∣ 1

log(u)

∫ 1/u

1

ε∗(t)
t

dt

∣∣∣∣∣ < 2ε,

which is equivalent to

lim
u↓0

1
log(u)

∫ 1/u

1

ε∗(t)
t

dt = 0.

Finally, combined with (A8) we deduce

lim
u↓0

log �∗(u)
log(u)

= 0.

Therefore, we may conclude that κ∗L ∈ [1, 2] by letting u ↓ 0 for both inequalities of Equation
(A9).

Appendix B. Details of the Clustering Algorithm in Simulation

Algorithm A1 Best WCut (Meilă and Pentney 2007, Algorithm 4.1).

Require: Affinity matrix, Δ; diagonal matrix of volume weights, V; diagonal matrix of row weights,
R; number of clusters, k;

Ensure: The clustering, C∗;
1: Update Δ through the linear transform RΔ;
2: Define Di = ∑d

j=1 δij and D = diag{Di}i=1,...,n;
3: Define H(B) = 1

2 (B + Bᵀ), where B = V−1/2 (D− Δ)V−1/2;
4: Compute Y the n × k matrix with orthonormal columns containing the eigenvectors of H(B)
corresponding to the k smallest eigenvalues;
5: Cluster the rows of X = V−1/2Y as points in Rk.
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Appendix E. Seventy-Two Portfolios Constructed Based on Our Clustering Result in Table 7

Table A3. Sevent-two portfolios constructed based on our clustering result in Table 7. Notice that
for each cluster only one currency is selected. The portfolio weights obtained by Markowitz minimal
variance criteria is given in the bracket. In addition, mean returns and accumulative returns are listed.

Portfolio
Currency from

Cluster 1
Currency from

Cluster 2
Currency from

Cluster 3
Currency from

Cluster 4
Mean

Return
Accumulative

Return

1 AUD (0.0000) BRL (0.0220) CNY (0.9177) JPY (0.0603) −0.0321% −6.6162%
2 CAD (0.0122) BRL (0.0195) CNY (0.9089) JPY (0.0595) −0.0329% −6.7676%
3 GBP (0.0221) BRL (0.0196) CNY (0.8984) JPY (0.0599) −0.0333% −6.8559%
4 EUR (0.0392) BRL (0.0164) CNY (0.8944) JPY (0.0499) −0.0313% −6.4531%
5 AUD (0.0000) INR (0.0539) CNY (0.8841) JPY (0.0620) −0.0316% −6.5051%
6 CAD (0.0188) INR (0.0500) CNY (0.8709) JPY (0.0603) −0.0332% −6.8367%
7 GBP (0.0236) INR (0.0508) CNY (0.8643) JPY (0.0613) −0.0331% −6.8180%
8 EUR (0.0419) INR (0.0483) CNY (0.8596) JPY (0.0502) −0.0315% −6.4815%
9 AUD (0.0000) IDR (0.0322) CNY (0.9072) JPY (0.0606) −0.0320% −6.5924%

10 CAD (0.0227) IDR (0.0271) CNY (0.8913) JPY (0.0589) −0.0336% −6.9266%
11 GBP (0.0278) IDR (0.0317) CNY (0.8807) JPY (0.0597) −0.0340% −6.9977%
12 EUR (0.0441) IDR (0.0263) CNY (0.8810) JPY (0.0486) −0.0315% −6.4964%
13 AUD (0.0023) MXN (0.0109) CNY (0.9221) JPY (0.0647) −0.0299% −6.1674%
14 CAD (0.0300) MXN (0.0000) CNY (0.9093) JPY (0.0608) −0.0310% −6.3935%
15 GBP (0.0269) MXN (0.0066) CNY (0.9029) JPY (0.0636) −0.0310% −6.3900%
16 EUR (0.0468) MXN (0.0031) CNY (0.8995) JPY (0.0507) −0.0288% −5.9339%
17 AUD (0.0085) ZAR (0.0000) CNY (0.9290) JPY (0.0626) −0.0290% −5.9725%
18 CAD (0.0300) ZAR (0.0000) CNY (0.9093) JPY (0.0608) −0.0310% −6.3935%
19 GBP (0.0282) ZAR (0.0000) CNY (0.9091) JPY (0.0627) −0.0301% −6.2074%
20 EUR (0.0476) ZAR (0.0000) CNY (0.9024) JPY (0.0501) −0.0284% −5.8410%
21 AUD (0.0085) TRY (0.0000) CNY (0.9290) JPY (0.0626) −0.0290% −5.9725%
22 CAD (0.0300) TRY (0.0000) CNY (0.9093) JPY (0.0608) −0.0310% −6.3935%
23 GBP (0.0282) TRY (0.0000) CNY (0.9091) JPY (0.0627) −0.0301% −6.2074%
24 EUR (0.0476) TRY (0.0000) CNY (0.9024) JPY (0.0501) −-0.0284% −5.8410%
25 AUD (0.0000) BRL (0.0264) CNY (0.9736) KRW (0.0000) −0.0271% −5.5828%
26 CAD (0.0217) BRL (0.0218) CNY (0.9566) KRW (0.0000) −0.0285% −5.8756%
27 GBP (0.0234) BRL (0.0238) CNY (0.9528) KRW (0.0000) −0.0284% −5.8427%
28 EUR (0.0606) BRL (0.0166) CNY (0.9228) KRW (0.0000) −0.0272% −5.6042%
29 AUD (0.0045) INR (0.0558) CNY (0.9397) KRW (0.0000) −0.0262% −5.3969%
30 CAD (0.0304) INR (0.0511) CNY (0.9185) KRW (0.0000) −0.0286% −5.8954%
31 GBP (0.0260) INR (0.0541) CNY (0.9200) KRW (0.0000) −0.0275% −5.6677%
32 EUR (0.0635) INR (0.0480) CNY (0.8885) KRW (0.0000) −0.0273% −5.6167%
33 AUD (0.0058) IDR (0.0391) CNY (0.9516) KRW (0.0036) −0.0276% −5.6778%
34 CAD (0.0321) IDR (0.0346) CNY (0.9332) KRW (0.0000) −0.0299% −6.1540%
35 GBP (0.0303) IDR (0.0416) CNY (0.9282) KRW (0.0000) −0.0296% −6.1004%
36 EUR (0.0643) IDR (0.0307) CNY (0.9050) KRW (0.0000) −0.0281% −5.7784%
37 AUD (0.0143) MXN (0.0000) CNY (0.9762) KRW (0.0094) −0.0233% −4.7940%
38 CAD (0.0418) MXN (0.0000) CNY (0.9581) KRW (0.0001) −0.0264% −5.4331%
39 GBP (0.0289) MXN (0.0000) CNY (0.9621) KRW (0.0089) −0.0238% −4.8943%
40 EUR (0.0690) MXN (0.0000) CNY (0.9310) KRW (0.0000) −0.0242% −4.9823%
41 AUD (0.0143) ZAR (0.0000) CNY (0.9762) KRW (0.0094) −0.0233% −4.7940%
42 CAD (0.0418) ZAR (0.0000) CNY (0.9581) KRW (0.0001) −0.0264% −5.4331%
43 GBP (0.0289) ZAR (0.0000) CNY (0.9621) KRW (0.0089) −0.0238% −4.8943%
44 EUR (0.0690) ZAR (0.0000) CNY (0.9310) KRW (0.0000) −0.0242% −4.9823%
45 AUD (0.0143) TRY (0.0000) CNY (0.9762) KRW (0.0094) −0.0233% −4.7940%
46 CAD (0.0418) TRY (0.0000) CNY (0.9581) KRW (0.0001) −0.0264% −5.4331%
47 GBP (0.0289) TRY (0.0000) CNY (0.9621) KRW (0.0089) −0.0238% −4.8943%
48 EUR (0.0690) TRY (0.0000) CNY (0.9310) KRW (0.0000) −0.0242% −4.9823%
49 AUD (0.0000) BRL (0.0264) CNY (0.9736) RUB (0.0000) −0.0271% −5.5828%
50 CAD (0.0217) BRL (0.0218) CNY (0.9566) RUB (0.0000) −0.0285% −5.8756%
51 GBP (0.0234) BRL (0.0238) CNY (0.9528) RUB (0.0000) −0.0284% −5.8427%
52 EUR (0.0606) BRL (0.0166) CNY (0.9228) RUB (0.0000) −0.0272% −5.6042%
53 AUD (0.0045) INR (0.0558) CNY (0.9397) RUB (0.0000) −0.0262% −5.3969%
54 CAD (0.0304) INR (0.0511) CNY (0.9185) RUB (0.0000) −0.0286% −5.8954%
55 GBP (0.0260) INR (0.0541) CNY (0.9200) RUB (0.0000) −0.0275% −5.6677%
56 EUR (0.0635) INR (0.0480) CNY (0.8885) RUB (0.0000) −0.0273% −5.6167%
57 AUD (0.0071) IDR (0.0394) CNY (0.9534) RUB (0.0000) −0.0279% −5.7458%
58 CAD (0.0321) IDR (0.0346) CNY (0.9332) RUB (0.0000) −0.0299% −6.1540%
59 GBP (0.0303) IDR (0.0416) CNY (0.9282) RUB (0.0000) −0.0296% −6.1004%
60 EUR (0.0643) IDR (0.0307) CNY (0.9050) RUB (0.0000) −0.0281% −5.7784%
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Table A3. Cont.

Portfolio
Currency from

Cluster 1
Currency from

Cluster 2
Currency from

Cluster 3
Currency from

Cluster 4
Mean

Return
Accumulative

Return

61 AUD (0.0182) MXN (0.0000) CNY (0.9818) RUB (0.0000) −0.0240% −4.9542%
62 CAD (0.0418) MXN (0.0000) CNY (0.9582) RUB (0.0000) −0.0264% −5.4349%
63 GBP (0.0310) MXN (0.0000) CNY (0.9690) RUB (0.0000) −0.0242% −4.9888%
64 EUR (0.0690) MXN (0.0000) CNY (0.9310) RUB (0.0000) −0.0242% −4.9823%
65 AUD (0.0182) ZAR (0.0000) CNY (0.9818) RUB (0.0000) −0.0240% −4.9542%
66 CAD (0.0418) ZAR (0.0000) CNY (0.9582) RUB (0.0000) −0.0264% −5.4349%
67 GBP (0.0310) ZAR (0.0000) CNY (0.9690) RUB (0.0000) −0.0242% −4.9888%
68 EUR (0.0690) ZAR (0.0000) CNY (0.9310) RUB (0.0000) −0.0242% −4.9823%
69 AUD (0.0182) TRY (0.0000) CNY (0.9818) RUB (0.0000) −0.0240% −4.9542%
70 CAD (0.0418) TRY (0.0000) CNY (0.9582) RUB (0.0000) −0.0264% −5.4349%
71 GBP (0.0310) TRY (0.0000) CNY (0.9690) RUB (0.0000) −0.0242% −4.9888%
72 EUR (0.0690) TRY (0.0000) CNY (0.9310) RUB (0.0000) −0.0242% −4.9823%
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Furman, Edward, Jianxi Su, and Ričardas Zitikis. 2015. Paths and indices of maximal tail dependence.

ASTIN Bulletin 45: 661–78. [CrossRef]

135



Risks 2018, 6, 115

Gabaix, Xavier, and Rustam Ibragimov. 2011. Rank −1/2: A Simple Way to Improve the OLS Estimation of Tail
Exponents. Journal of Business & Economic Statistics 29: 24–39.

Hua, Lei, and Harry Joe. 2011. Tail order and intermediate tail dependence of multivariate copulas. Journal of
Multivariate Analysis 102: 1454–71. [CrossRef]

Kaufman, Leonard, and Peter J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley Series in Probability and Statistics. Hoboken: John Wiley & Sons, Inc. doi:10.1002/9780470316801.
[CrossRef]

Liebscher, Eckhard. 2008. Construction of asymmetric multivariate copulas. Journal of Multivariate Analysis
99: 2234–50. [CrossRef]

Mantegna, Rosario N. 1999. Hierarchical structure in financial markets. The European Physical Journal B 11: 193–97.
[CrossRef]

Meilă, Marina. 2003. Comparing Clusterings by the Variation of Information. In Learning Theory and Kernel
Machines. Berlin and Heidelberg: Springer Nature Switzerland AG., pp. 173–87. [CrossRef]
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Abstract: In this short paper, we study a VaR-type risk measure introduced by Guérin and Renaud
and which is based on cumulative Parisian ruin. We derive some properties of this risk measure and
we compare it to the risk measures of Trufin et al. and Loisel and Trufin.

Keywords: risk measure; cumulative Parisian ruin; stochastic orders; surplus process

1. Introduction

Over the last few years, several dynamic risk measures, i.e., risk measures based on ruin-theoretic
quantities, have been studied. For example, in the classical compound Poisson risk model,
Trufin et al. (2011) considered a VaR-type risk measure defined as the smallest initial capital needed
to ensure a certain probability of solvency throughout the lifetime of the surplus process. This risk
measure has been extended by Mitric and Trufin (2016) who defined a risk measure taking into account
both the probability of ruin and the expected deficit at ruin. In addition, Loisel and Trufin (2014) used
the expected area below the solvency threshold as a risk indicator to introduce a new risk measure
with some interesting properties.

Very recently, implementation delays in the recognition of ruin and occupation times of the
surplus process have been used as alternative risk management tools to assess the quality of an
insurance portfolio. In this direction, Guérin and Renaud (2017) introduced the concept of cumulative
Parisian ruin, which is based on the time spent in the red by the underlying surplus process. The time of
cumulative Parisian ruin is the first time the surplus process stays cumulatively below a critical level
longer than a pre-determined grace period. Inspired by the risk measure of Trufin et al. (2011), they
defined a VaR-type risk measure based on cumulative Parisian ruin. It is also defined as the smallest
amount of capital for which the associated cumulative Parisian ruin probability is less than or equal to
a tolerable level.

In this paper, we study this VaR-type risk measure based on cumulative Parisian ruin. In Guérin
and Renaud (2017), this risk measure is proposed as a motivational reason to study the concept
of cumulative Parisian ruin; the risk measure itself is neither analyzed nor used for any particular
application. We derive some of its properties and compare it to the risk measures of Trufin et al. (2011)
and Loisel and Trufin (2014).

The rest of the paper is organized as follows. In Section 2, we recall some background on the
Cramér–Lundberg model, also known as the classical risk model, and define the concept of cumulative
Parisian ruin. In Section 3, we introduce our risk measure and we give some of its properties. Finally,
in Section 4, we study our risk measure in the special case of a Cramér–Lundberg process with
exponential claims.

Risks 2018, 6, 85; doi:10.3390/risks6030085 www.mdpi.com/journal/risks137
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2. Insurance Risk Model

The Cramér–Lundberg model was proposed by Lundberg (1903) and further developed by
Cramér (1930). In this model, the surplus process of an insurance company is modelled by

Xt = x + ct− St, (1)

where x ≥ 0 and c > 0, and where St = ∑Nt
i=1 Ci is a compound Poisson process with N = {Nt, t ≥ 0}

a Poisson process of intensity λ > 0 and with {C1, C2, . . . } positive random variables following
a common cumulative distribution function FC. Recall that in this setup the claim sizes {C1, C2, . . . }
are mutually independent and are also independent of the number-of-claim process N. The process
S = {St, t ≥ 0} is known as the aggregate claim amount process. We call x the initial capital and c the
premium rate.

We use the following equivalent notations Px (·) ≡ P (·|X0 = x) to emphasize that the process X
starts at level x. The notation Ex corresponds to Px. When X0 = 0, we drop the index. In this model,
the premium rate c is chosen usually to satisfy the net profit condition E [X1] = c− λE[C1] > 0, which
means that we can define the safety loading factor η > 0 by η := (c− λE[C1]) /λE[C1].

The time of classical ruin associated to X is defined as

τ−0 = inf {t > 0 : Xt < 0} .

We denote the corresponding finite-time probability of ruin, for x ≥ 0 and t > 0, by

ψ(t, x) = Px
(
τ−0 ≤ t

)
, (2)

and the infinite-time probability of ruin by

ψ(x) = Px
(
τ−0 < ∞

)
. (3)

Of course, we have ψ(x) = lim
t→∞

ψ(t, x).

In Trufin et al. (2011), assuming that the safety loading η is fixed, the following ruin-consistent
VaR-type risk measure is defined and analyzed: for a tolerance level ε > 0, set

ζε[C] = inf {x ≥ 0 : ψ(x) ≤ ε} .

It is well known that we can compute ψ(x) using the Pollaczeck–Khinchine formula (also known
in the actuarial literature as the Beekman’s convolution formula, see Beekman (1985)) which states
that the probability of classical ruin is equal to the tail distribution function of a compound geometric
random variable. First, let us define the aggregate loss at time t by Lt = St − ct and the maximal
aggregate loss of the process by L = max

t≥0
Lt. The random variable L can be expressed as

L =
M

∑
i=1

Di, (4)

where M is the number of record highs, which has a geometric distribution with success
probability η/(η + 1), and where {D1, D2, . . . } are the ladder heights with common distribution

FD(u) =
∫ u

0
(1− FC(y))dy/E[C1]. The Pollaczeck–Khinchine formula for the probability of ruin is

then given by

ψ (x) = P (L > x) = 1− η

η + 1

∞

∑
k=1

(
1

η + 1

)k
F∗(k)D (x) , (5)
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where F∗(k)D denotes the k-th convolution of the distribution FD. Therefore, this risk measure can also
be written as follows:

ζε[C] = inf {x ≥ 0 : P (L > x) ≤ ε} = F−1
L (1− ε) . (6)

In some sense, the focus of this risk measure is shifted from the surplus process X to the
distribution of the maximal aggregate loss L. This important relationship is at the core of the analysis
done in Trufin et al. (2011). However, this relationship with the maximal aggregate loss L does not
exist for the finite-time ruin probability. Note that this is also the case for the VaR-type risk measure
defined and analyzed in Mitric and Trufin (2016).

Cumulative Parisian Ruin

Recently, Guérin and Renaud (2017) introduced a new definition of actuarial ruin based on the
occupation-time process (below 0) associated with the surplus process X. The occupation-time process
OL =

{OL
t , t ≥ 0

}
is defined as

OL
t =

∫ t

0
1{Xu<0}du =

∫ t

0
1{Lu>X0}du.

Then, the time of cumulative Parisian ruin, with delay r > 0, is given by

σr = inf
{

t > 0 : OL
t > r

}
.

In the definition of cumulative Parisian ruin, we aggregate the duration of all periods of financial
distress until we accumulate r units of time spent in that red zone. Consequently, ruin is not declared
as soon as X goes below zero: for x ≥ 0, t > 0 and r > 0, we have

Px (σr ≤ t) ≤ Px
(
τ−0 ≤ t

)
. (7)

Cumulative Parisian ruin is somehow a generalization of classical ruin and, when r → 0,
we recover the classical definition (see Guérin and Renaud (2017) for the details and see Figure 1 for
a graphical comparison).

We denote the finite-time probability of cumulative Parisian ruin by

ψr (t, x) = Px (σr ≤ t) = Px

(
OL

t > r
)

(8)

and the infinite-time version by
ψr (x) = Px (σr < ∞) .

Of course, we have ψr (x) = lim
t→∞

ψr (t, x). With this new notation in hand, we can re-write the

inequality in Equation (7) as follows: for x ≥ 0, t > 0 and r > 0, we have

ψr (t, x) ≤ ψ(t, x). (9)

We also have
ψ(t, x) = lim

r→0
ψr (t, x) and ψ(x) = lim

r→0
ψr (x) .
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Figure 1. A sample path of a Cramér–Lundberg process Xt. The time of ruin τ−0 is in red and the time
of cumulative Parisian ruin κr is in blue.

3. A VaR-type Risk Measure Derived from Cumulative Parisian Ruin

Using the definition of cumulative Parisian ruin, Guérin and Renaud (2017) defined the following
VaR-type risk measure: for a time horizon of length t and delay r, and for a given tolerance level
ε > 0, set

ρ
(r,t)
ε [X] = inf {x ≥ 0 : ψr (t, x) ≤ ε} .

