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Abstract: The Skew-Reflected-Gompertz (SRG) distribution, introduced by Hosseinzadeh et al.
(J. Comput. Appl. Math. (2019) 349, 132–141), produces two-piece asymmetric behavior of the
Gompertz (GZ) distribution, which extends the positive to a whole dominion by an extra parameter.
The SRG distribution also permits a better fit than its well-known classical competitors, namely the
skew-normal and epsilon-skew-normal distributions, for data with a high presence of skewness. In this
paper, we study information quantifiers such as Shannon and Rényi entropies, and Kullback–Leibler
divergence in terms of exact expressions of GZ information measures. We find the asymptotic test
useful to compare two SRG-distributed samples. Finally, as a real-world data example, we apply these
results to South Pacific sea surface temperature records.

Keywords: Skew-Reflected-Gompertz distribution; Gompertz distribution; entropy; Kullback–Leibler
divergence; sea surface temperature

1. Introduction

The Skew-Reflected-Gompertz (SRG) distribution was recently introduced by [1] and corresponds
to an extension of the Gompertz distribution [2], named after Benjamin Gompertz (1779–1865).
It extends the positive dominion R+ to the whole of R by an extra parameter, ε, −1 < ε < 1,
and produces two-piece asymmetric behavior of Gompertz (GZ) density. The SRG distribution has
as particular cases the Reflected-GZ and GZ distributions, when ε → 1 and ε → −1, respectively.
The SRG distribution family can also represent a suitable competitor against the skew-normal (SN, [3])
and epsilon-skew-normal (ESN, [4]) distributions as a way to fit asymmetrical datasets. Indeed,
refs. [5,6] dealt with the frequentist and Bayesian inferences of ESN distribution. Contributions by [1]
provided probability density function (pdf), cumulative distribution function (cdf), quantile function,
moment-generating function (MGF), stochastic representation, the Expectation-Maximization (EM)
algorithm for SRG parameter estimates and the Fisher information matrix (FIM).

Moreover, several recent investigations confirmed the usefulness of entropic quantifiers in the
study of asymmetric distributions [3,7,8] and their applications to topics such as thermal wake [9],
marine fish biology [3,8], sea surface temperature (SST), relative humidity measured in the Atlantic
Ocean [10], and more. We build on the study of [3], which developed hypothesis testing for normality,
i.e., if the shape parameter is close to zero. They considered the Kullback–Leibler (KL) divergence in
terms of moments and cumulants of the modified SN distribution. Posteriorly, we consider a real-world
data set of the anchovy condition factor for testing the shape parameter to decide if a food deficit
produced by environmental conditions such as El Niño exists [11].

Mathematics 2019, 7, 403; doi:10.3390/math7050403 www.mdpi.com/journal/mathematics1
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This work arose from a motivation to tackle the problem of determining the adequate pdf
of SST [9,10]. Indeed, probabilistic modelling of SST is key for accurate predictions [9]. Therefore,
we propose that the SRG model based on two-piece distributions could be more suitable for interpreting
annual bimodal and asymmetric SST data. We also considered the existent results of Shannon and
Rényi entropies, and KL divergence for GZ distributions for developed entropic quantifiers for SRG
distributions. Posteriorly, we considered SST along the South Pacific and Chilean coasts from 2012 to
2014 to illustrate our results. Specifically, we introduced hypothesis testing developed by [12] for the
SRG distribution, which is useful to compare two data sets with bimodal and asymmetric behavior
such as SST.

2. The Skew-Reflected-Gompertz Distribution

The Gompertz (GZ, [2]) distribution is a continuous probability distribution with the following pdf

f (x|σ, η) =
η

σ
e

x
σ e−η(e

x
σ −1), x ≥ 0, (1)

where σ > 0 and η > 0 are the scale and shape parameters, respectively, and are denoted by
X ∼ GZ(σ, η). The mean and variance of X are

E(X) = σeηEi(−η), (2)

Var(X) = σ2eητ,

respectively; where Ei(z) =
∫ ∞
−z

e−u

u du, τ = −2ηF(−η) + γ2 + π2

6 + 2γ log η + (log η)2 − eη [Ei(−η)]2,
γ = 0.5772156649 is the Euler constant and

F(z) =
+∞

∑
k=0

zk

k!(k + 1)3 .

The SRG distribution is an extension of the GZ proposed by [1]. If Y follows, the SRG distribution
is denoted by Y ∼ SRG(μ, σ, η, ε) and has pdf

g(y|μ, σ, η, ε) =

⎧⎨⎩
1
2 f
(

μ−y
1+ε

∣∣∣σ, η
)

, y ≤ μ,
1
2 f
(

y−μ
1−ε

∣∣∣σ, η
)

, y > μ,
(3)

where μ ∈ R is the location parameter and ε ∈ (−1, 1) is the slant parameter. Note that SRG is
the GZ distribution when μ = 0 and ε → −1, GZ distribution with negative support when ε → 1,
and Reflected-GZ distribution when ε = 0. Also, the Reflected-GZ distribution corresponds to a
particular case of a more general class of two-piece asymmetric distributions proposed by [13,14].
The mean, variance and MGF of Y are

E(Y) = μ − 2εσeηEi(−η),

Var(Y) = σ2{τeη + 2(1 − ε2)e2η [Ei(−η)]2},

MY(t) =
1
2

ηeη+μt[(1 − ε)�−σt(η) + (1 + ε)�σt(η)], (4)

respectively; where �s(z) =
∫ ∞

1 vs+1e−vzdv. Jafari et al. [15] provide the MGF of X using expansion
series. However, (4) is considered a clearer expression that depends only on integral �s(z). See Section 4.1
for some details of the MLE EM-based algorithm related to SRG parameters.

According to [1], the SRG distribution can be re-parametrized in terms of GZ and Reflected-GZ
distributions as

g(y|μ, σ+, σ−, η) = p1 f (μ − y|σ+, η)I(−∞,μ](y) + p2 f (y − μ|σ−, η)I(μ,+∞)(y), (5)
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where σ± = σ(1 ± ε), p1 + p2 = 1, and p1 = σ+/(σ+ + σ−) = (1 + ε)/2. Let Y = (Y1, . . . , Yn)� be an
i.i.d sample from the SRG distribution with parameters (μ, σ±, η) and latent vectors Z = (Z1, . . . , Zn),
thus (5) can be equivalently represented as (−1)j(Yi − μ)|Zij = 1 ∼ GZ(σ±, η), i = 1, . . . , n, j = 1, 2,
where Zi = (Zi1, Zi2)

� ∼ Mult(1, p1, p2) is a multinomial vector, P(Zi1 = zi1, Zi2 = zi2) = pzi1
1 pzi2

2 ,
zij = {0, 1}, and zi1 + zi2 = 1. Given that P(Zi1 = 1) = P(Zi1 = 1, Zik = 0; ∀j 
= k), the complete
log-likelihood function is

�(μ, σ+, σ−, η|Y, Z) = −n log(2σ) + n(η + log η)

+
n

∑
i=1

[
zi1

(
μ − yi

σ+
− ηe

μ−yi
σ+

)
+ zi2

(
yi − μ

σ−
− ηe

yi−μ
σ−
)]

. (6)

Conditional expectations of latent variables Zi are given by

ẑi1 = E[Zi1|μ̂, σ̂+, σ̂−, yi] = p̂1
f (μ̂ − yi|σ̂+, η̂)

g(yi|μ̂, σ̂+, σ̂−, η̂)
I(−∞,μ̂](yi), (7)

ẑi2 = 1 − ẑi1, i = 1, . . . , n. (8)

The E- and M-steps on the (k + 1)th iteration of the EM algorithm are
E-step. From (6)–(8), we have

Q(μ, σ+, σ−, η|μ(k), σ
(k)
+ , σ

(k)
− , η(k)) = E[�(μ, σ+, σ−, η|Y, Z)|μ(k), σ

(k)
+ , σ

(k)
− , η(k)]

= −n log(2σ) + n(η + log η)

+
n

∑
i=1

[
ẑ(k)i1

(
μ − yi

σ+
− ηe

μ−yi
σ+

)
+ ẑ(k)i2

(
yi − μ

σ−
− ηe

yi−μ
σ−
)]

.

and
M-step. Update σ±, by solving the following equation

n

∑
i=1

ẑ(k)ij

(
η(k) |yi − μ(k)|

σ2±
e
|yi−μ(k) |

σ± − |yi − μ(k)|
σ2±

)
=

n
2σ

.

Update μ by solving the following equation

μ̂(k+1) = argmaxμ

n

∑
i=1

⎧⎨⎩ẑ(k)i1

⎛⎝μ − yi

σ̂
(k+1)
+

− ηe

μ−yi
σ̂
(k+1)
+

⎞⎠+ ẑ(k)i2

⎛⎝μ − yi

σ̂
(k+1)
−

− ηe

μ−yi
σ̂
(k+1)
−

⎞⎠⎫⎬⎭ .

Update η by

η̂ = n

⎛⎝ n

∑
i=1

⎧⎨⎩ẑ(k)i1 e

μ−yi
σ̂
(k+1)
+ + ẑ(k)i2 e

μ−yi
σ̂
(k+1)
−

⎫⎬⎭
⎞⎠−1

.

The EM-algorithm must be iterated until the sufficient convergence rule is satisfied:

‖(μ̂(k+1), σ̂
(k+1)
+ , σ̂

(k+1)
− , η̂(k+1))− (μ̂(k), σ̂

(k)
+ , σ̂

(k)
− , η̂(k))‖ < τ,

for a tolerance τ close to zero. The FIM for standard deviations of MLEs (μ̂, σ̂, η̂, ε̂) and additional
details of the EM-algorithm are described in [1].

3. Entropic Quantifiers

In the next section, we present the main results of entropic quantifiers for SRG distribution.

3
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3.1. Shannon Entropy

The Shannon entropy (SE), introduced by [16] in the context of univariate continuous distributions,
quantifies the information contained in a random variable X with pdf f (x) through the expression

H(X) = −
∫ +∞

−∞
f (x) log f (x)dx. (9)

The SE concept is attributed to the uncertainty of the information presented in X [17].
Propositions 1 and 2 present the SE for GZ and SRG distributions, respectively.

Proposition 1. [15]. The SE of X ∼ GZ(σ, η) is

H(X) = log
{

B(1, 1)
η

}
− ση − E(X)

σ
+ σηMX(σ

−1),

where B(·, ·) is the usual Beta function and E(X) is given in (2).

Substituting μ = 0 and ε = −1 into (4) (i.e., reducing SRG to its special case GZ), we obtain
MX(σ

−1) = ηeη�−1(η) = 1. Therefore, H(X) in Proposition 1 is reduced to

H(X) = − log η − eηEi(−η), (10)

i.e., the SE of the GZ random variable only depends on shape parameter η.

Proposition 2. The SE of Y ∼ SRG(μ, σ, η, ε) is

H(Y) =
1 + ε

2

{
H(X+ε)− log

(
1 + ε

2

)}
+

1 − ε

2

{
H(X−ε)− log

(
1 − ε

2

)}
,

where X±ε ∼ GZ(σ(1 ± ε), η) and H(X±ε) are obtained using Proposition 1.

Proof. From (3) and (9), we obtained

H(Y) = −
∫ +∞

−∞
g(y|μ, σ, η, ε) log g(y|μ, σ, η, ε)dy

= −1
2

∫ +∞

0
f
(

x
1 + ε

∣∣∣σ, η

)
log
{

1
2

f
(

x
1 + ε

∣∣∣σ, η

)}
dx

−1
2

∫ +∞

0
f
(

x
1 − ε

∣∣∣σ, η

)
log
{

1
2

f
(

x
1 − ε

∣∣∣σ, η

)}
dx

= −1
2

∫ +∞

0
(1 + ε) f (x|σ(1 + ε), η) log

{
1 + ε

2
f (x|σ(1 + ε), η)

}
dx

−1
2

∫ +∞

0
(1 − ε) f (x|σ(1 − ε), η) log

{
1 − ε

2
f (x|σ(1 − ε), η)

}
dx,

which concludes the proof.

From (10), given that H(X±ε) only depends on shape parameter η, we obtain H(X±ε) = H(X),
and H(Y) only depends on η and ε parameters. Therefore,

H(Y) = − log η − eηEi(−η)− 1 + ε

2
log
(

1 + ε

2

)
− 1 − ε

2
log
(

1 − ε

2

)
. (11)

Figure 1 illustrates SE behavior for random variable Y. We observed that SE increases when
η decreases. For each η, SE is maximized and minimized at ε = 0 (Reflected-GZ) and ε → −1

4
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(Truncated-GZ and GZ), respectively. More details appear in [3,8] for the SE expressions of other
asymmetric distributions.

Figure 1. Shannon entropy of Skew-Reflected-Gompertz (SRG) distributions for ε ∈ (−1, 1) and several
values of η.

3.2. Rényi Entropy

The αth-order Rényi entropy (RE), introduced by [18] in the context of univariate continuous
distributions, extends the concept of SE information contained in a random variable X with pdf f (x)
through a level α, α ∈ N, α > 0, and the expression

Rα(X) =
1

1 − α
log
∫ +∞

−∞
[ f (x)]αdx. (12)

RE information can be negative and is ordered with respect to α, i.e., Rα1(X) ≥ Rα2(X) for
any α1 < α2 (see, e.g., [7] and other properties of RE). From (12), the SE is obtained by the limit of
H(X) = limα→1 Rα(X) by applying l’Hôpital’s rule to Rα(X) with respect to α (see e.g., [7]). The RE of
the GZ and SRG distributions is presented in Propositions 3 and 4, respectively.

Proposition 3. [15,19]. The RE of X ∼ GZ(σ, η) with α > 1, α ∈ N, is

Rα(X) = − log α

1 − α
+ log

η

σ
+

1
1 − α

log

{
α−1

∑
j=0

(
α − 1

j

)
Γ(j + 1)
(αη)j

}
,

where Γ(u) =
∫ ∞

0 tu−1e−tdt is the gamma function.

Proposition 4. The RE of Y ∼ SRG(η, ε) with α > 1, α ∈ N, is

Rα(Y) =
1

1 − α
log
{(

1 + ε

2

)α

e(1−α)Rα(X+ε) +

(
1 − ε

2

)α

e(1−α)Rα(X−ε)

}
,

where X±ε ∼ GZ(σ(1 ± ε), η) and Rα(X±ε) are obtained using Proposition 3.

5
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Proof. From (3) and (12), we obtained

Rα(Y) =
1

1 − α
log
∫ +∞

−∞
[g(y|μ, σ, η, ε)]αdy,

=
1

1 − α
log
{∫ +∞

0

[
1
2

f
(

x
1 + ε

∣∣∣σ, η

)]α

dx +
∫ +∞

0

[
1
2

f
(

x
1 − ε

∣∣∣σ, η

)]α

dx
}

,

=
1

1 − α
log
{(

1 + ε

2

)α ∫ +∞

0
[ f (x|σ(1 + ε), η)]αdx +

(
1 − ε

2

)α ∫ +∞

0
[ f (x|σ(1 − ε), η)]αdx

}
,

which concludes the proof.

Figure 2a illustrates the behavior of RE for random variable Y when α = 2 (quadratic RE). As in
the SE case, we also observed that RE increases when η decreases and reaches maximum and minimum
at ε = 0 (Reflected-GZ) and ε → −1 (Truncated-GZ and GZ), respectively. When α = 5 (or α > 2)
(see Figure 2b), RE decays faster than in the quadratic RE case as ε → −1. More details appear in [7]
for the RE expressions of other asymmetric distributions.

Figure 2. Rényi entropy of SRG distributions for σ = 1, −1 < ε < 1, several values of η and (a) α = 2
and (b) α = 5 values.

3.3. Kullback–Leibler Divergence

The Kullback–Leibler (KL) divergence introduced by [20] in the context of univariate continuous
distributions, extends the concept of SE between two random variables X1 and X2 with pdfs f1(x1)

and f2(x2), respectively, through the expression

K(X1, X2) =
∫ +∞

−∞
f1(x) log

{
f1(x)
f2(x)

}
dx. (13)

The KL divergence measures the disparity between the pdfs of X1 and X2, and is non-negative,
non-symmetric and zero only if X1 = X2 in distribution. Also, the KL divergence does not satisfy
the triangular inequality (see, e.g., [8,17] for other properties of KL and other divergences). The KL
divergence for two GZ and two SRG distributions are presented in Propositions 5 and 6.

Proposition 5. [21]. The KL divergence between X1 ∼ GZ(σ1, η1) and X2 ∼ GZ(σ2, η2) is

K(X1, X2) = log
{

eη1 σ2η1

eη2 σ1η2

}
+ eη1

[(
σ1

σ2
− 1
)

Ei(−η1) +
η2

ησ1/σ2
1

Γ
(

σ1

σ2
− 1, η1

)]
− (η1 + 1),

6
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where Γ(u, v) =
∫ ∞

v tu−1e−tdt is the upper incomplete gamma function.

Proposition 6. The KL divergence between Y1 ∼ SRG(0, σ1, η1, ε1) and Y2 ∼ SRG(0, σ2, η2, ε2) is

K(Y1, Y2) =
1 + ε1

2

[
log
{

1 + ε1

1 + ε2

}
+ K(X+ε1 , X+ε2)

]
+

1 − ε1

2

[
log
{

1 − ε1

1 − ε2

}
+ K(X−ε1 , X−ε2)

]
,

where X±εi ∼ GZ(σi(1 ± εi), ηi), i = 1, 2, and K(X±ε1 , X±ε2) are obtained using Proposition 5.

Proof. From (3) and (13), we obtained

K(Y1, Y2) =
∫ +∞

−∞
g(x|0, σ1, η1, ε1) log

{
g(x|0, σ1, η1, ε1)

g(x|0, σ2, η2, ε2)

}
dx,

=
1
2

∫ +∞

0
f
(

x
1 + ε1

∣∣∣σ1, η1

)
log

⎧⎪⎨⎪⎩
f
(

x
1+ε1

∣∣∣σ1, η1

)
f
(

x
1+ε2

∣∣∣σ2, η2

)
⎫⎪⎬⎪⎭ dx

+
1
2

∫ +∞

0
f
(

x
1 − ε1

∣∣∣σ1, η1

)
log

⎧⎪⎨⎪⎩
f
(

x
1−ε1

∣∣∣σ1, η1

)
f
(

x
1−ε2

∣∣∣σ2, η2

)
⎫⎪⎬⎪⎭ dx,

=
1 + ε1

2

[
log
{

1 + ε1

1 + ε2

}
+
∫ +∞

0
f (x|σ1(1 + ε1), η1) log

{
f (x|σ1(1 + ε1), η1)

f (x|σ2(1 + ε2), η2)

}
dx
]

+
1 − ε1

2

[
log
{

1 − ε1

1 − ε2

}
+
∫ +∞

0
f (x|σ1(1 − ε1), η1) log

{
f (x|σ1(1 − ε1), η1)

f (x|σ2(1 − ε2), η2)

}
dx
]

,

which concludes the proof.

More details appear in [3,8] for the KL divergence expressions of other asymmetric distributions.
Using Proposition 6, the asymptotic KL divergence between Y ∼ SRG(0, σ, η, ε) and X ∼ GZ(σ, η) is

K(Y, X) ≈ 1 + ε

2

[
lim

ε2→−1
log
(

1 + ε

1 + ε2

)
+ K(X+ε, X)

]
+

1 − ε

2

[
log
(

1 − ε

2

)
+ K(X−ε, X)

]
,

as ε2 → −1. However, we see that log
(

1+ε
1+ε2

)
= +∞ as ε2 → −1 and K(Y, X) is not finite. However,

from Proposition 6 the asymptotic KL divergence between Y1 and Y2 is

K(Y1, Y2) ≈ K(X, Y) = log
(

2
1 − ε

)
+ K(X, X−ε), (14)

as ε1 → −1, where X−ε ∼ GZ(σ(1 − ε), η). Therefore, while K(Y, X) is not finite, K(X, Y) is finite
and can be used to study the disparity of ε from −1. Thus, hypothesis testing for H0 : ε = −1 can
be addressed. Besides, we further study hypothesis testing for scale and shape parameters between
two SRG distributions in Section 3.4. From (14), we also took that K(Y1, Y2) ≈ K(X, X1) as ε → −1,
with X1 ∼ GZ(2σ, η).

Figure 3 illustrates the KL divergence between two SRG distributions. We observed that for the
critical points of (ε1, ε2) → {(−1, 1); (1,−1)}, the KL divergence reaches the highest values and is
close to zero in the other values [panels (a) and (b)]. For large η’s [panel (c)], the KL divergence is zero
for a concentrated region of the dominion where ε1 = ε2.

7
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Figure 3. Plots of Kullback–Leibler (KL) divergence between Y1 ∼ SRG(0, σ1, η1, ε1) and Y2 ∼
SRG(0, σ2, η2, ε2) for values σ1 = σ2 = 1 and (a) η1 = η2 = 0.25; (b) η1 = η2 = 3; and (c) η1 = η2 = 10.

All information quantifiers and the EM algorithm for SRG distribution were implemented in [22].

3.4. Asymptotic Test

Consider two independent samples of sizes n1 and n2 from Y1 and Y2, respectively; where θ, θ′ ∈
Θ ⊂ Rp, and X1 and X2 have pdfs g(y; θ1) and g(y; θ2), respectively; with θi = (σi, ηi, εi), i = 1, 2.
Suppose partition θi = (θi1, θi2), and assume θ21 = θ11 ∈ Θ1 ⊂ Rr, so that θi2 ∈ Θ ∩ Θc

1 ⊂ Rp−r.
Let θ̂i = (θ̂11, θ̂i2) be the MLE of θi = (θ11, θi2) for i = 1, 2, which corresponds to the MLE of the full
model parameters (θ1, θ2) under the null hypothesis H0 : θ21 = θ11. Thus, part b) of Corollary 1 in [12]
establishes that if the null hypothesis H0 : θ22 = θ12 holds and n1

n1+n2
−→

n1,n2→∞
λ, with 0 < λ < 1, then

K0 =
2n1n2

n1 + n2
K(θ̂1, θ̂2)

d−→
n1,n2→∞

χ2
p−r, (15)

where r = 3 is the number of parameters of the SRG distribution (location parameter is not considered
for KL divergence). Thus, a test of level α for the above homogeneity null hypothesis consists of
rejecting H0 if K0 > χ2

p−r,1−α, where χ2
p−r,α is the αth percentile of the χ2

p−r-distribution.
As [3] stated, the proposed asymptotic test is only valid for regular conditions of the SRG

distribution, in particular for a non-singular FIM. Therefore, given that the SRG distributions’ FIM is
singular at ε → ±1 [1], the SRG model does not serve for testing the null hypothesis using (15) when ε

is close to −1 or 1.

4. Application

4.1. Sea Surface Temperature Data

The spatial information and SST data analyzed in this study were recorded by a scientific observer
(whose labor concerns biological sampling of fishes, incidental captures of birds, turtles and marine
mammals. Biological sampling was complemented with information such as time, longline and hook
features, number of buoys, baits, etc.) (SO) in the Chilean longline fleet (industrial and artisanal),
which was oriented to capture swordfish (Xiphias gladius, [23]) from 2012 to 2014 (obtaining a sampling
of 83% in 2012, 55% in 2013, 90% in 2014, and 75% in 2012–2014). The covered area of the study was at
21◦31′–36◦39′ LS and 71◦08′–85◦52′ LW (see Figure 4).

8
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Figure 4. Spatial distribution of Sea Surface Temperature (SST) observations by year (21◦31′–36◦39′ LS,
71◦08′–85◦52′ LW).

SST records in swordfish captures are crucial for distributional analysis and fish abundance.
Specifically, variations in SST are physical factors that control productivity, growth and migration
of species [24]. In addition, SST is strongly correlated with atmospheric pressure at sea level and
thus climatic time scales. Therefore, changes in SST overlap with ecosystem changes [25]. However,
SST influence on ecosystems is not clear because other physical processes such as superficial warming,
horizontal advection of currents, upwelling, etc. [11], modify SST. Therefore, SST anomalies could be
symptomatic rather than causal.

9
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4.1.1. SRG Parameter Estimates

Considering the smallest Akaike (AIC) and Schwarz (BIC) information criteria, we observed in
Table 1 that SRG performs better than the SN and ESN models (see Appendices A and B, respectively).
In addition, Table 1 shows the estimated parameters (based on the EM algorithm presented in Section 2)
for SST datasets by year assuming SRG distribution. In 2012, a negative ε estimate corresponds to
asymmetry to the right, and in 2013 and 2014 negative ε and η close to zero produce a two-piece
distribution to fit “cold” and “warm” temperatures (Figure 5).

Table 1. Parameter estimates and their respective standard deviations (SD) for SST by year based
on SRG, epsilon-skew-normal (ESN) and skew-normal (SN) models. For each model, log-likelihood
function �(θ), θ = (μ, σ, η, ε), Akaike’s (AIC) and Bayesian (BIC) information criteria, and goodness-of-fit
tests (Kolmogorov–Smirnov (K–S), Anderson–Darling (A–D), and Cramer–von Mises, (C–V)) are also
reported with respective p-values in parentheses.

Year Model Param. Estim. (S.D) �(θ) AIC BIC K–S A–D C–V

2012

SRG

μ 17.992 0.103

−1401.896 2811.793 2830.399 0.044 2.014 0.214

(n = 774)

σ 2.590 0.067
(0.095) (0.090) (0.242)η 1.444 0.027

ε −0.207 0.075

ESN
θ 18.000 0.031

−1507.534 3021.069 3035.023 0.118 26.417 2.059
� 1.657 0.015 (<0.01) (<0.01) (<0.01)
ε −0.418 0.069

SN
ξ 16.777 0.114

−1404.581 2815.161 2829.116 0.041 1.752 0.198
ω 5.199 0.043 (0.143) (0.126) (0.271)
λ 2.527 0.311

2013

SRG

μ 17.935 0.061

−687.420 1382.839 1398.942 0.082 2.632 0.491

(n = 415)

σ 1.112 0.026
(0.010) (0.042) (0.041)η 0.432 0.021

ε −0.108 0.029

ESN
θ 17.600 0.046

−716.375 1438.750 1450.827 0.089 7.721 0.970
� 1.328 0.026 (<0.01) (<0.01) (0.002)
ε −0.376 0.092

SN
ξ 16.598 0.200

−691.531 1389.063 1401.140 0.066 2.002 0.328
ω 3.812 0.054 (0.054) (0.092) (0.113)
λ 2.421 0.617

2014

SRG

μ 17.454 0.048

−653.082 1314.164 1330.502 0.092 2.848 0.533

(n = 439)

σ 0.896 0.020
(<0.01) (0.033) (0.032)η 0.375 0.020

ε −0.106 0.025

ESN
θ 17.200 0.053

−703.748 1413.496 1425.750 0.109 11.996 1.529
� 0.956 0.035 (<0.01) (<0.01) (<0.01)
ε −0.384 0.090

SN
ξ 16.146 0.098

−666.984 1339.968 1352.222 0.096 4.055 0.711
ω 3.245 0.045 (<0.01) (<0.01) (0.011)
λ 3.434 0.618

To evaluate the goodness-of-fit test, the Kolmogorov–Smirnov (K–S), Anderson–Darling (A–D),
and Cramer–von Mises (C–V) tests were considered for all models, commonly used to analyze the
goodness-of-fit test of a particular distribution see, e.g., [26]). Considering a 95% confidence level,
SRG fits perform well for 2012 and 2013, and on a 90% confidence level, the SRG fit performs well
for 2014.

10
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Figure 5. MLE fit of SRG, ESN and SN models for SST data by year.

4.1.2. Information Quantifiers and Asymptotic Test

Parameters estimated from the SRG model and presented in Table 1 are used to perform the
quantifiers of Sections 3.1–3.3 for SST in each year and for the asymptotic test of Section 3.4 for
comparing SST between two years. The results of these analyses are shown in Table 2. In Table 2,
K0 = K̂(Y1, Y2) represents the KL divergence between the years Y1 (column) and Y2 (row).

The first quantifiers (SE and RE) illustrate that the highest information of SST is obtained by SE
and increases with the increment of years. For all RE, the highest information of SST is obtained in
2012 and is negative for 2013 and 2014 and similar during that period. Differences in information
between SE and RE are produced by the independency of SE with parameter σ, while RE depends on
three parameters as in Proposition 4.

In addition, the asymptotic test presented in Table 2 is analogous for all the years in both groups.
In fact, the null hypothesis H0 : θ1 = θ2 is rejected at a 95% confidence level. This rejection is reinforced
by high values of statistics K0, produced by a high sample size of both groups (n1 and n2).

Table 2. SRG Shannon, H(Y), and Rényi, Rα(Y), α = 2, 3, 4, entropies for SST data. For each year,
the KL divergence K0 = K̂(Y1, Y2), statistic and its respective p-values of Equation (15) are reported.
All reported K0 estimates considered the estimated parameters and sample size n in Table 1.

Year Quantifier 2012 2013 2014

H(Y) 0.765 0.781 2.754
R2(Y) 0.384 −0.362 −0.365
R3(Y) 0.252 −0.417 −0.418
R4(Y) 0.163 −0.457 −0.457

2012
K0 - 0.266 0.911

Statistic - 143.740 520.41
p-value - <0.01 <0.01

2013
K0 0.080 - 0.071

Statistic 43.192 - 30.233
p-value <0.01 - <0.01

2014
K0 0.143 0.043 -

Statistic 80.327 18.282 -
p-value <0.01 <0.01 -

5. Conclusions

We have presented a methodology to compute the Shannon and the Rényi entropy
and the Kullback–Leibler divergence for the family of Skew-Reflected-Gompertz distributions.
Our methods consider the information quantifiers previously computed for the Gompertz distribution.
Explicit formulas for Shannon and Rényi entropies (in terms of the Gompertz, Shannon and
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Rényi entropies, respectively), and the Kullback–Leibler divergence (using incomplete gamma
function) facilitate easy computational implementation. Additionally, given the regularity conditions
accomplished by the Skew-Reflected-Gompertz distribution, specifically by the Fisher information
matrix convergence when ε is in (−1, 1), an asymptotic test for comparing two groups of datasets
was developed.

The statistical application to South Pacific sea surface temperature was given. We first carried out
SRG goodness-of-fit tests in samples over three years, where we find strong evidence (a 95% confidence
level) for 2012, and moderate evidence (a 90% confidence level) for 2013 and 2014. The results show
that the proposed methodology serves to compare two sets of samples, Skew-Reflected-Gompertz
distributed. The proposed asymptotic test is therefore useful to detect anomalies in sea surface
temperature, linked to extreme events influenced by environmental conditions [11,24,25]. We encourage
researchers to consider the proposed methodology for further investigations related to environmental
datasets [1].
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Abbreviations

The following abbreviations are used in this manuscript:

A–D Anderson–Darling
AIC Akaike’s information criterion
BIC Bayesian information criterion
C–V Cramer–von Mises
CDF Cumulative distribution function
EM Expectation maximization
ESN Epsilon-skew-normal
FIM Fisher information matrix
GZ Gompertz
K–S Kolmogorov–Smirnov
KL Kullback–Leibler
MGF Moment-generating function
MLE Maximum Likelihood Estimator
PDF Probability density function
RE Rényi entropy
SD Standard deviation
SE Shannon entropy
SN Skew-normal
SRG Skew-Reflected-Gompertz
SST Sea surface temperature

Appendix A. The Epsilon-Skew-Normal Distribution

The epsilon-skew-normal distribution [4,27] in its location-scale version is denoted as ESN(θ, �, ε).
It can be derived from a more general class of two-piece asymmetric distributions proposed by [14],
by considering the standardized normal kernel φ(·) (zero mean and variance 1), denoted as N(0, 1),
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as the density f and the functions a(ε) = 1 + ε and b(ε) = 1 − ε. If Z ∼ ESN(θ, �, ε), thus Z has pdf
given by

h(z|θ, �, ε) =

⎧⎨⎩ φ
(

θ−z
�(1+ε)

)
, z ≤ θ,

φ
(

z−θ
�(1−ε)

)
, z > θ,

(A1)

where Z = θ + �X for location θ ∈ R and scale � > 0 parameters. The mean and variance of Z are

E(Z) = θ − 4�ε/
√

2π,

Var(Z) =
�2

π
[(3π − 8)ε2 + π],

and the MGF of X is given by

MX(t) = (1 + ε)e
(1+ε)2t2

2 Φ[−(1 + ε)t] + (1 − ε)e
(1−ε)2t2

2 Φ[(1 − ε)t],

where Φ(·) is the cdf of standardized Gaussian distribution.

Appendix B. The Skew-Normal Distribution

Let X be a skew-normal (SN, [28]) random variable denoted as X ∼ SN(ξ, ω, λ). The pdf of X is
given by

f (x; λ) = 2φ(z)Φ(λz), (A2)

with z = (x − ξ)/ω. The SN model with the density (A2) is explained by its stochastic representation

X d
= ξ + δ|U0|+

√
1 − δ2U, (A3)

where δ = λ/
√

1 + λ2, X is represented as a linear combination of Gaussian U and a half-Gaussian
|U0| variable, and U0 ∼ N(0, 1) and U ∼ N(0, ω2) are independent (Theorem 1 of [29]). From (A3),
the mean and variance of X are E(X) = ξ +

√
2/πδ and Var(X) = ω2 − (2/π)δ2, respectively.
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Abstract: In high-dimensional gene expression data analysis, the accuracy and reliability of cancer
classification and selection of important genes play a very crucial role. To identify these important
genes and predict future outcomes (tumor vs. non-tumor), various methods have been proposed
in the literature. But only few of them take into account correlation patterns and grouping effects
among the genes. In this article, we propose a rank-based modification of the popular penalized
logistic regression procedure based on a combination of �1 and �2 penalties capable of handling
possible correlation among genes in different groups. While the �1 penalty maintains sparsity, the �2

penalty induces smoothness based on the information from the Laplacian matrix, which represents
the correlation pattern among genes. We combined logistic regression with the BH-FDR (Benjamini
and Hochberg false discovery rate) screening procedure and a newly developed rank-based selection
method to come up with an optimal model retaining the important genes. Through simulation studies
and real-world application to high-dimensional colon cancer gene expression data, we demonstrated
that the proposed rank-based method outperforms such currently popular methods as lasso, adaptive
lasso and elastic net when applied both to gene selection and classification.

Keywords: gene-expression data; �2 ridge; �1 lasso; adapative lasso; elastic net; BH-FDR; Laplacian
matrix

MSC: 62F03; 62F07; 62P10

1. Introduction

Microarrays are an advanced and widely used technology in genomic research. Tens of thousands
of genes can be analyzed simultaneously with this approach [1]. Identifying the genes related to
cancer and building high-performance prediction models of maximal accuracy (tumor vs. non-tumor)
based on gene expression levels are among central problems in genomic research [2–4]. Typically, in
high-dimensional gene expression data analysis, the number of genes is significantly larger than the
sample size, i.e., m � n. Hence, it is particularly challenging to identify those genes that are relevant to
cancer disease and put forth prediction models. The main problem associated with high-dimensional
data (m � n) is that of overfitting or overparametrization which leads to poor generalizability from
training to test data.