It gives the amount of initial capital needed in order to bound the finite-time probability of
cumulative Parisian ruin with delay r by ε. Since ψr (t, x) = Px

(OL
t > r

)
, we can also write

ρ
(r,t)
ε [L] = inf

{
x ≥ 0 : Px

(
OL

t > r
)
≤ ε
}

.

Consequently, this risk measure is based on the distribution of OL
t . This is the analog of the

random variable L for the risk measure in Equation (6). A major improvement is that we can
now vary both the time horizon and the implementation delay by changing the values of t and r,
respectively. The trade-off is that we need the distribution of a strongly path-dependent random
variable, namely OL

t .
For the rest of this paper, we focus on the properties of this VaR-type cumulative Parisian risk

measure. In addition, we compare the infinite-time version to the infinite-time risk measure defined
in Trufin et al. (2011). Then, we also study the finite-time version as this is possible as soon as the
distribution of OL

t is available.
Before going any further, let us give some background material on stochastic dominance.

3.1. Stochastic Dominance

Consider two random variables X and Y, and let F̄X and F̄Y be their survival functions. We say
that X is smaller than Y in the stochastic dominance order, which is denoted by X �st Y, if

F̄X(u) ≤ F̄Y(u), for all u. (10)

Equivalently, for all non-decreasing functions φ, we have

E [φ (X)] ≤ E [φ (Y)] . (11)

Here is a theorem taken from Shaked and Shanthikumar (2007).
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Theorem 1.

(i) Let {X1, X2, . . . , Xm} and {Y1, Y2, . . . , Ym} be two finite sets of independent random variables such that
Xi �st Yi, for each i = 1, . . . , m. Then, for any increasing function g : Rm → R, we have

g (X1, X2, . . . , Xm) �st g (Y1, Y2, . . . , Ym) . (12)

(ii) Consider two sequences of random variables {X1, X2, . . .} and {Y1, Y2, . . .} and two random variables X
and Y such that

Xn
d→ X and Yn

d→ Y,

where d→ denotes convergence in distribution. If Xn �st Yn for each n, then X �st Y.
(iii) Let the positive integer-valued random variable N be independent of the family of random variables

{C1, C2, . . . } and define S =
N
∑

i=1
Ci. Define similarly S̃ =

Ñ
∑

i=1
C̃i.

If N �st Ñ and Ci �st C̃i for each i, then
S �st S̃. (13)

Finally, if X = {Xt, t ≥ 0} and Y = {Yt, t ≥ 0} are stochastic processes, then we write X �st Y if,
for each t ≥ 0, we have

Xt �st Yt.

The reader is referred to Shaked and Shanthikumar (2007), Kaas et al. (2008) and Denuit et al.
(2005) for more details on stochastic ordering and applications in actuarial science.

3.2. Properties of the Risk Measure ρ
(r,t)
ε

In the following, let L and L̃ be two aggregate loss amount processes associated with two aggregate
claim amount processes S and S̃, themselves from two Cramér–Lundberg risk processes X and X̃ as
defined in v(1).

Theorem 2. For r > 0, ε > 0 and t > 0, we have:

(i) Invariance by translation: For a > 0,

ρ
(r,t)
ε [L + a] = ρ

(r,t)
ε [L]− a. (14)

(ii) Positive homogeneity: For b > 0,

ρ
(r,t)
ε [bL] = bρ

(r,t)
ε [L] . (15)

(iii) Monotonicity: If L �st L̃, then

ρ
(r,t)
ε [L] ≤ ρ

(r,t)
ε [L̃]. (16)

Proof. First, note that

Px

(
OL+a

t > r
)
= Px

(∫ t

0
1{Lu>x−a }du > r

)
= Px−a

(
OL

t > r
)

.
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Consequently,

ρ
(r,t)
ε [L + a] = inf

{
x ≥ 0 : Px

(
OL+a

t > r
)
≥ ε
}

= inf
{

x ≥ 0 : Px+a

(
OL

t > r
)
≥ ε
}

= ρ
(r,t)
ε [L] + a.

This proves Equation (14).
Similarly, if we note that

Px

(
ObL

t > r
)
= Px

(∫ t

0
1{Lu>x/b}du > r

)
= Px/b

(
OL

t > r
)

,

then Equation (15) follows.
To prove the third property, we fix t > 0 and we show that, if Lu �st L̃u for all u ≤ t, then

OL
t �st O L̃

t .

First, let us define a sequence of discretized versions of the occupation-time process OL
t . For each

n ≥ 1, choose 0 = t0 < t1 < . . . < tn = t such that max
0≤i≤n

(ti − ti−1)→ 0, as n → ∞, and define

O(n)
t =

n

∑
i=1

(ti − ti−1) 1{Lti>x}.

We define Õ(n)
t in the obvious way, i.e., when S is replaced by S̃. We can re-write O(n)

t as follows:

O(n)
t = φn

(
Lt1 − Lt0 , Lt2 − Lt1 , . . . , Ltn − Ltn−1

)
,

where φn (u1, . . . , un) = ∑n
i=1(ti − ti−1)1{∑i

j=1 uj>x+cti

}.

Since Lu �st L̃u for all u ≤ t, then we have Lti−ti−1 �st L̃ti−ti−1 for each i. Then, since

Lti−ti−1
d
= Lti − Lti−1 and L̃ti−ti−1

d
= L̃ti − L̃ti−1 ,

we have that Lti − Lti−1 �st L̃ti − L̃ti−1 for each i. From Equation (12), we obtain

φn
(

Lt1 − Lt0 , Lt2 − Lt1 , . . . , Ltn − Ltn−1

) �st φn
(

L̃t1 − L̃t0 , L̃t2 − L̃t1 , . . . , L̃tn − L̃tn−1

)
,

or equivalently
O(n)

t �st Õ(n)
t .

Since O(n)
t

d→ OL
t and Õ(n)

t
d→ O L̃

t , by the second part of Theorem 1, we get

OL
t �st O L̃

t .

This means that
Px

(
OL

t > r
)
≤ Px

(
O L̃

t > r
)

, for all r.

The property in Equation (16) follows.

The monotonicity property in Equation (16) says that the risk measure ρ
(r,t)
ε [L] is increasing with

respect to the stochastic dominance order. Note that, if P
(

Lt ≤ L̃t
)
= 1 for all t ≥ 0, then we can also

prove that
ρ
(r,t)
ε [L] ≤ ρ

(r,t)
ε

[
L̃
]

.
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If we put together the monotonicity property in Equations (16) and (13), then we can deduce the
following intuitive relationship: a smaller frequency and a smaller severity yield less occupation time
in the red zone and thus a smaller probability of cumulative Parisian ruin. For example, by the third
part of Theorem 1, if C and C̃ are exponentially distributed random variables with parameters α and
α̃, respectively, and if α ≥ α̃, λ ≤ λ̃ and c = c̃, then, for a given common premium rate c, the initial
capital needed at a given tolerance level ε is larger for X than for X̃.

It is worth mentioning that, as an immediate consequence of Proposition 1, Theorem 2 is also
satisfied for the infinite-time horizon risk measure ζε. Thus, we have recovered some of the results in
Properties 3.1 and 3.2 of Trufin et al. (2011). In addition, an important consequence of Proposition 1 is
the stochastic ordering for the finite-time ruin probability ψ (t, x).

When there is no initial reserve, i.e., when x = 0, and for c = c̃, the last theorem generalizes
Theorem 4 in Goovaerts and De Vylder (1984) and also Proposition 1 of Lefèvre et al. (2017).

3.3. Relationship with Other Risk Measures

Recall that our main object of study is the following VaR-type risk measure: for r > 0, ε > 0 and
t > 0,

ρ
(r,t)
ε [L] = inf {x ≥ 0 : ψr (t, x) ≤ ε} = inf

{
x ≥ 0 : Px

(
OL

t > r
)
≤ ε
}

. (17)

When t = ∞, we write ρ
(r)
ε .

We are also interested in the risk measure based on the finite-time probability of classical ruin:

ζ
(t)
ε [L] = inf {x ≥ 0 : ψ(t, x) ≤ ε} . (18)

Using the inequality in Equation (9) and the discussions in the previous section, we deduce the
following first proposition:

Proposition 1. For a given time horizon 0 < t ≤ ∞ and an acceptance level ε > 0, the risk measure ρ
(r,t)
ε is

less conservative than the risk measure ζ
(t)
ε , i.e.,

ρ
(r,t)
ε [L] ≤ ζ

(t)
ε [L] , (19)

and, when r → 0, it converges to ζ
(t)
ε , i.e.,

ρ
(r,t)
ε [L] ↑ ζ

(t)
ε [L] , as r → 0. (20)

When the implementation delay r is replaced by copies of an exponentially distributed random
variable eq with rate q > 0, then, for x ∈ R, we have

Px

(
σeq ≤ t

)
= 1−Ex

[
e−qOL

t
]

. (21)

In addition, in this case, cumulative Parisian ruin corresponds to Parisian ruin with exponential
delays, that is

κq = inf
{

t > 0 : t− gt > egt
q

}
,

where gt = sup {0 ≤ s ≤ t : Xs ≥ 0} is is the last time before t when the process was non-negative.
Hence,

ψeq (t, x) = Px

(
σeq ≤ t

)
= Px (κ

q ≤ t) .

We can then define the following VaR-type risk measure: for q, r > 0, ε > 0 and t > 0,

ρ
(q,r,t)
ε [L] = inf

{
x ≥ 0 : ψeq (t, x) ≤ ε

}
, (22)
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In addition, we have
ρ
(q,r,t)
ε [L] ↑ ρ

(r,t)
ε [L] , as q → ∞. (23)

The risk measure ρ
(q,r,t)
ε satisfies the properties in Theorem 2. For example, we proved that,

if L �st L̃, we have OL
t �st O L̃

t . Then, using Equation (12), we obtain

h(OL
t ) �st h(O L̃),

where h(x) = 1− e−qx. Hence, using Equation (11), we get

Ex [h(L)] ≤ Ex
[
h(L̃)

]
,

and then
ρ
(q,r,t)
ε [L] ≤ ρ

(q,r,t)
ε

[
L̃
]

.

In addition, as an improvement of the finite-time version of the (infinite-horizon) risk measure
defined by Loisel and Trufin (2014), we can define

ω
(t)
a [L] := inf

{
x ≥ 0 : Ex

[
AL

t

]
≤ a

}
,

where a > 0 is a tolerance level for the expected area in the red defined as

AL
t =

∫ t

0
(Lu − x)+ du,

where (x)+ = max(x, 0). Furthermore, we can use Theorem 1 of Loisel (2005) and then write

Ex

[
AL

t

]
=
∫ ∞

x
Ev

[
OL

t

]
dv =

∫ ∞

x

∫ ∞

0
Pv

(
OL

t ≥ u
)

dudv. (24)

Consequently, if we suppose that L �st L̃, thenOL
t �st O L̃

t and then, from Equations (10) and (24),
we have

Ex

[
AL

t

]
≤ Ex

[
AL̃

t

]
.

Thus,
ω
(t)
a [L] ≤ ω

(t)
a
[
L̃
]

, (25)

which corresponds to Property 3.1 in Loisel and Trufin (2014).

Remark 1. Note that, with the distribution in Theorem 3, it is possible to compute the finite-time version of this
risk measure based on the area in the red in the case of a Cramér–Lundberg process with exponential claims.

4. Example: Cramér–Lundberg Model with Exponential Claims

In this section, we want to see how ρ
(r,t)
ε reacts to changes in the value of its parameters. In other

words, we want to perform a sensitivity analysis.
In general, we could use Monte Carlo simulations to compute values for ρ

(r,t)
ε . However, if we

consider a Cramér–Lundberg process with exponentially distributed claims {C1, C2, . . . } with rate
parameter α > 0, then there exists an explicit expression for the distribution of the occupation time for
a finite-time horizon. Unfortunately, such formulas are not available for most claim distributions.

Theorem 3 (Guérin and Renaud (2017)). For t > 0, we have

Px

(
OL

t ∈ ds
)
= ax

t δ0 (ds) + (ax
t−s + kx

t−s)
(

λ− cα
(

1− a0
s

))
1(0,t) (s)ds,
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with

ax
t = 1− λe−αx

∫ t

0
e−(λ+cα)s

[
I0

(
2
√

λcαs (s + x/c)
)
− s

s + x/c
I2

(
2
√

λcαs (s + x/c)
)]

ds

and

kx
t = e−αx − 1 + λxαe−αx

∫ t

0
e−(λ+cα)s

[
I0

(
2
√

λcαs (s + x/c)
)
− I2

(
2
√

λcαs (s + x/c)
)]

ds,

where Iν represents the modified Bessel function of the first kind of order ν.

In Theorem 3, ax
t is the survival ruin probability over [0, t], that is

ax
t = 1− ψ(t, x)

= 1− λe−αx
∫ t

0
e−(λ+cα)s

[
I0

(
2
√

λcαs (s + x/c)
)
− s

s + x/c
I2

(
2
√

λcαs (s + x/c)
)]

ds.

For an infinite-time horizon, we have the well-known expression:

ax = lim
t→∞

ax
t = 1− ψ(x) =

λ

cα
ex(λ/c−α) =

1
1 + η

e−xαη/(1+η).

From Corollary 2 in Renaud (2014), we can deduce the following expression for the distribution
of OL

∞, when the claims are exponentially distributed.

Corollary 1. For any x ∈ R, we have

Px

(
OL

∞ ∈ ds
)
= axδ0 (ds)

+
λ

c

(
1− λ

cα

)
e−csαe−x(α−λ/c)

(
c +

∞

∑
i=0

(λs)i+1

i! (1 + i)!

(
cΓ (i + 1, sλ)− c

sλ
Γ (i + 2, sλ)

))
,

where Γ(a, x) =
∫ x

0 e−tta−1dt is the incomplete gamma function.

The explicit formula in Theorem 3 allows for a sensitivity analysis of the value of the probability
of cumulative Parisian ruin, when claims are exponentially distributed, with respect to the delay
parameter r and the time horizon t. In Figure 2, we observe that for a fixed delay parameter r,
the probability of cumulative Parisian ruin increases when the time horizon t increases. This is because
we accumulate more occupation time. On the other hand, it decreases when the delay r increases.
For a fixed value of the time horizon t, increasing the initial capital x decreases the probability of
cumulative Parisian ruin, as expected.

For the corresponding risk measures, Figure 3 illustrates the relationships in Equations (19) and
in (20) between ρ

(r,t)
ε and ζ

(t)
ε . As r → 0, i.e., as the grace period gets smaller, the initial capital needed

with ρ
(r,t)
ε increases toward that needed with ζ

(t)
ε , both at a tolerance level of ε = 0.3. When the time

horizon t increases, both risk measures increase the initial capital needed for that tolerance level.
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Figure 2. The probability of cumulative Parisian ruin for the Cramér–Lundberg process with α = 1/8,
λ = 2, c = 17, r = 1, x = 10 and t = 10.

Figure 3. Risk measures ρ
(r,t)
ε and ζ

(t)
ε for the Cramér–Lundberg process with α = 1/8, λ = 2, c = 17,

t = 10, r = 2, and ε = 0.3.

5. Conclusions

In this paper, we study a VaR-type risk measure derived from cumulative Parisian ruin for the
Cramér–Lundberg risk process. Precisely, this measure is defined as the smallest amount of capital
for which the associated cumulative Parisian ruin probability is less than or equal to a tolerable level.
We derive some properties of this risk measure and we provide some relationships with other risk
measures. Finally, for exponentially distributed claims sizes, we performed sensitivity analysis of the
values of the probability of cumulative Parisian ruin and the risk measure. Our risk measure could
still be used for other risk processes such as the Brownian motion risk model.
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Abstract: In this paper, a dual risk model under constant force of interest is considered. The ruin
probability in this model is shown to satisfy an integro-differential equation, which can then be
written as an integral equation. Using the collocation method, the ruin probability can be well
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discrete gains are considered. Finally, the same numerical method is applied to the Laplace transform
of the time of ruin.
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1. Introduction

The simplest surplus model in non-life insurance is known as the Cramér–Lundberg model or
the classical risk model. It assumes that the company collects premiums at a fixed rate and pays out
claims of a random amount at random times. Mathematically, the surplus process can be written as:

Ut = u + ct−
Nt

∑
k=1

Xk, (1)

where u is the initial capital, c is the constant premium rate, X1, X2, . . . are the claim sizes and Nt is
the claim arrival process, which counts the number of claims in the time interval [0, t]. It is vital for
any company to operate above a certain income level. For convenience, this level is set to be zero.
Define the time of ruin by:

τ = inf{s > 0 | Us < 0},

where if Us ≥ 0 for all s, then τ = inf ∅ = ∞. Define the ruin probability with initial surplus U0 = u by:

ψ(u) = P(τ < ∞ | U0 = u).

The classical model (1) assumes that the only source of income is from collecting premiums.
In the past, many models incorporated investments with constant force of interest, for example,
investing all (or part) of the surplus in bonds or time accounts. The study of these risk models dated
back to Segerdahl (1942), who considered the constant interest risk model and provided an explicit
expression for the ruin probability when the claims are exponentially distributed. Sundt and Teugels
(1995) gave an extensive treatment of the ruin probability with constant interest force and obtained
approximations, as well as upper and lower bounds. Kasozi and Paulsen (2005) used numerical

Risks 2018, 6, 110; doi:10.3390/risks6040110 www.mdpi.com/journal/risks149
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methods such as the block-by-block method and the Simpson rule to approximate the ultimate ruin
probabilities under a constant rate of interest. Cai et al. (2009) considered the well-known Gerber–Shiu
function under the risk model of liquid reserves and constant interest on the surplus, and more recently,
Schmidli (2015) studied a variant of the discounted penalty function where a penalty applies when the
surplus process leaves a finite interval. Yang and Wang (2010) investigated the asymptotic behavior
of the ruin probability of some negatively dependent risk models with a constant interest rate and
dominatedly-varying-tailed claims. Renewal risk models with constant interest were well studied by
Konstantinides et al. (2010).

A dual model to (1) is obtained by regarding premiums as expenses and claims as gains. In life
annuity insurance or pension insurance, a basic model for the surplus process is known as the classical
dual risk model, which is given by:

Ut = u− ct +
Nt

∑
k=1

Xk. (2)

Here, c denotes the expense rate, {Xk} represent random gains and Nt is called the gain arrival
process. The process Nt is assumed to be a homogenous Poisson process with intensity λ > 0.
Moreover, it is assumed that the claim sizes X1, X2, . . . are independent and identically distributed
(i.i.d) with cumulative distribution function (c.d.f.) F and tail distribution function F = 1− F and that
the processes {Xi} and Nt are independent.

Therefore, (2) models the surplus process of a company with a constant rate of consumption,
earning random income at random times. Other examples of such companies are non-profit
organizations and petroleum companies where the jumps correspond to random donations
(see Chen (2010)) and discoveries of oil (see Avanzi et al. (2007)), respectively. Throughout this paper,
the terms “gains”, “innovations” and “donations” will be used interchangeably.

Contrary to the vast literature on the insurance models, there were very few results published
in the dual model with constant force of interest. Zeng and Xu (2013) considered the perturbed dual
risk model with constant interest and a threshold dividend strategy. They used the sinc method
to approximate the expected present value of total dividends. Dong and Wang (2008) studied the
renewal risk model with constant force of interest and obtained an explicit expression for the ruin
probability in terms of infinite series of iterated integrals. Although their renewal model is more
general than the Poisson process considered here, the objective and approach of this paper differ from
Dong and Wang (2008).

Here, the main objective is to examine the ruin probability numerically in the dual risk model
with risk-free investments under an arbitrary gain distribution. Section 2 shows the derivation of the
integro-differential equation (IDE) that is satisfied by ruin probability. From the IDE, Section 3 carefully
demonstrates that the derivative of the ruin probability satisfies an integral equation (IE). The ruin
probability for certain gain sizes (such as exponential and a mixture of exponentials) has a very explicit
representation. In Section 4, using the collocation method, the IE is reduced to a linear matrix equation.
The ruin probability can then be obtained numerically for any jump distributions. For numerical
illustrations, exponential, uniform, Pareto and discrete gains are considered. In Section 5, the same
numerical method is applied to other functionals of the time of ruin, such as the Laplace transform
of the ruin time. Exponential gains are again considered to illustrate the numerical scheme. Finally,
Section 6 concludes the findings of this paper.

2. The Model

All assumptions in the classical dual model (2) are retained, and it is further assumed that the
company invests all of its surplus in a risk-free asset with constant force of interest a > 0. The surplus
process can now be written as:

Ut = u− ct + a
∫ t

0
Us ds +

Nt

∑
i=1

Xi. (3)
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Define the consumption (or investment) process {Zt} by:

Zt = u− ct + a
∫ t

0
Zs ds,

or equivalently, in differential form,

dZt = (aZt − c)dt, Z0 = u.

Observe that {Zt} is a deterministic process and that the above is an ordinary differential equation
(ODE) with solution:

Zt =
(

u− c
a

)
eat +

c
a

, t ≥ 0.

Since Zt ≥ 0 for all t whenever u ≥ c
a , one has:

ψ(u) = 0 for all u ≥ c
a

. (4)

In other words, if the initial capital is greater than c
a , the contribution from the risk-free investments

always offsets the expenses, and so, the company can never be ruined. Hence, for the ruin probability
ψ(u), only values of u between zero and c

a are of interest.

Theorem 1. Assume that the ruin probability ψ(u) is differentiable. For 0 < u < c
a , the ruin probability

satisfies the IDE:

(au− c)ψ′(u)− λψ(u) + λ
∫ c/a−u

0
ψ(u + x) dF(x) = 0, (5)

with boundary conditions:
ψ(0) = 1 and ψ

( c
a

)
= 0. (6)

Proof. Consider the risk process Ut in an infinitesimal time interval (0, h) where h < 1
a

∣∣ln c
c−au

∣∣.
Therefore,

ψ(u) = E(�[τ<∞]�[N(h)=0] | U0 = u) +E(�[τ<∞]�[N(h)=1] | U0 = u) +E(�[τ<∞]�[N(h)>1] | U0 = u)

= e−λhψ(Zh) +
∫ h

0
λe−λs

∫ c/a−Zs

0
ψ(Zs + x) dF(x) ds + o(h). (7)

By the chain rule,

lim
h→0

ψ(Zh)− ψ(u)
h

= ψ′(u) · a(u− c/a).

Dividing (7) by h and taking the limit as h → 0, one obtains:

0 = (au− c)ψ′(u)e0 + ψ(u) · (−λ) + λe0
∫ c/a−u

0
ψ(u + x)dF(x).

Remark 1. Theorem 1 coincides with Equation (20) in Dong and Wang (2008) when n = 1.

Remark 2. In the classical risk model with risk-free investments, it has been proven that the ruin probability is
continuously differentiable on the positive real line, except at points of discontinuity of the jump distribution (for
example, see Mishura and Ragulina (2016), Chapter 2, and the references therein). One can verify that the same
is true for the dual model considered in this paper.
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3. Integral Equation Approach

Here, the derivative of ψ is shown to satisfy a simple integral equation. This provides a framework
for the numerical approximation of the ruin probability in the next section.

For u ≥ 0, define:

χ(u) ≡
{

ψ′(u), 0 ≤ u ≤ c
a ,

0, u > c
a .

Using (4), for 0 ≤ u ≤ c
a , we have:

ψ(u)−
∫ c/a−u

0
ψ(u + x) dF(x) =

∫ c/a−u

0
(ψ(u)− ψ(u + x)) dF(x) +

∫ ∞

c/a−u
(ψ(u)− 0) dF(x)

=
∫ ∞

0

∫ u

u+x
χ(t) dt dF(x)

= −
∫ ∞

u
F(t− u) χ(t) dt.

Therefore, the IDE (5) becomes an IE given by:

(au− c)χ(u) = −λ
∫ c/a

u
F(t− u) χ(t) dt, 0 < u <

c
a

.

Denoting c
a = b and λ

a = d, the above IE can be rewritten as:

χ(u) =
d

b− u

∫ b

u
F(t− u) χ(t) dt, 0 < u < b, (8)

with the integrability condition:

∫ b

0
χ(u) du = ψ(b)− ψ(0) = −1. (9)

Performing the change of variable χ(u) = (b− u)d−1χ̃(u), (8) becomes:

(b− u)d−1χ̃(u) =
d

b− u

∫ b

u
F(t− u) (b− t)d−1χ̃(t) dt, 0 < u < b.

Therefore,

(b− u)dχ̃(u) = −
∫ b

u
F(t− u) χ̃(t)

d
dt
(b− t)d dt

= F(t− u) χ̃(t)(b− t)d |ub +
∫ b

u
(b− t)d d

dt
[
F(t− u) χ̃(t)

]
dt,

and so, one obtains:

0 =
∫ b

u
(b− t)d d

dt
[
F(t− u) χ̃(t)

]
dt, 0 < u < b. (10)

The IE (10) can now be used to obtain numerical approximations for any arbitrary jump
distributions. In certain cases, the explicit expression of ψ is simple enough, and this can be used to
validate the numerical approximation in the next section.

Example 1. Assume that the gains are exponentially distributed with mean μ, that is, F(x) = e−x/μ. Then,
(10) reduces to:

0 = eu/μ
∫ b

u
(b− t)d d

dt

[
e−t/μ χ̃(t)

]
dt.
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Since the above holds for all u, the integral term must be equal to zero. Differentiating this equation leads
to the ODE χ̃′(u)− 1

μ χ̃(u) = 0, with the solution given by χ̃(u) = eu/μ. Therefore,

χ(u) = (b− u)λ/a−1eu/μ

and the boundary conditions (6) are then used to obtain:

ψ(u) =
Γ( λ

a , 0)− Γ( λ
a , c−au

aμ )

Γ( λ
a , 0)− Γ( λ

a , c
aμ )

, 0 ≤ u ≤ c/a, (11)

where Γ(b, x) :=
∫ ∞

x tb−1e−t dt is the incomplete Gamma function.

Example 2. Assume that the gains are distributed as a mixture of two exponentials, i.e., F(x) = pe−μ1x +

(1− p)e−μ2x where w.l.o.g. μ1 > μ2 and 0 ≤ p < 1. Then, (10) can be written as:

0 = peμ1u
∫ b

u
(b− t)d d

dt
[
e−μ1t χ̃(t)

]
dt + (1− p)eμ2u

∫ b

u
(b− t)d d

dt
[
e−μ2t χ̃(t)

]
dt. (12)

Differentiating (12) twice and simplifying yield a second order linear ODE:

(b− u)χ̃′′(u)− ((b− u)(μ1 + μ2) + d)χ̃′(u) + (μ1μ2(b− u) + d(μ1 p + μ2(1− p)))χ̃(u) = 0.

From Polyanin and Zaitsev (2002), the general solution to the above ODE is given by:

χ̃(u) = c1eμ1u
1F1(d(1− p), d, (μ1 − μ2)(b− u)) + c2eμ1uU(d(1− p), d, (μ1 − μ2)(b− u)),

where 1F1 and U are the confluent hypergeometric functions (see Slater (1960)) and c1, c2 are arbitrary constants.
Therefore, the ruin probability is given by:

ψ(u) = 1− c1

∫ u

0
Ψ1(s) ds− c2

∫ u

0
Ψ2(s) ds,

where:

Ψ1(u) = eμ1u
( c

a
− u
)λ/a−1

1F1

(
(1− p)λ

a
,

λ

a
, (μ1 − μ2)

( c
a
− u
))

,

Ψ2(u) = eμ1u
( c

a
− u
)λ/a−1

U
(
(1− p)λ

a
,

λ

a
, (μ1 − μ2)

( c
a
− u
))

.

The boundary conditions are then used to determine the constants c1 and c2, as shown in
Dong and Wang (2008).

Remark 3. In general, an explicit expression for ψ can be obtained if the c.d.f. of the gains satisfies an ODE
with constant coefficients. The techniques used in Examples 1 and 2 can be applied to the case of the mixture of n
exponentials, i.e., F(x) = ∑n

i=1 pie−μi x where 0 ≤ pi < 1 with ∑n
i=1 pi = 1, which is an important class of

distributions since any positive distributions can be approximated by the mixture of exponentials. If the c.d.f. is
not of this form, e.g., uniform or Pareto gains, explicit formulas are difficult to obtain. This leads to the next
section, which provides numerical approximations for ψ under arbitrary gains.

4. Numerical Scheme

In this section, a numerical framework for the ruin probability under any gain distributions
is presented. The numerical scheme requires solving a simple linear system Aχ̃ = Y where A and
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Y are to be determined and the vector χ̃ consists of values of the function χ̃(u) evaluated at some
discrete points.

Consider the partition 0 = u0 < u1 < · · · < uN−1 < uN = b. For each j = 1, . . . , N − 1, (10) can
be written as:

0 =
∫ b

uj

(b− t)d d
dt
[F(t− uj)χ̃(t)] dt.

For each fixed uj, discretize in the t variable where the length of Δt coincides with the length of
Δu. The derivative term is approximated using the forward difference method. Defining χ̃i ≈ χ̃(ui),
one arrives at the following system of equations:

0 =
N−1

∑
k=j

(b− uk)
d [F(uk+1 − uj)χ̃k+1 − F(uk − uj)χ̃k

]
, j = 1, . . . , N − 1,

which can be rewritten as:

0 = −(b− uj)
dχ̃j +

N

∑
k=j+1

F(uk − uj)χ̃k[(b− uk−1)
d − (b− uk)

d], j = 1, . . . , N − 1.

The integrability condition (9) is approximated by:

N−1

∑
i=1

(b− ui)
d−1χ̃i = −1.

Therefore, one obtains the matrix equation:

Aχ̃ = Y, (13)

where χ̃ = [χ̃1, · · · , χ̃N ]
T , Y = [0, · · · , 0, 1]T , and A = (ajk) where:

ajk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(uk − uj)[(b− uk−1)

d − (b− uk)
d], j = 1, . . . , N − 1, k = j + 1, . . . , N

−(b− uj)
d, j = 1, . . . , N − 1, k = j,

−(b− uk)
d−1, j = N, k = 1, . . . , N − 1,

0 else.

(14)

To solve (13), the matrix A needs to be invertible. The following lemma asserts this claim.

Lemma 1. If B is an N × N matrix of the form:

B =

⎡⎢⎢⎢⎢⎢⎢⎣
−b1,1 b1,2 . . . b1,N−1 b1,N

0 −b2,2 . . . b2,N−1 b2,N
...

...
. . .

...
...

0 0 . . . −bN−1,N−1 bN−1,N
−bN,1 −bN,2 . . . −bN,N−1 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where each bj,k > 0, then det(B) �= 0.

Proof. It suffices to show that B can be reduced, using elementary row operations, to an upper
triangular matrix with non-zero diagonal entries. First, perform R1 ← R1 − b1,1

bN,1
RN , which results in

a matrix with the first row of the form [0 b′1,2 · · · b′1,N−1 b1,N ] where each b′1,k is positive. Inductively,

perform the row operations R1 ← R1 +
b′1,j
bj,j

Rj for each j = 2, . . . , N − 1. These operations result in a
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matrix with the first row of the form [0 0 · · · 0 b∗] where b∗ > 0. Finally, swap the first row with the
last row to obtain an upper triangular matrix with non-zero diagonal entries.

Thus, χ̃ = A−1Y. To recover χ, for each j = 1, . . . , N − 1, multiply the j-th component of χ̃ by
(b− uj)

d−1. Since χ = ψ′, performing the numerical integration:

ψj =
N

∑
k=j

χi

yields the vector ψ ≡ [ψ1, · · · , ψN ]
T where ψi ≈ ψ(ui). Finally, the vector ψ is normalized by imposing

the boundary condition ψ(0) = 1.
The following four examples show the approximate ruin probabilities under different gain

distributions. Naturally, the first example concerns the exponentially-sized gains.

Example 3. Suppose that F(x) = e−x. Let c
a = b = 4 and λ

a = d = 3.5. From Example 1,

ψ(u) =
Γ(1.5, 0)− Γ(1.5, 4− u)

Γ(1.5, 0)− Γ(1.5, 4)
.

Figure 1 shows that the numerical approximation of ψ approaches the exact solution as the number of
subintervals increases. The maximum error is used for error analysis, which is the largest absolute difference
between the approximation and the true value of ψ. The resulting error suggests that this numerical scheme
has a first order of accuracy, which is unsurprising since first order discretization is used for the integral term,
as well as for the derivative term.

Figure 1. Exact and approximate ruin probabilities for exponential mean one gains for 10, 100, 1000
and 10,000 subintervals.

The next three examples concern gains with c.d.f. that does not satisfy any ODE with constant
coefficients, and so, the exact expression for the ruin probability is complicated. In all three examples,
varying one of the parameters in the model leads to some interesting yet intuitive results.
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Example 4. Consider uniformly distributed gains on the interval [0, θ]. Then,

F(x) =

⎧⎪⎨⎪⎩
1, x ≤ 0
1− x

θ , 0 < x ≤ θ

0, x > θ.

For the numerical experiment, set c
a = b = 4, λ

a = d = 1.5 and N = 100. Figure 2 shows that the
numerical approximation of ψ approaches a limiting curve as the parameter θ increases.

Figure 2. Ruin probabilities for Uniform[0, θ] gains for θ = 1, 2, 4, 8, 16.

This limiting curve can be found by investigating the IDE (5). For each parameter θ, denote the associated
ruin probability by ψθ . Then, the IDE is given by:

(au− c)ψ′θ(u)− λψθ(u) + λ
∫ c/a−u

0

1
θ
�[0<x<θ]ψθ(u + x) dx = 0.

Now,
λ

θ

∫ c/a−u

0
�[0<x<θ]ψθ(u + x) dx =

λ

θ

∫ min{c/a,θ}

u
ψθ(y) dy → 0

as θ → ∞ by the dominated convergence theorem since 0 ≤ ψθ ≤ 1. Hence, as θ → ∞, the IDE becomes:

(au− c)ψ′∞(u)− λψ∞(u) = 0,

and so, the solution of the above that satisfies the boundary conditions (6) is given by:

ψ∞(u) =
(

1− u
b

)λ/a
, 0 < u < b.

Observe that there is a natural monotonicity in this case. If θ1 < θ2, then ψθ1(u) > ψθ2(u) for all
0 < u < b. This property agrees with the model, since larger gains will reduce the probability of ruin.

The next example features a heavy tail gain distribution.

Example 5. Suppose that the gains follow a Pareto distribution, whose tail distribution is given by:

F(x) =

{
1, x ≤ xm( xm

x
)α , x > xm.
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For the numerical illustration, set c
a = b = 4, λ

a = d = 3.5 and N = 100. Figure 3 shows that the
numerical approximation of ψ approaches a limiting curve as the parameter α increases.

Figure 3. Ruin probabilities for Pareto(0.1, α) gains for α = 0.5, 1.5, 2.5, 3.5, 4.5.

The limiting function can be thought of as follows. As α → ∞, X converges to a constant random variable
xm, that is the p.d.f. f (x) → δxm . Hence, from the IDE (5), one obtains the following delay differential
equation (DDE):

(au− c)ψ′(u)− λψ(u) + λψ(u + xm) = 0, 0 < xm < b− u, (15)

(au− c)ψ′(u)− λψ(u) = 0, xm > b− u. (16)

For u > b− xm, the solution is given by ψ(u) =
(
1− u

b
)λ/a. Once this is known, (15) becomes a linear

nonhomogenous first order ODE, which is then solvable for b− 2xm < u < b− xm. One can then proceed
inductively to obtain the solution to (15). This method of solving DDEs is also called the method of steps.

Finally, an example in which the gains are discrete random variables is considered. Specifically,
the company is assumed to receive two types of incomes: frequent small donations and sparse
large gifts.

Example 6. Suppose that the gains have the probability mass function given by:

P(X = x) =

{
p, if x = γ,
1− p, if x = β,

where γ � β and p � 0. For the following two sub-examples, fix d = 2, b = 8 and N = 50. Figure 4 shows
two different scenarios. As the size of the large donations β increases, the ruin probability decreases. As the
frequency of small donations γ increases, the ruin probability increases.
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Figure 4. (a) (Left) Ruin probabilities for various sizes of large donations, for fixed γ = 0.1 and p = 0.85.
(b) (Right) Ruin probabilities for various frequencies of small donations, for fixed γ = 0.5 and β = 5.

5. The Laplace Transform of the Time of Ruin

The same procedure can be applied to other functionals of the time of ruin. Let δ > 0, and denote
the Laplace transform of the time of ruin by:

Φ(u) = E[e−δτ
�[τ<∞] | U0 = u].

One can also interpret Φ(u) as the probability of ruin before an independent exponential clock
with mean 1/δ. First, it is shown that Φ satisfies an IDE. The proof is different than the proof in
Theorem 1. From the IDE of Φ, one recovers the IDE for the ruin probability simply by setting δ = 0.

Theorem 2. The Laplace transform of the time of ruin satisfies the following IDE:

0 = (au− c)Φ′(u)− (λ + δ)Φ(u) + λ
∫ c

a−u

0
Φ(u + y) f (y) dy. (17)

Proof. Let b = c/a. Recall that the investment process is given by Zt = (u− b)eat + b and that the
solution to the equation Zt = 0 is given by t∗ = 1

a ln
(

b
b−u

)
. Therefore, if the time of the first gain is

bigger than t∗, ruin is certain. Thus, conditioning on the time and amount of the first gain, we get:

Φ(u) =
∫ t∗

0
λe−(λ+δ)t

∫ b−Zt

0
Φ(Zt + y) f (y) dy dt + e−(λ+δ)t∗

=
λ

a

∫ u

0

(
b− u
b− v

) λ+δ
a ∫ b−v

0
Φ(v + y) f (y) dy

1
b− v

dv +

(
b− u

b

) λ+δ
a

,

where we have used the substitution t = 1
a ln
(

b−v
b−u

)
. Applying the operator

(
(b− u) d

du + λ+δ
a

)
to the

above yields:

(b− u)Φ′(u) + λ + δ

a
Φ(u) =

λ

a

∫ b−u

0
Φ(u + y) f (y) dy.

Let:

Ξ(u) ≡
{

Φ′(u), 0 ≤ u ≤ c
a ,

0, u > c
a .
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From (17) and following the steps in Section 3, one has:

(au− c)Ξ(u) = δΦ(u) + λ
∫ ∞

0

∫ u

u+y
Ξ(t) dt f (y) dy

= −δ
∫ ∞

u
Ξ(t) dt− λ

∫ c/a

u
F(t− u)Ξ(t) dt,

for 0 < u < c
a , where the last equality follows from the fact that limu→∞ Φ(u) = 0. Recall that b = c

a ,
and so:

Ξ(u) =
δ

c− au

∫ b

u
Ξ(t) dt +

λ

c− au

∫ b

u
F(t− u)Ξ(t) dt, 0 < u < b.

With Ξ(u) = (b− u)d−1Ξ̃(u), one can perform integration by parts (see the steps leading to (10))
to obtain:

0 =
∫ b

u
(b− t)d d

dt
[
F(t− u) Ξ̃(t)

]
dt +

∫ b

u

δ

a
(b− t)d−1Ξ̃(t) dt, 0 < u < b, (18)

with the integrability condition:

∫ b

0
(b− u)d−1Ξ̃(u) du = −1.

Similar discretization yields the matrix equation BΞ̃ = Y where the matrix:

B = A +
δ

a
A. (19)

Here, A = (ajk) is the matrix given by (14),

A =

⎡⎢⎢⎢⎢⎢⎢⎣
(b− u1)

d−1 (b− u2)
d−1 . . . (b− uN−1)

d−1 0
0 (b− u2)

d−1 . . . (b− uN−1)
d−1 0

...
...

. . .
...

...
0 0 . . . (b− uN−1)

d−1 0
0 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Ξ̃ = [Ξ̃1, Ξ̃2, . . . , Ξ̃N ]
T and Y = [0, · · · , 0, 1]T . It follows from Lemma 1 that a sufficient condition for

the invertibility of B is that −(b− ui) + δ/a < 0 for all j = 1, . . . , N − 1, which is equivalent to the
condition δ < a(b− uN−1). Although we do not know of more general conditions for the invertibility
of B, it does not give rise to any problems in the numerical examples, as seen below.