Therefore, various researchers apply different types of regularization methods to overcome
this “curse of dimensionality” in regression and other statistical and machine learning frameworks.
These regularization approaches include, for example, the �1-penalty or lasso [5], which performs
continuous shrinkage and feature selection simultaneously; smoothly clipped �1-penalty or SCAD [6],
which is symmetric, non-concave and has singularities at the origin to produce sparse solutions;
fussed lasso [7], which imposes the �1-penalty on the absolute difference of regression coefficients
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in order to enforce some smoothness of coefficients; or the adaptive lasso [8], etc. Unfortunately,
�1-regularization sometimes perform inconsistently when used for variable selection [8]. In some
situations, it introduces a major bias in estimated parameters in the logistic regression [9,10]. In contrast,
the elastic net regularization procedure [11] as a combination of �1- and �2-penalties can successfully
handle the highly correlated variables which are grouped together. Among the procedures mentioned
above, elastic net and fussed lasso penalized methods are appropriate for gene expression data analysis.
Unfortunately, when some prior knowledge needs to be utilized, e.g., when studying complex diseases
such as cancer, those methods are not appropriate [4]. To account for a regulatory relationship between
the genes and a priori knowledge about these genes, network-constrained regularization [4] is known
to perform very well by incorporating a Laplacian matrix into the �2-penalty from the enet procedure.
This Laplacian matrix represents a graph-structure of genes which are linked with each other. To select
significant genes in high-dimensional gene expression data for classification, the graph-constrained
regularization method is extended to logistic regression model [12].

Using penalized logistic regression methods [12,13] and graph-constrained procedures [4,12], we
would build rank-based logistic regression method with variable screening procedure to improve the
power of detecting most promising variables as well as classification capability.

The rest of this article is organized as follows. In Section 2, we describe variable screening
procedure with adjusted p-values and regularization procedure for grouped and correlated predictors
and present the computational algorithm. Further, we state the ranking criteria of four models and
summarize the result of ranking procedure. In Section 3, we compare the proposed procedure with
existing cutting edge regularization methods on simulation studies. Next, we apply four penalized
logistic regression methods to the high dimensional gene expression data of colon cancer carcinoma to
evaluation and comparison of the performance. Finally, we present a brief discussion of results and
future research direction.

2. Materials and Methods

2.1. Adjusted p-Values: Benjamini and Hochberg False Discovery Rate (BH-FDR)

Multiple hypohtesis testing methods have been playing an important role in selecting most
promising features while controlling type I error in high-dimensional settings. One of the most
popular methods is BH-FDR [14,15] which is concerned with the expected proportion of incorrect
number of rejections among a total number of rejections. The formula is mathematically expressed

as E
(

V
R

∣∣∣R > 0
)

, where V is the number of false positives and R is the total number of rejections.
In this paper, the FDR method is used both for the purpose of prelimary variable screening both in
the simulation studies and real data analysis to be presented later. The procedure of the method is
as follows:

(1) Let p1, p2, . . . , pm be the p-values of m hypothesis tests and sort them with the increasing oder:
p(1), p(2), . . . , p(m).

(2) Let î = max{i | p(i) ≤ iq
m , i = 1, . . . , m} for a given threshold q. If î > 1, then reject the null

hypotheses associated with p(1), p(2), . . . , p(i). Otherwise, no hypotheses are rejected.

2.2. Regularized Logistic Regression

In the following, we present the regularized logistic regression model used in this paper (cf. [12]).
Since this model is an integral part of our computational algorithm to be outlined in the section to
follow, presenting the formula with all appropriate notations is necessary for our purposes.
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Let the n × (m + 1) matrix

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x11 x12 · · · x1j · · · x1m
1 x21 x22 · · · x2j · · · x2m
...

...
...

. . .
...

. . .
...

1 xi1 xi2 · · · xij · · · x2m
...

...
...

. . .
...

. . .
...

1 xn1 xn2 · · · xnj · · · xnm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
denote the design matrix, where n is the sample size and m is the total number of predictor variables.
Without loss of generality, we assume the data are standardized with respect to each variable. This step
is also performed by the pclogit R-package used in the present paper. Define the parameter vector
η = (β0, β) comprised of an intercept β0 and m “slopes”, β1, . . . , βm. The objective function then is
written as

f (η) = −L(η) + p(β) (1)

with the log-likelihood function

L(η) =
1
n

n

∑
i=1

[
yi log π(xi) + (1 − yi) log(1 − π(xi))

]
and resulting probabilities

π(xi) =
exp(β0 + xT

i β)

1 + exp(β0 + xT
i β)

.

Here, p(β) is the penalty function and the response variable yi takes the value 1 for cases and 0
for controls. The i-th individual is deemed case or control based on the probability πi. Following [4],
statistical dependence among the m explanatory variables can be modeled by a graph, which, in turn,
can be described by its m-dimensional Laplacian matrix L =

(
L(u, v) | u, v vertices

)
with the entries

L(u, v) =

⎧⎪⎪⎨⎪⎪⎩
1, if u = v and du 
= 0,

−(dudv)
− 1

2 , if u and v are adjacent,

0, otherwise.

Here, dv is the degree of a vertex v, i.e., the number of edges through this vertex. If there is no link
in v (i.e., v is isolated), then dv = 0. The martix L is symmetric, positive semi-definite and has 0 as the
smallest eigenvalue and 2 as the largest eigenvalue. In the following, we will write u ∼ v to refer to
adjecent vertices. The penalty term in equation (1) can is defined as

p(β) = λ1‖β‖1 + λ2βT Lβ = λ1

m

∑
j=1

|β j|+ λ2

m

∑
u=1

∑
u∼v

( βu√
du

− βv√
dv

)2
. (2)

Here, λ1 and λ2 are tuning parameters meant to control the sparsity and smoothness, ‖β‖1 is the
�1-norm and ∑u∼v(. . . ) denotes the summation over all adjacent vertex pairs. When λ2 = 0, the penalty
reduces to that of lasso [5], and if L is replaced by the m × m-identity matrix I, the penalty corresponds
to that of an elastic net [11]. If λ1 = 0 and L = I, we arrive at ridge regression. In Equation (2), the
penalty consists of �1- and �2-components. The �2-penalty is a degree-scaled difference of coefficients
between linked predictors. According to [4], the predictor variables with more connections have
larger coefficients. That is why small change of expression in the variables can lead to large change
in response. Thus, this imposes sparsity and smoothness as well as correlation and grouping effects
among variables. In case-control DNA methylation data analysis, ring networks and fully connected
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networks (cf. Figure 1) are typically used to describe correlation pattern of CpG sites within genes [12].
The Laplacian matrix is sparse and tri-diagonal (except for two corner elements) for ring networks
and has all non-zero elements for fully connected networks. Those variables with more links produce
strong grouping effects and are more likely to be selected in both networks [12].

Figure 1. The ring network (left) and F.con network (right) are shown for the case there are two genes
consisting of 6 and 9 CpG sites, respectively.

2.3. Computational Algorithm

Li & Li (2010) [16] developed an algorithm for graph-constrained regularization motivated by a
coordinate descent algorithm from [17] for solving the unconstrained minimization problem for the
objective in Equation (1). The algorithm implementation from the pclogit R-package [12,13] replaced
the identity matrix by Laplacian matrix in the elastic net algorithm from the glmnet R-package [18].
According to Equation (1), the objective function is

f (η) = −L(η) + p(β),

where

p(β) = λα
m

∑
i=1

|βi|+ 1
2

λ(1 − α)
m

∑
u=1

∑
u∼v

( βu√
du

− βv√
dv

)2
(3)

with λ = λ1 + 2λ2 and α = λ1
λ1+2λ2

for some λ1, λ2 > 0.
Following [18], we perform a second-order Taylor expansion of L(·) around the current estimate

(β∗
0, β∗) to approximate the objective L(·) in Equation (1) via

f ∗(x) = − 1
2n

n

∑
i=1

qi(ti − β0 − xT
i β)2 + p(β),

where

ti = β∗
0 + xT

i β∗ + q−1
i
(
yi − π∗(xi)

)
,

qi = π∗(xi)
(
1 − π∗(xi)

)
,

π∗(xi) = 1 − (1 + exp(β0 + xT
i β∗)

)−1.

Now, if all other estimates for all v = u are fixed, βu = β∗
u can be computed. To update the

estimate from β∗
u, we have to set the gradient of f ∗(·) equal zero (strictly speaking, zero has to be

included in the subgradient of f ∗(·)) and then solve for βu to obtain

β∗
u =

s( 1
n ∑n

i=1 qixiu(ti − t(ũ)i ) + λ(1 − α)g(u), λα)
1
n ∑n

i=1 qix2
iu + λ(1 − α)

,
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where

t(ũ)i = β∗
0 + ∑

j 
=u
xijβ

∗
j ,

g(u) = ∑
u∼v

β∗
v√

dudv
(4)

and s(z, r) denotes the “soft threshholding” operator given by

s(z, r) = sign(z)(|z| − r)+ =

⎧⎪⎪⎨⎪⎪⎩
z − r, if z > 0 and r < |z|,
z + r, if z < 0 and r < |z|,
0, otherwise.

If the u-th predictor has no links to other predictors, then g(u) in Equation (4) becomes zero, while
Equation (3) takes the form

p(β) = λα
m

∑
i=1

|βi|+ 1
2

λ(1 − α)
m

∑
u=1

β2
u.

Thus, the regularization reduces to that of the elastic net (enet) procedure. In general, when the
linkage is nontrivial, the term λ(1− α)g(u) is added to the elastic net to get the desired grouping effect.

2.4. Adaptive Link-Constrained Regularization

When there is a link between two predictors but their regression coefficients have different signs,
the coefficients cannot be expected to be smooth [16]—even locally. To resolve this problem, we first
need to estimate the sign of the coefficients and then refit the model with estimated signs. When
the number of predictor variables is smaller than that of sample points, ordinary least squares are
performed, while ridge estimates are computed, otherwise. We have to modify the Laplacian matrix in
the penalty function:

L∗(u, v) =

⎧⎪⎪⎨⎪⎪⎩
1, if u = v and du 
= 0,

−susv(dudv)
− 1

2 , if u and v are adjacent,

0, otherwise

and then update the g(·)-function in Equation (4) via

g∗(u) = ∑
u∼v

susvβ∗
v√

dudv
.

2.5. Accuracy, Sensitivity, Specificity and Area under the Receiver Operating Curve (AUROC)

We evaluated four metrics of binary classification for each of lasso, adaptive lasso, elastic net and
the proposed rank based logistic regression methods to compare the performance. These metrics are
accuracy, sensitivity, specificity and AUROC.

Based on the notations in Table 1, we define

Accuracy =
a + b

a + b + c + d
, Specificity =

d
n − m

, Sensitivity =
a
m

as well as

TPR (true positive rate) =
a
k

, FPR (false positive rate) =
b

n − m
.
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The last metric AUROC is related to the probability that the classifier under consideration will
rank a randomly selected positive case higher than a randomly selected negative case [19]. The values
of all these fours metrics—accuracy, sensitivity, specificity and AUROC—range from 0 to 1. The value
of 1 represents a perfect model whereas the value of 0.5 corresponds to “coin tossing”. The class
prediction for each individual in binary classification is made based on a continuous random variable
z. Given a threshold k as a tuning parameter, an individual is classified as “positive” if z > k and
“negative”, otherwise. The random variable z follows a probability density f1(z) if the individual
belongs to “positives” and f0(z), otherwise. So, the true positive and true negative rates are given by

TPR(k) =
∫ ∞

k
f1(z)dz and FPR(k) =

∫ ∞

k
f0(z)dz, respectively.

Now, the AUROC statistic can be expressed as

A =
∫ 1

0
TPR

(
FPR−1(z)

)
dz =

∫ ∞

−∞

∫ ∞

−∞
1{k′ > k} f1(k′) f0(k)dk′dk = P(z1 > z0),

where z1 and z0 are the values of positive or negative instances, respectively.

Table 1. Confusion table: a is the number of true positives, b the number of false positives, c the number
of false negatives and d the number of true negatives.

Predicted Condition True Condition

Positive Negative Total

Positive a b k
Nnegative c d n − k

Total m n − m n = a + b + c + d

2.6. Ranking and Best Model Selection

The penalty function in Equation (3) has two tuning parameters, namely, α ∈ [0, 1] and λ > 0.
The "limiting” cases α = 0 and α = 1 correspond to ridge and lasso regression, respectively. For a
fixed value of α, the model selects more variables for smaller λ’s and fewer variables for larger λ’s.
Theoretically, the result continuosly depends on α and should not significantly change under small
perturbations of the latter [12,13]. Empirically, however, we discovered that the results produced by
pclogit significantly vary with α. In pclogit, the Laplacian matrix determines the group effects of
predictors and is calculated from adjacency matrix via

L = D − A,

where D is the degree matrix and A is the adjacency matrix. The degree-scaled difference of predictors
in Equation (3) is computed from the normalized Laplacian matrix

L = I − D− 1
2 AD− 1

2 .

We computed the adjacency matrix by using the information from the correlation matrix obtaining

A(u, v) =

{
1, if u 
= v and |cor(u, v)| ≥ ε,

0, if u = v or |cor(u, v)| < ε.

Here, ε ∈ (0, 1) is a specific cut-off value for correlation. So, ε is another tuning parameter in
our model which needs to be optimally selected. In summary, to find an optimal combination of
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parameters α and ε, we make the combination of tuning parameter α and ε, where the total number of
combinations is given by

C = K × L

with K and L being the number of ε and α values, respectively. We compared the performance
for each of different combinations with T resamplings. The (negative) measure of performance
for each combination is the misclassification or error rate. The pair (α, ε) producing the smallest
misclassification rate is declared optimal and used in the next step. The sparse coefficient matrix with
dimensions m × nlam (nlam = number of λ’s) is used in pclogit (cf. [12,13]). By default, nlam = 100.
We extracted all predictors with non-zero coefficients for each of λ values. Then we built 100 logistic
regression models. Given estimated parameter values β, we have the estimated class probability for a
predictor vector x at each of λ values.

π(x) =
exp(xT β)

1 + exp(xT β)

Using the “naïve” Bayesian approach, we infer y = 1 if π ≥ 0.5 and y = 0, otherwise. The values
of accuracy, sensitivity, specificity and AUROC statistics are computed for each of 100 models and
ranked in an increasing order by their values. Note that AUROC method does not use a fixed cut-off
value, e.g., c = 0.5, but rather describes the overall performance with all possible cut-off values in
the decision rule. Let Rij, i = 1, 2, 3, 4, j = 1, 2, . . . , 100, comprise the ranking matrix R. The first row,
i.e., i = 1, displays the ranking of models with respect to their accuracy. Similarly, i = 2 ranks the
models with respect to their sensitivity, i = 3, in terms of specificity and i = 4 by AUROC. Suppose,
R1,5 > R1,8. Then in the 1st row (i.e., in terms of accuracy), model 5 outperforms model 8. We calculate
the column means (R̄.j) of the R matrix. The column with the highest overall mean value of accuracy,
sensitivity, specificity and AUROC will be chosen as the resulting optimal model. Note that there is a
one-to-one correspondence between columns and the 100 competing models. In (the unlikely) case of
two or more columns producing the same mean, the column with a smaller index j is selected since
the model represented by such column is more parsimonious. Formally, suppose p and q, p > q, are
two column indices in the R matrix. If R̄.p = R̄.q = maxr R̄.r, the q-th column will be selected and the
associated model becomes our proposed rank-based penalized logistic regression model.

3. Results

3.1. Analysis of Simulated Data

We conducted extensive simulation studies to compare the performance in terms of accuracy,
sensitivity, specificity and AUROC as well as the power of detecting true important variables by
the proposed method with the performance of such three prominent regularized logistic regression
methods as lasso, adaptive lasso and elastic net. We decided to focus on these (meanwhile) classical
methods due to their popularity both in the literature and applications. Some of their very recently
developed comptetitors such as [20] (R-package SelectiveInference) and [21] (R-package islasso)
are currently gaining attention from the community and will be used as benchmarks in our future
research.

Continuing with the description of our simulation study, all predictors x were generated from a
multivariate normal distribution with the following probability density function

f (x) =
( 1

2π

) m
2 1√

det(Σ)
exp

(
− 1

2
(x − μ)TΣ−1(x − μ)

)
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with an m-dimensional mean vector μ and an (m × m)-dimensional covariance matrix Σ. Writing out
the covariance matrix

Σ = (σij) =

⎛⎜⎜⎜⎜⎝
σ11 σ12 σ13 · · · σ1m
σ21 σ22 σ23 · · · σ2m

...
...

...
. . .

...
σm1 σm2 σm3 · · · σmm

⎞⎟⎟⎟⎟⎠ with σii = σ2
i ,

the correlation matrix M can be expressed as

M = (ρij) =

⎛⎜⎜⎜⎜⎝
ρ11 ρ12 ρ13 · · · ρ1m
ρ21 ρ22 ρ23 · · · ρ2m

...
...

...
. . .

...
ρm1 ρm2 ρm3 · · · ρmm

⎞⎟⎟⎟⎟⎠ with ρij =
σij√
σ2

iiσ
2
jj

.

The binary response variable is generated using Bernoulli distribution with individual probability
(π) defined as

π(x) =
1

1 + exp(−xT β)
,

x is the matrix of true important variables and β is the associated preassigned regression coefficients.
Next, we present the details of the three different simulation scenarios considered.

• Under scenario 1, each of the simulated datasets has 200 observations and 1000 predictors. Here,
for all x vectors, we let μ = 0 and Var(xj) = 0.3. Pairwise correlation of ρ = 0.4 was applied to
the first eight variables, while the remaining 992 variables were left uncorrelated. The β-vector
was chosen as

β =
(

2, 2, 2, 2, 2︸ ︷︷ ︸
5 entries

, 3, 3, 3︸ ︷︷ ︸
3 entries

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
992 entries

)
.

Each of the datasets was split into training and test sets with equal proportions.

• The datasets under scenario 2 also have 200 observations and 1000 predictors. Again, μ = 0 and
Var(xj) = 0.3. Now, the first five variables were assumed to have a correlation of ρ = 0.4. The
remaining 995 variables were independent. The β-vector was selected as

β =
(

2.0, 2.0, 2.0, 2.7, 2.0, 2.0, 2.5, 2.7,−2.8, 3.0, 2.6, 3.0, 3.0, 3.0, 3.0︸ ︷︷ ︸
15 entries

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
985 entries

)
.

Each of the datasets was split into training and test sets with equal proportions.

• Under the last scenario 3, each of the datasets has 150 observations and 1000 predictors. We let
μ = 0 and Var(xj) = 0.4. The first five variables were assigned into a correlation value of ρ = 0.3,
while the variables with indices from 11 to 30 were chosen to have the correlation value of ρ = 0.6.
Outside of these two blocks, the variables were assumed uncorrelated. The β-vector was chosen

β =
(

2.0, 2.0, 2.0, 2.0, 2.0, 2.5,−2.6, 2.7, 3.0,−2.9, 2.0, 2.0, 2.0, 2.0, 2.0︸ ︷︷ ︸
15 entries

,

2.5,−2.0, 2.7, 3.0,−2.5, 2.0, 2.0, 2.0, 2.0, 2.0, 2.5,−2.0, 2.7, 3.0,−2.5︸ ︷︷ ︸
15 entries

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
970 entries

)
.

The dataset was split into training and test sets with ratio of 70 to 30.
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We compared the proposed rank-based penalized logistic regression method with lasso, adaptive
lasso and elastic net methods from the glmnet R-package [11]. Algorithm 1 summarizes the procedure
to calculate the average value of accuracy, sensitivity, specificity and AUROC based on a given number
of iterations for each of the three simulation scenarios.

Algorithm 1 Calculation of overall mean and standard deviation on simulation studies

Step 1: Generate the data on each of the three simulation scenarios.
Step 2: Split the data into training and test sets randomly with the ratio of 70 to 30.
Step 3: Screen the variables using BH-FDR based on the training dataset.
Step 4: Plug the screened variables to each of the four methods.
Step 5: Calculate the values of Accuracy, Sensitivity, Specificity and AUROC for each of the methods.
Step 6: Repeats Step 1–5 to achieve a given number of replications.
Step 7: Calculate the means and standard deviations for each of the methods.

In Table 2, we compare the estimated mean and standard deviation of accuracy, sensitivity,
specificity and AUROC values based on 200 iterations under correlation structure of ρ = 0.4 in the
simulation of scenario 1. The proposed rank-based penalized method shows the highest accuracy of
0.963 with the standard deviation of 0.02, sensitivity of 0.961 with standard deviation of 0.03, specificity
of 0.965 with standard deviation of 0.03. In addition, it yields the same AUROC of 0.995 with standard
deviation of 0.01 as elastic net and adaptive lasso.

Table 2. Comparison of the performance among the four methods over 200 replications under
simulation scenario 1. The values in parentheseses are the standard deviations.

Method Accuracy Sensitivity Specificity AUROC

rank-based 0.963 (0.02) 0.961 (0.03) 0.965 (0.03) 0.995 (0.01)
lasso 0.953 (0.03) 0.952 (0.04) 0.955 (0.03) 0.993 (0.01)
alasso 0.957 (0.03) 0.955 (0.04) 0.960 (0.03) 0.995 (0.01)
enet 0.961 (0.02) 0.959 (0.04) 0.962 (0.03) 0.995 (0.01)

In Table 3, we compare estimated mean and standard deviation of accuracy, sensitivity, specificity
and AUROC values using 200 iterations under correlation structure of ρ = 0.4 in the simulation of
scenario 2. The proposed rank-based method also shows highest accuracy of 0.831 with standard
deviation 0.04, sensitivity of 0.833 with standard deviation of 0.06, specificity of 0.829 with standard
deviation of 0.05. In addition, the proposed method produces AUROC of 0.913 with standard deviation
of 0.03. This is the second highest value which is slightly lower than the AUROC value of the elastic net.

Table 3. Comparison of the performance among the four methods over 200 replications under
simulation scenario 2. The values in parentheseses are the standard deviations.

Method Accuracy Sensitivity Specificity AUROC

rank-based 0.831 (0.04) 0.833 (0.03) 0.829 (0.05) 0.913 (0.03)
lasso 0.826 (0.05) 0.827 (0.07) 0.825 (0.09) 0.910 (0.04)
alasso 0.815 (0.04) 0.814 (0.07) 0.815 (0.07) 0.902 (0.04)
enet 0.826 (0.04) 0.828 (0.07) 0.825 (0.07) 0.915 (0.03)

In Table 4, we compare estimated mean and standard deviation of accuracy, sensitivity, specificity
and AUROC values with 150 iterations under correlation structure of ρ = 0.3 and ρ = 0.6 in simulation
of scenario 3. The proposed method shows highest accuracy of 0.916 with standard deviation of 0.04,
sensitivity of 0.919 with standard deviation of 0.06, specificity of 0.912 with standard deviation of 0.06
and AUROC of 0.977 with standard deviation of 0.02.
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Table 4. Comparison of the performance among the four methods over 150 replications under
simulation scenario 3. The values in parentheseses are the standard deviations.

Method Accuracy Sensitivity Specificity AUROC

rank-based 0.916 (0.04) 0.919 (0.06) 0.912 (0.06) 0.977 (0.02)
lasso 0.888 (0.04) 0.898 (0.06) 0.880 (0.07) 0.963 (0.02)
alasso 0.866 (0.04) 0.877 (0.07) 0.855 (0.07) 0.949 (0.03)
enet 0.909 (0.04) 0.916 (0.06) 0.903 (0.06) 0.975 (0.02)

Furthermore, we compared the performance in terms of selecting the number of true important
variables by each of the four methods under three different simulation scenarios. First, we performed
multiple hypothesis testing with BH-FDR [15] to reduce the dimensionality of the data. After
performing a screening step to retain the relevant variables, we used them as input for the proposed
rank-based penalized method with the regularization step outlined in Section 2.3. We illustrate the
performance of variable selection with boxplots in Figures 2–4 for simulation scenarios 1, 2, and 3.
Each figure displays two boxplots, which, in turn, depict the distribution of the number of variables
selected (NVS) and the number of true important variables (NTIV) within the number of variables
selected (NVS) with each of the four methods computed based on the given number of iterations in
each of the three simulation scenarios.

Figure 2. Boxplots of total number of variables (NVS) selected and the number of true important
variables (NTIV) within the number of variables selected with four different models under scenario 1
based on 200 replications.

Figure 2 reports that the proposed rank-based method has a slightly higher median number of
variables selected (displayed as a thick line in the upper boxplots) than lasso, adaptive lasso and
elastic net under scenario 1. The lower boxplots show that all four methods performed head-to-head
for selection of true important variables under scenario 1 with 200 replications. Table 5 compares
the mean and the standard deviation (in parentheseses) of the number of variables (NVS) selected
and the number of true important variables (NTIV) in NVS for each of the four methods over 200
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replications. The proposed rank-based method and elastic net performed head-to-head while slightly
outperforming lasso and adaptive lasso.

Table 5. Estimated mean and standard deviation of number of variables (NVS) selected and the number
of true important variables (NTIV) among NVS with four different models under simulated scenario 1
with 200 replications. The values in parentheseses are standard deviations.

Method NVS NTIV

rank-based 10.465 (2.24) 7.975 (0.19)
lasso 9.885 (1.98) 7.880 (0.37)
alasso 9.475 (1.47) 7.970 (0.20)
enet 10.805 (2.37) 7.975 (0.16)

Figure 3 suggests the proposed method has a marginally higher median number of variable
selected compared to the other three methods in the upper boxplot. It is also clear that the proposed
method has a slightly higher median number of true important variables in the lower boxplot on
scenarios 2 computed with 200 replications. Table 6 confirms that the rank-based penalized method
has the highest mean both for selecting the number of variables and important variables.

Figure 3. Boxplots of total number of variables (NVS) selected and the number of true important
variables (NTIV) within the number of variables selected with four different models on scenario 2
based on 200 replications.
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Table 6. Estimated mean and standard deviation of number of variables (NVS) selected and the number
of true important variables (NTIV) among NVS in four different models under simulation scenario 2
with 200 replications. The values in parentheseses are standard deviations.

Method NVS NTIV

rank-based 13.675 (3.95) 9.345 (1.62)
lasso 12.750 (3.50) 8.905 (1.81)
alasso 11.965 (3.18) 8.720 (1.73)
enet 13.115 (3.92) 9.105 (1.73)

In Figure 4, the upper boxplot demonstrates that the proposed rank-based method has the highest
median number of variables selected, elastic net has second highest median, lasso has third largest
median and adaptive lasso has the smallest median under scenario 3 based on 150 replications. The
lower boxplots also show that the proposed rank-based method has the highest median number
of true important variables selected. However, adaptive lasso has a higher median number of true
important variables than lasso unlike the upper boxplots. Thus, the proposed rank based-method
clearly outperforms other three methods under high-correlation settings among variables.

Figure 4. Boxplots of total number of variables (NVS) selected and the number of true important
variables (NTIV) within the number of variables selected with four different models under scenario 3
based on 150 replications.

Table 7 summarizes the number of variables selected and true important variables selected across
the four methods under the high-correlation setting among variables computed from 150 replications.
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The proposed rank-based method has the highest mean number of overall variables selected and true
important variables selected.

Table 7. Estimated mean and standard deviation of number of variables (NVS) selected and the number
of true important variables (NTIV) among NVS in four different models under simulation scenario 3
with 150 replications. The values in parentheseses are standard deviations.

Method NVS NTIV

rank-based 37.830 (7.14) 20.770 (1.88)
lasso 22.010 (4.96) 11.780 (2.21)
alasso 16.430 (4.39) 11.920 (2.28)
enet 32.270 (8.55) 17.600 (3.15)

3.2. Real Data Example

We applied four logistic regression methods to select differentially expressed genes and assess
their discrimination capability between colon cancer cases and healthy controls using high-dimensional
gene expression data [22]. The colon cancer gene expression dataset is available at [23]. It contains
2000 genes with the highest minimal intensity across 62 tissues. The data were measured on 40 colon
tumor samples and 22 normal colon tissue samples. We split the data set into training and testing
sets with proportions 70% and 30%, respectively. To detect significantly differentially expressed genes
for high-dimensional colon cancer carcinoma and measure classification prediction, we adapted two
step procedures of filtering and variable selection. First, we applied BH-FDR [15] to select most
promising candidates of genes as a preprocessing step and then used the screened genes as input to
the proposed rank-based method and three other popular methods—lasso, adaptive lasso and elastic
net. The performance in terms of accuracy, sensitivity, specificity and AUROC as well as the selection
probabilities for the four methods are reported in Tables 8 and 9, respectively.

Algorithm 2 outlines above protocols the procedure of calculating the average values of accuracy,
sensitivity, specificity and AUROC through 100 bootstrap iterations applied to the colon cancer gene
expression data. In Table 8, the performance of all four metrics are computed based on 100 iterations
of resampled subsets of individuals.

Algorithm 2 Calculation of mean with standard deviation on colon cancer data

Step 1: Split the data into training and test sets randomly with the ratio of 70 to 30.
Step 2: Screen genes with the BH-FDR method based on the training data.
Step 3: Plug the screened genes as the input to each of four methods.
Step 4: Calculate the values of Accuracy, Sensitivity, Specificity and AUROC across each of the
methods on the test data.
Step 5: Repeat Steps 1 through 4 for 100 times.
Step 6: Calculate means and standard deviations for each of the methods.

Table 8. Estimated mean values and standard deviations for the four metrics across the four competing
penalized logistic regression models computed from 100 resamplings. The values in parentheseses are
standard deviations.

Colon Cancer Data Analysis Based on 100 Times Resmpling

Method Accuracy Sensitivity Specificity AUROC

rank-based 0.853 (0.08) 0.860 (0.13) 0.840 (0.13) 0.917 (0.06)
lasso 0.801 (0.09) 0.911 (0.07) 0.637 (0.21) 0.897 (0.08)

adaptive lasso 0.804 (0.09) 0.869 (0.09) 0.719 (0.21) 0.877 (0.08)
elastic net 0.802 (0.09) 0.917 (0.07) 0.640 (0.22) 0.903 (0.07)
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The average AUROC of 0.853 with standard deviation of 0.06 in the proposed rank-based method
has the highest value compared to other three methods. Also the accuracy of 0.853 with standard
deviation of 0.08 are optimal among the four methods. The values of sensitivity (0.860) and specificity
(0.840) are also better than those of the other three methods. In summary, it is fair to conclude that
the proposed rank-based method outperforms the other three popular penalized logistic regression
methods. Table 9 shows top 5 ranked genes with highest selection probabilities for the proposed
rank-based method, lasso, adaptive lasso and elastic net. An expressed sequence tag (EST) of Hsa.1660
associated with colon cancer carcinoma is found by all four methods. Hsa.36689 [24,25] is shown and
top ranked by the proposed method, lasso and elastic net. Hsa692 also appeared and is second ranked
by the proposed method, lasso and elastic net. In addition, Hsa.37937 is shown and is third and second
ranked by the proposed method and elastic net, respectively.

Table 9. List of top 5 ranked genes across rank-based, lasso, adaptive and elastic net. An extra asterix
(*) sign is put next to a gene each time the gene is selected by one of four methods.

EST Name Gene ID Gene Description Selection Probability

Rank-Based

***Hsa.36689 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor 1.00
***Hsa.692.2 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.99
**Hsa.37937 R87126 Myosin heavy chain,nonmuscle(Gallus gallus) 0.97
****Hsa.1660 H55916 Peptidyl-prolyl cis-trans isomerase, mitrochondrial precursor(human) 0.91

Hsa.1832 R44887 nedd5 protein (Mus musculus) 0.90

Lasso

***Hsa.36689 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor 0.87
Hsa.692.2 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.82

*****Hsa.1660 H55916 Peptidyl-prolyl cis-trans isomerase, mitrochondrial precursor(human) 0.66
Hsa.6814 H08393 Collagen alpha 2(XI) chain(Homo sapiens) 0.52
Hsa.8147 M63391 Human desmin gene, complete cds 0.50

Adaptive Lasso

Hsa.1454 M82919 H. gamma amino butyric acid(GABAA)receptor beta3 subunit mRNA,cds 0.83
Hsa.6814 H08393 Collagen alpha 2(XI) chain(Homo sapiens) 0.77

****Hsa.1660 H55916 Peptidyl-prolyl cis-trans isomerase, mitrochondrial precursor(human) 0.77
Hsa.14069 T67077 Sodium/Potasssium-transporting atpase gamma chain(Ovis aries) 0.69
Hsa.2456 U25138 Human MaxiK potassium channel beta subunit mRNA, complete cds 0.55

Elastic Net

***Hsa.36689 Z50753 H.sapiens mRNA for GCAP-II/uroguanylin precursor 0.98
**Hsa.37937 R87126 Myosin heavy chain,nonmuscle(Gallus gallus) 0.94
***Hsa.692.2 M76378 Human cysteine-rich protein (CRP) gene, exons 5 and 6 0.94

Hsa.8147 M63391 Human desmin gene, complete cds 0.91
****Hsa.1660 H55916 Peptidyl-prolyl cis-trans isomerase, mitrochondrial precursor(human) 0.84

4. Discussion

In this paper, we proposed a new rank-based penalized logistic regression method to improve
classification performance and the power of variable selection in high-dimensional data with strong
correlation structure.

Our simulation studies demonstrated that the proposed method improves not only the
performance of classification or class prediction but also the detection of true important variables
under various correlation settings among features when compared to existing popular regularization
methods such as lasso, adaptive lasso, and elastic net. As demonstrated by simulation studies, if the
true important variables are not passed through the filtering method such as BH-FDR, their chance of
being selected in the final model decreases signficantly, thus, leading to reduction in variable selection
and classification performance. Therefore, effective filtering methods which are likely to retain as
many most promising variables as possible are indispensable.
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Applied to high-dimensional colon gene expression data, the proposed rank-based logistic
regresson method with BH-FDR screening produced the highest average AUROC value of 0.917
with standard deviation of 0.06 and accuracy of 0.853 with standard deviation of 0.08 using 100
resampling steps. The proposed method produced a good balance between sensitivity and specificity
in contrast to other methods. Elastic net demonstrated the second best peformance with an average
AUROC value of 0.903 with standard deviation of 0.07. A probable reason is that elastic net accounts
for group correlation effects. In addition, we compared top 5 ranked ESTs across the proposed method,
lasso, adaptive lasso and elastic net [12]. They had a common EST of Hsa.1660 associated to colon
cancer data. We also found that Hsa.36689 was both deemed important and top ranked by the proposed
method, lasso and elastic net. This also applied to Hsa.692, which was deemed important and second
top ranked by the proposed method and lasso, whereas it was only third-ranked by the elastic net.
Hsa.37937 was detected by both the proposed method and the elastic net. Hence, the four ESTs
mentioned appear to be promising candidate biomarkers associated with colon cancer carcinoma. The
function of the genes corresponding to ESTs is summarized in Table 9.