Example 7. Consider exponentially-distributed gains, where F(x) = e−x. Let c
a = b = 4, λ

a = d = 3.5 and
N = 100. Figure 5 shows that the numerical approximation of Φ approaches the ruin probability as δ → 0.
As expected, the Laplace transform of the ruin time is a decreasing function of δ.
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Figure 5. Laplace transform of the time of ruin for exponential mean one gains when δ = 1
8 , 1

32 , 1
128 , 0.

6. Conclusions and Future Research

In summary, this paper provides a framework to study numerical approximations of the ruin
probability in the dual risk model with a constant interest rate, as well as the Laplace transform of
the time of ruin when the gain distribution is arbitrary. Using elementary analysis, the IDE satisfied
by the ruin probability can be rewritten as an IE, which in turn can be approximated by a simple
linear system.

One possible extension of this work is the numerical approximation for the Gerber–Shiu function.
In the classical insurance model, the seminalwork by Gerber and Shiu (1998) builds around the study
of the joint distribution of the time of ruin, the surplus immediately before ruin and the deficit at
ruin. In the classical dual model, two of the three random variables here are identical. Since ruin is
caused by continuous expenses/consumption, the surplus immediately before ruin and the deficit
at ruin are both equal to zero. Nevertheless, for the dual risk model, one can study analogs of the
Gerber–Shiu function by considering random variables such as the time of the last gain before ruin
and its amount (see Yang and Sendova (2014)) or the time of the first gain after ruin and its amount
(see Cheung (2012)).
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Abstract: In this paper, we study the discounted renewal aggregate claims with a full dependence
structure. Based on a mixing exponential model, the dependence among the inter-claim times,
the claim sizes, as well as the dependence between the inter-claim times and the claim sizes are
included. The main contribution of this paper is the derivation of the closed-form expressions for
the higher moments of the discounted aggregate renewal claims. Then, explicit expressions of these
moments are provided for specific copulas families and some numerical illustrations are given to
analyze the impact of dependency on the moments of the discounted aggregate amount of claims.

Keywords: renewal process; discounted aggregate claims; copulas; archimedean copulas

1. Introduction

Over the past few years, extensive studies on the risk aggregation problem for insurance
portfolios have appeared in the literature. Among these studies we find Albrecher and Boxma (2004),
Albrecher and Teugels (2006) and Boudreault et al. (2006) which analyze ruin-related problems;
Léveillé et al. (2010), Léveillé and Adékambi (2011, 2012), investigate the risk aggregation and the
distribution of the discounted aggregate amount of claims; Léveillé and Garrido (2001a, 2001b) use the
renewal theory to derive a closed expressions for the first two moments of the discounted aggregated
claims; and Léveillé and Hamel (2013) study the aggregate discount payment and expenses process for
medical malpractice insurance. Most recently, Jang et al. (2018) study the family of renewal shot-noise
processes. Based on the piecewise deterministic Markov process theory and the martingale methodology,
they obtained the Feynmann-Kac formula and then derived the Laplace transforms of the conditional
moments and asymptotic moments of the processes.

For the risk management of non-life insurance portfolios, the mathematical expectation of the
discounted aggregate claims plays an important role in determining the pure premium, in addition to
giving a measure of the central tendency of its distribution. Moments centered at the 2nd, 3rd and
4th order average are the other moments usually considered, as they generally give a good indication
of the pace of the distribution. The 2nd order centered moment gives us a measure of the dispersion
around its mean, the 3rd order moment gives us a measure of the asymmetry of the distribution of
and the 4th order moment gives us a measure of the flattening of the distribution of the discounted
aggregate sums. Moments, whether simple, joint, or conditional, may be useful for constructing
predictors, regression curves, or approximations of the distribution of the discounted aggregate claims.

The papers cited above assume that the inter-arrival times and the claim amounts are independent.
Such an assumption is not supported by empirical observations which reduces the practicality of these
works. For example, in non-life insurance, the same catastrophic event such as a flood or an earthquake
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could lead to frequent and high losses. This means that in such context a positive dependence between
the claim sizes and the inter-claim times should be observed.

During the last decade, few papers in the actuarial literature considered incorporating this type of
dependence. For example, Barges et al. (2011) introduce the dependence between the claim sizes and the
inter-claim times using a Farlie-Gumbel-Morgenstern (FGM) copula and derive a close-from expression
for the moments of the discounted aggregate claims. Guo et al. (2013) incorporate time dependence in a
mixed Poisson process to study loss models. Landriault et al. (2014) consider a non-homogeneous birth
process for the claim counting process to study time dependent aggregate claims.

For a given portfolio, we consider the renewal risk process suggested by Andersen (1957)
and described as follows. Let {N(t)}t≥0 be a renewal process that counts the number of claims.
The positive random variable (rv) Wk represents the time between the (k− 1)−th and k−th claims,
k ∈ N� = {1, 2, · · · }, and the amount of the k-th claim is given by the positive rv Xk. We also define

{Tk, k ∈ N�} as a sequence of rvs such that Tk =
k
∑

i=1
Wi, T0 = 0. The rv Tk represents the occurrence

time of the k−th received claim. For any given integer n and t ≥ 0, we have {N(t) ≥ n} = {Tn ≤ t}.
The main variable of interest in this paper is the discounted aggregate amount of claims up to a certain
time Z(t) defined as follows

Z(t) =
N(t)

∑
i=1

e−δTi Xi, t ≥ 0, (1)

with Z(t) = 0 if N(t) = 0, where δ is the force of net interest (See e.g., Léveillé and Garrido 2001a).
In the rest of the paper, it is assumed that

• {Wk, k ∈ N� = {1, 2, · · · }} forms a sequence of continuous positive dependent and identically
distributed rvs with a common cumulative distribution function (cdf) FW(.) and a survival
function (sf) F̄W(.) = 1− FW(.),

• The claim amounts {Xk, k ∈ N�} are positive dependent and identically distributed rvs with a
common cdf FX(.) and a common sf F̄X(.) = 1− FX(.), and

• {(Wk, Xk), k ∈ N�} forms a sequence of identically distributed random vectors distributed as the
canonical random vector (W, X) in which the components may be dependent.

In this paper, we specify three sources of dependence: among the claims Xk, among the subsequent
inter-claims time Wk, and a dependence between the subsequent inter-claims time Wk and the claims
Xk. For the dependence between the inter-claim times {Wk, k ∈ N� = {1, 2, · · · }} , we assume the
existence of a positive continuous rv Θ such that given Θ = θ the rvs Wk are iid and exponentially
distributed with a mean 1

θ . Similarly, we introduce the dependence between the amounts of claims
{Xk, k ∈ N�} through a positive continuous rv Λ such that conditional on Λ = λ the rvs Xk are iid
and exponentially distributed with a mean 1

λ . In other words, the conditional distributions of the
components of W and X are only influenced by the rv Θ and Λ respectively. The rvs Θ and Λ represent
the factors that introduce the dependence between risks (e.g., climate conditions, age, · · · , etc.).

In what follows, let FΘ,Λ be the joint cdf of the positive random vector (Θ, Λ) and the marginal cdfs
are FΘ and FΛ. We also define the joint Laplace transform f �Θ,Λ(s1, s2) =

∫ ∞
0

∫ ∞
0 e−(θs1+λs2)dFΘ,Λ(θ, λ),

for s1, s2 ≥ 0, as well as the univariate Laplace transforms f �Θ(s) =
∫ ∞

0 e−θsdFΘ(θ) and
f �Λ(s) =

∫ ∞
0 e−λsdFΛ(λ), for s ≥ 0. Following the model’s specifications, the univariate distributions

of Wi and Xi are given as a mixture of exponential distributions with survival functions given by

F̄W(x) =
∫ ∞

0
e−θxdFΘ(θ) = f �Θ(x), (2)

and

F̄X(x) =
∫ ∞

0
e−λxdFΛ(λ) = f �Λ(x), (3)
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for x ≥ 0. This implies that the marginal distributions of Wi and Xi are completely monotone. We refer
to Albrecher et al. (2011) for more details on the mixed exponential model and the completely monotone
marginal distributions. The general mixed risk model that we consider in this paper is an extension of
the risk model described in Albrecher et al. (2011).

This paper is structured as follows: In Section 2, we describe the dependence structure of our risk
model. Moments of the aggregate discounted claims are derived in Section 3. Section 4 provides few
examples of risk models for which explicit expressions for the moment are given. Numerical examples
are provided to illustrate the impact of dependency on the moments of discounted aggregate claims.
Section 5 concludes the paper.

2. The Dependence Structure

In this section, a description of the dependence between the different components of our model is
provided. For a given n and under our conditional exponential model, the joint conditional survival
function of W1, W2, · · · , Wn, X1, X2 · · · , Xn is given by

Pr (W1 ≥ t1, · · · , Wn ≥ tn, X1 ≥ s1, · · · , Xn ≥ sn | Θ = θ, Λ = λ) = e
−θ

n
∑

i=1
ti

e
−λ

n
∑

i=1
si

,

for n ∈ {2, 3, · · · }, t1, · · · , tn ≥ 0 and s1, · · · , sn ≥ 0. it is immediate that the multivariate survival
function of W1, W2, · · · , Wn, X1, X2 · · · , Xn could be expressed in terms of the bivariate Laplace
transform f �Θ,Λ such that

F̄W1,··· ,Wn ,X1,··· ,Xn (t1, · · · , tn, s1, · · · , sn) =
∫ ∞

0

∫ ∞
0 e

−θ
n
∑

i=1
ti

e
−λ

n
∑

i=1
si

dFΘ,Λ(θ, λ)

= f �Θ,Λ

(
n
∑

i=1
ti,

n
∑

i=1
si

)
.

(4)

On the other hand, according to Sklar’s theorem for survival functions, see e.g., Sklar (1959),
the joint distribution of the tail of W1, · · · , Wn, X1, · · · , Xn can be written as a function of the marginal
survival functions F̄Wi , F̄Xi , i = 1, · · · , n, and the copula C describing the dependence structure
as follows

F̄W1,··· ,Wn ,X1,··· ,Xn (t1, · · · , tn, s1, · · · , sn) = C
(

F̄W1(t1), · · · , F̄Wn(tn), F̄X1(s1), · · · , F̄Xn(sn)
)

,

for n ∈ {2, 3, · · · }, t1, · · · , tn ≥ 0 and s1, · · · , sn ≥ 0. By combining (2), (3) and (4) with the last
expression, one deduces that for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n

C(u1, · · · , un, v1, · · · , vn) = f �Θ,Λ

(
n

∑
i=1

f �−1
Θ (ui),

n

∑
i=1

f �−1
Λ (vi)

)
. (5)

According to (4), the bivariate survival function of (Wi, Xi), for i = 1, · · · , n, is given by

F̄Wi ,Xi (t, s) = f �Θ,Λ (t, s) , (6)

for t ≥ 0 and s ≥ 0. Hence, using Sklar’s theorem, the dependency relation between Wi and Xi is
generated by a copula C12 given by

C12(u, v) = f �Θ,Λ

(
f �−1
Θ (u), f �−1

Λ (v)
)

, (7)
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for (u, v) ∈ [0, 1]2. Otherwise, it is clear from (4) that the multivariate survival function of (W1, · · · , Wn)

is given by

F̄W1,··· ,Wn (t1, · · · , tn) = f �Θ

(
n

∑
i=1

ti

)
, (8)

for t1, · · · , tn ≥ 0. Consequently, an application of Sklar’s theorem shows that the joint distribution of
the tail of W1, · · · , Wn can be written as a function of the marginal survival functions F̄Wi , i = 1, · · · , n,
and a copula C1 describing the dependence structure as follows

F̄W1,··· ,Wn (t1, · · · , tn) = C1
(

F̄W1(t1), · · · , F̄Wn(tn)
)

.

An expression for C1 is identified and for (u1, · · · , un) ∈ [0, 1]n, we obtain

C1(u1, · · · , un) = f �Θ

(
n

∑
i=1

f �Θ
−1(ui)

)
. (9)

Similarly, the joint distribution of the tail of X1, · · · , Xn is given by

F̄X1,··· ,Xn (t1, · · · , tn) = f �Λ

(
n

∑
i=1

ti

)
, (10)

for t1, · · · , tn ≥ 0, and using Sklar’s theorem yields the following survival copula for the Xs

C2(u1, · · · , un) = f �Λ

(
n

∑
i=1

f �Λ
−1(ui)

)
, (11)

for (u1, · · · , un) ∈ [0, 1]n. From the expressions for the copulas C1 and C2 obtained above, one can
identify that these two copulas belong to the large class of Archimedean copulas (e.g., Nelsen 1999)
with the corresponding generators f �Θ

−1 and f �Λ
−1. Note that although the dependence among the

claim sizes and among the inter-claim times are described by Archimedean copulas. The dependence
between W and X is not restricted to this family of copulas. Moreover, the mixture of exponentials
model introduces a positive dependence between the inter-claim times Ws as well as a positive
dependence between the amount Xs. First, we recall the following definition

Definition 1. Let X and Y be random variables. X and Y are positively quadrant dependent (PQD) if for all
(x, y) in R2,

Pr [X ≤ x, Y ≤ y] ≥ Pr [X ≤ x] Pr [Y ≤ y] ,

or equivalently
Pr [X > x, Y > y] ≥ Pr [X > x] Pr [Y > y] .

Proposition 2.1. Consider the model described by (8) and (10). Then, Wi and Wj (Xi and Xj) are PQD for all
i, j = 1, 2, · · · .

Proof. We refer the reader to Chapter 4 in Joe (1997) for the proof of this proposition.

Combining (5), (7), (9)and (11), one gets

C(u1, · · · , un, v1, · · · , vn) = C12

(
C1(u1, · · · , un), C2(v1, · · · , vn)

)
,
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for (u1, · · · , un, v1, · · · , vn) ∈ [0, 1]2n. Throughout the paper, we suppose that the Laplace transform
f �Θ,Λ exists over a subset K× K ⊂ R2 including a neighborhood of the origin. In the following section,
the moments of the rv Z(t) are derived.

3. Moments of the Discounted Aggregate Claims

In order to find the moments of the discounted aggregate claims, we first derive an expression for
the moments generating function (mgf) of the rv Z(t) under the dependent model introduced in the
previous section.

Theorem 3.1. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0 and δ > 0, the mgf of Z(t) is given by

MZ(t)(s) = E
[

Λ− se−δt

Λ− s

]Θ
δ

. (12)

Proof. Given Θ = θ and Λ = λ, the aggregate discounted processes, Z(t) is a compound Poisson
processes with independent subsequent inter-claim times. According to Léveillé et al. (2010), the mgf
of Z(t) given Θ = θ and Λ = λ can be written as

MZ(t)|Θ=θ,Λ=λ(s) = E
[
esZ(t) | Θ = θ, Λ = λ

]
= esθ

∫ t
0

[
e−δv

λ−se−δv

]
dv

=

(
λ− se−δt

λ− s

) θ
δ

. (13)

Otherwise MZ(t)(s) =
∫ ∞

0

∫ ∞
0 MZ(t)|Θ=θ,Λ=λ(s)dFΘ,Λ(θ, λ). Substituting (13) into the last

expression yields (12).

The following theorem provides closed formulas for the higher moments of the discounted
aggregate claims Z(t).

Theorem 3.2. Consider the discounted aggregate claims under the assumptions of the model in Section 2. Then,
for any t ≥ 0, n ∈ N� and δ > 0, the n−th moment of Z(t) is given by

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δE
[

Θ(Θ− δ) · · · (Θ− δ(k− 1))
Λn

]
, (14)

where āt δ = 1−e−tδ

δ is the standard actuarial notation and the sum is over all nonnegative integer solutions of
the Diophantine equation k1 + 2k2 + · · ·+ nkn = n, k := k1 + k2 + · · ·+ kn.

Proof. Conditional on the two rvs Θ and Λ, we have

E [Zn(t)] =
∫ ∞

0

∫ ∞

0
E [Zn(t) | Θ = θ, Λ = λ] dFΘ,Λ(θ, λ). (15)

Taking the n−th order derivative of (13) with respect to s and using Faà di Bruno’s rule
(see Faa di Bruno 1855) yield

M(n)
Z(t)|Θ=θ,Λ=λ

(s) = ∑
n!

k1!k2! · · · kn!
h(k) (g(s))

n

∏
j=1

(
g(j)(s)

j!

)kj

, (16)
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where the sum is over all nonnegative integer solutions of the Diophantine equation k1 + 2k2 + · · ·+
nkn = n, k := k1 + k2 + · · ·+ kn, g(s) = λ−se−δt

λ−s and h(s) = s
θ
δ . Otherwise, the k−th derivatives of

g and h are given respectively by

g(k)(s) = λ(1− e−δt)
k!

(λ− s)k+1 , (17)

and

h(k)(s) =
Γ( θ

δ + 1)

Γ( θ
δ − k + 1)

s
θ
δ−k, (18)

for k = 1, · · · , n. By substituting (17) and (18) into (16) with s = 0, one concludes that

E [Zn(t) | Θ = θ, Λ = λ] =
1

λn ∑
n!

k1!k2! · · · kn!

(
1− e−δt

)k Γ( θ
δ + 1)

Γ( θ
δ − k + 1)

= ∑
n!

k1!k2! · · · kn!

(
1− e−δt

)k
θ
δ

(
θ
δ − 1

)
· · ·
(

θ
δ − (k− 1)

)
λn (19)

= ∑
n!

k1!k2! · · · kn!
āk

t δ
θ(θ − δ) · · · (θ − δ(k− 1))

λn .

Finally, substitution of (20) into (15) yields the required result.

The moments of Z(t) given in (14) could be simplified and expressed in terms of the expected
value of E

[
Θl

Λn

]
. First, we write

θ

δ

(
θ

δ
− 1
)
· · ·
(

θ

δ
− (k− 1)

)
=

(
θ

δ

)
k

,

where (x)k is the falling factorial. It is known that the falling factorial could be expanded as follows

(x)k =
k

∑
l=1

[
k
l

]
xl , (20)

where the coefficients [kl ] are the Stirling numbers of the first order (see e.g., Ginsburg 1928). Using (20),
we find

θ

δ

(
θ

δ
− 1
)
· · ·
(

θ

δ
− (k− 1)

)
=

k

∑
l=1

[
k
l

] (
θ

δ

)l
.

Thus,

E [Zn(t)] = ∑
n!

k1!k2! · · · kn!
āk

t δ

k

∑
l=1

δk−l
[

k
l

]
E

[
Θl

Λn

]
. (21)

In the rest of the paper, it is assumed that there exist an integer n such that the expected value of
Θi

Λj is finite for positive integers i and j with i, j ≤ n. Using the previous theorem, we give the explicit
expressions of the first two moments of Z(t).

Corollary 3.1. For a given time t and a positive constant forces of interest δ, we have

E [Z(t)] = āt δE
[

Θ
Λ

]
, (22)
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and

E
[
Z2(t)

]
= 2āt 2δE

[
Θ
Λ2

]
+ ā2

t δE
[

Θ2

Λ2

]
. (23)

Proof. The results follow from Theorem (3.2). When n = 1, then k1 = k = 1, which yields (22).
When n = 2, we find that the nonnegative integer solutions of the equation k1 + 2k2 = 2 are
(k1, k2) = (2, 0) or (0, 1) with corresponding values of k being 2 or 1 respectively, we get the
required result.

In the following corollary, we derive expressions for the first two moments of Z(t) when Θ and
Λ are independent.

Corollary 3.2. If the dependency relation between Θ and Λ is generated by the independence copula then

E [Z(t)] = āt δE [Θ] E
[

1
Λ

]
,

and

E
[
Z2(t)

]
= 2āt 2δE [Θ] E

[
1

Λ2

]
+ ā2

t δE
[
Θ2
]

E
[

1
Λ2

]
.

Proof. The result follows easily from Corollary (3.1).