5. Conclusions

In this study the proposed rank-based classifier demonstrated the superiority in not only
classification prediction but also the power of detecting true important variables when compared
to lasso, adaptive lasso, and elastic net through the extensive simulation studies. Besides, in the
application of high-dimensional colon cancer gene expression data, the proposed classifier showed
the best performance in terms of accuracy and AUROC among the four classifiers considered in the
paper. As a future research, we would develop the methodology of variable selection and compare the
performance with those of most recent competitors such as [20,21,26,27], etc.

Author Contributions: All authors have equally contributed to this work. All authors wrote, read, and approved
the final manuscript.

Funding: This research received no external funding.

Acknowledgments: We would like to thank the reviewers for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Houwelingen, H.C.V.; Bruinsma, T.; Hart, A.A.M.; Veer, L.J.V.; Wessels, L.F.A. Cross-validated Cox regression
on microarray gene expression data. Stat. Med. 2006, 25, 3201–3216. [CrossRef] [PubMed]

2. Lofti, E.; Keshavarz, A. Gene expression microarray classification using PCA–BEL. Comput. Biol. Med. 2014,
54, 180–187.

3. Algamal, Z.Y.; Lee, M.H. Penalized logistic regression with the adaptive LASSO for gene selection in
high-dimensional cancer classification. Expert Syst. Appl. 2015, 42, 9326–9332. [CrossRef]

4. Li, C.; Li, H. Network-constrained regularization and variable selection for analysis of genomic data.
Bioinformatics 2008, 24, 1175–1182. [CrossRef] [PubMed]

5. Tibshirani, R. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. B 1996, 58, 267–288. [CrossRef]
6. Fan, J.; Li, R. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat.

Assoc. 2001, 96, 1175–1182. [CrossRef]
7. Tibshirani, R.; Saunders, M. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. B 2005, 67, 91–108.

[CrossRef]
8. Zou, H. The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [CrossRef]
9. Meinshausen, N.; Yu, B. Lasso-type recovery of sparse representations for high-dimensional data. Ann. Stat.

2009, 37, 246–270. [CrossRef]
10. Huang, H.; Liu, X.Y.; Liang, Y. Feature selection and cancer classification via sparse logistic regression with

the hybrid L1/2+2 regularization. PLoS ONE 2009, 11, e0149675. [CrossRef]
11. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67, 301–320.

[CrossRef]

29



Mathematics 2019, 7, 457

12. Sun, H.; Wang, S. Penalized logistic regression for high-dimensional DNA methylation data with case-control
studies. Bioinformatics 2012, 28, 1368–1375. [CrossRef] [PubMed]

13. Sun, H.; Wang, S. Network-based regularization for matched case-control analysis of high-dimensional DNA
methylation data. Stat. Med. 2012, 32, 2127–2139. [CrossRef] [PubMed]

14. Reiner, H.; Yekutieli, D.; Benjamin, Y. Identifying differentially expressed genes using false discovery rate
controlling procedures. Bioinformatics 2003, 19, 368–375. [CrossRef]

15. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to
multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [CrossRef]

16. Li, C.; Li, H. Variable selection and regression analysis for graph-structured covariates with an application to
genomics. Ann. Appl. Stat. 2010, 4, 1498–1516. [CrossRef]

17. Friedman, J.; Hastie, T.; Hofling, H.; Tibshirani, R. Pathwise coordinate optimization. Ann. Appl. Stat. 2007,
1, 302–332. [CrossRef]

18. Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for generalized linear models via coordinate
descent. J. Stat. Softw. 2010, 33, 1–22. [CrossRef]

19. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
20. Lee, J.D.; Sun, D.L.; Sun, Y.; Taylor, J.E. Exact post-selection inference, with application to the lasso. Ann. Stat.

2016, 44, 907–927. [CrossRef]
21. Cilluffo, G.; Sottile, G.; La Grutta, S.; Muggeo, V.M.R. The Induced Smoothed lasso: A practical

framework for hypothesis testing in high dimensional regression. Stat. Methods Med. Res. 2019,
doi:10.1177/0962280219842890. [CrossRef] [PubMed]

22. Alon, U.; Barakai, N.; Notterman, D.A.; Gish, K.; Ybarra, S.; Mack, D.; Levine, A.J. Broad patterns of gene
expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proc. Natl. Acad. Sci. USA 1999, 96, 6745–6750. [CrossRef]

23. Available online: http://genomics-pubs.princeton.edu/oncology/affydata/index.html (accessed on 25
April 2019).

24. Ding, Y.; Wilkins, D. A simple and efficient algorithm for gene selection using sparse logistic regression.
Bioinformatics 2003, 19, 2246–2253.

25. Li, Y.; Campbell, C.; Tipping, M. Bayesian automatic relevance determination algorithms for classfifying
gene expression data. Bioinformatics 2002, 18, 1332–1339. [CrossRef]

26. Frost, H.R.; Amos, C.I. Gene set selection via LASSO penalized regression (SLPR). Nucleic Acids Res. 2017,
doi:10.1093/nar/gkx291. [CrossRef]

27. Boulesteix, A.L.; De, B.R.; Jiang, X.; Fuchs, M. IPF-LASSO: Integrative L1-Penalized Regression with Penalty
Factors for Prediction Based on Multi-Omics Data. Comput. Math. Methods Med. 2017. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

30



mathematics

Article

Two-Stage Classification with SIS Using a New Filter
Ranking Method in High Throughput Data

Sangjin Kim 1,* and Jong-Min Kim 2

1 Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
2 Division of Sciences and Mathematics, University of Minnesota at Morris, Morris, MN 56267, USA;

jongmink@morris.umn.edu
* Correspondence: skim10@utep.edu

Received: 22 April 2019; Accepted: 27 May 2019; Published: 29 May 2019

Abstract: Over the last decade, high dimensional data have been popularly paid attention to in
bioinformatics. These data increase the likelihood of detecting the most promising novel information.
However, there are limitations of high-performance computing and overfitting issues. To overcome
the issues, alternative strategies need to be explored for the detection of true important features.
A two-stage approach, filtering and variable selection steps, has been receiving attention. Filtering
methods are divided into two categories of individual ranking and feature subset selection methods.
Both have issues with the lack of consideration for joint correlation among features and computing
time of an NP-hard problem. Therefore, we proposed a new filter ranking method (PF) using the
elastic net penalty with sure independence screening (SIS) based on resampling technique to overcome
these issues. We demonstrated that SIS-LASSO, SIS-MCP, and SIS-SCAD with the proposed filtering
method achieved superior performance of not only accuracy, AUROC, and geometric mean but also
true positive detection compared to those with the marginal maximum likelihood ranking method
(MMLR) through extensive simulation studies. In addition, we applied it in a real application of
colon and lung cancer gene expression data to investigate the classification performance and power
of detecting true genes associated with colon and lung cancer.

Keywords: LASSO; SCAD; MCP; SIS; elastic net; accuracy; AUROC; geometric mean

1. Introduction

In the last decade, high dimensional data has appeared with the development of high throughput
techniques, especially in the research area of machine learning [1,2] and data mining [3,4] in biology.
The possibility of finding novel true important variables has potentially become high with a huge
amount of data. However, due to limitations of computing capabilities and overfitting issues,
two-stage approaches of filtering and variable selection for prediction purpose has been popular.
These include methods for microarray [5–8] and RNA-Seq [9,10] data, and genome-wide association
studies (GWAS) [11,12]. Filtering methods, which reduce dimensionality and try to retain the most
promising features as possible, have long been under development. A number of filtering methods has
been proposed to rank features, such as Information gain [13], Markov blanket [14], Bayesian variable
selection [15], Boruta [16], Fisher score [17], Relief [18], maximum relevance and minimum redundancy
(MRMR) [19], marginal maximum likelihood score (MMLs) [20], among which MMLS is one of the
simplest and computationally efficient methods of feature selection with some criteria.

Feature selection methods are divided into two categories of marginal feature ranking and feature
subset selection considering relationship among features. Marginal feature ranking methods order
individual features by their scores and then drop out irrelevant features with small scores using
the desired criteria. [21] utilized the Relief statistical method to rank features. [20] gave a marginal
maximum likelihood estimator as a feature ranking method and improved classification accuracy. [22]
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also developed a novel method to rank features and then chose the optimal subset of features. Individual
ranking methods have been widely used in high throughput data analysis because of their simplicity
and computational time efficiency but a predetermined threshold is required before variable selection
stage. To overcome this issue, the sure independent screening (SIS) approach [23] was developed to
ensure that all true important variables survive after the variable screening with probability tending to
one. Feature subset selection methods [24–26] detect an optimal subset of features leading to the best
performance of prediction. However, these methods have heavy computational time leading to be
NP-hard [27] under a high dimensional setting.

In this paper, we proposed a filter ranking method (PF) utilizing selection probability with an elastic
net based on resampling technique with SIS. The selected features are then applied to three popular
variable selection algorithms such as least absolute shrinkage and selection operator (LASSO) [28],
minimax concave penalty (MCP) [29], and smoothly clipped absolute deviation (SCAD) [30].

The rest of this article is organized as follows. In Section 2, we described three penalized
logistic methods of LASSO, MCP, and SCAD, marginal maximum likelihood ranking method,
sure independence screening method (SIS), the proposed statistical methods for filter ranking and
its algorithm, and metrics of performance including accuracy, area under the receiver operating
characteristic (AUROC), and geometric mean of sensitivity and specificity (G-mean). In Section 3,
we describe the superior performance of our proposed method compared to an individual ranking
method of marginal maximum likelihood logistic regression (MMLR) with SIS through the extensive
simulation studies. We next applied the proposed method to the high dimensional colon gene
expression data and investigate the biological meaning of selected genes. Finally, in Section 4,
we discuss our findings.

2. Materials and Methods

We split this section into several subsections describing the methods used in the study. The section
of sparse logistic regression, such as LASSO, adaptive LASSO, SCAD, and MCP, is discussed. A filtering
method with SIS used as a reference is briefly described and then our proposed method is explained
in detail. The final section considers metrics of the performance including accuracy, AUROC, and
G-mean. All simulations and real applications were done with R software and the corresponding
codes, results, and data are available at [31].

2.1. Penalized Logistic Regression Method

Binary logistic regression is widely used in the classification of clinical outcomes of cancer using
gene expression data to identify the relationship between the outcome and a set of predictors to build
prediction models. However, the logistic regression has limited use in high dimensional settings
when N << P because the inverted matrix does not exist for the estimation of regression coefficients.
Embedded methods such as LASSO, SCAD, and MCP are the most popular methods in gene selection
under a high dimensional setting because they are allowed to select a sparse subset of genes by
continuously shrinking unimportant covariates’ regression coefficients into zero. A number of penalty
based embedded methods has been extensively studied and modified in the area of cancer genes
selection under high throughput data [32–43].

Let the expression levels of genes in ith individual be denoted as xi = (xi1, xi2, . . . , xid)

for i = 1, . . . , n and d is a total number of genes. Given a training data set
{
(xi, yi)

}n
i=1 where yi ∈ (0, 1),

yi = 0 indicates that ith individual is in normal group and yi = 1 in cancer group. Assuming that
p(xi) = p(yi = 1

∣∣∣xi) , the logistic regression is defined as follows:

log
(

p(xi)

1− p(xi)

)
= β0 + xiβ, where i = 1, . . . , n and β = (β1, . . . , βd)

T. (1)
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The following formula is for the maximum log-likelihood estimator of logistic regression (MLR).
β̂MLR is defined as follows:

β̂MLR = argmax
β

[log(L(β))] = argmax
β

⎡⎢⎢⎢⎢⎢⎣
n∑

i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi)))

⎤⎥⎥⎥⎥⎥⎦ (2)

The estimation of parameters can be calculated by maximizing the above log-likelihood function
log(L(β)). The criterion for classification is that if p(yi = 1

∣∣∣xi) ≥ 0.5 , then the individual belongs to
the cancer group, otherwise, normal group. The penalized logistic regression (PLR) is a combination
of logistic regression with penalty function and parameters can be estimated by minimizing the
log-likelihood function with penalty function as follows:

β̂PLR = argmin
β

⎡⎢⎢⎢⎢⎢⎣−
n∑

i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + p(β)

⎤⎥⎥⎥⎥⎥⎦, (3)

where p(β) is a penalty function.
One of the most popular penalty functions is LASSO [12–18]. It forces most of the unimportant

genes’ regression coefficients into zero. Although it is widely used in high throughput biomedical
data, it has the tendency to randomly choose one of the genes with high correlation and then throw
out the rest of the genes. The estimation of regression coefficients can be done by minimizing the
following likelihood:

β̂lasso = argmin
β

⎡⎢⎢⎢⎢⎢⎣−
n∑

i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + λ
d∑

i=1

∣∣∣βi
∣∣∣
⎤⎥⎥⎥⎥⎥⎦. (4)

Another popular sparse logistic regression is SCAD with a concave penalty that complements the
limitation of lasso mentioned above. To estimate parameters of regression coefficients, the following
log-likelihood can be minimized:

β̂SCAD = argmin
β

⎡⎢⎢⎢⎢⎢⎣−
n∑

i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + λ
d∑

i=1

pλ(βi)

⎤⎥⎥⎥⎥⎥⎦. (5)

The pλ(βi) is

∣∣∣β j
∣∣∣I(|β j |≤λ) +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{(
a2 − 1

)
λ2 −

(
aλ−

∣∣∣βi
∣∣∣)2

+

}
I
(
λ ≤

∣∣∣βi
∣∣∣)

2(a− 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, for λ ≥ 0 and a > 2. (6)

The minimax concave penalty (MCP) is also popular as much as SCAD. The estimation of
regression coefficients can be achieved by minimizing the following log-likelihood function:

β̂MCP = argmin
β

⎡⎢⎢⎢⎢⎢⎣−
n∑

i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + λ
d∑

i=1

pλ(βi)

⎤⎥⎥⎥⎥⎥⎦. (7)

pλ(βi) is written as follows.

⎛⎜⎜⎜⎜⎝2aλ
∣∣∣βi

∣∣∣− βi
2

2a

⎞⎟⎟⎟⎟⎠I
(∣∣∣βi

∣∣∣ ≤ aλ
)
+

(
aλ2

2

)
I
(∣∣∣βi

∣∣∣ > aλ
)
, f or λ ≥ 0 and a > 1. (8)
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Figure 1. Diagram showing the proposed two-step procedure.

2.2. Variable Ranking with MMLR

In practice, gene expression data usually contain irrelevant genes that lead to low classification
performance under high dimensional settings. Therefore, the analysis with respect to important
variable detection has become a main part of the classification. Filter methods have been paid attention
to such a goal. These methods essentially measure the strength of the relationship of each of genes with
a binary outcome and then ranks them [44]. They have serval benefits for the analysis of huge amounts
of gene expression data. First of all, they reduce high dimension into the appropriate dimension as well
as the cost of computation time. Furthermore, they can also help improve the classification performance
by increasing the likelihood to choose true important genes. There are a lot of filter methods applied to
big data analysis of gene expression. One of the popular ranking methods is a logistic regression as a
classifier. The value of maximum marginal likelihood estimator of logistic regression (MMLR) in each
gene can be calculated using Equation (2) with a single gene. According to this method, a significant
gene should have a large magnitude for its MMLR. Likewise, the list of ranking genes is made by the
marginal strength of association with the response. That is, the top-ranked genes considered as most
promising features have larger values of MMLR. To make a decision, the threshold of selecting top
genes from the list, SIS would be used. It is a simple and effective algorithm which includes the true
significant variables with probability tending toward one [43]. The cutoff value to select top-ranked

genes is set up with
⌊

n
log(n)

⌋
. Those filtered genes would be plugged into the sparse logistic regression

models such as LASSO, MCP, and SCAD to further evaluate the performance of classification as well as
gene selection. The Algorithm 1 describes the procedure of the proposed two-stage approach.
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Algorithm 1 Proposed two-step procedure

Step 1: Sample 70% of samples randomly without replacement from the training set.
Step 2: Count frequency of each of genes from 100 models of λ values.
Step 3: Repeat Step 1 and Step 2 100 times.
Step 4: Calculate selection probability for each of variables based on Equation (10) and then rank them.

Step 5: Select top
⌊

n
log(n)

⌋
genes with the highest frequency.

Step 6: Apply them to sparse logistic regression methods to build prognostic models.

2.3. The Proposed Variable Ranking Method

We utilize the following elastic net (α = 0.5) penalized regression method based on resampling
technique to rank the features of importance using frequency. Elastic net is a combination of
L1(LASSO) and L2(Ridge) and it has the benefit of performing well with highly correlated variables.

β̂elastic net = argmin
β

⎡⎢⎢⎢⎢⎢⎣−
n∑

i=1

(yi log(p(xi)) + (1− yi) log(1− p(xi))) + λ

⎛⎜⎜⎜⎜⎜⎝1− α
2

d∑
i=1

∣∣∣βi
∣∣∣2 + α d∑

i=1

∣∣∣βi
∣∣∣
⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦. (9)

The following is the equation of selection probability in each gene based on the elastic net.

SP(gl) =
1
K

K∑
i=1

1
L

L∑
j=1

I(βi � 0), for l = 1, 2, . . . , d, (10)

where K is the number of resampling, L is the number of λ, βi is the regression coefficient corresponding
gene l, and I( ) is the indicator variable. In each of K resampling, 100 values of λ are considered to build
variable selection models. With SIS approach, top genes are selected and then applied those genes to
LASSO, MCP, and SCAD penalized logistic regression method. The following is the algorithm of our
proposed filter ranking method to rank the variable of importance. Figure 1 describes the schema of
the proposed two-step approach.

Figure 2. The boxplots of ranking true variables with the proposed filter method (PF) and MMLR
method under correlation coefficients 0.2, 0.5, and 0.7 with 100 iterations.
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2.4. Metrics of Performance

We calculated accuracy, the geometric mean of sensitivity and specificity (G-mean), and area under
the receiver operating characteristic curve (AUROC). The accuracy is done with the following equation:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100, (11)

where TP is the number of true positives, TN the number of true negatives, FP the number of false
positives, and FN the number of false negatives.

The geometric mean of sensitivity and specificity was used to check the joint performance.
The equation is as follows:

Geometric mean =
√

Sensitivity× Speci f icity. (12)

AUROC was also considered to evaluate the overall classification performance of the proposed
method. A perfect overall classification produces an AUROC= 1 whereas a random overall classification
has an AUROC = 0.5.

3. Results

3.1. Simulation Results

The response variable is generated by a sequence of Bernoulli trial with the following probability:

πi(yi = 1
∣∣∣xi) =

exp(xiβ)

1 + exp(xiβ)
. (13)

Data in each iteration are generated by using a multivariate normal distribution with mean 0
and variance-covariance matrix Σ with compound symmetry correlation structure whose diagonal
elements are 1 and off-diagonal elements are ρ = 0.2, 0.5, and 0.7, respectively. The following is the
variance-covariance matrix:

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
d×d

(14)

xj ∼ Nd(0, Σ) is the jth row of design matrix X and yi is a binary outcome generated by a Bernoulli
trial with the probability from Equation (13). 100 datasets, where n is 200 and d is 1000, are generated
and six true regression coefficients are generated from a uniform distribution with min and max values
which are 2 and 4, respectively. The simulation data are applied to PF as well as MMLR as a first
stage to show the superiority of performance that true variables are highly ranked. The variable
ranking procedure in PF was run 100 times with resampling technique. Then the calculated average
selection probabilities of each of the 1000 variables were used to rank them. The result of filtering
performance was summarized as boxplots described in Figure 2. As seen in boxplots with three
different correlation structures, the ranking of six true important variables is higher than that of MMLR.
Under the correlation coefficient of 0.2, the average ranking of the six true variables with the proposed
ranking method was at 22nd among 1000 variables, whereas the MMLR method was at 44th. In case
of high correlation coefficients of 0.5 and 0.7, the proposed one was 59th and 62nd while MMLR was
132nd and 139th.

In addition, an average number of true variables included in filtered data with SIS is reported
in Table 1. As seen in Table 1, the proposed method includes more true variables than MMLR in the
various correlation settings. For each correlation setting, we used a paired two-sample t-test to check
for significance level for the mean difference of the true number of variables between the two methods
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through 100 iterations, and all three were significant. That is, the proposed method is superior to
MMLR for filtering true variables with SIS.

Table 2 shows that the performance of prediction as well as geometric mean with SIS-LASSO,
SIS-MCP, and SIS-SCAD based on the proposed filter method are better than that of MMLR. As seen in
TP (average number of true positives) of Table 2, all three variable selection methods capture mostly
a true number of variable filtered from each of PF and MMLR. However, model size (MS) with the
proposed filter ranking method is larger than that of MMLR because the methods with more true
variables have a tendency to select unimportant variables highly correlated with the true variables.
Figure 3 shows the boxplots of the area under the receiver operating characteristic (AUROC) for each
of three methods with both proposed filter ranking and MMLR ranking methods based on SIS under
three different correlation coefficients (ρ = 0.2, 0.5, and 0.7). It also demonstrated that the AUROCs
of SIS-methods based on the proposed filter ranking method is better performed compared to those
of MMLR.

Table 1. An average number of true positives from the proposed PF and MMLR with SIS and a
significance level of paired two-sample t-test for the mean difference of the number of true positives
between two methods using the number of true positives obtained over 100 iterations.

Filtering Method Metric
Correlation Coefficient

0.2 0.5 0.7

PF Number of True
Positive

5.4 (0.765) 4.21 (1.09) 3.11 (1.09)

MMRL 4.52(0.948) 2.15 (1.26) 0.29 (0.50)

two sample t-test (p value) 1.204 × 10−11 < 2.2 × 10−16 < 2.2 × 10−16

*(): standard deviation.

The variable selection procedures of SIS-LASSO, SIS-MCP, and SIS-SCAD with both PF and MMRL
filtered data were run 100 times using compound symmetry correlation structure with 0.2, 0.5, and 0.7.
In each iteration, accuracy, area under the receiver operating characteristic (AUROC), geometric mean
(G-mean) for sensitivity and specificity, true positives (TP), and false positives (FP). The results of
performance for the variable selection methods with both filter ranking methods are summarized in
Table 2.

3.2. Real Data Analysis

To test the performance of SIS-LASSO, SIS-MCP, and SIS-SCAD after filtering with the proposed
method, we analyzed colon cancer gene expression data. The dataset contains 62 samples, which
included 40 colon tumors and 22 normal colon tissue samples and 2000 genes whose gene expression
information was extracted from DNA microarray data resulting from preprocessing; all 2,000 genes
have unique expressed tags (ESTs) named. We also analyzed lung cancer gene expression data,
GSE10072. The dataset includes 107 samples, which are made up of 49 normal lung and 58 lung
tumor samples with 22,283 genes. Initially, we calculated the pairwise correlation for the normal and
cancer samples combined to check the extent of overall correlation among genes in the colon cancer.
The pairwise correlation is summarized in Figure 4 as a histogram with boxplot. The mean correlation
between genes is 0.428 with a standard deviation of 0.203. It is clear that there is a high correlation
between genes and this falls between the values tested in the simulation studies. In case of the lung
cancer, the mean correlation between genes is 0.012 with a standard deviation of 0.246 because we
used a full gene expression data unlike the colon gene expression data.
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Table 2. Classification performance of proposed filtering (PF) compared to marginal maximum
likelihood logistic regression estimator (MMLR) with SIS-LASSO, SIS-MCP, and SIS-SCAD over
100 iterations.

Correlation Filtering Methods Accuracy G-mean TP FP MS

0.2

PF

SIS-LASSO 0.856(0.047) 0.854(0.049) 5.25(0.757) 0.019(0.002) 24.55(1.971)
SIS-MCP 0.878(0.054) 0.877(0.056) 5.03(0.937) 0.006(0.003) 11.3(2.805)

SIS-SCAD 0.878(0.053) 0.876(0.055) 5.18(0.757) 0.012(0.005) 17.24(5.053)
average 0.871(0.051) 0.869(0.053) 5.153(0.817) 0.012(0.003) 17.697(3.276)

MMLR

SIS-LASSO 0.847(0.056) 0.844(0.06) 4.3(0.99) 0.015(0.002) 18.73(2.131)
SIS-MCP 0.86(0.061) 0.858(0.063) 4.21(0.988) 0.006(0.003) 10.32(2.449)

SIS-SCAD 0.861(0.059) 0.858(0.062) 4.3(0.99) 0.011(0.004) 14.8(3.649)
average 0.856(0.059) 0.853(0.062) 4.27(0.989) 0.011(0.003) 14.617(2.743)

0.5

PF

SIS-LASSO 0.886(0.041) 0.884(0.042) 3.65(1.266) 0.019(0.003) 22.71(2.267)
SIS-MCP 0.869(0.055) 0.868(0.057) 2.93(1.409) 0.008(0.003) 10.87(2.058)

SIS-SCAD 0.884(0.048) 0.883(0.05) 3.57(1.257) 0.017(0.004) 20.06(3.92)
average 0.88(0.048) 0.878(0.05) 3.383(1.311) 0.015(0.003) 17.88(2.748)

MMLR

SIS-LASSO 0.865(0.046) 0.863(0.047) 1.84(1.237) 0.015(0.003) 17.02(2.137)
SIS-MCP 0.858(0.048) 0.857(0.048) 1.66(1.233) 0.008(0.002) 9.89(1.681)

SIS-SCAD 0.863(0.047) 0.861(0.047) 1.83(1.28) 0.014(0.003) 15.64(2.873)
average 0.862(0.047) 0.86(0.047) 1.777(1.25) 0.012(0.003) 14.183(2.23)

0.7

PF

SIS-LASSO 0.911(0.037) 0.911(0.038) 2.74(1.16) 0.019(0.003) 21.14(2.274)
SIS-MCP 0.899(0.042) 0.899(0.043) 1.82(1.158) 0.007(0.002) 8.88(1.981)

SIS-SCAD 0.907(0.038) 0.907(0.038) 2.68(1.171) 0.016(0.004) 18.88(3.699)
average 0.906(0.039) 0.906(0.04) 2.413(1.163) 0.014(0.003) 16.3(2.651)

MMLR

SIS-LASSO 0.887(0.037) 0.886(0.037) 0.26(0.543) 0.014(0.002) 13.72(1.724)
SIS-MCP 0.881(0.04) 0.88(0.041) 0.21(0.498) 0.008(0.002) 7.75(1.591)

SIS-SCAD 0.888(0.036) 0.888(0.037) 0.25(0.52) 0.013(0.002) 13.45(2.285)
average 0.885(0.038) 0.885(0.038) 0.24(0.52) 0.012(0.002) 11.64(1.867)

*(): standard deviation.

Figure 3. Comparison of area under the receiver operating characteristic (AUROC) with SIS-LASSO,
SIS-MCP, and SIS-SCAD after filtering with both proposed filter ranking method and MMLR method
under three correlation settings.
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To obtain reliable results of the performance of accuracy, AUROC, and G-mean with screened
variables, we iterated 100 times of both the colon and lung cancer data with resampling technique.
In each iteration, we firstly divided the data into a training set of 70% of samples and a testing set
of 30% of samples. Secondly, we select top ranked number of genes with SIS to plug into LASSO,
MCP, and SCAD. Finally, we select genes with non-zero coefficients in the model and estimate the
performance. We also count genes appeared in the models across three variable selection methods to
build lists of ranking genes.

As in the simulation studies, we estimated the average of accuracy, AUROC, G-mean, and model
size as the results of using three methods with PF. The results are reported in Table 3. SIS-LASSO
with the performance of accuracy and AUROC, each of which is 0.803 and 0.886 with the standard
deviations of 0.098 and 0.077 for colon and 0.976 and 0.998 with standard of 0.017 and 0.007, respectively,
is relatively better compared to those of other variable selection methods in both datasets. We also
presented the top 10 genes selected from each of the three lists of ranking genes across the three variable
selection methods based on 100 resampling for the colon cancer and lung cancer data in both Tables 4
and 5. There are eight common genes of G50753, M76378, H08393 H55916, M63391, T62947, R80427,
and T71025 among top 10 ranked genes from the results of three methods in the colon data.

Figure 4. The histogram and boxplot of pairwise correlation coefficients between 2000 expression levels
of genes for the colon and normal group combined. The number of correlation coefficients is 1,999,000.
Two plots show that average pairwise correlation is 0.428 (median = 0.433) with a standard deviation
of 0.203.
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The gene of R87126 is common between the results of SIS-LASSO and SIS-MCP, T47377 between
SIS-LASSO and SIS-SCAD, and T64012 between SIS-SCAD and SIS-MCP. In particular, G50753, H08393,
and H55916 were consistently ranked.

Table 3. Classification performance of the proposed selection method with SIS-LASSO, SIS-MCP, and
SIS-SCAD in both colon and lung cancer. It is the average performance resulting from 100 iterations.

Dataset Method Accuracy AUROC G-Mean Model Size

SIS-LASSO 0.803 (0.098) 0.886 (0.077) 0.745 (0.144) 7.8 (1.47)
Colon SIS-MCP 0.793 (0.097) 0.864 (0.088) 0.748 (0.132) 4.14 (1.054)

SIS-SCAD 0.798 (0.096) 0.874 (0.082) 0.753 (0.13) 6.73 (1.896)

SIS-LASSO 0.976 (0.017) 0.998 (0.007) 0.975 (0.019) 9.53 (1.453)
Lung SIS-MCP 0.952 (0.03) 0.983 (0.017) 0.95 (0.032) 1.09 (0.288)

SIS-SCAD 0.975 (0.021) 0.997 (0.006) 0.973 (0.023) 8.65 (2.222)

(): standard deviation.

G50753, M63391, and M76378 were reported as significant genes related to colon cancer in [45].
M76378, H08393, H55916, M63391, R87126, and T47377 were also reported as genes associated with
colon cancer in [46]. In addition, H08393 (collagen alpha 2(XI) chain) involved in cell adhesion is also
known as a gene related to colon carcinoma whose cell has collagen-degrading activity as part of the
metastatic process. T62947 has the potential to affect colon cancer by playing a role in controlling cell
growth and proliferation through the selective translation of particular classes of mRNA. R80427 is
also identified as genes distinguishing colon cancer in [47].

Table 4. Top 10 ranked genes with highest selection frequency from the lists of ranking genes using 100
times resampling approach across three methods of SIS-LASSO, SIS-MCP, and SIS-SCAD on both the
colon cancer and the lung cancer gene expression data.

Rank SIS-LASSO SIS-MCP SIS-SCAD

Gene Accession ID

1 Hsa.36689 *** (G50753) Hsa.36689 Hsa.36689
2 Hsa.692.2 *** (M76378) Hsa.8147 Hsa.692.2
3 Hsa.6814 *** (H08393) Hsa.6814 Hsa.6814
4 Hsa.1660 *** (H55916) Hsa.1660 Hsa.1660
5 Hsa.8147 *** (M63391) Hsa.692.2 Hsa.33268
6 Hsa.5392 *** (T62947) Hsa.12241 ** (T64012) Hsa.12241
7 Hsa.37937 ** (R87126) Hsa.33268 Hsa.5392
8 Hsa.33268 *** (R80427) Hsa.5392 Hsa.8147
9 Hsa.3016 ** (T47377) Hsa.8125 Hsa.8125
10 Hsa.8125 *** (T71025) Hsa.37937 Hsa.3016

***: common genes in all three ranked gene lists, **: common genes in two of the three ranked gene lists.; (): GenBank
Accession Number.

Likewise, the top 10 ranked genes in Table 4 from SIS-LASSO, SIS-MCP, and SIS-SCAD with PF
were shown to play an important role in colon cancer. Figure 5 shows the boxplots of significantly
differentially expressed genes between normal and colon samples on the eight genes found in all three
methods. H08393 and H55916 are significantly expressed and downregulated while the other six are
upregulated. In case of lung cancer data, there are five common genes of 21957_s_at, 209555_s_at,
209875_s_at, 209074_s_at, and 219213_at among top 10 ranked genes in lung cancer. The genes of
205357_s_at, 203980_at, 208982_at, and 220,170 are common between the results of SIS-LASSO and
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SIS-MCP. The gene of 32625_at is common gene between SIS-LASSO and SIS-SCAD. Specially, first
top four genes between the results of SIS-LASSO and SIS-SCAD have the same ranking. In addition,
there are four unique genes of 209614_at from SIS-SCAD, 206209_s_at, 204271_s_at, 204396_s_at,
and 219719_at from SIS-MCP. 219597_s_at (DUOX1) usually is downregulated and associated with
lung breast cancer [48,49]. 209555_s_at (CD36) is also related to breast cancer [50] and affects the
progression of lung cancer [51]. 209875_s_at (SPP1) is reported as a prognostic biomarker for lung
adenocarcinoma [52,53]. 209074_s_at (FAM107A) is also emphasized as a lung cancer biomarker
downregulated [54]. Although 219213_at (JAM2) are not directly known as a variant of lung cancer,
it is worthwhile to be further investigated as a potential biomarker related to lung adenocarcinoma.
We also found that most of five common genes play significant roles in lung cancer. Figure 6 also
represents the boxplots of significantly differentially expressed genes between normal and colon
samples on the five genes found commonly in the top ten ranked genes in all three methods. Only the
gene of 209875_s_at (SPP1) is upregulated while the rest of them are downregulated.

Table 5. Top 10 ranked genes with highest selection frequency from lists of gene ranking using 100
times resampling approach of three methods of SIS-LASSO, SIS-MCP, and SIS-SCAD on the lung cancer
gene expression data.

Rank SIS-LASSO SIS-MCP SIS-SCAD

- Gene Accession ID

1 219597_s_at ***(DUOX1) 209555_s_at 219597_s_at
2 205357_s_at ** 209074_s_at 205357_s_at
3 209555_s_at ***(CD36) 32625_at 209555_s_at
4 209875_s_at ***(SPP1) 206209_s_at * 209875_s_at
5 203980_at ** 204271_s_at * 209074_s_at
6 208982_at ** 204396_s_at * 219213_at
7 209074_s_at *** (FAM107A) 219213_at 208982_at
8 220170_at ** 219597_s_at 220170_at
9 219213_at *** (JAM2) 219719_at * 209614_at *
10 32625_at ** 209875_s_at 203980_at

***: common genes in all three ranked gene lists, **: common genes in two of the three ranked gene lists. *: unique genes. ():
Gene symbol.

4. Discussion

We explored the feasibility of using the proposed feature ranking method as a filtering stage with
Elastic net (α = 0.5) based on a resampling approach followed by SIS as screening in conjunction with
LASSO, MCP, and SCAD penalized logistic variable selection methods in high dimensional settings
to improve the performance of variable selection and classification prediction. One of the currently
popular methods achieving such a goal is MMLR. It ranks variables in order from largest to smallest
scores of maximum likelihood. It performs poorly with important variables that are marginally weak
but jointly and strongly associated with the response since it screens out such variables. The simulation
studies demonstrated that the PF method retained more true important variables when compared to
MMLR in Table 1. PF method also showed a better performance of retaining a true number of variables
as the correlation of the variables was increased than MMRL. It is clear that the elastic net-based PF
takes into account correlation among true important variables, while MMLR only considers marginal
strength with the outcome variable. However, as seen in the results of using three variable selection
methods with SIS based on both filtered data, the proportion of unimportant variables in the models is
still high.
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Figure 5. Boxplots of differential expression level between normal and colon samples on eight genes
from SIS-LASSO, SIS-MCP, and SIS-SCAD with the ranked data. Each boxplot contains the p-value of
mean differential expression between two groups with a two-sample t-test.

For further confirmation of the PF in selecting the most promising genes for superior classification
performance, we applied it to a real example of both colon and lung cancer gene expression data.
The SIS-LASSO method produced the best performance scores compared to SIS-MCP and SIS-SCAD.
We also selected the top 10 ranked genes with highest selection frequency from the lists of ranking
genes generated by the resampling approach in each of three variable selection methods to check gene
selection consistency as well as biological significance connecting to colon and lung cancer. There were
eight and five overlapped genes among top 10 ranked genes from the results of three methods in
Tables 4 and 5, respectively. Most of the genes are reported as significant genes related to colon and lung
carcinoma. In addition, some of the genes was consistently highly ranked across the three methods.
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Figure 6. Boxplots of differential expression level between normal and lung samples on five genes from
SIS-LASSO, SIS-MCP, and SIS-SCAD with the ranked data. Each boxplot contains the p-value of mean
differential expression between two groups with a two-sample t-test.

5. Conclusions

In this study, the proposed PF demonstrated the superiority of ranking true variables highly as a
filtering stage compared to MMLR through extensive simulation studies. Furthermore, the combination
of SIS-LASSO, SIS-MCP, and SIS-SCAD with the PF also had better performance of classification as
well as detection of true important variables than those with MMLR. Even in real applications of colon
and lung gene expression data, it was demonstrated that the proposed two-stage procedure with PF
consistently captures the most promising features related to colon and lung cancer. As future research,
we plan to develop the methodology of variable selection with PF to increase the power of detecting
true important variables as well as prediction of classification.
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Abstract: In this paper, we extended Yennum et al.’s model, in which geometric distribution is used
as a randomization device for a population that consists of different-sized clusters, and clusters are
obtained by probability proportional to size (PPS) sampling. Estimators of a sensitive parameter,
their variances, and their variance estimators are derived under PPS sampling and equal probability
two-stage sampling, respectively. We also applied these sampling schemes to Yennum et al.’s
generalized model. Numerical studies were carried out to compare the efficiencies of the proposed
sampling methods for each case of Yennum et al.’s model and Yennum et al.’s generalized model.

Keywords: probability proportional to size (PPS) sampling; geometric distribution; sensitive attribute;
randomization device; Yennum et al.’s model

1. Introduction

The randomized response model (RRM) was suggested by [1] to estimate the true population
proportion of sensitive characteristics, such as illegal gambling, drug-abuse, tax evasion, the extent of
illegal income, and the experience of abortion, among others [2–4].

Since Warner’s work, many scholars have developed the RRM in various ways. In [5,6],
they arranged, summarized, and systemized various RRMs and emphasized their importance.
In [7], sampling survey of sensitive attributes applied two-stage cluster sampling to RRM for a
population consisting of equal-sized clusters, and [8] considered the cluster RRM for a population
consisting of different-sized clusters, where the clusters are selected by probability proportional to size
(PPS) sampling.

Recently, Yennum et al. [9] suggested a new randomization device to gather sensitive data in
two-stages under the assumption of geometric distribution and made a generalization of their model
encompassing generalized geometric distribution using [10] model.

Based on Yennum et al.’s work, it is assumed that the respondents are selected by simple random
sampling with replacements, but a real survey selects respondents from various sampling schemes.

Now, we can consider a large sample of clusters. For example, to estimate the true population
proportion of drug-abuse among high school students, it is possible to use a randomization device like
Yennum et al.’s model via proportional sampling by considering the primary sampling unit as the
school and the secondary sampling unit as the students.

From this point of view, we extend Yennum et al.’s model, in which geometric distribution is used
as a randomization device based on a population that consists of different-sized clusters, and the clusters
are selected by PPS sampling. Estimators of a sensitive parameter, their variances, and their variance
estimators are derived by PPS sampling and equal probability two-stage sampling, respectively.
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We also apply these methods to the case of Yennum et al.’s generalized model. Numerical studies
are carried out to compare the efficiencies of the suggested methods in each case of Yennum et al.’s
model and Yennum et al.’s generalized model.

2. An Estimation of Sensitive Attributes with Probability Proportional to Size Sampling under
Yennum et al.’s Model

In Section 2, we consider a new sampling scheme to estimate sensitive attributes using Yennum et
al.’s model, in which geometric distribution is used as a randomization device when n clusters are
selected with proportional to size (PPS) sampling or equal probability sampling from a population that
consists of N clusters of size, Mi(i = 1, 2, · · · , N) and mi(i = 1, 2, · · · , n) units are selected by simple
random sampling from each sampled cluster.

In Section 2.1, we consider the sampling method for the clusters via PPS sampling with
replacements. Clusters by PPS sampling without replacement are considered in Section 2.2, and
clusters by equal probability sampling are examined in Section 2.3.

2.1. PPS Sampling with Replacement

Let the population be composed of N clusters. In the first stage, the size of the n sample of the
first sampling units (FSU) is selected with replacement by the selection probability pi for the ith cluster.
In the second stage, mi second sampling units (SSU) are drawn by simple random sampling with
replacement (SRSWR) from each FSU and are guided to carry out Yennum et al.’s randomization device.

First of all, the randomization device consists of two elements. The first randomization device for
the ith cluster consists of two kinds of urns with white and black balls, where the selection probability
of a white ball is Wi, and the selection probability of a black ball is 1−Wi.

On the other hand, the second randomization device is composed of two kinds of urns with balls.
The first device with balls contains a slip of paper including two statements, such as “I have a sensitive
attribute” with selection probability Pi, and the other balls includes a statement such as “I do not have
a sensitive attribute” with selection probability 1− Pi. The second device with balls contains a slip of
paper with the statement “I do not have a sensitive attribute” with selection probability Ti and balls
with the statement “I have a sensitive attribute” with selection probability 1− Ti.

In the first stage, for the ith cluster, each interviewee draws a ball from the first randomization
device, such as the urn with the white and black balls. When he or she selects a white ball, he or she is
guided to pick balls from the first urn of the second randomization device, one after another, with
replacement, until the first ball containing a statement matching his or her own status appears.

We assume that Xi1 is the total number of balls drawn before he or she obtains the first ball
including his or her own status in the ith cluster, and Xi2 is the total number of balls drawn before he or
she obtains the first ball with his or her own status of not having a sensitive attribute in the ith cluster.
Similarly, when he or she draws a black ball, he or she is guided to pick balls from the second urn of
the second randomization device, one after another, with replacement, until the first ball containing a
statement matching his or her own status appears.

For the ith cluster, using the randomization device in Figure 1, the total number of balls taken by
interviewees Xi1, Xi2, Yi1, Yi2 are distributed via generalized geometric distribution. Let πi and 1−πi
be the true population proportion of persons who have a sensitive attribute Ai and Ac

i for the ith cluster.
Assume that each interviewee in the ith cluster is drawn by SRSWR.

For the ith cluster, the total number for each ball selected by interviewees through the proposed
two-stage device distributes one of the following random variables: Xi1 ∼ Ge(Pi), Xi2 ∼ Ge(1− Pi),
Yi1 ∼ Ge(Ti) and Yi2 ∼ Ge(1− Ti), where Ge(·) represents the geometric distribution with a success
probability. Let πi and 1 − πi be the true population proportions of persons who have a sensitive
attribute (Ai and Ac

i , respectively) for the ith cluster. Assume that each interviewee in the ith cluster is
drawn by SRSWR.
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Figure 1. Randomization device for the ith cluster.

Let Zij be the jth observed answer in the ith cluster; Zij can be expressed as

Zij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Xi1, with probability Wiπi
Yi2, with probability (1−Wi)πi
Xi2, with probability Wi(1−πi)

Yi1, with probability (1−Wi)(1−πi)

(1)

Then, we can find the expected value of Zij as follows:

E(Zij) = πi

[
Wi
Pi

+
(1−Wi)
(1−Ti)

]
+ (1−πi)

[
Wi

(1−Pi)
+

(1−Wi)
Ti

]

= πi

[
Wi
Pi

+
(1−Wi)
(1−Ti)

− Wi
(1−Pi)

− (1−Wi)
Ti

]
+ Wi

(1−Pi)
+

(1−Wi)
Ti

.
(2)

The expected value (2) can be expressed as follows:

(1− Ti)Pi
{
E(Zij)(1− Pi)Ti −WiTi − (1−Wi)(1− Pi)

}
PiTi(1− Pi)(1− Ti)

=
πiψi

PiTi(1− Pi)(1− Ti)
, (3)

where ψi = Wi(1− 2Pi)Ti(1− Ti) + (1−Wi)(2Ti − 1)Pi(1− Pi).
Now the estimator π̂i for the true population proportion πi in the ith cluster is given by:

π̂i =
1
ψi

⎡⎢⎢⎢⎢⎢⎣PiTi(1− Pi)(1− Ti)
1

mi

mi∑
i=1

Zij −WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

⎤⎥⎥⎥⎥⎥⎦. (4)

When the interviewees are drawn by SRSWR from the ith cluster selected with a replacement by
the sampling probability pi, the estimator π̂ppswr of the true population proportion π for a sensitive
character is given by:

π̂ppswr = 1
nM0

n∑
i=1

Miπ̂i
pi

= 1
nM0

n∑
i=1

Mi
piψi

⎡⎢⎢⎢⎢⎣PiTi(1− Pi)(1− Ti)
1

mi

mi∑
j=1

Zij −WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

⎤⎥⎥⎥⎥⎦,
(5)

where M0 =
∑N

i=1 Mi.

Theorem 1: The estimator π̂ppswr of the true population proportion of a sensitive attribute π under PPS with a
replacement sampling scheme is an unbiased estimator.
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Proof:

E1E2
(
π̂ppswr

)
= E1E2

[
1

nM0

n∑
i=1

Miπ̂i
pi

]

= E1

[
1

nM0

n∑
i=1

MiE2(π̂i)
pi

]
,

and since:

E2(π̂i) = 1
ψi

[
PiTi(1− Pi)(1− Ti)

1
mi

mi∑
i=1

E2
(
Zij

)
−WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

]

= πi.

we can obtain:

E1E2
(
π̂ppswr

)
= E1

[
1

nM0

n∑
i=1

Miπi
pi

]

= 1
M0

N∑
i=1

pi
Miπi

pi

= π.

�

Theorem 2: The variance of π̂ppswr is obtained from a two-stage procedure, such that a sample of size n FSU is
selected by replacement with sampling probability pi for the unit i from the population of N clusters with size Mi
elements in the ith cluster, and the SSUs with size mi are drawn by SRSWR from each FSU, as given by:

V(π̂ppswr) = 1
nM2

0

N∑
i=1

pi
[Miπi

pi
−M0π

]2

+ 1
nM2

0

N∑
i=1

M2
i

mipi

[
πi(1−πi) − πi

ψ2
i
Ai +

1
ψ2

i
Bi

]
,

(6)

where:

Ai = Wi(1− 2Pi)(2− Pi + P2
i )T

2
i (1− Ti)

2 + (1−Wi)(2Ti − 1)(2− Ti + T2
i )P

2
i (1− Pi)

2

+W2
i T2

i (1− Ti)
2(2Pi − 1) + (1−Wi)

2P2
i (1− Pi)

2(1− 2Ti)

+2Wi(1−Wi)PiTi(1− Pi)(1− Ti)(Pi − Ti),

Bi = (1− Ti)
2P2

i

{
Wi(1−Wi)(Pi + Ti − 1)2 + WiPiT2

i + (1−Wi)(1− Ti)(1− Pi)
2
}
.

Proof: Given Xi1 ∼ G(Pi), Xi2 ∼ G(1 − Pi), Yi1 ∼ G(Ti), Yi2 ∼ G(1 − Ti), where G represents the
geometric distribution with a success probability. Since the expected values of Zij and Z2

i j are

E(Zij) = πi

[
Wi
Pi

+
(1−Wi)

(1− Ti)

]
+ (1−πi)

[
Wi

(1− Pi)
+

(1−Wi)

Ti

]
, (7)

then:
E(Z2

i j) = πi

[
Wi(2−Pi)

P2
i

]
+ (1−πi)

[
Wi(1+Pi)

(1−Pi)
2

]
+ (1−πi)(1−Vi)

[
(2−Ti)

T2
i

]
+ πi(1−Wi)

[
(1+Ti)

(1−Ti)
2

]
. (8)

Based on (7) and (8), the variance of Zij is:

σ2
iZ = E(Z2

i j) −
[
E(Zij)

]2
, (9)
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and, since Zij is independent, the variance of π̂i can be expressed by:

V(π̂i) = V

⎡⎢⎢⎢⎢⎣ 1
ψi

⎛⎜⎜⎜⎜⎝PiTi(1−Pi)(1−Ti)
mi

mi∑
j=1

Zij −WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

=
P2

i T2
i (1−Pi)

2(1−Ti)
2

n2
hψ

2
h

mi∑
j=1
σ2

iZ

=
πi(1−πi)

mi
+ πi

miψ
2
i
Ai +

1
miψ

2
i
Bi.

(10)

Since V(π̂ppswr) = V1E2(π̂ppswr) + E1V2(π̂ppswr), then the first and second terms are given,
respectively, as:

V1E2(π̂ppswr) = V1E2

[
1

nM0

n∑
i=1

Miπ̂i
pi

]

= V1

[
1

nM0

n∑
i=1

Miπi
pi

]

= 1
nM2

0

N∑
i=1

pi
[Miπi

pi
−M0π

]2
,

and

E1V2(π̂ppswr) = E1V2

[
1

nM0

n∑
i=1

Miπ̂i
pi

]

= E1

[
1

(nM0)
2

n∑
i=1

M2
i

p2
i

V2(π̂i)

]

= E1

[
1

(nM0)
2

n∑
i=1

M2
i

p2
i

V2

{
1
ψi

PiTi(1− Pi)(1− Ti)
1

mi

mi∑
i=1

Zij −WiTiPi(1− Ti) − Pi(1−Wi)(1− Pi)(1− Ti)

}]

= E1

[
1

(nM0)
2

∑ M2
i

mip2
i

{
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

}]
.

Then, we can obtain the variance (10).
Moreover, an unbiased estimator of V(π̂ppswr) is given by

V̂(π̂ppswr) = 1
nM2

0

n∑
i=1

pi
[Miπ̂i

pi
−M0π̂ppswr

]2

+ 1
nM2

0

n∑
i=1

M2
i

pi(mi−1)

[
π̂i(1− π̂i) − π̂i

ψ2
i
Ai +

1
ψ2

i
Bi

]
.

(11)

�

If the FSUs are selected proportional to size with Mi, then pi = Mi/M0. For this reason, we call
this method “probability proportional to size” (PPS) sampling. When a sample of the FSU is selected
by PPS sampling with replacement via sampling probability, pi = Mi/M0 for the ith cluster, and mi
SSU are selected by SRSWR from each FSU. The estimator π̂ppswr of π is given by:

π̂ppswr = 1
n

n∑
i=1
π̂i

= 1
n

n∑
i=1

1
mi

[
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(12)

and the variance of π̂ppswr and its estimator are as follows:

V
(
π̂ppswr

)
= 1

nM0

N∑
i=1

Mi(πi −π)2

+ 1
nM0

N∑
i=1

Mi
mi

[
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(13)
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V̂
(
π̂ppswr

)
= 1

nM0

n∑
i=1

Mi(π̂i − π̂ppswr)
2

+ 1
nM0

n∑
i=1

Mi
mi−1

[
π̂i(1− π̂i) +

π̂i
ψ2

i
Ai +

1
ψ2

i
Bi

]
.

(14)

2.2. The PPS without Replacement

In this subsection, we consider PPS sampling without replacement to estimate the true population
proportion of a sensitive character by applying Yennum et al.’s model, in which n FSUs are drawn by
PPS sampling without replacement from the population of N clusters with Mi elementary units for the
ith cluster, and mi SSUs are drawn by SRSWR from each FSU.

From this two-stage sampling, the estimator π̂ppswor of π is:

π̂ppswor =
1

M0

n∑
i=1

Miπ̂i
θi

, (15)

where θi is the first inclusion probability for the ith cluster.
The variance of π̂ppswor is given by:

V
(
π̂ppswor

)
= 1

M2
0

N∑
i=1

N∑
j>i

(θiθ j − θi j)
[

Miπi
θi
− Mjπ j
θ j

]2

+ 1
M2

0

N∑
i=1

M2
i

miθi

[
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(16)

where θi j is the second inclusion probability of the ith and jth clusters.
Furthermore, the variance estimator of π̂ppswor is as follows:

V̂
(
π̂ppswor

)
= 1

M2
0

n∑
i=1

n∑
j>i

(θiθ j−θi j)

θi j

[
Miπ̂i
θi
− Mjπ̂ j
θ j

]2

+ 1
M2

0

n∑
i=1

M2
i

θi(mi−1)

[
π̂i(1− π̂i) +

π̂i
ψ2

i
Ai +

1
ψ2

i
Bi

]
.

(17)

2.3. Two-Stage Equal Probability Sampling

In this subsection, we consider a two-stage equal probability sampling design to estimate the
true population proportion of a sensitive characteristic by applying Yennum et al.’s model, in which n
FSUs are drawn by simple random sampling without replacement (SRSWOR) from a population of N
clusters with Mi elementary units for the ith cluster, and mi SSUs are drawn by SRSWR from each FSU.

From this two-stage sampling, the estimator π̂wr of π is given by:

π̂wr =
N

nM0

n∑
i=1

Miπ̂i, (18)

where π̂i is an estimator of the true population proportion for a sensitive characteristic for the ith
cluster, which is the same as (4).

The variance of π̂wr and its estimator are given as:

V(π̂wr) = N2

nM2
0

1
(N−1)

N∑
i=1

(Miπi −Mπ)
2

+ N
nM2

0

N∑
i=1

M2
i

mi

[
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(19)
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V̂(π̂wr) = N2

nM2
0

1
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n∑
i=1

(Miπ̂i −Mπ̂wr)
2

+ N
nM2

0

n∑
i=1

M2
i
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[
π̂i(1− π̂i) +

π̂i
ψ2

i
Ai +

1
ψ2

i
Bi

]
,

(20)

where M = M0/N.

3. An Estimation of Sensitive Attributes with Probability Proportional to Size Sampling Under
Yennum et al.’s Generalized Model

We consider Yennum et al.’s generalized model, in which generalized geometric distribution is used
as a randomization device when n clusters are sampled by PPS sampling or equal probability sampling
from the population, which consists of N clusters with size Mi(i = 1, 2, · · · , N), and mi(i = 1, 2, · · · , n)
units are drawn by simple random sampling from each sampled cluster.

We develop the sampling schemes for PPS sampling with replacement in Section 3.1 and those for
PPS sampling without replacement in Section 3.2. Finally, equal probability sampling is presented in
Section 3.3.

3.1. PPS Sampling with Replacement

Let the population be composed of N clusters. In the first stage, a sample of n FSUs is drawn by
replacement with the sampling probability pi for the ith cluster. In the second stage, mi SSUs are selected
by SRSWR from each FSU and guided to apply Yennum et al.’s generalized randomization device.

If the interviewees in the ith cluster choose a white ball during the first stage, and if they have a
sensitive attribute A (or Ac), then they are guided to pick replacement balls from the first urn of the
second stage device until they take ki2 (or ki1) successive balls with their actual status for the first time
and are then asked to determine the total number of balls as Xi1 (or Xi2).

If the interviewee in the ith cluster draws a black ball in the first stage, and if they have a sensitive
attribute Ac (or A), then they are guided to take replacement balls from the second urn of the second
stage device until they take ki2 (or ki1) successive balls with their actual status for the first time and are
then asked to determine the total number of balls as Yi1 (or Yi2).

For the ith cluster, using the randomization device in Figure 1, the total number of balls taken by
interviewees Xi1, Xi2, Yi1, and Yi2 are distributed via generalized geometric distribution. Let πi and
1−πi be the true population proportion of persons who have a sensitive attribute A and Ac for the ith
cluster. Assume that each interviewee in the ith cluster is drawn by SRSWR.

For the jth surveyed answer in the ith cluster, Zij can be expressed as:

Zij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Xi1 with probability Wiπi,
Yi2 with probability (1−Wi)πi,
Xi2 with probability Wi(1−πi),
Yi1 with probability (1−Wi)(1−πi),

. (21)

The expected value of Zij is given by:

E(Zij) = WiπiE(Xi1) + πi(1−Wi)E(Yi2) + (1−πi)WiE(Xi2) + (1−Wi)(1−πi)E(Yi1)

= πi

[
Wi

{
1−P

ki1
i

(1−Pi)P
ki1
i

− 1−(1−Pi)
ki2

Pi(1−Pi)
ki2

}
+ (1−Wi)

{
1−(1−Ti)

ki1

Ti(1−Ti)
ki1
− 1−T

ki2
i

(1−Ti)T
ki2
i

}]

+ Wi

{
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

}
+ (1−Wi)

{
1−T

ki2
i

(1−Ti)T
ki2
i

}
.

(22)
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Then, the formula (22) can be expressed as:

E(Zij) −Wi

{
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

}
− (1−Wi)

{
1−T

ki2
i

(1−Ti)T
ki2
i

}

= πi

[
Wi

{
1−P

ki1
i

(1−Pi)P
ki1
i

− 1−(1−Pi)
ki2

Pi(1−Pi)
ki2

}
+ (1−Wi)

{
1−(1−Ti)

ki2

Ti(1−Ti)
ki2
− 1−T

ki1
i

(1−Ti)T
ki1
i

}]
.

(23)

The estimator π̂iG of the population proportion πi for the ith cluster is given by:

π̂iG =
(1− Ti)

ki1+1Tki2+1
i (1− Pi)

ki2+1Pki1+1
i

miϕi2

⎛⎜⎜⎜⎜⎜⎜⎝
mi∑
j=1

Zij −ϕi1

⎞⎟⎟⎟⎟⎟⎟⎠, (24)

where:
ϕi1 = Wi

{
1− (1− Pi)

ki2
}
(1− Ti)

ki1+1Tki2+1
i (1− Pi)P

ki1
i

+ (1−Wi)(1− T
ki2
i )P

ki1+1

i (1− Pi)
ki2+1Ti(1− Ti)

ki1+1,
(25)

and:

ϕi2 = Wi
[
(1− Pi)

ki1PiT
ki2+1
i (1− Ti)

ki1+1(1− Pi)
ki2 −

{
1− (1− Pi)

ki2
}
P

ki1
i (1− Pi)T

ki2+1
i (1− Ti)

ki1+1
]

+ (1−Wi)
[{

1− (1− Ti)
ki1

}
P

ki1+1

i (1− Ti)(1− Pi)
ki2+1Tki2

i − (1− Tki2
i )P

ki1+1

i Ti(1− Pi)
ki2+1(1− Ti)

ki1
]
.

(26)

When the interviewees are sampled by SRSWR for the ith cluster selected with a replacement
by sampling probability pi, the estimator π̂Gppswr of the true population proportion π of a sensitive
attribute is:

π̂Gppswr = 1
nM0

n∑
i=1

Miπ̂iG
pi

= 1
nM0

n∑
i=1

Mi
pi

⎡⎢⎢⎢⎢⎣ (1−Ti)
ki1+1T

ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

miϕi2

⎛⎜⎜⎜⎜⎝
mi∑
j=1

Zij −ϕi1

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦,

(27)

where M0 =
∑N

i=1 Mi.

Theorem 3: The estimator π̂Gppswr of the true population proportion π of a sensitive character is an unbiased
estimator.

Proof:

E1E2
(
π̂Gppswr

)
= E1E2

⎡⎢⎢⎢⎢⎢⎣ 1
nM0

n∑
i=1

Miπ̂iG
pi

⎤⎥⎥⎥⎥⎥⎦ = E1

⎡⎢⎢⎢⎢⎢⎣ 1
nM0

n∑
i=1

MiE2(π̂iG)

pi

⎤⎥⎥⎥⎥⎥⎦,
and, since:

E2(π̂iG) = E2

⎡⎢⎢⎢⎢⎣ (1−Ti)
ki1+1T

ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

miϕi2

⎛⎜⎜⎜⎜⎝
mi∑
j=1

Zij −ϕi1

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦

=
(1−Ti)

ki1+1T
ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

miϕi2

⎛⎜⎜⎜⎜⎝
mi∑
j=1

E2(Zij) −ϕi1

⎞⎟⎟⎟⎟⎠
= πi,

we can obtain:

E1E2
(
π̂Gppswr

)
= E1

⎡⎢⎢⎢⎢⎢⎣ 1
nM0

n∑
i=1

Miπi
pi

⎤⎥⎥⎥⎥⎥⎦ = 1
M0

N∑
i=1

pi
Miπi

pi
= π.

�
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Theorem 4: The variance of π̂Gppswr is obtained by a two-stage sampling scheme, such that a sample of n FSU
is selected with replacement by sampling probability pi for the ith cluster from the population of N clusters
consisting of Mi elements for the ith cluster, and mi SSUs are drawn by SRSWR from each FSU, as given by:

V
(
π̂Gppswr

)
= 1

nM2
0

N∑
i=1

pi
[Miπi

pi
−M0π

]2

+ 1
nM2

0

N∑
i=1

M2
i

mipi

⎡⎢⎢⎢⎢⎢⎢⎣
{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ

⎤⎥⎥⎥⎥⎥⎥⎦,
(28)

where:

σ2
iZ = E(Z2

i j) − (E(Zij))
2

= πi

⎡⎢⎢⎢⎢⎣Wi

⎛⎜⎜⎜⎜⎝ 1−(2ki1+1)(1−Pi)P
ki1
i −P

2ki1+1
i +(1−P

ki1
i )

2

(1−Pi)
2P

2ki1
i

⎞⎟⎟⎟⎟⎠
+ (1−Wi)

(
1−(2ki1+1)Ti(1−Ti)

ki1−(1−Ti)
2ki1+1+(1−(1−Ti)

ki1 )
2

T2
i (1−Ti)

2ki1

)]

+(1−πi)

⎡⎢⎢⎢⎢⎣Wi

⎛⎜⎜⎜⎜⎝ 1−(2ki2+1)Pi(1−Pi)
ki2−(1−Pi)

2ki2+1+(1−(1−P
ki1
i )

2
)

P2
i (1−Pi)

2ki2

⎞⎟⎟⎟⎟⎠
+ (1−Wi)

(
1−(2ki2+1)(1−Ti)Ti

ki2−Ti
2ki2+1+(1−Ti

ki2 )
2

(1−Ti)
2Ti

2ki2

)]

−
[
πi

{
Wi

(
1−P

ki1
i

(1−Pi)P
2ki1
i

− 1−(1−Pi)
ki2

Pi(1−Pi)
ki2

)
+ (1−Wi)

(
1−(1−Ti)

ki1

Ti(1−Ti)
ki1
− 1−T

ki2
i

(1−Ti)T
ki2
i

)}

+(1−πi)

{
Wi

(
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

)
+ (1−Wi)

(
1−T

ki2
i

(1−Ti)T
ki2
i

)}]2

.

(29)

Proof: The total number of balls taken by interviewees for the ith cluster, Xi1, Xi2, Yi1 and Yi2, are
random variables with variances:

V(Xi1) =
1− (2ki1 + 1)(1− Pi)P

ki1
i − P2ki1+1

i

(1− Pi)
2P2ki1

i

, (30)

V(Xi2) =
1− (2ki2 + 1)Pi(1− Pi)

2ki2 − (1− Pi)
2ki2+1

P2
i (1− Pi)

2ki2
, (31)

V(Yi1) =
1− (2ki2 + 1)(1− Ti)T

ki2
i − T2ki2+1

i

(1− Ti)
2T2ki2

i

, (32)

V(Yi2) =
1− (2ki1 + 1)Ti(1− Ti)

ki1 − (1− Ti)
2ki1+1

T2
i (1− Ti)

2ki1
. (33)

From (21), to drive the variance of π̂Gppswr we can obtain the expected values of Zij and Z2
i j

as follows:

E(Zij) = πi

[
Wi

(
1−P

ki1
i

(1−Pi)P
ki1
i

)
+ (1−Wi)

(
1−(1−Ti)

ki1

Ti(1−Ti)
ki1

)]

+ (1−πi)

[
Wi

(
1−(1−Pi)

ki2

Pi(1−Pi)
ki2

)
+ (1−Wi)

(
1−T

ki2
i

(1−Ti)T
ki2
i

)]
,

(34)
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E(Z2
i j) = πi

[
WiE(X2

i1) + (1−Wi)E(Y2
i2)

]
+ (1−πi)

[
WiE(X2

i2) + (1−Wi)E(Y2
i2)

]

= πi

[
Wi

⎛⎜⎜⎜⎜⎝ 1−(2ki1+1)(1−Pi)P
ki1
i −P

2ki1+1
i +(1−P

ki1
i )

2

(1−Pi)
2P

2ki1
i

⎞⎟⎟⎟⎟⎠
+ (1−Wi)

⎛⎜⎜⎜⎜⎝ 1−(2ki1+1)Ti(1−Ti)
ki1−(1−Ti)

2ki1+1+
{
1−(1−Ti)

ki1
}2

T2
i (1−Ti)

2ki1

⎞⎟⎟⎟⎟⎠
]

+ (1−πi)

[
Wi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1−(2ki2+1)Pi(1−Pi)

ki2−(1−Pi)
2ki2+1+

{
1−(1−P

ki2
i )

2
}

P2
i (1−Pi)

2ki2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ (1−Wi)

⎛⎜⎜⎜⎜⎝ 1−(2ki2+1)(1−Ti)T
ki2
i −T

2ki2+1
i +(1−T

ki2
i )

2

(1−Ti)
2T

2ki2
i

⎞⎟⎟⎟⎟⎠
]
.

(35)

Since V(π̂Gppswr) = V1E2(π̂Gppswr) + E1V2(π̂Gppswr),

V1E2(π̂Gppswr) = V1E2

[
1

nM0

n∑
i=1

Miπ̂iG
pi

]

= V1

[
1

nM0

n∑
i=1

Miπi
pi

]

= 1
nM2

0

N∑
i=1

pi
[MiπiG

pi
−M0π

]2

,

and:

E1V2(π̂Gppswr) = E1V2

[
1

nM0

n∑
i=1

Miπ̂iG
pi

]

= E1

[
1

(nM0)
2

n∑
i=1

M2
i

p2
i

V2(π̂iG)

]

= E1

⎡⎢⎢⎢⎢⎢⎣ 1
(nM0)

2

n∑
i=1

M2
i

p2
i

V2

⎧⎪⎪⎨⎪⎪⎩
(1−Ti)

ki1+1T
ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

miϕi2

⎛⎜⎜⎜⎜⎝
mi∑
j=1

Zij −ϕi1

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦

= E1

⎡⎢⎢⎢⎢⎢⎢⎣ 1
(nM0)

2

n∑
i=1

M2
i

p2
i

1
mi

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{
(1−Ti)

ki1+1T
ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

}2

ϕ2
i2

σ2
iZ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎦

= 1
nM2

0

N∑
i=1

M2
i

mipi

⎡⎢⎢⎢⎢⎢⎢⎣
{
(1−Ti)

ki1+1T
ki2+1
i (1−Pi)

ki2+1P
ki1+1
i

}2

ϕ2
i2

σ2
iZ

⎤⎥⎥⎥⎥⎥⎥⎦.

We can then obtain the variance (28). Also, an unbiased estimator of V(π̂Gppswr) is given by:

V̂
(
π̂Gppswr

)
= 1

nM2
0

n∑
i=1

pi
[Miπ̂iG

pi
−M0π̂Gppswr

]2

+ 1
nM2

0

n∑
i=1

M2
i

pi(mi−1)

⎡⎢⎢⎢⎢⎢⎢⎣
{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ̂2
iZ

⎤⎥⎥⎥⎥⎥⎥⎦.
(36)

�

3.2. PPS Sampling Without Replacement

In this subsection, we consider PPS sampling without replacement to estimate the true population
proportion of a sensitive characteristic by applying Yennum et al.’s generalized model, in which n FSUs
are drawn by PPS sampling without replacement from a population of N clusters with Mi elementary
units for the ith cluster, and mi SSUs are drawn by SRSWR from each FSU.

56



Mathematics 2019, 7, 1102

From this procedure, the estimator π̂Gppswor of π is given by:

π̂Gppswor =
1

M0

n∑
i=1

Miπ̂iG
θi

, (37)

where θi is the first inclusion probability for the ith cluster.
The variance of π̂Gppswor is given by:

V
(
π̂Gppswor

)
= 1

M2
0

N∑
i=1

N∑
j>i

(θiθ j − θi j)
[

Miπi
θi
− Mjπ j
θ j

]2

+ 1
M2

0

N∑
i=1

M2
i

miθi

⎡⎢⎢⎢⎢⎢⎢⎣
{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ

⎤⎥⎥⎥⎥⎥⎥⎦,
(38)

where θi j is the second inclusion probability for ith and jth clusters.
Also, the variance estimator of π̂Gppswor is:

V̂
(
π̂Gppswor

)
= 1

M2
0

n∑
i=1

n∑
j>i

(θiθ j−θi j)

θi j

[
Miπ̂iG
θi
− Mjπ̂ jG

θ j

]2

+ 1
M2

0

n∑
i=1

M2
i

θi(mi−1)

⎡⎢⎢⎢⎢⎢⎢⎣
{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ̂2
iZ

⎤⎥⎥⎥⎥⎥⎥⎦.
(39)

3.3. Two-Stage Equal Probability Sampling

In this subsection, we consider a two-stage equal probability sampling scheme to estimate the
true population proportion of a sensitive attribute by applying Yennum et al.’s generalized model, in
which n FSUs are drawn by SRSWOR from a population of N clusters consisting of Mi elementary
units for the ith cluster, and mi SSUs are drawn by SRSWR from each FSU.

From this procedure, the estimator π̂Gwr of the true population proportion π for a sensitive
attribute is given by:

π̂Gwr =
N

nM0

n∑
i=1

Miπ̂iG, (40)

where the estimator π̂iG is the estimator of a sensitive characteristic of the ith cluster, which is the same
as (24).