Note that the moments of Z(t) are given in terms of the expected values of Θl

Λn , for l, n ∈ N� ×N�.

According to Cressie et al. (1981), the expression of E
[

Θl

Λn

]
can be derived from the MΘ,Λ(t, s), the joint

mgf of (Θ, Λ). We have

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l MΘ,Λ(s,−x)
∂sl dx,

where the joint mgf MΘ,Λ is given by

MΘ,Λ(s, x) = f ∗Θ,Λ(−s,−x) = C12 ( f ∗Θ(−s), f ∗Λ(−x)) .

It follows that

E

[
Θl

Λn

]
=

1
Γ(n)

∫ ∞

0
xn−1 lim

s→0

∂l f ∗Θ,Λ(−s, x)

∂sl dx. (24)

Application of Faà di Bruno’s rule for the l−th derivative of f ∗Θ,Λ(−t, s) gives

∂l MΘ,Λ(s,−x)
∂sl = ∑

l!
m1!m2! · · ·ml !

∂mC12
(

f ∗Θ(−s), f ∗Λ(x)
)

∂um

l

∏
j=1

(
∂j f ∗Θ(−s)

∂sj
1
j!

)mj

,

where the sum is over all nonnegative integer solutions of the Diophantine equation m1 + 2m2 + · · ·+
lml = l, m := m1 + m2 + · · ·+ ml . It follows that

E

[
Θl

Λn

]
=

1
Γ(n) ∑

l!
m1!m2! · · ·ml !

l

∏
j=1

(
E
[
Θj]
j!

)mj ∫ ∞

0
xn−1 ∂mC12

(
1, f ∗Λ(x)

)
∂um dx. (25)
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4. Examples

In the previous section, a general formula for the moments of Z(t) is derived. In order to illustrate
our findings and to discuss further features of our risk model, we provide some examples when
additional assumptions on the marginal distributions and the copulas are added. For each example,
first the joint Laplace distribution of the mixing distribution FΘ,Λ is specified then the expressions of
the copulas C1, C2 and C12 are identified. Applying our closed-form, the moments of Z(t) are given
for these specific models. Some numerical illustrations are provided in order to stress the impact of
dependence between different components of the risk models on the distribution of the discounted
aggregated amount of claims.

4.1. Clayton Copula with Pareto Claims and Inter-Claim Times

Assume that the mixing random vector (Θ, Λ) has a bivariate Gamma distribution with a Laplace
transform f �Θ,Λ defined by

f �Θ,Λ(s, x) =
[
(1 + as)α̃1 + (1 + bx)α̃2 − 1

]−α
, s ≥ 0, x ≥ 0, (26)

with α, a, b, α1, α2 > 0 and α̃i =
αi
α , i = 1, 2. Then, the random variables Θ and Λ are distributed as

gamma distributions, Θ ∼ Ga(α1, 1
a ) and Λ ∼ Ga(α2, 1

b ). Also, from (2) and (3), the claim amounts
Xi and the inter-claim times Wi, for i = 1, 2, · · · , follow Pareto distributions X ∼ Pa(α2, 1

b ) and
W ∼ Pa(α1, 1

a ). From (9) and (11), we identify the copulas C1 and C2 to be Clayton copulas with
parameters 1

α1
and 1

α2
, respectively. We have

C1(u1, · · · , un) =

[
u
−1
α1
1 + · · ·+ u

−1
α1
n − (n− 1)

]−α1

,

and

C2(u1, · · · , un) =

[
u
−1
α2
1 + · · ·+ u

−1
α2
n − (n− 1)

]−α2

,

for (u1, · · · , un) ∈ [0, 1]n. The Clayton copula is first introduced by Clayton (1978). The dependence
between the Clayton copula parameter and Kendall’s tau rank measure, τi, is given by (see e.g.,
Joe 1997 and Nelsen 1999):

τi =
1

1 + 2αi
, i = 1, 2. (27)

This suggests that the Clayton copula does not allow for negative dependence. If αi → ∞, i = 1, 2,
then the marginal distributions become independent, when αi = 0, i = 1, 2, the Clayton copula
approximates the Fréchet–Hoeffding upper bound.

From (7), the joint copula C12 is also a Clayton copula with a parameter 1
α and we have

C12(u, v) =
[
u
−1
α + v

−1
α − 1

]−α
,

for (u, v) ∈ [0, 1]2. Let τ12 be the Kendall’s tau dependence measure for the copula C12. It follows that

τ12 =
1

1 + 2α
. (28)

The following corollary gives the expressions of the first two moments of Z(t) for this model.
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Corollary 4.1. For a given horizon t and a positive constant forces of real interest δ, we have

E [Z(t)] =
aα1

b
(

α̃2(α + 1)− 1
) āt δ,

for α̃2 ≥ 1
1+α , and

E
[
Z2(t)

]
=

2aα1

b2
(

α̃2(α + 1)− 1
)(

α̃2(α + 1)− 2
) āt 2δ

+
a2

b2

⎡⎢⎣ α1(1− α̃1)(
α̃2(α + 1)− 1

)(
α̃2(α + 1)− 2

) +
α1α̃1(1 + α)(

α̃2(α + 2)− 1
)(

α̃2(α + 2)− 2
)
⎤⎥⎦ ā2

t δ,

for α̃1 ≥ 1
1+α .

Proof. We have from (4.1)

lim
s→0

∂ f ∗Θ,Λ(−s, x)
∂s

= aα1 [1 + bx]−α̃2(1+α) , (29)

and

lim
s→0

∂2 f ∗Θ,Λ(−s, x)
∂s2 = a2

[
α1(1− α̃1) (1 + bx)−α̃2(1+α) + α1α̃1(1 + α) (1 + bx)−α̃2(2+α)

]
. (30)

Let I(n, α, b) be defined as

I(n, α, b) =
∫ ∞

0
sn−1(1 + bs)−αds, n ∈ N

�, α > 0.

Set x = (1 + bs)−1, the integral becomes

I(n, α, b) =
1
bn

∫ 1

0
xα−n−1(1− x)n−1dx =

Γ(n)Γ(α− n)
bnΓ(α)

, (31)

for α > n. Combination of (24), (29) and (31) yields

E
[

Θ
Λ

]
=

aα1

Γ(1)
I
(

1, α̃2(α + 1), b
)
=

aα1

b
(

α̃2(α + 1)− 1
) .

Substitution of (29) into (24) and use of (31) gives

E
[

Θ
Λ2

]
=

aα1

Γ(2)
I
(

2, α̃2(α + 1), b
)
=

aα1

b2
(

α̃2(α + 1)− 1
)(

α̃2(α + 1)− 2
) .

Similarly, susbtitution of (30) into (24) and use of (31) gives

E
[

Θ2

Λ2

]
=

a2α1(1− α̃)

Γ(2)
I
(

2, α̃2(α + 1), b
)
+

a2α1α̃1(1 + α)

Γ(2)
I
(

2, α̃2(α + 2), b
)

,

=
a2

b2

⎡⎢⎣ α1(1− α̃1)(
α̃2(α + 1)− 1

)(
α̃2(α + 1)− 2

) +
α1α̃1(1 + α)(

α̃2(α + 2)− 1
)(

α̃2(α + 2)− 2
)
⎤⎥⎦ .

171



Risks 2018, 6, 86

Finally, we find the expressions for E [Z ] and E
[Z2(t)

]
by applying the Corollary (3.1).

Corollary 4.2. For the special case α1 = α2 = α, we have

E [Z(t)] =
a
b

āt δ, (32)

and

E
[
Z2(t)

]
=

2a
b2(α− 1)

āt 2δ +
a2

b2
ā2

t δ. (33)

Proof. The result follows directly from Corollary (4.1).

4.2. Lomax Copula with Pareto Marginal Distributions

In the previous example and for the special case α1 = α2 = α, we have

f �Θ,Λ(s, x) = (1 + as + bx)−α , s ≥ 0, x ≥ 0.

This specification of the joint Laplace transform leads to the Clayton copula model with the same
parameter for the copulas C1, C2 and C12. It is possible to modify this model in order to include more
flexibility in the model. In this example, it is assumed that the random vector (Θ, Λ) has a bivariate
Gamma distribution with the following Laplace transform

f �Θ,Λ(s, x) = (1 + as + bx + csx)−α , s ≥ 0, x ≥ 0, (34)

with c ≥ 0. The extra parameter c introduces more flexible dependence between the mixing
distributions and between the Xs and Ws. For example, it is possible to obtain the independence
between Θ and Λ which implies that W and X are independent when c = ab. The univariate Laplace
transforms are given by

f �Θ(s) = (1 + as)−α ,

and
f �Λ(x) = (1 + bx)−α .

It follows that the copulas C1 and C2 are Clayton copulas with dependence parameter 1
α . The joint

survival copula of (W, X) is given by

C12(u, v) = f �Θ,Λ

(
a−1(u

−1
α − 1), b−1(v

−1
α − 1)

)
=

(
u
−1
α + v

−1
α − 1 + c

ab

(
u
−1
α − 1

) (
v
−1
α − 1

))−α

= uv
(

u
1
α + v

1
α − u

1
α v

1
α + c

ab u
1
α v

1
α

(
u
−1
α − 1

) (
v
−1
α − 1

))−α

= uv
(

1− γ(1− u
1
α )(1− v

1
α )
)−α

,

(35)

which is the Lomax copula defined in Fang et al. (2000) with Kendall’s tau, τ12, given by (see e.g.,
Fang et al. 2000):

τ12 =
2αγ

(2α + 1)2

∞

∑
k=0

k!γk

(2α + 2)k
, (36)

where (a)k = a(a + 1) · · · (a + k − 1), and (a)0 = 1 where a is a real number (See e.g.,
Erdélyi et al. 1953). Some properties of the family of copulas in (35) are the following:

• when c = ab, (γ = 0), C12(uv) = uv corresponds to the case of independence.
• as α = 1, C12 in (35) becomes C12(u, v) = uv

1−γ(1−u)(1−v) , which is the Ali-Mikhail-Haq
(AMH) copula.
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• when c = 0, (γ = 1), C12(u, v) =
(

u− 1
α + v− 1

α − 1
)−α

is the Clayton’s copula.

Note that from (8) and (10), the joint survival function of (W1, W2, · · · , Wn) and (X1, X2, · · · , Xn)

can then be written, for xi ≥ 0, i = 1, · · · , n, as

F̄W1,··· ,Wn(s1, · · · , sn) =

(
1 + a

n

∑
i=1

si

)−α

, (37)

and

F̄X1,··· ,Xn(x1, · · · , xn) =

(
1 + b

n

∑
i=1

xi

)−α

, (38)

which are the joint survival function of a Pareto II distribution proposed by Arnold (1983, 2015).
The following corollary gives the expressions of the first two moments of Z(t) for this model.

Corollary 4.3. For a given time t ≥ 0 and a positive constant forces of real interest δ, we have

E [Z(t)] =

(
a
b
+

c
b2(α− 1)

)
āt δ,

for α > 1, and

E
[
Z2(t)

]
= 2

(
abα + 2(c− ab)
b3(α− 1)(α− 2)

)
āt 2δ +

(
a2

b2 +
4ac

b3(α− 1)
+

6c2

b4(α− 1)(α− 2)

)
ā2

t δ,

for α > 2.

Proof. Use of (24) and (34), show that

E

[
Θl

Λn

]
= Γ(α+l)

Γ(n)Γ(α)

∫ ∞
0 xn−1(a + cx)l(1 + bx)−(α+l)dx

=
Γ(α + l)
Γ(n)Γ(α) ∑l

j=0 (
l
j)al−jcj I(n + j, α + l, b),

(39)

where I(n, α, b) =
∫ ∞

0 xn−1(1 + bx)−αdx. With the help of (31) and (39), one gets

E
[

Θ
Λ

]
= α [aI(1, α + 1, b) + cI(2, α + 1, b)] =

a
b
+

c
b2(α− 1)

,

E
[

Θ
Λ2

]
= α [aI(2, α + 1, b) + cI(3, α + 1, b)] =

abα + 2(c− ab)
b3(α− 1)(α− 2)

,

and

E
[

Θ2

Λ2

]
= α(α + 1)

[
a2 I(2, α + 2, b) + 2acI(3, α + 2, b) + c2 I(4, α + 2, b)

]
=

a2

b2 +
4ac

b3(α− 1)
+

6c2

b4(α− 1)(α− 2)
.

Applying corollary (3.1), we obtain expressions for the first two moments E [Z(t)] and
E
[Z2(t)

]
.
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4.3. Lomax Copulas and Mixed Exponential-Negative Binomial Marginal Distributions

The next model that we consider in our examples is the mixed exponential-Negative Binomial
marginal distributions with Lomax copulas. For this purpose it is assumed that (Θ, Λ) has a bivariate
shifted Negative Binomial distribution (see e.g., Marshall and Olkin 1988), the Laplace transform of
(Θ, Λ) is defined by

f �Θ,Λ(s, x) =

(
p

es+x − q

)α

, s , x ≥ 0, (40)

where α > 0, 0 < p < 1 and q = 1− p. Then, the random variables Θ and Λ are distributed as
shifted Negative Binomial distributions Θ ∼ NB(p, α) and Λ ∼ NB(p, α). With the help of (8),
the multivariate survival function of (W1, W2, · · · , Wn) can be written, for si ≥ 0, i = 1, · · · , n, as

F̄W1,··· ,Wn(s1, · · · , sn) =

⎛⎜⎜⎝ p

e

n
∑

i=1
si − q

⎞⎟⎟⎠
α

. (41)

Then, the marginal survival functions of Wi is given, for s ≥ 0, by

F̄Wi (s) =

(
p

es − q

)α

, i = 1, · · · , n. (42)

The corresponding copula takes the form

C1(u1, · · · , un) =

⎛⎜⎜⎝ p
n
∏
i=1

(
pui

−1
α + q

)
− q

⎞⎟⎟⎠
α

, (43)

for (u1, · · · , un) ∈ [0, 1]n. Similarly, the joint survival function of (X1, X2, · · · , Xn) can be written,
for xi ≥ 0, i = 1, · · · , n, as

F̄X1,··· ,Xn(x1, · · · , xn) =

⎛⎜⎜⎝ p

e

n
∑

i=1
xi − q

⎞⎟⎟⎠
α

. (44)

The marginal survival functions of Xi is given by

F̄Xi (x) =

(
p

ex − q

)α

, i = 1, · · · , n, (45)

for x ≥ 0 and i = 1, · · · , n. The corresponding dependence structure takes the form

C2(u1, · · · , un) =

⎛⎜⎜⎝ p
n
∏
i=1

(
pui

−1
α + q

)
− q

⎞⎟⎟⎠
α

. (46)

Note that the marginal survival functions of Wi and Xi, i = 1, · · · , n, in (42) and (45) correspond
to the survival function of the univariate mixed exponential-geometric distribution introduced in
Adamidis and Loukas (1998). It is useful to note that the mixed exponential-geometric distribution
is completely monotone (see Marshall and Olkin 1988). The copulas C1 and C2 in (43) and (46) are
multivariate shifted negative binomial copulas presented in Joe (2014).
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The joint survival function of the bivariate random vector (Wi, Xi) is given by

F̄Wi ,Xi (s, x) =

(
p

es+x − q

)α

, s, x ≥ 0,

for i = 1, · · · , n. Then, the corresponding dependence structure is the copula C12 given by

C12(u1, u2) =

⎛⎝ p

(q + pu−
1
α

1 )(q + pu−
1
α

2 )− q

⎞⎠α

=

⎛⎝ pu
1
α
1 u

1
α
2

(qu
1
α
1 + p)(qu

1
α
2 + p)− qu

1
α
1 u

1
α
2

⎞⎠α

(47)

=
u1u2(

1− q(1− u
1
α
1 )(1− u

1
α
2 )

)α ,

which corresponds to the Lomax copula.
We now state a Corollary for calculating the first an second moments of the discounted aggregate

renewal claims.

Corollary 4.4. For a positive constant forces of real interest δ:

E [Z(t)] = āt δ, (48)

and

E
[
Z2(t)

]
= ā2

t δ + 2
(

p
q

)α

B(q; α, 1− α)āt 2δ, (49)

where B(z; α, β) =
∫ z

0 uα−1(1− u)β−1du is the incomplete Beta function.

Proof. From elementary calculus, one gets from (40)

lim
s→0

∂ f �Θ,Λ(−s, x)
∂s

= αpα ex

(ex − q)α+1 . (50)

Substituting the last expression into (24) with (n = l = 1) yields E
[

Θ
Λ

]
= 1. Combining this with

Corollary (3.1), one gets (48). Otherwise, we get from (24) with (n = 2 and l = 1)

E
[

Θ
Λ2

]
= αpα

∫ ∞
0 x

ex

(ex − q)α+1 dx = pα
∫ ∞

0
1

(ex − q)α
dx

=

(
p
q

)α ∫ q
0 uα−1(1− u)−αdu =

(
p
q

)α

B(q; α, 1− α),
(51)

where B(z; α, β) =
∫ z

0 uα−1(1 − u)β−1du is the incomplete Beta function. Otherwise,

lims→0
∂2 f �Θ,Λ(−s,x)

∂2s = αpα qex+αe2x

(ex−q)α+2 . Substituting the last expression into (24) with (n = 2 and l = 2),
one gets

E
[

Θ2

Λ2

]
= αqpα

∫ ∞

0

xex

(ex − q)α+2 dx + α2 pα
∫ ∞

0

xe2x

(ex − q)α+2 dx. (52)
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Otherwise, integration by parts gives

∫ ∞
0

xex

(ex − q)α+2 dx =
1

α + 1
∫ ∞

0
1

(ex − q)α+1 dx

=
1

α + 1
1

qα+1 B(q; α + 1,−α).
(53)

Similarly, integrating by parts

∫ ∞
0

xe2x

(ex − q)α+2 dx =
1

α + 1
∫ ∞

0
ex + xex

(ex − q)α+1 dx

=
1

α + 1

(
1

αpα
+

1
α

1
qα B(q; α,−α + 1)

)
.

(54)

Hence, through (52), (53) and (54), we obtain

E
[

Θ2

Λ2

]
=

α

(α + 1)
+

αpα

(α + 1)qα
(B(q; α + 1,−α) + B(q; α, 1− α)) = 1.

Finally, we combine the last expression with (51) and Corollary (3.1) to obtain (49).

Note that if α = 1, the copula C12 in (48) reduces to the AMH copula with Kendall’s tau, τ12,
given by (see e.g., Nelsen 1999)

τ12 =
3q− 2

3q
− 2(1− q)2ln(1− q)

3q2 .

For this special case, we obtain E [Z(t)] = āt δ, and E
[Z2(t)

]
= ā2

t δ− 2( p
q )log(p)āt 2δ.

4.4. Numerical Illustrations

In this subsection, we present numerical examples to illustrate how the distribution of
the discounted renewal aggregate claims behaves when we change the dependency parameters.
The computations provided are related to the general case of Clayton copulas. For the discounted
aggregate amount of claims, as in Section 4.1, we assume that the force of interest is fixed at the value
of δ = 5% and we set a = 1 and b = 0.2. The sensitivity analysis is done by varying Kendall’s tau
dependence measures τi, i = 1, 2 and τ12 given by (27) and (28) respectively. In order to investigate
the impact of the dependence structure on the distribution of Z(t), we compute the mean E[Z(t)],
the standard deviation SD[Z(t)], the skewness Skew[Z(t)] and the kurtosis Kurt[Z(t)] using different
values for the Kendall tau’s of the copulas C12, C1 and C2. Both the expressions of E[Z(t)] and
SD[Z(t)] are given in Section 4.1. The third and the fourth moments are computed numerically. Using
the software Matlab, we evaluate the integral in (25) then we use the closed form in (3.1) for n = 3 and
4. The results are presented using different time horizons where t is set to be 110, 100 and ∞.