The variance and variance estimator of π̂Gwr are:

V(π̂Gwr) =
N2

nM2
0

N∑
i=1

1
N−1

[
Miπi −Mπ

]2

+ N
nM2

0

N∑
i=1

M2
i

mi

⎡⎢⎢⎢⎢⎢⎢⎣
{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ

⎤⎥⎥⎥⎥⎥⎥⎦,
(41)

and:

V̂(π̂Gwr) =
N2

nM2
0

n∑
i=1

1
n−1 (Miπ̂iG −Mπ̂Gwr)

2

+ N
nM2

0

N∑
i=1

M2
i

mi−1

⎡⎢⎢⎢⎢⎢⎢⎣
{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ̂2
iZ

⎤⎥⎥⎥⎥⎥⎥⎦,
(42)

respectively, where M = M0/N.
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4. Efficiency Comparisons

4.1. PPSWR Sampling versus Equal Probability Two-Stage Sampling in Yennum et al.’s Model

If we assume N − 1 � N, then the difference between the variance of equal probability two-stage
sampling, (19), and the variance of PPS with replacement sampling, (6), is given by:

V(π̂wr) −V(π̂ppswr) = 1
nM0M

[
N∑

i=1
(Mi −M)

2
π2

i + M
{

N∑
i=1

(Mi −M)(π2
i −π2)

}

+
N∑

i=1
(Mi −M)

2 1
mi

(
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
B
)

+ M
{

N∑
i=1

(Mi −M) 1
mi

(
πi(1−πi) +

πi
ψ2

i
Ai +

1
ψ2

i
B
)}]

.

(43)

In (43), we can see that V(π̂wr) = V(π̂ppswr) under the condition Mi = M = M0/N; i.e., if the
cluster sizes are equal, the selection probabilities of the PPS with replacement sampling are all N−1 and
equal to those of equal probability two-stage replacement sampling.

If the size of a cluster, Mi is significantly different, then
∑N

i=1 (Mi −M)
2
π2

i , the first term on the

right side of (43), has large values, and the second term,
∑N

i=1 (Mi −M)
2
(π2

i −π2), has relatively small
values. Hence, the estimation by PPS with replacement sampling is more efficient than that by equal
probability two-stage replacement sampling.

We used the relative efficiency (RE) to compare the efficiency of the two sampling methods—PPS
with replacement sampling and equal probability two-stage replacement sampling:

RE1 =
V(π̂wr)

V(π̂ppswr)
× 100(%).

Values of RE1 over 100% indicate that the estimator obtained by the PPS with the replacement
sampling method was more efficient than the estimator obtained by the equal probability two-stage
replacement sampling.

In calculating REs, we set the parameters as follows:

M0 = 10, 000, M1 = 1, 000, M2 = 2, 000, M3 = 3, 000, M4 = 4, 000
m0 = 1, 000, m1 = 100, m2 = 200, m3 = 300, m4 = 400,
p1 = 0.235, p2 = 0.441, p3 = 0.609, p4 = 0.715.

From Table 1, when the selection probability W for the first-stage randomization device increased
from 0.1 to 0.9 by 0.2 and the second stage randomization devices T increased from 0.6 to 0.8 by 0.1 and
P from 0.65 to 0.90 by 0.05, REs increase under the fixed proportion of a sensitive attribute (particularly
when the selection probability of the second randomization device T increased), and the RE increased
according to the conditions of P and πi.
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Table 1. The relative efficiencies (REs) of a sensitive estimator between the probability proportional to
size (PPS) sampling with replacement and the equal probability two-stage sampling with replacement
in Yennum et al.’s model to change πi and W.

πi

W

P

T 0.1 0.3 0.5 0.7 0.9

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

0.1

0.65 56.59 95.07 123.5 48.08 61.06 91.71 52.73 46.18 55.97 63.18 52.59 39.63 75.51 71.08 61.88
0.7 54.42 89.17 120 50 54.61 81.69 58.65 48.28 48.17 71.01 60.85 45.08 83.88 80.2 72.61
0.75 52.93 81.67 114.8 53.61 51.26 70.48 64.76 53.56 45.34 77.67 69.08 54.13 90.33 87.46 81.68
0.8 52.61 72.72 106.4 58.15 51.63 59.9 70.32 60.37 48.28 83.01 76.38 64.29 95.2 93.08 88.97
0.85 53.84 63.67 93.17 62.84 55.3 53.48 75.02 67.37 55.79 87.17 82.48 73.91 98.87 97.41 94.69
0.9 56.57 57.65 74.27 67.15 61.05 54.47 78.79 73.8 65.52 90.32 87.41 82.23 101.6 100.7 99.15

0.2

0.65 82.74 134.4 153.1 50.22 92.87 130.8 60.29 48.44 86.05 90.64 61.69 34.18 117.4 108.9 89.02
0.7 75.82 129.7 151.4 51.78 76.68 121.8 77.73 48.28 65.5 108.7 84.97 43.35 130.7 125.1 111.8
0.75 68.56 122.7 148.7 60.97 61.93 108.4 94.15 62.33 48.62 121.2 104.6 67.95 139 135.4 127
0.8 62.59 111.6 144.1 74.34 56.05 88.85 107.2 82.13 48.28 129.7 118.9 94 144.4 142.1 137
0.85 61.04 94.57 135 87.93 64.32 66.55 116.7 100.4 68.61 135.4 128.9 114.4 148 146.5 143.6
0.9 66.6 74.23 114.3 99.4 82.02 61.52 123.5 114.4 95.72 139.3 135.8 128.5 150.4 149.6 148.1

0.3

0.65 106.8 152.4 164.9 54.34 117.7 149.2 70.41 53.88 109.9 119 74.13 31.19 148.1 139.5 115.9
0.7 98.24 149.4 163.9 53.64 99.37 142.7 100.6 48.28 85.26 139.9 111.1 42.92 159 154.4 141.5
0.75 87.63 144.7 162.4 70.27 76.57 132.3 124 73.92 55.9 151.7 135.4 85.58 164.8 162.2 155.2
0.8 76.17 136.6 159.9 94.79 61.53 114 139.2 107.4 48.28 158.6 149.6 122.7 168.2 166.6 162.8
0.85 69.9 121.6 154.7 116.5 75.47 83.46 148.7 131.9 85.14 162.8 158 145.2 170.2 169.4 167.4
0.9 78.83 94.88 140.8 131.9 107.7 69.61 154.7 146.9 126.4 165.4 163.1 157.6 171.6 171.1 170.2

0.4

0.65 124.6 162.1 171.2 59.97 134.4 159.3 82.29 61.29 126.3 141.7 88.14 30.06 166.3 159.3 136.7
0.7 116.5 160 170.5 55.58 117.6 154.6 122.6 48.28 102.2 160.3 133.3 43.6 173.7 170.4 159.7
0.75 105.4 156.9 169.6 81.25 91.92 146.7 147.4 87.35 65.18 169.2 156.3 103.3 177.3 175.5 170.3
0.8 91.07 151.5 168 116.6 67.99 131.8 160.8 130.8 48.28 173.8 167.6 144.2 179.1 178.2 175.5
0.85 80.35 140.6 164.9 142.3 88.79 100.6 168.2 155.2 103.2 176.4 173.5 164 180.2 179.7 178.4
0.9 93.87 116 156.4 157 133.7 78.99 172.3 167.2 150.6 178 176.6 173.2 180.9 180.6 180.1

On the other hand, RE increased when the first-stage selection probability W was less than 0.5,
and the values of T, P, and πi (from 0.1 to 0.4) decreased, but the RE decreased when the value of W
was greater than 0.5 under a fixed value for T, P, and πi.

Furthermore, the greater the true population proportion of a sensitive attribute πi, the higher the
overall efficiency of Yennum et al.’s model, as shown by the values of the bottom cells in Table 1. This
result agrees with the typical sampling survey methodology as the true population proportion of a
sensitive attribute πi increases.

4.2. PPSWR Sampling versus Equal Probability Two-Stage Sampling in Yennum et al.’s Generalized Model

If we assume N − 1 � N, then the difference between the variance of equal probability two-stage
sampling scheme (41) and the variance of the PPS with replacement sampling scheme (28) is given by:

V(π̂Gwr) −V(π̂Gppswr) = 1
nM0M

[
N∑

i=1
(Mi −M)

2
π2

i + M
{

N∑
i=1

(Mi −M)(π2
i −π2)

}

+
N∑

i=1
(Mi −M)

2 1
mi

⎡⎢⎢⎢⎢⎢⎢⎣
{
(1−Ti)

ki1+1T
ki2+1
i (1−P)ki2+1P

ki1+1
i

}2

ϕ2
i2

σ2
iZ

⎤⎥⎥⎥⎥⎥⎥⎦
+ M

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∑

i=1
(Mi −M) 1

mi

⎛⎜⎜⎜⎜⎜⎜⎝
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(1−Ti)

ki1+1T
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}2
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i2
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⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎦.

(44)
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In (44), we can see that V(π̂Gwr) = V(π̂Gppswr) under the condition Mi = M = M0/N, i.e., if the
cluster sizes are equal, the selection probabilities of the PPS with replacement sampling are all N−1 and
equal to those of the equal probability two-stage replacement sampling.

If cluster sizes, Mi, were significantly different, then
∑N

i=1 (Mi −M)
2
π2

i , the first term of the

right-hand side in (44), had large values, and the second term,
∑N

i=1 (Mi −M)
2
(π2

i −π2), had relatively
small values. Hence, the estimation by PPS with replacement sampling is more efficient than that by
equal probability two-stage replacement sampling.

We used the relative efficiency (RE) to compare the efficiency of the two sampling designs (PPS
with replacement sampling and equal probability two-stage replacement sampling):

RE2 =
V(π̂Gwr)

V(π̂Gppswr)
× 100(%)

Values of RE2 over 100% indicate that the estimator obtained by PPS with the replacement
sampling method was more efficient than the estimator obtained by equal probability two-stage
replacement sampling.

Table 2 shows the results of the REs obtained by increasing the true population proportion πi from
0.1 to 0.4 by 0.1. The selection probabilities of the randomized response model (W, T and P) are shown
in Section 4.1.

Table 2. The REs for a sensitive estimator between the PPS with replacement sampling and equal
probability two-stage sampling with replacement in Yennum et al.’s generalized model for changing πi

and W.

πi

W

P

T 0.1 0.3 0.5 0.7 0.9

0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8

0.1

0.65 171.5 172.8 172.8 163 166.9 167.9 145.4 155.4 159.1 104.1 126.5 138.8 48.17 52.15 68.27
0.7 167.5 169.7 170.1 152.7 160.2 163.1 119.1 139.1 148.9 57.85 83.09 111 78.98 76.63 58.68
0.75 162.2 165.9 167 135.6 150.2 156.7 79 111 133.1 54.18 48.22 69.55 116.3 124.4 117.6
0.8 154.2 160.9 163.3 106.2 133.1 147.2 48.74 68.09 105.6 88.1 76.9 50.14 136.5 148.1 152.8
0.85 139.8 153.1 158.5 64.63 99.62 130.1 64.15 50.65 60.85 116.4 120.1 102.3 147 159.4 168.3
0.9 108.4 136 150.3 49.94 51.5 89.01 96.84 95.38 69.51 133 144.7 150.1 152.7 165.1 175.3

0.2

0.65 180.9 181.1 181 177 178.1 178.3 168.4 172 173.1 140.7 154.2 160 48.39 59.25 87.17
0.7 178.9 179.5 179.5 172.1 174.6 175.5 152.4 162.4 166.8 75.03 112.8 137.8 120.5 111 71.17
0.75 176.4 177.5 177.8 163.1 169.2 171.8 113.3 142.1 156.1 67.28 48.47 88.43 159.6 161.5 149
0.8 172.6 174.9 175.8 143.4 159.1 166.1 50.3 91.74 133.4 132.9 110.7 52.83 171.6 175.4 173.9
0.85 165.8 171 173.1 91.83 133.9 154.7 94.45 55.74 74.87 160 159 135.4 176.4 180.4 182.1
0.9 147.3 162.3 168.5 55.09 58.5 118.4 145.2 139.7 94.09 170.3 174.6 173.7 178.6 182.6 185.2

0.3

0.65 184 184 183.9 181.6 182 182 176.2 178 178.5 157.3 165.5 168.9 48.68 66.76 101.4
0.7 182.8 183 182.9 178.5 179.7 180.2 165.6 171.4 174 91.45 130.8 151.3 145.6 132.9 81.96
0.75 181.2 181.7 181.8 172.9 176.1 177.6 134.5 156.5 166.1 81.89 48.76 102.6 174.4 173.9 161.9
0.8 178.9 180 180.4 159.7 169.3 173.6 52.38 109.5 147.9 155.9 132.1 55.54 181.2 182.4 180.1

0.85 174.8 177.5 178.6 114.3 150.9 165.5 120.4 61.6 86.84 174.9 172.4 151.2 183.6 185.3 185.4
0.9 163.6 172.1 175.6 62.66 66.66 135.6 166.4 160.1 112.1 180.7 182.3 180.3 184.7 186.4 187.3

0.4

0.65 185.5 185.5 185.4 183.9 184.1 184 180 181 181.3 166.1 171.6 173.8 49.04 74.03 112.4
0.7 184.7 184.8 184.7 181.7 182.4 182.6 172.3 176.1 177.9 105.3 142.5 159.4 159.6 146.4 91.15
0.75 183.5 183.8 183.9 177.7 179.7 180.7 147.7 164.5 171.7 95.48 49.07 113.7 180.5 179.2 168.8
0.8 181.9 182.6 182.9 168.2 174.7 177.7 54.79 122.6 156.8 167.6 145.4 58.24 184.8 185.2 182.8
0.85 179.2 180.8 181.6 130.6 160.5 171.4 138.7 67.61 97.01 181 178.3 160.1 186.3 187 186.7
0.9 171.7 177.1 179.3 71.76 75 146.8 176 170.1 125 184.7 185.3 183.2 186.9 187.8 188.1
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In calculating the REs, we set the parameters as follows:

M0 = 10, 000, M1 = 1, 000, M2 = 2, 000, M3 = 3, 000, M4 = 4, 000
m0 = 1, 000, m1 = 100, m2 = 200, m3 = 300, m4 = 400,
p1 = 0.235, p2 = 0.441, p3 = 0.609, p4 = 0.715,
k1 = 2, k2 = 1.

From the results of Table 2, the efficiencies vary according to changes in the probabilities of
selection during the first stage W and the second stage T and P in the randomization device, but when
the first-stage selection probability W is fixed, and the second-stage selection probabilities T and P
increase, then the relative efficiency of the PPS sampling is better than that of the equal probability
two-stage sampling in Yennum et al.’s model.

5. Conclusions

We extended Yennum et al.’s model, in which geometric distribution is used as a randomization
device for a population consisting of different-sized clusters, and clusters are selected by PPS sampling.
Estimators for the true population proportion of a sensitive attribute, their variances, and their variance
estimators are derived under PPS sampling and equal probability two-stage sampling.

We also applied these sampling designs to the case of Yennum et al.’s generalized model.
Numerical studies were carried out to compare the efficiencies of the proposed methods in each case of
Yennum et al.’s model and Yennum et al.’s generalized model in cases with a replacement.

Although the experiments were assumed to use a replacement, we expected similar results for a
case without replacement, as per typical sampling theory.

From the numerical study, we found that the efficiency of the two-stage sampling for probability
proportional to size depends on the given parameter values, but the efficiency of Yennum et al.’s
generalized model is preferred for most combinations of parameters over around 80%.
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Abstract: In high-dimensional data, the performances of various classifiers are largely dependent on
the selection of important features. Most of the individual classifiers with the existing feature selection
(FS) methods do not perform well for highly correlated data. Obtaining important features using
the FS method and selecting the best performing classifier is a challenging task in high throughput
data. In this article, we propose a combination of resampling-based least absolute shrinkage and
selection operator (LASSO) feature selection (RLFS) and ensembles of regularized regression (ERRM)
capable of dealing data with the high correlation structures. The ERRM boosts the prediction accuracy
with the top-ranked features obtained from RLFS. The RLFS utilizes the lasso penalty with sure
independence screening (SIS) condition to select the top k ranked features. The ERRM includes
five individual penalty based classifiers: LASSO, adaptive LASSO (ALASSO), elastic net (ENET),
smoothly clipped absolute deviations (SCAD), and minimax concave penalty (MCP). It was built
on the idea of bagging and rank aggregation. Upon performing simulation studies and applying to
smokers’ cancer gene expression data, we demonstrated that the proposed combination of ERRM
with RLFS achieved superior performance of accuracy and geometric mean.

Keywords: ensembles; feature selection; high-throughput; gene expression data; resampling; lasso;
adaptive lasso; elastic net; SCAD; MCP

MSC: 62P10; 62F40; 62F07

1. Introduction

With the advances of high throughput technology in biomedical research, large volumes of
high-dimensional data are being generated [1–3]. Some of the examples of what produces such data
are microarray gene expression [4–6] data sequencing, RNA-seq [7], genome-wide association studies
(GWASs) [8,9], and DNA-methylation studies [10,11]. These data are high dimensional in nature,
where the total count of features is significantly larger than the number of samples (p >> n)—termed
the curse of dimensionality. Although this is one of the major problems, there are many other problems,
such as noise, redundancy, and over parameterization. To deal with these problems, many two-stage
approaches of feature selection (FS) and classification algorithms have been proposed in machine
learning over the last decade.

The FS methods are used to reduce the dimensionality of data by removing noisy and redundant
features that help in selecting the truly important features. The FS methods are classified into
rank-based and subset methods [12,13]. Rank-based methods rank all the features with respect
to their importance based on some criteria. Although there is a lack of threshold to select the optimal
number of top-ranked features, this can be solved using the sure independence screening (SIS) [14]
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conditions. Some of the popular rank-based FS methods used in bioinformatics are information
gain [15], Fisher score [16], chi-square [17], and minimum redundancy maximum relevance [18].
These rank-based FS methods have several advantages, such as that they avoid overfitting and are
computationally faster because they do not depend on the performances of classification algorithms.
However, these methods do not consider joint importance because they focus on marginal significance.
To overcome this issue, feature subset section methods were introduced. The subset methods [19] are
the ones where the subsets of features are selected with some predetermined threshold based on some
criteria, but these methods need more computational time in a high-dimensional data setting and lead
to an NP-hard problem [20]. Some of the popular subset methods include Boruta [21] and relief [22].

For the classification of gene expression data, there are non-parametric-based popular algorithms,
such as random forests [23], Adaboost [24], and support vector machines [25]. The support vector
machines are known to perform well in highly correlated gene expression data compared to the
random forests [26]. The random forests and Adaboost are based on the concept of decision trees,
and the support vector machines are based on the idea of hyperplanes. In addition to the above, there
are parametric machine learning algorithms, such as penalized logistic regression (PLR) models, that
have five different penalties which are predominantly popular in high-dimensional data. The first two
classifiers are Lasso [27] and ridge [28] that are based on L1 and L2 penalties. The third classifier is a
combination of these and is termed as elastic net [29]. The other two PLR classifiers are SCAD [30]
and MCP [31], which are based on non-concave and concave respectively. All these individual
classifiers are very common in machine learning and bioinformatics [32]. However, in highly correlated
gene expression data, the individual classifiers do not perform well in terms of prediction accuracy.
To overcome the issue of individual classifiers, ensemble classifiers are proposed [33,34]. The ensemble
classifiers are bagging and aggregating methods [35,36] that are employed to improve the accuracy of
several “weak” classifiers [37]. The tree-based method of classification by ensembles from random
partitions (CERP) [38] showed good performance but is computer-intensive. The ensembles of logistic
regression models (LORENS) [39] for high-dimensional data were proven to be better for classification.
However, there was a decrease in performance when there were a smaller number of true, important
variables in the high-dimensional space because of random partitioning.

To address these issues, there is a need to develop a novel combination of FS with a classification
method and compare the proposed method with the other combinations of popular FS with the
classifiers through extensive simulation studies and a real data application. In a high dimensional
data set, it is necessary to filter out the redundant and unimportant features using the FS methods.
This helps in reducing the computational time and helps in boosting the prediction accuracy with the
help of significant features.

In this article, we introduce the combination of an ensemble classifier with an FS method—the
resampling-based lasso feature selection (RLFS) method for ranking features, and ensemble of regularized
regression models (ERRM) for classification purposes. The resampling approach was proven to be one
of the best FS screening steps in a high-dimensional data setting [13]. The RLFS uses the selection
probability with lasso penalty, and the threshold for selecting the top-ranked features is set using
b-SIS condition; and these select features were applied to the ERRM to achieve the best prediction
accuracy. The ERRM uses five individual regularization models, lasso, adaptive lasso, elastic net,
SCAD, and MCP.

2. Materials and Methods

The FS method includes the proposed RLFS method, information gain, chi-square, and minimum
redundancy maximum relevance. The classification methods include support vector machines,
penalized regression models, and tree-based methods, such as random forests and adaptive boosting.
The programs for all the experiments were written using R software [40]. The FS and classification
were performed with the packages [41–46] obtained from CRAN. The weighted rank aggregation
was evaluated with the RankAggreg package obtained from [47]. The codes for implementing the
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algorithms are available at [48]. The SMK-CAN-187 data were obtained from [49]; some of the
applications of the data can be found in the articles [50,51] where the importance of screening approach
in high dimensional data is elaborated.

2.1. Data Setup

To assess the performances of the models, we developed simulation study and also considered a
real application of gene expression data.

2.1.1. Simulation Data Setup

The data were generated based on a random multivariate normal distribution where the mean
was assigned as 0, and the variance-covariance matrix ∑x adapts a compound symmetry structure
with the diagonal items set to 1 and the off-diagonal items being ρ values.

∑x =

⎛⎜⎜⎜⎜⎝
1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1

⎞⎟⎟⎟⎟⎠
p×p

. (1)

The class labels were generated using the Bernoulli trails with the following probability:

πi(yi = 1|xi) =
exp(xiβ)

1 + exp(xiβ)
. (2)

The data matrix xi ∼ Np(0, ∑x) was generated using the random multivariate normal distribution,
and the response variable yi was generated by binomial distribution, as shown in Equations (1) and (2)
respectively. For sufficient comparison of the performance of the model and subsidizing the effects of
the data splits, all of the regularized regression models were built using the 10-fold cross-validation
procedure, and the averages were taken over 100 partitioning times referred to as 100 iterations in this
paper. The data generated are high-dimensional in nature with the number of samples, n = 200 and
total features, p = 1000. The true regression coefficients were set to 25, which were generated using
uniform distribution with the minimum and maximum values 2 and 4, respectively.

With this setup of high-dimensional data, we simulated three different types of data, each with
correlation structures ρ = 0.2, 0.5, and 0.8 respectively. These values show the low, intermediate,
and high correlation structures in the datasets which are significantly similar to what we usually
see in the gene expression or others among many types of data in the field of bioinformatics [13,52].
At first, the data were divided randomly into training and testing sets with 75% and 25% of samples
respectively; 75% of the training data was given to the FS methods, which ranked the genes concerning
their importance, and then the top-ranked genes were selected based on b-SIS condition. The selected
genes were applied in all the classifiers. For standard comparison and mitigating the effects of the
data splitting, all of the regularized regression models were built using the 10-fold cross-validation;
the models were assessed for testing the performance with the testing data using different evaluation
metrics, and averages were taken over 100 splitting times referred to as 100 iterations.

2.1.2. Experimental Data Setup

To test the performance of the proposed combination of ERRM with RLFS, and compare it with
the rest of the combinations of FS and classifiers, the gene expression data SMK-CAN-187 were
analyzed. The data include 187 samples and 19,993 genes obtained from smokers, which included
90 samples from those with lung cancer and 97 samples from those without lung cancer. This data is
high-dimensional, with the number of genes being 19,993. The preprocessing procedures are necessary
to handle these high-dimensional data. At first, the data were randomly divided into training and
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testing sets with 75% and 25% of samples respectively. As the first filtering step, 75% of the training
data were given to the marginal maximum likelihood estimator (MMLE), to overcome the redundant
noisy features, and the genes were ranked based on their level of significance. The ranked significant
genes were next applied to the FS methods along with the proposed RLFS method as the second
filtering step, and a final list of truly significant genes was obtained. These significant genes were
applied to all the classification models along with the proposed ERRM classifier. All of the models
were built using the 10-fold cross-validation. The average classification accuracy and Gmean of our
proposed framework were tested using the test data. The above procedure was repeated for 100 times
and the averages were taken.

2.1.3. Data Notations

Let the expression levels of features in ith sample be represented as xi = (xi1, xi2, ....., xip) for
i = 1, ....., n, where n is the total number of samples and p is the total number of features. The response
variables, yi ∈ {0, 1}, where yi = 0 means that ith individual is in the non disease group and yi = 1 is
disease group.

The original data xi were split into 75% for the training set xj and 25% for the testing set xk.
The training set xj = (xj1, xj2, ....., xjp) for j = 1, ....., t, where t is the number of training samples,
the response variable yj for the training set. The testing set xk = (xk1, xk2, ....., xkp) for k = 1, ....., v,
where v is the number of testing samples; the response variable is yk for the testing set. The classifiers
are fitted on xj, and the class labels yj as training data set to predict the classification of yk using xk of
the testing set.

The detailed procedure is as follows. The training data xj were given to the FS methods, and the
new reduced feature set xr = (xj1, xj2, ....., xj f ) for j = 1, ....., t, where t was the samples included in
training data, and f was the reduced number of features after the FS step. This reduced feature set xr

was used as new training data for building the classification models.

2.2. Rank Based Feature Selection Methods

With the gain in popularity of high dimensional data in bioinformatics, the challenges to deal
with it also grew. In gene expression data, having large p and small n problems, the n represents the
samples as patients and p represents the features as genes. Dealing with such a large number of genes
that are generated by conducting large biological experiments involves computationally intensive
tasks that become too expensive to handle. The performance drops when such a large number of
genes are added to the model. To overcome this problem, employing FS methods becomes a necessity.
In statistical machine learning, there are many FS methods developed to deal with the gene expression
data. But most of the existing algorithms are not completely robust applications to the gene expression
data. Hence, we propose an FS method that ranks the features based on some criteria explained in
the next section. We also explain some other popular FS methods in classification problems, such as
information gain, chi-square, and minimum redundancy maximum relevance.

2.2.1. Information Gain

The information gain (IG) method [15] is simple, and one of the widely used FS methods. This
univariate FS method is used to assess the quantity of information shared between the training feature
set xj = (xj1, xj2, ....., xjp) for j = 1, ....., t, where t is the number of training samples, for g = 1, 2, ....p,
where g is the feature in p number of features, and the response variable yj. It provides an ordered
ranking of all the features having a strong correlation with the response variable that helps to obtain
good classification performance.

The information gain between the gth feature in xj and the response variable yj is given as follows:

IG(xj; yj) = H(xj)− H(xj|yj), (3)
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where H(xj) is entropy of xj and H(xj|yj) is entropy of xj given yj. The entropy [53] of xj is defined by
the following equation:

H(xj) = ∑
g∈xj

π(g)log(π(g)), (4)

where g indicates discrete random variable xj and π(g) gives the probability of g on all values of xj.
Given the random variable yj, the conditional entropy of xj is:

H(xj|yj) = ∑
y∈yj

π(y) ∑
g∈xj

π(g|y)log(π(g|y)), (5)

where π(y) is the prior probability of yj; π(g|y) is conditional probability of g in a given y that shows
the uncertainty of xj given yj.

IG(xj; yj) = ∑
g∈xj

∑
y∈yj

π(g, y)log
π(g, y)

π(g)π(y)
, (6)

where π(g, y) is the joint probability of g and y . IG is symmetric such that IG(xj; yj) = IG(yj; xj),
and is zero if the variables xj and yj are independent.

2.2.2. Chi-Square Test

The chi-square test (Chi2) belongs to the category of the non-parametric test, which is used mainly
in determining the significant relation between two categorical variables. As part of the preprocessing
step, we used the “equal interval width” approach to transform the numerical variables into categorical
counterparts. The “equal interval width” algorithm first divides the data into q intervals of equal
size. The width of each interval is defined as: w = (max − min)/q and the interval boundaries are
determined by: min + w, min + 2w, ...., min + (q − 1)w.

The general rule in Chi2 is that the features have a strong dependency on the class labels selected,
and the features independent of the class labels are ignored.

From the training set, xj = (xj1, ....xjp), g = 1, 2, ....p, where g is every feature in p number
of features. Given a particular feature g with r different feature values [53], the Chi2 score of that
particular feature can be calculated as:

χ̃2(g) =
r

∑
j=1

p

∑
s=1

(Ojs − Ejs)
2

Ejs
, (7)

where Ojs is the number of instances with the jth feature value given feature g. In addition, Ejs =
O∗sOj∗

O ,
where Oj∗ indicates the number of data instances with the feature value given feature g, O∗s denotes
the number of data instances in r, and p is total number of features.

When two features are independent, the Ojs is closer to the expected count Ejs; consequently, we
will have smaller Chi2 score. On the other hand, the higher Chi2 score implies that the feature is more
dependent on the response and it can be selected for building the model during training.

2.2.3. Minimum Redundancy Maximum Relevance

The minimum redundancy and maximum relevance method (MRMR) is built on optimization
criteria of mutual information (redundancy and relevance); hence, it is also defined under mutual
information based methods. If a feature has uniformly of expressions or if they are randomly
distributed in different classes, its mutual information with such classes is null [18]. If a feature is
expressed differentially for different classes, it should have strong mutual information. Hence, we use
mutual information as a measure of the relevance of features. MRMR also reduces the redundant
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features from the feature set. For a given set of features, it tries to measure both the redundancy among
features and relevance between features and class vectors.

The redundancy and relevance are calculated based on mutual information, which is as follows:
We know that, in the training set xj, g = 1, ...., p represents every feature in xj and yj is the response
variable.

I(g, y) = ∑
g∈xj

∑
y∈yj

log
π(g, y)

π(g)π(y)
. (8)

In the following equation, for simplicity, let us consider the training set xj as X and response
variable yj as Y. The objective function is shown below:

JMRMR(XS, Y) =
1
|S| ∑

i∈S
I(Xi, Y)− 1

|S|2 ∑
i,j∈S

I(Xi, Xj), (9)

where S is the subset of selected features and Xi is the ith feature. The first term is a measure of
relevance that is the sum of mutual information of all the selected features in the set S with respect to
the output Y. The second term is measure of redundancy that is the sum of the mutual information
between all the selected features in the subset S. By optimizing the Equation (9), we are maximizing
the first term and minimizing the second term simultaneously.

2.3. Classification Algorithms

Along with gene selection, improving prediction accuracy when dealing with high-dimensional
data has always been a challenging task. There is a wide range of popular classification algorithms used
when dealing with high throughput data, such as tree-based methods [54], support vector machines,
and penalized regression models [55]. These popular models are discussed briefly in this section.

2.3.1. Logistic Regression

Logistic regression (LR) is perhaps one of the primary and popular models used while dealing
with binary classification problems [56]. Logistic regression for dealing with more than two classes is
called multinomial logistic regression. The primary focus here is on the binary classification. Given the
set of inputs, the output is a predicted probability that the given input point belongs to a particular
class. The output is always within [0, 1]. Logistic regression is based on the assumption that the
original input space can be divided into two separate regions, one for each class, by a plane. This plane
helps to discriminate between the dots belonging to different classes and is called as linear discriminant
or linear boundary.

One of the limitations is the number of parameters that can be estimated needs to be smaller and
should not exceed the number of samples.

2.3.2. Regularized Regression Models

Regularization is a technique used in logistic regression by employing penalties to overcome the
limitations of dealing with high-dimensional data. Here, we discuss the PLR models such as lasso,
adaptive lasso, elastic net, SCAD, and MCP. These five methods are included in the proposed ERRM
and also tested as independent classifiers for comparing performance with the ERRM.

The logistic regression equation:

log
(

π(yj = 1|xj)

1 − π(yj = 1|xj)

)
= β0 + βxj, (10)

where j = 1....t and β = (β1...β f )
T .
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From logistic regression Equation (10), the log-likelihood estimator is shown as below:

l(β, yj) =
t

∑
j=1

{yjlog(π(yj = 1|xj)) + (1 − yj)log(1 − π(yj = 1|xj))}. (11)

Logistic regression offers the benefit by simultaneous estimation of the probabilities π(xj) and
1 − π(xj) for each class. The criterion for prediction is I{π(yj = 1|xj) ≥ 0.5}, where I(·) is an
indicator function.

The parameters for PLR are estimated by minimizing above function:

β̂PLR = argmin
β

[
− l(β, yj) + p(β)

]
, (12)

where p(β) is a penalty function, l(β, yj) is the log-likelihood function.
Lasso is a widely used method in variable selection and classification purposes in high

dimensional data. It is one of the five methods used in the proposed ERRM for classification purposes.
The LASSO penalized regression method is defined below:

β̂LASSO = argmin
β

[
− l(β, yj) + λ

f

∑
j=1

|β j|
]

, (13)

where f is the reduced number of features; λ is the tuning parameter that controls the strength of the
L1 penalty.

The oracle property [30] has consistency in variable selection and asymptotic normality. The lasso
works well in subset selection; however, it lacks the oracle property. To overcome this, different
weights are assigned to different coefficients: this describes a weighted lasso called adaptive lasso.
The adaptive lasso (ALASSO) penalty is shown below:

β̂ALASSO = argmin
β

[
− l(β, yj) + λ

f

∑
j=1

wj|β j|
]

, (14)

where f is the reduced number of features, λ is the tuning parameter that controls the strength of the
L2 penalty, and wj is the weight vector based on ridge estimator. The ridge estimator [28] uses the L2
regularization method which obtains the size of coefficients by adding the L2 penalty.

The elastic net (ENET) [57] is the combination of lasso which uses the L1 penalty, and ridge which
uses the L2 penalty. The sizable number of variables is obtained, which helps in avoiding the model
turning into an excessively sparse model.

The ENET penalty is defined as:

β̂ENET = argmin
β

[
− l(β, yj) + λ

(
1 − α

2

f

∑
j=1

|β j|2 + α
f

∑
j=1

|β j|
)]

, (15)

where λ is the tuning parameter that controls the penalty, f is the number of features, α is the mixing
parameter between ridge α = 0 and lasso α = 1.

The smoothly clipped absolute deviation penalty (SCAD) [30] is a sparse logistic regression model
with a non-concave penalty function. It improves the properties of the L1 penalty. The regression
coefficients are estimated by minimizing the log-likelihood function:

β̂SCAD = argmin
β

[
− l(β, yj) + λ

f

∑
j=1

pλ(β j)

]
. (16)
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In Equation (16) the pλ(β j) is defined by:

|βi|I(|β j |≤λ) +

(
{(c2 − 1)λ2 − (cλ − |β j|)2

+}I(λ ≤ |β j|)
2(c − 1)

)
, c > 2 and λ ≥ 0 . (17)

Minimax concave penalty (MCP) [31] is very similar to the SCAD. However, the MCP relaxes the
penalization rate immediately, while for SCAD, the rate remains smooth before it starts decreasing.
The MCP equation is given as follows:

β̂MCP = argmin
β

[
− l(β, yj) + λ

f

∑
j=1

pλ(β j)

]
. (18)

In Equation (18) the pλ(β j) is defined as:

(2cλ|β j| − β2
j

2c

)
I(|β j| ≤ cλ) +

( cλ2

2

)
I(|β j| > cλ), for λ ≥ 0 and c > 1. (19)

2.3.3. Random Forests

The random forest (RF) [23] is an interpretive and straightforward method commonly used for
classification purposes in bioinformatics. It is also known for its variable importance ranking in high
dimensional data sets. RF is built on the concept of decision trees. Decision trees are usually more
decipherable when dealing with binary responses. The idea of RF is to operate as an ensemble instead
of relying on a single model. RF is a combination of a large number of decision trees where each tree
has some random subset of features obtained from the data by allowing repetitions. This process is
called bagging. The majority voting scheme is applied by aggregating all the tree models and obtaining
one final prediction.

2.3.4. Support Vector Machines

Support vector machines (SVM) [25] are well known amongst most of the mainstream algorithms
in supervised learning. The main goal of a SVM is to choose a hyperplane that can best divide the data
in the high dimensional space. This helps to avoid overfitting. The SVM detects the maximum margin
hyperplane, the hyperplane that maximizes the distance between the hyperplane, and the closest
dots [58]. The maximum margin indicates that the classes are well separable and correctly classified.
It is represented as a linear combination of training points. As a result, the decision boundary function
for classifying points as to hyperplane only involves dot products between those points.

2.3.5. Adaboost

Adaboost is also known as adaptive boosting (AB) [24]. It improves the performance of a
particular weak boosting classifier through an iterative process. This ensemble learning algorithm
can be extensively applied to classification problems. The primary objective here is to assign more
weights to the patterns that are harder to classify. Initially, the same weights are assigned to each
training item. The weights of the wrongly classified items are incremented while the weights of the
correctly classified items are decreased in each iteration. Hence, with the additional iterations and
more classifiers, the weak learner is bound to cast on the challenging samples of the training set.

2.4. The Proposed Framework

We propose a combination of the FS method and classification method. For the filtering
procedure, the resampling-based lasso feature selection method is introduced, and for the classification,
the ensemble of regularized regression models is developed.

70



Mathematics 2020, 8, 110

2.4.1. The Resampling-Based Lasso Feature Selection

From [13], we see that the resampling-based FS is relatively more efficient in comparison to the
other existing FS methods in gene expression data. The RLFS method is based on the lasso penalized
regression method and the resampling approach employed to obtain the ranked important features
using the frequency.

The least absolute shrinkage and selection operator (LASSO) [27] estimator is based on
L1-regularization. The L1-regularization method limits the size of coefficients pushes the unimportant
regression coefficients to zero by using the L1 penalty. Due to this property, variable selection is
achieved. It plays a crucial role in achieving better prediction accuracy along with the gene selection
in bioinformatics.

β̂lasso = argmin
β

[
−

t

∑
j=1

{yjlog(π(yj = 1|xj)) + (1 − yj)log(1 − π(yj = 1|xj))}+ λ
p

∑
j=1

|β j|
]

. (20)

The selection probability S( fm) of the features based on the lasso is shown in the below equation.

S( fm) =
1
R

R

∑
i=1

1
L

L

∑
j=1

I(βijm 
= 0), for m = 1, 2, ..., p. (21)

The b-SIS criteria to select the top k ranked features is defined by,⌈
b × n

log(n)

⌉
, (22)

where R is defined by the total number of resampling, L is total number of λ values, fm is the feature
indexed as i, p is total number of features, n is total number of samples, and βijm is defined as regression
coefficient of mth feature and I() indicator variable. Each R number of resamples and L number of
values of λ are considered to build the variable selection model. The 10-fold cross validation is
considered while building the model.

After ranking the features using the RLFS method, we employ the b-SIS approach to select the top
features based on Equation (22) where b is set to two. The number of true important variables selected
among the top b-SIS ranked features is calculated in each iteration and the average of this is taken over
100 iterations.

2.4.2. The Ensembles of Regularized Regression Models

LASSO, ALASSO, ENET, SCAD, and MCP are the five individual regularized regression models
included as base learners in our ERRM. The role of bootstrapped aggregation or bagging is to reduce
the variance by averaging over an “ensemble” of trees, which will improve the performance of weak
classifiers. B = Bk

1, ...., Bk
M is the number of random bootstrapped samples obtained from reduced

training set xr with corresponding class label yj. The five regularized regression models are trained on
each bootstrapped sample B named sub-training data, leading to 5 × B models. These five regularized
models are then trained using the 10-fold cross-validation to predict the classes on the out of bag
samples called sub-testing data where the best model fit in each of the five regularized regression
model is obtained. Henceforth, in each of the five regularized models, the best model is selected
and the testing data xk is applied to obtain the final list of predicted classes for each of these models.
For binary classification problems, in addition to accuracy, the sensitivity and specificity are primarily
sought. The E evaluation metrics are computed for each of these best models of five regularized
models. In order to get an optimized classifier using all the evaluation measures E is essential, and this
is achieved using weighted rank aggregation. Here, each of the regularized models is ranked based
on the performance of E evaluation metrics. The models are ranked based on the increasing order of
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performance; in the case of a matching score of accuracy for two or more models, other metrics such
as sensitivity and specificity are considered. The best performing model among the five models is
obtained based on these ranks. This procedure is repeated to obtain the best performing model in each
of the tree T. Finally, the majority voting procedure is applied over the T trees to obtain a final list
of predicted classes. The test class label is applied to measure the final E measures for assessing the
performance of the proposed ensembles. The Algorithm 1 defines the proposed ERRM procedure.

The complete workflow of the proposed RLFS-ERRM framework is shown in Figure 1.

Data Matrix:
features xi: xi1, xi2, ....., xip for i = 1, ..., n and

class labels yi : 0 or 1

Training set xj : xj1, ..., xjp for i = 1, ..., t
75% of samples

Testing set
25% of samples

Proposed RLFS method starts here

Lasso method

λ1 λ2 ... λ100
β1 ... ... ... ...
β2 ... ... ... ...
... ... ... ... ...
βp ... ... ... ...

Count non-zero βj,
j = 1,...,p

Rank variables with
highest selection probability

Select top b ∗ n
log(n)

Proposed RLFS ends here
returning the ranked features

Proposed ERRM classifier
starts here using the

obtained reduced features

bootstrap samples
for each tree T

Run the sub-training data
on five models with the

10-fold cross validation.
The best model is selected

in each of the
five regularized models

The testing data is applied
Evaluation metrics are recorded
Rank Aggregation is performed

The final best regularized model
among the five regularized models

in each tree T is selected.

Majority voting is applied
on T = 100

best individual models

Predict output
with test label and

obtain E evaluation metrics

Repeat
100

times

Bootstrap
100

times

Figure 1. The complete workflow depicting the proposed combination of RLFS-ERRM framework.
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Algorithm 1 Proposed ERRM

Step 1: Obtain new training data xr with most informative features using the proposed RLFS method.
Step 2: Draw bootstrap samples from xr and apply them to each of the regularized methods to be
fitted with 10-fold cross validation.
Step 3: Apply out of bag samples (OOB) not used in bootstrap samples to the above fitted models to
choose the best model using E evaluation metrics.
Step 4: Repeat steps 2 and 3 until getting 100 bootstrap models.
Step 5: Apply testing set xk to each of 100 models to aggregate votes of classification.
Step 6: Predict classification of each sample by the rule of majority voting in the testing set.

2.5. Evaluation Metrics

We evaluated the results of combinations of FS methods with the classifier using accuracy and
geometric mean (Gmean). The metrics are detailed with respect to true positive (TP), true negative
(TN), false negative (FN), and false positive (FP). The equations for accuracy and Gmean are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Gmean =
√

Sensitivity × Specificity,

(23)

where the sensitivity and specificity are given by:

Sensitivity =
TP

TP + FN
and Specificity =

TN
TN + FP

. (24)

3. Results

3.1. Simulation Results

The prediction performance of any given model is largely dependent on the type of the features.
The features affecting the classification will help in attaining the best prediction accuracies. In Figure 2,
we see the RLFS method with the top-ranked features based on the b-SIS criterion includes a higher
number of true important features than other existing FS methods, such as IG, Chi2, and MRMR used
for comparison in this study. The proposed RLFS performs consistently better across low, medium,
and highly correlated simulated data, and the positive effect of having more true important variables
was seen in all three simulation scenarios (further explained in detail).

3.1.1. Simulation Scenario (S1): Low Correlation 0.2

The predictors were generated, having a low correlation structure with ρ = 0.2. The proposed
classifier ERRM performs better than the existing classifier on all the FS methods: proposed RLFS,
IG, Chi2, and MRMR. Also, the proposed combination of ERRM classifier with RLFS method,
with the accuracy and Gmean, each of which is 0.8606 and 0.8626 respectively, is relatively better in
comparison to other combinations of FS method and classifier such as RLFS-LASSO, RLFS-ALASSO,
RLFS-ENET, and the other remaining combinations, as observed in Figure 3. The combination of the
FS method IG with proposed ERRM with an accuracy of 0.8476 is also seen performing better than
IG-LASSO, IG-ALASSO, IG-ENET, IG-SCAD, IG-MCP, IG-AB, IG-RF, IG-LR, and IG-SVM. Similarly,
the combination of Chi2-ERRM with an accuracy of 0.8538 is seen better than FS method Chi2 with the
other remaining classifiers. The results are reported in Table 1. The combination of MRMR-ERRM has
an accuracy of 0.8550 and Gmean of 0.8552 is better than the combination of FS method MRMR with
the rest of the nine classifiers.
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Figure 2. True number of features selected among top b-SIS ranked features, and the average of this
taken over 100 iterations for three different scenarios. The first horizontal line in the box shows the first
quartile and the second horizontal dark line which usually represents the median values are shown as
the mean values in this article. The third horizontal line in each of the boxes shows the third quartile.
The red dotted circles indicate the outliers in each of the FS methods.

All the classifiers with the features obtained from the RLFS method achieved the best accuracies
in comparison to other FS methods, as seen in Figure 3. The combination of RLFS with SVM showed
the second-best performance by attaining an accuracy of 0.8582, as seen in Table 1. The ENET method
showed the best performance among all the regularized regression models with all the FS methods,
and the best accuracy was obtained with the proposed RLFS method.

The proposed combination of RLFS-ERRM has better performance than the other existing
combinations of the FS and classifier without the proposed FS method RLFS and classifier ERRM
itself. For example, the existing FS methods IG, Chi2, and MRMR with the eight existing individual
classifiers’ performances are lower than the proposed RLFS-ERRM combination, as shown in Table 1.
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Figure 3. Comparison of accuracies of proposed combination of ensemble of regularized regression
models (ERRM) with resampling-based lasso feature selection (RLFS) and other classifiers with feature
selection methods when correlation = 0.2.

3.1.2. Simulation Scenario (S2): Intermediate Correlation 0.5

The predictor variables were generated using a medium correlation structure with ρ = 0.5.
The proposed combination of the RLFS method and ERRM classifier, with the accuracy and Gmean,
each of which is 0.9256 and 0.9266, respectively, attained relatively better performance compared to
other combinations of the FS method and classifier such as RLFS-LASSO, RLFS-ALASSO, RLFS-ENET
and the other remaining combinations. The results are shown in Table 1. From Figure 4, we see that
the proposed ensemble classifier ERRM with other FS methods such as IG, Chi2, and MRMR performs
best compared to the other nine individual classifiers.

The SVM and ENET classifiers with the RLFS method attained accuracies that are almost similar
to the proposed combination of ERRM-RLFS. However, when Gmean is considered, the ERRM-RLFS
outperforms the SVM combinations. The average SD of the proposed combination of the ERRM-RLFS
is smaller than other combinations of the FS method and classifier. The accuracies of SVM and ENET
classifiers with the IG method were 0.9128 and 0.9150 lower compared to the ERRM classifier with
the IG method which had an accuracy of 0.9184. Similarly, the ERRM with the Chi2 method showed
relatively better performance than the competitive classifiers ENET and SVM. Further, the ERRM
classifier with the MRMR method having an accuracy of 0.9174 showed better performance than ENET,
SVM, and other top-performing individual classifiers.
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Figure 4. Boxplot showing the accuracies of classifiers with FS methods when correlation = 0.5.

While the SVM and ENET classifiers showed promising performance on the RLFS that had a
good number of important features, they failed to show the same consistency on the other FS methods.
On the other hand, the ensemble ERRM showed robust behavior, with being able to withstand the
noise that helps in attaining better prediction accuracies and Gmean, not only with the RLFS method
but also with other FS methods, such as IG, Chi2, and MRMR, as seen in Table 1.

Similar results are also found in the Simulation Scenario (S3): which has the highly correlated
data with ρ set to 0.8. The results for this scenario are described in the Appendix A.

3.2. Experimental Results

Figure 5 shows the box plot of average accuracies taken over 100 iterations for all the combinations
of FS and classifiers in experimental data. Each of the sub-figures in the figure shows the classifiers
with the corresponding FS methods. As seen in Table 2, the performance of all the individual classifiers
when applied on the RLFS method—the accuracy and Gmean—are relatively much better than the
accuracies of the individual classifiers when applied on the IG, Chi2, and MRMR methods.
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Table 1. Classification performance of proposed RLFS with ERRM compared to other combinations of
feature selection methods with classifiers over 100 iterations.

Proposed RLFS IG Chi2 MRMR

Correlation Classifier
Acc
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Proposed ERRM
0.8606
(0.049)

0.8626
(0.073)

0.8476
(0.052)

0.8483
(0.079)

0.8538
(0.053)

0.8551
(0.071)

0.8550
(0.049)

0.8552
(0.075)

LASSO
0.8486
(0.052)

0.8504
(0.075)

0.8316
(.054)

0.8335
(0.083)

0.8310
(0.052)

0.8323
(0.071)

0.8388
(0.051)

0.8393
(0.077)

ALASSO
0.8402
(0.054)

0.8416
(0.077)

0.8198
(0.051)

0.8217
(0.079)

0.8160
(0.053)

0.8171
(0.075)

0.8304
(0.051)

0.8313
(0.079)

ENET
0.8564
(0.048)

0.8584
(0.072)

0.8424
(0.054)

0.8441
(0.081)

0.8494
(0.046)

0.8509
(0.067)

0.8508
(0.052)

0.8508
(0.077)

SCAD
0.8440
(0.054)

0.8457
(0.080)

0.8264
(0.057)

0.8283
(0.086)

0.8226
(0.061)

0.8239
(0.077)

0.8330
(0.056)

0.8336
(0.081)

0.2 MCP
0.8078
(0.049)

0.8095
(0.081)

0.8050
(0.062)

0.8074
(0.088)

0.7936
(0.060)

0.7952
(0.085)

0.8110
(0.060)

0.8126
(0.082)

AB
0.8390
(0.051)

0.8224
(0.077)

0.8314
(0.060)

0.8328
(0.080)

0.8422
(0.054)

0.8435
(0.075)

0.8432
(0.054)

0.8437
(0.075)

RF
0.8432
(0.057)

0.8467
(0.084)

0.8414
(0.052)

0.8435
(0.078)

0.8498
(0.053)

0.8520
(0.075)

0.8522
(0.051)

0.8534
(0.077)

LR
0.8474
(0.050)

0.8489
(0.076)

0.8330
(0.053)

0.8346
(0.080)

0.8370
(0.054)

0.8380
(0.073)

0.8394
(0.051)

0.8394
(0.080)

SVM
0.8582
(0.049)

0.8595
(0.070)

0.8312
(0.052)

0.8320
(0.083)

0.8404
(0.054)

0.8416
(0.074)

0.8388
(0.049)

0.8378
(0.084)

Proposed ERRM
0.9256
(0.037)

0.9266
(0.053)

0.9184
(0.039)

0.9195
(0.059)

0.9160
(0.038)

0.9165
(0.056)

0.9174
(0.042)

0.9176
(0.056)

LASSO
0.9146
(0.037)

0.9155
(0.053)

0.9034
(0.045)

0.9046
(0.061)

0.9020
(0.043)

0.9029
(0.063)

0.9066
(0.045)

0.9065
(0.062)

ALASSO
0.9056
(0.039)

0.9062
(0.056)

0.8956
(0.044)

0.8966
(0.065)

0.8948
(0.046)

0.8954
(0.065)

0.8984
(0.046)

0.8982
(0.062)

ENET
0.9244
(0.038)

0.9253
(0.052)

0.9150
(0.044)

0.9163
(0.061)

0.9122
(0.039)

0.9130
(0.060)

0.9158
(0.043)

0.9155
(0.058)

SCAD
0.9102
(0.041)

0.9110
(0.060)

0.8974
(0.046)

0.8986
(0.063)

0.8964
(0.045)

0.8972
(0.065)

0.9090
(0.045)

0.9090
(0.059)

0.5 MCP
0.8850
(0.047)

0.8855
(0.066)

0.8798
(0.050)

0.8813
(0.068)

0.8772
(0.045)

0.8782
(0.065)

0.8738
(0.049)

0.8738
(0.070)

AB
0.9158
(0.035)

0.9166
(0.050)

0.9014
(0.046)

0.9027
(0.065)

0.9102
(0.040)

0.9112
(0.060)

0.9072
(0.047)

0.9075
(0.062)

RF
0.9148
(0.039)

0.9166
(0.055)

0.9186
(0.041)

0.9199
(0.059)

0.9154
(0.042)

0.9167
(0.060)

0.9116
(0.043)

0.9127
(0.060)

LR
0.9124
(0.037)

0.9127
(0.054)

0.9054
(0.043)

0.9063
(0.061)

0.9018
(0.045)

0.9024
(0.063)

0.9092
(0.043)

0.9084
(0.060)

SVM
0.9256
(0.038)

0.9261
(0.054)

0.9128
(0.038)

0.9135
(0.056)

0.9080
(0.043)

0.9099
(0.061)

0.9126
(0.045)

0.9120
(0.062)

When we look at the performances of all the classifiers with the IG method in comparison to other
FS methods, there is much variation in the accuracies, as seen in Figure 5. The SVM classifier, which
attained the accuracy of 0.7026 with the RLFS method, dropped to 0.6422 with the IG method.

The proposed combination of the ERRM classifier with the RLFS method achieved the highest
average accuracy of 0.7161, and the Gmean of 0.7127 outperformed the rest of the combinations
of classifier with the FS method. The RLFS method is also a top-performing FS method on all
individual classifiers. However, among the other FS methods, the MRMR method, when applied
to all the individual classifiers, showed relatively much better performance than the application
of IG and Chi2 methods to the individual classifiers. The second best-performing method is the
ENET-RLFS combination, which had an accuracy of 0.7138. The SVM-IG combination showed the
lowest performance with an accuracy of 0.6422 among all the combinations of the classifier with FS
methods, as shown in Table 2.
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Figure 5. Boxplot showing the accuracies of classifiers with FS methods in experimental data
SMK-CAN-187.

Table 2. Average values taken over 100 iterations in experimental data: SMK-CAN-187.

Proposed RLFS IG Chi2 MRMR

Classifier
Accuracy

(SD)
Gmean

(SD)
Accuracy

(SD)
Gmean

(SD)
Accuracy

(SD)
Gmean

(SD)
Accuracy

(SD)
Gmean

(SD)

Proposed ERRM
0.7161
(0.053)

0.7127
(0.082)

0.6789
(0.056)

0.6791
(0.091)

0.6807
(0.056)

0.6808
(0.091)

0.7035
(0.056)

0.7024
(0.087)

LASSO
0.7073
(0.064)

0.7058
(0.087)

0.6726
(.060)

0.6725
(0.095)

0.6680
(0.057)

0.6680
(0.090)

06859
(0.061)

0.6871
(0.097)

ALASSO
0.6878
(0.065)

0.6869
(0.091)

0.6715
(0.060)

0.6714
(0.094)

0.6696
(0.064)

0.6698
(0.092)

0.6800
(0.059)

0.6803
(0.092)

ENET
0.7138
(0.061)

0.7116
(0.085)

0.6733
(0.057)

0.6722
(0.093)

0.6733
(0.052)

0.6726
(0.090)

0.6998
(0.061)

0.6992
(0.095)

SCAD
0.7114
(0.054)

0.7098
(0.083)

0.6735
(0.056)

0.6732
(0.090)

0.6670
(0.058)

0.6669
(0.091)

0.6894
(0.059)

0.6901
(0.091)

MCP
0.6880
(0.010)

0.6870
(0.082)

0.6673
(0.057)

0.6663
(0.089)

0.6647
(0.059)

0.6639
(0.092)

0.6866
(0.057)

0.6874
(0.089)

AB
0.6991
(0.064)

0.6958
(0.087)

0.6673
(0.054)

0.6634
(0.086)

0.6605
(0.058)

0.6583
(0.094)

0.6929
(0.050)

0.6897
(0.083)

RF
0.6975
(0.056)

0.6933
(0.089)

0.6729
(0.045)

0.6691
(0.078)

0.6738
(0.054)

0.6703
(0.090)

0.6942
(0.055)

0.6902
(0.088)

LR
0.7001
(0.065)

0.6987
(0.089)

0.6761
(0.058)

0.6662
(0.097)

0.6770
(0.059)

0.6769
(0.094)

0.7008
(0.058)

0.7000
(0.086)

SVM
0.7026
(0.058)

0.7014
(0.086)

0.6422
(0.059)

0.6430
(0.099)

0.6459
(0.066)

0.6477
(0.105)

0.6668
(0.058)

0.6658
(0.092)
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For assessing the importance of bootstrapping and FS screening of the proposed framework, we
measured the performance of ERRM without FS screening. The results in Table 3 shows the results of
ensembles method with and without bootstrapping procedure. We see that having the bootstrapping
approach which is random sampling with replacement is a better approach in the ensembles.

Table 3. Comparison of proposed ERRM with and without bootstrapping.

Bootstrapping Accuracy (SD) Gmean (SD)

ERRM without feature selection (FS) screening Yes 0.7129 (0.053) 0.7093 (0.091)

ERRM without FS screening No 0.6947 (0.057) 0.6944 (0.089)

The performance of the regularized regression models used in the proposed ensembles algorithm
is tested with the FS screening method and without the FS screening method. In the former approach,
the regularized regression models were built and tested using the proposed RLFS screening method
with the selected amount of significant features, whereas in the latter approach, the regularized models
used all the features for building the model. The performances of the penalized models with the FS
screening showed better accuracies and Gmean than without FS screening, as reported in Table 4.

Table 4. Comparison of regularized regression models used in the ERRM with and without FS
screening.

FS Screening Accuracy (SD) Gmean (SD)

LASSO Yes 0.7073 (0.064) 0.7058 (0.087)
No 0.6740 (0.061) 0.6752 (0.125)

ALASSO Yes 0.6878 (0.065) 0.6869 (0.091)
No 0.6740 (0.061) 0.6752 (0.125)

ENET Yes 0.7138 (0.061) 0.7116 (0.085)
No 0.6740 (0.061) 0.6752 (0.125)

SCAD Yes 0.7114 (0.054) 0.7098 (0.083)
No 0.6740 (0.061) 0.6752 (0.125)

MCP Yes 0.6880 (0.010) 0.6870 (0.082)
No 0.6740 (0.061) 0.6752 (0.125)

4. Discussion

We investigated the performance of the proposed combination of ERRM with the RLFS method
using simulation studies and a real data application. The RLFS method ranks the features by employing
the lasso method with a resampling approach and the b-SIS criteria to set the threshold for selecting
the optimal number of features, and these features are applied on the ERRM classifier, which uses
bootstrapping and rank aggregation to select the best performing model across the bootstrapped
samples and helps in attaining the best prediction accuracy in a high dimensional setting. The ensemble
framework ERRM was built using five different regularized regression models. The regularized
regression models are known for having the best performances in terms of variable selection and
prediction accuracy on gene expression data.

To show the performance of our proposed framework, we used three different simulation scenarios
with low, medium, and high correlation structures that matched the gene expression data. To further
illustrate our point, we also used SMK-CAN-187 data. Figure 2 shows the boxplots of the average
number of true important features, where the RLFS shows higher detection power than the other FS
methods such as IG, Chi2, and MRMR. From the results of both simulation studies and experimental
data, we showed that all the individual classifiers with the RLFS method performed much better
compared to the IG, Chi2, and MRMR. We also observed that all the individual classifiers showed much
instability with the other three FS methods. This means that the individual classifiers do not work well
with more noise and less true important variables in the model. The SVM and ENET classifiers with
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all the FS methods performed a little better among all the classifiers. However, the performance was
relatively still low in comparison to the proposed ERRM classifier with every FS method. The tree-based
ensemble methods RF and AB with RLFS also attained good accuracies but were not the best compared
to the ERRM classifier.

The proposed ERRM method was assessed with the FS screening and without the FS screening
step along with the bootstrapping option. The ERRM with FS screening and bootstrapping approach
works better than ERRM without the FS screening and bootstrapping technique. Also, the results
from Table 3 show that the ensemble with bootstrapping is a better approach to both the filtered and
unfiltered data. On comparing the performance of the individual regularized regression models used
in the ensembles, the individual models with the proposed RLFS screening step showed comparatively
better accuracy in comparison to the individual regularized regression models without the FS screening.
This means that using the reduced number of significant features with RLFS is a better approach
instead of using all the features from the data.

The importance of FS method was not addressed in any of the ensemble approaches [37–39],
and the classification accuracies achieved by the corresponding proposed methods were much closer
to the accuracies attained by existing approaches. In this paper, we compared the various combination
of FS methods with different classifiers. The ERRM showed better overall performance not only with
the RLFS but also with the other FS methods compared in this study. This means that the ERRM is
robust and works much better on the highly correlated gene expression data. The rule of thumb fpr
attaining the best prediction accuracy is that more the true important variables, better the prediction
accuracy. Henceforth, from the results of simulation and experimental data, we see that the proposed
combination of RLFS-ERRM is better compared to the other existing combinations of FS and classifiers,
as seen in the Tables 1 and 2. The proposed ERRM classifier showed the best performance across all
the FS methods, with the highest performance achieved with the RLFS method. The proposed RLFS
method attained a higher number of significant features compared to other FS methods. However,
the drawback is that with the increase in the correlation structure, there is a decreasing performance
in selecting the significant features, as shown in Figure 2. The ensembles algorithms are known
to be computationally expensive [39] because of the tree-based nature. However, in our proposed
framework, before the ensembles of ERRM, we apply FS methods to remove the irrelevant features
and keep significant features. This filtering step not only helps with improving prediction accuracy
but also with overcoming the drawback of computational time required, as the number of features
processed becomes lower.

5. Conclusions

In this paper, we proposed a combination of the ensembles of regularized regression models
(ERRM) with resampling-based lasso feature selection (RLFS) for attaining better prediction accuracies
in high dimensional data. We conducted extensive simulation studies where we showed the
better performance of RLFS in detecting the significant features than other competitive FS methods.
The ensemble classifier ERRM also showed better average prediction accuracy with the RLFS, IG,
Chi2, and MRMR compared to other classifiers with these FS methods. We also saw an improved
performance in the ensemble method when used with bootstrapping. On comparing the performances
of individual regularized regression models, all the models showed an increase in their accuracies with
the FS screening approach. In both the simulation study and the experimental data SMK-CAN-187,
the better performance was achieved by the proposed combination of RLFS and ERRM compared to
all other combinations of FS and classifiers. The minor drawback in the proposed framework is that,
in the case of highly correlated data, there is smaller number of significant features selected with all
the FS methods. As future work, we plan to focus on improving the detecting power of true important
genes with the new FS method.
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Abbreviations

The following abbreviations are used in this manuscript:

FS feature Selection
RLFS resampling-based lasso feature selection
ERRM ensemble regularized regression models
IG information gain
Chi2 chi-square
MRMR minimum redundancy maximum relevance
ALASSO adaptive lasso
AB adaptive boosting
RF random forests
LR logistic regression
SVM support vector machines
SD standard deviation

Appendix A

The data are generated based on a high correlation data structure with ρ = 0.8. The performance
of the proposed combination of RLFS-ERRM is relatively better than the other combinations of the FS
methods and classifiers. The results for simulation scenario S3 are shown in Figure A1. The average
accuracies and Gmeans for all the FS and classifiers are noted in Table A1. The SVM and ENET
classifiers with all the FS methods showed a little better performance among all individual classifiers.
However, the accuracies and Gmeans attained by the proposed ensemble classifier ERRM with the
FS methods RLFS, IG, and Chi2 were relatively better compared to the individual classifiers with FS
methods. The best performance was achieved by the proposed RLFS-ERRM combination with an
accuracy of 0.9586 and Gmean of 0.9596. The second-best performing combination was MRMR-SVM.
The lowest performance in terms of accuracy and the Gmean was shown by Chi2-MCP. The MCP
classifier has the lowest accuracy with all the FS methods. This explains why the MCP does not
perform well when the predictor variables are highly correlated.
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Figure A1. Boxplot showing the accuracies of Classifiers with FS methods in simulation scenario: S3
(Correlation = 0.8).

Table A1. Average values taken over 100 iterations in simulation scenario: S3 (High correlation: 0.8).

Proposed RLFS IG Chi2 MRMR

Classifier
Accuracy

(SD)
Gmean

(SD)
Accuracy

(SD)
Gmean

(SD)
Accuracy

(SD)
Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Proposed ERRM
0.9586
(0.025)

0.9596
(0.039)

0.9556
(0.027)

0.9565
(0.041)

0.9530
(0.034)

0.9544
(0.045)

0.9560
(0.024)

0.9558
(0.037)

LASSO
0.9482
(0.033)

0.9493
(0.050)

0.9442
(.030)

0.9194
(0.045)

0.9428
(0.037)

0.9447
(0.051)

0.9444
(0.032)

0.9442
(0.042)

ALASSO
0.9420
(0.031)

0.9425
(0.051)

0.9376
(0.030)

0.9379
(0.045)

0.9328
(0.041)

0.942
(0.056)

0.9388
(0.033)

0.9389
(0.047)

ENET
0.9576
(0.025)

0.9587
(0.039)

0.9538
(0.029)

0.9546
(0.042)

0.9532
(0.034)

0.9546
(0.045)

0.9566
(0.024)

0.9562
(0.036)

SCAD
0.9464
(0.031)

0.9475
(0.049)

0.9422
(0.030)

0.9428
(0.045)

0.9386
(0.043)

0.9401
(0.055)

0.9414
(0.031)

0.9408
(0.043)

MCP
0.9256
(0.040)

0.9270
(0.062)

0.9262
(0.038)

0.9269
(0.055)

0.9210
(0.041)

0.9221
(0.058)

0.9224
(0.034)

0.9223
(0.048)

AB
0.9454
(0.032)

0.9469
(0.047)

0.9494
(0.030)

0.9501
(0.044)

0.9470
(0.034)

0.9482
(0.046)

0.9480
(0.029)

0.9481
(0.040)

RF
0.9540
(0.030)

0.9557
(0.043)

0.9560
(0.029)

0.9565
(0.043)

0.9542
(0.032)

0.9556
(0.044)

0.9508
(0.027)

0.9510
(0.039)

LR
0.9478
(0.029)

0.9482
(0.045)

0.9462
(0.030)

0.9469
(0.044)

0.9418
(0.038)

0.9432
(0.050)

0.9438
(0.028)

0.9437
(0.041)

SVM
0.9560
(0.027)

0.9568
(0.041)

0.9522
(0.030)

0.9527
(0.043)

0.9520
(0.031)

0.9526
(0.042)

0.9594
(0.026)

0.9587
(0.037)
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Abstract: Low-coverage next-generation sequencing experiments assisted by statistical methods are
popular in a genetic association study. Next-generation sequencing experiments produce genotype
data that include allele read counts and read depths. For low sequencing depths, the genotypes
tend to be highly uncertain; therefore, the uncertain genotypes are usually removed or imputed
before performing a statistical analysis. It may result in the inflated type I error rate and in a
loss of statistical power. In this paper, we propose a mixture-based penalized score association
test adjusting for non-genetic covariates. The proposed score test statistic is based on a sandwich
variance estimator so that it is robust under the model misspecification between the covariates and the
latent genotypes. The proposed method takes advantage of not requiring either external imputation
or elimination of uncertain genotypes. The results of our simulation study show that the type I
error rates are well controlled and the proposed association test have reasonable statistical power.
As an illustration, we apply our statistic to pharmacogenomics data for drug responsiveness among
400 epilepsy patients.

Keywords: allele read counts; low-coverage; mixture model; next-generation sequencing; sandwich
variance estimator

1. Introduction

Genome-wide association study (GWAS) is a powerful tool for screening a high-dimensional
genome data set and selecting candidate genetic variants such as single nucleotide polymorphisms
(SNPs) in genetic association studies. Next-generation sequencing (NGS) technology is widely
used to produce a large amount of genetic information in a fast way. In the past decade,
there have been numerous studies using NGS data such as rare variants association study [1,2],
pharmacogenomics [3,4], machine learning and deep learning applications [5,6], and big data
analysis [7,8]. Many NGS experiments are based on low-coverage sequencing with a large sized sample
since there is a trade-off between sample size and sequencing depth in the NGS experiments [9,10].
For the low-coverage NGS data, a high uncertainty of the inferred genotypes is common; however,
it causes biased and unreliable results on genetic association analyses. In genetic research based on
NGS data, therefore, it is important to obtain accurate genotypes to perform an association analysis.

A number of researchers have worked on the effects of genotype misclassification in genetic
association studies. There are two types of genotype misclassifications: differential and non-differential
misclassifications, determined by whether the misclassification mechanism differs in the case and
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control groups or not. In summary, non-differential misclassifications result in a loss of statistical
power and differential misclassifications distort type I error rates in a genetic case-control association
study [11–14].

While there have been many research on improving the accuracy of genotypes such as the
joint genotype calling algorithms across all samples were suggested to increase the accuracy of
genotype calls [15–17], several researchers have tried to develop new association statistics accounting
for the genotype errors. Their approaches are based on the raw measurements rather than inferred
genotypes. In statistical genetics literature, Kim et al. [18] extended a chi-squared test of independence
and developed a mixture likelihood based association test using the continuous measurements for
copy number polymorphisms. Barnes et al. [19] proposed a mixture model linear trend test for the
continuous copy number measurements. In NGS experiments, a likelihood ratio test based on allele
read counts of pooled samples was proposed to test independence of genetic variants with a binary
phenotype [20]. Gordon et al. [21] proposed a likelihood ratio test of the binomial mixture model of
allele read counts with known error parameters. Kim et al. [13,22] proposed an extended version of
Cochran–Armitage (CA) trend test and a multi-variant linear trend test for next-generation sequences
data by using binomial mixture models. For a case-parent trio design, the binomial mixture model
was applied to develop extended transmission disequilibrium tests (TDTs) based on read counts and
read depths and to provide power analysis and sample size formulas [23]. All these approaches do not
require genotype calls that can be highly uncertain when the read depth or coverage is low. However,
none of these previous research has addressed how to include covariates in their mixture-based
association studies.

When the covariates are independent of the latent genotypes, the extension of the mixture model
based association tests is straightforward. However, if the latent genotype variable is associated with
other covariates, then a likelihood based approach requires a model specification between the genotype
variable and the other covariates as opposed to the previous research [16–23]. To our knowledge, this
is the first study that investigates a genetic case-control association test controlling for covariates in
low-coverage NGS experiments. Since we do not know the true model, we apply a sandwich variance
estimator to develop a robust genetic association test statistic.