Tables 1–3 display the obtained results. For a fixed t, τ1 and τ12, increasing the dependence
between the claims leads to a higher level of risk, i.e., large values of E [Z(t)] and SD [Z(t)]. On the
other hand, increasing the dependence between the inter-claim times reduces the level of risk for the
whole portfolio. We also notice that both the expected value and volatility of the aggregate discounted
claims decrease as τ12 increases. A strong positive dependence between the inter-claim times and
the claim sizes means that the portfolio generates either large and less frequent losses or small and
very frequent losses. This leads to a small value of E [Z(t)] and less volatile Z(t). Increasing the
dependence parameter τ12 or τ1 generates longer and fatter right tails. Decreasing τ2 has the same
impact on the shape of the tails as increasing the Kendall’s tau measures of the copulas C12 and C1.
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Table 1. Impact of changing τ12 on the distribution of Z(t) with τ1 = 0.8 and τ2 = 0.3.

E[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.45 0.2937 2.3694 5.9813 6.0219
0.55 0.2020 1.6294 4.1132 4.1411
0.65 0.1355 1.0930 2.7591 2.7778
0.75 0.0851 0.6863 1.7324 1.7442

SD[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.45 0.8740 4.0281 9.2282 9.2864
0.55 0.7306 3.4214 7.8775 7.9274
0.65 0.5970 2.7841 6.4017 6.4422
0.75 0.4650 2.0910 4.7519 4.7816

Skew[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.45 1.8969 1.2997 1.3984 1.3991
0.55 2.5299 2.0445 2.2137 2.2148
0.65 3.3014 3.0643 3.3997 3.4018
0.75 4.3794 4.9922 5.8956 5.9010

Kurt[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.45 3.9901 2.1244 1.9211 1.9199
0.55 6.7845 5.3719 5.7602 5.7624
0.65 11.5174 13.0582 15.3542 15.3674
0.75 21.2007 39.8072 52.3969 52.4717

Table 2. Impact of changing τ1 on the distribution of Z(t) with τ12 = 0.4 and τ2 = 0.2.

E[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.7 0.2850 2.2995 5.8048 5.8442
0.75 0.2217 1.7885 4.5148 4.5455
0.8 0.1663 1.3414 3.3861 3.4091

0.85 0.1174 0.9469 2.3902 2.4064

SD[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.7 0.8683 4.0706 9.3752 9.4346
0.75 0.7748 3.7135 8.6088 8.6637
0.8 0.6777 3.3068 7.7043 7.7536

0.85 0.5744 2.8438 6.6520 6.6947

Skew[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.7 1.9920 1.4973 1.6216 1.6225
0.75 2.3856 1.7579 1.8353 1.8358
0.8 2.8825 2.1144 2.1588 2.1592

0.85 3.5647 2.6220 2.6404 2.6406

Kurt[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.7 4.1974 1.0229 0.1587 0.1537
0.75 5.6748 1.3470 0.3437 0.3381
0.8 7.9450 1.9977 0.7742 0.7675

0.85 11.7835 3.2307 1.6279 1.6194
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Table 3. Impact of changing τ2 on the distribution of Z(t) with τ12 = 0.55 and τ1 = 0.85.

E[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.05 0.0136 0.1094 0.2763 0.2781
0.15 0.0491 0.3964 1.0006 1.0073
0.25 0.1033 0.8332 2.1034 2.1176
0.35 0.1957 1.5792 3.9865 4.0136

SD[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.05 0.1974 0.9952 2.3387 2.3537
0.15 0.3730 1.8589 4.3553 4.3833
0.25 0.5349 2.6167 6.1008 6.1399
0.35 0.7224 3.4130 7.8788 7.9288

Skew[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.05 11.4633 9.3207 9.4760 9.4772
0.15 5.8516 4.7009 4.8002 4.8009
0.25 3.8518 3.0297 3.1204 3.1211
0.35 2.5621 1.9254 2.0290 2.0298

Kurt[Z(t)] τ12 t = 1 t = 10 t = 100 t = ∞

0.05 116.7367 44.8970 32.4352 32.3701
0.15 31.1083 12.4559 9.3112 9.2946
0.25 14.0675 6.5740 5.5232 5.5176
0.35 6.9009 5.2676 5.6800 5.6824

5. Conclusions

In this paper, we derived explicit expressions for the higher moments of the discounted aggregate
renewal claims with dependence. Closed expressions for the moments of the aggregate discounted
claims are obtained when the claims and the subsequent inter-claim are distributed as Pareto and
Mixed exponential-geometric distributions. Numerical examples are given to illustrate the impact of
dependency on the moments of the discounted aggregate renewal mixed process.

Since the assumption of constant force of interest is quite restrictive, studying the discounted
renewal aggregate claims with a stochastic force of interest would be interesting. A more challenging
problem would be the extension of the mixed exponential risk model to incorporate other forms of
dependence structure between the model components.
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Abstract: One way to formulate a multivariate probability distribution with dependent univariate
margins distributed gamma is by using the closure under convolutions property. This direction
yields an additive background risk model, and it has been very well-studied. An alternative way
to accomplish the same task is via an application of the Bernstein–Widder theorem with respect to
a shifted inverse Beta probability density function. This way, which leads to an arguably equally
popular multiplicative background risk model (MBRM), has been by far less investigated. In this
paper, we reintroduce the multiplicative multivariate gamma (MMG) distribution in the most general
form, and we explore its various properties thoroughly. Specifically, we study the links to the
MBRM, employ the machinery of divided differences to derive the distribution of the aggregate
risk random variable explicitly, look into the corresponding copula function and the measures of
nonlinear correlation associated with it, and, last but not least, determine the measures of maximal
tail dependence. Our main message is that the MMG distribution is (1) very intuitive and easy
to communicate, (2) remarkably tractable, and (3) possesses rich dependence and tail dependence
characteristics. Hence, the MMG distribution should be given serious considerations when modelling
dependent risks.

Keywords: multivariate gamma distribution; multiplicative background risk model; aggregate risk;
individual risk model; collective risk model

1. Introduction

Let X be a collection of actuarial risks, that is let it contain random variables (r.v.’s) X : Ω →
R defined on the probability space (Ω,F , P) and interpreted as the financial risks an insurer is
exposed to. Often, for applications in insurance, actuaries would consider those X ∈ X , whose
distributions are supported on the non-negative real half-line, have positive skewness, and allow for a
certain degree of heavy-tailness. One such distribution, which has been of prominent importance in
insurance applications, is gamma. We refer to Hürlimann (2001), Dornheim and Brazauskas (2007),
Furman et al. (2018), and Zhou et al. (2018) for applications in solvency assessment, loss reserving,
and aggregate risk approximation, respectively.

Furthermore, let γ ∈ R+ and σ ∈ R+ denote, correspondingly, the shape and scale parameters,
then the r.v. X is said to be distributed gamma, succinctly X ∼ Ga(γ, σ), if it has the probability density
function (p.d.f.)

f (x) =
1

Γ(γ)
e−x/σxγ−1σ−γ for all x ∈ R+, (1)

where Γ(·) stands for the complete gamma function. The popularity of the r.v.’s distributed gamma
in insurance applications is not surprising: the p.d.f.’s of the (aggregate) insurance losses have as
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a rule the same shape as p.d.f. (1), i.e., they are positively skewed, unimodal and have positive
supports; p.d.f. (1) is log-convex for γ ∈ (0, 1) and so has decreasing failure rate, thus allowing for
moderate heavy-tailness (Klugman et al. 2012); p.d.f. (1) has been very well studied and has turned
out remarkably tractable.

When it comes to multivariate extensions of p.d.f. (1), there are an ample number of
dependence structures with univariate margins distributed gamma to consider (e.g., Kotz et al. 2000;
Balakrishnan and Ristić 2016, for a recent development and a comprehensive reference, respectively).
However, irrespective of whether the two-steps copula approach or the more ‘natural’ stochastic
representation approach to formulate the desired multivariate gamma distribution is pursued,
the tractability of the end-result is often an issue. For the former approach, the cumulative
distribution function (c.d.f.) of (1) cannot be written in a closed form, and consequently intensive
numerical algorithms are often needed to implement copula-based multivariate gamma models
(e.g., Cossette et al. 2018; Bahraoui et al. 2015). For the latter approach, consider the following
example. Let Yj ∼ Ga(γj, σ) for γj ∈ R+ and j = 1, . . . , n + 1 be mutually independent r.v.’s, and set
X = (X1, . . . , Xn)′ = (Y1 + Yn+1, . . . , Yn + Yn+1)

′. Then the distribution of the r.v. X is the multivariate
gamma of Mathai and Moschopoulos (1991) (also, e.g., Avanzi et al. 2016; Furman and Landsman 2005,
for recent applications in insurance). Consequently, for the p.d.f. of the r.v. X, we have

f (x1, . . . , xn) ∝
∫ mini=1,...,n xi

0
xγn+1−1e−x/σ

n

∏
i=1

(xi − x)γi−1e−(xi−x)/σdx (2)

for all (x1, . . . , xn)′ ∈ Rn
+, which inconveniently takes distinct forms for each of the n! orderings of

x1, . . . , xn.

Remark 1. The r.v.’s Y1, . . . , Yn and Yn+1 are often interpreted as, respectively, the specific and systematic risk
factors. The systematic risk factor, Yn+1, has also been referred to as the background risk (Gollier and Pratt 1996),
and so the distribution of the r.v. X = (X1, . . . , Xn)′ can be associated with an Additive Background Risk
Model with risk components distributed gamma (G-ABRM). Succinctly, for γ = (γ1, . . . , γn)′, we write
X ∼ Ga+n (γ, γn+1, σ), where γn+1 serves as the dependence parameter.

An alternative way to link the specific risk factors and the systematic (or background) risk
factor is with the help of multiplication. Namely, in order to formulate a Multiplicative Background
Risk Model with the risk components distributed gamma (G-MBRM), we must find a sequence of
(n + 1) independent r.v.’s Z1, . . . , Zn, Zn+1, say, such that X = (X1, . . . , Xn)′ = (Z1Zn+1, . . . , ZnZn+1)

′

results in the coordinates of the r.v. X being distributed gamma. One solution of this exercise,
which is of pivotal importance for this paper, can be found in Feller (1968) (also, Albrecher et al. 2011;
Sarabia et al. 2018). We organize the rest of the paper as follows: in Section 2, we explore the basic
distributional properties of—what we call—the multiplicative multivariate gamma (MMG) distribution.
Then, in Sections 3 and 4, respectively, we discuss in detail and elucidate with examples of actuarial
interest the aggregation and (tail) dependence properties of the MMG distribution. Section 5 concludes
the paper. All proofs are relegated to Appendix A to facilitate the reading.

2. Definition and Basic Properties

Multivariate distributions lay the very foundation of the successful (insurance) risk
measurement—and thus of the consequent risk management—processes. However, the toolbox
of the available stochastic dependencies that can be used to link stand-alone risk components into risk
portfolios is somewhat overwhelming. Indeed, there are infinitely many ways to formulate the joint
distribution of two dependent risk r.v.’s, whereas there is a single way only to write this distribution
under the assumption of independence. The case of the multivariate distributions with the margins
distributed gamma is of course not an exception (e.g., Kotz et al. 2000).

182



Risks 2018, 6, 79

Nevertheless, real applications impose significant constraints on the model choice. Namely,
practitioners often opt for those multivariate distributions that: (i) admit meaningful and relevant
interpretations; (ii) allow for an adequate fit to the modelled data, be it in the ‘tail’, in the
‘body’, and/or in the dependence; and (iii) can be readily implemented. We feel that the
multivariate distribution with the univariate margins distributed gamma that we put forward next
(also, Albrecher et al. 2011; Sarabia et al. 2018) is exactly such.

Formally, let Eλ and Λ denote, respectively, an exponentially distributed r.v. with the rate
parameter λ ∈ R+ and an arbitrarily distributed r.v. with the range Λ ∈ R+; assume that the
r.v.’s EΛ and Λ are independent. In addition, let ‘∗’ represent the mixture operator (e.g., Feller 1968;

Su and Furman 2017a), such that, for ‘ d
=’ denoting equality in distribution, it holds that Eλ ∗Λ d

= EΛ.
We note in passing that the just-mentioned mixture operator is referred to as ‘randomization’ in
Feller (1968), and is closely related—via the Bernstein–Widder theorem—to the notion of the Laplace
transform of the p.d.f. of Λ. More specifically, if fΛ and L{ fΛ} denote, correspondingly, the p.d.f. of Λ
and its Laplace transform, which is

L{ fΛ}(x) =
∫

Λ
e−xλ fΛ(λ)dλ, (3)

then (3) establishes the decumulative distribution function (d.d.f.) of the r.v. EΛ.
Recall that in this paper we are interested in formulating a multivariate distribution with the

univariate margins distributed gamma and a dependence. To this end, we assume that the r.v. Λ is
distributed as a special shifted inverse Beta, succinctly Λ ∼ IB(γ), with the p.d.f.

fΛ(λ) =
λ−1 (λ− 1)−γ

Γ(1− γ)Γ(γ)
for all λ > 1, (4)

where γ ∈ (0, 1) is the shape parameter. In our context, the choice of p.d.f. (4) is unique, which readily
follows from the Bernstein–Widder theorem. The next few facts are used frequently later on in the
paper, and are hence formulated as a lemma. In the following, the k-th order derivative of the Laplace
transform is denoted by ψ(k), k ∈ N := {1, 2, . . .}, also R0,+ := [0, ∞).

Lemma 1. Let Λ ∼ IB(γ), γ ∈ (0, 1) with p.d.f. (4), then:

(i) The Laplace transform of (4) is

L{ fΛ}(x) = Γ(γ, x)/Γ(γ) for all x ∈ R0,+,

where Γ(γ, x) :=
∫ ∞

x tγ−1e−tdt denotes the upper incomplete gamma function.
(ii) The negative k-th order moment of the r.v. Λ is

E[Λ−k] =
Γ(γ + k)

Γ(γ)Γ(k + 1)
for all k ∈ N.

(iii) The alternating sign k-th order derivative of L{ fΛ} is

(−1)kψ
(k)
Λ (x) =

k−1

∑
i=0

(
k− 1

i

)
Γ(i− γ + 1)

Γ(1− γ)Γ(γ)
e−xx−(i−γ+1) for all k ∈ N. (5)

Let Eλ,1, . . . , Eλ,n denote independent copies of Eλ, and let Λ ∼ IB(γ), γ ∈ (0, 1).
In addition, let σ = (σ1, . . . , σn)′ denote a vector of positive parameters.
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Definition 1. Set Xj = σjEλ,j ∗Λ, j = 1, . . . , n, and then the r.v. X = (X1, . . . , Xn)′ has a multiplicative
multivariate distribution with univariate margins distributed gamma, and we succinctly write X ∼ Ga×n (γ, σ),
where γ ∈ (0, 1) and σ ∈ Rn

+ are parameters.

Remark 2. Let Ej := E1,j, j = 1, . . . , n denote independent copies of a r.v. distributed exponentially with unit
scale, then the joint distribution of the r.v. X = (X1, . . . , Xn)′ in Definition 1 admits the following multiplicative
background risk model representation (see, Asimit et al. 2016; Frank et al. 2006, for the corresponding economic
implication and application)

X = (X1, . . . , Xn)
′ d
= (σ1E1/Λ, . . . , σnEn/Λ)′. (6)

Above, the r.v. Λ can be interpreted as the systematic risk factor that endangers every risk component of the
portfolio X = (X1, . . . , Xn)′ in Equation (6). The Monte Carlo simulation of Equation (6) is immediate.

Theorem 1. Let Λ ∼ IB(γ), γ ∈ (0, 1), and let σ1, . . . , σn be positive scale parameters, then the following
assertions hold:

(i) The r.v. X = σEλ ∗Λ has the d.d.f.

F(x) = Γ(γ, x/σ)/Γ(γ) for all x ∈ R0,+,

which is X is distributed gamma with the shape and scale parameters equal to γ ∈ (0, 1) and
σ ∈ R+, respectively.

(ii) The r.v. X = (X1, . . . , Xn)′ with the j-th coordinate Xj = σjEλ,j ∗Λ, has the joint d.d.f.

F(x1, . . . , xn) =
Γ(γ, x1/σ1 + · · ·+ xn/σn)

Γ(γ)
, (7)

for all (x1, . . . , xn)′ ∈ Rn
0,+.

(iii) The p.d.f. that corresponds to d.d.f. (7) is, for all (x1, . . . , xn)′ ∈ Rn
+,

f (x1, . . . , xn) =
1

∏n
i=1 σi

n−1

∑
i=0

(
n− 1

i

)
Γ(i− γ + 1)

Γ(1− γ)Γ(γ)
e
−∑n

j=1
xj
σj

(
n

∑
j=1

xj

σj

)−(i−γ+1)

. (8)

The following facts are immediate from Theorem 1: (i) the distribution of X ∼ Ga×n (γ, σ) is
marginally closed, namely, Xj ∼ Ga(γ, σj), j = 1, . . . , n; (ii) the mathematical expectation of the j-th
coordinate is E[Xj] = γσj; and (iii) the variance of the j-th coordinate is Var[Xj] = γσ2

j .
We further explore some less obvious properties of the MMG/G-MBRM and note with satisfaction

that the risk portfolios with the joint distributions within this class are often more tractable than the
portfolios having stochastically independent risk components distributed gamma. At the outset,
we note in passing that the MMG distribution put forward in Definition 1 is a non-exchangeable
generalization of the multivariate distributions having univariate margins distributed gamma that
are discussed in Albrecher et al. (2011); Sarabia et al. (2018). As such, the MMG distribution requires
a more delicate treatment when deriving the results below, which hinge crucially on the stochastic
characteristics of the univariate margins of the r.v. X ∼ Ga×n (γ, σ).

We look into the minima and maxima r.v.’s first; both are of evident importance in insurance.
To this end, denote by Xmin = mini=1,...,n Xi ∼ Fmin and by Xmax = maxi=1,...,n Xi ∼ Fmax the minima
and maxima r.v.’s. Then we have – unlike in the independent case – that the coordinates of the r.v.
X = (X1, . . . , Xn)′ in Definition 1 are closed under minima.
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Theorem 2. Let X ∼ Ga×n (γ, σ), then Xmin is distributed gamma. More specifically, we have

Xmin ∼ Ga(γ, σ∗), where σ∗ =
(

∑n
j=1 1/σj

)−1
is the positive scale parameter, and γ ∈ (0, 1) is the shape

parameter. In addition, the d.d.f. of Xmax is a linear combination of the d.d.f.’s of the univariate r.v.’s distributed
gamma, such that

Fmax(x) = ∑
S⊆{1,...,n}

(−1)|S|−1FXS (x) for all x ∈ R0,+,

where XS = mins∈S⊆{1,...,n} Xs and XS ∼ Ga(γ, σ∗S ) with σ∗S = (∑j∈S 1/σj)
−1.

Another r.v. of pivotal interest in insurance is the aggregate risk r.v. denoted by
X+ = X1 + · · ·+ Xn; in addition, let X+ ∼ F+. It is well known that, if X1, . . . , Xn are mutually
independent and distributed gamma with arbitrary parameters, then F+ admits an infinite sum
representation (Moschopoulos 1985; Provost 1989). We further show that for X ∼ G×n (γ, σ) and when
all the scale parameters are distinct, then F+ is noticeably more elegant. The derivation of F+ in
the general case—i.e., for arbitrary (possibly equal) scale parameters—is more cumbersome and is
presented in Section 3.

Let

wi(σ) =
n

∏
j=1, j �=i

1
1− σj/σi

for i = 1, . . . , n. (9)

We often write wi omitting the vector of scale parameters σ for the simplicity of notation.

Proposition 1. Let X ∼ Ga×n (γ, σ) and assume that all the scale parameters are distinct, which is σi �= σj for
i �= j ∈ {1, . . . , n}, then the d.d.f. of X+ = X1 + · · ·+ Xn is

F+(x) =
n

∑
i=1

wi
Γ(γ, x/σi)

Γ(γ)
for all x ∈ R0,+. (10)

The last result in this section provides an expression for the higher-order (product) moments of
the r.v. X ∼ G×n (γ, σ). We employ a special form of this expression later on in Section 4 to derive the
formula for the Pearson index of linear correlation.