2. Materials and Methods

2.1. Mixture Model Accounting for Covariates

Let w be a covariate vector. Let y be a random variable indicating the case-control status of an
individual such that y = 1 if a subject is in the case group and y = 0, otherwise. Let z = (z0, z1, z2)

denote an unobservable latent genotype vector, where ∑2
g=0 zg = 1 and zg = 1 if and only if the

genotype is equal to g. Let x and v denote the minor allele read count and the read depth, respectively.
The probability function is given by

p(y, x, v, w) = ∑
z

p(y, x, v, w, z)

= ∑
z

p(x|v, w, z, y)p(y|v, w, z)p(z|w, v)p(w, v) (1)

= p(w, v)∑
z

p(x|v, z, y)p(y|z, w)p(z|w).

If the probability function of the read count x does not depend on the phenotype y, that is,
p(x|v, z, y) = p(x|v, z), then it is called a non-differential error model. We apply a binary logit model
to the case-control phenotype response variable y that is the same model for Cochran–Armitage trend
test when perfect genotypes are available:

p(y|z, w) =
ey(βsTz+βT

ww)

1 + eβ0+βsTz+βT
ww

. (2)
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We assume a binomial error model to the allele read counts as in previous research [13,16,20,21,23]:

p(x|v, z, y) =

(
v
x

)(
uT

ε z
)x (

1 − uT
ε z
)v−x

, (3)

where uε = (ε, 1/2, 1 − ε)T . For a differential error model, we can use uε = y(ε1, 1/2, 1 − ε1)
T +

(1 − y)(ε0, 1/2, 1 − ε0)
T . When perfect genotypes are available, we do not need the conditional

probability of the genotype z given covariates w to perform genetic association tests since the logistic
regression model is a conditional model given the genotypes and covariates. In this work, we assume
a multinomial logit model for the latent genotype given the covariates as follows:

p(z|w) =
∑2

g=0 zgeγT
g w

∑2
m=0 eγT

mw
, (4)

where γ0 = (0, 0, 0)T to remove over-parametrization. Other statistical models without the
assumptions of a multinomial logit model may also be used for the relationship between covariates
and latent genotypes, where we do not know the true model.

The likelihood function L and the log-likelihood function � are written as

L =
N

∏
k=1

[
∑
zk

p(yk|zk, wk)p(xk|vk, zk, yk)p(zk|wk)p(wk, vk)

]

=
N

∏
k=1

2

∑
i=0

{(
eyk(βsi+βT

wwk)

1 + eβsi+βT
wwk

)((
vk
xk

)
(uεi)

xk (1 − uεi)
vk−xk

)(
eγT

i wk

∑2
m=0 eγT

mwk

)
p(wk, vk)

}
, (5)

� =
N

∑
k=1

log

[
2

∑
i=0

{(
eyk(βsi+βT

wwk)

1 + eβsi+βT
wwk

)(
(uεi)

xk (1 − uεi)
vk−xk

)( eγT
i wk

∑2
m=0 eγT

mwk

)}]

+
N

∑
k=1

log
(

vk
xk

)
p(wk, vk). (6)

The error parameter ε is commonly small and hence the estimate of ε is often equal to zero. The zero
estimate of the error parameter results in a divergent information matrix. It prevents us from calculating
Rao’s score test statistic. In order to overcome this issue, we include a beta density penalty term to
prevent from zero estimate of the error parameter. The penalized log-likelihood function is given by

�p = �+ C log
[
εaε(1 − ε)bε

]
. (7)

During this work, we choose C = 1 as in [24,25]. The penalized complete-data likelihood function is
given by

LC =
N

∏
k=1

2

∏
i=0

[
eyk(βsi+βT

wwk)

1 + eβsi+βT
wwk

×
(

vk
xk

)
(uεi)

xk (1 − uεi)
vk−xk ε

aε
N (1 − ε)

bε
N × eγT

i wk

∑2
m=0 eγT

mwk

]zik

(8)

The complete data log-likelihood function is written as

�C =
N

∑
k=1

2

∑
i=0

zik

[
yk(βsi + βT

wwk)− log
(

1 + eβsi+βT
wwk
)]

+
N

∑
k=1

2

∑
i=0

zik [xk log(uεi) + (vk − xk) log(1 − uεi)] + aε log ε + bε log(1 − ε) (9)

+
N

∑
k=1

2

∑
i=0

zik

[
γT

i wk − log

(
2

∑
m=0

eγT
mwk

)]
.
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2.2. Derivation of EM Algorithm under H0

We apply the Expectation–Maximization (EM) algorithm [26] to estimate the parameters in our
mixture model. Given data and the (r)-th step estimated parameters, the (r + 1)-th E-step of the EM
algorithm is written as

Q(r+1) =
N

∑
k=1

2

∑
i=0

τ
(r)
ik

[
yk(βsi + βT

wwk)− log
(

1 + eβsi+βT
wwk
)]

+
N

∑
k=1

2

∑
i=0

τ
(r)
ik [xk log(uεi) + (vk − xk) log(1 − uεi)] + aε log ε + bε log(1 − ε) (10)

+
N

∑
k=1

2

∑
i=0

τ
(r)
ik

[
γT

i wk − log

(
2

∑
m=0

eγT
mwk

)]
,

where

τ
(r)
ik =

(
eyk(β(r)si+β

(r)T
w wk)

1+eβ(r)si+β
(r)T
w wk

)(
(u(r)

εi )
xk (1−u(r)

εi )
vk−xk

)⎛⎝ e
γ
(r)T
i wk

∑2
m=0 eγ

(r)T
m wk

⎞⎠
∑2

g=0

⎡⎣( eyk(β(r)sg+β
(r)T
w wk)

1+eβ(r)sg+β
(r)T
w wk

)(
(u(r)

εg )
xk (1−u(r)

εg )
vk−xk

)⎛⎝ e
γ
(r)T
g wk

∑2
m=0 eγ

(r)T
m wk

⎞⎠⎤⎦ . (11)

We note that the posterior probability of subject k belonging to genotype class i depends on the all
parameters. In M-step, the (r + 1)-th estimates of the parameters are obtained by maximizing Q(r+1):

∂Q(r+1)

∂β
=

N

∑
k=1

2

∑
i=0

τ
(r)
ik si (yk − πik) = 0 (12)

∂Q(r+1)

∂βw
=

N

∑
k=1

2

∑
i=0

τ
(r)
ik wk (yk − πik) = 0 (13)

∂Q(r+1)

∂ε
=

N

∑
k=1

[
τ
(r)
0k

(
xk
ε
− vk − xk

1 − ε

)
+ τ

(r)
2k

(
vk − xk

ε
− xk

1 − ε

)]
+

aε

ε
− bε

1 − ε
= 0 (14)

∂Q(r+1)

∂γi
=

N

∑
k=1

wk

(
τ
(r)
ik − pik

)
= 0, (15)

where we use notations πik = πik(β, βw) = eβsi+βT
wwk

1+eβsi+βT
wwk

and pik = pik(γ1, γ2) = eγT
i wk

∑2
m=0 eγT

mwk
for

simplicity. From Equation (14), we derive a closed form iteration formula to update the allele read
error parameter ε:

ε(r+1) =
∑N

k=1

[
τ
(r)
0k xk + τ

(r)
2k (vk − xk)

]
+ aε

∑N
k=1

[
(τ

(r)
0k + τ

(r)
2k )vk

]
+ aε + bε

. (16)

There is no closed form iteration formulas to update other parameters β, βw, γi. The M-step
for β, βw, and γ can be obtained by the Newton–Raphson method. The Hessian matrix of Q(r+1) is
given by

∂2Q(r+1)

∂β2 = −
N

∑
k=1

2

∑
i=0

τ
(r)
ik s2

i [πik(1 − πik)] (17)

∂2Q(r+1)

∂β∂βw
= −

N

∑
k=1

2

∑
i=0

τ
(r)
ik siwk [πik(1 − πik)] (18)

90



Mathematics 2020, 8, 217

∂2Q(r+1)

∂βw∂βT
w

= −
N

∑
k=1

2

∑
i=0

τ
(r)
ik wkwT

k [πik(1 − πik)] (19)

∂2Q(r+1)

∂γi∂γT
i

= −
N

∑
k=1

wkwT
k [pik(1 − pik)] (20)

∂2Q(r+1)

∂γi∂γT
j

=
N

∑
k=1

wkwT
k

[
pik pjk

]
(21)

∂2Q(r+1)

∂γi∂βT
w

=
∂2Q(r+1)

∂γi∂β
= 0 (22)

Let M = diag
(

∑2
i=0 τikπik(1 − πik)

)
be an N × N diagonal matrix. Let W = (wik) be the N × p

matrix of covariates. Let μ be an N × 1 vector of μk = ∑ik τikπik and Y be an N × 1 vector of yk. Initially,
we set β[0] = β(r) and update the parameter estimate by

β[t+1] = β[t] + (WT MW)−1WT(Y − μ). (23)

Let D11 = diag (p1k(1 − p1k)) , D12 = D21 = −diag (p1k p2k), and D22 = diag (p2k(1 − p2k)). Let
τi = (τik) be the N × 1 vector and pi = (pik) be the N × 1 vector. Initially, set γ

[0]
i = γ

(r)
i and update

the parameters γi by(
γ
[t+1]
1

γ
[t+1]
2

)
=

(
γ
[t]
1

γ
[t]
2

)
+

(
WT D11W WT D12W
WT D21W WT D22W

)−1(
WT(τ1 − p1)

WT(τ2 − p2)

)
. (24)

In order to obtain β
(r+1)
w and γ

(r+1)
i , we stop the iterations in the M-step for β and γi when ||β[t+1] −

β[t]||2 + ||γ[t+1]
1 − γ

[t]
1 ||2 + ||γ[t+1]

2 − γ
[t]
2 ||2 ≤ tol2 or the number of iterations reaches the prespecified

maximum number of iterations. In our work, we set tol = 10−6 and fix the maximum iteration as 1000.

2.3. Hypothesis Tests of Genetic Association Controlling for Covariates

To test genetic association between the latent genetic variables and the binary response variable
while controlling covariates, we employ Rao’s score test. There are several advantages for the use
of the score test. Cochran-Armitage trend test with perfect genotypes is a score test, and we extend
this test to when the genotypes are highly uncertain. The score test requires less computational cost
compared to the likelihood ratio test since it requires the parameter estimates only under the null
hypothesis of no association. The score function calculated in previous section is given by

S =
N

∑
k=1

2

∑
i=0

τik(0)si

⎛⎝yk − eβT
w(0)wk

1 + eβT
w(0)wk

⎞⎠ (25)

where the subscript (0) denotes the estimated parameter under the null hypothesis. Another important
issue to be considered when we include the covariates in a low-coverage next-generation sequencing
genetic association study is a model misspecification of the latent genotypes on the covariates.
To overcome this model misspecification problem, we employ the sandwich variance estimator [27].
In this work, we derive a robust generalized score test using the sandwich variance–covariance
estimator. In general, one of the difficulties in applying the sandwich estimator in practice is that it
requires analytic derivation for the covariance matrix of the proposed model. For simplicity in our
derivation of the sandwich variance estimator, θ denotes the vector of all parameters θ = (β, βw, γ, ε),
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and φ = (βw, γ, ε) denotes the parameter vector except β, and hence θ = (β, φ). The sandwich variance
estimator for the score function S under H0 is given by

vs = Vββ − Vβφ J−1
φφ Jφβ − Jβφ J−1

φφ Vφβ + Jβφ J−1
φφ Vφφ J−1

φφ Jφβ, (26)

where V = Ef0

[
∂�
∂θ

∂�
∂θ

T]
and J = −Ef0

[
∂2�

∂θ∂θT

]
under the unknown true distribution f0. For simplicity,

we may use hik during derivation of the sandwich variance estimator:

hgk =

(
eyk(βsg+βT

wwk)

1 + eβsg+βT
wwk

)((
uεg
)xk
(
1 − uεg

)vk−xk
)( eγT

g wk

∑2
m=0 eγT

mwk

)
, (27)

so that the likelihood function is written as

� =
N

∑
k=1

log

[
2

∑
g=0

hgk

]
+ C. (28)

The relationship between J and V can be written as

J =
1
N

N

∑
k=1

[
2

∑
g=0

τgk
∂

∂θ
log hgk

] [
2

∑
g=0

τgk
∂

∂θT log hgk

]

− 1
N

N

∑
k=1

2

∑
g=0

τgk

[(
∂

∂θ
log hgk

)(
∂

∂θT log hgk

)
+

∂2

∂θ∂θT log hgk

]
(29)

= V − 1
N

N

∑
k=1

2

∑
g=0

τgk

[(
∂

∂θ
log hgk

)(
∂

∂θT log hgk

)
+

∂2

∂θ∂θT log hgk

]

If there is no model misspecification, we have J = V and the robust score test statistic
is reduced to Rao’s score test statistic. We denote the difference R = V − J so that
R = 1

N ∑N
k=1 ∑2

g=0 τgk

[(
∂
∂θ log hgk

) (
∂

∂θT log hgk

)
+ ∂2

∂θ∂θT log hgk

]
. The components of ∂

∂θ log hgk are
calculated by

∂

∂β
log hgk = sg[yk − πk] (30)

∂

∂βw
log hgk = wk[yk − πk] (31)

∂

∂ε
log hgk = δg(0)

[
Xk
ε

− Vk − Xk
1 − ε

]
+ δg(2)

[
Vk − Xk

ε
− Xk

1 − ε

]
+

aε

Nε
− bε

N(1 − ε)
(32)

∂

∂γi
log hgk = wk [I(g = i)− pik] , (33)

where δg(i) = 1 if g = i and δg(i) = 0 if g 
= i. It is straightforward to calculate V from the above first

derivatives. The second term ∂2

∂θ∂θT log hgk of R has components as

∂2

∂β2 log hgk = −s2
gπk(1 − πk) (34)

∂2

∂βw∂βT
w

log hgk = −wkwT
k πk(1 − πk) (35)

∂2

∂βw∂β
log hgk = −wksgπk(1 − πk) (36)

∂2

∂γi∂γT
i

log hgk = −wkwT
k pik(1 − pik) (37)
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∂2

∂γi∂γT
3−i

log hgk = wkwT
k pik p3−i,k (38)

∂2

∂ε2 log hgk = −
(

δg(0)
[

Xk
ε2 +

Vk − Xk
(1 − ε)2

]
+ δg(2)

[
Vk − Xk

ε2 +
Xk

(1 − ε)2

]
+

aε

Nε2 +
bε

N(1 − ε)2

)
, (39)

where i = 1 or 2. All other second derivatives that are not presented are equal to zero. Using these first
and second derivatives of log hgk, we can obtain the components of the difference matrix R as follows:

Rββ =
1
N

N

∑
k=1

2

∑
g=0

τgks2
g

[
(yk − πk)

2 − πk(1 − πk)
]

(40)

Rβw β =
1
N

N

∑
k=1

2

∑
g=0

τgksgwk

[
(yk − πk)

2 − πk(1 − πk)
]

(41)

Rβw βw =
1
N

N

∑
k=1

wkwT
k

[
(yk − πk)

2 − πk(1 − πk)
]

(42)

Rεε =
1
N

N

∑
k=1

(
τ0k

[
Xk + aε/N

ε
− Vk − Xk + bε/N

1 − ε

]2
+ τ1k

[
aε

Nε
− bε

N(1 − ε)

]2

+τ2k

[
Vk − Xk + aε/N

ε
− Xk + bε/N

1 − ε

]2
− τ0k

[
Xk + aε/N

ε2 +
Vk − Xk + bε/N

(1 − ε)2

]
(43)

−τ1k

[
aε

Nε2 +
bε

N(1 − ε)2

]
− τ2k

[
Vk − Xk + aε/N

ε2 +
Xk + bε/N
(1 − ε)2

])
Rβε =

1
N

N

∑
k=1

[yk − πk]

(
τ0ks0

[
Xk + aε/N

ε
− Vk − Xk + bε/N

1 − ε

]
+ τ1ks1

[
aε

Nε
− bε

N(1 − ε)

]
+τ2ks2

[
Vk − Xk + aε/N

ε
− Xk + bε/N

1 − ε

])
(44)

Rβwε =
1
N

N

∑
k=1

wk[yk − πk]

(
τ0k

[
Xk + ε/N

ε
− Vk − Xk + bε/N

1 − ε

]
+ τ1k

[
aε

Nε
− bε

N(1 − ε)

]
+τ2k

[
Vk − Xk + aε/N

ε
− Xk + bε/N

1 − ε

])
(45)

Rγiγi =
1
N

N

∑
k=1

wkwT
k [(τik − pik)(1 − 2pik)] (46)

Rγ1γ2 =
1
N

N

∑
k=1

wkwT
k [p1k(p2k − τ2k) + p2k(p1k − τ1k)] (47)

Rγi β =
1
N

N

∑
k=1

wk(yk − πk)

[
τiks1 − pik

2

∑
g=0

τgksg

]
(48)

Rγi βw =
1
N

N

∑
k=1

wkwT
k (yk − πk) [τik − pik] (49)

Rγ1ε =
1
N

N

∑
k=1

wk

(
−p1kτ0k

[
Xk + aε/N

ε
− Vk − Xk + bε/N

1 − ε

]
+(1 − p1k)τ1k

[
aε

Nε
− bε

N(1 − ε)

]
(50)

−p1kτ2k

[
Vk − Xk + aε/N

ε
− Xk + bε/N

1 − ε

])
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Rγ2ε =
1
N

N

∑
k=1

wk

(
−p2kτ0k

[
Xk + aε/N

ε
− Vk − Xk + bε/N

1 − ε

]
− p2kτ1k

[
aε

Nε
− bε

N(1 − ε)

]
+(1 − p2k)τ2k

[
Vk − Xk + ε/N

ε
− Xk + bε/N

1 − ε

])
(51)

Therefore, our proposed robust score test statistic ZR can be written as

ZR =
S√
Nvs

, (52)

which asymptotically has a standard normal distribution under H0.
Another common approach to obtain p-values is to use Monte Carlo permutation method based

on the score vector or function. However, the Monte Carlo permutation p-value calculation given
a very small Bonferroni’s corrected level of significance needs high computational expenses since it
requires at least 107 or 108 permuted resamples. In this work, we employ the asymptotic permutation
p-value calculation. The score function is given by

S =
N

∑
k=1

2

∑
i=0

τik(0)si

⎛⎝yk − eβT
w(0)wk

1 + eβT
w(0)wk

⎞⎠
=

N

∑
k=1

rkek (53)

where the subscript (0) denotes the estimated parameter under the null hypothesis. We define

a score rk = ∑2
i=0 τik(0)si associated with subject k and the kth residual ek =

(
yk − e

βT
w(0)wk

1+e
βT

w(0)wk

)
.

We can permute the residuals ek’s to calculate the permutation p-value for adjusting covariate effects.
The asymptotic permutation test statistic ZAP for a large sample size is given by

ZAP =
S − N · r · e√

1
N−1

[
∑N

i=1 e2
i − N(e)2

] [
∑N

i=1 r2
i − N(r)2

] (54)

where r = 1
N ∑N

i=1 ri and e = 1
N ∑N

i=1 ei. The simple linear rank test statistic ZAP asymptotically has a
standard normal distribution under the null hypothesis [28].

3. Results

3.1. Simulation Study

In this section, we simulate data from the following process:

P(Y = 1|w) f (w) =
2

∑
i=0

P(Y = 1|G = i, w)P(G = i) f (w) (55)

For simplicity, we assume genetic relative risk Ri =
P(Y=1|G=i,w)
P(Y=1|G=0,w)

, for i = 1, 2, does not depend on
the covariate W. We assume that the genotype frequency πi = P(G = i) satisfies Hardy–Weinberg
equilibrium (HWE), so that P(G = 0) = p2, P(G = 1) = 2pq, and P(G = 2) = q2, where q is the minor
allele frequency. Then, the prevalence is given by

φ =
∫

P(Y = 1|w) f (w)dw

=
∫ [

p2 f (w|G = 0) + 2pqR1 f (w|G = 1) + q2R2 f (w|G = 2)
]

P(Y = 1|G = 0, w)dw (56)
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We consider two scenarios when generating covariates w: (1) f (w|G = i) is equal to a standard normal
N(0, 1) for all i = 0, 1, 2, called by a single normal, and (2) f (w|G = i) has a normal distribution with
mean μi and standard deviation σ = 1, we call this a normal mixture. For the single normal model,

φ =
[

p2 + 2pqR1 + q2R2

] ∫
P(Y = 1|G = 0, w) f (w)dw (57)

We finally assume P(Y = 1|G = 0, w) = eα+βww

1+eα+βww . During the simulation study, we compute α by
numerical integration given prevalence φ and other parameters.

3.1.1. Simulation Study for Null Distribution

To evaluate the type I error rate of the proposed test statistic, we perform simulations with
5000 replicates per each parameter setting. We fixed the proportion of cases as 0.5. The parameter
settings that we consider are:

(i) Prevalence (φ): 0.1, 0.3
(ii) Coverage (v): 4, 30
(iii) Minor allele frequency (q): 0.05, 0.3
(iv) Total sample size (n): 500, 1000, 1500
(v) Covariate (w1): single normal or normal mixture with mean μ = (0, 1

2 , 1
2 ) given genotype

(0, 1, 2)
(vi) Regression coefficient βw: 0, 1

We consider prevalence φ = 0.3 that may be large in a genetic association study. It is chosen to
reflect pharmacogenomics data that we use in the real data analysis.

Figure 1 shows boxplots of the null simulations. The permutation method appears to have
more variability of the empirical rejection rates over different configurations and to have the smaller
empirical rejection rates compared to the proposed robust score test based on the sandwich variance
estimator. When the sample size was small as 500 and the coverage was 4×, the permutation-based
test had less than 2.5% rejection rate though the desired value is 5%. The smallest empirical rejection
rate for the proposed robust test was greater than 3.5%, and it appears the empirical rejection rates
become closer to 5% as the sample size increases. If the coverage is 30× or higher, then the estimated
posterior probabilities in our approach are close to zero-or-one and most inferred genotypes are quite
clear. When the coverage was 30×, our proposed test seems to well control the type I error rates
regardless of other parameter settings as expected. Table 1 shows the empirical rejection rates under
the null settings by combining our simulation results for the lower level of significance.

Table 1. Empirical rejection rates under null settings for level 1× 10−2, 1× 10−3, 1× 10−4, and 1× 10−5.

Method (cvrg) 1 × 10−2 1 × 10−3 1 × 10−4 1 × 10−5

Permutation (4×) 7.13 × 10−3 6.14 × 10−4 4.44 × 10−5 0
Permutation (30×) 7.73 × 10−3 7.08 × 10−4 6.11 × 10−5 5.56 × 10−6

Sandwich (4×) 8.34 × 10−3 6.89 × 10−4 4.44 × 10−5 5.56 × 10−6

Sandwich (30×) 1.02 × 10−2 1.01 × 10−3 8.75 × 10−5 8.33 × 10−6

3.1.2. Simulation Study for Statistical Power

We used the same parameter settings as in the null simulation study. Additionally, we set
multiplicative genetic relative risks vector (1, 1.5, 1.52) in the alternative parameter configurations.
In the alternative simulations, we calculated empirical rejection rates under Bonferroni corrected
level of significance, that is, 5 × 10−8. Figure 2 shows the boxplots of empirical power under various
alternative settings. We removed the results when the sample size was 500 or the minor allele frequency
was 0.05 since all the rejection rates were small in Figure 2. It appears interesting that the power of the
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proposed test when the coverage was 4× and the sample size was 1500 is higher than the power of the
test when the coverage was 30× and the sample size was 1000. If the two design costs are similar, then
the low-coverage with more samples seems more effective than the high-coverage with less samples.
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Figure 1. Boxplot of the empirical rejection rates under the null hypothesis.

0.1.1000.4 0.3.1000.4 0.1.1500.4 0.3.1500.4 0.1.1000.30 0.3.1000.30 0.1.1500.30 0.3.1500.30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

prev:N:cvrg

P
ow
er

Figure 2. Boxplots of statistical power of the proposed robust test under the alternative settings.
The level of significance was set as 5 × 10−8. The notation 0.1.1000.4 represents prevalence 0.1, total
sample size 1000, and coverage 4×.

Table 2 summarizes statistical power of our proposed method and a naive approach. The naive
approach uses uncertain genotypes by the maximum posterior probability classification rule [29].
The standard logistic regression was applied to the uncertain genotypes. As expected, the proposed
robust method shows higher power than the naive approach when the sequencing coverage is as low
as 4×. When the sequencing coverage is high as 30×, two approaches show similar performance in
terms of statistical power.
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Table 2. Empirical rejection rates under alternative hypothesis. The level of significance was set as
5 × 10−8.

Coverage Total Sample Size Covariate βw Naive Proposed

4 1000 Normal mixture 0 0.102 0.113
4 1000 Normal mixture 1 0.233 0.261
4 1000 Single normal 0 0.190 0.277
4 1000 Single normal 1 0.269 0.374
4 1500 Normal mixture 0 0.398 0.429
4 1500 Normal mixture 1 0.657 0.701
4 1500 Single normal 0 0.626 0.741
4 1500 Single normal 1 0.736 0.840
30 1000 Normal mixture 0 0.384 0.355
30 1000 Normal mixture 1 0.617 0.603
30 1000 Single normal 0 0.622 0.637
30 1000 Single normal 1 0.734 0.760
30 1500 Normal mixture 0 0.792 0.761
30 1500 Normal mixture 1 0.959 0.954
30 1500 Single normal 0 0.933 0.939
30 1500 Single normal 1 0.978 0.978

3.2. Real Data Analysis

The proposed robust generalized score test was applied to the pharmacogenomics data consisting
of 400 epilepsy patients [22]. The data were collected from several epilepsy clinics in Korea and were
genotyped for whole-exomes by NGS experiments [30]. All study participants followed the criteria
in [31] if the participants had drug-resistant (case group) or drug-responsive (control group) epilepsy.
We defined the drug resistance as the occurrence of at least four unprovoked seizures during the past
one year at the time of recruitment, with trials of two or more appropriate antiepileptic drugs (AEDs)
at maximal tolerated doses. Patients who underwent surgical treatment for drug-resistant epilepsy
were classified as having drug-resistant epilepsy, regardless of the surgical outcome. We excluded
some patients from the study if they were frequently in poor compliance with AED therapy and had
reported seizures with a questionable semiology. In addition, we defined the drug responsiveness as
complete freedom from seizures for at least one year up to the date of the last follow-up visit.

We included two non-genetic covariates in our association analysis. The two covariates were age
of patient and duration of epileptic seizures. The age variable was definitely independent of genetic
information, whereas duration variable may be associated with genetic variables. Due to the relatively
small sample size 400, we did not expect to find a significantly associated SNP controlling for the two
covariates. Therefore, instead of reporting a genome-wide association study, we illustrated the results
of a SNP with low read depths and a SNP with high read depths. For the low read depths example, we
selected a SNP from chromosome 1, which is rs3811406. The distribution of read depths for the SNP
was summarized in Table 3. More than 10% of the sample had five or less read depths and more than
30% of the sample had 10 or less read depths at the SNP. When applying our proposed mixture-based
association test, the test statistic value was zR = 2.864 and the p-value was p = 4.183 × 10−3, while
the standard logistic regression analysis using pooled genotype calls had z = 2.601 and the p-value
p = 9.30 × 10−3 that was more than twice the p-value of the proposed robust test.

Table 3. Distribution of read depths at rs3811406.

Read Depth v v ≤ 5 5 < v ≤ 10 10 < v ≤ 30 v > 30 Total

Frequency 43 86 95 176 400
Proportion 0.1075 0.215 0.2375 0.44 1
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In addition, we applied our proposed test to SNP rs4915154 at which all patients had 13× or
higher read depths and 85% patients had 25× or higher read depths. For this SNP, the proposed robust
test statistic was zR = 2.940 with p-value = 3.28 × 10−3 and the multiple logistic regression with the
pooled genotype calls reported z = 2.963 with p-value = 3.05 × 10−3. The two results were quite close,
as expected, due to high read depths at the SNP.

4. Discussion and Conclusions

In the present study, we developed the mixture-based genetic association tests adjusting the
effects of non-genetic covariates in low-coverage NGS data. In order to construct a robust test
statistic under model misspecification, we derived the sandwich variance estimator of the mixture
model. The proposed test statistic is calculated from allele read counts and read depths instead of
inferred genotypes so that we can apply this association test to low-coverage NGS data controlling for
non-genetic covariates without external imputation or elimination of uncertain genotypes. Another
important issue that we addressed in the present study is that the proposed test takes account
of potential dependence between latent genotypes and the non-genetic covariates. Regarding
computational cost, our proposed method is efficient because it is a generalized score test that uses the
estimates of the parameters only under the null hypothesis of no association. When the sequencing
depth is 4×, it takes around 1.2 s for sample size 500, 4 s for sample size 1000, and 9 s for sample
size 1500 to simulate a dataset and to calculate both test statistics ZAP and ZR. When the sequencing
depth is 30×, it takes approximately 0.13 s for sample size 500, 0.3 s for sample size 1000, and 0.53
s for sample size 1500. Time for these computations is measured based on a single core work of a
3.5 GHz Intel Xeon processor. As illustrated in the real data analysis section, the read depth is not
a fixed constant. Therefore, the computational time for real data is usually less than that for the
coverage 4× simulation setting. We used statistical software R, which is known to be slow. It would
be computationally beneficial to run our proposed methods in other faster program languages for a
high-dimensional genome-wide association study.

We applied the penalized likelihood method to avoid singularity of information matrix when
calculating the proposed score test statistic. Therefore, the penalty term is not necessary for a non-zero
estimate of the error parameter. During our work, we fixed the degree of penalization C = 1, aε = 0.01,
and bε = 0.99 that implies 1% of allele read error as prior information. This parameter choice does
not affect the proposed test statistic much since the likelihood function is merely changed when the
sample size is greater than 500. It may be of interest to find optimal values for the parameters of the
penalty term.

The simulation study confirms that the type I error rates of the proposed test are well controlled
under the various parameter settings. The proposed robust test appears to perform better than the
permutation based approach. Simulation results indicate that coverage 4× with sample size 1500
shows higher power as compared to coverage 30× with sample size 1000. Our method can be applied
to an NGS experimental design by simulations to select coverage and sample size given a fixed amount
of budget.

We presented a real data example in which the proposed test and multiple logistic regression
results are similar to one another if the sequencing depth is high, whereas the test results may differ
when the sequencing depth is low. This might have been caused because the proposed test is an
extension of the multiple logistic regression with the unobserved latent genotype predictor. If the
sequencing depth is high enough to call accurate genotypes, then our probability model becomes
identical to the probability model of the multiple logistic regression. It would be more beneficial
to compare with the previous methods by evaluating our proposed methods using a larger sized
public dataset.

In this work, we focused on a single variant association test while controlling covariates.
By adopting a multivariate mixture model, the proposed method can be extended to the multi-variant
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genetic association test including covariates. We can also extend the present method to differential
genotype misclassifications.
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Abstract: We consider a stochastic frontier model in which a deviation of output from the production
frontier consists of two components, a one-sided technical inefficiency and a two-sided random
noise. In such a situation, we develop a semiparametric regression-based test and compare the
technical efficiencies of the different decision-making unit groups, assuming that the production
frontier function is the same for all the groups. Our test performs better than the previously proposed
ones for the same purpose in numerical studies, and also has the theoretical advantage of working
under more general assumptions. To illustrate our method, we apply the proposed test to Program for
International Student Assessment (PISA) 2015 data and investigate whether an efficiency difference
exists between male and female student groups at a specific age in terms of learning time and
achievement in mathematics.

Keywords: data envelopment analysis; stochastic frontier model; semiparametric regression; group
efficiency comparison

1. Introduction

Efficiency comparison between groups is currently used in various fields such as banking,
insurance, sports, and R&D investment evaluation. Numerous empirical studies frequently analyze
group efficiency using so-called Data Envelopment Analysis (DEA). DEA is a body of techniques for
measuring relative efficiency by comparing it with the possible frontiers of decision-making units
(DMUs) with multiple inputs and outputs. Here, the term DMU is used to collectively refer to all
the units in which the production activity takes place. In the DEA framework, the DMU efficiency
scores of each group can be obtained after specifying some assumptions appropriate to the situation,
and then the comparison of the efficiency distributions of the groups is made on the basis of their
obtained scores. For example, Golany and Storberg [1] and Lee et al. [2] applied non-parametric tests,
such as the Mann–Whitney (MW) and Kruskal–Wallis tests, to the efficiency scores. Cummins et al. [3]
introduced a dummy variable to indicate the groups, and then regressed the efficiency scores on the
dummy variable. Simar and Zelenyuk [4] adapted the test developed in Li [5] to the DEA context and
applied it to the obtained scores, to test the equality of efficiency distributions. O’Donnell et al. [6]
used the concept of a meta-frontier to compare the technical efficiencies of firms that may be classified
into different groups.

However, this stream of research under the DEA framework has a limitation in that it does
not consider the noise factor in the production process. DEA typically assumes that the inefficiency
of the DMU is the only cause of its production not reaching its maximum output, but obviously
there are many uncontrolled factors which need to be considered as the cause. From this recognition,
Aigner and Chu [7] and Meeusen and van den Broeck [8] first proposed the stochastic frontier model
(SFM), which allows for both unobserved variation in output: the technical inefficiency of the
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production unit and the noise which represents the effect of innumerable uncontrollable factors.
For illustrative comparison between DEA and SFM frameworks, see Figure 1.

Figure 1. Comparison between Data Environment Analysis (DEA) (left panel) and SFM (right panel)
frameworks (yi: output, xi: input, φ(xi): the maximum output which can be obtained from the input xi,
εi: deviation from the production frontier function φ(xi), ui: technical inefficiency, vi: noise). Note that
the technical inefficiency ui is a nonnegative random variable with unknown distribution.

Nowadays, the stochastic frontier model is used in a large literature of studies of production.
Hence, we feel the need to develop a method and compare the efficiency difference between groups
under SFM framework. One pioneering work in this direction is Banker et al. [9]. They developed
five DEA-based hypothesis tests to compare the efficiency of groups under SFM. Although the paper
referred above is an important development toward group efficiency comparison under SFM, their tests
need to improve further.

First, their rather strong assumptions might limit the applicability of the proposed methods.
For their parametric tests, they assumed the equality of both noise variance and inefficiency variance
across groups. Second, their theoretical justification of the proposed methods needs to be checked.
As regards their ordinary least squares (OLS) test of the mean difference in inefficiency, they provided
its asymptotic normality as theoretical basis, but to our knowledge, such asymptotic normality is
difficult to obtain because of the slow convergence rate of the DEA estimator when the number of
input variables is greater than or equal to 2. The same comment is given in Section 3.2 of Simar and
Wilson [10] on a similar type of asymptotic normality result as proof of Proposition 1 in Banker and
Natarajan [11]. Finally, because they used the DEA methods for SFM, the tests they developed were
based not directly on inefficiency itself, but on the inefficiency contaminated by positive measurement
error due to noise. This indirect approach can lower the performance of their tests.

This observation has motivated us to develop a theoretically sound tool for comparison of group
inefficiencies in the presence of noise. We develop such a methodology using a semi-parametric
regression technique instead of DEA methods. The newly developed test performs better than the tests
of Banker et al. [9] in numerical studies. It also has the theoretical advantage of working under more
general assumptions compared to Banker et al. [9].

The rest of this paper is organized as follows. Section 2 describes our proposed test for group
inefficiency comparison. We then perform some simulation studies and compare our test with the tests
proposed by Banker et al. [9] in Section 3. We illustrate our method by applying the proposed test to
Program for International Student Assessment (PISA) 2015 data and investigate whether an efficiency
difference exists between male and female student groups at a specific age in terms of learning
time and achievement in mathematics in Section 4. Section 5 provides some discussion and future
research topics.
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2. Group Efficiency Comparison under SFM

Assume that we have observations on n DMUs, where each observation consists of a vector of p
inputs Xi = (X1,i, . . . , Xp,i)

� and the corresponding output Yi. We consider the case where n DMUs
can be divided into two distinct groups with nl observations (n = n1 + n2). We assume the following
stochastic frontier model for two groups of DMUs:

(The first group) Yi = φ(Xi) + ε1,i, i ∈ {1, . . . , n1};

(The second group) Yi = φ(Xi) + ε2,i, i ∈ {n1 + 1, . . . , n1 + n2}, (1)

where ε l,i = Vl,i − Ul,i, Vl,i is a random noise term of the lth group with E(Vl,i|Xi) = 0, and Ul,i is
an inefficiency term of the lth group with Ul,i ≥ 0 for l = 1, 2. We assume that the same production
technology is applied to both DMU groups. Hence, the production frontier function φ(·) is the same
throughout the groups, as in Banker et al. [9]. Under this model, we need to estimate the difference
E(U1)− E(U2) and test the hypothesis

H0 : E(U1)− E(U2) = 0 vs. H1 : E(U1)− E(U2) > 0 (< 0) (2)

to know which DMU group is more efficient. A novelty of our approach in developing the test is to
implement the test without imposing any parametric assumption on the frontier function φ(·), and with
minimal assumptions on inefficiency and random noise. Banker et al. [9] also implemented the test
without any parametric assumption on φ(·), but with additional restrictive parametric assumptions on
noise and inefficiency. In the following sections, we first review the work of Banker et al. [9] and then
explain the development of our semiparametric regression-based test.

2.1. The Previous Work

To apply the DEA methods to SFM, Banker et al. [9] assumed that the random noise
variables V1,i, V2,i are bounded above by Vmax, that is, V1,i, V2,i ≤ Vmax. Under this assumption,
they transformed model (1) as

Yi = (φ(Xi) + Vmax)− (Vmax − Vl,i + Ul,i) ≡ φ̃(Xi)− Ũl,i, l = 1, 2. (3)

Since Ũl,i = (Vmax − V1,i) + Ul,i ≥ 0, they considered the translated production function
φ̃(·) = φ(·) + Vmax as a new production function, and Ũl,i as the inefficiency of the DEA framework.
The new inefficiency Ũl

i can be estimated as ˆ̃φ(Xi)− Yi after φ̃(·) is estimated using the conventional
DEA methods. After estimating Ũl,i using DEA methods, they used it for group efficiency comparison.
This approach is advantageous in that we use the strength of the existing well-developed DEA
techniques. However, the approach has one disadvantage in that the tests developed are based
not on inefficiency (Ul,i) itself, but on the inefficiency contaminated by the positive measurement
error (Vmax − Vl,i) due to random noise. Additionally, the distributional property of the inefficiency
estimated using DEA methods is generally hard to derive or quite complicated, making it very difficult
to develop a statistical test theory based on estimated inefficiency (estimate of Ũl,i). Hence, we are
motivated to develop a test for (2) directly based on inefficiency Ul,i. We will explain this in the
following section.

2.2. The Proposed Test

This section introduces our approach to testing the hypothesis in (2). Unlike Banker et al. [9],
we do not require that neither the noise variance nor inefficiency should be equal across groups.
Moreover, we allow for distributional difference in the composite error ε and input vector Xi from
the production environmental factors of each group. Specifically, the variance of Vl and mean of
inefficiency Ul can differ by the group as well as conditional distribution of Xi, given group l.
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First, model (1) can be written as two nonparametric mean regression models as follows:

Yi = [φ(Xi)− E(U1)] + [V1,i − (U1,i − E(U1))]

≡ φ∗(Xi) + ε∗1,i , i ∈ {1, . . . , n1}; (4)

Yi = [E(U1)− E(U2)] + [φ(Xi)− E(U1)] + [V2,i − (U2,i − E(U2))]

≡ β0 + φ∗(Xi) + ε∗2,i , i ∈ {n1 + 1, . . . , n1 + n2}, (5)

where E(ε∗1,i) = E(ε∗2,i) = 0, and β0 = E(U1) − E(U2). If a dummy variable is defined for groups
letting Ti = 0 for i ∈ {1, . . . , n1} and Ti = 1 for i ∈ {n1 + 1, . . . , n1 + n2}, the two models (4) and (5)
can be integrated into a single partial linear semiparametric regression model as follows:

Yi = β0Ti + φ∗(Xi) + ε∗i , i ∈ {1, . . . , n}, (6)

where ε∗i = (1 − I(Ti = 1))ε∗1,i + I(Ti = 1)ε∗2,i and E(ε∗i |Ti, Xi) = 0. Using this model (6), we can test
hypothesis (2) by testing hypothesis

H0 : β0 = 0 vs. H1 : β0 > 0(< 0). (7)

Note that Var(ε∗i |Ti, Xi) = (1 − I(Ti = 1))Var(ε∗1,i) + I(Ti = 1)Var(ε∗2,i). Thus, model (6) is
a heteroscedastic partial linear model. Liang [12] and Ma et al. [13] studied model (6) when Xi
is univariate. By extending the theory from there to the case where Xi is multivariate, we can test
hypothesis (7). In Appendix A, we prove the asymptotic normality of the kernel-based profile estimator
of β0 based on a local linear model smoother when Xi is multivariate, and provide the necessary
assumptions for it. As with the estimator in Liang [12], the kernel-based profile estimator of β0 when
Xi is multivariate is given as

β̂0 = (T�(I − S)�(I − S)T)−1T�(I − S)�(I − S)Y ≡ H Y, (8)

where T = (T1, . . . , Tn)�, Y = (Y1, . . . , Yn)�, and S the smoother matrix for estimating the vector
(E(·|X1), . . . , E(·|Xn))�. If we choose local linear regression as the smoothing method, the smoothing
matrix S = [sX1 · · · sXn ]

� will be a collection of row vectors, each of which is the smoother vector

s�x = e�1 (X
�
x WxXx)

−1X�
x Wx, (9)

where e�1 = (1, 0, . . . , 0) is a (p + 1)× 1 vector; Wx = diag {Kh(X1 − x), · · · , Kh(Xn − x)} for some
kernel function K and bandwidth vector h = (h1, . . . , hp)�; and

Xx =

⎡⎢⎣ 1 (X1 − x)�
...

...
1 (Xn − x)�

⎤⎥⎦ . (10)

Here, Kh(Xi − x) = ∏
p
j=1 h−1

j K((Xj,i − xj)/hj). From the theorem in Appendix A, under some

regularity conditions,
√

n(β̂0 − β0) is asymptotically normal with mean zero and variance
σ2 = E(T̃2)−2E(ε∗T̃)2, where T̃ = T − E(T|X). Using a consistent estimator of σ2, we can test
(7) with significance level α by rejecting H0 if Z = β̂0/(σ̂/

√
n) ≥ zα (or ≤ −zα), where zα is the

(1 − α)-quantile of the standard normal distribution.
As regards the estimation of σ2, we can first directly estimate variance σ2 using the estimates ε̂∗i

and Ê(T|Xi), where ε̂∗i = Yi − β̂0 Ti − φ∗
∧

(Xi) and φ∗
∧

(·) is the local linear estimator of φ∗(·) based on
Yi − β̂0 Ti, i = 1, . . . n. We can also estimate it using the sandwich covariance estimate based on (8),

Var
∧

(β̂0|T, X1, . . . , Xn) = H Var
∧

(Y|T, X1, . . . , Xn)H�. (11)
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Matrix Var
∧

(Y|T, X1, . . . , Xn) is diagonal, with the ith diagonal element equal to

E
∧
(ε∗2
∧

|Ti, Xi) = (1 − I(Ti = 1))Var
∧

(ε∗1) + I(Ti = 1)Var
∧

(ε∗2), (12)

where

Var
∧

(ε∗1) = n−1
1 ∑

i: Ti=0
(ε̂∗i )

2 −
(

n−1
1 ∑

i: Ti=0
ε̂∗i

)2

, (13)

Var
∧

(ε∗2) = n−1
2 ∑

i: Ti=1
(ε̂∗i )

2 −
(

n−1
2 ∑

i: Ti=1
ε̂∗i

)2

. (14)

Since the frontier function is generally (coordinatewise) non-decreasing with respect to the
input variables, one might consider it necessary to impose such a monotonicity on φ∗(·). However,
from Theorem 2.1 in Huang [14], such imposition will not decrease the asymptotic variance of β̂0;
that is, it shows no theoretical improvement in performance. We therefore choose to develop the test
without the monotonicity assumption for simplicity.

Note that our test directly estimates the mean difference in inefficiency E(U1)− E(U2) using the
semiparametric regression technique. Thus, the proposed test can work under assumptions that are
more general than those in Banker et al. [9]. Additionally, we do not have to assume that noise has
a finite upper support bound (Vmax). However, the tests in Banker et al. [9] need such assumptions
because they estimate Ũl,i = (Vmax − Vl,i) + Ul,i and use it as a surrogate estimate of Ul,i. However,
Vmax − Vl,i may hamper the tests and degrade their performance.

3. Numerical Studies

In this section, we compare the performance of our test with those of Banker et al. [9]. We consider
single and multiple input cases and use sandwich formulas to estimate the variance in estimators.

3.1. Single Input Case

We first consider a single input case using the following model:

Yi = φ(Xi) + V1,i − U1,i, i ∈ {1, . . . , n1}
Yi = φ(Xi) + V2,i − U2,i, i ∈ {n1 + 1, . . . , n1 + n2},

where φ(x) = 30x − 9x2, X ∼ U(0, 1), Ul,i ∼ N+(0, σ2
l,u), and Vl,i follow the truncated normal

distribution with mean 0 and variance σ2
l,v, which lies within (−6σl,v, 6σl,v), l = 1, 2. Here, N+ stands

for a normal distribution limited to the domain [0, ∞). As for Vl,i, we try two cases to reflect both the
equal and unequal error variances between groups. We set σ1,v = σ2,v = 1 for the equal error variance
case and σ1,v =

√
2, σ2,v = 1 for the unequal variance case. To evaluate the type I error rate and power,

we again consider two cases based on whether a mean difference (β0) exists or does not exist between
group inefficiencies: σ1,u = σ2,u = 1 (β0 = 0) and σ1,u =

√
2, σ2,u = 1 (β0 = 0.3305). Here, the type

I error rate implies the rate of supporting group difference in mean inefficiency when there is no
difference and the power means the rate of supporting group difference in mean inefficiency when
there are really inefficiency differences between groups.

We consider three sample sizes, n = 100, 200, and 400; the proportion of each group is
approximately 50% and number of replications is 1000. For a comparison, we report the type I
error and power of the following five tests with significance level α = 0.05: our proposed test (PT),
the OLS test, the T-test, the Mann-Whitney (MW) test, the Kolmogorov-Smirnov (KS) test, and the
F-test. The last five tests are from Banker et al. [9]. We used a plug-in principle (see Ruppert et al. [15])
to find the bandwidth for our PT.
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The test results are depicted in Table 1. Four of these tests, that is, except the KS test and the F-test,
seem to respect the significance level in both the equal and unequal variance cases. However, the KS
test obviously shows a larger type I error rate than expected for unequal error variances and the F-test
seems to be a conservative test, which gives much smaller type I error probabilities than expected.
As regards the power, our PT performs best, with the largest power among all the tests. In unequal
variance cases where n = 200, 400, the KS test has larger power than our PT. However, the KS test is
not reliable since it tends to reject the null hypothesis too easily in those cases. Finally, all tests tend to
show higher power with larger sample sizes.

Table 1. Type I error and power of the single input case with equal and unequal error variances.

Type I Error Power
(Rejection Rate When β0 = 0) (Rejection Rate When β0 = 0.3305)

Variances n PT OLS T MW KS F PT OLS T MW KS F

Equal 100 0.052 0.050 0.050 0.050 0.037 0.013 0.377 0.336 0.320 0.283 0.200 0.152
(σ1,v = σ2,v) 200 0.062 0.058 0.056 0.062 0.047 0.006 0.595 0.555 0.547 0.483 0.397 0.300

400 0.063 0.064 0.062 0.061 0.052 0.003 0.848 0.822 0.818 0.761 0.665 0.533

Unequal 100 0.047 0.065 0.060 0.050 0.062 0.037 0.337 0.337 0.328 0.276 0.277 0.279
(σ1,v 
= σ2,v) 200 0.053 0.064 0.063 0.052 0.099 0.029 0.505 0.468 0.463 0.388 0.521 0.401

400 0.044 0.051 0.050 0.048 0.179 0.026 0.738 0.722 0.712 0.645 0.836 0.650

3.2. Multiple Input Case

We next consider a multiple input case with p = 3. All the components in the simulation,
except for the frontier function φ, are the same as in the single input case. As regards the frontier
function, we consider two scenarios: the production function has an additive form, and the production
function does not have an additive form. The additive assumption on the production function is used
in Ferrara and Vidoli [16], but it may not be satisfied in some cases. However, in case of multiple
covariates, the practical applicability of our proposed method may become worse since it requires
multivariate smoothing and therefore suffers from the well-known “curse of dimensionality” problem
as the dimension of the covariates becomes higher. In this case, additive modeling can be a meaningful
alternative. For this, we try to estimate the difference in group efficiencies and test whether it is
zero with an alternative estimating strategy, where we employ a backfitting procedure, which is
a well-known estimating approach under the additive assumption. See Appendix B for details of
the alternative method. Considering these two scenarios (additive and non-additive production
functions), we examine how our PT(n) and its alternative based on the additive assumption, PT(a),
behave depending on the validity of the assumption. The model considered here is

Yi = φ(Xi) + V1,i − U1,i, i ∈ {1, . . . , n1}
Yi = φ(Xi) + V2,i − U2,i, i ∈ {n1 + 1, . . . , n1 + n2},

where Xj,i, j = 1, 2, 3, are generated from U(0, 1) independently. For the
first scenario, we set φ(x) = (30x1 − 9x2

1) + (5 + 2 arctan(10(x2 − 0.5))) +

(4
√

x3); this has an additive structure. For the second scenario, we consider
φ(x) = (4

√
x1 + 7

√
x2 + 5

√
x3 + 8

√
x1x2 + 10

√
x2x3 + 9

√
x1x3)

1.1. Note that both these production
functions are concave. For PT(n), we select bandwidths by a generalized cross validation method
(see Hastie and Tibshirani [17]), and for PT(a), we adopt a plug-in principle, as in the single input case.
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The performances of PT(n) and PT(a) as well as the other five tests are reported in Tables 2 and 3.
From Table 2, our PT(n) outperforms the competitors overall, especially in the unequal variances
case. Note that its type I error rates do not deviate much from 0.05, which means that the type I error
rate is under control as desired; those of other competitors such as the OLS, T and KS tests tend to
be a bit smaller than this level in case of equal variances, and considerably larger in case of unequal
variances. The MW test seems to respect the level like PT(n) but PT(n) turns to be more powerful than
MW. Note that PT(a) shows good results in terms of type I error rate, with comparable power to the
MW test. Its power is lower than that of PT(n), but this is natural since the true production function is
not additive. The F-test seems to be anticonservative leading to too high of a type I error probability,
especially in the unequal variances case. However, in the equal variance case, the F-test shows shows
very good performance in terms of type I error rate and power in large samples, as reported in
Banker et al. [9]. From Table 3, our proposed two tests outperform their competitors when the additive
assumption is true. Note that under the additive assumption, both PT(a) and PT(n) correctly specify
the model. From our simulation, PT(a) slightly outperforms PT(n), since their type I error rates are
close to 0.05 and the power of PT(a) is larger than that of PT(n). In case of equal variances, the type
I error rates of the five competitors tend to be below 0.05, but when the variances are unequal, their
power becomes much lower than our proposed tests although overall they show satisfactory type I
errors. The only exception is the F-test. It shows the largest power in the unequal variances case but
such merit is dimmed by considerably larger type I errors than other tests.
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4. Application to PISA 2015 Data

In this section, we applied our PT to PISA 2015 data and test the efficiency difference between
male and female student groups at a specific age in terms of learning time (Xi) and achievement
(Yi) in mathematics. The data can be downloaded from http://www.oecd.org/pisa/data/. PISA is
a worldwide study to evaluate educational systems by measuring the scholastic performance of
15-year-old school students in mathematics, science, and reading. We considered the regional averages
of the students’ learning time and achievement in mathematics based on test results of the 2015 version
as production data. Out of the 103 regions in the data, two regions, Nova Scotia in Canada and Chile,
were excluded from our analysis in view of their outlier characteristics in efficiency analysis.

Usually, international large-scale assessments data include measurement errors at the individual
as well as group level. Therefore, we considered the following stochastic frontier model for such data:

(Male Students) Yi = φ(Xi) + Vmale
i − Umale

i , i ∈ {1, . . . , 101}
(Female Students) Yi = φ(Xi) + V f emale

i − U f emale
i , i ∈ {102, . . . , 202}.

In this model, we assumed that there would be no gender difference in learning ability from
a biological point of view and use the same production frontier for both gender group. It means that
all the socio-economic characteristics of differentiation between the gender groups were in the random
error terms and not introduced in the frontier function.

Table 4 shows summary statistics of each student group data. We applied the six tests in Section 3
to the data and calculated the p-values for the following hypothesis testing:

H0 : E(Umale) = E(U f emale) vs. H1 : E(Umale) < E(U f emale)

Table 4. Summary statistics of our PISA 2015 data.

min Q1 median mean Q3 max

male Xi 27.89 39.52 41.72 43.10 47.81 56.70

Yi 338.5 470.6 499.7 483.9 513.8 565.6

female Xi 25.23 38.99 41.49 41.98 45.26 56.67

Yi 339.0 456.9 487.9 474.8 501.9 565.0

From Samuelsson and Samuelsson [18], it is known that male students are often more involved in
mathematics classes than female students. Additionally, since women are more involved in domestic
chores than men and for men time is often made free by their families and relatives for the learning
activity, male students are likely to be in an environment where they can focus more on studying than
female students. Hence, we expected the results of the test to indicate that the effectiveness of male
students was greater than that of female students in average.

Table 5 gives the test results. At a significance level of around α = 0.05, our PT, the MW
test, and the KS test (with p-value slightly higher that α = 0.05) supported the hypothesis that
on average male students are more efficient in mathematics than female students. However, the OLS
test, the T-test and the F-test reported no significant difference in learning efficiency between the
two groups. The reason for this could be the somewhat restrictive assumptions for test validity.
Thus, the three tests seem to face the risk of unreasonable results if the assumptions are not satisfied in
practice, but our PT does not seem to suffer from this problem.
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Table 5. P-values of the six tests to detect efficiency difference in groups of male and female students in
terms of learning time and achievement in mathematics.

test PT OLS T MW KS F

p-value 0.049 0.150 0.150 0.044 0.057 0.322

5. Discussion and Conclusions

In this study, we developed tests with sound statistical theory for group efficiency comparison
under SFM with considerably better performance than the previous tests proposed in numerical
simulations. However, there is still room for improvement in our methods.

First, since we perform full nonparametric modeling for the frontier function φ(·), which can
be multivariate, our test might suffer from the “curse of dimensionality” and require high-order
kernels for implementation with four or more input variables. In such a situation, we can consider
an alternative test with spirit as in our test when the frontier function φ(X) has an additive structure,
that is, φ(X) = ∑

p
j=1 φj(Xj), or could be well-approximated by it.

Second, we only deal with one output case, which limits practical applications. Our methods
should be extended to cover the case of multi-output production frontiers, which DEA methods cover.

Third, we assume the same production frontier for both group, which is a clear limitation in
practice since such situation is not frequently observed. If it is important to assume separate production
frontier functions for different groups, one can use the meta-frontier approach. O’Donnell et al. [6]
proposed a meta-frontier approach to compare the group technical efficiencies under stochastic frontier
framework. The proposed method has the advantage that it can be used without assuming a common
frontier function. However, the use of their method sometimes can be restricted by their assumption
that the frontier production function is log-linear.

Finally, if one is interested in estimating the mean inefficiency of each group, we refer to Noh and
Van Keiligom [19], which is a recent work along that direction.
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Appendix A

In this appendix, we provide details of the asymptotic normality of the proposed estimator β̂0 in
Section 2.2. For this, we first list the relevant assumptions.

Assumption

1. The kernel function K is symmetric, and Lipschitz continuous in [−1, 1].
2. φ is twice partially continuously differentiable.
3. The density functions of Xj (j ∈ {1, . . . , p}) are continuous, and bounded away from zero and

infinity on their supports Cj, which are bounded.
4. V1, V2, U1 and U2 have finite second moments.
5. For j ∈ {1, . . . , p}, hj are asymptotic to n−a for a > 0 such that n(∏

p
j=1 hj)

2/ log n → ∞ and

nh8
j → 0 as n goes to infinity.
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Theorem A1. Under the above assumptions,

√
n(β̂0 − β0) −→ N(0, σ2)

where

σ2 = E(T̃2)−2E(ε∗2T̃2)

T̃ = T − E(T|X)

Proof. We write

√
n(β̂0 − β0) =

[
n−1T�(I − S)�(I − S)T

]−1

× n−1/2
[
T�(I − S)�(ε∗ + φ∗ − S(Y − β0T))

]
where φ∗ = (φ∗(X1), . . . , φ∗(Xn))� and ε∗ = (ε∗1, . . . , ε∗n)�. It suffices to show that

n−1T�(I − S)�(I − S)T
p−→ E(T̃2), and (A1)

n−1/2
[
T�(I − S)�(ε + φ∗ − S(Y − β0T))

]
d−→ N(0, E(ε∗)T̃2). (A2)

To prove these, we first give the following fact.

sup
x∈C1×···×Cp

∣∣ξ̂(x)− ξ(x)
∣∣ = Op(n−2a + n−(1−ap)/2 log n), (A3)

where ξ(x) = E(R|X = x) and ξ̂(x) is its local linear estimator. That is, ξ̂(x) = s�x R with R =

(R1, . . . , Rn)� when Rj is a response variable. (A3) can be shown from the standard theory of kernel
smoothing. Note that

(I − S)T = (T − E(T|X)) + (E(T|X)− ST).

The second term of the right-hand side of the above equation is op(1) from (A3). This proves (A1).
Next, we write

n−1/2
[
T�(I − S)�(ε∗ + φ∗ − S(Y − β0T))

]
= n−1/2(T − E(T|X))�ε∗ + n−1/2(T − E(T|X))�(φ∗ − S(Y − β0T))

+n−1/2(E(T|X)− ST)�ε∗ + n−1/2(E(T|X)− ST)�(φ∗ − S(Y − β0T))

≡ n−1/2(T − E(T|X))�ε∗ + A1,n + A2,n + A3,n.

Since n−1/2(T − E(T|X))�ε∗ = N(0, E(ε∗)T̃2) + op(1), it is enough to show that Aj,n = op(1),
j = 1, 2, 3, to claim (A2).

To treat A1,n, we note that

sup
xj∈Cj

∣∣∣∣∣ ∂

∂xj
ξ̂(x)− ∂

∂xj
ξ(x)

∣∣∣∣∣ = Op(n−2a + n−(1−ap−2a)/2 log n), j ∈ {1, . . . , p} (A4)

and denote φ̂∗ = S(Y − β0T). Then,

A1,n = n−1/2
n

∑
i=1

(Ti − E(Ti|Xi))(φ
∗(Xi)− φ̂∗(Xi)).

Let G denote a class of functions satisfying |g(x) − g(y)| ≤ ‖x − y‖ for x, y ∈ [0, 1]p.
Then, na0(φ̂∗(·) − φ∗(·)) belongs to G with probability tending to 1 from (A3) and (A4),
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where a0 < max{2a, (1 − ap − 2a)/2}. We can show that the δ-entropy of G for the supremum
norm satisfies

H∞(δ,G) ≤ K
(

log
1
δ
+

1
δp

)
for some constant K. Here, we consider an empirical process

n−1/2
n

∑
i=1

(Ti − E(Ti|Xi))g(Xi), g ∈ G

indexed by G. Then, E[(Ti − E(Ti|Xi))g(Xi)] = 0, and by the Corollary 8.8 of van de Geer [20],
we conclude that sup

g∈G

∣∣∣n−1/2 ∑n
i=1(Ti − E(Ti|Xi))g(Xi)

∣∣∣ = Op(1), to result in A1,n = op(1). Note that

the exponential tail condition, required to apply the empirical process technique, is automatically
satisfied in our case since T is a binary variable.

As for A2,n, we first note that E(A2,n|(T1, X1), . . . , (Tn, Xn)) = 0. Moreover,

E(A2
2,n|(T1, X1), . . . , (Tn, Xn))

≤ n−1[var(ε1,∗
1 ) + var(ε2,∗

1 )](E(T|X)− ST)�(E(T|X)− ST)

= Op(n−4a + n−(1−ap) log n)

from (A3). This establishes A2,n = op(1). Finally, A3,n = Op(n1/2−4a + n−1/2+ap/2 log n) = op(1)
from (A3), to complete the proof.

Appendix B

In this appendix, we describe an alternative test for (2) when the frontier function φ(X) has an
additive structure, that is, φ(X) = ∑

p
j=1 φj(Xj). Under the additive structure assumption, model (1)

can be written as two nonparametric mean regression models:

Yi =

[
p

∑
j=1

Eφj(Xj,i)− E(U1)

]
+

[
p

∑
j=1

(φj(Xj,i)− Eφj(Xj))

]
+ [V1,i − (U1,i − E(U1))]

≡ μ +
p

∑
j=1

φ∗
j (Xj,i) + ε∗1,i , i ∈ {1, . . . , n1}; (A5)

Yi =

[
p

∑
j=1

Eφj(Xj,i)− E(U1)

]
+ [E(U1)− E(U2)] +

[
p

∑
j=1

(φj(Xj,i)− Eφj(Xj))

]
+[V2,i − (U2,i − E(U2))]

≡ μ + β0 +
p

∑
j=1

φ∗
j (Xj,i) + ε∗2,i , i ∈ {n1 + 1, . . . , n1 + n2}, (A6)

where φ∗
j (Xj) = φ∗

j (Xj)− Eφj(Xj) and E(φ∗(Xj)) = 0 for j ∈ {1, . . . , p}. If we introduce the same
dummy variable Ti as in the single input case, models (A5) and (A6) can be integrated into one single
semiparametric regression model, which would be a (heteroscedastic) partial linear additive model:

Yi = μ + β0Ti +
p

∑
j=1

φ∗
j (Xj,i) + ε∗i , i ∈ {1, . . . , n}, (A7)

where ε∗i = (1 − I(Ti = 1))ε∗1,i + I(Ti = 1)ε∗2,i and E(ε∗i |Ti, Xi) = 0. Partial linear additive models have
been studied by several authors; for example, Fan et al. [21], Fan and Li [22], Li [23], and Wei and
Liu [24]. For the test, we use the profile least square estimator of β0 in Wei and Liu [24]. However,
Wei and Liu [24] only showed the asymptotic distribution of the estimator of the parametric component
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vector (in our case, the estimator of β = (μ, β0)
�) under the homoscedasticity assumption of the error

(Theorem 2.1 of their paper), and so we extended their result to the heteroscedasticity case.
To introduce the profile least square estimator of β0 using the method of Wei and Liu [24],

we define some notations. Let

Xdes =

⎡⎢⎣ 1 X1
...

...
1 Xn

⎤⎥⎦ = [1n X] , ST =

⎡⎢⎢⎢⎢⎣
In S∗

1 · · · S∗
1

S∗
2 In · · · S∗

2
...

...
. . .

...
S∗

p S∗
1 · · · In

⎤⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎣
S∗

1
S∗

2
...

S∗
p

⎤⎥⎥⎥⎥⎦ , (A8)

where Sk is the smoothing matrix for local linear regression with respect to the jth (j ∈ {1, . . . , p})
covariate vector Xj = (Xj,1, . . . , Xj,n)

� with kernel function K(·) and bandwidth hj, S∗
j = (In −

1n1�n /n)Sj, and 1n = (1, . . . , 1)� with length n. Additionally, we define the additive smoother matrix
Wj as Wj = EjS

−1
T C, where Ej is a partitioned matrix of dimension n × np with n × n identity matrix

as the jth “block” and zeros elsewhere. Then, the profile least squares estimator of β = (μ, β0)
� is

obtained as the estimator of the coefficient vector β of a synthetic linear regression model

Yi − Ỹi = (Tdes,i − T̃des,i)
�β + εi, (A9)

where WM = ∑
p
j=1 Wj, Ỹ = (Ỹ1, . . . , Ỹn)� = WMY and T̃des = (T̃des,1, . . . , T̃des,n)

� = WMTdes.

Additionally, since WM1n = (0, . . . , 0)�, we know that the linear model (A9) becomes

Yi − Ỹi = μ + (Ti − T̃i)β0 + ε∗i , (A10)

where T̃ = (T̃1, . . . , T̃n)� = WMT. Hence, after a standard calculation in linear model theory, we obtain
the profile least squares estimator of β0 as

β̂0 =
[
T�(In − WM)�(In − J)(In − WM)T

]−1
T�(In − WM)�(In − J)(In − WM)Y, (A11)

where J = 1n1�n /n. Using the results to prove Theorem 2.1 in Wei and Liu [24], we show below that
under some regularity conditions, estimator β̂0 is asymptotically normal with mean zero and variance

σ2
add = E(T̃2)−2E(ε∗2T̃2), (A12)

where T̃ = T − E(T)− ∑
p
j=1

[
E(T|Xj)− E(T)

]
. Once we have a consistent estimate of σ2

add, we can
test (7) for a given significance level α. As with the case of single input variable, we can directly
estimate the variance σ2

β0
using estimates ε̂∗i and Ê(T|Xj,i). Here, Ê(T|Xj,i) can be obtained as the

ith element of Sj(T1, . . . , Tn)�. Alternatively, we can estimate the variance via the sandwich formula
estimate based on (A11) following similar steps in Section 2.2.

Now, we can show the asymptotic property of the profile least square estimator of β0. For this,
we first list the relevant assumptions.

Assumption

1. The kernel function K is symmetric, and Lipschitz continuous in [−1, 1].
2. φj (j ∈ {1, . . . , p}) are twice continuously differentiable.
3. The density functions of Xj (j ∈ {1, . . . , p}) are continuous, and bounded away from zero and

infinity on their supports, which are bounded.
4. V1, V2, U1 and U2 have finite second moments.
5. For j ∈ {1, . . . , p}, hj → 0, nhj/ log n → ∞ and nh8

j → 0 as n goes to infinity.
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Theorem A2. Under the above assumptions,

√
n(β̂0 − β0) −→ N(0, σ2

add)

where

σ2
add = E(T̃2)−2E(ε∗2X̃2)

T̃ = T − E(T)−
p

∑
j=1

[
E(T|Xj)− E(T)

]
Proof. β̂0 can be expressed as follows:

β̂0 =
[
T�(In − WM)�(In − J)(In − WM)T

]−1
T�(In − WM)�(In − J)(In − WM)Y

where T = (T1, . . . , Tn)� and J = 1n1�n /n. Then,

√
n(β̂0 − β0)

=
[
n−1T�(In − WM)�(In − J)(In − WM)T

]−1

×n−1/2T�(In − WM)�(In − J)(In − WM)(φ∗ + ε∗),

where φ∗ = (∑
p
j=1 φ∗(Xj,1), . . . , ∑

p
j=1 φ∗(Xj,n))

� and ε∗ = (ε∗1, . . . , ε∗n)�. Here, the term associated with

the intercept μ vanishes because WM1n = (0, . . . , 0)�. To prove the theorem, it suffices to show that

n−1T�(In − WM)�(In − J)(In − WM)T

= n−1
n

∑
i=1

[
Ti − E(Ti)−

p

∑
j=1

[
E(Ti|Xj,i)− E(Ti)

]]2

+ op(1) (A13)

and

n−1/2T�(In − WM)�(In − J)(In − WM)(φ∗ + ε∗)

= n−1/2
n

∑
i=1

[
Ti − E(Ti)−

p

∑
j=1

[
E(Ti|Xj,i)− E(Ti)

]]
ε∗i + op(1). (A14)

Note that (In − J)(In − WM)X = (In − WM)X − 1nX̄, where X̄ = n−1 ∑n
i=1 Xi because fact

1�n WM = (0, . . . , 0). Then, one can easily see that

n−1X�(In − WM)�(In − J)(In − WM)T

= n−1(T − 1nμX)
�(In − WM)�(In − WM)(T − 1nμT) + Op(n−1/2)

for μT = E(T1). Therefore, Equation (A13) can be verified as in the proof of Lemma 6.2 in Wei and Liu
(2012). For Equation (A14), note that

n−1/2T�(In − WM)�(In − J)(In − WM)φ∗

= n−1/2(T − 1nμT)
�(In − WM)�(In − WM)(φ∗ − 1nμφ∗) + Op(n−1/2) (A15)

and

n−1/2T�(In − WM)�(In − J)(In − WM)ε∗

= n−1/2(T − 1nμX)
�(In − WM)�(In − WM)ε∗ + Op(n−1/2), (A16)
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where μφ∗ = E(∑
p
j=1 φ∗(Xj,1)). Then, we have

(In − WM)ε∗ = ε∗ −
p

∑
j=1

Sjε
∗ + Op

(
n

p

∑
j=1

h4
j

)

from Lemma B.6 in [25]. Note that this is true as long as the conditional variance of the ε∗ given
covariates exists. This is guaranteed by assumption 4. Wei and Liu (2012) used a similar fact under the
homoscedastic error assumption. Then, with a derivation similar to that in Lemma 6.3 of Wei and Liu
(2012), we can show that (A15) converges to zero in probability and (A16) can be written as:

n−1/2
n

∑
i=1

[
Ti − E(Ti)−

p

∑
j=1

[
E(Ti|Xj,i)− E(Ti)

]]
ε∗i + op(1),

to complete the proof.
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