Theorem 3. Let X ∼ G×n (γ, σ), then, for h1, . . . , hn ∈ N, we have

E

[
n

∏
i=1

Xhi
i

]
=

Γ(γ + ∑n
i=1 hi)

Γ(γ)Γ(∑n
i=1 hi + 1)

n

∏
i=1

σ
hi
i Γ(hi + 1). (11)

We conclude the discussion in the present section by noticing that joint p.d.f. (8) can be used to
estimate the parameters of the MMG distribution via the (numerical) maximum likelihood approach,
whereas expression (11) is of interest if the moment-based estimation is being pursued.

3. Aggregation Properties of the Multiplicative Multivariate Gamma Distribution

One of the key paradigms in the modern enterprise risk management requires that all risks
are treated on a holistic basis. As a result, risk aggregation is of fundamental importance for the
effective conglomerate-wide risk management, risk-sensitive supervision, and a great variety of
other business decision making processes. In the context of the MMG distribution, when all scale
parameters are distinct, the decumulative distribution function of the aggregate risk r.v. is given by (10).
The situation with arbitrary (possibly equal) scales is more involved. We further show that, within
the MMG/G-MBRM class, that is for X ∼ Ga×n (γ, σ) with arbitrary scale parameters and γ ∈ (0, 1),
the d.d.f. of the aggregate risk r.v. X+ admits a finite sum representation. To this end, we employ
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the well-studied machinery of divided differences (e.g., Milne-Thomson 2000, for a comprehensive
treatment). The rest of the section is divided into two: theoretical considerations and applications.

3.1. Theoretical Considerations

We remind at the outset that the divided differences, denoted by ω(y1, . . . , ym), on a grid
Δ = {y1, . . . , ym} for a function ω : R → R can be written as (e.g., Milne-Thomson 2000)

ω(y1, . . . , ym) =
m

∑
i=1

∏
1≤j �=i≤m

ω(yi)

yi − yj
. (12)

Denote

g(y) =
Γ(γ, y)
yΓ(γ)

for all y ∈ R0,+. (13)

Then the following corollary is merely a rearrangement of Equation (10).

Corollary 1 (of Proposition 1). The d.d.f. of the r.v. X+ can be formulated, for distinct σj, j = 1, . . . , n, as

F+(x) =
(−1)n−1xn

∏n
i=1 σi

g(x/σ1, . . . , x/σn) for all x ∈ R0,+,

where g(x1/σ1, . . . , x/σn) is the divided differences representation of g(·) defined as per Equation (13).

Obviously, Equation (12) does not yield sensible results when some of the scale parameters of
the r.v. X ∼ Ga×n (γ, σ) are equal. To circumvent this inconvenience, we formulate and prove the
following lemma.

Lemma 2. Consider ω : R → R, and the grid Δ = {y1, . . . , ym} as before. For ni ∈ N, i = 1, . . . , m, assume
ω is at least k = maxi=1,...,m ni − 1 times differentiable; then, we have

ω(y1, . . . , y1︸ ︷︷ ︸
n1

, . . . , ym, . . . , ym︸ ︷︷ ︸
nm

)

=
m

∑
i=1

1
Γ(ni)

∑
h1+...+hm=ni−1

(
ni − 1

h1, . . . , hm

)
∂hi

∂yhi
i

w(yi) ∏
1≤j �=i≤m

(−nj)hj
(yi − yj)

−nj−hj ,

where (p)n := p(p− 1) . . . (p− n + 1) for n ∈ N denotes the falling factorial, (p)0 := 1.

The next assertion establishes the distribution of the aggregate risk r.v. with arbitrary scale
parameters. Its proof follows by rearranging d.d.f. (10) using the divided differences operator and
consequently evoking Lemma 2.

Theorem 4. Consider X ∼ Ga×n (γ, α), where γ ∈ (0, 1) and σ = (σ1, . . . , σn)′ with arbitrary coordinates
in the latter vector of parameters. Let σ = (σ1, . . . , σ1︸ ︷︷ ︸

n1

, . . . , σm, . . . , σm︸ ︷︷ ︸
nm

)′ for m ∈ N and n1 + · · ·+ nm = n,

then, for x ∈ R0,+, the d.d.f. of X+ admits the following finite sum form:

F+(x) =
1

∏m
i=1 σ

ni
i

m

∑
i=1

∑
h1+...+hm=ni−1

g∗
(

x
σi

)
σ

hi+1
i ∏

1≤j �=i≤m

(−nj)hj

Γ(hj + 1)

(
1
σj
− 1

σi

)−nj−hj

,
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where

g∗(y) =
hi

∑
k=0

1
Γ(k + 1)

yk(−1)kψ
(k)
Λ (y).

Remark 3. A close look at Theorem 4 reveals that the distribution of the r.v. X+ can be considered a finite
mixture of the r.v.’s distributed Erlang with stochastic scale parameters. To see this, first note that

g∗(x/σi) =
hi

∑
k=0

1
Γ(k + 1)

(x/σi)
k(−1)kψ

(k)
Λ (x/σi)

= E

[
hi

∑
k=0

1
Γ(k + 1)

(xΛ/σi)
ke−Λx/σi

]
= Fei,hi

(x) for all x ∈ R0,+,

in which ei,hi
denotes the r.v. distributed Erlang with the shape parameter hi + 1 and the random scale parameter

σi/Λ. Then rewrite F+ as

F+(x) =
1

∏m
i=1 σ

ni
i

m

∑
i=1

ni−1

∑
hi=0

⎡⎣σ
hi+1
i ∑

h1+...+hm=ni−1
∏

1≤j �=i≤m

(−nj)hj

Γ(hj + 1)

(
1
σj
− 1

σi

)−nj−hj
⎤⎦ Fei,hi

(x)

=
m

∑
i=1

ni−1

∑
hi=0

pi,hi
Fei,hi

(x),

where

pi,hi
=

σ
hi+1
i

∏m
i=1 σ

ni
i

⎡⎣ ∑
h1+...+hm=ni−1

∏
1≤j �=i≤m

(−nj)hj

Γ(hj + 1)

(
1
σj
− 1

σi

)−nj−hj
⎤⎦ .

By setting x = 0, it is clear that pi,hi
are generalized weights in the sense that ∑m

i=1 ∑ni−1
hi=0 pi,hi

= 1.
However, these weights are not necessarily positive. For an example, consider the bivariate case with n = m = 2
and n1 = n2 = 1. A simple calculation yields

F+(x) = p1,0Fe1,0(x) + p2,0Fe2,0(x) for all x ∈ R0,+,

where ei,0 ∼ Ga(1, σi/Λ), i = 1, 2, p1,0 = σ−1
2 (1/σ2 − 1/σ1)

−1, and p2,0 = σ−1
1 (1/σ1 − 1/σ2)

−1.
Therefore, depending on the values of σ1 and σ2, one of the weights must be negative.

3.2. Applications

Herein we confine the discussion to the individual and collective risk models. In this respect,
recall that we call the r.v. Sn = X1 + · · · + Xn, n ∈ N the individual risk model, where we let
the severity r.v.’s Xj, j = 1, . . . , n be possibly non-homogeneous. In the collective risk model case,
for N ∈ Z0,+ := {0, 1, 2, . . .} denoting the frequency r.v., we are interested in exploring the distribution
of the random sum SN = X1 + · · ·+ XN . In the context of the MMG/G-MBRM, we have

Sn = σ1
E1

Λ
+ · · ·+ σn

En

Λ
, (14)

and
SN = σ

E1

Λ
+ · · ·+ σ

EN
Λ

. (15)
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P.d.f.’s—rather than d.d.f.’s—often play an important role in the individual/collective risk model
contexts. Therefore, the p.d.f.’s of Sn and SN engage us in the rest of this section. We start with the
p.d.f. of the former r.v. in the following proposition. Recall that pi,hi

are given in (14), and ψ(k) denotes
the k-th order derivative of the Laplace transform.

Proposition 2. Let X ∼ Ga×n (γ, σ) with σ = (σ1, . . . , σ1︸ ︷︷ ︸
n1

, . . . , σm, . . . , σm︸ ︷︷ ︸
nm

)′ for m ∈ N and n1 + · · ·+ nm = n,

then, for x ∈ R+, the p.d.f. of the r.v. Sn is given by

fSn(x) =
m

∑
i=1

ni−1

∑
hi=0

pi,hi

(−σi)
−(hi+1)xhi

Γ(hi + 1)
ψ
(hi+1)
Λ (x/σi).

The next corollary follows immediately from Proposition 2, by setting m = 1 and n1 = n.

Corollary 2. Let X ∼ Ga×n (γ, σ), where γ ∈ (0, 1) and σ1 = · · · = σn ≡ σ ∈ R+. Then, for x ∈ R+,
the p.d.f. of the r.v. Sn is given by

fSn(x) =
n−1

∑
i=0

1
Γ(i + 1)Γ(n− i)

Γ(i− γ + 1)
Γ(1− γ)Γ(γ)

σ−(n−i+γ−1)e−x/σxn−i+γ−2. (16)

Remark 4. It is not difficult to see that p.d.f. (16) admits the following finite mixture representation

fSn(x) =
n−1

∑
i=0

pi fei (x),

where ei ∼ Ga(n− i + γ− 1, σ) and the weights are given by

pi =
Γ(n− i + γ− 1)
Γ(i + 1)Γ(n− i)

Γ(i− γ + 1)
Γ(1− γ)Γ(γ)

for i = 0, . . . , n− 1. Remarkably, in this special case, the weights pi are ‘proper’ in the sense that pi > 0 and
∑n−1

i=0 pi = 1. This observation complements Theorem 6 in Sarabia et al. (2018).

We further derive the p.d.f. of the r.v. SN .

Proposition 3. Let X ∼ Ga×n (γ, σ) with σ1 = · · · = σn ≡ σ ∈ R+, then, for x ∈ R+, the p.d.f. of the r.v.
SN is

fSN (x) =

⎧⎨⎩
xγ−1e−x/σ

Γ(γ)σγ ∑∞
i=0 ∑∞

m=0
〈1−γ〉i

i!m!
( x

σ

)m
P[N = m + i + 1], for x > 0,

P[N = 0], for x = 0,
(17)

where 〈p〉n = p(p + 1) . . . (p + n− 1) for n ∈ N denotes the rising factorial, 〈p〉0 := 1.

We conclude this section by specializing the p.d.f. of the r.v. SN reported in Proposition 3 for particular
choices of the frequency r.v. In actuarial science, some popular choices of the r.v. N are, e.g., the Poisson,
negative binomial, and logarithmic (e.g., Klugman et al. 2012). Below, we first remind the reader in
passing the probability mass functions (p.m.f.’s) of the just-mentioned r.v.’s, and we then present the
p.d.f.’s of the aggregate r.v.’s within the framework of the corresponding collective risk models.

• If N ∼ Poisson(λ) with λ ∈ R+, then the p.m.f. is given by

P[N = n] =
λn

n!
e−λ for all n ∈ Z0,+.
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• If N ∼ NB(β, p), the negative binomial distribution with β ∈ R+ and p ∈ (0, 1), then

P[N = n] =
Γ(n + β)

Γ(n + 1)Γ(β)
pβ(1− p)n for all n ∈ Z0,+.

• If N ∼ Logm(θ), the logarithmic distribution with θ ∈ (0, 1), then the p.m.f. is

P[N = n] =
−θn

n log(1− θ)
for all n ∈ Z+.

Let Φ1 and Φ3, respectively, denote the two-variable confluent hypergeometric series of the first
and third kind (see, e.g., Srivastava and Karlsson 1985), that is with a1, a2, a3 ∈ R+,

Φ1(a1, a2; a3; x, y) =
∞

∑
i=0

∞

∑
j=0

〈a1〉(i+j)〈a2〉(j)

〈a3〉(i+j)i!j!
xiyj,

for x ∈ R, |y| < 1, and

Φ3(a1; a2; x, y) =
∞

∑
i=0

∞

∑
j=0

〈a1〉(j)

〈a2〉(i+j)i!j!
xiyj,

for x, y ∈ R. The following corollary follows readily.

Corollary 3 (of Proposition 3). In the context of the collective risk model, we have, for all x ∈ R+, γ ∈ (0, 1)
and σ ∈ R+, that

• If N ∼ Poisson(λ), then

fSN (x) = λ
xγ−1e−x/σ−λ

Γ(γ)σγ
Φ3(1− γ, 2, xλ/σ, λ).

• If N ∼ NB(β, p), then

fSN (x) = βpβ(1− p)
xγ−1e−x/σ

Γ(γ)σγ
Φ1(1 + β, 1− γ, 2, x(1− p)/σ, 1− p).

• If N ∼ Logm(θ), then

fSN (x) = − θ

log(1− θ)

xγ−1e−x/σ

Γ(γ)σγ
Φ1(1, 1− γ, 2, xθ/σ, θ).

4. Dependence Properties of the Multiplicative Multivariate Gamma Distribution

At first sight, the dependence structure that underlies the MMG distribution—that is d.d.f. (7)—
is not as versatile as the one behind the additive counterpart of Mathai and Moschopoulos (1991).
This is because the Pearson correlation, ρ, for the former class of distributions does not attain every
value in the interval [0, 1], whereas it does so in the context of the latter class of distributions (e.g.,
Das et al. 2007; Su and Furman 2017a, 2017b, for a similar constraint in the context of default risk).
More formally, we have the following proposition, the proof of which is a direct application of Theorem
3 and is thus omitted.

Proposition 4. Let X ∼ Ga×n (γ, σ), then the Pearson correlation between any pair of Xi and Xj,
for i �= j ∈ {1, . . . , n} is

ρ[Xi, Xj] = (1− γ)/2, (18)
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where γ ∈ (0, 1). In addition, we have ρ[Xi, Xj] ∈ (0, 1/2) and it is a decreasing function of γ ∈ (0, 1).

In the rest of this section, we show that the just-mentioned seeming shortcoming should in fact be
attributed to the Pearson index of correlation, ρ, itself, rather than to the dependence structure of the
MMG distribution. As hitherto, we divide our observations herein into two subsections.

4.1. Theoretical Considerations

At the outset, we observe that the dependence structure that underlies the MMG/G-MBRM is
not linear in the—common—background r.v. Λ. Therefore, the machinery of copulas lands itself very
naturally to exploring the relevant dependence properties. The next theorem states the copula function
(e.g., Joe 1997) of X ∼ Ga×n (γ, σ).

Theorem 5. Assume that X ∼ Ga×n (γ, σ), then the copula function underlying the d.d.f. of X is given,
for γ ∈ (0, 1), by

Cγ(u1, . . . , un) =
1

Γ(γ)
Γ

(
γ,

n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
, (19)

where (u1, . . . , un)′ ∈ [0, 1]n, and Γ−1(·, s) denotes the inverse incomplete gamma function evaluated at
s ∈ R+. Moreover, the p.d.f. associated with Cγ is given by

cγ(u1, . . . , un) = (−1)nψ
(n)
Λ

(
n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
n

∏
i=1

1
f (Γ−1(γ, uiΓ(γ)))

, (20)

where f denotes the p.d.f. of Ga(γ, 1), and (−1)nψ(n) is obtained in Lemma 1.

Figure 1 depicts the simulated scatter plots of the copula function Cγ for varying values of the
γ parameter.

Remark 5. Copula function (19) is a member of the encompassing class of the Archimedean copulas.
Specifically, set

φ(s) =
Γ(γ, s)
Γ(γ)

for all s ∈ R0,+,

and observe that (19) admits the following form, for (u1, . . . , un)′ ∈ [0, 1]n,

Cφ(u1, . . . , un) = φ(φ−1(u1) + · · ·+ φ−1(un)),

where φ : [0, ∞) → [0, 1] is a legitimate completely monotonic function—known as the Archimedean
generator—and φ−1 is its inverse (e.g., McNeil and Nešlehová 2009). The MMG copula therefore enriches the
encompassing toolbox of the distinct Archimedean copulas available to researchers and practitioners.

We have already mentioned at the end of Section 2 that the maximum likelihood approach can be
used in order to numerically estimate the parameters of the MMG distribution. An alternative way to
estimate the parameters is via the two-step copula approach. That is, we first fit the MMG copula to the
pseudo uniform samples based on the empirical c.d.f.’s of Xi, i = 1, . . . , n and estimate the γ parameter
(e.g., Embrechts and Hofert 2013; Genest et al. 2011, and references therein), and we then estimate the
σi parameters based on the univariate marginal distributions assuming that the γ parameter is known.
Given the cumbersome form of p.d.f. (8), the copula-based approach is computationally simpler.

Besides the just-mentioned statistical inference, a useful contribution of copulas to the vast
literature of multivariate modelling is that they have given rise to a number of indices of dependence
that circumvent the known fallacies of the Pearson ρ. Such indices of dependence are, e.g., the Kendall τ
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and Spearman ρS measures of rank correlation, and we derive these two in the next subsection in the
context of the MMG copula function Cγ.
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Figure 1. Scatter plots of the MMG copula (4000 simulation points) for varying values of the γ

parameter: γ = 0.05 (top left), γ = 0.2 (top right), γ = 0.5 (bottom left), γ = 0.8 (bottom right).

In the rest of this subsection, we build up the theoretical groundwork necessary for exploring
the tail dependence of Cγ. As tail dependence represents the co-movement of extreme risks, it is of
particular importance in the era following the financial crisis of 2007–2009. We note in passing that,
since the majority of the existing methods for quantifying tail dependence mainly aim at random pairs,
we specialize the discussion in this part of the present report to the bivariate case only.

Let Ĉ denote the survival copula that corresponds to C, that is Ĉ(u1, u2) := u1 + u2 − 1+
C(1− u1, 1− u2), for u1, u2 ∈ [0, 1]. Then the first order lower and upper tail dependence parameters
(e.g., Joe 1997) are given by

λL := lim
u↓0

C(u, u)
u

and λU := lim
u↓0

Ĉ(u, u)
u

, (21)

whereas the second order tail dependence parameters (Coles et al. 1999) are given by

χL := lim
u↓0

2 log u
log C(u, u)

− 1 and χU := lim
u↓0

2 log u
log Ĉ(u, u)

− 1. (22)
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Recently, an argument has been put forward that tail dependence measures (21) and (22)
may underestimate the extent of the tail dependence inherent in a copula. More specifically,
Furman et al. (2015) claim and elucidate with numerous examples that as measures (21) and (22)
are computed along the main diagonal (u, u), u ∈ [0, 1], their values are not necessarily maximal when
alternative paths in [0, 1]2 are considered. This motivated the following definitions of the admissible
paths and the paths of maximal dependence in ibid.

Definition 2. A function ϕ : [0, 1]→ [0, 1] is called admissible if it satisfies the following conditions:

(C1) ϕ(u) ∈ [u2, 1] for every u ∈ [0, 1]; and
(C2) ϕ(u) and u2/ϕ(u) converge to 0 when u ↓ 0.

Then the path (ϕ(u), u2/ϕ(u))0≤u≤1 is admissible whenever the function ϕ is admissible. In addition,
we denote by A the set of all admissible functions ϕ.

Definition 3. The path(s) (ϕ(u), u2/ϕ(u))0≤u≤1 in A are called paths of maximal dependence if they
maximize the probability

Πϕ(u) = C
(

ϕ(u), u2/ϕ(u)
)

or, equivalently, the distance function

dϕ

(
C, C⊥

)
(u) = C

(
ϕ(u), u2/ϕ(u)

)− C⊥(ϕ(u), u2/ϕ(u)),

where C⊥ is the independence copula, i.e., C⊥(u1, u2) = u1u2 for all 0 ≤ u1, u2 ≤ 1.

Obviously, the function ϕ0(u) = u is admissible and yields the representation of the diagonal path
that serves as a building block for classical indices (21) and (22). For the Archimedean class of copulas,
the following property of the maximal dependence path holds. The verification of the condition stated
in Lemma 3 below is not trivial, and is carried out for the MMG copula Cγ in Theorem 6.

Lemma 3 (Furman et al. 2015). For an Archimedean copula with generator φ, if x ∂
∂x φ−1(x) is increasing on

x ∈ (0, 1), then the path of maximal dependence coincides with the main diagonal.

The next lemma on a L’Hospital type rule for monotonicity, plays an importantly auxiliary role
when deriving the maximal dependence path for Cγ.

Lemma 4 (Pinelis 2002). Let −∞ ≤ a < b ≤ ∞, also g1 and g2 be differentiable functions over the interval
(a, b). Assume that g′2(s) < 0 for s ∈ (a, b), and lims↓a g1(s) = 0 and lims↓a g2(s) = 0. Then, g1/g2 is
increasing on (a, b) if g′1/g′2 is increasing.

Our last result in this subsection implies that measures of tail dependence (21) and (22) are in fact
maximal in the context of the MMG copula Cγ.

Theorem 6. The maximal dependence path of the copula function Cγ in (19) is diagonal.

4.2. Applications

The next assertion reports the Kendall tau and Spearman rho rank correlations, implied by the
MMG copula (19). The hypergeometric function plays a pivotal role in deriving the Spearman rho
correlation in the following proposition, and it is given in Gradshteyn and Ryzhik (2014)

q+1Fq(a1, . . . , aq+1; b1, . . . , bq; z) =
∞

∑
k=0

〈a1〉k, . . . , 〈aq+1〉k
〈b1〉k, . . . , 〈bq〉k

zk

k!
. (23)
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For a1, . . . , aq+1 all positive, and these are the cases of interest in the present report. The radius
of convergence of the series is the open disk |z| < 1. On the boundary |z| = 1, the series converges
absolutely if d = b1 + · · ·+ bq − a1 − · · · − aq+1 > 0, and it converges except at z = 1 if 0 ≥ d > −1.

Proposition 5. For the copula Cγ, the Kendall τ rank correlation is given by

τ(Cγ) = 1− 2 Γ(γ + 1/2)√
π Γ(γ)

,

and the Spearman ρS rank correlation is given by

ρS(Cγ) = 6
(

8−γΓ(3γ)

Γ(γ + 1)Γ(2γ) 2F1(1, 3γ; 2γ + 1; 1/2)− 1/2
)

.

Figure 2 depicts the values for the Pearson ρ, Kendall τ and Spearman ρS indices of correlation
with varying γ ∈ (0, 1). The figure confirms that, while the Pearson ρ does not attain all values in [0, 1]
for the MMG/G-MBRM distribution, the other two indices are able to achieve this goal.

Figure 2. The plot of the Pearson rho, Kendall tau, and Spearman rho measures of correlation for
varying values of γ ∈ (0, 1).

Proposition 6. Assume that X ∼ Ga×n (γ, σ) has copula Cγ, the lower maximal tail dependence of Cγ is

λL(Cγ) = χL(Cγ) = 0.

The upper maximal tail dependence of Cγ is

λU(Cγ) = 2− 2γ, and χU(Cγ) = 1.

Proposition 6 readily implies—recall to this end that the copula Cγ is in fact a survival copula
(by construction)—that the coordinates of X ∼ Ga×n (γ, σ) are asymptotically dependent in the lower
tail, but independent in the upper tail. Speaking bluntly, this means that X is more likely to take smaller
values simultaneously, but less likely to form a cluster of large values. This conforms to the already
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made intuitive observation that the copula Cγ can serve as a reflected variant of the well-studied
Clayton copula.

5. Conclusions

In the present report, we have systematically studied a class of multivariate multiplicative
gamma distributions. We have demonstrated that the MMG distribution admits a very meaningful
background risk model representation, where the interdependencies among risks are implied by
a common systematic risk factor. Moreover, we have shown that the MMG distribution enjoys a
remarkable level of analytical tractability, that is, the risk r.v.’s distributed MMG are straightforward to
simulate, easy to aggregate and take maxima, closed under minima, and have attractive dependence
and tail dependence characteristics. In view of the above, we think that the potential applications of the
MMG distribution in actuarial science are vast, and we hope to draw the attention of the community to
this class of distributions. In fact, reduced forms of the proposed MMG distribution have been recently
heuristically adopted in the actuarial literature to model a variety of dependent insurance risks (e.g.,
Sarabia et al. 2018, also, Albrecher et al. 2011).

Author Contributions: All authors contributed equally to this work.

Funding: Vadim Semenikhine is grateful to the Natural Sciences and Engineering Research Council (NSERC) of
Canada for its Undergraduate Summer Research Award. Edward Furman acknowledges the continuous support
of his research by NSERC.

Acknowledgments: We are indebted to three anonymous referees for their very thorough reading of the paper,
and the many suggestions that resulted in a clearer presentation.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs

Proof of Lemma 1. The proof of (i) is due to Equation 3.383(9) in Gradshteyn and Ryzhik (2014);
(ii) follows readily via the integral representation of the Beta function. In order to check (iii), we have

(−1)k dk

dxkL{ fΛ}(x) =
1

Γ(1− γ)Γ(γ)

∫ ∞

1
λk−1e−λx(λ− 1)−γdλ

=
1

Γ(1− γ)Γ(γ)

∫ ∞

0
(1 + λ)k−1e−(1+λ)xλ−γdλ

=
1

Γ(1− γ)Γ(γ)

k−1

∑
i=0

(
k− 1

i

)
e−x

∫ ∞

0
e−λxλi−γdλ.

This completes the proof of the lemma.

Proof of Theorem 1. The d.d.f.’s of the r.v.’s X and X follow immediately from Lemma 1, Statement (i)
and Chapter 4 in Joe (1997). The joint p.d.f. follows from Lemma 1, Statement (iii) since

f (x1, . . . , xn) =
(−1)n

∏n
i=1 σi

ψ
(n)
Λ

(
n

∑
i=1

xi
σi

)
for all (x1, . . . , xn) ∈ Rn

+.

This completes the proof of the theorem.

Proof of Theorem 2. The closure under the minima operation is trivial by evoking Theorem 1,
Statement (ii). The distribution of the r.v. Xmax follows immediately (e.g., Corollary 2.2 in
Su and Furman 2017a, for a similar result in the context of a multivariate Pareto distribution). This
completes the proof of the theorem.
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Proof of Proposition 1. Recall (e.g., Akkouchi 2008) that, for the convolution of σ1Eλ,1, . . . , σnEλ,n with
σi �= σj, i �= j ∈ {1, . . . , n}, we have

F+(x| Λ = λ) =
n

∑
i=1

wi exp{−xλ/σi} for all x ∈ R0,+.

Therefore we also have

F+(x) =
n

∑
i=1

wiE [exp{−xΛ/σi}] for all x ∈ R0,+,

and the assertion of the proposition follows evoking Lemma 1, Statement (i).

Proof of Theorem 3. We immediately have

E

[
n

∏
i=1

Xhi
i

]
= E

[
E

[
n

∏
i=1

Xhi
i

∣∣∣Λ]]
(1)
= E

[
n

∏
i=1

(σi
Λ

)hi
Γ(hi + 1)

]

= E
[
Λ−∑n

i=1 hi
] n

∏
i=1

σ
hi
i Γ(hi + 1),

where ‘
(1)
= ’ holds due to the moments’ formula in the case of the exponentially distributed r.v.’s

(see, e.g., Klugman et al. 2012). The proof is then completed by evoking Lemma 1, Statement (ii).

Proof of Lemma 2. We start with Equation (6) of Kunz (1956) and have

ω(y1, . . . , y1︸ ︷︷ ︸
n1

, . . . , ym, . . . , ym︸ ︷︷ ︸
nm

) =
1

∏m
i=1 Γ(ni)

∂n1+...+nm−m

∏m
i=1 ∂yni−1

i

m

∑
i=1

ω(yi)

∏1≤j �=i≤m(yi − yj)
.

Then we differentiate term-by-term to obtain

ω(y1, . . . , y1︸ ︷︷ ︸
n1

, . . . , ym, . . . , ym︸ ︷︷ ︸
nm

)

=
1

∏m
i=1 Γ(ni)

m

∑
i=1

∂ni−1

∂yni−1
i

ω(yi)

⎛⎝ ∂∑1≤j �=i≤m nj−m+1

∏1≤j �=i≤m ∂y
nj−1
j

∏
1≤j �=i≤m

(yi − yj)
−1

⎞⎠
=

1
∏m

i=1 Γ(ni)

m

∑
i=1

∂ni−1

∂yni−1
i

ω(yi)

(
∏

1≤j �=i≤m
Γ(nj)(yi − yj)

−nj

)

=
m

∑
i=1

1
Γ(ni)

∂ni−1

∂yni−1
i

ω(yi) ∏
1≤j �=i≤m

(yi − yj)
−nj .
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Finally, we apply the Leibniz rule and readily have, for i = 1, . . . , m,

∂ni−1

∂yni−1
i

ω(yi) ∏
1≤j �=i≤m

(yi − yj)
−nj

= ∑
h1+...+hm=ni−1

(
ni − 1

h1, . . . , hm

)
∂hi

∂yhi
i

w(yi) ∏
1≤j �=i≤m

∂hj

∂y
hj
i

(yi − yj)
−nj

= ∑
h1+...+hm=ni−1

(
ni − 1

h1, . . . , hm

)
∂hi

∂yhi
i

w(yi) ∏
1≤j �=i≤m

(−nj)hj
(yi − yj)

−nj−hj .

This concludes the proof of the lemma.

Proof of Proposition 2. The proof of the proposition follows from Remark 3 that reports the mixture
representation. Namely,

fSn(x) =
m

∑
i=1

ni−1

∑
hi=0

pi,hi
fei,hi

(x) =
m

∑
i=1

ni−1

∑
hi=0

pi,hi
E

[
(Λ/σi)

hi+1xhi

Γ(hi + 1)
e−xΛ/σi

]
for all x ∈ R+.

This completes the proof.

Proof of Proposition 3. We have the following string of equations, for all x ∈ R+,

fSN (x) =
∞

∑
n=1

fSn(x)P[N = n]

=
xγ−1e−x/σ

Γ(γ)σγ

∞

∑
n=1

n−1

∑
i=0

〈1− γ〉i
i!(n− i− 1)!

( x
σ

)n−i−1
P[N = n]

=
xγ−1e−x/σ

Γ(γ)σγ

∞

∑
i=0

〈1− γ〉i
i!

∞

∑
n=i+1

(x/σ)n−i−1

(n− i− 1)!
P[N = n]

=
xγ−1e−x/σ

Γ(γ)σγ

∞

∑
i=0

〈1− γ〉i
i!

∞

∑
m=0

(x/σ)m

m!
P[N = m + i + 1].

This completes the proof of the proposition.

Proof of Theorem 5. The proof is a direct application of the Sklar’s theorem. Namely, recall that

P [Xi > xi] =
Γ(γ, xi/σi)

Γ(γ)
for all xi ∈ R0,+,

and thus, for i = 1, . . . , n, we have

Xi
d
= σiΓ−1(γ, UiΓ(γ)),

where Ui denotes a r.v. distributed uniformly on [0, 1]. Hence, the desired copula function is
computed as

Cγ(u1, . . . , un) = P[X1 > σ1Γ−1(γ, u1Γ(γ)), . . . , Xn > σnΓ−1(γ, unΓ(γ))]

=
1

Γ(γ)
Γ

(
γ,

n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
,

where (u1, . . . , un)′ ∈ [0, 1]n.
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We next turn to study the p.d.f. of Cγ. By definition, we readily obtain

cγ(u1, . . . , un) =
∂n

∏n
i=1 ∂ui

1
Γ(γ)

Γ

(
γ,

n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)

=
1

Γ(γ)
Γ(n)

(
γ,

n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
n

∏
i=1

∂

∂ui
Γ−1(γ, uiΓ(γ))

= ψ
(n)
Λ

(
n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
n

∏
i=1

∂

∂s
Γ−1(γ, s)

∣∣∣∣
s=uiΓ(γ)

Γ(γ)

= (−1)nψ
(n)
Λ

(
n

∑
i=1

Γ−1 (γ, uiΓ(γ))

)
n

∏
i=1

1
f (Γ−1(γ, uiΓ(γ)))

,

where f denotes the p.d.f. of Ga(γ, 1). This completes the proof of the theorem.

Proof of Theorem 6. Let φ−1(x) = Γ−1(γ, xΓ(γ)), for all x ∈ (0, 1), so

x
∂

∂x
φ−1(x) =

x
− f (Γ−1(γ, xΓ(γ)))

,

where f (·) is the p.d.f. of Ga(γ, 1). Note that, for γ ∈ (0, 1), which is exactly the case in the present
report, f (s) is decreasing for all s ∈ R+.

Now, set g1(x) = x and g2(x) = − f
(
Γ−1(γ, xΓ(γ))

)
. Clearly, limx↓0 g1(x) = 0, limx↓0 g2(x) = 0,

and g2(x) is decreasing on x ∈ (0, 1). Moreover,

g′1(x)
g′2(x)

=
f (s)
f ′(s)

∣∣∣
s=Γ−1(γ,xΓ(γ))

=
−1

1 + (1− γ) (Γ−1(γ, xΓ(γ)))−1

is increasing on x ∈ [0, 1]. Evoking Lemma 4, we conclude that x ∂
∂x φ−1(x) is increasing for x ∈ (0, 1).

Finally, based on Lemma 3, the path of maximal dependence for Cγ is the diagonal, and the proof
is completed.

Proof of Proposition 5. Recall that copula function (19) is a special member of the Archimedean class
of copulas having generator

φ(s) =
1

Γ(γ)
Γ(γ, s) for all s ∈ R0,+.

As a result, according to Theorem 4.3 in Joe (1997), we have

τ(Cγ) = 1− 4
∫ ∞

0
s
[

∂

∂s
φ(s)

]2
ds

= 1− 4
Γ(γ)2

∫ ∞

0
s2γ−1e−2sds

= 1− 41−γ Γ(2γ)

Γ(γ)2 . (A1)

The expression for the Kendall τ is obtained by simplifying (A1).
We further proceed to the case of the Spearman ρS. For i �= j ∈ {1, . . . , n}, denote by fi and f j the

marginal p.d.f.’s of the random pair (Xi, Xj)
′ ⊆ X, then by definition (see, Section 2.1.9 in Joe 1997),

we have

ρS(Cγ) = 12
∫ ∞

0

∫ ∞

0
F(xi, xj) fi(xi) f j(xj)dxidxj − 3,
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where

∫ ∞

0

∫ ∞

0
F(xi, xj) fi(xi) f j(xj)dxidxj =

1
Γ(γ)

∫ ∞

0

∫ ∞

0
Γ

(
γ,

xi
σi

+
xj

σj

)
fi(xi) f j(xj)dxidxj

=
1

Γ(γ)Γ(2γ)

∫ ∞

0
Γ(γ, s)s2γ−1e−sds

(1)
=

Γ(3γ)

Γ(γ)Γ(2γ)

1
23γ+1γ

2F1(1, 3γ; 2γ + 1; 1/2).

Here, the equality ‘
(1)
= ’ holds because of (6.455(1)) in Gradshteyn and Ryzhik (2014). This completes

the proof of the proposition.

Proof of Proposition 6. Let us first study the lower tail dependence of Cγ. The following string of
equations holds:

χL = lim
u↓0

2 log φ(φ−1(u))
log φ(2φ−1(u))

− 1

= lim
t→∞

2 log φ(t)
log φ(2t)

− 1

= lim
t→∞

2
− log Γ(γ) + log Γ(γ; t)
− log Γ(γ) + log Γ(γ; 2t)

− 1.

We know that, as t → ∞, the following asymptotic expansion holds (Temme 1996):

Γ(γ; t) = tγ−1e−t(1 + R(γ, t)),

with R(γ, t) = O(t−1). Then, we have

lim
t→∞

− log Γ(γ) + log Γ(γ; t)
− log Γ(γ) + log Γ(γ; 2t)

= lim
t→∞

− log Γ(γ) + (γ− 1) log t− t + log((1 + R(γ, t))
− log Γ(γ) + (γ− 1) log 2t− 2t + log((1 + R(γ, 2t))

= 1/2,

and thus χL = 0, which automatically implies λL = 0.
We now turn to study the upper tail dependence of Cγ. Note that the mixture r.v. Λ has d.d.f.

FΛ ∈ RV−γ that varies regularly at infinity with order −γ (Bingham et al. 1987). The expressions for
λU and χU are readily obtained by evoking Corollary 3.3 in Su and Hua (2017). This completes the
proof of this proposition.
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Furman, Edward, Jianxi Su, and Ričardas Zitikis. 2015. Paths and indices of maximal tail dependence.
ASTIN Bulletin 45: 661–78. [CrossRef]

Genest, Christian, Johanna Nešlehová, and Johanna Ziegel. 2011. Inference in multivariate archimedean copula
models. Test 20: 223–56. [CrossRef]

Gollier, Christian, and John W. Pratt. 1996. Risk vulnerability and the tempering effect of background risk.
Econometrica 64: 1109–23. [CrossRef]

Gradshteyn, Izrail Solomonovich, and Iosif Moiseevich Ryzhik. 2014. Table of Integrals, Series, and Products, 8th ed.
New York: Academic Press. [CrossRef]

Hürlimann, Werner. 2001. Analytical evaluation of economic risk capital for portfolios of gamma
risks. ASTIN Bulletin 31: 107–22. [CrossRef]

Joe, Harry. 1997. Multivariate Models and Dependence Concepts. London: Chapman and Hall.
Klugman, Stuart A., Harry H. Panjer, and Gordon E. Willmot. 2012. Loss Models: From Data to Decisions, 4th ed.

Hoboken: Wiley.
Kotz, Samuel, Narayanaswamy Balakrishnan, and Norman L. Johnson. 2000. Continuous Multivariate Distributions:

Models and Applications. New York: Wiley.
Kunz, Karls S. 1956. High accuracy quadrature formulas from divided differences with repeated arguments.

Mathematical Tables and Other Aids to Computation 10: 87–90. [CrossRef]
Mathai, Arak M., and Panagis G. Moschopoulos. 1991. On a multivariate gamma. Journal of Multivariate Analysis

39: 135–53. [CrossRef]
McNeil, Alexander J., and Johanna Nešlehová. 2009. Multivariate Archimedean copulas, d-monotone functions

and l1-norm symmetric distributions. Annals of Statistics 37: 3059–97. [CrossRef]
Milne-Thomson, Louis Melville. 2000. The Calculus of Finite Differences. Rhode Island: American

Mathematical Society.
Moschopoulos, Peter G. 1985. The distribution of the sum of independent gamma random variables. Annals of the

Institute of Statistical Mathematics 37: 541–44. [CrossRef]
Pinelis, Iosif. 2002. L’Hospital type rules for monotonicity: Applications to probability inequalities for sums of

bounded random variables. Journal of Inequalities in Pure and Applied Mathematics 3: 7.
Provost, Serge. 1989. On sums of independent gamma eandom yariames. Statistics 20: 583–91. [CrossRef]

199



Risks 2018, 6, 79

Sarabia, José María, Emilio Gómez-Déniz, Faustino Prieto, and Vanesa Jordá. 2018. Aggregation of dependent
risks in mixtures of exponential distributions and extensions. ASTIN Bulletin. [CrossRef]

Srivastava, Hari M., and Per Wennerberg Karlsson. 1985. Multiple Gaussian Hypergeometric Series. Chichester:
Ellis Horwood.

Su, Jianxi, and Edward Furman. 2017a. A form of multivariate Pareto distribution with applications to financial
risk measurement. ASTIN Bulletin 47: 331–57. [CrossRef]

Su, Jianxi, and Edward Furman. 2017b. Multiple risk factor dependence structures: Distributional properties.
Insurance: Mathematics and Economics 76: 56–68. [CrossRef]

Su, Jianxi, and Lei Hua. 2017. A general approach to full-range tail dependence copulas. Insurance: Mathematics
and Economics 77: 49–64. [CrossRef]

Temme, Nico. 1996. Special Functions: An Introduction to the Classical Functions of Mathematical Physics.
New York: Wiley.

Zhou, Ming, Jan Dhaene, and Jing Yao. 2018. An approximation method for risk aggregations and capital allocation
rules based on additive risk factor models. Insurance: Mathematics and Economics 79: 92–100. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

200



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Risks Editorial Office
E-mail: risks@mdpi.com

www.mdpi.com/journal/risks





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03928-517-4 


	Blank Page

